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Abstract

Unsteady and three-dimensional fluid dynamic instabilities
Vincenzo Citro

DIIN, University of Salerno,
Via Giovanni Paolo II, 84084 Fisciano (SA), Italy

This thesis concerns with hydrodynamic stability of fluid flows. Direct
numerical simulation (DNS) is used to investigate the non-linear dynamics
of the flow and to obtain the basic states. We develop a new procedure
(named BoostConv) able to stabilize the dynamical system without nega-
tively impacting on the computational time of the original numerical proce-
dure. The stability and transition of several flow configurations, such as the
flow over an open cavity, the flow past a sphere or a hemispherical roughness
element are investigated. In particular, a modal stability analysis is used to
study the occurrence of possible bifurcations. Both direct and adjoint eigen-
modes are considered and the region of the flow responsible for causing the
global instability is identified by the structural sensitivity map. Moreover,
we generalize the latter concept by including second-order terms. We apply
the proposed approach to a confined wake and show how it is possible to
take into account the spanwise wavy base-flow modifications to control the
instability. Inspired by the sensitivity field obtained to localize the ’wave-
maker’ in complex flows, we introduce the Error Sensitivity to Refinement
(ESR) suitable for an optimal grid refinement that minimizes the global so-
lution error. The new criterion is derived from the properties of the adjoint
operator and provides a map of the sensitivity of the global error (or its
estimate) to a local mesh adaptation. Finally, we investigate the stability of
unsteady boundary layers using the complex-ray theory. This theory allows
us to describe the propagation of small disturbances by a high-frequency
(optical) approximation similar to the one adopted for wave propagation in
nonuniform media.

5



6 Abstract



Preface

This thesis in fluid mechanics consists of two parts. The objective of
the first part is to provide an overview of the di↵erent approaches used to
study the hydrodynamic stability of fluid flows. We briefly introduce the
theoretical framework, the numerical methods and set the proposed results
into the inherent literature context. The second part consists of ten papers.
The contents of each manuscript has not been altered compared to the
published or submitted version. The following articles are included:

1. Iman Lashgari, Outi Tammisola, Vincenzo Citro, Matthew P. Juniper
& Luca Brandt.
The planar X-junction flow: stability analysis and control,
Journal of Fluid Mechanics, Vol.753, pp. 1-28 (2014), doi:10.1017/
jfm.2014.364

2. Outi Tammisola, Flavio Giannetti, Vincenzo Citro & Matthew P. Ju-
niper.
Second-order perturbation of global modes and implications for span-
wise wavy actuation,
Journal of Fluid Mechanics, Vol.755, pp. 314-335 (2014), doi:10.
1017/jfm.2014.415

3. Vincenzo Citro, Flavio Giannetti, Luca Brandt & Paolo Luchini.
Linear three-dimensional global and asymptotic stability analysis of
incompressible open cavity flow,
Journal of Fluid Mechanics, Vol.768, pp. 113-140 (2015), doi:10.
1017/jfm.2015.72

4. Vincenzo Citro & Paolo Luchini.
Multiple-scale approximation of instabilities in unsteady boundary
layers,
European Journal of Mechanics-B/Fluids, Vol.50, pp. 1-8 (2015),
doi:10.1016/j.euromechflu.2014.10.004
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5. Vincenzo Citro, Flavio Giannetti, Paolo Luchini & Franco Auteri.
Global stability and sensitivity analysis of boundary-layer flows past
a hemispherical roughness element,
Physics of Fluids, Vol.27, pp. 084110 (2015), doi:10.1063/1.4928533

6. Vincenzo Citro, Flavio Giannetti & Jan O. Pralits.
Three-dimensional stability, receptivity and sensitivity of non-Newtonian
flows inside open cavities,
Fluid Dynamics Research, Vol.47, pp. 015503 (2015), doi:10.1088/
0169-5983/47/1/015503

7. Vincenzo Citro, Joel Tchoufag, David Fabre, Flavio Giannetti & Paolo
Luchini.
Linear stability and weakly nonlinear analysis of the flow past rotating
spheres,
Submitted to Journal of Fluid Mechanics

8. V. Citro, P. Luchini, F. Giannetti & F. Auteri
E�cient stabilization and acceleration of numerical simulation of fluid
flows by residual recombination,
Submitted to Journal of Computational Physics

9. P. Luchini, F. Giannetti, V. Citro
Error sensitivity to refinement: a criterion for optimal grid adaptation,
Submitted to Theoretical and Computational Fluid mechanics

10. D. Fabre, J. Tchoufag, V. Citro, F.Giannetti & P.Luchini
Weakly nonlinear analysis of freely moving sphere,
Submitted to Theoretical and Computational Fluid mechanics
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Chapter 1

Introduction

The concept of stability bears on the reaction of a system to a small
perturbation of its state. If the generic disturbance grows in time, the
system is unstable. The stability of an airplane, a motorboat or a surgical
robot, for example, could be crucial for the human life. Thus, it is very
important, from a practical viewpoint, to be able to analyse the stability
of a system. Quoting from L. D. Landau & E. M. Lifshitz [1] ”Yet not
every solution of the equations of motion, even if it is exact, can actually
occur in Nature. The flows that occur in Nature must not only obey the
equations of fluid dynamics, but also be stable.”. Even if these statements are
only qualitative and need to be translated in a more rigorous mathematical
theory, they suggest the importance of this field.

The concept of stability can be simply formulated for a system of Or-
dinary Di↵erential Equations (ODE). Such system can be at equilibrium,
where the state does not depend on time, or can present a periodic state,
with all components returning to the same values, after every period. How-
ever, before considering the stability of a system, the first fundamental
question is about the existence of such states. Once this issue has been
addressed, the stability features can be studied. Two scientists significantly
contributed to this field: A. M. Lyapunov [2] and the French physicist H.
Poincaré [3]. In particular, Lyapunov discussed the local stability properties
of ODEs near their fixed points. The latter, instead, focused his attention
on the occurrence of the chaotic motion in the whole state space.

Helmholtz[4], Kelvin[5] and Rayleigh[6] started the study of the stabil-
ity of a fluid system neglecting the e↵ect of the viscosity. Few years later,
Reynolds[7] performed the famous experiment of the pipe flow in which he
illustrated the conditions that lead to laminar, transitional and fully turbu-
lent flow. Orr[8] and Sommerfeld[9], subsequently, considered a small distur-
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16 Introduction to hydrodynamic stability

bance superposed on a steady parallel flow. The Orr-Sommerfeld equations
have been widely adopted to study the stability of parallel and quasi-parallel
flow (the latter by using WKBJ theory).

In the last decades, the theory of flow instability received great atten-
tion (see e.g. Schmid & Henningson[10], Charru [11]). A crucial point, that
drove the development in this field, was the availability of larger and larger
computing resources. Theofilis[12], recently, reviewed the linear global in-
stability analysis of flows in complex two-dimensional and three-dimensional
geometries. Global analysis allows us to avoid the limitation of local theory
but it is very expensive from the computational viewpoint, in particular in
the computation of the eigenvalues and eigenvectors. Therefore such prob-
lems require advanced numerical techniques that are often developed for
this specific purpose. This thesis is aimed at studying the stability of such
complex flows, with a balanced attention to theoretical aspects, numerical
tools and the physical mechanism of hydrodynamic instabilities.



Chapter 2

Theoretical framework

2.1 Governing equations

The dynamics of fluids is described by a system of partial di↵erential
equations (PDEs) proposed by C.-L. Navier and G. G. Stokes. The fluid is
assumed to be a continuous medium and, therefore, all the variables are con-
sidered to be continuous functions of the spatial coordinates (x, y, z) 2 R3

and time t 2 R. Furthermore, we assume that there is a linear relationship
between the viscous stress and the strain rate, i.e. that the fluid is Newto-
nian. In case of vanishing volume forces, the Navier-Stokes system can be
written in the following dimensionless form as:

r · u = 0, (2.1a)
@u

@t
+ (u · r)u = �rP +

1

Re
r2u, (2.1b)

where u is the velocity vector with components (u, v, w) and P is the reduced
pressure field. The characteristic length scale is denoted as Lref and a
reference velocity as Uref . For example, Lref can be the depth D of a
cavity as in paper 3, the height k of a roughness element as in paper 5
or the diameter of a sphere studied as in paper 7 and in paper 10; the
reference velocity can be the channel centerline velocity UCL as in paper 1
or the freestream velocity U1 (paper 3,4,6,7,10). The Reynolds number
is defined as Re = UrefLref/⌫ with ⌫ the fluid kinematic viscosity.

2.2 Linear stability theory

For the purpose of a linear stability analysis, the total velocity u(x, y, z, t)
and pressure P (x, y, z, t) fields are written as the sum of base flow,Qb(x, y, z)

17



18 Theoretical framework

= (ub, vb, wb, Pb), and a small disturbance denoted by q0(x, y, z, t) = (u0, v0,
w0, P 0). Introducing this decomposition into the Navier-Stokes system (2.1)
and neglecting second-order terms, we obtain two systems describing the
spatial structure of the base flow and the behaviour of generally unsteady
perturbations. In particular, the base flow is governed by the steady ver-
sion of (2.1), whereas the perturbation field is described by the linearized
unsteady Navier-Stokes equations (LNSE)

@u0

@t
+ L{ub, Re}u0 = �rP 0, (2.2)

r · u0 = 0, (2.3)

with the linearized Navier-Stokes operator L:

L{ub, Re}u0 = ub ·ru0 + u0 ·rub � 1

Re
r2u0. (2.4)

In order to solve the di↵erential problem (2.2-2.3) we need to impose the
appropriate conditions at the boundaries of the domain under investigation.

2.3 Local analysis

Initially, the linear stability theory focused on fluid flows that are ho-
mogeneous in two spatial directions, e.g. plane Poiseuille flow [13]. This
implies that the streamwise and the spanwise base-flow gradients vanish
and, as a consequence, we consider only the streamwise velocity component
ub(y). Inserting this base flow field into (2.2-2.3), we get a PDE system
whose coe�cients are independent of the spatial coordinates x, z and time
t. Thus, taking into account the translation invariance of the problem in
those directions, we can express the perturbation by using the Fourier rep-
resentation as:

q0(x, y, z, t) =
1

2
{q̂(y) exp[�t� i↵x� i�z] + c.c.}, (2.5)

where q̂ = (û, v̂, ŵ, P̂ ), ↵ and � are the spatial wavenumbers. Introducing
the ansatz (2.5) in the resulting LNSE system (2.2-2.3) leads to a system
of Ordinary Di↵erential Equations (ODEs) usually named Orr-Sommerfeld
equations[10]:
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�i↵û+ v̂y � i�ŵ = 0, (2.6a)

�û� i↵ubû+ ub,yv̂ � i↵P̂ � 1

Re
(ûyy � ↵2û� �2û) = 0, (2.6b)

�v̂ � i↵ubv̂ + P̂y � 1

Re
(v̂yy � ↵2v̂ � �2v̂) = 0, (2.6c)

�ŵ � i↵ubŵ � i�P̂ � 1

Re
(ŵyy � ↵2ŵ � �2ŵ) = 0, (2.6d)

We note that the eigenfunction q̂ exists only for values of ↵, � and � that
satisfy the inherent dispersion relation:

D(↵,�, �, Re) = 0. (2.7)

In simple cases, we can analytically calculate this relation. Otherwise,
we obtain this relation by discretizing the Orr-Sommerfeld equations. We
can consider an initial value problem, where we impose an initial disturbance
and investigate its temporal growth. Such disturbance is represented, in the
Fourier analysis, by a sum of modes (2.5) with real ↵ and � and complex �.
The value of � = �+ i!, provided by the dispersion relation, will indicate if
the disturbance grows in time. The real part � of � represents the temporal
growth rate of the perturbation and the imaginary part ! its frequency. For
� > 0, the flow is unstable whereas for � < 0 it is stable.

On the other hand, we can consider a spatial problem where we impose
a sinusoidal wave in space and investigate the spatial growth of such a wave.
The inherent Fourier representation will have a real �, an imaginary � and a
complex ↵ provided by the dispersion relation. This problem is also known
as the signaling problem [13]. Such a spatial analysis is, for example, used
to investigate the stability of the Blasius boundary layer. However, in the
case of a generic unsteady flow, a theory able to describe the propagation
of disturbance wave trains is still lacking. In the following section we will
show how to investigate the stability of a generic unsteady flow.

2.4 Ray Theory

In this section, we present the ray theory in the case of the flow over a
flat plate. However, the theory discussed herein can be applied to a generic
steady or unsteady flow configuration. We choose for convenience the x
axis in the streamwise direction, the y axis normal to the wall and the z
axis orthogonal to the first two. As discussed in the previous sections, the
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fluid motion is described by the usual Navier-Stokes system of equations.
We choose to study the onset of instability within the framework of linear
theory like the case of local stability analysis. Thus, the perturbed field
is solution of the linearized Navier-Stokes equations (2.2-2.3). Let us focus
our attention on the evolution of the disturbances on a known base flow.

In particular, we assume that the characteristic length scale `bf on which
the base flow evolves is much larger than the perturbation length scale `pert.
Thus, we consider the base flow as a function of (X, y, Z, T ):

X = ✏x, Z = ✏z, T = ✏t. (2.8)

where the small parameter ✏ << 1 is the ratio between the two charac-
teristic length scales. We do not make any additional assumption on the
motivation why the base flow has di↵erent scales in the streamwise and
wall-normal direction. This implies that ✏ and the Reynolds number Re are
independent parameters.

In order to describe the evolution of the instability, even in the case
of an unsteady base flow, a multiple-scale approximation is adopted as in
Gaster[24]. Following the classical Wentzel-Kramers-Brillouin (WKB) [26]
asymptotic expansion, the perturbation is expressed as follows:

q0(X, y, Z, T ) = ei
⇥(X,Z,T )

✏

1X

k=0

q̂k(X, y, Z, T )✏k (2.9)

where q̂k = [ûk, v̂k, ŵk, p̂k] and ⇥ is named the eikonal function; its spatial
and temporal derivatives respectively represent the local wavenumber com-
ponents and the frequency of the perturbation. Furthermore, we adopt the
following notation:

↵ = � @⇥

@X
, � = �@⇥

@Z
, ! =

@⇥

@T
. (2.10)

Substituting the above expansion (2.9) into the perturbation equations
(2.2), taking into account the relation (2.8) and grouping terms multi-
plied by the same power of ✏, a hierarchy of equations is obtained. The
leading-order approximation is governed by a di↵erential problem formally
identical to the one corresponding to the parallel-flow case (2.6) but for

non-constant ↵, � and !.
The linear system (2.6) admits a non-trivial solution if and only if the

dispersion relation:
D (X,Z, T,↵,�,!) = 0, (2.11)
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is satisfied.
We recall that after the discretization procedure (in y direction), the dis-

persion relation can be simply obtained by equating to zero the determinant
of the resulting algebraic system. The dispersion relation of the di↵erential
problem can be considered as the limit of this determinant.

Inserting the definition of the local frequency and local wavenumber
(2.10) in the dispersion relation, we obtain a first-order PDE for the complex
eikonal function ⇥:

D
✓
X,Z, T,� @⇥

@X
,�@⇥

@Z
,
@⇥

@T

◆
= 0. (2.12)

This equation is analogous to the Hamilton-Jacobi equation of analytical
mechanics [27]; once the values of the eikonal function are assigned on a non-
characteristic strip, then a unique solution of the Cauchy problem exists.

Characteristic lines in the parametric form X = X(�), Z = Z(�), T =
T (�), ↵ = ↵(�), � = �(�), ! = !(�) are the solutions of the following
system of ordinary di↵erential equations:

dX

d�
= �@D

@↵
,
dZ

d�
= �@D

@�
,
dT

d�
=
@D
@!

, (2.13a)

d↵

d�
=
@D
@X

,
d�

d�
=
@D
@Z

,
d!

d�
= �@D

@T
, (2.13b)

d⇥

d�
=
@D
@↵

↵+
@D
@�

� +
@D
@!

!. (2.14)

The di↵erential equations (2.13) are called ray equations. Equation
(2.14), on the other hand, is directly derived from the definition of ⇥; it
can be used to compute the value of the eikonal function along the ray.

As previously mentioned, there is a strong analogy between the Hamil-
tonian equations of mechanics and the ray equations (2.13). Just as for
the trajectory of a material point in mechanics, we can select a ray both
by its initial location and wave vector (X0, Z0, T0,↵0,�0,!0) (leading to an
IVP) or by its initial and final positions (X0, Z0, T0, X1, Z1, T1) (leading to
a BVP).

Further details can be found in paper 4 where we discuss also an appli-
cation to a two-dimensional time-periodic flow (arising in oscillating airfoil
problems) that, in addition, allows us to estimate the error introduced using
a quasi-steady approach in the stability analysis.
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2.5 Two-dimensional and three-dimensional global

stability analysis

When the base flow is homogeneous and stationary in the spanwise di-
rection only, a generic perturbation can be decomposed into Fourier modes
of spanwise wavenumber �. The three-dimensional perturbations are ex-
pressed as

q0(x, y, z, t) =
1

2
{q̂(x, y) exp[�t� i�z] + c.c.}, (2.15)

where � = � + i! is the complex growth rate and c.c. stands for complex
conjugate. Introducing the ansatz (2.15) in the LNSE (2.2-2.3), we obtain
the two-dimensional generalized eigenvalue problem

A q̂(x, y) + �Bq̂(x, y) = 0, (2.16)

where A is the complex linearized evolution operator. The operators A
and B, have the following expressions:

A =

0

BB@

C � M + @xub @yub 0 @x
@xvb C � M + @yvb 0 @y
0 0 C � M ik
@x @y ik 0

1

CCA ,

B =

0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1

CCA , (2.17)

where M = Re�1(@x2 + @y2 � �2) and C = ub@x + vb@y describe the
viscous di↵usion of the perturbation and its advection by the base flow.
The boundary conditions associated with the eigenproblem (2.16) can be
derived from those used for the base flow.

Finally, we note that the complex conjugate pairs (� + i!; q̂) and (� �
i!; q̂⇤) are both solutions of the eigenproblem (2.16) for a real base flow Qb.
Thus, the eigenvalues are complex conjugates and the spectra are symmetric
with respect to the real axis in the (�,!) plane.

In the real world, however, we can observe flow configurations without
any homogeneous spatial direction. The flow past a sphere (paper 7,10)
or the flow over a hemispherical roughness element (paper 5) are exam-
ples where the velocity and the pressure fields have strong variations in all
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directions. In case of full 3D analysis, the normal mode ansatz is

q0(x, y, z, t) =
1

2
{q̂(x, y, z) exp[�t] + c.c.}. (2.18)

We refer to Chapter 5 for further details about the numerical methods
developed to solve such eigenvalue problems.

2.6 Zero-dimensional asymptotic analysis

In the previous sections, we used the translational invariance (local or
two-dimensional analysis) or the scale separation (WKBJ) to reduce the
full 3D stability equations to a lower dimensional problem. However, in
several flow configurations, it is possible to consider a scale separation in
all directions: this leads to a zero-dimensional asymptotic analysis. These
techniques have originally been developed to study inviscid instabilities. In
particular, we present the asymptotic theory developed by Bayly [17]. He
proposed to adopt a short-wavelength approximation (WKBJ) to describe
the evolution of the perturbations along closed streamlines. This approach is
shortly outlined here; for a more detailed presentation the reader is referred
to [18, 19]. The solution of the linearized Navier–Stokes equations is sought
in the form of a rapidly oscillating and localized wave-packet, evolving along
the Lagrangian trajectory X(t) and characterized by a wave-vector k(t) =
r�(X, t) and an envelope a(X, t) such that:

u(X, t) = ei�(X,t)/✏a(X, t, ✏) = ei�(X,t)/✏
X

n

an(X, t)✏n (2.19)

p(X, t) = ei�(X,t)/✏b(X, t, ✏) = ei�(X,t)/✏
X

n

bn(X, t)✏n+1 (2.20)

where ✏ ⌧ 1 and X = ✏x is a slowly varying variable. In the limit of
vanishing viscosity (Re ! 1) and large wavenumbers (||k|| ! 1), the
theory provides the leading order term for the growth rate associated with
a localized perturbation. This is obtained by integrating the following set
of ordinary di↵erential equations

Dk

Dt
= �Ht(X)k, (2.21)

Da

Dt
=

✓
2kkT

|k|2 � I
◆
H(X)a, (2.22)
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along the Lagrangian trajectories defined by the ODE

DX(t)

Dt
= ub(X(t), t) . (2.23)

In the equations above H = rub is the base-flow velocity gradient tensor
and I the identity matrix. Since the flow under investigation is steady,
the Lagrangian trajectory corresponds to the streamlines of the base flow.
Three initial conditions have to be assigned to solve the problem above:
k(t = 0) = k0 , a(t = 0) = a0 and x(t = 0) = x0. The last condition im-
poses the Lagrangian origin of the streamline and thereby entirely identifies
it.

Lifschitz & Hameiri [18] proved that a su�cient condition for inviscid
instability is that the system of eqs. (2.21), (2.22) and (2.23) has at least
one solution for which ka(t)k ! 1 as t ! 1. This theory has been suc-
cessfully applied in the past to study elliptic, hyperbolic and centrifugal
instabilities of two-dimensional stationary base flows [20]. We apply this
theory to characterize the instability mechanism arising inside an open cav-
ity as discussed in paper 3. For this flow configuration, a central role is
played by the closed Lagrangian trajectories (closed streamlines in paper
3), i.e. orbits described by material points which return to their initial po-
sitions after a given time T (the period of revolution of a material particle).
These closed trajectories play a special role in the dynamics of the instabil-
ity: on the closed orbits, local instability waves propagate and feedback on
themselves leading to a self-excited unstable mode.

As discussed above, the theory implies that both equations (2.21) and
(2.22) must be integrated along these closed orbits. In the case investigated
in paper 3, the base flow is steady and the streamlines are closed: eq.
(2.21) is a linear ODE with periodic coe�cients whose general solution can
be written in terms of Floquet modes. In particular, the solution can be
found by building the fundamental Floquet matrix M(T ), solution of the
system

DM
Dt

= �Ht(X)M with M(0) = I , (2.24)

and extracting its eigenvalues and the corresponding eigenvectors. Using
these eigenvectors as initial conditions, it is possible to retrieve the tem-
poral evolution of k during a lap around the closed streamline. Equation
(2.21) admits three independent solutions related to the 3 eigenvectors of
the fundamental Floquet matrix M(T ). In the case of two-dimensional base
flows, there exists for each orbit one eigenvalue equal to 1 with the corre-
sponding eigenvector that remains constant in time and orthogonal to the
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base flow. In other words, since the third column of H and the third line
of Ht are zero, the transverse component of k remains constant as time
evolves. On the contrary, the in-plane components evolve under the action
of the deformation tensor. Once equation (2.21) is solved, the amplitude a
can be found by integrating equation (2.22). One can use any linear com-
bination of the Floquet modes from equation (2.24) to set the specific k in
equation (2.22).

Since we are trying to determine a self-excited mode, we need only to
consider solutions of (2.21) that are periodic in time, i.e. solutions such that
k(0) = k(T ). Here, as in Bayly [17], only eigenvectors orthogonal to the
base flow are considered. With this choice, eq. (2.22) reduces to an ordinary
linear di↵erential equation with periodic coe�cients. According to Floquet
theory, its solution can be written in terms of Floquet modes

a(t) = ā(t) exp(�t) , (2.25)

where ā(t) is a periodic function (same period T as the material point
moving along the selected closed streamline) and <{�} = �r is the growth
rate of the perturbation.

As for eq. (2.21), the fundamental Floquet matrix A corresponding to
equation (2.22) is built by integrating the system

DA
Dt

=

✓
2kkT

|k|2 � I
◆
H(X)A, (2.26)

A(0) = I; (2.27)

along each orbit. The eigenvalues µi(x0) and the corresponding eigenvectors
of A(T ) can be easily extracted.

As mentioned above, in case of two-dimensional base flows and in case
in which the wavevector k is orthogonal to the x � y plane, we expect one
eigenvalue of A to be 1. The other two, for the incompressibility constrain,
must multiply to 1, i.e. µ1(x0) µ2(x0) = 1. The Floquet exponent �(x0)
of the perturbation on the selected orbit  0 is obtained from the Floquet
multiplier µ(x0) of A by the simple relation

�{n}( 0) = �r( 0) + i�
{n}
i ( 0) =

log (µ)

T ( 0)
+ i

2n⇡

T ( 0)
with n 2 N (2.28)

where T ( 0) is the period of revolution.
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The growth rate of each WKBJ mode is simply given by the real part of
�{n}. The frequency is related to the imaginary part and is not unique. Ac-
cording to the formula (2.28), modes with the same growth rate (at leading
order) but di↵erent frequencies are admissible: in particular the admissi-
ble frequencies are integer multiple of the frequency of revolution along the
same streamline.

Finally, in order to have a quantitative estimation of the leading eigen-
value, we adopt the following formula proposed by Gallaire et al.[21]:

s = �( 0)� A

k
� k2

Re
. (2.29)

They considered the viscous correction term [22] and the correction term
relative to finite wavenumber e↵ects.



Chapter 3

Adjoint problem and

Structural sensitivity

3.1 Adjoint equations

The adjoint of a linear operator is a very powerful and useful concept
in the field of functional analysis. The use of the adjoint in the context
of hydrodynamic stability analysis has been recently reviewed by Luchini
& Bottaro [28]. The adjoint solution can be used when one is looking for
some outputs of a system for a large range of possible inputs. There are
hundreds of applications of the adjoint in fluid mechanics like the receptivity
of boundary layer flows or the identification of self-sustained thermoacoustic
oscillations and a feedback mechanism e�cient at suppressing them[29].
Furthermore, the adjoint is a fundamental tool in the control theory.

In the framework of hydrodynamic stability theory, the adjoint equations
can be used to evaluate the e↵ects of a generic initial condition or forcing
terms on the behaviour of the long time solution.

The derivation of the adjoint Navier-Stokes equations is based on the
generalized Lagrange identity. Integrating over space and time such relation
and using the divergence theorem provides the final system of equations that
reads:

@u†

@t
+ L†{ub, Re}u† +rP † = 0, (3.1)

r · u† = 0, (3.2)

27
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where L† is the linear adjoint Navier-Stokes operator defined as:

L†{ub, Re}u† = ub ·ru† �rub · u† +
1

Re
r2u† (3.3)

In the present thesis we are interested in the global adjoint eigenmodes;
thus, we express the adjoint perturbation field (u†, P †) as a normal mode:

q†(x, y, z, t) = q̂†(x, y, z) exp{��t}. (3.4)

Inserting (3.4) into equations (3.1-3.2) leads to an adjoint eigenvalue
problem. Further details about the procedure adopted to obtain the adjoint
system of equations (3.1-3.2) can be found in [35].

3.2 Classical sensitivity analysis

3.2.1 Structural sensitivity

The concept of structural sensitivity is general and can be applied to
any dynamical system. Chomaz [31] investigated the stability features of
the Ginzburg-Landau equation. He suggested to compute both direct and
adjoint eigenvectors to determine the wavemaker region, i.e. the flow region
giving rise to self-excited oscillations. Subsequently, Giannetti & Luchini
[35] considered the flow past a circular cylinder. They underlined the large
di↵erence existing between the spatial distribution of the direct global mode
and the adjoint one due to the non-normality of the linearized Navier-Stokes
operator. This fact suggests that the study of the direct global mode, with-
out considering the adjoint field, cannot correctly identify the instability
mechanism. Therefore, they performed a structural sensitivity analysis of
the governing operator. In particular, the analysis focused on the varia-
tions of the eigenvalue induced by a generic structural modification of this
operator. The key idea of their approach is to model the feedback mecha-
nism driving the instability by a local force proportional to the perturbation
velocity which acts as a momentum source in the equations governing the
evolution of the disturbance. This procedure leads to the definition of a
new tensor defined as the product between the direct and adjoint fields:

S(x, y, z) =
û†ûR

D û† · ûdV (3.5)

A spatial map is then constructed by computing the spectral norm of
this matrix. The function S(x, y, z) can be used to determine the locations
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where the feedback is stronger, identifying in this way the regions where the
instability mechanism acts.

This technique can take into account also strong non-parallel e↵ects and
it can be adopted to investigate the instability mechanism of complex flows.

3.2.2 Sensitivity to base flow modifications

In an experimental set up a possible way to introduce a structural pertur-
bation is to add a small obstacle in the flow field. As an example, Strykowski
& Sreenivasan[32] discussed where the placement of a small cylindrical ob-
stacle is able to delay the onset of vortex shedding in the wake of a circular
cylinder. In their case, the presence of such obstacle produces both a modi-
fication of the equations at the perturbation level and a modification of the
base flow.

The sensitivity analysis described in the previous section is based on a
structural perturbation that acts only on the evolution of the perturbation
field. This approach provides the right tool to investigate the wavemaker
but does not take into account the structural perturbations that can act at
the base-flow level. A generic perturbation, in fact, can induce also modifi-
cations to the base flow that, in turn, produce changes in the coe�cients of
the linearized Navier-Stokes operator.

The so-called sensitivity to base flow variations is a concept introduced
by Corbett et al.[33], and Marquet et al.[34]. In their analysis a small
velocity-based perturbation can act at the base flow level: the e↵ect of the
base flow modifications on the leading eigenvalue of the stability problem
allowed them to study the di↵erent mechanisms that can suppress or en-
hance the instability. The spatial structure of the so-called adjoint base
flow [34] can be used to identify the features of the base flow that provide
the main contribution to the instability dynamics and the regions where to
locate e↵ective passive control devices.

This analysis leads to a definition of the tensor Sb which expresses the
sensitivity of the flow to base flow modifications:

Sb =
ûb

†ubR
D û† · ûdV . (3.6)

As for the structural sensitivity, the spatial map can be obtained by
selecting a suitable norm of Sb.
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3.3 Second-order sensitivity

Sensitivity analysis has successfully located the most e�cient regions in
which to apply passive control in many globally unstable flows. As discussed
in paper 2, the standard sensitivity analysis introduced in section (3.2.1)
is linear with respect to the perturbation amplitude. Here, we introduce
the second-order sensitivity analysis that allows us to predict also the e↵ect
of steady spanwise wavy alternating modification on the flow stability. In
fact, the standard analysis predicts that this kind of stationary wavy mod-
ifications has no net e↵ect on the stability of planar flows. We generalize
sensitivity analysis by including 2nd order terms in the computation of the
eigenvalue drift.

We focus our attention on a generic eigenproblem of form:

Lq̂0 = �0q̂0, (3.7)

where L is the linearized Navier-Stokes operator, q̂0 a global linear temporal
eigenmode, and �0 = �0 + i!0 its eigenvalue. We now denote a structural
perturbation of the governing operator by �L. Following Hinch[23], the
problem can be expanded in powers of the perturbation amplitude ✏:

(L+ ✏�L) {q̂0 + ✏q̂1 + ✏2q̂2 +O(✏3)} =
�
�0 + ✏�1 + ✏2�2 +O(✏3)

� {q̂0 + ✏q̂1 + ✏2q̂2 +O(✏3)} (3.8)

Here, �j is the jth order correction to the eigenvalue, and q̂i (i > 0) is the
ith order correction to the eigenmode.

• At the 0th order in ✏, the original eigenvalue problem is recovered.

• At the 1st order in ✏, we obtain, after rearrangement:

(L� �0I) {q̂1} = ��L{q̂0}+ �1q̂0, (3.9)

where I is the identity operator. Equation (3.9) admits solution only
if a suitable compatibility condition is satisfied. This condition can
be expressed through the adjoint eigenmode q̂†

0, defined in Sec. 3 (see
also [28]).

Such adjoint field q̂†
0 satisfies the left eigenvalue problem. Thus, the

product of the left hand side of (3.9) by q̂†
0 vanishes. Hence, the right

hand side also must be orthogonal to q̂†
0 (Fredholm alternative), giving

0 = hq̂†
0,��L{q̂0}+ �1q̂0i, which can be rearranged as:

�1 = hq̂†
0, �L{q̂0}i. (3.10)
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This 1st order eigenvalue drift is a linear function of the operator
perturbation, contains the direct and adjoint eigenmode, and lead to
the standard sensitivity expressions (see section 3.2.1).

• At the 2nd order in ✏, we obtain from Eq. (3.8):

(L� �0I) {q̂2} = ��L{q̂1}+ �2q̂0 + �1q̂1.

By the same argument as for the 1st order, both left and right sides
are orthogonal to q̂0, giving �2 = hq̂†

0, (�L� �1I){q̂1}i.

We observe that an arbitrary component of q̂0 can always be added to q̂1

[23], and that Eq. (3.9) would still remain valid. Note that �2 remains unaf-

fected by the choice of this component, since hq̂†
0, �L{Cq̂0}i��1hq̂†

0, Cq̂0i =
0 for any constant C. The choice of C only corresponds to a normalization
of the total perturbed eigenvector. A simple choice to guarantee uniqueness
and remove the singularity of left-hand side in equation (3.9) is:

hq̂†
0, q̂1i = C = 0, (3.11)

leading to:
�2 = hq̂†

0, �L{q̂1}i. (3.12)

Note that the 2nd order eigenvalue drift has exactly the same expression as
the 1st order drift, but with the eigenmode q̂0 replaced with the 1st order
eigenmode correction q̂1. This means that all the sensitivity expressions
derived in the literature can be used straight away to obtain 2nd order
corrections, if q̂0 is replaced by q̂1.

3.4 Inviscid Sensitivity analysis

There are several flow configurations in which it is possible to investi-
gate the stability features by using the geometrical optics approximation.
Physically, the resulting short-wave instabilities can be explained by local
vorticity stretching. Three di↵erent types of instabilities exist: elliptic, hy-
perbolic and centrifugal. These inviscid mechanisms were studied in detail
by Sipp et al. [20], Godeferd et al.[36]. They focussed their attention on
closed streamlines that play a special role in the dynamics of the insta-
bility: on these orbits, local instability waves propagate and feedback on
themselves leading to a self-excited unstable mode (see section 2.6 for the
WKBJ analysis along the streamlines). In this context, our key idea is to
isolate the e↵ect of the inviscid mechanism by increasing only the Reynolds
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number in the global stability equations. In this way, we can use the result-
ing inviscid structural sensitivity map to determine the flow regions where
the inviscid mechanism acts. The resulting sensitivity tensor is function of
both base-flow Reynolds number ReBF and the stability Reynolds number
ReSTB:

S(ReBF , ReSTB) =
û†(ub(ReBF );ReSTB) û(ub(ReBF );ReSTB)R

D û† · ûdV (3.13)

In paper 3, we showed that in the case of open cavity flow the resulting
spatial map is very localized around a critical orbit inside the cavity. This
orbit is the same identified by the WKBJ analysis and has a revolution
period which is strictly related to the leading frequencies arising at higher
Reynolds numbers.

3.5 Error Sensitivity to Refinement (ESR): an in-

dicator for optimal grid adaptation

The strategy we are going to describe is inspired by the structural sen-
sitivity analysis introduced in section 3.2.1. A similar procedure, consisting
in combining information between the direct and adjoint solutions, can also
be used to derive an e↵ective indicator for grid refinement strategies. Grid
refinement is a powerful tool that can be used in intensive and memory
demanding applications to reduce the computational costs and, at the same
time, retain and even improve the accuracy of the numerical problem. Re-
ducing both errors and costs in a numerical simulation is a general and
fundamental problem in computational sciences and is strictly related to
uncertainty quantifications analysis. Further details about the proposed
approach can be found in paper 9.

We focus our attention on a di↵erential problem on a domain ⌦ with
given b.c. on @⌦. Let’s consider an algebraic operator Nh obtained through
a discretization of the continuous problem on a mesh with characteristic
spacing h. If uh is a solution of the discrete problem then

Nh(uh) = 0 (3.14)

while the exact solution of the continuous problem uex satisfies

Nh(uex) = rh (3.15)
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where the term rh is named residual. We measure the error between the
approximate and exact solution using the E2 definition of the error:

E2 =

✓Z

⌦
|uex(x)� u(x)|2dS

◆1/2

. (3.16)

Replacing the integral by its numerical approximation, we can express the
equation (3.16) as:

E2
2 =

X

i

wi (uh,i � uex,i)
2 (3.17)

where wi are suitable weights composing a numerical quadrature formula.
We want now to determine the sensitivity of the error E2 to a small variation
in the residual �rh (its gradient vh), or in other terms the gradient of E2

with respect to �rh.
A small variation �uh in the numerical solution uh produces a variation

in the error of the form:
E2�E2 = y · �uh (3.18)

where y is the vector with components yi = wi(uh,i � uex,i). By applying
the adjoint analysis, we now write E2 as a linear function of the residual.
In order to achieve this, we first note that a small variation in the solution
produces a small change in the residual according to

A �uh = �rh (3.19)

where A = @Nh
@u is the Jacobian of the di↵erential operator in (3.14). By

multiplying (3.19) by a vector vh and using the definition of the adjoint
operator we can write

vh ·Ah�uh = �uh ·AT
hvh = vh · �rh (3.20)

If we now choose the adjoint vector vh such to satisfy

AT
h vh = y/E2 (3.21)

we can rewrite the variation of the error in terms of a small residual change
as

E2�E2 = y · �uh = E2vh ·Ah�uh = E2vh · �rh. (3.22)

Assume now that, asymptotically for small h, rh ⇠ hp for some integer
exponent p (the order of the discretization). A variation in h (a grid refine-
ment) by a factor m (say 1/2) will then induce a variation in the residual
proportional (with opposite sign) to the residual itself, i.e.

�rh = rmh � rh ' (mp � 1)rh. (3.23)
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This is, in fact, the rationale behind recovery-based methods: refining where
the residual is largest produces the maximum reduction in the residual. We
may also notice that, when the residual is related to the truncation error of
a di↵erential operator, the relationship between residual and refinement is
a local one.

Such relation is still not what we really look for: in fact our aim is
to know what happens when we refine the grid, which is not the same as
changing the residual. To get the complete answer to our problem we need
to consider what happens to the residual when we refine the grid.

Recalling now that the spatial map of the residuals indicates where a
local refinement will mostly decrease the residual itself. On the other hand,
the spatial map of the adjoint provides information on the location where a
change in the residual will mostly a↵ect the error. These two quantities can
be compared with the direct and adjoint solution of the structural sensitiv-
ity analysis for fluid flow problems with self-exciting instabilities discussed
above. As for those cases, we can now make a step forward and combine the
information provided by the two maps by taking the local product between
the residual and the adjoint field. In this way we define the Error Sensitivity
to Refinement (ESR)

si = E�2
2 vh,i rh,i (3.24)

where no implicit summation is assumed. This quantity indicates where a
local refinement (by a fixed factor m) will mostly a↵ect the error E2 and it
is therefore a natural indicator to really minimize (3.16). In general, both
error and residual require a knowledge of the exact solution. Just as for
all the other mesh-adaptation indicators, the latter can be estimated and
replaced by a solution on a finer mesh. In particular, if both the error and
the residual asymptotically decrease like hp, we obtain the following relation

u2h � uh ' (1� 2�p)(u2h � uex) ' (2p � 1)(uh � uex) (3.25)

between the error on grid h and the error of the solution with respect to a
finer grid. Furthermore, considering that u2h is the discrete solution on the
course mesh, it is also possible to write

N2h(uh)�N2h(u2h)| {z }
=0

'

(1� 2�p)(N2h(uex)�N2h(u2h)| {z }
=0

) ' (2p � 1)Nh(uex) (3.26)

which gives an estimate of the residual using the solution on a finer mesh.
As a final remark we note that the error sensitivity si = E�2

2 vh,i rh,i tends
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to a grid-independent limit for h ! 0 so that sensitivity maps obtained
on di↵erent grids will be similar provided the mesh spacing h is su�ciently
small.
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Chapter 4

Stabilization of the solution

of the Navier-Stokes

equations

The solution of the Navier-Stokes equations can change from stable to
unstable with a variation of a control parameter. A classical example of such
process is the instability occurring in the wake of a circular cylinder: at low
Reynolds number, i.e. for Re < 46.7, the flow is steady and symmetric,
but for larger values of Re a global instability arises in the flow field lead-
ing to the well-known von Kármán vortex street [35]. In order to perform
stability computations beyond the critical threshold we need a numerical
method able to track the base flow across and beyond the critical point.
Unfortunately, we cannot use a standard time integration of the governing
equations just because it is unstable.
The discretization of the governing equations, especially for fluid dynamic
applications, often leads to very large discrete systems. As a consequence,
matrix based methods, like for example the Newton-Raphson algorithm cou-
pled with a direct inversion of the Jacobian matrix, lead to computational
costs too large in terms of both memory and execution time.

In the case of high-dimensional systems, few computations have been
performed in the literature. The most popular method to stabilize an un-
stable procedure was proposed by Shro↵ & Keller[37]. Their Recursive
Projection Method (RPM) stabilizes an unstable algorithm by using the
Newton method only on a small subspace. Another popular stabilization
algorithm was presented by Akervik et al.[38]. The details of both methods
will be provided in section 4.2 and 4.3 respectively. However, these methods

37
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present some drawbacks.
A new stabilization algorithm is proposed in paper 8. This method,

named BoostConv, can stabilize a pre-existing numerical procedure used to
integrate any dynamical system without negatively impacting on its compu-
tation time. Moreover, it can be easily inserted in the pre-existing relaxation
(integration) procedure with a call to a single black-box subroutine.

4.1 Iterative solution of a linear system

The study of a dynamical system described by a set of partial di↵erential
equations (PDEs) usually involves the solution of a linear system:

Ax = b, (4.1)

whereA is a RN⇥N matrix and x, b are RN vectors representing respectively
the solution and the known term of the system. A generic linear iteration
for the solution of the linear system (4.1) can be expressed as:

xn+1 = (I�BA)xn +Bb = xn +Brn. (4.2)

In the previous expression rn = b�Axn is the residual and B is a matrix
representing the particular iterative scheme used to solve the problem (see
e.g. Ch.4 [39]). The convergence of procedure (4.2) is governed by the
eigenvalues of the iteration matrix M = I�BA: the algorithm converges
if and only if the spectral radius of the iteration matrix is less than 1. The
asymptotic convergence rate is essentially governed by the slowly decaying
modes.

4.2 The Recursive Projection Method (RPM)

The recursive projection method was initially developed for extending
the domain of convergence of iterative procedures in the context of stability
and bifurcation analysis. As discussed above, the convergence of a generic
iterative procedure (4.2) is related to the eigenvalues of M. In order to
illustrate the RPM method, we suppose that the iteration (4.2) diverges be-
cause of s unstable eigenvalues. Shro↵ & Keller introduced a small subspace
P 2 Rs spanned by the eigenvectors associated with the unstable eigenval-
ues (i.e. the eigenvalues that have a modulus larger than 1) and Q that is
the orthogonal complement of the former subspace. Thus, the sum between
these two spaces provides the whole RN : xTOT = xp + xq. The projectors
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P̃ and Q̃ associated to P and Q can be defined by an orthonormal basis Ṽ
for P as:

P̃ = Ṽ Ṽ T , Q̃ = I � Ṽ Ṽ T , (4.3)

where superscript T represents the transpose operator.
The resulting RMP procedure can be written as follows:

xn+1
q = Q̃ [Mxn +Bb] ; (4.4)

xn+1
p = xn

p + (I� P̃MP̃ )�1{P̃ [Mxn +Bb]� xn
p}; (4.5)

xn+1 = xn+1
p + xn+1

q . (4.6)

Thus, at each step, only the projection of equation (4.2) onto the sub-
space Q is solved with the original iteration. The iteration on the low-
dimensional subspace P is solved with Newton’s method. Shro↵ & Keller
[37] discussed the e↵ectiveness of the algorithm proving the e↵ective con-
vergence even in case of unstable procedures. However, the RPM can be
ine�cient in the case of large linear systems due to the existence of modes
with large negative real parts. In such cases, the resulting asymptotic con-
vergence rate of the RPM algorithm is reduced.

4.3 SFD

Akervik et al.[38] presented the Selective Frequency Damping method.
They showed that an existing time integration procedure for the solution of
N-S problem, can be coupled with the SFD algorithm to reach a steady state
by damping the unstable temporal frequencies. This is achieved by adding
a dissipative relaxation term proportional to the high-frequency content of
the velocity fluctuations. Here, we briefly describe the method; we refer to
the original paper [38] for further details.

Let us consider a generic non-linear dynamical system, e.g. the Navier-
Stokes system, that reads:

@

@t
q = L {q}, (4.7)

where q is the state of the system and L is the di↵erential operator. The
key idea of the SFD algorithm is to add to the right-hand side a linear
term forcing towards a target solution q̃: ��(q � q̃). Here, the coe�cient
� represents the amplitude of the control. Since the target solution is not
available, they decided to approximate q̃ as a modification of the current
state q but with reduced temporal fluctuations. Thus, to obtain this aim,
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the target solution is obtained as q̃ = T ⇤ q, where T is the temporal filter
kernel; i.e. they adopted a temporal low-pass filter on q. The resulting
modified dynamical system reads:

@

@t
q = L {q}� �(I�T) ⇤ q, (4.8)

where I is the identity operator. Note that if q = qs, the forcing term
vanishes. The computed steady state of (4.8) is also a solution of the original
problem. However, the SFD algorithm needs an estimate of the global mode
frequency and it cannot be applied to compute unstable states in presence
of stationary bifurcations.

4.4 BoostConv

The aim of the present section is to present a new algorithm, inspired by
Krylov-subspace methods, able to compute e�ciently such unstable states
of a high-dimensional dynamical system. This method is based on the min-
imization of the norm of the residual at each integration step and can be
applied as a black-box procedure in any iterative or time marching algo-
rithm without negatively impacting the computational time of the original
code.

The main idea which inspired the proposed algorithm is similar to the
one at the basis of GMRES[39], but in a reverse logic sequence. We start
from an existing iterative algorithm that is modified to Boost the Conver-
gence of the overall procedure.

To obtain this stabilization, we focus our attention on the evolution
of the residual. We can simply obtain the homogeneous equation for the
propagation of the residual by applying A to (4.2) and successively adding
b:

b�Axn+1 = b�A [xn +B(b�Axn)] , i.e.

rn+1 = rn �ABrn. (4.9)

Now, in order to improve the existing procedure (4.2), we replace the
residual vector rn with a modified residual ⇠n such that the improved algo-
rithm reads

xn+1 = xn +B⇠n(rn). (4.10)

In the previous equation ⇠n is a suitable function of rn and can be inter-
preted as the feedback term of a closed loop control algorithm or a structural
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perturbation to the original iteration matrix. We note that to guarantee the
consistence of the modified algorithm, it is su�cient that ⇠n goes to zero
when rn does. The introduction of the vector ⇠n modifies equation (4.9)
leading to the new residual equation

rn+1 = rn �AB⇠n, (4.11)

or equivalently
rn � rn+1 = AB⇠n. (4.12)

We now minimize rn+1 by choosing a suitable function ⇠n = ⇠n(rn). If we
knew (AB)�1, we could exactly annihilate rn+1 by computing ⇠n(rn) as

⇠n = (AB)�1rn. (4.13)

However, for large systems, the exact inversion of AB is out of reach or
too expensive to be performed. Therefore, we approximate the solution of
(4.13) by using a classical least-square method.

The action of the operator AB can be represented by storing a set of N
vector pairs (ui,vi), where the second member is produced by the action of
AB on the first. Least-squares method is then adopted to approximate the
solution of the algebraic linear system AB⇠n = rn as

⇠n =
NX

i=1

ciui. (4.14)

In our case the vectors ui and vi are related by

vi = ABui for i = 1, .., N. (4.15)

while the coe�cients ci are chosen to minimize |rn �AB⇠n|2. The standard
least-squares procedure leads to a system of equations for the coe�cients ci
of the form

Dkl cl = tk (4.16)

where tk = vk · rn and Dkl = vk · vl is a small N ⇥ N matrix. Matrix D
is usually ill-conditioned and an orthogonalization procedure (QR decom-
position) is usually needed to find the solution. However, when N is small,
as for the cases we are considering, the solution can be simply found with
a classical LU decomposition. This least-square solution is not exact and
produces a residual ⇢ = rn �AB⇠n which can be expressed in terms of vi

as
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⇢ = rn �AB⇠n = rn �AB

 
NX

i=1

ciui

!
= rn �

NX

i=1

ciABui = rn �
NX

i=1

civi.

(4.17)
However, inserting the so calculated ⇠n in (4.10) is not yet su�cient to

produce a converging algorithm because ⇠n could converge to zero even when
the residual rn is not identically zero, but simply orthogonal to the leading
N (basis-)vectors ui. Remembering that the original iterative algorithm
(4.2) simply had ⇠n = rn, we restore a convergent procedure by adding the
residual ⇢ = rn �Pi civi to ⇠n, so that the complete algorithm now reads

⇠n =
X

i

ciui + rn �
X

i

civi (4.18)

The rationale behind this procedure is to invert exactly the part of the
problem represented by the dominant, slower decaying modes, while letting
the original iterative algorithm to handle the remaining modes. We now
go back to the issue of selecting a convenient set of vectors ui. In the case
of BoostConv, both ui and vi can be conveniently calculated by observing
that, according to (4.11), for each n we have

rn � rn+1 = AB⇠n. (4.19)

For a given N, in a cyclic fashion, at the beginning of a new iteration, we
add a new vector pair by selecting uN = ⇠n�1 and vN = rn � rn�1. In
order to keep the size of the basis constant, another pair must be discarded
which typically will be the oldest. Such choice is dictated by the fact that
applying the algorithm to a nonlinear system it is beneficial to use the
freshest information on the system dynamics in order to account for the
change of the system Jacobian (in our case represented by the linear operator
A). We also note that in matrix Dkl of (4.16) only the row and the column
involving a new pair need to be updated. Such selection procedure works
when we already have N vector pairs. At the beginning of the algorithm
(for n < N) we can still use the same procedure but continuously increasing
the basis dimension from 1 to the chosen value of N . In this first stage, no
vector pairs are discharged.

From a programming viewpoint, the BoostConv algorithm can be en-
capsulated in a black-box procedure, where the only input is rn and the
only output is ⇠n. If ⇠n is returned in the same vector where rn was pro-
vided, the only modification necessary to boost the convergence of the pre-



43 Stabilization of the solution of the Navier-Stokes equations

existing iterative algorithm (4.2) is a single line of code containing the call
to BoostConv.

In paper 8, we report numerical results obtained with this new proce-
dure. We started from the classical case of the two-dimensional lid-driven
cavity flow where we show that BoostConv is able to accelerate the con-
vergence of the existing time integration procedure. Then, we consider the
case of the two-dimensional flow past an infinitely long circular cylinder.
For this case, we show, with several di↵erent codes, that BoostConv is able
to drive the iterative procedure to the exact base flow (computed using a
Newton method). A three-dimensional case is also considered to examine
the application of BoostConv to a high-dimensional problem. In particular,
we discuss the results obtained from the application of BoostConv to the
case of boundary layer flow past a hemisphere reported in paper 5. In
this case we checked also that the whole algorithm (time integration by us-
ing Nek5000+ BoostConv) has a computational burden very similar to the
original iteration.
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Chapter 5

Numerical methods

In the present thesis, three di↵erent codes have been used to perform
the stability analyses presented in the papers (pert II). In the following,
we briefly describe each approach, further details about Freefem++ can
be found in [40]; for Nek5000 we refer to [44] while the multigrid code is
described in paper 7.

5.1 Freefem++

Freefem++ is a free software based on the Finite Element Method;
it has its own high level programming language. It has been adopted to
investigate many phenomena involving di↵erent systems of PDE like e.g.
fluid-structure interactions, Lorentz forces for aluminum casting and ocean-
atmosphere coupling. We used this software to solve both the base flow
problem and the stability eigenvalue problems.

5.1.1 Base flow

The variational formulation of the Navier-Stokes equations is derived.
We used the classical P2 � P1 Taylor-Hood elements for the spatial dis-
cretization. The resultant nonlinear system of algebraic equations, along
with the boundary conditions, is solved by a Newton-Raphson procedure:
given an initial guess wb

(0), the linear system

NS(Re,Wb
(n)) ·wb

(n) = �rhs(n) (5.1)

is solved at each iteration step using the MUMPS-Multifrontal Massively
Parallel sparse direct Solver [41] for the matrix inversion. The base flow is

45
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Mesh σ ! nd.o.f. nt Source

M1 0.0007590 7.4931 998668 221045 Present
M2 0.0008344 7.4937 1416630 313791 Present
M3 0.0009122 7.4943 2601757 576887 Present
D1 0.0007401 7.4930 880495 194771 [45]
D2 0.0008961 7.4942 1888003 418330 [45]

Table 5.1: Comparison of the results obtained with the present
FreeFem++ code and those reported by [45] for the flow over an open
cavity. The eigenfrequency ! and the growth rate � have been calculated
for the first two-dimensional unstable eigenmode at Re = 4140. nd.o.f. and
nt indicate the total number of degrees of freedom of the linearized problem
and the number of triangles for each of the unstructured meshes used.

then updated as

Wb
(n+1) = Wb

(n) +wb
(n). (5.2)

The initial guess is usually chosen to be the solution of the Stokes equations
and the process is continued until the L2-norm of the residual of the gov-
erning equations becomes smaller than a given tolerance. The tests about
the convergence of the resulting code has been performed for the case of
the open cavity. We used three di↵erent meshes M1, M2 and M3 (see
Table 5.1). These are generated by the Bidimensional Anisotropic Mesh
Generator (Bamg) that is part of the Freefem++ package. The base flow
computations are also validated using a variant of the second-order finite-
di↵erence code described in [35].

5.1.2 Direct and Adjoint eigenvalue solver

Once the base flow is determined, the system of equations (2.16) is used
to perform the stability analysis. After spatial discretization, the governing
equations and their boundary conditions are recast in the following standard
form

[A(Re,Wb(Re)) + �B] ·w = 0, (5.3)

where w is the right (or direct) eigenvector. As methods based on the
QR decomposition are not feasible for solving large scale problems as those
associated to the matrix A obtained for our problem, we adopt an e�cient
matrix-free iterative method based on the Arnoldi algorithm [42] . We use
the state-of-the-art ARPACK package [43], with implicit restarts to limit
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memory requirements. The solution of the linear system built by the Arnoldi
iterations on the Krylov subspace is obtained with the same sparse solver
[41] used for the base flow calculations. The adjoint modes are computed
as left eigenvectors of the discrete system derived from the discretization of
the linearized equations and the sensitivity function is then computed by
the product of the direct and the adjoint fields.

The code is validated against the results reported by [45]. These authors
investigate the stability of a newtonian fluid in the same geometrical con-
figuration of paper 3 and report the first instability of a two-dimensional
eigenmode to occur at Re=4140. In Table 5.1 we present the comparison
between our results and the results in [45] for di↵erent meshes. In these
tests, 50 eigenvalues were obtained, with an initial Krylov basis of dimen-
sion 150; the convergence criterion for the Arnoldi iterations is based on a
tolerance of 10�9. To independently check the accuracy of the results we a
posteriori computed the residual maxi|(Aij +�Bij)wj |: this turns out to be
always below 10�9 for the results reported in this paper, typically less than
10�12 for the least stable modes.

5.2 Nek5000

Nek5000 is a computer software used to simulate fluid flow and heat
transfer for steady and unsteady two-dimensional and three-dimensional ge-
ometries. The code includes: i) PRENEK as a pre-processor; ii)NEKTON
as solver and iii) POSTNEK as a post processor. PRENEK is a prepro-
cessor in which is possible to specify the mesh and the boundary and initial
conditions. NEKTON is a parallel spectral element solver that computes
the velocity and pressure fields. These results can then be analyzed in the
post processor POSTNEK. The code is written in f77 and the paralleliza-
tion is achieved by using the MPI interfaces.

Nek5000 is based upon the spectral element method [46] which combines
the high-order accuracy of spectral methods with the geometric flexibility
of traditional finite-element methods.

The computational domain is divided into non-overlapping quadran-
gles; the unknown is approximated by high-order polynomial expansions.
In particular, the unknown vector (u, v, w, P ) is spatially discretized onto
PN �PN�2 spectral elements using Lagrange orthogonal polynomials in the
Gauss-Lobatto-Legendre (GLL) nodes. For the temporal discretization of
momentum equation, a semi-implicit splitting scheme has been used because
it allows high-order temporal accuracy. The time advancement is divided
in 3 independent subproblems: convective, viscous, and pressure problem.
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These last two elliptic subproblems are solved e�ciently by using the over-
lapping Schwarz method. This code has been used to perform the stability
analysis in papers 1,2,5,7,11.

As discussed previously, we recall that some complex flows cannot be
assumed as quasi- parallel. Thus, in such cases, we need to adopt a full
three-dimensional analysis to investigate the stability of fluid flow.

We cannot adopt a matrix-based method to solve the resulting eigen-
problem. The inherent matrix A , indeed, cannot even be stored in com-
puter memory; for the case of paper 5, for example, it would require several
Pbytes of storage for the considered mesh resolution. Hence, the only pos-
sible choice is to use a time-stepper method.

The time-stepper technique is usually based on the orthogonal projection
of the large matrix A onto a lower-dimensional subspace. This operation
will result in a significantly smaller system that can be solved by using di-
rect methods. The Krylov subspace is usually chosen to build the basis; it is
spanned by snapshots taken from flow fields q0 separated by a constant �t.
The time advancement of the perturbation field is achieved by using the lin-
earized time-stepper available in Nek5000. The construction of the Krylov
basis and the inherent eigenvalue computations are obtained using a vari-
ant of the famous Arnoldi method [42]. In particular, we used ARPACK in
which is implemented the Implicitely Restarted Arnoldi Method (IRAM),
introduced by Lehoucq & Sorensen [15]. Further details about such ap-
proaches can be found in the textbook of Antoulas [16].

5.3 Finite-Di↵erence Multigrid

The finite-di↵erence immersed boundary multigrid code is based on a
classical second-order conservative discretization of the Navier-Stokes equa-
tions on a staggered non-uniform Cartesian mesh. In particular, we used
this code to investigate the zero-torque solution of the flow past a ro-
tating sphere discussed in paper 7. In order to achieve high accuracy
and save computation time, a grid clustering near the sphere has been
adopted. The boundary conditions on the sphere are imposed through a
second-order accurate immersed-boundary scheme, in which the stencil of
the finite-di↵erence operators near the body are modified using appropriate
interpolation-extrapolation procedure. The interpolation was performed us-
ing the point closest to the body surface (which can be either an internal
or an external point) and the nearest point on the exterior of the cylinder.
The interpolation is performed either in the streamwise or transverse direc-
tion according to which one is closest to the local normal. The discretized
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three-dimensional problem is then solved by using an in-house linear multi-
grid solver coupled to a Newton global linearization [47]. In order to obtain
good convergence in the presence of highly stretched grids, a Collective
Line Gauss-Seidel (CLGS) smoother was used. Such relaxation procedure
considers a row (column) of computational cells as a main block of a Gauss-
Seidel-type iteration, which leads to a banded six-diagonal system of linear
equations to be solved at each sub-iteration of the multigrid algorithm. This
procedure is the line version of the more classical block Vanka smoother
([48]) and has been used with a classical V cycle [47]. In our version, the
matrix entries are calculated by a local linearization of the governing equa-
tions. More details on the characteristics of this kind of smoothers can be
found in Feldman & Gelfgat [49]. The discretization of the convective terms
can be problematic since the classical second-order centered discretization is
not h-elliptic and can lead to a severe degradation and failure of the iterative
procedure. In our code, the convective terms are discretized with a standard
first-order upwind discretization while the second order precision is recov-
ered through a standard deferred-correction procedure based on classical
centered discretization implemented at the smoother level. The Immersed-
boundary technique with a second order interpolation is applied only on
the finest level while, for simplicity, at coarser levels, a stair- step geometry
is considered. Such procedure does not alter the overall convergence speed
of the multigrid algorithm and considerably simplifies the coding and the
computation time. Textbook multigrid e�ciency [47] is achieved far from
the bifurcation thresholds. As true for other iterative procedures, a severe
performance degradation occurs when the neutral point is approached. This
is due to one or more eigenvalues of the iteration matrix that move across
the imaginary line: in this situation the whole iterative procedure diverges.
In order to avoid this problem, we used BoostConv (see Sec. 4.4) to accel-
erate the convergence of our multigrid. The code was tested for the case of
the flow past a fixed sphere. It provided the critical Reynolds number for
the first bifurcation equal to Recr = 212. The value agrees very well with
those reported in literature [50].
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Chapter 6

Conclusions

The stability and transition of open shear flows, such as the flow over an
open cavity, the flow past a sphere or a hemispherical roughness element,
was investigated by modal analysis, asymptotic techniques, adjoint-based
tools and weakly nonlinear (WNL) expansions. In the open-cavity case, we
identified the critical conditions and studied the instability mechanism by
means of a WKBJ approximation along the closed streamlines inside the
cavity. We showed that the inviscid structural sensitivity can accurately
predict the particle orbit that provides the main contribution to the insta-
bility. The stability of the flow past a rotating sphere was also considered.
In particular, for such a configuration, we investigated both the case of
imposed rotation and the freely moving sphere. A full three-dimensional
stability analysis was performed and a WNL approach was adopted to clar-
ify the system dynamics for small values of the angular velocity. We showed
that the asymmetric state, prior to the vortex shedding, verifies the normal
form of an imperfect pitchfork bifurcation whose threshold is the critical
Re beyond which the non-rotating sphere flow loses its axisymmetry. We
also studied the full three-dimensional instability mechanism past a hemi-
spherical roughness element immersed in a laminar Blasius boundary layer.
The roughness-induced transition was found to be linked to a global insta-
bility in case of large protrusion height. The e↵ect of the variation of the
ratio between the obstacle height and the boundary layer thickness was also
considered. A limit regime was obtained in which the only important pa-
rameter identifying the bifurcation was the unperturbed (i.e., without the
roughness element) velocity slope at the wall.

The bifurcations of the flow in an X mixer was investigated via linear
stability analysis and direct numerical simulations. This study revealed the
instability mechanisms in a symmetric channel junction and showed how
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these can be stabilized or destabilized by boundary modification. We ob-
served two bifurcations as the Reynolds number increases; both bifurcations
appeared when the recirculation zones reach a critical length.

Further, we generalized the structural sensitivity analysis by including
second-order terms. We applied the proposed approach to a confined wake
and showed how it is possible to take into account the spanwise wavy base-
flow modifications to control the instability.

A general procedure was also developed to study the stability of unsteady
boundary layers using complex-ray theory. The propagation of small distur-
bances was described by a high-frequency (optical) approximation similar
to the one adopted for wave propagation in nonuniform media. The ray
trajectories were described by a system of first-order di↵erential equations.

Finally, we developed two new numerical tools related to the study of
hydrodynamic instabilities: BoostConv and the Error Sensitivity to Re-
finement (ESR). The BoostConv procedure is a novel iterative algorithm,
inspired by Krylov-subspace methods, which is able to compute unstable
steady states and/or accelerate the convergence to stable configurations.
Such new algorithm is based on the minimization of the residual norm at
each iteration step with a projection basis updated at each iteration rather
than at periodic restarts like in the classical GMRES method. The algo-
rithm can stabilize any dynamical system without negatively impacting on
the computation time of the numerical procedure originally used to solve the
governing equations. The ESR is a new indicator, related to the sensitiv-
ity map of global stability problems, suitable for an optimal grid refinement
that minimizes the global solution error. The new criterion was derived from
the properties of the adjoint operator and provided a map of the sensitivity
of the global error (or its estimate) to a local mesh refinement.
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[3] Poincaré, H., Les Methodes Nouvelles de la Mecanique Celeste, 1, Gau-
thier Villars, Paris (1892)
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The bifurcations and control of the flow in a planar X-junction are studied via
linear stability analysis and direct numerical simulations. This study reveals the
instability mechanisms in a symmetric channel junction and shows how these can
be stabilized or destabilized by boundary modification. We observe two bifurcations
as the Reynolds number increases. They both scale with the inlet speed of the
two side channels and are almost independent of the inlet speed of the main
channel. Equivalently, both bifurcations appear when the recirculation zones reach
a critical length. A two-dimensional stationary global mode becomes unstable first,
changing the flow from a steady symmetric state to a steady asymmetric state
via a pitchfork bifurcation. The core of this instability, whether defined by the
structural sensitivity or by the disturbance energy production, is at the edges of
the recirculation bubbles, which are located symmetrically along the walls of the
downstream channel. The energy analysis shows that the first bifurcation is due to a
lift-up mechanism. We develop an adjustable control strategy for the first bifurcation
with distributed suction or blowing at the walls. The linearly optimal wall-normal
velocity distribution is computed through a sensitivity analysis and is shown to delay
the first bifurcation from Re = 82.5 to Re = 150. This stabilizing effect arises because
blowing at the walls weakens the wall-normal gradient of the streamwise velocity
around the recirculation zone and hinders the lift-up. At the second bifurcation, a
three-dimensional stationary global mode with a spanwise wavenumber of order unity
becomes unstable around the asymmetric steady state. Nonlinear three-dimensional
simulations at the second bifurcation display transition to a nonlinear cycle involving
growth of a three-dimensional steady structure, time-periodic secondary instability
and nonlinear breakdown restoring a two-dimensional flow. Finally, we show that the
sensitivity to wall suction at the second bifurcation is as large as it is at the first
bifurcation, providing a possible mechanism for destabilization.
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1. Introduction
In this study, we examine the stability and control of the flow in a planar two-

dimensional X-junction, which comprises three inlet channels and one outlet channel.
We employ three-dimensional direct numerical simulation (DNS) and global linear
stability analysis to discover the nature of the first and second bifurcations. Finally
we use adjoint-based sensitivity analysis to control the flow by applying apply optimal
steady suction or blowing at the wall.

The present study is mostly fundamental in nature. The flow in the X-junction is
a complex wall-bounded separated flow. Understanding the bifurcation mechanisms of
this flow and designing control strategies to influence them is interesting in its own
right, and adds to the physical understanding of a more general class of separated
flows, in particular channel junctions and similar configurations (e.g. Chiang & Sheu
2002; Poole, Alves & Oliveira 2007; Lanzerstorfer & Kuhlmann 2012; Oliveira, Pinho
& Alves 2012). In the present paper we show that the critical parameter for the onset
of both two- and three-dimensional instabilities of the X-junction is the length of the
recirculation bubble(s) rather than the Reynolds number. This indicates that similar
instabilities can be found at lower or higher Reynolds flows, which develop a similar
topology to these recirculation zones.

X-junctions exist in many natural phenomena, such as river junctions, and in
industrial applications, such as micromixers and flow focusing devices. Even though
the typical Reynolds number in river engineering is higher than that in the present
study (of the order of 1000–100 000), the mean flow streamlines and the recirculation
zone downstream of the junction are qualitatively similar (see e.g. Best 1987). The
structure of the recirculation zone of a river is directly connected to sediment transport
and accumulation (river bed formations) (Best & Reid 1984; Shabayek, Steffler &
Hicks 2002). Conversely, the Reynolds number for micromixers and flow focusers
is often low (Re < 10), except for inertial micromixers (at Re = 100–1000), where
the formation of the recirculation zone downstream of the junction is evident even
without non-Newtonian effects.

Micromixers are designed to mix two fluids as efficiently as possible at small
length scales, most often at low Reynolds numbers and in the absence of turbulence
(Nguyen & Wu 2005). Flow focusers are often used to produce controlled-size
droplets (Joanicot & Ajdari 2005), and have been tested for the purpose of creating
thread-like fibres in materials processing (Kinahan et al. 2011; Håkansson 2012;
Håkansson et al. 2014). In the present work we propose a control strategy by fluid
injection or removal (steady suction or blowing), which could be applicable for
recirculatory flows in mixers and focusers despite the low Reynolds number.

Both mixing and focusing of the flow in X- and T-shaped junctions have been
investigated in previous studies. However, there have been only a few studies in the
area of inertia-driven hydrodynamic instabilities. Oliveira et al. (2012) numerically
and experimentally studied the vortical structure of a Newtonian fluid through an
X-junction. Their numerical study was two-dimensional. They defined the velocity
ratio, Vr, as the ratio of the maximum velocity in the side channel to that in the
main channel, and the width ratio, Wr, similarly. They found that the critical Reynolds
number, based on the exit channel quantities, is about Re ⇡ 140 for Vr = 50. They
showed that the instabilities take the form of central vortices in the exit channel.

Mixers have been studied in more detail. Flow regimes in a T-mixer with a
rectangular cross-section are reported in the numerical study by Kockmann, Foll
& Woias (2003). As they increased the Reynolds number, they observed laminar
flow, then vortical flow and then engulfment flow, in which the streamlines in the
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mixing channel are asymmetric. Tomas, Ameel & Guilkey (2010) experimentally
studied a Newtonian fluid within a T-junction with a rectangular cross-section. They
observed that the flow first bifurcates to a steady asymmetric state at Reynolds
number Re = 105, and then a highly oscillatory asymmetric flow occurs in the range
190 < Re < 240. At higher Re, the flow regains its symmetric state and the rate of
mixing decreases. Recently, Fani, Camarri & Salvetti (2013) studied the engulfment
regime in a three-dimensional T-mixer with a quadratic cross-section by DNS and a
global stability analysis. The mechanism of engulfment was found to be the tilting
of the vortical structures at the beginning of the exit channel. They also studied the
sensitivity to the perturbation inlet velocity and reported that the flow with non-fully
developed inflow condition tends to be more stable.

Other studies in planar X-junction geometries (Poole et al. 2007; Poole, Rocha &
Oliveira 2014) considered rheology measurements. These authors recently extended
their studies to the inertial regime (Poole et al. 2014). In their DNS of Newtonian
inertial fluids on the same two-dimensional configuration as ours, but with a different
inflow–outflow structure, they find a very similar symmetry-breaking bifurcation at the
same length of the recirculation bubbles (L ⇡ 6) as ours (but at much higher Re).

The stability analysis and control of the inertia-dominated flow in an X-junction is
also interesting from a fundamental point of view because the flow contains confined
jet-like structures and recirculation regions. The flow in a planar X-junction exhibits
two bifurcations as the Reynolds number is increased from zero. A similar bifurcation
pattern has been observed in a channel with a sudden expansion (Fearn, Mullin &
Cliffe 1990; Fani, Camarri & Salvetti 2012), contraction (Chiang & Sheu 2002),
or both (Mizushima & Shiotani 2000). The flow first bifurcates to an asymmetric
steady state through a pitchfork bifurcation. On further increasing the Reynolds
number, the flow develops a time-dependent nonlinear cycle, initiated by a stationary
global instability of a single recirculation bubble. Similar instabilities are observed
in the flow behind a bump (Gallaire, Marquillie & Ehrenstein 2007; Passaggia,
Leweke & Ehrenstein 2012), behind a backward-facing step (Barkley, Gomes &
Henderson 2002; Marquet et al. 2009; Lanzerstorfer & Kuhlmann 2011), in boundary
layer recirculation bubbles (Rodriguez & Theofilis 2010) and in a lid-driven cavity
(Albensoeder, Kuhlmann & Rath 2001; Haque et al. 2012).

Adjoint-based sensitivity analysis of flows was first introduced by Hill (1992)
and has been used extensively to examine the receptivity to internal and external
modifications (Sipp et al. 2010; Luchini & Bottaro 2014). In this study, we use
a global stability and a structural sensitivity analysis to investigate the dynamics
of instabilities in a planar X-junction flow. Structural sensitivity analysis was
introduced by Chomaz (2005) and Giannetti & Luchini (2007) to identify the origin of
instabilities in open shear flows. The structural sensitivity is defined as the region of
the flow where a force–velocity feedback results in the largest drift of the eigenvalue.
In this paper, we also seek the most efficient control strategy to delay or promote the
first pitchfork bifurcation. We use the sensitivity to boundary velocity modification,
introduced by Hill (1992) and used among others in Marquet & Sipp (2010), to
obtain an optimal suction or blowing distribution at the wall. Furthermore, we map
the control effect on the flow by using the base flow sensitivity (Marquet, Sipp &
Jacquin 2008; Pralits, Brandt & Giannetti 2010). Similar techniques were used by
Meliga & Chomaz (2011) on the flow in a confined impinging jet. They employed an
adjoint-based method to control the global modes by optimal body and wall forcing
on a broadly comparable geometry to that in the present work. Promoting the first
and second bifurcations is useful in order to increase mixing by large-scale structures,
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FIGURE 1. (Colour online) Schematic of the geometrical configuration and coordinate
system.

e.g. in inertial micromixers, while delaying the first bifurcation is useful in order
to obtain mixing by diffusion or to maintain symmetric flow, e.g. in flow focusers
for fibre fabrication. We also aim to shed further light on the physical mechanisms
behind the first bifurcation, and proposed control strategies.

This paper is organized as follows. We describe the flow configuration, the
governing equations and the stability formulations in § 2. We introduce the numerical
methods and validation in § 3. We report the results of the stability analysis and
control of the first bifurcation in § 4, and the results of the second bifurcation in § 5.
The conclusions are presented in § 6.

2. Configuration and problem formulation
The flow set-up and coordinate system are shown in figure 1. The geometry consists

of a main channel aligned with the x-axis, and two identical side channels attached
perpendicularly to the main channel at the same position, forming a cross. The origin
of the coordinate system is located at the centre of the cross. The mean flow is
homogeneous in the spanwise direction (z). The geometry comprises three inlets (one
for the main channel and two for the side channels) and one outlet (for the main
channel). The side channels have the same inflow conditions. The flow is governed
by the non-dimensional incompressible Navier–Stokes and continuity equations,

@u
@t

+ u · ru = �rp + 1
Re

r2u, (2.1)

r · u = 0, (2.2)

where u = (u, v, w) is a vector of non-dimensional velocity components, and p is the
non-dimensional pressure. Two non-dimensional parameters define the characteristics
of the flow: the Reynolds number (Re) and the velocity ratio (Vr). The Reynolds
number is defined as

Re = U1h
⌫

, (2.3)

where U1 is the maximum inflow velocity of the main channel, h is the half-width of
the channels and ⌫ is the kinematic viscosity. The velocity ratio is defined as

Vr = U2

U1
, (2.4)
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where U2 is the maximum inflow velocity of the side channels. In this paper, we study
the stability of the X-junction flow in the Reynolds number regime 60 < Re < 700
and for velocity ratio 0.5 < Vr < 4. The choice of the value of Vr is based on the
experiments by Tomas et al. (2010) and Håkansson (2012).

2.1. Linear stability analysis
In order to perform a linear stability analysis, we decompose the flow into a
two-dimensional steady base flow and an infinitesimal three-dimensional unsteady
perturbation. The base flow and perturbation velocities and pressure are denoted by
Q = (Ub, Pb) and q = (u0, p0), respectively. The perturbation q takes the form of
two-dimensional global modes,

u0(x, y, z, t) = û(x, y) exp(� t + i�z), (2.5)
p0(x, y, z, t) = p̂(x, y) exp(� t + i�z), (2.6)

where the spanwise wavenumber, �, exploits the homogeneity of the base flow in the
spanwise direction. For a given �, the complex frequency, � , can be computed by
solving the linearized eigenvalue problem,

� û + û · rUb + Ub · rû = �rp̂ + 1
Re

r2û, (2.7)

r · û = 0. (2.8)

To compute the base flow, we set up parabolic inflow conditions for all the inlets
and a stress-free outflow condition for the outlet. For the stability analysis, we set a
Dirichlet boundary condition for all the inlets and traction-free boundary condition for
the outlet as suggested by Barkley, Blackburn & Sherwin (2008). The total field (the
base flow plus the perturbation) satisfies the outlet boundary condition. The real and
imaginary parts of the eigenvalue � are the growth rate and oscillation frequency of
the corresponding global mode. If there exists any eigenvalue with Re{� }> 0, the flow
is linearly unstable. Conversely, if all eigenvalues have Re{� } < 0, the flow is linearly
stable and infinitesimal perturbations eventually decay to zero.

2.2. Structural sensitivity
The generalized Lagrange identity is used to derive the adjoint equations. We
introduce a similar ansatz for the non-trivial solution of the adjoint system:

u0+(x, y, z, t) = û+
(x, y) exp(�� t + i�z), (2.9)

p0+(x, y, z, t) = p̂+(x, y) exp(�� t + i�z), (2.10)

where u0+ = (u0+, v0+, w0+) and p0+ are the adjoint velocity and pressure perturbation
fields. The adjoint eigenvalue problem is

�� û+ � rUb · û+ + Ub · rû+ = �rp̂+ � 1
Re

r2û+
, (2.11)

r · û+ = 0. (2.12)

We calculate the direct and adjoint global modes to construct the structural sensitivity
(Giannetti & Luchini 2007). This gives the core of the instability, defined as the region



6 I. Lashgari, O. Tammisola, V. Citro, M. P. Juniper and L. Brandt

where a local feedback force proportional to the velocity results in the largest drift of
the leading eigenvalue. The sensitivity tensor is

S(x0, y0) = û+
(x0, y0)û(x0, y0)Z

D
û+ · û dA

. (2.13)

The core of the instability can be identified by different norms of the tensor S.
Here we use the spectral norm, which measures the effect of the maximum possible
coupling among the velocity components.

2.3. Base flow sensitivity
The sensitivity to generic base flow modifications, SBF, where the modified base flow
is not necessarily a solution to the steady Navier–Stokes equations, represents the
variation of the complex eigenvalue, �� , with respect to the small modification of base
flow, �U. The sensitivity to base flow modification is given by (see Marquet et al.
2008)

SBF = �(rû)H · û⇤ + rû+ · û⇤
Z

D
û+ · û dA

, (2.14)

where ⇤ and H stand for complex conjugate and transpose conjugate, respectively.
We denote the horizontal and vertical components of the sensitivity to base flow
modification by SU and SV . Note that, for a zero-frequency mode, SBF is a real
quantity. This is because two-dimensional modifications of the two-dimensional base
flow can only change the growth rate of the mode, while the frequency remains zero.

2.4. Sensitivity to boundary velocity modification
The sensitivity to boundary velocity modification, Sb, can be derived by explicitly
including the boundary condition as a constraint in the Lagrangian functional, and
considering the boundary velocity UB as a control variable. A procedure similar to
that of Marquet et al. (2008) and Marquet & Sipp (2010) then gives

Sb = P+n + Re�1rU+ · n, (2.15)

where U+ and P+ are the adjoint base flow velocity and pressure. The eigenvalue drift
is obtained by integrating Sb over the domain boundary B:

�� =
Z

B
Sb · �UB. (2.16)

3. Numerical methods
We compute the base flows with the spectral element method (SEM), implemented

in the code Nek5000 (see Tufo & Fischer 1999). In this approach, the computational
domain is divided into quadrilateral spectral elements. The equations are cast into
weak form and discretized following the PN–PN�2 SEM discretization by Maday
& Patera (1989). The velocity space consists of Nth-order Lagrange polynomial
interpolants, hN

i (x), based on tensor-product arrays of Gauss–Lobatto–Legendre (GLL)
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Reynolds number Coarser mesh Finer mesh Relative error (%)

80 0.0 � 0.0626i 0.0 � 0.0633i 0.0111
90 0.0 + 0.0476i 0.0 + 0.0472i 0.0084

100 0.0 + 0.1288i 0.0 + 0.1285i 0.0023

TABLE 1. Influence of the grid resolution on the growth rate of the leading eigenvalues.

Code Inlet length Outlet length Growth rate

Nek5000 4 40 0.0476
Nek5000 8 40 0.0811
Nek5000 16 40 0.0815
Nek5000 8 80 0.0811
DOG 8 40 0.0807
FreeFEM++ 8 40 0.0813

TABLE 2. Influence of the domain size on the growth rate of the leading eigenvalues at
Re = 90.

quadrature points in a local element, ⌦e, e = 1, . . . , E, satisfying hN
i (⇠N

j ) = �ij, where
⇠N

j 2 [�1, 1] denotes one of the N + 1 GLL quadrature points and �ij is the Kronecker
delta. SEM combines the geometrical flexibility of finite elements with the high
accuracy of spectral methods. It results in exponential convergence of the solution
when the polynomial order is increased, called p-refinement (see Patera 1984). It can
also be used for localized refinement by increasing the number of elements, called
h-refinement.

We use the stability solver DOG (Barkley et al. 2008) to investigate three-
dimensional instabilities about the two-dimensional base flows. The perturbation
fields are considered as Fourier modes and dealt with in Fourier-transformed space.
A time stepping technique is used to calculate the evolution of the direct and adjoint
equations. A built-in library, together with ARPACK, calculates the eigensolution of
the stability problem.

The three-dimensional global modes (� 6= 0), discussed in § 4.2.4, are computed
using the FreeFEM++ open-source finite element software (Pironneau, Hecht &
Morice 2013), validated in § 3.1 against Nek5000 and DOG. For this we use P2–P1
Taylor–Hood elements.

3.1. Validation
In this section, we show the effect of the resolution and domain length on the stability
of the flow in order to validate the numerical methods. We ensure that the leading
eigenvalue does not vary when the number of elements and the polynomial order,
Np, are increased, and also when the inlet and outlet channels are lengthened. These
results are summarized in tables 1 and 2. In the first study, we compare two meshes:
a coarser mesh with 1072 elements and Np = 8, and a finer mesh with 2544 elements
and Np = 8. The inlet and outlet lengths are 4 and 40, respectively, while the widths
of the main and side channels are both 2. Table 1 shows that the growth rate of the
leading eigenvalue changes by less than 0.1 %, so we choose the coarser mesh for the
rest of this study. In the second study, documented in table 2, we quantify the effect of
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the domain length on the stability, employing three different numerical codes. Based
on this result, we choose the inlet lengths to be 8 and the outlet length to be 40.
These tests shows a very good agreement between the results obtained with the three
different stability solvers.

4. First bifurcation
4.1. Linear stability analysis

For Vr = 3 and Reynolds number Re < 82.5, the DNS converges to a steady and
stable symmetric flow in the X-junction (see figure 2a). At the beginning of the
outlet channel, a symmetric jet forms and establishes two recirculating regions.
Further downstream, the flow recovers the Poiseuille channel flow profile owing to
the action of viscous dissipation. As the Reynolds number increases, a steady and
stable asymmetric state appears (see figure 2b). At the start of the outlet channel,
the jet tilts towards one of the walls and the two recirculation regions have unequal
sizes. There is an equal probability for the jet to tilt towards the upper or lower
wall. The same phenomenon has been observed in similar flow configurations (see
the experimental studies by Cherdron, Durst & Whitelaw (1978) and Fearn et al.
(1990) on the laminar flow over a planar symmetric sudden expansion). We define
the Reynolds number at which the flow changes its state, from steady symmetric
to steady asymmetric, as the critical Reynolds number of the first bifurcation, Rec1.
The attachment of a jet to the adjacent wall, the Coanda effect, has been studied for
some time (see the early work by Bourque & Newman (1960)). It is understood as a
consequence of the pressure difference established in the cross-stream direction (see
e.g. Sobey & Drazin 1986). To better understand the nature of the first bifurcation,
we perform a global stability analysis around the symmetric base flow. In order to
obtain the steady but unstable symmetric base flow at Re > Rec1, we simulate the
flow in only half of the domain, imposing the symmetry boundary condition on the
axis of symmetry. The global analysis in the full domain around this symmetric
flow at Re > Rec1 has stationary unstable modes for all velocity ratios. In the
linear framework, the flow therefore becomes globally unstable through a pitchfork
bifurcation. In figure 3(a), we show the growth rate of the leading global modes as a
function of the spanwise wavenumber, �, for the symmetric base flows at Re = 82.5,
90 and 115 and for Vr = 3. The most unstable mode has zero spanwise wavenumber,
i.e. the first bifurcation is two-dimensional, and the critical Reynolds number for the
first bifurcation is 82.5. The eigenvalue spectrum of the flow at Re = 82.5 is shown
in figure 3(b) for a zero spanwise wavenumber. The distribution of the eigenvalues
is symmetric around the zero frequency axis, and the least stable eigenvalues are
discrete (well separated from the continuous spectrum further down in the figure).

Figure 4 shows the spatial structure of the most unstable global mode for Re = 90
and � = 0. Only part of the domain is shown; the domain size is larger in the
simulations. The global modes have highest amplitude around the recirculation bubble
and the u-perturbation is the strongest. This increases the speed at the outer edge
of the bottom bubble and decreases the speed at the outer edge of the top bubble.
The v-perturbation moves the flow down around x = 2 and up around x = 6. The
p-perturbation shows that the pressure decreases in the bottom bubble around x = 4
and increases in the top bubble. The structure of the global modes suggests that the
streamwise acceleration leads to lower pressure at the lower recirculation zone (the
opposite for the top bubble), which in turn induces a cross-stream pressure gradient
that helps to maintain the asymmetry. This effect is similar to the asymmetric
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FIGURE 2. (Colour online) Total velocity distribution for Vr = 3: (a) symmetric steady
state at Re = 80; (b) asymmetric steady state at Re = 110.
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FIGURE 3. (Colour online) (a) Growth rate of the leading eigenvalues about the symmetric
base flows for Vr =3 and Re=82.5 (black circles), 90 (red crosses) and 115 (blue squares).
(b) Eigenvalue spectrum for Vr = 3, Re = 82.5 and � = 0.

attachment in stenotic flow, which is described in the work by Sherwin & Blackburn
(2005): ‘the axial perturbation velocities induce a weak cross-flow pressure gradient
and flow . . . Therefore the perturbation flow tends to deflect the centreline of the
enclosed jet away from the tubes axis of symmetry, promoting a mild Coanda-type
attachment’. The growth of the u-perturbation itself can be explained by a lift-up
mechanism, as will be detailed in a later paragraph.

The region with the highest structural sensitivity, which is also known as the core
of the instability, is the region of the flow in which force–velocity feedback has the
greatest influence on the eigenvalue. This core is found by overlapping the direct
and adjoint global modes and is shown in figure 5(a). It is localized at the edge
of the recirculation bubble(s), suggesting that the instability can be controlled by
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FIGURE 4. (Colour online) Spatial structure of the direct global modes: (a) horizontal
velocity, (b) vertical velocity, and (c) pressure around the symmetric base flow at Re = 90,
Vr = 3 and � = 0.

manipulating the bubble. This will be confirmed in § 4.2, where passive control by
optimal suction or blowing at the wall is examined.

Here we depict only the spectral norm of the sensitivity tensor. The u+u component
of the sensitivity tensor is significantly stronger than the other components and has the
same structure as the spectral norm.

In figure 5(b), we present the spatial map of the production of the perturbation
kinetic energy for the same flow. The production term is normalized by the overall
perturbation kinetic energy in the domain. The regions of largest transfer of the kinetic
energy from the base state to the perturbations are found in the shear layer at the
edge of recirculation bubbles. Interestingly, the core of the instability corresponds to
the region of maximum positive and negative production.

More specifically, we compute the contribution of the term uv dU/dy in the
production of the perturbation kinetic energy. The spatial map of this term is
depicted in figure 5(c), and can be compared to the map of total energy production
in figure 5(b). We observe that total energy production and energy production by the
term uv dU/dy are almost identical in amplitude and shape, from which we conclude
that the instability growth is due to this term.

The disturbance extracts energy from the base flow through the uv dU/dy term
in several shear flow instabilities, most notably the Kelvin–Helmholtz instability,
Tollmien–Schlichting waves and the lift-up effect. To determine the instability
mechanism in our flow, we note that the present instability is stationary, the mode
shape is streamwise-elongated and the streamwise velocity component is an order of
magnitude larger than the vertical component (figure 4 a,b). This strongly indicates a
lift-up mechanism, where a small initial v-perturbation induces a strong u-perturbation
(for a review on lift-up, see Brandt (2014)).
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FIGURE 5. (Colour online) (a) Spatial map of structural sensitivity, (b) production of the
perturbation kinetic energy and (c) lift-up perturbation kinetic energy around the symmetric
base flow at Re = 90, Vr = 3 and � = 0. (The solid pale green lines show the edge of
recirculation regions.)

This instability is different from the lift-up in parallel flows due to the feedback
provided by the recirculation region, which leads to a self-sustained mechanism. This
is similar to the finding of Lanzerstorfer & Kuhlmann (2011), who notes that the
instability behind a backward-facing step is caused by a lift-up effect, which gains its
exponential growth through recirculation for some specific value of the step height.
The present configuration with two symmetric bubbles is more unstable than the case
of a single bubble, because the two-dimensional asymmetric instability mode sets
in at lower Reynolds numbers. This can also be explained by the energy budget:
the antisymmetric global mode involving two bubbles allows the v-perturbation to
be constant in the vertical direction, minimizing dv/dy, and thereby minimizing the
global dissipation.

The critical Reynolds number for the first bifurcation depends significantly on Vr.
Figure 6(a) shows that the critical Reynolds number decreases monotonically from
⇠530 for Vr = 0.5 to ⇠60 for Vr = 4. Nonlinear simulations on the two-dimensional
domain give the same result for the first bifurcation (not shown here). If we define
the Reynolds number based on the maximum velocity at the side channels, however,
the neutral curve for the first bifurcation is almost independent of the velocity ratio:
Rec = 262.5–245 for Vr = 0.5–4. We also examine two extreme cases: Vr = 10 and
Vr = 0.2. For Vr = 10, Rec ⇡ 260 based on U2, similarly to the previous cases. For
Vr = 0.2, however, Rec ⇡ 310, i.e. the flow is more stable when the side flow is



12 I. Lashgari, O. Tammisola, V. Citro, M. P. Juniper and L. Brandt

(a)

(b)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

100

200

300

400

500

600

700
First bifurcation (Re based on U1)
First bifurcation (Re based on U2)
Second bifurcation (Re based on U1)
Second bifurcation (Re based on U2)

Re

Vr

80 90 100 110 120 130 140
0

0.1

0.2

0.3

0.4

0.5

Re

FIGURE 6. (Colour online) (a) Critical Reynolds number for the first and second
bifurcations versus velocity ratio. (b) Bifurcation diagram of the X-junction flow with
velocity ratio Vr = 3.

weaker. This shows that the critical Reynolds number of the first bifurcation is mainly
determined by the inlet velocity of the side channels.

To visualize the bifurcation of the flow in the X-junction quantitatively, we
introduce a measure of the deviation from the symmetric flow: the v-velocity at
(x, y) = (3, 0), on the centreline. In figure 6(b), we show the maximum and minimum
value (in time) of this measure as a function of the Reynolds number. Up to Re = 110,
the flow is steady and v is constant. The first bifurcation is evident at Re = 82.5. We
will return to this figure when examining the second bifurcation.

For this flow, the point of first bifurcation seems to be determined by the size of
the recirculation region. Figure 7 shows the stagnation streamline that starts from the
upper right corner, (x, y) = (1, 1), and separates the recirculating bubble from the flow
that passes through the X-junction. For a fixed velocity ratio Vr = 3, figure 7(a), the
bubble elongates as the Reynolds number increases. For the cases along the neutral
curve, figure 7(b), the bubble has almost the same size for various velocity ratios and
Reynolds numbers. It seems therefore that the first bifurcation occurs when the bubble
reaches a critical length, which is approximately 6.1.

This result also provides a physical explanation for the scaling found in figure 6(a).
The shape of the recirculating region at the critical conditions is unaffected by the
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FIGURE 7. (Colour online) (a) Recirculation bubble of symmetric base flows for a fixed
velocity ratio Vr = 3 and Re = 60 (red dashed line), Re = 80 (black full line), Re = 115
(blue dotted line) and Re = 162.5 (green dot-dashed line). (b) Some cases along the neutral
curve for Re = 520, Vr = 0.5 (red dashed line), Re = 162.5, Vr = 1.5 (blue dotted line),
Re = 80, Vr = 3 (black full line) and Re = 60, Vr = 4 (green dot-dashed line).

main stream when Vr > 0.5. This is because the side flows force the horizontal stream
to flow down the middle of the exit channel without affecting the dynamics of the
bubbles. This explains the dependence of the bifurcation thresholds on the velocity of
the side channels. For low velocity ratios, however, i.e. Vr = 0.2, the stability boundary
is different and Rec is higher. Based on these principles, we anticipate that the critical
condition for the T-junction will be very similar to that for the X-junction.

To investigate whether the bifurcation is supercritical or subcritical, we have
performed nonlinear simulations with various amplitudes of initial noise and have
observed that the final steady symmetric solution is attained for all cases when
Re < Rec1. This is also true when we simulate the flow using an asymmetric solution
as the initial condition. We conclude therefore that the first bifurcation is supercritical.

4.2. Control of the first bifurcation
A traditional way to control globally unstable open shear flows is by a control cylinder.
However, for a complex wall-bounded geometry, small-amplitude suction or blowing
at the walls presents a more versatile option because the amplitude distribution can be
varied more easily. We therefore try to control the first bifurcation of the X-junction
by small-amplitude steady (time-independent) suction or blowing at the walls.

4.2.1. Sensitivity to wall suction
The sensitivity Sb(x, y) represents the change in the growth rate due to a localized

velocity change of amplitude A = 1 at the boundary location (x, y), in the linear
limit. The eigenvalue drift for different amplitudes and finite actuation areas can be
obtained from Sb by integrating equation (2.16). Figure 8(a) shows the real part of
Sb,n, which is the change in the growth rate �r due to control in the horizontal channel.
By ‘suction’, we mean a velocity at the wall in the direction of the outgoing normal.
We show the sensitivity for two different Reynolds numbers: Re = 90 (just above
bifurcation) and Re = 150 (far from bifurcation). The main observation is that the
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FIGURE 8. (Colour online) Sensitivity of the growth rate to suction at the main channel
walls: (a) horizontal channel (versus x) and (b) vertical channel (versus y); left wall
(darker, blue) and right wall (paler, green); Re = 90 (plain solid line) and Re = 150 (solid
line with circles). Sensitivity to blowing is the negative of the same curve. The sensitivities
to suction at both side channels are equal and are the same at the upper and lower walls
of the horizontal channel. The minimum value of the solid line in the downstream corner
is outside the axis in both panels: it is Re(Sb,n) = �1.8.

sensitivity to suction is largest just downstream of the junction, around x = 3, and
that suction there increases the instability growth rate, for both Re = 90 and Re = 150.
Therefore, suction in this location is destabilizing.

The sensitivity is lower at Re = 150 than at Re = 90, and both stabilizing and
destabilizing effects are observed for the same actuation. This indicates that a lower
amplitude is needed to control the flow at Re = 90 than at Re = 150. Also, at Re = 150
the departure from the steady symmetric solution will be greater than it is for the
Re = 90 flow, suggesting that the sensitivity at Re = 150 might be less relevant for
control of the bifurcated flow.

Figure 8(b) shows the sensitivity along the upstream and downstream walls of the
vertical channel at Re = 90 and Re = 150. The sensitivity is generally lower in the
vertical channel than in the horizontal channel, apart from at the corners, where it
is the same. The sensitivity is large and negative close to the downstream corner,
which means that suction there is stabilizing. However, this region where suction
is stabilizing is very small, making control near the corner difficult. Comparing the
results at the same height y in the upstream and downstream channel, it is interesting
to note that the sensitivity is higher on the upstream wall, except at the corner.

4.2.2. Passive control by distributed suction and blowing
The sensitivity distributions, such as the curves in figure 8, are also gradient

distributions. This means that Re(Sb,n) gives the suction distribution that increases the
eigenvalue growth rate most, of any suction distribution with a given L2-norm (and
with a low enough amplitude so that the linear analysis is valid). Correspondingly,
�Re(Sb,n) gives the distribution that decreases the eigenvalue growth rate most. If
�Re(Sb,n) is applied at the boundary, the critical Reynolds number should increase.

We therefore test how far the linearly optimal distribution can increase the critical
Reynolds number. The procedure is as follows. We choose a suction amplitude A and
first compute the base flow and modes at bifurcation. Then we extract the optimal
stabilizing suction distribution �Re(Sb,n) and scale it so that the ratio of the absolute
value of the maximal suction velocity, and the maximal inflow velocity, is equal to A.
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FIGURE 9. (Colour online) The effect of optimal boundary suction or blowing. The curve
(blue online) gives the global mode growth rate of the uncontrolled base flow. The vertical
lines (colour online, labelled) give the stability limits at different values of suction.

Next, we apply the optimal suction distribution at the boundary, and recompute the
base flow and the global modes. If all global modes now have negative growth rates,
then all steps are repeated at higher Re. We keep increasing the Reynolds number
until the growth rate of the leading mode is positive despite the control. In this
way, we have found the new critical Reynolds number corresponding to the suction
amplitude A.

The critical Reynolds numbers for A = 0, 0.01, 0.02 and 0.03 are shown by
vertical lines in figure 9. First, it is remarkable that suction of such a small maximal
amplitude as 3 % of the inflow velocity can stabilize the flow until Re = 150, which is
almost double the critical Reynolds number of the uncontrolled case. Higher suction
amplitudes were also tested but did not result in any further increase of the critical
Reynolds number. The change of the flow rate due to suction or blowing in the
configuration with A = 0.03 is also around 3 %, which is small. Changes in the total
flow rate due to control could be adjusted for by applying suction or blowing in the
region downstream (x > 10), if desired. In this region, the instability is not sensitive
to suction or blowing, and hence the flow rate adjustment would not interfere with
the control effect.

The linear growth rate without suction is also shown in the same figure and reaches
values up to �r = 0.27 at Re = 150. The growth rate with the linearly optimal suction
still becomes negative at this Re (the flow is stabilized). Therefore suction or blowing
is a robust and efficient way to control the X-junction flow. Next, we will investigate
how the control works in more detail.

4.2.3. Physical interpretation of suction control
The optimal suction distribution has several simultaneous effects on the base flow.

We cannot create arbitrary base flow changes because the base flow has to satisfy the
Navier–Stokes equations. Some of the changes induced by the optimal suction might
have a large effect on the growth rate, and some might have no effect at all but be
merely a consequence of the fact that the base flow has to satisfy the Navier–Stokes
equations. To find out where the effective base flow changes induced by suction are
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FIGURE 10. (Colour online) Spatial map of the control effect obtained by wall suction,R
B Re(SBF) · (Us � U0), for (a) Re = 90 and (b) Re = 150. The thin pale green line shows

the boundary of the recirculation bubble in each case.

located, we investigate the product of the base flow sensitivity (2.14) and the base flow
change,

R
B SBF · (Us � U0), where Us is the base flow velocity vector with suction, and

U0 the base flow velocity vector without suction. This product gives a spatial map of
the control effect, and the real part, displaying stabilization, is shown in figure 10 for
Re = 90 and Re = 150. Inside and just outside the recirculating region, the suction
induces stabilizing and destabilizing base flow modifications, respectively. It can be
seen that the stabilizing influence occurs almost entirely inside the recirculation bubble,
where the wavemaker defined by the structural sensitivity (figure 5) is located. This
is true for both Re = 90 and Re = 150, although the optimal suction distributions
themselves (figure 8) are qualitatively different. Hence, in line with the stability results,
we find the suction to be optimal because of its effect on the most influential region
of the flow: the recirculation bubble.

To quantify in more detail how the control changes the recirculation bubble, we
investigate three base flows at Re = 90: (a) without suction or blowing, (b) with
optimal stabilizing suction or blowing �Re(Sb,n), and (c) with optimal destabilizing
suction or blowing Re(Sb,n) (see figure 11). The most stable flow has the fewest
streamlines with reverse flow and the smallest recirculation bubble – i.e. there is both
weaker and less recirculation. By looking at �Re(Sb,n) (the negative of the curve in
figure 8a), we observe that this is achieved by blowing from the wall in the location
of the recirculation bubble. The attenuation of the instability can be attributed to
two factors. Firstly, blowing decreases the velocity gradient between the main stream
and the bubble, decreasing v dU/dy and hence weakening the energy production
by lift-up. Secondly, blowing also counteracts the recirculation, which is needed to
produce exponential growth of the otherwise algebraic lift-up mechanism.

4.2.4. Control of three-dimensional modes
Previously, we showed that the optimal wall suction distribution can be computed

for the leading two-dimensional eigenmode, and stabilizes that mode up to Re = 150.
However, to confirm that the flow is indeed stabilized by suction, we also need to
stabilize all three-dimensional eigenmodes, � 6= 0. It is impossible to experimentally
design different controls for different wavenumbers. Therefore we proceed to examine
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FIGURE 11. Streamlines around the recirculation bubble of the base flow: (a) base
flow with zero wall velocity; (b) base flow with optimal stabilizing suction or blowing
distribution at the wall, magnitude 1 %; (c) base flow with optimal destabilizing suction
or blowing distribution at the wall, magnitude 1 %.

Re � Production Dissipation

90 0 0.474 �0.325
90 0.5 0.296 �0.377

150 0 0.536 �0.257
150 0.5 0.599 �0.254

TABLE 3. Perturbation kinetic energy budget.

whether the two-dimensionally optimal suction stabilizes all modes, whether optimal
or not, for � 6= 0.

The leading eigenvalues for different values of � are shown in figure 12 for
the case Re = 150, with suction and without suction. Interestingly, for the cases
without suction, spanwise-periodic modes become gradually less and less stable by
increasing the Reynolds number. The spanwise wavenumber of the least stable mode
becomes different from zero at Re ⇡ 120, and approaches � = 0.5 when Re = 150.
To understand this effect, we analyse the perturbation energy budget for the cases
Re = 90 and Re = 150 at � = 0 and � = 0.5. The production and dissipation of the
perturbation kinetic energy, normalized by the kinetic energy, are shown in table 3.
The wavenumber selection only depends on which wavenumbers experience most
energy production by the lift-up effect. Dissipation does not vary significantly with
�, whereas the production grows with Re for � = 0.5. Thus lift-up is more effective
at finite � despite the presence of a spanwise velocity component in the dissipation
term.

When applying control by optimal suction, we see that the eigenvalues become
stable for all �. Results for Reynolds numbers lower than 150 also show the same
behaviour. This confirms that the control works well for two- and three-dimensional
modes, and the flow is indeed stabilized up to Re = 150. Furthermore, we observe that
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FIGURE 12. (Colour online) At Re = 150, the growth rate of the most unstable eigenvalue
as a function of �, with (red stars) and without (blue crosses) two-dimensional optimal
suction.

the modes at non-zero spanwise wavenumbers are more affected by suction than the
two-dimensional mode, and the controlled flow is characterized again by a least stable
mode of � = 0.

5. Second bifurcation
5.1. Linear analysis

When the Reynolds number is increased beyond the first bifurcation, the flow
maintains its steady asymmetric state until Re = Rec2, the critical Reynolds number
for the second bifurcation. For Re > Rec2, it bifurcates again owing to the action
of stationary global modes around the steady asymmetric base flow. For Vr = 3, a
global stability analysis gives an unstable global mode with � = 1 for Re = 115.
In figure 13(a), we show the leading eigenvalues as a function of the spanwise
wavenumber at Re = 115 and 120. The second bifurcation is also of the pitchfork
type. Figure 13(b) shows the eigenvalue spectrum of the asymmetric base flow at
Re = 115. The spectrum is discrete and symmetric, as for the symmetric base flows.

We present the features of the most unstable global mode around the asymmetric
base flow in figure 14. The structure of the modes illustrates the asymmetry of
the underlying base flow; in this case, the jet is tilted towards the lower wall. The
u-component is the strongest and is maximal at the larger recirculation bubble, close
to the upper wall of the outlet channel. The v- and w-perturbation modes also display
their maximum amplitude next to the larger bubble. The strong u-perturbation of the
global direct mode, together with the strong v+-perturbation of the global adjoint
mode (not shown here), suggests that the lift-up mechanism is active in the shear
layer associated with the largest recirculating region (see Marquet et al. 2009). The
perturbation transports the base flow momentum from the regions of low speed to
those with higher speeds and creates a large u-perturbation.

Figure 15 shows the overlap of the direct and adjoint global modes, which is the
core of the instability at the second bifurcation. The core is located in the larger
recirculation bubble. Note that the core of the instability at the second bifurcation is
in the middle of the bubble and extends over the whole bubble, while the core of the
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FIGURE 13. (Colour online) (a) Growth rate of the leading eigenvalues around the
asymmetric base flows for Vr = 3 at Re = 115 (black circles) and 120 (red crosses).
(b) Eigenvalue spectrum at Re = 115, Vr = 3 and � = 1.
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FIGURE 14. (Colour online) Spatial structure of the direct global modes: (a) horizontal
velocity, (b) vertical velocity and (c) spanwise velocity around the asymmetric base flow
at Re = 120, Vr = 3 and � = 1.

instability at the first bifurcation was localized at the downstream edges of the two
bubbles (see § 5.1). The instability is three-dimensional and steady, which is similar
to the instabilities that develop along the streamlines in the flow behind a bump
or in a cavity (see e.g. Albensoeder et al. 2001; Gallaire et al. 2007; Rodriguez &
Theofilis 2010) and at the recirculation region over a backward-facing step (see e.g.
Marquet et al. 2009; Lanzerstorfer & Kuhlmann 2011). Lanzerstorfer & Kuhlmann
(2011) used the energy production, together with the flow streamlines, to distinguish
between three types of instability for the backward-facing step: centrifugal, elliptic
and lift-up mechanism. We shall attempt to do the same for the second bifurcation.
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FIGURE 15. (Colour online) (a) Spatial map of the structural sensitivity, (b) production
of the perturbation kinetic energy and (c) lift-up perturbation kinetic energy around the
asymmetric base flow at Re = 120, Vr = 3 and � = 1. (The solid pale green lines show
the edge of recirculation regions.)

The energy production for the instability leading to the second bifurcation is shown in
figure 15(b). The maximum of the production is in an area of curved streamlines, but
the velocity increases radially outwards (to the middle stream), which precludes
centrifugal instability. Furthermore, elliptic instability would be indicated by a
maximum production in the centre of a vortex, while in our case the maximum
is at the outer edge of the recirculation region. Similarly to the analysis of the
first bifurcation, we present the spatial structure of the lift-up term (uv DU/Dy) in
the production of the perturbation kinetic energy in figure 15(c). The lift-up term
presents a structure relatively similar to the total production, both with a localized
maximum at the downstream edge of the larger recirculation bubble where the base
flow shear is strongest. We conclude that also the second bifurcation is due to
the lift-up mechanism (Lanzerstorfer & Kuhlmann 2011), and the vertical velocity
perturbation extracts energy from the base flow shear (dU/dy) to produce in this case
streamwise-elongated low- and high-speed streaks. We also show that the structural
sensitivity (figure 15a) is the largest in the middle of the bubble, indicating that
velocity perturbations initiated there participate in the streamline displacement and
the lift-up.

In figure 6(a), we show the critical Reynolds number for the second bifurcation.
This neutral curve has the same behaviour as that of the first bifurcation. The second
bifurcation is also almost independent of the velocity ratio if the Reynolds number
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is based on the maximum velocity in the side channel. For all velocity ratios greater
than unity, the most dangerous mode is found to have spanwise wavenumber � = 1.
However, for Vr = 0.5, the mode with � = 1.4 is the most unstable.

5.2. Nonlinear analysis
In order to further understand the results of the linear analysis about the second
bifurcation, we perform nonlinear simulations on a three-dimensional periodic
geometry with spanwise length, Lz = 2p, corresponding to � = 1. We use three,
six and nine spectral elements in the spanwise direction (the polynomial order is
eight, as in the two-dimensional simulations) to ensure that the final results are
mesh-independent. We construct an initial condition for the DNS consisting of the
asymmetric base solution combined with the spanwise periodic perturbation leading to
the strongest transient energy growth (computed separately by standard direct-adjoint
iterations). The initial condition is scaled to have maximum spanwise velocity, the
strongest component, equal to unity. The nonlinear evolution of the initial condition
shows that the spanwise velocity decays to zero and a two-dimensional steady state is
obtained asymptotically for all Re 6 105 (below the second bifurcation). Interestingly,
once all the disturbances have travelled out of the computational domain, the larger
recirculation bubble may have moved to the opposite side with respect to the initial
condition. We therefore find two possible steady two-dimensional solutions for
Re 6 105 once the convective instabilities have travelled out of the domain.

At Re > 110 and Vr = 3, the nonlinear flow becomes time-dependent and three-
dimensional. To ensure that this behaviour is independent of the outlet length, we
have run also a three-dimensional nonlinear simulation at Re = 110 where the outlet
length is increased from Lout = 40 to Lout = 60. The flow has the same nonlinear cycle
as in the simulations with the shorter outlet length described below. In figure 16 we
present the time evolution of the spanwise velocity for the case Re = 120. Similar
behaviour is observed for Re 2 [110–140]. The nonlinear evolution of the flow displays
a cyclic behaviour with a period of approximately 50 time units, where t0 in the figure
is the initial time of the cycle. The spanwise velocity first grows in time up to a
critical threshold, where the maximum non-dimensional spanwise velocity becomes
w ⇡ 0.85 (see figure 16a). Above this threshold, the flow develops instabilities at the
end of the large recirculation region, figure 16(b). These instabilities prevent the three-
dimensional flow structure from saturating nonlinearly to a stationary state. Instead,
they break down the structure and produce a convective packet travelling downstream,
as shown in figure 16(c). Once the instabilities have been convected out of the domain,
the flow returns to a nearly two-dimensional state, the spanwise velocity starts to
grow again at the end of the recirculation region, and the cycle repeats, figure 16(d).
The behaviour of the flow is similar at higher Reynolds number. In figure 17 we
present the history of the v-velocity extracted from the probe signals for Re = 110 and
Re = 120 when Vr = 3. The cyclic behaviour of the nonlinear simulation is evident.
Upstream, the velocity varies smoothly in time. Downstream, the flow shows rapid
oscillations at the end of each cycle, which correspond to the secondary instability
and the formation of the travelling packet. The period of each cycle for Re = 120 is
shorter and not constant in time with respect to the one for Re = 110.

In summary, we observe a steady two-dimensional flow at Re6105 and an unsteady
three-dimensional final state at Re> 110. This behaviour is also shown in figure 6(b).
The appearance of the nonlinear cycle is evident at Re = 110 where the v-velocity
at the centreline becomes time-dependent. This critical Reynolds number agrees
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FIGURE 16. (Colour online) Time evolution of the spanwise velocity at Re = 120 and
Vr = 3: (a) initial amplification of velocity, at t = t0 + 32; (b) onset of instability at w ⇡
0.85, at t = t0 + 44; (c) convective instabilities, at t = t0 + 48; and (d) re-establishment of
the spanwise velocity, at t = t0 + 50 + 32.
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FIGURE 17. (Colour online) The v-velocity of the probe signal for Vr = 3 and (a) Re =
110 and (b) Re = 120.

qualitatively but not quantitatively with the results of the linear stability analysis,
where the asymmetric base flow results in an unstable stationary global mode at
Re> 115. DNS of the three-dimensional configuration with different initial conditions
indicates that the second bifurcation is weakly subcritical. In the subcritical case
the cycle is initiated by similar flow structures. The observed spanwise modulation
growing at the beginning of the cycle (figure 16a for Re = 120) resembles the leading
global mode at the same Reynolds number. This is also true for Re = 110. Hence,
although the bifurcation is weakly subcritical, we assume that the physical mechanism
behind the nonlinear cycle at Re = 110 is the same as global instability at Re > 115.
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FIGURE 18. (Colour online) (a) Spatial structure and (b) exponential growth of the energy
of the unstable travelling mode about the fictitious flow with w = 0.85 at Re = 120 and
Vr = 3.

We further analyse the nonlinear cyclic behaviour of the flow by using the linearized
Navier–Stokes solver on a three-dimensional base flow. We create an artificial base
flow by adding the unstable spanwise-dependent global mode to the two-dimensional
base flow at Re = 120. The amplitudes of the unstable mode are chosen to produce a
maximum spanwise velocity of the new base flow in the range 0 < w < 1. Marching
the linearized Navier–Stokes solver about this fictitious flow, we observe, for w> 0.85,
the appearance of an oscillatory mode that preserves its shape while growing
exponentially in time. If the maximum of w is less than 0.85, the non-stationary
mode eventually decays – i.e. the flow is stable. We depict the structure of the
spanwise velocity component of the oscillatory mode in figure 18(a). It emerges at
the end of the larger recirculation bubble and disappears downstream at a streamwise
location approximately 25. The frequency of the oscillatory mode is approximately
1.25, which is close to the frequency of breakdown in the nonlinear simulation
(approximately 1). Figure 18(b) presents the energy growth of the oscillatory mode. A
significant transient growth of energy is evident for 0 < t < 5, followed by exponential
growth. The presence of this oscillatory unstable mode, which grows exponentially,
reduces the spanwise modulation of the flow. Our hypothesis is that, in the nonlinear
DNS, this oscillatory mode leads to chaotic flow and nonlinear breakdown to a
nearly two-dimensional flow at the end of each cycle. After breakdown, the spanwise
modulation caused by the global mode (� = 1) starts to grow again and a new cycle
starts.

5.3. Sensitivity to wall suction
The second bifurcation is caused by a three-dimensional stationary global mode
around the asymmetric steady state. Here we examine the sensitivity of the second
bifurcation to wall suction or blowing.

The sensitivity to wall suction at both walls is shown in figure 19, for asymmetric
flow at Re = 115. Blowing away from the wall at the streamwise location of the two
asymmetric recirculation bubbles is stabilizing, and suction destabilizing, as for the
first bifurcation in § 4.2.1. The sensitivity at the second bifurcation is highest at the
side of the larger recirculation bubble.

Some general observations about the control of the second bifurcation can be made.
First of all, the magnitudes of the sensitivity to the wall suction are nearly twice as
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FIGURE 19. (Colour online) Sensitivity of the second bifurcation to wall suction (Re =
115), at the adjacent wall of the largest bubble (solid blue line) and at the opposite wall
(green line with circles).

large as for the first bifurcation. This means that control of the second bifurcation is
likely to be efficient. One should note that, in order to obtain the best control effect,
one would need to know at which wall the larger bubble is. Since the pitchfork
bifurcation might lead to a larger bubble on either wall, the control needs to be
adjustable.

Stabilizing control of the second bifurcation at Re = 115 is probably of limited
interest because we have shown that the critical Reynolds number for the first
bifurcation can be increased as far as Re = 150 with control. However, destabilizing
control of the second bifurcation could be interesting for inertial micromixers, for
which a time-dependent state causes enhanced mixing.

6. Conclusions

In this paper, we have investigated the hydrodynamic instabilities of the flow in
an X-junction using three-dimensional DNS, linear global stability and sensitivity
analysis.

For all the velocity ratios considered in this study, the X-junction exhibits two
bifurcations as the Reynolds number is increased. The destabilization first occurs
through a pitchfork bifurcation to a two-dimensional asymmetric steady state at
Re ⇡ 82.5 for velocity ratio Vr = 3. Global stability analysis around a symmetric flow
at Re > 82.5 detects the zero-frequency unstable two-dimensional global mode, which
is responsible for this first bifurcation. The core of the instability, in terms of both the
structural sensitivity and the disturbance energy production, is localized symmetrically
at the edges of the two recirculation bubbles. The kinetic energy budget of the
perturbation is analysed, and the structure and amplitude of the lift-up term in the
energy budget is shown to be almost identical to the total production. This together
with the mode shapes, stationary streamwise-elongated modes with strong streamwise
velocity, shows that the lift-up mechanism causes the perturbation energy growth. This
is similar to the finding of Lanzerstorfer & Kuhlmann (2011) for the backward-facing
step, where, at a certain parameter range, the vertical velocity perturbation extracts
energy from the base flow shear to produce streamwise-elongated low- and high-speed
streaks. The first bifurcation in the X-junction is, however, two-dimensional, as was
the original lift-up mechanism identified by Landahl (1975). The presence of two
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recirculation bubbles makes it possible to form antisymmetric modes, which induces
a cross-stream pressure difference promoting asymmetry, and also minimizes the
dissipation by vertical velocity gradients.

We show that the shape of the recirculating region at the critical condition is
unaffected by the velocity of the main channel and is determined only by the
velocity of the side channels. Therefore, the value of the critical Reynolds number
based on the velocity of the side channels is found to be almost constant for the
range of velocity ratios studied. Our hypothesis is that the instability appears at a
critical size of the recirculation zones (around six channel half-widths for the first
bifurcation), which are more affected by the side flows than by the main flow. Also
in a previous study, an instability in a junction with different inflow–outflow structure
appeared at the same length of the recirculation zone (Poole et al. 2014).

An adjustable control strategy for the first bifurcation is proposed in the form of
distributed suction or blowing at the walls. This proves to be an efficient means to
maintain a symmetric flow. In the sensitivity distribution, the positive values represent
suction and the negative values represent blowing. This wall-normal velocity is
then applied at both walls symmetrically in actual computations, at different small
amplitudes, and the stability recalculated. The optimal stabilizing wall-normal velocity
increases the critical Reynolds number for the first bifurcation from Re = 82.5
to Re > 150, with normalized amplitude of only 3 % in terms of both maximum
velocity and flow rate. The main stabilizing effect is due to blowing from the wall,
which reduces both the backflow and the velocity gradient responsible for the lift-up
mechanism.

The second bifurcation has more intricate dynamics. Linear stability of the steady
asymmetric base flow, obtained after nonlinear saturation of the first instability, reveals
that a new instability appears at Re ⇡ 115 for Vr = 3, again as a zero-frequency global
mode. This unstable mode has a spanwise wavenumber � ⇡ 1 for all velocity ratios
Vr > 1. As for the first bifurcation, the Reynolds number for the second bifurcation
is dictated by the side channel velocities only or, physically, the size of the larger
recirculation bubble. The structural sensitivity is localized in the middle of the bubble
but the maximum perturbation kinetic energy is localized at the edge of the bubble.
The lift-up term of the production of the perturbation kinetic energy is dominating and
its structure is similar to the total production. This suggests that the second bifurcation
is also due to the lift-up instability mechanism similar to the findings of Marquet et al.
(2009) and Lanzerstorfer & Kuhlmann (2011).

The behaviour at the second bifurcation is clearly defined by means of nonlinear
simulations. These three-dimensional simulations show that the flow is steady and
two-dimensional, regardless of the initial condition, for Re 6 105. However, for
Re > 110, we observe a nonlinear cycle: a two-dimensional asymmetric flow,
the growth of a spanwise modulation, a time-dependent chaotic flow, travelling
wavepacket and return to a nearly two-dimensional asymmetric flow. We use the
linearized Navier–Stokes solver to explain the nonlinear breakdown of the flow
by a secondary instability: we identify an oscillatory unstable mode that grows
exponentially about an artificial base flow, constructed by combining the steady
asymmetric base flow with the unstable three-dimensional steady mode, when the
amplitude of the spanwise modulation reaches a critical value. The frequency of the
oscillatory unstable mode is found to be similar to that of the nonlinear breakdown.
The DNS indicates that the second bifurcation is weakly subcritical because it occurs
at Re = 110, while a three-dimensional global mode destabilizes first at Re = 115.
However, the structure of the growing spanwise modulation resembles the leading
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global mode (at Re = 110, it is marginally stable), and we conclude that the same
physical mechanism is active for Re > 110. The sketch representing the bifurcations
versus the Reynolds number for the flow with velocity ratio Vr = 3 is presented in
figure 6(b).

Finally, we show that the sensitivity to wall suction at the second bifurcation is
twice as large as at the first bifurcation – i.e. that this control is efficient. Given
that the critical Reynolds number for the first bifurcation can be increased as far
as Re = 150 by boundary blowing or suction, stabilization of the second bifurcation
should be studied at higher Reynolds number. Destabilization of the second bifurcation
with control could be useful in order to trigger instabilities that increase mixing in
micromixers.
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Sensitivity analysis has successfully located the most efficient regions in which to
apply passive control in many globally unstable flows. As is shown here and in
previous studies, the standard sensitivity analysis, which is linear (first order) with
respect to the actuation amplitude, predicts that steady spanwise wavy alternating
actuation/modification has no effect on the stability of planar flows, because the
eigenvalue change integrates to zero in the spanwise direction. In experiments,
however, spanwise wavy modification has been shown to stabilize the flow behind a
cylinder quite efficiently. In this paper, we generalize sensitivity analysis by examining
the eigenvalue drift (including stabilization/destabilization) up to second order in the
perturbation, and show how the second-order eigenvalue changes can be computed
numerically by overlapping the adjoint eigenfunction with the first-order global
eigenmode correction, shown here for the first time. We confirm the prediction
against a direct computation, showing that the eigenvalue drift due to a spanwise
wavy base flow modification is of second order. Further analysis reveals that the
second-order change in the eigenvalue arises through a resonance of the original
(2-D) eigenmode with other unperturbed eigenmodes that have the same spanwise
wavelength as the base flow modification. The eigenvalue drift due to each mode
interaction is inversely proportional to the distance between the eigenvalues of the
modes (which is similar to resonance), but also depends on mutual overlap of direct
and adjoint eigenfunctions (which is similar to pseudoresonance). By this argument,
and by calculating the most sensitive regions identified by our analysis, we explain
why an in-phase actuation/modification is better than an out-of-phase actuation for
control of wake flows by spanwise wavy suction and blowing. We also explain why
wavelengths several times longer than the wake thickness are more efficient than
short wavelengths.

Key words: absolute/convective instability, instability control, wakes/jets

1. Introduction

Control of wake instability by spanwise alternating suction and blowing was studied
with direct numerical simulation (DNS) by Kim & Choi (2005). (The alternating

† Email address for correspondence: olot2@cam.ac.uk
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FIGURE 1. (Colour online) (a) Base flow: velocity magnitude and streamlines. The
boundary of the recirculation bubble is shown by a thick line. (b) Illustration of in-phase
suction.

suction and blowing will be called ‘suction’ in the rest of this paper.) Through steady
spanwise wavy suction, they shifted the Hopf bifurcation point of the wake behind a
cylinder from a Reynolds number of Re ⇡ 45 to Re = 140. This degree of stabilization
cannot be achieved with any known 2-D open-loop control strategies. Only certain
spanwise wavelengths of the actuation were successful in suppressing the instability,
however. These wavelengths were approximately 5–6 cylinder diameters. Control at
other wavelengths was less effective. The suction was applied from two slots placed
on the top and bottom of the cylinder. The configuration in which the suction through
the upper slot was in phase with that through the lower slot (figure 1b) was found
to be much more effective than the antiphase configuration.

In order to explain these effects, Hwang, Kim & Choi (2013) examined the local
absolute instability of a fixed streamwise base flow profile (a wake profile), modified
sinusoidally in the spanwise direction. The absolute instability was suppressed by
spanwise wavy modifications at medium to long wavelengths, while short wavelengths
had a strongly destabilizing effect, the latter not observed in the DNS (Kim & Choi
2005). The suppression of absolute instability at medium to long wavelengths was
proposed to be based on the interaction of the von Kármán street with vortex tilting.

Very recently, Del Guercio, Cossu & Pujals (2014) examined the effect of streaks
in suppressing temporal and absolute instability of wakes. Streamwise streaks were
chosen as they are the streamwise uniform perturbations that experience most transient
growth around a parallel 2-D wake profile taken as a base flow. The optimal initial
condition to create the streaks was shown to be streamwise vortices, as in many shear
flows. These optimally amplified streaks were then applied as base flow modifications
of the local wake profile, and the temporal and absolute growth rates were recalculated.
Del Guercio et al. (2014) found that the dependence of the absolute growth rate on
the streak amplitudes was quadratic. Furthermore, they suggested that the spanwise
wavy modifications are particularly effective as stabilizers because they experience
strong transient growth in wake flows. This means that high-amplitude streaks can be
created from low-amplitude vortices.

The aim of the present study is to revisit the effect of spanwise wavy steady
actuation on stability, using full global analysis of the spatially developing base
flow. We explain the findings using a novel generalized sensitivity analysis, which is
applicable to spanwise wavy modifications of the base flow and of the linear operator
in general. We demonstrate this method on the confined wake behind a flat plate
(figure 1). Some of the theoretical results are expected to be directly applicable to
the cylinder wake configuration. However, this is not our only aim. The framework
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presented and verified here permits analysis of the effect of spanwise wavy flow
perturbations in general (such as streaks), inflow asymmetries in axisymmetric
geometries, and control by spanwise wavy actuation.

The second-order terms have not been considered in modal stability studies so
far (local or global), to the best of the authors’ knowledge. A similar perturbation
approach was successfully used in a non-modal study quantifying the effect of
streamwise travelling waves on the transient energy growth in a channel flow (Lieu,
Moarref & Jovanovic 2010; Moarref & Jovanovic 2010).

2. Perturbation analysis

Let us consider a general eigensystem of the form

Lq0 = �0q0, (2.1)

where q0 is an eigenvector and �0 is an eigenvalue. We will now perturb the governing
operator by another operator �L, so that the problem remains a linear eigenvalue
problem. Following a standard perturbation approach (e.g. Baumgärtel 1984; Hinch
1991), the problem can be expanded in powers of the perturbation amplitude ✏:

(L+ ✏�L){q0 + ✏q1 + ✏2q2 + O(✏3)}
= (�0 + ✏�1 + ✏2�2 + O(✏3)){q0 + ✏q1 + ✏2q2 + O(✏3)}. (2.2)

Here, �j is the jth order correction to the eigenvalue and qj (j > 0) is the ith order
correction to the eigenmode. By grouping the terms at the same order in ✏, and
solving this equation, we will obtain these corrections at different orders.

At the zeroth order in ✏, the original eigenvalue problem is recovered, satisfied by
definition. At the first order in ✏, we obtain, after rearrangement,

(L� �0I) {q1} = ��L{q0} + �1q0, (2.3)

where I is the identity operator. To solve (2.3), we will use the adjoint eigenmode
q+

0 , defined based on an inner product h, i such that hq+
0 , q0i = 1. The adjoint is found

by solving the eigenproblem for the adjoint operator, L+q+
0 = � ⇤

0 q+
0 (see, e.g., Luchini

& Bottaro (2014) for details). The left-hand side has no component in the direction
of q0, which can be seen by projecting it onto q0 by q+

0 :

hq+
0 , (L� �0I) {q1}i = hL+{q+

0 }, q1i � hq+
0 , �0q1i = h� ⇤

0 q+
0 , q1i � hq+

0 , �0q1i = 0, (2.4)

where ⇤ denotes the complex conjugate. Hence, the right-hand side also must be
orthogonal to q+

0 (Fredholm alternative), giving 0 = hq+
0 , ��L{q0} + �1q0i, which can

be rearranged as
�1 = hq+

0 , �L{q0}i. (2.5)

This first-order eigenvalue drift is a linear function of the operator perturbation,
contains the direct and adjoint eigenmodes, and will lead to the standard sensitivity
expressions.

At the second order in ✏, we obtain from (2.2)

(L� �0I) {q2} = ��L{q1} + �2q0 + �1q1. (2.6)
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By the same argument as for the first order, both the left and the right sides are
orthogonal to q0, giving �2 = hq+

0 , (�L� �1I){q1}i. This leads to

�2 = hq+
0 , �L{q1}i. (2.7)

We observe that an arbitrary component of q0 can always be added to q1 (Hinch
1991), and that (2.3) would still remain valid. It should be noted that �2 remains
unaffected by the choice of this component, since hq+

0 , �L{Cq0}i � �1hq+
0 , Cq0i = 0

for any constant C. The choice of C only corresponds to a normalization of the total
perturbed eigenvector. A convenient choice to guarantee uniqueness and remove the
singularity of the left-hand side in (2.3) is

hq+
0 , q1i = C = 0. (2.8)

It should be noted that the second-order eigenvalue drift has exactly the same
expression as the first-order drift, but with the eigenmode q0 replaced with the
first-order eigenmode correction q1. This means that all the sensitivity expressions
derived in the literature can be used straight away to obtain second-order corrections,
if q0 is replaced by q1. To do this, one of course needs to solve for q1, which can
be performed numerically as described in § 4.

2.1. Application to base flow modifications
The theory of second-order perturbations up to now is not limited to a particular
set of equations. Hereafter, we will limit our consideration to perturbations around
a steady state (base flow) of the Navier–Stokes equations, leading to an operator
perturbation �L(�U). A full derivation of the first-order base flow sensitivity can
be found in previous works (e.g. Marquet, Sipp & Jacquin 2008), and just a brief
version is included here in order for the paper to be self-contained. The total flow
field is governed by the incompressible Navier–Stokes and continuity equations,

@utot

@t
+ utot · rutot = �rptot + 1

Re
r2utot, (2.9)

r · utot = 0, (2.10)

where utot = (utot, vtot, wtot) is a velocity vector, with non-dimensional streamwise (utot),
vertical (vtot) and spanwise (wtot) components, and ptot is the non-dimensional pressure.

In the following, let us denote by capital letters the planar two-dimensional
base flow U(x, y) = [U(x, y), V(x, y)], which is obtained by solving the steady
two-dimensional Navier–Stokes equations. Around this base flow we consider linear
perturbations, denoted by u = [u, v, w]. Around a planar base flow, a decomposition
into BiGlobal eigenmodes of the following form applies (Theofilis 2003):

u0(x, y, z, t) = ⇥
û0(x, y, z), v̂0(x, y, z), ŵ0(x, y, z)

⇤
exp (�0t)

= ⇥
ũ0(x, y), ṽ0(x, y), w̃0(x, y)

⇤
exp (i�0z + �0t), (2.11)

p0(x, y, z, t) = p̂0(x, y, z) exp (�0t) = p̃0(x, y) exp (i�0z + �0t), (2.12)

where u0 = (u0, v0, w0) is a velocity field of the eigenmode, p0 is its pressure, �0 is
its spanwise wavenumber and �0 is its complex temporal eigenfrequency. It should be
stressed for later that throughout this paper the superscript ˆ refers to the whole spatial
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part of the eigenmode including the z-dependence, and ˜ is used for the 2-D part. This
distinction is important when taking gradients.

By introducing this ansatz into Navier–Stokes equations, and linearizing them, we
obtain the BiGlobal generalized eigenvalue problem:

�0û0 = �û0 · rU � U · rû0 � rp̂0 + 1
Rer2û0, (2.13)

r · û0 = 0, (2.14)

which we solve with homogeneous Dirichlet boundary conditions for the velocity
at all boundaries. The formalism presented for standard eigenvalue problems in the
previous section still applies, since it is known that the pressure can be eliminated and
hence the generalized eigenvalue problem can be recast into a standard eigenvalue
problem. However, the above generalized eigenvalue formulation is convenient to
solve numerically.

In what follows, the mode (u0, p0) being perturbed will be called the original
eigenmode, and its spanwise wavenumber will be denoted by �0. The spanwise
wavenumber of the base flow modification is �B. The inner product for two velocity
vectors ûa and ûb is here defined as

hûa, ûbi = lim
LZ!1 L�1

Z

Z LZ/2

�LZ/2

Z

D(x,y)
û⇤T

a ûb dxdydz

= lim
LZ!1 L�1

Z

Z LZ/2

�LZ/2

Z

D(x,y)

�
û⇤

aûb + v̂⇤
a v̂b + ŵ⇤

aŵb
�

dxdydz, (2.15)

where D(x, y) is the 2-D flow domain and T denotes the transpose. The adjoint
linearized Navier–Stokes operator is defined using the generalized Lagrange identity
based on this inner product, with homogeneous boundary conditions for the
perturbation, and the adjoint system becomes

�+
0 û+

0 = (rU)T · û+
0 � U · rû+

0 � rp̂+
0 � 1

Rer2û+
0 , (2.16)

r · û+
0 = 0, (2.17)

where it can be shown that �+
0 = �� ⇤

0 , while T denotes a transpose of the
nine-component gradient matrix (in tensor notation [rUT]ij = @Uj/@xi). The adjoint
eigenproblem also has homogeneous Dirichlet boundary conditions.

By imposing a base flow perturbation �U onto (2.13) we obtain

�1 = hq+
0 , �L(�U)q0i = hû+

0 , �û0 · r�U � �U · rû0i. (2.18)

By integration by parts, and with the homogeneous boundary conditions, the first-
order drift is found to be

�1 = hq+
0 , �L(�U)q0i = h�rûT⇤

0 û+
0 + rû+

0 û⇤
0, �Ui. (2.19)

Here, the expression �rûT⇤
0 û+

0 +rû+
0 û⇤

0 is precisely the (first-order) sensitivity to base
flow modifications (Marquet et al. 2008).

The second-order eigenvalue change with respect to base flow modifications is
correspondingly

�2 = hq+
0 , �L(�U)q1i = h�rûT⇤

1 û+
0 + rû+

0 û⇤
1, �Ui, (2.20)
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where û1 is the first-order correction to the velocity eigenmode, which can be obtained
from

� û1 · rU � U · rû1 � rp̂ + 1
Re

r2û1 � � û1 = û0 · r�U + �U · rû0, (2.21)

r · u1 = 0. (2.22)

2.2. Wavy base flow modifications
The first-order eigenvalue correction vanishes for spanwise wavy modifications of 2-D
base flows, because the first-order eigenvalue correction is linear with respect to the
base flow modification, and hence the total contribution from a z-alternating base flow
modification integrates to zero in the z direction. To see this, we consider example
base flow modifications of the form �U = �Ũ(x, y) cos(�Bz) = �Ũ(x, y)[exp(i�Bz) +
exp(�i�Bz)]/2. Using (2.15) and (2.19) we obtain

�1 =
✓

lim
LZ!1 L�1

Z

Z LZ/2

�LZ/2
cos (�Bz)dz

◆ Z

D(x,y)

⇣
�rûT

0 û+⇤
0 + rû+⇤

0 û0

⌘
· �Û(x, y)dxdy = 0,

(2.23)
because the z-integral vanishes.

The second-order correction �2 remains finite, however, because the first-order
eigenmode correction is of the form u1 = û1+(x, y) exp(i(� +�B)z)+ û1�(x, y) exp(i(� �
�B)z). The reason for this form is that (2.21)–(2.22) are linear, and the wavenumber
is uniquely set by the eigenmode and base flow modification through the right-hand
side terms. After some algebra we obtain (one should note the inclusion of spanwise
gradients)

�2 = 1/2
Z

D(x,y)

⇣
�rûT

1 û+⇤
0 + rû+⇤

0 û1

⌘
· �Ũ(x, y)dxdy. (2.24)

3. Physical conclusions from the perturbation theory
One can conclude from § 2 that the second-order eigenvalue correction is

proportional to the first-order eigenmode correction. Hence, qualitatively, base
flow modifications that induce a large eigenmode correction will induce a large
second-order eigenvalue drift.

The eigenmode correction is given by (2.21)–(2.22). The left-hand side operator
is reminiscent of a resolvent operator. As for a resolvent, there are two ways
to obtain a large eigenmode correction: (i) The base flow modification is such
that û1 is close to an eigenmode of the system (which is similar to modal
resonance) or (ii) the base flow modification invokes a large non-modal response
(which is similar to pseudoresonance). These properties become obvious when
expanding û1 in the basis of the original eigenmodes following Hinch (1991):
u1 = P

N 6=0

⇥
�0 � �(N)

⇤�1 hû+
(N), �Lû0iû(N) + Cû0, where N represents a mode index in

the original eigenmode basis and C is an arbitrary constant. It should be observed
that again û(N) refers to the spatial part of the Navier–Stokes eigenmode number N,
excluding its time-varying part. It is easily verified that this solution satisfies (2.3),
and leads to the following second-order eigenvalue correction:

�2 =
X

N 6=0

[�0 � �(N)]�1hû+
(N), �Lû0ihû+

0 , �Lû(N)i. (3.1)

Two restrictions need to be mentioned relating to this expansion.
First, the expansion does not provide physical results in the limit ✏[�0 � �(N)]�1

⇡ O(1), being in fact singular when �(N) ! �0.
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The singularity occurs because when �(N) ! �0, then hû+
(N), �Lû0ihû+

0 , �Lû(N)i !
hû+

0 , �Lû0i2, which is finite, whereas [�0 � �(N)]�1 ! 1, and therefore �2 ! 1.
In fact, it can be shown that if higher-order corrections are formed, the sum of all
eigenvalue corrections will diverge when ✏[�0 � �(N)]�1 ' O(1). A similar situation
occurs, for example, when predicting orbits in a three-planet system (Kolmogorov
1954), yielding a similar expansion with respect to distance. If the orbits of two
planets are too close, the perturbation approach becomes invalid and other approaches
such as the Kolmogorov–Arnold–Moser (KAM) theory need to be applied. In our case
the restriction has the following meaning: the expansion, as well as the perturbation
approach itself, is valid as long as the perturbation amplitude is not too large to
satisfy ✏[�0 � �(N)]�1 < O(1). If two eigenvalues are very close, the perturbation
approach is valid only for small perturbation amplitudes.

In the special case of spanwise wavy base flow modifications, this means that
when �B is very close to zero, the sensitivities become arbitrarily large; however, the
expansion itself is valid for smaller and smaller amplitudes, and hence conclusions
derived from it are of less practical interest in that regime. The reason for the
singularity lies in the structure of the eigenmode spectrum for different �. When �
is varied, the most unstable eigenvalue is a smooth continuous function of �. Only
eigenmodes with wavelength � = �0 ± �B contribute to the sum (3.1). When �B ! 0,
then � ! �0 for the most unstable mode with � = �0 ± �B. The following can be
taken as a practical guideline: when the base flow modification amplitude ✏ has been
chosen, the theory can be applied for �B large enough (spanwise wavelength small
enough) so that

|�0 � �(N)(�B)| > ✏ 8N. (3.2)

For ✏ = 0.01 in § 5.3, this translates to the following lower limit for spanwise
wavenumber: �B > 0.15, whereas for ✏ = 0.1, the upper limit would be approximately
�B > 0.4.

Second, the eigenvalue that is perturbed needs to belong to the discrete spectrum
for the chosen �0, and a rigorous treatment of the continuous branches in the above
sum would require their decomposition into a finite number of discrete ‘leaky modes’
(Pralits et al. 2007).

Despite the two restrictions, the above expansion gives significant insights into the
physics of general second-order perturbations, and wavy perturbations in particular,
as detailed in § 5.2. Base flow perturbations invoke at the second order a linear
resonance between different eigenmodes, similar to the linear frequency response.
The eigenvalue drift induced by another eigenmode depends on how close the
eigenvalue is to the one being perturbed (modal resonance), and mutual products
between adjoint and direct eigenmodes (non-modal effect/pseudoresonance). The two
integrands could be large in two different regions of space, and could be affected
by two different physical mechanisms, which creates possibilities for rich dynamics.
In other words, a non-local base flow modification is not a simple integral of many
local base flow modifications. This property is not a consequence of approximations
but an inherent physical property of wavy actuation or modification (due to their
second-order nature).

4. Numerical solution
The numerical results discussed in the present paper are carried out using two

different codes: the finite-element software FreeFem++ (see http://www.freefem.org)
and the spectral-element solver (SEM) Nek5000. Three different problems are
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addressed from a numerical point of view: base flow computations (FreeFem++ and
Nek5000), eigenmode computations (FreeFem++ and Nek5000) and the computation
of the first-order eigenvector correction (FreeFem++).

In FreeFem++, the finite-element method is used to solve the base flow, eigenmode
and eigenmode correction equations in § 2. The spatial domain is discretized by a
triangular finite-element mesh using a Delaunay–Voronoi algorithm, leading to a mesh
with 213 620 triangles and 108 486 vertices. We employ the pair P2�P1, consisting of
piecewise quadratic velocities and piecewise linear pressure (Taylor–Hood elements),
leading to 106 degrees of freedom. After derivation of the variational formulation of
the governing equations (§ 2), the associated sparse matrices are built by means of the
FreeFem++ software.

In FreeFem++, the steady version of (2.9)–(2.10) is solved by the Newton–Raphson
iterative procedure to compute the steady base flow for the stability analyses. Second,
the direct and adjoint eigenproblems (2.13)–(2.14) and (2.16)–(2.17) are solved using
the implicitly restarted Arnoldi method implemented in the ARPACK library (Lehoucq,
Sorensen & Yang 1998). Third, the numerical solution of the eigenvector correction q1
is performed, as detailed in a separate section below. All the required matrix inversions
are performed using the sparse LU solver UMFPACK (Davis 2004). The iterative
procedure is stopped when the L2 norm of the residual (the latest correction of the
Newton iterations) of the governing equations is less than 10�7.

The code chosen for the computation of 3-D (suction-modified) base flows and
for the TriGlobal linear stability analysis used for method verification purposes
is Nek5000 (Fischer 1997). TriGlobal stability means that the eigenmodes are
computed directly from the ansatz u(x, y, z, t) = û(x, y, z) exp(� t), without setting
a spanwise wavenumber. For these verification cases, since the aim is to compare
stability characteristics, the unmodified 2-D base flow is also computed in Nek5000
and subsequently interpolated into FreeFem++. The spatial discretization for the
TriGlobal stability problem (the verification points in figures 3 and 8, and the
eigenmode correction verification in figure 6d–f ) consists of 43 200 spectral elements,
with a gradually refined element distribution in the streamwise direction around the
downstream edge of the flat plate, and a finer distribution near the walls in the
vertical direction. The spanwise direction is discretized by 12 uniformly distributed
elements.

Nek5000 is chosen because it allows a highly accurate matrix-free solution of the
TriGlobal stability problems in the present work. As for the finite-element method, the
incompressible Navier–Stokes equations are cast into a weak form and integrated over
the computational domain. A classical Galerkin approximation is used to spatially
discretize the governing equations, where each velocity field is related to polynomials
two degrees higher than the pressure (PN–PN�2 formulation). In this work, the
polynomial order p = 5 was chosen for 3-D computations, and p = 8 for the 2-D
base flow. The space associated with the velocity is spanned by Nth-order Lagrange
interpolants hN

i , based on a tensor-product grid formed by Gauss–Lobatto–Legendre
nodes in each coordinate direction.

The base flows are computed by time stepping the nonlinear Navier–Stokes
equations on the same grid as for the stability problem, but using only the upper half
of the flow domain. At the centreline, we set a symmetry condition, which eliminates
the (antisymmetric) oscillatory modes, and the flow converges towards a steady state.
The convergence is considered to be reached when two successive velocity fields,
separated by 10 non-dimensional time units, have a maximum absolute difference
of 10�6.
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FIGURE 2. (Colour online) The L2-norm of the first three spatial coefficients �Un of the
Fourier transform of the base flow difference �U, at different suction wavelengths �B. This
shows that the n = 1 component (/exp(i�Bz)) dominates. The y-scale is logarithmic.

The full three-dimensional eigenpairs of the linearized Navier–Stokes operator
are computed (as in Lashgari et al. 2014) using the linearized DNS time stepper
(available in Nek5000) coupled with the implicit restart Arnoldi method implemented
in PARPACK (Maschhoff & Sorensen 1996). Finally, for the 3-D cases, the base flows
and base flow modifications (see § 4.1) are extracted from Nek5000 and interpolated
into FreeFem++ as follows. To simplify the computational procedure, we assume
the base flow modification to be linear with respect to the suction amplitude, and
hence have the same wavenumber �B. If the base flow modification is nonlinear
(as it might be for high suction amplitudes), then the base flow modification might
contain harmonics at multiples of �B. Then, a rigorous treatment of these would
require extracting the harmonics, and computing eigenvector corrections for each
harmonic separately. In figure 2, we have extracted the L2-norms of the amplitudes
of exp(in�Bz), n = 0, 1, 2, at different �B. This shows that the components for
n 6= 1 are smaller by two orders of magnitude compared with n = 1, and, hence,
it is a good approximation to assume that the base flow difference is of the form
�U(x, y) exp(i�Bz). With this assumption, the base flow difference takes the following
form:

�U = F(x, y) cos(�Bz) + G(x, y) sin(�Bz), (4.1)

where F = �U(z = 0) and G = �U(z = p/[2�B]).
Hence, we interpolate the Nek5000 base flow velocities at z = 0 and z = p/(2�B)

into FreeFem++ and use the above form for the base flow difference. The
interpolation proceeds as follows. First, all the p = 5 base flows are interpolated
in Nek5000 to the Gauss–Lobatto–Legendre points of order p = 8 (used for the 2-D
base flow). Second, a triangulation is built in FreeFem++ around these points. Third,
the base flows are interpolated to the final finite-element grid inside FreeFem++.

4.1. Second-order perturbation
Since the solution of the second-order perturbation problem is new, it is worth
mentioning the different ways to solve it numerically. There are two ways to obtain
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FIGURE 3. (Colour online) (a) Markers: the change of the global mode eigenvalue
�� = ��r + i��i as a function of the amplitude A of a given base flow modification
(5.1). Solid lines: the predicted eigenvalue perturbation at the second order (�2), real and
imaginary part. (b) The same as (a), but as a function of A2, demonstrating that �� / A2.

�2 for a known operator perturbation (e.g. base flow change). The first is to solve
(2.21)–(2.22) directly for u1, and then compute �2 from (2.7). The second is to use
the eigenmode expansion (3.1) by solving another 2-D global eigenvalue problem, and
there is no general rule as to how many modes are needed for the sum to converge.

The choice between the two methods depends on what kind of information is
requested. If the exact form of the desired base flow change is known (as in § 5.3,
where the base flow change by suction was computed explicitly), then it is clearly
preferable to compute the eigenvector correction. If the exact form of the base flow
change is unknown, forming the first few terms in the expansion may provide the
desired physical insights. In fact, the first term in the sum is a more computationally
efficient way to approximate the sensitivity core than traversing a Dirac delta function
over the x–y-plane, which will be carried out in § 5.2.

The left-hand side of (2.3) and its specific form (2.21)–(2.22) are singular, as
discussed in § 2, which does not affect �2 but may place a requirement on the solver.
To prevent singularity, we wish to impose the condition hû+

0 , û1i = 0. This is true
whenever û1 has a spanwise wavenumber different from �0. As mentioned in § 2.2,
the correct way is to assume that u1 must have the same wavelength as ��L{u0}:
�1 = �0 ± �B. By replacing @/@z with i�1 in the equations, we hence automatically
impose the above condition, and (L(�1) � �oI) becomes non-singular.

The equation system derived from (2.3) becomes

� û(1,+) · rU � U · rû(1,+) � rp̂1,+ + 1
Re

r2û(1,+) � � û(1,+)

= û(1,+) · r�U+ + �U+ · rû(1,+),

r · û(1,+) = 0,

� û(1,�) · rU � U · rû(1,�) � rp̂(1,�) + 1
Re

r2û(1,�) � � û(1,�)

= û(1,�) · r�U� + �U� · rû(1,�),

r · û(1,�) = 0,

9
>>>>>>>>>>=

>>>>>>>>>>;

(4.2)

where @(�U±)/@z = ±i�BU, and @û1,±/@z = i(�0 ± �B)U. The base flow change
components are found by decomposing the base flow difference as follows:

�U = �U+ exp (i�Bz) + �U� exp (�i�Bz) , (4.3)
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where �U+ and �U� are obtained from (4.1) in a complex form. The above system
is solved by the same Newton–Raphson algorithm as the base flow, but the algorithm
converges at one iteration because the system is linear. Finally, the second-order
perturbation of the eigenvalue was extracted by taking the following integral in
FreeFem++:

�2 = h�û+
0 , û(1,+) · r�U� + �U� · rû(1,+) + û(1,�) · r�U+ + �U+ · rû(1,�)i. (4.4)

5. Results
To demonstrate the second-order perturbation method, we investigate as an example

case the wake behind a flat plate with half-thickness h, confined in a channel of height
4h. The inflow velocity is parabolic on both sides of the plate. The problem is non-
dimensionalized with h and maximum inflow velocity Uin. The Reynolds number is
fixed at Re = 100 for all results presented here. The numerical domain extends from
x = �10 to x = 60 in the streamwise direction, and we employ a no-slip condition at
the plate and the channel walls.

5.1. Verification of quadratic behaviour
First, we need to show that the eigenvalue drift indeed increases quadratically when
the amplitude of the base flow modification is increased; that is, the eigenvalue
sensitivity is of second order. Second, we want to compare our predicted eigenvalue
drifts with the actual eigenvalue drifts when the base flow is modified and the
eigenvalues are recomputed.

For the purpose of this test, we have chosen the same artificially modified 1-D
base flow profile as Hwang et al. (2013), multiplied by a Gaussian in the streamwise
direction:

�U = A
⇥
exp(�(x2 + 1/2(y � 1)2)) + exp(�(x2 + 1/2(y + 1)2))

⇤
cos(z). (5.1)

This base flow modification results in a coflow at and around the trailing edge of the
plate. It should be noted that this test base flow does not satisfy the Navier–Stokes
equations, which is necessary for the sake of method validation. It is impossible to
introduce base flow modifications that have exactly the same shape but at different
amplitudes, so that the total flow satisfies the Navier–Stokes equations. The procedure
is comparable with the addition of optimal streaks to the local base flow profile in
Del Guercio et al. (2014), with the same shape, but at different amplitudes.

The amplitude of the base flow modification is varied from A = 0.01 (1 % of the
maximum inlet velocity) to A = 0.5 (50 % of the maximum inlet velocity). There is
no reason to expect a quantitative agreement at the highest amplitudes even from a
second-order prediction. The results are shown in figure 3. The computed changes
in both the frequency and the growth rate are clearly quadratic with respect to the
amplitude. The quantitive agreement between prediction and computation is almost
exact for A < 0.4, and as expected deviates more for larger amplitudes. Nevertheless,
in particular the frequency component agrees very well even for the largest amplitudes.

5.2. Sensitivity core for spanwise wavy base flow changes
Next, we show how the theory can be used not only to predict, but also to physically
understand, the influence of spanwise wavy perturbations. In the following, we aim to
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generalize the concept of the wavemaker or the core of the instability for first-order
sensitivities (Giannetti & Luchini 2007; Marquet et al. 2008), and compare this region
for wavy and non-wavy modifications. To do this, we quantify the regions where
localized modifications of the base flow similar to a Dirac delta function produce
the largest eigenvalue drift. The analogy for first-order sensitivities should not be
pushed too far, however. Considering the eigenvalue drift as a sum over eigenmodes
as in (3.1), we see that the eigenvalue drifts for large and non-local changes are not
obtained from a single integral over many small changes, but rather from a product
of two integrals. For a specific global base flow modification, these two integrals
could potentially be large in two different regions. Hence, unlike first-order sensitivity
base flow modifications, for the second-order perturbations one cannot conclusively
obtain all information about the effect of non-local base flow changes from a spatial
map obtained for the Dirac delta function.

However, by applying the Dirac delta function we can identify regions where the
local flow response for control with each spanwise wavelength is maximum, and hence
which are always likely to provide a large contribution. To identify such regions in the
flow, to be called ‘the sensitivity core’, we consider the following highly localized
base flow modification:

�U = B cos(�Bz)
⇥
exp(�500((x � x0)

2 + (y � y0)
2))

+ exp(�500((x � x0)
2 + (y + y0)

2))
⇤
, (5.2)

�V = �W = 0. (5.3)

The base flow change is then normalized to a unit area in the x–y-plane by setting
the amplitude as

B =
Z

�Ũ(x, y)dxdy
��1

. (5.4)

This procedure approximates the effect of a Dirac delta function, but avoids
discontinuities which could potentially cause numerical problems.

This base flow modification is traversed over the x–y-plane, and the eigenvalue drift
is computed for each (x0, y0) pair. Only the streamwise velocity is shown here, but we
tried a Gaussian modification of the vertical and spanwise velocities in a few positions
too, and these tests indicated that the most efficient regions were similar. The resulting
sensitivity core is shown in figure 4. Panel (a) shows the standard 2-D sensitivity,
(b) shows the sensitivity core for �B = 1 and (c) shows �B = 30. This leads to two
interesting observations. First, the longer spanwise wavelength (�B = 1) causes a larger
eigenvalue change than the 2-D modification by a factor of 60 (see the colourbars) and
a larger eigenvalue change than the short spanwise wavelength (�B = 30) by a factor
of two. Second, all three sensitivities are localized along the recirculation bubble and
have their maximum at x ⇡ 3–3.5.

A physical explanation for both phenomena – the efficiency of long wavelengths and
the similar positions of maximum sensitivity for wavy and non-wavy modifications
– is found from the eigenmode expansion (3.1). For spanwise wavy perturbations
of wavenumber �B around a 2-D flow, the base flow sensitivity arises through the
mode interactions in the sum (3.1). These only involve modes with � = ±�B. No
other modes contribute. For a wake behind a flat plate, the most unstable eigenvalue
varies continuously as � varies. The eigenvalue spectra at two different values of � are
shown in figure 5, together with the 2-D (� = 0) eigenvalue �0 that is being perturbed.
At small � (long wavelengths), such as � = 0.3 (� = 21) in figure 5, the leading
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FIGURE 4. (Colour online) The sensitivity core for spanwise wavy base flow modifications
estimated by a spatial mapping of the eigenvalue drifts induced by localized modifications
approximating a Dirac delta function: (a) �B = 0 (2-D), (b) �B = 1, (c) �B = 30. The
eigenvalue drift is large inside the light-coloured region. This demonstrates that when
the same base flow modification is applied at different spanwise wavelengths, long
wavelengths are more efficient than short ones (see the colourbars) and much more
efficient than 2-D suction, while the sensitivity cores have similar shapes to those in 2-D.
The boundary of the recirculation zone is depicted by the solid line (magenta online).

eigenvalue is very close to the 2-D eigenvalue (� = 0), while the other eigenmodes
are comparatively far away. Therefore, at small wavenumbers, the interaction between
the most unstable mode at � = ±�B and the original mode at � = 0 provides a
large contribution. Qualitatively, the smaller the wavenumber is, the larger the effect
on the eigenvalue is (keeping the restrictions of § 3 in mind). Furthermore, the
most unstable mode does not change its spatial shape much between � = 0 and
small non-zero �. This means that the sensitivity core remains similar for any small
spanwise wavenumber. At slightly larger wavenumbers (such as �B = 1 or �= 6.2 in
figure 5), corresponding to shorter wavelengths, the leading modes are further apart,
which means that the effect on �0 from the mode interactions is smaller. In this case,
other eigenmodes also contribute to the sum, and therefore to the spatial sensitivity
distribution, in a similar proportion to the leading mode. However, the wake or shear
layer modes that contribute most to the sum have similar frequencies to the wake
mode, and these are not essentially different in their spatial distribution, which still
gives rise to similar sensitivity regions, but at slightly lower amplitudes.

5.3. Control effect of steady spanwise wavy suction
Finally, we apply the theory to study and explain the effect of actual base flow
modifications induced by suction on a wake behind a flat plate. A sinusoidal
steady wall-normal suction is applied from a slot located near the trailing edge
�0.2 < x < �0.01, similarly to Kim & Choi (2005): Uwall = (0, 0.01 cos(�Bz), 0). The
suction distributions on the upper and lower surfaces of the plate are in phase with
each other (see figure 1b for illustration).
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FIGURE 5. (Colour online) Unperturbed eigenvalue spectra for two different spanwise
wavelengths (�B = 21 which gives �B = 0.3, and �B = 6.2 which gives �B = 1),
shown together with the unstable 2-D eigenvalue (� = 0). The solid lines are added to
illustrate the distances between the most unstable eigenvalue and the 2-D eigenvalue (white
circle). The mode resonance effect (§ 3) is inversely proportional to the distance between
eigenvalues.

The choice of an in-phase suction distribution (rather than out-of-phase) is worth
mentioning, since this choice turns out to be well grounded in the present theory.
In earlier works (Kim & Choi 2005; Hwang et al. 2013), in-phase distribution
was observed to be much more efficient in stabilizing the flow than out-of-phase
distribution, but this effect was not explained. The �2 derived in the present work
(3.1) contains an integral product of the mode, its adjoint and the base flow change
over y. In order for this integral not to vanish, in-phase perturbations may only invoke
a resonance of the original mode with sinuous modes, while antiphase perturbations
invoke a resonance with varicose modes. The global eigenvalues for varicose modes
in wakes are very damped, so the distance between the original eigenvalue and
varicose eigenvalues is long. On the other hand, the eigenvalue distance between the
original mode and the leading sinuous mode is short, if the spanwise wavelength
for suction �B = 2p/�B is long, by the arguments in the previous section. Therefore,
the theory shows that long-wavelength in-phase base flow modifications induce the
largest eigenvalue drift through the resonance of the original mode with the leading
spanwise wavy sinuous mode with wavenumber ±�B.

This in-phase suction is implemented as a boundary condition in the base flow
computations for 12 different wavenumbers: �B = (0(2-D), 0.3, 0.5, 0.7, 0.9, 1.1, 1.3,
1.5, 1.7, 1.9, 2, 30). The difference between the base flows with and without suction
is then extracted, as described in § 4. From this point, we proceed in two ways: (i) by
computing the eigenvalue change �2 based on our theory and (ii) by recomputing
the stability around the 3-D modified base flow, to get a reference result. For the
computation of �2, �Û(x, y) is extracted from the 3-D base flow as described in § 4.
The 2-D non-wavy base flow modification is normalized to have the same L2-norm as
the spanwise wavy ones, to ensure a similar suction effort.

The first-order eigenvector correction û1 is computed in the process, and this
quantity is shown for the first time for linear global modes in figure 6(a–c). Both the
real and the imaginary parts are computed, and û1 is observed to have the following



328 O. Tammisola, F. Giannetti, V. Citro and M. P. Juniper

y

(a)

(b)

(c)

(d)

(e)

( f )

 

–2

0

2

–0.2

0

0.2

y

 

–2

0

2

–0.1
0
0.1

y

 

–2

0

2

–0.1

0

0.1

y

 

–2

0

2

–0.2

0

0.2

y

 

–2

0

2

–0.1
0
0.1

x

y

 

–0.1

0

0.1

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

–2

0

2

FIGURE 6. (Colour online) (a–c) The first-order eigenfunction correction computed
from (2.3) with suction wavelength �B = 1.1, û1 = [ũ1(x, y) cos(�Bz), ṽ1(x, y) cos(�Bz),
w̃1(x, y) sin(�Bz)]: (a) ũ1, real part; (b) ṽ1, real part; (c) w̃1, real part. (d–f ) The
same as (a–c), but where a true eigenfunction correction is extracted from a computed
3-D eigenfunction with suction us by subtracting the component in the direction of the
unperturbed eigenfunction. Both correction fields are normalized to a unit L2-norm.

form: u1 = ũ1(x, y) cos(�Bz), v1 = ũ1(x, y) cos(�Bz), w1 = w̃1(x, y) sin(�Bz), following
the same symmetry in z as the suction, and the induced base flow modification. The
different velocity components are shown in figure 6(a–c), for �B = 1.1, and these
are reminiscent of eigenfunctions of confined wakes, as expected. To further validate
our method of computing the eigenvector correction, a true eigenmode correction
extracted from a computed 3-D eigenmode is shown in figure 6(d–f ). The latter
result was obtained from a 3-D eigenmode with suction, us, by subtracting the
component in the direction of the original eigenmode: us � hu+

0 , usi. The result is
nearly indistuingishable from the one computed from our theory. Both corrections are
normalized to a unit L2-norm.

The norm of u1 which will be obtained in an actual computation of an experiment
is arbitrary. The reason is worth discussing in some depth. The norm of u1 is uniquely
determined by the norm of the unperturbed (original) eigenvector u0. Conversely, when
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FIGURE 7. (Colour online) The computed triglobal eigenmode with suction, A = 0.01 and
�B = 1.1; positive (dark, blue online) and negative (light, yellow online) contours of the
vertical disturbance velocity v̂0(x, y, z). The edge of the flat plate, extending from y = �1
to y = 1, is also shown in pale grey.

u1 is known, so that hu+
0 , u1i = 0, then u0 can be determined uniquely by inverting

(2.3). However, as mentioned in § 2, an arbitrary component Cu0 can always be added
to u1 to obtain (non-unique) solutions to (2.3). The actual eigenmode returned from
a 3-D computation or an experiment may therefore have any value of C. The value
of C can be found from u1, by inverting (2.3), if desired. Importantly, the eigenvalue
correction �2 remains independent of C, as shown in § 2.

The eigenmode correction has its largest amplitude at x ⇡ 5. However, the relative
amplitude of the correction and the original eigenmode determine the final shape, and
this depends on the (arbitrary) value of C. Hence, the eigenmode correction observed
in computation or experiments might be either small or large, while the observed
eigenvalue correction is unique. Figure 7 shows a computed TriGlobal eigenmode with
suction. In the shape of the eigenmode, the spanwise variation only shows further
downstream (around x = 8), where the amplitude of the original 2-D eigenmode is
small.

When it comes to changing the eigenvalue, however, neither the shape of the
correction nor the original eigenmode can indicate which region in the flow has most
influence on the eigenvalue change. To know this, we need to overlap the eigenmode
correction with the adjoint original eigenmode and the base flow change induced by
suction, as explained in § 2, and as demonstrated later in this section.

Now we turn to the comparison between predicted and computed second-order
eigenvalue changes, and the efficiency of different suction wavelengths �B in
influencing the stability of the wake flow. The predicted and computed second-order
eigenvalue changes for all but the shortest wavelength are shown in figure 8,
demonstrating good qualitative agreement and the same value of the most stabilizing
wavelength. The shortest wavelength that we tested, �B = 30 (�B = 0.2), is far outside
the figure and caused an unobservable change in the eigenvalue for both methods.
There are quantitative differences between the computed and the predicted results
which were hard to avoid, since they are computed with two different numerical
tools, and the base flow difference had to be interpolated from one grid to another.
The absolute difference between prediction and computation is small, less than 10�3,
and therefore easily influenced by numerics. The eigenvalue difference increases
quadratically with suction amplitude, and the growth rate decrease is predicted
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FIGURE 8. (Colour online) The eigenvalue drift for different suction wavenumbers, �B,
for a wake with steady suction where the base flow satisfies the Navier–Stokes equation.
Computed and predicted eigenvalue change (see legends): (a) change in the real part; (b)
change in the imaginary part. The value where the growth rate of the suction-modified
eigenvalue is zero (neutral stability point) is marked with a dot–dash line in (a).

to be ��r = �0.024 for only 2 % suction amplitude (A = 0.02), and ��r = �0.15
for 5 % suction amplitude (A = 0.05). We expect the difference between the two
numerical tools to be an absolute difference due to the finite accuracy of solution
and interpolation, and hence we expect that the relative difference between prediction
and computation will be smaller for even slightly larger suction amplitudes.

The growth rate of the eigenvalue decreases slightly for all cases with suction,
in both the prediction and the computation. The eigenvalue is stabilized for a wide
range of �B, approximately 0.4 < �B < 1.6. The maximal stabilization is reached
at �B = 1.1. This corresponds to a wavelength of approximately 6. The observed
optimal wavelengths for a cylinder flow are longer: Kim & Choi (2005) obtained
10–12 in our non-dimensional coordinates, and Hwang et al. (2013) 12 in our
coordinates. The physical reason for the difference between optimal wavelengths
in these two configurations could be the confinement. In previous works (Juniper,
Tammisola & Lundell 2011; Tammisola et al. 2011), confinement was shown to
alter the base flow as well as the structure of the eigenmode at similar Reynolds
numbers. Figure 6 indeed seems to show that the eigenmode correction extends all
the way to the surrounding walls, as well as the base flow modification induced
by suction (figure 9a–c), so they might be affected by confinement. However, the
principles behind the wavelength selection that we present next are general, and
not tied to the specific wake flow in question. First of all, figure 8 shows that the
stabilizing influence only occurs for relatively long suction wavelengths, and short
wavelengths (�B > 1.7) have no effect on the eigenvalue. This is consistent with
the results in § 5.2, where a fixed base flow modification �U(x, y) was applied with



Second-order perturbation of global modes and spanwise wavy actuation 331

 

y

(a)

 

y

(b)

 

y

x

(c)

(e)(d)

–1 0 1 2 3 4 5 6 7

–1 0 1 2 3 4 5 6 7

–1 0 1 2 3 4 5 6 7

–2

–1

0

1

2

–2

–1

0

1

2

–2

–1

0

1

2

–0.03
–0.02
–0.01
0
0.01
0.02
0.03

–0.03
–0.02
–0.01
0
0.01
0.02
0.03

–0.03
–0.02
–0.01
0
0.01
0.02
0.03

0

0.005

0.010

0.015

0.020

0.025

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

2.0

2.5

FIGURE 9. (Colour online) The difference between the base flows with and without
suction: (a) streamwise velocity difference at �B = 0 (2-D); (b) streamwise velocity
difference at �B = 0.5 at z = p/(2�B); (c) streamwise velocity difference at �B = 2,
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different �B, and the effect on the eigenvalue decreased with increasing �B. This
also supports the argument presented in § 3 that second-order eigenvalue change can
occur due to a resonance between unperturbed eigenmodes at � = 0 and �B, when
their eigenvalues are close to each other (for illustration see figure 5). The inverse of
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the difference between the most unstable eigenvalues at � = 0 and �B is depicted in
figure 10(f ), and explains the general trend that long wavelengths are efficient while
short wavelengths are not. However, this argument does not explain why the longest
wavelength studied here (�B = 0.3) is not stabilizing, and why some slightly shorter
wavelengths are performing better. To understand the latter, we consider the structure
of the base flow modifications induced by suction.

An important effect was pointed out by Del Guercio et al. (2014): the amplitude of
the actual base flow change induced by suction is a function of �B. In figure 9(a–c),
the streamwise velocity difference between suction and no-suction base flows is shown
for �B = 0 (a), �B = 0.5 (b) and �B = 2 (c). Two things can be immediately observed.
First, spanwise wavy suction (b–c) is clearly more efficient in modifying the base flow
than a spanwise invariant suction (a). Second, the maximal modification is larger for
�B = 2 than for �B = 0.5. To quantify how efficiently the base flow is modified by
suction as a function of �B, the square of the L2-norm and the square of the L1-norm
(maximum norm) of the base flow change are shown for different �B in figure 9 (the
reason for taking the square is that we expect the eigenvalue drift to be proportional
to the square of the base flow change). We can see that both base flow changes are
maximal at �B = 1.1. In particular, the square of the L2-norm of the base flow change
seems to be qualitatively proportional to the growth rate change in figure 8, confirming
that this effect plays an important role in selecting the optimal stabilizing wavelength.

It would now be tempting to conclude that the L2-norm of the base flow change
induced by suction, integrated over the whole domain, determines the stability. The
region where eigenvalue changes actually occur (where the base flow modification
interacts with the eigenmode correction and the adjoint eigenmode) can be shown
by plotting the integrand of �2, (2.7) or (4.4). In figure 10(a–d), this quantity is
shown for different �B. The eigenvalue is only affected by the base flow changes
inside the narrow dark region (blue online) in these figures, which follows the edge
of the recirculation bubble. For all four suction wavelengths, the base flow changes
are seen to influence the flow along the outer edge of the recirculation zone for the
2-D base flow (shown in solid line, magenta online). This effectively coincides with
the sensitivity cores shown in § 5.2. The maximum negative value of the integrands
(the location in space that contributes to the most stabilizing effect) is in the same
location (x ⇡ 3.0, y ⇡ 0.6) for all four wavelengths. In figure 10, we show how the
base flow change at the location of maximum sensitivity develops with �B. This
shows the expected trend, with the strongest base flow modification at �B = 1.1.

Our conclusion is that two factors combine to determine the optimal wavelength for
stabilization of this flow. (i) The eigenmode resonance occurs at long wavelengths.
(ii) Medium wavelengths induce largest base flow change inside the sensitivity core
region. These competing factors are shown in figure 10(e, f ). Regarding how the base
flow change due to suction is created, the reader is referred to the recent paper of
Del Guercio et al. (2014), where the influence on the cylinder wake base flow is
explained to be due to amplification of streaks through the lift-up effect. We expect the
same mechanism to be present in this flow, while the base flow changes are slightly
modified by confinement.

Finally, it is worth pointing out that the effects described here are based on a global
stability analysis, in which the most sensitive region to spanwise wavy perturbations
(‘sensitivity core’) has been identified in the (x, y)-plane, and its location has been
related to where the base flow modifications by suction are acting. This was carried
out by mapping the effect of a localized base flow modification in the form of a
Dirac delta function. Next, by computing the actual base flow modification induced
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by suction, and overlapping this with the product of the adjoint eigenmode and
eigenmode correction, we found out where the eigenvalue changes due to suction
originate. This turned out to coincide well with the sensitivity core. We did not
separate the effects of modifying any specific term in the Navier–Stokes equations.
Our arguments for spanwise wavelength selection are hence slightly different from the
ones described in the local analysis of Hwang et al. (2013), detailing the stabilizing
mechanism of a fixed velocity profile. However, the two analyses are not contradictory,
as these two mechanisms might coexist in a real flow. Del Guercio et al. (2014)
point out that spanwise wavy perturbations introduce a base flow change of a large
amplitude through the creation of streaks by the lift-up effect. We observe that indeed
a 2-D suction induces a smaller global base flow modification than a 3-D spanwise
wavy suction, in agreement with Del Guercio et al. (2014). However, we extend the
previous arguments by identifying the most sensitive region in the x–y-plane, and
investigating when the base flow modifications induced by suction are inside this
most sensitive region.

The vortex-tilting mechanism described in Hwang et al. (2013) might be examined
by separating our sensitivities into different components, but this is out of the scope
of the present paper. The primary aim here is to present and verify theoretical findings
applicable to a much wider class of flow problems involving asymmetric perturbations
or control.

6. Conclusions
The sensitivity of global mode eigenvalues has been generalized by considering

the eigenproblem perturbation expansion up to the second order. The theory and
numerical solution of the derived BiGlobal equation system have been used to shed
light on how globally unstable flows are influenced by spanwise wavy actuation, for
which the standard sensitivity theory predicts no effect. The computational methods
presented for computation of the second perturbations are two-dimensional, except for
the base flow with suction which was computed in 3-D (but could also be computed
in 2-D as long as the base flow changes linearly with suction amplitude). The 2-D
predictions were verified by 3-D computations. The theoretically predicted eigenvalue
drift due to spanwise wavy actuation agrees well with the directly computed one.
Based on this theory, we argue that the second-order effects on the eigenvalue arise
from a resonance between the von Karman eigenmode at infinite spanwise wavelength
(2-D) and the same mode at the actuation wavelength. This explains two observations
from previous studies: in-phase suction distribution is more efficient than an out-of-
phase distribution, and short wavelengths are less efficient than long wavelengths. The
optimal wavelength selection is qualitatively explained by showing that the base flow
changes induced by suction must be large inside the region most sensitive to spanwise
wavy perturbations, called the sensitivity core. From our analysis, this is seen to occur
for medium wavelengths. The theory and the eigenmode resonance effect may be
relevant to a wide class of problems, for example, the effect of asymmetric inflow
profiles on the stability of axisymmetric flows, or flow–acoustics interactions.
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The viscous and inviscid linear stability of the incompressible flow past a square open
cavity is studied numerically. The analysis shows that the flow first undergoes a steady
three-dimensional bifurcation at a critical Reynolds number of 1370. The critical mode
is localized inside the cavity and has a flat roll structure with a spanwise wavelength
of about 0.47 cavity depths. The adjoint global mode reveals that the instability is
most efficiently triggered in the thin region close to the upstream tip of the cavity.
The structural sensitivity analysis identifies the wavemaker as the region located
inside the cavity and spatially concentrated around a closed orbit. As the flow outside
the cavity plays no role in the generation mechanisms leading to the bifurcation, we
confirm that an appropriate parameter to describe the critical conditions in open cavity
flows is the Reynolds number based on the average velocity between the two upper
edges. Stabilization is achieved by a decrease of the total momentum inside the shear
layer that drives the core vortex within the cavity. The mechanism of instability is
then studied by means of a short-wavelength approximation considering pressureless
inviscid modes. The closed streamline related to the maximum inviscid growth rate
is found to be the same as that around which the global wavemaker is concentrated.
The structural sensitivity field based on direct and adjoint eigenmodes, computed at
a Reynolds number far higher than that of the base flow, can predict the critical
orbit on which the main instabilities inside the cavity arise. Further, we show that
the sub-leading unstable time-dependent modes emerging at supercritical conditions
are characterized by a period that is a multiple of the revolution time of Lagrangian
particles along the orbit of maximum growth rate. The eigenfrequencies of these
modes, computed by global stability analysis, are in very good agreement with the
asymptotic results.

Key words: bifurcation, instability, separated flows

1. Introduction
Flow separation and recirculation are of great interest as they play an important

role in the phenomena involved in transport and mixing processes. The flow past open
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cavities is a prototype of geometrical configurations characterized by a finite region
of separated flow. The identification of the flow characteristics related to instability
mechanisms (e.g. coherent structures) is also of practical importance since these may
lead to resonances, acoustic noise or structural vibrations. Rockwell & Naudascher
(1978) classified the unstable behaviour of this kind of flow into fluid-dynamic, fluid-
resonant, and fluid-elastic.

Acoustic resonance (i.e. fluid-resonant behaviour) has received a remarkable amount
of attention in the past due its relation with the noise generation process (Rossiter
1964; Yamouni, Sipp & Jacquin 2013). In this case, there exists a feedback mechanism
between the unstable shear layer susceptible to Kelvin–Helmholtz instability and the
pressure waves (Rowley, Colonius & Basu 2002). Gharib & Roshko (1987) observed
experimentally that the increase of the cavity length to depth ratio (L/D) led to
a different kind of instability, the so-called ‘wake mode’. This global instability
relies on a purely hydrodynamic mechanism (the oscillation Strouhal number is
weakly dependent on the Mach number) and is characterized by a large-scale vortex
shedding.

1.1. Experimental and numerical investigations of three-dimensional instabilities
Three-dimensional structures in cavities with large span-to-chord ratios were first
reported by Maull & East (1963) using oil flow and static-pressure measurements.
These authors observed stable cell formations inside open rectangular cavities of
different aspect ratios (L/D). Rockwell & Knisely (1980) observed a strong coupling
between the growth of the primary vortices and the increase of the vorticity of
the longitudinal vortices past the downstream edge of the cavity. They concluded
that, because of this interaction, the cavity core vortex presents an ordered spanwise
modulation. These coherent structures were analysed in detail in the laminar regime by
Faure et al. (2007, 2009) in cavities with an aspect ratio varying between 0.5 and 2.
Using smoke visualizations, Faure et al. (2007) report mushroom-like counter-rotating
vortical structures and suggest that the resulting inherent flow is the consequence of
a centrifugal instability related to the cavity core vortex.

Brés & Colonius (2007b) performed numerical simulations of the linearized
compressible Navier–Stokes equations to investigate the instability features in open
cavity flows. These authors identify the onset of the first bifurcation over a wide range
of Mach numbers and cavity aspect ratios and discuss the variations of the spanwise
modulation with the cavity depth. Brés & Colonius (2007a) showed, furthermore,
that the full nonlinear results, computed by direct numerical simulation (DNS), agree
very well with the features of the three-dimensional global mode provided by linear
stability analysis. Brés & Colonius (2008) accurately discuss the properties, the
structure and the nature of such instability. Using the generalized Rayleigh criterion
(Bayly 1988), they show that the instability is a centrifugal instability associated with
the closed streamlines inside the cavity.

Faure et al. (2009) performed an experimental investigation aimed at understanding
the three-dimensional flow topology inside cavities of different shapes and for several
Reynolds numbers. These authors also performed a secondary instabilities analysis
and identified the relevant shear-layer and inner-cavity flow scales. Zhang & Naguib
(2006, 2008, 2011) carried out a systematic study of the effect of the sidewalls on
the unsteady open cavity flow at low Mach number. The presence of the sidewalls is
shown to lead to strong amplifications of the pressure fluctuations inside the cavity.
Lasagna et al. (2011) investigated the effects of a trapped vortex cell (TVC) on the
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aerodynamic performance of a wing model and found a three-dimensional organization
of the flow inside the cell according to the value of the angle of attack and the
Reynolds number. di Cicca et al. (2013) reported time-resolved tomographic particle
image velocimetry (PIV) measurements in rectangular cavities having the length-to-
depth ratio equal to 2, 3 and 4.

Very recently, de Vicente et al. (2014) examined both experimentally and
numerically the instabilities over a rectangular open cavity of aspect ratio L/D = 2.
These authors compared the linear three-dimensional instability results with the
spatial structure of the experimental fields, showing qualitative agreement for the
main flow characteristics. Furthermore, they also show that modifications of the
spanwise boundary conditions can cause significant alterations of the flow field due
to nonlinear effects. Finally, Meseguer-Garrido et al. (2014) present a systematic
study of the onset of the first instability, varying the Reynolds number, the incoming
boundary-layer thickness and the cavity aspect ratio.

Experimental studies on the formation of three-dimensional structures in the start-
up flow inside a lid-driven cavity (LDC) can be found in Migeon, Texier & Pineau
(2000), Guermond et al. (2002) and Migeon, Pineau & Texier (2003). These three-
dimensional modulations inside the cavities are also documented by de Vicente et al.
(2010) and Gonzalez et al. (2011) who considered complex cross-sectional shapes.

1.2. Short-wave asymptotic analysis
Instabilities in open and closed cavities, as well as in separated flows, are interpreted
as centrifugal instabilities. Centrifugal short-wave instabilities were first considered
by Bayly (1988) who used the geometrical optics approximation and Flouquet theory
to extend the classical Rayleigh theory for centrifugal instabilities to general inviscid
planar flows. Bayly proposed diagonalizing the convective operator of the linearized
Euler equations (LEes) and constructing linear asymptotic eigenmodes in the limit
of large spanwise wavenumber using a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)
expansion, localized on the closed orbit characterized by the maximum Floquet
exponent. Later, the same author showed qualitative agreement between the results
obtained with the linearized Navier–Stokes equations and the asymptotic predictions
(Bayly 1989). Lifschitz & Hameiri (1991) investigated the asymptotic instability
features, considering the initial value problem for the LEes and for the linearized
equations of gas dynamics. Their more general approach was able to include both
exponential and algebraic growth in time. Many efforts have since been made to
quantitatively link the short-wave asymptotics and the normal-mode analysis: Sipp,
Lauga & Jacquin (1999) showed agreement between the optimal streamline (i.e. the
streamline where the inviscid growth rate is maximum) and the spatial distribution
of the unstable eigenmodes, and between the inviscid and viscous amplification
rate of an elliptic instability. Gallaire, Marquillie & Ehrenstein (2007) examined the
centrifugal instability of the separated region behind a bump and were able to make
a composite estimation of the growth rate taking into account the viscous effects
(see also Landman & Saffman 1987) and the short-wave inviscid asymptotic limit.
Recently, Giannetti (2015) applied a WKBJ approach to investigate the nature of the
secondary instability arising in the periodic wake of a cylinder.

In this context, the main goal of the present work is to characterize the instabilities
of the flow past an open cavity, develop an asymptotic approach to understand the
instability mechanisms and finally relate the results of the global and local asymptotic
analysis. The specific aims of the work, defining the outline of the article, are to:
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(i) provide an accurate estimation of the critical Reynolds number and the spanwise
wavenumber of the first three-dimensional bifurcation in incompressible open
cavity flows;

(ii) determine the instability core by means of the adjoint-based structural sensitivity
analysis;

(iii) investigate the sensitivity of the leading instability to base flow modifications
induced by a perturbation of the inflow profile or wall blowing/suction;

(iv) provide a quantitative prediction of the onset of the instability by means of the
short-wave asymptotic theory;

(v) show that the inviscid structural sensitivity (i.e. structural sensitivity based on
direct and adjoint eigenmodes computed at a Reynolds number higher than that
of the base flow) is able to accurately predict the particle orbit that provides the
main contribution to the instability;

(vi) suggest a generalization of the expression used to calculate the instability growth
rate from the Floquet exponent to predict the frequency of the time-dependent
modes emerging at supercritical conditions.

2. Theoretical framework

2.1. Geometrical configuration and base flow
We investigate the stability and sensitivity of the flow over a spanwise-uniform square
open cavity exposed to a uniform stream. The geometry, the frame of reference and
the notation adopted in this work are all displayed in figure 1. The origin of the
Cartesian reference system is located on the left edge of the cavity with x, y and
z denoting the streamwise, wall-normal and spanwise directions. The fluid motion is
described by the unsteady incompressible Navier–Stokes equations,

r · u = 0, (2.1a)
@u

@t
+ (u · r)u = �rP + 1

ReBF
r2

u, (2.1b)

where u is the velocity vector with components u = (u, v, w) and P is the reduced
pressure. Equations (2.1) are made dimensionless using the cavity depth D as the
characteristic length scale and the velocity of the incoming uniform stream U1 as the
reference velocity. The Reynolds number is thus defined as ReBF = U1D/⌫ (here the
subscript BF means base flow Reynolds number) with ⌫ the fluid kinematic viscosity.
To ease comparisons, we have chosen the same boundary conditions as Sipp &
Lebedev (2007) and Barbagallo, Sipp & Schmid (2009). The system of differential
equations (2.1) is closed by the following Dirichlet boundary conditions at the inflow
@Din and stress-free conditions at the outflow @Dout:

u = 1 · ex, x 2 @Din; Pn � Re�1(ru) · n = 0, x 2 @Dout, (2.2a,b)

where ex is the unit vector in the direction of the x axis, n is the normal vector (in
this case, it is the vector perpendicular to the outlet of the computational domain).
Symmetric conditions (i.e. @yu = 0 and v = 0) are imposed at the free-stream upper
boundary of the computational domain @Dext and no-slip conditions u = 0 at the solid
walls @Dw. Note that a free-slip condition with zero tangential stress (i.e. @yu = 0 and
v = 0) is used on the walls close to the inflow and outflow @Dfs = @D1

fs [ @D2
fs.
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FIGURE 1. Flow configuration, frame of reference and computational domain D . The main
features of the flow are also sketched in the figure, i.e. the boundary layer developing over
the walls, the shear layer above the cavity and the recirculation forming inside the cavity
of length L and depth D = L.

2.2. Global stability analysis
The flow linear instability is studied with a classical normal-mode analysis. The
analysis relies on the existence of a steady solution about which infinitesimal
perturbations are superimposed. The velocity and pressure fields are decomposed
into a two-dimensional base flow, Qb(x, y) = (ub, Pb)

T = (ub, vb, 0, Pb)
T, and a

three-dimensional disturbance flow denoted by q

0(x, y, z, t) = (u0, P0)T = (u0, v0, w0, P0)T

of small amplitude ✏. Introducing this decomposition into (2.1) and linearizing the
equations governing the disturbance evolution, we obtain the two systems describing
the spatial structure of the base flow and the behaviour of generally unsteady
perturbations. In particular, the base flow is governed by the steady version of (2.1),
whereas the perturbation field is described by the linearized unsteady Navier–Stokes
equations (LNSE)

@u

0

@t
+ L{ub(ReBF), ReSTB}u0 = �rP0, (2.3)

r · u

0 = 0, (2.4)

with the linearized Navier–Stokes operator L (ReSTB indicates the Reynolds number
used for stability computations)

L{ub, ReSTB}u0 = ub · ru

0 + u

0 · rub � 1
ReSTB

r2
u

0. (2.5)

As the base flow is homogeneous and stationary in the spanwise direction, a generic
perturbation can be decomposed into Fourier modes of spanwise wavenumber k. The
three-dimensional perturbations are expressed as

q

0(x, y, z, t) = 1
2 {(û, v̂, ŵ, P̂)(x, y) exp[ikz + � t] + c.c.}, (2.6)

where � = ⌘ + i! is the complex growth rate and c.c. stands for complex conjugate.
The real part ⌘ of � represents the temporal growth rate of the perturbation and the
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imaginary part ! its frequency. For ⌘ > 0, the flow is unstable whereas for ⌘ < 0 it is
stable. Introducing the ansatz (2.6) in the LNSE (2.3)–(2.4), we obtain the generalized
eigenvalue problem

Aq̂ + � Bq̂ = 0, (2.7)

in which q̂ = (û, v̂, ŵ, P̂)T and A is the complex linearized evolution operator. The
operators A and B, have the following expressions:

A =
0

B@

C � M + @xub @yub 0 @x
@xvb C � M + @yvb 0 @y

0 0 C � M ik
@x @y ik 0

1

CA , B =
0

B@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

1

CA ,

(2.8a,b)
where M = ReSTB

�1(@x2 + @y2 � k2) and C = ub@x + vb@y describe the viscous diffusion
of the perturbation and its advection by the mean flow. The boundary conditions
associated with the eigenproblem (2.7) are derived from those used for the base flow,
i.e.

û = 0, on @Din [ @Dw (inlet and wall), (2.9a)
P̂n � ReSTB

�1(rû) · n = 0, on @Dout (outlet), (2.9b)
@yû = v̂ = ŵ = 0, on @Dext [ @Dfs (free stream and free-slip boundary). (2.9c)

Finally, we note that the complex-conjugate pairs (⌘ + i!; q̂) and (⌘ � i!; q̂

⇤
) are

both solutions of the eigenproblem (2.7) with the boundary conditions (2.9) for a real
base flow Qb. Thus, the eigenvalues are complex conjugates and the spectra are in a
symmetric plane with respect to the real axis in the (⌘, !).

2.3. Determination of the instability core: structural sensitivity
In this section we present the structural sensitivity analysis following the framework in
Pralits, Brandt & Giannetti (2010). The underlying idea is the concept of ‘wavemaker’,
introduced by Giannetti & Luchini (2007) to identify the location of the core of a
global instability. The wavemaker is the region in the flow where variations in the
structure of the problem provide the largest drift of a specific eigenvalue. We first
consider the perturbed eigenvalue problem

� 0
û

0 + L{ub, ReSTB}û0 = �rP̂0 + �H(û
0
, P̂0), (2.10)

r · û

0 = 0, (2.11)

where �H is the generalized structural perturbation. It is assumed to be a momentum
force localized in space and proportional to the local velocity perturbation through a
(3 ⇥ 3) coupling matrix �M0 and a Dirac delta function:

�H(û
0
, P̂0) = �M(x, y) · û

0 = �(x � x0, y � y0)�M0 · û

0
. (2.12)

Neglecting higher-order terms, variations of the eigenvalue �� and of the corresponding
eigenfunction (�û, �P̂) satisfy the following expressions:

� �û + L{ub, ReSTB}�û = �r�P̂ + �M · û � �� û, (2.13)
r · �û = 0. (2.14)
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Using then the Lagrange identity (see Luchini & Bottaro 2014), we can determine the
equations governing the structure of the adjoint field: ĝ

+
(x, y) = ( f̂

+
, m̂+)

�� f̂

+ + ub · rf̂

+ � rub · f̂

+ + 1
ReSTB

r2
f̂

+ + rm̂+ = 0, (2.15)

r · f̂

+ = 0. (2.16)

After integration over the domain D , accounting for the boundary conditions and
introducing the sensitivity tensor

S(x0, y0; ReBF, ReSTB) = f̂

+
(x0, y0)û(x0, y0)Z

D

f̂

+ · ûdS
, (2.17)

we can express the eigenvalue drift due to the local feedback as

�� (x0, y0) =

Z

D

f̂

+ · �M · ûdS
Z

D

f̂

+ · ûdS
= f̂

+ · �M0 · ûZ

D

f̂

+ · ûdS
= S : �M0 =

X

ij

Sij�M0ij. (2.18)

Different norms of the tensor S can be used to build a spatial map of the sensitivity.
The spectral norm is chosen here to study the worst possible case.

3. Numerical approach

3.1. Base flow calculation
The numerical computation of the base flow has been performed using a
finite element method. The variational formulation of the Navier–Stokes equations
(2.1) is implemented in the software package FreeFem++ (Hecht (2012);
http://www.freefem.org) using classical P2–P1 Taylor–Hood elements for the spatial
discretization. The resultant nonlinear system of algebraic equations, along with the
boundary conditions, is solved by a Newton–Raphson procedure: given an initial
guess wb

(0), the linear system

NS(ReBF, Wb
(n)) · wb

(n) = �rhs(n) (3.1)

is solved at each iteration step using the MUMPS (multifrontal massively parallel
sparse direct solver) (Amestoy et al. 2001, 2006) for the matrix inversion. The base
flow is then updated as

W

(n+1)
b = Wb

(n) + wb
(n). (3.2)

The initial guess is chosen to be the solution of the Stokes equations and the
process is continued until the L2-norm of the residual of the governing equations
becomes smaller than 10�12. To test the implementation and convergence, we used
three different meshes M1, M2 and M3 (see table 1). These are generated by the
bidimensional anisotropic mesh generator (Bamg) that is part of the Freefem++
package. The base flow computations are also validated using a variant of the
second-order finite-difference code described in Giannetti & Luchini (2007). A
typical steady flow over the open cavity is depicted in figure 2.



120 V. Citro, F. Giannetti, L. Brandt and P. Luchini

Mesh ⌘ ! nd.o.f . nt Source

M1 0.0007590 7.4931 998 668 221 045 Present
M2 0.0008344 7.4937 1416 630 313 791 Present
M3 0.0009122 7.4943 2601 757 576 887 Present
D1 0.0007401 7.4930 880 495 194 771 Sipp & Lebedev (2007)
D2 0.0008961 7.4942 1888 003 418 330 Sipp & Lebedev (2007)

TABLE 1. Comparison of the results obtained with the present implementation and those
reported by Sipp & Lebedev (2007) for the same configuration. The eigenfrequency ! and
the growth rate ⌘ have been calculated for the first two-dimensional unstable eigenmode
at ReBF = ReSTB = 4140; nd.o.f . and nt indicate the total number of degrees of freedom of
the linearized problem and the number of triangles for each of the unstructured meshes
used.
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FIGURE 2. (Colour online) Visualization of the steady two-dimensional base flow for the
Reynolds number ReBF = 1370 at which a three-dimensional instability is first observed.
The background shading displays the streamwise velocity whereas solid lines indicate the
streamlines inside the cavity.

3.2. Eigenvalue solver and adjoint field
Once the base flow is determined, the system (2.7) is used to perform the stability
analysis. After spatial discretization, the governing equations and their boundary
conditions (2.9) are recast in the following standard form:

[A(ReSTB, Wb(ReBF)) + � B] · w = 0, (3.3)

where w is the right (or direct) eigenvector. As methods based on the QR decomposi-
tion are not feasible for solving large-scale problems like those associated with
the matrix A obtained for our problem, we adopt an efficient matrix-free iterative
method based on the Arnoldi algorithm (Arnoldi 1951). We use the state-of-the-art
ARPACK package (Lehoucq et al. 2007), with implicit restarts to limit memory
requirements. The solution of the linear system built by the Arnoldi iterations on
the Krylov subspace is obtained with the same sparse solver (Amestoy et al. 2001,
2006) as used for the base flow calculations. The adjoint modes are computed as left
eigenvectors of the discrete system derived from the discretization of the linearized
equations and the sensitivity function is then computed by the product of the direct
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FIGURE 3. (Colour online) Stability analysis of the open cavity flow at Re = 4140, where
an unstable two-dimensional mode first emerges. (a) Real and (b) imaginary part of the
eigenvalue � versus the spanwise wavenumber k. The different branches are numbered for
future reference.

and the adjoint fields. The right (direct) and left (adjoint) eigenvectors are normalized
by requiring

max
x,y2D

{|û(x, y)|} = 1,

Z

D

f̂

+ · ûdS = 1. (3.4a,b)

The code is validated against the results reported by Sipp & Lebedev (2007).
These authors investigate the stability of a Newtonian fluid in the same geometrical
configuration and report the first instability of a two-dimensional eigenmode to occur
at Re = 4140. In table 1 we present the comparison between our results and the results
in Sipp & Lebedev (2007) for different meshes. In these tests, 50 eigenvalues were
obtained, with an initial Krylov basis of dimension 150; the convergence criterion for
the Arnoldi iterations is based on a tolerance of 10�9. To independently check the
accuracy of the results we a posteriori computed the residual maxi |(Aij + � Bij)wj|:
this turns out to be always below 10�9 for the results reported in this paper, typically
less than 10�12 for the least stable modes. The majority of the computations presented
in the following are obtained using mesh M2. Henceforth whenever ReBF = ReSTB we
will simply use Re.

4. Linear stability results

4.1. Three-dimensional versus two-dimensional instability
As the cavity is typically considered an example of centrifugal instability, we expect
the first bifurcation to be characterized by the appearance of steady three-dimensional
modes of relatively short wavelength in the spanwise direction (Albensoeder,
Kuhlmann & Rath 2001). To verify this, we scan the k-axis seeking for unstable
modes at the Reynolds number Re = 4140 where a two-dimensional mode first
becomes unstable (Sipp & Lebedev 2007). The results in figure 3 clearly show that
eight unstable branches can be found for this value of Re where the most unstable
mode has wavenumber k = 22 and represents a steady disturbance (! = 0 in figure 3b).
The flow over an open cavity is therefore characterized by a first bifurcation to a
steady three-dimensional configuration.
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FIGURE 4. Eigenvalue spectrum for Re = 4140 and k = 22. The numbers in the figure
relates to the branches identified in figure 3.

The full eigenvalue spectrum at k = 22 is shown in figure 4 where seven unstable
modes appear (four branches with respect to k), placed symmetrically with respect to
the real axis. It is interesting to highlight that the steady mode is the most unstable
one, while the others are characterized by frequencies which are integer multiples of a
fundamental one and arise (as explained in § 7) as results of resonances on a particular
streamline.

In figure 5 we display the modulus of both the direct and adjoint eigenfunctions
corresponding to the eigenvalues denoted by 1, 2, 3, and 4 in figure 4. The velocity
perturbations are most evident in the circular region inside the cavity, with a tail in the
shear region just above the downstream wall. The adjoint modes, indicating the region
in the flow most receptive to forcing in the momentum equations, have a similar
structure, except for the thin region close to the upstream tip of the cavity, where
instability is most efficiently triggered. The unstable modes are spatially localized
in the same region. The secondary flow generated by the leading instability can be
described as a flat roll lying within the square cavity. The different resonances are
associated with periodic oscillations again concentrated in the region inside the cavity.

To document the appearance of this two-to-three-dimensional bifurcation, we
determine the critical Reynolds number at which the instability first occurs: as shown
in figure 6 the critical value is about Recr ⇡ 1370 and the first mode to become
unstable is associated with a wavenumber k ⇡ 13.4. All modes whose growth rate is
reported in figure 6 have zero frequency; this stationary instability will be analysed
in detail in the rest of the paper.

4.2. Structural sensitivity of the first bifurcation
We study the characteristics of the bifurcation by first showing the spatial structure
of the fluctuation of the least stable mode at Re = 1370, k = 13.4. Like the modes at
higher Reynolds number, the mode is localized along the external streamlines of the
recirculation region inside the cavity (see figure 7). The level of fluctuations is largest
in the streamwise component, the cross-stream and spanwise ones being respectively
about 61 % and 88 % of the streamwise fluctuations. The adjoint of the critical mode
is displayed in figure 7(d–f ): its spatial structure closely resembles that of the direct
mode, with a strong localization along the circular streamlines inside the cavity. As
noted above, the direct mode presents a second region of noticeable amplitude near the
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FIGURE 5. (Colour online) Contour plots of the absolute value of the direct and adjoint
eigenfunctions of modes 1, 2, 3 and 4 as denoted in figure 4 for Re = 4140 and k = 22.
Global mode 1 is stationary (! = 0), mode 2 has ! ⇡ 0.3, mode 3 has ! ⇡ 0.6 and mode
4 has ! ⇡ 0.9.
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FIGURE 6. Leading eigenmode for cavity flow with L/D = 1. Growth rate of the most
unstable mode versus the spanwise wavenumber k for the Reynolds numbers indicated.
The circular frequency is zero for all modes displayed. Thus, the first instability of the
flow over an open cavity is a three-dimensional steady mode.

downstream tip of the cavity and in the shear region just downstream of it, whereas
the amplitude of the adjoint mode is not negligible near the upstream tip.
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FIGURE 7. (Colour online) Contour plots of the streamwise (a direct; d adjoint), wall-
normal (b direct; e adjoint) and spanwise (c direct; f adjoint) component of the direct
and adjoint mode close to the critical Reynolds number Re = 1370, k = 13.4.

The structural sensitivity of this mode is displayed in figure 8. This quantity
indicates the regions in the flow where a feedback forcing proportional to the local
perturbation velocity most alters the eigenvalue, in other words the wavemaker of the
instability. The sensitivity, product of the direct and adjoint mode, is largest inside the
cavity, with no significant contributions from the regions of strong shear above it. It
is interesting to note that the wavemaker is similar to that computed for a lid-driven
square cavity (Giannetti, Luchini & Marino 2010; Haque et al. 2012).

5. Instabilities in cavity flows

5.1. Open cavity and lid-driven cavity
The sensitivity analysis performed in the previous section clearly shows that the core
of the three-dimensional instability leading to the first bifurcation in a square open
cavity is highly localized in space and completely contained inside the cavity. This is
in contrast with the first 2D instability (Sipp & Lebedev 2007), arising at Re = 4140,
which is more similar to a wake-type instability (Sipp 2012; Yamouni et al. 2013) and
localized downstream near the second tip of the cavity.

Examining the results obtained from the stability analysis, it is clear that the
external flow plays little role in the generation mechanism of the three-dimensional
instability. It is thus reasonable to assume that the configuration studied here is
subject to the same type of instabilities as those appearing in a LDC and discussed
by Albensoeder et al. (2001) and Albensoeder & Kuhlmann (2006) among others. In
the open cavity the shear layer detaching from the upstream corner has the same role
as that of the lid in the formation of the vortical motion inside the LDC configuration.
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FIGURE 8. (Colour online) Structural sensitivity, the core of the instability, at the neutral
conditions, Re = 1370, k = 13.4, for the flow over an open square cavity. The streamline
where the asymptotic analysis predicts the maximum inviscid growth rate is also depicted
(see § 7).

The velocity of the lid is uniform while in the present study the fluid velocity along
the line connecting the two upper corners is not constant: the velocity starts from zero
at the left corner, increases, reaches a maximum and then decreases again, vanishing
at the downstream corner. In addition, the vertical velocity is different from zero,
its magnitude being smaller than that of the horizontal component, however. As a
result the flow field, although qualitatively similar, also has important differences with
respect to that occurring in the lid-driven problem.

For the LDC the critical Reynolds number for the first bifurcation has been
calculated independently by Theofilis (2000) and Albensoeder et al. (2001) (see
also Ding & Kawahara 1998; Shatrov, Mutschke & Gerbeth 2003). The numerical
three-dimensional linear stability analysis of Albensoeder et al. (2001) covers a
wide range of cavity aspect ratios and presents the corresponding unstable modes,
which appear to be qualitatively different when varying the cavity aspect ratio. These
authors explain the centrifugal instability mechanism in terms of the perturbation
energy budget and the criterion proposed by Sipp & Jacquin (2000).

As suggested by Brés & Colonius (2008) (see § 4.2 of their paper), if we introduce
a (base flow) Reynolds number Reav based on the cavity depth D and on the average
velocity Ũ along the line connecting the two opposite corners, the critical Reynolds
number for the first instability of the open cavity flow becomes

Reav = ŨD
⌫

⇡ 490, (5.1)

which is around 38 % lower than the value found by Albensoeder et al. (2001).
Despite this difference in the value of the critical Reynolds number, the spanwise
wavenumbers at which the instability first occurs are comparable, being klid ⇡ 15.4 in
the LDC case and k ⇡ 13.4 in the present configuration. These qualitative similarities,
both in terms of base flows and modes, suggest that the same kind of instability is
acting in the two configurations.

5.2. Link between open cavity flows
Brés & Colonius (2008) performed DNS of open cavity flows for several Re�⇤ ,
where �⇤ is displacement thickness, to investigate the effect of this parameter on the
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instability properties. In the present configuration the shear layer starts developing
at xbl = �0.4 (we recall that the origin of our frame of reference is located on the
left edge of the cavity) leading to a displacement thickness at the upstream edge of
(Re = 1370)

�⇤(xbl) =
Z 0.5

0

ub(xbl, 0.5) � ub(xbl, y)
ub(xbl, 0.5)

dy ⇡ 0.029. (5.2)

Thus, the critical Reynolds number based on this boundary-layer thickness is equal to
Re�⇤ = U1�⇤(xbl)/⌫ ⇡ 39.7.

As discussed in Brés & Colonius (2008), the critical conditions for the instability
are only weakly affected by the starting position of the upstream laminar boundary
layer when the critical Reynolds number is appropriately defined. The main idea is
that the dynamics inside the cavity is approximately driven by the average velocity
between the two edges rather than by the shear-layer thickness, thus strengthening the
connection to the LDC flow. Analysing the limiting case arising when the incoming
free-stream velocity U1 is simply linear, i.e. when a Couette profile of velocity
U1(y) = y · e

y

is imposed at the inlet, we found that the first bifurcation occurs
at ReCouette ⇡ 20 200 for modes of spanwise wavenumber k ⇡ 13.0. Interestingly,
the critical Reynolds number scaled with the cavity depth and average velocity,
Reav ⇡ 470, is in a very good agreement with the value obtained previously, (5.1),
although the boundary-layer thickness of Couette flow is infinity. In the light of this
result we confirm that the averaged Reynolds number Reav is a relevant parameter to
predict the onset of instability for open cavity flows.

6. Structural sensitivity to a velocity-based linear feedback

The so-called sensitivity to base flow variations is a concept introduced by Bottaro,
Corbett & Luchini (2003) and Marquet, Sipp & Jacquin (2008) within the global
framework. In this analysis a small structural velocity-based perturbation acts at the
base flow level: the effect of the base flow modifications on the leading eigenvalue of
the stability problem allows us to study the different mechanisms that can suppress or
enhance the instability. The spatial structure of the so-called adjoint base flow can be
used to identify the features of the base flow that provide the main contribution to the
instability dynamics and the regions where to locate effective passive control devices.
In other words, this modification of the structure of the Navier–Stokes operator causes
a variation of the base flow which in turn produces a drift of the leading eigenvalue
� = ⌘ + i!.

For the sake of brevity, only the main ingredients are outlined here; an extensive
and detailed derivation can be found in Marquet et al. (2008) and Pralits et al. (2010).
Using a formalism based on control theory, the eigenproblem (2.7) represents the
state equation, the state vector is composed of the global mode q̂ and the complex
eigenvalue � , and the base flow Qb is the control variable. As in Pralits et al. (2010)
we express the eigenvalue drift �� as

�� = �⌘ + i�! =

Z

D

(û · rf̂

+ � rû · f̂

+
) · � ubdS

Z

D

f̂

+ · ûdS
, (6.1)

where �ub is a generic modification of the base flow. The relation (6.1) provides
the effect of a specified velocity distribution implying a dedicated computation for
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FIGURE 9. (Colour online) Sensitivity of the first bifurcation to streamwise and
wall-normal mean velocity modifications at the inflow. The profile shown would provide
the largest possible stabilization of the first bifurcation.

each specific actuation, e.g. wall blowing/suction. The optimal boundary velocity
distribution, instead, can be directly found as follows (see Meliga & Chomaz 2011):

�� =

Z

@Dw,i,fs

✓
m+

b n + 1
Re

n

T · rf

+
b

◆
· � Uw,i,fs

�
dl

Z

D

f̂

+ · ûdS
(6.2)

where m+
b and f̂

+
b are the adjoint base flow pressure and the three-dimensional adjoint

base flow velocity field and the subscripts w, i, fs indicate the boundaries (inlet, wall
or free-slip) on which we calculate the integral dl is the length element along @Dw,i,fs.
The adjoint base flow field Q

+
b must satisfy the following set of linear equations

(Pralits et al. 2010):

ub · rf

+
b � rub · f

+
b + 1

Re
r2

f

+
b + rm+

b = û · rf̂

+ � rû · f̂

+
, (6.3)

r · f

+
b = 0, (6.4)

along with the adjoint base flow outlet condition m+
b n � Re�1

n · rf

+
b = �(u

b

· n)f+
b +

(û · n)û
+ at @Dout and zero-velocity conditions at the solid walls and at the inlet.

The sensitivity of the instability with respect to the incoming flow is examined
first. Figure 9 shows the sensitivity to both the streamwise and the wall-normal
components of the inflow velocity profile, where the profiles shown would provide
the optimal decrease of the instability growth rate. The x-component is found to be
always negative and attains significant values only near the wall. This fact is not
surprising because the base flow modifications have effect only if related to the shear
layer that drives the core vortex inside the cavity. Perturbations in the free stream do
not affect the flow at the edge and inside the cavity, the regions where the instability
is triggered. Negative modifications of the inlet velocity profile cause stabilization due
to decrease of the momentum inside the shear layer. The effect of the wall-normal
component is related to the same mechanism, decreasing of the total streamwise
momentum at the cavity tip by normal advection.

In view of an active control of the first bifurcation, we depict the wall-normal
component of the sensitivity along the cavity walls in figure 10; this corresponds to



128 V. Citro, F. Giannetti, L. Brandt and P. Luchini

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0
−4
−2

0
2

–0.4
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0
–0.2

–0.2

–0.4

–0.6

–0.8

–1.00 0.2 0.4 0.6 0.8
8 10 12

1.0
–15

9
8
7
6

–0.2 –5 0
–1.0

–0.8

–0.6

–0.4

–0.2

xx

x yy

FIGURE 10. (Colour online) Sensitivity to wall-normal blowing and suction of the
leading-mode growth rate at Re = 1370 and k = 13.4. Positive (negative) values indicate
blowing (suction) and lead to stabilization (destabilization). The profiles shown on each
wall provide the optimal decrease of the instability growth rate.

the optimal blowing/suction profiles giving the largest stabilization. We see that the
sensitivity is vanishing along the first free-slip boundary just downstream of the inflow
(y = 0; �1.2 < x < �0.4), while a combination of blowing and suction is found to be
optimal on the wall upstream of the cavity (y = 0; �0.4 < x < 0). Inside the cavity,
on both lateral walls, a stabilizing normal component is directed in the streamwise
direction. The optimal blowing and suction on the lower wall would create a flow
opposite to the vortex inside the cavity, thus trying to quench it. The analysis, finally,
shows that it is not possible to significantly modify the instability by applying control
on the downstream wall (lowest sensitivity magnitude).

7. Asymptotic inviscid stability theory

The spatial distribution of the structural sensitivity (that is spatially concentrated
around a streamline inside the cavity) suggests the possibility of using the local theory
to describe the evolution of the instability and provide more quantitative evidence for
the mechanism from which it arises. An appealing approach in this context is offered
by the short-wavelength approximation (WKBJ) developed by Bayly (1988).

This approach is briefly outlined here; for a more detailed presentation the reader is
referred to Lifschitz & Hameiri (1991), Lifschitz (1994) and references therein. The
solution of the linearized Navier–Stokes equations is sought in the form of a rapidly
oscillating and localized wave-packet evolving along the Lagrangian trajectory X(t)
and characterized by a wave-vector k(t)=r�(X, t) and an envelope a(X, t) such that

u(X, t) = ei�(X,t)/✏
a(X, t, ✏) = ei�(X,t)/✏

X

n

an(X, t)✏n, (7.1)

p(X, t) = ei�(X,t)/✏b(X, t, ✏) = ei�(X,t)/✏
X

n

bn(X, t)✏n+1, (7.2)

where ✏ ⌧ 1 and X = ✏x is a slowly varying variable. In the limit of vanishing
viscosity (Re ! 1) and large wavenumbers (kkk ! 1), the theory provides the
leading-order term for the growth rate associated with a localized perturbation. This
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is obtained by integrating the following set of ordinary differential equations (ODEs):

Dk

Dt
= �Lt(X)k, (7.3)

Da

Dt
=
✓

2kk

T

|k|2 � I

◆
L(X)a, (7.4)

along the Lagrangian trajectories defined by the ODE

DX(t)
Dt

= ub(X(t), t). (7.5)

In the equations above L = rub is the base flow velocity gradient tensor and I the
identity matrix. Since the flow under investigation is steady, the Lagrangian trajectory
corresponds to the streamlines of the base flow. Three initial conditions have to be
assigned to solve the problem above: k(t = 0) = k0, a(t = 0) = a0 and x(t = 0) = x0.
The last condition imposes the Lagrangian origin of the streamline and thereby entirely
identifies it.

Lifschitz & Hameiri (1991) proved that a sufficient condition for inviscid instability
is that the system (7.3)–(7.5) has at least one solution for which ka(t)k ! 1 as
t ! 1. This theory has been successfully applied in the past to study elliptic,
hyperbolic and centrifugal instabilities of two-dimensional stationary base flows
(Sipp et al. 1999; Godeferd, Cambon & Leblanc 2001). In order to characterize the
instability mechanism arising inside the cavity with this local theory, the self-excited
nature of the instability must be properly accounted for. In this context, a central
role is played by closed Lagrangian trajectories (closed streamlines in our case), i.e.
orbits described by material points which return to their initial positions after a given
time T (the period of revolution of a material particle). These closed trajectories play
a special role in the dynamics of the instability: on the closed orbits, local instability
waves propagate and feed back on themselves leading to a self-excited unstable mode.

To apply the theory, both (7.3) and (7.4) must be integrated along the closed orbits
existing inside the cavity. Since the base flow is steady and the streamlines are closed,
(7.3) is a linear ODE with periodic coefficients whose general solution can be written
in terms of Floquet modes. In particular, the solution can be found by building the
fundamental Floquet matrix M(T), solution of the system

DM

Dt
= �Lt(X)M with M(0) = I, (7.6)

and extracting its eigenvalues and the corresponding eigenvectors. Using these
eigenvectors as initial conditions, it is possible to retrieve the temporal evolution of
k during a lap around the closed streamline. Equation (7.3) admits three independent
solutions related to the three eigenvectors of the fundamental Floquet matrix M(T).
However, since the base flow is two-dimensional, there exists for each orbit one
eigenvalue equal to one, with the corresponding eigenvector remaining constant in
time and orthogonal to the base flow. In other words, since the third column of L
and the third line of Lt are zero, the transverse component of k remains constant
as time evolves. In contrast, the in-plane components evolve under the action of the
deformation tensor. Once (7.3) is solved, the amplitude a can be found by integrating
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(7.4). One can use any linear combination of the Floquet modes from (7.6) to set the
specific k in (7.4).

Since we are trying to determine a self-excited mode, we need only to consider
solutions of (7.3) that are periodic in time, i.e. solutions such that k(0) = k(T).
Moreover Bayly (1988), Lifschitz & Hameiri (1991) and Sipp & Jacquin (2000)
have shown that centrifugal and hyperbolic instabilities attain their maximum growth
rate for modes characterized by purely transverse wavenumbers. Therefore, only
eigenvectors orthogonal to the base flow will be considered in the following analysis.
Solutions of (7.4) associated with a k orthogonal to the plane of motion are usually
termed pressureless modes (see also Godeferd et al. 2001). With this choice, (7.4)
reduces to an ordinary linear differential equation with periodic coefficients. According
to Floquet theory, its solution can be written in terms of Floquet modes

a(t) = ā(t) exp(� t), (7.7)

where ā(t) is a periodic function (with the same period T as the material point
moving along the selected closed streamline) and Re{� } = �r is the growth rate of
the perturbation. In order to make a quantitative comparison with the eigenvalues
predicted by the global analysis, we have to compute the values of � in (7.7) for
each closed orbit inside the cavity. To this end, we parameterize each streamline,
and the corresponding growth rate � , with the distance along the horizontal line
connecting the centre of the vortex to the left-hand wall of the cavity (see figure 11).

As for (7.3), the fundamental Floquet matrix A corresponding to (7.4) is built by
integrating the system

DA

Dt
=
✓

2kk

T

|k|2 � I

◆
L(X)A, (7.8)

A(0) = I, (7.9)

along each orbit. The eigenvalues µi(x0) and the corresponding eigenvectors of A(T)
are then easily extracted.

As mentioned above, since the base flow is two-dimensional and the wave-vector
k is orthogonal to the x–y plane, we expect one eigenvalue of A to be 1. The other
two, for the incompressibility constrain, must multiply to 1, i.e. µ1(x0) µ2(x0)= 1. The
Floquet exponent � (x0) of the perturbation on the selected orbit  0 is obtained from
the Floquet multiplier µ(x0) of A by the simple relation

� {n}( 0) = �r( 0) + i� {n}
i ( 0) = log (µ)

T( 0)
+ i

2np

T( 0)
with n 2N, (7.10)

where T( 0) is the period of revolution.
The growth rate of each WKBJ mode is simply given by the real part of � {n}. The

frequency is related to the imaginary part and is not unique. According to the formula
(7.10), modes with the same growth rate (at leading order) but different frequencies
are admissible: in particular the admissible frequencies are integer multiple of the
frequency of revolution along the same streamline.
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FIGURE 11. (Colour online) Streamlines for the flow inside the cavity at Re = 1370. The
asymptotic inviscid stability theory identifies three streamlines along which three different
WKBJ modes present their maximum growth rate: - - - -, orbit of the global maximum
growth rate pertaining to the steady mode �1 (see figure 12); — · —, orbit of the
unsteady mode related to �2; · · · · · ·, orbit of the steady mode related to �3. The evolution
of a particle along the streamline - - - - is also depicted. The revolution period of this
streamline is T = 18.3. The horizontal line connecting the centre of the vortex to the
left-hand wall of the cavity is used in the present work to parameterize the streamlines.

7.1. Asymptotic estimate of the first bifurcation
The numerical computations of the asymptotic stability are performed on the same
base flow fields as used for the global stability analysis. Several numerical methods are
available to solve the system of ODEs (7.5)–(7.8) along with their initial conditions.
We chose a fourth-order Runge–Kutta method: starting from the points located on the
horizontal line, connecting the centre of the vortex to the left-hand wall of the cavity
(see figure 11), the algorithm marches along the orbits ensuring the spatial periodicity
of each streamline. In the figure we also report the position of a material point along
its trajectory at equal time intervals to give a visual impression of the local velocity
along the streamline.

The asymptotic eigenpairs have been computed with several discretizations and only
the eigenvalues with an accuracy of four significant digits are presented. In figure 12,
we show the real and imaginary part of the eigenvalues obtained with the WKBJ
approximation as function of the x coordinate defining the different orbits.

The asymptotic analysis reveals three maxima of the growth rates �r 1(=�r 1),
which is also the global maximum, �r 2 and �r 3. The first and the third branches
(�1 and �3) are characterized by zero-frequency eigenvalues, while the second branch
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FIGURE 12. WKBJ growth rate �r (⇤) and eigenfrequency �i (E) at ReBF = 1370. Here the
parameter x is the physical coordinate showed in figure 11. The lines denote the maximum
of the different branches: - - - -, maximum inviscid growth rate �r 1; — · —, maximum
related to second branch �r 2; · · · · · ·, third maximum �r 3.

(�2) is associated with unstable oscillations with frequency of ⇡0.2. As further
discussed below, the closed streamline of maximum growth rate �r 1 is located
within the wavemaker of stationary unstable global mode.

However, despite this agreement, the viscous correction term and the correction
term relative to finite wavenumber effects need to be taken into account for a correct
prediction of the instability, see Landman & Saffman (1987) and Gallaire et al.
(2007).

In figure 13(a) we report the growth rate of the unstable mode computed on the
base flow at ReBF = 1370 when increasing the Reynolds number in the linearized
stability equations, ReSTB, and the growth rate obtained by integrating along the closed
orbits with the corrections discussed in appendix A,

s = � ( 0) � A
k

� k2

ReBF
. (7.11)

The value of A above is not estimated by a least square fitting as in previous studies,
but computed analytically using the information provided by the local adjoint and
direct field on the streamline. The values obtained with this procedure are reported
in table 2. Figure 13(a) shows that the scaling provided by the global stability
analysis estimates correctly the asymptotic growth rate �r 1. The corresponding
optimal spanwise wavenumber k is depicted in 13(b) as a function of Re1/3

STB. The
spanwise wavenumber, like the maximal growth rate, follows the correct scaling laws,
�r / Re�1/3

STB and kopt / Re1/3
STB (Bayly 1988; Sipp et al. 1999).

Finally, we focus our attention on the spatial distribution of the structural sensitivity
fields computed with the maximum ReSTB considered (equal to 300 000). Figure 14(a)
shows the agreement between the critical streamline (i.e. the streamline  where
the inviscid growth rate is maximum) and the sensitivity map. At large (stability)
Reynolds numbers ReSTB, therefore, the sensitivity analysis indicates that the instability
core is located on the orbit with maximum growth rate.

The global analysis performed at ReBF also provides information about the
sub-critical branches arising in the asymptotic computations. We depict the structural
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FIGURE 13. (Colour online) Global and asymptotic stability results. (a) Viscous growth
rate ⌘ (E, @ = ReSTB = 300 000) at ReBF = 1370 and asymptotic estimate of growth rate
�r (⇤- - - -) according to the correction in appendix A. We also depict the regression line
(——) related to the global growth rates. (b) Optimal global spanwise wavenumber kopt

(E) and prediction from the asymptotic theory (⇤) as a function of Re1/3
STB. The predicted

optimal spanwise wavenumber is simply obtained by finding the maximum of the scaling
law (A 6), i.e. k = (ReSTBA/2)1/3.

1torbit k J A

0.0050 13.4 0.00637 5.1143
0.0025 13.4 0.00678 5.0148
0.0010 13.4 0.00681 5.0078

TABLE 2. Convergence of parameters arising in the asymptotic estimation (see appendix A)
of the viscous growth rate; 1torbit is the step used to discretize the critical orbit. (Here,
ReBF = 1370).

sensitivity extracted from the global analysis of these two sub-critical WKBJ
eigenmodes in figure 14(b,c). As for the leading eigemode we observe an excellent
correspondence between the sensitivity spatial map and the two critical orbits.
Interestingly, we note also the agreement between the frequency of mode �2 (see
figure 14b) and the frequency predicted by the WKBJ analysis. From a physical point
of view, this matching can be associated with the fact that these eigenmodes are of
centrifugal nature, i.e. inviscid, and therefore the inviscid structural sensitivity is able
to isolate accurately the regions where each of the three instability branches presents
the main contribution to the instability mechanism.

7.2. Asymptotic results for ReBF = 4140
As previously discussed, when we consider the stability to three-dimensional
perturbations at supercritical Reynolds numbers, we find several unstable branches
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FIGURE 14. (Colour online) Comparison between the optimal streamline of WKBJ
branches and sensitivity maps related to (global) eigenvalues: (a) 0.36 + i0.00; (b) 0.14 +
i0.20; (c) 0.07 + i0.00. Parameter settings: ReBF = 1370, ReSTB = 300 000 and k = 93.5.

(see figure 3). If we consider the spanwise wavenumber k = 22 and ReBF = 4140, we
observe the occurrence of several harmonics of the fundamental leading eigenvalue. As
shown in figure 3(b), these modes are characterized by a quantized eigenfrequency,
! ⇡ 0.32n with n integer. To show that the asymptotic analysis is also able to
accurately predict the frequency of these harmonics, we carry out computations for
the base flow at Reynolds number ReBF = 4140 and report the results in figure 15,
using the same conventions used for the onset of the bifurcation, for ReBF = 1370,
in figure 12. We first need to identify the closed streamlines and then calculate the
instability properties along the orbit. We observe again three local maxima of the
asymptotic growth rate, corresponding to two steady and one time-dependent modes.

The variation of the revolution period T as a function of the coordinate x, defining
the different orbits, is depicted in the upper half of figure 16, while the corresponding
orbits inside the cavity are displayed in the lower half. The main result we present
here is that the period of the higher harmonics of the zero-frequency leading mode is
selected by the period of revolution along the streamline of maximum growth rate. In
table 3 we show that the frequencies obtained from the global stability analysis and
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FIGURE 15. Asymptotic results for ReBF = 4140. See figure 12 for details.
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FIGURE 16. (Colour online) Revolution period of cavity orbits as a function of the
abscissa x (upper half). Contour plot of the base flow modulus (kubk2) at ReBF = 4140
and the three streamlines corresponding to the local maxima of the inviscid growth rate
in figure 15 (lower half).

displayed in figure 3 do indeed correspond to the frequency computed by the local
analysis (7.10). It is interesting to note that the global mode frequencies are uniquely
related to the revolution period of a Lagrangian particle transported along the orbit.
Thus, we conclude that the different frequencies of the multiple unstable branches are
obtained as multiples n of the period of revolution along the critical (most unstable)
orbit; the data in the table show an error lower than 5 %.
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Harmonic Global mode frequency Orbit period WKBJ frequency Percentage error
n ! T �

{n}
i ( 0) = 2np/T (%)

0 0.000 19.5 0.00 —
1 0.302 19.5 0.32 4.2
2 0.610 19.5 0.64 4.7
3 0.920 19.5 0.96 4.5

TABLE 3. Comparison of the results obtained using global stability analysis with those
provided by the asymptotic analysis. We selected the orbit that has the maximum inviscid
growth rate using a base flow characterized by ReBF = 4140. The WKBJ frequencies are
calculated according to (7.10).

8. Final remarks

In this work, we study the instability of the flow past an infinitely wide open square
cavity. First, we identify the critical Reynolds number (ReBF = 1370) at which the first
bifurcation occurs. This instability drives the flow from a steady two-dimensional to a
steady three-dimensional configuration characterized by a relatively short modulation
in the spanwise direction, the spanwise scale of the modulation being of about 0.47
cavity depths.

The spatial structure of the direct and adjoint eigenmodes is examined to describe
the features of the flow past the bifurcation. The direct mode is concentrated
inside the cavity in a circular region with a tail on the shear region just above
the downstream wall; the adjoint mode has a similar structure except for a small
region near the upstream edge of the cavity where the flow is most receptive to
momentum forcing. The overlapping of these two fields provides information about
the instability mechanism (the so-called wavemaker) and is concentrated within the
square cavity, suggesting that the generation of the instability mechanism is spatially
concentrated around a closed streamline inside the cavity, around the core vortex.

We examine different types of cavity flows (i.e. characterized by different boundary
conditions) and identify the corresponding critical Reynolds number at which the first
bifurcation occurs. As proposed by Brés & Colonius (2008), we confirm that the
mean velocity computed along the line connecting the two opposite edges allows us
to roughly estimate the critical conditions at which the first bifurcation arises. The
critical value of a Reynolds number based on this averaged velocity, the cavity depth
and the fluid viscosity is found to be Reav ⇡ 470.

The sensitivity to base flow modifications is then considered to study the
mechanisms that can suppress or enhance the instability. We follow here the approach
by Meliga & Chomaz (2011) and compute the optimal linear velocity distribution
at the walls and at the inlet of the computational domain able to stabilize the flow.
The resulting blowing/suction profiles show that each modification (when possible) is
aimed at decreasing the total momentum of the cavity core vortex (identified above
as the core of the instability).

The WKBJ approximation is then introduced to predict the first instability and its
characteristics as suggested by Bayly (1988). Considering the asymptotic stability
along the closed streamlines inside the cavity, we find three different branches of
unstable orbits (two stationary branches and an unsteady branch) and select the three
critical orbits  whose corresponding growth rates are local maxima (�r 1, �r 2, �r 3).
The asymptotic values of the growth rate and of the spanwise wavenumber of the
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unstable modes show very good agreement with the global stability analysis once the
correction for finite Reynolds number and spanwise length scale are applied to the
inviscid asymptotic result. The three critical orbits detected by the asymptotic analysis
are also shown to overlap with the structural sensitivity map of unstable modes at
low viscosities, large ReSTB (we refer to this field as inviscid structural sensitivity).
This procedure allows us to identify the spatial region where the core of the inviscid
mechanism of the instability is located.

To identify a frequency selection mechanism for the time-dependent sub-leading
unstable global modes emerging at supercritical conditions, we consider the stability
of the flow at ReBF = 4140 where the global analysis shows the occurrence of four
branches of unstable modes characterized by frequencies that are multiples of a
fundamental value !0. We show that the value of !0 corresponds to the period of
revolution of Lagrangian fluid particles along the closed orbit of largest growth rate
in the asymptotic limit. We thus conclude that the asymptotic theory is able to predict
accurately the global stability results, enabling us to estimate the critical conditions
leading to the instability. Furthermore, the inviscid structural sensitivity, discussed
here, is a general concept that can be used whenever the instability is of inviscid
type.

Appendix A. Construction of pressureless modes

In what follows we briefly recall the theory related to the dynamics of asymptotic
modes (Bayly 1988). First of all, we express the evolution of the perturbation using
the normal-mode ansatz

[u0, P0] = [û, P̂] exp{ikz + st}. (A 1)

The main idea is to use the eigenpairs of the fundamental Floquet matrix M(T) to
build a vector basis f i for the representation of the modes along the orbit:

û(x) =
3X

i=1

ûi(x)f i(x). (A 2)

This basis diagonalizes the nonlinear operator ub · r( ) + ( ) · rub and can be
computed as f i = e�� tM(t)e

i

. Considering the limit of kkk ! 1, we re-scale the
WKBJ eigenmode as

[û, v̂, ŵ, p̂]( ̃ ) = [Û, V̂/k, ŵ/
p

k, p̂/k
p

k]( ̃ ), (A 3)

where the new streamfunction  ̃ = p
k( � 0) allows us to magnify the region near

the critical orbit  0. Introducing the scaling (A 3) into the LEes, we get the equation
of a quantum harmonic oscillator (see e.g. Bender & Orszag 1978)

Û

00
( ̃ ) +


A

J ( 0)
� �2 ̃ 2

�
Û = 0, (A 4)

with Û(±1) = 0, �2 = �� 00( 0)/(2J ) and

J = 1
T( 0)

Z T( 0)

0
( f

†
1 · r )


� ( 0) + d

dt

�
{ f 1 · r }dt. (A 5)
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In (A 4), the constant A is the parameter that governs the scaling of the eigenvalue s
(i.e. s = � ( 0) � A/k) and the adjoint vector f

†
i is normalized as f

†
i · f j = �ij.

A better quantitative estimate of the viscous growth rate can be achieved using the
viscous correction introduced by Landman & Saffman (1987) (see also Gallaire et al.
2007). The composite estimation thus reads

s = � ( 0) � A
k

� k2

ReBF
. (A 6)
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1. Introduction

Ever since Ludwig Prandtl introduced the notion of boundary
layer, the study of the stability of boundary-layer flows has been
of primary importance. In the analysis of steady two-dimensional
boundary layers several approaches have been proposed in or-
der to analyze the propagation of small disturbances [1]. Initially
the analysis focused on parallel flows, neglecting the growth of
the boundary layer thickness [2]. Subsequently, many efforts were
made to improve the approximation by considering non-parallel
effects (see e.g. Gaster [3]). In this context, Saric andNayfeh [4] suc-
cessfully took into account variations of the mean flow and of the
disturbance amplitude along the streamwise direction. They con-
sidered the stability of the Falkner–Skan and Blasius flow and, in
this last case, they found agreement between their neutral stabil-
ity curve and the available experimental data.

The spatial and temporal evolution of wave packets inside
three-dimensional boundary layers aroused a large interest in the
following decades. The flowpast sweptwings is a classical example
in aerodynamics. As a consequence of the three-dimensionality,
the spanwise wavenumber of the disturbance is generally not con-
stant. The onset of linear instability, in the case of swept wings,
was investigated by Cebeci and Stewartson [5] and Herbert and
Bertolotti [6] among others. De Matteis et al. [7] formulated the
stability problem on swept wings by means of the theory of com-
plex rays in dispersive and anisotropic media.

∗ Corresponding author.
E-mail address: vcitro@unisa.it (V. Citro).

This theory is employed inmany fields of physics, such as radio-
wave propagation and attenuation in the ionosphere [8,9], diffrac-
tion of Gaussian beams [10] and excitation of surfacewaves [11]. In
the context of the linearized Navier–Stokes equations, it was used
for the first time by Itoh [12]. He applied the kinematic wave the-
ory of Whitham [13], obtaining a homogeneous problem that was
solved by themethod of characteristics. The problem of boundary-
layer receptivity to a mixing of different disturbances [14,15],
furthermore, was solved by Zuccher [16] using ray theory. More
recently this theory was employed by Gréa [17] to study the oc-
currence of caustics in boundary layers.

Here, we focus our attention on the stability of unsteady two-
dimensional boundary layers. The study of the linear stability of
this kind of flows is of interest inmany industrial applications such
as helicopter rotors or wind turbines, and is related to a variety of
physiological processes like blood flow through arteries.

A classical example of unsteady shear-layer flows is the Stokes
layer, i.e. a shear layer generated by imposed harmonic oscillations
of an infinite flat plate. Because the base flow is periodic in time,
Floquet theory was initially used to study the linear stability of
this problem [18]. Unfortunately, this attempt produced a consid-
erable discrepancywith experiments [19]. Vittori andVerzicco [20]
showed that, for practical disturbance amplitudes, Floquet theory
is not able to predict the instability of Stokes layers because, owing
to the large growth that occurs during a part of the cycle, the insta-
bility directly attains the non-linear stage, thus making the linear
Floquet theory inapplicable. Therefore, in such kind of flows, the
only alternative to direct numerical simulation (DNS), up to now,
is to use a quasi-steady approach.

http://dx.doi.org/10.1016/j.euromechflu.2014.10.004
0997-7546/© 2014 Elsevier Masson SAS. All rights reserved.
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The aims of the present work are (i) to provide a general pro-
cedure, based on complex-ray theory, that describes the propaga-
tion of disturbance wave trains in a generic (periodic or even non
periodic) unsteady, three-dimensional boundary layer, and (ii) to
provide an application to a two-dimensional time-periodic flow
(arising in oscillating airfoil problems) that, in addition, allows us
to estimate the error introduced using a quasi-steady approach in
the stability analysis.

The present paper is structured in the following way. Firstly,
we present the problem formulation in the case of a generic un-
steady boundary-layer flow. The equations for the infinitesimally
small perturbations are obtained and a multiple-scale analysis is
performed. Subsequently, the dispersion relation of the leading-
order problem is introduced and the ray equations are derived. The
problem of analytical continuation, and a possible alternative, is
also discussed in detail. As an application, we perform the stability
analysis of the boundary layer past an oscillating Kármán–Trefftz
airfoil and show some transition-prediction results.

2. Problem formulation

We investigate the stability characteristics of a generic un-
steady, three-dimensional boundary layer flow. The coordinate
systemhas the x axis in the streamwise direction, the y axis normal
to the wall and the z axis orthogonal to the first two. The motion
of a viscous fluid that has constant density ⇢ and constant kine-
matic viscosity ⌫ is governed by the incompressible Navier–Stokes
equations written in non-dimensional form, as
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where U(x, t) is the velocity field, with components U, V ,W
and P(x, t) is the reduced pressure. The Reynolds number Re =
L

ref

U

ref

/⌫ is based on the, yet unspecified, reference length L

ref

and
velocity U

ref

.

2.1. Linear stability analysis

The onset of instability is studiedwithin the framework of linear
theory. We consider three-dimensional infinitesimal disturbances
superposed to a two-dimensional unsteady base flow and decom-
pose the total velocity U and pressure P fields as

U(x, y, z, t) = [ub, vb, 0](x, y, t) + [u0, v0, w0](x, y, z, t), (2a)

P(x, y, z, t) = p

b(x, y, t) + p

0(x, y, z, t), (2b)

where superscript b denotes a base-flow quantity and the prime
denotes a disturbance quantity. Introducing this decomposition
into (1), we obtain two problems describing the base flow and the
evolution of the unsteady perturbation. In what follows, we shall
only retain first-order terms in the disturbance quantities. The per-
turbed field is then described by the following set of linearized un-
steady Navier–Stokes equations (LNSE)
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The base flow u

b, pb is supposed to be known without any
approximation.

If the flow is parallel, L
ref

is the vertical characteristic length
scale and the system (3) has an exact exponential solution with
a finite characteristic wavelength of the perturbation `

pert

in the
streamwise directionwhichmay, in general, not coincide with L

ref

.
We assume the flow to be quasi-parallel, i.e. the velocity to vary
slowly in x over a characteristic length scale `

bf

much larger than
either L

ref

or the perturbation length scale `
pert

. We assume, fur-
thermore, that the characteristic length scale of the base flow in
the direction z is also `

bf

, and that the characteristic time scale is
`
bf

/U
ref

.
Thus, we introduce the small parameter ✏ = L

ref

/`
bf

and con-
sider the base flow as a function of (X, y, Z, T ) where
X = ✏x, Z = ✏z, T = ✏t. (4)

As a direct consequence of the continuity equation (1a), the
base-flow component vb is of order ✏ and can be written as vb =
✏Vb(X, y, Z, T ).

We do not make any additional assumption on the motivation
why the base flow has different scales in the streamwise and wall-
normal direction; thus, ✏ and the Reynolds number Re are inde-
pendent parameters.

Even when the base flow is unsteady a multiple-scale approxi-
mation can be used to study the evolution of the instability just as
Gaster [3] and others did in the past for the corresponding steady
problem. Themultiple-scale approach originates from the high fre-
quency (optical) approximation of linear dispersivewaves. Accord-
ing to thismethod, the perturbation fieldq

0 is expressed in the form
of the Wentzel–Kramers–Brillouin (WKB) [21] asymptotic expan-
sion:

q

0(X, y, Z, T ) = e

i
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1X
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where q

0 = [u0, v0, w0, p0], q̂
k

= [û
k

, v̂
k

, ŵ
k

, p̂
k

] and ⇥ is named
the eikonal function; its spatial and temporal derivatives respec-
tively represent the local wavenumber components and the fre-
quency of the perturbation. The following notation is used for such
quantities

↵ = �@⇥

@X
, � = �@⇥

@Z
, ! = @⇥

@T
. (6)

Substituting the above expansion (5) into the perturbation equa-
tions (3), taking into account the relation (4) and grouping terms
multiplied by the same power of ✏, a hierarchy of equations is
obtained. The leading-order approximation is governed by the fol-
lowing differential problem, formally identical to the one corre-
sponding to the parallel-flow case but for non-constant ↵, � and!

�i↵û0 + v̂0y � i�ŵ0 = 0, (7a)

i!û0 � i↵ub

û0 + u

b

y
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� 1
Re

(û0yy � ↵2
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û0) = 0, (7b)

i!v̂0 � i↵ubv̂0 + p̂0y � 1
Re

(v̂0yy � ↵2v̂0 � �2v̂0) = 0, (7c)

i!ŵ0 � i↵ubŵ0 � i�p̂0 � 1
Re

(ŵ0yy � ↵2ŵ0 � �2ŵ0) = 0, (7d)

û0 = v̂0 = ŵ0 = 0 as y ! 1, (7e)

û0 = v̂0 = ŵ0 = 0 at y = 0. (7f)
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Higher order equations can be derived with a procedure similar
to the case of the steady flow with no additional difficulties. The
linear system (7) admits a non-trivial solution if and only if a com-
patibility condition is satisfied; this relation between (X, Z, T , ↵,
�, !) is called the dispersion relation.

3. The dispersion relation

The concept of dispersion relation appears in many different
fields of physics, such as quantummechanics or optics. In fluid dy-
namics there are many problems leading to a dispersion relation,
for example in the study of gravitywaves. Dispersion is aword bor-
rowed from optics, where it represents the physical phenomenon
of the separation of different colors due to the dependence of the
speed of light in a medium on the wavelength. This relation allows
us to describe the dispersion process, providing a quantitative re-
lation between the angular frequency ! of a wave and its wave
vector k. The information about the propagation of a given wave
is contained in the appropriate dispersion relation, which also al-
lows some important parameters to be obtained, such as the phase
velocity or the group velocity.

In the case under investigation, the eigenproblem (7) admits
non-trivial solutions only for suitable values of wave vector and
the frequency. When problem (7) is discretized in y direction, the
dispersion relation identifying these values is obtained by equating
to zero the determinant of the system:

D (X, Z, T , ↵,�, !) = 0; (8)

thus, D represents the discretized dispersion relation whatever
numerical method is used for the discretization. The dispersion
relation of the differential problemcan be considered as the limit of
this determinant according to Fredholm’s formulation for integral
equations.

4. The ray equations

Inserting the definition of the local frequency and local
wavenumber (6) in the dispersion relation leads to a first-order
partial differential equation for the complex eikonal function ⇥:

D

✓
X, Z, T , �@⇥

@X
, �@⇥

@Z
,
@⇥

@T

◆
= 0. (9)

This equation is the analogue of the Hamilton–Jacobi equation
of analytical mechanics [22] and once the values of the eikonal
function are assigned on a non-characteristic strip, then a unique
solution of the Cauchy problem exists [23].

Following Whitham [13, Ch. 5], we solve the eikonal equation
by themethod of characteristics. The resulting characteristic equa-
tions read:

dX

d�
= �@D

@↵
,

dZ

d�
= �@D

@�
,

dT

d�
= @D

@!
, (10a)

d↵

d�
= @D

@X
,

d�

d�
= @D

@Z
,

d!

d�
= �@D

@T
, (10b)

d⇥

d�
= @D

@↵
↵ + @D

@�
� + @D

@!
!. (11)

The differential equations (10) are called ray equations, i.e. the
characteristic lines of the eikonal equation. Eq. (11), on the other
hand, is directly derived from the definition of ⇥; it will be used to
compute the value of the eikonal function along the ray.

The solution of this system of differential equations is a curve
in the six-dimensional space (X, Z, T , ↵,�, !) represented as a
function of the parameter � . In order to have a unique solution

of (10), it is necessary to provide the values of
✓
X0, Z0, T0,

@⇥
@X

����
0
,

@⇥
@Z

����
0
, @⇥

@T

����
0

◆
in a point [24].

There is an analogy between the equations of Hamiltonian
mechanics and the characteristic equations (10). The trajectory of
a material point, in mechanics, can be selected either by an initial
position and momentum (X

0

, p) or by an initial and final position
(X

0

,X
1

) [25]. The choice to assign the initial conditions (X
0

, p) lead
to a solution of an initial value problem (IVP), while, the use of
two different points to specify the spatial path leads to a boundary
value problem (BVP). Similarly,we can select a ray both by its initial
location andwave vector (X0, Z0, T0, ↵0, �0, !0) or by its initial and
final positions (X0, Z0, T0, X1, Z1, T1).

The choice of the parameter � affects the expression of D; as a
particular case, the form of the dispersion relation can be chosen
so that the independent variable � is one of X , Z or T . We note that
these choices require D to be an invertible function. For a phys-
ical problem this is always true when the parameter � is time. In
general, whenwe choose x as � (for example in the stationary flow
over an airfoil or a flat plate), it is not guaranteed that D is invert-
ible, but it can easily verified a posteriori.

The procedure presented in this section is also known in litera-
ture as Monge’s method [26].

5. The choice of the independent variable

The solution of system (10) is generally complex-valued and an
analytical continuation of the base flow is required.When the base
flow depends only on one among X, Z, T , for example in the case
of a steady two-dimensional flow, we can choose this coordinate
as independent variable. This choice is important because it can be
kept real avoiding the need to calculate the base flow for complex
values. In this situation the solution of the ray equations reduces
to the calculation of the phase integral. In the classical example of
the stability of the steady base flow, this integral is the one used in
the classical eN method:

N(X0, X1) =
Z

X1

X0

=(↵)dX . (12)

As another example, when the flow depends on y and T only
(as in the case of the Stokes layer [27–29]) the solution of the ray
equations reduces to the integral:

⇥ =
Z

T1

T0

!dt.

A discussion of the accuracy of this approximation applied to the
Stokes layer can be found in [30].

In a generic flow, when the base flow depends on more than
one coordinate, no specific choice of the independent variable re-
duces the solution of the problem to an integral. Whereas time as
the independent variable would seem the most natural choice, us-
ing X in this role allows us to approach the steady solution (12)
with continuity.

We consider a mean flow which is homogeneous in the span-
wise direction; the eikonal equation can be written as follows:

@⇥

@X
= F

✓
X, Z, T ,

@⇥

@T

◆
(13)

and the ray equations (10) as

dT

dX

= @F

@!
, (14a)

d!

dX

= �@F

@T
. (14b)
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⇥(X0, T0; X1, T1) =
Z (X1,T1)

(X0,T0)
(�↵ dX + ! dT )

= �
Z

X1

X0

✓
↵ � !

dT

dX

◆
dX . (15)

System (14) gives the trajectory of a ray in the five-dimensional
space (X , <(T ), =(T ), <(!), =(!)), where =(·) and <(·) repre-
sent the imaginary and real part operator. After getting the solu-
tion of (14), then, we can compute the values of eikonal function
from (15).

6. The real-path approximation as an alternative to analytical

continuation

The solution of the ray equations (10), as mentioned in the pre-
vious section, implies an analytical continuation of the base flow.
The determination of a ray between two given points X0, X1 2 R is
a boundary-value problemonce the initial and final times are spec-
ified. These values are usually assumed to be real, but in all inter-
mediate points both frequency! and time T are generally complex.
Complex rays have two computational inconveniences: (i) everyX1
that we consider requires a new boundary value problem, i.e. each
path is different in the complex plane; (ii) the calculation requires
the base flow to be known for complex values of time.

When the base flow has been obtained from a system of dif-
ferential equations, its analytical continuation can be obtained by
solving these equations again for complex values of the indepen-
dent variable. On the other hand, when the system of PDE is not
available, or the base flow is empirical data, a Taylor expansion can
be used but such procedure is usually ill-conditioned.

This difficulty can be avoided at the cost of an additional ap-
proximation by moving the whole path from complex time to real
time. This approximation is analogous to using the stationary-
phase rather than the saddle-point approximation of an integral.

Thus, we consider a variation of the ray path of the form T !
T + �T and ! ! ! + �! where �T (X0) = �T (X1) = 0. The first
variation of Eq. (15) can be written as

�⇥ =
Z

X1

X0


� @↵

@!
�! � @↵

@T
�T + �!

dT

dX

+ !�

✓
dT

dX

◆�
dX . (16)

Integrating by parts the last term we obtain

�⇥ =
Z

X1

X0


� @↵

@!
�! � @↵

@T
�T + �!

dT

dX

� �T
d!

dX

�
dX

+ [!�T ]X1
X0

=
Z

X1

X0


��!

✓
@↵

@!
� dT

dX

◆
� �T

✓
@↵

@T
+ d!

dX

◆�
dX

+ [!�T ]X1
X0

. (17)

In thisway,we can conclude that the first variation is zero since the
terms in the round brackets are Eqs. (14), which vanish by assump-
tion, and the last term is zero because at the bounds of the integral
the variation of time is zero. In optics, this result is known as Fer-
mat’s principle. This physical principle states that the optical path
of the ray that passes through two given points is an extremum.

This property allows us to replace the exact solution of Eq. (10)
by an approximate raywith only a second order error in the eikonal
⇥ . In particular we can replace the complex ray, as shown in Fig. 1,
by its projection on the plane (X, <(T )). This replacement cor-
responds to taking �T = �i=(T ) in Eq. (17). Since =(T (X0)) =
=(T (X1)) = 0 Fermat’s principle applies to this variation.

Fig. 1. Ray path in the complex plane for the oscillating airfoil problem discussed
in Section 8. The complex trajectory is denoted by a solid line (�); the associated
real-path by dashed line (��). Parameter settings: Re = 1 · 106, �

A

= 0.1, !0 =
500, �0 = 0.1 and k̃ = 0.63.

This procedure gives the following system of modified ray
equations

dT

dX

= <
✓

@F

@!

◆
, (18a)

d!

dX

= �@F

@T
. (18b)

A numerical verification of the error we make using the real-
path approximation is also reported in the Appendix.

7. The special case of a harmonic initial disturbance

Eq. (3) governing the evolution of the small perturbations is lin-
ear; its general solution can be expressed as a linear combination:

q

0 =
X

m

A

(m)
e

i⇥(m)/✏
1X

k=0

q̂

(m)
k

✏k (19)

where ⇥(m) and A

(m) are respectively the eikonal function and the
amplitude of themth mode.

When, as usually happens in boundary layers, one eigenmode is
muchmore unstable than the others, we can just retain the term of
the summation (19) related to this eigenvalue alone. Considering
then the leading-order term of the WKB expansion (5) (in what
followswe shall neglect the apex ‘‘(0)’’ related to the zeroth order),
we can write the final amplitude in a generic point (X, T ) as

A(X, T ) = A(X0, T0)e
i⇥(X0,T0,X,T )/✏ (20)

where ⇥ is the eikonal of the ray passing through the given pair
of initial and final points (as explained in Section 4). Since there
is a continuum of rays that have the same final point, the total
amplitude A

tot

can be written as

A

tot

(X, T ) =
Z

A(X0, T0)e
i⇥(X0,T0,X,T )/✏

dX0dT0. (21)

Thus, we are able to calculate the influence of an initial condition
on the final value of the phase in a generic point. Eq. (21) represents
an approximation of Green’s integral for the mode considered; ei⇥
represents an approximation of the impulse response to an initial
condition.

If the initial condition in space is a harmonic disturbance A0 =
e

i!0t0/✏:

A

tot

(X, T ) =
Z

e

i!0T0/✏
e

i⇥(X0,T0,X,T )/✏
dX0dT0

=
Z

e

i(!0T0+⇥(X0,T0,X,T ))/✏
dX0dT0. (22)



V. Citro, P. Luchini / European Journal of Mechanics B/Fluids 50 (2015) 1–8 5

Integral (22) can be approximated by the method of stationary
phase (see e.g. Bender and Orszag [21]), which is a consistent
approximation since we are in the limit of small ✏.

The point (X0, T0) where the phase is stationary is

@

@T0
[!0T0 + ⇥(X, T , X0, T0)] = 0. (23)

Thus, the exponent of Green’s integral, calculated in this point
(X0, T0), can be expressed as
�(X0, !0, X, T ) = ⇥(X0, T0, X, T ) + !0T0. (24)

The change of variables (24) is a Legendre transformation. Just
as!0 = � @⇥

@T0
(because of (23)) it can be proved that T0 = @�

@!0
. This

procedure is the same that is used in quantummechanics to relate
the classical quantum theory with the semi-classical quantum
theory, and in optics, where it represents the link between the
point eikonal and angle eikonal (see e.g. Gitin [31]).

8. An example: transition prediction on oscillating airfoils

We consider, as an example, the application of the present
theory to the flow arising beside an oscillating airfoil invested by a
uniform stream.

The system of Eqs. (1a), (1d) is made dimensionless with the
velocity magnitude of the incoming uniform stream U

⇤
ref

, the chord
of the airfoil c and the reference pressure ⇢U⇤2

ref

. Thus, the Reynolds
number can be expressed as

Re = c U

⇤
ref

⌫
. (25)

The oscillating periodic motion of the airfoil is governed by the
unsteady pitching law

� (t) = �0 + �
A

sin(k̃T ), (26)
where � is the angle of attack, �0 is the mean angle of attack, �

A

is the variation amplitude of the pitching angle and k̃ is the re-
duced frequency. This dimensionless parameter [32] is defined as
k̃ = ⌦c/U⇤

ref

, where ⌦ is the angular frequency of oscillation.
In this section, we present numerical results on a Kármán–

Trefftz profile characterized by a trailing-edge angle of 10° and a
complex plane singularity [33] located in �1.24 + i0.1.

8.1. Transition prediction in unsteady boundary layers

Instability of laminar flows and transition to turbulence in
boundary layer problems are important issues of fluid dynamics.
We recall, for example, that the drag due to turbulent boundary
layers over the surface of aircraft accounts for a large portion of the
total drag. There are several methods proposed to detect transition
location [34] but the most used is undoubtedly the eN method [35]
that is based on the amplification of linear instability waves. The
main idea, which is the basis of this method, is that the transition
occurswhen thewave amplitudeA is eN times thewave amplitude
at the neutral point. The value of N depends on the level of turbu-
lence and is typically chosen equal to 9. The classical application of
the e

N method to a steady two-dimensional boundary layer starts
by calculating

ln
✓

A

A0

◆
= N(X0, X1) = �=(⇥(X0, X1)) =

Z
X1

X0

=(↵)dX (27)

where X0 is the first pointwhere=(↵) vanishes. The obtained value
of N is a function of frequency. The worst case, then, is detected
by the identification of the optimal disturbance frequency, i.e. the
frequency that minimizes the position at which N reaches the em-
pirically determined target value Ñ .

In order to apply thismethod to unsteady boundary layer flows,
we have to consider an initially harmonic disturbance as shown in
the previous section. TheN corresponding to this case, then, can be
computed, using (24), as

N(X0, !0, X1, T1) = �=(�) =
Z

X1

X0

=
✓

↵ � !
dT

dX

◆
dX

� =(!0T0). (28)

According to Section 7, we are computing the value of N starting
from the condition (X0, !0) marching in the X direction till the
final position (X1, T1); the initial time T0, then, can be determined
as @�/@!0. In (28), unlike the steady case, the final frequency ! is
different from the initial frequency !0. We have to note that there
is also a difference between an initial time, at which the real part
of the streamwise wavenumber vanishes (i.e. on the lower branch
of neutral curve), and a final time where the transition process
to turbulence occurs. Furthermore, we can easily show that the
relation (28) is consistent in the limit of steady base flow.

In this case we have a constant frequency ! = !0 since F is
independent of T

d!

dX

= �@F

@T
= 0. (29)

Thus, we can rewrite the expression of the N-factor as follows

N(X0, !0, X1, T1) =
Z

X1

X0

=(↵)dX � =[!0(T1 � T0)] � =(!0T0)

=
Z

X1

X0

=(↵)dX � =(!0T0). (30)

This relation, for real !0 and T0, becomes the previously given
definition (27).

8.2. Computation of the base flow

Wenote that themultiple-scale approximation described in the
previous section is independent of the use of an exact or approxi-
mate base flow, in particular insofar as a comparison with a quasi-
steady approach is concerned, as will be the subject of Section 8.4.
From the viewpoint of the practical application the consequences
of approximating the base flow are not trivial and discussed in [36].
However, since the solution of linearized equations is independent
of the calculation of the base flow, for the purpose of this example
we use a base flow obtained from unsteady boundary layer equa-
tions.

The outer, inviscid velocity field around the Kármán–Trefftz
profile described at the beginning of this section is obtained from
conformalmapping theory, with unsteadiness appearing paramet-
rically trough the attack angle defined in (26). The analytically cal-
culated inviscid velocity at the wall represents the outer boundary
condition for the boundary layer solver.

The numerical method used to solve the boundary-layer equa-
tions is similar to the classical one presented in [37]. The equa-
tions are discretized by a second-order-accurate finite-difference
scheme on a nonuniform grid in space. The time advancement was
performed through an implicit scheme. The resulting nonlinear
system of algebraic equations, along with no-slip boundary condi-
tions at the wall and the imposed free-stream conditions, is solved
by an iterative Newton–Raphson procedure.

8.3. Numerical methods for stability problem

Several numerical techniques are available to solve the eigen-
problem (7) and the differential system (14) efficiently. Here, we
investigate the stability of unsteady boundary layers using a finite
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difference formulation. Eqs. (7) are discretized by second-order
central differences over a staggered grid. The velocity components
u

j

and v
j

are located in the grid points y
j

, while the pressure p

j

in
the midpoint between y

j

and y

j+1. The system of algebraic equa-
tions together with their boundary conditions are recast in the fol-
lowing form

L(↵, �,!, Re) · ⇠ = 0, (31)

where ⇠ ⇢ Cn is the right (direct) eigenvector and L is a diagonal
bandedmatrix. The computational domain extends in wall normal
direction from 0 to y1. We use the standard zero-velocity con-
ditions at the solid wall and the asymptotic condition of inviscid
outer behavior at the upper boundary y1 as in Luchini and Bot-
taro [38]. The conditions associated to wall and asymptotic behav-
ior are inserted, respectively, in the first and in the last rows of the
matrix L. The eigenvalue problem, then, is solved by the classical
inverse-iteration algorithm [39].

The partial derivatives ofF in Eqs. (14), that provide the trajec-
tory of the ray and the evolution of the frequency along the path,
are discretized by a second-order backward finite difference for-
mula in the marching direction. Each discretization has been sub-
jected to step size convergence tests, not shownhere for the sake of
brevity, and the computed eigenvalues in the steady case are found
in agreement with those obtained in Giannetti and Luchini [40].

The numerical procedure, therefore, consists in the computa-
tion of characteristic lines (the rays) using Eqs. (14) where the
formal expression of F in (13) is represented by the numerical so-
lution of the eigenvalue problem (31). The computation ofN-factor
according to (28), then, starts at the neutral point. This point is de-
fined as the streamwise location where the real part of the leading
eigenvalue of (31) vanishes. The marching algorithm ends when
the value of N reaches a given target value Ñ . In the computations
discussed in Section 8.4, Ñ is equal to 9. The optimal frequency is
then identified using a Newton method in order to find the fre-
quency that minimizes the transition position.

8.4. Numerical results

We focus our attention on the determination of the transition
location and its displacement during the oscillation period in un-
steady boundary layers. The parameters in the unsteady pitching
law (26) have been chosen as �

A

= 0.1, �0 = 0.1 and k̃ = 0.63,
which fall in the range reckoned of engineering interest by Leish-
man [41]. The evolution of the N factor of (28) against the curvilin-
ear abscissa X is plotted in Fig. 2 for several frequencies. We recall
that the frequency of the disturbance varies along the ray trajectory
because of the time-dependence of the base flow; here, the rays are
labeled with the initial frequency. All curves have a monotonic be-
havior, just as in the corresponding steady case, and the process of
disturbance amplification takes about 10% of the chord length for
the considered values of the frequency. For each X after the neu-
tral point, there is a maximum N attained for a certain value of the
initial frequency !0. The transition position X

tr. is defined by the
e

N method as the minimum streamwise position where the value
of N is equal to the target value Ñ . In Fig. 2 for Ñ = 9, the optimal
frequency is !

opt. ⇡ 600 and the transition occurs at X
tr. ⇡ 1.15.

Fig. 3(a) shows the transition position X

tr. as a function of the fi-
nal time for the Reynolds number Re = 2 · 107. The curve showing
the most amplified initial frequency as a function of final time is
plotted in Fig. 3(b). We note that the maximum value of the transi-
tion position is reached when the angle of attack is about equal to
its maximum value. In this condition themost amplified frequency
is !

opt. ⇡ 500.
Up to the present procedure, the transition position could be

calculated using a quasi-steady approach, i.e. neglecting the time

Fig. 2. N as a function of the curvilinear abscissa X at T = 0. Here, we chose the
origin of the spatial coordinate X at the trailing edge of the airfoil and normalized it
using the length of the chord section. The abscissa increases in clockwise direction
starting from the origin. Parameter settings: Re = 1 · 106, �

A

= 0.1, �0 = 0.1 and
k̃ = 0.63.

dependence of themean flow.We compare the results predicted by
this quasi-steady approach with those provided from the present
theory. This analysis allows us to show the effect of unsteadiness
on the evolution of the linear instabilitywaves and provide a quan-
titative estimation of error made using a quasi-steady approach.
Fig. 4 contains the amplification factorN against the dimensionless
curvilinear abscissa X for several reduced frequencies. The param-
eter k̃ has been chosen in the range [0, 1.89] in order to show the
effect of strong unsteadiness but, usually, only the range [0, 0.6] is
interesting for helicopter applications. In this range, as shown in
Fig. 4, the difference between the transition location calculated in
the steady case and the one characterized by k̃ = 0.63 is of the or-
der of 1%. Therefore, the error on the transition position computed
using the quasi-steady approach is negligible in helicopter aerody-
namics.

This result can be explained if we remember that the ratio be-
tween the airfoil chord and the circumference described by the
helicopter blade is typically small. The variation of the base flow
caused by its time dependence during the time the blade moves
forward by a length equal to its chord is small with respect to
the variation caused by its spatial dependence. The success of the
quasi-steady approach, thus, can be ascribed to the scale separa-
tion between the period of oscillation (time to travel through one
circumference) and the traversal time of the base flow through one
chord.

9. Conclusions

In this paper we have developed a procedure to study the linear
stability of an unsteady boundary layer. The presented method
can be applied to a generic unsteady flow different from the other
existing methods that can be applied to periodic flows depending
on T and y (but not on X and Z) like, for example, the first [38] or
the second [29] Stokes problem. This procedure is based on a high-
frequency (optical) approximation, where we suppose that the
base flow typically evolves on a characteristic streamwise length
scale much larger than the wavelength of the perturbation.

We introduce the dispersion relation related to the leading-
order problem and, as in the Hamiltonian mechanics or in optics,
we solve the eikonal equation by the method of characteristics.
Since the dispersion relation is complex-valued, the characteris-
tic paths involve analytical continuation of all dependent variables
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Fig. 3. (a) Transition position as a function of final time (transition detected when the target value Ñ = 9); (b) Most amplified frequency as a function of final time. Here,
we depict the results arising in a single period ⌧ of periodic airfoil oscillations. Parameter settings: Re = 2 · 107. The pitching law is characterized by �

A

= 0.1, �0 = 0.1 and
k̃ = 0.63.

Fig. 4. Effect of reduced frequency k̃ on the amplification factor N . Parameters:
Re = 2 · 106, ! = 700. The curvilinear abscissa is chosen similarly to Fig. 2.

for complex values. Then, we show how to consider an initial har-
monic disturbance and deal with the possibility to express the
disturbance amplitude, at a given final location, as integral of con-
tinuum of rays that have the same final point.

We consider, as an example application of the present theory,
the flow past an oscillating Kármán–Trefftz airfoil. A method that
allows us to determine the transition location in the unsteady case
is presented. We note that, unlike the steady case, the final fre-
quency ! of the ray is different from the frequency !0 of the initial

harmonic disturbance. We show the transition position predicted
and its displacement during the oscillation period.

The present procedure is not limited to oscillating-airfoil prob-
lems; quantitative stability calculations for other classical or in-
dustrial applications can be performed. This procedure can also be
applied for problems of flow control or transition delay. In fact, the
present ray method is well suited to obtain the downstream re-
sponse to any kind of initial source of disturbances. It is possible, for
example, to devise a strategy ofwall forcing, steady or unsteady dis-
tribution ofwall blowing/suction.We explicitly recall that this the-
ory is usable also for steady or unsteady 3D boundary layer flows,
where the mean flow depends on the spanwise coordinate. Fur-
thermore, the present procedure, based on the multiple scale ap-
proximation, requires a lower computational burden than the full
solution of the Linearized Navier–Stokes equations.

Before the present analysis, it was possible to estimate the tran-
sition position using a quasi-steady approach but without the pos-
sibility to quantify the error. In helicopter applications, we obtain
the remarkable result that quasi-steady calculations provide ac-
ceptable results.

The proposed theory includes, as special cases, both the e

N

method for stationary flows and the approximations, used in the
past, for the Stokes layer problem [30].

Appendix. Numerical accuracy of the real-path approximation

In this appendix we compare the real-path approximation with
the analytical continuation obtained by solving the base-flow

Table A.1

Comparison between the transition position computed by analytical continuation
(a.c.) of the base flow and by the real-path approximation (r.p.). Here, X0 is the
neutral point and X

t.r. is the transition position.

!0 X

r.p.
tr. � X0 X

a.c.
tr. � X0 Relative error %

500 0.09112 0.09120 0.087%
700 0.09583 0.09592 0.093%

boundary-layer equations for complex values. All it takes to solve
these equations for complex values of the independent variable is
to declare a few variables complex and to specify a suitable inte-
gration path.

The comparison was carried out for the specific ray leading to
Ñ = 9 among those considered in the oscillating airfoil problem.
Parameters are, as in Section 8.4: Re = 1 ·106, �

A

= 0.1, �0 = 0.1
and k̃ = 0.63.

Weperformed this comparison for a fewvalues of the frequency
!0; relative error of all cases was found to be of the same order
of magnitude. As an example, in Table A.1, we report the results
obtained for two different frequencies !0 = 500 and !0 = 700.

Real-path approximation, involving an error of the order of
0.1%, is computationally about a hundred times faster than the
exact procedure based on analytical continuation.
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We study the full three-dimensional instability mechanism past a hemispherical
roughness element immersed in a laminar Blasius boundary layer. The inherent three-
dimensional flow pattern beyond the Hopf bifurcation is characterized by coherent
vortical structures usually called hairpin vortices. Direct numerical simulation results
are used to analyze the formation and the shedding of hairpin vortices inside the
shear layer. The first bifurcation is investigated by global-stability tools. We show the
spatial structure of the linear direct and adjoint global eigenmodes of the linearized
Navier-Stokes equations and use the structural-sensitivity field to locate the region
where the instability mechanism acts. The core of this instability is found to be
symmetric and spatially localized in the region immediately downstream of the
roughness element. The e↵ect of the variation of the ratio between the obstacle
height k and the boundary layer thickness �⇤

k

is also considered. The resulting
bifurcation scenario is found to agree well with previous experimental investigations.
A limit regime for k/�⇤

k

< 1.5 is attained where the critical Reynolds number is
almost constant, Re

k

⇡ 580. This result indicates that, in these conditions, the only
important parameter identifying the bifurcation is the unperturbed (i.e., without
the roughness element) velocity slope at the wall. C

2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4928533]

I. INTRODUCTION

Processes of transition to turbulence over rough surfaces are often encountered in an engineering
context. For example, pipes and ducts cannot often be considered as hydraulically smooth, espe-
cially at high Reynolds numbers. A practical example in which these phenomena assume consider-
able importance is the flow past ice formations on aircraft surfaces that can lead to a deterioration of
handling characteristics and produce noise.

The transition process on surfaces with large roughness protrusion height appears to be character-
ized by physical mechanisms that are di↵erent from those acting for lower roughness protrusion height
and have not been clarified yet. The presence of small roughness elements at the wall produces small
flow disturbances which linearly amplify while being convected downstream, eventually attaining
the amplitude necessary to cause transition at a relatively large distance from the roughness elements
that gave rise to them. Such disturbances are of two general types: Tollmien-Schlichting waves, well
visible in experiments characterized by a two-dimensional roughness distribution,1 or longitudinal
vortices inducing a transient growth of streamwise streaks of alternating high- and low-momentum
fluid, which may grow enough to cause transition before having the possibility to decay.2,3 Surfaces
with a discrete or continue distribution of roughness may be used to enhance heat transfer or mixing,
or alternatively, to stabilize systems (even in the nonlinear regime, see e.g., Ref. 4) and can indeed
be used for delay transition.5

a)Electronic mail: vcitro@unisa.it

27, 084110-1 © 2015 AIP Publishing LLC
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The receptivity mechanisms6,7 described above, however, only apply if the roughness ampli-
tude is su�ciently small.3,8 On the other hand, when the protrusion height is large enough, transition
suddenly appears downstream of an individual roughness element. The mechanism involved in this
process is not yet understood. In an e↵ort to shed light on the transition mechanism associated with
large-amplitude surface roughness, several experiments have been carried out in the past.9,10 The
results obtained have shown that if the Reynolds number based on the roughness height exceeds a
critical value, then transition occurs immediately past the roughness element; conversely, if the crit-
ical value is not exceeded, the receptivity mechanisms described above are dominant and transition
takes place farther downstream. These experimental data produced empirical correlations based on
the roughness-based Reynolds number as far back as in the 1950s.11 These criterions are still used in
practice to predict transition in the wake of isolated three-dimensional roughness elements. Although
transition correlations are useful from a practical viewpoint, they are neither able to reveal the detailed
mechanism of transition nor do they assist in designing transition control strategies besides simply
placing design limits on acceptable roughness levels.

Experimental data12 and numerical simulations13 have shown that the topology of the flow around
an isolated three-dimensional roughness element in a boundary layer consists of a steady horseshoe
vortex14 that wraps around its upstream side and trails two steady counter-rotating leg vortices down-
stream. At su�ciently high values of the Reynolds number, unsteady hairpin vortices originate period-
ically from the separated region just aft of the roughness element. The observation of vortex shedding
in the wake of moderate-to-large-height elements supports the idea that transition beyond the critical
Reynolds number is related to a global instability of the wake flow past an isolated hemispherical
roughness element.

The mechanism of transition caused by an isolated obstacle at low speeds has been first investi-
gated by Tani et al.,15 Acarlar and Smith,16 Mason and Morton,17 and Klebano↵ et al.18 Tani et al.15

showed that the transition location moved closer to the roughness element when the Reynolds number
Re

k

exceeded a critical value. Acarlar and Smith16 characterized the topological features of the base
flow fields and highlighted that the production of hairpin vortices can be associated to the concen-
tration of vorticity into the low-pressure recirculation zone past the obstacle. Mason and Morton17

performed an experimental campaign on several roughness elements. They showed that the formation
of the counter-rotating streamwise vortices occurred in the centre plane. Klebano↵ et al.18 proposed, in
addition, a two-region model for the evolutionary change toward a fully developed turbulent boundary
layer. This model was characterized by an inner region where the interaction between the steady and
the hairpin vortices generates the turbulence and by an outer zone where the turbulent vortex rings
are generated by the deformation of hairpin structures. Ergin and White10 discussed the interaction
between the unsteady disturbances and the steady-flow relaxation that stabilizes these disturbances.

The problem of transition past a roughness element is relevant also at high speeds where there
is the influence of free-stream temperature, Mach number, and the thermal field at the wall. Saric
et al.19 suggested to take into account the three-dimensional cross-flow instability as a possible mech-
anism for the hypersonic boundary layer transition; Reshotko and Tumin,20 instead, discussed the
importance of non-modal growth. Schneider21 resumed in a detailed survey, the advanced transition-
estimation methods, based on simulation of the physical mechanisms, like the parabolized stability
equations (PSEs), the e

N method, and direct numerical simulations (DNSs).
The linear stability theory has been widely used to characterize the transition in the wake flow past

an isolated roughness element. Malik22 discussed the numerical solution of the global and local eigen-
value problems for temporal and spatial stability analyses of linear stability equations for compress-
ible boundary layers. Reshotko23 showed that the transient growth can be a possible mechanism of
transition to turbulence. He found that the flow presents a modal bifurcation for low-amplitude distur-
bances, mode interactions, and a final fully nonlinear breakdown to turbulence. Di↵erently, when
there are disturbances of large amplitude, he observed a nonlinear breakdown that is not related to
any modal mechanism. Groskopf24 investigated the stability of a box-shaped roughness element using
the biGlobal theory. They highlighted a convective instability related to a couple of counter-rotating
streamwise eddies. Recently, De Tullio et al.25 performed a detailed stability analysis for the flow
past an isolated roughness element over an isothermal wall with adiabatic boundary conditions. They
used direct numerical simulations, spatial BiGlobal and three-dimensional parabolized (PSE-3D)
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stability analyses. They concluded that the base flow modifications introduced by the presence of a
wall-mounted obstacle can lead to significant changes in the stability features of the flow.

In recent years, the increase of computational power allowed the use of accurate numerical simu-
lations (DNS) and heavy fully three-dimensional stability computations. Zhou et al.26 carried out
several DNS to investigate the transitional boundary-layer flow induced by a roughness element with
the same shape considered here. Loiseau et al.27 investigated the global stability of a periodic array of a
cylindrical roughness element. They discussed the symmetric (varicose) and antisymmetric (sinuous)
eigenmodes of instability produced by di↵erent roughness elements characterized by several aspect
ratios.

The aim of the present work is to investigate the topological changes exerted by the inherent
global eigenmode in large protrusion height roughness obstacles. Using the tools of linear stability
analysis28,29 and DNS, we perform a parametric study to show how the global instability depends
on the inlet velocity profile. In Sec. II, the geometry, numerical methods, and code validation are
presented, while results of direct numerical simulations and global stability analysis are reported in
Sec. III A. Sec. III B provides conclusions based on our parametric study and, finally, a summary and
discussion is presented in Sec. IV.

II. PROBLEM FORMULATION

A. Flow configuration and governing equations

We focus on the linear stability and sensitivity of viscous flows over a flat plate with a single
hemispherical roughness element. The geometrical configuration and the details of the computational
domain P = [�L

in

x

,Lout

x

] ⇥ [�Ly,Ly] ⇥ [0,Lz

] are shown in Figure 1.
To ease comparisons with experimental investigations made by Klebano↵ et al.,18 we adopted a

similar geometrical configuration. The unit-diameter hemispherical obstacle is symmetrically placed
with respect to the y-axis, its center is located in rc = (0,0,0.1R) and a small cylinder of height
h

c

= 0.1R is used to connect the hemisphere to the flat plate (R is the hemisphere radius). The choice
to place a small cylinder is related to the additional thickness present in Kelabano↵ et al.18 due to
glue interposed between the hemisphere and the wall.

The fluid motion is governed by the unsteady Navier-Stokes equations for viscous, incompress-
ible flow,

r · u = 0, (1a)
@u
@t

+ u · ru = �rP +
1

Re

r2u, (1b)

FIG. 1. Flow configuration, frame of reference, and computational domain P (not in scale) are depicted using (a) side view
and (b) top view. The region P, enclosed by a dotted line, extends from x =�Lin

x

to x = Lout

x

in the streamwise direction,
from z = 0 to z = L

z

in the wall-normal direction, and it is symmetric in y-direction (�L y  y  L y). For a complete and
detailed list of the geometrical cases and grids, see Sec. II D.
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where P 2 R is the reduced pressure scalar field and u 2 R3 is the velocity vector with components
u = (u, v,w).

Equations (1) are made dimensionless using the total height k of the roughness element as the
characteristic length scale and the velocity U

k

of the incoming uniform stream that would exist in
the boundary layer at the height k without roughness.30 The Reynolds number is thus defined as
Re

k

= U

k

k/⌫, with ⌫ the fluid kinematic viscosity.

B. Numerical approach for DNS

We use the spectral element method (SEM) implemented in NEK5000 to solve governing
equations (1). We chose SEM because its spectral nature ensures fast spatial convergence while, at
the same time, preserves the geometric flexibility of the finite element methods. Here, we provide a
brief description of the underlying flow solver, the numerical methods, and the implementation are
described in detail in Refs. 31 and 32.

The unknown vector (u, v,w,P) is spatially discretized onto P

N

� P

N�2 spectral elements using
Lagrange orthogonal polynomials in the Gauss-Lobatto-Legendre (GLL) nodes. For the temporal
discretization of momentum equation (1b), a semi-implicit splitting scheme has been used that allows
high-order temporal accuracy. The time advancement is divided in 3 independent subproblems :
convective, viscous, and pressure problem. These last two elliptic subproblems are solved e�ciently
by using the overlapping Schwarz method.32

In order to solve the system of di↵erential equations (1), we impose no-slip boundary conditions
at the roughness surface and at the flat plate (⌦wall

), Neumann outflow conditions (n · (⌫ru � pI) =
0) at the outlet (⌦

outlet

) and a fully developed Blasius profile, characterized by a boundary layer
thickness �⇤

in

, at the inlet (⌦
inlet

). Finally, we adopt outlet boundary conditions at the upper side of
the computational domain (⌦1) and symmetry boundary conditions at the lateral boundaries (⌦

sym

).
The convergence and the validation of the present numerical approach will be addressed in Sec. II D.

In subcritical conditions, the steady base flow solution, on which the stability analysis is per-
formed, can be retrieved by simply integrating time dependent Navier-Stokes equations (1) over a
long time interval. On the other hand, if the Reynolds number exceeds its critical value, a simple time
integration fails to converge towards the unstable flow state that is required for the stability analysis.
In these cases, it is therefore necessary the use of a stabilizing numerical procedure able to compute
the unstable reference state. Several approaches are discussed in the literature: in Åkervik,33 for
example, the authors managed to reach the steady state by damping the unstable frequencies using
a dissipative relaxation term proportional to the high-frequency content of the velocity fluctuation
field; Shro↵ and Keller34 computed a projection onto the small unstable subspace using a Newton
procedure. Here, we adopt a di↵erent approach that allows us to obtain the unstable, steady field
by correcting the new iteration of the numerical procedure using a linear combination of previous
fields. This new method works for both steady and unsteady bifurcations and it is inspired by the
iterant recombination method.35 It has been already used in Refs. 36 and 37. Appendix A contains
the details of this stabilizing procedure. As example application, we show in Figure 2 the e↵ect of
this procedure on the convergence history at Re

k

= 450. The resulting field is depicted in Figure 3.

C. Linear stability tools: Eigenproblem formulations and solution methodology

The instability onset is studied using the linear stability theory. The total flow state (u,P) is
decomposed in a base flow (U

b

,P
b

), steady solution of the governing equations, and in an unsteady
small perturbation field (u0,P0),

u(x, y, z, t) = U
b

(x, y, z) + u0(x, y, z, t), P(x, y, z, t) = P

b

(x, y, z) + P

0(x, y, z, t). (2)

Substituting (2) into (1) and linearizing with respect to (u0,P0), the perturbation equations

r · u0 = 0, (3a)
@u0

@t

+ Ub · ru0 + u0 · rUb = �rP

0 +
1

Re

r2u0 (3b)
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FIG. 2. Iterative stabilization procedure: Boostconv. The convergence history of the algorithm is depicted using a continuous
line. The natural evolution of the flow is depicted using a dashed line. The final states of both computations are depicted in
Figure 3(b) and Figure 4(a).

FIG. 3. Stabilized (steady) supercritical flow at Re

k

= 450 and k/�⇤
k

= 2.62. Top view of contour plot of (a) y-component
and (b) z-component of the base flow field. Eight slices are depicted respectively at x = 0, x =+1R,2R,4R,6R,10R,20R
and at the outlet (x =+30R). In each slice we show the color map of streamwise velocity field.
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are obtained. This set of equations can be recast in the following form:

d

dt

q0 = Lq0, (4)

where q0 = (u0, v 0, w 0,P0) is the state vector and L represents the linearized Navier-Stokes operator.
In order to investigate the “core” of the instability, we consider, furthermore, the adjoint

Navier-Stokes problem28 that reads

� d

dt

q0 = L†q0. (5)

The eigenvalues and eigenmodes of the operators L and L† characterize the dynamics of the
perturbation fields. The real part of the complex eigenvalue � = � ± i! represents the temporal
growth rate of the disturbance, while its imaginary part is the eigenfrequency of the direct (û, P̂),
or adjoint (û†, P̂†), global modes. All the eigenproblems involved in this paper are solved by the
implicit restart Arnoldi method implemented in ParPACK38 using the linearized DNS (direct or
adjoint) time-stepper available in NEK5000 code.

The boundary conditions associated with the direct eigenproblem are simply obtained from
those used for base flow calculations, i.e., homogeneous Dirichlet conditions at the walls and inlet,
outflow conditions at the outlet, and in the far field and symmetry conditions at the lateral boundaries.
The conditions for the adjoint problem, instead, are chosen to eliminate the boundary terms after the
application of the Lagrange identity.39

D. Validation and convergence analysis

The physical domain is decomposed in multi-block spectral sub-elements and the several grids
are built symmetric with respect to the y-axis. In order to ensure that the spatial resolution is su�cient,
several numerical convergence tests have been carried out. We compare the results obtained using four
computational domains: the first one is characterized by L

in

x

= 7R,Lout

x

= 30R,Ly = 10R,L
z

= 8R

(this domain will be referred to as M1); the second, larger domain is given by L

in

x

= 9R,Lout

x

=
40R,Ly = 12R,L

z

= 10R (namedM2); the third domain (M3) has the same size ofM1 but has a finer
grid; finally, the fourth domain (M4) is characterized by L

in

x

= 7R,Lout

x

= 70R,Ly = 10R,L
z

= 8R.
The meshes M1 and M3 are discretized in space on a total of 8971 spectral elements having

a basis of 10 ⇥ 10 ⇥ 10 polynomials and 14 ⇥ 14 ⇥ 14 polynomials, respectively; M2, instead, has
16 987 elements with the same polynomial order ofM1. The longest domainM4 has 20 933 spectral
elements with a basis of 10 ⇥ 10 ⇥ 10 polynomials. This choice of the polynomial basis means 1000
points per element is used for a 3D case that implies 8 971 000 points for M1, 16 987 000 points
for M2, and 20 933 000 points for M4. Finally, the mesh M3 has 24 616 424 points having 133

functions on each element. In each case, we cluster the elements both in the wall-normal direction
near the wall and along the plate near the roughness element. Table I shows the e↵ect of the size
of the computational domain on the complex eigenvalue � and on the Strouhal number extracted
from DNS at the supercritical Reynolds number Re

k

= 450 (k/�⇤
k

= 2.62). We note that results are
accurate almost up to three significant digits for nearly all computed Strouhal numbers using mesh
M1; the position of the upstream, downstream, and lateral boundaries has an impact on the third
digit. The error made on the critical Reynolds number is order of 1%-2%. Furthermore, we compare
our DNS results with Klebano↵ et al.18 The Strouhal number (for DNS) reported here is obtained
directly from a probe located in (x, y, z) = (5R,R,R), i.e., in the region past the element where the
saturated nonlinear oscillations due to hairpin vortices are located.

III. RESULTS AND DISCUSSION

A. Comparison with the experimental investigation by Klebano� et al.

First of all, we performed a set of 3D direct numerical simulations to compute the flow charac-
teristics for the case k/�⇤

k

= 2.62 at di↵erent Reynolds numbers. We chose this value of k/�⇤
k

and
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TABLE I. Convergence results. (S. Direct = global stability analysis for
direct eigenproblem and S. Adjoint = global stability analysis for adjoint
eigenproblem.)

Type

S. Direct S. Adjoint DNS Klebano↵ et al.18

M1
� +8.7148 ⇥ 10�2 +8.7148 ⇥ 10�2 (unstable) (unstable)
St= !k

2⇡U
k

0.1659 0.1659 0.1685 ⇡0.16

M2
� +8.3329 ⇥ 10�2 +8.3329 ⇥ 10�2 (unstable) (unstable)
St= !k

2⇡U
k

0.1653 0.1653 0.1684 ⇡0.16

M3
� +8.8801 ⇥ 10�2 +8.8801 ⇥ 10�2 (unstable) (unstable)
St= !k

2⇡U
k

0.1661 0.1661 0.1687 ⇡0.16

M4
� +7.6314 ⇥ 10�2 +7.6314 ⇥ 10�2 (unstable) (unstable)
St= !k

2⇡U
k

0.1658 0.1658 0.1685 ⇡0.16

the (hemispherical) shape of the roughness element to have a direct and easy comparison with the
experimental results provided by Klebano↵ et al.18 The governing equations have been advanced in
time until either a steady flow or a periodic flow was obtained. As the Reynolds number is increased,
we observe the occurrence of a limit cycle characterized by the periodic shedding of hairpin vortices
inside the boundary layer. Zhou et al.26 divided these eddies in an upper portions, characterized by
a legs angle greater than 45�, and a trailing region, i.e., the rest of the vortex leg. We refer to Acarlar
and Smith16 for further details about the shedding characteristics, the flow patterns, and about the
structure of hairpin eddies.

The flow becomes unsteady for values of the Reynolds number around Re

k

⇡ 450. At the value
of 450, the flow is already periodic and Figure 4 shows a snapshot of the computed supercritical field.
Figure 5, furthermore, shows the spatial distribution of vorticity field in the symmetry plane y = 0.
Klebano↵ et al.18 suggested that each hairpin structure is generated by the interaction between a
concentration of spanwise vorticity in the wake region (as depicted in Figure 5) and the streamwise
vortices near the roughness element. In Table I, we show the main frequencies corresponding to the
shedding of these hairpin vortices obtained from the power spectrum analysis of the instantaneous

FIG. 4. Unsteady supercritical flow at Re

k

= 450 and k/�⇤
k

= 2.62.
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FIG. 5. Contour plot of vorticity field (y-component) in the symmetry plane y = 0. The flow field is the same of Figure 4.

data sampled at (x, y, z) = (5R,R,R). This laminar, periodic, symmetric vortex shedding has been
observed also in experiments by Acarlar and Smith,16 and Klebano↵ et al.18 Such flow behavior
suggests a possible link with the existence of a global instability that drives the flow to a limit cycle.

To corroborate this hypothesis, we perform a global stability analysis on top of the stabilized
steady base flow at Re

k

= 450. This was calculated using the previously mentioned stabilization
procedure “boostconv.” We note that the corresponding Reynolds number Re�⇤ based on the boundary
layer displacement thickness �⇤ is about 180, so that the undisturbed flow is locally stable with respect
to Tollmien-Schlichting waves.2 The eigenvalues computed using ParPACK are depicted in Figure 6
for several meshes. We note that the leading complex conjugate pair of eigenvalues is isolated as
for the jet in cross flow40 or the flow past a cylindrical obstacle.27 The corresponding leading direct
global mode is depicted in Figure 7. The real part of streamwise component (Figure 7) is symmetric
with respect to the plane y = 0; a similar spatial structure was recently described by Loiseau et al.27

for the varicose global instability of an array of cylindrical roughness elements with large aspect
ratio. The maximum of either the streamwise, the wall-normal, or the spanwise component is found
downstream of the roughness element, almost at the end of the computational domain. As for the
cylinder case, the global eigenmode increases exponentially in the streamwise direction, reaches
its maximum, and then slowly decays. However, even if a short domain was used for the present
study, the computed eigenvalues are accurate since, as we will discuss, the instability mechanism
is strongly localized behind the roughness element (see Giannetti and Luchini39 for further details).
Convergence tests performed on this configuration corroborate our statement.

The frequency of the leading eigenmode is found to agree very well with DNS data (see Table I).
Moreover, the critical Reynolds number determined by the stability analysis compares well with the
bifurcation threshold determined in the experimental investigation reported by Klebano↵ et al.18

In addition to the direct calculations, we also computed the adjoint eigenmode (see Schmid and
Henningson2 and Luchini and Bottaro28 for further details) of the linearized Navier-Stokes operator.
As we can observe in Figure 8, the adjoint mode is spatially separated from the direct one, a feature
which is due to the strong non-normality of the linearized Navier-Stokes operator. The di↵erent
components of the adjoint mode reach their maximum magnitude close to the roughness element.

FIG. 6. Eigenvalue spectra for Re

k

= 450, k/�⇤
k

= 2.62.
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FIG. 7. Linear (direct) global leading eigenmode of the flow past the hemispherical obstacle. Here, we depict the real part of
complex mode (Re

k

= 450, k/�⇤
k

= 2.62).

The adjoint field gives interesting information on the receptivity of the mode to both initial conditions
and to momentum forcing. Results show that the most receptive regions are those surrounding
the hemisphere. In order to locate the instability mechanism, we performed a structural sensitivity
analysis as explained in Ref. 39. In particular, in Figure 9, we show iso-surfaces of the spectral norm
of the sensitivity tensor,

S(x, y, z) = û

†(x, y, z) û(x, y, z)⇤
P û

†(x, y, z) · û(x, y, z)dV

. (6)

The structural sensitivity map is highly localized in a region just behind the roughness element,
across the surface separating the outer flow from the wake region. We note that this field is
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FIG. 8. Leading adjoint eigenmode for the case Re

k

= 450, k/�⇤
k

= 2.62. As in Figure 7, we depict the real part of the mode.

similar to the one reported by Loiseau et al.27 for the wavemaker of varicose instability. The
fact that the instability mechanism (“the wavemaker”) is localized in a region of strong shear
suggests that the instability could be related to a feedback mechanism involving Kelvin-Helmholtz
waves.

B. Parametric study

In this section, we show how the linear global instability, discussed in the previous paragraph
for a fixed k/�⇤

k

(= 2.62), changes as a function of this ratio. Our main objective, here, is to determine
and discuss how the variation of the boundary layer thickness �⇤

k

with respect to the height k of the
roughness element a↵ects the onset of the first bifurcation.
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FIG. 9. Plot of structural sensitivity field for the case k/�⇤
k

= 2.62. (Top) We depict a slice through the wavemaker in the
spanwise symmetry plane (y = 0).

The critical Reynolds number Re

k

versus the ratio k/�⇤
k

is shown in Figure 10. We performed
both direct numerical simulations and global stability analyses to draw a complete picture of
the dynamical system behavior. In fact, in general, it is not possible to identify a supercritical
(Hopf) bifurcation without the knowledge of the nonlinear saturated state. First of all, we note
that for the highest value of k/�⇤

k

that has been investigated here we found perfect agreement
with the experimental data provided by Klebano↵ et al.18 For each considered case, we start from
Reynolds number Re

k

= 250 to investigate the behavior of the flow. The numerical simulations, at
this Reynolds number, are advanced in time starting from the Stokes solution for the hemispher-
ical wake flow. The other simulations start from the final solution of the previously investigated
Reynolds number. Appendix B reports a detailed list of the simulations carried out in the present
study. We always found stable solutions, i.e., a steady state of Navier-Stokes equations, for those

FIG. 10. Linear stability analysis results. The curve depicted using (•) identifies the neutral stability region for the hemi-
spherical wake. Everywhere over this curve, there exist exponentially growing three-dimensional modes. Direct numerical
simulations (stable (�) and unstable (⇤) DNS) confirm the presence of a global instability. (4) indicates the experimental data
provided by Klebano↵ et al.18 The critical Reynolds number for k/�⇤

k

< 1.5 is Re

k

⇡ 580.
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FIG. 11. Strouhal number as a function of k/�⇤
k

for the flow past the hemispherical obstacle.

values of the parameters lying under the neutral curve depicted in Figure 10. In contrast, when
the Reynolds number exceeds a critical value, for a fixed value of k/�⇤

k

, we always found a satu-
rated limit cycle associated to the shedding of hairpin vortices. In such cases, we recompute the
unstable steady base flow using boostconv to perform a linear stability analysis. The neutral curve
shown in Figure 10, then, is obtained by linearly interpolating the real part �(Re) of the leading
eigenvalue of the linearized Navier-Stokes operator, i.e., we identify the critical Reynolds number
by requiring that the growth rate �, computed using the stable solution and the stabilized one,
vanishes.

The critical Reynolds number on the neutral curve increases monotonically and it reaches an
asymptote for k/�⇤

k

⇡ 1.5. Thus, when the height of the roughness element k is smaller than 1.5
times the boundary layer thickness �⇤

k

, an asymptotic regime is attained. This result indicates that, in
these conditions, the only important parameter governing the bifurcation is the unperturbed velocity
slope at the wall. The associated critical Reynolds number for this regime is Re

k

⇡ 580. This value
agrees very well with critical Reynolds number Re

k

⇡ 600 reported by Tani.41

Figure 11 shows the dependence of the Strouhal number on the ratio k/�⇤
k

. We note that the
computed frequency decreases monotonically with the increase of the roughness element with respect
to the boundary layer height. The Strouhal number does not reach an asymptotic value but varies
linearly with k/�⇤

k

. Furthermore, we also computed the adjoint and the structural sensitivity fields
for each considered case. We note that the spatial structure of the direct and adjoint eigenmodes
closely resemble the field presented in Figures 7 and 8. Thus, the wavemaker is always located in
the region immediately past the tip of the hemisphere. For sake of brevity, we do not show here the
structure of these modes. In any case, as discussed previously, we can conclude that, for each case
investigated in the present work, the instability is associated to a self-sustained mechanism.

IV. CONCLUSIONS

The analysis, presented in this work, confirms the existence of a self-sustained mode in the wake
of a hemispherical roughness element of large protrusion height in a Blasius boundary layer. Direct
numerical simulations, stability, and sensitivity analyses were performed to better understand the
stability properties of the flow. Results are in agreement with previous experimental data and show
that when the Reynolds number is increased beyond a critical value, the flow undergoes an Hopf
bifurcation. The self-sustained mode giving rise to the periodic shedding of hairpin vortices has been
found by performing a global stability analysis. The spatial characteristics of both the direct and the
adjoint modes have been analyzed and the instability mechanism localized by a structural sensitivity
analysis. Results show that the instability mechanism is highly localized in the shear layer separating
the outer flow region from the wake region behind the hemisphere.
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We performed, in addition, a parametric study to investigate the e↵ect of the ratio k/�⇤
k

on the
occurrence of the first bifurcation. We found always the same kind of instability, in agreement with
the experimental findings of Klebano↵ et al.18 Direct numerical simulations confirm the existence
of a supercritical Hopf bifurcation associated with the shedding of hairpin vortices. The variation
of the leading growth rate with k/�⇤

k

shows that when the boundary layer thickness is su�ciently
larger than the height of the obstacle, an asymptotic linear regime is attained. In this limit, the only
information that characterizes the flow behavior is the velocity gradient of the unperturbed boundary
layer profile at the wall. On the contrary, we found that the Strouhal number varies almost linearly
with the ratio k/�⇤

k

in the investigated interval. The asymptotic value of the critical Reynolds number
Re

k

= 580 agrees very well with the existing experimental investigations, as well as other results
presented in this paper.
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APPENDIX A: STABILIZATION PROCEDURE

We briefly present the algorithm adopted for computing unstable states. Our boostconv

procedure belongs to the class of Krylov-subspace methods to solve a linear system,

Ax = b. (A1)

The main idea is to boost the convergence of a pre-existing classical iterative procedure, which will
be written as

x

n+1 = x

n

+ Br

n

, (A2)

where r

n

= b � Ax

n

is the residual and B is an approximate inverse (preconditioner) of A. The
convergence of (A2) is governed by a series of exponentially decaying/amplifying modes. The
procedure will also be applicable to a non-linear system, where we expect a similar behavior when
x

n

is close enough to the exact solution x. In the classical procedure, after a suitable number of
iterations, the convergence rate is often dictated by a small number of slowly decaying (or the
divergence by a small number of amplifying) modes. The present algorithm is conceived to modify
the part of the spectrum composed of these modes mostly on the assumption that the remaining part
of the spectrum is su�ciently damped by the original iterative procedure.

We focus our attention on an improvement of the existing iterative procedure of the form

x

n+1 = x

n

+ B⇠
n

(r
n

), (A3)

where the modified forcing ⇠
n

is a suitable function of the residual r

n

which goes to zero when and
only when r

n

does. Equation (A3) can be implemented through a black-box subroutine that modifies
the residual and feeds it back to the pre-existing iterative procedure. As a consequence of (A3), the
equation that governs the evolution of the residual r

n

becomes

r

n+1 = r

n

� AB⇠
n

, i.e.,
r

n

� r

n+1 = AB⇠
n

. (A4)

The key idea is to build a subspace of vectors on which the action of AB is known by storing ⇠
n

and the di↵erence r

n

� r

n+1 before each iteration. We can then, for the purpose of calculating ⇠
n+1,

approximately solve (A1) by a least-square approximation over this subspace. Adding the residual of
this solution back into ⇠

n+1 restores the original feedback on non-represented modes. This stabilizing
procedure can be encapsulated in a black-box subroutine where the only input is the original residual
r

n

and the output is the modified residual ⇠
n

.

APPENDIX B: THREE-DIMENSIONAL NUMERICAL SIMULATIONS

Table II lists the simulation parameters and the stability characteristics for each run.
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TABLE II. Parameters and stability of the di↵erent three-dimensional (3D) numerical simulations.

k/�⇤
k

Steady state Limit cycle Critical Re

k

2.62 250, 300, 340, 360, 380, 400, 420, 440, 444 450, 457, 460 450
2.42 250, 350, 450, 460 467, 475, 500 463
2.24 250, 350, 450, 475, 481 492, 500 487
2.09 250, 350, 450, 500, 507 520, 550 517
1.85 250, 350, 450, 550, 561 569, 575, 600 562
1.57 250, 350, 450, 550, 575 588, 600 581
1.26 250, 350, 450, 550, 572 590 582
1.04 250, 350, 450, 550, 577 591, 600 582
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Abstract
We investigate the stability properties of flows over an open square cavity for
fluids with shear-dependent viscosity. Analysis is carried out in context of the
linear theory using a normal-mode decomposition. The incompressible Cau-
chy equations, with a Carreau viscosity model, are discretized with a finite-
element method. The characteristics of direct and adjoint eigenmodes are
analyzed and discussed in order to understand the receptivity features of the
flow. Furthermore, we identify the regions of the flow that are more sensitive
to spatially localized feedback by building a spatial map obtained from the
product between the direct and adjoint eigenfunctions. Analysis shows that the
first global linear instability of the steady flow is a steady or unsteady three-
dimensionl bifurcation depending on the value of the power-law index n. The
instability mechanism is always located inside the cavity and the linear stability
results suggest a strong connection with the classical lid-driven cavity problem.

(Some figures may appear in colour only in the online journal)

1. Introduction

Our notion about the dynamics of many flow configurations are often based on familiar
Newtonian fluids such as water and air. The non-Newtonian fluid mechanics, however, can be
a very important and useful field because such kinds of flows are often encountered in nature
and many industrial applications, where the observed flow can be markedly different from
that of its Newtonian counterpart. In this paper we focus our attention on the class of non-
Newtonian fluids characterized by an instantaneous mutual relation between the rate of shear
and the shear stress. In other words, such fluids have no memory of their past history.
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1.1. Shear-thinning and shear-thickening fluids: the Carreau viscosity model

The shear-thinning phenomena are perhaps the most widely encountered type of time-inde-
pendent non-Newtonian behavior in engineering practice. They are characterized by an
apparent viscosity which gradually decreases as the shear rate increases. On the contrary, the
shear-thickening fluids present an apparent viscosity that increases with the increasing of the
shear rate and hence the characteristic name dilatant flows.

In the last century many mathematical equations and models of varying complexity and
forms have been reported in the literature; some of these are straightforward attempts to fit the
experimental data, while others have a theoretical basis in statistical mechanics (see e.g.
Carreau et al (1997)). In this work we have chosen to use the Carreau viscosity model, that is
based on a molecular theory (Lodgeʼs theory) since it allows to satisfactorily describe the
complex behaviors of such fluids. Moreover, it has been widely used to model non-New-
tonian fluids (including for example hemodynamic studies, see Hsu et al (2009)), and thereby
offers the possibility to validate our numerical code.

1.2. Open-cavity instabilities

The open cavity flow is a problem of great interest in many engineering applications such as
military aircraft, sunroofs in automobiles or the gap between train wagons. Historically it has
been given great attention since it represents a prototype problem in which there is a finite
region of separated flow. Rossiter (1964) was the first to give a significant contribution to
explain the unsteadiness of flows over rectangular cavities, identifying an acoustic feedback
mechanism for cavities of several aspect ratios L D (i.e. length to depth) and flow regimes.
The presence of this Rossiter mode, in turn, generates self-sustained oscillations of velocity,
pressure, and, in some cases, density, which may induce strong vibrations in the substrate
over which the fluid is flowing. The latter may give rise to structural fatigue or acoustic noise.
Many experimental and numerical studies have shown that this resonance is based on a
feedback mechanism, whereby small disturbances in the shear layer are amplified by the
Kelvin–Helmholtz instability (see e.g. Rowley et al (2002)).

However, when significant interactions between the shear layer and the flow within the
cavity exist, the flow may be found in a completely different state from that of the cavity
resonance that can be described with the aid of the Rossiter model (or any of its improved
versions). The resultant mode appears to be a global instability whose frequency of oscillation
is independent of the Mach number. Recently, Brés and Colonius (2008) have performed
several 3D simulations that have proved, for the first time, the existence of 3D instabilities
situated inside the cavity. They showed also that these 3D instabilities are related to cen-
trifugal instabilities previously reported in flows over backward-facing steps, lid-driven cavity
flows and Couette flows.

In the field of inelastic non-Newtonian fluids, there are only a few studies aimed at
detecting the instability mechanism in the configuration under investigation. One relevant
numerical and experimental investigation was reported by Cochrane et al (1981). They
studied the behavior of the non-Newtonian (PAC) flow and the Newtonian flow (syrup-water
mixture) past a square open cavity.

1.3. Goal of present work

The aim of the present work is to study the effects of shear-dependent viscosity on the
instability features in incompressible open cavity flows. The goal is to provide a better
description of the instability mechanism of 3D perturbations and to show that the instability is
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strictly correlated with the one arising in the lid-driven cavity flow. First of all, we perform an
accurate analysis of the occurrence of the first instability using the linear stability theory; the
critical Reynolds number Recr and the corresponding spanwise wavenumber, here denoted as
the optimal spanwise wavenumber βopt , are computed for different non-Newtonian fluids (i.e.
for every couple of parameters λn, of the Carreau model). After the identification of the first
instability, we analyze the adjoint field in order to describe the receptivity behavior.

Furthermore, we determine the instability core by performing a structural sensitivity
analysis, as discussed by Chomaz (2005), Giannetti and Luchini (2007) and Marquet et al
(2008). The spatial map of the structural sensitivity gives a better understanding of the
instability mechanism. In the present work, since the flow is globally unstable, we do not
consider the sensitivity to transient disturbance growth as considered by Brandt et al (2011).
Finally, we want to remark that the current sensitivity analysis is not directly applicable when
it concerns passive control devices with the scope of controlling instability. In order to do so
one must extend the current analysis the include variations of the basic flow. Examples of this
can be found in Pralits et al (2010) and Pralits et al (2013).

2. Theoretical framework

We investigate the stability characteristics of non-Newtonian fluids in the case of a two-
dimensionl (2D) flow arising over a square open cavity due to a uniform stream. The geo-
metry, frame of reference and notation are shown in figure 1. A Cartesian system is located on
the left edge of the cavity with the x-axis pointing in the flow direction. The fluid motion,
then, can be described by the unsteady incompressible Cauchy equations,

=�� u· 0, (1)

∂
∂ + = − +�� �� ��
u

u u T
t

P
Re

( · )
1

, (2)

where u is the velocity vector with components =u u v( , ) and P is the reduced pressure. This
system is closed when we supply a constitutive relation between the stress tensor T and the
rate-of-strain tensor ⎡⎣ ⎤⎦= +�� ��D u u( )T1

2
. In this paper we focus on fluids whose T depends

linearly on D through the relation μ=T DS2 ( ) , where = D DS (2 : )1 2. While for a
Newtonian fluid the dynamic viscosity μ does not depend on the shear rate S, for a non-
Newtonian fluid this dependence cannot be ignored and the functional form of μ μ= S( )
changes with the particular fluid considered. We adopt a Carreau model that is characterized

Figure 1. Flow configuration, frame of reference and the computational domainD. The
figure also shows a sketched schematic visualization of the base flow structure.
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by the following viscosity law (Bird et al (1987), chapter 4)

⎡⎣ ⎤⎦
μ μ
μ μ λ

−
− = +∞

∞

−
S

ˆ

ˆ ˆ
1 ( ) , (3)

0

2
n 1

2

where μ∞̂ and μ̂0 are the viscosities at infinite and zero shear rates (the ratio μ μ∞̂ ˆ0 is set to
−10 3), the parameter n is the power index and λ is the relaxation time.
Equations (1) and (2) are made dimensionless using the cavity depth D as the char-

acteristic length scale, the velocity of the incoming uniform stream ∞U as the reference
velocity and μ̂0 as the reference dynamic viscosity. Thus, the Reynolds number can be
expressed as ρ μ= ∞Re U D ˆ0. Finally, the system of differential equations (1) and (2) is
closed with the following boundary conditions: =u e1 · x at the inlet D∂ in, the outflow
boundary condition (i.e. = ∂ =P u0, 0x ) at the outlet D∂ out , no-slip conditions =u 0 on the
solid walls D∂ w (represented with a solid line in figure 1), free-slip condition with zero
tangential stress (i.e. ∂ =u 0y and =v 0) on the upper limit of the computational domain D∂ ext

and on the remaining boundary D∂ fs. Similar conditions are used, for the same reference
geometrical configuration, by Sipp and Lebedev (2007) and Barbagallo et al (2009).

2.1. Global stability analysis

The instability onset is studied within the framework of the linear stability theory with a
classical normal-mode analysis. The stability analysis relies on the existence of a steady
solution about which infinitesimal unsteady perturbations are superimposed. The velocity and
pressure fields are decomposed into a 2D base flow Q x y( , )b = u P( , )b b

T = u v P( , , 0, )b b b
T and

a three-dimensional (3D) disturbance flow, denoted by ′q x y z t( , , , ) = ′ ′u P( , )T =
′ ′ ′ ′u v w P( , , , )T of small amplitude ϵ. Introducing this decomposition into (1) and linearizing,

we obtain two problems describing the spatial structure of the base flow and the evolution of
the unsteady perturbation field. In particular, the base flow is governed by the steady version
of (1), whereas the perturbed field is described by the following set of linearized unsteady
Carreau equations (uCE)

∂ ′
∂ + ′ = − ′��{ }u

C u u
t

Re P, , (4)b

′ =� u· 0, (5)

where the linearized operator C can be written as

′ = ′ + ′�� ��{ }C u u u u u uRe, · ·b b b

⎡
⎣⎢

⎤
⎦⎥μ μ− ′ + ′ + ′ +�� �� �� �� ��( )( ) ( )u u u u

Re
1

· ( ) .b
T

b b
T

In the previous definition we have introduced μb and μ′ that represent the base flow viscosity
and the perturbation viscosity, respectively (see e.g. Lashgari et al (2012)).

As the base flow is homogeneous in the spanwise direction, a general perturbation can be
decomposed into Fourier modes with spanwise wavenumber β . The 3D perturbations may be
expressed as

⎡
⎣⎢

⎤
⎦⎥β γ′ = + +{ }( )q qx y z t x y exp i z t c c( , , , )

1
2

ˆ ( , ) . . , (6)T

where γ σ ω= + i is the angular frequency, c c. . stands for the complex conjugate of the
preceding expression and =q u v w Pˆ ( ˆ, ˆ, ˆ , ˆ). Complex conjugation is required in (6) since ′q is
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real. The angular frequency γ is a complex number: its real part σ represents the temporal
growth rate and its imaginary part ω the frequency of the perturbation. The physical meaning
of σ is in agreement with the classical definition of stability: for σ > 0, the base flow is
unstable whereas for σ < 0 it is stable. Introducing the ansatz (6) in (4- 5) that govern the
evolution of the perturbation, we obtain a generalized eigenvalue problem that is expressed by
means of the following formal relation

AA BBγ+ =q qˆ ˆ 0, (7)

in whichA is the complex linearized evolution operator. The boundary conditions associated
with (7) are derived from those used for the base flow calculation, as in Sipp and Lebedev
(2007). Finally, we underline that the two complex eigenpairs σ ω+ i q( ; ˆ ) and σ ω− i q( ; ˆ*)
associated with a particular base flow Qb are simultaneously a solution of the eigenproblem
together with the boundary conditions. Thus, the eigenvalues are complex conjugates and the
generic spectra in the σ ω( , ) plane is symmetric with respect to the real axis.

2.2. Structural sensitivity and the adjoint field

In this section we introduce, in a concise manner, the analysis regarding structural sensitivity.
The idea of this analysis is the concept of ‘wavemaker’ that was introduced by Giannetti and
Luchini (2007) and Hill (1992) to identify the location of the core of a global instability (see
e.g. Pralits et al (2010)). Recently, Luchini and Bottaro (2014) reviewed the use of adjoint
equations in hydrodynamic stability analysis. They discussed in detail the adjoint-based
sensitivity analysis (Appendix A, Section 9) that is able to map the structural sensitivity of a
global oscillator. We refer to this paper for further details.

In Lashgari et al (2012) it is shown, using a perturbation analysis, that for each con-
sidered global mode σ ω+ i u v w p( ; ˆ, ˆ, ˆ , ˆ), by adding a forcing term in the form of a ×(2 2)
coupling matrix δM0, the following eigenvalue drift is obtained

∑δγ δ δ= =S M S M: , (8)
ij

ij ij0 0

where we have introduced the sensitivity tensor

D
∫

=
+

+S
f u

f u
x y

x y x y

dS
( , )

ˆ ( , ) ˆ ( , )

ˆ · ˆ
. (9)0 0

0 0 0 0

The adjoint field
+f̂ is obtained using the Lagrange identity (as in Giannetti and Luchini

(2007)); thus, the vector field =+ + +g fx y mˆ ( , ) (ˆ , ˆ ) satisfies the following problem:

γ− + + =+ + + +��{ }f C u fRe mˆ , ˆ ˆ 0, (10)b

=+�� f· ˆ 0. (11)

in which the operator +C is defined as

= −+ + + +�� ��{ }C u f u f u uRe, ˆ · ˆ ·b b b

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥μ+ + + ++ + +�� �� �� �� ��( )( ) ( )f f u u f V u

Re
1 ˆ ˆ · ˆ ( )b b bb

T T

where the viscosity fluctuation operator V can be expressed in tensorial notation (see e.g.
Lashgari et al (2012))
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⎡
⎣⎢

⎤
⎦⎥

μ μ μ= ∂
∂

∂
∂ + ∂

∂
∂
∂ + ∂

∂
∂
∂u u u uV

S x S y S z
( ) 2 ( ) ( ) ( ) . (12)b b b bi

i i i1 2 3

The boundary conditions associated with the adjoint problem are derived from those used for
the direct eigenproblem. Different norms of the tensor S can be used to build a spatial map of
the sensitivity. The spectral norm is chosen here to study the worst possible case.

3. Numerical method and validation

3.1. Base flow calculation

The numerical computations of base flow have been performed using a finite element code. In
particular, we first derive the associated variational formulation of the Cauchy system (1) and
then use the FreeFem ++ (http://www.freefem.org) software to obtain a spatial discretization
onto classical −P P2 1 Taylor-Hood elements. The resultant nonlinear system of algebraic
equations, along with their boundary conditions, is solved with a Newton-Raphson procedure:
starting from an initial guess wb

(0) , at each step the linear system

= −( )CE Re W w rhs, · (13)b
n

b
n n( ) ( ) ( )

is inverted using the MUMPS-MUltifrontal Massively Parallel sparse direct Solver (Amestoy
et al (2006, 2010)) and the base flow is then updated as

= ++W W w . (14)b
n

b
n

b
n( 1) ( ) ( )

The initial guess is chosen as the solution of the Stokes equations and the process is carried
out until the L2-norm of the residual of the governing equations becomes smaller than −10 12.
Three different meshes: 1, 2 and 3, have been generated (see table 1) with the
Bidimensional Anisotropic Mesh Generator (BAMG) that is present in the Freefem ++
software.

3.2. Eigenvalue solver

Once the base flow is determined, the system (7) is used to perform stability analysis. After
spatial discretization, equation (7) along with the boundary conditions are recast in the
following standard form

Table 1. Comparison of the results obtained by the present code with those obtained by
Sipp and Lebedev (2007) with the meshes 1 and 2. The eigenfrequency ω and
growth rate σ have been calculated for the first 2D unstable eigenmode at =Re 4140.
We report also the number of degrees of freedom (nd o f. . .) and the number of triangles
(nt) for each unstructured Mesh.

Mesh σ ω nd o f. . . nt

1 0.0007590 7.4931 998668 221045
2 0.0008344 7.4937 1416630 313791
3 0.0009122 7.4943 2601757 576887
1 0.0007401 7.4930 880495 194771
2 0.0008961 7.4942 1888003 418330
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⎡⎣ ⎤⎦γ+ =( )A Re W B w 0, · , (15)b

where w is the right (or direct) eigenvector. The large number of degrees of freedoms
prohibits direct matrix methods and suggests the use of iterative techniques. This means, for
example, that methods based on the QR decomposition are not appropriate for solving these
large scale problems. Thus, we have chosen to adopt an efficient matrix-free iterative method
based on the Arnoldi algorithm (see e.g. Arnoldi (1951)). We use the state-of-the-art
ARPACK code of Lehoucq et al (1998), which implements the Arnoldi method with implicit
restarts to limit memory requirements and to compress the information of the desired
eigenvectors into a small subspace. The solutions of the linear systems (15) are determined by
the use of the same sparse solver (MUMPS) used for the base flow calculations. The adjoint
modes are computed as left eigenvectors of the discrete systems derived from the
discretization of the linearized equations and the sensitivity function is then computed by
the product of the direct and the adjoint fields. In this paper the right (direct) and left (adjoint)
eigenvectors are normalized by requiring

D
D

∫= =∈
+{ } f uu x y dSmax ˆ ( , ) 1, ˆ · ˆ 1. (16)x y,

3.3. Code validation

In order to perform an accurate validation of the present code (Freefem ++ code) we compare
our results with three different test cases. First of all, we validate the stability analysis against
the results reported by Sipp and Lebedev (2007). These authors investigate the stability of a
Newtonian fluid in the present reference geometrical configuration and report as first
instability a 2D eigenmode that becomes unstable at =Re 4140. Table 1 compares our results
obtained with different meshes (1, 2, 3) and the results obtained in Sipp and Lebedev
(2007). In these particular representative runs, 50 eigenvalues were obtained, with an initial
Krylov basis set of dimension 150, and the convergence criterion present in the Arnoldi
iterations is based on a tolerance of −10 12. The accuracy of the converged eigenpairs was then
independently checked by evaluating the residual γ+max A B w|( ) |i i j i j j, , , and this quantity was
always less than −10 9 for the reported results. More importantly, for the leading few eigen-
pairs, this residual was generally less than −10 12.

We then validated the base-flow velocity profiles (not shown here for sake of brevity)
relative to the non-Newtonian channel flow with Nouar et al (2007), and an excellent
agreement was found. Finally, we compared the stability results for the classical lid-driven
cavity problem with those obtained by Haque et al (2012). Figure 3 shows the perfect
agreement in the computation of the critical Reynolds number for several non-Newtonian
flows. In the present work we used the Mesh 2 to perform all computations.

4. Results

First of all, we show the effect of the shear-dependent viscosity on the spatial distribution of
the base flow in figure 2. The shear layer that develops above the cavity presents a char-
acteristic wall-normal length scale that increases as the power index n increases . In figure 4
there are displayed several profiles of velocities u y( )b and v x( )b inside the cavity for the
Newtonian critical Reynolds number =Re 1370. In order to determine the influence of the
time constant λ on the structure of the base flow, we have chosen to take the parameter n
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constant and equal to 0.8. The spatial distribution of the profiles suggests that the viscosity
parameter λ does not change significantly with the base flow structure inside the cavity.

The dependence of the eigenvalues on the Reynolds number and spanwise wavenumber
β is presented in figure 5. In figure 5(a) we show the growth rate (real part σ ) of the leading
eigenvalues (i.e. the least stable) as a function of the power index n. Compared to the
Newtonian fluid, shear-thickening is increasingly stable as the value of n is increased, while
this monotonic behaviour is not true for the case of shear-thinning fluids. Figure 5(b) shows
the optimal spanwise wavenumber βopt (the value of β corresponding to the neutral curve) as
a function of the parameter n. All the curves present a discontinuity in ≃n 1.25 and, con-
sequently, the wavelengths Λ π β=ˆ 2 opt associated with the corresponding global modes

increase from Λ =ˆ (0.4)s (steady modes) to Λ =ˆ (1.5)u (unsteady modes). We have
investigated wavenumbers larger than those shown in figure 5b) and find no evidence of other

Figure 2. Spatial distribution of the base flow for several values of the parameters λ and
n at constant Reynolds number =Re 1370. The distribution is displayed through
contour plots of the velocity field modulus.

Figure 3. Determination of the critical Reynolds number Recr for several non-
Newtonian lid-driven cavity flows. Comparison of the present stability results with
Haque et al (2012).
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eigenvalues that would give rise to instabilities for the Reynolds numbers considered.
Figure 5(c) shows the associated frequencies of the global modes. Thus, we note that the first
absolute linear instability of the steady base flow is a steady or unsteady 3D bifurcation
depending on the value of the power-law index n. We note that this behavior is qualitatively
the same as in the case of the lid driven cavity flow (see Haque et al (2012)).

The data in figure 5 has been further analyzed in order to investigate if a universal scaling
exists for the neutral curve. For this purpose we introduced the averaged Reynolds number, as
defined in Haque et al (2012) based on the mean viscosity ( ∫=Re Re x y dxdy( , )avg Area.

1 ),
and plotted the neutral curve as a function of n and λ. The results are presented in figure 6.
Indeed it is found that this scaling gives neutral curves that are rather independent of the
values of n and λ, when compared to the case of Newtonian fluids ( =n 1).

So far only the optimal spanwise wavenumber has been shown for a given Reynolds
number. In figure 7 we present the growth rate as a function of the spanwise wavenumber for
three values of the power index n and the Reynolds number chosen such that at least one

Figure 4. Velocity profiles inside the square cavity: (top) streamwise velocity
component ub at −x( , 0.5), (bottom) cross-stream component vb at y(0.5, ). The
Reynolds number is =Re 1370 and =n 0.8

Figure 5. (a) Critical Reynolds numbers as a function of the power index n, (b)
corresponding spanwise wavenumbers β (denoted optimal wavenumber) and (c)
eigenfrequencies ω.
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solution is unstable. In all cases λ = 10. A clear difference in the value of β for the unstable
solutions is found passing from =n 1.1 to =n 1.3.

We now turn to the analysis of the linear modes that destabilize the 2D base flow. Since
we want to analyze the features of both steady and unsteady modes, we select as repre-
sentative cases the flows characterized by λ = 10, =n 0.8 (steady case) and λ = 10, =n 1.3
(unsteady case). Figure 8 shows the structure of the two leading eigenmodes at the respective
critical Reynolds numbers and corresponding optimal spanwise wavelengths. The streamwise
velocity (figure 8(a)), wall-normal velocity (figure 8(b)) and spanwise velocity (figure 8(c))
contours clearly show that the steady bifurcating mode is localized in the region inside the
cavity.

In order to characterize the physical mechanism that underlies the instability, we show in
figure 9 a fictitious 3D field obtained as ϵ+ ′Q qb . Since the 3D global mode weakly affects
the flow outside the cavity, we represent the spatial structure of the field by three streamlines
inside the cavity (plotted with solid lines in figure 9). The spatial distribution of the boundary
layer developing over the cavity is also visualized by an iso-surface of streamwise velocity

Figure 6. Rescaled neutral curve: the data in figure 5 has been rescaled using the
definition of the averaged Reynolds number as found in Haque et al (2012).

Figure 7. The growth rate σ as a function of the spanwise wavenumber β for different
values of the power index n and Reynolds numbers. The value of λ = 10.
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and the streamwise structure of the flow is depicted by three slices. Thus, the secondary flow
generated by this instability can be described as flat rolls lying inside the cavity similar to
those reported by the 3D linear instability of the lid-driven cavity flow (see Albensoeder et al
(2001)). Figure 9 is made by taking the optimal Fourier wavelength as the transverse length.
The first unsteady mode, instead, is displayed in figure 8(e–g) by the modulus of the three
components û, v̂ and ŵ. The dynamics associated with this mode are a periodic oscillation
concentrated in the region inside the cavity. The secondary flow generated in this case has a
more complicated spatial structure with several ’rolls’ but again localized within the cavity.
The exact size and shape of the cavity vortex depends weakly on the global flow properties,
so, the 3D instabilities, driven by this local part of the flow field, always present similar
features. The receptivity behavior of the steady and unsteady mode is then investigate by an
adjoint analysis. In figure 10 is reported the spatial structure of the adjoint field using the
contours of the modulus of the adjoint velocity. For the stationary mode (figure 10(a)) the
receptivity to a momentum forcing is strong both near the right wall of the cavity and very
close to the left edge. The unsteady mode (figure 10(b)) presents the same receptive behavior
with a slight difference in the distribution of the maximum of the field. We have to note that
the region of high receptivity located on the left corner is the main difference with the lid-
driven cavity case.

Finally, following Chomaz (2005) and Giannetti and Luchini (2007), we have examined
the sensitivity of the leading eigenvalue to structural perturbations of the linear evolution
operator in order to determine the region of the flow where feedback processes at the origin of
a self-sustained instability are active. In figure 11 we show the structural sensitivity map for
both the unsteady and steady mode. In physical terms, this overlap region identifies where
local feedback will have a large impact on the leading eigenvalue. The sensitivity associated
with the steady mode (figure 11(a)) and with the unsteady mode (figure 11(b)) again have a

Figure 8. (a–c) Contour plots of the streamwise (a) u x yˆ ( , ), wall-normal (b) v x yˆ ( , ) and
spanwise (c) w x yˆ ( , ) direct eigenfunction of the steady mode: =Re 970cr , β = 13.6opt ,

λ = 10 and =n 0.8. (d–f) Visualization of the structure of direct eigenfunction of the
non-stationary mode by contours of modulus of streamwise (d) u x y| ˆ ( , ) |, wall-normal
(e) v x y| ˆ ( , ) | and spanwise (f) w x y| ˆ ( , ) | component: =Re 2700cr , β = 4opt , λ = 10 and

=n 1.3.
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Figure 9. Perspective view of the secondary flow generated by the steady bifurcating
mode ( =Re 970cr , β = 13.6opt , λ = 10 and =n 0.8). The total field is obtained as

ϵ+ ′Q qb where the small amplitude ϵ of the perturbation field is set to ϵ = 0.05.
Threeslices are placed respectively at =x 0, in the middle of the cavity ( =x 0.5) and at

=x 1. The structure of the shear layer developing above the cavity is visualized by an
iso-surface of the streamwise component of total velocity U (iso-surface value = 0.9).
The spatial distribution of the total field is displayed within the cavity with three
streamlines.

Figure 10. Contour plots of the modulus of the adjoint field for the (a) steady mode
( =Re 970cr , β = 13.6opt , λ = 10 and =n 0.8) and (b) unsteady mode ( =Re 2700cr ,

β = 4opt , λ = 10 and =n 1.3).
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similar structure concentrated only inside the cavity. Thus, any local feedback applied outside
this region only slightly modifies the leading eigenvalue, indicating that these regions do not
play a significant role in the process giving rise to global instability. For the present flow
configuration, we may conclude that the cavity vortex is the wavemaker region of the 3D
instability for both modes.

5. Conclusions

In this paper we have presented the linear dynamics of a 2D flow arising in open cavity
configurations for the case of non-Newtonian fluids given by the Carreau viscosity model. A
global stability analysis has been performed in order to map the neutral stability curves as a
function of the Reynolds number, and the model parameters n and λ. We have found that the
primary bifurcation is always 3D but can have both steady or non-stationary behavior,
depending on the value of the power index n. In particular, a single value of ≈n 1.25
separates the steady and unsteady bifurcations.

A detailed analysis of the structure of both leading global modes suggest that the
instability is localized within the cavity. Furthermore, we have computed the adjoint global
modes associated with the respective direct mode in order to show the receptive behavior of
the base flow. An analysis of the adjoint spatial structure allowed us to localize two regions of
strong receptivity to momentum forcing. The direct and adjoint modes are all concentrated
inside the cavity in the same region. Thus, the overlap field is again localized within the
cavity. We have further shown that if the Reynolds number is based on the average viscosity
(as in Haque et al (2012)), a more or less universal value of the critical Reynolds number is
found, independent of both n and λ. Finally, we conclude that the results summarized above
suggest the same instability mechanism of the lid-driven cavity flow.

Figure 11. Visualization of the structural sensitivity for the (a) steady mode
( =Re 970cr , β = 13.6opt , λ = 10 and =n 0.8) and (b) unsteady mode ( =Re 2700cr ,
β = 4opt , λ = 10 and =n 1.3).
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We study the flow past a sphere rotating in the traverse direction with respect to the
incoming uniform flow, and particularly consider the stability features of the wake as a
function of the Reynolds number Re and the sphere dimensionless rotation rate ⌦. Direct
numerical simulations and three-dimensional global stability analyses are performed in
the range 150 6 Re 6 300 and 0 6 ⌦ 6 1.2. We first describe the base flow, computed as
the steady solution of the Navier-Stokes equation, with special attention to the structure
of the recirculating region and on the lift force exerted on the sphere. The stability
analysis of this base flow shows the existence of two different unstable modes, which
occur in different regions of the Re/⌦ parameter plane. Mode I, which exists for weak
rotations (⌦ < 0.4), is similar to the unsteady mode existing for a non-rotating sphere.
Mode II, which exists for larger rotations (⌦ > 0.7) is characterized by a larger frequency.
Both modes preserve the planar symmetry of the base flow. We detail the structure
of these eigenmodes, as well as their structural sensitivity thanks to adjoint methods.
Considering small rotations, we then compare the numerical results to those obtained
using weakly nonlinear approaches. We show that the steady bifurcation occurring for
Re > ReSS = 212 for a non-rotating sphere is changed into an imperfect bifurcation,
unveiling the existence of two other base-flow solutions which are always unstable.

Key words: Bifurcation, Wakes, Global stability, Weakly nonlinear analysis

1. Introduction

Regions of separated flow past bluff bodies are a common feature of realistic config-
urations existing in many natural phenomena or in industrial applications. The complex
three-dimensional flow past a sphere is one of the basic flow configurations which has
received a great deal of attention from fluid dynamicists and has acted as a benchmark
for a wide range of more complicated practical situations.

The case of a fixed sphere has been largely investigated in the past both numeric-
ally and experimentally. Natarajan & Acrivos (1993) examined the linear instability of
the steady, axisymmetric base flow to three-dimensional modal perturbations. They re-
ported the occurrence of a supercritical bifurcation, at a critical Reynolds number of
Re

SS ⇡ 210, characterized by unitary azimuthal wavenumber. The resulting branch with
a steady asymmetric wake structure, as observed also in the experimental investiga-
tion of Magarvey & Bishop (1965) and Nakamura (1976), is stable up to a Reynolds

† Email address for correspondence: vcitro@unisa.it
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number of Re

V S = 277.5 (Natarajan & Acrivos 1993). Johnson & Patel (1999), sub-
sequently, performed a comprehensive experimental and numerical study founding good
agreement with the previous data. Tomboulides & Orszag (2000) performed accurate
three-dimensional numerical simulations, based on a code with a spectral discretization,
confirming the occurrence of the two bifurcations and the planar symmetry of the single-
frequency periodic vortex shedding. Recently, Fabre et al. (2008) analyzed the nature
of the bifurcation and identified it as a pitchfork of revolution bifurcation with O(2)
symmetry, following the nomenclature of Golubitsky & Stewart (2012). Namely, because
of azimuthal symmetry, this bifurcation gives rise to a continuous family of asymmetric
solutions with symmetry planes taking all possible orientations, instead of only two solu-
tions as an ordinary pitchfork bifurcation. Eventually, Meliga et al. (2009b) solved direct
and adjoint eigenproblems to study the receptivity and the structural sensitivity for the
first bifurcation at the critical Reynolds number of Re

SS = 212.6. They found that the
core of the instability (wavemaker) is located in the recirculation bubble past the sphere.

The flow past a sphere rotating around a transverse axis has received less attention.
Kurose & Komori (1999) studied the drag and lift forces for 1 6 Re 6 500 by means of
direct numerical simulations. Niazmand & Renksizbukut (2003) also analyzed the spatial
structure of the flow using DNS in presence of both rotation and surface blowing. They
reported that the rotation can lead to the onset of vortex shedding at a lower Reynolds
number compared to the non-rotating case. Giacobello et al. (2009) and Kim (2009)
investigated wake transitions past the transversely rotating sphere at three different
Reynolds number Re = 100, 250, 300. At Re = 300, they observed two different kind
of coherent vortical structures and suggested the existence of two different unsteady
mechanisms because the wakes showed a distinctly different topology and a different
process of vortex shedding. This situation displays some similarity with the case of a
rotating 2D cylinder, where strong rotation also leads to the onset of a new shedding
mode which is distinct from the classical one existing in the absence of rotation (Pralits
et al. 2010). Recently, Poon et al. (2014) simulated this flow for higher Reynolds number
(500 6 Re 6 1000) revealing a new secondary regime called ’shear-layer’ stable foci.
They discussed also in detail the force coefficients and the Strouhal number as a function
of the dimensionless rotation rate ⌦. Note that the cases of a sphere rotating around an
axis oriented obliquely with respect to the flow (Poon et al. 2010), or aligned with the
flow (Pier 2013) have also been examined, yielding different but rich behaviors.

The first objective of the present paper is to reconsider and clarify the stability proper-
ties of the wake past a rotating sphere using a global stability approach. Such approaches
are known to be the right tool to map the thresholds corresponding to the onset of un-
steadiness, and combined to adjoint-based structural sensitivity approaches, they also
provide useful hints to identify the instability mechanisms responsible for unsteadiness
(Luchini & Bottaro 2014). However, performing a global stability of a 3D open flow re-
mains costly in terms of memory requirements and computational time, and has thus
became possible only very recently (Bagheri et al. 2009b; Tammisola et al. 2014; Citro
et al. 2015). The case of a sphere thus constitutes a challenging benchmark for such meth-
ods, and the rotating case allows to quantify the added value of a 3D global approach
towards previous studies which all assumed the flow to be close to the axisymmetric state
(Natarajan & Acrivos 1993; Meliga et al. 2009b). The second objective of this paper is to
clarify the nature of the transition occurring in the vicinity of the ReSS threshold in the
case of weak rotation, using both weakly nonlinear approaches valid in this range and
results of the global approach.
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2. Problem formulation

We consider the case of a transversely rotating sphere invested by a parallel uniform
stream of velocity U1. The spatial and temporal domains are respectively D ⇢ R3 and
t ⇢ [0, ⌧ ]. Figure 1 shows the coordinate system and the geometry adopted for the present
work. The Cartesian system passes through the centre of the sphere, the x-axis has been
chosen parallel to the incoming uniform velocity and the rotation rate vector ! is aligned
to the z-axis. The flow is described by the usual time-dependent Navier-Stokes equations:

r · u = 0, (2.1a)
@u

@t
+ u ·ru = �rP + ⌫r2u, (2.1b)

where P 2 R is the reduced pressure scalar field and u 2 R3 is the velocity vector with
components u = (u, v, w).

This system of differential equations is completed by boundary conditions at the surface
of the sphere @Dsph and matching condition at infinity, namely:

u|r=R
sphere

= ! ⇥ r = !ê3 ⇥ r, on @Dsph; (2.2a)
u ! U1 = U1ê1, as |r| ! 1 (2.2b)

In practice, the latter condition is applied at the inlet surface @Din and on the lateral
sides @Dlat of the computational domain, while a no-traction condition is applied at the
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outlet surface, namely

n · (Re�1ru� pI)|x=x
outlet

= 0, on @Dout. (2.3)

The hydrodynamic loads can be obtained by integrating the stress tensor over the
sphere surface. In particular, the aeordynamic lift coefficient reads:

CL =
2

⇢U2
1Ā

with L =

Z

D
sph

[�pny + µ(ru+ruT ) · ny]dS, (2.4)

where D and Ā = ⇡D2/4 are the diameter and the cross-sectional area of the sphere,
respectively, and n is the normal vector to the surface of the sphere, with Cartesian
components nx, ny and nz.

The dynamics, governed by the incompressible Navier-Stokes equations (2.1), depends
on the Reynolds number Re = U1D/⌫ and dimensionless rotation rate ⌦ = !D/2U1.
The pressure is non-dimensionalized with respect to dynamic pressure ⇢U2

1 and the time
with respect to the characteristic time scale U/D.

3. Linear stability and sensitivity

Let us focus on the linear stability problem for the flow past a rotating sphere. The
starting point for the global hydrodynamical stability analysis is the assumption that the
total flow field [u, P ] only displays small-amplitude deviations [u0, P 0] with respect to an
equilibrium state, i.e. a fixed point, called the base flow [U b, P b]. Namely:

u(x, y, z, t) = U b(x, y, z) + ✏u0(x, y, z, t) +O(✏2) (3.1a)
P (x, y, z, t) = P b(x, y, z) + ✏P 0(x, y, z, t) +O(✏2) (3.1b)

where ✏ << 1. The long-term stability features of the flow are then investigated using
the decomposition into the classical normal mode form

u0(x, y, z, t) = û(x, y, z)e�t+i�t, (3.2a)
P 0(x, y, z, t) = P̂ (x, y, z)e�t+i�t. (3.2b)

i.e. the perturbation is characterized by the complex spatial fields [û, P̂ ](x, y, z) and by
the inherent growth rate � and frequency �. By introducing (3.1) and (3.2) into the
Navier-Stokes systems (2.1) and neglecting high-order terms, we obtain two different
problems: (i) the base flow problem, that is governed by the time-independent version of
(2.1) with boundary condition (2.2); (ii) the global stability problem that reads:

r · û = 0, (3.3a)

(� + i�)û+Ub ·rû+ û ·rUb = �rP̂ +
1

Re
r2û (3.3b)

This system (3.3), along with the following boundary conditions

û|r = 0, (on the sphere surface @Dsph); (3.4a)
û = 0, (on the lateral sides @Dlat and at the inlet surface @Din). (3.4b)
n · (Re�1rû� p̂I)|x=x

outlet

= 0, (on the outlet surface @Dout); (3.4c)

lead to a generalized eigenvalue problem; when the growth rate � < 0, the flow is
linearly stable while when � > 0 the perturbation grows exponentially in time.

In order to locate the core of the instability and to describe the features of the inherent
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flow, we rely on the concept of wavemaker used in stability analysis (Giannetti & Luchini
2007). Following the recent review by Luchini & Bottaro (2014), we use a linear adjoint-
based approach to determine this region. The resulting sensitivity tensor is given by:

S(x, y, z) =
û†(x, y, z) û(x, y, z)R

D û†(x, y, z) · û(x, y, z)dV
, (3.5)

where the adjoint fields (û†, p̂†) are obtained using the generalized Lagrange identity
(Ince 1926):

r · û† = 0, (3.6a)

�(� + i�)û† +Ub ·rû† �rUb · û† = �rp̂† � 1

Re
r2û†. (3.6b)

Here, we use the spectral norm to build the spatial sensitivity maps.

4. Numerical methods

The results presented in this work are carried out using two different codes: (i) the
spectral-finite-element software (SEM) NeK5000 (Tufo & Fischer 1999) and (ii) a com-
bined finite-difference second-order immersed-boundary multigrid code. We use this code
to compute all results presented in section 6; the other results are computed by using
NeK5000.

In NeK5000, the velocity vector field and the pressure scalar field are discretized
onto PN �PN�2 spectral elements using Lagrange orthogonal polynomials in the Gauss-
Lobatto-Legendre (GLL) nodes. The temporal discretization for the momentum equation
is achieved by using a semi-implicit splitting scheme. The resulting algorithm solves the
convective, the viscous and the pressure problems. An overlapping Schwarz method is
adopted to solve the latter two elliptic problems. We have opted for a polynomial order of
10 for both the the base flow computation and its stability analysis. Our computational
domain extends from xinlet = �12D to xoutlet = 35D, from ydown = �12D to yup = 12D
and it is symmetric in the spanwise direction with a width of zlat = 12D.

The finite-difference code is based on a classical second-order conservative discretiza-
tion of the Navier-Stokes equations on a staggered non-uniform Cartesian mesh. In order
to achieve high accuracy and save computational time, a grid clustering near the sphere
is used. The boundary conditions on the sphere are imposed through a second-order ac-
curate immersed-boundary scheme, in which the stencil of the finite-difference operators
near the body is modified using appropriate interpolation-extrapolation procedure. The
interpolation was performed using the point closest to the body surface (which can be
either an internal or an external point) and the following point on the exterior of the
sphere. The interpolation is performed either in the streamwise or transverse direction
according to which one is closest to the local normal. The discretized three-dimensional
problem is then solved by using an in-house linear multigrid solver coupled to a Newton
global linearization (Trottenberg et al. 2001). In order to obtain good convergence in the
presence of highly stretched grids, a Collective Line Gauss-Seidel (CLGS) smoother was
used. Such relaxation procedure considers a row (column) of computational cells as a
main block of a Gauss-Seidel-type iteration, which leads to a banded six-diagonal system
of linear equations to be solved at each sub-iteration of the multigrid algorithm. This
procedure is the line version of the more classical block Vanka smoother (Vanka 1986)
and has been used with a classical V cycle (Trottenberg et al. 2001). In our version, the
matrix entries are calculated by a local linearization of the governing equations. More
details on the characteristics of this kind of smoothers can be found in Feldman & Gelfgat
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(2009). The discretization of the convective terms can be problematic since the classical
second-order centered discretization is not h-elliptic and can lead to a severe degradation
and failure of the iterative procedure. In our code, the convective terms are discretized
with a standard first-order upwind discretization while the second order precision is re-
covered through a standard deferred-correction procedure based on classical centered
discretization implemented at the smoother level. The Immersed-boundary technique
with a second order interpolation is applied only on the finest level while, for simplicity,
at courser levels, a stair-step geometry is considered. Such procedure does not alter the
overall convergence speed of the multigrid algorithm and considerably simplify the coding
and the computational time. Textbook multigrid efficiency (Trottenberg et al. 2001) is
achieved far from the bifurcation thresholds. As for all the iterative procedures close to
the transitions, a severe degradation of the performances is obtained. This is due to the
existence of a limited number of eigenvalues of the iteration matrix moving and crossing
the imaginary line: in this situation the whole iterative procedure diverges. In order to
avoid this problem, we used a stabilizing procedure able to significantly accelerate the
convergence of our multigrid.

The codes have been tested both against each other, producing identical results for
the onset of the steady bifurcation occurring at ReSS = 212. We checked also that the
results are weakly affected by increasing the resolution of the discretizations.

4.1. Computation of base flows near the bifurcations

The 3D steady base flow solution can be obtained by simply integrating the time depend-
ent Navier-Stokes equations (2.1) over a long time interval when the flow is in subcritical
conditions, i.e. before the occurrence of a bifurcation. However, if the Reynolds number
exceeds the instability threshold, we cannot use a simple time integration to compute the
unstable steady base flow that is required for the global stability analysis. It is, therefore,
necessary to use a stabilizing numerical procedure able to retrieve the unstable reference
state. In the case of low-dimensional systems on one hand, there exist several continu-
ation and bifurcation packages like AUTO (Doedel 1986) or CONTENT (Kuznetsov &
Levitin 1996) based on direct solvers for the linear algebraic systems and eigenvalue
problems involved in the computations. On the other hand, since the discretization of a
full three-dimensional problem often leads to a very large discrete system, the extension
to high-dimensional problems is not straightforward.

Note that computation of the steady solution using a Newton algorithm, which is the
most commonly used method in global stability studies of 2D flow, is not suitable here,
as it necessitates a matrix inversion which would require too much memory and time in
a 3D case. An alternative, however, would be to adopt a Krylov-subspace method like
the classical GMRES (Saad 2003). Other approaches can be found in the literature. In
Åkervik et al. (2006), for instance, the authors managed to reach the steady state by
damping the unstable frequencies using a dissipative relaxation term proportional to the
high-frequency content of the velocity fluctuation field. Shroff & Keller (1993), instead,
were able to compute unstable states by using a projection onto the small unstable
subspace coupled with a Newton procedure.

In the present work, we adopt a novel efficient algorithm, inspired by the Krylov-
subspace methods, to compute unstable steady states of the inherent dynamical system.
This method, like GMRES, is based on the minimization of the residual norm at each
integration step. It allows us to obtain the unstable, steady field by correcting the new it-
eration of the numerical procedure using a linear combination of previous fields. The key
steps of this procedure can be found in the appendix A of Citro et al. (2015). However,
we tested our algorithm to compute the flow past a circular cylinder. In this case, the
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maximum difference between the base flow computed using our algorithm and the clas-
sical Newton-Raphson method is less than 10�10. Such procedure has been implemented
both in NeK5000 and in the multigrid code.

4.2. Global stability approach in the 3D case

The linearized incompressible Navier-Stokes equations govern the dynamics of infinites-
imal perturbations that evolve on the fixed point (the base flow) U b. As mentioned
before, we compute both direct and adjoint eigenpairs; we refer to (Luchini & Bottaro
2014) for further details. Unfortunately, in three-dimensional numerical simulation of
fluid flows, it is not possible to apply a matrix method to compute the eigenpairs be-
cause the size of the resulting matrix prohibits its explicit construction. Thus, the only
available alternative is to adopt a matrix-free procedure based on time-steppers (Bagheri
et al. 2009a). This procedure uses a Krylov subspace method built using snapshots taken
from the evolution of the perturbation flow field. In the present work, we solved the
eigenproblems by using the Implicit Restart Arnoldi Method implemented in ParPACK.
The evolution of the perturbation field is computed by using the linearized DNS (direct
or adjoint) time-stepper available in the NeK5000 code.

The boundary conditions associated with the direct eigenproblem are given by equa-
tions (3.4). The conditions for the adjoint problem, instead, are chosen to eliminate
the boundary terms after the application of the Lagrange identity (Giannetti & Luchini
2007).

5. Results

5.1. Base flow

Figure 2 displays the typical shape of the base flow through contour of the pressure field
and streamlines in the lateral (x � y) mid-plane (z = 0). Let us first review the case
without rotation (⌦ = 0). For Re < ReSS = 212 (figure 2(a)), the base flow remains
axisymmetric, and the structure is the same in every transverse plane. This flow state
consists of a toroidal recirculation region with closed streamlines. In topologic terms, the
flow along the sphere is characterized by two detachment points in the symmetry plane,
plus a central reattachment point, while the flow in the wake is characterized by two
stable foci and one saddle point.

Above this threshold, intrinsic wake dynamics leads to a spontaneous symmetry break-
ing, the resulting state displaying only a planar symmetry with respect to an arbitrary
transverse plane (which is taken here as the (x�y) plane for consistency with the results
in the rotating case). When observed in this symmetry plane, the recirculation region is
asymmetric, one of the vortical structures becoming stronger than the other one. (see
figure 2(b) for Re = 275). One can also note that the streamlines in the symmetry plane
are no longer closed, but are spiraling towards a converging focus in the upper half and
outwards from a diverging focus in the lower half. As described in detail by Johnson &
Patel (1999), this feature indicates a three-dimensional flow along the toroidal structure,
with streamlines diverging in the third direction from the upper focus and converging
towards the lower one. Note also that the central reattachment point is shifted upwards,
while the location two detachment points is weakly modified. Finally, the isocontours
indicate that pressure is larger near the upper part of the sphere surface, which results
in a negative lift.

In presence of rotation, the axisymmetry of the flow is always broken and replaced
by a planar symmetry with respect to the transverse plane (x� y) perpendicular to the
rotation (z) axis. Figure 2(c) displays the base flow for a weak rotation (⌦ = 0.01),



8 V. Citro, J.Tchoufag, D.Fabre, F. Giannetti and P. Luchini

-0.28 -0.077 0.13  0.33 0.53 -0.28 -0.085 0.12  0.32  0.526

-0.41 -0.17 0.063 0.3 0.53 -0.41 -0.17 0.063 0.3 0.53

-0.66   -0.4 -0.08 0.22 0.51 -0.66   -0.4 -0.07 0.23 0.53

a) b)

g) h)

c)

-0.29 0.0 0.21 0.53 -0.31 -0.1 0.11 0.32 0.528

d)

e)

c)

f )

Figure 2. Flow past a sphere immersed in a uniform stream: contour plot of the pressure fields
for several flow conditions. The white lines represent the streamlines of the flow. The fixed
sphere case (⌦ = 0.0) is depicted using two cases: a) axysimmetric state at Re = 200 and b)
asymmetric flow at Re = 275 (onset of mode I without rotation). Furthermore, we select four
cases to show the spatial structure of the flow for mode I: c) ⌦ = 0.01, Re = 200, d) ⌦ = 0.01,
Re = 270, e) ⌦ = 0.2, Re = 200, f) ⌦ = 0.2, Re = 240; and mode II: g) ⌦ = 0.9, Re = 200, h)
⌦ = 0.9, Re = 270.
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and low Reynolds number Re = 200. Compared with the non-rotating case, one can
observe that the location of the detachment point is shifted downstream in the lower
half and upstream in the upper half. As a consequence, the recirculation region becomes
asymmetric, the lower structure becoming stronger than the upper one. Overall, the
resulting wake is very similar to the one resulting from the bifurcation at ReSS in the
non-rotating case, with non closed streamlines indicating divergence/convergence of the
flow in the perpendicular direction. The effect of rotation on the pressure is also to
decrease the pressure on the lower side of the sphere and to increase it on the upper side.
This is in accordance with the classical explanation of the Magnus effect, and results in
a net negative lift force. Figure 2(d) displays the base flow for the same weak rotation
rate (⌦ = 0.01) and higher Reynolds number Re = 270. In this case the recirculation
region becomes strongly asymmetric. We can interpret this as a superposition of the two
previous effects: the Magnus effect due to rotation and the intrinsic wake mechanism
responsible for the symmetry breaking in absence of rotation reinforcing each other.

As the rotation rate is further increased, the regions with spiraling streamlines in the
upper and lower parts of the wake disappear, as already found by Giacobello et al. (2009).
This is exemplified by figure figure 2(e) which displays the base flow for a moderate
rotation (⌦ = 0.2), and Reynolds number Re = 200. Note that the topology of the
flow becomes different and simpler compared with the previous case. Considering the
flow along the sphere, there is now a single detachment point located on the upper
half of the sphere instead of a pair of detachment points and a central reattachment
point. Considering the flow in the wake, the two foci and the saddle point have also
vanished. Consequently, the recirculation becomes fully open. As can be seen in figure
2(f) Re = 240, increasing the Reynolds number does not modify much the structure
of the flow. In both these plots we still observe that the pressure is decreased on the
lower side of the sphere and increased on the upper side. Again in accordance with the
classical explanation of the Magnus effect, this results in a net negative lift force. Note
that although the plots only depict the flow in the symmetry plane, the streamlines
give indication about the three-dimensionality of the flow. Namely, in the vicinity of
the upper detachment point, the tightening of the streamlines indicates divergence in
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the perpendicular direction, while in the lower part of the wake the spreading of the
streamlines indicates convergence in the perpendicular direction.

Figures 2(g � h) display the case of a larger rotation rate ⌦ = 0.9, respectively with
Re = 200 and Re = 270. Compared with the previous cases, we can note that the open
recirculation region originating from the detachment point on the upper half of the sphere
becomes more open and more intense.

Figure 3 details the lift force exerted upon the sphere as function of Reynolds number,
for several values of the rotation rate. Without rotation (⌦ = 0), one recovers the picture
already described, namely zero lift below ReSS = 212 and a bifurcation towards a non-
zero lift situation above this value. For ⌦ > 0, the lift is always negative and smaller than
in the non-rotating case. This is consistent with the fact that intrinsic wake dynamics
and Magnus effect reinforce each other to build the lift force, as explained previously.

Finally, in this figure, the curves corresponding to the lowest values of ⌦ approach
the curves of the non-rotating case, except in the vicinity of ReSS where a continuous
transition is observed. This feature is linked to the fact that the pitchfork bifurcation
existing in absence of rotation actually becomes an imperfect bifurcation in the case of
slow rotation. Accordingly, in the vicinity of the threshold, one expects to encounter other
equilibrium solutions lying on a separate branch disconnected from the one considered
here. Such solutions were actually effectively found, but they turn out to be always
unstable. Hence, we preferred not to document these additional solutions in the present
section. The imperfect bifurcation for small rotation will be reconsidered in detail in
section 6.

5.2. Global stability

We now detail the results of the global linear stability analysis exposed in the previous
section. The main outcome of this study is depicted in figure 4(a), which displays the
thresholds for linear instability in the Re/⌦ parameter plane. We observe the existence of
two distinct regions. The first region exists for moderate values of the rotation (⌦ < 0.4).
This mode, called mode I in the following, is one which exist in the no-rotating case
(⌦ = 0). As can be observed, small rotation has a destabilizing effect: the threshold
Reynolds decreases from 272 in the non-rotating case to Re

modeI
cr = 235 for ⌦ = 0.2.

However, increasing again the rotation as the opposite effect; in the range ⌦ = [0.2, 0.4],
the value of the critical Reynolds number becomes larger than 300. We suggest that
these trends are related to the transition in the wake flow topology. In particular, when
0.0 6 ⌦ 6 0.2, the recirculation bubble is asymmetric and one of the recirculation regions
grows; this modification to the base flow structure destabilizes the flow past rotating
spheres for a mild rotation. On the other hand, when ⌦ > 0.2 the recirculation bubble
is disappeared and the flow, as a consequence, becomes more stable as the rotation rate
increases.

The second region of instability occurs for larger rotations, namely ⌦ > 0.7 in the
range of Re considered. For this second mode, noted mode II, the effect of rotation is
destabilizing as the threshold Reynolds decreases as ⌦ is further increased.

In figure 4(a), we have also displayed with symbols the DNS results of Kim (2009) and
Poon et al. (2014) for Re = 250 and 300. As can be seen, these results are in excellent
agreement with ours, since all their unsteady simulations fall inside the regions we found
to be linearly unstable, while all their steady simulations fall in the stable one.

Figure 4(b) shows the effect of ⌦ on the Strouhal number associated with the eigen-
frequency of the unstable global modes. We note that St displays a relatively linear
dependence on ⌦ for mode I while it is almost constant of mode II. Thus, we can con-
clude that, for mode II, the rotation rate ⌦ weakly affects the Strouhal number that is
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Figure 4. a) Neutral stability curve for the three-dimensional flow past a transversely rotating
sphere: (⇤) mode I ; (�) mode II. We report also DNS results provided by Kim (2009); Poon
et al. (2014): (⇤) stable simulations and (4) unstable DNS (they reported the existence of a
saturated limit cycle).

approximatively 0.4. Our results agree well with those reported by Kim (2009); Poon
et al. (2014) using DNS.

Figures 5(a) and 5(b) show the spatial structure of the velocity modulus of direct mode
I. This global mode is dominated by axially extended streamwise velocity disturbances
located downstream of the sphere. Note that the u� and v�component are symmet-
ric with respect to the (x, y)�plane while the w�component is antisymmetric (figures
5(c, d, e)). This means that the unsteady mode, which emerges from this instability, re-
spects the planar (x � y) symmetry of the underlying base flow. This fact is consistent
with classical results for a non-rotating sphere. Figures 5(f) and 5(g) depict the spa-
tial distribution of the adjoint field. Note that the latter is strongly localized near the
surface of the sphere, more specifically in the upper part of the sphere where the shear
is largest due to opposite rotation. In order to characterize the instability mechanism,
we performed also the structural sensitivity analysis. The latter region is localized in
a near-wake region of the sphere, across the surface separating the outer flow from the
wake region. From these observations we may infer that (i) the region responsible for this
instability (wavemaker) is localized in the recirculation region behind the sphere, and (ii)
the instability is mostly receptive to perturbations near the surface of the sphere.

Figure 6(a� d) show the spatial distribution of the streamwise velocity component of
direct and adjoint mode II. The structure of this direct global mode is again characterized
by spatial oscillations downstream of the sphere. We notice that mode II presents faster
spatial oscillations than mode I but presents a similar spatial shape. This means that
like mode I, mode II preserves the planar symmetry of the base flow. As a result, the
oscillating flow resulting from these unstable modes is not expected to display oscillations
with respect to the mean-plane. Our results agree well with the DNS results provided by
Kim (2009).



12 V. Citro, J.Tchoufag, D.Fabre, F. Giannetti and P. Luchini

z_veloci

0

Z Axis-3

Y Axis0

X Axis

30

20

10

-3

Y Axis

X Axis

30

20

10

0

0

Z Axis

8.485e-02
y_velocity

0

Z Axis
-2

Y Axis
0

X Axis

30

20

10

-2

Y Axis

X Axis

30

20

10

0
-0.04758

-0.0034376

0.040705
0

Z Axis

0

Z Axis
-2

Y Axis0

X Axis

30

20

10

-2

Y Axis

X Axis

30

20

10

0

0

Z Axis

0 0

0

00

0

5

5

10

10

15

15

5

5

10

10

15

1515

 0.0467

-0.0233

 0.0

 0.0233

-0.4677

0.0849
Direct mode - v

30

-0.0475

-0.0034

0.041

-0.0917

15

15

10

5

0

0

5

0.165
Direct mode - u 

-0.044884

0.025009

0.094903

-0.115

0

10
X-axis 

X-axis 
X-axis 

Y-axis Y-axis 
Y-axis 

    Direct 
    mode - w

(x,y) plane      z=0.0

0

2.5

   5

-2.5

  -5

0 2.5-2.5  -5    5 7.5 10 12.5 15

0 0.045 0.089 0.13 0.18

0

2.5

Direct mode || u ||

5

7.5
10

12.5
15

0

0

2.5

5

7.5

10
12.5

15

X - axisY-axis

1

X Axis

-1

Y Axis

1

0.5

0

-0.5

-1

X Axis
1

0

-1

Z Axis
0

0

-0.5

-1

Y Axis

1

0.5

0

-0.5

-1

0

1

0.5

0

0.35

0.71

1.07

1.43

X - axis

0
0.5

-0.5

Z - axis

Adjoint mode

0

0.25

-0.25

Y - axis
0

0.25

0.5

-0.25

0

0.25

0.5

-0.25

0.5 1

-0.5

-0.5 X - axis

Y - axis

X
 - a

x
is

Y - axis

1

0

-0.5

-1

0

1

0.5

0

-0.5

-1

1

0.5

0
-1

0

3

2

1

0

-1

3
2 Structural

Sensitivity

-0.5
0

0.5
10

0

-0.25

0.25

-0.5

0.5

-0.5 0

1.67

1.25

0.83

0.42

0

0.5

1.5

1 1.5
0

X - axis

Y - axis

Z - axis

1 1.5 2 2.5 30-0.5-1

1

0.5

0

-0.5

-1

2

0.5

1.510.50-0.5-1

1

0.5

0

-0.5

-1

32.50 0.5 1 1.5-0.5
X - axis

0

-0.25

-0.5

0.25

0.5

Y - axis

a) b)

f )
g)

h)
i)

c) d) e)

Figure 5. (Colour online) Contour plots of a) direct mode I, f) adjoint mode I (see fig. 4).
Their structure is also depicted by using a slice at z = 0 in b) for the direct field and g) for the
adjoint one. Furthermore, figure c), d) and e) depict respectively the x�, y� and z�component
of the direct mode. The structural sensitivity field is depicted in h) perspective view and i) side
view. Parameter settings: ⌦ = 0.2, Re = 235.

The adjoint mode is still localized near the sphere surface. On the other hand, the
structural sensitivity indicates that the region responsible for instability (the wavemaker)
is also localized in a region of strong shear near the sphere surface. This finding agrees
well with the conclusion of Giacobello et al. (2009)(Section 3.3) that suggested a Kelvin-
Helmholtz instability of the shear layer as the instability mechanism.
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Figure 6. (Colour online) Contour plots of a) direct global mode II, c) adjoint mode II. We
depict also the spatial structure by using a slice at z = 0 in b) for the direct field and d) for the
adjoint one. Furthermore, figure e) shows a perspective view of the structural sensitivity field
and figure f) shows its side view. Parameter settings: ⌦ = 0.9 at Re = 270.

6. The case of slow rotation

As recalled in the introduction, in the non-rotating case, the flow around a sphere
experiences a pitchfork bifurcation at Re = ReSS = 212 which leads from a axisymmetric
state with zero lift to a mirror-symmetric state with nonzero lift. To investigate the nature
of such bifurcations, and in particular their supercritical or subcritical nature, a usual and
straightforward extension of the global stability approach used in the previous section
is to perform a weakly nonlinear development in terms of the distance to the threshold.
This calculation was actually done in (Meliga et al. 2009a) for the case of an infinitely
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thin disk, and repeated by (Tchoufag et al. 2011) for the disks of finite thickness. The
purpose of the present section is to repeat this calculation for the case of a sphere and to
extend it to include the effect of a weak rotation. We will show that the approach directly
leads to an amplitude equation describing an imperfect bifurcation, in good accordance
with the numerical results.

6.1. Weakly nonlinear approach

Following (Meliga et al. 2009a), we pose ✏2 = 1/ReSS �1/Re and assume this parameter
to be small. The flow is thus expanded in terms of this parameter as follows :

q = [u, p] = q0 + ✏q1 + ✏2q2 + ✏3q3 + · · ·

In order to introduce the effect of rotation in the method, we also have to assume that
the rotation is small. Inspection shows that the relevant scaling is to assume ! to be of
order ✏3, so that we set

! = ✏3!0

where !0 is the rescaled rotation rate of order one.
Following the standard weakly nonlinear expansion for such flows (Sipp & Lebedev

2007; Meliga et al. 2009a), we rely on a multi-time scale technique and assume ⌧ = ✏2t
where ⌧ and t are respectively the slow and the fast time scales. Injecting this decompos-
ition into the governing equations (2.1) along with the boundary conditions (2.2) leads to
various problems to be solved for Re = ReSS at different orders ✏j , with j = 0, 1, 2, 3, · · · .

• At order ✏0, we obtain the nonlinear problem governing q0, the axisymmetric base
flow with no rotation.
• At order ✏, we obtain a linear problem which can be written in a symbolic way as

Lq1 = 0. Since we are at the threshold ReSS , this equation has nontrivial solution with
azimuthal wavenumbers ±1 (the marginal eigenmodes). The solution at this order is thus
a linear combination of the global modes at Re = ReSS , and is taken as:

q1 = Â(⌧)q̂(r, x)ei� + c.c (6.1)

where q̂ is the eigenvector of azimuthal wavenumber (m = +1) and Â is a complex
amplitude that depends on the slow time scale. Note that the eigenvector q̂ can be
normalized so that the real and imaginary parts of the amplitude A correspond to the y
and z components of the lift (see Fabre et al. (2008)).
• At order ✏2, the solution contains base-flow viscous corrections due the departure

from ReSS as well as quadratic terms resulting from the self-interactions of the global
mode. Using the notations of Meliga et al. (2009a), this reads:

q2 = q� + qAA⇤|A|2 + (qAAA
2e2i� + cc.) (6.2)

• At order ✏3, one obtains a linear problem which can be written in a symbolic way
as follows :

@tq3 + (@⌧Aq̂e
i� + cc.) = N (q2,q1) + Lq3 (6.3)

where N (q2,q1) represents the nonlinear interaction between the solutions at the two
previous orders, and L is the same linear operator as for the problem at order one. This
problem is again similar to the case of Meliga et al. (2009a), except for the fact that q3

has to verify the boundary condition corresponding to a steady rotation, namely:

u3 = !0z⇥ r.

The linear operator governing the system (6.3) being singular, the usual procedure to
remove the secular terms consists of taking a scalar product of the forcing terms with
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the adjoint of the problem. This yields a single differential equation for the amplitude A,
with the form:

@A

@t
= �✏2A� µ|A|2A+ a! (6.4)

where �, µ and a are all real. Here the coefficients � and µ contain the effect of the forcing
terms corresponding to the viscous correction (q�) and the quadratic terms constituting
q2. These terms are computed exactly as in Meliga et al. (2009a), so their detailed
expression needs not be given. On the other hand, the coefficient a comes from the
non-homogeneous boundary condition.
Let hv1,v2i@D

sph

=
R
@D

sph

v⇤
1.v2 , i.e the hermitian scalar product between two complex

vectors v1 and v2 on the surface @Dsph. Then, the coefficient a is computed as following:

a =

⌧
1

Re
ru† · n, 1

!0
û3

�

@D
sph

where û3 = !0(
x
2er + ix2e� � r

2e3) (in cylindrical coordinates) because of the no-slip
condition on the sphere at order ✏3.

The numerical values of the coefficients of equation (6.4) then read: � = 126.539,
µ = 94.316, a = �0.025.

To study the dynamics predicted by the amplitude equation (6.4), we first look for
equilibrium solutions, then consider their asymptotic trends as ! ! 0, and finally invest-
igate their stability by examining the behavior of small-amplitude perturbations with
respect to them. For the latter purpose, one must ensure that the amplitude A is defined
as a complex number, the real and imaginary parts contributing to the lift in the y and
z directions, so that the stability with respect to both in-plane and out-of-plane perturb-
ation has to be distinguished. The details are presented in the appendix. In summary, it
is shown that the system possesses three branches of equilibrium solutions which verify
the following properties:
• The first one, noted A01, is real and positive, and exists for all values of ✏2. For very

small rotation it displays the following asymptotic behaviors :

A01 ⇡ � a!

�✏2
as ! ! 0 with ✏2 < 0; A01 ⇡

s
�✏2

µ
as ! ! 0 with ✏2 > 0.

This solution is stable to both in-plane and out-of-plane perturbations.
• The second branch, noted A02, is real and negative and emerges from a saddle-

node for ✏2 > 3 · 2�2/3a2/3µ2/3!2/3/�. For very small rotations it displays the following
asymptotic behavior:

A02 ⇡ � a!

�✏2
as ! ! 0 with ✏2 > 0.

This second branch is unstable to both in-plane and out-of-plane perturbations.
• The third, noted A03, originates from the same saddle node as the previous, and for

very small rotations, it has the asymptotic behavior

A03 ⇡!

s
�✏2

µ
as ! ! 0 with ✏2 > 0.

This last branch is stable with respect to in-plane perturbations but unstable with respect
to out-of-plane perturbations.

Note that the fact that the three solutions are all real means that the corresponding



16 V. Citro, J.Tchoufag, D.Fabre, F. Giannetti and P. Luchini

200 205 210 215 220 225
  0.025

  0.02

  0.015

  0.01

  0.005

0

- 0.005

-0.01

-0.015

-0.02

-0.025

ω=0.0001

ω=0.001

Steady asymetric state
ω=0

Steady axisymmetric state

ω=0.01

Re

Fy

Figure 7. Lift force as a function of the Reynolds number for different rotation rates. Symbols
correspond to DNS and lines correspond to the normal form (6.4) of the imperfect Pitchfork
bifurcation. Solid (resp. dashed) lines represent stable (resp. unstable) solutions.

structures are symmetrical with respect to the transverse (x�y) plane. Accordingly, these
states are characterized by a constant lift in the y direction, given by their amplitude A
in the original scaling.

6.2. Comparison with 3D numerical simulations

Recalling that owing to the normalization of the direct modes, the lift force is directly
given by A, allowing one to compare, directly, the solutions of the amplitude equations
to the numerical results of figure 3. The comparison is presented in figure 7, which shows
that the base flow discussed in section 5.1 is in perfect agreement with the predictions of
branch A01 of the weakly nonlinear model. In addition, the weakly nonlinear approach
allows to unveil the existence of other disconnected branches of steady solutions for a
rotating sphere, corresponding to branches A02 and A03. As shown in figure 7, the global
approach also allowed to confirm the existence of these states, at least for ! = 0.001 and
! = 0.0001. On the other hand, for larger values of the rotation rate, these branches
become difficult to track. Since they are always unstable, we disregarded those branches
in the stability approach described in section 5.2 and concentrated only on the primary
branch A01.

As expected, the discrepancies between the theory and the DNS data in figure 7 in-
crease with the rotation rate. As the sphere spins faster, the departure from the axisym-
metric base flow is greater even for Reynolds numbers far smaller than ReSS and the
steady global mode bifurcating from the fixed sphere configuration loses progressively
its relevancy. Note also that, the weakly nonlinear expansion having been derived in the
vicinity of the steady bifurcation, its comparison with DNS data is expected to be less
satisfactory as the departure from criticality increases. Figure 7 confirms such behavior,
for all the three solution branches and for all the rotation rate values.



Linear stability and weakly nonlinear analysis of the flow past rotating spheres 17

7. Conclusion

We analyzed the stability of a flow past a transversely rotating sphere for various
angular velocity (0 6 ⌦ 6 1.2). The spectral-finite-element code NeK5000 is used to
efficiently solve the DNS and global stability problems in the primitive variables for-
mulation. The case of slow rotation is studied by using a finite-difference second-order
immersed-boundary multigrid code.

The analysis done in this work confirms the existence of two different self-sustained
modes (mode I and mode II) in the wake of such rotating spheres. These unsteady
modes derive from Hopf supercritical bifurcations. This result was confirmed by using
Direct Numerical Simulations. The first shedding mode is dominated by axially exten-
ded streamwise velocity disturbances located past the sphere. The structural sensitivity
identifies the wavemaker of these global oscillations in the near wake region. The second
mode presents a frequency which is twice that of mode I but is also characterized by
spatial oscillations downstream the sphere. The core of this instability is in a region of
strong shear near the sphere surface. This suggests that this instability could be related
to a feedback mechanism involving Kelvin-Helmoltz waves in accordance with previous
experimental and numerical data (Giacobello et al. 2009).

A weakly nonlinear analysis was derived to investigate the asymmetric wake in presence
of small rotation rates ⌦. We adopted a third-order expansion using a multi-time scale
technique and solved the subsequent hierarchy of equations that is obtained. We showed
that this asymmetric state, prior to the vortex shedding, verifies the normal form of an
imperfect Pitchfork bifurcation whose threshold is the critical Re beyond which the non-
rotating sphere loses its axisymmetry. An excellent agreement between the theoretical
prediction and numerical simulations is reported for all the three solution branches. We
find one positive branch of solution and two negative ones as predicted by the matched
asymptotic analysis of the normal form. Our results agree well with the well known
Magnus effect predicting the lift produced by a rotating body in a uniform stream.

Aside from the case of a sphere rotating at an imposed rate considered in the present
paper, a related and equally interesting situation is the case of a sphere free to rotate
(either in free fall or held by a pivot and free to rotate around it). This case was recently
considered in Fabre et al. (2012) using a weakly nonlinear expansion valid in the limit of
small rotations. The study showed that in this situation, states with with nonzero rotation
rate but with zero torque exist above a critical value of the Reynolds number ReSO = 206
which differs from the value ReSS = 212 corresponding to the steady bifurcation for a
fixed, non-rotating sphere. However, the weakly nonlinear development of Fabre et al.

(2012) fails in the vicinity of ReSS = 212, so the range of existence of these zero-torque
states and their stability properties remain unclear. Examining this situation through
DNS and 3D stability analysis is the object of continuing studies in our research groups.

Appendix A. Stability analysis of the imperfect bifurcation solution

branches

The amplitude equation (6.4) can be reduced to the following canonical form:

@X

@ t̄
= RX � |X|2 X + 1 (A 1)

where we have introduced the reduced bifurcation parameter

R =
⇣
�!�2/3a�2/3µ�2/3

⌘
✏2,
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the reduced amplitude

X =
⇣
!�1/3a�1/3µ1/3

⌘
A,

and the rescaled time scale
t̄ =

⇣
!�2/3a�2/3µ1/3

⌘
t.

Let us first consider the equilibrium solutions X = X0 of the amplitude equation. Such
solutions correspond to the real roots of the cubic equation

RX0 � |X0|2X0 + 1 = 0. (A 2)

Elementary properties of cubic equations (Cardan’s theorem) can be used to show
that equation (A 2) has three branches of solution, and to investigate their behavior as
R becomes large:
• The first one, noted X01, exists for all values of R. Moreover it displays the following

asymptotic behaviors : X01 ! �1/R as R ! �1 and X01 !
p
R as R ! +1.

• The second, noted X02, originates from a saddle point located at [R;X] = [3 ·
2�2/3;�2�1/3]. It exists only for R > 3 · 2�2/3 and has the asymptotic behavior X02 !
�1/R as R ! +1.
• The last, noted X03, originates from the same saddle point, has the same range of

existence, and has the asymptotic behavior X03 ! �
p
R as R ! +1.

The asymptotic behaviors presented here as |R| ! 1 provide the ones for ! ! 0 of the
main text, which actually correspond to the distinguished limit !2/3 ⌧ ✏2 ⌧ 1.

To investigate the stability of these states, we consider small deviations around each
of these equilibrium solutions. Let us disturb the steady solution of the reduced form so
that

X = (X0 + x)ei✓.

Injecting this decomposition into equation (A 1) and linearizing in terms of |x| and ✓
lead to

@x

@t
= Rx� 3|X0|2 x, (A 3a)

@✓

@t
X0 = �✓ (A 3b)

leading to the following eigenvalues:

�1 = R� 3|X0|2 ⌘ �1/X0 � 2|X0|2; �2 = � 1

X0
.

Note that �1 (resp. �2) represents the growth/decay rate of perturbations of the amp-
litude (resp. the phase).
• The first branch X01 is always positive, so both eigenvalues are negative. This branch

is stable with respect to in-plane and out-of-plane perturbations.
• The second branch is located in the interval �22/3 < X02 < 0. Hence both eigenval-

ues are positive: the branch is unstable with respect to both in-plane and out-of-plane
perturbations.
• The third branch verifies X03 < �22/3. Hence �1 is negative but �2 is positive.

This branch is stable with respect to in-plane perturbations but unstable with respect
to out-of-plane perturbations.
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Abstract

The study of the stability of a dynamical system described by a set of partial
differential equations (PDEs) requires the computation of unstable states
as the control parameter exceeds its critical threshold. Unfortunately, the
discretization of the governing equations, especially for fluid dynamic applic-
ations, often leads to very large discrete systems. As a consequence, mat-
rix based methods, like for example the Newton-Raphson algorithm coupled
with a direct inversion of the Jacobian matrix, lead to computational costs
too large in terms of both memory and execution time.

We present here a novel iterative algorithm, inspired by Krylov-subspace
methods, which is able to compute unstable steady states and/or accelerate
the convergence to stable configurations. Such new algorithm is based on the
minimization of the residual norm at each iteration step with a projection
basis updated at each iteration rather than at periodic restarts like in the
classical GMRES method. The algorithm is able to stabilize any dynamical
system without negatively impacting on the computational time of the nu-
merical procedure originally used to solve the governing equations. Moreover
it can be easily inserted into a pre-existing relaxation (integration) procedure
with a call to a single black-box subroutine.

The procedure is discussed for problems of different sizes, ranging from a
small two-dimensional system to a huge three-dimensional problem involving
the Navier-Stokes equations. We also show that the proposed algorithm is
able to improve the convergence of an already working iterative scheme. In
particular, the procedure is applied to the subcritical flow inside a lid-driven
cavity. We also discuss the application of Boostconv to compute the steady
flow past a fixed circular cylinder (2D) and the boundary-layer flow over a
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hemispherical roughness element (3D) for supercritical values of the Reynolds
number. We also show that Boostconv can be used effectively with any
spatial discretization, be it a finite-difference, finite-volume, finite-element or
spectral method.

Keywords: stable solution, iterative procedure, stabilization algorithm

1. Introduction

The knowledge of fixed points or periodic solutions of a dynamical system
is very important for both stability analysis and the development of flow con-
trol strategies. The first step, within the framework of the stability analysis,
is the computation of a reference state around which the governing equations
are linearized [1]. Such state can be either a steady or a periodic solution
of the nonlinear governing equations. The stability of such states usually
depends on the value of a given parameter: when a critical value is reached,
generally, a bifurcation occurs and the original solution becomes linearly un-
stable, with the system tending towards a new state. A classical example of
such behaviour in fluid dynamics is the instability occurring in the wake of
a circular cylinder: at low Reynolds number, i.e. for Re < 46.7, the flow is
steady and symmetric, but for larger values of Re a global instability arises
in the flow field [2] leading to the well-known von Kármán vortex street.
In order to perform stability computations beyond the critical threshold we
need a numerical method able to track the solution across and beyond the
bifurcation point. Unfortunately, it is not possible to achieve such goal using
a standard time integration of the governing equations.

For low-dimensional systems, e.g. models of chemical reactions, coupled
oscillators or lumped element models for fluid flows [3], several continuation
and bifurcation packages like AUTO [4] or CONTENT [5] are freely available
on the net. They are all based on a Newton method coupled to a direct linear
solver applied to an augmented algebraic system of equations. These pack-
ages have been designed also to deal with higher-codimension bifurcations
and continuation of periodic orbits.

Unfortunately, the numerical treatment of PDEs often involves the solu-
tion of very large systems of algebraic equations which do not allow the use of
such packages. In particular, Newton’s algorithm, involving matrix inversion,
cannot be used to solve large three-dimensional problems because of the ex-
tremely large memory requirements and the large computational costs (CPU
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time); in these cases an alternative approach is to employ a Newton-Krylov
algorithm, where a Krylov subspace method (like a GMRES or a BCGSTAB)
is used to solve the linear system stemming from each Newton substep.

For large-scale systems, computations of unstable states have been per-
formed in a limited number of studies [6], [7]. Van Noorden et al.[9] discussed
the application of a continuation method with subspace iterations to com-
pute periodic orbits of high-dimensional systems. Newton-Krylov techniques
are used by Sanchez et al. [10] to obtain the fixed points of a Poincaré map.
Shroff & Keller [8] proposed the Recursive Projection Method (RPM) which
stabilizes an unstable iterative procedure by splitting the solution space into
the direct sum of a large subspace spanned by the stable modes and a small
subspace generated by the unstable ones: the algorithm uses a Newton pro-
cedure only on the small subspace while it retains the original iterative pro-
cedure on its complement. Mittelmann & Weber[12] proposed a continuation
strategy coupled with a multigrid algorithm to compute solutions of nonlin-
ear eigenvalue problems near turning points. Sanchez et al.[11] discussed the
application of an incomplete lower-upper decomposition (ILU) as an effective
preconditioner for the Navier-Stokes problem.

Akervik et al. [13], instead, proposed to apply a selective frequency damp-
ing method to recover the steady states of the Navier-Stokes equations. The
key idea of this procedure is to damp the oscillations of the unsteady part
of the solution using a temporal low-pass filter. It was successfully adopted
by Bagheri et al.[14] and Ilak et al.[15] to investigate the stability of a jet
in cross-flow. However, the SFD algorithm needs an estimate of the global
mode frequency and it cannot be applied to compute unstable states in pres-
ence of stationary bifurcations. Moreover, all the cited techniques involve
significant coding and/or changes in the original numerical algorithm.

The aim of the present work is to propose a new algorithm, inspired
by Krylov-subspace methods, able to efficiently compute unstable steady
states of a high-dimensional dynamical system. This method is based on
the minimization of the residual norm at each integration step and can be
applied as a black-box procedure in any iterative or time marching algorithm
without negatively impacting the computational time of the original code.

2. Iterative solution of a discrete linear system: Krylov methods

The iterative solution of the linear system

Ax = b (1)

3



using Krylov subspace methods has been widely studied in the last decades
[16]. In the previous equation A is a RN⇥N matrix and x and b are RN

vectors representing respectively the solution and the known term of the
linear system, respectively. The approximation of the solution x is sought
such that xj belongs to the shifted Krylov spaces Sj = x0 + Kj(A, r0) with

Kj(A, r0) = span{r0,Ar0, ...,A
j�1

r0}, r0 = b�Ax0, (2)

where Kj is the j � th Krylov subspace and r0 2 RN is the residual vector
with respect to the initial guess x0. The residual vector rj lies in the Krylov
residual subspace Rj defined as

Rj = r0 +AKj(A, r0). (3)

The main idea of this iterative procedure is that the j� th approximation of
the solution xj 2 Sj is found by requiring the minimization of a functional.
Thus, different Krylov methods result from different choices of this functional,
on the characteristics of the matrix and on some implementation details [16].
A possible choice is to select the xj approximation to minimize the 2-norm
|| · ||2 of the residual,

xj = min
xj2Sj

||b�Ax||2. (4)

Such method is usually referred as the minimal residual approach (MR) and
it is largely adopted, as in the case of the popular GMRES method by Saad
and Schultz [17].

The implementation of GMRES is based on the solution of the least
squares problem (4) using an orthonormal basis of the Krylov subspace pro-
duced by the Arnoldi procedure. It is worthwhile to note that during the
execution of GMRES the basis grows and, as a consequence, the storage
requirements grow accordingly. In case of a large system, the number of iter-
ations needed to achieve a sufficiently accurate solution can be excessive and
the resulting Arnoldi matrix becomes unacceptably large to be stored. For
this reason, usually, a restarted procedure is adopted. It consists in restarting
the algorithm when the subspace dimension reaches a maximum value p. In
particular, after p iterations the current new approximation xj and inherent
residual rj are computed and GMRES is stopped. These arrays become the
starting point for the new call to the algorithm. Unfortunately, the restarted
algorithm usually shows a slow convergence rate [16].

Preconditioning techniques, are usually adopted for improving the per-
formance and reliability of Krylov subspace methods. It is recognized that
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preconditioning is the most critical ingredient in the development of efficient
solvers for challenging problems in scientific computation [16]. As a con-
sequence, these methods represent the real key that allows an acceptable
convergence rate.

3. BoostConv algorithm

The main idea which inspired the proposed algorithm is similar to the
one at the basis of GMRES, but in a reverse logic sequence. We start from
an existing iterative algorithm that is modified to Boost the Convergence of
the overall procedure.

A generic linear iteration for the solution of the linear system (1) can be
expressed as

xn+1 = xn +Brn (5)

where rn = b � Axn is the residual and B is a matrix representing the
particular iterative scheme used to solve the problem (see e.g. Ch.4 [18]). For
example, the relation (5) can result from a classical Jacobi or Gauss-Seidel
method or from a pseudo-temporal discretization of a dynamical system.

The convergence of procedure (5) is governed by the eigenvalues of the
iteration matrix (I�BA): the algorithm converges if and only if the spectral
radius of the iteration matrix is less than 1. The asymptotic convergence
rate is essentially governed by the slowly decaying modes. Usually, only a
small part of the spectrum strongly influences the convergence rate. Even
for the case of a non-linear system, the behavior will become linear when the
approximate solution xn is close enough to the solution x of the nonlinear
governing equation. On the other hand, the algorithm could diverge because
of a small set of unstable modes. Thus, the purpose of BoostConv is to
modify only the part of the spectrum characterized by these slowly decaying
or amplified modes, while letting the original algorithm damp the remaining
(decaying) modes.

In order to obtain this stabilization, like in the GMRES algorithm, we
could use the information provided by the state xn and by the residual rn.
The residual satisfies the homogeneous equation obtained by applying the
operator �A to (5) and successively adding b. In this way we easily obtain
the following evolution equation for rn:

b�Axn+1 = b�A [xn +B(b�Axn)] , i.e.
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rn+1 = rn �ABrn. (6)

Our key idea is to improve the existing procedure (5) by replacing the re-
sidual vector rn with a modified residual ⇠n such that the improved algorithm
reads as

xn+1 = xn +B⇠n(rn). (7)

In the previous equation ⇠n is a suitable function of rn and can be inter-
preted as the feedback term of a closed loop control algorithm or a structural
perturbation to the original iteration matrix. In order to guarantee the con-
sistence of the modified algorithm with the original iterative procedure and
recover the solution of the linear system (1), it is sufficient that ⇠n goes to
zero when rn does. The introduction of the vector ⇠n modifies equation (6)
leading to the new residual equation

rn+1 = rn �AB⇠n, (8)

or equivalently
rn � rn+1 = AB⇠n. (9)

We now minimize rn+1 by choosing a suitable function ⇠n = ⇠n(rn). If we
knew (AB)�1 we could exactly annihilate rn+1 by computing ⇠n(rn) as

⇠n = (AB)�1
rn. (10)

However, for large systems, the exact inversion of AB is out of reach or
too expensive to be performed. We therefore approximate the solution of
(10) by using a classical least-square method.

The action of the operator AB can be represented by storing a set of N
vector pairs (ui,vi), where the second member is produced by the action of
AB on the first. Least-squares method is then adopted to approximate the
solution of the algebraic linear system AB⇠n = rn as

⇠n =
NX

i=1

ciui. (11)

In our case the vectors ui and v

i

are related by

v

i

= ABu

i

for i = 1, .., N. (12)
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while the coefficients ci are chosen to minimize |rn �AB⇠n|
2. The standard

least-squares procedure leads to a system of equations for the coefficients ci

of the form
Dkl cl = tk (13)

where tk = vk ·rn and Dkl = vk ·vl is a small N⇥N matrix. Matrix D is usu-
ally ill-conditioned and an orthogonalization procedure (QR decomposition)
is usually needed to find the solution. However, when N is small, as for the
cases we are considering, the solution can be simply found with a classical
LU decomposition. This least-square solution is not exact and produces a
residual ⇢ = r

n

�AB⇠

n

which can be expressed in terms of v
i

as

⇢ = r

n

�AB⇠

n

= r

n

�AB

 
NX

i=1

ciui

!
= r

n

�
NX

i=1

ciABu

i

= r

n

�
NX

i=1

civi

.

(14)
However, inserting the so calculated ⇠n in (7) is not yet sufficient to

produce a converging algorithm because ⇠n could converge to zero even when
the residual rn is not identically zero, but simply orthogonal to the leading
N (basis-)vectors ui. Remembering that the original iterative algorithm (5)
simply had ⇠n = rn, we restore a convergent procedure by adding the residual
⇢ = rn �

P
i civi to ⇠n, so that the complete algorithm now reads

⇠n =
X

i

ciui + rn �
X

i

civi (15)

The rationale behind this procedure is to invert exactly the part of the prob-
lem represented by the dominant, slower decaying modes, while letting the
original iterative algorithm to handle the remaining modes. We now go
back to the issue of selecting a convenient set of vectors u

i

. In the case of
BoostConv, both ui and vi can be conveniently calculated by observing that,
according to (8), for each n we have

rn � rn+1 = AB⇠n. (16)

For a given N, in a cyclic fashion, at the beginning of a new iteration, we
add a new vector pair by selecting uN = ⇠n�1 and vN = rn � rn�1. In
order to keep the size of the basis constant, another pair must be discarded
which typically will be the oldest. Such choice is dictated by the fact that
applying the algorithm to a nonlinear system it is beneficial to use the freshest
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information on the system dynamics in order to account for the change of
the system Jacobian (in our case represented by the linear operator A). We
also note that in matrix Dkl of (13) only the row and the column involving
a new pair need to be updated. Such selection procedure works when we
already have N vector pairs. At the beginning of the algorithm (for n < N)
we can still use the same procedure but continuously increasing the basis
dimension from 1 to the chosen value of N . In this first stage, no vector
pairs are discharged.

From a programming viewpoint, the BoostConv algorithm can be encap-
sulated in a black-box procedure where the only input is rn and the only
output is ⇠n. If ⇠n is returned in the same vector where rn was provided, the
only modification necessary to boost the convergence of the pre-existing iter-
ative algorithm (5) is a single line of code containing the call to BoostConv.
Thus, we can do this in a very compact way because the original algorithm
can be seen as a simple feedback loop as illustrated in figure 1. As a con-
sequence, we can simply insert our algorithm in the subroutine evaluating
the residual as depicted in figure 2.

4. Implementation details

As mentioned in the previous sections, a key feature of the outlined
method is the possibility to code it into a black-box computer algorithm.
Here, we provide some useful programming guidelines concerning the pro-
posed procedure summarized in the Algorithm 1. The only required input
at each step is the residual rn at the current iteration n: using such inform-
ation the procedure calculates the modified residual vector ⇠n (of the same
dimension). Here, in order to compact the resulting algorithm, we define an
auxiliary vector wh = uh � vh.

Once provided the dimension of vector basis N , the procedure can be
divided in four parts: i) from line 2 to 6 of Algorithm 1, we discard the
oldest pair of vectors u and v to store the new pair computed by using the
data provided at the current step n; ii) from line 7 to 13, we build the least-
square matrix D of eq. 13 and the known term t; iii) in line 14 we solve the
linear problem arising from the least-square method by using a simple LU
decomposition on the small N ⇥ N system; iv) in line 15 we compute the
new modified residual ⇠n according to eq. 15.
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equations
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or pseudo-time

iteration)
old solution

residualnew solution

Figure 1: Original iterative procedure. Unmodified integration of governing equations.

equations

feedback (time
or pseudo-time

iteration)

boostconv

old solution

residual

modified residual

new solution

Figure 2: Modification of an existing iterative scheme: stabilized iterative procedure.
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Algorithm 1 BoostConv

1: Input: rn(current residual); Output: ⇠n(modified residual);
2: for {h = 1 to N � 1} do
3: vh = vh+1; wh = wh+1; . Discard the oldest vectors
4: . (remember that wh = uh � vh)
5: end for
6: vN = rn�1 � rn; wN = ⇠n�1 � vn; . Update the vector basis
7: for {m = 1 to N} do
8: DN,m = vN · vm; . Update the least-square matrix (eq.13)
9: end for

10: Dm,N = DN,m; . Least-square matrix is symmetric
11: for {k = 1 to N} do
12: tk = vk · rn; . Build known term of eq.13
13: end for
14: c = D

�1 · t; . Solve the least-square problem (eq.13)
15: ⇠n = rn +

P
i ciwi; . Compute the modified residual (eq.15)

5. Numerical Results

We now apply the procedure to a set of fluid problems in order to show
its performances.

5.1. Acceleration of a stable procedure: the lid-driven cavity flow
The flow inside a lid-driven cavity has been extensively studied in the last

decades and it is usually taken as a benchmark solution for CFD problems
(see e.g. [19],[20]). This configuration presents a singularity at the corners
where the lid moves. Recently, Auteri et al.[21] obtained an accurate solution
of such kind of flow by using a second-order spectral projection method that
allowed to localize the critical Reynolds number for the first Hopf bifurcation
at Recr ⇡ 8018.

The BostConv algorithm is applied to compute the steady state at Re =
500: such configuration is stable and a classical time integration converges
towards a steady state solution. Our aim is to show the effect of the present
algorithm on the convergence rate of the existing iterative procedure. We
use the Spectral element code Nek5000 to accurately solve the governing
equations. The results presented in this section are obtained by using a
constant time step equal to �t = 0.001 and the dimension of the BostConv

basis is set to N = 15.
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Figure 3: Two-dimensional flow inside a lid-driven cavity at Re = 500. In particular, we
show the evolution of the residual norm as a function of the time.

Figure 3 shows the evolution of the residual as a function of time. We ob-
serve that the residual norm obtained from the unmodified time-integration
procedure, depicted using a dash line, reaches the target value of 10�6 at
t ⇡ 54. The solid line, on the other hand, represents the evolution of the
residual when the call to BostConv is added to the original code. We note
that the application of the proposed algorithm accelerates the convergence of
the procedure by a factor of ⇡ 2.85. Finally, we recall that the introduction
of BostConv implies only the solution of a linear system associated to the
least-square method: consequently, the computational time of each time step
is increased just by ⇡ 5%.

5.2. Two-dimensional flow past a circular cylinder
The most common example of two-dimensional flow past a bluff body is

the flow past an infinitely long circular cylinder. The problem of viscous
incompressible flow past this geometrical configuration has for a long time
received great attention, both theoretically and numerically [22].

At low Reynolds numbers the steady flow is symmetric and is character-
ized by a small recirculation bubble behind the cylinder. When the Reyn-
olds number based on the cylinder diameter D exceeds the critical value of
Re

I
cr = 46.7, the flow becomes unstable and a periodic Von-Kármán vor-
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tex street appears [23]. Linear stability analysis performed on the inher-
ent base flow shows also the existence of a second unstable wake mode for
Re > Re

II
cr = 110.8.

In the present section, we consider the flow at the (supercritical) Reyn-
olds number of Re = 120 > Re

II
cr . The natural evolution of the governing

equations produces a saturated limit cycle depicted in figure 4a). We in-
serted BoostConv to compute the base flow in three-different codes: 1) a
time-marching finite-difference immersed boundary code [23]; 2) the spectral
element (SEM) code NEK5000 [24]; 3) the finite-element code Freefem++
[25],[26]. As in the previous section, for each code, the modification of the
existing time integration procedure consists in a single line of code that con-
tains the call to our subroutine. All results presented in this section are
obtained by using a time step equal to �t = 0.001 and a BoostConv basis
composed by 15 vectors.

Figure 5 shows the evolution of the residual norm as function of time.
The blue line represents the case in which the standard time integration
procedure is not modified (leading to the saturated limit cycle). For this
case, we show that the algorithm is able to compute the base flow starting
from two different initial conditions: 1) a uniform flow, i.e. the initial field
is (u,v)=(1,0); 2) the saturated limit cycle. We note that the residual target
value is obtained for both the initial conditions at t ⇡ 170. Figure 4b) shows
the resulting base flow.

The velocity and pressure distributions of the computed steady flow along
the vertical line x = D are depicted in figure 6. We note that each code
converges (when BoostConv is called during the time integration) perfectly to
the base flow computed by using the Newton method and taken as reference
solution.

5.3. High-dimensional problem: three-dimensional DNS of a boundary layer
flow over a hemispherical roughness element

As discussed in the previous sections, BoostConv is conceived to stabil-
ize the dynamical system without a negative impact on the computational
burden of the simulation. In this section we show the application of this
algorithm to a high-dimensional test case that would be infeasible with a
matrix-based method. In fact, we are dealing with a case in which the three-
dimensional domain is discretized with ⇡ 24 million of points.

In particular, we consider the three-dimensional flow past a hemispher-
ical roughness element immersed in a laminar Blasius boundary layer. This
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Figure 4: Two-dimensional flow past a circular cylinder at Re = 120 > Re

II
cr . a) Snapshot

of the saturated limit cycle (unmodified integration of Navier-Stokes equations). b) Base
flow: stabilized simulation using BoostConv. The evolution of the residual norm associated
with these simulations is depicted in Figure 5.
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Figure 5: Stabilization of the cylinder flow by using BoostConv at Re = 120. We started
from two different initial conditions: 1) saturated limit cycle and 2) uniform flow in the
streamwise direction. The flow simulations are carried out by using the code Nek5000.

geometrical configuration is the same chosen by Klebanoff et al. [27] in their
experimental investigations. As considered by Tani et al.[28] and Citro et
al.[29], the Navier-Stokes equations are made dimensionless using the total
height k of the roughness element as the characteristic length scale and the
velocity Uk of the incoming uniform stream that would exist in the boundary
layer at the height k when the roughness element is absent. The resulting
Reynolds number can be written as Rek = Ukk/⌫, with ⌫ being the kinematic
viscosity of the fluid. The other important parameter that influences the flow
dynamics is the ratio between the displacement thickness �⇤k of the incoming
boundary layer and the height k of the hemisphere.

For this test case, we chose k/�

⇤
k = 2.62 and Rek = 450 that are the same

conditions in which Klebanoff et al. [27] documented their experimental res-
ults. As also shown by Citro et al.[29], the inherent three-dimensional flow
pattern beyond the Hopf bifurcation is characterized by coherent vortical
structures called hairpin vortices that periodically detach from the hemi-
sphere. A contour plot of a snapshot of the resulting periodic flow is depicted
in Figure 7a) by taking a mid-plane slice. In this side view of the unsteady
supercritical flow, we plotted the iso-contours of the velocity magnitude. As
discussed before for the cylinder case and for the case of the lid-driven cav-
ity, we plot the evolution of the residual as a function of time for both the
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Figure 6: Velocity and pressure distributions in the wake of a circular cylinder at x = D

(Re = 50). Here, we compare the solutions obtained using (o) finite-difference immersed-
boundary code, (+) spectral element code (NEK5000) and (⇤) finite element (time-
marching) code. The profiles depicted using solid lines (�) are obtained by using Newton
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of BoostConv. Dashed line (��): time integration of the governing equations.
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original time-stepper (dashed line) and for the modified procedure involving
BoostConv. The convergence history is reported in figure 8. For this case, we
performed a DNS using the SEM code Nek5000; the dimension of the basis
used is N = 15 (see section 3) and the time step is �t = 0.001. The initial
field is a uniform flow as for the case of the circular cylinder. The run was
performed on an IBM BG/Q Supercomputer at CINECA and we found that
the stabilization procedure increased the simulation time of about 9%. The
inherent base flow is shown in figure 7b).

6. Conclusions

In this paper we present a novel, efficient and easy-to-implement al-
gorithm inspired by the Krylov-subspace projection methods, which is able
to compute unstable steady states of any dynamical system. BoostConv is
based on the least-square minimization of the residual norm at each step of
an existing iterative procedure. The key idea of the proposed method is to
invert only the small part of the problem represented by the dominant and
slower decaying modes exactly while letting the original iterative algorithm
to handle the remaining modes. As a consequence, it is very efficient be-
cause the linear system that we need to invert at each time step is small
compared with the dimension of the problem. From a programming view-
point, BoostConv can be encapsulated in a black-box routine where the only
required input is the residual rn and the only output is the modified residual
⇠n. We underline that the only modification necessary to stabilize or boost
the convergence of a pre-existing iterative algorithm is a single line of code
containing the call to BoostConv.

We also report numerical results obtained with the new procedure. We
start from the classical case of the two-dimensional lid-driven cavity flow. At
a subcritical Reynolds number, we show that BoostConv is able to accelerate
the convergence of the existing time integration procedure. Subsequently, we
consider the two-dimensional flow past an infinitely long circular cylinder.
For this case, we show, with several different codes, that BoostConv is able
to drive the iterative procedure to the exact base flow (computed using a
Newton method). We note that the initial field, being it a uniform flow or
the inherent saturated limit cycle, does not affect the stabilization. A three-
dimensional case is also considered to examine the application of BoostConv
to a high-dimensional problem. In the case of the flow past a hemispherical
roughness element immersed in a laminar Blasius boundary layer, we found
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that the resulting modification of the time integration does not negatively
affect the computational burden of the simulation. Furthermore, the pro-
posed algorithm can be used also to stabilize unstable periodic orbits. In
fact, recently, thanks to the application of this procedure, Carini et al.[30]
were able to explain the flip-flop mechanism in the flow past two side-by-side
circular cylinders.

Unlike Krylov methods such as GMRES, BoostConv is able to take into
account for the change of the system Jacobian during the time evolution of
the dynamical system. We underline also that the proposed algorithm can be
combined with any spatial discretization method and can be used to stabilize
a dynamical system even in presence of bifurcations with higher codimension.
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Abstract Most indicators used for automatic grid refinement are suboptimal, in
the sense that they do not really minimize the global solution error. This paper
concerns with a new indicator, related to the sensitivity map of global stability
problems, suitable for an optimal grid refinement that minimizes the global solu-
tion error. The new criterion is derived from the properties of the adjoint operator
and provides a map of the sensitivity of the global error (or its estimate) to a
local mesh refinement. Examples are presented for both a scalar partial di↵eren-
tial equation and for the system of Navier-Stokes equations. In the last case, we
also present a grid adaptation algorithm based on the new estimator and on the
FreeFem++ software that improves the accuracy of the solution of almost two
order of magnitude by redistributing the nodes of the initial computational mesh.

Keywords grid adaptation · error estimation · adjoint · sensitivity

1 Introduction

Grid refinement is a powerful tool that can be used in intensive and memory de-
manding applications to reduce the computational costs and at the same time
retain and even improve the accuracy of the numerical problem. Reducing both
errors and costs in a numerical simulation is a general and fundamental problem in
computational sciences and is strictly related to uncertainty quantifications analy-
sis. Di↵erent strategies have been proposed and adopted in the past to implement
grid refinement algorithm. Here, we will study the problem by using a control
theory approach where the aim is to control a numerical algorithm. The problem
consists in finding an optimal grid that minimizes the error of a numerical com-
putation. For such purpose, we first need a quantitative definition of the error we
are trying to minimize: di↵erent possibilities can be used, producing di↵erent kind
of grid refinement algorithms. A commonly used approach in structural mechanics
and computational fluid dynamics (CFD) is to adopt the mean square quadratic
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error: indicating by u the numerical solution and u

ex

the exact solution, the error
can be defined as

E2 =

✓Z

⌦

|u
ex

(x)� u(x)|2dS
◆1/2

, (1)

where ⌦ is the computational domain over which the problem is defined. Mini-
mizing E2 in this case means to reduce the di↵erence between the exact and the
numerical solution in a least square sense. This is of course an old topic and many
di↵erent strategies have been proposed to reach the goal. Most of them are however
suboptimal, i.e. they are based on indictors that do not really minimize the error
(1) but they actually reduce some quantity that is related to it. Typical exam-
ples are given by the widely-adopted recovery-based approach, the goal-oriented
approach and ⌧ -criterion. The recovery-based approach is probably the most pop-
ular grid-adaptation criteria. The idea was proposed by Zienkiewicz & Zhu [1] in
the context of linear elasticity. This approach is driven by the norm of the gradient
error, improperly refereed as ”residual”

⌘ =

✓Z

⌦

|ru�ru

h

|2 d⌦
◆1/2

. (2)

In practical implementations, an estimator based on equation (2) is built by re-
placing the exact gradient ru with a reconstruction of the field obtained by a
post-processing of the discrete u

h

solution on grid ⌦

h

. Grid refinement is then
performed when ⌘ on a element (or cell) is larger than a given threshold. This ap-
proach leads to an equipartition of the residual among the elements (cells) of the
discretization. Generally the algorithm leads to a reduction of the error, but this
does not guarantee to find the real minimum of the problem, i.e. the minimum of
integral (1). A di↵erent approach which evolved in the context of finite-di↵erences
and finite-volumes is the ⌧ � criterion [2]. For such kind of discretizations, it is
common to use a refinement criteria based on some estimates of the residual, i.e.
the quantity that is obtained when the exact solution of the problem is inserted
into the discrete equations. From a practical point of view, if the exact solution
is not available, we can replace it with the solution obtained on a su�ciently fine
grid. In the context of multigrid, the so called (h-2h)-relative truncation error

⌧

2h
h

= L2hI
2h
h

u

h

� I

2h
h

L

h

u

h

(3)

is considered as a natural indicator for local grid refinement. Here, L indicates the
di↵erential operator defining the problem, I2h

h

is the fine-to-course interpolation
operator and the subscripts

h

and 2h refer respectively to fine and course grid
quantities. By definition ⌧

2h
h

is the quantity that has to be added to the r.h.s of
the discrete problem on the coarse grid ⌦2h in order to obtain the accuracy of the
fine grid (up to interpolation) and, in practice, represents an approximation of the
di↵erence between the truncation error on the fine and course grid. A useful local
refinement criterion based on this quantity consists in comparing h

d

⌧

2h
h

with a
given tolerance ✏, where d indicates the dimension of the problem: in the simplest
approach the grid is then refined locally wherever the estimator is larger than ✏.
This is a good criterion especially if we know that in some regions ⌧

2h
h

is large:
in this case it is reasonable to assume that the grid is too course there. However,
refining the grid in those regions does not necessarily minimize the integral (1).



A third approach that is widely-adopted in CFD (and is more optimization
based) is the so-called goal-oriented approach. In some applications, in fact, it is
useful to reduce the error of some global output (as for example drag, lift, moment,
etc.), rather than the local error of the solution. This goal-oriented error can be
truly minimized using an adjoint-based approach. If J(u) is the quantity of interest
then the aim is to control

|J(u)� J(u
h

)|. (4)

This leads to a minimization problem in which a forced adjoint equation has to
be solved. In this way it is possible to arrive to an error-estimate of the form

|J(u)� J(u
h

)| ⇡< ⇢(u
h

),!
h

(z) > (5)

where z is the adjoint solution and !

h

(z) is a weight function describing the e↵ect
of local variations of the residual ⇢(u

h

). Examples can be found in the work of
Giles & Pierce [3] or in Becker & Rannacher [4]. Once again the procedure is
suboptimal since it minimizes the goal, not the solution error (1). In this paper we
will investigate a new adjoint-based approach to derive a new optimal criterion for
an e↵ective mesh refinement strategy which aims at minimizing the global solution
error. Such criterion is derived by using the properties of the adjoint operators and
is based on the sensitivity of the error (or its estimate) to a local mesh refinement.
This sensitivity is derived from the knowledge of two numerical solutions, one
calculated on a coarse and one on a fine mesh. A system of forced adjoint equations
is then derived from a minimization problem in which the objective function is
an estimate of the L2 error norm. By combining the adjoint variables with the
local values of the coarse-grid residual we obtain a spatial map representing the
sensitivity of the error to a local refinement of the mesh. The spatial structure of
these sensitivity maps highlights the regions of the flow where a local refinement of
the mesh would be most e↵ective. The error sensitivity so derived can be used as an
e↵ective indicator to implement an optimal strategy of adaptive local refinement.

2 Error Sensitivity to local grid Refinement (ESR)

The strategy we are going to describe is inspired by the structural sensitivity anal-
ysis introduced by [5] to study fluid-dynamic oscillators. In order to characterize
the global instability generating the Von Kárman street, Giannetti & Luchini[5]
performed an adjoint analysis to determine the sensitivity of the unstable eigen-
value to a generic structural perturbation of the linearized governing equations.
In a discrete setting, given a problem of the form

A · u = �u (6)

it is possible to determine the e↵ect of a generic matrix perturbation �A on the
eigenvalues of the problem. This is easily obtained by multiplying (6) by the corre-
sponding adjoint eigenvector and by using the bi-orthogonality properties between
the direct (right) and adjoint (left) solutions. In this way, we are left with the fol-
lowing explicit expression for ��

�� =
v · �A · u

v · u . (7)



In the context of fluid-dynamics problems, such procedure can be applied in space
rather than just to a matrix: the right and left eigenvectors are now fields, function
of space, with a precise meaning. In particular the direct mode represents the
perturbation of the velocity and pressure fields, while the adjoint expresses the
sensitivity of the mode amplitude with respect to a forcing term in the linearized
equations. By combining together the information contained in both direct and
adjoint fields, it is possible to characterize the sensitivity of the eigenvalue to
a structural modification of the problem consisting in a localized feedback from
velocity to force. In the case of a fluid problem, such approach models the e↵ect of
a small object placed somewhere in the flow and is useful to localize in space the
feedback mechanism (”the wavemaker”) responsible for the instability. In practice,
such localization is performed by taking the point-wise product between the direct
and adjoint fields and by inspecting where such spatial map assumes largest values.
A similar procedure consisting in combining information between the direct and
adjoint solutions can also be used to derive an e↵ective indicator for grid refinement
strategies.
Suppose we want to numerically solve a di↵erential problem on a domain ⌦ with
given b.c. on @⌦. Let’s denote by N

h

the algebraic operator obtained through a
discretization of the continuous problem on a mesh with characteristic spacing h.
If u

h

is a solution of the discrete problem then

N
h

(u
h

) = 0 (8)

while the exact solution of the continuous problem u
ex

satisfies

N
h

(u
ex

) = r
h

(9)

where the term r
h

is named ”residual”. We measure the error between the approx-
imate and exact solution using (for instance) the definition (1), where the integral
is replaced by its numerical approximation. In general this can be expressed as

E

2
2 =

X

i

w

i

(u
h,i

� u

ex,i

)2 (10)

where w
i

are suitable weights composing a numerical quadrature formula. We want
now to determine the sensitivity of the error E2 to a small variation in the residual
�r

h

(its gradient v

h

), or in other terms the gradient of E2 with respect to �r
h

.
A small variation �u

h

in the numerical solution u
h

produces a variation in the
error of the form

E2�E2 = y �u
h

(11)

where y is the vector with components y

i

= w

i

(u
h,i

� u

ex,i

). By applying the
adjoint analysis we now write E2 as a linear function of the residual. In order to
achieve this, we first note that a small variation in the solution produces a small
change in the residual according to

A �u

h

= �r

h

(12)

where A = @Nh
@u is the Jacobian of the di↵erential operator in (8). By multiplying

(12) by a vector v
h

and using the definition of the adjoint operator we can write

v

h

·A
h

�u

h

= �u

h

·AT

h

v

h

= v

h

· �r
h

(13)



If we now choose the adjoint vector v
h

such to satisfy

A

T
h

v

h

= y/E2 (14)

we can rewrite the variation of the error in terms of a small residual change as

E2�E2 = y · �u
h

= E2v
h

·A
h

�u

h

= E2v
h

· �r
h

. (15)

Assume now that, asymptotically for small h, r
h

⇠ h

p for some integer expo-
nent p (the order of the discretization). A variation in h (a grid refinement) by a
factor m (say 1/2) will then induce a variation in the residual proportional (with
opposite sign) to the residual itself, i.e.

�r
h

= r
mh

� r
h

' (mp � 1)r
h

. (16)

This is, in fact, the rationale behind recovery-based methods: refining where the
residual is largest produces the maximum reduction in the residual. We may also
notice that, when the residual is related to the truncation error of a di↵erential
operator, the relationship between residual and refinement is a local one. Such
relation is still not what we really look for: in fact our aim is to know what
happens when we refine the grid, which is not the same as changing the residual.
To get the complete answer to our problem we need to consider what happens to
the residual when we refine the grid.

Recall now that the spatial map of the residuals give us an indication where
a local refinement will mostly decrease the residual itself. On the other hand, the
spatial map of the adjoint provides information on the location where a change
in the residual will mostly a↵ect the error. These two quantities can be compared
with the direct and adjoint solution of the structural sensitivity analysis for fluid
flow problems with self-exciting instabilities cited above. As for those cases, we
can now make a step forward and combine the information provided by the two
maps by taking the local product between the residual and the adjoint field. In
this way we define the Error Sensitivity to Refinement (ESR)

s

i

= E

�2
2 v

h,i

r

h,i

(17)

where no implicit summation is assumed. This quantity indicates where a local
refinement (by a fixed factor m) will mostly a↵ect the error E2 and is therefore
a natural indicator to really minimize (1). In general, both error and residual
require a knowledge of the exact solution. Just as for all the other mesh-adaptation
indicators, the latter can be estimated and replaced by a solution on a finer mesh.
In particular, if both the error and the residual asymptotically decrease like h

p,
we obtain the following relation

u2h � u

h

' (1� 2�p)(u2h � u

ex

) ' (2p � 1)(u
h

� u

ex

) (18)

between the error on grid h and the error of the solution with respect to a finer
grid. Furthermore, considering that u2h is the discrete solution on the course mesh,
it is also possible to write

N2h(uh

)�N2h(u2h)| {z }
=0

' (1�2�p)(N2h(uex

)�N2h(u2h)| {z }
=0

) ' (2p�1)N
h

(u
e

x) (19)
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Fig. 1 Analytic solution of the Poisson problem (20).

which gives an estimate of the residual using the solution on a finer mesh. As a
final remark we note that the error sensitivity s

i

= E

�2
2 v

h,i

r

h,i

tends to a grid-
independent limit for h ! 0 so that sensitivity maps obtained on di↵erent grids
will be similar provided the mesh spacing h is su�ciently small. We now apply the
new indicator to study two di↵erent problems: the first one consists in solving a
scalar elliptic partial di↵erential equation, while the second deals with the solution
of a system of PDEs, namely the Navier-Stokes equations governing the motion of
an incompressible fluid.

3 Numerical Results

3.1 Poisson equation

We start by considering the following Poisson problem on the square domain ⌦ =
[�1..1]⇥ [�1..1]

�2u = g(x, y) (20)

with r.h.s. term g(x, y)

g(x, y) = �0.5 sin (2x� y)� 10
✏

2
sech


2x+ y

✏

�2
tanh


2x+ y

✏

�
(21)

and boundary conditions chosen such that

u(x, y) = 0.1 sin(2 ⇤ x� y) + tanh


2x+ y

✏

�
(22)

is a solution of the problem. When the parameter ✏ in the r.h.s is small, the
solution develops a steep gradient on the line y = �2x. It is therefore reasonable
to expect that a grid refinement localized around that region is able to improve
the accuracy of the computation and minimize the error. In what follows we set
✏ = 0.1. A contour map of the analytic solution u(x, y) is shown in figure 1.
Since the exact solution for this problem is known in analytic form we can easily
compute the error, the residual and the ESR on grid characterized by di↵erent
mesh spacings. By inspecting the spatial ESR map we can easily check if the
original expectation is correct or not. In order to perform the sensitivity analysis,
the di↵erential problem is discretized by using second-order finite di↵erences on a
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Fig. 2 a) Convergence graph and b) Relative error on a 128⇥ 128 grid.
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2 and b) adjoint solution on a 128⇥ 128 grid.

uniform mesh with spacing h = 2/n. Here n represents the number of interval in the
horizontal (or vertical) direction. The resulting discretization, together with the
boundary conditions, produces a set of linear algebraic equations whose solution is
found by a sparse LU solver (UMFPACK package). The adjoint problem is solved
by using the discrete adjoint approach, i.e. by taking the adjoint (transpose) of
the discretized operator. Figure 2a) shows the E2 and the E1 error as a function
of the number of intervals (we get a second order convergence) while Figure 2b)
shows the point-wise error (the di↵erence between the numerical and the exact
solution) evaluated on a 128⇥ 128 grid. Note that, as expected, larger errors are
located close to the steep variation of the solution.

Figure 3a) shows the spatial distribution of the rescaled point-wise residual
on a 128 ⇥ 128 grid and 3b) the adjoint solution defined by (14). As expected
the largest influence of a residual change on the residual itself is clearly localized
across the region of strong variation, while the sensitivity of the error to a residual
change (expressed by the adjoint solution) has an antisymmetric distribution with
respect to y = �2x, reaching its extreme values in regions close to such line.

Finally, figure (4) displays the ESR map evaluated for a 128 ⇥ 128 (a) and
64⇥64 (b) grid. As expected the indicator assumes larger values around the region
y = �2x where the solution presents sharp gradients, indicating that in order to
really minimize the error it is necessary to refine the mesh in that regions. As a final
remark observe that the two maps obtained on di↵erent grids have the same scale
range: apart from a di↵erent spatial resolution the figures are both quantitatively
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Fig. 4 ESR map on a a) 64⇥ 64 grid and b) 128⇥ 128 grid.

and qualitatively similar, proving that, as underlined in the previous section, the
error sensitivity to refinement ESR tends to a grid independent quantity.

3.2 Navier-Stokes equations

The second example concerns the numerical solution of the incompressible Navier-
Stokes equations. In particular we test the new indicator on Kovasznay flow, an
analytical solution of the Navier-Stokes equations resembling the flow behind a
grid of obstacles. The solution was originally found by [6] and is given by the
following expressions

� =Re/2�
r

Re

2

4
+ 4⇡2 (23)

u(x, y) =1� e

�x cos (2⇡y) (24)

v(x, y) =
�

2⇡
e

�x sin (2⇡y) (25)

p(x, y) =p0 � 0.5e2�x (26)

(27)

where u(x, y) and v(x, y) are respectively the horizontal and vertical velocity com-
ponents, p(x, y) is the pressure and Re is the flow Reynolds number. As an example
figure 5 shows the streamlines of the flow at Re = 40 on the computational domain
[�0.5 : 1.5]⇥ [�1.5 : 1.5].

The numerical solution of the problem was obtained with two di↵erent ap-
proaches: we solved the equations both using a second-order finite di↵erence-
discretization on a staggered uniform mesh and by using a finite-element second-
order discretization based on Taylor-Hood elements on a triangular mesh imple-
mented in the software package FreeFem++ (http://www.freefem.org). In both
cases we obtained similar results, cross-checking in this way our numerical imple-
mentations. For sake of brevity and ease of comparison with the previous scalar
example, we will present here only the numerical results obtained with the finite-
di↵erence code, with the exception for the mesh adaptation test which was per-
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Fig. 6 Scaled error (e(x, y)/E2) on a 64⇥ 64 grid.

formed only with the finite-element code. The adjoint equations and the sensitivity
in both cases were derived using the discrete adjoint approach.

Figure 6 displays the di↵erent components of the rescaled local error e(x, y) =
|q

h

�q

ex

|/E2 relative to the exact solution q

ex

= [u
ex

(x, y), v
ex

(x, y), p
ex

(x, y)]. It
is not a surprise that these quantities are larger near the flow entrance because the
solution is exponentially decaying in the downstream direction. This can be noted
also in figure 7 which displays the di↵erent components of the adjoint solution
evaluated on a 64 ⇥ 64 mesh, i.e. the sensitivity of the error to a small change
in the residual. Finally figure 8 shows the ESR map for each component of the
solution vector, i.e. the product of the scaled residual and the adjoint for each
equation of the system.
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Looking at such diagrams one should wonder what is the meaning of each
graph. In principle we could imagine to perform an ideal experiment and refine
the grid for just one component of the solution q

h

but not for the others. Of
course this is not a clever way to proceed but from a theoretical point of view
each map is able to quantify the e↵ects associated to a grid refinement for one
component only. In practice, however, we want to modify the grid contemporarily
for all them. In this case the cumulative sensitivity is simply the sum of the three
maps, since these represents homogenous quantities each indicating the sensitivity
to a grid refinement. Figure 9 shows the total sensitivity to grid refinement: it is
interesting to note that peak values are obtained in regions close to the entrance,
closely matching the local characteristics of the flow which presents, in alternating
fashion, accelerating and decelerating regions. According to our analysis, refining
in these particular locations is most e↵ective to reduce the global error. This, in-
deed, would reduce the error everywhere not just at the point of the refinement.
The results presented here are obtained using the exact solution to evaluate the
sensitivity. However we also tested the procedure using the error extrapolated from
two grids, obtaining identical results. In order to complete the study and asses the
e↵ectiveness of the new approach we decided to implement a grid adaptation algo-
rithm based on the new ESR indicator. For this purpose we used the FreeFem++
software and its built-in mesh-generator functions. The aim of the test is to op-
timize an initial grid formed by a fixed number of triangles created by the mesh
generator Bamg[7]. For this purpose we fix the initial number of vertexes of the
triangulation (and therefore we the total degrees of freedom of the discretization)
and use our refinement criterion based on the ESR map to displace them. Note
that we are not really refining here but we rather move points sideways in a way
to refine somewhere and de-refine elsewhere. From an operative point of view we
displace vertexes in a way proportional to the sensitivity map gradient.

Figure 10 shows the evolution of the error during the adaptation procedure.
Three mesh snapshots are shown: the first one (left) represents the starting grid
generated by the Bamg mesh generator, the second (centre) shows the vertex
distribution after 100 iteration and the third one (right) is the final vertex distri-
bution obtained after about 1000 iteration. The corresponding history of the E2 is
displayed in figure 10. The green boxes on the graph indicate the iteration number
at which the three mesh snapshots were taken. Note that the large number of
iterations used in this test is related to the necessity to avoid triangles overlap-
ping during the re-meshing procedure implement by the movemesh command in
FreeFem++. Here we did not try to optimize the step size in order to reduce the
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number of iterations but we were just interested in the final vertex redistribution.
The procedure implemented works in an e↵ective way, reducing the initial error
of almost two order of magnitude without increasing the total number of d.o.f.
but just changing the vertex density in particular regions. In order to verify if the
procedure based on the new ESR indicator was e↵ective. In order to check if the
final configuration corresponds to a true minimum of the global error (1) we tried
to slightly alter the grid by displacing the vertexes into opposite directions: the
resulting errors related to the new grids are indicated in the graph (6) by the red
points. This final test suggests that the obtained configuration is a real minimum
of the integral (1).

4 Conclusions

In this paper, we have introduced a new indicator for grid adaptation and refine-
ment which truly minimize the global error of the solution taking inspiration from
the concept of structural sensitivity introduced by Giannetti & Luchini[5] in fluid
problems.

Common approaches in this field are usually based on a) the adjoint solution,
that allows to compute the gradient of an objective function (goal oriented ap-
proach) or b) the estimate of the residual (residual based approach or ⌧�criterion)
which leads to a suboptimal decay of the error.

Here, we propose to combine the information provided by these two approaches.
The resulting ESR indicator, i.e. error sensitivity to refinement, provides a spa-
tial map that identifies the region where a grid refinement really optimizes the



global error. We have used such approach to study both a scalar elliptic equation
and system of Navier-Stokes equations. In the last case, we also implemented an
iterative grid adaptation based on the ESR which improves the accuracy of the
solution of almost two order of magnitude by redistributing the nodes of the initial
computational mesh.
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Abstract We consider the flow past a sphere held at a fixed position in a uniform
incoming flow but free to rotate around a transverse axis. A steady pitchfork
bifurcation is reported to find place at a threshold ReOS = 206 leading to a state
with zero torque but nonzero lift. Numerical simulations allow to characterize this
state up to Re ⇡ 270 and confirm that it substantially di↵ers from the steady-
state solution which exists in the wake of a fixed, non-rotating sphere beyond the
threshold ReSS = 212. A weakly nonlinear analysis is carried out and is shown
to successfully reproduce the results and to give substantial improvement over a
previous analysis (Fabre et al.[10]). The connection between the present problem
and that of a sphere in free fall following an oblique, steady (OS) path is also
discussed.

Keywords freely moving bodies · fluid-structure interactions · weakly nonlinear
expansion

1 Introduction

Free falling and rising of particles in Newtonian fluids play an important role in
many industrial and natural applications, such as the settling of sediments in lakes,
buoyancy-driven bodies in the atmosphere or the dynamics of catalysts in chemical
reactors. The particle motion is caused by the buoyancy force that is balanced by
the hydrodynamic resistance. The resulting wake dynamics can lead to completely
di↵erent regimes, such as tumbling, zigzag or steady oblique paths[1]. The mech-
anisms leading to path destabilization are related to intrinsic wake instabilities
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which induce lift and torque forces on the bodies. Yet, in general, the relation be-
tween wake instabilities around a fixed body and path instabilities around a body
in free fall is not straightforward as the latter problem is fully coupled and the
wake dynamics are modified by the motion of the body (as discussed for instance
in Assemat et al.[6] and Auguste et al.[7]). Thus, it may be useful to consider
intermediate problems in which only some degrees of freedom of the body are al-
lowed. This is the objective of the present paper, where we will consider the flow
past a sphere allowed to rotate but not to translate. In an experimental setup, this
configuration may correspond, for instance, to the case of a sphere held by a thin
transverse wire.
The case of a sphere is among the simplest and most generic geometries and has
thus already made the object of a number of studies (see [12] for an up-to-date
review). When the sphere is fixed and not rotating, the flow remains axisymmet-
ric at low Reynolds, but bifurcates towards a steady-state (SS) solution with a
planar symmetry and nonzero lift at ReSS = 212. A subsequent Hopf bifurcation
then occurs at Re ⇡ 276 leading to a periodic vortex shedding mode [5]. The case
where the sphere is fixed but rotating in an imposed way was recently considered
by [12]. They showed that in presence of weak rotation, the bifurcation at ReSS

becomes an imperfect one. They also showed that rotation has a strong e↵ect on
the secondary Hopf bifurcation. The case of a sphere in free motion also made the
object of a number of studies, both experimental ( [2], [4], [16] ) and numerical
( [3], [17] ). For Reynolds numbers in the range beyond 300, up to 4 unsteady
regimes were discovered, but for smaller Reynolds, all studies show that the first
bifurcation is towards an oblique, steady (OS) path which bears some similarity
with the steady-state (SS) existing for the fixed, non-rotating sphere. However, the
connection between both states is not that straightforward, and Fabre et al.[10]
showed that the OS state results from a bifurcation at a threshold ReOS = 206
which is di↵erent from the value ReSS = 212 for the SS state. Fabre et al. [10]
also pointed out that the OS state is characterized by zero torque exerted on the
sphere, so this state is also directly a valid equilibrium solution for the present
problem where the sphere is free to rotate but not to translate. The study of [10]
was done using an asymptotic approach which is valid under the assumption that
the rotation rate is weak. However, a major drawback of this approach is that it
fails in the vicinity of ReSS = 212 and beyond, while numerical and experimental
results show that the OS path still exists above this value of Re.

In the present paper, we will thus investigate the case of a sphere where rotation
is allowed but not translation, which is closely related to the situation discussed
above. After setting the problem in sec. 2, we will document this situation in sec.
3, through DNS results and compare with the case where both translation and
rotation are blocked. We will then conduct in sec. 4 a weakly nonlinear analy-
sis of this problem, which will confirm that a steady bifurcation occurs for the
same value ReOS as for the case where both rotation and translation are allowed,
and overcome the di�culties encountered in the previous study of [10]. Finally,
conclusions will be provided in sec. 4.



Fig. 1: Problem configuration. The sphere is free to rotate (but not to translate) around any
axis.

2 Problem definition and governing equations

The situation investigated here is sketched in figure 1. A sphere of radius R and
density ⇢b is placed in a flow of velocity U0 of a fluid with density ⇢f and viscosity ⌫.
The problem involves two dimensionless control parameters, namely the Reynolds
number Re = U0R/⌫f and the body-to-fluid density ratio ⇢̄ = ⇢b/⇢f . We formulate
the problem in a fixed system of axes (x, y, z) with the unit vector x aligned with
the incoming velocity.

In the setup considered here, the only degree of freedom is the rotation of the
sphere around its center. We note ⌦ the angular velocity vector and decompose it
over the basis as ⌦ = ⌦xx+⌦yy +⌦zz.

The flow field [V, P ] and the rotation rate ⌦ of the sphere are governed by the
following equations :

r ·V = 0, (1a)

@V

@t
+V ·rV = �rP +

1
Re

r2
V, (1b)

⇢̄
⇡

60
d⌦

dt
= M. (1c)

These equations are coupled in two ways. First, the rotation of the sphere
results in a boundary condition to be imposed for the velocity of the fluid at the
surface of the sphere as V = ⌦⇥ r. Secondly, in Eq. 1c the sphere responds to the
torque M exerted by the fluid on it. The latter, and the associated force F, are
given by

F =

Z

S
T · ndS ⌘ Fxx+ Fyy + Fzz (2a)

M =

Z

S
r⇥ (T · n)dS ⌘ Mxx+Myy +Mzz. (2b)

where r denotes the position vector relative to the body center of inertia and
T = �P I + Re�1(rV +T rV) the stress tensor. Note that in the present case,



the coupling only involves the torque M while the force F is not coupled to the
motion of the sphere, unlike in the more general case considered in [23]. Finally, this
set of equations is completed by the boundary condition V = U0x for krk ! 1.

In the following we will be mostly interested in the characterization of steady-
state solutions of the problem. According to 2b such states imply the torque M

exerted by the fluid on the sphere to be zero, and the interesting, non-trivial
solutions are those with nonzero rotation rate ⌦.

3 Numerical results

We have solved numerically the set of equations 1 using a combined finite-di↵erence
second-order immersed-boundary multigrid code which is described in detail in
Citro et al. [12].

The 3D steady solutions can be obtained, in subcritical conditions, by simply
integrating the time-dependent equations 1 over a su�ciently long time interval.
However, since in the present paper we consider also supercritical conditions, we
use a stabilization algorithm to obtain directly the steady solution. The method is
based on the minimization of the residual norm at each integration step. It allows
us steady-state solutions even in the case where they are temporally unstable. The
method is briefly described in Citro et al. [11] and was also used in Citro et al. [12]
for the case where the rotation rate of the sphere is imposed. Adaptation to the
freely rotating case simply adds the dynamical equation 1c to the latter problem,
and adaptation of the method to this case is straightforward.

For Re < ReOS = 206, only axisymmetric solutions with zero rotation rate
and only a drag force are found. Above this threshold, depending upon initial
conditions the numerical method yields either an axisymmetric solution or a set
non-axisymmetric solutions with nonzero rotation rate around an axis perpendic-
ular to the incoming flow and a nonzero lift. Because of the rotational symmetry,
all orientations of axis of rotation are theoretically allowed. In the sequel we will
assume a rotation rate ⌦z around the z axis. Accordingly the lift will be exerted
along the y axis, and we define the lift coe�cient as CL = 2Fy/(⇡⇢R

2).
Figure 2 characterizes the rotating solution through a plot of the lift coe�cient

as function of the Reynolds number up to Re = 240. The plot is characteristic of
a pitchfork bifurcation occurring for Re = 206. In the same figure, we plot the lift
coe�cient in the related problem of a nonrotating sphere, with data taken from
figure 3 of Citro et al. [12]. As expected in this case, the bifurcation occurs for
ReSS = 212 and the two curves notably di↵er up to Re ⇡ 230. For higher values
of the Reynolds number, the two curves tend to approach each other, suggesting
that allowing rotation has only a mild e↵ect on the structure of the flow.

4 Asymptotic expansion of the coupled fluid-sphere system

4.1 Analysis

Using notations similar to those used in [23] of the study of objects in free fall,

the solution of equations (1) may be considered as a state vector Q =
⇥
Q

f ,Qb
⇤T

,

where Q

f = [V(r, t), P (r, t)]T describes the fluid local velocity and pressure and
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Q

b = ⌦(t) gathers the degrees of freedom associated with the body (here only the
rotational velocity).

Thus, we investigate the vicinity of Rec = ReSO by defining a small parameter
✏ =

p
Re�Rec/Rec. To this aim, following [14] and [15], we introduce a multiscale

time expansion procedure with a fast time scale t and a slow time scale ⌧ = ✏2t so
as to expand this solution in the form:

Q = Q0 + ✏Q1(t, ⌧) + ✏2Q2(t, ⌧) + ✏3Q3(t, ⌧) + · · · (3)

Injecting these expansions in the system of governing equations (1) yields a
nonlinear problem at zeroth order and a linear problem at each order ✏j for j � 1.
The details are very similar to those given in [23], except that the component Qb

of the state vector contains only the rotation and that the expansion is done in
terms of the Reynolds number, not the Archimedes number. We refer the reader
to the supplemental material in [23] for the detailed expressions. These problems
are solved for increasing j, using the finite element solver FreeFem++ [19]. The
numerical details regarding mesh refinement, polynomial interpolation of velocity
and pressure fields, etc, can be found in [22].

The base state Q0 corresponds to the steady, vertical fall or rise with an
axisymmetric flow field, and is computed using an iterative Newton method as
described in [14]. At order ✏, q1 is the solution of the linear stability problem
which is solved as in [22]. Taking advantage of the body axisymmetry, we express
the fluid velocity and pressure fields in the body frame using cylindrical coordinates
(x, r,') and seek this solution as a superposition of eigenmodes of the form

Qm =
h
q̂

f
m(x, r)eim', q̂b

m

iT
e�t

where m is the azimuthal wavenumber and � = �r + i�i is the complex eigen-
value. The generalized eigenproblem to be solved at this order can be recast in the
matrix form:

�BQ1 + A (Q0)Q1 = 0.

The solutions of this problem have to be examined for each value of the az-
imuthal wavenumber. The case m = 0 corresponds to axisymmetric modes, and



symmetry considerations show that the angular velocity component of the eigen-
modes is in the axial direction, i.e. q̂b

m ⌘ !̂0x. It is found that all these modes
are stable, and that the least damped one is a non-oscillating one (�i = 0) corre-
sponding to a motion where the sphere initially spins around the axial axis and
slows down due to friction. This mode also exists in the case of a freely falling
disk and was analyzed in appendix C of Tchoufag et al. [22]. It this reference it
was called the back-to-zero-rotation mode (BZR). Mode with |m| � 2 do not ex-
ert any torque on the sphere and hence are identical to those of the non-rotating
(q̂b

m = 0). Moreover these modes are also found to be always stable in the range
of Reynolds considered.

Hence, the most interesting case corresponds to azimuthal wavenumbers m =
±1, and as for the fixed, nonrotating sphere, a Pitchfork bifurcation associated
with a steady mode (�r = �i = 0) is detected for Re = ReOS = 206. Following
the assumption made by Fabre et al. [10], we consider these two modes adequate
to quantitatively describe the characteristics of the nonlinear oblique motion of
the sphere for Re > Rec. Hence, restricting the following analysis to these modes,
the general O(✏) solution at the threshold (�r = 0) may be expressed in the form

Q1 = Â(⌧)
h
q̂

f
1 (x, r)e

i', q̂b
1

iT
+ c.c., (4)

where Â(⌧) is the O(✏) complex amplitude of the global mode and c.c. stands for
the complex conjugate quantities, which shall be marked by a ⇤ symbol hereafter.
Note that since the global mode m = 1 is real, its complex conjugate directly
corresponds to the mode m = �1. Therefore, there is no need to distinguish
between two amplitudes Â+ = A and Â� = A⇤ since the latter is completely
determined once the former is.

Due to symmetry considerations (see [22]), the component of the m = 1 eigen-

mode corresponding to the rotation of the body can be written as q̂b
1 = !̂+

2 (z+iy),
so the orientation of the rotation axis is given by the argument of A!̂+. We choose
to normalize the eigenmode as !̂+ = 1, so that the norm of A directly gives the ro-
tation rate. Moreover, a real A will correspond to rotation around the z axis (and
lift along the y axis) while an imaginary A will correspond to rotation around the
y axis (and lift along the z axis).

Terms of order ✏2 and ✏3 are the solution of linear inhomogeneous problems
arising from the expansion of (1) at the corresponding order. Details about the
mathematical structure of these problems and the numerical procedure used to
solve them are given in the Supplemental Material in [23] where the weakly non-
linear analysis has been performed for the more general case of an unsteady mode.
It su�ces here to say that at order ✏2, the flow is modified by higher-order har-
monics which obey the inhomogeneous linear system of equations

@tBQ2 + A (Q0)Q2 = F2(Q0,Q1).

The forcing term F2 on the right-hand side is made of three independent terms
expressing the e↵ect of a small variation of Re on the base flow and the interaction
of one mode (QA + c.c.) with itself and its c.c. Using the linear superposition prin-
ciple, we solve this inhomogeneous equation for each contribution to the forcing.

The ✏2-order solution then reads Q2 = Q̂�Re + |A|2Q̂AA⇤ +
⇣
A2

Q̂AAe
2i' + c.c.

⌘
.



The problem at order ✏3 is also an inhomogeneous linear system, the forcing
term F3(Q0,Q1,Q2) depending on lower order solutions. More specifically, F3

contains terms of the form ⇠ ei' which are resonant because they excitate the
system precisely in the direction of the unstable steady eigenmode. In order to
avoid the secular responses caused by these terms, we use the Fredholm alternative
and impose a compatibility condition: the resonant forcing must be orthogonal to
the adjoint modes. These modes are obtained either in a continous or in a discrete
form. Here, we chose the latter option, and compute the adjoint modes by solving
for the eigenmodes of the hermitian of A , the linear operator of the O(✏) problem.
The compatibility condition then results in the following amplitude equation:

dA

dt
= (Re�Rec)�A� µA|A|2, (5)

where (Re�Rec)� is the exponential growth rate of Q1 in the linear regime, while
µ is a real coe�cient responsible for the nonlinear saturation. The numerical value
of µ, contrary to that of �, depends on the normalization of the unstable global
mode. Solving for the steady solution of (5), the amplitude of the perturbation
from the vertical fall reads

A = ±

s
(Re�Rec)�

µ
. (6)

Having in mind that the solution at order 1 has been normalized so that the
angular velocity of the eigenmodes is 1, this equation directly yields a prediction
for the rotation rate !. It is noteworthy that the coe�cients � and µ appearing
in the amplitude equation are actually independent upon the mass ratio ⇢̄. This
point will be rediscussed in the conclusions.

4.2 Results and discussion

As recalled in the introduction, a previous attempt at describing the bifurcation
leading to the OS state for a sphere in free fall was done in [9]. Unlike in the
present approach, the analysis of [9] assumed the rotation rate ! to be small, and
expanded the flow around the sphere as follow:

q = [V, P ] = q0 + !q1 + !2
q2 + !3

q3 + · · · (7)

Injecting this ansatz into the incompressible Navier-Stokes equations, the analysis
lead to a prediction of torque exerted on the sphere under the form:

M = M!! +M!3!3 (8)

It was thus possible to predict the existence of solution with a non-zero rotation
rate given by

! = ±
r
� M!

M!3
(9)

Note that the term M! becomes positive for Re > ReOS while the term M3
!

is negative in this range of Reynolds; hence Eq. 9 also predicts a supercritical
bifurcation for Re > ReSO.
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Fig. 3: Zero-Torque solutions of a sphere. Comparison between DNS (symbols), !-
asymptotic expansion (blue line), ✏-asymptotic expansion. Top) Angular velocity.
Center) Lift force as a function of the Reynolds number. Bottom) Slope angle �,
i.e. the angle between the lift force and the incoming flow.

The results to be discussed now correspond to the case of a rotation around
the z axis, thus resulting in a lift force along y. In figure 3(top), we compare the
angular velocity ! of the SO state as predicted by the new ✏-expansion derived
in the previous paragraph (Eq. 6), as predicted by the !-expansion of [9] (Eq. 9),
and as computed numerically in section 3. We also compare in figure 3(middle) the
associated lift forces corresponding to the three approaches. The comparison shows
that, for both these quantities, the present ✏-expansion reproduces much better



the numerical results than the previous !-expansion. In particular, the failure of
the !-expansion at ReSS = 212 is not observed anymore in the present approach.

As discussed in [10], the angle � between the force F and the direction of the
incoming flow x (given by tan � = Fy/Fx) directly corresponds to the slope of
the path in the corresponding situation where the sphere is freely falling. This
angle is plotted as function of Re in figure 3(bottom). We observe, again that
the present ✏-expansion reproduces much better the numerical results than the
previous !-expansion.

Note that Uhlmann & Dusek [17] studied the case of a sphere in free fall
with density ratio ⇢̄ = 1.5, and reported for Re ' 243 a steady oblique motion
characterized by a slope � ' 5.2 degrees and a rotation rate ! ' 0.014. These
findings thus corroborate quantitatively the results of figure 3.

5 Summary and discussion

In this paper, we investigated by using numerical simulations and a weakly nonlin-
ear expansion the steady flow around a sphere placed at a fixed place in a uniform
fluid flow and free to rotate around a transverse axis. A steady pitchfork bifurca-
tion is reported to find place at a threshold ReOS = 206 leading to a state with
zero torque but nonzero lift. Numerical simulations allow to characterize this state
up to Re ⇡ 270 and confirm that it substantially di↵ers from the steady-state so-
lution which exists in the wake of a fixed sphere beyond the threshold ReSS = 212.
A weakly nonlinear analysis, formally valid for ✏ = (Re � Rec)/Rec ⌧ 1, is car-
ried out and is found to reproduce accurately the results up to Re ⇡ 225, giving
substantial improvement over a previous expansion conducted by [10] which was
unable to predict the existence of this state beyond Re > 212. The connection
between the present problem and that of a sphere in free fall is discussed. It is ar-
gued that the steady solution of the present problem is also an acceptable solution
for the related problem of a sphere in free fall, and corresponds to the Oblique,
Steady (OS) path observed in both experiments and simulations. A quantitative
comparison against the data showed in Uhlmann & Dusek [17] was provided to
support this.

To conclude, we shall address two interesting points which require some dis-
cussion. First, we stress again that, although the problem is characterized by two
nondimensional parameters, namely Re and the density ratio ⇢̄ = ⇢s/⇢f , all results
presented here are actually independent upon this latter parameter. The fact that
the steady solution computed by DNS or by the time-independent solution of the
amplitude equation 5 does not depend upon the mass of the sphere is actually not
so surprising, since the parameter ⇢̄ is only present in the term involving the angu-
lar acceleration (left-hand-side of Eq. 1c). Hence, once the equilibrium is reached,
inertia of the sphere does not enter into play any longer. It is more puzzling to
note that the parameters � and µ appearing in the amplitude equation 5 are also
independent upon the mass. Therefore, in the vicinity of the threshold, not only
the properties of the final state will be independent upon the mass, but also the
transient dynamics experienced to reach it. This is somewhat counterintuitive, as
one would expect that for a heavy sphere the transients will be longer than for a
light sphere. A complementary study, considering the limit of very heavy objects
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Fig. 4: (Colour online) Stability diagram in the (!, Re) plane. The black circled
line represents, for di↵erent Re, the corresponding rotation rate leading to a zero-
torque flow around the sphere. The red area represents the unstable region for
mode I [12].

(where a quasi-static approach is possible), is underway to explain this apparent
paradox.

Secondly, the issue of secondary instability of the steady solution considered
here is an open question to be addressed in future studies. In e↵ect, the ability
of the sphere to rotate (or to both rotate and translate) is expected to have an
e↵ect on the Hopf bifurcation which is known to occur in the range Re ⇡ 270. In
the time-dependent states resulting from this secondary bifurcation, the angular
velocity of the sphere will no longer be constant but will be given by the time-
dependent solution of Eq. 1c. As a first step towards a rigorous study of this
problem, we may look at the stability of the flow around a sphere rotating at
exactly the angular velocity of the OS solution described above. This case actually
constitutes a subset of a more general study conducted by [12], who gave a stability
map in the !�Re plane of the flow around a sphere rotating at a fixed, constant
angular velocity. We plot in figure 4 a zoom of this stability map and superpose
it to the curve defining the OS state described above. This figure indicates that
the weak rotation of the OS state slightly enhances the instability, and that the
threshold is advanced from 272 in the non rotating case to approximately 270. A
more rigorous study of this problem, including the e↵ect of the density ratio, is
left for future studies.
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