

Facoltà di Ingegneria
Dipartimento di Ingegneria dell’Informazione ed Elettrica e

Matematica Applicata

Dottorato di Ricerca in Ingegneria dell’Informazione
XIV Ciclo – Nuova Serie

TESI DI DOTTORATO

An approach to task coordination
for hyperflexible robotic workcells

CANDIDATO: DIEGO GERBASIO

COORDINATORE: PROF. MAURIZIO LONGO

TUTOR: PROF. PASQUALE CHIACCHIO

Anno Accademico 2014 – 2015

UNIVERSITÀ DEGLI
STUDI DI SALERNO

Contents

1 Preface 1
1.1 Thesis contribution 3
1.2 Thesis Overview . 4

2 State of the art 5
2.1 Introduction on hyperflexible cells 5
2.2 System Integration issues 9
2.3 Implementation of industrial automation system 11
2.4 Automated warehouse systems 15
2.5 Aircraft industry . 19

2.5.1 Assembly Task 19
2.5.2 Drilling Task 21
2.5.3 Low-cost and flexible architecture for robo-

tized drilling 23
2.5.4 Elements of a generic hyperflexible cell for

aircraft industry 26

3 Petri Nets: Notations and Definitions 29
3.1 Petri Nets (PNs) and Colored Petri Nets (CPNs) 29
3.2 Hybrid Petri Nets (HPNs) 33
3.3 Colored Modified Hybrid Petri Nets 38

4 Automated synthesis of HCMPN models 41
4.1 Definition of a robotic cell in aircraft industry 41
4.2 Creation of the CMHPN model 50

i

4.2.1 Algorithm to obtain tasks and resources CMHPN
model . 51

4.2.2 Merging of PNs 53
4.3 Case Study . 58

5 On the implementation of industrial automation system based
on PLC 77
5.1 Function Block Model 77

5.1.1 FB instances are objects 78
5.1.2 Event-based execution order 80

5.2 FB Design . 86
5.2.1 Example . 87

5.3 A formal approach to FBs coordination 91
5.3.1 PN representation of FB services 96
5.3.2 The PN controller 96
5.3.3 The Supervisor 98
5.3.4 PN model implementation 99

5.4 Implementation on PLCs using OOP 103

6 Conclusion and further research 111
6.1 What has been accomplished 111
6.2 Cyber-Physical Systems 112

6.2.1 A cyber-physical approach to automated ware-
house systems 114

6.2.2 Cyber component model 116
6.2.3 Case study 118

Bibliography 122

ii

Chapter 1

Preface

The manufacturing industry is very diverse and covers a wide range
of specific processes ranging from extracting minerals to assembly of
very complex products such as planes or computers, with all interme-
diate processing steps in a long chain of industrial suppliers and cus-
tomers. Extracting from this wide variety of businesses and processes,
some general trends that could be meaningful to the whole industry
chain is far from easy and is bound to give rather general fields [EAG].

It is well know that the introduction of robots in manufacturing
industries has many advantages. Basically, in relation to human la-
bor, robots work to a constant level of quality. For example, waste,
scrap and rework are minimized. Furthermore they can work in ar-
eas that are hazardous or unpleasant to humans. Robots are advanta-
geous where strength is required, and in many applications they are
also faster than humans. Also, in relation to special-purpose dedicated
equipment, robots are more easily reprogrammed to cope with new
products or changes in the design of existing ones [ASV08].

In the last 30-40 years, large enterprises in high-volume markets
have managed to remain competitive and maintain qualified jobs by
increasing their productivity, through, among others, the incremen-
tal adoption and use of advanced ICT and robotics technologies. In
the 70s, robots have been introduced for the automation of a wide
spectrum of tasks such as: assembly of cars, white goods, electronic
devices, machining of metal and plastic parts, and handling of work

2 1. Preface

pieces and objects of all kinds. Robotics has thus soon become a syn-
onym for competitive manufacturing and a key contributing technol-
ogy for strengthening the economic base of Europe [EUR]. So far, the
automotive and electronics industries and their supply chains are the
main users of robot systems and are accounting for more than 60% of
the total annual robot sales. Robotic technologies have thus mainly
been driven by the needs of these high-volume market industries.

The degree of automation in the automotive industries is expected
to increase in the future as robots will push the limits towards flex-
ibility regarding faster change-over-times of different product types
(through rapid programming generation schemes), capabilities to deal
with tolerances (through an extensive use of sensors) and costs (by re-
ducing customized work-cell installations and reuse of manufacturing
equipment). These immediate challenges lead to the following current
RTD trends in robotics:

• Expensive single-purpose transport and fixing equipment is re-
placed by standard robots thus allowing continuous production
flows. Remaining fixtures may be adjusted by the robot itself.

• Cooperative robots in a work-cell coordinate handling, fixing
and process tasks so that robots may be easily adjusted to vary-
ing work piece geometries, process parameters and task sequences.
Short change-over times are reached by automated program gen-
eration which takes into account necessary synchronization, col-
lision avoidance and robot-to-robot calibration.

• Measuring devices mounted on robots and increased use of sen-
sor systems and RFID-tagged parts carrying individual informa-
tion contributes to better dealing with tolerances in automated
processes.

• Human-robot-cooperation bridges the gap between fully manual
and fully automated task execution. People and robots will share
sensing, cognitive and physical capabilities.

There are numerous new fields of applications in which robot tech-
nology is not widespread today due to its lack of flexibility and high

1.1. Thesis contribution 3

costs involved when dealing with varying lot sizes and variable product
geometries. In such cases, hyper-flexible robotic work cells can help in
providing flexibility to the system and making it adaptable to the dif-
ferent dynamic production requirements. Hyper-flexible robotic work
cells, in fact, can be composed of sets of industrial robotic manipula-
tors that cooperate to achieve the production step that characterize the
work cell; they can be programmed and re-programmed to achieve a
wide class of operations and they may result versatile to perform dif-
ferent kind of tasks [GA12].

1.1 Thesis contribution

Related key technology challenges for pursuing successful long-term
industrial robot automation are introduced at three levels: basic tech-
nologies, robot components and systems integration. On a systems in-
tegration level, the main challenges lie in the development of methods
and tools for instructing and synchronising the operation of a group
of cooperative robots at the shop-floor. Furthermore, the development
of the concept of hyper flexible manufacturing systems implies soon
the availability of: consistent middleware for automation modules to
seamlessly connect robots, peripheral devices and industrial IT sys-
tems without reprogramming everything (”plug-and-play”) [EUR].

In this thesis both innovative and traditional industrial robot appli-
cations will be analyzed from the point of view of task coordination. In
the modeling environment, contribution of this dissertation consists in
presenting a new methodology to obtain a model oriented to the control
the sequencing of the activities of a robotic hyperflexible cell. First a
formal model using the Colored Modified Hybrid Petri Nets (CMHPN)
is presented. An algorithm is provided to obtain an automatic synthe-
sis of the CMHPN of a robotic cell with detail attention to aircraft
industry. It is important to notice that the CMHPN is used to model
the cell behaviour at a high level of abstraction. It models the activities
of each cell component and its coordination by a supervisory system.
As more, an object oriented approach and supervisory control are pro-
posed to implement industrial automation control systems (based on

4 1. Preface

Programmable Logic Controllers) to meet the new challenges of this
field:capability to implement applications involving widely distributed
devices and high reuse of software components. Hence a a method
is proposed to implement both controllers and supervisors designed
by Petri Nets on Programmable Logic Controllers (PLCs) using Ob-
ject Oriented Programming (OOP). Finally preliminary results about a
novel cyber-physical approach to the design of automated warehouse
systems is presented.

1.2 Thesis Overview
The thesis is organized as follow:

Chapter 2 describes the state of the art of hyperflexible robotic work-
cells and introduces the issues of a complex but essential
task in aeronautical industries

Chapter 3 contains a brief background on Petri Net (PN), Colored PN
and Hybrid PN formalisms, necessary to understand the
others chapters. Because of their importance in the de-
veloping of the contribute of this thesis, a brief literature
review about the Hybrid PNs is also presented.

Chapter 4 introduces an approaches to model complex Hyper-flexible
robotic work cells based on a new Petri net formalism that
merges the concepts of Hybrid Petri Nets and Colored Petri
Nets.

Chapter 5 presents a method to implements controllers and supervi-
sors designed by Petri Nets on PLCs using Object Oriented
Programming

Chapter 6 summarizes the previous chapter and presents a cyber-physical
perspective view about the control of automated warehouse
systems.

Chapter 2

State of the art

There are numerous new fields of applications in which robot technol-
ogy is not widespread today due to its lack of flexibility and high costs
involved when dealing with varying lot sizes and variable product ge-
ometries. New robotic applications will soon emerge from new indus-
tries and from SMEs, which cannot use today’s inflexible robot tech-
nology or which still require a lot of manual operations under stren-
uous, unhealthy and hazardous conditions. In this chapter the state
of the art for robotic applications will be described and the issues of
automation for aeronautical industries will be introduced.

2.1 Introduction on hyperflexible cells
The manufacturing industry is very diverse and covers a wide range
of specific processes ranging from extracting minerals to assembly of
very complex products such as planes or computers, with all interme-
diate processing steps in a long chain of industrial suppliers and cus-
tomers. Extracting from this wide variety of businesses and processes,
some general trends that could be meaningful to the whole industry
chain is far from easy and is bound to give rather general fields [EAG].

It is well know that the introduction of robots in manufacturing
industries has many advantages. Basically, in relation to human la-
bor, robots work to a constant level of quality. For example, waste,
scrap and rework are minimized. Furthermore they can work in ar-

6 2. State of the art

eas that are hazardous or unpleasant to humans. Robots are advanta-
geous where strength is required, and in many applications they are
also faster than humans. Also, in relation to special-purpose dedicated
equipment, robots are more easily reprogrammed to cope with new
products or changes in the design of existing ones [ASV08].

In the last 30-40 years, large enterprises in high-volume markets
have managed to remain competitive and maintain qualified jobs by
increasing their productivity, through, among others, the incremen-
tal adoption and use of advanced ICT and robotics technologies. In
the 70s, robots have been introduced for the automation of a wide
spectrum of tasks such as: assembly of cars, white goods, electronic
devices, machining of metal and plastic parts, and handling of work
pieces and objects of all kinds. Robotics has thus soon become a syn-
onym for competitive manufacturing and a key contributing technol-
ogy for strengthening the economic base of Europe [EUR].

So far, industrial robot technology and products have largely been
driven by the requirements of the automotive and the electronics (light
assembly) industry. It is foreseen that future manufacturing paradigms
in these industries will still be largely depending on future robotic
products, solutions and services. However, the emergence of other ap-
plications from non-automotive industries opens up new technological
horizons and market opportunities for robotic technologies.

Relieving people from bad working conditions (e.g., operation of
hazardous machines, handling poisonous or heavy material, working
in dangerous or unpleasant environments) leads to many new oppor-
tunities for applying robotics technology. Examples of bad working
conditions can be found in foundries or the metal working industry.
Besides the need of handling objects at very high temperatures, work
under unhealthy conditions takes place in manual fettling operations,
which contribute to about 40% of the total production cost in a foundry.
Manual fettling means heavy lifts, strong vibrations, metal dust and
high noise levels, resulting in annual hospitalization costs of more
than C150m in Europe. Bad working conditions can also be found
in slaughterhouses, fisheries and cold stores where beside low temper-
atures also the handling of sharp tools makes the work unhealthy and
hazardous. Other examples where robots can improve the working

2.1. Introduction on hyperflexible cells 7

environment are painter workshops, glazier workshops and garbage
handling plants.

If sensor information can be reliably used for robot control and
if robot instruction schemes may be intuitive (e.g., by using more in-
tuitive interaction mechanisms, built-in process knowledge and auto-
matic motion generation), many other applications where present robot
technology has failed can be envisioned:

• Assembly and disassembly (vehicles, airplanes, refrigerators,
washing machines, consumer goods). Obviously challenges ad-
dress cost-effective robot systems which are able to cope with a
wide range of processes, tasks and objects. In many cases fully
automatic task execution by robots is impossible. Cooperative
robots should support the worker in terms of force augmenta-
tion, parallelization or sharing of tasks. Cost-effectiveness can
only be reached by drastically reducing the health hazards for the
worker or increasing the productivity of the manual workplace
by typically 50 - 100

• Aerospace industry currently uses customized NC machines
for machining, drilling, assembly, quality testing operations on
structural parts. In assembly and quality testing, the automation
level is still low due to the variability of configurations and insuf-
ficient precision of available robots. Identified requirements for
future robots call for higher accuracy, adaptivity towards work-
piece tolerances, flexibility to cover different product ranges,
and safe cooperation with operators.

• SME manufacturing: Cutting, fettling, deflashing, drilling, de-
burring, milling, grinding and polishing of products made of
metal, glass, ceramics, plastics, rubber and wood.

• Food and consumer good industries: Processing, assembly,
filling, handling and packaging of food and consumer goods

• Construction: Cutting, drilling, grinding and welding of large
beams and other construction elements for buildings, bridges,
ships, trains, power stations, wind mills etc. In most of these

8 2. State of the art

applications robots would have to cope with products having big
variations in geometry and material properties and often pro-
duced in small batches. In order to achieve the required adapt-
ability, the robot controller must be able to make use of informa-
tion from different types of sensors, where the most important
input will come from vision- and force sensing systems. Simul-
taneously, it must be very simple to instruct the robot to per-
form different tasks more or less autonomously in response to
the sensor information and built-in process knowledge. These
requirements are similar to service robots and a closer R&D col-
laboration between industrial and service robotics will be crucial
to obtain the radical innovations needed to obtain a widespread
use of industrial robot automation [EAG].

Industrial Robot Applications [ele] can be divided into:
Material-handling applications:

• Involve the movement of material or parts from one location to
another.

• It includes part placement, palletizing and/or depalletizing, ma-
chine loading and unloading.

Processing Operations:

• Requires the robot to manipulate a special process tool as the
end effectors.

• The application include spot welding, arc welding, riveting, spray
painting, machining, metal cutting, deburring, polishing.

Assembly Applications:

• Involve part-handling manipulations of a special tools and other
automatic tasks and operations.

Inspection Operations:

• Require the robot to position a work part to an inspection device.

2.2. System Integration issues 9

• Involve the robot to manipulate a device or sensor to perform the
inspection.

In this thesis most of industrial robot applications will be ana-
lyzed from the point of view of task coordination. In detail Material-
handling applications will be discussed in chapter 6 whereas Assem-
bly,Processing and Inspection applications will be analyzed in chapter
4.

2.2 System Integration issues
Related key technology challenges for pursuing successful long-term
industrial robot automation are introduced at three levels: basic tech-
nologies, robot components and systems integration [EUR]. On a sys-
tems integration level, the main challenges are as follows:

• Fine manipulation/high precision. Installation and change-
over times of robot work-cells are highly dependent on nego-
tiating tolerances in processes, product geometries and product
position/presentation. This aspect is even more emphasized as
product components decrease in size (micro, nano...). A goal is
to account for required precision on the basis of existing (non-
precision) machines by use of increased numbers of sensors and
improved sensor data processing.

• Human-robot-collaborative work-cells. A cooperative task ex-
ecution between robot and worker can increase the overall pro-
ductivity through a perfect split of capabilities This idea also
extends to the vision of making robots a commodity in manu-
facturing and crafts.

• Cooperating robots. As unit prices drop at increasing rates,
the cost of typical robot peripherals (conveyors, feeders, posi-
tioning devices, fixtures ...) can be drastically reduced and at
the same time provide more flexibility. The result would be
a network of interlinked robots which cooperatively transport,
machine, handle and assemble work-pieces. A typical, simple

10 2. State of the art

scenario is a robot presenting a work-piece and positioning it so
that a second robot can work on that piece. RTD tasks especially
comprise scalable/distributed architectures for multiple robots,
so that synchronization, sensor data processing, programming,
task allocation, decision making and diagnosis can be organized
and managed in a distributed system.

• Hyper flexible manufacturing systems. Product volumes and
life-times are especially uncertain for consumer goods (electri-
cal appliances, mobile communication). An immediate change-
over may give additional opportunities to react to market devel-
opments and receptivity. The adaptation to new batches, prod-
uct variants or new products should be shortened by typically
one order of magnitude compared to today. This should result
in a consistent modularization of manufacturing systems both in
terms of software (components, interfaces) and hardware (inter-
faces, signal, energy transmission):

– A consistent middleware of automation modules to connect
robots, peripheral devices and industrial IT systems (in a
mechanical, electrical and especially logical way) without
reprogramming (“Plug and Play “)

– The “wireless shop floor “. Signal transmission should be
detached from wiring and switching cabinets. Closely as-
sociated to this challenge are aspects of data security.

– Mobile work-cells should facilitate the change-over of man-
ufacturing lines to new compositions or, in a more advanced
way to “abandon“the robot work-cell in favour of installing
robots temporarily at the workplace/workbench.

– Establishment of a life-cycle oriented consideration of pro-
duction equipment (procurement, financing, planning)

• Micro and nano-manufacturing. As products become smaller
manufacturing technology has to be scaled. However, as mate-
rials, manufacturing, processes and design principles for micro-
systems differ from traditional products and manufacturing, the

2.3. Implementation of industrial automation system 11

development of lowcost, dependable micro manufacturing equip-
ment constitutes a major challenges. These systems generally
incorporate rich sensor capabilities for optimized process con-
trol, robotic devices for automated handling, assembly and ma-
chining of microparts. It is expected that the manufacturing of
nano-systems will follow radically new and fully automated pro-
cesses (from solid state physics, generative processes from bi-
ology) requiring new robotics devices, possible based on com-
pletely different motion generating principles

2.3 Implementation of industrial automation
system

Nowadays, programming of automation systems is largely based on
the International Electrotechnical Commission (IEC) 61131 standard
[IEC03]. This standard does not meet Object Oriented Programming
(OOP) requirements making programming of large distributed systems
quite difficult. As a matter of fact, the standard is currently being re-
vised to overcome this deficiency. The IEC 61131 already contains a
simple class concept, the Function Block (FB) which has an internal
state, a routine manipulating this state, and it may be instantiated sev-
eral times [TF11]. So, extending the existing FB with object-oriented
features is a natural way of introducing object orientation in the IEC
61131. This is the path that the current working draft of IEC 61131
revision is following: adding methods, inheritance and interface ab-
straction (polymorphism) to FB [Wer09].

OOP has demonstrated its capability in handling complex software
development problems and producing flexible and reusable software
components. Despite the advantages listed before, software engineer-
ing industrial experience shows that OOP technologies fail to provide
all the expected benefits, particularly, in the areas of management of
complexity, and performance. The reusability and adaptability of a
framework or a class library can be increased by adding new features
and variation points. Unfortunately, as the number of variation points
increases, the complexity of the framework rapidly grows while its

12 2. State of the art

performance usually deteriorates [CE00]. In industrial automation, ob-
jects are often related to physical devices built in a certain company or
specific industrial domain context. Thus, in industrial automation the
application of OOP is expected to be more intuitive than it has been in
software engineering.

Industrial control systems are not generic computer systems and
then OOP tools oriented to industrial automation should satisfy the
additional requirements [Sch07]: I/O configuration and direct access
to I/O signals; Multi-paradigm programming, i.e. object-programming
should be optional to offer a stepwise and reversible transition to OOP;
OOP should be introduced as an addition to current IEC 61131, to
avoid a steep learning curve; OOP should be supported in all lan-
guages provided by IEC 61131 so that both textual and graphical lan-
guages can be used, the latter being very useful when programming
sequences. Real time software requirements are implicit in industrial
automation [Dou99]. From a control engineering point of view, in-
dustrial control systems are usually equipped with real time operative
systems, which guarantee the meeting real time constraints.

Some programming environments have been introduced to provide
OOP for industrial automation programming, see for instance refer-
ences [GDF+10, 3S 12]. At best of our knowledge, only CoDeSys V3
developed by a medium-size vendor of software tools can be used for
programming a significant number of industrial devices (see [3S 12]
for further details). Moreover, it supports PLCopen XML import/export
functionality that allows to interface such a tool with other environ-
ments to improve the design of OOP applications [PSK11]. CoDeSys
meets the additional requirements listed above for OOP programming
tools; it extends the IEC 61131 FB to a class construct by the addi-
tion of methods, inheritance; it introduces the INTERFACE-construct
for the declaration of abstract FBs with polymorphic reference seman-
tics.Finally, it allows dynamic memory allocation by means of New
operator.

On the other hand, there exists another IEC standard, the IEC
61499 [IEC05]. This standard, built on IEC 61131 and on the FB
concept, provides an implementation-independent distributed control
standard. A good introduction to the development of controllers us-

2.3. Implementation of industrial automation system 13

ing IEC 61499 is provided by [Lew01], while [Vya07, Vya11, DV12]
give a practical introduction to using IEC 61499 controllers in industry
settings. An application model in the 61499 standard is a network of
interconnected FBs that are different from those in IEC 61131. FBs
have now clearly defined distinct interfaces for event and data inputs
and outputs. Event inputs are used to activate the FB while event out-
puts are used to propagate events to other FBs. Data inputs and outputs
are used to pass data values between FBs. An FB can have internal
variables that are fully protected, i.e. not directly accessible from the
outside. The internal FB behavior is defined by an Execution Control
Chart (ECC) with its own states, transitions, and actions for a basic
FBs. Composite FB behavior is defined by a network of basic FBs
or other composite FBs. An ECC basically describes a Moore-type
finite state machine. Transition conditions between its states are eval-
uated whenever the FB receives an input event. Such conditions are ex-
pressed using an input event and/or a Boolean conditions. A transition
between two states happens when the associated condition is satisfied.
Thus, whenever an ECC is triggered by an input event, a sequence of
transitions may take place within the ECC in response to that event.
Each ECC state can be associated with actions, i.e. algorithms written
in any of IEC 61131 languages or high level programming languages
like C or Java, and an output event can be associated with signal ac-
tions’ completion. The actions related to a given state are executed
once upon entry to the state.

One of the main achievements of the IEC 61499 standard is the
introduction of the event-based execution order for program orga-
nization unit (e.g., a FB or a program). Main drawbacks of 61499
are: it is very different from IEC 61131 thus requiring a steep learn-
ing curve; it supports partially OOP (inheritance is not supported);
there are few commercial implementations [Thr09]. Moreover, a huge
amount of manpower and money has been spent in industry in or-
der to establish applications and libraries using IEC 61131 and this
makes difficult to adopt new standards or new paradigms, at least in
the next future, unless a certain compatibility with respect to 61131 is
preserved [ZSSB09].

In IEC 61131 when a program organization unit (e.g., a FB or a

14 2. State of the art

program) is invoked, it executes its code sequentially from beginning
to end. A task is associated to each program organization unit. Each
task can be configured to control the execution of a program organiza-
tion unit to execute periodically or upon the occurrence of a specified
trigger, i.e. an event. More precisely, events must be derived from
boolean-valued signals by detecting rising and falling edges between
two consecutive scan cycles (e.g. the rising of a photocell signal).
Then, an event-based invocation method is available in IEC 61131.
However, the invocation mechanism of a FB by a task is not supported
by all IEC 61131 programming environments. Moreover, the term
event-based execution order introduced by 61499 is not only related
to the invocation mechanism but also to the I/O behavior. A FB may
consist of several algorithms, but just some of them would be selected
(even just one) to be executed if the input signals have a certain set of
values (i.e., a certain event occurs), and consequently a value is given
to each output signal. This is different from the fact to invoke a FB
when the input signals have a certain set of values. Another problem is
how to manage the concurrent behavior of the (many) FBs that consti-
tute the automation software. Each time an event occurs (a photocell
detects something, an FB completes an action, etc.) it is necessary to
describe how it should be handled. A formal approach is needed since
the concurrency and the logical constraints on the desired sequences
of events make this a not easy task. To the purpose, a service-oriented
approach can be useful. In a Service-oriented-Architecture (SoA) dis-
tributed resources provide their functionalities in form of services that
can be accessed externally by clients without knowing the underlining
implementation [MMLCR08, JS05]. Thus, the challenge of SoA is
to reconcile the opposing principles of autonomy and interoperability.
Requesters of services only need to know the external visible interface
(description of a service) and rules on how to access them; the internal
structure and functionality represented by a service are hidden.

2.4. Automated warehouse systems 15

2.4 Automated warehouse systems
Nowadays, it is well recognized that flexibility, modularity and re-
configurability are the main challenges in the design of manufactur-
ing systems. Automated warehouse systems play a key role in such
systems and are currently controlled using hierarchical and centralized
control architectures and conventional automation programming tech-
niques. The automated warehouse systems has been investigated since
1990 [Van99] and performs the short-term optimization of handling
sequences. In particular, it usually has the objective to minimize the
time to complete a little number of picking or storage operations and
is based on the current state of the system.

A general real warehouse architecture, consisting of a number of
aisles, each one served by a crane, an Interface System (IS) and picking
positions (see Fig. 2.1), is considered in this chapter.

 . . .

. . .

crane bay 1 crane bay N

picking bay 1 picking bay M

C1 CN

Interface

System

V1

V
2

V4

V
5

V6

V3

Figure 2.1 Scheme of a general real warehouse architecture: at the top aisles and
crane bays (blocks C1 . . . CN represent the cranes serving the respective aisles), at

the bottom picking bays, in the center Interface System routes with running vehicles
(blocks Vi, with i = 1 . . . 6 represent the vehicles).

On both sides of each aisle there is a storage rack composed of

16 2. State of the art

nr rows and nk columns; moreover, as said, each aisle is served by a
crane, capable of moving both vertically and horizontally at the same
time, which is in charge of picking a Stock Unit (SU) at the input
buffer/bay of the aisle, storing it in the assigned location, as well as
retrieving and moving it to the output buffer/bay of the aisle.

The IS consists of vehicles which can move a number of SUs. The
vehicles move along a mono-dimensional guidepath placed orthogo-
nally with respect to the aisle axis. They perform picking actions (from
the aisles output bays and from the picking area output bays) and de-
posit actions (into the aisles input bays and into the picking area input
bays).

The picking area represents the output point of warehouse systems.
A picking bay consists of a picking location connected via conveyors
to the IS input and output interfaces, so that a SU can be partially
emptied by a human operator and then carried back to an aisle rack
location.

An input buffer, not reported in Fig. 2.1, represents the interface of
the warehouse with the incoming area. It is used to load full SUs in
the warehouse.

A set of missions is given as input to this kind of systems. Each
mission requires that a certain quantity of an item, which can be stored
in more than one aisle, is moved to a picking bay. Hence, the execu-
tion of a mission requires the choice of the SU to move among those
containing the desired item (this choice includes also the choice of the
crane since there is one crane in each aisle), the choice of a vehicle
to transfer the SU to the picking area, the choice of the picking bay,
again the choice of a vehicle to return the SU in the storage area and
the choice of the location where the SU must be stored among those
available.

The control problem consists in assigning each available resource
(a location, a picking bay, a crane or a vehicle) to a mission. When one
resource is available for a set of missions, a conflict occurs. The output
of the control problem consists in determining Who has to do What and
in Which Order in a manner that a certain objective is reached over
a certain time horizon. In other words, the control must solve these
conflicts. A detailed model is needed since it is important to detect in

2.4. Automated warehouse systems 17

which order these conflicts occur.
The typical control architecture for these systems consists of three

different levels [ABCC05]:

• MS (Management System - level 3)

• OS (Optimizer System - level 2)

• HS (Handling System - level 1)

In this context, MS receives the loading/unloading planning from
the Planning System (PS) and, based also on the location map (i.e.,
the list of the SUs stored in the warehouse and the coordinates of their
location), provides to OS a set of complex handling requests, here-
after named missions, to be executed. It also communicates to PS the
inventory items.

PS does not know where a SU is, but it only knows whether a
SU is or not in the warehouse, thus it can order to pick it by sending
a retrieval mission to MS; PS does not know where a SU has to be
stored but it only knows that there is at least an empty location in the
warehouse, thus it can send a storage mission to MS. PS works on a
statistical characterization of the system performance. Its main task is
material planning and lot-sizing keeping in mind the constraints con-
cerning the inventory levels, buffer capacities and production times.
Thus, PS is outside the control architecture.

MS at level 3 knows only the warehouse location map, but not the
actual state of the whole plant (crane and shuttle positions, tracking
position state). Therefore MS schedules the missions to be performed
exclusively on the basis of the state of the warehouse location map by
using its optimal management algorithm.

The movements in an automated warehouse are carried out by sub-
dividing the given mission into several basic handling sequences. In
this context, HS is used for the sole basic handling sequences (for ex-
ample
crane goes to position X, shuttle picks SU from buf-
fer, etc.) while OS takes charge of the real-time optimization based
on the current state of the plant. Therefore OS receives the list of mis-
sions from MS, reschedules and segments them into basic sequences

18 2. State of the art

Planning

System

Management

System

Loading/

unloading

planning

Inventory

items

Optimizer

System

Movement

missions
Data

Handling

System

Movement

orders

Tracking table,

Data

level 3

level 2

level 1

Figure 2.2 Typical control architecture of an automated warehouse system.

according to the plant state and the appropriate optimization policy;
such sequences are then communicated to HS to be executed. To per-
form the movement, simple functions which implement those basic
sequences are needed.

HS is typically implemented on a PLC, and OS can be physically
separated from HS and runned on a a different machine, typically a
workstation.

The hierarchical control architecture benefits from the separation
of functionalities but limits the modularity and flexibility of the control
system, being MS and OS implemented in a centralized way. In the

2.5. Aircraft industry 19

last chapter will be explained that the recent development of intelligent
networked embedded systems and technologies, could help to change
this.

2.5 Aircraft industry

One of the most important challenges for the next aircraft assembly
lines is the increase of the level of automation. There are several rea-
sons to pursue such an objective as the high quality standards allowed
by automatized solutions or the high production rates and flexibility.
These features are more and more important since aerospace produc-
tion volumes have been increasing steadily over the last three years.
For instance, Boeing Commercial Airplanes built more than 700 airlin-
ers in 2014 while about 650 in 2013 and 600 in 2012. For this reason,
main aeronautics manufacturers are investing heavily in flexible sys-
tems to reduce costs, improve quality and boost productivity, mainly
by adopting robots, automated guided vehicles and other technologies.

2.5.1 Assembly Task

As previously mentioned the use of robots in aircraft structural assem-
bly tasks is a challenge. As for example, dedicated riveting machines
are used to assemble small parts, while the assembly of large fuse-
lage sections is usually done manually. In [SBMB09] Sahr et al. con-
clude that the next step in today’s high-level assembly, in aerospace, is
to exchange the manual labor with flexible, adaptable and affordable
semi-automated systems.

The main problem in implementing semi-automated assembly so-
lutions is the need to integrate human operators and robots together
with auxiliary systems, such as a vision camera, since the strong preci-
sion requirements cannot be satisfied using industrial robots that have
a limited accuracy. The current airframe assembly process of com-
posites, metals and hybrid structures is affected by an important num-
ber of non-added value operations, which strongly causes disruptions
and prevents fast ramp-up and high production rates. For example, it

20 2. State of the art

can be considered one of the case study defined in the ongoing Euro-
pean project LOCOMACHS (LOw COst Manufacturing and Assem-
bly of Composite and Hybrid Structures, http://www.locomachs.eu/).
In particular, it consists in the simplified assembly of a generic air-
craft wing-box. In such a task, spars, ribs, hinge ribs and skin panels
must be properly assembled in order to reach the final configuration
(see Figure 2.3). The actual wing-box assembly process begins with
joining the internal structures of ribs and spars usually in huge floor-
mounted fixtures. After ribs and spars have been drilled and riveted,
the upper skin panels on the upper side are loaded and drilled. The
structure is, then, closed by assembling the opposite panels forming
the wing-box.

Figure 2.3 Common components in an air-craft wing-box.

In particular, spars and ribs must be accurately positioned one with
respect to the other and hold while drilling and riveting. To this aim,
reconfigurable fixtures are used as the one shown in Figure 2.4. At-
tached to this fixtures, there are several electric driven pick-ups that
are basically high precision 6-DOF parallel kinematic machines. The
correct part positioning is obtained by means of external metrology
systems as the 6-DOF laser tracker in Figure 2.4.

In addition to fixtures and pick-ups, standard serial 6-DOF indus-

2.5. Aircraft industry 21

Figure 2.4 Simplified picture of a wing assembly line with fixture, pick-ups, hinges
ans ribs and a laser tracker.

trial robots are used to perform the drilling/riveting operations once
the positioning task is completed. Each manipulator is equipped with
a drilling/riveting end-effector and other sensors useful to correctly lo-
cate the exact point to drill. In order to increase the flexibility and
avoid complete off-line programming, it is supposed that a human op-
erator roughly places the manipulator in front of the part to drill even
by physically grasping the end-effector and carrying it by means of
a built-in force control algorithm. By using sensor as high precision
cameras and reference markers, the manipulator is able to accurately
position itself at the exact point where to drill.

Moreover, quality check is required, as for example the diameter
of the drilled holes must meet the admitted tolerances. To this aim,
a human operator accesses to the working area and checks the hole’s
diameter by means of a proper probe.

2.5.2 Drilling Task
Drilling,fastener insertion, riveting, sealing, coating and painting ap-
plications, in addition to material handling, are the most recurrent op-
erations in aircraft assembly lines. Therefore, it is clear that the au-
tomation of such operations would lead great and immediate bene-

22 2. State of the art

fits to aircraft industry in terms of production rate. However, mainly
because of safety motivations and government regulations, hard con-
straints are requested to be met, especially concerning the process tol-
erances.

In this section, the focus is on the drilling task since the drilling
process is probably the most crucial phase of assembling airplane com-
ponents due to the large number of needed holes, making it the bottle-
neck of the whole manufacturing process. Differently from other in-
dustrial contexts, the tighter constraints make the drilling operations a
not trivial task by using low-cost industrial robots, thus, huge and ex-
pensive machines are used [OHK+10]. Recently, different approaches
have been presented in order to cope with aeronautics requirements
and many robotic drilling solutions have been developed. Mainly, the
research activities and the industrial efforts were focused on the de-
velopment of all-in-one robotic drilling systems. For example, the
Electroimpact developed a robotized drilling end effector for Airbus
UK Ltd. and a Kuka KR350 robot. The end effector is referred to
as DDEE (Drill and Drive End Effector), and incorporates four main
functions: push-up of components, drilling with panel detection, hole
inspection and bolt insertion [HS01] . Furthermore, the Electroim-
pact proposed ONCE (ONe-sided Cell End effector), a more complete
system to drill, countersink, and measure fastener holes in the wing
trailing edge flaps of the Boeing F/A-18E/F Super Hornet [DSFI02].
The second generation of Electroimpact ONCE robotic drilling system
[DeV09], successfully deployed in production, strove toward “oneup”
assembly, whereby the product was assembled one time (drilled, coun-
tersink, inspected, and ultimately fastened) without removal of compo-
nents for deburring, cleaning, sealing, etc. [DF08] . A robotic drilling
system, which uses orbital hole-drilling technology, was developed by
Novator AB in collaboration with Boeing, to overcome the obstacles
of drilling holes in a combination of both hard metals and composites
[WE09]. Another robotic drilling system for titanium structures was
presented in [BL11] . The system functions include locating work-
piece with a calibration stick or the vision system, weld mark inspec-
tion, one-sided clamping, drilling and reaming hole in material stack
combinations of titanium and aluminum, and real-time thrust force

2.5. Aircraft industry 23

feedback. In [OHK+10] and [ORJ07] , it is proposed a method for
high-precision drilling using an industrial robot with high-bandwidth
force feedback, which is used to eliminate the sliding movement (skat-
ing) of the end effector during the clamp-up to the workpiece surface.
In [BL11] , an heavy off-line programmed robot and a complex drilling
tool are adopted for drilling titanium components. As mentioned be-
fore, all these solutions involve complex CNC machines or very heavy,
customized robots in order to accurately counter-balance the forces in-
volved in the drilling process and provide the necessary rigidity to the
system [Isa09] . These systems fulfill all the requirements but are very
expensive and limited to a particular production. Moreover, although
all of the aforementioned systems are valid solutions, it is necessary
for the aviation industry of different countries to develop their own
robotic drilling systems because of intellectual property and various
products to assembly.

2.5.3 Low-cost and flexible architecture for robotized
drilling

This section shows a possible architecture to perform the drilling task
by using low-cost components. In particular, a low-accuracy robot
(with respect to the tolerances admitted by the aeronautics industry)
equipped with a force sensor and an off-the-shelf drilling tool is adopted.
The adoption of a force/torque sensor in the task at hand might be re-
quired for several reasons [AD94] . In the case reference jigs are not
used, it allows to control the force in the drilling direction while min-
imizing the tangential forces to prevent skating phenomena. On the
other hand, force control algorithms are needed in presence of ref-
erence jigs in order to take into account the imperfect knowledge of
the drilling tool position with respect to the drilling mask and prop-
erly control the force along the drilling direction. The architecture is
described both in terms of required hardware and designed software,
providing all the necessary details to lead to the final solution starting
from off-the-shelf robots.

The setup described below is installed at the Automatic Laboratory
of the University of Salerno. A SmartSix robot manifactured by Co-

24 2. State of the art

Figure 2.5 Robot with Drilling tool.

mau is adopted to drill aluminium components. This is a small size
6 Degrees Of Freedoms (DOFs) 6 kg payload serial chain robot with
an anthropomorphic structure as shown in Figure 2.5. This robot is
mainly used in automotive industry for arc-welding, sealing or paint-
ing operations. The robot is equipped with a C4G controller that al-
lows, among the other things, the control of the robot by using a stan-
dard external PC. This is nowadays a very common feature even for
industrial robots (like the considered one), thus, not underminining
the generality of The part to be drilled, it is an aluminum panel held
by a flexible fixture.

Figure 2.6 shows an overview of the software architecture adopted
for the drilling system. The main part of the architecture is represented
by the control unit that is in charge of gathering all the information
coming from the different peripherals (including the robot), elaborat-
ing the control strategy and sending back the control commands. The
control unit is a standard PC running a Linux operative system that has
been patched with a freely available real-time extension in order to get
a real time operative system [MDP00] . In order to produce efficient
and reusable code, all the software for the control of the system was

2.5. Aircraft industry 25

CO NTRO L UNIT

INDUSTRIAL

RO BOT

FO RCE/TO RQ UE

SENSO R

DRILLING

TO O L

Ethernet

PCIBUS

REAL

TIM E

ETHERNET

RO BOT

STATE

REFERENCES

DRILLING

CO M M ANDS

DRILLING

STATE

FO RCE

DATA

Figure 2.6 Software architecture.

written by using the Open Robot Control Software project (OROCOS)
framework [Bru01] , [oro] released under Free Software licenses. The
aim of OROCOS is to develop a general-purpose, free software, and
modular framework for robot and machine control. It is sometimes
referred to as middle-ware because it sits between the application and
the operating system and it takes care of the real-time communication
and execution of software components. OROCOS is designed in order
to naturally allows the modularity and re-usability of the software. In
fact, each one of the devices shown in Figure 2.6 is associated to an
OROCOS component that gathers information from it and sends back
commands. Information among the different components is ensured
by statically or dynamically defining components connectivity. This
choice allows to easily add new functionalities to the system. For ex-
ample, it is planned the adoption of a camera in order to locate the
position of the reference jig or of a thermal imaging camera for mon-
itoring the temperature during the drilling process, to on-line adapt
the process parameters and improve the quality of the final hole. As
stated above, the robot chosen for this setup is a Comau SmartSix (Fig-
ure 2.5), the smallest among the Comau robots. The C4G control unit
communicates with the control PC through a real-time communication
on an Ethernet network, at a frequency of 500Hz. At each time step,
the state of each robot axis (position, velocity, motor current and other

26 2. State of the art

monitoring information) are sent to the control PC which computes
the reference input. Concerning the latter, several operation modes are
allowed; in particular it is possible to send:

• joint position references and use the built-in Comau position
controllers (position mode);

• velocity references and use the built-in Comau velocity control
controllers (velocity mode);

• current references by allowing the user to design its own control
strategy (current mode).

Since one of the objective of the activity was to develop an as gen-
eral as possible solution, the first operation mode was selected. In fact,
almost all industrial robot controllers allow to externally generate joint
position commands, while only few controllers allow the velocity and
the current mode. The drilling tool is commanded through the control
PC that sends commands to the tool control box via Ethernet. A single
command that activates the concentric collet, starts the drilling task
and deactivates the concentric collet is available in the standard opera-
tion mode and with a cycle’s duration of about 10 seconds. Finally, the
force sensor is connected to the Control Unit by using a FTD-DAQ-
M1PCI-6220 DAQ card by National Instruments working on a PCI
bus.

2.5.4 Elements of a generic hyperflexible cell for air-
craft industry

As describes in the previous section, industrial robots usually work
with other things: processing equipment, work parts, conveyors, tools
and perhaps human operators. One of the contributions of this thesis
consists in presenting a new methodology to obtain a model oriented
to the control the sequencing of the activities of a robotic hyperflexible
cell. The cell behavior results to be hybrid since many components, in-
cluding human operators, can be abstracted as a discrete event system,
but the behavior of the robots should be represented in a 3D anima-
tion environment and modeled as a continuous variable system. Many

2.5. Aircraft industry 27

commercial tools can easily model the robot kinematics and dynam-
ics, such as Delmia from Dassault Systems and Robcad by Siemens,
but they are not adequate to represent discrete event dynamics. To
overcome the problem, in the approach proposed in [dAVJ11] the in-
formation flows in both directions, from discrete event simulation en-
vironment to 3D animation one and viceversa. In detail, a Coloured
Petri Net(CPN) is used to model the cell behavior at a high level of
abstraction. It models the activities of each cell component and its co-
ordination by a supervisory system. A CPN model can command the
robot, but the robot behavior is also subject to physical restrictions,
such as the position, velocity, acceleration and torque joint limits. The
successful execution of a command or the occurrence of a collision
must be informed by the 3D animation environment to the CPN sim-
ulator and changes the CPN evolution. Flordal et al. in [HMKD07]
presents a method that makes use of information in a 3D robot simula-
tion environment in order to automatically extract finite state models.
These models are used in the design of supervisory system for multi-
ple robots. The workspace is divided into zones and the supervisory
system coordinates the access of each robot to the zone. The finite
state model generates supervisors that avoid deadlocks. Differently
from [dAVJ11] the approach proposed in this thesis aims to obtain
a single model, based on hybrid CPNs, able to capture the discrete
event as well as the continuous time phenomena involved in the cell.
This allows to obtain more compact models with respect to approaches
based on automata and to take explicitly into account the robot trajec-
tories avoiding the extraction of information from other frameworks
as in [HMKD07]. Branicky and Chhatpar in [BC01] propose a sin-
gle model, based on hybrid automata, to model a force-guided robotic
assembly systems. However, the focus is on the interaction between
robots and environment, and so, hybrid automata with few states are
obtained, while in this thesis the focus is between robots and other cell
components, that lead to very complex models. In [CL12] a framework
is introduced to represent robot task plans based on Petri nets (PNs).
The overall model is obtained from the composition of simple mod-
els, leading to a modular approach. The framework models single and
multi-robot tasks, controllable (e.g., decision to start an action) and un-

28 2. State of the art

controllable (e.g., failure to track a moving object, reaching a given lo-
cation) events. The approach is oriented to autonomous robot systems
whose actions can have several uncertain effects. Therefore, ordinary
PNs and Generalised Stochastic PNs views of the model are used to re-
trieve logical/qualitative and (probabilistic) performance/quantitative
properties of the robot task plans, respectively. With respect to the
work [CL12], this thesis focuses on resource assignment, simulation
and it is based on a hybrid model.

According to the taxonomy developed in [BCC+12a], the multi-
arm work-cell configuration considered in this thesis is composed by
positioners (elements moving the workpiece) and workers (elements
executing the work on the workpiece). Usually, workers are robotic
manipulators but they can be human operator, while positioners could
be either specialized devices (e.g., rotating tables, conveyors) or general-
purpose robotic manipulators as well. The availability of low cost of
wireless communication devices allows to know in real time when a
manual operation is started or completed. Notice that the moving of a
man in the cell is uncontrollable, and it may happen that a man enters
in a zone where the simultaneous presence of men and manipulators
is forbidden, thus requiring robots’ trajectory replanning. Moreover,
robots carrying sensors are also considered. The term watchers is
used to denote these robots, whose motion must be planned according
to the cooperative task in addition to that of workers and positioners.

The elements of the architecture are very different and with specific
time characteristics. For this reasons, high level supervisors is needed.
An approach to coordination for this kind of task will be introduced in
the chapter 4.

Chapter 3

Petri Nets: Notations and
Definitions

In this Chapter the formalisms used in this dissertation are briefly re-
called.

At first PNs are introduced. Then, a brief overview on CPNs is
furnished. For further details on PNs and on simulation of Petri Nets
(PNs), the reader can refer to [Mur89] and to [BCC07a].

Finally a background on the Hybrid Petri Nets (HPNs) and on the
Colored Modified Hybrid Petri Nets (CMHPN) is presented.

3.1 Petri Nets (PNs) and Colored Petri Nets
(CPNs)

PNs are widely used to model and analyze manufacturing systems.
The reasons are their formal semantics, graphical nature, expressive-
ness in representing explicitly sequential behavior and concurrency,
the availability of analysis techniques to prove structural properties
(invariance properties, deadlock, liveness, etc.).

A Place/Transition (P/T) net is a 4-tuple N = 〉P, T,Pre,Post| ,
where P is a set of w places (represented by circles), T is a set of n
transitions (represented by black bars), Pre : P ⊆ T ∀∈ N (Post :
P ⊆T ∀∈ N) is the pre (post-) incidence matrix. C = Post Pre is

30 3. Petri Nets: Notations and Definitions

the incidence matrix. The net marking is represented as a vector m �
Nm. The marking of a place p is a scalar value mp � N. A transition
t is enabled at m iff m →Pre(×, t) and this is denoted as m[t| . An
enabled transition t may fire yielding the marking m′ = m +C(×, t)
and this is denoted as m[t|m′. The symbols •p (•t) and p • (t •) are
used for the pre-set and post-set of a place p � P (transition t � T),
respectively, e.g. •t =

}
p � P Pre(p, t) �= 0

(
.

As shown in Fig. 3.1(a), there is a structural conflict when
•ti ∧• tj �= ∪. If ti and tj are both enabled, the conflict becomes a
behavioral conflict.

Let S = 〉N,m0| be a Petri net system, where N is a PN and m0

is its initial marking. Marking of S can be (partially) observable. In
such a case, it can be divided in m = [mO,muO], where mO(muO)
is the marking of observable (unobservable) places. We call PO(PuO)
the set of observable (unobservable) places.

A firing sequence from m is a sequence of transitions σ = t1 . . . tk
such that m

{
t1|m1

{
t2|m2 . . .

{
tk|mk, and this is denoted as m[σ|mk.

An enabled sequence σ is denoted as m
{
σ| , while ti � σ denotes that

the transition ti belongs to the sequence σ. The function σ : T ∈ N,
where σ(t) represents the number of occurrences of t in σ, is called
firing count vector of the firing sequence σ. As it has been done for the
marking of a net, the firing count vector is often denoted as a vector
σ � Nn. Note that, if a sequence is made by a single transition, i.e.,
σ = ti, then the corresponding firing count vector is the i-th canonical
basis vector denoted as ei.

A marking m′ is said to be reachable from m0 iff there exists a se-
quence σ such that m0[σ|m

′. R(N,m0) denotes the set of reachable
markings of the net system 〉N,m0| .

A net system S is bounded if there exists a positive constant K
such that m(p) ≥ K, ∅m(p) � R(N,m0).

A net system S is live if all its transitions are live. A transition
t is live under the initial marking m0 if for every marking m reach-
able from m0, it exists a sequence σ, fireable from m, which contains
transition t. In other words, whatever the net evolution, a possibility
always remains for firing t.

A PN system S = 〉N,m0| is said to be reversible if, for each

3.1. Petri Nets (PNs) and Colored Petri Nets (CPNs) 31

marking m � R(N,m0), m0 is reachable from m. Thus, in a re-
versible net one can always get back to the initial marking.

The reachability graph of a bounded net S = 〉N,m0| is a directed
graph RG such that: i) the root node of RG is the initial marking
of the net; ii) the other nodes of RG are associated to the reachable
markings of S; iii) an arc labeled t between two nodes X and Y of RG
represents that the firing of transition t leads the net system from the
marking associated to the X to the marking associated to Y

A net system S = 〉N,m0| is bounded, live and reversible iff its
reachability graph is finite, strongly connected and each transition t
labels at least one arc [DHP+93].

All the formal definitions given for PNs can be naturally extended
to Colored PNs (CPNs). Formally, a CPN is a 6-tuple
C = 〉P, T,Pre,Post,Cl,Co| . As in PNs, P is a set of m places (rep-
resented by circles), T is a set of n transitions (represented by bars). Cl
is the set of colors. Co: P∩T ∈ Cl is a color function that associates
to each element in P ∩T a non-empty ordered set of colors in the set of
possible colors Cl. Forall p � P,Co(pi) = }ai,1, ai,2, ..., ai,ui

〈 ≤ Cl is
the ordered set of possible colors of tokens in pi, and ui is their num-
ber. Forall t � T,Co(tj) =

}
bj,1, bj,2, ..., bj,vj

(
≤ Cl is the ordered set

of possible occurrence colors in tj , and vj is their number. For each
place pi � P , the marking mi is defined as a non-negative multi-set
over Co(Pi). The mapping mi : Co(Pi) ∈ N associates to each pos-
sible token color in Pi a non-negative integer representing the number
of tokens of that color that is contained in the place pi. The column
vector of ui non-negative integers, whose h-th component mpi(h) is
equal to the number of tokens of color ai,h that are contained in pi, is
denoted as mpi . The marking of a CPN is an m-dimensional column
vector of multisets: m = [mp1 ...mpm]

T . For the sake of simplicity, a
token of color “c1” contained in a place pi will be indicated with the
symbol (c1).

In literature, more than one formal definition for CPNs exist, de-
pending on how the incidence matrix and transition colors are defined.
In the formalism chosen in this work, matrix entries are represented by
matrices. Pre and Post are the pre-incidence and post-incidence w⊆n-
sized matrices, respectively. Pre(pi, tj) is a mapping from the set of

32 3. Petri Nets: Notations and Definitions

(a) (b)
Figure 3.1 Conflict in Petri Nets: (a) structural conflict and (b) behavioral conflict.

(a) (b)
Figure 3.2 (a) Unmarked CPN ; (b) Marked CPN.

occurrence colors of tj to a non-negative multiset over the set of colors
of pi, namely, Pre(pi, tj) : Co(tj) ∈ N(Co(pi)), for i = 1, ..., w and
j = 1, ..., n. Pre(pi, tj) represents a matrix of ui⊆ vj non-negative in-
tegers whose generic element Pre(pi, tj)(h, k) is equal to the weight
of the arc from place pi w.r.t color ai,h to transition tj w.r.t color bj,k.
Post(pi, tj) : Co(tj) ∈ N(Co(pi)), for i = 1, ...,m and j = 1, ..., n.
Post(pi, tj) represents a matrix of ui⊆ vj non-negative integers whose
generic element Post(pi, tj)(h, k) is equal to the weight of the arc
from transition tj w.r.t color bj,k to place pi w.r.t color ai,h. The inci-
dence matrix C is a m ⊆ n matrix, whose generic element C(pi, tj) :
Co(tj) ∈ Z(Co(pi)), for i = 1, ..., w and j = 1, ..., n, is the ui ⊆ vj
matrix of integer numbers C(pi, tj) = Post(pi, tj) Pre(pi, tj). The
concepts of pre-set and post-set of a place p � P or a transition t � T
are naturally inherited from PNs, but colors must be also considered:
•ticj =

}
ticj � T Pre(phck, ticj) �= 0

(
.

In Fig. 3.2(a) a CPN with a structural conflict is shown. it is made

3.2. Hybrid Petri Nets (HPNs) 33

up of a place p, having Co(p) = }c1, c2〈 , and of two transitions, t1
and t2 with Co(t1) = c1,1 and Co(t2) = }c2,1, c2,2〈 . When t1 fires,
one token, corresponding to color c1,1, is removed from place p; t2
can fire both under color c2,1 and c2,2 and when it fires, one c2,1 or
c2,2 token, respectively, is removed from p. In Fig. 3.2(b) a token is
added to the CPN in Fig. 3.2(a); notice that the conflict is still structural
(not behavioral), since no c1,1 token is present in p and, consequently,
transition t1 cannot fire.

When time is added to PNs and CPNs a time function is defined,
which associates to each transition ti in the case of PNs, or to each
transition color ticj in the case of CPNs, a time duration from en-
abling to firing. In this case the PNs and CPNs become TPNs and
CTPNs. Notice that timed and un-timed (also said immediate in the
next) transitions will be represented with empty filled boxes and black
bars, respectively.

3.2 Hybrid Petri Nets (HPNs)
A hybrid system is defined like a system consisting of a mixture of
a continuous time system and a discrete event system (DES), having
each one an own state space. These two systems are not independent
but they influence each other. For the continuous time system, the in-
fluence of DES results in abrupt changes in the dynamic and can occur
either as switches in the vector field or as jumps in the state. Reversely,
the continuous evolution influences the DES one by generating events
that affect the discrete states [PL95].

A continuous system can be described by differential equations

ẋ = f(x(t),u(t), t), x(0) = x0 (3.1)

y(t) = g(x(t),u(t), t) (3.2)

where x � Rn is the state vector, u � Rm is the input vector and
y � Rr is the output vector. In particular, if the interest is focused on
the class of hybrid systems having autonomous commutations, i.e. sys-
tems for which changes in the dynamic occur if an analytical boundary

34 3. Petri Nets: Notations and Definitions

condition about the instantaneous state value is reached, the equation

ẋ = f(x(t),u(t)) (3.3)

with

f =

⎛
f 1(x(t),u(t)) for h(x(t)) ≥ 0
f 2(x(t),u(t)) for h(x(t)) > 0

(3.4)

can be used, where it has been supposed the system can switch only
between two possible dynamics (f 1 and f 2) and h is the boundary
condition.

For systems having linear, time-invariant, continuous part, like the
ones treated in this thesis, each dynamic in (3.4) can be written as:

f i(x(t),u(t)) = Ai ×x(t) +Bi ×u(t) (3.5)

where Ai is a constant n-order square matrix and Bi is a (n⊆m)-order
matrix.

To model hybrid systems behavior HPNs can be used [PL95, GU98,
DA05, DPP09].

In more general hybrid systems, switching between different dy-
namics is caused not only by the boundary conditions but also by
external input events, also called exogenous events. An exogenous
event, as the term suggests, is an event originating from the outside
world; by opposition, a change in internal state, as the occurrence of a
boundary condition, can be called endogenous event or internal event.
The external events can be “controllable” (i.e. their occurrence can
be forced/disabled by an external agent, for example by a controller)
or not controllable (i.e. their occurrence cannot be forced/disable by
an external agent); an endogenous event is always not controllable.
When changes in dynamic are ruled also by exogenous events, the
HPNs used to model the system behavior are said synchronized, as
those used in this dissertation: for these HPNs, an external event is
associated with some transitions and the firing of these transitions oc-
curs when the transition is enabled and the associated event occurs.
Transitions whose firing is controlled by the occurrence of an external
or internal event are called “synchronized”. If the external event is a
controllable event, then also transitions synchronized to such an event

3.2. Hybrid Petri Nets (HPNs) 35

Figure 3.3 A basic HPN.

are called controllable, otherwise if a transition is synchronized to an
uncontrollable event, then such a transition is said uncontrollable.

A HPN can be view as the combination of a “discrete” PN and a
“continuous” PN.

Literature about HPNs is wide: a their complete presentation is
given in [DA05]; in [PL95] it is shown how HPNs can be used to
describe a general hybrid system having jumps in the state space and
switches in its dynamic. Application of HPNs to oil refinery can be
found in [WZC08a, WCZ09, WCCZ10].

Several variants of HPNs have been proposed. Differential Petri
Nets (DPNs) are introduced the first time in [DK98]; in these nets the
marking of a differential place may be negative as well as the weights
of arcs to or from a differential place. In [DA05], it has been shown
how the behavior of DPNs can be obtained using HPNs whose transi-
tions firing speeds is a function of the net marking, and for this reason
they are called Modified HPNs (MHPNs) [DA05]. Then, it is not a
limitation the use of no-negative markings and weights, as it is done in
this dissertation.

To model systems having first-order continuous behavior, which
can be studied by linear algebraic tools, Balduzzi et al. introduce the
First-Order HPNs (FOHPNs) [BGM00] and use them to model man-
ufacturing systems [BGS01]. In FOHPNs continuous transition firing
speeds are constant values, chosen by a control agent in a fixed range.
When an event occurs, the net state changes, and a controller can de-
cide to vary speed values, while between two event occurrences the
firing speeds remain constant. In this thesis firing speed values are not
chosen in a fixed set but they are function of the marking of the net.

In formal way, a HPN is a 7-tuple H = 〉P, T,Pre,Post, h, δ,ν|
such that: P = PD

⋂
PC , with PD

∧
PC = ∪, where PD (PC) is

36 3. Petri Nets: Notations and Definitions

the set of wd discrete (wc continuous) places, drawn like one (two)
line circles; T = TD

⋂
TC , with TD

∧
TC = ∪, where TD is the set

of nd discrete transitions, which can be both immediate (drawn like
black bars) and timed (drawn like white bars) and TC is the set of nc

continuous transitions, drawn as a two lines boxes; Pre : P⊆T ∈ R+

is the pre-incidence matrix; Post : P ⊆T ∈ R+ is the post-incidence
matrix; h : P

⋂
T ∈ }D,C〈 , called ”hybrid function”, indicates

for every node whether it is a discrete node (sets PD and TD) or a
continuous one (sets PC and TC); δ : TD ∈ (R+)nd is the firing delay
vector, whose element δi is the firing delay associated to each discrete
transition tDi : if δi = 0 then the transition tDi is immediate, else if
δi > 0 then tDi is timed. Function ν : T c ∈ (R+)nc is the firing speed
vector. Note that in case of discrete nodes, Pre and Post assume
integer positive values. The incidence matrix of the net is defined as
C = Post Pre and it can be written as the block matrix:

C =

)
CCC CCD

CDC CDD

[
(3.6)

where CCC is the block regarding connections between continuous
nodes, CDD is the block regarding connections between discrete nodes,
CCD is the block regarding connections between continuous places
and discrete transitions and CDC is the block regarding connections
between discrete places and continuous transitions.

HPN marking is a function m =
}
mC ,mD

(
, with

mC : PC ∈ R+, mD : PD ∈ N, that assigns to each continuous
place a real number and to each discrete place a nonnegative integer
number of tokens (graphically represented as black dots in the discrete
places). The notation m(τk) is used to denote the value of the marking
of the net at the instant τk. The marking of a place p at a time τk is
denoted by mp(τk). The symbols •p (•t) and p • (t •) are used for the
preset and postset of a place p � P (transition t � T), respectively,
e.g. •t =

}
p � P Pre(p, t) > 0

(
.

A discrete transition tD is enabled at time τk if
mp(τk) → Pre(p, tD), ∅p � •tD. A transition tD can be either
autonomous or synchronized to a logical expression, function of an
external control input g and/or of an internal condition e. Both g and

3.2. Hybrid Petri Nets (HPNs) 37

e are boolean functions g, e : TD ∈ }0, 1〈 . The former becomes true,
so generating an exogenous event, when a controller sets to true the
external event it is associated to; the latter becomes true, so generating
an endogenous event, when the internal event it is associated to is veri-
fied. A discrete transition tD can fire if it is enabled and the associated
logical expression becomes true, i.e. both the endogenous and the ex-
ogenous events its firing is synchronized to occur. As for example, in a
system formed by two masses traveling along a guidepath, an internal
condition can be associated to the reaching of a threshold distance that
makes masses decelerate; an external control input for the same system
is an asynchronous stop command arriving from an external controller;
a logical expression can be the logic function AND between g and e,
e.g. g { e.

A continuous transition tC � TC is enabled at time τk if
i) mD

pD(τk)→Pre(pD, tC), ∅pD � •tC and
ii) mC

pC (τk) → 0 ∅pC � •tC . To each continuous transition tCi is
associated the instantaneous firing speed (in the following also called
simply firing speed) νi: if tCi is disabled νi = 0; when tCi is enabled
νi is equal to the maximal firing speed ν̄i, indicated near the transi-
tion. The firing of continuous transitions cannot change the marking
of discrete places, consequently CDC(p

D, tC) = 0, ∅pD � PD, thus
CDC = 0. The time derivative of the marking of a continuous place
pC ,

dm
pC

dt
, is called balance and it is defined as: ṁpC = I O where

I =
∫

tCj ∈•pC Post(pC , tCj)νj is the feeding speed of the place pC ,

while O =
∫

tCk ∈pC• Pre(pC , tCk)νk is the pC draining speed. The evo-
lution of the net can be described by its fundamental equation (written
in a way pointing out the continuous part and the discrete part):

[
mC(τk)
mD(τk)

]
=

[
mC(τk−1)
mD(τk−1)

]
+

+

[
CCC CCD

0 CDD

]([
0

σ(τk)− σ(τk−1)

]
+

∫ τk
τk−1

[
ν
0

])

(3.7)

where σ(τk) : T
D ∈ Nnd is the discrete firing vector whose compo-

nent σtDi
(τk) represents the number of times the discrete transition tDi

is fired up to the current time τk.

38 3. Petri Nets: Notations and Definitions

For the sake of clarity, from now on the term “synchronized tran-
sition” will not be used any more and synchronized transitions will be
called just controllable or uncontrollable.

A basic HPN is shown in Fig. 3.3, having:

• PC =
}
p1
(

, PD =
}
p2, p3

(
;

• TC =
}
t1
(

, TD =
}
t2, t3

(
where t3 is an immediate uncontrol-

lable discrete transition, with associated the internal condition
e3 and t2 is a discrete timed transition;

• δ =
}
δ2
(

;

• C =

⎞
⎠ 1 0 0

0 1 1
0 1 1

⎡
∑.

For basic HPNs, the maximal firing speed of continuous transitions
is a constant value, but powerful modifications have been proposed
where continuous transition maximal firing speed is a function of the
input places marking, of the input vector and of the time:

νt(τ) = f(m(τ),u(τ), τ) (3.8)

These kind of HPNs are called Modified HPNs (MHPNs).

3.3 Colored Modified Hybrid Petri Nets
Colored Modified Hybrid Petri Nets (CMHPNs) have been presented
in [BCC12c]. A CMHPN is a four-tuple

}
H,Cl,Co,ν

(
where H is a

HPN; Cl is the set of colors. Co: P ∩T ∈ Cl is a color function that
associates to each element in P ∩ T a set of colors; for all tCi � TC ,
ν is the mapping Co(tCi) ∈ R+ that associates an instantaneous firing
speed to each color of the continuous transition tCi . For all pi � P ,
Co(pi) = }ai,1, ai,2, ..., ai,ui

〈 ≤ Cl is the set of possible colors of pi,
and ui is their number. For all tj � T,Co(tj) =

}
bj,1, bj,2, ..., bj,vj

(
≤

Cl is the set of possible occurrence colors of tj and vj is their number.
For all pi � PD, the marking

3.3. Colored Modified Hybrid Petri Nets 39

mD
pi

is defined as the mapping Co(pi) ∈ N that associates to each
possible color of pi a non-negative integer representing the number of
tokens of that color contained in place pi. For the sake of simplicity, a
discrete marking w.r.t. color r is indicated as cr. Logical expressions
associated to the discrete transitions are column vectors of size vj:
their r-th element corresponds to the logical function associated to the
transition firing color r.

For all pi � PC , the structured marking mC
pi

is defined as the map-
ping Co(pi) ∈ (R+)

(q), thus, at each place pi � PC , w.r.t. the color r,
a vector of q non-negative real numbers,< x1 . . . xq >r, is associated.
The q values of the marking are called “attributes” and they completely
describe the state of the system.

For all tCi � TC , ν(tCi) = νi= (νi,1, νi,2, . . . , νi,vc)
T is the vector of

firing speeds of the continuous transition tCi . Its r-th element νi,r, is
the firing speed of tCi w.r.t. the color r and, when tCi is enabled, it is
a linear, time-invariant function of the marking of the tCi input places
and it can be written as f i(x(t),u(t)) = Aix(t) +Biu(t) where Ai

is a constant q-order square matrix and Bi is a (q⊆z)-order matrix,
where z is the dimension of the input vector u(t).

Similarly, ∅tDi � TD, δi = (δi,1, . . . , δi,vd)
T is the column vector

of the discrete transition tDi firing delays. The r-th element δi,r is the
firing delay associated to the color r.

Pre(pi, tj) is a mapping Pre(pi, tj) : Co(tj) ∈ R+(Co(pi)), for
i = 1, . . . , w = wd + wc and j = 1, . . . , n = nd + nk. At the same
way Post(pi, tj) is defined as the mapping Post(pi, tj) : Co(tj) ∈
R+(Co(pi)), for i = 1, . . . , w and j = 1, . . . , n. Pre(Post)(pi, tj) is
a matrix of dimensions ui⊆vj; the element Pre(pi, tj)(r, s) = Preij,rs
(Post(pi, tj)(r, s) = Postij,rs) is the weight of the arc connecting
pi (ti) w.r.t. the color r (color s) to tj (pi), w.r.t. the color s (color
r). The nature of the element depends on the kind of nodes it con-
nects, e.g. weighs of arcs connecting transitions to discrete places
are non-negative integer numbers, while weighs of arcs connecting
transitions to continuous places are row vectors of non-negative real
numbers, with dimension equal to q. When weights are diagonal ma-
trices, having all the diagonal elements equal to 1, weights are not
reported near the arcs. Elements of C are the matrices C(pi, tj) =

40 3. Petri Nets: Notations and Definitions

Figure 3.4 A colored modified HPN.

Post(pi, tj) Pre(pi, tj) with dimension ui ⊆ vj.
An example of colored modified HPN is shown in Fig. 3.4, where:

• continuous place p1 has a structured marking made up of two
attributes, x1 and x2;

• colors have been introduced: in Fig. 3.4 the marking of the net
with respect to the generic color r is shown;

• firing delay δ2 is a vector, having as many components as many
are the occurrence colors of transition t2;

• e3 is a vector since a different internal condition must be defined
for each occurrence color of t3;

• firing speed of continuous transition t1 is a linear function of the
marking of p1 preset. In particular for the example proposed, u
is a scalar input and A and B are two matrices with dimensions
2⊆ 2 and 2⊆ 1, respectively.

Under the initial marking of p1, continuous transition t1 is not en-
abled: it becomes enabled when internal condition e3 is satisfied and
t3 fires. Once t1 is enabled it decreases the marking of p1 with respect
to the law 3.4

⋃τk
τk−1

2dτ until p1 marking becomes zero or until the
firing of t2.

Chapter 4

Automated synthesis of
HCMPN models

This chapter focuses on the automated model generation of semi-automated
hyperflexible robotic cells for aircraft industry. One of the contribu-
tions of this thesis consists in presenting a new methodology to obtain
a model oriented to the control the sequencing of the activities of a
robotic hyperflexible cell.

4.1 Definition of a robotic cell in aircraft in-
dustry

A robotic cell can be modeled from many points of view. In this chap-
ter, the focus is on the sequencing of the activities of a semi-automated
robotic cell for aircraft industry. This chapter presents a methodol-
ogy that allows to obtain a formal model of such a robotic cell, auto-
matically, from high level specifications and the behavior of available
resources in terms of states, events and state transition function. A
resource is a dynamic system that can execute elementary activities
called services. A service is executed after the occurrence of a service
request event, if some conditions depending on resource state are ver-
ified. A service completion event is generated as soon as the service
has been completed. The cell specifications are expressed as tasks that

42 4. Automated synthesis of HCMPN models

specify in which order to execute a set of services to complete an ac-
tion, providing a desired sequence of phases where a subset of service
request and service completion events is admissible.

The evaluation of conditions may require the availability of data
(e.g. the destination position, the value of a measurement). Input data
are available when the associated input event occurs. Input data han-
dling is specified by actions that are logical expressions associated to
a discrete state (task phase). Actions are evaluated when the resource
(task) leaves a discrete state (task phase), that is when a state (phase)
transition event occurs. Output data handling is specified assigning an
output event to an output data, that can be a data produced by an ac-
tion or an input data to be passed to another block as input. The output
event occurrence time indicates when the output data is available.

Resources and tasks are considered as blocks that can be connected
each others (see Fig. 4.11) by means of proper inputs and outputs.

A resource can be of two different kinds:

1. Discrete Resource (DR) - a resource that can assume only dis-
crete states (e.g. idle or busy); for example, it can model a hu-
man operator or a buffer position.

2. Hybrid Resource (HR) - a resource that has discrete and con-
tinuous states; for example, it can model a vehicle or a robotic
arm.

Definition 1. A DR is a block DRB = (Q, q0, ID, OD,Λ, f), shown in
Fig. 4.11(a).

Q is the set of discrete states.
q0 is the discrete initial state.
ID is the input set composed of the service request events and of

data signals, if they are needed for the execution of services (e.g. the
position to reach at the end of a movement).

OD is the output set composed of service completion events, data
signal, if they must be provided by resources as result of the completed
service (e.g. the value of a measurement), and the current discrete state
q.

Λ is the set of conditions that are logical expressions depending on
the occurrences of service request events sr, service completion events

4.1. Definition of a robotic cell in aircraft industry 43

Figure 4.1 hmn f

current state condition duration next state
q λ δ(q, λ) q′

idle acquisition request 0 assigned
assigned go to pos 0 moving
assigned start disassembling 0 inspecting
assigned release request 0 idle
moving at final position 0 assigned

disassembling disassembling completed 0 assigned

sc, internal events e (e.g., the reaching of a particular dynamic mode,
the reaching of a particular discrete state, excess of a threshold by a
dynamic state).

The internal behavior of a DRB is defined by means of the tran-
sition function f : (Q ⊆ Λ ⊆ R) ∈ Q that, for each discrete state
q � Q yields the next state q′ = f(q, λ, δ(q, λ)) that is reached when
the condition λ � Λ is true and the time duration δ(q, λ) is elapsed. If
δ(q, λ)=0 the state transition from q to q′ is said immediate otherwise
is called timed.

The following instructions are used to define a discrete resource:

• DefineDiscreteResource(name, Q, f , q0, Isr , Osc)

where name is the symbolic name that univocally identifies the
resource; Isr is the set of the input service request events and
Osc is the set of the output service completion events;

• AssignData(name, eventDataFunction)
where eventDataFunction: Λ ∈ D, where D is the set of data
signals, is a function that associates input and output data to the
corresponding transition event;

• AssignActions(name, actionTable)
where actionTable is the table that specifies for each discrete
state the associated actions and the input data required for its
evaluation.

As an example, consider the problem of modeling a human opera-
tor that can enter in a robotic cell to move the arms close to a desired

44 4. Automated synthesis of HCMPN models

Figure 4.2 hmn eDFunction
event datainput event output event

go to pos posDes

position or to execute some manual operations. Assume that its dis-
crete states are hmn Q=}idle, assigned, moving, disassembling〈 ; its
input service request set is hmn Isr=}acquisition request, go to pos,
release request〈 while its set of the output service completion events is
hmn Osc=}at final position〈 ; the transition function f and eventData-
Function are shown in table of figure 4.1 and 4.2, namely respectively
hmn f and hmn eDFunction.

Then the discrete resource Human can be defined with the instruc-
tions
DefineDiscreteResource(Human, hmn Q, hmn f , “idle”, hmn Isr , hmn Osc)
AssignData(Human, hmn eDFunction).

Since human operator must not perform any action, there are not
any actions associated to any state, table actionTable is not defined and
the instruction AssignActions(name, actionTable) is not used.

HRs have discrete states but they have also a continuous state x
and a continuous linear time invariant dynamic law ẋ(t) = Aix(t) +
Biu(t) for each continuous mode, where Ai and Bi are matrices and
u(t) is an external input. As example, usually a robot trajectory has
three continuous modes (constant speed, constant acceleration or con-
stant deceleration) and so a HR state can be represented by the at-
tributes vector x =< position, velocity >, and the input u(t) is the
constant acceleration, a.

Definition 2. A HR is a block HRB = (DRB,X,x0, Ci,u,x), shown
in Fig. 4.11(b).

DRB = (Q, q0, ID, OD,Λ, f) is a discrete resource corresponding
to the discrete states of the HR.

X is the set of the continuous states.
x0 is the initial continuous state.
Ci is the triple (Ai,Bi, Qi), where Ai and Bi are the matrices as-

sociated to the i-th continuous mode and Qi ≤ Q is the set of discrete
states where the i-th continuous mode is admissible.

4.1. Definition of a robotic cell in aircraft industry 45

u is the continuous time input.
x is the continuous state.
The following instructions are used to define a hybrid resource:

• DefineHybridResource(name, DRB, X, x0 continuousModes, hy-
bridTable);

where name is the resource name, continuousModes is the set of
symbolic names that univocally identify each continuous mode,
hybridTable is the table that associates a dynamic law to each
continuous mode (i.e. for each continuous mode it specifies the
triple Ci = (Ai,Bi, Qi) and the input vector u).

Data and actions assignment for the HR is accomplished by us-
ing the same two instructions introduced for discrete resources.

Figure 4.3 wtc f

current state condition duration next state
q λ δ(q, λ) q′

idle acquisition request 0 assigned
assigned go to pos 0 moving
assigned start inspection 0 inspecting
assigned release request 0 released
released (acquisition request

∨
traveling at constant speed) 0 assigned

released at home position 0 idle
moving at final position 0 assigned

inspecting inspection completed 0 assigned
accelerating go at constant speed 0 constant speed
accelerating at deceleration position 0 decelerating

constant speed accelerate 0 accelerating
constant speed (too fast at deceleration position) 0 decelerating
decelerating (at final position at home position) 0 stopped

stopped (go to pos release request) 0 accelerating

As an example, consider the problem of defining a watcher as a
resource that can move with constant speed, as well as accelerating or
decelerating and that, as more, is able to execute inspections at prede-
fined positions.

Assume that its discrete states are wtc Q = }idle, assigned, re-
leased, moving, inspecting, accelerating, constant speed, decelerating,

46 4. Automated synthesis of HCMPN models

stopped〈 , while its continuous modes are wtc cModes = }acc, const,
dec〈 . The continuous state is described by the vector x =< x1, x2 >,
where continuous variable x1 and x2 are associated to watcher posi-
tion and velocity, respectively. The initial continuous state is x0 =<
HomePos, 0 >, where HomePos is the watcher home position. The
resource input events are wtc Isr = }go to pos, start inspection, acqui-
sition request, release request〈 while its output events are wtc Osc =
}inspection completed, at final pos〈 . Moreover, the transition function
f , represented by the table named wtc f , and the hybridTable, named
wtc hTable, are shown respectively in table of figure 4.3 and in table

of figure 4.4, where A1 = A2 = A3 =

]
0 1
0 0

{
, B1 = B3 =

]
0
1

{
,

since the continuous mode equations are respectively (ẋ1 = 0, ẋ2 =
a), (ẋ1 = 0, ẋ2 = 0) and (ẋ1 = 0, ẋ2 = a) for acceleration, constant
speed and deceleration mode.

Figure 4.4 wtc hTable
continuous mode discrete state q Ai, Bi, u

acc accelerating A1, B1, a
const constant speed A2, 0, 0
dec decelerating A3, B3, a

Then, a watcher can be defined using the instruction
DefineHybridResource(Watcher, wtc Q, wtc f , “idle

∨
stopped”, wtc Isr , wtc Osc ,

wtc cModes, < HomePos, 0 >, wtc hTable)
AssignData(Watcher, wtc eDFunction)
AssignAction(Watcher, wtc aTable)

In table of figure 4.5 the eventDataFunction associated to resource
Watcher, named wtc eDFunction, is reported. In table of figure 4.6,
the actionTable associated to resource Watcher, named wtc aTable, is
shown.

Figure 4.5 wtc eDFunction
event datainput event output event

go to pos posDes
release request homePos

inspection completed result

4.1. Definition of a robotic cell in aircraft industry 47

Figure 4.6 wtc aTable
q[> q′ actions data

assigned [> moving posDes:=destPos destPos
assigned [> released posDes:=homePos homePos

accelerating [> constant speed posDec:=f(posDes,x2,vmax)
constant speed [> accelerating posDec:=f(posDes,x2,vmax)

stopped [> accelerating posDec:=f(posDes,x2,vmax)

Definition 3. A task is a block TB = (S, s0, IT , OT ,Λ, φ), shown in
Fig. 4.11(c).

S is the set of phases.
s0 is the initial phase.
IT is the input set composed of service completion events, resources

current discrete and continuous states, data, when provided at the end
of a service.

OT is the outputs set composed of service request events and data,
if needed to execute services.

Λ is the set of conditions.
The internal behavior of a TB is defined by means of the transition

function φ : (S⊆Λ) ∈ S that specifies the task internal evolution: for
each phase s � S identifies the next phase s′ = φ(s, λ) that is reached
when a condition λ � Λ is true.

The following instructions are used to define a task:

• DefineTask(taskName, S, φ, s0, Isc ,Osr);

The fields have the following meaning: taskName, the sym-
bolic name of the task that univocally identifies it; Isc , the input
service completion events set; Osr , the output service request
events set.

• DefineLinks(taskName, resourceFunction);

resourceFunction: Λs ∈ (R ⊆ N), with Λs � Λ= set of ser-
vice request and completion events and R=set of (discrete and
hybrid) defined resources, is the function that indicates for each
service request and completion which are the involved resources
and how many resources of that kind are necessary to complete
the service.

48 4. Automated synthesis of HCMPN models

Data and actions assignment for the task is accomplished by us-
ing the same two instructions introduced for the resources, with
the only difference that field name of both instructions contains
the task name and that actionTable indicates the associated ac-
tions and the relative required input data for each task phase s.

As for example consider the case to model a drilling task, described
as follow:

Drilling task. A drill hole has to be done by the worker in an un-
conformable position. Desired position is first reached by the watcher
that, when arrived, provides to the worker the final destination. The
watcher waits until the worker reaches the drilling position.

The drilling task can be defined using the instructions:
DefineTask(Drilling, drl S, drl φ, “ready”, drl Isc , drl Osr)
DefineLinks(Drilling, drl rFunction).

The sets of Drilling task phases, service request and completion
events are the following: drl S=}ready, wtc aquired, wtc moving, wait-
ing for wrk, wrk acquired, wrk moving, wrk arrived, wtc released,
drilling, drilling done, end〈
drl Isc=}wtc at final position, wrk at final position, drilling completed〈 ;
drl Osr=}wtc acquisition request, wtc go to pos, wrk acquisition re-
quest, wrk go to pos, wtc release request, start drilling, wrk release
request〈 .
The transition function φ and the resourceFunction associated to Drilling
task are shown in table of figure 4.7 and 4.8, and namely drl φ and
drl rFunction, respectively.

The occurrence of conditions, in the general case, depends on the
reaching of particular discrete states q (phases s) or on the reaching of
particular values of the continuous state x of a HR.

At each condition λ, a logical expression has to be assigned.
The entering in a discrete state, or in a particular phase, corre-

sponds to the occurrence of the boolean event discreteState=true (phase=true)
and the associated logical expression can be written using the formal-
ism nameresource.q=true (nametask.s=true) , where notation namere-
source.q (nametask.s) is used to refer to the particular state q (phase s)
of the indicated resource (task).

4.1. Definition of a robotic cell in aircraft industry 49

Figure 4.7 drl φ
current phase s condition λ next phase s′

ready wtc acquisition request wtc acquired
wtc aquired wtc go to pos wtc moving
wtc moving wtc at final position waiting 4 wrk

waiting 4 wrk wrk acquisition request wrk acquired
wrk acquired wrk go to pos wrk moving
wrk moving wrk at final position wrk arrived
wrk arrived wtc release request wtc released
wtc released start drilling drilling

drilling drilling completed drilling done
drilling done wrk release request end

Figure 4.8 drl rFunction
event resource numberinput event output event

wtc at final position Watcher 1
wrk at final position Worker 1
drilling completed Worker 1

wtc acquisition request Watcher 1
wtc go to pos Watcher 1

wtc release request Watcher 1
wrk acquisition request Worker 1

wrk go to pos Worker 1
wrk release request Worker 1

start drilling Worker 1

Also the reaching of a particular continuous state is a boolean
event. Possible conditions to test are =, >, <,→, ≥, �, �.

As example, let Rj and Rk be the name of two HRs, event e1 = (<
x1, . . . , xn >j < Th1, . . . , Thn >) →0 occurs when each attribute
Rj.xi

1 are equal to or greater than the corresponding threshold value
Thi, while event e2 = (< x1, x2, . . . , xn >j < x1, x2, . . . , xn >k

< Th1, 0 . . . , 0 >� 0) occurs when Rj.x1 Rk.x1 ≥ Th1.
Logical expressions associated to service request or service com-

pletion events correspond to the condition itself. Assignment of a log-
ical expression to each condition λ is done by means of the following

1Notation Rj .xi is used to indicate the single i-th attribute of Rj while notation
Rj .x indicates the whole vector.

50 4. Automated synthesis of HCMPN models

Figure 4.9 wtc condTable
condition λ definition
go to pos go to pos

inspection completed inspection completed
at home position < x1, x2 >Watcher=< HomePos, x2 >

go const < x1, x2 >Watcher=< x1, vDes >
traveling at constant speed Watcher.const = True

instruction:

• AssignLogicalExpression(name, conditionTable);

Field name identifies the resource (task) the logical expressions have
to be assigned to; field conditionTable is a table that associates logical
expressions to the conditions. As example, in table of figure 4.9 a part
of the conditionTable, defined for the resource Watcher and named
wtc condTable, is reported.

Note that a logical expression may reduce to a single event as is
the case of condition go to pos in table of figure 4.9.

• InstantiateBlocks(nameBlock, name1, . . . , nameI);

This instruction allows to define instances of resource and task
blocks. Field nameBlock is the name of the resource (task) block while
field name1, . . . , nameI are the names of the I instances of the block.

4.2 Creation of the CMHPN model

After the definition of the robotic cell, the corresponding CMHPN
model can be automatically created in two steps: at step 1, CMHPN of
each task Ti and each resource Rj is created; at step 2, such nets are
merged together to obtain the final model.

For the sake of readability, the list of the notations used in this
section is shown in table of figure 4.1.

4.2. Creation of the CMHPN model 51

4.2.1 Algorithm to obtain tasks and resources CMHPN
model

Let (q, λ, δ(q, λ)) be a triple belonging to transition function f domain,
each time a DR of kind j is defined, a timed PN is built as indicated:

1. add a discrete place pRj
q for each state q � Q;

2. add an immediate transition tRj
h for each triple (q, λ, δ(q, λ)) and

synchronize it with the corresponding condition λ; if δ(q, λ) >
0, add an additional place p∗Rj

q and a timed transition t∗Rj
h ;

3. associate to t∗Rj
h the time duration δ(q, λ);

4. associate to tRj
h the logical expression reported in table condi-

tionTable, associated to λ;

5. associate to tRj
h the data eventDataFunction(λ), if it exists;

6. for each triple (q, λ, δ(q, λ)) add an arc going from place pRj
q ,

associated to state q, to transition tRj
h , associated to λ;

7. for each state q′ = f(q, λ, δ(q, λ)) with δ(q, λ) = 0, add an arc
going from transition tRj

h , associated to condition λ, to place pRj
q′

associated to state q′;

8. for each state q′ = f(q, λ, δ(q, λ)) with δ(q, λ) > 0 add an arc
going from transition tRj

h , associated to condition λ, to the addi-
tional place p∗Rj

q , associated to state q, an arc going from place
p∗Rj
q to transition t∗Rj

h associated to δ(q, λ) and an arc going from
transition t∗Rj

h to place pRj
q′ associated to state q′.

Each time a HR of kind j is defined, a MHPN is built as indicated:

1. execute all the steps shown for the construction of the DR net.

2. add a continuous place pRj
c ;

3. add a continuous transition tRj
h for each continuous mode in the

set continuousModes;

52 4. Automated synthesis of HCMPN models

4. add a self loop connecting each continuous transition tRj
h with

continuous place pRj
c ;

5. associate weighs Pre(pRj
c , tRj

h), Post(pRj
c , tRj

h) to each arc: they
are vectors of dimension equal to the number of the attributes of
continuous state x with all elements equal to 1.

6. associate the firing speed νRj
h = Aix +Biu at each transition

tRj
h as indicated in table hybridTable;

7. for each continuous mode indicated in hybridTable, add a self
loop between transition tRj

h , corresponding to the continuous
mode, and place pRj

q , corresponding to the discrete state asso-
ciated to the continuous mode.

Each time a task of kind i is defined a discrete PN is built as indi-
cated:

1. execute steps 1-4 and 6 of the algorithm for the construction of
DR model, substituting symbols “pRj

q ”, “tRj
h ”, “q”, “Q” and “f

with “pT i
s ”, “tT i

k ”, “s”, “S” and “φ”, respectively;

2. for each phase s′ = φ(s, λ) of transition function φ add an arc
going from transition tT i

k , corresponding to condition λ, to place
pT i
s′ , associated to phase s′;

3. for each couple
(resource, number)= resourceFunction(sr) resourceFunction(sc)

[
associate to transition tT i

k , corresponding to the service request
sr (service completion sc), a number wTi

kj of value equal to the
number of resources Rj involved in the service. Notice that wTi

kj

is not an arc weight: it will be used later, during the merging
procedure.

Add as many colors to each place and each transition of the cor-
responding net, as many time Rj (Ti) has been instantiated and add a
token of color cr (ct) to the place corresponding to the initial state q0
(phase s0) of Rj (Ti). If a HR is instantiated, then add a structured

4.2. Creation of the CMHPN model 53

marking at the corresponding place pRj
c , corresponding to the initial

continuous state x0 of the resource.
Applying the algorithm defined above to the HR Watcher, the MHPN

of Fig. 4.17(b) is obtained. It has 9 discrete places, one for each dis-
crete state of set wtc Q (e.g., p12 and p13 correspond to states idle and
assigned, respectively) and it has 14 discrete transitions, one for each
triple (q, λ, δ(q, λ)) of function wtc f domain, and no timed transition
is present in the final model since no timed state transition has been
specified (e.g., t11 corresponds to the first row of table of figure 4.3
and it is associated to condition sr1 =acquisition request; no data are
associated to t11). The continuous place pc1 and one continuous transi-
tion for each one of the 3 continuous mode of set wtc cModes, with the
respective firing speeds, are added; these transitions are connected by
means of self loops to pc1 and to the corresponding discrete places as
indicated in table of figure 4.4 (e.g., tCON1 is associated to the continu-
ous mode const, and, as specified in table of figure 4.4, the firing speed
ν2 = A2x is associated to tCON1; finally since p18 corresponds to the
state constant speed, a self loop between tCON1 and p18 is inserted).
Note that, since HRB Worker is instantiated just once, an uncolored
net is obtained.

4.2.2 Merging of PNs

The final model of the robotic cell is obtained merging together transi-
tions of tasks with transitions of resources, when they are synchronized
with the same event.

Assume that NT different kinds of task have been defined, each
kind indicated with notation Ti, with i = 1, . . . , NT and that NR dif-
ferent kinds of resource have been defined, each one indicated with
notation Rj , with j = 1, . . . , NR. Each task (resource) of kind Ti

(Rj) has been instantiated vTi
(vRj

) times, consequently, the places
and transitions of the CMHPN modeling Ti (Rj) have vTi

(vRj
) colors;

each instance of Ti (Rj) is identified as T t
i (Rr

j).
The merging algorithm is shown in Fig. 4.12. It is composed by

3 steps: at Step 1 each transition tTi
k of Ti, synchronized with service

request sr (service completion sc) is merged with each transition tRj
h of

54 4. Automated synthesis of HCMPN models

Rj , synchronized with the same service request (service completion);
Step 2 consists in appropriately changing the color sets of such places
and transitions of Ti that have not been involved in merging with Rj;
finally during Step 3, the final model is obtained, deleting all merged
transitions of Rj .

Step 1 is executed by means of the merging subroutine, shown in
Fig. 4.13, that is composed by the following 5 steps:

Step 1.1: Task transition tT i
k and each transition tRj

h , synchronized with
the same event, are merged together obtaining a unique tran-
sition tT i

k′ . Preset and postset of new transition are obtained
by the union of preset and postset of tT i

k and each tRj
h .

Step 1.2: The set of occurrence colors of tT i
k′ is defined. Its number

depends on the number vRj
of instances of Rj and on the

number wT i
kj of its instances involved in the service sr (sc),

as well as on the occurrence color number2 vtTi
k

, and it is
devised as vtTi

k′
= vtTi

k
×

vRj

wTi
kj

[
.

Step 1.3: The matrices of incidence of places •tRj
h , as well as of places

tRj
h

•
, are opportunely defined. Since colors of such places

are not changed after the merging, Pre(•tRj
h , tT i

k′), as well
as Post(tRj

h

•
, tT i

k′), is a matrix obtained duplicating matrix
MR vtTi

k
times.

Matrix MR has dimension vRj
⊆

vRj

wTi
kj

[
, each one of its col-

umn has wT i
kj element equal to 1 and vRj

wT i
kj elements

equal to 0 and all columns are different from each others.

Step 1.4: Colors of places of task Ti are changed on the base of the
kind of event tT i

k′ is synchronized with. When tT i
k′ is synchro-

nized with an acquisition request (a release request), col-
ors of p � •tT i

k (p � tT i
k

•) do not change. Consequently,
Pre(p, tT i

k′) (Post(p, tT i
k′)) is set equal to MT (see table of

figure 4.1). When tT i
k′ is synchronized with any other event

2Before merging, vtTi
k

= vTi = number of instances of Ti.

4.2. Creation of the CMHPN model 55

color set of a place p � •tT i
k (p � tT i

k
•) is changed after the

merging and consequently Pre(p, tT i
k′) (Post(p, tT i

k′)) is set
equal to Iv

tT i
k′

(see table of figure 4.1).

Running merging subroutine, colors of only merged transitions and
their preset and postset are changed, all the other places and transitions
conserve their original color set. Consequently, after that all possi-
ble merges between Ti and Rj have been executed, the colors refine-
ment procedure is accomplished by means of the subroutine show in
Fig. 4.14.

To this aim the concept of Influenced Subnet is introduced.

Definition 4. Consider transitions tT i
f and tT i

l of task Ti, synchronized
respectively with service request event “resource Rj acquisition” and
with service request event “resource Rj release”.

The Influenced Subnet of Ti on the base of resource Rj , IS(Ti, Rj, t
T i
f , tT i

l)
is defined as the PN composed of the only places and transitions, be-
longing to Ti, that set up a directed path3, having tT i

f as the first transi-
tion and tT i

l as the last one.

Ti can require to acquire and release Rj more than once during its
execution, hence, in general, given a couple (Ti, Rj), it is possible to
build Z Influenced Subnets, each one delimited by a different couple
of transitions (tT i

f z
, tT i

l z), where tT i
l z is the first transition of Ti, syn-

chronized with the event “resource Rj release”, that is reached start-
ing from tT i

f z
(synchronized with the event “resource Rj acquisition”),

following the direct path that joins them.
The color refining subroutine, executed at Step 2 of merging algo-

rithm, is the following:
For each transitions tT i

k of IS(Ti, Rj, t
T i
f z

, tT i
l z) that has not been

merged with any transition of Rj

Step 2.1: assign to tT i
k the same occurrence colors of the merged tran-

sitions.
3A path is a sequence q1q2 . . . qn such that (qi, qi+1) � P⊆T

⋂
T⊆P and qi+1 �

q•i or qi � qi+1
•, i.e., it is a sequence of places and transitions that alternatively

joins two distinct nodes, places and transitions, with an arc (if the arc is directed,
i.e.,qi+1 � q•i , the path is called directed).

56 4. Automated synthesis of HCMPN models

Step 2.2: if places of tT i
k preset belong to IS(Ti, Rj, t

T i
f z

, tTi
l z) and

their color set has not been changed during merging pro-
cedure, then assign to •tT i

k the same color set of tT i
k and set

Pre(•tT i
k , tT i

k) equal to the identity matrix Iv
tT i
k

, otherwise

do not change their color set and set Pre(•tT i
k , tT i

k) = MT .

Step 2.3: if places of tT i
k postset belong to IS(Ti, Rj, t

Ti
f z

, tT i
l z) and

their color set has not been changed during merging proce-
dure, then assign to tT i

k
• the same color set of tT i

k and set
Post(tT i

k
•, tT i

k) equal to the identity matrix Iv
tT i
k

, otherwise

do not change their color set and set Post(tT i
k

•, tT i
k) = MT .

Now an example is provided to show how the merging procedure works.

Example 1. Consider Fig. 4.15(a) where the models of one task, T1,
and of two DRs, R1 and R2, are shown. Assume that vT1 = 1, vR1 =
vR2 = 2, i.e., each place and transition of T1 has 1 color while each
place and transition of both resources has 2 colors. Note that for the
sake of clarity arcs weights are not reported in any figure, while colors
are omitted in Fig. 4.15(a).

Task T1 requires R1 acquisition (sr1), then it waits for the occur-
rence of an internal event (e1) and then it requires R2 acquisition (sr2).
Soon after, the service sr3, implying both kinds of resource, starts. Af-
ter service completion sc3, first R2 and then R1 is released (sr4 and
sr5).

As more, assume that T1 needs acquisition of 2 instances of R2

at the same time and just 1 instance of R1 to complete the activities.
At the occurrence of sr4 both instances of R2 are released: i.e., with
reference to the merging algorithm, wk1 = 1 and wk2 = 2, ∅k.

Transition of T1 is merged with transitions of R1: the result is
shown in Fig. 4.15(b). All task transitions have been merged but tT1

2 ,
tT1
3 and tT1

6 , since they are not synchronized with events involving R1.
Since for each task transitions tT1

k the occurrence color number is
vtT1

k
= 1, while for each transition tR1

h of R1 it is vtR1
h

= 2, and since
wT i

kj = 1, ∅k, as indicate at Step 1.2 of merging subroutine, vtT1
k′

=

1× 2
1

[
= 2 (i.e., the service can be executed in two way: acquiring R1

1

4.2. Creation of the CMHPN model 57

or R2
1; each way corresponds to a different occurrence color of transi-

tion tT1
k′). A possible choice for matrix Pre(•tR1

h , tT1
k′), as well as for

Post(tR1
h

•, tT1
k′), is MR =

]
1 0
0 1

{
(i.e., acquiring of R1

1 (R2
1) is asso-

ciated to color c1 (c2)). As more, Pre(•tT1
1 , tT1

1′) = Post(tT1
7

•, tT1
7′) =

[1 1]. For all the other merged transitions Pre(•tT1
k , tT1

k′)=Post(tT1
k

•, tT1
k′)=]

1 0
0 1

{
(see Step 1.3 of merging subroutine).

After the merging algorithm is completed, the color refining sub-
routine starts.

IS(T1, R1, t
T1
1 , tT1

7) is the subnet in the dotted square of Fig. 4.15(b);
transitions interested by the color refining are tT1

2 , tT1
3 and tT1

6 : their
occurrence color sets will be changed from }c1〈 to }c1, c2〈 . Conse-
quently, also the color set of place pT1

3 and its relative incidence ma-
trices will be changed. Merging algorithm goes on with the merge of
transitions belonging to T1 and R2: the result is shown in Fig. 4.15(c).
Transitions tT1

3 , tT1
4 , tT1

5 and tT1
6 are merged respectively with tR2

1 , tR2
3 ,

tR2
4 and tR2

2 .
Since after the merging with transitions of R1 the occurrence color

number of each task transitions tT1
k has become vtT1

k
= 2, and since for

each transition tR2
h of R2 vtR2

h
= 2 and wk2 = 2, ∅k, then vtT1

k′
= 2 ×

2
2

[
= 2. The only possible choice for Pre(•tR2

h , tT1
k′) and Post(tR2

h
•, tT1

k′)

is MR =

]
1 1
1 1

{
(i.e., both instances R1

2 and R2
2 are acquired by the

task T1 whatever the way in which it is performing – using R1
1 or using

R2
1). For all the merged transitions Pre(•tT1

k , tT1
k′) = Post(tT1

k
•, tT1

k′) =]
1 0
0 1

{
.

After the merging subroutine is completed the color refining sub-
routine starts. IS(T1, R2, t

T1
3 , tT1

6) is the subnet in the dotted square
of Fig. 4.15(c); transitions interested by the color refining are tT1

4 and
tT1
5 : however they color set, for this specific example, rests unchanged

and the same occurs for their preset and postset and relative incidence
matrices. �

The CMHPN model can be implemented and used to monitor on-
line the system state, as well as to detect conflicts and to implement a

58 4. Automated synthesis of HCMPN models

control based on dispatching rules. Moreover, an example for showing
the effectiveness of the automated model generation, to perform the
online reconfiguration of the robotic cell model, is presented. For the
sake of brevity, only the case when a resource breaks and it must be
replaced with another one is considered.

Assume that during a task execution, Rx
j breaks and it must be re-

placed by Ry
j : the algorithm to update online the robotic cell model

is presented in Fig. 4.16. For each task Ti that use resources of kind
j, algorithm consists in changing the marking of each influenced sub-
net IS(Ti, Rj, t

Ti
f z

, tT i
l z), substituting tokens of color cx, associated to

Rx
j , with tokens of color cy, associated to Ry

j (steps from 1 to 3 in
Fig. 4.16). After that for all the tasks the marking of all the influenced
subnets has been changed, the continuous state of Ry

j (i.e., its state
vector and continuous mode) are set equal to the restarting ones (step
4 in Fig. 4.16).

4.3 Case Study

Consider a robotic cell composed of two arms, one worker and one
watcher. The worker executes a drilling operation while the watcher
is able to execute job verification and to indicate to the worker the
position where to execute the job. Drilling task is the same task defined
in Section 4.1. In addition, a human operator can enter in the cell to
inspect the execution without any direct interaction with the arms. If
the distance between human operator and arms goes beyond a given
threshold, the arms must be stopped.

The robotic cell can be defined by means of the following instruc-
tions.
DefineHybridResource(Worker, wrk Q, wrk f , “idle

∧
stopped”, wrk cModes, < x1, x2 >,

wrk hTable,
< wrk HomePos, 0 >, wrk Isr , wrk Osc)
AssignData(Worker, wrk eDFunction)
AssignAction(Worker, wrk aTable)
AssignLogicalExpression(Worker, wrk condTable)
DefineHybridResource(Watcher, wtc Q, wtc f , “idle

∧
stopped”, wtc cModes, < x1, x2 >,

4.3. Case Study 59

wtc hTable,
< wtc HomePos, 0 >, wtc Isr , wtc Osc)
AssignData(Watcher, wtc eDFunction)
AssignAction(Watcher, wtc aTable)
AssignLogicalExpression(Watcher, wtc condTable)
DefineTask(Drilling, drl S, drl ϕ, “ready”, drl Isc , drl Osr)
DefineLinks(Drilling, drl rFunction)
AssignData(Drilling, drl eDFunction)
AssignLogicalExpression(Drilling, drl condTable).
InstantiateBlock(Worker,wrk1)
InstantiateBlock(Watcher,wtc1)
InstantiateBlock(Drilling,drl1)

Details of resource Watcher, as well as the ones of task Drilling,
except its eventDataFunction and conditionTable, have been presented
in Section 4.1; details of resource Worker are omitted for the sake of
brevity.

The eventDataFunction associated to Drilling task is shown in Ta-
ble 4.10 and namely
drl eDFunction.

Drilling task conditionTable is not shown, since all the logical ex-
pressions coincide with the corresponding conditions (i.e., w.r.t. Table4.9,
λ=go to pos, definition=go to pos).

Figure 4.10 drl eDFunction
event datainput event output event

wtc go to pos posDes
wrk go to pos posDes
start drilling dTime

Nets modeling each resource and task of the cell are shown in
Fig. 4.17(a), Fig. 4.17(b) and Fig. 4.17(d). Note that, for the sake
of clearness, places and transitions of the task and of all the resources
are numbered in progressive way. Drilling is modeled by the net in
Fig. 4.17(a); Watcher and Worker are respectively modeled by the nets
of Fig. 4.17(b), and Fig. 4.17(d). Under the initial marking the task is
ready to start (a token is in p1) and both the watcher and the worker are

60 4. Automated synthesis of HCMPN models

idle (a token is in p12 and p25) and stopped in their current position (a
token in p20 and p31).

Places p17, p18 and p19 (p28, p29 and p30) model the different dy-
namics that the watcher (worker) can have during its motion (acc,
const, dec); transitions connecting such places model the change of
dynamic, e.g. when the event e4 (e8), corresponding to the reaching of
the maximal allowed speed, occurs, t22 (t39) fires and the resource tran-
sits from acc to const. Place pc1 (pc2) is the continuous place modeling
the continuous state of the resource: the structural marking indicates
current position and speed of the resource.

Transitions t24, t∗24 and t25 model respectively the starting of the
worker drilling service, its time duration represented by the value δ
associated to t∗24, and its completion.

In Fig. 4.18, it is shown how the proposed model is able to capture
the hybrid behavior of the interaction between the arm and the human
operator. The worker is initially stopped and the human operator is out
of the cell, consequently arm speed rises until the maximal speed is
reached. The human operator enters in the cell. The worker is moving
with constant speed when its distance with human operator passes a
fixed threshold; consequently the worker begins to decelerate (transi-
tion t21 fires) until it completely stops (firing of t23). It starts to move
again (firing of t24) only when the human goes away, over the safety
distance. The model has been simulated using PNetLab [BCC12c].

In order to prove the effectiveness of method in terms of integra-
tion of a formal modeling approach with modern 3D simulation envi-
ronments, as state previously, one of them was used to implement the
case study described above. A video of the corresponding 3D anima-
tion is available at [vid]. There are many tools that make this possible
and one of them is V-REP [vre]. This environment can simulate the
continuous dynamics of any complex object one may think about and,
in particular, of watchers, workers and human operators. It would be,
however, required to translate the behavior of the discrete event part of
the model (discrete places and discrete transitions) in V-REP’s propri-
etary language (namely, LUA language). Alternatively, it is also possi-
ble to remotely interact with the simulator (that would be in charge of
the only continuous dynamics) and to use proper dedicated tool for the

4.3. Case Study 61

discrete dynamics, that would be, thus, independent from the specific
3D environment.

Consider now a slightly different cell, obtained adding an assem-
bling task to the previous one and where the human operator can enter
to move the arms close to a desired position or to execute some manual
operations.

Assembling task. Two parts have to be joined by using rivets; the
human operator drives the worker as close as possible to the two parts,
then the worker, by using high precision cameras and reference mark-
ers, is able to position itself at the exact point where to introduce the
rivet. After the assembling of the two parts, the worker remains in
the final position waiting for the watcher that has to check the qual-
ity of the assembling, inspecting the parts and deciding if the task is
completed or if it must be repeated. Only in the first case the worker
becomes idle, otherwise first the human operator takes off rivets and
then the worker starts to assemble parts again.

Note that human operator activities must now be explicitly taken
into account. The cell can be defined adding the following instructions
to those used for the previous cell model.
DefineDiscreteResource(Human, hmn Q, hmn f , “idle”, hmn Isr , hmn Osc)
AssignData(Human, hmn eDFunction)
AssignLogicalExpression(Human, hmn condTable)
DefineTask(Assembling, asb S, asb ϕ,“ready”,asb Isc , asb Osr)
DefineLinks(Assembling, asb rFunction)
AssignData(Assembling, asb eDFunction)
AssignLogicalExpression(Assembling, asb condTable)
InstantiateBlock(Human, hmn1)
InstantiateBlock(Assembling, asb1)

All details about the resource Human have been presented in Sec-
tion 4.1. The conditionTable associated to Human is not shown since
all the logical expressions coincide with the corresponding conditions.
For the sake of brevity, details of task Assembling are omitted. Nets
modeling the new cell are shown in Fig. 4.17. Assembling task is mod-
eled by the net in Fig. 4.17(e); human operator is modeled by the net
of Fig. 4.17(c). Under the initial marking also the assembling task is
ready to start and the human operator is idle (there is a token in p32 and

62 4. Automated synthesis of HCMPN models

in p63).
The presented approach is a first effort on the direction to create

tools, addressed to users that do not have any knowledge of PNs, for
modeling and analyzing robotic cell in aircraft industry.

Nowadays, it is possible to use tools operating on CMHPNs, as the
one presented in [BCC12d], to execute model simulation and analy-
sis. In particular, deadlock situations must be carefully checked. In
[BCC12d] a methodology is presented to devise a deadlock prevention
policy that acts directly on the PNs. Deadlock prevention is out of
the scope of this thesis, but, simulating the CMHPN model obtained
applying the presented approach, it is possible to obtain information
useful also for users that are not confident with PNs, thanks to the
expressiveness of the net colored marking.

Indeed, analyzing a deadlocked colored marking, it is possible to
know

• each task’s instance T t
i and each resource’s instance Rr

j involved
in the deadlock;

• which phase (state) each T t
i (Rr

j), involved in the deadlock, is
blocked in;

• which events have not occurred because of the deadlock;

• what is the current continuous state of Rr
j .

Such information, in the case of simple robotic cells, can be suf-
ficient to redefine tasks for regulating the resource assignment in the
way of preventing the deadlock. Consider the following situation: the
assembling task and the drilling task are being executed at the same
time. Assembling task has acquired the unique worker of the cell and,
once it has completed the assembling procedure, it is stopped wait-
ing for a watcher inspection. Contemporaneously, the drilling task
has acquired the unique watcher of the cell that, once it is arrived to
the drilling position, it is stopped waiting for the arrive of the worker.
As shown in Fig. 4.19, where for the sake of clearness only a part
of the final model is reported, such a situation correspond to a dead-
lock. Tokens in places p23 and p13 indicate, respectively that worker

4.3. Case Study 63

and watcher have been acquired by a task, while tokens in places p31
and p20 indicate that they are stopped at position x1. Tokens in places
p4 and p41 indicate that assembling task and drilling task are respec-
tively waiting for acquiring the watcher and the worker. Transitions
t4 and t51 cannot fire because the first requires that place p25 (watcher
idle) or both the places p26 and p29 (watcher released that is moving
with constant speed) are marked, and the second requires that place
p12 (worker idle) or both the places p16 and p18 (worker released that
is moving with constant speed) are marked. The proposed model al-
lows to take into account the continuous-time dynamic of the robots
position (e.g. the variable x1) during the execution of tasks (e.g. the
condition sc2 is true when the x1 = posDest causing the transition
of task Drilling from phase wtc moving, place p2, to phase waiting 4
wrk, place p3). From the above analysis it results that deadlock oc-
curs since Watcher (Worker) is acquired by Drilling (Assembling) task
and at same time the Assembling (Drilling) task is waiting for it. To
avoid this situation tasks can be properly redefined. As example, the
release of Worker during the assembling task can be anticipate and ex-
ecuted before than Watcher begins inspection: Assembling can acquire
it again successively in the case that inspection gives negative results.

The chapter contribution can be summarized in three main points.
1) To provide an automatic synthesis of the hybrid CPN of a robotic

cell in aircraft industry, starting from an intuitive and simple specifi-
cation of resources and tasks, considered the main cell components.
Then, an algorithm is provided to obtain their model as separate net
modules, finally an algorithm is given to obtain a unique hybrid CPN
integrated model. Hence, the approach is conceived to be used with-
out any knowledge of hybrid CPN modeling, since resource and task
behaviors are specified in terms of states, events and state transition
function or from an instance of a predefined block in a library. The
robot trajectories are assumed to be available as an external input, but
they are explicitly taken into account in the model. The control prob-
lem which the proposed model is addressed to consists in assigning
a resource (a camera, a robot, etc.), when it becomes available, to a
task. If one resource is available for a set of tasks, a conflict occurs.
The control must solve these conflicts in a manner that all the assigned

64 4. Automated synthesis of HCMPN models

tasks are completed. Simulation schemes have been presented to im-
plement dispatching rule based controls for these systems. These sim-
ulation schemes in a pure discrete event context have been obtained
by extending the classical scheme for the simulation of discrete event
systems based on the scheduled events list [CL08, BCC12c] using im-
plementation in standard programming languages to speed-up these
simulations, while avoiding the use of commercial software. This ap-
proach has been adopted for material handling systems in [JGL12]
using a matrix-based discrete event controller and in [BCC12c] using
a hybrid CPN modeling framework named Colored Modified Hybrid
Petri Nets (CMHPNs), introduced by the authors.

2) To provide a formal model, a CMHPN model, that, as any PN
model, provides local state representation so that each activity is mod-
eled by a transition that is graphically connected to a place that models
a resource state [ZK98, WBC07, WZC08b, WCCZ11, DF05]. This
permits to formally characterize the system’s state, to use standard
simulation schemes as well as to realize halt and recovering mecha-
nisms so that the state of the system and all the simulation outputs are
saved at a certain time and restored when necessary. The use of colors
helps to obtain compact models and allows to represent the identity
of resources and tasks. This is very useful in robotic cell for aircraft
industry, since they are characterized by heterogeneous resources and
tasks. Moreover, the automatic synthesis procedure allows one to add
and remove a resource and/or a task during an online simulation.

3) To provide a way to integrate modern simulation environments
for robotic cells (e.g. Gazebo, V-REP) with a formal modeling ap-
proach of these systems. These simulation environments well simu-
late the continuous time behavior of robots and other devices but tasks
and discrete resources behavior must be implemented in proprietary
programming languages available in these environments. Literature
is full of approaches to code generation from PN models that can be
used to this purpose [CG03]. Then, our model offers, by means of the
translation of the discrete event part of the CMHPN model related in
such languages, a formal way to implement tasks and manage discrete
resources in these simulation environments. In this way, the benefits
of a formal modelling approach are in addition to those of accurate 3D

4.3. Case Study 65

animations and environment interactions.

Table 4.1: Table of notations of Section 4.2.

Notation Meaning

1nc(0nc) row vector of dimension nc having all el-
ements equal to 1 (0).

cr (ct) color associated to the r-th (t-th) instance
of Rj (of Ti).

Iv
t
Ti
k

identity matrix of dimension v
t
Ti
k

.

IS(Ti, Rj , t
Ti
f z

, tTi
l z) z-th Influenced Subnet of Ti on the base

of resource Rj .
MR matrix of dimension vRj ⊆

vRj

w
Ti
kj

[
s.t. each

column has wTi

kj element equal to 1 and
vRj wTi

kj elements equal to 0 and all
columns are different from each others.

MT

⎤
⎥⎥⎥⎥⎥⎥⎦

c1 . . . cnc c(nc+1) . . . c(2nc) . . . c(v
tTi
k′

−nc) . . . cvtTi
k′

c1 1nc 0nc . . . 0nc

c2 0nc 1nc . . . 0nc

...
...

...
. . .

...
cv

tTi
k

0nc 0nc . . . 1nc

⎣
⎝⎝⎝⎝⎝⎝⎢
.

NR (NT) number of kinds of resource (task).

nc =
vRj

w
Ti
kj

[
=

vRj
!

w
Ti
kj !(vRj

−w
Ti
kj)!

binomial coefficient.

p
Rj
q place associated to state q of resource Rj .

p
∗Rj
q additional place associated to state q of re-

source Rj .
p
Rj
c continuous place associated to the HR Rj .

pTi
s place associated to phase s of task Ti.

Rj j-th resource.
sr (sc) service request (compliant) event.
Ti i-th task.
t
Rj

h h-th immediate transition associated to re-
source Rj .

t
∗Rj

h h-th timed transition associated to re-
source Rj .

tTi

k k-th immediate transition associated to
task Ti.

Table 4.1: Table of notations (continued)

66 4. Automated synthesis of HCMPN models

Table 4.1: Table of notations (continued)

Notation Meaning

t′Ti

k transition obtained after the merging of
transition tTi

k with each transition t
Rj

h ,
synchronized with the same event.

tTi
f z

first transition of the z-th Influenced Sub-
net of task Ti on the base of resource Rj .

tTi
l z last transition of the z-th Influenced Sub-

net of task Ti on the base of resource Rj .
vRj (vTi) number of instances of resource Rj (of

task Ti).
vtTi

k
occurrence color number of transition tTi

k .
νRj
h firing speed associated to transition tRj

h .
wTi

kj number of instances of Rj involved in the
service sr, synchronized with tTi

k .
Z number of Influenced Subnets of Ti with

respect to Rj .

Table 4.1: Table of notations

4.3. Case Study 67

Service

Request

Data

q0

Data
Q, Λ, f

Service

Completion

q

DRB

(a)

q0 x0

Service

Request

Data Data
Q, Λ, f

 X, Ci

Service

Completion

q

x
u

HRB

(b)

Service

Completion

Data

States

Data
S, Λ, φ

Service

Request

TB

s0

(c)
Figure 4.11 (a) Discrete Resource Block; (b) Hybrid Resource Block; (c) Task

Block.

68 4. Automated synthesis of HCMPN models

Ti = i
NT

nTi
Ti

T t
i = t i

vTi
i

tTi
k

k Ti

Rj = j
NR

nRj
Rj

Rr
j = r j

vRj
j

IS(Ti, Rj , t
Ti
f z

, tTi
l z

) z Ti Rj

Z Ti Rj

i = 1 NT

j = 1 NR

←

k = 1 nTi

jk ← ∅

tTi
k

sr sc

←

tTi
k

Rj

jk ← jk

⋃
tTi
k

z ← 1 Z

IS(Ti, Rj , t
Ti
f z

, tTi
l z

)← z Ti Rj

IS(Ti, Rj , t
Ti
f z

, tTi
l z

)

j = 1 NR

h = 1 nRj

Rjh

Figure 4.12 Merging Algorithm.

4.3. Case Study 69

tTi
k

k Ti

t
Rj
h

h Rj

vRj
j

w
Ti

kj
= Rj sr tTi

k

nc =
(vRj

w
Ti
kj

) vRj
!

w
Ti
kj

!(vRj
−w

Ti
kj

)!

· �� · =
Id = d
1d(0d) = d 1 0

MT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1 . . . cnc c(nc+1) . . . c(2nc) . . . c(v
tTi
k′

−nc) . . . cvtTi
k′

c1 1nc 0nc . . . 0nc

c2 0nc 1nc . . . 0nc

cv
tTi
k

0nc 0nc . . . 1nc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

MR = vRj
×

(vRj

w
Ti
kj

)
w

Ti

kj
1

vRj
−w

Ti

kj

tTi
k′

h = 1 nRj

Rjh ← ∅

h = 1 nRj

t
Rj
h

sr
Rjh

tTi
k′
← tTi

k
�� t

Rj
h

tTi
k′

•

= tTi
k

•
⋃

t
Rj

h

•

•tTi
k′

= •tTi
k

⋃
•t

Rj
h

tTi
k′
← tTi

k′
�� t

Rj
h

tTi
k′

•

= tTi
k′

•
⋃

t
Rj
h

•

•tTi
k′

= •tTi
k′

⋃
•t

Rj

h

Rjh ← Rj

⋃
t
Rj

h

tTi
k′

v
tTi
k′

← v
tTi
k
·
(vRj

w
Ti
kj

)
Co(tTi

k′
)← {c1, . . . , cv

tTi
k′

}

tTi
k′

Rj

Pre(•tRj
h

, tTi
k′

)←
[
MR . . .MR︸ ︷︷ ︸

v
tTi
k

]

Post(tRj
h

•

, tTi
k′

)← Pre(•tRj
h

, tTi
k′

)

tTi
k′

Ti

sr
Co(tTi

k

•

)← Co(tTi
k′

)

ij ← ij

⋃
tTi
k

•

Pre(•tTi

k
, tTi

k′
)←MT

Post(tTi
k

•

, tTi
k′

)← Iv
tT i
k′

sr
Co(•tTi

k
)← Co(tTi

k′
)

ij ← ij

⋃
•t

Ti

k

Pre(•tTi
k

, tTi
k′

) = Iv
tTi
k′

Pre(tTi
k

•

, tTi
k′

)←MT

Co(•tTi
k

)← Co(tTi
k′)

Co(tTi
k

•

)← Co(tTi
k′

)

ij ← ij

⋃
•t

Ti

k

⋃
tTi
k

•

Post(tTi
k

•

, tTi
k′

) = Iv
tTi
k′

Pre(•tTi
k

, tTi
k′

) = Iv
tTi
k′

tTi
k
← tTi

k′

Figure 4.13 Merging Subroutine.

70 4. Automated synthesis of HCMPN models

IS(Ti, Rj , t
Ti
f z

, tTi
l z

) z Ti Rj

Z Ti Rj

firstOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

)) =
R1

tf firstOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

)) = f

lastOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

)) =
R1

tl releaseOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

)) = l

nextOf(tTi
k , IS(Ti, Rj, t

Ti
f z

, tTi
l z

)) = tTi
k

IS(Ti, Rj , t
Ti
f z

, tTi
l z

)

(tTi
k

•

)• ∈ IS(Ti, Rj , t
Ti
f z

, tTi
l z

) = {tn, tm} nextOf(tTi
k , IS(Ti, Rj , t

Ti
f z

, tTi
l z

)) = {n,m}

nc =
(vRj

w
Ti
kj

) vRj
!

w
Ti
kj

!(vRj
−w

Ti
kj

)!

Id = d
1d(0d) = d 1 0

MT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1 . . . cnc c(nc+1) . . . c(2nc) . . . c(v
tTi
k′

−nc) . . . cvtTi
k′

c1 1nc 0nc . . . 0nc

c2 0nc 1nc . . . 0nc

cv
tTi
k

0nc 0nc . . . 1nc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

← 1

← 0
f ← firstOf(IS(Ti, Rj , t

Ti
f z

, tTi
l z

))

K ← f
K �= lastOf(IS(Ti, Rj , t

Ti
f z

, tTi
l z

))

q ← 1to|K|
k ← K(q)

tTi
k /∈ ij

vtTi
k

← vtTi
k

·
(
vRj
wfj

)
Co(tTi

k) ← {c1, . . . , cv
tTi
k

}

← 1

•tTi
k IS(Ti, Rj , t

Ti
f z

, tTi
l z

) •tTi
k /∈ ij

v(•tTi
k

) ← v(•tTi
k

) ·
(
vRj
wfj

)
Co(•tTi

k) ← {c1, . . . , cv
tTi
k

}

Pre(•tTi
k

, tTi
k

)← Iv
tTi
k

Pre(•tTi
k

, tTi
k

)←MT

tTi
k

•

IS(Ti, Rj , t
Ti
f z

, tTi
l z

) tTi
k

•

/∈ ij

v(tTi
k

•) ← v′
(tTi

k

•)
·
(
vRj
wfj

)
Co(tTi

k

•

) ← {c1, . . . , cv
tTi
k

}

Post(tTi
k

•

, tTi
k

)← Iv
tT i
k

Post(tTi
k

•

, tTi
k

)←MT

K ← nextOf(tTi
k

, IS(Ti, Rj , t
Ti
f z

, tTi
l z

))

Figure 4.14 Color Refining Subroutine.

4.3. Case Study 71

��
��

, sr1

��
��

, e1

��
��

,

��
��

, sr3

��
��

, sc3

��
��

, sr4

�	
��

, sr5

�
��

�
��

�
��

�
��

�
��

�
��

	
��

�
��

��

�

, sr1 ��

�

, sr5

��

�

, sr3

��

�

, sc3

�
��

�

�

�

�

��

�

, sr4 ��

�

, sr2

��

�

, sr3

��

�

, sc3

�

�

�

�

�

�

(a)

��
��

, sr1

��
��

��
��

��
��

��
��

�	
��

�

��

��
��

��
��

[c1,c2]

[c1,c2]

[c1,c2]

[c1,c2]

[c1,c2]

[c1,c2]

[c1,c2]

[c1]

[c1]
[c1,c2]

[c1,c2]

[c1,c2]

[c1]

[c1]

[c1]

[c1]

[c1]

[c1,c2]

��

�

��

�

��

�

��
��

, e1

��
��

, sr2

��
��

, sr3

�	
��

, sc3

�

��

, sr4

��
��

, sr5

��

�

, sr4 ��

�

, sr2

��

�

, sr3

��

�

, sc3

��

�

��

�

��

�

(b)

[c1,c2]

[c1,c2]

[c1, c2]

[c1, c2]

[c1, c2]

[c1, c2]

[c1, c2]

[c1]

[c1]
[c1,c2]

[c1,c2]

[c1,c2]

[c1, c2]

[c1, c2]

[c1, c2]

[c1, c2]
[c1, c2]

[c1,c2]

[c1,c2]

[c1,c2]

[c1,c2]

��
��

��
��

��
��

��
��

��
��

��
�� ��

��

��
��

��
��

��
��

�	
��

�

��

��
��

��
��

�
��

, sr1

�
��

, e1

�
��

, sr2

�
��

, sr3

	
��

, sc3

��

, sr4

�
��

, sr5

(c)
Figure 4.15 (a) Nets of Task T1 (in the center) and of resources R1 (on the right)

and R2 (on the left); (b) resulting net after T1 and R1 merging but before the start of
color refine procedure; (c) final net.

72 4. Automated synthesis of HCMPN models

Rx
j = j

R
y
j = j

cx Rx
j

cy R
y
j

PD
Rj

= Rj

< >y= R
y
j

< >restarting= R
y
j

R
y
j

·

i = 1 NT

z ← 1 Z

f ← firstOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

))
•tTi

f
∈ PRj

r ← 1 |•t
Ti

f
|

pr ∈ PD
Rj

cx pr
cy pr

K ← f

tTi
k

•

K �= lastOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

))

q ← 1to|K|
k ← K(q)

cx tTi
k

•

cy tTi
k

•

K ← nextOf(tTi
k

, IS(Ti, Rj , t
Ti
f z

, tTi
l z

))

tTi
l

•

∈ PRj

l← lastOf(IS(Ti, Rj , t
Ti
f z

, tTi
l z

))

r ← 1 |t
Ti

l

•

|

pr ∈ PRj

cx pr
cy pr

Rj

R
y
j

< >y←< >restarting

r ← 1 |PD
Rj
|

cx cy pr
pr

cy pr

Figure 4.16 Algorithm to update online the model, replacing a resource.

4.3. Case Study 73

 Figure 4.17 Nets modeling case study tasks and resources.

74 4. Automated synthesis of HCMPN models

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time[s]

s
p
e
e
d
[m

/s
]

speed

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

3

3.5

4

time[s]

d
is

ta
n
c
e
 b

e
tw

e
e
n
 m

a
n
 a

n
d
 e

n
d
-e

ff
e
c
to

r
o
f
ro

b
o
t[
m

]

distance

threshold

Figure 4.18 Variation of watcher speed on the base of the distance between the arm
and the human operator.

4.3. Case Study 75

p
38

p
39

p
40

p
41

p
42

p
37

t
44

t
45

t
47
,s

r7

t
48
,s

e7

t
49
,s

r10

t
50
,s

c10

t
51
,s

r1

t
54

t
59

p
26

p
25

p
27

p
22

t
2
,s

r2

t
3
,s

c2

t
4
,s

r6

p
1

p
2

p
3

p
4

p
5

t
6

t
8

t
9

p
12

p
13

p
14

t
5

p
16

t
7

t
10

t
18
,e

1

t
34
,e

2

t
55

t
56

t
58

p
23

t
42

t
6

t
5

t
7 t

56

t
10 t

58

t
46

t
1
,s

r1

t
19
,e

11
t
20
,e

5

t
22
,e

4

t
21
,e

6
Ú e

11
t
23
,s

c2
Úe

1

t
DEC

,u
3

t
CON

,u
2

t
ACC

,u
1

p
17

p
18

p
19 p

20

p
c1

t
24
,s

r2
Ús

r3<x
1
,0>

t
37
,e

4
t
36
,e

9

t
39
,e

8

t
38
,e

10
Ú e

13
t
40
,s

c2
Úe

1

t
DEC

,u
3

t
CON

,u
2

t
ACC

,u
1

p
28

p
29

p
30

p
31

p
c2

t
41
,s

r7
Ús

r11<x
1
,0>

Figure 4.19 Deadlock marking in the final model.

Chapter 5

On the implementation of
industrial automation system
based on PLC

Today industrial automation software requirements include capability
to implement applications involving widely distributed devices, high
reuse of software components, formal verification that specifications
are fulfilled. In this chapter, an object oriented approach, the program-
ming language SFC together with a proper way to organize the inputs
and outputs of FBs and supervisory control are proposed to implement
industrial automation control systems to meet the new challenges of
this field.

5.1 Function Block Model
A first contribution of this chapter is to show how an event-based ex-
ecution order for industrial automation software (as suggested by IEC
61499) can be achieved even using IEC 61131 languages extended
with OOP. An exact event-based execution order requires that the op-
erative system implements an event-triggered execution of FBs as in
IEC 61499. In this thesis it is shown how this can be achieved in terms
of keeping activated a FB only when required. OOP has been imple-
mented by one medium-sized vendor of software tools which is cur-

78 5. On the implementation of industrial automation system based on PLC

(a)

(b)

Figure 5.1 (a) FB model in OOP; (b) proposed FB model.

rently suggesting its inclusion into the next revision of the IEC 61131
standard. At this aim, a new FB model is proposed and is derived
by its definition in the IEC 61131 standard. The extension is based
on two main concepts: FBs are objects; FBs can have an event-based
execution order. In the following these two concepts will be discussed.

5.1.1 FB instances are objects
It is assumed that a FB instance is an object in the OOP framework
according to ongoing revision of the standard [Wer09] and available
commercial products (as [3S 12]). So, methods and properties can
be defined additionally to the known 61131 FB elements (declaration,
implementation). These methods and properties will form the external
view of an FB, see Fig.5.1(a). This extension will provide FBs with
the possibility of exhibiting different behaviors (in IEC 61131 FBs can
only have one behavior). Moreover, if an FB is seen as an object, its
variables can be accessed only by the FB interface, thus emphasizing
the aspect of data encapsulation.

Every FB’s method contains an own declaration and implementa-
tion part. Each method acts as event handler, when invoked it modifies

5.1. Function Block Model 79

START

SERVICE
1

REQ_S1

END_S1 SUSPEND_S1

SUSPEND
S1

SUSPEND(SFC1)

RESET_S1

FORCE S1
FORCE(SFC1,
START S1)

END_S1

START
S1

F11

S1

F12

T11

T12

SERVICE
1 ENDED

SFC1

END_S1

TRUE

START
Sn

Fn1

Sn

Fn2

Tn1

Tn2

SERVICE
n ENDED

SFCn

END_Sn

TRUE

SERVICE
r

REQ_Sr

START
SERVICE r

START
Sr

Fr1

Sr

Fr2

Tr1

Tr2

SERVICE
r ENDED

SFCr

END_Sr

TRUE

(a)

(b)

ACTION
11

ACTION
12

ACTION
n1

ACTION
n2

ACTION
r1

ACTION
r2

SERVICE 1
COMPLETED

TRUE

S1

NSERVICES:= NSERVICES+1

S1OK

NSERVICES:= NSERVICES-1

SERVICE
n

REQ_Sn

END_Sn SUSPEND_Sn

SUSPEND
Sn

SUSPEND(SFCn)

RESET_Sn

FORCE Sn
FORCE(SFCn,
START Sn)

END_Sn

SERVICE n
COMPLETED

TRUE

Sn

NSERVICES:= NSERVICES+1

SnOK

NSERVICES:= NSERVICES-1

END_Sr SUSPEND_Sr

SUSPEND
Sr

SUSPEND(SFCr)

RESET_Sr

FORCE Sr
FORCE(SFCr,
START Sr)

END_Sr

SERVICE r
COMPLETED

TRUE

Sr

NSERVICES:= NSERVICES+1

SrOK

NSERVICES:= NSERVICES-1

Figure 5.2 (a) Execution Control SFC; (b) SFC implementing service re-
quests.

80 5. On the implementation of industrial automation system based on PLC

FB’s state and it may produce new values of output variables. This
permits to consider the FB model as the one depicted in Fig. 5.1(b):
the input/output variables are divided in events and data. Remarkably,
this is the FB model as depicted in IEC 61499. Notice that a method
has local variables but it does not store data between two consecutive
calls.

Properties enable a controlled access to internal variables of the
FB. A property has a data type and it is not a variable of the FB but
it can access its internal variables. Properties offer an abstract, exter-
nal view of the internal data of the FB object. When the property is
read/written from outside of FB the get/set accessor method is called
implicitly. These methods permit to perform operations on the data,
for instance to convert their values in some measure units or to obtain
derived data.

Methods, properties and input/output variables can be used by the
standard dot notation (e.g. FB Instance name.namemethod).

Differently both from IEC 61131 and IEC 61499, since FBs are
objects they may be constructed by inheritance. A new FB inherits all
variables and methods of the old FB and additional variables and/or
methods can be defined.

5.1.2 Event-based execution order

In this chapter it is proposed to use the FB body to achieve the event-
based execution order. This is achieved by including in the body a pro-
gram written in SFC, called Execution Control SFC (ECSFC), which
acts as the ECC required by IEC 61499 FBs. SFC is one of the pro-
gramming languages available in IEC 61131; a program written in
SFC is a set of graphs; the reader is referred to [IEC03] for a detailed
description of SFC.

The ECSFC must change its active steps according to only the
event inputs which are seen as service requests. Each service request
will be implemented in the body by an algorithm written in one of
the available languages. The actions associated with the ECSFC ac-
tive steps must enable executions of the corresponding algorithm, thus
fulfilling the request. The completion of an algorithm is an event that

5.1. Function Block Model 81

must be output (it is an output event). The number of active services
at the current time is available by means of the output data variable
FB Instance name.NSERVICES.

As an example, consider the SFC in Fig. 5.2(a) which activates the
algorithms (still implemented in SFC) in Fig. 5.2(b). This is done by
setting the Boolean variable Si, which is associated with the condition
of the unique output transition of the initial step of SFCi. SFCi rep-
resents the algorithm which performs the service Si. Thus, the SFC
in Fig. 5.2(a) acts as an ECSFC; the SFC in Fig. 5.2(a) together with
those in Fig. 5.2(b) make possible to achieve the event-based execution
order, as required.

An improvement can be obtained if it is possible to utilize hierar-
chical SFC to program the ECSFC. Hierarchical SFC permits a graph
to directly modify the status of another graph. Hierarchy improves
SFC modeling capabilities and it solves some very important problems
in the design of control algorithms [DA92]. In [Chi98] it is presented
how to implement hierarchical SFC even if this is not available in the
programming environment: an algorithm to translate SFC programs in
other IEC 61331 programming languages is presented and a detailed
example of translation of a SFC program into ladder diagram, which
is a very common language for automation systems programmers, is
also shown.

In particular, the two macroactions available in hierarchical SFC,
SUSPEND and FORCE, are very useful since their use permits to sus-
pend and reset a service; in Fig. 5.2(a) the two macroactions are used.

Remark 1. If a FB consists of several algorithms, the use of the ECSFC
makes clear and readable which algorithms are activated for a given set
of input values. The same result could be obtained also using a case
or an if statement, even if the resulting code would be less elegant and
readable. However, using ECSFC, it results much easier the imple-
mentation of macroactions such as the suspension of an algorithm (a
service). Indeed, in industrial automation context, an algorithm is in-
terfaced with the field, i.e. sensors and actuators. This means that to
suspend an algorithm, it is not enough to suspend the execution of an
algorithm but some output data should be properly set, to ensure that
also the effects of the algorithm on the field are suspended (e.g. to turn

82 5. On the implementation of industrial automation system based on PLC

off motors, to close a valve, etc.). This can be done easily at ECSFC
level, where the suspension can be treated by a sequence of actions.

Remark 2. Note that an exact event-based execution order requires a
real event-triggered algorithm execution. In 61131 (also in 3rd edi-
tion) each FB is triggered in every scan cycle allowing it to perform
its execution. In 61499 a FB would typically only be activated when
it gets an event. This allows to control the execution sequence of the
FBs but the operative system provides this.

However, if the calling of a FB in IEC 61131 is done by means of
an IF statement,

IF ((REQ S1 OR REQ S2 OR ...REQ Sn) OR FB Instance name.NSERVICES>0)

THEN FB Instance name.NSERVICES(inputs,outputs)

the FB is triggered only when at least one of its input events is true and
it is kept activated while at least one service is being executed.

This allows to achieve an event-based execution as for the FB call-
ing.

As far as the execution order of the algorithms coded in the FB,
in IEC 61131 all the program organization units execute their code se-
quentially by beginning to end. Hence, using an ECSFC, when the
scanning process of a FB is performed only the actions of the algo-
rithms enabled by the ECSFC are executed while the other algorithms
remain in the initial step which has no actions associated (see Fig.5.2).

Note that also ISaGRAF [VC08], a commercial tool that allows the
development of programs that are IEC 61131 or IEC 61499 compliant,
supports a hierarchy structure for SFCs. In particular, SFCs placed on
the top of hierarchy, called fathers, are activated by the system. Those
placed at lower level, called child SFCs, are started, killed, frozen or
restarted by their father. In this way it is also possible to implement
ECSFCs. However, the approach proposed in this thesis requires stan-
dard SFC programming language just plus two macroactions, called
SUSPEND and FORCE, and it can be implemented also on platform
where SFC is not supported by using the translation algorithm shown
in [Chi98].

The main idea behind the algorithm is that of allocating a bit

5.1. Function Block Model 83

(marker) for each step and for each transition. The marker of a step
indicates if it is active or not; the marker of a transition indicates if
it is fireable or not. An algorithm can be composed of more not con-
nected SFCs (i.e. the term SFC is referred to a single connected graph),
but a unique Ladder Diagram program composed of four sections can
be used to implement all the SFCs (i.e. all the connected graphs), to
be coded in the right sequence: Initializing section; Action Execution
section; Transition Evaluation section; Condition Update section. The
Initialing section must be executed only once at the first scan of the
program and it sets all the initial steps as active, i.e. set their marker
to 1. The second section must execute actions for all SFCs. It will
contain one rung for each action describing when the action must be
executed. The third section contains evaluation of the markers of tran-
sitions. For each transition, it is evaluated if it is fireable or not and
the corresponding marker set. The fourth and last section realizes the
condition update. For each transition, depending on the state of its
marker, the marker of connected steps are set or reset. Macroactions
can be easily introduced in the second section, adding one or more im-
plementing rungs, depending on the macroation, where one or some
markers (forcing) or all the markers (suspension) of a certain SFC are
set or reset.

In addition of the known advantages of OOP (reusability, data en-
capsulation, etc.), the benefits of the proposed FB model are:

• A service (i.e. the associated algorithm) is executed only when it
is explicitly invoked by means of the associated event as required
by IEC 61499. The execution environment influences only the
time required to execute an algorithm, not when an algorithm
must be executed.

• Once the programming environment allows OOP, the coding is
still fully IEC 61131 compliant

• The new FB model permits to delegate the coordination of ser-
vice requests to an external agent. This will be the subject of one
of the next sections.

84 5. On the implementation of industrial automation system based on PLC

• Different execution modes of an FB can be easily managed by
input events.

SERVICE
r

REQ_Sr

END_Sr SUSPEND_Sr

SUSPEND
Sr

RESET_Sr

FORCE Sr

END_Sr

SERVICE_r.Suspend

SERVICE_r.Reset

START
SERVICE r START

Sr

Fr1

Sr

Fr2

Tr1

Tr2

SERVICE
r ENDED

SFCr

END_Sr

TRUE

SUSP_Sr

SUSP_Sr

SUSP_Sr

RES_Sr

Sr_SUSPENDED

Sr

NSERVICES:= NSERVICES+1

SERVICE
r

SrOK

NSERVICES:= NSERVICES-1

TRUE

Figure 5.3 Implementation of suspension and reset of a sequence.

Note that the execution of SFC consists of a number of tasks that
in each scan cycle are performed in a certain order [HFL01]. In partic-
ular, each IEC 61131 commercial implementation executes the evalu-
ation of transition conditions leading from active steps and their firing
in a different way. This may result in a different behavior. However,
this is a well known problem and in the literature it is clearly shown
how to solve it [Lew98]. This is not the scope of this thesis.

As for our approach, in the ECSFC the unique problem concerning
the evolution is that it has diverging paths, then there may be simul-
taneously enabled alternative transitions. According to the standard,
transitions to the left have precedence over transitions to the right.
However, a specific IEC 61131 implementation may implement a dif-
ferent priority rule, or the programmer can change it by rewriting the
logical conditions.

As for example, in the SFC in Fig. 5.2(a) by replacing “REQ S1”
by “REQ S1 AND NOT(REQ Sn)”, the n-th service is executed before
the first service, if they are both enabled.

5.1. Function Block Model 85

Finally, the proposed FB model can be improved by using another
useful OOP tool, the Interface, which is an abstract specification for
FB methods. An Interface defines signatures for the methods without
specifying their implementation. A method declared by an Interface
can be implemented in an FB, and its implementation (related to that
particular FB) must be coded. For instance, consider the suspension
and the reset of a certain sequence, a common requirement in indus-
trial automation. An Interface could be defined with the signature of
the two methods: suspension and reset; then, each FB can use the sus-
pension and the reset in a different way by implementing the interface
and describing what the two methods actually do in that particular FB:

INTERFACE SUSPEND AND RESET
METHOD Suspend

...
END METHOD
METHOD Reset

...
END METHOD

END INTERFACE

As told, the suspension and the reset of a sequence are common
requirements in industrial automation so some more considerations
are in order. The suspension and the reset of a sequence is a state-
dependent action and thus a method is not sufficient to implement
them, since method cannot depend on the current state. A possible
solution is to use a method to set a boolean variable which triggers
a unique step in the SFC, which remains active until the method RE-
SET sets to true the value variable causing the transition into the initial
step. A method is used since some actions on the field (turn off a
motor, close a valve, etc.) may be required in addition to the cited
variable setting. An example is shown in Fig. 5.3: the method SER-
VICE r.Suspend set to true SUSP Sr causing the transition of SFCr
into the step Sr SUSPENDED.

It is worth noticing that suspension of a sequence (and forcing a
sequence in a given step) are very useful macroactions [Chi98] which
are not provided by the revision of the standard. Their implementation
in an OOP environment is one of the contribution of this chapter.

OMAC PackML [OMA] state model, now part of ISA 88 standard,
introduces a standard state representation of what a machine is doing to

86 5. On the implementation of industrial automation system based on PLC

improve system programming efficiency. SUSPEND and RESET can
help in implementing such a state model since these methods allow
to define clearly the functioning state of a FB, and then the state of a
device, also when something wrong occurs.

5.2 FB Design

The goal now is to design a FB that performs an event-based execution
order and that is capable to fulfill the service requests associated with
events.

In an OOP context an object is characterized by data and methods.
It must be noticed that the program of sequences, one of the funda-
mental things in industrial automation, cannot be coded as a method
since methods have local variables but they do not store data between
two consecutive calls. Then, to implement a sequence there are two
solutions: a method that uses variables declared in the body of FBs;
the implementation in the object body. Both solutions would not be a
good practice, since adding new operations would imply the redefini-
tion of the class (i.e. adding new local variables or writing a different
body).

In this section, it is proposed to implement each operation as a
separate class called Operation FB (OFB) while the basic function-
alities that requires access to I/O field signals are implemented in a
class called Device FB (DFB). Operation FB uses such functionalities
to perform a certain working cycle. If more complex behaviors are
needed, a new DFB can be defined that inherits all methods and prop-
erties of an existing DFB and extends it by new methods and proper-
ties. Notice that both OFBs and DFBs are FB objects as provided by
the revision of the standard, they are named differently only to point
out their role.

To link an OFB with a DFB, pointers can be used. In the revised
version of the standard, pointers are provided. They can point to any
data types, any user-defined types, programs, methods, FBs, functions.
Then, the pointer to a DFB can be given as input to an OFB to indicate
the DFB it has to perform its operations on.

5.2. FB Design 87

As an example, assume to have a DFB named SILO, which imple-
ments, for a certain real silo, basic behaviors as opening and closing of
its input and output valves and conversion of its sensor measures; as-
sume, moreover, to have an OFB named FILLING, which implements
the whole sequence of silo filling.

The following code
VAR

S1:SILO;
FIL1:FILLING(PTSILO:=ADR(S1));

END VAR

allows to create an instance of the OFB FILLING named FIL1
which receives in input the pointer to S1, that is an instance of the
DFB SILO (ADR stays for address operator and PTSILO is a pointer
to a SILO object). This allows the use of methods or properties of S1
inside FIL1 by standard dot notation (e.g. PTSILO∧.namemethod).

In this way all the benefits of OOP are used: an operation can be
added simply by defining a new OFB class just for the new operation.
Moreover, the distinction between DFB and OFB helps to reuse DFBs
which have direct interface with the field. Notice that a DFB certainly
has field events since it provides field services (e.g. open valve, start
motor), while an OFB may have no field inputs/outputs but it certainly
has input/output events since it consists of a sequence of basic oper-
ations (e.g. filling of a silo, transfer of a pallet) which are started by
means of input events.

5.2.1 Example
Consider the layout shown in Fig. 5.4. It consists of a set of silos
connected by a pipe. Each silo is cyclically filled and emptied with
a liquid. However, before emptying silo S2 the liquid is heated by
a resistance until a given temperature is reached, while in silo S3 it is
mixed for a given time. In silo S4 the liquid is heated and mixed before
silo is emptied.

The liquid of silo S1 (S2) is poured into silo S4 (S3). Silos S3 and
S4 cannot be filled at the same time since there is only a single pipe
to do this operation. Mixing the liquid in silos S3 and S4 at the same
time is not possible because it requires too much power.

88 5. On the implementation of industrial automation system based on PLC

Figure 5.4 fig/Plant layout.

5.2. FB Design 89

According to the approach described in this section, a DFB class
named SILO has been created for the basic silo without mixer and
heater, see Fig. 5.5 for the graphical I/O definition.

SILO

EMPTY_LEVEL

FULL_LEVEL

IN

OUT

BOOL
BOOLBOOL

BOOL

INIT INITOK BOOLBOOL

NSERVICES INT

Figure 5.5 DFB SILO.

FUNCTION BLOCK SILO
VAR INPUT

EMPTY LEVEL:BOOL; (* sensor of empty level *)
FULL LEVEL:BOOL; (* sensor of full level *)
INIT:BOOL; (* initialization event *)

END VAR
VAR OUTPUT

IN:BOOL; (* input valve *)
OUT:BOOL; (* output valve *)
N.SERVICES:INT; (* number of active services *)
INITOK:BOOL; (* initialization completed event *)

END VAR
VAR

...
END VAR
METHOD Set Init

...
END METHOD
METHOD Set In

...
END METHOD
METHOD Set Out

...
END METHOD

END FUNCTION BLOCK

Then, DFB SILO WITH MIXER AND HEATER has been cre-
ated. It inherits by the DFB SILO all methods, properties, interfaces
and it adds those related to the mixer and heater, as shown in Fig. 5.6
for the graphical I/O definition.

90 5. On the implementation of industrial automation system based on PLC

SILO WITH MIXER

AND HEATER

EMPTY_LEVEL

FULL_LEVEL

IN

OUT

BOOL
BOOL

BOOL
BOOL

THERMOMETER
MIX

RES

BOOL
BOOLREAL

INIT INITOK BOOLBOOL

NSERVICES INT

Figure 5.6 DFB SILO with mixer and heater.

FUNCTION BLOCK SILO WITH MIXER AND HEATHER EXTENDS SILO
VAR INPUT

THERMOMETER:REAL; (* temperature sensor *)
END VAR
VAR OUTPUT

MIX:BOOL; (* mixer motor *)
RES:BOOL; (* heater resistance *)

END VAR
VAR

...
END VAR
METHOD Set Mixer

...
END METHOD
METHOD Set Res

...
END METHOD
PROPERTY TEMPERATURE : REAL

GET
TEMPERATURE:=(THERMOMETER*1.8)+32;

END GET
END PROPERTY
PROPERTY TEMPERATURE : BOOL

GET
END EMPTY:=NOT(EMPTY LEVEL);

END GET
END PROPERTY

END FUNCTION BLOCK

From the specifications, four working sequences must be defined:
filling, emptying, heating and mixing. For all these sequences, the
methods SUSPEND and RESET have been defined by means of IN-
TERFACE construct and properly implemented in the respective FBs.

5.3. A formal approach to FBs coordination 91

As for example, in this chapter the OFB implementing the heating se-
quence has been reported.

FUNCTION BLOCK HEATING IMPLEMENTS SUSPEND AND RESET
VAR INPUT

REQ HEAT:BOOL; (* request of service HEAT *)
INIT:BOOL; (* initialization event *)
T HEAT:REAL; (* temperature set point *)

END VAR
VAR OUTPUT

HEATOK:BOOL; (* service HEAT completed; *)
INITOK:BOOL; (* initialization completed event *)
N.SERVICES:INT; (* number of active services *)

END VAR
VAR

PTSILO:POINTER TO SILO WITH MIXER AND HEATHER;
SUSPEND HEATING:BOOL; (* event alarm *)
RESET HEATING:BOOL; (* reset command *)
SUSPEND INITIALIZING:BOOL; (* event alarm *)
RESET INITIALIZING:BOOL; (* reset command *)

END VAR
METHOD Suspend

...
END METHOD
METHOD Reset

...
END METHOD
FB body consists of SFC in Fig.5.7

END FUNCTION BLOCK

Notice that each FB usually has an initialization procedure, since
in practice some checks are needed before the starting of the normal
running of a device and of a working cycle. This is why initialization
input and output events are always present in the FBs shown in the
chapter.

5.3 A formal approach to FBs coordination
After FBs have been declared and instantiated according to OOP ap-
proach, the body (main loop) of the automation program must be de-
veloped. In the proposed approach, an event-based approach, the body
must consist of FB callings by means of methods. The problem of how
to formally define this automation program is still open.

In industrial automation the purpose of a program is, known the
occurred events, to produce events (i.e. the starting of an operation) in

92 5. On the implementation of industrial automation system based on PLC

SERVICE
HEATING

REQ_HEAT

END_HEATING SUSPEND_HEATING

SUSPEND
HEATING

RESET_HEATING

FORCE
HEATING

END_HEATING

SERVICE_HEATING.Suspend

SERVICE_HEATING.Reset

START

HEATING
COMPLETED

TRUE

SERVICE
INIT

INIT

END_INITIALIZING SUSPEND_INITIALIZING

SUSPEND
INITIALIZING

RESET_INITIALIZING

FORCE
INITIALIZING

END_INITIALIZING

SERVICE_INITIALIZING.Suspend

SERVICE_INITIALIZING.Reset

INITIALIZING
COMPLETED

TRUE

START
HEATING

FH2

HEATING

HEATING
ENDED

END_HEATING

TRUE

PTSILO^.TEMPERATURE>=T_HEAT

SUSPEND_HEATING

HEATING
SUSPENDED

RESET_HEATING

SUSPEND_HEATING

SUSPEND_HEATING

FH1

PTSILO^.NOT_EMPTY

SUSPEND_HEATING

(a)

(b)

PTSILO^.Set_Res(TRUE)

START
INITIALIZING

INITIALIZING
ENDED

INITIALIZING

END_INITIALIZING

TRUE

SUSPEND_INITIALIZING

INITIALIZING
SUSPENDED

RESET_INITIALIZING

SUSPEND_INITIALIZING

FI1

PTSILO^.INITOK

SUSPEND_INITIALIZING

PTSILO^.Set_Init(TRUE)

NSERVICES:= NSERVICES+1

NSERVICES:= NSERVICES-1

HEATING

HEATOK

NSERVICES:= NSERVICES+1

INITIALIZING

NSERVICES:= NSERVICES-1

INITOK

Figure 5.7 (a) ECSFC of OFB HEATING; (b) SFC implementing service
requests of OFB Heating.

5.3. A formal approach to FBs coordination 93

such a manner that a desired behavior is obtained. The desired behav-
ior can be expressed in terms of sequences and in terms of constraints
on these sequences.

Consider for instance a working cell composed by machines, con-
veyors and buffers: input events for the program can be the end of a
working sequence, the arriving of a part at the end of a conveyor, the
end of the loading of a part from a buffer; output events can be the start
of a working sequence, the loading of a part on a conveyor, the loading
of a part from the buffer.

The desired behavior for such a cell can be described by the correct
loading sequences and by the logical constraints on these sequences,
e.g. avoiding buffer overflows, mutual exclusion when using shared
resources, etc.

Usually the automation program is used both to enforce desired se-
quences and to enforce logical constraints. Moreover, SFC language is
utilized [R.D95] thanks to its ability to graphically represent sequen-
tial behavior and concurrency, and to offer a clear understanding of the
input-output behavior of the controller. The problem is that this ap-
proach, common to industrial automation community, is not efficient
when the system complexity grows. In such a case a formal method to
design the program is needed.

Here it is proposed to model the sequences of the desired behavior
by means of a PN, called PN controller, which has the role of calling
FBs. The PN controller, which is implemented in the body of the
automation program, sends to FBs the order to start a certain service
(i.e. it forces event occurrences), and it receives from FBs the events
of service completion.

This permits to look to the FBs and the PN controller as an ex-
tended process which, from an external point of view, spontaneously
generates events [BC07]. On this extended process, which already en-
forces desired sequences, the logical constraints must be imposed; in
this thesis it is proposed to use supervisory control for this purpose.

Supervisory control theory provides powerful results [RW89] for
event systems where events are spontaneously generated (event occur-
rence cannot be forced) and, some events, named controllable events,
can be disabled, while the other ones are called uncontrollable events.

94 5. On the implementation of industrial automation system based on PLC

As for uncontrollable events, their occurrence can be just observed.
An external agent, called supervisor, disables the occurrence of con-
trollable events in order to enforce logical constraints on the sequence
of events generated by the system. In the following, it will be shown
that the extended process, formed by FBs as controlled by the PN con-
troller, generates controllable and uncontrollable events according to
the point of view of supervisory control. Thus, in this thesis logical
constraints are delegated to the supervisor, which is also implemented
in the body of the automation program.

Notice that if the supervisor can be modeled by a PN (this is fre-
quent in this context), a unique PN model is obtained for the automa-
tion program.

As for the supervisor synthesis, nowadays several tools can be
found on the web: Ramadge-Wonham theory is implemented in Suprem-
ica [AFFM06] and in the tools available on the web page of the Sys-
tems Control Group of The University of Toronto [Sys]; Petri net based
supervisory control is implemented in the tools described in [Ior],
[Amb01] and [BCC07a].

The modeling and analysis of concurrent programs using PNs has
been considered before [BDK98, BCD09]. The approach presented
here has similarities with the problem of finding and correcting poten-
tial deadlock situations in software [WKK+08] and with the problem
of automated code generation for general requirements expressed in
terms of supervisory control specifications [IA10]. The main differ-
ence with the approach presented in [WKK+08] is the fact that we
use PNs to write the program and to compute a supervisor that could
be implemented by a PN too and not to obtain a model of the exist-
ing program to analyze deadlocks. In the program synthesis devel-
oped in [IA10] a PN model and supervisory control specification are
both extracted from specification given in high level language, then a
PN supervisor is computed and finally both model and supervisor are
coded in a target programming language. Here, apart from the extrac-
tion of a PN from a high level language, a similar approach is used
but in industrial automation context. On the one hand, that approach
is made difficult by the presence of I/O signals from the field, by the
fact that IEC languages only can be used and by the necessity to reuse

5.3. A formal approach to FBs coordination 95

tested FBs. On the other hand, the specifications are simpler than the
ones for the general software engineering applications or, at least, it is
easier to express them directly in PN form instead of using high level
languages.

Another important issue is the implementation of both the PN model
and supervisor in the automation program. In the following, an algo-
rithm is proposed for the case when a unique PN model is obtained,
but the approach can be extended also to the case when the supervisor
has a different model [BCC07b].

Figure 5.8 (a) Net structure implementing the call of a single service, (b)
conflicting transitions, (c) an example of PN controller used to coordinate the
service requests, (d) an example of PN supervisor to enforce mutual exclusion
in using a common resource, (e) an example of PN model.

96 5. On the implementation of industrial automation system based on PLC

5.3.1 PN representation of FB services

A PLC program could be represented as a network of FBs that run
concurrently to execute desired services’ sequences.

According to the FB model presented in Section 5.1, each FB
can execute more than one service at a time, if this is allowed by its
ECSFC. Each service can be modeled as a place of a PN. If this place
is marked, it means that a FB is running the associate service.

Events are related to net transitions. In particular, one event is asso-
ciated with each transition and vice-versa. The calling of a service can
be represented by a chain transition-place-transition, where the input
transition models the service request, the output transition models the
service completion, and the place the service execution. The structure
in Fig. 5.8(a) implements the calling of a single service.

A PN model of the program is obtained by connecting the places
according to a desired service’s sequence. Hence, the aforementioned
network of FBs can be seen as a PN. As a token moves from one place
to another, the corresponding sequence progresses from one service to
another. Thus, the various places of the PN correspond to different
stages in the execution of a desired services’ sequence.

5.3.2 The PN controller

Event set is divided into two disjoint sets: controllable transitions
(drawn as empty boxes) and uncontrollable transitions (drawn as filled
boxes).

Service requests are assumed to be controllable events, i.e. they
can be disabled by a supervisor. When a controllable event occurs a
command is sent by the PN controller in input to the proper FB to
force the start of the associated service. Here, it is assumed that a
controllable event fires as soon as it is enabled by the supervisor.

The service completion event is modeled by an uncontrollable event
since its occurrence cannot be disabled. These events are generated by
FBs when the sequence responsible of a certain service has been com-
pleted. Moreover, condition involving properties of a FB can be asso-
ciated with uncontrollable transitions (e.g. a temperature has reached

5.3. A formal approach to FBs coordination 97

Figure 5.9 (a) PN controller; (b) PN supervisor; (c) PN model.

a reference value) as in Fig. 5.8(b).
In general, PN places may have more than one output transition.

In this case a conflict occurs and the conflicting transitions must be la-
beled by conditions, indicating which transition should be taken when
the conflict is enabled. This label can consist of a logical condition as
in Fig. 5.8(b) implementing a predefined priority rule or it may be the
output of a scheduler system, that is an upper level system designed to
solve conflicts. The scheduler design is not a goal of this thesis.

The net in Fig. 5.8(c) is an example of a PN controller: two se-
quences are specified; each sequence involves three services (the first
one S1, S2 and S3, the second one S4, S5 and S6).

Consider again the example presented in Subsection 5.2.1. The
control of this system can be designed by properly sending the service
requests to each FB according to the desired sequences and according
to the logical constraints on these sequences.

From the specifications, two sequences must be implemented: 1)
fill S1, pour the liquid of S1 into S4, heat S4, mix S4, empty S4; 2) fill

98 5. On the implementation of industrial automation system based on PLC

S2, heat S2, pour the liquid of S2 into S3, mix S3, empty S3.
Then, to implement these services’ sequencing the PN model shown

in Fig. 5.9(a) can be used.

5.3.3 The Supervisor

The supervisor acts on the extended process, i.e. the event set gener-
ated by the PN controller and by FBs.

If the supervisor is modeled by a PN, called PN supervisor, it con-
sists of places and transitions, since it is a PN model. In practice, its
event set is a subset of the PN controller.

Consider again the PN controller in Fig. 5.8(c). Assume two ser-
vices (S1 and S5) require a common resource. A PN supervisor, as
the one shown in Fig. 5.8(d) can be used. It reduces to the place M
and the transition (event) set consists of REQ S1, END S1, REQ S5,
END S5. Finally, the PN model in Fig. 5.8(e) is obtained.

In the general case, the supervisor could not be a PN but a logical
predicate or an algorithm [LBG97]. In these cases, the supervisor is
implemented as a separate program which sends to the PN controller
the enabling signals for controllable events.

Consider again the example presented in Subsection 5.2.1 and the
related PN controller shown in Fig. 5.9(a).

Two mutual exclusion constraints must be enforced to share the
pipe and to avoid to mix the liquid of silos S3 and S4 at same time.
These two constraints can be modeled by two linear inequalities

m(p4) +m(p6) +m(p18) +m(p20) ≥ 1

m(p10) +m(p22) ≥ 1 (5.1)

where the notation m(pi) is used to denote the marking of the place
pi. By using the approach described in [MA00] and [BCG06], the
supervisor Fig. 5.9(b) can be obtained. It consists of places p25 and p26
with respective input and output arcs.

5.3. A formal approach to FBs coordination 99

5.3.4 PN model implementation

Industrial controllers work typically by cyclically reading and stor-
ing inputs, executing user program(s), and finally writing the outputs
Fig. 5.10(a). The READ-EXECUTE-WRITE cycle is called the scan
cycle.

In Fig. 5.10(b) the evolution algorithm proposed for the implemen-
tation of the PN controller and the PN supervisor is reported. In the
following the main data structures used by the algorithm are discussed.

The PN model can be translated in any IEC 61131 programming
language according to the evolution algorithm shown in Fig. 5.10(b).
In the following, Structured Text (ST) is used just for the sake of read-
ability. The approach can be easily extended to other IEC 61131 lan-
guages. As for Instruction List, the reader can refer to the implemen-
tation of Automation PN (APN) [JU96], an extension of PN, or to the
implementation of Signal Interpreted Petri Nets (SIPN) [Fre00]. As
for the Ladder Diagram, a good survey is presented in [PZ04]. A good
list of references about the problem of implementing PNs on industrial
control systems can be found also in [BC07], where the problems of
implementing supervisory control are discussed.

A vector of integer variables, named M is needed to store the net
marking. A vector of Boolean input variables, named UCT, is allocated
for the set of signals associated with uncontrollable transitions. Events,
i.e. uncontrollable transitions firings, are derived from boolean-valued
signals by detecting rising and falling edges between two consecutive
scan cycles using R TRIG that is a predefined function block in IEC
61131 standard. A vector named UTRIG is associated with the set of
uncontrollable transitions. If at least one transition firing occurred, the
net marking is updated and the enabling of controllable transitions is
evaluated. A vector of Boolean output variables, named CT, is allo-
cated for the set of controllable transitions. For each enabled control-
lable transition, the corresponding element in CT is set to true and the
corresponding service is requested. Note that controllable transitions
fire as soon as they are enabled since they represent service requests.

PN controller and supervisor can be both implemented in the main
loop of the PLC program. The body of such a program, named SI-

100 5. On the implementation of industrial automation system based on PLC

Figure 5.10 (a) Scan cycle. (b) Evolution algorithm for a controller and a su-
pervisor modeled by net structures if state equation is used to update marking.

5.3. A formal approach to FBs coordination 101

LOS COORDINATION, consists in implementing the PN model in
Fig. 5.9(c) and in connecting properly each declared FB. For the sake
of brevity, the variable declaration section and only some parts from
each section of the program are reported below, as well as the section
where each FBs is initialized is omitted.

PROGRAM SILOS COORDINATION
VAR INPUT

(* physical inputs declaration *)
END VAR
VAR OUTPUT

(* physical outputs declaration *)
END VAR
VAR

S1:SILO;
S2:SILO WITH MIXER AND HEATHER;
S3:SILO WITH MIXER AND HEATHER;
S4:SILO WITH MIXER AND HEATHER;
FIL1:FILLING(PTSILO:=ADR(S1));
EMP1:EMPTYING(PTSILO:=ADR(S1));
FIL2:FILLING(PTSILO:=ADR(S2));
EMP2:EMPTYING(PTSILO:=ADR(S2));
HEA2:HEATING(PTSILO:=ADR(S2));
FIL3:FILLING(PTSILO:=ADR(S3));
EMP3:EMPTYING(PTSILO:=ADR(S3));
MIX3:MIXING(PTSILO:=ADR(S3));
FIL4:FILLING(PTSILO:=ADR(S4));
EMP4:EMPTYING(PTSILO:=ADR(S4));
MIX4:MIXING(PTSILO:=ADR(S4));
HEA4:HEATING(PTSILO:=ADR(S4));
UCT : ARRAY [1..12] OF BOOL;
UTRIG : ARRAY [1..12] OF R TRIG;
CT : ARRAY [1..10] OF BOOL;
UPDATE:BOOL;
M: ARRAY [1..26] OF INT; (* PLACE MARKING *)
T: ARRAY [1..10] OF BOOL; (* TRANSITIONS *)
dummy,dummy2:BOOL;

END VAR
(* INITIALIZING SECTION*)

M[1]:=1; M[13]:=1; M[25]:=1; M[26]:=1;
(* EVENT DETECTION SECTION *)

FOR COUNTER:=1 TO 12 BY 1 DO
UTRIG[COUNTER](CLK:= UTC[COUNTER]);
IF UTRIG[COUNTER].Q

THEN UPDATE := TRUE;
END IF;

END FOR;
(* UPDATE SECTION *)

IF UPDATE THEN
(* STATE UPDATE SECTION: UNCONTROLLABLE TRANSITIONS *)
IF UTRIG[1].Q THEN

M[3]:=M[3]+1;
M[2]:=M[2]-1;

102 5. On the implementation of industrial automation system based on PLC

END IF
.......
(* OUTPUT EVALUATION SECTION *)
IF M[1]≥ 1 THEN

CT[1]:=TRUE;
T[1]:=TRUE;

END IF
.......
(* STATE UPDATE SECTION: CONTROLLABLE TRANSITIONS *)
IF T[1] THEN

M[2]:=M[2]+1;
M[1]:=M[1]-1;

END IF
.......

END IF
(* event-based FB CALLS *)

.......
IF (CT[3] OR HEA4.NSERVICES) THEN HEA4(INIT:= 0, REQ HEAT:= CT[3],

T HEAT:= 60, INITOK:= dummy,
HEATOK:=UCT[4], N.SERVICES:=dummy2);

IF (CT[9] OR MIX3.NSERVICES) THEN MIX3(INIT:= 0, REQ MIX:=CT[9],
T MIX:=15, EMPTY:=%IX5, INITOK:= dummy,
MIXOK:=UCT[11], N.SERVICES:=dummy2);

.......
END PROGRAM

For the sake of simplicity, transitions are ordered in such a way
that t1 , ..., t10 are controllable transitions, while t11 , ..., t22 are uncon-
trollable transitions.

The values can be assigned to the parameters in parentheses after
the instance name of the function block.

.....
FB Instance name(Start Service1:=REQ S1, ..., Start Servicen:= REQ Sn, Data1:=A1, ..,

...,Datan:=An , End Service1:=END S1 , ..., End Servicen:= END Sn);
.....

Function blocks are always called through a function block in-
stance using an IF statement, as discussed in Subsection 5.1.2, to en-
sure that a FB is activated when at least one controllable event occurs
and is kept activated while at least one service is being executed.

Note that for each enabled controllable transition the correspond-
ing service is requested. Finally, FBs are called by properly linking
service requests and service completion variables. In this work start
service values are associated to controllable transitions, end service
values are associated to uncontrollable transitions, while data can be

5.4. Implementation on PLCs using OOP 103

auxiliary data or field I/O data. As for example, the controllable tran-
sition t3 corresponds to REQ HEAT of S4, HEAT OK of S4 corre-
sponds to the uncontrollable transition t14, T HEAT is a data related to
the heating temperature.

5.4 Implementation on PLCs using OOP

In this section a method is proposed to implement controllers and su-
pervisors designed by Petri Nets on PLCs using OOP .

An algorithm is here proposed to implement a unique PN model
formed by both a PN controller and a PN supervisor. It is based on
two main class objects: place and transition. As more, the PLCopen
XML format [PLC09] is used to code the PN model and import it in
a development environment which supports PLCopen XML and OOP
(e.g. CoDeSys).

It is worth noticing that the proposed method preserves the struc-
ture of PNs. In the resulting program each instruction is directly re-
lated to the evaluation of a transition, to the update of the marking, or
to the enabling of a transition. This preserves the auto-documentation
features of PNs and allows the user to easily modify the program di-
rectly, starting from the modifications made to the PN design. The
method is presented for Structured Text (ST) language but it can be
adapted to other programming language for PLCs supporting OOP.

PLCopen is an independent organization providing efficiency in
industrial automation based on the needs of users. PLCopen members
have concentrated on technical specifications around IEC 61131, cre-
ating specifications and implementations in order to reduce cost in in-
dustrial engineering. The outcome is standardized libraries for differ-
ent application fields, harmonized language conformity levels and en-
gineering interfaces for exchange, as for example the PLCopen XML.

In Fig. 5.11 steps to implement PNs in IEC 61131 languages ex-
tended with OOP are shown. Step 1 consists in the PN design by the
user. The goal of this section is the discussion of steps 2 and 3.

Step 2. A MATLABr script has been implemented. It requires
the number of the PN places and transitions, and the pre and post-

104 5. On the implementation of industrial automation system based on PLC

Step 1: Design of the PN controller / supervisor

Step 2: Creation of the corresponding

PLCopenXML file by means of the Matlab® script

Step 3: Linking of transition objects to service

requests and completions

Figure 5.11 Workflow to implement PNs on PLCs.

incident matrices and generates a PLCopen XML file that implements
the structure of the PN and its evolution. The file is composed by
two parts: variables declaration and body of program. The body of
program, where the evolution of the PN is coded, is subdivided in the
following 3 sections: Initializing Section where the structure of the net
is created and its initial marking is set; Event Detection Section where
the enabling of each transition is evaluated; Update Section where the
marking of the net is updated based on the fired transitions.

Note that the user has not to be confident with PLCopen XML
format.

The script requires the existence of a library composed by two ba-
sic classes (as extension of standard FBs), Place and Transitions, pre-
sented in the following.

In Fig. 5.12(a) FB Place is shown. Its inputs are: EVENT IN
(EVENT OUT), the pointer to the array of events associated with place
preset (postset) transitions; PRE (POST), the pointer to the array of
weights associated with the input (output) arcs. Its output is the value
of the marking of the place.

Methods of the FB Place are: setArcs, (it defines the place preset
and postset), setInitialMarking (it sets its initial marking), updateMark-
ing (it updates its marking), update (it allows to add a new input -
output- arc).

FB Transition (Fig. 5.12(b)) has three input variables: EVENT, a
boolean variable equal to 1 when the event (i.e., a service request/completion,
or a supervisor enabling) associated with the transition occurs, other-
wise it is 0; PRE, the pointer to the pre-incident matrix row related to

5.4. Implementation on PLCs using OOP 105

POINTER TO DWORD ARRAY

POINTER TO DWORD ARRAY

POINTER TO INT ARRAY

POINTER TO INT ARRAY

EVENT_IN

EVENT_OUT

PRE

POST
MARKING INT

PLACE

(a)

BOOL

POINTER TO INT ARRAY

POINTER TO DWORD ARRAY

EVENT

PRE

P_MARKING

ENABLED BOOL

TRANSITION

(b)
Figure 5.12 (a)

Function Block Place and (b) Function Block Transition.

the transition; P MARKING, the pointer to the marking of the input
places. Its output is ENABLED, the boolean variable that is equal to 1
if the transition is enabled, otherwise it is 0.

Methods of FB Transitions are setArcs (it defines the transition pre-
set), value (it evaluates the transition) and update (it allows to add a
new place to the transition preset).

The code implementing the FB Transition is shown in Fig. 5.13.
The key idea of this code is the use of pointers and of the operator

New: it allocates memory for FB instances or arrays of standard data
types. The operator returns a suitably typed pointer to the object. In
this way the memory should be allocated dynamically for the applica-
tion.

Memory dynamic allocation is not a new concept in the computer
science but it is not used in PLC field. Indeed, such an operator is not
prescribed by the IEC 61131 standard, it is only supported by CoDeSys
V3.

The use of New allows the definition of an unique FB Transition,
since no limitation to the maximum number of input arcs have to be
introduced: the transition can have any number of arcs (only limited to
the memory of the device).

Step 3. The program automated generated by means of the PLCopen
XML file must be integrated by the user, linking the transition objects

106 5. On the implementation of industrial automation system based on PLC

to the FB service requests (completions).
Consider the example presented in 5.2.1.Silos S3 and S4 cannot

be filled at the same time since there is only a single pipe to do this
operation. It can be decided if executing the mixing of the liquid in
silos S3 and S4 contemporaneously or not, setting the variable power
equal to 0 or 1, respectively. the PN modeling the supervised process is
shown in Fig. 5.14: when contemporaneous mixing is allowed, place
P26 is not connected to the rest of net, it is linked when the mixing in
S3 and S4 can not occur at the same time.

The ST code, implementing such a PN is shown in Fig. 5.15: the
bold text lines are the ones manually added by the user to link the firing
of transitions to the service requests and completions; ADDITIONAL
CONSTRAINTS SECTION is added to allow the two different config-
urations of the net.

When the constraints about mixing is activated, calling the meth-
ods update of the classes Place and Transition, new arcs can be added,
linking the place P26 to net transitions: without the dynamic alloca-
tion, since each place (transition) must have a fixed number of arcs,
two different programs would have been implemented.

Notice that it is easy to modify the PN if the system specifica-
tions are changed: as example the adding (delating) of a node only
requires to change the corresponding parameters (number of places
(transitions), incidence matrices) and to execute again the Matlabr

script.
The approach can be applied to large and complex systems, with

the only limitation deriving from the physic limits of PLCs.

5.4. Implementation on PLCs using OOP 107

>=

Figure 5.13 ST code implementing FB Transition.

108 5. On the implementation of industrial automation system based on PLC

FIL1.REQ_FILL

FIL1.FILLOK

EMP1.REQ_EMPTY
AND FIL4.REQ_FILL

EMP1.EMPTYOK

HEA4.REQ_HEAT

FIL4.FILLOK

HEA4.HEATOK

MIX4.REQ_MIX

MIX4.MIXOK

EMP4.REQ_EMPTY

HEA2.REQ_HEAT

HEA2.HEATOK

EMP2.EMPTYOK

(EMP2.REQ_EMPTY AND
FIL3.REQ_FILL)AND
NOT(EMP1.REQ_EMPTY
AND FIL4.REQ_FILL)

FIL3.FILLOK

MIX3.REQ_MIX AND
NOT MIX4.REQ_MIX

MIX3.MIXOK

EMP3.REQ_EMPTY

EMP3.EMPTYOKEMP4.EMPTYOK

FIL2.REQ_FILL

FIL2.FILLOK

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12 T13

T14

T15

T16

T17

T18

T19
T20

T21

T22

P1

P2

P3

P4 P5

P6 P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18P19

P20P21

P22

P23

P24

P25

P26

Figure 5.14 Petri Net model.

5.4. Implementation on PLCs using OOP 109

> 0

> 0

> 0

> 0

> 0

> 0

> 0

> 0

Figure 5.15 ST code, implementing PN of Fig. 5.14.

Chapter 6

Conclusion and further
research

The results of the previous chapters are here summarized. Several ob-
servations regarding them are made and some possible extensions of
this research are discussed. More in detail a preliminary results in de-
veloping a flexible, modular and distributed control architecture using
a cyber-physical system perspective are presented.

6.1 What has been accomplished
In this dissertation a modeling framework for semi-automated hyper-
flexible robotic cells in aircraft industry has been proposed.

The goal of chapter 4 is the synthesis of a model for the sequencing
of the activities of a robotic cell in aircraft industry. The robotic cell
is built, starting from the models of resource and task blocks, that are
the cell elementary components. A systematic algorithm that yields a
Colored Modified Hybrid Petri Net model of the whole cell, starting
from resource and task models, has been presented.

In the chapter 4, an object oriented approach, the programming
language SFC together with a proper way to organize the inputs and
outputs of FBs and supervisory control are proposed to implement in-
dustrial automation control systems to meet the new challenges of this
field. FBs are assumed to be objects with methods and properties.

112 6. Conclusion and further research

Methods together with a SFC help to make event-based the execution
order of FBs. Moreover, FBs are seen as service providers, accord-
ing to a service-oriented paradigm. Furthermore, it has been shown
that supervisory control can be adopted to solve the coordination, in
the context of industrial control, of the concurrent behavior of the sev-
eral FBs which constitute a typical automation software application.
Indeed, the desired behavior of such an application results to be ex-
pressed in terms of desired sequences of events. PNs have been chosen
since efficient methodologies are available to apply supervisory con-
trol using this formal model and it has been shown that they can be
easily implemented on commercial PLCs using Object Oriented Pro-
gramming. The approach can be applied to large and complex systems,
with the only limitation deriving from the physic limits of PLCs.

The last part of this dissertation focuses on the control of auto-
mated warehouse systems which are at service or are integral part of
hyperflexible robotic workcells .

6.2 Cyber-Physical Systems

The Industrial Revolution is a concept and a development that has fun-
damentally changed our society and economy. The term development
may seem to indicate some tardiness in the context of a revolution,
which really signifies a rapid and fundamental change, but there is no
doubt that major alterations occurred within a relatively short period.
Industries arose and replaced small-scale workshops and craft studios.
Textile and pottery factories were the first to recognize the new dawn,
and a new infrastructure of canals and railway lines enabled efficient
distribution. It was the transition from industrious to industrial, and
the start of a boom for both. From the first mechanical loom, dat-
ing from 1784, exactly 230 years ago, we can distinguish four stages
in the ongoing process called the Industrial Revolution. That is the
way we currently look at it. The first acceleration occurred toward the
end of the 18th century: mechanical production on the basis of water
and steam. We place the Second Industrial Revolution at the begin-
ning of the 20th century: the introduction of the conveyor belt and

6.2. Cyber-Physical Systems 113

mass production, to which the names of icons such as Henry Ford and
Frederick Taylor are linked. Number three is the digital automation
of production by means of electronics and it. At present, we find our-
selves at the beginning of this fourth stage, which is characterized by
so-called “Cyber-Physical Systems” (CPS). These systems are a con-
sequence of the far-reaching integration of production, sustainability
and customer-satisfaction forming the basis of intelligent network sys-
tems and processes [vin].

CPS is a promising new class of systems that deeply embed cy-
ber capabilities in the physical world, either on humans, infrastruc-
ture or platforms, to transform interactions with the physical world.
Advances in the cyber world such as communications, networking,
sensing, computing, storage, and control, as well as in the physical
world such as materials, hardware, and renewable green fuels, are all
rapidly converging to realize this class of highly collaborative com-
putational systems that are reliant on sensors and actuators to moni-
tor and effect change. A core differentiator of CPS is the tight con-
joining of and coordination between cyber and physical resources,
which yields unprecedented capabilities. Traditional cyber systems
were usually considered to be the passive, dumb part in the physi-
cal world, but with CPS, we have to now take into account what is
being moved or changed in the physical world. A major difference
between CPS and a regular control system or an embedded system
is the use of communications, which adds reconfigurability and scal-
ability as well as complexity and potential instability. Furthermore,
CPS has significantly more intelligence in sensors and actuators as
well as substantially stricter performance constraints. Today, exam-
ples of nascent CPS are emerging across sectors, such as flight control
and electrochromic cabin windows in airplanes, adaptive cruise control
and antitheft devices in cars, location services in cell phones, field de-
vices in power grids, pacemakers in humans, robotic vacuum devices
at homes, entertainment, gaming, and haptic systems. However, many
existing systems either do not focus on cyber-physical interactions or
are far more capable of richer cyber-physical interactions [Poo10].

The economic and societal potential of CPS is believed to be tremen-
dously greater than what has been achieved by existing systems in

114 6. Conclusion and further research

terms of autonomy, adaptability, efficiency, flexibility, and versatil-
ity. However, many technical challenges need to be addressed before
we can take full advantages of CPS. One of the major challenges is
just-in-time assembly of networked physical entities into desired ca-
pabilities. To facilitate rapid integration of physical entities to achieve
desired tasks, it is necessary to model these entities and support dis-
covery and composition of their capabilities[HBYZ10]. Existing SOA
can be used for the modeling, management, and integration of phys-
ical entities in CPS. The capabilities of the physical entities can be
wrapped as services and SOA technologies, such as service discovery
and composition, can be applied. However, SOA models do not pro-
vide full solution and some new concepts and extensions are required.
Also, the SOA model for CPS should include a (unified) modeling ap-
proach to facilitate automated composition. Specifically, we need to
consider

• Specification of the physical entity (PE) and the services it
provides. In existing models, the service provider (the PE) is
not well defined. The providers of software services may not
be important. But the provider of physical services has critical
physical meanings. For example, a PE can only be at one loca-
tion at one time and cannot provide its services out of its context.

• Specification of tasks. Task specification is critical in auto-
mated composition. The specification model should allow easy
correlation of tasks and services.

6.2.1 A cyber-physical approach to automated ware-
house systems

The contribution of this section is to present a cyber-physical perspec-
tive view about the control of automated warehouse systems, where the
tradition multilevel architecture is replaced by a set of cyber-physical
components interacting each other and implementing management,
optimization and execution of handling sequences in a very distributed/modular
way. The hierarchical control architecture, explained in the second
chapter, benefits from the separation of functionalities but limits the

6.2. Cyber-Physical Systems 115

modularity and flexibility of the control system, being MS and OS
implemented in a centralized way. However, the recent development
of intelligent networked embedded systems and technologies, ranging
from components and software to CPS could help to change this.

The umbrella paradigm underpinning novel collaborative systems
is to consider the set of intelligent system units as a conglomerate
of distributed, autonomous, intelligent, proactive, fault-tolerant and
reusable units, which operate as a set of cooperating entities. These
entities are capable of working in a proactive manner, initiating collab-
orative actions and dynamically interacting with each other to achieve
both local and global objectives.

This evolution towards global service-based infrastructures indi-
cates that new functionality will be introduced by combining services
in a cross-layer form, i.e. services relying on the enterprise system, on
the network itself and at device level will be combined. New integra-
tion scenarios can be applied by orchestrating the services in scenario-
specific ways. In addition, sophisticated services can be created at any
layer (even at device layer) taking into account and based only on the
offered functionality of other entities that can be provided as a service.

The cyber part of the control architecture in automated warehouse
systems reduces to the control algorithms implemented according to
International Electrotechnical Commission (IEC) programming stan-
dard. Indeed, in industrial automation the whole control functionali-
ties are assigned to software executed on general purpose embedded
boards or PLCs, while no functionalities are assigned to the electronic
parts [Thr14].

As explained in the previous chapter, programming of automation
systems is largely based on the IEC 61131 standard and on 61499 stan-
dard. FBs, as offered by both the standards 61499 and 61131, can be
considered as an emerging architectural framework for the design of
distributed industrial automation systems making possible the imple-
mentation of multiagent and holonic control systems [Thr13]. As an
example, in [BV10] a very interesting multiagent control approach is
proposed for a baggage handling system (BHS) using IEC 61499 FBs.
In particular, it focuses on demonstrating a decentralized control sys-
tem that is scalable, reconfigurable, and fault tolerant. The design fol-

116 6. Conclusion and further research

lows the automation object approach, and produces a FB component
representing a single section of conveyor. In accordance with holonic
principles, this component is autonomous and collaborative, such that
the structure and the behavior of a BHS can be entirely defined by the
interconnection of these components within the FB design environ-
ment.

As for the physical part, it can be assumed that, at a certain level
of abstraction, there is a software component for each physical unit,
e.g. a conveyor, an elevator, and so on. However, the complexity of
modern warehouse systems, like the real one considered in [BCC12b],
requires big interfaces (e.g. a carousel, shuttles, rail guided vehicles)
between cranes and picking area and so many vehicles must be used.
Furthermore, when each crane cycle involves more than one picking
and deposit, the number of SUs moved by vehicles at a time in the
interface area grows, and then a significant time is required to cover
the interface guidepath. In practice, vehicle as well as conveyors can
be moved with constant speed, can stop at the interface points to load
(unload) a SU from (to) another subsystem bay, and can vary their
speed with constant acceleration if a particular condition occur (dis-
tance between two vehicles goes under a threshold, a particular point
is reached...)[BCC12b]. To conclude, physical dynamic influence the
optimization, developed essentially in the cyber part.

Such a feedback loop between physical processes and computa-
tions encompasses sensors, actuators, physical dynamics, computa-
tion, software scheduling, and networks with contention and commu-
nication delays.

6.2.2 Cyber component model

In this section the focus is on the cyber part: a perspective view of auto-
mated warehouse system components, implementable by FB models,
is presented and the effects of the physical part reduces to the pre-
diction of SU position through time assuming a motion with constant
speed or acceleration. Communication delays and software scheduling
are not taken into account.

To obtain a Cyber-Physical Component (CPC) each FB is associ-

6.2. Cyber-Physical Systems 117

ated to a physical component (a conveyor, an elevator, etc.) to im-
plement its cyber part where traditional and collaborative/intelligent
functionalities are implemented.

As for example, traditional functionalities are:

• Ability to move objects from one end to the other. At this aim
each component is equipped at least with a photocell at its be-
ginning plus one at the end, and a motor drive.

• Ability to indicate readiness to receive/deliver SUs in order to
avoid inappropriate SU transfers from/to upstream/downstream
component.

• To manage the shifting of tracking data according to the real SU
movements in the plant.

Notice that conveyors implementing divert have an additional pho-
tocells, elevators are equipped with additional motors to move along
different levels. These functionalities can be easily added in a OOP
framework using inheritance.

As for example, collaborative/intelligent functionalities are:

• Ability to change speed/acceleration according to the SU weight
to save energy and/or to avoid breaking the loaded SUs.

• Prediction of SUs position on the component through time.

• Ability to cooperate with other components to implement a dy-
namic path building algorithm (a first contribution can be found
in [BV10]).

• Ability to choose an optimal path for a certain SUs.

Traditional functionalities represent what is called HS, while col-
laborative/intelligent functionalities make possibile to implement OS
and MS at a device level in a completely distributed way. Just the
warehouse location map must be centralized.

118 6. Conclusion and further research

6.2.3 Case study

The proposed approach has been used to move SUs in the automated
warehouse system prototype installed at the Automatic Control and
Robotics Laboratory of the University of Salerno, shown in Fig. 6.1(a).

It is a modular system, made up of conveyor belts and elevators
which move SUs in horizontal as well as in vertical way. The handling
system is subdivided in three zones named, respectively, Zone A, Zone
B and Zone C and each zone is subdivided in four level, (Level 1-
Level 4 in Fig. 6.1(b)). The system is controlled by a PLC Siemens
S300 able to acquire sensors values and command actuators by means
of three remote I/O modules, each one associated to a different zone,
which communicate with the PLC by means of a field bus.

Some conveyor belts of each zone are used as storage locations
(A3, A4, B4, B5, B6, B10, B11, C3 and C4 in Fig. 6.1(b)). Each
physical node of the system (i.e. locations, elevators, belts) together
with its FB model represents a CPC capable to define its states (run-
ning or out of order), to know its neighbours for a given direction, its
length and to set its speed/acceleration.

As for the speed/acceleration setting, in a cyber-physical perspec-
tive a lot of functionalities can be implemented in each CPC. As for
example, energy saving and SU breaking avoidance have been consid-
ered.

Energy cost varies during the working-day a node accelerates/slows
down when the energy cost decrease/rise. At this aim, each component
receives as input info about energy cost and computes the right speed.

CPC A1, which is the input point of the system, is equipped with
an RFID reader, so SUs are identified and a set of technical data, like
its weight and form factor, are acquired. Weight and form factor are
key factors in setting the speed of component to prevent the breaking
of the SU they carry on. As a consequence, each component receives
these data and set the speed to the maximum value with respect to the
SUs carried on.

For sure, dynamic path planning is another functionality that can
be implemented in a CPC of an automated warehouse. When a storage
mission has to be performed, CPC A1 sends to MS the ID number,

6.2. Cyber-Physical Systems 119

in order to build the minimum length path in a distribute way; MS
identifies some possible storage locations for the item and returns back
the list to the input point. Soon after, CPC A1 sends a storage request
to each location on the list. Provided that the state of the locations
is running, they back propagate the request to all their neighbours.
Unless a node is out of order, it adds the information about its length
to the message and, in turn, back propagates the request to its adjacent
nodes, different from the sender. When the storage requests return to
CPC A1, all the feasible paths are defined: CPC A1 selects the best
one depending on its length, given by the sum of each segment it is
made of.

Fig. 6.2 shows the possible twenty-seven paths for the storage of a
SU, assumed that MS indicates B4, B5, B6, B10 and B11 as possible
storage locations to CPC A1. As more, it has been assumed that loca-
tions B4 and B5 are out of order, elevators AL, BL and CL are placed
at first, second and fourth level, respectively.

Two different methodologies have been used to develop the FBs
modeling the nodes of the system: the Codesys Development System,
compliant to IEC 61131 standard, third version, so benefiting from the
OOP; Forte, which is an IEC 61499 Compliant Runtime Environment.

Preliminary results about a novel cyber-physical approach to the
design of automated warehouse systems has been presented in this sec-
tion. The results show that a lot of basic and interesting tasks can be
implemented at a device level. These tasks can include, as for exam-
ple, dynamic path planning and speed setting. Future research efforts
will focus on a full integration of cyber-physical systems in the hyper-
flexible robotic work cell.

120 6. Conclusion and further research

(a)

Zona A Zona B Zona C

Quota 1

Quota 2

Quota 3

Quota 4

Quota 1

Quota 2

Quota 3

Quota 4

AL BL

A3

A1

A4

C3

C1

C4

CL
B7 B1

B2

B3

B4 B5

B8

B9

B10 B11 B6

Input Output

Level 4

Level 3

Level 2

Level 4

Level 3

Level 2

Zone A Zone B Zone C

(b)
Figure 6.1 (a) The prototype of automated handling system installed at the

University of Salerno; (b) its layout.

6.2. Cyber-Physical Systems 121

A1

B4

B5

B6

B10

B11

B10 B11 CL

B9

B8

B7

BL

B3

B2

B1

AL

1

1 1
1

2

3 3

2

3

3

2

4

3

2

1

1

1

1

1

1

3

Figure 6.2 Message exchange between the input point and the candidate storage
locations. Numbers on the arcs represent the length of each segment of the path.

The shorter path is obtained storing the SU in B11, passing by B1 or B2.

Bibliography

[3S 12] 3S Smart Software Solutions. Codesys v3 - web page.
http://www.3s-software.com, 2012.

[ABCC05] Francesco Amato, Francesco Basile, Ciro Carbone, and
Pasquale Chiacchio. An approach to control auto-
mated warehouse systems. Control Engineering Prac-
tice, 13(10):1223 – 1241, 2005.

[AD94] G. Alici and R.W. Daniel. Robotic drilling under force
control: execution of a task. In Intelligent Robots and
Systems ’94. ’Advanced Robotic Systems and the Real
World’, IROS ’94. Proceedings of the IEEE/RSJ/GI In-
ternational Conference on, volume 3, pages 1618–1625
vol.3, September 1994.

[AFFM06] K. Akesson, M. Fabian, H. Flordal, and R. Malik.
Supremica - an integrated environment for verifica-
tion, synthesis and simulation of discrete event systems.
8th International Workshop on Discrete Event Systems
(WODES’06), pages 384–385, July 2006.

[Amb01] M. Ambu. Petri net toolbox.
http://www.diee.unica.it/giua/ARP/SOFT/, 2001.

[ASV08] Adriano José Cunha de Aguiar, Alex Sandro de Araújo
Silva, and Emı́lia Villani. Graphic robot simulation for
the design of work cells in the aeronautic industry. In
ABCM Symposium Series in Mechatronics, volume 3,
pages 346–354, 2008.

124 BIBLIOGRAPHY

[BC01] M.S. Branicky and S.R. Chhatpar. A computational
framework for the simulation, verification, and synthe-
sis of force-guided robotic assembly strategies. Int.
Conf. on Intelligent Robots and Systems (IROS’01),
3:1471–1476, 2001.

[BC07] F. Basile and P. Chiacchio. On the implementa-
tion of supervised control of discrete event systems.
IEEE Transactions on Control Systems Technology,
15(4):725–739, July 2007.

[BCC07a] F. Basile, C. Carbone, and P. Chiacchio. Simulation
and analysis of discrete-event control systems based on
Petri nets using PNetLab. Control Engineering Prac-
tice, 15(2):241–259, February 2007.

[BCC07b] F. Basile, P. Chiacchio, and C. Carbone. Feedback
control logic for backward conflict free choice nets.
IEEE Transactions on Automatic Control, 52(3):387–
400, March 2007.

[BCC+12a] F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, and
C. Curatella. Task oriented motion planning for multi
arm robotic systems. Robotics and Computer Integrated
Manufacturing, 29:569–582, 2012.

[BCC12b] F. Basile, P. Chiacchio, and J. Coppola. A hybrid
model of complex automated warehouse systems - part
I: Modeling and simulation. IEEE Transactions on
Automation Science and Engineering, 9(4):640–653,
2012.

[BCC12c] Francesco Basile, Pasquale Chiacchio, and Jolanda
Coppola. A Hybrid Model of Complex Automated
Warehouse Systems - Part I: Modeling and Simulation.
IEEE Trans. on Automation Science and Engineering,
9(4):640–653, 2012.

BIBLIOGRAPHY 125

[BCC12d] Francesco Basile, Pasquale Chiacchio, and Jolanda
Coppola. A Hybrid Model of Complex Automated
Warehouse Systems - Part II: Analysis and experimen-
tal results. IEEE Trans. on Automation Science and En-
gineering, 9(4):654–668, 2012.

[BCD09] F. Basile, P. Chiacchio, and D. Del Grosso. A two-stage
modelling architecture for distributed control of real-
time industrial systems: Application of UML and Petri
net. Computer Standards & Interfaces, 31(3):528–538,
March 2009.

[BCG06] F. Basile, P. Chiacchio, and A. Giua. Suboptimal super-
visory control of Petri nets in presence of uncontrollable
transitions via monitor places. Automatica, 42(6):995–
1004, 2006.

[BDK98] Eike Best, Raymond Devillers, and Maciej Koutny.
Petri nets, process algebras and concurrent program-
ming languages. In Wolfgang Reisig and Grzegorz
Rozenberg, editors, Lectures on Petri Nets II: Applica-
tions, volume 1492 of Lecture Notes in Computer Sci-
ence, pages 1–84. Springer Berlin Heidelberg, 1998.

[BGM00] F. Balduzzi, A. Giua, and G. Menga. First-order Hybrid
Petri Nets: a model for optimization and control. IEEE
Transactions on Robotics and Automation, 16(4):382 –
399, August 2000.

[BGS01] F. Balduzzi, A. Giua, and C. Seatzu. Modelling and
simulation of manufacturing systems with first-order
hybrid Petri nets. International Journal of Production
Research, 39(2):255 – 282, 2001.

[BL11] Shusheng Bi and Jie Liang. Robotic drilling system for
titanium structures. The International Journal of Ad-
vanced Manufacturing Technology, 54(5–8):767–774,
2011.

126 BIBLIOGRAPHY

[Bru01] H. Bruyninckx. Open robot control software: the oro-
cos project. In ICRA IEEE International Conference
on Robotics and Automation, 2001. Proceedings 2001.,
volume 3, pages 2523–2528 vol.3, 2001.

[BV10] G. Black and V. Vyatkin. Intelligent component-based
automation of baggage handling systems with IEC
61499. IEEE Tran. on Automation Science and Eng.,
7(2):337–351, April 2010.

[CE00] Krysztof Czarnecki and Ulrich Eisenecker. Genera-
tive Programming: Methods, Tools, and Applications.
Addison-Wesley Professional, 2000.

[CG03] R. Valk C. Girault. Petri-Nets for Systems Engineering.
Springer, Berlin, 2003.

[Chi98] P. Chiacchio. Implementation of hierarchical sequential
functional charts for programmable logic controllers.
9th IFAC Symposium on Information Control in Man-
ufacturing (INCOM 98), 2:59–64, June 1998.

[CL08] C.G. Cassandras and S. Lafortune. Introduction to Dis-
crete Event Systems. Springer, 2008.

[CL12] Hugo Costelha and Pedro Lima. Robot task plan repre-
sentation by Petri nets: modelling, identification, analy-
sis and execution. Autonomous Robots, 33(4):337–360,
2012.

[DA92] R. David and H. Alla. Petri Nets and Grafcet. Engle-
wood Cliff, New Jersey, 1992.

[DA05] R. David and H. Alla. Discrete, Continuous and Hybrid
Petri Nets. 2005.

[dAVJ11] Adriano Josè Cunha de Aguiar, Emı́lia Villani, and
Fabrı́cio Junqueira. Coloured Petri nets and graphical
simulation for the validation of a robotic cell in aircraft

BIBLIOGRAPHY 127

industry. Robotics and Computer-Integrated Manufac-
turing, 27(5):929 – 941, 2011.

[DeV09] R. DeVlieg. Robotic trailing edge flap drilling system.
In SAE Technical Paper 2009-01-3244, 2009.

[DF05] M. Dotoli and M.P. Fanti. A coloured Petri net model
for automated storage and retrieval systems serviced by
rail-guided vehicles: a control perspective. Int. Journal
on Comp. Integrated Manufacturing, 18(2-3):122–136,
May 2005.

[DF08] R. DeVlieg and E. Feikert. One-up assembly with
robots. In SAE Technical Paper 2008-01-2297, 2008.

[DHP+93] F. DiCesare, G. Harhalakis, J.M. Proth, M. Silva, and
F.B. Vernadat. Practice of Petri Nets in Manufacturing.
Chapman and Hall, 1993.

[DK98] I. Demongodin and N.T. Koussoulas. Differential Petri
nets: representing continuous systems in a discrete-
event world. IEEE Transactions on Automatic Control,
43(4):573 –579, April 1998.

[Dou99] Bruce Powell Douglass. Doing Hard Time: Developing
Real-Time Systems with UML, Objects, Frameworks,
and Patterns. Addison-Wesley Professional, 1999.

[DPP09] M.A. Drighiciu, A.P. Petrisor, and M. Popescu. A Petri
Nets approach for hybrid systems modeling. Interna-
tional Journal of Circuits, Systems and Signal Process-
ing, 2009.

[DSFI02] R. DeVlieg, K. Sitton, E. Feikert, and J. Inman. Once
(one-sided cell end effector) robotic drilling system.
SAE Technical Paper, 26(1):24–38, 2002.

[DV12] Wenbin Dai and V. Vyatkin. Redesign distributed plc
control systems using IEC 61499 function blocks. IEEE

128 BIBLIOGRAPHY

Transactions on Automation Science and Engineering,
9(2):390–401, 2012.

[EAG] http://ec.europa.eu/research/industrial technologies/pdf/nmp-
expert-advisory-group-reporten.pdf.

[ele] http://elearning.vtu.ac.in/11/enotes/CompIntManf/unit8-
nan.pdf.

[EUR] http://www.euron.org/miscdocs/docs/euron2/year2/dr-
14-1-industry.pdf.

[Fre00] G. Frey. Automatic implementation of Petri net based
control algorithms on PLC. Proceedings of the 2000
American Control Conference (ACC’00), Chigago, Illi-
nois, 4:2819–2823, 2000.

[GA12] S. Chiaverini G. Antonelli, F. Arrichiello. Toward
control of mobile multi-robot systems in hyper-flexible
work cells. In Control Themes in Hyperflexible Robotic
Workcells, pages 145–162, 2012.

[GDF+10] V.M. Gonzandez, A.L. Sierra Diaz, P. Garcia Fernan-
dez, A. Fernandez Junquera, and R. Mayo Bayon.
MIOOP. An object oriented programming paradigm ap-
proach on the IEC 61131 standard. IEEE Conference on
Emerging Technologies and Factory Automation (ETFA
2010), Bilbao, Spain, September 2010.

[GU98] A. Giua and E. Usai. Modeling hybrid system by high-
level Petri nets. API - JESA, 32(9):9–10, 1998.

[HBYZ10] Jian Huang, F.B. Bastani, I-Ling Yen, and Wenke
Zhang. A framework for efficient service composi-
tion in cyber-physical systems. In Service Oriented
System Engineering (SOSE), 2010 Fifth IEEE Interna-
tional Symposium on, pages 291–298, June 2010.

BIBLIOGRAPHY 129

[HFL01] A. Hellgren, M. Fabian, and B. Lennartson. On the
execution of discrete event systems as sequential func-
tion charts. Proceedings of the 2001 IEEE International
Conference on Control Applications (CCA ’01), Mexico
City, Mexico, pages 428–433, September 2001.

[HMKD07] H.Flordal, M.Fabian, K.Akesson, and D.Spensieri. Au-
tomatic model generation and plc-code implementation
for interlocking policies in industrial robot cells. Con-
trol Engineering Practice, 15(11):1416–1426, 2007.

[HS01] R. Mistry R. Hempstead, B. DeVlieg and M. Sheridan.
Drill and drive end effector. In SAE Technical Paper
2001-01-2576, 2001.

[IA10] M.V. Iordache and P.J. Antsaklis. Concurrent program
synthesis based on supervisory control. American Con-
trol Conference (ACC ’10), Baltimore, Maryland, USA,
pages 3378–3383, June 2010.

[IEC03] IEC. International Standard IEC 61131-3: Pro-
grammable Controllers–Part 3: Programming Lan-
guages. International Electrotechnical Commission,
2003.

[IEC05] IEC. International Standard IEC 61499-1: Function
Blocks–Part 1: Architecture, first ed. International Elec-
trotechnical Commission, 2005.

[Ior] M. Iordache. SPNBOX - Matlab toolbox
for the supervisory control of Petri nets.
http://www.letu.edu/people/marianiordache/abs/spnbox/index.html.

[Isa09] Robert Isaksson. Master thesis drilling with force feed-
back, 2009.

[JGL12] Yen Yen Joe, Oon Peen Gan, and Frank L. Lewis.
Multi-commodity flow dynamic resource assignment

130 BIBLIOGRAPHY

and matrix-based job dispatching for multi-relay trans-
fer in complex material handling systems (mhs). Jour-
nal of Intelligent Manufacturing, pages 1–17, 2012.

[JS05] F. Jammer and H. Smit. Service-oriented paradigms in
industrial automation. IEEE Transaction on Industrial
Informatics, 1(1):62–70, February 2005.

[JU96] A.H. Jones and M. Uzam. Design of sequential con-
trol systems in statement lists using TPL: Part II - To-
ken Passing Statement List. 2nd Portuguese Control
Conference, Controlo’96, Porto, Portugal, 14:716–728,
September 1996.

[LBG97] L.E. Holloway, B.H. Krogh, and A. Giua. A survey
of Petri nets methods for controlled discrete event sys-
tems. Discrete Event Dynamic Systems: Theory and
Applications, 7(7):151–190, 1997.

[Lew98] R. Lewis. Programming Industrial Control Systems us-
ing IEC 1131-3: Revised edition. Institution of Electri-
cal Engineers: London, UK, 1998.

[Lew01] R. Lewis. Modelling control systems using IEC 61499:
Applying function blocks to distributed systems. Insti-
tution of Electrical Engineers: London, UK, 2001.

[MA00] J. Moody and P. Antsaklis. Petri net supervisors for
DES with uncontrollable and unobservable transitions.
IEEE Trans. on Aut. Control, 45(3):462–476, March
2000.

[MDP00] P. Mantegazza, E. L. Dozio, and S. Papacharalam-
bous. Rtai: Real time application interface. Linux J.,
2000(72es), April 2000.

[MMLCR08] J. Marco Mendes, P. Leitao, A.W. Colombo, and
F. Restivo. High-level Petri nets control modules for
service-oriented devices: A case study. 34th IEEE

BIBLIOGRAPHY 131

Annual Conference of Industrial Electronics (IECON
2008), pages 1487–1492, November 2008.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and ap-
plications. Proceedings of IEEE, 77(4):541–580, April
1989.

[OHK+10] Tomas Olsson, Mathias Haage, Henrik Kihlman,
Rolf Johansson, Klas Nilsson, Anders Robertsson,
Mats Björkman, Robert Isaksson, Gilbert Ossbahr,
and Torgny Brogårdh. Cost-efficient drilling us-
ing industrial robots with high-bandwidth force feed-
back. Robotics and Computer-Integrated Manufactur-
ing, 26(1):24–38, 2010.

[OMA] OMAC. PackML - web page.
http://www.omac.org/content/packml.

[ORJ07] T. Olsson, A. Robertsson, and R. Johansson. Flexi-
ble force control for accurate low-cost robot drilling.
In IEEE International Conference on Robotics and Au-
tomation, 2007, pages 4770–4775, April 2007.

[oro] The Orocos Project. http://www.orocos.org.

[PL95] S. Pettersson and B. Lennartson. Hybrid modelling fo-
cused on Hybrid Petri Nets. in 2nd European Work-
shop on Real-time and Hybrid systems, pages 303–309,
1995.

[PLC09] PLCopen Technical Committee 6 (TC6). XML Formats
for IEC61131-3, Version 2.01 - Official Release, 2009.

[Poo10] R. Poovendran. Cyber physical systems: Close encoun-
ters between two parallel worlds [point of view]. Pro-
ceedings of the IEEE, 98(8):1363–1366, Aug 2010.

[PSK11] N. Papakostantinou, S. Sierla, and K. Koskinen. Ob-
ject oriented extensions of IEC 61131-3 as an enabling

132 BIBLIOGRAPHY

technology of software product lines. IEEE Conference
on Emerging Technologies Factory Automation (ETFA
2011), September 2011.

[PZ04] S.S. Peng and M.C. Zhou. Ladder diagram and Petri-
net-based discrete event control design methods. IEEE
Transaction on Systems, Man and Cybernetics - Part
C: Application and Reviews, 34(4):523–531, November
2004.

[R.D95] R.David. Grafcet: A powerful tool for specification of
logic controllers. IEEE Trans. On Control System Tech-
nology, 3(3):253–268, September 1995.

[RW89] P.J. Ramadge and W.M. Wonham. The control of vec-
tor discrete-event systems. Proc. of IEEE, 77(1):81–98,
January 1989.

[SBMB09] B. Sahr, J. Buttrick, C. Munk, and R. Bossi. Aircraft
manufacturing and assembly. In Shimon Y. Nof, edi-
tor, Springer Handbook of Automation, pages 893–910,
Berlin, Germany, 2009.

[Sch07] Ulf Schunemann. Programming Plcs with an object-
oriented approach. Automation Technology in Practice,
(2):59–63, November 2007.

[Sys] Systems Control Group of The University of
Toronto. Design software for supervisory control.
http://www.control.utoronto.ca/DES/.

[TF11] K. Thramboulidis and G. Frey. An MDD process
for IEC 61131-based industrial automation systems.
IEEE Conference on Emerging Technologies Factory
Automation (ETFA’11), Toulouse, France, September
2011.

[Thr09] K. Thramboulidis. Different perspectives. Face to face;
IEC 61499 function block model: Facts and fallacies.

BIBLIOGRAPHY 133

IEEE Industrial Electronics Magazine, 3(4):7–26, De-
cember 2009.

[Thr13] Kleanthis Thramboulidis. IEC 61499 as an enabler of
distributed and intelligent automation: A state of the art
review - a different view. Journal of Engineering, 2013.

[Thr14] Kleanthis Thramboulidis. A cyber-physical system-
based approach for industrial automation systems.
CoRR, abs/1407.2077, 2014.

[Van99] J.P. Van den Berg. A literature survey on planning
and control of warehousing systems. IIE Transactions,
31:1–13, 1999.

[VC08] V. Vyatkin and J. Chouinard. On comparisons of the
ISaGRAF implementation of IEC 61499 with fbdk and
other implementations. 6th IEEE International Con-
ference on Industrial Informatics (INDIN 2008), pages
289–294, July 2008.

[vid] http://www.automatica.unisa.it/video/RobotsCooperativeTskVrep.avi.

[vin] vint-research-3-the-fourth-industrial-revolution
http://www.fr.sogeti.com/globalassets/global/downloads/reports/vint-
research-3-the-fourth-industrial-revolution.pdf.

[vre] http://www.coppeliarobotics.com.

[Vya07] V. Vyatkin. IEC 61499 Function Blocks for Embedded
and Distributed Control Systems Design. ISA, 2007.

[Vya11] V. Vyatkin. IEC 61499 as enabler of distributed and
intelligent automation: State-of-the-art review. IEEE
Transactions on Industrial Informatics, 7(4):768 –781,
2011.

[WBC07] Naiqi Wu, Liping Bai, and Chengbin Chu. Modeling
and conflict detection of crude oil operations for refin-
ery process based on controlled colored timed Petri net.

134 BIBLIOGRAPHY

IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 37(4):461 –472, July
2007.

[WCCZ10] N. Q. Wu, F. Chu, C. B. Chu, and M. C. Zhou. Hy-
brid Petri net modeling and schedulability analysis of
high fusion point oil transportation under tank group-
ing strategy for crude oil operations in refinery. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C, 40(2):159–175, 2010.

[WCCZ11] NaiQi Wu, Chengbin Chu, Feng Chu, and MengChu
Zhou. Schedulability analysis of short-term schedul-
ing for crude oil operations in refinery with oil res-
idency time and charging-tank-switch-overlap con-
straints. IEEE Transactions on Automation Science and
Engineering, 8(1):190 –204, January 2011.

[WCZ09] N. Q. Wu, F. Chu, and M. C. Zhou. Short-term schedu-
lability analysis of multiple distiller crude oil operations
in refinery with oil residency time constraint. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C, 39(1):1–16, 2009.

[WE09] G. Whinnem, E. Lipczynski and I. Eriksson. Develop-
ment of orbital drilling for the boeing 787. In SAE Int.
J. Aerosp. 1(1):811-816, 2009, 2009.

[Wer09] B. Werner. Object-oriented extensions for IEC 61131-
3. IEEE Industrial Electronics Magazine, 3(4):36 –39,
December 2009.

[WKK+08] Y. Wang, T. Kelly, M. Kudlur, S. Mahlke, and S. Lafor-
tune. The application of supervisory control to dead-
lock avoidance in concurrent software. 9th Interna-
tional Workshop on Discrete Event Systems (WODES
98), Goteborg, Sweden, pages 287–292, May 2008.

BIBLIOGRAPHY 135

[WZC08a] N. Q. Wu, M. C. Zhou, and F. Chu. A Petri net-
based heuristic algorithm for realizability of target re-
fining schedule for oil refinery. IEEE Transactions
on Automation Science and Engineering, 5(4):661–676,
2008.

[WZC08b] Naiqi Wu, MengChu Zhou, and Feng Chu. A Petri net-
based heuristic algorithm for realizability of target re-
fining schedule for oil refinery. IEEE Transactions on
Automation Science and Engineering, 5(4):661 –676,
October 2008.

[ZK98] M.C. Zhou and K.Venkatesh. Modelling, Simulation
and Control of Flexible Manufacturing Systems: A
Petri Net Approach. World Scientific, Singapore, 1998.

[ZSSB09] A. Zoitl, T. Strasser, C. Sunder, and T. Baier. Is IEC
61499 in harmony with IEC 61131-3? IEEE Industrial
Electronics Magazine, 3(4):49–55, December 2009.

	Frontespizio_Tesi_Diego_Gerbasio
	GerbasioDiego

