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Introduction

How the brain controls movement is a question that has fascinated
researchers from different areas as neuroscience, robotics and psy-
chology. The relationship between life and movement is so strong
that scientists belive that movement is the reason behind our evo-
lution [SWO04]:

The vertebrate central nervous system evolved to learn
how, when, and where to move. The basic neuronal and
synaptic mechanisms that evolved to do that job also
support other forms of learning, and therefore provide
the basis for all knowledge.

Similarly, the neuroscientist Daniel Wolpert argues that the brain
is not evolved to think or to feel but to control movement [Woll1]:

We have a brain for one reason and one reason only,
and that’s to produce adaptable and complex move-
ments. There is no other reason to have a brain. Think
about it. Movement is the only way you have of affect-
ing the world around you. [...] Everything goes through
contractions of muscles. [...] So think about com-
munication: speech, gestures, writing, sign language.
They’re all mediated through contractions of your mus-
cles.

The ease with which we perform movements efficiently and ef-
fortlessly hides complex neural processes that subserve movement
execution and that are only partially understood. The simplest



action, as reaching for an object, requires the activation of tens of
different muscles, each of which is made up of many muscle fibers
receiving neural inputs via their own nerve fiber.

It has been hypothesized that the central nervous system sim-
plified the control of movement thanks to a hierarchical and mod-
ular architecture. The spinal cord is the lowest level of hierarchy
that hosts a group of cells (the interneurons) that are organized
in functional modules, each of which activates a set of muscles
[BA15]. Cortical motor areas are the higher levels of the hierarchy
that recruit and combine the spinal modules to control different
movements [dT07]. However, how the higher levels activate the
spinal cord to execute a specific movement is still not clear and it
needs to be investigated.

In order to properly plan movements and to activate muscles
for executing the desired action, highly interconnected brain re-
gions have to integrate sensory information from several sources.
The major cortical area involved in the generation signals for ac-
tivating spinal cord modules is the primary motor cortex.

A longstanding controversy concerns whether the neural activ-
ity of this brain area codes kinematic or the kinetic parameters
of the movement. This issue is of fundamental importance in dif-
ferent field of application, from neuroprosthetic to the design of
pattern recognition systems. To understand how we move is not
only an intellectual challenge, but it is important for finding new
strategies for nursing people with movement diseases, for rehabil-
itation and to develop new robotic technology.

People that have lost control of voluntary movements due to
spinal cord injury, brainstem stroke and amyotrophic lateral scle-
rosis can recover mobility and independence thanks to brain ma-
chine interfaces (BMIs) that translate neuronal activity recorded
from the primary motor cortex directly into control signals for as-
sistive devices [HBJT12] [SHY*14]. An approach to recover lost
sensory and motor abilities in amputees and patients with tetraple-
gia is to supply them with implants that provide a direct interface
with the CNS allowing to control the movement of a cursor or
robotic limb, while another interface conveys sensory information



about the consequences of these movements back to the patient
[RCP*14]. In this scenario, to understand what kind of parame-
ters is encoded by the motor cortex is very important in order to
design a good decoder that transforms the neural activity of the
patient into the movements of the artificial arm. In fact, if the dis-
charge of primary motor cortex neurons carry kinetic information,
then a kinematic decoder that predicts only the movement trajec-
tory may show an unpredictable behaviour if the user attempts to
pick up a load [BM14]. Despite decades of research, we are still
far from detecting the patient’s intent and transforming it into an
effective control signals [CBNvdS15].

Understanding which kind of parameters are encoded by the
brain for controlling movements can be very useful in the design
of new handwriting recognition and signature verification systems:
it is possible to define a new set of features and new similarity
measures that take into account the complex generation process
underlying the production of the patterns [MSP*14] [PM14].

In order to understand how the brain controls voluntary move-
ments and to encompass the controversy about kinematic and ki-
netic parameters, it has been proposed to combine the efforts of
physiologists, molecular biologists, and computational neurosci-
entists [BA15] [ALP07]. In particular computational models
can be used to simulate movement tasks for comparing simulated
with real behaviours, and for evaluating new hypothesis of how
brain signals are processed to achieve sophisticated motor control
[Kat03].

The complexity of neural networks within anatomical struc-
tures of the sensorimotor system makes it impossible to character-
ize how they work and their input-output transformation. Com-
putational models are therefore essential for predicting these non-
intuitive interactions and provide insight into the possible trans-
formations that a neural network can apply to a range of input
signal patterns [LT15].

The research presented in this thesis aims at understanding
how primary motor cortex and spinal cord cooperate to execute
a reaching movement, and whether a modular organization of the



spinal cord can be exploited for controlling the movement.

We propose that the execution of voluntary movements results
from the cooperation of different clusters of neurons distributed
in the rostral and caudal regions of primary motor cortex, each
of which activates different functional modules in the spinal cord.
In particular, both kinetic and kinematic aspects of movement are
represented by primary motor cortex, and the descending cortico-
spinal impulses specify the activation of modules in the spinal cord.
In order to validate our hypothesis we have developed a compu-
tational model of the spinal cord circuitry and of its interaction
with supraspinal areas.

The thesis is organized as follows:

e Chapter 1 reviews the different point of views about how
and what the primary motor cortex encodes. Furthermore,
it presents new physiological findings showing that primary
motor cortex is organized in two different areas: the ros-
tral one contributes to motor output by activating spinal in-
terneuron, the caudal one directly activates alpha motoneu-
rons.

e Chapter 2 analyzes what is known about the interaction be-
tween spinal and supraspinal networks from studies on the
modular organization of the motor system. It presents the
proposed model of the spinal cord and its differences respect
to other models in literature.

e Chapter 3 presents a functional modules organization of the
spinal cord interneurons modules. The chapter describes ex-
periments showing that it is possible to move an arm to a
desired position by recruiting spinal modules using different
strategies. The results of experiments suggest that the cen-
tral nervous system can adopt a simple solution to control-
ling the large number of muscle fibers by selecting and com-
bining the right spinal interneuronal modules. This chapter
also shows that the correction of an ongoing movement can
be executed in time by properly modify the recruitment of
the functional module that hosts propriospinal interneurons.



e Chapter 4 exploits the Fitts’ law and the proposed compu-
tational model to get more insights about how brain encodes
movements and to unveil the role played by the different area
of the primary motor cortex in determining the trade-off be-
tween speed and accuracy.

e Appendiz A presents the neuromusculoskeletal model used
in the experiments to simulate the execution of an elbow
flexion movement performed by a human upper-arm.

e Appendiz B presents the Sigma Lognormal model, a model
used in this thesis to verify that the movements generated
by the proposed model were human-like.






Chapter 1

The movement
representation problem

1.1 Introduction

The primary motor cortex (M1) is a major source of descend-
ing motor commands for voluntary movements. While there is an
agreement about its role in the execution of voluntary movements,
what features of movement are actually encoded (and how) by the
neural activity of this brain area is still debated. As a matter of
fact M1 appears to convey a multiplicity of information, from the
force that has to be generated by a particular muscle to the dis-
placement or position of the limb.

The movement representation problem is a longstanding contro-
versy between the supporters of kinematic parameters and the
supporters of kinetic parameters. In this chapter we will review
the different point of views about what (and how) is encoded by
the neural activity of the motor cortex. On the basis of new find-
ings about the primary motor cortex organization, we will show
it is possible to argue that both the representations are used in
parallel.
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1.2 The origin of the controversy

The motor cortex is the most examined brain area from anatom-
ical, physiological and functional perspectives since 1870, when
Gustav Fritsch and Edvard Hitzing discovered that the electrical
stimulation of a dog’s cerebral cortex produces movements [FH09].
Their central findings were that:

e the stimulation elicits contractions of the muscles on the
contralateral side of the body;

e movements were evoked only by stimulating the frontal lobe
of the cortex but not the posterior one;

e the stimulation of specific parts of the cortex activated spe-
cific muscles, the excitable sites forming a map of body move-
ments;

e the lesion of a site of the motor cortex impaired the move-
ments produced by the stimulation of that site.

Three years later, David Ferrer obtained the same findings by
stimulating the cerebral cortex of a monkey [Fer74]. Both those
seminal studies were the first experimental demonstration that the
cerebral cortex was electrically excitable and that a circumscribed
region of the cortex was devoted to the control of movement. As
described in [T'GO03], the two studies had considerable differences
in the methods, results and interpretation of experiments. Fritsch
and Hitzig stimulated the cortex with low galvanic currents and
described the resulting motor responses as spastic twitch-like con-
tractions of one or a few muscles. In contrast, Ferrier used a
faradaic stimulation, which allows to apply longer stimulus dura-
tions without damaging the tissue, and reported evoked responses
that looked like coordinated multi-joint fragments of natural be-
haviors.

These investigations were the beginning of a debate about the
nature of the representation of movement in the motor corter that
continues still today: does the motor cortex control the contractile
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activity of groups of muscles or the coordinated muscle activity
required for reaching? The electrical stimulation of the cortex
showed that the twitch evoking sites were organized in rough map
of the body.

The view of a motor cortex as set of muscles arranged in a
topographic order was confirmed by the studies on human mo-
tor cortex performed by Penfield in 1937 [PB37], which showed
that the musculature involved in fine motor control occupies more
space than the other muscles. Mapping experiments performed
with brief, low-intensity stimuli, led to argue that motor cortex is
a mosaic of individual columns, each controlling a single muscle
[Asa7b).

Other experiments showed that motor cortex is not organized
in a muscle-by-muscle map but instead the activity of each neuron
affects the activation of many muscles crossing many joints [CF85].
Eventually, in the last decade, the use of prolonged electrical or
optogenetic stimulation has suggested an organization of motor
cortex according to classes of behavior [GTM02] [HAM12].

1.3 Neural Encoding

”The motor code hunt” began in earnest with the development of
single unit recording in behaving monkey [Jas58] and its use in
the primary motor cortex [Eva66]. The study of how information
is represented by the electrical activity of neurons or networks of
neurons is known as neural encoding. These studies aim to char-
acterize the relationship between neural activity in term of action
potential firing and sensory stimuli or behavioural output. Ac-
cording to [HSM10] there are at least three definitions of neural
encodings that can be derived from literature. The most common
definition is that a feature is encoded by a neural structure if there
is correlation between the responses of neurons within the neu-
ral structure and the values that the feature can take. A second
definition of encoding requires the invariance and the unique-
ness of the mapping between the neural structure activity and
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the feature it encodes. Therefore a parameter is encoded by the
motor cortex if it is specified in the same way regardless of the be-
havioural context. A third definition of neural encoding is based
upon the causality between neural activity and what it encodes.
In [HSM10] the authors suggest that this kind of definition is not
appropriate in the context of the motor cortex because a significant
number of motor cortical neurons do not make direct monosynap-
tic connections with motor neuron in the spinal cord, therefore it
could be difficult to demonstrate a causal role in the activation of
muscles.

Two main approaches have been used for examining neural
coding in the primary motor cortex [SS09]:

e to correlate the single cell activity to parameters of move-
ment;

e to correlate the activity of a population of neurons to
parameters of movement.

To study the movement tuning of a neuron n in motor cortex
means to describe the firing rate r,(t) as a function of various
parameters:

Tn(t) :fn(pl(t)ap2<t)7p3(t)v"') (1'1)

The first study that evaluated the properties of single neurons
activity in the primary motor cortex of monkey was performed
by Evarts in 1968 [Eva68]. The result of his experiment was that
the activity of single neurons in the motor cortex is better corre-
lated with isometric force than with limb position. Those findings
together with the dense connections between the pyramidal tract
neurons and spinal cord lead to the interpretation that primary
motor cortex controls muscle force or activation [Evall]. Numer-
ous other parameters have been suggested to be encoded by single
neural activity, as for example direction of movement [GKCM82],
speed and direction [MS99], distance to target [FSE93] [FFCE95,
acceleration [AG94], static joint angles [Tha78]. Furthermore, it
was pointed out that the activity of single cells is related to mul-
tiple parameters of movement (end-point force, position, acceler-
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ation, velocity) and the correlation with each parameter vary in
time and is influenced by the motor behavioral context [JMEO1].

In [GKCMS82] the authors recorded the activity of single cells in
motor cortex while monkeys made arm movements in eight direc-
tions and showed that the cell discharge rate d is coarsely tuned to
the direction of reaching M. In particular, the neuron firing rate
varies as a linear function of the cosine of the angle 6¢, between
the preferred direction of the cell (i.e. the direction for which the
discharge rate of the cell is highest) and the direction of reaching:

d(M) = b+ kcos(8cm) (1.2)

where b and k are cell-specific regression coefficients.

An experimental and conceptual shift occurred in the 1980s, when
neuroscientists begun to examine more complex and natural move-
ments as multi-joint and whole arm movements [Kal09]. The tra-
ditional view that movement parameters were encoded within the
firing of a neuron was juxtaposed with the view that parameters
are encoded across populations of neurons. This population-code
view was born thanks to a series of pioneering work led by Geor-
gopoulos and colleagues [GKC*84][GSK86]. As wrote in [Geo92]

The idea is that any single neuron carries only par-
tial information about a movement parameter which is
therefore uniquely represented only in the whole neu-
ronal ensemble.

The idea behind the population code approach is that a movement
arise from the combination of the activities of different cortical
neurons each of which contributes by ”voting” for its ”preferred”
movement. In [GKCT84] the authors showed that the movement
direction M is coded by the discharge of a population of direction-
ally tuned neurons, each of which contributes to the movement.
The contribution of the ith neuron is represented by a vector that
points in the cell’s preferred direction C; and has an amplitude
w;(M) proportional to the cell’s frequency of discharge d(M). The
vector sum of these neuronal contributions is the population vector
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P(M) that points in the direction of the movement M for discrete
movements in 2D and 3D space:

PM) = Zwi(M)Ci (1.3)

where N is the number of cells in the population.

Other encodings have been suggested in the framework of the
population-code approach. It has been shown that the neural dis-
charge is tuned to both the direction of a planar arm movement
and the direction of a static load pulled by the arm. In both cases
it can be described by a linear summation of the movement-related
discharge without any loads, and the change in tonic activity of
the population caused by the load [KCHP89]. In [Kal91] it has
been suggested that population vector encodes a kinetic parame-
ter, such as the direction of force.

The single cell and the population level approach are both focused
on the representation employed by the motor cortex for controlling
the movement and some authors refer to them as the representa-
tional view of the motor cortex. In the last decade, it has been
argued that the evolution of neural activity should be best cap-
tured not in terms of movement parameter evolution, but in terms
of the dynamical rules by which the current state causes the next
state [SSC13]. According to this new hypothesis the motor cortex
may constitute a dynamical system that generates a pattern of
activity that encodes movement trajectories [HXA07] [CCKT12].
The cortical activity can be expressed as:

£(t) = g(r(t)) + u(t) (1.4)

where r is a time-varying vector describing the firing rate of all
neurons (the population response), r is its derivative, u(t) is an
input that arrives from other cortical areas and ¢ is an unknown
function.
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1.4 Kinematic versus Kinetic Control

As emerged from previous sections, there is a fierce debate on
whether the motor cortex activity encodes kinematic or kinetic
variables.

These two positions have been summarized in [Ash05] by speak-
ing of two groups of scientists, one supporting the idea that motor
cortex ” knows nothing of muscles” and another one believing that
"motor cortex knows nothing of movements”.

The view of a kinematic control of movement was born with
the finding of direction tuning of motor cortex neurons [GKCM82]
[GKC*84]. In addition to the direction of the movement, other
kinematic parameters as position, velocity and acceleration have
been shown to covary with the M1 activation [MS99] [AG94]. This
position has also been supported in the last years by the results
obtained in the field of brain-machine interface. For example it
has been shown in many studies that the position of a robotic
limb, or of a cursor on a screen, can be controlled in real time by
recording neuronal activation [HSFT06] [HBJ*12].

However, it is not possible to argue by these results that the dis-
charge of M1 neurons is exclusively determined by movement kine-
matics. In [SK95] [SK97] the authors recorded the motor cortex
activity of a monkey that performed the same reaching movements
with two different arm postures. They found that the cell activity
in the motor cortex is highly sensitive to changes in arm posture
even though hand trajectory remained similar. Thus, they con-
clude that the neuronal activity was not exclusively tuned to the
movement direction, but it reflected also other aspects of the arm
movement related to the arm posture, as for example angles of
joint or contraction of individual muscles. This experiment is at
the center of the controversy on whether motor cortex neurons
control high-level variables, such as hand direction (sometimes re-
ferred as extrinsic coordinates), or low-level variables, such as joint
angles and muscle forces (sometimes referred as intrinsic coordi-
nates).

The view of a kinetic control of movement arises from the
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notion that primary motor cortex neurons project to the spinal
cord and some of them have monosynaptic connections to alpha
motoneurons that activate muscles. It follows that the greater the
neuronal activity, the greater the muscle activation. It is there-
fore obvious to hypothesize as control variable the force generated
by muscles, as confirmed by the experiment performed in [Eva68§].
Since then, a lot of studies have shown relations between M1 acti-
vation and kinetic parameters as torque, direction and magnitude
of force [HKCT07] [KCHP89]. Furthermore, it has been shown
that the patterns of muscle activity can be reconstructed with a
weighted linear sum of activities of neurons in the primary motor
cortex [MMO3] [TPLO6].

On the other hand, theoretical studies have shown that the direc-
tional tuning of a population of M1 neurons can also result from
a system that fundamentally codes muscle shortening [MI88]. In
[Tod00] the author showed that population vectors tend to point
in the direction of movement because of geometry of the limb,
its inertial properties and the presence of external loads. The
author suggested that the directional tuning of M1 activity is an
epiphenomenon emerging from the complexity of the musculoskele-
tal system. Furthermore, in [SFB04] it has been shown that it is
computationally possible that extrinsic and intrinsic neurons can
control the same variables, as for example the muscle activation,
in parallel.

Due to this long standing controversy, in the last year a new view
of the motor cortex function, known as the action map view,
has been proposed [Gra06]. According to this new view, neurons
in motor cortex do not control one type of parameter but instead
they control mixtures of all variables relevant to the execution
of ethologically categories of behaviour, such as hand to mouth
actions, defensive actions, reaching, etc.
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1.5 The problem of correlated param-
eters

Behind the multiplicity of control variables proposed in literature
there is the statistical dependencies among movement parameters:
neurons could appear to encode a parameter p; but instead the
cortex is encoding a parameter p, to which the first one is related
to.

In motor control experiments, it is difficult to investigate parame-
ters independently because the movement is executed by the sub-
ject, and it is not under the full control of the experimenter and
movement parameters are naturally correlated. The sources of
correlation can be grouped in three classes [HSM10] [RH09]:

e biological constraints, as for example the minimization of
jerk, the two-thirds power law between velocity and curva-
ture and the Fitt’s law that describes the tradeoff between
speed and accuracy. These are regularities originating by the
way the movement is controlled by the neural structures;

e physical constraints, as for example the presence of inter-
action torques between different joints, the restrictions on
trajectories due to joint geometry, the relationship between
acceleration and force imposed by the Newton’s second law,
the restrictions on torques and joint angles due to passive
muscle properties;

e behavioral constraints, which are introduced by the ex-
periment set up for studying the motor system;

Some of these correlations can be removed or reduced with
proper controls, but it is clearly not possible to uncouple all move-
ment parameters. It may be possible to train a subject to violate
the biological constraints but it’s not possible to eliminate the
dependencies due to physical constraints.
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1.6 A proposal to overcome the prob-
lem

Some experiments have shown that two subpopulations of neurons
coexist in M1: neurons that capture kinematics properties of the
movement and neurons that encode kinetic properties. As for ex-
ample, the experiment described in [KHS99] demonstrated that
extrinsic and intrinsic coordinates are both represented in motor
cortex. The existence of both populations of cells within M1 led
the authors to propose that neurons showing different functional
properties may be connected in a network performing a transfor-
mation from abstract to intrinsic representation according to a
serial processing scheme. Instead, the model presented in [SFB04]
suggests that the two populations of M1 neurons may be organized
according to a series-parallel processing scheme. The difference be-
tween the serial and the series-parallel processing scheme is that
in the first one the only cortical source involved in the recruitment
of spinal motoneurons are the M1 cells encoding kinetic properties
while in the second scheme spinal motoneurons can be recruited
directly also by the neurons encoding extrinsic-like properties of
the movement.

To resume what has been described in this chapter, it is rea-
sonable to assume that primary motor cortex encodes both move-
ment’s parameters and patterns of muscle activation. We believe
that to better understand the ”code” used for executing voluntary
movements the activity of primary motor cortex must be evalu-
ated taking into account its interaction with other brain regions
and the spinal cord. In particular, in this thesis, we will investi-
gate the interaction between motor cortex and the spinal cord that
is the main recipient of the descending signals departing from M1
neurons. The opinion of studying the activity of primary motor
cortex by understanding its relations with others brain regions is
not new [Sco03] but in the last years new insights arose to support
this point of view. In our opinion the findings reported in [RS09]
and [SHPKO5] are the pillars for hypothesizing that M1 controls
different variables of a motor task and that this property emerges
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from the organization of its cells and the way they are connected
with the cells hosted in the spinal cord.

The main source of motor commands sent by the primary mo-
tor cortex are the corticospinal (CST) neurons, which are located
in the cortical layer V and have axons that reach neurons in the
spinal cord. Using a retrograde transneuronal transport of rabies
virus from single muscle, it has been shown in [RS09] that CST
neurons can be divided into two classes: neurons that project their
axons to spinal interneurons located into the intermediate zone of
the spinal cord, and neurons that makes monosynaptic connections
with motoneurons in the ventral horn of the spinal cord. Neurons
belonging to the latter class are also termed cortico-motoneuronal
(CM) cells, because they have direct connections with the alpha
motoneurons. The experiment performed in [RS09] has shown
that:

e CM cells are almost entirely segregated to the caudal region
of M1. These CM cells are connected not only to motoneu-
rons that excite muscles of fingers, but also to motoneurons
exciting muscles of the shoulder and elbow (see Figure 1.1).
Therefore, the caudal region of M1 has direct access to mo-
toneurons that control proximal as well as distal muscles;

e The caudal portion of M1 shows a proximal to distal (me-
dial to lateral) topography of arm representation (see Figure
1.2), similar to the map of arm representation obtained in
experiments based on intracortical stimulation of the caudal
M1 [KMMWT78]. So, CM cells exhibit a somatotopic organi-
zation;

e The different populations of CM cells are intermingled (see
Figure 1.3).

From these findings results that primary motor cortex is subdi-
vided into two regions, the rostral and the caudal one. In macaques,
the rostral region is located on the crest of the precentral gyrus,
whereas the caudal region is buried in the anterior bank of the cen-
tral sulcus (CS). CST neurons in the rostral region control alpha
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motoneurons activation through disynaptic or polysynaptic path-
ways, while CST neurons in the caudal region have direct control
over motor output thanks to their monosynaptic connections with
motoneurons. While the rostral region is present in many mam-
mals, CM cells are peculiar of Old and New World monkeys, great
apes and humans so it is a new area arose during the evolution.
Furthermore, the intermingling of CM cells for different muscles
suggests that populations of CM cells create muscle synergies for
controlling multijoint as well as single-joint movements.

In [SHPKO5] the authors recorded the activity of neurons in
caudal part of primary motor cortex related to movements of the
proximal arm and they showed a correlation with both the tempo-
ral pattern of force production and the dynamics of motor output.
Furthermore, studies on local field potentials in the motor cortex
have shown the propagation of beta oscillations across the arm
area of the motor cortex and along the rostral to caudal axis,
during both the motor preparatory period and the movement ex-
ecution. It has been hypothesized that these high-frequency oscil-
lations may subserve intra- and inter-cortical information transfer
during movement preparation and execution [RRH06] [HSM10].

On the basis of that, we argue that the execution of voluntary
movements results from the cooperation of different clusters of
neurons distributed in the rostral and caudal regions of primary
motor cortex, each of which represents different aspects of the
ongoing movement. In particular, kinetic aspects of movement are
directly represented by the caudal part of primary motor cortex as
activations of alpha motoneurons, while kinematic aspects of the
movement are encoded by the rostral region and are translated by
spinal cord interneurons into alpha motoneurons activation.

So, in order to support and to know more about the code used
by the motor cortex, a model of spinal cord and its connections
with supraspinal brain areas are presented in the next chapter.
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Figure 1.1 Distribution of CM cells innervating the motoneurons of a
shoulder or an elbow muscle. Each map shows an unfolded reconstruction of
layer V from an experimental case. Each dot represents a labeled CM cell.
The central Inset shows the general location of the reconstructed area on a
lateral view of the macaque cerebral hemisphere.C, caudal; M, medial;
Gyrus, crest of the precentral gyrus; Sulcus, anterior bank of the CS. This

figure is taken from [RS09]. Courtesy of PNAS.
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Figure 1.2 Topographic organization of CM cells in M1. (Upper) Density

analysis of CM cells innervating shoulder (Left), elbow (Center), or finger

(Right) motoneurons. The color scale at the right indicates the density of

labeled neurons as percentages relative to the maximum peak density. This
figure is taken from [RS09]. Courtesy of PNAS.
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Figure 1.3 Density peaks of shoulder (white), elbow (blue), and finger
(red) CM cells. There is considerable intermingling of the different
populations of CM cells. This figure is taken from [RS09]. Courtesy of
PNAS.



Chapter 2

The interaction between
Motor Cortex and Spinal
cord

2.1 Introduction

The control of goal-directed limb movements needs the generation
of the appropriate muscle activation patterns for coordinating the
complex multijoint musculoskeletal system and the online com-
pensation of errors due to noise and perturbations. Experimental
evidences suggest that the central nervous system (CNS) is able
to built a representation of the dynamic properties of the limbs
thanks to elementary building block hosted by the spinal cord
[MIB00]. Spinal circuitries are fundamental for motor execution,
as they provide different mechanisms for movement and control.
Their precise role in motor control is still not clear and three ques-
tions need to receive a clear and definitive answer [GhU12]:

e What are the relative roles between brain and spinal cord
circuitry?

e What are the relative roles between peripheral inputs and
descending commands in organizing spinal behaviours?
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e Are the spinal behaviours organized in a modular fashion and
is this organization exploited in executing skilled voluntary
movements?

Starting from studies on the modular organization of the motor
system, in this chapter we try to summarize what is known about
the interaction between spinal and supraspinal networks with a
computational model based upon muscle synergies.

Commonly, muscle synergies are suggested as a strategy for
the simplification of control that overcomes the degrees of freedom
problem faced in motor control and it is debated if these primi-
tives take the form of time-invariant muscle coactivations (spatial
synergies) or time-varying muscle commands (spatiotemporal syn-
ergies). Instead, we interpret synergies as neural structures that
provide a translation between task level goals and execution com-
mands to accomplish those goals. In the proposed model two levels
of muscle synergies are hypothesized and these neural structures
are the joining link between kinematic and kinetic representations
of the movement.

2.2 Modularity in motor control: Mo-
tor Primitives and Motor Syner-
gies

Everyday we experience our ability to build complex behaviours
and complex representations by combining simple elements in dif-
ferent ways. For example we compose words articulating phonemes
(behaviour) and we compose sentences from words (representa-
tion). This ability is fundamental also for visual perception, ac-
tion and cognition: there are evidences suggesting that our visual
recognition system is based upon a hierarchy of cortical stages
that combines responses from neurons tuned to simpler features
[PB04].

On the basis of studies on vertebrate and invertebrate mo-
tor systems and taking into account that the execution of even
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the simplest movement requires the activation of many thousands
of motor units in numerous muscles, different investigators have
hypothesized that the central nervous system executes voluntary
movements by exploiting a hierarchical architecture based upon
discrete building blocks activated simultaneously or serially in time
[FHO5]. Different motor primitives have been proposed in lit-
erature (for a complete review [FH05] [GPHO7] [GHS10] [Gis15])
and they can be divided in two classes:

e kinematic primitives, as strokes and submovements, that are
patterns of motion without regard to force or mass. For
example, hand trajectory has been decomposed in veloc-
ity primitives represented with minimum-jerk or log-normal
functions;

e kinetic or dynamic primitives, as for example static force
fields, muscle and joint torque synergies, neural drive syn-

ergy;

Electrophysiological studies in spinalized frogs [BMIG91] and rats
[TSB99] suggested that the spinal cord provides the central ner-
vous system with a ”vocabulary” of motor primitives to be su-
perimposed for generating a wide repertoire of motor behaviors.
These studies provided evidence that neural circuits in the spinal
cord are organized into a set of distinct functional modules whose
activation induces a specific force field. As described in [BCd*08]:

A spinal module is a functional unit in the spinal cord
that generates a specific motor output by imposing a
specific pattern of muscle activation.

Those modules control groups of coactive and linearly covarying
muscles that generate force fields [GMIB93] [MIGB94]. It was
shown that the simultaneous activation of multiple modules leads
to the vectorial summation of the fields generated by each site sep-
arately [MIGB94] [MIB00]. Vector summation of force fields im-
plies that a motor behaviour can be controlled and learned through
the linear combination of motor primitives/spinal modules activa-
tions, so the non-linearities that characterize neurons and muscles
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are eliminated. Motor primitives have been defined as composi-
tional elements for movement construction [Gislb] that are re-
cruited by impulses conveyed by supraspinal pathways, and/or by
the reflex pathways.

Another kind of ”basis functions” whose combinations explain
the motion generation are the muscle synergies. They are de-
fined as coordinated activations of a group of muscles and there-
fore they embrace a wide range of muscle recruitment strategies:
activation of muscles by a common drive, muscles recruited at
the same time but controlled separately, or muscles controlled in
a stereotypic temporal pattern. These different implementations
of the abstract concept of muscle synergies implies different mo-
tor patterns, underlying circuitry and subsequent force generation
[GHS10]. Regularities observed in the electromyographic activities
of several species [BCdT08] have provided evidence for the muscle
synerqy hypothesis: a set of synergies are encoded by the CNS and
are combined in a task-dependent fashion in order to generate the
muscle contractions that will results into the desired movement
[ADN*13].

Given M muscles, the concept of muscle synergy has been for-
malized in a variety of mathematical models, two of which are
the synchronous synergies and the time-varying synergies.
A synchronous synergy is expressed as an M-dimensional vec-
tor w of coefficients specifying the relative activation level of the
muscles. Therefore, the activations of M muscles are computed
through the linear combination of a set of NV synchronous synergies
w;, 1 =1,..N:

N
m(t) = cit) xw; (2.1)

=1

In equation 2.1 m(¢) is a M-dimensional vector that specifies the
activation of each muscle at time ¢ and ¢;(t) is the time-varying
coefficient. Across movement conditions, either the synergies w; or
the activation coefficients ¢;(t) may be invariant and we can speak
respectively of synchronous synergy model and temporal synergy
model [ADN*13].
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A time-varying synergy is instead represented by a collection
of muscle waveforms expressed as a time-varying M-dimensional
vector w(t). In this case, the generation of muscle pattern is
modeled by the recruitment of N time-varying synergies each of
which can be scaled in amplitude and shifted in time by means of
the coefficients ¢; and t; :

N

m(t) = ¢ wilt —1;) (2.2)

=1

¢; and t; representing the commands used to accomplish the de-
sired task.
The two models have two main differences:

e the synchronous synergies model doesn’t allow temporal de-
lay between different muscles, so all muscles within a synergy
are active at the same time, while within a time-varying syn-
ergy muscle activations do not necessarily covary;

e the synchronous model adopts a continuous control scheme,
as the command is a time-varying function, while time-vary-
ing one adopts a discrete scheme, as the command is a con-
stant.

The muscle synergies models have been successfully used in char-
acterizing the muscle contractions during human reaching move-
ments. Muscle patterns recorded during fast movements in differ-
ent directions [dPFL06] and speed [dFPLO8] were accurately re-
constructed by appropriate linear combinations of synergies, which
appeared very similar between subjects. In [dPFLO6] synergies ex-
tracted from muscle activities during unloaded reaching were used
for reconstructing EMG signals obtained during loaded conditions.
Furthermore, it has been shown that the recruitment and the onset
time of the individual synergies were modulated with movement
direction and did not change significantly with movement speed.
The study performed in [MBdF10] showed that a large set of mul-
tijoint movements in different directions could be generated by a
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small set of synchronous synergies. In [dPL11] the authors inves-
tigated whether the muscle patterns to correct ongoing reaching
movements are generated by the superposition of the same set of
time-varying muscle synergies used for reaching movements. The
results they obtained suggest that a common modular architec-
ture is used for the control of unperturbed arm movement and
for its visually guided online correction. In order to execute an
online correction experimental results suggests that the CNS may
either modulate existing synergies [dPL11], or reprogram new ones
[FBB10].

Eventually, even within the framework of equilibrium point con-
trol it has been argued that the brain may control complex move-
ments through flexible combination of motor primitives, where
each primitive is an element of computation in a sensorimotor
map that transforms desired limb trajectories into motor com-
mands [TS00].

One of the main critiques of experiments supporting the mus-
cle synergy hypothesis is that they reflect task constraints rather
than a neural control strategy [TJ09]. Furthermore some analyses
of variability in motor patterns have provided evidence against the
existence of muscle synergies and suggest that the nervous system
preferentially controls task-relevant parameters on the muscle level
[VCVT09).

From a computational point of view, a modular organization of the
motor system is very attractive because it simplifies motor control
and learning, and it may contribute to the adaptability observed
in biological systems. For these reasons, the hypothesis of muscle
synergies inspires methods to control artificial systems [ADNT13].

Nevertheless, some aspects about motor primitive plasticity and
their reuse are still not clear. The degree of stability of spinal mo-
tor primitives through development, their plasticity are still open
questions and it is speculated that in humans the need of execut-
ing novel skills requires novel motor primitives that have perhaps
never been used before in evolutionary history [Gis15].
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2.3 The neural basis of muscle syner-
gies

Researchers in the field of motor control work to reverse engineer-
ing the design of the biological controller leading the movement
execution. Two complementary approaches can be used for fulfill-
ing this aim: the structural and the behavioral approach. While
the first one requires to gain access to the neural circuitry and
decoding the neural representation of the controller, the latter one
requires access only to the controller’s output and is less difficult
to put in practice [dT07]. Therefore, the basic procedure used in
the experiments cited in the previous section is:

e to measure EMGs from a large number of muscles during a
complex behavior;

e to identify a set of synergies from the recorded EMGs using
computational analysis such as non-negative matrix factor-
ization;

e to evaluate to which extent the observed EMGs fit with one
of the synergy models presented before.

Using this method the presence of synergistic structures within the
CNS can only be inferred and it is not clear whether and in which
areas the muscle organization is neurally implemented. Some ex-
periments and simulations challenge the hypothesis that muscle
synergies are a neural strategy by showing that they may origi-
nate from biomechanical couplings and task constraints [KVC12].
Therefore investigating the neural mechanisms that select the mus-
cle activation patterns required to achieve a behavioral goal is of
paramount importance [DCB10].

Some studies in monkey supported for the existence of neural
substrates of muscle synergies in primary motor cortex [HMO02],
while studies on frogs supported for neural populations of interneu-
rons in the spinal cord as neural basis of synergies [HG10] [DCB10].

In [LHH*14] a population of interneurons that could support
motor primitives in mammals was identify in the mouse spinal cord
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and it was named motor synergy encoder (MSE) by the authors.
This population receives direct inputs from the motor cortex and
sensory pathways and, in turn, has monosynaptic outputs to spinal
motoneurons. Its optical stimulation drove reliable patterns of
activity in multiple motor groups and the authors speculated that
MSE may encode coordinated motor output programs.

In [OdR*15] the authors investigated whether populations of
motor cortical neurons reflect recruitment of motor primitives in
the form of spatiotemporal synergies. They compared EMG de-
rived spatiotemporal [OdRBO08| and spatial [OdCB12] synergies
extracted from forelimb muscle in rhesus macaques with synergies
derived from cortical data recorded in primary motor cortex, in
dorsal and ventral premotor cortex. Their results show that, at the
population level, motor cortical units in the primate brain exhibit
the recruitment of spatiotemporal synergies whose dimensionality,
timing, and amplitude modulation correspond with synergies in-
dependently inferred from muscle recordings. Furthermore, it is
shown that these spatiotemporal synergies could be reconstructed
as sequential activations of spatial synergies both at the muscular
and neural levels. These results suggest a hierarchical relation-
ship between the two levels of synergies: spatial synergies may
be hard-wired and recruited together in the form of higher-level
spatiotemporal synergies.

These findings support the hypothesis that voluntary move-
ments are executed by a complex interaction between the motor
cortex and the spinal interneurons. The cortex may select and
combine the proper spinal interneuronal modules, and provides
them the suitable temporal patterns of activation for the behav-
ior being executed [BC13|. Studies on a group of humans with
lesions in the motor cortical areas due to a stroke have shown
that it is possible to extract similar muscle synergies from both
stroke-affected and unaffected arm even if motor performance be-
tween the arms were substantially different [CPAT09]. These re-
sults match the idea that muscle synergies are implemented in
spinal cord circuitry and are recruited by descending commands
from supraspinal area. In fact, after a stroke the descending com-
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mands are altered and the motor behaviour is abnormal due to an
improper activation of synergies [BC13]. It is plausible to think
that the right temporal activations of primitives are learned grad-
ually as the individual grows from being a neonate to an adult.
In fact, in [DICT11] the authors found that two basic patterns of
stepping neonates are retained through development while other
are added over the years.

Eventually, it is also plausible that highly skilled movements
are encoded by muscle synergies implemented directly by ensem-
bles of neurons in the motor cortex [RS06].

2.4 Skilled Movements

Skilled movements are the result of the interaction between effer-
ent neural pathways, which produce muscle contraction, and the
feedback pathways that report the effects of motor commands.
The role of feedback pathways is fundamental for signaling error
and correcting motor output. There are two types of feedback

projections used for comparing the planned and the performed
actions [AA15]:

e the external feedback pathways: proprioception and vi-
sion convey information about the state of muscle contrac-
tion and the position of limb in the space. These pathways
are affected by temporal delay that complicates the control
of movement. In fact, delays in feedback may induce oscil-
lations and limit the rapidity with which motor commands
can be modified;

e the internal feedback pathways: a copy of the motor
commands, often referred as efference copy, is delivered to
the cerebellum in order to built a forward model of the limb
movement that will allows the rapid prediction of the sensory
outcome of motor action.

Both the proprioception signals and the internal copies of motor
commands are transmitted from the spinal cord to the cerebellum
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through the spino-cerebellar pathways. A direct spino-cerebellar
pathway, the cuneo-cerebellar tract, carries proprioceptive infor-
mation from the upper limbs to the cerebellum and it is mainly
dedicated to rhythmic motor acts. The indirect spino-lateral retic-
ular nucleus-cerebellar pathway is relevant to the execution and
coordination of dexterous limb movements. The lateral reticular
nucleus (LRN), a precerebellar centre located in the brainstem, is
a major mossy fiber relay of information from the spinal cord, mo-
tor cortex and superior colliculus [AE13] projecting to cerebellar
cortex and sending collaterals to the deep cerebellar nuclei (DCN).
Three major ascending systems from the spinal cord to the LRN
have been described in the cat: the bilateral ventral flexor re-
flex tract (bVFRT), the ipsilateral forelimb tract (iFT) and the
C3-C4 propriospinal neurones. These systems could signal in-
formation respectively about posture, grasping and reaching. In
[AE15] [AE13] the authors investigate the convergence of these
three systems onto LRN neurones and they suggest that an elab-
orate process of descending and ascending synaptic integration
occurs before the mossy fiber output to the cerebellum. The au-
thors proposed that the convergence in the LRN might contribute
to the coordination of posture, reaching and grasping into coher-
ent and smooth movements.

The C3-C4 propriospinal neurons (PNs) represent the best charac-
terized internal copy circuit. Their function has been investigated
in behavioral experiments, revealing a role in mediating the vol-
untary command for visually guided forelimb reaching in the cat
and additionally for precision grip in the macaque monkey [AI12].
The C3-C4 PNs are not the unique type of spinal interneurons
projecting to the LRN. In fact, the experimentation presented in
[PESA14] reveal the existence of a spatial map within the LRN:
spinal neurons of different single progenitor-domain origin estab-
lish distinct axonal terminations in the LRN.

Moreover, LRN receives projection from motor cortex via a pop-
ulation of cortico-reticular neurons terminating in the brainstem
but not from collaterals of corticospinal fibers [AE15].

LRN mossy fibers project at the same time to cerebellar granule
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cells and to deep cerebellar nuclei. Granule cells provide a poten-
tial location for the convergence of sensory and copy information
[AFJ14]. The result of the Granule cells integration is then trans-
mitted by the Purkinje cells toward the deep cerebellar nuclei,
which modulate the activity of several descending brainstem nu-
clei (reticulospinal nuclei, vestibular nucleus, red nucleus). Even-
tually, the brain steam nuclei deliver the updated motor command
to the spinal cord.

Therefore, the spinal cord-LRN-cerebellum-deep cerebellar nuclei
loop is closed via the rubro- and reticulospinal systems and allows
to update descending pathways in a timely fashion with ongoing
activity from the spinal cord. This idea was recently supported by
a combined electrophysiological, optogenetic and behavioral study
in the mouse, in which the ascending branch from V2a PNs to the
LRN could be selectively activated [AFJ14].

During visual control of upper limb reaching, two pathways are
available for updating the motor commands sent to the spinal
cord: one involves cortical structures as the posterior parietal cor-
tex (PPC) while the other involves subcortical regions as the bul-
bospinal system, part of reticulospinal tract. Both the pathways
need the efference copy sent to the LRN and the visual information
for correcting the movement. In humans, cortical visual pathways
correct the ongoing movement with latencies longer than 200 ms,
instead subcortical structures are involved in the fastest adjust-
ments of the trajectory with latencies in the range of 120-160 ms
[DLOO] or even shorter (around 100 ms) [PKB*10]. It follows that
the fastest pathway may be used for the online correction of the
ongoing movement when for example a target jump happens, while
the slowest pathway involving cortical areas may be used for re-
planning the movement. As discussed in [SM15] one pathway may
be preferred respect to the other on the basis of task conditions: if
spatiotemporal restrictions are placed in the execution of the task
it has been shown that the correction through the fastest pathway
is performed.
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2.5 The proposed model

2.5.1 The architecture

On the basis of the studies on motor cortex and spinal cord pre-
sented in this and in the previous chapter, we propose the model
in Figure 2.1 that may explain how brain and spinal cord interact
for controlling a reaching movement. In Figure 2.2 are pointed
out the connections between the cerebellum and the brainstem
and the connections coming from the primary motor cortex and
the spinal cord.

In our model motor commands are represented by the activations
of clusters of neurons in the rostral and in the caudal part of M1
cortex. Their selection is regulated by the cortical loop through
the Basal Ganglia, whereas the cerebellum is involved in their tim-
ing and coordination.

Motor commands travel down the corticospinal tract (CST) to
synapse on interneurons and motor neurons in the spinal cord. In
particular, neurons located in the rostral region of the M1 cortex
make monosynaptic connections with interneurons in the interme-
diate zone of the spinal cord, while the neurons in the caudal part
have direct connections with alpha motor neurons. The density of
CST neurons in both the regions of M1 is comparable [RS09].

We propose that neurons in the rostral M1 are organized in clusters
devoted to the activation of different subpopulations of interneu-
rons in the spinal cord. In turn, interneurons are organized in
functional modules, each of which regulates the activity of a subset
of muscles working around one or more joints. These spinal func-
tional modules are interneurons networks that implement hard-
wired muscle synergies recruited by the rostral M1 cortex or by
subcortical nuclei of the brainstem. The way a module regulates
the muscles activations is related to its structural properties, as
for example the connections between the neurons belonging to it,
the type, the number and the synaptic weight of its inputs. The
recruitment of an hard-wired synergy concerns to the supraspinal
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regions but their activation is modulated by sensory inflow. The
modulation due to sensory inputs could explain immediate mo-
tor adjustments and the adaptation to constraints imposed by
the task. Nevertheless, supraspinal regions can increase or de-
crease the sensory inflow into a synergy by the presynaptic gains
modulation, directly on indirectly through inhibitory interneuron
population [MPD98] [BME10] [FCH*14]. The variation of the
presynaptic gains is a strategy adopted by the CNS for modulat-
ing the strength of many spinal reflexes during both locomotor
and voluntary motor behaviors [Loel3].

We propose that the population of cortico-motoneuron (CM) cells
in the caudal part of M1 create muscle synergies for a direct control
of muscle activity. This hypothesis is supported by the findings
in [RS09] showing that there is an overlap and an intermingling
of CM cells connected to motoneurons exciting different muscles
and by the evidence that presynaptic inhibition of these direct
projections is absent [LKM™04]. The population of CM cells may
implement new collections of synergies useful to execute highly
novel skills that require a direct control of multijoint and single-
joint movements by the CNS.

As already argued, the two families of motor cortex neurons co-
operate in order to accomplish different requirements of a com-
plex behaviour. The control of movement execution through the
recruitment of interneurons networks is simpler because local net-
works linearize the complex mechanical properties of the muscu-
loskeletal system, instead the direct regulation of alpha motoneu-
rons activity allows a more flexible control.

The variability observed in the motor execution of a complex task
may be due to the variability in the sensory inflow that modulates
the hard-wired synergy activation rather than to poor planning or
control. In fact, information from sensory organs are affected by
the psychophysical state of the subject, by the initial conditions
of the movement and by the state of the external environment.
The CNS may correct the motor variability introduced by sensory
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variability by directly regulating the pattern of muscle activity
through the caudal M1 cortex. As proposed by the uncontrolled
manifold hypothesis [Lat12] the CNS has to correct for variability
that prevents the accomplishment of the task goals and it can skip
the variability that does not affect them.

We argue that hard-wired primitives are available at birth and
infants use them to organize initial movements and to explore the
environment. Babies learn to generate visually guided reaching by
mixing submovements produced by the activation of motor prim-
itives, which contribute to the ontogenetic construction of more
complex motor acts [Kon05]. At the beginning, the movements
produced by the baby toward different objects are inaccurate but
as he develops the precision increases. The improvement of the
movement accuracy is due to not only a maturation of the ner-
vous system but also to a better calibration in the recruitment of
motor primitives [GW04] and in our model this calibration corre-
spond to a tuning of rostral M1 cells activation.

In our model, LRN receives and integrates information from
collaterals of spinal interneurons and from motor cortex via a pop-
ulation of cortico-reticular neurons terminating in the brainstem
as suggested in [AE15]. Cerebellum receives information from sen-
sory organs and from the LRN and may built an internal repre-
sentations of the movement as combination of modular primitives
in the spinal cord. Recently, it has been suggested that one of the
role of the motor cortex is in "tutoring” subcortical circuits dur-
ing skill learning [KMP*15]: motor cortex executes movements as
combination of motor primitives and the cerebellum learn how to
execute a movement receiving information about the motor com-
mands, the activity of spinal interneurons and the sensory feed-
back.

Correction to the ongoing movement due to visual information
can be performed through the pathway involving the posterior
parietal cortex, the primary motor cortex or the pathway involv-
ing subcortical nuclei.

On the basis of the task requirements subcortical nuclei can mod-
ify voluntary movement through interneuronal circuits in the spine
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and through projections to cortical motor regions.
In the following subsection the model of spinal circuitry is de-
scribed.

2.5.2 The circuitry of the Spinal Cord

As described before, the experimental studies published in the last
years confirm that a neural basis of the modular organization of
motor system exists and that the basic modules recruited for the
execution of a movement are hosted, at least in part, in the spinal
cord. The spinal cord is not a simple relay station for transmitting
information to and from supraspinal centers but, as defined by
[Bur08]:

It is a highly evolved and complex part of the CNS that
has considerable computational ability.

Limb movements are planned and initiated by the brain but they
cannot be performed without a spinal cord and the intricate feed-
back systems that reside within it [PDB12]. The cord is divided
into segments along its length, each with a separate pair of dorsal
and ventral nerve roots. The dorsal roots contain the afferent sen-
sory nerve fibers carrying information from the body to the CNS,
while the ventral roots carry the efferent nerve fibers that control
the muscles. There are many types of afferent signals carrying dif-
ferent information about the external environment, the position
and movement of the body. The spindles are sensory receptors ar-
ranged parallel to the muscle fibers that provide information about
the muscle length through both Ia (primary) and II (secondary)
afferent fibers, and information about the rate of muscle length
change through the secondary afferent fibers. Golgi tendon organs
(GTOs) are sensory receptors located at muscle-tendon junctions
that through Ib afferent convey information about the force pro-
duced by the muscle during its contraction.

The spinal cord is divided into segments containing motor neu-
rons and interneurons, and cervical segments are devoted to the
innervation of arm muscles. The spinal cord contains many types
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Figure 2.1 The architecture of the proposed model. In figure are pointed
out the connections between spinal cord, motor cortex and subcortical
nuclei. Gamma motoneurons regulate the sensitivity of muscle spindles. BS:

Bulbospinal tract, CR: Cortico-reticular tract, CST: Corticospinal tract
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Figure 2.2 Connections between the cerebellum, the brainstem and the
spinal cord. Dotted lines represent connections for whom contradictory
evidence are reported in literature. DCN: Deep Cerebellar Nuclei, PKC:
Purkinje cells, GC: Granule cells, LRN: Lateral Reticular Nucleus, NR:
Nucleus Ruber, RF': Reticular Formation
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of interneurons that are strongly interconnected and that can be
classified according to anatomical, physiological and molecular cri-
teria. Recently, it has been demonstrated that spinal neurons can
be subdivided into 11 cardinal classes based on their progenitor-
domain origin (dorsal dI1-dI6; ventral V0-V3; spinal motor neu-
rons MN), and a variety of distinct roles of corresponding neuronal
subpopulations has been revealed [PESA14].

Spinal interneurons receive input from different areas of the
brain, as for example cerebral cortex, brain stem and tectum.
The specific location of source input and how these are distributed
within the interneuron networks are poorly understood. We have
modeled the main and well-known pathways in the spinal cord that
are described in literature [PDB12] and we have adopted the con-
vention of naming the interneurons on the basis of their dominant
input. The modeled pathways, interneurons and connections are
reported below. For the sake of clarity, it’s important to point out
that when we perform a movement a lot of different muscles are
recruited to complete it. Each muscle plays one of the following
roles during a particular movement:

e agonist is the muscle that causes a movement to occur through
its contraction;

e antagonist is the muscle counterbalancing the agonist that
is involved in decelerating and stabilizing the movement;

e synergist is the muscle that helps the agonist to perform the
joint motion;

As suggested by [Loel3], given an axis of motion around one joint
(e.g., flexion/extension of the elbow joint), it is possible to describe
all the muscles that create a positive moment as synergists and all
that create a negative moment as antagonists.

Alpha and gamma motor neurons Alpha and gamma motor
neurons are the two types of motor neurons in the spine. Each
alpha motor neuron innervates any number of myofibrils, each of
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which is innervated just by one motor neuron. The alpha motor
neuron, its axon and the muscle fibers it innervates constitute a
functional unit called motor unit. The size of the motor units
and the number of myofibrils that are innervated contribute to
the force of the muscle contraction.

A single motor neuron in the spine can receive thousands of
inputs from the cortical motor regions, the subcortical motor re-
gions and also through interneurons in the spine. In our model
alpha motoneurons receive inputs from the local circuitry below
(as shown in Figures 2.3, 2.5, 2.6 and 2.4), and from CM cells in the
caudal part of M1 cortex. While synaptic inputs from interneurons
can be both excitatory and inhibitory, projections from CM cells
are only excitatory: in fact, there is no evidence for CM-evoked
monosynaptic inhibition [LKM™04]. In addition to corticospinal
tract, several descending pathways have been shown to produce
monosynaptic actions on motoneurons, including fibers running
in the rubro-, reticulo-, vestibulo- tracts, but their functional role
is not clear and we do not model them.

Gamma motor neurons are another type of motor neurons that
innervate fibers within the muscle spindles (intrafusal fibers) and
make them contract. This contraction regulates the sensitivity of
the intrafusal fibers to muscle stretch. Little is known about the
mechanisms of gamma motoneuron activation during goal-directed
movements; all we know is inferred from muscle spindle afferent
activity [Sco03], and it is agreed that the activation of gamma mo-
tor neurons is modulated on the basis of task requirements. The
gamma efferent system is excited specifically by signals from the
bulboreticular facilitatory region of the brain stem and, secondar-
ily, by impulses transmitted into the bulboreticular area from the
cerebellum, the basal ganglia, and the cerebral cortex [GHO6].

Monosynaptic Ia excitation and Ia Interneurons Group la
fibers from the primary endings of spindles can synapse monosy-
naptically with alpha motoneurons that innervate the same mus-
cle (also called homonymous muscle) or with alpha motoneurons
that innervate a synergist. These monosynaptic connections allow
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a rapid response, with the shortest possible time delay, to unex-
pected increase in muscle length, know as stretch reflex. Whenever
a muscle is stretched suddenly, excitation of the spindles causes
reflex contraction of the muscle fibers of the stretched muscle and
also of synergistic muscles.

Furthermore, the Ia afferents are the main input of Ia in-
hibitory spinal interneurons that form inhibitory synapses to the
motoneurons of antagonist muscles (also called heteronymous mus-
cle). These interneurons implements the reciprocal inhibition mech-
anism: they tend to inhibit the antagonist muscles when the ag-
onist ones are stretched in order to avoid that the activity of an-
tagonist muscles is opposed to the excitatory stretch reflex.

The inhibitory input from Renshaw cells is what distinguishes
[a interneurons from other interneurons. The connection from
Renshaw cells and its supraspinal control may be used to ensure
coactivation of antagonist muscles by decreasing reciprocal inhibi-
tion. The local circuitry that involves the Ia interneurons is shown
in Figure 2.3.

Renshaw Cells These interneurons are excited by homonymous
and synergist alpha motoneurons while their axons ramify and
contact primarily the alpha motoneurons related to agonists and
antagonists muscles. Renshaw cells inhibit the same alpha mo-
toneurons that excite them and this mechanism is also known as
recurrent inhibition. How strongly Renshaw cells respond to the
excitation from the alpha motoneurons is regulated by inputs from
supraspinal regions.

Further, the Renshaw cells inhibit the Ia inhibitory interneu-
rons of the homonymous muscle mediating the reciprocal inhibi-
tion mechanism, i.e. resulting in a disinhibition of the antagonist
motoneurons. The functional role of the Renshaw cells is contro-
versial, but these cells seem important to regulate the temporal
pattern of action potential sent from the alpha motoneurons and
to balance the activation of antagonist muscles by adjusting the
degree of Ia reciprocal inhibition. The local circuitry that involves
the Renshaw cells is shown in Figure 2.4.
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Figure 2.3 Descending and peripheral inputs converging on an Ia
interneuron. Information from spindles, M1 cortex, Renshaw cell are
represented in blue, green and black respectively. The blue arrow named
SYN came from the spindles of the synergistic muscle. The black connection
named HOM came from the Renshaw cell regulating the activity of the
homonymous alpha motoneurons. The yellow connections named ANT came
from the Ia interneuron receiving Ia fibers from the spindles of the
antagonistic muscle. Filled dots represent inhibitory synapses, arrows
represent excitatory synapses, while diamonds represent axo-axonic

synapses.
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Figure 2.4 Descending and peripheral inputs converging on a Renshaw
cell. Information from M1 cortex is represented in green. The red
connection named SYN came from the alpha motoneurons innervating the
synergistic muscle, while the black connections named ANT and SYN came
from Renshaw cells regulating the activity of the synergistic and antagonist
muscles respectively. Filled dots represent inhibitory synapses, while arrows

represent excitatory synapses
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Ib Interneurons These inhibitory interneurons receive monosy-
naptic excitation from corticospinal tract and the periphery. In-
puts from the periphery include a wide range of cutaneous and pro-
prioceptive afferents but we chose to model only the Ib afferents
because they are the dominant ones. The absence of inhibitory
projections from Renshaw cells is what distinguishes these cells
from Ia interneurons. Furthermore, in [Lun71] is hypothesized
that these interneurons project to the cerebellum.

Ib interneurons receive excitatory Ib afferents from many of the
muscles controlled by the section of the spinal cord to which the
interneurons belong to, not only from the ones the interneurons is
directly connected through the motoneurons [Jan92].

These interneurons project to both synergistic and antagonis-
tic motoneurons. Their projection to antagonist motor neurons
is excitatory, whereas that to homonymous and synergistic motor
neurons could be excitatory or inhibitory due to the existence of al-
ternative pathways involving other segmental interneurons. Thus,
individual motoneurons can be either excited or inhibited by Ib af-
ferents. As described in [Loel3], the final effect depends on which
interneuronal pathway is activated by the descending commands
sent to Ib interneurons and segmental interneurons placed along
the pathway from the GTO to the motoneuron. The final effect
can result in positive, self-reinforcing feedback loops [Loel3].

The functional role of Ib interneurons during voluntary con-
traction is to keep a smooth profile of force development, to avoid
jerky movements, to prevent the overcontraction of an agonist
muscle and to facilitate the contraction of antagonist. The local
circuitry that involves the Ib interneurons is shown in Figure 2.5.

Propriospinal (PN) Interneurons They are a population of
spinal cord interneurons that connect multiple spinal cord seg-
ments and participate in complex motor reflexes. In fact these
interneurons receive direct excitatory projections from Ia and Ib
afferents, as well as monosynaptic excitation from the motor cor-
tex, nucleus ruber (NR), reticular formation (RF) and superior
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Figure 2.5 Descending and peripheral inputs converging on an Ib
interneuron. Information from GTO and M1 cortex are represented in
orange and green respectively. The orange connection named Ib-SYN came
from the GTO of the synergistic muscle. The connections named SYN and
ANT came from Ib interneurons regulating the activation of the synergistic
and antagonist muscles, respectively. Filled dots represent inhibitory
synapses, arrows represent excitatory synapses, while green diamonds
represent axo-axonic synapses. The blue arrow terminating with a diamond
represent a path that could be excitatory or inhibitory on the base of a

descending input (not shown in figure).
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colliculus (SC). Some of these descending connections can medi-
ate disynaptic inhibition of PNs via feed-forward and feed-back
inhibitory interneurons.

The PN interneurons in turn project to motor neurones located
in the C6-Thl segments innervating upper arm muscles. In ad-
dition, as described in the previous sections, these neurons have
ascending axon collaterals to neurones in the lateral reticular nu-
cleus, which provide cerebellum with an efferent copy of the signal
to the motor neurons.

The rubro and reticulospinal neurons with projection to these
interneurons receive input from the motor cortex and the deep
cerebellar nuclei [AI12], therefore it is likely that projections from
these subcortical regions are used to the online correction of the
movement.

The functional role of propriospinal interneurons is probably
to integrate the descending command and afferent feedback from
the limb during the movement in order to modulate or to update
the descending command during the execution of a movement, de-
pending on the task requirements and the state of the external
environment. The local circuitry that involves the PN interneu-
rons is shown in Figure 2.6.

Presynaptic modulation A feature of the spinal circuits is
the presence of 'axo-axonic’ synapses, which allow the modulation
of the activity of just an afferent axon terminal that reaches a
neuron. These presynaptic pathways may exert either a depolar-
izing modulation, which has the effect of inhibiting transmitter, or
an hyperpolarizing modulation, which facilitates the transmitter
[Loel3]. We have modeled these facilitation and inhibition effects
for each synapse between a sensory input and an interneurons or
motoneurons, as shown in Figures 2.3, 2.5, 2.6 and 2.4. For ex-
ample, the modulation of monosynaptic la excitation directed to
alpha motoneurons allows the CNS to regulate the strength of the
stretch reflex.
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Figure 2.6 Descending and peripheral inputs converging on a PN
interneuron. Information from GTO, spindles, M1 cortex, Nucleus Ruber
and Reticular Formation are represented in orange, blue, green and magenta,
respectively. Filled dots present inhibitory synapses, arrows represent
excitatory synapses, while diamonds represent axo-axonic synapses. The
connection named SYN and ANT came from PN interneurons regulating the

activity of the synergistic and the antagonist muscle respectively.
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2.5.3 Related works

In the last years, computational models have been devised in or-
der to improve our understanding about how movements are per-
formed and to overcome the difficulty of recording in vivo data
during behavior. The state of art in this field suggests that quite
similar models of spinal circuitry have been used for understanding
different aspects of movement.

FLETE [BG89] was one of the first models of spinal circuitry
introduced in 1988 by Bullock and Grossberg in order to explain
the role of the spinal cord in the translation from motor intention
to motor execution.

In more recent years, Tsianos and colleagues [TGL14] investi-
gated the role of spinal cord in sensorimotor control and learning
of movements using a detailed model of the spinal circuitry con-
nected to a two degree of freedom arm. The same authors in
[TRL11] used a model of spinal circuitry to investigate the role of
cocontraction in learning to resist to a perturbation.

Raphael and colleagues [RTL10] used a model of spinal cord
for investigating how the supraspinal centers can control the cord
for stabilizing the responses of a four-muscle wrist joint to force
perturbations, for executing rapid movement to reach a spatial
target and for evaluating command adaptation when viscous curl
force fields were applied.

Buhrmann and Di Paolo [BDP14] have used a model of spinal
circuits for providing evidence that CNS can plan and control
movements without a representation of complex bodily dynamics,
because the creation and coordination of dynamic muscle forces is
entrusted to the spinal feedback mechanisms.

Li and colleagues [LZH"15] used a model of spinal circuitry for
investigating how the central nervous system coordinates the ac-
tivation of both alpha and gamma motoneurons during movement
and posture, which is still an open question in the field of neuro-
science [PE12]. Li and colleagues [HHX™13] investigated also the
role of propriospinal neurons in transmitting the cortical oscilla-
tory signals to peripheral muscles in Parkinsonian tremor. The
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distinct feature of the computational model used in both papers
is the division of the descending commands into a static and a dy-
namic set that can be coordinated to obtain an accurate control
of movement dynamics and stable maintenance of posture.

In [PFM15] we presented a model of the spinal cord simpler
than the model described here that was able to regulate the po-
sition of a one degree-of-freedom arm by integrating commands
from CNS and signals from proprioceptors and it was able to me-
diate the same reflex actions showed by the human. We showed
that weight of synapse connections could be computed by requiring
that the spinal cord model was capable of exhibiting the stretch
and the autogenic inhibition reflexes.

Eventually, in [SG14] the authors evaluated whether a con-
troller based on a simplified model of spinal cord permits complex
behaviors in multi-muscle, multi-joint limb control. They demon-
strated that their controller could smoothly accomplish reach-
ing tasks in 2-D space, and it can manipulate highly nonlinear
biological-like actuators and facilitate robust behaviors.

The model used in thesis presents some differences respect to
the models in [TRL11], [TGL14] and [RTL10], both from an ar-
chitectural and a behavioral perspective. In our model:

e cach alpha motoneuron receives a monosynaptic input from
corticospinal neurons, consistenting with the findings that
cortico-motoneuronal cells in the primary motor cortex make
monosynaptic connections with motoneurons innervating el-
bow, shoulder and finger muscles [RS09];

e [b interneurons are excited by the Ib afferents coming from
the homonymous and the synergistic muscles but these in-
terneurons do not project to each other;

e the descending inputs direct to the interneurons and mo-
toneurons are excitatory because they represent the com-
mands coming from the corticospinal tract. In fact, it is
widely accepted that the dominating descending input across
the corticospinal tract is excitatory because glutamate is the
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likely neurotransmitter released by this tract [NSDRO05]. In-
stead, inputs from the rubro- and the reticulo- spinal tracts
converging on PN interneurons can be both excitatory and
inhibitory due to local inhibitory mechanisms, as for exam-
ple the feedforward inhibition [PDB12]. In the other models
each descending input can be both excitatory and inhibitory
in order to represent the overall effect of the different tracts.
In our opinion, the effect of all the descending tracts can-
not be represented with just one command that can be both
excitatory and inhibitory because commands from different
descending tracts can be sent in different moments during
the execution of a movement. For instance, the descending
tract from the bulbospinal system is used for the online cor-
rection of the movement after the onset due to commands
from the corticospinal tract;

e cach descending input is a step function and, differently from
the other models, inputs that regulate different functional
modules are activated in different times;

e cach neurons integrate its input with delay. More informa-
tion about how neurons are modeled are reported in the
appendix to this thesis.

Respect to the other models differences are in:

e the strategies adopted for controlling the activity of spinal
cord;

e the model used for describing the activity of a neuron;

e the way the synaptic weights are computed.






Chapter 3

Experimental Evaluations:
Execution of a movement

3.1 Introduction

In the previous chapter we have hypothesized that a movement is
executed by mixing the activations of clusters of neurons within
the M1 cortex. These clusters, in turn, regulate the activation of
different spinal circuitries and generate movements with different
characteristics. In this chapter we want to validate this hypothesis
by showing that it is possible to move an arm to a desired position
by recruiting spinal circuitries with different strategies.
Furthermore, we have verified that the correction of an ongoing
movement can be executed in time through the loop involving the
brainstem nuclei, as described in the literature and in the proposed
model.

3.2 Experimental setup

The experiments presented and discussed in this and in the next
chapter refer to the execution of an elbow flexion movement
performed by the musculoskeletal model described in the Ap-
pendix A.
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The arm movement is actuated by three muscles: the Biceps Short,
the Brachialis and the Triceps Lateral. In the elbow flexion the
Biceps Short, the Brachialis and the Triceps Lateral perform the
role of agonist, synergistic and antagonist muscle, respectively.
The spinal circuitry and the descending inputs that regulate the
contraction of these three muscles are shown in Figure 3.1.

We have hypothesized that these circuitries are organized in the
9 functional modules described in Table 3.1, each of which can be
activated independently at any time. Each module receives inputs
that regulate the firing of neurons and the gains of proprioceptive
afferents. Because there is still disagreement on the way the CNS
uses v motoneurons to control the sensitivity of muscle spindles
during voluntary movement [PE12], we adopted the strategy of ac-
tivating s together with the a motoneurons and the 4 together
with the PN interneurons, as proposed in [LZH*15].

Overall, when a movement is performed by activating all the 9
functional modules it is needed to specify 52 parameters: 43 in-
puts and 9 activation times.

In the experiments we want the system to learn how to move the
simulated arm from the initial fully extended position Gcpow (¢start)
= 0 rad to the final position O.pow(tena) = 1.0472 rad (i.e. from
0° to 60°), by fulfilling some requirements on the accuracy, the
energy consumption and the duration of the movement.

Thus, learning a movement is equivalent to solve a multiobjec-
tive optimization problem. As humans acquire a new motor abil-
ity by repeating the movement till the required performances are
reached, the model learns to control the simulated arm by repeat-
ing the elbow flexion till the desired position is reached with the
minimum consumption of metabolic energy. To implement such a
trial-and-error process, we have used an evolutionary algorithm for
learning the best values of the model parameters. In particular,
we have chosen to use the Differential Evolution (DE) algorithm
[SP97] because it is fairly fast and efficient in finding the global
optima of non differentiable, non linear and multimodal functions,
and requires few control parameters. In our implementation, each
individual in the population is a vector whose elements are the
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values of the model parameters for one execution of the elbow
flexion. The DE works with a one-, two- or three-objective op-
timization problem depending on the experiment. The values of
DE parameters used in the experiments are as follows:

e maximum number of generations: between 250 and 550. We
chose this parameter on the basis of the difficulty of each
experiment;

e population size: 10 * (number of objectives);
e scaling factor: 0.5;
e crossover probability: 0.2.
Each simulation of the arm movement lasts 6 seconds:

e from tsimulation = 0 8 10 Csimutation = tstare = 1 8 the arm
is at rest and the inputs modulating the gains of sensory
feedback are set to -0.5 in order to ensure the stability of the
arm, while all the other descending inputs are set to 0;

o from tgmuation = 1 S 10 tgimuation = 2 S the descending
inputs change according to the values provided by the DE
algorithm;

o from tgmulation = 2 s until the end of simulation ¢.,q = 6 s
the inputs under cortical control do not change.

In each simulation the position profile O.po., (%), i.e. the time evolu-
tion of the elbow angle, and the velocity profile v(t) are computed
and the distance from the target, the energy consumption, the
duration of the movement and the cocontraction indexes are mea-
sured.

The distance from the target e is a measure of the accuracy of
the movement: the smaller the distance, the higher accuracy. The
distance is computed as the difference between the target position
6, and the position of the arm 6,, when the movement has been
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completed, i.e. when its velocity becomes and remains smaller
than 0.0025 rad/s and the arm appears to be in a steady position.

e =0 — 0, (3.1)
where
Orp = Oetvow (trp)s trp = INf(t € [tstart, tena) = v(t) < 0.0025 rad/s)

The energy consumption is evaluated as the sum of the metabolic
energy consumed by the three muscles during the last five seconds
of the simulation.

tstart+5
E, — / (Esi(t) + Epra(t) + Erme(D]dt (3.2)

tstart

The duration of movement A,,, is defined as the time elapsed
from the activation t. of the first functional module to the time
ts at which the arm has entered and remained within the range
(etbow (trp) — 3°, Bepow (trp) + 3°]. In fact, as discussed in [OLBO5],
humans and non-human primates can make reliable discrimina-
tions only among trajectories that differ for more than 2° or 3° in
direction.

Atm - tst - tf (33)

tse = min(tpn—pr, tPN—BRA, tLPN-TRI, ta—BI, ta—BRA,

ta—TRI,trA, tiB, tREN) (3.4)

where

tf = lnf(t € [tstarta tend] . eelbow(t) S [Qelbow(trp>_3oa eelbow(trp)+3o])

Two cocontraction indexes, CCI, and C'CI,, are computed to
describe the simultaneous activity of the muscles acting around the
elbow joint. The C'C'I, index is determined in the form suggested
by [KBP103]:

Frri(tend)
FBI(tend) + FBRA(tend)

CCI, = (3.5)
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where Fpr(tend), FBra(tend), Frri(tena) are the forces exerted by
the three muscles around the elbow joint at the end of simulation.
Instead the C'C'I, index describes the level of cocontraction over
the entire movement and it is quantified as the product of the ac-
tivation levels of the agonist and antagonist muscles, as suggested
by [RTL10]:

OC[b == /[(CYB[(t) + OZBRA(t)) * OéTR[<t)]dt (36)

Eventually, in order to evaluate if a movement executed by our
system is human-like we compared its velocity profile with the
velocity profile foreseen by the Kinematic Theory of rapid human
movements, described in Appendix B. This choice is supported by
several psychophysical studies that have shown that the velocity
profile of a rapid reaching movement is strongly stereotypical and
it has an asymmetric bell shape [PAYL93].

3.3 Movement execution by functional
modules combination

In this section we show that it is possible to execute a human-
like movement by adopting different strategies in the recruitment
of the functional modules listed in Table 3.1. When a functional
module is not recruited, the inputs sent to it are kept to their
starting values: the descending inputs, which can vary between
0 and 1, are set to 0 and the inputs modulating the presynaptic
gains, which can vary between -1 and 1, are set to -0.5.

3.3.1 Activation of the PN functional modules

The goal of this experiment is to move the simulated arm from
the initial position to the final one by activating only the func-
tional modules fmPNpg;, fmPNgra and fmPNrgr; under the
constraint of minimizing both the distance from the target and
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of synergistic muscles

e et

Triceps Lateral AN

Biceps short - Brachialis

(b) Spinal network regulating the contraction of a pair
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Figure 3.1 The spinal cord circuitry. The brown dashed lines represent the
descending inputs from the corticospinal tract, while the grey dashed lines
represent the presynaptic inputs that modulate the gains of proprioceptive
afferents. S and G are for spindles and Golgi tendon organs respectively.
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Table 3.1 Functional modules
Name: fmPNpgy I Activation time: tpn_BJ I Number of inputs: 4
The PN interneurons receiving afferents from the Biceps and the 74 mo-
toneurons exciting the intrafusal fibers of the same muscle belong to this
functional module. It receives descending inputs that regulate the firing
of the neurons and presynaptic inputs regulating the gain of the Ia and Ib
proprioceptive afferents coming from the sensory receptors of the Biceps.

Name: fmPNpra I Activation time: tpN_BRA I Number of inputs: 4
The PN interneurons receiving afferents from the Brachialis and the 74
motoneurons exciting the intrafusal fibers of the same muscle belong to
this functional module. It receives inputs that regulate the firing of the
neurons and presynaptic inputs regulating the gain of the Ia and Ib pro-
prioceptive afferents coming from the sensory receptors of the Brachialis.

Name: fmPNrgr I Activation time: tpN_TRI I Number of inputs: 4
The PN interneurons receiving afferents from the Triceps and the ~4 mo-
toneurons exciting the intrafusal fibers of the same muscle belong to this
functional module. It receives descending inputs that regulate the firing
of the neurons and presynaptic inputs regulating the gain of the Ia and Ib
proprioceptive afferents coming from the sensory receptors of the Triceps.

Name: fmapy I Activation time: to_BT I Number of inputs: 2
The « and the 7; motoneurons innervating the extra and the intrafusal
fibers of the Biceps belong to this functional module. The module receives
descending inputs regulating the background activity of the neurons.

Name: fmagra I Activation time: to—BRrA I Number of inputs: 2
The « and the v, motoneurons innervating the extra and the intrafusal
fibers of the Brachialis belong to this functional module. The module
receives descending inputs regulating the background activity of the neu-
rons.

Name: fmargy I Activation time: to_TRrI I Number of inputs: 2
The o and the v, motoneurons innervating the extra and the intrafusal
fibers of the Triceps belong to this functional module. The module receives
descending inputs regulating the background activity of the neurons.

Name: fmIA I Activation time: tra I Number of inputs: 11
All the TA interneurons belong to this functional module. It receives inputs
that regulate the firing activity of the IA interneurons and presynaptic
inputs that regulate the gain of proprioceptive afferents having a synaptic
connection with the TA interneurons and the o motoneurons.

Name: fmREN I Activation time: trgn I Number of inputs: 3
All the Renshaw cells belong to this functional module. It receives inputs
that regulate the firing activity of the Renshaw cells.

Name: fmIB I Activation time: tip I Number of inputs: 11
All the IB interneurons belong to this functional module. It receives inputs
that regulate the firing activity of the IB interneurons and presynaptic
inputs that regulate the gain of proprioceptive afferents having a synaptic
connection with the IB interneurons.
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Table 3.2 Activation of the PN functional modules:
Sigma-Lognormal Parameters.
to D I o 0, 0.
0.979 21.924 -0.076 0.173 -0.0448 -0.073
1.554 181.995 -0.010 0.436 -0.0487 -0.097

the consumption of metabolic energy. Therefore, the DE algo-
rithm works with a two-objective optimization problem searching
for best values of 15 parameters. After 400 generations, the DE
algorithm provided 4 Pareto optimal solutions, i.e. 4 solutions for
which none of the two objective functions can be improved in value
without degrading the other one. In Figure 3.2 are shown the po-
sition and the velocity profiles of the solution with the minimum
distance from target. For this solution e = 0.01 rad, A, = 2.39 s
and E, = 3.7 J.

By activating only the three PN functional modules, it is possible
to generate slow movements with a small energy consumption. An
interesting property of this solution is that the activation profiles
of the agonist and the synergistic muscles are equal, as if they
were a single muscle and the movement was executed by a pair of
agonist and antagonist muscles.

We have verified that the speed profile of this solution could be
reconstructed by the Sigma-Lognormal model. We used the Xze-
roROBUSTE software [OP09a] for the automatic extraction of the
Sigma-Lognormal parameters. This software reconstructed the
speed profile generated by our model by the time superimposi-
tion of two lognormal functions whose parameters are reported in
Table 3.2. As shown in Figure 3.3, the speed profile was recon-
structed with a SNR equal to 29 dB.

The extraction of two lognormal primitives seems to confirm that
the Biceps and the Brachialis are working as a single agonist mus-
cle.
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Figure 3.2 Position and velocity profiles of the best movement executed by

activating only the PN functional modules. The dashed line represents the
target position.
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Figure 3.3 Speed profile of the movement executed by activating only PN
functional modules (in black) and its reconstruction by Sigma-Lognormal
model (in blue). The fitting has a SNR equal to 29 dB.

3.3.2 Activation of the PN, IA, IB, REN func-
tional modules

Starting from a learned PN activation The goal of this ex-
periment is to move the arm toward the final position by:

e activating the functional modules fmPNg;, fmPNggra and
fmPNrgr by using the 15 parameters learned in the pre-
vious experiment and corresponding to the more accurate
solution, as shown in Figure 3.2;

e searching for the best values of 28 parameters that regulate
the activity of the functional modules fmIA, fmREN and
fmIB.

In this experiment, the aim is to find the parameters that minimize
the distance from the target, the consumption of metabolic energy
and the duration of the movement. Therefore, the DE algorithm
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Table 3.3 Activation of the PN, IA, IB, REN functional modules,
starting from a learned PN activation: Sigma-Lognormal Parameters.
to D 1 o 0, 0.

0.665 49.967 -0.420 0.103 -0.045 -0.077
1.229 147117 -1.454 0.444 -0.050 -0.098
1.235  16.219 -0.935 0.190 -0.072 -0.156

works with a three-objective optimization problem. After 400 gen-
erations, the DE algorithm provided 20 Pareto optimal solutions,
with different levels of accuracy, energy consumption and time du-
ration. The fastest solution has e = 0.028 rad, A, = 0.72 s and
E. = 409 J and it is shown in Figure 3.4. The XzeroROBUSTE
software [OP09a] reconstructed the speed profile of this solution
through the time superimposition of three lognormal functions
whose parameters are reported in Table 3.3. The reconstructed
speed profile fits the profile predicted by our model with a SNR
equal to 31.1 dB, as shown in Figure 3.5.

Eventually, we repeated this experiment without the activation of
the fmlIB functional module in order to understand which is the
role played by this module in the execution of a movement. Tak-
ing into account the movements with a distance from the target
less than 0.06 rad, the energy consumption is equal to 2204201 J
when the fmlIB module is activated while is equal to 4+2 J when
it is not activated. Moreover, the duration of movement is equal to
1.5+0.7 s when the module is activated and it is equal to 24+0.1 s
when it is not activated. Therefore, the activation of the fmIB
module allows to execute faster movements with an increase in
the energy consumption. This suggests that in order to fulfill the
requirements of minimizing both the distance from the target and
the duration of movement the descending commands activated the
interneuronal pathway by means of which Ib interneurons imple-
ment a positive force feedback loop.

Searching for all the parameters Unlike in the previous one,
in this experiment we want to move the arm toward the final posi-
tion by searching for the best values of 43 parameters that regulate
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Figure 3.5 Speed profile of the movement executed by activating the PN,

IA, IB, REN functional modules and starting from a learned PN activation

(in black) and its reconstruction by Sigma-Lognormal model (in blue). The
fitting has a SNR equal to 31.1 dB.

the activity of the functional modules fmIA, fmREN, fmIB,
fmPNg;, fmPNgra and fmPNrg;, without using the previ-
ously learned parameters for fmPNpg;, fmPNgra and fmPNrg;.
The DE algorithm works with a three-objective optimization prob-
lem also in this case. After 550 generations, the DE algorithm
provided 14 Pareto optimal solutions, with different levels of ac-
curacy, energy consumption and time duration. In Figure 3.6 the
three fastest solutions are depicted in red, orange and blue while
the solution less energetically wasteful is represented in green. The
characteristics of these solutions are summarized in Table 3.4. The
solution depicted in red is faster than the blue one that has a big-
ger velocity and reaches the steady state sooner, because it has a
shorter latency between the activation of the first functional mod-
ule t,;, = 1.18 s and the beginning of the movement t,,, = 1.22 s.
Instead the blue solution shows a latency about ten times bigger,
in fact ty; = 1.25 s and ¢, = 1.7 s. The XzeroROBUSTE soft-
ware [OP09a] reconstructed the speed profile of the red solution
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Table 3.4 Activation of the PN, IA, IB, REN functional modules:
Best movements.

Solution Distance from Energy (J) Duration (ms)
the target (rad)
Red Trace 3.9x10°3 251 870
Orange Trace 5.4 %10~% 436 900
Blue Trace 1.4%1073 325 1040
Green Trace 8.5% 1073 2.2 2670

Table 3.5 Activation of the PN, TA, IB, REN functional modules:
Sigma-Lognormal Parameters.
to D I o 0, 0.
0.59 245752 -0.035 0.140 -0.045 -0.120
1.365  14.75  -1.494 0.253 0.035 -0.103
0.93 53.089 -0.065 0.172 -9.47 -9.584

through the time superimposition of three lognormal functions
whose parameters are reported in Table 3.5. The reconstructed
speed profile fits the profile predicted by our model with a SNR
equal to 29 dB, as shown in Figure 3.7.

We repeated the experiment of moving the arm by activating the
functional modules fmIA, fmREN, fmIB, fmPNg;, fmPNggra
and fmP Nrgrr without the objective of minimizing the energy con-
sumption in order to understand how this constraint influences
the search for the best strategy for controlling the arm. After
550 generations, the DE algorithm provided only 4 Pareto opti-
mal solutions with an energy consumption equal to 321 + 69.5 J,
a time duration equal on average to 0.95 £ 0.24 s and the bigger
time duration equal to 1.3 s. When it was required to minimize
the energy consumption the Pareto solutions with a duration of
movement less than 1.3 s had an energy consumption equal to
299 £ 116 J.

The amount of metabolic energy expenditure is roughly the same
whether or not the energy consumption is one of the objective to
fulfill. This result may suggest that the minimization of energy is
an intrinsic property of the spinal cord circuitry, as if the evolu-
tion had built spinal circuitries in a way that minimizes the energy
consumption per se.
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Figure 3.6 Position and velocity profiles of the best movements executed
by the activation of the PN, IA, IB, REN functional modules. The dashed
line represents the target position.
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Figure 3.7 Speed profile of the movement executed by activating the PN,
IA, IB, REN functional modules (in black) and its reconstruction by
Sigma-Lognormal model (in blue). The fitting has a SNR equal to 29 dB.

3.3.3 Activation of the ALFA functional mod-
ules

The goal of this experiment is to move the arm toward the tar-
get position by activating the fmlIA, fmREN, fmIB, fmagy,
fmagra and fmargr modules and by minimizing the distance
from the target, the consumption of metabolic energy and the
duration of the movement. The DE algorithm has to search for
the best values of 37 parameters in a three-objective optimization
problem. After 550 generations, the DE algorithm provided 11
Pareto optimal solutions that are shown in Figure 3.8 over the
Pareto frontier. Movements obtained by actuating three of the
Pareto solutions are shown in Figure 3.9 and their characteristics
are reported in Table 3.6. Moreover, for the five fastest move-
ments we have evaluated the relationship between the C'C'I, index
and the accuracy, and the relationships between the C'C'I, index
and the energy consumption and the duration of the movement,
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Table 3.6 Activation of the PN, IA, IB, REN functional modules:
Best movements.

Solution Distance from Energy (J) Duration (ms)
the target (rad)
Red Trace 5.6x10° 418.5 790
Green Trace 1.4%1073 290.6 880
Purple Trace 28.8 % 1073 191.5 960

as shown in Figure 3.10.

Figure 3.10.(a) shows that the CC, index, a measure of the cocon-
traction at the end of the movement, increases with the increasing
of the accuracy. The same relationship has been described in an
experimental study presented in [GMCMO03], even if the cocon-
traction is measured in a different way.

Furthermore, it is interesting to note that C'C'I;, a measure of the
cocontraction during all the movement, increases with the increas-
ing of the energy consumption and decreases with the increasing
of the movement duration. The faster solution (the red trace in
Figure 3.9 and the filled dot labeled C’ in Figure 3.10) is the
movement with the greater C'C'I, and the greater energy expen-
diture. The results shown in Figure 3.10.(b) and 3.10.(c) suggest
that in order to execute a faster movement it is needed to increase
the activation levels of the three muscles and therefore to increase
the energy consumption.

The XzeroROBUSTE software [OP09a] reconstructed the speed
profile of this solution through the time superimposition of three
lognormal functions whose parameters are reported in Table 3.7.
The reconstructed speed profile fits the profile predicted by our
model with a SNR equal to 30.4 dB, as shown in Figure 3.11.

Table 3.7 Activation of the ALFA, TA, IB, REN functional modules
Sigma-Lognormal Parameters.
to D I o 0, 0.
0.974 12.812 -1.024 0.128 -0.056 -0.035
1.025 265.295 -0.702 0.238 -0.054 -0.099
1.505 75.039 -1.420 0.665 -9.425 -9.610
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Figure 3.11 Speed profile of the movement executed by activating the
ALFA, TA, IB, REN functional modules (in black) and its reconstruction by
Sigma-Lognormal model (in blue). The fitting has a SNR equal to 30.4 dB.

3.4 Switching the direction of an on-
going movement

In [AGLP90] the ability of cats to switch the direction of an on-
going target-reaching forelimb movement was investigated. Cats
were positioned in front of two horizontal tubes containing a morsel
of food and they were trained to make a fast visually guided reach-
ing movement toward the tube indicated by a light. After the
training stage, the behaviour of cats was evaluated when the light
was switched off in one tube and switched on in the other tube
during an ongoing movement. The illumination was shifted to the
other tube randomly after 25-75 ms, and the latency to the earliest
change in movement trajectory was measured. The mean switch-
ing latency in four cats ranged from 83 to 118 ms. The observed
latencies are too short for a visual processing at the cortical level
and for producing a new cortical command, therefore the authors
proposed that a motor command sent from the motor cortex could
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be updated by commands given via the brainstem system to the
C3-C4 PN interneurons (updating hypothesis), as explained in the
previous chapter.

In this section, we show that it is possible to reproduce with our
model the behaviour observed in the cats by updating the activa-
tion of the C3-C4 PN interneurons through the subcortical con-
nections coming from Nucleus Ruber and Reticular Formation.
We chose as learned movement the one shown in Figure 3.4 and
directed toward a target in the position 6, = 1.047 rad, because
it was the fastest movement obtained by regulating only the ac-
tivities of spinal interneurons. In fact, it is important to point out
that cats lack CM projections [LKM*04], therefore we cannot use
movements executed by the direct activation of alpha motoneu-
rons in order to reproduce the in vivo experiment. Moreover, the
tubes used in the experiment had an internal diameter equal to 30
mm and were positioned with an intercenter distance equal to 60
mm. Therefore, we positioned the second target at 0, = 1.396 rad
(i.e. 80°) in order to have an arc length distance between the two
target equal to 101 mm.

In our simulation the switching latency was set equal to 100 ms
and the illumination was shifted to the second target 420 ms af-
ter t = tgar. We used the DE algorithm for finding the values
of commands from subcortical systems for activating or inhibiting
C3-C4 PN interneurons. In Figure 3.12 is shown in purple the
fastest movement found by the DE algorithm after 300 genera-
tions: the arm reached the new target 530 ms after the updating
commands from the brainstem system, with an error equal to 0.055
rad and an energy consumption equal to 337 J. This movement
was obtained by decreasing the activation of PN interneurons that
excite the biceps and the triceps and by increasing the activation
of the PN interneuron that excites the brachialis.

The XzeroROBUSTE software [OP09a| reconstructed the speed
profile of the movement through the time superimposition of four
lognormal functions whose parameters are reported in Table 3.8.
The reconstructed speed profile fits the profile predicted by our
model with a SNR equal to 31.2 dB, as shown in Figure 3.13.
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executed movement are depicted in purple. The target position was shifted
at t = 1420 ms and after 100 ms the executed movement started to move

away from the planned one due to the updating of the motor commands.
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Figure 3.13 Speed profile of the movement executed with the updating of
the motor commands (in black) and its reconstruction by Sigma-Lognormal
model (in blue). The fitting has a SNR equal to 31.2 dB.

Table 3.8 Movement executed with the updating of the motor commands:
Sigma-Lognormal Parameters.
to D I o 0, 0.
0.819 25.10 -0.773 0.103 -0.044 -0.076
1.219 173.02 -1.475 0.466 -0.047 -0.101
0.714 38.92 -0.035 0.081 -6.322 -6.523
1.106 836 -0.010 0.141 -9.364 -9.686
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3.5 Discussion

In this chapter we have used the Sigma-Lognormal model to ver-
ify whether the movements produced by our computational model
are human-like. Sigma-Lognormal model is a behavioral model
predicted by the Kinematic Theory of rapid human movements
[P1a95]. This theory models the behaviour of the motor control
and the neuromuscular system involved in the production of rapid
movements and it has been experimentally supported in numer-
ous physiologically tests. While the Kinematic Theory provides
a parametric representation of the motor control behavior, our
model describes how the neuronal networks work for producing a
behaviour. The kinematic theory describes the global properties
of the neuromuscular networks involved in a synergistic action and
it predicts that a complex trajectory results from the time super-
imposition of lognormal functions.

It is interesting to note that in the experiments presented before,
except the last one, the number of lognormal functions predicted
by the Sigma-Lognormal model for a movement is equal to the
number of muscles that are activated for executing the movement.
In particular, the number of lognormal functions is equal to the
number of muscles that receive a different excitation pattern. In
the last experiment there are four lognormal functions instead of
three because there is a correction of the ongoing movement that
in the Sigma-Lognormal model correspond to superimpose a new
basic primitive (i.e. a lognormal) for reaching a new target point.
However, a relationship between the parameters of the two models
seems to exist and in the future this aspect has to be investigated.






Chapter 4

Experimental Evaluations:
Fitts’ law

4.1 Introduction

Fitts’ law is an empirical phenomenon that has been used to ver-
ify the validity of many computational models. Despite the con-
straints provided by the Fitts’ law are too general to give clear
suggestions about the organization of the nervous system [Sch02],
we exploited this law and our model to get more insights about
how brain encodes movements and to unveil the role played by the
different area of the brain in determining the trade-off between
speed and accuracy in reaching movements.

4.2 Fitts’ Law

One of the aspects of human movement that has been deeply in-
vestigated is the tradeoff between speed and accuracy in reaching
movements. Such a tradeoff, indeed, had been investigated since
the 19th century in psychology, when response time was consid-
ered as a mean to unveil the inner functioning of the mind [Heil4].
However, the investigations were carried out in ”extreme” condi-
tions, i.e. spatially constrained tasks, emphasizing high accuracy
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without concern for the response time, or temporally constrained
tasks, examining the ability to produce predefined responses to
simple stimuli without paying attention to the accuracy of the
movement itself.

It was only in the middle of 20th century that Fitts considered
the two aspects simultaneously [Fit92]. Fitts considered reach-
ing movements between rectangular targets, as representative of
typical (at the time of his investigation) industrial tasks, such as
installing parts on an assembly line or stamping envelopes in an
office. In Fitts’ experiments, human subjects were requested to
move a stylus back and forth between two fixed targets as quickly
as possible for 15 s. Fitts measured the average time M'T" required
to execute the movements depending on the width W of the tar-
gets and the distance, he called amplitude, A between them, and,
in the light of the information theory formulated by Shannon a
few years before, fitted a logarithmic model to the data, yielding
the equation that later was referred to as ”Fitts’ Law”:

MT:a—i-b*logQ(%) (4.1)
w

where a and b are constants whose values were determined empir-

ically.

In the following decades, a large number of experiments and
studies have provided more and more empirical support, thus con-
tributing to boost the the popularity of Fitts’ law. They envisaged
a variety of movements, limbs and muscle groups, experimental
conditions, manipulating devices, subjects, and a wide range of
performance indices.

4.3 Experimental setup

The experiments presented and discussed in this chapter are aimed
at verifying if the elbow flexion movements executed by the muscu-
loskeletal model described in the Appendix A satisfy the tradeoff
between speed and accuracy predicted by the Fitts’ law.
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We supposed that when a human has to produce a previously
learned movement faster his brain retrieves the motor commands,
i.e. the set of descending inputs, used for executing the learned
movement and then changes some of the commands for increasing
the speed of the movement.

On the basis of the connections between the neurons located in the
primary motor cortex and the neurons within the spinal cord, we
have hypothesized different strategies that may be implemented
by the brain for the execution of a faster movement starting from
a learned one. The proposed strategies will be presented in the
next two sections.

In order to reproduce the Fitts’ experiment, we fixed the posi-
tion of the two targets in Gepow (tstare) = 0 rad and Ocpow (tend) =
O4es = 1.0472 rad and we varied the motor commands when dif-
ferent levels of accuracy for the desired position were accepted:
W = (5°,10°,20°). In particular, defined a circular target cen-
tered on 04,5 and with a diameter equal to W, a movement fulfills
the constraint on the accuracy if the arm never oversteps the target
and its position at t.,4 is within the circle. In each experiment, we
used the DE algorithm for setting the values of motor commands
so as to generate faster repetitions of an elbow flexion: a learned
movement was used as individual of the initial population, and
the DE is aimed at minimizing the time duration of the motion
over 250 generations. Each simulation is set-up as in the previous
chapter and when a movement didn’t fulfill the required level of
accuracy it was not accepted as a solution for the task.

For each experiment, we computed the mean time duration of the
movements corresponding to the best solutions provided at each
generation. So, for each strategy we had three pairs of accuracy
and mean time duration values and then we computed the pa-
rameters of Fitts’ law that best fit the data by using the Trusted
Region algorithm [BCL99].
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4.4 Exploring the Fitts’ law by recruit-
ing networks of homogeneous in-
terneurons

4.4.1 Learning the execution of accurate move-
ments

In this experiment we want the system to learn how to move the
simulated arm from the initial position to the final one without the
activation of the corticomotoneuron cells, minimizing the distance
from the target and the energy consumption. The DE algorithm
works with a two-objective optimization problem over 500 genera-
tions by searching for the best values of 43 parameters (37 inputs
and 6 activation times) that regulate the activity of the func-
tional modules fmlIA, fmREN, fmIB, fmPNg;, fmPNggra
and fmPNrg; described in Table 3.1. These modules are net-
works of homogeneous interneurons (i.e. interneurons belonging
to the same class). The fastest movement that reaches the de-
sired position is the one shown in Figure 4.1 and its properties are
e=44%10"2 rad, Ay, = 1.08 s and E, = 393 J.

4.4.2 Execution of faster movements

We have hypothesized that in order to execute an elbow flexion
faster than a learned one, the brain may adopt the following strate-
gies for varying the motor commands memorized during the learn-
ing process:

e Strategy A: to recruit the fmapr, fmagra and fmargr
modules without changing the activation of the other mod-
ules. This strategy corresponds to the activation of clusters
of cortical neurons located in the caudal part of the M1 cor-
tex and, in our simulation, requires to compute 9 parameters;

e Strategy B: to modify the input sent to the fmIA, fmREN,
fmIB, fmPNg;, fmPNggra and fmP Nrgr modules with-
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Figure 4.1 Position and velocity profiles of the fastest movement that
minimizes the distance from the target and the energy consumption. The
movement is actuated by recruiting networks of homogeneous interneurons.

The dashed line represents the target position.
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Table 4.1 Coefficients of the Fitts’ law for the three strategies described in
section 4.4.2 and measure of goodness of the fitting

Strategy Model coefficients | R?

a | b
Strategy A 548.2 47 0.94
Strategy B 815 37 0.75

Strategy C 544.2 12.35 0.87

out varying the activation times. This strategy corresponds
to a variation in the activation of clusters of cortical neu-
rons located in the rostral part of the M1 cortex and, in our
simulation, requires to vary 37 values;

e Strategy C: to modify the activation times of the fmlA,
fmREN, fmIB, fmPNpgr, fmPNgra and fmP Nprr mod-
ules without varying the inputs sent to them. This strategy
corresponds to a variation in the activation of the cerebel-
lum cells that regulate the timing of motor commands and,
in our simulation, requires to vary 6 values.

For each strategy, the Fitts’ experiment has been reproduced

using the three targets with different width. The set of parameters
actuating the movement shown in Figure 4.1 and learned in the
previous subsection was used as individual of the initial population
of the DE algorithm.
The experimental data and the Fitts’ law fitted to them are shown
for each strategy in Figure 4.2 while the R? values for evaluating
the goodness of each fit is reported in Table 4.1. The results show
that Strategy A is the best one and that exhibits an almost perfect
fit with Fitts’ law.
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Figure 4.2 The experimental data obtained by adopting Strategy A,

Strategy B and Strategy C are shown in blue while the prediction of Fitts’

law is represented in red.
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4.5 Exploring the Fitts’ law by recruit-
ing networks of heterogeneous in-
terneurons

In this section we propose a different view of the spinal circuitry
shown in Figure 3.1. Now, we suppose that the spinal circuitry
is controlled as the 3 networks of heterogeneous interneurons de-
scribed in Table 4.2. Differently from the previous experiment, in
which the interneurons were divided on the basis of the class they
belong to, here the interneurons are divided taking into account
which muscle is influenced by their firing activity or which muscle
is the source of their sensory inputs. Furthermore, v, and v, are
coactivated with the interneurons of the modules they belong to.
Overall, when a movement is performed by activating all the 3
networks it is needed to specify 46 parameters: 43 inputs and 3
activation times.

As in the previous scenario, the values of the parameters for mov-
ing the arm toward the desired position are learned, and then it
is evaluated which set of motor commands has to be modified in
order to obtain faster movements that satisfy the speed-accuracy
tradeoft.

4.5.1 Learning the execution of accurate move-
ments

As before, the arm has to be flexed from Oejpor (tstart) = 0 rad to
Octbow (tena) = 1.0472 rad by reaching the final position as close
as possible and by minimizing the metabolic energy expenditure.
The system has to execute the movement by activating only the
clusters of neurons within the rostral part of the primary motor
cortex, so without the activation of the corticomotoneuron cells.

The DE algorithm has to find the set parameters that regulate the
activity of the functional modules fmpyr, fmpra, fmrrr by solv-
ing a two-objective optimization problem over 400 generations.
Because we required that in this motor task the neurons in the
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Table 4.2 Functional modules

Name: fmpy I Activation time: tgr I Number of inputs: 15

Belong to this functional modules: the PN and the IA interneurons receiv-
ing afferents from the Biceps, the «, the v, and 74 motoneurons exciting
the extrafusal and intrafusal fibers of the Biceps, the Renshaw cells ex-
cited by the a belonging to this functional module and, eventually, the IB
interneurons that inhibit the Brachialis. This module receives descending
inputs that regulate the firing of its interneurons and the gain of the Ia
and Ib proprioceptive afferents coming from the sensory receptors of the
Biceps.

Name: fmpra I Activation time: tpra I Number of inputs: 15

Belong to this functional modules: the PN and the IA interneurons re-
ceiving afferents from the Brachialis, the «, the v, and 74 motoneurons
exciting the extrafusal and intrafusal fibers of the Brachialis, the Renshaw
cells excited by the a belonging to this functional module and, eventually,
the IB interneurons that inhibit the Biceps. This module receives de-
scending inputs that regulate the firing of its interneurons and the gain of
the Ia and Ib proprioceptive afferents coming from the sensory receptors
of the Brachialis.

Name: fmrgrr I Activation time: trgryr Number of inputs: 13

Belong to this functional modules: the PN and the IA interneurons receiv-
ing afferents from the Triceps, the «, the 75 and 74 motoneurons exciting
the extrafusal and intrafusal fibers of the Triceps, the Renshaw cells ex-
cited by the a belonging to this functional module and, eventually, the
IB interneurons that excite the Biceps and the Brachialis. This module
receives descending inputs that regulate the firing of its interneurons and
the gain of the Ia and Ib proprioceptive afferents coming from the sensory
receptors of the Triceps.
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Figure 4.3 The most significant variation of the Pareto frontier over the

generation. The circles represent the Pareto solutions.

caudal part of M1 were inactive, the DE has to search for the best
values of 43 parameters (40 inputs and 3 activation times).

In Figure 4.3 it is shown how the Pareto frontier will move over
the generations. The movements obtained by actuating the three
solutions located on the Pareto frontier of the last generation are
plotted in Figure 4.4, while in Table 4.3 are reported their prop-
erties in term of accuracy, duration and energy consumption.

It’s worth to note that the solutions corresponding to the fastest
and the slowest movements are found by the DE algorithm only
after 236 generations, at the half of the evolution process.
Furthermore, independently of the recruiting strategy (i.e. the
type of functional modules) faster movements involve bigger en-
ergy consumption.

The XzeroROBUSTE software [OP09a] reconstructed the speed
profiles of both the fastest and slowest movements through the
time superimposition of three lognormal functions whose parame-
ters are reported in Table 4.4 and in Table 4.5, respectively. The
speed profile of the fastest movement is fitted with a SNR equal to
33.2 dB while the speed profile of the slowest movement is fitted
with a SNR equal to 27.6 dB, as shown in Figure 4.5.
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Figure 4.4 Position and velocity profiles of the movements obtained by
recruiting networks of heterogeneous interneurons and corresponding to the
Pareto optimal solutions that minimize the distance from the target and the

energy consumption. The dashed line represents the target position.
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Table 4.3 Properties of the movements actuated by recruiting networks of
heterogeneous interneurons and that minimize both the distance from the
target and the energy consumption.

Solution Distance from Energy (J) Duration (ms)
the target (rad)
Violet Trace 1.1%103 371 647
Green Trace 1.5%1073 17 1390
Brown Trace 9.2%1073 2 2970

Table 4.4 Sigma Lognormal Parameters
of the fastest movement in Figure 4.4
to D 1% g 95 6‘6
0.34 215.77 -0.0001 0.104 6.231 6.211
1.045 33.41 -1.101  0.169 6.183  6.07
1.325 46.04 -1.391 0.478 3.136 2.97

Table 4.5 Sigma Lognormal Parameters
of the slowest movement in Figure 4.4
to D 1 o 0, 0.
0.66 33.51 -0.010 0.855 6.24 6.170
1.29 188.06 -0.010 0.339 6.233 6.187
1.54 14.53 -0.020 0.173 3.051 3.065
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4.5.2 Execution of faster movements

We have hypothesized four strategies that may be adopted by
the brain for executing a faster flexion starting from a learned
movement and by exploiting the functional modules described in
Table 4.2:

e Strategy 1: to activate the a motoneurons belonging to the
three modules. This strategy corresponds to the activation
of clusters of cortical neurons located in the caudal part of
the M1 cortex and, in our simulation, requires to compute 3
parameters;

e Strategy 2: to modify the activation times of the three sub-
sets of motor commands with respect to the learned solution.
This strategy corresponds to the activation of the cerebel-
lum cells that regulate the timing of motor commands and,
in our simulation, requires to vary 3 values;

e Strategy 3: to modify the motor commands sent to the three
modules without varying their activation times. This strat-
egy corresponds to the activation of clusters of cortical neu-
rons located in the rostral part of the M1 cortex and, in our
simulation, requires to vary 37 values;

e Strategy 4: to modify the activation times and the values
of the motor commands sent to the three modules. This
strategy corresponds to the activation of the cerebellum cells
and of the cortical neurons in the rostral M1 and, in our
simulation, requires to vary 43 parameters.

For each strategy, the Fitts’ experiment has been reproduced
using the three targets of different width. The fastest movement
obtained in the previous subsection was the learned movement
used as individual of the initial population of the DE algorithm.
The experimental data and the prediction of Fitts’ law are shown
in Figure 4.6 and Figure 4.7 while the values of R? are in Table
4.6. The results show that Strategy 2 exhibits an almost perfect
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Table 4.6 Coefficients of the Fitts’ law and measure of goodness of the
fitting for the four strategies described in section 4.5.2 starting from the
fastest movement in Figure 4.4

Strategy | Model coefficients | R?

a | b
Strategy 1 505 31 0.94
Strategy 2 710 96 0.99
Strategy 3 1414 110 0.92
Strategy 4 615 135 0.88

Table 4.7 Coefficients of the Fitts’ law and measure of goodness of the
fitting for the first two strategies described in section 4.5.2 starting from the
slowest movement in Figure 4.4

Strategy | Model coefficients | R?

a | b
Strategy 1 869 407 0.97
Strategy 2 1781 135 0.95

fit with Fitt’s law prediction, and that Strategy 4 is the one that
performs worst. In Figure 4.8 the position profiles of the faster
movements as the target size changes are shown for the two best
strategies. It is worth to note that even if the Fitts’ law is fit-
ted slightly better by adopting Strategy 2 rather than Strategy 1,
movements obtained with the latter strategy are approximately
twice faster.

An interesting aspect pointed out by this experiment is that the
system learned to produce faster movement than the learned one
with the required accuracy even when the learned movement pres-
ents an overshoot bigger than the required accuracy (i.e. its over-
shoot is bigger than W/2)

In order to verify if the goodness of the fitting has been influenced
by the properties of the learned movement we have evaluated the
fitting when the learned movement is the slowest flexion in Table
4.3. The values of the R? for Strategy 1 and Strateqy 2 are re-
ported in Table 4.7 while the experimental data and the Fitts” law
fitted to them are shown in Figure 4.9. Strategy 1 is confirmed to
be the best one for producing faster movements with the required
accuracy.
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Figure 4.6 The experimental data obtained by adopting Strategy 1 and
Strategy 2 are shown in blue while the prediction of Fitts’ law is represented
in red. The starting movement is the fastest one in Figure 4.4.
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in red. The starting movement is the fastest one in Figure 4.4.
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Strategy 2 are shown in blue while the prediction of Fitts’ law is represented

in red. The starting movement is the slowest one in Figure 4.4.
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4.6 Discussion

The results in subsections 4.4.1 and 4.5.1 show that, indepen-
dently of the functional modules organization, the model learns
by a trail-and-error process, driven by two goals: reaching the de-
sired position and minimizing the metabolic energy consumption
to perform the movement. Under those constraints, the system
executes fast movements consuming more metabolic energy than
in case of slow movements.

The experiments presented in subsections 4.4.2 and 4.5.2 provide a
neuro-physiological foundation of the speed-accuracy tradeoff ob-
served by Fitts. The results show that movements produced by
Strategy A and Strategy 1 are faster than those executed with the
other strategies and they exhibit an almost perfect fit with Fitts’
law. Both the strategies increase the speed of the movements by
directly regulating the activity of the a motoneurons through the
corticomotoneuronal pathway. This results are in accordance with
those reported in [BWFN10], where the authors conclude that:

the results from brain-imaging and neurophysiological
studies suggest that speed-accuracy tradeoff is imple-
mented by changes in the baseline activity of integrator
Neurons.

It’s important to note that in our experiments the learned
movements are executed by the activation of the clusters cells in
the rostral part of M1, without the intervention of the caudal part.
This aspect combined with the results of the fitting experiments
suggests that the brain may use the clusters of neurons in the
rostral M1 for encoding the direction of the movement and the
clusters of CM cells in the caudal M1 for regulating the tradeoff
between speed and accuracy.

In his paper, and in the light of information theory recently (at
the time) introduced by Shannon [Sha0Ol], Fitts’ concluded that
the speed-accuracy tradeoff was a consequence of the limited in-
formation processing of the human motor system. The results
reported in Table 4.3 show that the system is able to produce
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faster movements preserving the accuracy. This suggests that the
limited information capacity does not follow from the structure of
the system, but arises from the strategy adopted to produce faster
movements, by modifying only the activations of the integrator
neurons and starting from the configuration corresponding to the
execution of a pre-learned movement. We conclude that the speed-
accuracy tradeoff is a behavioral trait that emerges from both the
structure of the motor system and the strategy adopted to perform
faster-than-usual movements.






Conclusions

This thesis investigates how motor cortex commands the execution
of reaching movements by exploiting the spinal cord circuitry. The
beginning purpose of our research was to discover which parame-
ters were encoded by the brain to control a movement. The analy-
sis of the state of art, reported in Chapter 1, showed an agreement
about the major role of the primary motor cortex in the control of
voluntary movement and a longstanding controversy about what
kind of parameters are encoded. The difficulty of understanding
how movements are represented, despite the considerable amount
of experiments evaluating the correlation between neuronal firing
and movement kinematics and kinetic, led to speak about this
problem as the holy grail of the neuroscience.

New findings [RS09] about the subdivision of M1 into two re-
gions, each of which has different connection with the motoneurons
within the spinal cord, encouraged us to investigate the interaction
between motor cortex and the spinal cord in order to understand
the ”code” used for executing voluntary movements.

We have proposed that a movement is commanded by the ac-
tivation of different clusters of neurons distributed in the rostral
and caudal regions of primary motor cortex. Clusters of neurons in
the rostral region have connections with spinal cord interneurons
that translate cortical commands into motoneurons activations,
instead clusters of neurons in the caudal part have monosynaptic
connections with the alpha motoneurons. The activation of a cor-
tical cluster corresponds to the recruitment of one of the functional
modules in which spinal interneurons and motoneurons are orga-
nized. When a movement is planned, the cortical loop through the
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basal ganglia and the cerebellum regulates the selection of clusters
to be activated with the right timing.

To test these hypotheses we have developed the computational
model of the spinal cord circuitry described in Chapter 2, where
the synaptic connections between interneurons implement hard-
wired synergies. In Chapter 3 we have verified that the recruit-
ment of spinal modules by clusters of cortical neurons allows to
execute movements with different properties. Eventually, in Chap-
ter 4 we have verified that the cortical clusters of neurons in the
rostral and caudal part of M1 may cooperate to determine the
trade-off between speed and accuracy in reaching movements. In
particular, results show that the rostral M1 may encode the di-
rection of the movement, while the CM cells in the caudal M1
regulate the force production of the muscles involved in the exe-
cution of the motor task, thus defining the tradeoff between speed
and accuracy.

The results obtained using our computational model confirm
what has been hypothesized in literature [dGIT15]: modularity
may be the organizational principle that the central nervous sys-
tem exploits in motor control. In humans, the central nervous
system can execute motor tasks by recruiting the motor primi-
tives in the spinal cord or by learning new collections of synergies
essential for executing novel skills typical of our society, as for ex-
ample to play an instrument, by exploiting the clusters of neurons
in the caudal M1 that directly regulates the contraction of muscles
working around one or more joints.

The hypothesis that movements are executed by combining
the activation of basic modules hosted in the spinal cord can ex-
plain how movements change from the neonatal to the adult stage.
Infants are able to explore the environment since their birth ex-
ploiting these modules. The spontaneous motions, the early goal-
directed movements and the primitive reflexes showed by infants
could be temporal assemblies of the motor primitives hard-wired
in his spinal cord [Kon05]. These movements are very imprecise
but as the baby grows he becomes able to execute more complex
motor behaviours thanks to learning. Motor experience during
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early postnatal life is essential both for the corticospinal tract de-
velopment [MCPMO04] [Mar05] and for learning new pattern of
activation of the spinal modules.

Furthermore, it is plausible to argue that during the developmen-
tal process proprioceptive feedback modifies spinal interneuronal
circuitry to tune spinal circuitry to the limb biomechanics of the
individual [BA15].

The hypothesis that hard-wired synergies are tailored to the
biomechanics of the effector controlled by them and that the cen-
tral nervous system recruits these motor primitives by regulating
both the level and the time of activation confirms the needed of
a double representation of movements in the brain in order to ex-
plain the phenomenon of the motor equivalence. As explained in
[Sen12], movements are stored in the brain as both a sequence of
target points that have to be reached and as a sequence of mo-
tor commands that generate the muscular contractions needed to
reach the target points. The representation of movement as se-
quence of target points is independent of effector, while the repre-
sentation through motor commands is effector dependent. Because
hard-wired synergies are tuned to the effector to be controlled, the
central nervous system needs to learn motor commands specific for
each effector even if the sequence of target points that has to be
reached is the same.

To summarize our position, we argue that the evolution has
designed a biological system that is aimed to move in order to
interact with the environment. This system has to use a set of
modules to fulfill its aim but how these modules changes during the
individual life, and which strategies can be adopted for using these
modules depends upon the motor experience and the interaction
with the environment. An interesting example is how the speech
apparatus allows the production of different phonemes. Newborns
are able to produce any sound because the evolution provides them
with all the motor primitives needed for controlling the speech
apparatus. As speech is learned, humans are no longer able to
reproduce sounds that do not occur in their daily language because
they have not developed the connections and the strategies to
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recruit the motor primitives producing those sounds. An adult
can reproduce sounds different from those learned during the early
years of life by learning strategies for combining sounds for which
motor primitives exist: an example is the native chinese speaker
that need practice in combining sounds for producing the sound
of 't’ [Held] [GWO04].

The idea that some properties of the motor primitives are de-
fined by the evolutionary process fits well with what we observed
in our experiments about the energy consumption. In particu-
lar, the results presented in Chapter 3 suggests that the layout of
neurons in the spinal cord are shaped by the evolution to subserve
the general principle of minimizing the metabolic energy consump-
tion. It means that spinal circuitry is organized to limit the energy
consumption per se and the observed difference in the energetic
consumption between different movements is related to the way
circuitry is controlled and to the requirements of the behavioural
task to execute. For example, we have observed in the experiments
that the energy consumption increases significantly if the goal of
the motor task is to execute a fast reaching movement.

Physiological studies show that the evolutionary process de-
fined important species differences in the organization of corti-
cospinal transmission to motoneurons. For example, the direct
corticomotoneuronal pathway becomes prominent for the control
of the upper limb in the primates needing for manual dexterity
while it lacks in lower species as in the cat [AI12]. This obser-
vation has lead to hypothesize that transmission of corticospinal
excitation through C3-C4 PNs is relatively unimportant in hu-
mans. Nevertheless, it is difficult to find conclusive evidence for
or against the use of C3-C4 system during motor task due to in-
direct nature of the experiments in human subjects [LKM104].
The experiments performed with our computational model sug-
gest that the activation of PN interneurons can be exploited by
human subjects when it is required to perform slow movements
or to limit the energy consumption. Furthermore, the activation
of PN interneurons together with the activation of other interneu-
rons allows to execute fast movements and subcortical nuclei can
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switch the direction of an ongoing movement just by regulating
the activity of the PN interneurons.

Eventually, we have shown in this thesis that it is plausible
to support the hypothesis that movements are executed thanks
to the cooperation of two different areas of the primary motor
cortex. One area recruits the hard-wired motor primitives hosted
in the spinal cord as spatiotemporal synergies, while the other one
has direct access to the alpha motoneuron and may build new
synergies for the execution of very demanding movements. The
existence of these two areas regulating directly and indirectly the
muscle activity can explain the controversy about what kind of
parameter is encoded by the brain. The simulation performed
with our computational model have shown that the activation of
an area cannot exclude the activation of the other one but, on
the contrary, both the activations are needed to have a simulated
behaviour that fits the real behaviour, as in the case of the trade-
off between speed and accuracy.

All these findings, if will be verified in vivo, may have impor-
tant implications for the development of neural prostheses. In fact,
the possibility that complex motor behaviors may be executed by
combining the activation of motor primitives may lead to the de-
sign of brain-machine interface based upon a decoder that takes
into account this modular strategy for commanding a movement.
The research performed in this thesis is a contribution toward the
understanding of how voluntary movements are executed. Still,
there is a question that we did not consider here: how the informa-
tion provided by proprioceptive and sensory input are represented
and used to modify the motor behaviour during learning. We plan
to address this crucial issue in our future research.






Appendix A

Neuromusculoskeletal
model

A.1 Introduction

To control a movement, the central nervous system generates mo-
tor commands that led muscles to contract. The observed move-
ment is the result of the interaction of the forces generated by the
muscles with inertia and external forces that may be acting on the
body. Moreover, the central nervous system is able to control a
movement because it receives information about forces and move-
ments of the musculoskeletal system measured by various propri-
oceptive sensors. Therefore, in order to validate a model of the
motor control system it isn’t possible to ignore the properties of
the musculoskeletal system that it must control.

This appendix describes the models of the muscles, of the skeleton
and of the neurons used for building up a musculoskeletal model
useful to validate the hypothesis formulated in this thesis.

A.2 Muscle model

Each muscle has been modeled with Virtual Muscle [SRLLOS]
[CBLO00], a model that represents the anatomical structures and
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Table A.1 Muscles architectural parameters

Biceps Brachialis Triceps
Lateral
Optimal Fascicle Length (cm) 21 10 11.38
Optimal Tendon Length (cm) 16 8 9.8
Mass (g) 200 282 237
Fiber Type 50% Slow, 50% Slow, 50% Slow,

50% Fast 50% Fast 50% Fast

the physiological processes that are typical of mammalian skeletal
muscles. It combines the advantages of phenomenological (Hill-
type) and mechanistic (Huxley-type) models. In particular, Vir-
tual Muscle groups a set of phenomenological models, each of
which describes a major physiological process underlying muscle
contraction. The muscle model requires a set of morphometric and
architectural parameters including muscle mass, optimal fascicle
length, maximum musculotendon length, optimal tendon length
and the fraction of fiber type distribution; the values for this
parameters are reported in Table A.1. Furthermore, the model
requires other parameters describing the properties of individual
fiber type; the values for these parameters were estimated for hu-
man fiber types in [CBL00]. By selecting appropriate parameters,
the model can be used to represent any specific normal or patho-
logical muscle.

The model estimates force and rate of metabolic energy consump-
tion as a function of time in response to neural excitation, muscle
length and velocity [TRL12].

Another convenient features of Virtual Muscle is that it is equipped
with realistic models of spindles [MBLLO06] and Golgi tendon or-
gans [MLO6]. In particular, the spindle model consists of three
nonlinear intrafusal fiber models, each of which responds to the
fascicle length and to the drive from the gamma static and gamma
dynamic motoneurons.
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A.3 Neuron Model

The activity of the spinal cord model depends on the connectivity
of its circuitry and on the biophysical properties of the neurons
belonging to it. The way neurons are modeled in this thesis was
taken from [TGL14], where the authors chose to capture only the
major computational properties while minimizing the number of
arbitrary parameters and computational load. We chose to adopt
the same model in order to compare our results with the results
described in literature.

Neurons of the spinal cord show a transduction property simpler
than cortical neurons [TGL14], thus the axonal output of a neuron
is simply computed as by summing the firing rates of all input
axons rather than integrating postsynaptic potentials generated by
individual spikes. In other words, actual neurons communicate via
action potential spiking, but we model this communication with
the rate code approximation, where the neuron continuously
outputs a single value, between 0 and 1, that reflects the overall
rate of spiking that the neuron should be exhibiting given the
level of inputs it is receiving. As explained in [OMF*12], by a
biological point of view the rate code represents the output of a
small population of neurons that are generally receiving the same
inputs, and giving similar output response. So, we are assuming
that information is conveyed by the frequency of the firing and
not by the precise timings of the spikes.

Based on this approximation, in order to represent the frequency
of the spikes along the axon, we model the activation function
of each neuron with a sigmoid function:

1

1+ exp(—a(d_, pixi — b))
where x; is the ¢-th synaptic input, p; is the related weight that
could be positive or negative depending on whether the input is
excitatory or inhibitory, a is the gain and b is the bias. It is also
assumed that the weight p; of a synaptic connection formed by the
axon of a transmitter neuron n, on the soma of a receiver neuron
n, depends on:

y (A1)
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e the type of connection (inhibitory or excitatory);

e the total number of excitatory synaptic inputs syn.,. and
the total number of inhibitory synaptic inputs syn;,;, on the
soma of the n, cell;

e the maximal allowable hyperpolarization and overdrive of
the neuron;

e what kind of neuron is n;, i.e. it is an interneuron, an alfa
motoneuron, a cortical neuron or a sensor neuron.

Thus,
1, if the source is the CST
i = , (A.2)
w, for sensory input and local collaterals
where
HY P
— , for an inhibitory connection
_ SYNinh
““Y14+0D . . (A3)
—— , for an excitatory connection
Synexc

where HYP and OD are the maximal hyperpolarization and over-
drive limits and are both set to 2, as in [TGL14], in order to
produce the most physiological results.

When the source of a synaptic input x} is a sensory afferent its
value is modulated by a presynaptic input PI; as shown in equa-

tion A.4:
1

T exp(—a(zf + PIL;) +b)

(A4)

The value of each PI; varies between -1 and 1 and is controlled
directly or indirectly by cortical areas.

In A1 and A4 a and b are set to 11 and -0.5 respectively as
suggested in [TGL14].
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A.3.1 Reflex Latency

The reflex arc consists of an afferent neuron that senses an exter-
nal stimulus, a central processing unit (i.e. one or more neurons
that process the stimulus) and an efferent neuron that induces
a muscle contraction. Each reflex involves a time delay between
the stimulus and the reaction. This time delay is called reflex
latency that consists of three components [Lat08]:

e time of afferent conduction T,, which depends on the speed
of the action potential propagation along the involved neural
fibers and on the length of the fibers;

e central delay T,., which depends mostly on the number of
synapses involved in processing the afferent volley and in
generating an efferent command: increasing the number of
synapses leads to a proportional increase in the central delay;

o time of efferent conduction T, which is the synaptic delay
at the motor end plate;

These three time components are subject specific and vary for each
muscle. We set T, = 10 ms, T, = 10 ms and T, = 0.5 ms in order
to obtain a stretch reflex latency equal to 20.5 ms and a golgi

tendon reflex latency equal to 21 ms, which are plausible values
for both the reflex latencies [HR] [Brol0] [PDB12].

A.4 Skeletal model

The musculoskeletal model used in this study is a one degree-of-
freedom arm whose motion is restricted to the extension /flexion of
the elbow. In fact, the shoulder and the wrist joints are grounded
while the elbow joint is modeled as a hinge-like joint.

The skeleton is made up of the upper arm, to which belongs the
humerus, and the forearm, to which belongs the ulna, the radius
and the hand. The physical and the inertial parameters used for
the bones are reported in Table A.2 and Table A.3.
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Table A.2 Bones physical parameters

Mass Length
Upper Arm 1.86 Kg 29 cm
Forearm and hand 1.53 Kg 40 cm

Table A.3 Inertial parameters

Mass center (cm) | Inertia (Kg * cm?)

X I y I Z 1; I I;
Upper Arm 0 18.04 0 148.1 45.51

Forearm and hand | 0 18.14 0 192.81 15.71

The position of the shoulder joint (humerus reference system) re-
spect to the ground (absolute reference system), and the position
of the elbow joint (ulna reference system) respect to the humerus
reference system are reported in Table A.4. The three reference
systems are shown in Figure A.1.

In our model the forearm is extended and flexed by three muscles:
Biceps Short, Brachialis and Triceps Lateral. The muscle origin
and insertion points and the musculotendon paths reported in Ta-
ble A.5 have been chosen according to anatomical constraints at
joints and they have been adapted from [HMDO05] [SLLGOS].

A cylindrical wrapping object is used to model the bony surfaces
over which the Brachialis muscle wraps and to ensure the right
calculation and application of the muscle forces produced by the
muscle on the skeletal system.

The arm model has been developed in the MSMS simulator [DL11]
and it is depicted in Figure A.1.
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Figure A.1 Musculoskeletal model in MSMS. The ground, humerus and
ulna coordinate systems are reported in figure. The elbow rotation axis is
highlighted.
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Table A.4 Joint Center Offset
Proximal segment | Joint Type Center offset (cm)
X y z
Shoulder ground Weld -1.7%5 0.7 17
Joint
(Humerus
Reference
System)
Elbow Humerus Pin/Revolute | 0.61 -29.04 -1.23
Joint (Ulna
Reference
System)

Table A.5 Muscles path

Muscle Coordinates Reference Segment
X | y | z
0.005 -0.012 0.135 ground
-0.007 -0.04 0.145 ground
Biceps -0.011 -0.076 -0.011 Humerus
0.017 -0.121 -0.011 Humerus
0.023 -0.175 -0.006 Humerus
0.008 -0.048 0.022 Ulna
-0.00599 -0.12646 0.00428 Humerus
-0.02344 -0.14528  0.00928 Humerus
Triceps -0.03184 -0.22637 -0.01217 Humerus
-0.01743 -0.26757 -0.01208 Humerus
-0.0219  0.01046 -0.00078 Ulna
0.0068 -0.1739 -0.0036 Humerus
Brachialis  0.0028 -0.2919  -0.0069 Humerus
-0.0032  -0.0239 0.0009 Ulna




Appendix B

The Kinematic Theory of
rapid human movements

B.1 Introduction

Different models have been proposed to explain how the central
nervous system generates and controls human movements. Among
them, the Kinematic Theory of rapid human movements [Pla95],
from which the Sigma-Lognormal model [PD06] were developed,
provides the best performance in reconstructing human movement
[PAYL93].

In order to verify that the movements generated by our model
were human-like we have compared the velocity profile of these
movements with the velocity profile foreseen by the Kinematic
Theory.

B.2 Sigma-Lognormal Model

By a mathematical point of view, the Sigma-Lognormal model
considers the velocity of the end-effector #(t) as a vectorial sum-
mation (B.1) of N lognormal primitives (B.2)

N N
0(t) =Y _0i(t) =Y Di(t)Ai(t, toi, iy of); N >2  (B.1)
=1 =1

7
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Table B.1 The Sigma Lognormal parameters

Parameter  Unit Description

D meter  Amplitude of the command given for the gen-
eration of a neuromuscular component

I In(s)  Time delay of a neuromuscular impulse re-
sponse on a logarithmic time scale.

o In(s)  Response time of a neuromuscular impulse re-
sponse on a logarithmic time scale.

to second Time of command emission.

0 radian  Starting angle of the trajectory.

0. radian  Ending angle of the trajectory.

1 —[ln(t — t02> - ,LL,L]2

Az(ta tOia Hi, 012) =

ool tOi)ea?p( 207 ) (B2)
Each of these primitives is assumed to occur around a pivot, and
the evolution of the angular position of the trajectory (B.3) is
calculated using an error function erf:

(Qei - Qsz)

5 [1 + €Tf< [hl(t B t[)i) B Plz] )] (B?))

Ui\/§

Each primitive is characterized by 6 parameters that are summa-
rized in Table B.1. In particular, u and o are two parameters that
characterize the neuromuscular systems, while D, tg, 6, and 6, are
command parameters.

0;(t) = b5 +

B.3 Sigma-Lognormal Parameter Ex-
traction

Given the velocity signals recorded during an experimentation
(Vge, Uye) some algorithms [POG™14] have been defined in order
to extract the lognormal parameters that most adequately fit the
experimental data. Sigma-Lognormal parameters are considered
to be well estimated and fitted for statistical analysis if the SNR,
defined in (B.4), is over 20 dB [POGT14]:

Jvi. 4+ vpdt

SNR =101
Og(f(vxe — Vam)? + (Vye — Uy )2dt

) (B.4)
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In equation (B.4) (vgm, vym) are the velocity signals of the sigma-
lognormal reconstruction. We have used the ScriptStudio Software
[OP09b] for the automatic extraction of Sigma-Lognormal param-
eters from the velocity signals recorded during the simulation of
our model.
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