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“...Inside my heart is breaking
My make-up may be flaking

But my smile still stays on...”
— The Show Must Go On, Queen

To anyone who has ever believed in me.
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Introduction

The main goal of my work is to exploit the benefits of a hardware imple-
mentation of a 3D visual search pipeline. The term visual search refers
to the task of searching objects in the environment starting from the real
world representation. Object recognition today is mainly based on scene
descriptors, an unique description for special spots in the data structure.
This task has been implemented traditionally for years using just plain
images: an image descriptor is a feature vector used to describe a position
in the images. Matching descriptors present in different viewing of the
same scene should allows the same spot to be found from different angles,
therefore a good descriptor should be robust with respect to changes in:
scene luminosity, camera affine transformations (rotation, scale and trans-
lation), camera noise and object affine transformations. Clearly, by using
2D images it is not possible to be robust with respect to the change in the
projective space, e.g. if the object is rotated with respect to the up camera
axes its 2D projection will dramatically change. For this reason, alongside
2D descriptors, many techniques have been proposed to solve the projective
transformation problem using 3D descriptors that allow to map the shape of
the objects and consequently the surface real appearance. This category of
descriptors relies on 3D Point Cloud and Disparity Map to build a reliable
feature vector which is invariant to the projective transformation. More

9
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sophisticated techniques are needed to obtain the 3D representation of the
scene and, if necessary, the texture of the 3D model and obviously these
techniques are also more computationally intensive than the simple image
capture. The field of 3D model acquisition is very broad, it is possible to
distinguish between two main categories: active and passive methods. In
the active methods category we can find special devices able to obtain 3D
information projecting special light and. Generally an infrared projector
is coupled with a camera: while the infrared light projects a well known
and fixed pattern, the camera will receive the information of the patterns
reflection on a certain surface and the distortion in the pattern will give
the precise depth of every point in the scene. These kind of sensors are of
course expensive and not very efficient from the power consumption point of
view, since a lot of power is wasted projecting light and the use of lasers also
imposes eye safety rules on frame rate and transmissed power. Another way
to obtain 3D models is to use passive stereo vision techniques, where two
(or more) cameras are required which only acquire the scene appearance.
Using the two (or more) images as input for a stereo matching algorithm it
is possible to reconstruct the 3D world. Since more computational resources
will be needed for this task, hardware acceleration can give an impressive
performance boost over pure software approach.

In this work I will explore the principal steps of a visual search pipeline
composed by a 3D vision and a 3D description system. Both systems
will take advantage of a parallelized architecture prototyped in RTL and
implemented on an FPGA platform. This is a huge research field and in
this work I will try to explain the reason for all the choices I made for my
implementation, e.g. chosen algorithms, applied heuristics to accelerate
the performance and selected device. In the first chapter we explain the
Visual Search issues, showing the main components required by a Visual
Search pipeline. Then I show the implemented architecture for a stereo
vision system based on a Bio-informatics inspired approach, where the final
system can process up to 30fps at 1024 × 768 pixels. After that a clever
method for boosting the performance of 3D descriptor is presented and as
last chapter the final architecture for the SHOT descriptor on FPGA will
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be presented. A more complete description of the work can be found in
[1, 2, 3, 4, 5, 6]
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Chapter 1
Visual Search

Visual Search is a complex task and over the years many approaches have
been proposed to solve it. Since the real world can be modelled with different
kinds of data, visual search methods may differ a lot with respect to the
chosen technique. Generally speaking, a representation of the real world
can be acquired in multiple ways. Two kinds of sensors are used in this field:
camera sensors and range sensors. Both sensors have advantages over the
other. the images produced with a camera are relatively easy to manipulate
and visualize but a slanted surface in the scene will result in major drawback
in the visual search algorithm performance (in Fig. 1.1 is shown an instance
of the problem). By using a range sensor it is possible to obtain a 3D
representation of the world, but unfortunately this representation is less
compact than an image but more information about the scene structure is
carried by the data (Fig. 1.2); furthermore, changes in the position of the
sensors potentially bring projective changes in the object pose, and a change
in the object projection onto the image plane will dramatically change the
appearance of some object, using a 3D representation no problems arise
when the object is rotated since the whole structure is defined.

In order to have better results in the Visual Search pipeline, we decided to

13
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14 1. VISUAL SEARCH

Figure 1.1: Example of visual search problem using images; starting from a
template (left) some keypoints are extracted, using a visual search algorithm
is possible to match these points in a cluttered scene (right). This kind of
approach only works well when the template pose is close to the one present
in the scene.

utilize the more robust representation brought by range sensors. This kind
of data are more complex to acquire. Usually each device uses its own output
format and a conversion phase is required to use those data. These systems
can be distinguished in active and passive. The former category uses a light
sensor paired with a light emitter, the emitter projects a pattern over the
scene, while the sensor registers changes in the known pattern; By using this
strategy it is possible to measure the distances of the scene positions. Some
drawbacks occur when using these sensors in outdoor enviroment and direct
sunlight: in fact, sun rays can interfere with the light emitter pattern. Some
of these systems are available off-the-shelf (e.g. KinectTM, Asus Xtion Pro
Live, ...). The latter category, instead, is based on just camera sensors. By
using images, in fact, it is possible to obtain information about the object
position, the system generally results more power efficient than an active
approach since no light emitters are used, but of course more computational
power is required because a complex algorithm must run.

For this work I created range data starting from a camera pair (so the
passive approach was chosen). Starting from a stereoscopic system it is
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1.1. ACTIVE RANGE SENSORS 15

Figure 1.2: Example of 3D visual search, the template in yellow (on the
left) is matched against the 3D representation of the scene (on the right).

possible to obtain a 3D representation of the scene, but, as mentioned
previously, more computational power is required.

1.1 Active range sensors

In the past few years there has been a growing interest in processing 3D
data. Computer vision tasks such as 3D keypoint detection and description,
surface matching and segmentation, 3D object recognition and categorization
have become of major relevance. The relevance of such applications has
been fostered by the availability, in the consumer market, of new low-cost
Active range sensors (also called RGB-D cameras), which can simultaneously
capture RGB and range images at a high frame rate. Such devices are
either based on structured light (e.g. Microsoft Kinect, Asus Xtion) or
Time-of-Flight (TOF) technology (e.g., Kinect II) (Fig. 1.3), and belong to
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16 1. VISUAL SEARCH

Figure 1.3: Example of off-the-shelf RGB-D sensors.

the class of active acquisition methods.

Independently from the specific technology being used, each sensor acquires
3D data in the form of range images, a type of 3D representation that stores
depth measurements obtained from a specific point in 3D space (i.e., sensor
viewpoint) — for this reason, it is sometimes referred to as 2.5D data. Such
representation is organized, in the sense that each depth value is logically
stored in a 2D array, so that spatially correlated points can be accessed by
looking at nearby positions on such grid. Conversely, data are unorganized
when 3D representation is simply stored in 3D coordinates in an unordered
list. These kinds of representation (unorganized and organized) are called
point clouds.

1.2 Passive range sensors

Stereo Matching is the problem to solve to obtain a 3D representation of
the world. In order to triangulate every point in the scene a special pair
of sensors is required. This problem usually requires two cameras as input
sources. It can be defined as the process of finding couples of pixels in the
two images representing the same points in the real world. It is possible to
distinguish two categories of problems, namely: sparse stereo matching and
dense stereo matching. The first category is generally easier and faster to
solve since only some specific (key)points are matched between the images



i
i

“output” — 2017/6/9 — 14:18 — page 17 — #17 i
i

i
i

i
i

1.2. PASSIVE RANGE SENSORS 17

Figure 1.4: Sparse stereo matching input (first two images) and output
(last image). The horizontal lines represent the few matched point on both
images.

(Fig. 1.4). The second category can be thought as a generalization of the
first one: instead of finding just some matches in the two images, a match
is find for every point (pixel) (Fig. 1.5); the final result of this process is
called a disparity map.

Figure 1.5: Dense stereo matching problem input (first two images) and
output (last two images).

Since [7] all the efforts in the Stereo Vision community have been focused
on finding the best algorithm to match correct pixel pairs. Many of these
algorithms are discussed in [8], where a taxonomy is defined that distin-
guishes between global and local methods. According to [8] Stereo Vision
algorithms are composed of five different phases:

• Pre-processing;

• Matching cost computation;
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18 1. VISUAL SEARCH

• Cost aggregation;

• Disparity computation;

• Disparity refinement.

The search for the best method has caused an explosion of creativity regard-
ing the matching technique. Disparity map quality, system performance,
frame rate, image resolution, power consumption and platform cost are
just few of the objectives that can be achieved by a stereo vision system.
Obviously, many of these targets are in contrast, e.g. it is not possible
to have good disparity map quality with high performance on a cheap
platform, therefore a trade-off has to be reached. The complexity of the
algorithm impacts on the disparity map quality, in fact, it is tightly coupled
to the number of comparisons to be performed: for every pixel in the first
(reference) image a matching pixel must be found in the second (target)
image.

1.2.1 Pre-processing

This is a common phase for every image processing algorithm, in the stereo-
vision context is used to remove image distortion and noise. The following
methods are encompassed by the pre-processing:

• Laplacian of Gaussian (LoG) filtering [9];

• Histogram equalization;

• Neighborhood average value subtraction [10];

• Bilateral filter [11].
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1.2. PASSIVE RANGE SENSORS 19

1.2.2 Matching Cost

Since a comparison between pixels is required a matching cost function must
be defined, the easiest technique is to subtract pixel channel values: let IL
be the reference image (sensor on the left), IR be the target image (sensor
on the right), we define:

• Absolute intensity difference (AD): |IL(x1, y1)− IR(x2, y2)|

• Squared intensity difference (SD): (IL(x1, y1)− IR(x2, y2))2

where I(x, y) represents the pixel of position x, y.

1.2.3 Disparity Computation

Once a cost function is defined it is possible to compute the disparity
between pixels. The plot in Fig. 1.6 is obtained by comparing pixels on the
left image with every single pixels in the homologous right line.

If the cost function is good enough, the function minima will represent the
correct match and consequently the disparity. This kind of strategy has
been named "winner takes all" (WTA) (see Fig. 1.7). By using this kind
of strategy it is hard to obtain good results since the cost function has to
be robust enough to accounnt for every possible situation present in the
images.

1.2.4 Cost Aggregation

In order to obtain a more robust algorithm it is possible to aggregate the
cost functions of more than one pixel:

∑
(x,y)∈W

∆(IL(x, y), IR(x+ δ, y))
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Figure 1.6: Disparity Function.

This function is called SAD (Sum of Absolute intensity Differences) or SSD
(Sum of Squared intensity Differences) if the square value is used. In this
case a window of pixels W is used to compute the cost of the matching. Fig.
1.8 shows how much the final result is improved.

1.2.5 Disparity Refinement

In order to enhance the final results of Cost Aggregation, a post-processing
phase of disparity refinement is applied. Since the relative pixel distances
are always integer numbers, the disparity function acts as if the world is
discrete, but this is obviously not true for the real world. To improve the
final result the disparity function could be interpolated to give a more
smooth appearance to the disparity map (Fig. 1.9).

Furthermore, a cost aggregation strategy will decrease the quality of the
disparity map around the corners; this happens because the different point
of view between the cameras change dramatically the object projections



i
i

“output” — 2017/6/9 — 14:18 — page 21 — #21 i
i

i
i

i
i
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reference image             ground truth                    final result

Figure 1.7: Winner takes all applied to Absolute intensity Difference.

reference image              ground truth                   final result

Figure 1.8: Winner takes all applied to Sum of Absolute intensity Differences.

close to the edges, for this reason running an outlier detector/corrector
increases the overall quality (Fig. 1.10).

1.2.6 Main Problems

Using window approaches (SAD, SSD) has some drawbacks. The main
problems to address are the following:

• object edges;

• repetitive texture;

• uniform areas;

• small structure.
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Figure 1.9: Interpolated Disparity Function.

In Fig. 1.11 some instances of these problems are shown.

In square 1 repetitive textures are present caused by multiple books with
the same cover; in squares number 2 and 3 flat zones are highlighted; in
square number 4 a slanted surface does not allow an easy matching; in 6
and 7 the edges of the objects affect the accuracy, finally in 5 the window is
larger than the contained object.

1.2.7 Global Techniques

The methods shown in the previous sections are called local because they
utilize only local information to match pixels, however other kinds of local
methods use more complicated matching criteria based on correlation [12]
and variable size windows [13, 14]. In order to obtain better results, a global
method could be applied: these methods use whole image chunks during
the optimization of the global function.

More formally, we define an objective function for each pixel in the reference
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Figure 1.10: Outlier detection and correction.

1
2 3

4 5

6 7

Figure 1.11: Windows which are responsible for major drawbacks in the
result quality.

image; the functions depend on the parameter δ which represents the relative
offset in the image space:

d(x, y) = argmin
δ

(∆(IL(x, y), IR(x+ δ, y)))

The matching problem is now converted into an optimization problem.
By minimizing the function for each pixel (x, y) we obtain a monochrome
disparity map in which color channel are substituted by the solution d(x, y).
The ∆ function can be defined as explained above using SAD and SSD
functions:
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24 1. VISUAL SEARCH

d(x, y) = argmin
δ

 ∑
(x,y)∈W

∆(IL(x, y), IR(x+ δ, y))


This method enhances the quality of the algorithm in plain zones but
deteriorate the quality near the object edges.

1.2.8 Accelerating Stereo Vision

Depending on the technique chosen, stereo matching can be a complex and
time-consuming task, which makes CPU implementation very expensive
(or unfeasible for global methods) in terms of cost of the chip and power
consumption, and consequently a very large number of implementations
for both GPU and FPGA devices have been developed in recent years. A
remarkable GPU implementation can be found in [15] in which an Absolute
Difference (AD)-Census algorithm is implemented; this algorithm has been
ranked first in the Middlebury benchmark [16]. GPUs are chosen for the
native support for parallelism, in fact many cores on a GPU can process
multiple pixel pairs at the same time reducing dramatically the processing
time. But the shortcoming of this approach is power consumption: generally
a desktop GPU consumes many tens of watts making this solution not valid
for embedded applications. In recent years many artificial vision applications
on mobile robot have been developed, one of the principal tasks to handle
in building a fleet of robots is the power management and the cost of the
single element, without an affordable and power efficient solution further
progress in this field will be constrained. The only way to obtain a stereo
vision system with a low power consumption and acceptable quality on
a cheap device is to use a dedicated architecture, that can be produced
using devices like FPGA and ASIC. Since ASIC requires thousands (if not
millions) devices to be produced, in this work I have prototyped an FPGA
architecture. For a more accurate comparison between GPU and FPGA
limits see [17].
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1.3 Differences between Active and Passive sen-
sors

The principal difference between active and passive range sensors is the
resultant output: generally, an active sensor will output a point cloud, while
a passive system will output a disparity map. Luckily both formats are
interchangeable, therefore, starting from one is possible to obtain the other
(with a modest numeric precision loss in the distances).

Since my visual search pipeline will be composed of a stereo vision system
and a 3D description module, a conversion from disparity map to point
cloud is requieed. The conversion is straightforward, each pixel becomes a
point. The conversion formula is based on the camera parameters and the
baseline size between the two cameras.

In 1.13 a classic structure for stereo vision system is shown: the vertical bold
lines represent the image planes of the cameras, each camera has a focus f
and a focus length fz. In stereo systems, it is common to have homogeneous
sources, thus a set of identical cameras with same fz is used. A baseline B
represents the distance between the two focuses, while the distance from a
point in the real word Pw to the baseline is Z. The projection of the point
Pw onto the camera sensors is marked respectively by p1 = (x1, y1) and
p2 = (x2, y2). By orienting the reference system of both cameras inward it
is possible to simplify the equation to represent the disparity d of the point
Pw as the sum of x coordinate of p points:

d = x1 + x2

This disparity is inversely proportional to the distance and can be used to
triangulate the Z of the real world point. By using triangular similarity it
is possible to obtain the following equation system:


X1
Z = x1

fz
X2
Z = x2

fz

X1 +X2 = B
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Figure 1.12: Disparity to cloud result.

This system can be solved for Z to obtain:

Z = Bfz
d

by applying this rule to every disparity in the disparity map a point cloud
is built.
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Figure 1.13: Scheme of a stereo system as it appears from the top.

1.4 3D Descriptors

The technological progress in the development of range sensors has led us
to the ability in delivering high definition range map with an high frame
rate. Each process that needs to be applied to this range map stream (e.g.
key points extraction and key points description) has to satisfy a precise
performance constraint in order to avoid bottlenecks in computation. To
execute these algorithms on portable devices the extra constraint of low
power usage is imposed.

The principal problem to address during 3D scene reconstruction is to find
the correct rotation and translation matrix among many views obtained
through passive or active range sensors (also called depth sensors).

These views are generally stored as 3D point clouds, lists of tuples containing
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a 3D point (x, y, z) and an optional colour. Aligning point clouds is not
easy and it is strictly related to the Simultaneous Localization and Mapping
(SLAM) problem, but, once two disparity maps are correctly aligned, the
relative positions of the sensors could be easily computed.

To solve the point cloud alignment problem is possible to use techniques
based on the point matches among clouds. To make a correct match, it is
necessary to compute a unique and descriptive representation for each point
that is invariant to the sensor pose. For this reason, if this representation
remains unambiguous among the views, it is said to be the “description” of
the point. Specifically speaking, the description (or descriptor) of the point
is stored as a multidimensional feature vector. The similarity between two
descriptions is easily computed as the distance in the features space of the
descriptors.

As keypoint extractions and descriptions are computationally intensive,
these tasks are not suitable for embedded applications which require real
time performance. Even modern Desktop CPUs struggle trying to compute
a large number of descriptors of a 3D point cloud video. A possible solution
is to use a GPU to parallelize the processing, but a battery dependent
application could never use such a power consuming device, e.g. a drone
trying to reconstruct the environment and at the same time to localize itself
in the real word will never have the ability to align 3D cloud points obtained
using a depth sensor. The only way to obtain a high performance system
with a low power consumption and acceptable quality is to use a dedicated
architecture that can be produced using devices like FPGA and ASIC. Since
ASIC requires thousands (if not millions) devices to be produced, I chose to
develop my application using an FPGA.

To avoid problems caused by rigid rotation of the objects, it is essential
to define a reference system. The older techniques use the so called Local
Reference Axis (LRA) which use the normal of the keypoint as a reference
axis, while more recent approaches use a Local Reference Frame (LRF).
A LRF is a new coordinate system that is used as a reference to encode
the various geometries of the neighborhood. The LRF can be thought of
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as a way to make the descriptors invariant to the sensor pose; this result
is obtained by using the LRF as a way to encode the neighborhood of a
keypoint.

Several 3D local feature descriptors have been designed to encode the in-
formation of a local surface. Among these approaches, many algorithms
use histograms to represent different characteristics of the local surface.
Specifically, they describe the local surface by accumulating geometric or
topological measurements (e.g., point numbers) into histograms according
to a specific domain (e.g., point coordinates, geometric attributes). These al-
gorithms are categorized into ’spatial distribution histogram’ and ’geometric
attribute histogram’ based descriptors. (Fig. 1.14).

1.4.1 Histogram based Descriptors

In this category we can find descriptors that use the point positions to build
histograms.

Spin Image (SI) [19, 20] (Fig. 1.14.a) in SI the normal n to keypoint k is
used as LRA, for each point qi in the neighborhood an α and a β parameter
are computed (Fig. 1.14.a). The discretization of these two distances is
used to build a 2D Histogram, each point is accumulated in the histogram
giving the final SI descriptor.

3D Shape Context (3DSC) [21] in 3DSC the normal n to keypoint k is
used as the LRA. A spherical grid is superimposed on p, with the north
pole of the grid being aligned with the normal n. The grid is then divided
into several bins (Fig. 1.14.b). The divisions are logarithmically spaced
along the radial dimension and linearly along the other two dimensions. The
3DSC descriptor is computed by counting the weighted number of points
laying into each bin.

Unique Shape Context (USC) [22] USC is an extension of 3DSC which
is more robust to the rotation and translation changes. The LRF is used
instead of the LRA and it is computed starting from the neighborhood
instead of the normal n to keypoint k (Fig. 1.14.c).
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(a)

(e)

()f( g                                                  (h))

)c()b(

(d)

(i)                                                                 (j)

Figure 1.14: 3D Descriptors (from [18])
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Rotational Projection Statistics (RoPS) [23, 24] RoPS is based on a
novel, unique and repeatable LRF [24]. According to the LRF the points
are rotated around the three coordinate axis. For each rotation the pro-
jection onto the xy, yz and xz space is performed and for each projection
a distribution matrix is generated, which is used to encode five statistics.
RoPS descriptor will be built starting from the concatenation of all the
statistics (Fig. 1.14.e).

Tri-Spin-Image (TriSI) [25] TriSi builds a LRF in a similar way as it is
done in RoPS. The surface is rotated according to the LRF and then a spin
image is generated using the x-axes as its LRA. In addition, another two
spin images are computed using the y and z-axes as the LRAs of these spin
images (Fig. 1.14.d). The TriSI descriptor is formed by concatenating the
spin images.

1.4.2 Geometric Attribute Histogram based Descriptors

These descriptors represent the local surface by generating histograms
according to the geometric attributes (e.g., normals, curvatures) of the
points on the surface.

Local Surface Patch (LSP) [26, 27] In LSP, the shape index [28] and
the cosine of the angle between the normal of the neighboring points and
the keypoint normal are calculated. The LSP descriptor is a 2D histogram,
where the shape index value and the cosine of the angle between the normals
are discretized in bins (Fig. 1.14.f).

THRIFT [29, 30] In THRIFT, a 1D histogram of the deviation angles
between the normal of the keypoint k and normals of the neighboring points
is built (Fig. 1.14.g). The density of point samples and the distance from
the neighboring point to the keypoint are used to update the bins in a
histogram.

Point Feature Histogram (PFH) [31] in PFH, for each pair of points in
the neighborhood, a Darboux frame is defined using the normals and point
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coordinates (Fig. 1.14.i). Next, four features are calculated for each point
pair using the Darboux frame, the surface normals, and their positions.
PFH is generated by accumulating points in particular bins along the four
dimensions.

Fast Point Feature Histogram (FPFH) [32] First of all, a simplified
point feature histogram (SPFH) is generated for each point by calculating
the relationships between a point and its neighbors (Fig. 1.14.h). While
in PFH there is the comparison between all the pairs in the neighborhood.
FPFH is then built as a weighted sum of all the SPFH built upon every
point in the neighborhood.

Signature of Histogram of Orientations (SHOT) [22] First, an LRF
is computed for the keypoint k, then the neighboring points are aligned
with this new LRF. Next, the support region is divided into several volumes
along the radial, azimuth and elevation axes (Fig. 1.14.j). A local histogram
is associated to each volume. The histograms are filled according to the
angles between the normals to the neighboring points and the normal to
the keypoint. The SHOT descriptor is the concatenation of all the local
histograms. For further reading on the topic refer to [18].
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Chapter 2
Tools

The present work of research has been completed using mainly Altera
and Xilinx Tools and its Intellectual Properties (IP). Prototyping a new
architecture starting from scratch is not a simple task, for this reason Altera
and Xilinx tools come in help to the hardware designer. The developed
IPs were produced using Verilog and High Level Synthesis (HLS) by Xilinx
languages. The board used to prototype the proposed system is a Zedboard
(Fig. 2.1) mounting a Zynq 7000 chip (part number: xc7z020clg484-1).
The Zynq 7000 family is very handy when used in prototyping, in fact, the
programmable logic is coupled with an ARM dual-core A9. ARM core is
crucial when an actual debug on the circuit takes place, in fact, it is easier
to feed simulated data to the architecture using a microprocessor. The
ARM core is able to run both bare metal applications and Linux kernel,
making even easier the architecture debugging. Furthermore, for every IP
present in the Xilinx IP catalog a Linux driver is available, speeding up the
prototyping time.

33
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Figure 2.1: Zedboard.

2.1 ModelSim Altera Edition

Producing an IP could be a frustrating process, hours and hours spent
simulating the circuits just to notice an error in the signal stimulations. The
simulation is a critical task before the actual synthesis. For this purpose a
lot of tools are available on the market and one of the best is without any
doubt ModelSim Altera Edition (Fig. 2.2).

ModelSim combines simulation performance and capacity with the code
coverage and debugging capabilities required to simulate multiple blocks
and systems and attain ASIC gate-level sign-off. Comprehensive support
of Verilog, SystemVerilog for Design, VHDL, and SystemC provide a solid
foundation for single and multi-language design verification environments.
ModelSim’s easy to use and unified debug and simulation environment
provide today’s FPGA designers both the advanced capabilities that they
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Figure 2.2: ModelSim Altera Edition.

are growing to need and the environment that makes their work productive.

The ModelSim debug environment’s broad set of intuitive capabilities for
Verilog, VHDL, and SystemC make it the choice for ASIC and FPGA design.

ModelSim eases the process of finding design defects with an intelligently
engineered debug environment. The ModelSim debug environment efficiently
displays design data for analysis and debug of all languages.

ModelSim allows many debug and analysis capabilities to be employed
post-simulation on saved results, as well as during live simulation runs. For
example, the coverage viewer analyzes and annotates source code with code
coverage results, including FSM state and transition, statement, expression,
branch, and toggle coverage.

Signal values can be annotated in the source window and viewed in the
waveform viewer, easing debug navigation with hyperlinked navigation
between objects and its declaration and between visited files.
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Figure 2.3: Xilinx Vivado.

Race conditions, delta, and event activity can be analyzed in the list and wave
windows. User-defined enumeration values can be easily defined for quicker
understanding of simulation results. For improved debug productivity,
ModelSim also has graphical and textual dataflow capabilities.

2.2 Xilinx Vivado Design Suite

Vivado enables developers to synthesize their designs, perform timing analy-
sis, examine RTL diagrams, simulate a design’s reaction to different stimuli,
and configure the target device with the programmer. Vivado is a design
environment for FPGA products from Xilinx, and is tightly-coupled to the
architecture of such chips, and cannot be used with FPGA products from
other vendors.
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Vivado was introduced in April 2012, and is an integrated design environment
(IDE) with a system-to-IC level tools built on a shared scalable data model
and a common debug environment. Vivado includes electronic system
level (ESL) design tools for synthesizing and verifying C-based algorithmic
IP; standards based packaging of both algorithmic and RTL IP for reuse;
standards based IP stitching and systems integration of all types of system
building blocks; and the verification of blocks and systems. A free version
WebPACK Edition of Vivado provides designers with a limited version of
the design environment.

2.3 Vivado High-Level Synthesis

Advanced algorithms used today in wireless, medical, defense, and consumer
applications are more sophisticated than ever before. Vivado High-Level
Synthesis included as a no cost upgrade in all Vivado HLx Editions, ac-
celerates IP creation by enabling C, C++ and System C specifications
to be directly targeted into Xilinx All Programmable devices without the
need to manually create RTL. Supporting both the ISE and Vivado design
environments Vivado HLS provides system and design architects alike with
a faster path to IP creation by :

• Abstraction of algorithmic description, data type specification (integer,
fixed-point or floating-point) and interfaces (FIFO, AXI4, AXI4-Lite,
AXI4-Stream)

• Extensive libraries for arbitrary precision data types, video, DSP and
more. . . see the below section under Libraries

• Directives driven architecture-aware synthesis that delivers the best
possible QoR

• Fast time to QoR that rivals hand-coded RTL
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• Accelerated verification using C/C++ test bench simulation, auto-
matic VHDL or Verilog simulation and test bench generation

• Multi-language support and the broadest language coverage in the
industry

• Automatic use of Xilinx on-chip memories, DSP elements and floating-
point library
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Chapter 3
Stereo Vision on FPGA

Many FPGA architectures for stereo vision have been proposed in recent
years, but not without limits; for example, many of these use very expensive
FPGAs (e.g. [33, 34, 35]). With nowadays technology it is not possible to
obtain optimal quality with high frame rate on a cheap device. Another
limit is the maximum number of disparities although this is not a huge
problem when taking into account the field of use before synthesis; most
of FPGA implementations have a maximum disparity level that leads the
structure to be more regular and compact, but, of course, constraining
the minimum depth of the final disparity map. The aim of this work is
to obtain a good trade-off between performance and platform cost/power
consumption. I therefore decided to implement a global method inspired by
a bio-Informatics algorithm [36] on a Zynq-7000 FPGA. According to [8]
every stereo matching algorithm can be divided in four (or less) phases: 1)
matching cost computation 2) cost aggregation 3) disparity computation and
4) disparity refinement. In my implementation we have no cost aggregation
nor disparity refinement to further reduce the resource requirement. This
global method is very time consuming on both CPU and GPU, but it is
possible to enhance the performance on FPGA by exploiting the well-known

39
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40 3. STEREO VISION ON FPGA

structure of systolic array. In this work I present:

1. A hardware-friendly algorithm of a global method inspired by a pre-
viously presented bio-Informatics approach, that uses, heuristics to
reduce the computation time with a minimum quality degradation of
the disparity map;

2. A hardware architecture to implement the algorithm using reusable
non optimized code, so that is possible to remap the aforementioned
architecture to another FPGA board, without further modification;

3. A synthesis report for Zynq-7000 (part number XC7Z020CLG484-1)
reaching real-time processing up to XGA resolution;

4. A comparison with the state-of-the-art FPGA architecture and the
implemented low power counterpart.

3.1 The algorithm

Many approaches have been proposed to address the stereo vision task
complexity, the vast majority of classical methods present a matching
mechanism that tries to couple pixels in two stereo images. The simplest
solutions use sliding pixel windows to do local matching, a more robust
solution is represented by global methods that try to align whole pixels lines
boosting the disparity map quality, to exploit benefit from both algorithm
categories some semi-global method were proposed. In [36] a bio-informatic
inspired approach is proposed that is based on the Needleman & Wunsh
algorithm, a Dynamic Programming algorithm to find the optimal alignment
in a nucleotides or amino-acids string [37].

Every DP algorithm consists of two phases: in the first one a score matrix
is filled whose dimension depends on the input sequence length; the number
of columns and rows corresponds to the length of the first and second
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input sequences characters respectively. In the second phase the solution is
extracted from the matrix via backtracking.

Let A and B two DNA sequences and F the score matrix, the following
rules are used to fill the matrix:

Basis:

F0,j = j ×GAP
Fi,0 = i×GAP

Recursion:

Fi,j = max


Fi−1,j−1 + S(Ai, Bj)
Fi,j−1 +GAP
Fi−1,j +GAP

Given the score dependency of previous rules, each cell can be filled only
when the three upper right cells are computed (NORTH-WEST, NORTH,
WEST) as shown in figure 3.1, alongside the score a direction is stored to
indicate the score source.

i-1,j-1 i,j-1

i,ji-1,j

+G
A

P

+S(A ,B )

+GAP

Figure 3.1: How the scores are produced during the scoring phase.

In 3.2 is shown a common example of nucleotides alignment. The function
S(Ai, B − j) is mapped using two values, when Ai = Bj we have a match
(S(Ai, Bj) = 1) on the other hand when Ai 6= Bj we have a mismatch
(S(Ai, Bj) = 0). The penalty GAP is used to model the dis-alignment in
the two sequences, in particular when the score produced by the north or
west cell is higher than the score produced by diagonal cell we are in a GAP
situation in which a dash is added to the final alignment, this is due to
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problems like insertion or deletion in the two DNA sequences. When a new
cell is computed a direction is produced to mark the cell from which max
value is found.

C         A         C         G         A

C
G
A

0 -1 -2 -3 -4 -5
-1 -1 0 -1 -2 -3
-2 0 1 0 0 -1
-3 -1 1 1 0 1

Figure 3.2: Needlemean and Wunsh example with match = 1, mismatch =
0, GAP = -1

This phase is also called scoring procedure, the final result is a score matrix
in which the element in the last cell represents the value of the match
between the two sequences. Knowing only the score of the match is useless,
it’s important to track the precise order in which the nucleotides are matched.
To get the solution of the alignment, after the filling process a backtracking
phase begins. In this process a path is built starting from the element in
the last column and last row, following the directions stored alongside with
the scores is possible to return to the first element in the matrix (red arrow
in 3.2).
If two or more directions are stored in a single cell multiple optimal align-
ments arise during backtrack phase, this happens when multiple maximum
values are produced in the recursive step of the scoring procedure. In this
case some heuristics must be used to prefer an alignment over the others.
The path in red shown in 3.2 is an alignment that must be translated
into a sequence of nucleotides, each red arrow in the path is translated
into a character, starting from the first cell three things can happen: if a
direction is WEST a GAP is inserted (-), if the directions is a NORTH no
characters are added to the final result, in case of NORTH-WEST direction
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the respective character is copied, so from 3.2 we obtain the following two
alignments:

−− CGA
C −−GA

In [36] N&W is used to align pixels scanlines, the algorithm can be summa-
rized with the following recursion rule:

Fi,j = max


Fi−1,j−1 + S(Ai, Bj)
Fi,j−1 + {GAP ∨ EGAP}
Fi−1,j + {GAP ∨ EGAP}

To use the algorithm for stereo matching purposes image pixels are sub-
stituted in place of nucleotides. The principal difference between DNA
sequences and images alignment is the frequency of GAP penalty: while it
is usual to find small recurring differences in two DNA sequences, in the
context of stereo vision many large GAP zones are present, that represent
occlusion in the images, i.e. parts of the scene visible from one camera
but hidden in the other. To correctly model occlusion during alignment
it is necessary to introduce the parameter Extended GAP (EGAP) that
promotes occasional large misalignment zones over small recurring GAP∫ .
Let ILx and IRx be the x− th homologous lines in the left and right images,
w their length,M, GAP and EGAP respectively the Match score, the GAP
and Extended GAP score (both constant) andMS be the MiSmatch score
set proportional to the pixel relative distance in RGB space. The algorithm
is shown in Fig. 3.3.
I have chosen to develop an FPGA architecture based on this algorithm to
exploit:

1. the benefit of a gloabal approach on the quality of the disparity map;

2. the low complexity given by the Dynamic Programming

3. the intrinsic parallelizability of the operation during the score phase;
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for i← 1 . . . w do
for j ← 1 . . . w do
MS = −|ILx(i)− IRx(j)|
if is_GAP (M(i− 1, j)) then

nord←M(i− 1, j) + EGAP
else

nord←M(i− 1, j) + GAP
end if
diag ←M(i− 1, j − 1) +M+MS
if is_GAP (M(i, j − 1)) then

west←M(i, j − 1) + EGAP
else

west←M(i, j − 1) + GAP
end if
M(i, j)← max(north, diag, west)

end for
end for

Figure 3.3: Needleman & Wunsh scoring procedure for stereo vision



i
i

“output” — 2017/6/9 — 14:18 — page 45 — #45 i
i

i
i

i
i

3.1. THE ALGORITHM 45

3.1.1 Heuristics and Optimization

The Needleman & Wunsh algorithm as every global method is quite ex-
pensive in the number of operations. In this hardware implementation I
tried to reduce this number using heuristics, while the remaining operations
have been parallelised. Making some assumptions like the maximum dis-
parity (minimum depth) is possible to further enhance the quadratic DP
algorithm to a linear complexity, the parallelisation is achieved by a scalable
parametrised systolic array.

The first chosen heuristic is the removal of multiple optimal backtrack path,
in fact, when two or three maximal value from NORTH, DIAG and WEST
score are computed multiple optimal path arise, to avoid this situation only
one direction is stored.

But the principal heuristic used in the implementation is the reduction of
the score/direction matrix size. While in the original algorithm a whole
square matrix is filled, in this work I have first removed all the cells in
the upper triangular part (representing alignment behind the background)
and then removed all the cells below a certain distance from the principal
diagonal (high disparity levels) (Fig. 3.4).

A further memory reduction can be done limiting the minimum depth
recognizable, this heuristic is very common in stereo vision context on

a) b) c)

Figure 3.4: Score Matrix with different optimization: a) no optimization; b)
upper triangular remove; c) cut on the maximum disparity;
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FPGA. In general, two corresponding scanlines are very similar, this imply
a small band of the matrix utilized in the backtrack. Cutting the matrix
(3.4.c) reduce the minimum distance in the depth map and so the maximum
disparity:

(dmax > d(x, y)∀(x, y) ∈ IL)

This is not a relevant problem since the minimum distance recognizable can
be adjusted modifying the distance between the camera. By using:

Z = Bfz
d

equation it is possible to calculate the minimum distance the system can
recognize, with an higher maximum disparity object closer to the cameras
are recognizable.

Since two scanlines are very similar and the resources on a FPGA are very
limited it is important to reach the right trade-off between precision and
power consumption. This choice can be made at synthesis time since the
system is parametrised and it is very simple to modify. To further reduce
the use of BRAMs only the direction matrix is stored in them.

3.2 Architecture

Given the score dependency of the algorithm, each cell can be filled only
when the three upper right cells are computed (NORTH-WEST, NORTH,
WEST). According to other authors [38] there is only one way to correctly
parallelise this algorithm, this task is accomplished by filling the score matrix
in antidiagonal order. A systolic array was implemented to parallelise the
procedure of filling multiple cells in the same clock tick.

The systolic array is composed by Processing Elements (Fig. 3.5), PE from
now on. Each PE has four inout vector ports plus four sync signals. Two
ports are used for the pixel stream while the other two are used to exchange
scores from the neighbour cells. Four other signals (enable and ready) are
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PE
pixel_up

score_up

pixel_up_enable

pixel_up_ready

pixel_down

score_down

pixel_down_enable

pixel_down_ready

direction

Figure 3.5: Processing Element interface with wire direction.

necessary to synchronize the modules. If no pixels are available, deasserting
enable signal to the first PE stops the whole computation. Each PE fills
a cell in antidiagonal order in a two phases (RIGHT-DOWN) stair-likes
pattern.

In 3.6 are shown three PE used to compute the value of a score matrix, the
computation proceed in antidiagonal order, the number progression in the
figure indicates the order in which the cell are filled. In the first and second
clock tick only two cells are computed by PE1, in the third and fourth tick
PE1 and PE2 are used to fill 4 cells, from that moment at each clock tick
three cells are filled altogether. By the 28th and 30th clock tick respectively
PE3 and PE2 became useless. Finally, in the last two ticks PE1 finish to
fill the matrix.

In 3.7 the systolic array is shown. As explained before, the number of
PE determines the maximum recognizable disparity (dmax). The chosen
approach is very similar to the one shown in [39] to solve dynamic program-
ming on FPGA context. To avoid the use of a huge multiplexer to feed the
PE in random access order in [39], the PE are feed in sequential mode, so
the array is also used as pass-through channel for the data.

While in [39] the first PE able to compute a direction is the one in the
middle of the array, in this work I have optimized this architecture to adhere
more strictly to the problem field. Each element of the systolic array is
filled starting from the right PE with the right image pixels (in a FIFO
queue manner). When the first right pixel (RP0) met the first left pixel
(LP0), the computation proceed fully pipelined till the end of the two lines
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PE    PE    PE1             2             3

1     2    3     4     5     6     7    8     9   10   11  12  13  14   15  16  17   18   19  20  21  22   23  24  25  26  27   28  29  30  31

Figure 3.6: Processing order for the PEs.

(Fig. 3.8 and Fig. 3.9). Furthermore my architecture does not require 2× n
PEs as in [39] since the data streams are introduced in the array one per
clock tick, this gives a further reduction to the architecture area.

The whole processing can be summarized as a two phases computation. In
the odd cycle PEi uses the previous cached scores as WEST and NORTH-
WEST, while the NORTH is read from PEi−1; at the same time PEi+1
does the same as PEi but uses its WEST score as a NORTH since it is
placed one cell down and one cell left with respect to PEi. In the even
cycle the PEi uses the two previous cached score as NORTH-WEST and
NORTH, reads the WEST from PEi+1 and in the same way PEi−1 reads
his WEST score from the NORTH score of PEi. The values produced by
PEs outside the matrix at the start and at the end of the computation are
stored, but are ignored during the backtrack phase.

The BRAM requirement in the design is very little since it is directly
proportional with the length of the scanlines. As mentioned previously only
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PE PE PE PE
Scanline 1

Scanline  2

Directions

1          2         n-1                n

pixel_down                     pixel_up

pixel_down_enable           pixel_up_enable

pixel_down_ready                pixel_up_ready

score_down                   score_up

Figure 3.7: Systolic Array with n = dmax Processing Elements.

the directions are stored in the BRAM, while the scores are exchanged by
the PEs during the computation and hence it is not necessary to store
them. Since each direction is represented using 2 bits (NORTH-WEST-
DIAG) and at each clock tick dmax directions are produced, the BRAMs are
configured to have words of length 2w bits and size 2dmax with a grand total
of 2×w×dmax bits requested by each direction matrix. The backtrack phase
needs to read these directions and since a BRAM has a latency clock cycle
to be read, two clock cycles are used to traverse each cell of the solution.

3.2.1 Complexity

During the scoring phase each PE processes 2w cells, bringing to the
complexity of O(2w). After the score procedure a backtrack phase starts so
that the optimal alignment is computed. This last phase traverses in the
worst case w+dmax cells and since a BRAM read has one cycle clock latency,
the tracker pointer needs 2 clocks cycle to move from one cell to the next,
and this leads to the complexity of O(2(w + dmax)) clock to resolve a single
lines pair which is linear with the size of the input. A further improvement
is done pipelining the two phases permitting to work simultaneously on two
scanlines couples, so while the systolic array is processing a line pair at the
same time the backtrack module is computing the optimal alignment of
the previous lines pair; this is possible only storing both direction matrix
for both scanline pairs. This double buffer approach bring to the final



i
i

“output” — 2017/6/9 — 14:18 — page 50 — #50 i
i

i
i

i
i

50 3. STEREO VISION ON FPGA

Figure 3.8: Systolic Array time sequence with four Processing Elements,
Starting phase: in red are highlighted the PEs in which the actual compu-
tation take places.
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Figure 3.9: Systolic Array time sequence with four Processing Elements,
Ending phase: in red are highlighted the PEs in which the actual computa-
tion take places.
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complexity of max(O(2w), O(2(w + dmax))) = O(2(w + dmax)))

The two scanlines flow in the array from the first and the last PE, when the
first pixel of both scanlines meets each other in PE1 the computation starts
and at every clock tick dmax directions are produced; since each direction can
have three different values, NORTH, WEST and NORTH-WEST, 2 bits are
required; the directions produced are stored in a BRAM with word length
2dmax and size 2w. The total BRAM space utilized in the architecture is of
4(w × dmax) bits, a very little amount since the common FPGA BRAMs
size is in the order of few Mega bits.

3.3 Performance & Comparison

Synthesis has been made on a Zynq-7000 All Programmable SoC Xilinx chip
(part number XC7Z020CLG484). Syntesizing a single PE I have obtained
a little occupation, only 249 LUT and 116 FF. The combinatorial logic
occupation is double respect to the sequential logic due to the operations
executed in the PEs. Given the computational complexity of O(2(w+dmax))
to complete a single scanlines couple, it is possible to calculate the number
of clock ticks needed for various image resolution as shown in Tab. 3.1.

Table 3.1: Clock Ticks needed to process a real time (30 fps) video stream
at different resolution (Upper bound)

Resolution #clk per frame #clk for real-time
1024×768 1,572,864 47,185,920
800×600 960,000 28,800,000
640×480 614,400 18,432,000
320×240 153,600 4,608,000

This means that with a 50 MHz clock it is possible to obtain real-time
performance (>30fps) on image size up to XGA (1024×768), a really good
performance for a global optimization algorithm on a cheap device.
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Figure 3.10: Algorithm results on Middlebury standard datasets.

The algorithm quality is shown in 3.10. As with every scanline optimization
algorithm it suffers from horizontal strike problems.

Since some heuristics have been adopted in the hardware implementation
(multiple optimal path removal and maximum disparity), the resultant
disparity quality is a little degraded. Respectively the error rate for the
image in the Middlebury dataset [16] Tsukuba, Venus, Teddym Cones is:
7.19%, 9.54%, 21.0%, 17.8%. As we can observe the difference between
FPGA implementation and the original in [36] is very small.

In Table 3.2 various FPGA implementations are compared in term of various
parameters: resolution, disparity levels, frame per second and other two
measure to allow the comparison of heterogeneous architectures. Each
implementation uses a global or a semiglobal solution, other architectures
using local methods are not compared (i.e. [40]) since the intrinsic difference
of the approaches. Let the number of disparity pixels present in a frame be
dp, the frame rate fr and the number of dispairty level dmax, the Million
Disparity Evaluated per second (MDE/s) is calculated as dp×fr×dmax, and
is expressed in millions per units. Clearly this measure might be misleading
because cheaper FPGA will never compete with larger and expensive devices,
the same it could be said taking into account that FPGA built on older
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Table 3.2: Power Estimation
Resolution DL FPS MDE/s ER FPGA PC EE mW

Ours 1024 × 768 64 30 1510 14% Vx-7 XC7Z020 0.172W 0.11
[41] 680 × 400 128 25 870 8.13% Vx-4 XC4VFX140 1.243W 1.42
[42] 1024 × 768 128 129 13076 7.65% Sx IV EP4SGX230 1.518W 0.12
[33] 1024 × 768 60 58.7 1082 8.71% Vx-4 XC4VLX160 1.404W 1.3
[35] 1024 × 768 64 60 3019 8.2% Sx III EP3SL150 1.558W 0.52
[43] 640 × 480 128 103 4050 6.7% Vx-5 XC5VLX 2.313W 0.57
[34] 1600 × 1200 128 42.61 10472 5.61% Sx-V 5SGSMD5K2 2.792W 0.26
[44] 1024 × 768 60 199.3 9362 6.05% Vx-6 XC6VLX240T 3.350W 0.36

technology nodes are less power efficient, but to the best of my knowledge I
have tried to do the most accurate and precise report. For this purpose I
introduced the Power Consumption (PC) of the FPGA logics only (no I/O
nor peripherals) for each architecture. Since it is not common to find power
usage information about the compared architectures I retrieved this data
using Xilinx and Altera tools for the power estimation. These tools start
from the FPGA type, area occupation and clocks speed to compute a power
analysis of the architecture. Since many papers do not provide information
like BRAM and DSP usage, flip-flop occupancy or clock frequency, the table
numbers represent always a lower bound to the actual value (no I/O devices
are taken into account), meanwhile my implementation has been estimated
in the most precise and accurate way since all the architecture module are
well known. As a final measure to make the architecture performances
directly comparable we define the Energy Efficiency (EE) as PC/MDE/s,
this value express how much power is used to compute one milion disparities
in one second. As we can see my architecture is the most efficient in term
of power consumption in absolute terms and in terms of Watts per MDE/s
and is implemented on the cheapest chip.

As a final result I show the synthesis obtained using 90nm standard cell
technology:

Worst Slack 8893.80 ps
Total Power 46.14 mW
Total Area 777153 um2

my architecture improves greatly the performance (2× faster) and the



i
i

“output” — 2017/6/9 — 14:18 — page 55 — #55 i
i

i
i

i
i

3.4. PROTOTYPE 55

power consumption (3.7× less) if we opt for a design on chip instead of a
re-configurable device.

3.4 Prototype

In the prototype 3.11 two MT9D111 sensors are used as a stereo camera
system and a Digilent ZedboardTM is used to connect the Zynq-7000 to
the two cameras and to a LCD monitor. As an example application I
have synthesized a design for the real-time processing of a video stream at
1024×768 30 fps with 64 disparity level. The final design occupies 29057
LUT (57%), 15208 FF (14%) and 2.6 Mb of BRAM (53%). This architecture
greatily outperforms the software version of the program, in fact the CPU
time for processing a single frame is of 5.4s on a Intel i7-4558U CPU @
2.80GHz with 8Gb RAM, leading to a speed-up of 162x;

Barely half of the FPGA is occupied and synthesis correctly closed at 50
Mhz. The total power consumption (with I/O and peripherals) is just 2
Watts. The proposed architecture is easily customizable at synthesis time
since no optimization for the target device has been performed, and by
using verilog standard code it is possible to migrate easily to every FPGA
platform.

In 2.3 the final architecture is shown, as can be seen from the Vivado block
diagram viewer. The camera controllers are highlighted in orange, each of
them is connected directly to the output pins of the PMODs and the pixel
bits are sent in parallel. The two chosen cameras can work in RGB mode
so that no debayering is necessary and the two streams are then sent to the
main memory (a DDR2 memory) through two Video Direct Memory Access
(VDMA). The VDMA is a Xilinx IP used to manage video data: briefly, by
using a start address and a frame size it is possible to acquire a frame and
save it to a memory location. The stereo vision co-processor is highlighted
in green. The input data are streamed from the frame buffers to the main
memory, then, when the output is ready it will be flushed again to the DDR
memory. The final step of the process is performed by the VGA-controller



i
i

“output” — 2017/6/9 — 14:18 — page 56 — #56 i
i

i
i

i
i

56 3. STEREO VISION ON FPGA

Figure 3.11: Final prototype of the device, the cameras are connected
through the PMOD pin, also four resistors are needed to pull up the i2c
interfaces.

which is highlighted in purple, the controller is directly connected to a DAC
converter that will output the disparity map on a VGA monitor.

3.4.1 Camera Controllers

Two MT9D111 sensors are used as cameras for the system. These are
attached to the Zynq usign PMOD connectors on the Zedboard. Two kind
of PMOD connectors are present on the board: the PMODs connected to the
Programmable Logic and the PMODs connected to the ARM core. In order
to configure the cameras, an I2C interface is available on the external pins.
The interfaces are directly connected to the ARM core through the second
kind of PMODs, while the 8 pins used to transmit the pixels are connected
to the Programmable Logic. The camera can be configured in RGB 565
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Figure 3.12: The architecture developed for the Stereo Vision system.
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format, in this configuration the 8 external pins are used to transmit 1 pixel
every two clock cycle in the following pattern:

• In the odd cycle |R7|R6|R5|R4|R3|G7|G6|G5| are transmitted

• In the even cycle we have: |G4|G3|G2|B7|B6|B5|B4|B3|

Camera controllers are used to deserialize this stream in such a way that
for every clock tick a complete pixel is available, the clock frequency in the
output will be halved with respect to the camera one. Furthermore, since
the architecture is real time, no buffering is needed neither in the camera
controllers nor in the hardware co-processor.

3.4.2 VGA Controller

The zedboard has a VGA connector that can be driven by the Programmable
Logic. Between the actual connectors and the PL, a DAC converter is
available, which has just 4 bits per channel. Since we are using 64 disparity
levels, it is necessary to map each level to a color using 4+4+4 bits, an heat
map color scheme in which the hotter the color the closer the pixel has been
used:

1 assign R = (!tready) ? 4’b0000:
(disparity < 128) ? 4’b0000:
(disparity < 192) ? disparity[5:2]:

4’b1111;

6 assign G = (!tready) ? 4’b0000:
(disparity < 64) ? disparity[5:2]:
(disparity < 192) ? 4’b1111:

~disparity[5:2];

11 assign B = (!tready) ? 4’b0000:
(disparity < 1) ? 4’b0000:
(disparity < 64) ? 4’b1111:
(disparity < 128) ? ~disparity[5:2]:
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4’b0000;

Listing 3.1: Heat Map conversion from disparity level.

An LCD monitor is then plugged to the socket to visualize the result.

3.5 Conclusion

I have presented a new architecture for scanline optimization in a stereo
matching context. We utilised a global method to achieve real-time per-
formance for higher resolution than VGA standard. My systolic array has
reached good results thanks to the chosen heuristic, e.g. limiting disparity
levels and storing only one direction per cell in the score matrix. The power
usage is very low; no CPU nor GPU can achieve this power consumption
with similar performance.

I have compared my work with the performance of other proposed architec-
ture and showed that my implementation is the most energy efficient and
based on the cheapest device, furthermore the results show a boost of 165
times over the software implementation.

The highly parametrized design is intended to be used on every FPGA
brand, no optimization has been made regarding the target device, the
design is written in plain verilog code and further optimization can be
achieved taking into account the target device, but my goal was to maintain
the code as general as possible.



i
i

“output” — 2017/6/9 — 14:18 — page 60 — #60 i
i

i
i

i
i

60 3. STEREO VISION ON FPGA



i
i

“output” — 2017/6/9 — 14:18 — page 61 — #61 i
i

i
i

i
i

Chapter 4
3D Descriptors and Detectors

Arguably the most ubiquitous task performed on 3D data for the aforemen-
tioned computer vision applications is represented by the Nearest Neighbors
Search (NNS), i.e. given a query 3D point, find its k nearest neighbors
(kNN Search), or, alternatively, all its neighbors falling within a sphere
of radius r (Radius Search). This is for example necessary for computing
standard surface differential operators such as normals and curvatures. In
addition, NNS is a required step also for keypoint detection and description
on 3D data, which are deployed, in turn, for 3D object recognition and
segmentation. Another relevant example (among many others) of the use of
NNS is the Iterative Closest Point (ICP)[45] algorithm, a key step for most
3D registration, 3D reconstruction and SLAM applications.

When NNS has to be solved on a point cloud, being it an unorganized type
of 3D data representation, efficient indexing scheme are typically employed
to speed up the otherwise mandatory linear search. Nevertheless, despite
such schemes are particularly efficient, the NNS on point clouds can still
be extremely time consuming, since the complexity grows with the size of
the point cloud. In particular, over the years several methods have been
proposed to optimally solve the NNS problem in the fastest way possible

61
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based on heuristic strategy [46], clustering techniques (e.g. hierarchical
k-means, [47]) or hashing techniques [48]. Currently, the most popular
approach is the kd-tree approach [49], or its 3D-specific counterpart known
as octree.

In addition to exact algorithms, also approximated methods have been
proposed, which trade-off a non optimal search accuracy with a higher
speed-up with respect to the linear search. In [50], a modified kd-tree
approach known as Best Bin First (BBF) is presented, where a priority
queue with a maximum size is deployed to limit the maximum number
of subtrees visited while traversing the tree bottom up, i.e. from the leaf
node to the root. In [51] a similar approach is proposed, where the stop
criteria is imposed as a bound on the precision of the result. More recently,
[52] proposed the used of an ensemble of trees where the split on each
dimension is computed randomly and that rely on an unified priority queue:
such approach is known as multiple randomized kd-trees, or randomized
kd-forest. In [53], a library including several approximated NNS algorithms
is proposed, including multiple randomized kd-trees[52], BBF kd-tree[50]
and hierarchical k-means[47]. In addition, [53] also proposes a method to
automatically determine the best algorithm and its parameters given the
current dataset. Such, library, known as Fast Library for Approximate
Nearest Neighbors (FLANN), is one of the most used libraries for NNS on
point clouds: for example, it is the default choice for NNS within the Point
Cloud Library (PCL)[54], the reference library for 3D computer vision and
robotic perception.

Although all of the aforementioned methods for approximated NNS on points
clouds can be used also on range images simply by turning this 3D data
representation into a point cloud, it is possible to leverage on the organized
trait of such data representation to speed up the search. Nevertheless,
exploiting the 2D grid available when dealing with range images is not
trivial, since nearest neighbor on the 2D grid are not guaranteed to be
nearest neighbors also in 3D space (think about two points lying nearby on
the image plane but on two different sides of a depth border). Furthermore,
and especially for the Radius Search case, it is not trivial to turn a metric
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radius into a pixel-wise radius in the general case, when calibration data
are not available.

In literature, the specialization of NNS to the case of range images is almost
unexplored. One of the most relevant techniques is the one implemented
in the PCL library for both the Radius Search and the kNN Search, where
the main idea is to adaptively define the extent in pixels of the search
area on the image based on the 3D data as well as the camera parameters.
In particular, in the kNN Search case, the query point is first projected
onto the range image by explicitly taking into account the intrinsic camera
parameters and the camera pose. In case the projected point lies outside
the range image, the nearest element in the image is used as start position.
Then, the first k nearest neighbors are sought for by looking in the nearby
positions on the image plane. The search area in pixel is then defined based
on the distance, projected on the image plane, of the query to the farthest
point among the found k neighbors, which is finally searched exhaustively
to refine the list of retrieved neighbors. Instead, in the Radius Search case,
the intrinsic parameters and the camera pose are used also to translate
the input metric radius into the pixel-wise radius of the search area on the
image plane, by projecting the estimated 3D spherical neighborhood onto
the image plane of the sensor. Additionally, each neighbor on the range
image 2D grid is also checked with respect to its 3D distance from the query
before being added to the list of neighbors. Notably, this radius search
algorithm is similar to the one presented in [55], where NNS is applied to
the specific task of normal estimation on range images.

In this work I present a method, dubbed Radial Search Method (RSM),
which can be used as an alternative to the methods available in PCL[54]
for fast approximate NNS on range images. The idea of my approach is,
starting from the query point, to incrementally look for neighbors on the
2D grid along radial regions of increasing radius. Specific stop conditions
are employed to terminate the search when the candidates obtained are
estimated to approximate well enough to the real set of neighbors. In
particular, I propose two variants of such approach, derived for both the
kNN Search and the Radius Search problems. Notably, and advantageously
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Figure 4.1: Depiction of Organized (left) and RSM (right) search strategies:
the light-colored square in the middle is the query point, while the darker a
cell is the earlier it is explored.

with respect to [54, 55], my method does not require knowledge of either
the intrinsic parameters or of the sensor nor the sensor pose. By means of
experimental results on 3D data obtained with a consumer RGB-D camera, I
evaluate the performance of my approach against the NNS methods in PCL
and against the FLANN randomized kd-forest approach in terms of both
accuracy as well as efficiency. In addition, I also show how RSM can help
in improving the performance of a typical 3D computer vision application
of NNS such as 3D keypoint detection and description.

4.1 RSM algorithm

The presented approach is based on incremental exploration of the neighbor-
hood starting from the query point, along concentric frames. While in the
NNS search for range images available in PCL[54], hereinafter referred to as
organized, the search is carried out over an image sub-region row after row
(raster scan), in my method the search is made in radial order as depicted
in Figure 4.1. This allows my algorithm to evaluate fewer points in the
neighborhood of the query point to obtain a similar level of approximation
in the search result. Another important characteristic of my exploration
strategy is that it is adaptive, i.e. the size of the 2D neighborhood that is
considered changes at each query point by evaluating a stop condition that
depends on the improvements of the search at each step.
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Figure 4.2: Elements in the set of frames f1(q), f2(q) and f3(q).

Let q be the query index and e an element of the range image. If the query
point is only available as a point in 3D space, it is projected onto the image
and the nearest element to the projection is used as starting point q. We
define a non-euclidean distance D̂(q, e) on a range image I as the minimum
number of horizontal, vertical or diagonal moves to reach e from q. I also
use the classic euclidean distance D(q, e) to measure the distance in 3D
space between the (x, y, z) points corresponding to q and e. Furthermore,
we define Q as a min-priority queue of (e, p) pairs in which e is the index
of a range image element and p = D(q, e) is the priority key. Finally, we
define the frame at distance h from a query point q as:

fh(q) = {e | D̂(q, e) = h}

Figure 4.2 shows the elements belonging to the sets of the first 3 frames, i.e.
f1(q), f2(q) and f3(q), of a query point q.

The key idea is to explore, at every iteration, the space of 3D point candidates
defined by one full frame of pixels around the query point, and to stop
the search whenever the number of inliers (e.g., found nearest neighbors)
in the currently explored frame is too low. It is also important to make
the exploration robust with respect to the presence of invalid points in the
range image. In fact in many practical cases the acquired range images
contain multiple invalid points, due to limitations in the sensing range or
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Figure 4.3: The solution is represented by yellow points, while invalid
elements are denoted in gray. On the left, an example of the solution in the
absence of invalid points; on the right, an example of the same neighborhood
where some of the points are invalid, e.g. due to a change in viewpoint.
Bottom: a case where an entire frame is composed of invalid points. The
valid points in the neighborhood should still be evaluated and inserted in
the solution.

in dealing with specific surfaces, such as dark and reflective surfaces for
active sensors, non-Lambertian surfaces and low-textured regions for passive
sensors. Figure 4.3 shows how the algorithm has to work in the presence of
invalid points. Even if an invalid point is encountered along the exploration
of a frame, the search must continue beyond it. In the extreme case of one
or more frames of invalid points, the stop condition should offer a setup
that allows to continue the search in the next valid frames to be able to find
other valid neighbors.
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function RSM_KNN(K, q, δ̃)
i← 1
Q ← (q, 0)
while fi(q) ∈ image do

ι← 0
ν ← 0
for all e ∈ fi(q) do

if is_valid(e) then
ν ← ν + 1
if Q.size() < K then
Q.push(e,D(e, q))
ι← ι + 1

else if Q.top > D(e, q) then
Q.pop()
Q.push(e,D(e, q))
ι← ι + 1

end if
end if

end for
if ν > 0 then

δ ← δ + ν−ι
ν

else
δ ← δ + 1

end if
if δ > δ̃ then break
if ι > 0 then δ ← 0
i← i + 1

end while
returnQ

end function

Figure 4.4: Pseudo-code for the RSM algorithm, kNN Search mode.

To meet all these goals, in my proposal two statistics are accumulated while
exploring each frame: one is the number of valid candidates ν (fi (q)), i.e. all
neighboring points with valid 3D coordinates, the other one is the number
of inliers for the current search, ι (fi (q)). At the end of the exploration of
each frame, the following stop condition is tested:

δ (fi (q)) = 1− ν (fi (q))− ι (fi (q))
ν (fi (q)) > δ̃ (4.1)

where δ̃ is a user defined parameter. Intuitively, if the percentage of outliers
(i.e., 1 minus the percentage of inliers) for the current frame is greater than
a pre-defined threshold, the search is terminated.

To take into account the possibility that multiple frames are entirely com-
posed of invalid points or outliers we allow the parameter δ̃ to take integer
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values greater than 1. In this case, the parameter counts the number of
frames entirely composed of invalid points or outliers to be consecutively
met before stopping the search. Every time such kind of frames are met, we
set

δ (fi (q)) = δ (fi−1 (q)) + 1 (4.2)

and then check the stop condition.

The pseudo-code of the kNN Search can be found in Figure 4.4. For each
query point, the algorithm keeps the discovered neighbors in a priority
queue Q, which holds the sorted result at the end of the search. Q is a
min-priority queue in which the order is based on the distance between the
query point and the element. Starting form the query point, I evaluated the
frames in order of increasing distance, push each valid element of the frame
in the priority queue if needed, and check if the termination criterion is met
after processing every frame. After initialization of the data structures, the
search starts from the first frame and continues until the stop criterion is
met. In particular, the algorithm accumulates for each frame the number
of valid examined candidates ν, as well as the number of those currently
included in the nearest neighbor set, i.e. the inliers ι. With this value, it
updates the percentage of outliers in the explored frames, δ, taking into
account the previously exposed rules in case of fully invalid frames. When
such percentage exceeds the user provided parameter δ̃, the search ends.

The pseudo-code of the Radius Search can be found in Figure 4.5. For each
query point, the algorithm keeps all the elements that have distance less
than the radius parameter R. All the points are successively stored in a list
L, which is sorted at the end of the search to return the points in distance
order. The overall structure of the algorithm is similar to the kNN Search,
but due to the nature of the radius search, if a point is pushed into the list
it is never removed because it definitively belongs to the final solution. For
the same reason, the list is not kept sorted during the exploration, and is
just sorted at the end, to save computation time.

The only step that may introduce approximations in the result in both
algorithms is the stop criterion, the results being identical to the linear
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function RSM_Radius(Radius, q, δ̃)
i← 1
L ← (q, 0)
while fi(q) ∈ image do

ι← 0
ν ← 0
for all e ∈ fi(q) do

if is_valid(e) then
ν ← ν + 1
if D(q, e) < Radius then
L.push(e,D(e, q))
ι← iota+ 1

end if
end if

end for
if ν > 0 then

δ ← δ + ν−ι
ν

else
δ ← δ + 1

end if
if δ > δ̃ then break
if ι > 0 then δ ← 0
i← i+ 1

end while
return L.sort()

end function

Figure 4.5: Pseudo-code for the RSM algorithm, Radius Search mode.

search one in the case of exploration of the whole range image. Therefore,
the parameter δ̃ trades off search accuracy for efficiency: since unnecessarily
high accuracy negatively affects run-time performance, it is important to
choose the right value of such parameters. In the Experimental results
section I will analyze the sensitivity of the RSM algorithm to this parameter
and provide guidelines on how to choose it appropriately.
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Figure 4.6: Examples showing one object view of each of the four datasets
used in my experiments.

4.2 Experimental results

In this section, I provide an experimental evaluation of the RSM method.
The method has been implemented in C++, and it is here compared with
the randomized kd-tree forest algorithm available in FLANN [53], as a
representative of the state of the art for approximated NNS on point clouds,
as well as with the organized NNS algorithm available in PCL [54], as a
representative of approximated NNS algorithms for range images.

The comparison has been performed on a PC equipped with an Intel Xeon
E312xx 2.00 GHz (4 cores) processor with 8Gb of RAM. I have compiled
this framework under Visual Studio 2013 with optimization O2, and inline
function expansion level set to Ob2. The evaluated algorithm don’t includes
any kind of parallelization, so the tests are always run on a single core.

The experiments were performed on four datasets composed of RGB-D
images acquired with a Kinect dataset, recently proposed in literature and
publicly available1. These datasets were originally proposed for the task
of point cloud registration, and each of them includes different views of
an object without the background: they are denoted here as Frog, Mario,
Squirrel and Duck. A sample view for each dataset is shown in Figure 4.6.
The measured average distance of each point from its nearest neighbor on

1http://www.vision.deis.unibo.it/lrf
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this data is approximately 1 millimeter. Each dataset includes at least 13
range images. On each range image, 1000 query points have been randomly
extracted from the available valid 3D point set, and the results averaged
over this set.

I evaluate both the execution times and the accuracy achieved by the tested
algorithms. To measure the accuracy, the NNS for each query point has
been also carried out by a brute force algorithm performing an exhaustive
investigation, and used as ground truth in order to count the number of
correctly retrieved neighbors by each approximated NNS algorithm.

4.2.1 Parameter sensitivity analysis

The first experimental analysis I carried out is a sensitivity analysis with the
goal of choosing a good value for parameter δ̃, which is the main parameter
the RSM algorithm relies on, in both kNN and Radius versions. In particular,
as anticipated, such parameter trades-off accuracy for run time: the higher
it is, the more precise the outcome of the search will be compared to that
of an exhaustive search, but also the longer the whole process will take.

Figure 4.7 reports the charts relatively to the results, in terms of accuracy
and efficiency, on the evaluated datasets where each curve is associated to
different values of parameter δ̃. The two top charts report results in the kNN
Search case, while the two bottom charts are relative to the Radius Search
case. In each case, the left chart measures the relative search accuracy with
respect to the exhaustive search (number of correct neighbors found), while
the right chart reports the average time to process 1000 query points in a
range image. In the kNN Search case, the x axis reports increasing values
of k, while in the Radius Search case, it reports increasing values of the
radius (in meters), with values typically used in most applications of such
3D NNS algorithms. In particular, the tests were performed using, for the
k parameter, a range of values between 2 and 150, while for the Radius
parameter I have chosen a range from 0.005 to 0.030 meters.

From the charts related to the accuracy, RSM shows to be equivalent to
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a) kNN, accuracy b) kNN, runtime
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Figure 4.7: Sensitivity analysis for the parameter δ̃. The accuracy is reported
on the left charts, the runtime on the right ones. Top charts: kNN Search;
bottom charts: Radius Search. The scale of the y axis in a) and c) has been
expanded for better visualization of the results.

the exhaustive search if the value of δ̃ is greater than or equal to 1. Yet,
the drop in performance is limited even if δ̃ is set to low values: the worst
result I get is to retrieve 92% of the real neighbors when using δ̃ = 0.5 in
the radius search. This result confirms the intuition that a radial search
can be a good exploration pattern for NNS and shows that the statistics
used to define the stop condition are able to limit the explored neighbors
to the most interesting ones. At the same time, looking at the reported
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Figure 4.8: Accuracy (a,c) and runtime (b,d) reported by RSM, FLANN
and Organized methods on the evaluated dataset. The scale of the y axis in
a) and c) has been expanded for better visualization of the results.

runtime, as expected the lower the value of the parameter, the faster the
overall efficiency. The gap between different approximation levels increases
the larger k or radius get. As the gap in runtime is limited between the
different choices of δ̃, in the remainder of the experimental Section, I will
employ the value of δ̃ = 1, given that it yields the highest efficiency among
those reporting perfect accuracy.
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Figure 4.9: Runtime reported, respectively, by the Harris3D detector (a,c)
and the ISS detector (b,d) when employing, respectively, RSM, FLANN
and Organized methods for the NNS.

4.2.2 Comparison with the state of the art

Figure 4.8 shows the results in term of accuracy and runtime reported by
the evaluated methods (RSM, FLANN and Organized) on the test dataset.
As before, the top charts report the kNN Search case, while the bottom
charts are relative to the Radius Search case, each chart showing the results
at increasing values of the k and the radius parameter. In each case, the left
chart measures the relative search accuracy with respect to the exhaustive
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search (number of correct neighbors found), while the right chart reports
the average runtime over all the images of the datasets when processing
1000 query points on each range image.

Interestingly, in terms of accuracy all methods report, in both Search cases,
a negligible loss of accuracy with respect to the exhaustive investigation.
As far as the runtime is concerned, FLANN shows to scale worse than the
other methods when k or the radius increases. Nevertheless, when just
a few neighbors are sought, it turns out faster than Organized, which is
surprising given that Organized has been specifically conceived for range
images. RSM is consistently the fastest for all k and radii. This confirms
that taking advantage of the structure inherent to range images can improve
NNS efficiency with respect to using a general purpose solution like FLANN,
and that a more natural exploration pattern like the radial one deployed by
RSM can explore more promising areas of the image first and terminate the
search earlier than the raster-scan search deployed by Organized.

4.2.3 Relevance of NNS in keypoint detection

To complement previous results, I have compared FLANN, Organized and
RSM when used within a real and widely deployed application of the NNS
problem such as 3D keypoint detection. As for the datasets, I have used
the same data used in the previous experiments. In this case, results have
been measured in terms of overall runtime of the whole detection process,
so to measure out how much the computational advantage brought in by
RSM impact in terms of the whole application. In addition, I have also
measured the accuracy of the NNS in terms of the final application, i.e. by
computing the relative repeatability [56] between the extracted 3D keypoints
on pairs of overlapping views. To perform the repeatability evaluation, I
have exploited the registration ground truth available with the dataset, that
provides the 3D translation and 3D rotation registering each view into all
other overlapping ones.

As for the choice of the 3D detectors, based on the analysis in [56] I have
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selected the Intrinsic Shape Signatures (ISS) detector [57], which provides
a good trade-off between repeatability, distinctiveness and computational
efficiency. In addition, I have also included in the comparison the Harris3D
detector[54], which is an extension of the Harris corner detector[58] to the
3D case. For both detectors, I have used the available implementation
in PCL[54]. As typically done by most 3D keypoint detectors[56], both
methods rely on a NNS at each point of the range image to compute a local
saliency: the extrema of such saliency are then used to localize distinctive
keypoints. I have appropriately modified the code so to use, for the NNS,
one method among RSM, Organized and FLANN, which have been tested
both in the kNN Search as well as in the Radius Search version.

Figure 4.9 shows the results in terms of overall detection time for Harris3D
(left charts) and ISS (right charts), both in the kNN Search (top charts)
and in the Radius Search (bottom charts) case. These charts show that by
deploying RSM, the overall time required to perform keypoints detection
can be clearly reduced, especially when analyzing structures at larger scales,
i.e. those defined by larger k or radii, and confirm the practical importance
of designing efficient methods to solve the NNS in 3D data.

4.2.4 Relevance of NNS in descriptor computation

In Figure 4.10 are shown the results relative to the descriptors tests. On
the vertical axis are shown the perfomances relative to the mean time for
a descriptor computation. As in the previous tests on the detectors the
runtime is evaluated on the Kinect datasets (Figure 4.6), the keypoints
used are obtained using ISS detectors. Since PCL implements only radius
searchability for each descriptor algorithm only the RadiusNN search is
compared in the tests. In the figures is possible to see how much the
performances are influenced by the neighborhood search. First of all using
Fast Point Feature Histograms (FPFH) [32] both RSM and Organized
are faster than FLANN (4.10.a), but since the main computation is spent
around the non-search part (the runtime axis is expressed in thousands of
milliseconds) they are very close in the diagram, more explicative results were
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Figure 4.10: Mean runtime reported for each keypoint descriptor evaluation,
respectively we have FPFH (a), SHOT (b) and Spin Images (c), every
descriptor was evaluated with RadiusNN search on a ISS type keypoint.

obtained using Signature of Histograms of OrienTations (SHOT) [22] and
Spin Images [19] (respectively 4.10.b 4.10.c), looking closer is possible to see
the improvement given by RSM over both Organized and FLANN methods.
Furthermore, comparing descriptors results is impossible to notice differences
between a description obtained using FLANN algorithm compared to one
obtained using RSM or Organized.

4.3 Concluding remarks

In this work, I have proposed a new method for NNS on range images,
dubbed RSM, which proves to be faster than available algorithms for NNS
on this kind of organized data, while preserving the same level of accuracy as
the currently employed NNS methods for points clouds and range images. In
particular, RSM is able to leverage on the organized structure of range images
and on effective stop conditions applied while exploring the neighborhood
radially from the query point to terminate the search process as soon as
the currently probed locations do not seem to contain additional nearest
neighbors. RSM proved to provide computational savings both in the
Radius Search as well as in the kNN Search case. Furthermore, the method
proved to be particularly effective for speeding up 3D keypoint detection
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and description without reducing the quality of the results in terms of
repeatability and distinctiveness.
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Chapter 5
SHOT Descriptor on FPGA

In this work, I present a new FPGA circuit that computes SHOT 3D
descriptor starting from the reference key point and from the point cloud of
the model. The circuit was implemented using Xilinx High Level Synthesis
language. Thanks to the interpolation parallelization we are able to describe
a point in linear time with the size of the neighborhood, the structure
is pipelined so that one neighbor is processed every clock cycle once the
pipeline is full. Each interpolation is performed separately and the resultant
weight is updated in a BRAM without any delay. Final synthesis reports
a clock frequency higher than 100 MHz. Results are compared against
the CPU/GPU implementations showing performances that outperform
CPU and are similar to the GPU one with a consistent power consumption
difference.

Progress in range sensor development now allows us to deliver high definition
range maps at high frame rates. Each process that needs to be applied to
this range map stream (e.g. key points extraction and key points description)
has to satisfy a precise performance constraint in order to avoid bottleneck
in the computation. To execute these algorithms on portable devices there
is an additional constraint - low power.

79
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The principal problem to address during 3D scene reconstruction is to find
the correct rotation and translation matrix among many views obtained
through passive or active range sensors (also called depth sensors).

These views are generally stored as 3D point clouds, lists of tuples containing
a 3D point (x, y, z) and an optional colour. Aligning point clouds is not easy
and it is related to the Simultaneous Localization and Mapping (SLAM)
problem, but, once that two disparity maps are correctly aligned, the relative
positions of the sensors could be easily computed.

To align point clouds, it is possible to use techniques based on matches
between points in the cloud. To make a correct match, it is necessary
to compute a unique and descriptive representation for each point that is
invariant to the sensor pose. For this reason, if this representation remains
unambiguous among the views, it is said to be the “description” of the point.
Specifically speaking, the description (or descriptor) of the point is stored as
a multidimensional feature vector. The similarity between two descriptions
is easily computed as the distance in the features space of the descriptors.

Over the years many algorithms for the 3D points description have been
proposed. These techniques try to describe a point p using its neighborhood
Np; for each p it is possible to define a neighborhood Np within a maximum
distance (or radius) R as:

Np = {q ∈ PointCloud | dist(p, q) < R}

where dist(p, q) is defined as the common Euclidean distance. The concept
of neighborhood will be used later as a way to reduce the computational
load. These algorithms are, of course, computationally expensive since a
unique and robust description (invariant to the sensor pose) needs, generally,
a large set of neighboring points. The number of operations required is
proportional to the point cloud size (|PointCloud| ) and to the size of the
neighborhood (|Np|), leading to a complexity of O(|PointCloud| × |Np|).
So the larger the neighborhood the higher the complexity. Furthermore,
the description of as many points as possible could be useful in certain
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applications like the 3D object recognition and localization, but the action
of describing every single point is often not feasible. For a 640× 480 pixel
depth sensor (already small in 2017), 3 × 105 point descriptors must be
computed. Processing time can be reduced by selecting a small set of key
points of maximum information (or entropy), usually found on scene edges
and corners. One problem is that noise or different sensor poses may lead
to key points in one view being misinterpreted or hidden from the other. So
there is a trade-off between storage requirements, accuracy and processing
speed.

Because of their high computational cost, the key point extractions and
descriptions are not suitable for embedded applications requiring real time
performance and low power usage. By now, modern desktop CPUs struggle
to compute a large number of descriptors of a 3D point cloud video. A
possible solution is the parallelization of the processing employing GPU, but
a battery dependent application could hardly use such a power consuming
device, e.g. a drone should consume an important part of the battery
power just to run the GPU algorithm that allows to align 3D point clouds
obtained using a depth sensor, when trying to reconstruct the environment
and localizing itself in the real word. The only way to obtain an high
performance system with a low power consumption and acceptable quality is
to use a dedicated circuit that can be produced using devices like FPGA and
ASIC, we show later that our implementation consumes nor more than a
quarter of Watt, making it far more efficient than any graphic card available
on the desktop/laptop market.

Many important feature descriptors have been implemented on FPGAs, e.g.
Chang et al’s SIFT [59] and Krajnik et al’s SURF [60]. We verified our
design in simulation using, as a target, a cheap and power efficient FPGA
system: the Xilinx Zynq-7000 (part number XC7Z020CLG484) [61]. This
particular chip contains, in addition to the FPGA fabric, an ARM Cortex-A9
dual core. The cores can be used to support the FPGA computation or to
arbitrate the various modules present in the circuits.

Generally, as described by Tombari et al [22], 3D descriptors are divided in



i
i

“output” — 2017/6/9 — 14:18 — page 82 — #82 i
i

i
i

i
i

82 5. SHOT DESCRIPTOR ON FPGA

two categories, named signatures and histograms techniques. The techniques
in the first category try to describe p in Np using a Local Reference Frame
(LRF). A LRF is a new coordinate system that is used as a reference to
encode the geometry of the neighborhood that is invariant to the sensor
pose, unique and repeatable [22]. The feature vector is built starting from
a series of conditions on the neighbors geometric properties, if one of the
property has a value that lies on the boundaries of such conditions a small
perturbation to the LRF could change dramatically the feature vector, as
in the case of the 3D version of Knopp et al’s SURF descriptor [62]. On
the other hand, histogram techniques try to describe a point counting the
number of time in which a specific property (curvatures, angles, distance,
etc.) occurs in the neighborhood, as an example we have Rusu et al’s PFH
[31] and FPFH [32] and Zhong et al’s ISS [57].

Salti et al’s SHOT descriptor [63] combines the advantages of both signa-
ture and histogram techniques it uses an LRF coupled with a set of local
histograms. The descriptor is a signature formed from a set of histograms.
As described in [63] combining both approaches gives more robustness, for
this reason we have developed a module to calculate this descriptor. There
are two versions of SHOT, the first one uses just the shape of the scene,
while the other uses both scene and color information. In this work we
present a circuit for the first version.

For this work, we decided to use the High Level Synthesis programming
(HLS) language made by Xilinx. Thanks to this language a lot of implemen-
tation details are hidden to the programmer operations like square-root and
trigonometrical functions are already implemented and can be used as easily
as a function call. Thus we can focus on the correctness of the algorithm,
leaving all of the details to the compiler.

The sections describing the architecture are are structured in the following
way:

• In the first part I describe in details the descriptor;

• In the second part I introduce the circuit;
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Figure 5.1: The spherical signature of SHOT descriptor with highlighted
local reference frame (LRF) in read. For clarity reason in the figure are
shown only four horizontal sections. Source:[63]

• In the last part I compare the CPU/GPU implementation with ours
circuits.

5.1 SHOT descriptor

SHOT takes advantages of both signature and histograms techniques. The
description procedure takes as input: the key point to describe, its neighbor-
hood and the normals of the neighboring points with respect to the surface.
The procedure is divided in phases. The first phase computes normals over
the whole image and it is used in every subsequent key point calculation.
In the second phase, the neighbors of the key point are selected. In the
third phase, starting from the neighborhood, the LRF is computed and the
description could start. In the fourth phase the feature vector is obtained,
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while in the last phase the descriptor is normalized using L2 norm. The
process is now explained more in details.

Estimating the normals of a plane tangent to the surface is an approxima-
tion of the true normals, this problem become a least-square plane fitting
estimation problem [64]. Let p be the point of which we want to obtain the
normal, a distance radius R is chosen to define the maximum distance of
the neighborhood Np. We define for each point q ∈ Np the distance between
p and q as dpq. The analysis of the eigenvectors of the following covariance
matrix C gives the normal to the point q we want to obtain:

C = 1
|Np|

∑
q∈Np

(q − p)(q − p)T

Where (q−p)(q−p)T is commonly known as the outer product between two
vectors and give as result a matrix. A very similar procedure is used to get
the LRF of a key point. Let k be the key point we want to describe, then
the LRF of k is computed using the eigenvectors of the following covariance
matrix:

M = 1∑
q∈Nk(R− dkq)

∑
q∈Nk

(R− dkq)(q − k)(q − k)T

It should be noticed that each point in the neighborhood contributes to the
matrix proportionally to the distance from the key point. The eigenvectors
of this matrix are ordered according to the respective eigenvalue. The
eigenvector with the highest eigenvalue will be used as the LRF X axis,
while the second will be used as Y and the Z axes will be computed as the
cross product of the first two.

This new coordinate system, the LRF, is used to superimpose a spherical
grid which has as center the key point Fig: 5.1. The grid divides in different
spherical sectors the neighborhood, and to each sector of the grid is associated
a histogram that will encode information about the neighbors relative
position.
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Figure 5.2: FPGA-SHOT Architecture.

The number of bins and sectors used in the descriptor was chosen based on
Salti et al’s finding that 32 segments with an 11 bin histogram in each was
a reasonable balance between feature size and descriptiveness [63]. These
parameters give a feature vector of size 352. As shown in Fig: 5.1 the
spherical grid has two elevation levels (up and down the equator), eight
horizontal sections (for clarity purpose in the figure are shown only four)
and two distance ranges (the inner and outer sphere).

Now that a valid LRF is available, the computation of the feature vector
can begin. The position of every point is checked against the grid, each
sector is associated to an histogram, whenever a point lies in a specific
sector the relative histogram will be updated. Each histogram has a precise
number of bins, a bin represents the quantization of the interval of the cosine
between the q normal and the Z axes of the LRF. Updating just one bin per
point will not give a robust description of the point k and problems arise
when points lie near the boundaries of a sector. In this latter case, a little
perturbation in the LRF will cause a dramatically change in the feature
vector. To avoid this, histogram update rule is modified, for each point in
the neighborhood four further histogram bins are updated in a weighted
manner according to the distance from the relative sector boundaries. Let b
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be the index of a histogram bin in the s sector, the multiple update, named
quadrilinear interpolation, is performed on:

• the bin b± 1 in the same sector (cosine interpolation)

• the bin b in the adjacent sector on the horizontal plane of s (azimuth
interpolation)

• the bin b in the adjacent inner or outer sector of s (distance interpola-
tion)

• the bin b in the adjacent sector of s on the elevation (elevation inter-
polation)

Each bin is updated in a weighted manner according to the property of
the processed neighbor. In particular, each bin is incremented by a weight
of 1 − d for each interpolator. As for the same sector histogram, d is the
distance of the current cosine from the central quantized value of the bin.
As for elevation and azimuth, d is the angular distance of the neighbor from
the central value of the volume. Finally, along the radial dimension, d is
the Euclidean distance of the neighbor from the central value of the volume.
The value of d is always measured in units of the histogram. At the end
of the interpolation, the original bin b is updated by the sum of the slacks
given by each update.

This approach makes the descriptor robust to the LRF perturbation. In
fact, when a neighbor switches sector it will cause no great differences in
the feature vector because the histogram of both sectors is anyway updated.
Each operation has a different level of computational load, e.g. for the
distance interpolation a square root operation is needed, while for the
azimuth interpolation the atan2 function must be computed.

The normalization of the feature vector is necessary to make the descriptor
invariant to the scale of the object, for this reason the feature vector is
normalized making it’s magnitude equals to one. Let v be the feature vector
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obtained after the quadrilinear interpolation and v̂ the normalized vector
we have:

v̂ = v

||v||

where ||v|| is the L2 norm of vector v.

A commonly used library for applications that use point clouds to model
3D data is Point Cloud Library (PCL) [54], we used it to run the open
source implementation of SHOT and use the results as gold reference for
our implementation.

5.1.1 Descriptor discussion

In Fig. 5.3 is shown the time taken by each phase of the computation as
measured by Palossi et al’s in [65, 66]. The most time consuming step
is the histograms and interpolation update. We can also observe how
the LRF computation and the neighbors search is critical. The normal
computation is performed once that point cloud is acquired, since there
is no data dependencies between the frames, while the key point of one
frame are processed, the normals of the next one can be computed in
parallel. The main concern of this work is to correctly implement the
histogram and interpolation phases. Others like Bravo et al’s have described

Figure 5.3: Relative times for each computation step.
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Cosine Interpolation Azimuth Interpolation Distance
Interpolation Elevation Interpolation

Figure 5.4: Quadrilinear interpolation: taking as reference bin and sector
marked in red, the bins and sector marked in yellow are the bins that are
considered during the interpolation, the rules applied in the interpolator
are used to discriminate between them.

Jacobi matrix eigenvector computation needed for the normals and LRF
computation [67, 68], it is beyond the purpose of this paper further discuss
about these two phases. Furthermore, no neighbor search is required since
it is easier and faster to pass a whole region of interest of the point cloud
that encompasses the neighborhood size. The more the region of interest
is accurate (smaller) the more rapid the computation. The extraction of
the region of interest could be simply based on the resolution of the point
cloud; this method is implemented in PCL [54] and it is implemented in the
class OrganizedNeighbor. Thus the neighborhood search is treated like a
mere check on the distance while the interpolation and normalization steps
are fully implemented.

5.2 Implementation Details

In the original software implementation of the algorithm there is a massive
use of floating point arithmetic. To avoid such a computational heavy
structure we decided to utilize fixed point arithmetic. This choice makes the
job easier for the HLS compiler, in fact, we utilized HLS libraries optimized
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Figure 5.5: Index computation module: the 32 sectors of the sphere are
indexed using a conditional approach, five bit register is required, each
bit is compute as shown in the figure and packed in the following way
S = {dpz > 0, dpy > 0, dpx > 0, dist > R/2, dpxy > 0}

for this kind of operation, although this will imply some loss in accuracy.

Using a zynq-7000 the heavy arithmetical operation like multiplications and
divisions are automatically assigned to DSP48E1 [69]. This kind of DSP
supports multiplication up to 25× 18 bits, to avoid an overuse of the few
DSPs present on the board, and to keep the quality of the results acceptable,
we set the size of the fixed point register to 36 bits, in this way for each fixed
point multiplication exactly 2 DSP48E1 DSP are utilized. Although this
may seems restrictive, thanks to the development tools it is easy to re-target
the whole project to another platform. In this way the programmer can
write a code as general as possible keeping away the risk of an architecture
dependent implementation.

The whole circuit is structured as an Intellectual Property (IP), two input
source must be provided, the first one should provide the key point and its
LRF once for each processing phase, while the other should provide one
neighbor point and its normal per each clock cycle. Once that every neighbor
has been processed the output of the IP is ready to be fetched as the actual
descriptor of the key point. The Input and output port implements AMBA
AXI4 Protocol [70], an on-chip interconnect standard for the connection of
blocks in SoC designs. In particular the key point and LRF port is defined
as an AXI4-LITE port with a data width of 36× 3 = 108 bits, four values
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(each with 3 components) are expected by this port, one key point and
three vectors representing the LRF. This port can be driven using a simple
controller implementing AXI4-LITE protocol, using a zynq-7000 is possible
to interface the ARM processor directly to the input port. The second input
port is of AXI4-STREAM type, this protocol allows the fast transmission of
data between a RAM like memory and a circuit component connected to the
BUS, using a DMA is possible to feed the module with the required timing.
Both point and normal have the width of 36×3 = 108 bits, this determines a
bus width of 216 bit. The output port is also of AXI4-STREAM type, once
that the computation stops 352 values are ready to be read from the system.
Every value is 36 bits wide, and using a DMA to write to the memory is
possible to get the descriptor after 352 clock cycles. Thanks to the Zynq
architecture it is possible to connect the module to the bus without using
external pins of the FPGA. Both microprocessor and programmable logic
reside on the same chip and a finite number of AXI interconnect is available
between them.

The principal goal of the project is to obtain a circuit capable of processing
points and normals in a fully pipelined manner. Waiting a little latency of
165 clock cycles, we obtained a constant complexity (O(1)) for the single
neighbor processing, so, to compute the whole descriptor a complexity
of O(|Np|) is required. In Fig: 5.2 is shown the proposed circuit. The
interpolation is computed in separated sub-modules which are directly
connected to Block RAM updaters. When the descriptor is computed, a
final stage of normalization is applied to report the feature values in a range
between zero and one.

In order to perform interpolation (shown in Fig: 5.4) it is necessary to found
the index of the sector in which the neighbor point lies. The block diagram
of the index computation module is shown in Fig: 5.5. Since there are 32
sectors, a five bit register is needed. We denote with δqk the difference vector
between point q and key point p, with s the sector index, with b the index
of the histogram bin that is updated with the non-interpolation technique
and with LRFx, LRFy, LRFz respectively the X, Y and Z axis of the LRF.
The index computation is performed in the following way:
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• dpz = LRFz · δqk

• dpy = LRFy · δqk

• dpx = LRFx · δqk

• dist = ||δqk||

• dpxy = dpx × dpy

• S = {dpz > 0, dpy > 0, dpx > 0, dist > R/2, dpxy > 0}

Where S is obtained as the combination of the truth value of the conditions.
In this way it is easier to specify a sector using the bit of the index register
i.e. if we have sector x and we want to select the sector that lies above or
below in the elevation sense, the selection is as easy as x ± 16 since the
elevation bit (dpx) is the fourth in the register.

Each sectors stores an eleven bins histogram, to choose the right bin it is
necessary to compute the consine of the angle between q normal and the
LRFz. The quantization of this interval gives a bin index b. Linearizing
the whole descriptor into an array of 352 bins the non-interpolator module
should update the value at position B = b+ s× 11.

The index computation module takes as input the LRF system, the keypoint
k, a point q and its normal for every clock cycle. In output of the system
there are: the feature vector F index B and the point q and its normal.
In the following paragraphs each interpolator is described to explain the
different iteration latencies among the modules, the values are reported
considering the index module in cascade to the interpolators.

5.2.1 cosine interpolation

This is by far the least complex module. It takes only 28 clock cycles of
latency to fill its pipeline. It checks which adjacent bin to B should be
updated by checking the cosine between the normal of point q and the LRFz.
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If this value lies on the right side of the mean of bin B, then B + 1 bin will
be updated, B − 1 otherwise. A precise value of the cosine is needed since
the correct bin should updated.

cos_z = dot_product(normal_q*LRF_z)
if(cos_z>0) F[B+1] += cos_z
else F[B-1] += cos_z

basicstyle

5.2.2 distance interpolation

Since the actual distance is needed, a square root operation is synthesized
using math.h library from HLS, in this case the operation is implemented
using an iterative method which is unrolled by the compiler to get fully
functional pipeline. This distance is compared with 1/4 and 3/4 of the
radius distance. This comparison discriminate between the inner, the outer
and the sector on the opposite side. 57 clock cycles are used to process a
single neighbor in a fully pipeline way.

r = (distance - (R*3/4)) / (R/2)
2 if(distance>R/2)

if(distance>R*3/4) F[B-(2*11)] += r
else

if(distance<R*1/4) F[B+(2*11)] += r

basicstyle

5.2.3 elevation interpolation

For this interpolator the arccosine function is used to compute the elevation
between the LRFz and δqk. The result of this operation is compared against
four values, the value in radians of the angles 45◦, 90◦, 135◦ and 180◦. In
this way it is possible to discriminate between the vertically adjacent sectors
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and their histograms. The interpolation function is approximated using a
Lagrange polynomial which has a worst case approximation error of 0.18
radians:

acos(x) ≈ −0.6981[. . . ]x3 − 0.8726[. . . ]x+ 1.5707[. . . ]

Again we take advantage of HLS which takes care to implement the poly-
nomial computation using DSPs and keeping the structure pipelined. This
interpolator has the highest latency of 165 clock cycles, once that every
neighbor has been processed the other interpolators are required to wait for
this module, the programmer do not takes care of these details thanks to
the HSL compiler that produce a hardware description which is correctly
translated and synchronized.

x = acos(elevation)
if(x>90)

if(x<135) F[B+(16*11)] += (x-135)/90
else

5 if(x>45) F[B-(16*11)] += (x-45)/90

basicstyle

5.2.4 azimuth interpolation

In this sub-module the most complex operation is computed, the atan2
function is used to find which one of the horizontal adjacent sector must be
updated, the arguments of atan2 are the dot product between the δqk and
LRFx and the dot product between δqk and LRFy. The function is then
approximated using the atan2 definition:
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atan2(y, x) =



arctan
( y
x

)
if x > 0,

π
2 − arctan

(
x
y

)
if y > 0,

−π
2 − arctan

(
x
y

)
if y < 0,

arctan
( y
x

)
± π if x < 0,

undefined if x = 0 and y = 0.

and using the following polynomial minimax approximation to compute the
arctangent function:

arctan(x) ≈ −0.0465x7 + 0.15931x5 − 0.32762x3 + x

The latency of this module is 130 clock cycles.

x = arctan2(dp_x,dp_y)
if(x>0)

F[B+(1*11)] += (x-135)/90
else

5 F[B-(1*11)] += (x-45)/90

basicstyle

5.2.5 Why not CORDIC?

The most used trigonometric approximator in FPGA field is the CORDIC
algorithm [71]. In order to use CORDIC in this project we output values
that are 36 bits wide; all these bits are necessary to maintain a good degree
of accuracy. Furthermore, in our case the pipelined version must be used
(e.g. the one proposed in [72]) implying the use of a 36 levels CORDIC.
Furthermore, since each trigonometric function is applied to a different angle,
is not possible to use only one CORDIC, but one for each trigonometric
function is required. To avoid the use of further area into the already
congested FPGA fabric we decided to use DSP to approximate polynomial
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Figure 5.6: BRAM Updater. At each clock cycle a couple (value,address) is
presented to the circuit, if the address of the previous couple A2 is the same
as the present address A1 the data D1 and D2 are summed. This avoid to
lost the previous data D2 lost.

interpolation functions. In particular, the 36 bits size has been chosen to
perfectly fit two DSP48E1 for each multiplication.

5.3 BRAM updater

Each interpolator module gives as output a weight that must be added to the
final feature vector. Each interpolator fill a memory space of 36× 11× 32 =
12672 bits. This is due to the fact that there are 11 histograms for each one
of the 32 sectors. Since there are five modules that operate on the feature
vector, five separate memories should be instantiated, with a total amount
of 12672 ∗ 5 = 63360 bits to store, to avoid the waste of too many flip flop
we decide to implement each memory as a BRAM, in this case in fact at
most five BRAMs are required.

Since our weights must be used to increment the value already present in
memory, it is mandatory to wait a one clock iteration latency to read the
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Figure 5.7: On the left execution times of the GPU implementation on
the two color-less point clouds as shown in [65], on the right performances
expressed for various set of key points using different size of neighborhood
(the number of points is computed using the radius search parameter).

BRAM and then another clock cycle to write the updated value. Unfortu-
nately this structure is not suitable for a pipelined circuit since a double
update could occur leading to stalls in the whole pipeline: if imagining the
case in which two values that update the same location arrive in adjacent
clock time, every time a new value arrives the BRAM is read and then
written. In this case, using a pipelined circuit, an error occurs because while
the first value issues a write request to the BRAM, the second, in the same
clock cycle, issues a read request. As final result, the second value updates
the old location content erasing the previous one. To avoid this overwrite, a
separated sub-module has been built for the memory update (Fig: 5.6), we
used a true-dual-port BRAM in order to read and write in the same clock
cycle in different location.

Each updater requests a value pair per clock cycle, the pair is composed
by a 9 bits wide address (used to choose between 352 locations) and the 36
bits wide weight that should be added to the final descriptor. The circuit
is divided in three pipelined steps, in the first one a couple (value,address)
is stored in a register (shift0) and a BRAM read request is issued to the
memory causing the write of buffer0, in the second step the value present in
buffer0 is forwarded to buffer1, simultaneously the content of both shift
registers is checked; if the addresses are the same no memory write happens
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a) b) c)

Figure 5.8: The three models used as dataset for the performance compar-
isons.

and the shift1 is incremented by the value of shift0, otherwise the BRAM
content is updated. This mechanism resolves the erasing increment retaining
the weight values when a double (or more) update happens.

Adding extra buffering allows the latency of the interpolator modules to
be matched. Thanks to this stratagem, various parts of the circuit are
kept synchronized allowing a fully pipelined structure. The whole structure
took 165 clock iterations and, after this interval, a weight is available for
each BRAM updater at every clock cycle. In this way, a point in the
neighborhood and its normal could be sent at every clock interval.

5.4 Sum and normalization

Once that each interpolator has finished its work, the weights generated
from each sub-module are sent to the sum module. This module read each
location of the BRAMs present in the updaters. The final result is a BRAM
containing a non normalized feature vector, the sum operations are done in
parallel thanks to a pipelined tree structure. In this way the whole process
has a constant complexity of O(352) ∼ O(1).
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Max Frequency Target 100 MHz
SLICE Occupation 6881
Look Up Table 20065/53200 (37.7%)

Flip Flop 23809/106400 (22.3%)
DSP 144/220 (65.4%)

number of BRAM 5/280 (1.8%)
SRL 1822

Total On-Chip Power 0.27 W
Worst Path 8.6 ns

Table 5.1: Final synthesis results for FPGA.

During this process an accumulator variable sums the square of each value
of the final feature vector, at the end of the process a square root operation
is performed to obtain the L2 norm of the feature vector. Finally, the L2
norm is used to divide each component of the feature vector normalizing
the result.

5.5 Results and comparison

We synthesized our circuit using a cheap device like the zynq-7000 xc7z020
present on a ZedBoard [73]. In Tab: 5.1 is shown the synthesis report
for our circuit. The device is half empty and more modules, like the
eigenvalue decomposition for the normals and LRF computation, could be
easily placed in the design. A single clock is used for the whole module, the
synchronization of the various sub-modules is managed by HLS compiler,
the final result after synthesis phase report a maximum frequency higher
than 100MHz.

In 5.9 is shown the speed-up between the FPGA and CPU implementation,
the code was run on q Intel Xeon 2 GHz Quadcore.
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Figure 5.9: Speed-Up obtained comparing the PCL CPU implementation
and the FPGA results.

5.5.1 Accuracy comparison

We compared the accuracy of our implementation against the SHOT imple-
mentation that can be found in the PCL [54] library. We ran our circuit over
all points of the Mario views in the Bologna dataset Fig. 5.8.c. Using a fixed
point arithmetic has implied an acceptable loss in the accuracy of the descrip-
tion. Running the experiment we compared the accuracy of the circuit and
the PCL implementation using the relative error formula averaged on the
whole feature descriptor, let Ffix = {f1, . . . , fn} and Ffloat = {g1, . . . , gn}
be respectively the descriptor obtained by our fixed point circuit and the
floating point result of PCL, the averaged relative error is defined as:

E = 1
n

∑
fi∈Ffix,gi∈Ffloat

|fi − gi|
gi

Our circuit has obtained an average error of 10−4 all over the Mario models
using 36 bit registers.

5.5.2 Performance comparison

We have compared our performance against the GPU version of the descriptor
[65, 66], those results were obtained using a Tesla C2075 GPU. Comparisons
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are not simple and of course the FPGA circuit is far more power efficient
than the GPU implementation. Concerning the speed performance, in
Fig: 5.7.a is shown the computation time of the feature vector for different
set sizes of key points. The key points are extracted from 2 point clouds
(Happy Buddha, Dragon, composed of, respectively, 32328 and 100250 points
Fig: 5.8.a, 5.8.b) taken from the Stanford 3D Scanning Repository. We have
chosen these point clouds because they do not have color information since
our circuit is based on the colorless version of SHOT. In Fig: 5.7.b is shown
how the performances change using different numbers of key points and
different sizes of the neighborhood. Our circuit has a total pipeline latency
of 165 clock cycles, after this interval the computation became directly
proportional to the number of neighbors passed to the modules (O(|Np|)),
thus if we use a neighborhood of 1000 points we only need to wait 1165
clock cycles before the computation ends. This result scale linearly with
size of the key points set. Using the radius of the neighborhood search R is
possible to define a window around the key point which encompass for sure
any neighbor that must be included in the computation, using this window
as a reference is possible to greatly reduce the number of points to send to
the circuit. Thus our circuit is not influenced by the size of the point cloud
as long as it is possible to define an upper bound to the number of neighbors
to check. No information about the neighborhood size is provided in [65],
but our results show that the two implementations have similar performance
and, as previously said, our circuit is far more cheaper in terms of power
consumption.

5.6 Future works

We presented an FPGA circuit capable of processing SHOT descriptor
at a very high rate depending on the neighborhood size, furthermore the
application is very power efficient consuming just 0.27 W. Future work will
encompass the full structure of the descriptor implementing local reference
frame computation through the eigenvalue decomposition and experiment
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about accuracy and recall in cluttered scene will be conducted.
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Chapter 6
Conclusion

In this work, a stereo vision architecture with real time processing is proposed
alongside a 3D descriptor hardware implementation. Both architectures
can be used in a Visual Search pipeline for object recognition. The stereo
vision architecture is shown in a prototype. The implementation is fully
embedded in a working system using two cameras and one VGA socket.
The final architecture can process in real time (>30fps) XGA frame size
consuming less than 2 Watts. On the other hand, FPGA-SHOT is capable
of processing points with no delay and a fully pipelined architecture allows
to analyze the point stream at a frequency higher than 100MHz with a
power consumption of less than 0.2 Watts.

With the low cost robotics becoming so pervasive, in the future years more
and more low cost and low power hardware architectures will be proposed
in the literature. My main goal was to show the improvement that can be
achieved in this field using cheap devices like the Zedboard. With these
architectures it is possible to obtain really good performance with low power
usage.

103
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