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Abstract

Computational science also know as scientific computing is a rapidly growing novel
field that uses advanced computing in order to solve complex problems. This new
discipline combines technologies, modern computational methods and simulations
to address problems too complex to be reliably predicted only by theory and too
dangerous or expensive to be reproduced in laboratories.

Successes in computational science over the past twenty years have caused demand
of supercomputing, to improve the performance of the solutions and to allow the
growth of the models, in terms of sizes and quality. From a computer scientist’s
perspective, it is natural to think to distribute the computation required to study a
complex systems among multiple machines: it is well known that the speed of single-
processor computers is reaching some physical limits. For these reasons, parallel
and distributed computing has become the dominant paradigm for computational
scientists who need the latest development on computing resources in order to solve
their problems and the “Scalability” has been recognized as the central challenge in
this science.

In this dissertation the design and implementation of Frameworks, Parallel Lan-
guages and Architectures, which enable to improve the state of the art on Scalable
Computational Science, are discussed. The main features of this contribution are:

• The proposal of D-MASON, a distributed version of MASON, a well-known
and popular Java toolkit for writing and running Agent-Based Simulations
(ABSs). D-MASON introduces a framework level parallelization so that scien-
tists that use the framework (e.g., a domain expert with limited knowledge of
distributed programming) could be only minimally aware of such distribution.
The main features of D-MASON are:

– Partitioning and balancing. D-MASON provides several mechanism that
enable an efficient distribution of the simulation – either space-base or
network-based – work on multiple, even heterogeneous, machines.

– Scalable communication. D-MASON communication is based on a Pub-
lish/Subscribe paradigm. Two communication strategy –centralized (us-
ing Java Message Services) and decentralized (using Message Passing
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Interface) – are provided in order to meet both the flexibility and scalabil-
ity requirements.

– Memory consistency. D-MASON provides a memory consistency mecha-
nism at framework level which enables the modeler to design the simu-
lation without any specific knowledge about the underlying distributed
memory environment.

– Support diverse computing environments. D-MASON was initially con-
ceived to harness the amount of unused computing power available in
common, even heterogeneous, installations like educational laboratories.
Thereafter the focus moved to dedicated homogenous installations, such
as massively parallel machines or supercomputing centers. Eventually,
D-MASON has been extended in order to provide a SIMulation-as-a-
Service (SIMaaS) infrastructure that simplifies the process of setting up
and running distributed simulations in a Cloud Computing environment.

• The proposal of an architecture, which enable to invoke code supported by
a Java Virtual Machine (JVM) from code written in C language. Swift/T is a
parallel programming language that enables to compose and execute a series
of computational or data manipulation steps in a scientific application. Swift/T
enables to easily execute code written in other languages, as C, C++, Fortran,
Python, R, Tcl, Julia, Qt Script. The proposed architecture has been integrated
in Swift/T (since the version 1.0) enabling the support for others kinds of
interpreted languages.

• The proposal of two tools, which exploit the computing power of parallel sys-
tems to improve the effectiveness and the efficiency of Simulation Optimization
strategies. Simulations Optimization (SO) is used to refer to the techniques
studied for ascertaining the parameters of a complex model that minimize
(or maximize) given criteria (one or many), which can only be computed by
performing a simulation run. Due to the the high dimensionality of the search
space, the heterogeneity of parameters, the irregular shape and the stochas-
tic nature of the objective evaluation function, the tuning of such systems is
extremely demanding from the computational point of view. The proposed
tools are SOF (Simulation Optimization and exploration Framework on the
cloud) and EMEWS (Extreme-scale Model Exploration With Swift/T) which
focus respectively on Cloud Environment and HPC systems.

• The proposal of an open-source, extensible, architecture for the visualization
of data in HTML pages, exploiting a distributed web computing. Following the
Edge-centric Computing paradigm, the data visualization is performed edge
side ensuring data trustiness, privacy, scalability and dynamic data loading.
The architecture has been exploited in the Social Platform for Open Data
(SPOD).
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1Introduction

„The complexity of parallel, networked platforms
and highly parallel and distributed systems is
rising dramatically. Today’s 1,000-processor
parallel computing systems will rapidly evolve
into the 100,000-processor systems of tomorrow.
Hence, perhaps the greatest challenge in
computational science today is software that is
scalable at all hardware levels (processor, node,
and system) . In addition, to achieve the
maximum benefit from parallel hardware
configurations that require such underlying
software, the software must provide enough
concurrent operations to exploit multiple
hardware levels gracefully and efficiently.

— Computational Science: Ensuring
America’s Competitiveness.

( President’s Information Technology Advisory
Committee, 2005)

1.1 Computational Science
In the last twenty years, due to the introduction of scientific computing, the scientific
methodological approach has changed. Today in all realms of science, physics, social
science, biomedical, and engineering research, defense and national security, and
industrial innovation, problems are addressed more and more by a computational
point of view.

Computational Science [Com05], also know as scientific computing or scientific
computation (SC), is a rapidly growing field that uses advanced computing and data
analysis to study real-world complex problems. SC aims to tackle problems using
predictive capability to support the traditional experimentation and theory according
to a computational approach to problem solving. This new discipline in science
combines computational thinking, modern computational methods, hardware and
software to face problems, overcoming the limitations of traditional ways.

SC could be summed up in three distinct areas:
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1. Algorithms (numerical and non-numerical) and modeling and simulation
software developed to solve science (e.g., biological, physical, and social),
engineering, and humanities problems;

2. Computer and information science that develops and optimizes the ad-
vanced system hardware, software, networking, and data management compo-
nents needed to solve computationally demanding problems;

3. The computing infrastructure that supports both the science and engineering
problem solving and the developmental computer and information science.

SC is an interdisciplinary field, and appears primarily by the needs arising from
the World War II and the dawn of the digital computer age, when scientists of
various disciplines such as mathematics, chemistry, physics and engineering, have
collaborated to build and deploy the first electronic computing machines for code-
breaking and automated ballistics calculations. Advances in theory and applications
of computer science, enable scientists and engineers R&D to address the problems in
a way that was impossible to make before.

The Figure 1.1 describes the definition of SC and its relation with this work. As
shown in the Figure, SC tackles complex problems using multidisciplinary skills in
combination with the computational thinking. Each contribution of this work aims
to face a key-aspect of the SC areas. The Figure shows also the contributions of this
work (see the circles) to the SC field. These contributions can be divided into three
categories:

1. Frameworks. Software solutions to develop distributed simulations (DS) and
run simulation optimization (SO) processes on High Performance Computing
(HPC) as well as Cloud infrastructures. These contributions falls in the SC
areas 1 and 2;

2. Architectures. Software architectures for visualization of scientific data on
the Web. These contributions falls in the SC area 2;

3. Parallel Languages. Contributions to improve the effectiveness of parallel
languages for HPC systems. These contributions falls in the SC area 2.

A detailed description of the contributions of this thesis will be provided in Section
1.6.

1.2 Motivation
The SC field comprises many disciplines and scientific fields. From the Computer
Science point of view, the challenge is to improve the current status of methods,
algorithms and applications in order to enhance support for SC in terms of both
efficiency and effectiveness of the solutions.

2 Chapter 1 Introduction



Fig. 1.1.: Computational Science areas and their relations with the contributions of this
work.

For instance, one can consider what is needed for the development of new simulation
software or for a novel simulation model to study natural disaster or epidemiological
emergency. In order to study the effect on a population, it is desirable that our
system enables to perform experiments increasing:

• the number of people in the population;
• the complexity of the simulation model and humans behaviors;
• the geographical areas in analysis;
• the complexity of the social interaction between the individuals;
• . . .

Unfortunately, there is not a generic answer. It is not possible to describe all possible
requirements, their are dependent on the problem itself. Nevertheless, it is important
to identify methodologies and solutions that could be helpful to tackle real complex
problems.

As described in [Com05] the most important constrains that should guide our
research is the scalability. Our solutions, software, models, algorithms, systems
should be scalable according to the problem itself. This requirement is not only on
the architectures and frameworks software development, but comprises also design
solutions to a problem in the SC field.

1.2 Motivation 3



Scalability is a frequently-claimed attribute of system or solution to face complex
problems using computer systems. The definition of Scalability is not generally-
accepted (as described in [Hil90]). Nevertheless, we can use some of its principles to
better design scalable solutions for the SC field. According to this idea it is possible
to state that the Computational Science should be scalable at different software and
hardware levels.

In the following a briefly review of some definitions of Scalability is provided.

1.3 What is scalability?
The scalability requirement measures the capability of the system to react to the
computational resources used (e.g. It is desirable that our system provides better
performance when the number of nodes involved increase). Scalability can be seen
in a lot of forms: speed, efficiency, high reliable applications and heterogeneity,
[ERAEB05].

The system scalability requirement also refers to the application of very large com-
pute clusters to solve computational problems. A compute cluster is a set of com-
puting resources that work and collaborate together to solve a problem. In the
following, we denote with supercomputing system a system with a large number of
nodes and dedicated hardware architecture.

The availability of supercomputing systems become much affordable day by day, and
also Cloud Computing systems - which offer a large number of high performance
resources at low-cost - is an attractive opportunity in the SC field. The Top500
Supercomputer site, provides a detailed description of the most powerful available
systems; this list is updated twice a year. The Figure 1.2 shows the trend of su-
percomputing architectures over time 1995–2015. We will refer to this systems as
Super-scale and Extra-scale computing systems.

As described in [Bon00] there are different types of system scalability:

1. Load scalability. A system is load scalable if it is able to exploits the available
resources in heavy loads conditions. This is affected by: the scheduling of the
resources and the degree of parallelism exploitation.

2. Space scalability. A system is space scalable when it is able to maintain the
memory requirements under some reasonable levels (also when the size of the
input is large). A particular application or data structure is space scalable if
its memory requirements increase at most sub-linearly with the problem input
size.

3. Space-time scalability. A system is space-time scalable when it provides the
same performance whether the system is of moderate size or large. For instance
a search engine may use an hash table or balanced tree data structure to index
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Fig. 1.2.: Systems Architecture Share from Top500.

pages in order to be space-time scalable, while using a list is not space-time
scalable. Often the space scalability is a requirement to ensure space-time
scalability.

4. Structural scalability. A system is structurally scalable if its implementation or
architecture does not limit the number of resources or data input. For instance,
we can consider the telephone numbering scheme of North American, which
uses a fixed number of digits. This system is structurally scalable if the number
of objects to assign is significantly lower than the number of possible telephone
numbers.

In order to better understand the concept of scalability in the next Section 1.3.1 in
the following is provided some background concepts about parallel and distributed
computing.

1.3.1 Parallel and Distributed Programming Background
Why we are talking of parallel machine? – An accepted classification of the state
of art of computing, divide the history of computing in four eras: batch, time-sharing,
desktop, and network [ERAEB05]. Today the trend in computing is to discard
expensive and specialized parallel machines in favor of the more cost-effective
clusters of workstations and cloud services. Anyway the following concepts may be
the same also for this novel systems.

1.3 What is scalability? 5



Fig. 1.3.: Flynn’s Taxnomy.

Flynn’s Taxnomy

To understand the parallel computing, the first concept that is essential to know
is the classification of the computer architectures. An important and well know
classification scheme is the Flynn taxonomy. Figure 1.3 shows the taxonomy defined
by Flynn in 1966.

The classification relies on the notion of stream of information. A processor unit
could accept two type of information flow: instructions and data. The former is the
sequence of instructions performed by the processing unit, while the latter is the
data given in input to the processing unit from the central memory. Both the streams
can be single or multiple.

Flynn’s taxonomy comprises four categories:

1. SISD, Single-Instruction Single-Data streams;
2. SIMD Single-Instruction Multiple-Data streams;
3. MISD Multiple-Instruction Single-Data streams;
4. MISD Multiple-Instruction Multiple-Data streams.

According to the previous definition scheme, the single-processor von Neumann
computers are SISD systems while parallel computers (with more processor units)
can be either SIMD or MIMD. The classification enables to better classify also parallel
machines: in SIMD machines the same instruction is executed on different data in
a synchronized fashion; in the MIMD machines it is possible to execute different
instructions on different data. The last category, MISD, executes different instructions
on the same data stream.

6 Chapter 1 Introduction



Fig. 1.4.: Microprocessor Transistor counts from 1971 to 2011.

Moore’s law

Historically, the way to achieve better computing performances has depended on
hardware advances. Now this trend is permanently changed and the parallel and
distributed computing is the only way to achieve better performance. The Figure 1.4
depicts the Moore’s Law, 1965, which clearly explains this idea.

Fig. 1.5.: CPU performance 1978 to 2010.

The Moore’s Law shows that the count of CPU and RAM transistor doubled each
year. Nonetheless due to physical limits, heat emission and the size of the atom, this
trend has ended around 2008 stabilizing the speed processors. That is clearly shown
in Figure 1.5 and 1.6).

The actual trend of CPU vendors is to increase the number of core for machine in
order to have better performance. In other words, this means that each science has

1.3 What is scalability? 7



to face problems exploiting parallel and distributed computing, in order to increment
the complexity of the problems or to improve the performances.

Parallel computing architectures

This section describes different approaches to do parallel and distributed computing,
depending on system architectures.

Parallel computing architectures are historically categorized in two main groups:
shared memory and distributed memory. However the actual trend on parallel
computing architectures is to design different architectures combining these two
models. Today, three main architectures are considered:

Fig. 1.6.: Clock speed 1978 to 2010.

• Symmetric multiprocessing (SMP), shown in Figure 1.7. In this model, multiple
processors use the same memory. This is the most easily and common approach
for parallelism, but is also the most expensive for vendors. Sharing the same
memory enables to synchronize the processors using shared variables. The lim-
its of this architecture is the bus bandwidth that may represent a performance
bottleneck.

• Multi-core, shown in Figure 1.8. This is the model adopted by modern proces-
sors that employ multiple core in a single processors. This architecture allows
to use single processor as a SMP machine.

• Multi-computers, shown in Figure 1.9. This architecture is basically the dis-
tributed computing architecture. The computers are connected across a net-
work, and the single processor can access only to its local memory space while
interaction are based on messages. This architecture is the architecture for
clusters and supercomputing machines. Multi-computers is the architecture
used for the construction of large parallel machines.

8 Chapter 1 Introduction



Fig. 1.7.: Symmetric multiprocessing architecture.

Fig. 1.8.: Multi-core architecture.

Fig. 1.9.: Multi-computers architecture.

Computational Models

Parallel processing is based on two actions: dividing a computation into a set
of execution tasks and assigning them to the computational resources available
according to the parallel computing architectures used.

This section describes two theoretical computational models that are independent on
the parallel computing architectures used. These models aim to measure the quality
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of a solution using parallel computing approach. Starting from these two model
it is possible also to describe the concept of scalability for the parallel computing
architectures described before.

Equal Duration Model. These model measure the quality of a solution in terms of its
execution time. Consider a given task that can be decomposed into n equal sub-tasks,
each one executable on a different processor. Let ts (resp. tm) be the execution time
of the whole task on a single processor unit (resp. concurrently on n processors).
Since this model consider that all processors execute their task concurrently, we
have tm = ts

n . So, it is possible to compute the speedup factor (S(n)) of a parallel
system, as the ratio between the time to execute the whole computation on a single
processors (ts) and the time obtained exploiting n processors unit (tm).

S(n) def= ts
tm

= ts
ts/n

= n

Obviously, the previous definition is not enough to describe the speed obtained.
One need to consider the communication overhead introduced by the parallel or
distributed computation. Let tc be the communication overhead, the total parallel
time is given by tm = (ts/n) + tc and the speedup become.

S(n) def= ts
tm

= ts
ts
n + tc

= n

1 + n× tc
ts

This value normalized by n is named efficiency ξ and can be seen as the speedup per
processor.

ξ = S(n)
n

= 1
1 + n× tc

ts

The value of the efficiency ranges between 0 and 1. Again, this model is not realistic,
because it is based on the assumption that a given task can be divided, in “equal” sub-
tasks, among n processors. On the other hand, real algorithms contains some serial
parts that cannot be divided among processors. Furthermore, a parallel algorithm
is also characterized by same sub-tasks that cannot be executed concurrently by
processors. These sub-tasks includes synchronization or other special instructions,
and are named critical sections. The Figure 1.10 shows a program that have some
code segments that could be executed in parallel while some other segments must
be executed sequentially (due to interdependencies).

This consideration is the main idea of the next model, Parallel Computation with
Serial Sections Model.

Parallel Computation with Serial Sections Model This model assumes that only a
fraction f of a task can be divided into concurrent sub-tasks and the remaining
fraction 1− f has to be executed in serial way. Like the previous model, the total
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Fig. 1.10.: Example program segments.

time to execute the computation on n processors is tm = fts + (1− f)(ts/n). In this
case the speedup become

S(n) = ts
fts + (1− f)

(
ts
n

) = n

1 + (n− 1)f (1.1)

As in the equal duration model, the speedup factor considering the communication
overhead is given by

S(n) = ts
fts + (1− f)

( ts
n

)
+ tc

= n

f(n− 1) + 1 + n
(

tc
ts

)
Considering the limit of the number of processors used, we have that the maximum
speedup factor is given by

lim
n→∞

S(n) = lim
n→∞

n

f(n− 1) + 1 + n
(

tc
ts

) = 1
f +

(
tc
ts

) (1.2)

According to equation 1.2, it is worth to notice that the maximum speedup factor
depends on the fraction of the computation that cannot be parallelized and on the
communication overhead. In this model the efficiency is given by

ξ = 1
1 + (n− 1)f

without considering the communication overhead, while taking into account the
communication overhead we have,

ξ = 1
f +

(
tc
ts

)
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This last equation shows that it is difficult to maintain a high level of efficiency as
the number of of processors increase.

Parallel Computation Laws

This section introduces two laws that aim to describe the benefits of using parallel
computing.

Grosch’s Law. H. Grosh, in the 1940, postulated that the power of a computer
system P increases in proportion to the square of its cost C, P = K × C2 with K a
positive constant. The Figure 1.11 depicts the relationship between the power and
the cost of a computer system. Today this law is clearly abrogated while the research
communities and computational scientists are looking for strategies to make the
most of HPC and heterogeneous distributed systems. The SC field is one of the most
attractive science from this point of view, this field is involved in many real problems
that very often could have advantages in using HPC systems, in terms of problems
size achievable, speedup and efficiency.

Fig. 1.11.: Power–cost relationship according to Grosch’s law.

Amdahl’s Law. Starting from the definition of speedup, it is possible to study the
maximum speed achievable independently from the number of processors involved
in a given computation.

According to equation (1.1), also known as Amdahl’s law, the potential speedup,
using n processors, is defined by the size of the sequential fraction of the code f .
The Amdahl’s principle states that the maximum speedup factor is given by

lim
n→∞

S(n) = 1
f

Nevertheless there are real problems that have a sequential part f that is a function
of n, such that limn→∞ f(n) = 0. In this cases, the speedup limit is
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lim
n→∞

S(n) = lim
n→∞

n

1 + (n− 1)f(n) = n

This contradicts the Amdahl’s law considering that is possible to achieve linear
speedup increasing the problem size. This statement has been verified by researchers
at the Sandia National Laboratories which show a linear speed up factor can be
possible for some engineering problems.

This reassures and supports the hypothesis that it is worth to invest in the SC fields
in order to improve the current solutions using parallel and distributed computing.
Indeedu SC fields face complex problems also in terms of input dimensions.

1.4 When a system is scalable?
In the SC fields a common principle that lead the research from the computer science
point of view is needed. The assumption of this work until now is that the scalability
feature could be this principle. In the following we answer the question: "When a
system is scalable?".

In the first analysis, a system is scalable when it is able to efficiently exploit an
increasing number of processing resources. In practice, the scalability of a system
can be analyzed according to different properties:

• speed, that is increasing the number of processing resources provides an in-
creasing speed;

• efficiency, the efficiency remain unchanged when the processors and the prob-
lem size increases;

• size, the maximum number of computational resources that a system can
accommodate;

• application, a software is scalable when it provides better performance when it
is executed on a larger system;

• generation, a scalable system should achieve better performance according to
the generation of components used;

• heterogeneous, a scalable system should be able to exploit different hardware
and software components.

1.4.1 How to Measure Scalability Efficiency
Given the previous definitions, and postulates, it is possible to measure the scalability
of a system. The idea is to measure how efficient an application is when using
increasing numbers of computational resources [MO15] (that are cores, processors,
threads, machines, CPUs, etc.).
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There are two basic ways to measure the parallel performance of a given system,
depending on whether or not one is cpu-bound or memory-bound. These are referred
to as strong and weak scalability, respectively.

Strong Scalability (SS)

The strong scalability aims to study the number of resources needed, to a given
application in order to complete the computation in a reasonable time. For this
reason the problem size stays fixed but the number of processing elements are
increased. An application scales linearly when the speedup obtained is equal to the
computational resources used, n, but it is harder to obtain a linear scalability due to
the communication overhead, that typically increases in proportion to the size of
n.

Given the completion time of a single task, t1, and tm the completion time of the
same task on n computational resources, the strong scalability is given by:

SS = ts
(n× tm) × 100

Weak Scalability (WS)

The weak scalability aims to define the efficiency of an application fixing the problem
size for each computational resource. This measure is useful for studying the memory
or resources consumption of an application.

In the case of weak scaling, linear scaling is achieved if the run time stays constant
while the workload is increased in direct proportion to the number of computational
resources

Given the completion time of a single work unit, t1, and tm the completion time of n
works unit on n computational resources, the weak scalability is given by:

WS = ( t1
tN

)× 100

1.5 Scalable Computational Science
The definition of scalability, for hardware and software system, given in the previous
sections, promotes the use of scalability as a major design objective for problem solv-
ing in the SC field. The SC aims to solve complex problem though a computational
approach. This new way to do science has to exploit efficiently resources available
in HPC and Cloud infrastructures.
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This work refers to the idea to use scalability as a major design objective for problem
solving in SC. Henceforth we call this approach Scalable Computational Science
(SCS).

The recommendations presented, at beginning of 2005, in Computational Science
Ensuring America’s Competitiveness by the Information Technology Advisor Committee
provides a robust support to the idea of SCS:

“The Federal government must rebalance its R&D investments to:

• create a new generation of well-engineered, scalable, easy-to-use
software suitable for computational science that can reduce the
complexity and time to solution for today’s challenging scientific
applications and can create accurate simulations that answer new
questions;

• design, prototype, and evaluate new hardware architectures that
can deliver larger fractions of peak hardware performance on
scientific applications;

• focus on sensor- and data-intensive computational science applica-
tions in light of the explosive growth of data.

1.5.1 Real world example
This section describes an example of SCS, in order to better understand in which
way the scalability design objective should be involved in the SC field.

Colorectal Cancer Agent-Based Simulation – In 2016, Ozik et al show in the paper
High performance model exploration of mutation patterns in an agent-based model of
colorectal cancer [Ozi+16b] an example of SCS that aims to study colorectal cancer
(CRC). This work presents an innovative use of Agent-Based Models (ABM) in the
field of health studies. ABM simulations are known to have numerous challenges,
most of them related to high computational cost of executing simulation in order to
calibrate and use it.

The authors uses a framework, Extreme-scale Model Exploration with Swift/T
(EMEWS) (also described in the Chapter Simulation Optimization), for executing a
large number of simulation concurrently on a large supercomputer IBM Blue Gene/Q
at the Argonne Leadership Computing Facility at Argonne National Laboratory.
Running concurrently simulation enables to quickly calibrate the ABMs to emulate
the CRC evolution’s. The calibration of the model was realized validating the ABM’s
results to an historical database of patients affected of CRC.

The complexity of the ABM for CRC and the dimensions of the parameters space is
huge and the calibration of the model was unimaginable without running simula-
tions on a HPC system. This example shows how the use of an HPC ME framework’s
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enables a deeper study of problems, using a computational approach that is imprac-
ticable without the scalability requirements. The Figure 1.12 shows the scaling study
of this example on the IBM Blue Gene/Q.

Fig. 1.12.: Scaling study results for EMEWS ABM calibaration workflow on IBM Blue
Gene/Q.
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1.6 Dissertation Structure
This dissertation discusses Frameworks, Architecture and Parallel Languages for SCS.
Chapter 2 provides the results about Distributed Agent-Based Simulation. In details
a novel framework D-MASON is presented. Chapter 3 presents the contributions in
developing Java scripting integration in the parallel language Swif/T. Thereafter,
Chapter 4 describes two framework for Simulation Optimization (SO): SOF: Simula-
tion Optimization Framework on the Cloud Computing infrastructure and EMEWS:
Extreme-scale Model Exploration with Swift/T on HPC systems. In the Chapter 5 is
discussed a scalable architecture for scientific visualization of Open Data on the Web.
Finally, Chapter 6 presents a summary of the results and analyzes some directions
for future research.

1.6.1 Distributed Agent-Based Simulation
In Chapter 2 is described D-MASON, a framework for Distributed and Parallel
Agent-Based Simulation (DPABS). D-MASON is based on MASON [Luk+05], a
discrete-event multi-agent simulation library core in Java.

D-MASON is composed by four layers: Distributed Simulation, Communication,
Visualization and System Management.

D-MASON, was began to be developed since 2011, the main purpose of the project
was overcoming the limits of the sequentially computation of MASON, using dis-
tributed computing. D-MASON enables to do more than MASON in terms of size
of simulations (number of agents and complexity of agents behaviors), but allows
also to reduce the simulation time of simulations written in MASON. For this reason,
one of the most important feature of D-MASON is that it requires a limited number
of changing on the MASON’s code in order to execute simulations on distributed
systems.

D-MASON, based on Master-Worker paradigm, was initially designed for heteroge-
neous computing in order to exploit the unused computational resources in labs,
but it also provides functionality to be executed in homogeneous systems (as HPC
systems) as well as cloud infrastructures.

The architecture of D-MASON is presented in the following three papers, which
describes all D-MASON layers:

[Cor+16b] Cordasco G., Spagnuolo C. and Scarano V. Toward the new version
of D-MASON: Efficiency, Effectiveness and Correctness in Parallel and Distributed
Agent-based Simulations. 1st IEEE Workshop on Parallel and Distributed
Processing for Computational Social Systems. IEEE International Parallel &
Distributed Processing Symposium 2016.
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[Cor+13a] Cordasco G., De Chiara R., Mancuso A., Mazzeo D., Scarano V.
and Spagnuolo C. Bringing together efficiency and effectiveness in distributed
simulations: the experience with D-MASON. SIMULATION: Transactions of The
Society for Modeling and Simulation International, June 11, 2013.

[Cor+11] Cordasco G., De Chiara R., Mancuso A., Mazzeo D., Scarano V. and
Spagnuolo C. A Framework for distributing Agent-based simulations. Ninth
International Workshop Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Platforms of Euro-Par 2011 conference.

Much effort has been made, on the Communication Layer, to improve the commu-
nication efficiency in the case of homogeneous systems. D-MASON is based on
Publish/Subscribe (PS) communication paradigm and uses a centralized message
broker (based on the Java Message Service standard) to deal with heterogeneous
systems. The communication for homogeneous system uses the Message Passing
Interface (MPI) standard and is also based on PS. In order to use MPI within Java,
D-MASON uses a Java binding of MPI. Unfortunately, this binding is relatively new
and does not provides all MPI functionalities. Several communication strategies
were designed, implemented and evaluated. These strategies were presented in two
papers:

[Cor+14b] Cordasco G., Milone F., Spagnuolo C. and Vicidomini L. Exploiting
D-MASON on Parallel Platforms: A Novel Communication Strategy 2st Work-
shop on Parallel and Distributed Agent-Based Simulations of Euro-Par 2014
conference.

[Cor+14a] Cordasco G., Mancuso A., Milone F. and Spagnuolo C. Communi-
cation strategies in Distributed Agent-Based Simulations: the experience with
D-MASON 1st Workshop on Parallel and Distributed Agent-Based Simulations
of Euro-Par 2013 conference.

D-MASON provides also mechanisms for the visualization and gathering of the data
in distributed simulation (available on the Visualization Layer). These solutions are
presented in the paper:

[Cor+13b] Cordasco G., De Chiara R., Raia F., Scarano V., Spagnuolo C. and
Vicidomini L. Designing Computational Steering Facilities for Distributed Agent
Based Simulations. Proceedings of the ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation 2013.

In DABS one of the most complex problem is the partitioning and balancing of the
computation. D-MASON provides, in the Distributed Simulation layer, mechanisms
for partitioning and dynamically balancing the computation. D-MASON uses field
partitioning mechanism to divide the computation among the distributed system.
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The field partitioning mechanism provides a nice trade-off between balancing and
communication effort. Nevertheless a lot of ABS are not based on 2D- or 3D-fields
and are based on a communication graph that models the relationship among the
agents. In this case the field partitioning mechanism does not ensure good simulation
performance.

Therefore D-MASON provides also a specific mechanisms to manage simulation that
uses a graph to describe agent interactions, see Appendix A. These solutions were
presented in the following publication:

[Ant+15] Antelmi A., Cordasco G., Spagnuolo C. and Vicidomini L.. On
Evaluating Graph Partitioning Algorithms for Distributed Agent Based Models on
Networks. 3rd Workshop on Parallel and Distributed Agent-Based Simulations
of Euro-Par 2015 conference.

The field partitioning mechanism, intuitively, enables the mono and bi-dimensional
partitioning of an Euclidean space. This approach is also know as uniform par-
titioning. But in some cases, e.g. simulations that simulate urban areas using a
Geographical Information System (GIS), the uniform partitioning degrades the sim-
ulation performance, due to the unbalanced distribution of the agents on the field
and consequently on the computational resources, see Appendix B. In such a case,
D-MASON provides a non-uniform partitioning mechanism (inspired by Quad-Tree
data structure), presented in the following papers:

[Let+15] Lettieri N., Spagnuolo C. and Vicidomini L.. Distributed Agent-based
Simulation and GIS: An Experiment With the dynamics of Social Norms. 3rd
Workshop on Parallel and Distributed Agent-Based Simulations of Euro-Par
2015 conference.

[Cor+17b] G. Cordasco and C. Spagnuolo and V. Scarano. Work Partitioning
on Parallel and Distributed Agent-Based Simulation. IEEE Workshop on Parallel
and Distributed Processing for Computational Social Systems of International
Parallel & Distributed Processing Symposium, 2017.

The latest version of D-MASON provides a web-based System Management, to better
use D-MASON in Cloud infrastructures. D-MASON on the Amazon EC2 Cloud
infrastructure and its performance in terms of speed and cost were compared against
D-MASON on an HPC environment. The obtained results, and the new System
Management Layer are presented in the following paper:

[Car+16a] M Carillo, G Cordasco, F Serrapica, C Spagnuolo, P. Szufel, and L.
Vicidomini. D-Mason on the Cloud: an Experience with Amazon Web Services.
4rd Workshop on Parallel and Distributed Agent-Based Simulations of Euro-
Par 2016 conference.
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1.6.2 SWIFT/T Parallel Language and JVM scripting
Swft/T ([Com]), is a parallel scripting language for programming highly concurrent
applications in parallel and distributed environments. Swift/T is the reimplemented
version of Swift language, with a new compiler and runtime. Swift/T improve Swift,
allowing scalability over 500 tasks per second, load balancing feature, distributed
data structures, and dataflow-driven concurrent task execution.

Swif/T provides an interesting feature the one of calling easily and natively other
languages (as Python, R, Julia, C) by using special language functions named leaf
functions.

Considering the actual trend of some supercomputing vendors (such as Cray Inc.)
that support in its processors Java Virtual Machines (JVM), it is desirable to provide
methods to call also Java code from Swift/T. In particular is really attractive to be
able to call scripting languages for JVM as Clojure, Scala, Groovy, JavaScript etc.

For this purpose a C binding to instanziate and call JVM was designed, and is
described in the Chapter 3. This binding is used in Swif/T (since the version 1.0) to
develop leaf functions that call Java code. The code are public available at GitHub
project page .

1.6.3 Simulation Optimization
Complex system simulation gains relevance in business and academic fields as
powerful experimental tools for research and management. Simulations are mainly
used to analyze behaviors that are too complex to be studied analytically, or too
risky/expensive to be tested experimentally [Law07; TS04].

The representation of such complex systems results in a mathematical model com-
prising several parameters. Hence, the need for tuning a simulation model arises,
that is finding optimal parameter values which maximize the effectiveness of the
model.

Considering a multi-dimensionality of the parameter space, finding out the optimal
parameters configuration is not an easy undertaking and requires extensive comput-
ing power. Simulations Optimization (SO) [TS04; He+10] is used to refer to the
techniques studied for ascertaining the parameters of the model that minimize (or
maximize) given criteria (one or many), which can only be computed by performing
a simulation run.

Chapter 4 describes two frameworks for SO process, respectively, primarily designed
for Cloud infrastructure and HPC systems.
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The first frameworks is SOF: Zero Configuration Simulation Optimization Framework
on the Cloud, it was designed to run SO process in the cloud. SOF is based on the
Apache Hadoop [Tur13] infrastructure and is presented in the following paper:

[Car+16b] Carillo M., Cordasco G., Scarano V., Serrapica F., Spagnuolo C.
and Szufel P. SOF: Zero Configuration Simulation Optimization Framework on
the Cloud. Parallel, Distributed, and Network-Based Processing 2016.

The second framework is EMEWS: Extreme-scale Model Exploration with Swift/T, it
has been designed at Argonne National Laboratory (USA). EMEWS as SOF allows
to perform SO processes in distributed system. Both the frameworks are mainly
designed for ABS. In particular EMEWS was tested using the ABS simulation toolkit
Repast. Initially, EMEWS was not able to easily execute out of the box simulations
written in MASON and NetLogo [TW04]. This thesis presents new functionalities of
EMEWS and solutions to easily execute MASON and NetLogo simulations on it.

The EMEWS use cases are presented in the following paper:

[Ozi+16a] J. Ozik, N. T. Collier, J. M. Wozniak and C. Spagnuolo From
Desktop To Large-scale Model Exploration with Swift/T. Winter Simulation
Conference 2016.

1.6.4 Scalable Web Scientific Visualization
In the SC field, an important area of interest regards methods and tools for scientific
visualization of data. This work describes an architecture for the visualization of
data on the Web, tailored for Open Data.

Open data is data freely available to everyone, without restrictions from copyright,
patents or other mechanisms of control. The presented architecture allows to easily
visualize data in classical HTML pages. The most important design feature concerns
the rendering of the visualization that is made on the client side, and not on the
server side, as in other architecture. This ensure the scalability in terms of number
of concurrent visualizations, and dependability of the data (because the data are
dynamically loaded client side, without any server interactions).

This Chapter 5 describes the proposed architecture, that has also appeared in the
following papers:

[Cor+17a] G. Cordasco, D. Malandrino, P. Palmieri, A. Petta, D. Pirozzi, V.
Scarano, L. Serra, C. Spagnuolo, L. Vicidomini A Scalable Data Web Visu-
alization Architecture. Parallel, Distributed, and Network-Based Processing
2017.
[Mal+16] G. Cordasco, D. Malandrino, P. Palmieri, A. Petta, D. Pirozzi, V.
Scarano, L. Serra, C. Spagnuolo, L. Vicidomini An Architecture for Social
Sharing and Collaboration around Open Data Visualisation. In Poster Proc. of

1.6 Dissertation Structure 21



the 19th ACM conference on "Computer-Supported Cooperative Work and
Social Computing 2016.
[Cor+15] G. Cordasco, D. Malandrino, P. Palmieri, A. Petta, D. Pirozzi, V.
Scarano, L. Serra, C. Spagnuolo, L. Vicidomini An extensible architecture
for an ecosystem of visualization web-components for Open Data Maximising
interoperability Workshop— core vocabularies, location-aware data and more
2015.
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2Distributed Agent-Based
Simulation

„How does variation in the number of interacting
units (grid size) affect the main results of an
agent-based simulation?.

— Claudio Cioffi-Revilla
(Invariance and universality in social

agent-based simulations, 2002)

2.1 Introduction

Fig. 2.1.: Distributed Simulation on a ring network.

The traditional answer to the need for HPC is to invest resources in deploying
a dedicated installation of dedicated computers. Such solutions can provide the
computing power surge needed for highly specialized customers. Nonetheless a
large amount of computing power is available, unused, in common installations like
educational laboratories, accountant department, library PCs.

SC, as described before, uses computer simulation (see the example in Figure 2.1) to
investigate solutions and study complex real problems. This scenario of use is quite
common in the context of heterogeneous computing where different computing
platforms participate to the same computing effort contributing with its own specific
capabilities. One of the most challenging aspect in parallel computing is to balance
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the work load among the machines that provides the computation. Indeed, due to
synchronization constraints, the entire computation advances with the speed of the
slowest machine, which may represent a bottleneck for the overall performances. Of
course this issue become particularly challenging in the context of heterogeneous
computing.

Software for computer simulation in the context of SC should be able to exploit both
HPC, characterized by a large number of homogenous computing machines, and
heterogeneous systems. This Chapter focuses on a particular class of computational
model, named Agent-Based simulation Models (ABMs).

2.1.1 Agent-Based simulation Models
Motivation. ABMs are an increasingly popular tool for research and management in
many fields such as ecology, economics, sociology, etc. In some fields, such as social
sciences, ABMs are seen as a key instrument [LP+12] to the generative approach
[Eps+07], essential for understanding complex social phenomena. But also in
policy making, biology, military simulations, control of mobile robots and economics
[Cha10; Mus+09; Cra+10; Ros08; ECoF09], the relevance and effectiveness of
ABMs is recently recognized.

The computer science community has responded to the need for platforms that can
help the development and testing of new models in each specific field by providing
tools, libraries and frameworks that enable to setup and run ABMs.

Parallel and distributed Computing. The exponential growth of local networking
and Internet connectivity coupled with continuous increasing of computational
power available on average desktop PCs, has made distributed computing very
popular in recent years. Two principal desktop grid phenomena emerged: public
resource computing, such as BOINC [And04], which exploits the power of volunteer
desktop computer to perform a specific task; and Enterprise Desktop Grid Computing
(EDGC) which refers to specific software infrastructures, such as WinGrid [MT09],
that allows to harvest the computing power of desktop PC (usually confined to an
institution) to support the execution of several enterprise distributed applications.
EDGC are typically based on a Master/Worker paradigm [Fos95]. In this paradigm,
the user sends a complex job on a master computer which divides the job into a set
of independent tasks. Then, each task is sent to an available worker which processes
the task and sends back the output. Finally, the master obtains the results of the
whole computation reassembling outputs.

Challenges. Several important issues in evaluating different platforms for ABMs,
well identified in the reviews of the state of the art such as [Mat08; Naj+01; Rai+06],
are speed of execution, flexibility, reproducibility, documentation, open-source and
facilities for recording and analysis of data.
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While the computational complexity is clearly addressed by achieving efficiency in
the simulation, another important aspect is the effectiveness of the solution, which
consists of how easily usable and portable are the solutions for the users, i.e. the
programmers of the distributed simulation.

2.1.2 The need for scalability and heterogeneity
In [CR10] a fundamental difference is described (from the research point of view)
between the computational social science and the complex social systems that have
manifold agents that interact with changing natural and/or artificial environments.
The nature of such “socially situated agents” [Con99] is highly demanding in terms of
computational and storing capabilities. Because of their complexity, these research
projects do require consistent multidisciplinary efforts and need also a specific
scientific research methodology that is distinct by what is needed for simpler social
simulations. The methodology proposed in [CR10] defines a succession of models,
from simpler to more complex ones, with several requirements to be followed at
each step.

In particular, one of the defining features of complex simulations is their experimental
capacity, that requires a viable and reliable infrastructure for running (and keeping
the records of) several experiments, with the exact procedure that was followed
at each run. The resources needed to run and store results of such a sequence of
experimental runs can be cheaply ensured only by heterogeneous cluster of worksta-
tions (available in the research lab), since the nature of interactive experiments, led
by the social scientists with their multidisciplinary team, requires interaction with
the computing infrastructure, which is often extremely expensive and technically
demanding to get from supercomputing centers (that may, in principle, provide
massive homogeneous environment).

As a matter of fact, the research in many fields that uses the simulation toolkits for
ABMs is often conducted interactively, since the “generative” paradigm [Eps+07]
describes an iterative methodology where models are designed tested and refined to
reach the generation of an outcome with a simple generative model. In this context,
given that scientists of the specific domain often are not computer scientists, usually
they do not have access to systems for high performances computations for a long
time, and usually they have to perform preliminary studies within their limited re-
sources and, only later (if needed), allow extensive testing on large supercomputing
centers. In social sciences, for example, the need for “the capacity to model and
make up in parallel, reactive and cognitive systems, and the means to observe their
interactions and emerging effects” [CC95] clearly outlined, since 1995, the needs of
flexible, though powerful, tools.

Then, the design of ABMs is usually done by domain experts who seldom are
computer scientists and have limited knowledge of managing a modern parallel
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infrastructure as well as developing parallel code. In this context, our goal is to offer
such scientists a setting where a simulation program can be run on one desktop, first,
and can, later, harness the power of other desktops in the same laboratory, thereby
allowing them to scale up the size they can treat or to significantly reduce the time
needed to run the simulation. The scientist, then, is able to run extensive tests by
enrolling the different machines available, maybe, during off-peak hours.

Of course, it means that the resulting distributed system, by collecting hardware from
research labs, administration offices, etc., can be highly heterogeneous in nature
and, then, the challenge is how to efficiently use such hardware without an impact
on the “legitimate” user (i.e., the owner of the desktop) both on performances and
on installation/customization of the machine. On the other hand, a program in
MASON should not be very different than the corresponding program in D-MASON
so that the scientist can easily modify it to run over an increasing number of hosts.
These ensures that also an easily migration on a HPC system.

This work is aiming at efficient and effective distributed simulations by adopting a
framework-level approach, ensuring these properties is possible to achieve scalability
in this scenario. A novel framework for distributed simulations, named D-MASON,
has been designed and implemented. D-MASON is a parallel version of the MA-
SON [Luk+04] library for writing and running simulations of ABMs. D-MASON
addresses, in particular, speed of execution with no harm on other features that char-
acterize MASON. The intent of D-MASON is to provide an efficient and effective
way of parallelizing MASON ABMs: efficient because D-MASON is faster and can
handle larger simulations than MASON; effective because, in order to be able to
use this additional computing power, the developer has to do simple incremental
modifications to existing MASON ABMs, without re-designing them.

2.2 Agent-Based Simulation: State of Art
D-MASON was designed, using MASON core, and inspired by two widespread
toolkits for ABMs, NetLogo [TW04] and Repast [Nor+07]. They have been already
studied, from different point of view, in [Mat08] but the next section intends to
extend this comparison by spotting the differences between these systems and
D-MASON in the way they approach the problem of scalability.

Repast

Repast is available as a suite of open-source applications: Repast Simphony and
Repast for High Performance Computing (RepastHPC) [CN11]. Simphony allows the
user to approach its functionalities from different entry points: it allows to develop
programs in ReLogo, that is a Logo-like language easy to be handled with little
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programming knowledge; there is also a visual programming option called Repast
Flowchart; it provides a C++ interface that permits the development of portable
code to be executed on Repast HPC.

Repast HPC is the version of Repast that offers facilities to leverage the computing
power of clusters. In Repast HPC the programmer has to take into account that
some of the information of the simulation must be propagated across the cluster
to each of the workers involved in the computation. In [Che+08] the authors
present HLA_Grid_RePast, a middleware for the execution of collaborating Repast
applications on the Grid. The system considers Repast applications as services
on a Grid while the effort that allows the interoperability of models is left to the
programmer.

Repast is available as a suite of open-source applications; it allows to develop
programs in ReLogo, which is a Logo-like language easy to be handled with little
programming knowledge. RepastHPC [CN11] and HLA_Grid_RePast [Che+08]
explicitly address the problem of developing ABMs capable of exploiting the com-
putational power of parallel/distributed platforms. In particular RepastHPC and
HLA_Grid_RePast specialize the functionalities of Repast Symphony for the context
of HPC and Grid, respectively, and require that design of the ABM explicitly takes
into account the fact that it is implemented in a parallel environment where there
is the need for synchronization between the different machines that carry out the
computation.

D-MASON is different because the parallelization is implemented at framework-
level without modifying the interface on which simulations are implemented, letting
them gracefully capable to run in parallel on a distributed computing system.

NetLogo

NetLogo allows the user to design the simulation by using a functional language
inspired by Logo and, for this reason, it is considered to be easily grasped by a
wider audience; furthermore NetLogo offers numerous facilities to support the
analysis of the simulation. For example, NetLogo offers BehaviorSpace that allows
to automatically running a given simulation with different parameters settings,
allowing the automatic exploration of the parameters’ space. BehaviorSpace can
exploit the parallelism of the machine by running more simulations at the same time.
These functionalities of NetLogo are similar to those described in Chapter Simulation
Optimization. The exploration of the parameters’ space can exploit the parallelism of
the machine by running more simulations at the same time but is not useful to run
massive simulation (i.e., simulating a large number of agents) and/or simulations
which deal with complex agents, that is, computationally intensive agents.
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MASON

MASON toolkit is a discrete-event simulation core and visualization library written
in Java, designed to be used for a wide range of ABMs. The toolkit is written, using
the standard Model-View-Controller (MVC) design pattern [Ree79], in two layers
(see Figure 2.2): the simulation (or model) layer and the visualization layer, that
plays also the role of controller.

Fig. 2.2.: MASON architecture.

The simulation layer is the core of MASON and is mainly represented by an event
scheduler and a variety of fields which hold agents into a given simulation space.
MASON is based on steppable agent: a computational entity which may be scheduled
to perform some action (step), and which can interact (communicate) with other
agents. The visualization layer permits both visualization and manipulation of the
model. The simulation layer is independent from the visualization layer, which
allows us to treat the model as a self-contained entity.

The main reasons that directed us toward a distributed version of MASON are:

• MASON is one of the most expressive and efficient library for ABMs (as
reported by many reviews [Mat08; Naj+01; Rai+06]);

• MASON structure, that clearly separates visualization by simulation, makes it
particularly well suited to the re-engineering into a distributed “shape” of the
framework [Luk+04; Luk+05];
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• the significant amount of research and simulations already present in MASON,
which makes it particularly cost effective for the scientists.

Distributed Agent-Based Simulation

As observed by many authors [LT00; Hyb+06; Mus+09; Cra+10], the compu-
tational requirement of simulators usually exceed the capability of conventional
sequential computer. Several distributed simulation systems have been proposed
in order to speed up the execution of simulations. Two simulator models have
been considered [Hyb+06]: Discrete Event Simulations (DES) have been showed
to be efficient, scalable and embarrassingly parallelizable but are not well suited
to complex agent based applications; ABMs, indeed, are much more expressive.
They implements the sense-think-act cycle and offer a real agent-based programming
model but unfortunately, due to the high level of interdependencies between agents,
these models [Min+96; Luk+05; Nor+07] are not easy to parallelize.

Previous research on distributing ABMs was mainly focused on efficiency. In fact,
the need for efficiency among the Agent-Based modeling tools is well recognized in
literature: many reviews of state-of-the-art frameworks [Mat08; Naj+01; Rai+06]
place “speed” upfront as one of the most general and important issues.

Therefore, the approach followed was that of managing explicitly the distribution
of agents on several computing nodes (see for recent examples [CN11; Men+08;
PS09]), in order to get the most from the efficiency point of view.

Our framework-level approach here is different since it brings in effectiveness and
simplicity: scientists who use the framework (domain experts but with limited
knowledge of computer programming and systems) can be mostly unaware of the
distribution of agents. Previous work on distributed frameworks, such as [CN11;
Men+08; PS09], was focused on the implementation and the architecture of a
distributed agent model (dealing with lazy synchronization etc.), while our is on the
upper layer of the simulation framework, with the purpose of hiding, as much as
possible, the details of the architecture.

A good parallel implementation should address several conflicting issues:

1. balance the overall load distribution;
2. minimize the communication overhead due to tasks’ inter-dependencies;
3. synchronize the evolution of the simulation among the machines that provide

the computing power;
4. provide reproducibility of the results, meaning that a simulation model should

not provide a different behavior for each execution (even using different system
infrastructures). This reproducibility feature is considered as a priority for
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long simulations because it allows to compare results obtained using different
computers [Luk+04].

As an example, a simple way to partition the whole computation into different tasks
is to assign a fixed number of agents to each available logical processor (LP) [HX98].
A logical processor is an abstraction of a computational resource. This approach,
named agents partitioning, enables a balanced workload distribution but it may
introduce a significant communication overhead (a very small number of agents’
interdependencies, may result in all–to–all communication, required to synchronize
the simulation).

Other strategies which partition the work in a smarter way [Cos+11] have been
proposed in order to reduce the communication and synchronization time.

Distributed and Parallel Agent-Based Simulation softwares are described by the
communication paradigm used and parallel architecture exploited. The table 2.1
shown the mainly popular softwares available, as described in [Rou+14].

Name Developer Communication Paradigm

D-MASON Università degli Studi di Salerno (Italia)
Java Message Service (JMS)

and/or Message Passing Interface (MPI)
FLAME University of Sheffield (Inghilterra) MPI
FLAME GPU (CUDA) University of Sheffield (Inghilterra) -
JADE Telecom Italia lab (Italia) JAVA Remote Method Invocation (RMI)
Pandora Barcelona Supercomputing center (Spagna) MPI
RepastHPC Argonne National Laboratory (USA) MPI
PDES-Mas University of Birmingham (Inghilterra) MPI
SWAGES University of Notre Dame (USA) XML-RPC and SSML
Ecolab University of New South Wales (Australia) MPI
ABM++ Los Alamos National Laboratory (USA) MPI

Tab. 2.1.: Distributed Agent-Based Simulation Softwares.
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2.3 D-MASON

Fig. 2.3.: D-MASON Architecture.

Traditional architecture of computer systems usually includes a stack of layers, each
one only interacting directly with the one above and below (if any) (see Figure 2.4).
The advantages in flexibility, maintenance and sustainability of this architecture
in software design are clear and known to the computer science community since
decades.

In our view, two are the main opposite forces that drive the design of scalable,
distributed ABMs. The first one is the quest for efficiency: the ultimate goal for the
simulation of extremely large and time-consuming models. In this context, this force
is propelled by the well-known end-to-end principle [D.P+84] that tries to push
higher up in the layers any effective attempt to achieve efficiency. In this context the
principle states that it is possible to gain substantial improvements on efficiency only
if it is possible to address the semantics of the (parallel) application itself, although
additional support by the lower layers is helpful. Some examples of this approach
include recent results on Land use [Tan+11], on burglary [Mal+12] as well as
a comparison of effectiveness of parallelism at the application level with respect
to super-individual methods [PE08], where single individuals are aggregated by
carefully changing the model itself, so that results of the simpler simulation in the
new model is consistent with the original one.

The opposite force is driven by the inherent complexity of the models and (therefore)
of the simulations, that requires coordinated work by a multidisciplinary team that
is involved in several repeated iterations of the method. It is fundamental, then,
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Fig. 2.4.: Trading easiness of development for efficiency of the implementation

in order to achieve team effectiveness in such multidisciplinary environment, that
the development complexity is significantly reduced, by providing support to the
team. Therefore, scientists should not be directly aware of the parallelism embedded
into the simulation, just assuming one has “infinite” computational and storage
capabilities, sufficient to simulate the massive model without further complications
on such “supercomputer”. Therefore, to increase the effectiveness of the development
the awareness of the parallelism must be pushed down the layers, so that the team
can know the least (ideally, nothing) about the parallelization and the distribution
of the simulation.

The design of D-MASON is inspired by the need for efficiency, in a distributed setting
where computing resources are scarce, heterogeneous, not centrally managed and
that are used for other purposes during other periods of the workday. Moreover, the
multidisciplinarity of the teams that use ABMs, often, places an important emphasis
on easiness of development, thereby suggesting our compromise between efficiency
and impact by acting at the framework-level. In this way, the scientists still can
use the same computing and storage abstractions they are familiar with, in order to
build a simulation from a given model. The (modified) framework is able to execute
the simulation within a distributed simulation, thereby achieving both efficiency and
effectiveness. Finally, our approach is cost-effective since it allows a high degree of
backward-compatibility with MASON simulations, because of the moderate number
of modifications into the source code of an existing MASON application.

2.3.1 D-MASON Design Principles
D-MASON is based on MASON, and its first architectural requirement was to add
functionalities to MASON without changing MASON code. This is not only for
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the system scalability, but to ensure that the implementation and the validation
of common functionality can be inherited by MASON. This ensures also that a
simulation written in MASON and migrated to D-MASON does not need to be
changed in its logic but only adapted to be executed in distributed environment.

D-MASON adds a new layer named Distributed Simulation (D-Simulation), which
extends the MASON simulation layer. The new layer adds some features that allow
the distribution of the work on multiple, even heterogeneous, LPs. It is worth to
mention that the new layer does not alter, in any way, the existing layers. Moreover,
it has been designed to enable the porting of existing applications to a distributed
platform in a transparent and easy way, requiring only a minor revision of the
MASON code.

D-MASON is based on the well-know Master/Workers paradigm that exploits a
space partitioning approach for work partitioning: the master partitions the space to
be simulated (i.e., the field) into cells (see Figure 2.3). Each worker simulates one
or more LPs, according to its computational capabilities. Each cell, together with the
agents it contains, is assigned to a LP; then each LP is in charge of:

• simulating the agents that belong to the assigned cell;
• handling the migration of agents;
• managing the synchronization between adjacent cells (this information ex-

change is required in order to let the simulation run consistently).

2.3.2 D-MASON Design Issues
ABMs as step-wise computations; i.e., agents’ behavior is computed in successive
steps named simulation step. Between each simulation step the LPs must synchronize
their memory, in order to perform the next step. In the design of D-MASON
four design issues have been identified, and described below: Work partitioning,
Communication, Synchronization and Reproducibility.

Work partitioning

The problem of decomposing a program to a set of processors (LPs) has been
extensively studied (see [HX98] for a comprehensive presentation). In the case of
ABMs, a simple way to partition the whole work into different tasks is to assign a fixed
number of agents (proportional to the power of the worker) to each available worker.
This approach, named agents partitioning, allows a balanced workload but introduce
a significant communication overhead since, at each step, agents can interact-
with/manipulate other agents, then, in principle, an all–to–all communication among
workers is required.
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Fig. 2.5.: Field partitioning.

By noticing that most ABMs are inspired by natural models, where agents limited
visibility allow to bound the range of interaction to a fixed range named agent’s Area
of Interest (AOI), several field partitioning approaches have been proposed [Cos+11;
Zha+10; ZZ04] in order to reduce the communication overhead. Since the AOI
radius of an agent is small compared with the size of a cell, the communication is
limited to local messages (messages between LPs, managing adjacent spaces, etc.).
With this approach agents can migrate between adjacent cells and consequently
the association between workers and agents changes during the simulation. In
D-MASON by design, agents are allowed to migrate only between adjacent cells.
This is consistent with a large family of models (e.g. biology inspired models) that
do not need any kind of “teleportation”.

In D-MASON are available two principal kind of field partitioning:

• Uniform partitioning, which divides the simulation field F in uniform cells
(i.e., cells having equal size). The partitioning is described by a matrix r × c
superimposed on the field. The Figure 2.6 depicts a 3× 3 uniform partitioning,
using 9 LPs, applied to a case study simulation, that uses a 2D field representing
the United State of America. In such case, the agents are distributed in a non-
uniform way over the field, the zones in gray color represent high population
density ones. The regions in yellow, red and green colors are the overlapping
regions (aka ghost regions) between the cells, that are defined by the AOI
range.

• Non-uniform partitioning, which exploits the information available on the
simulation field F (e.g., agents’ positioning and their complexity) to provide a
roughly balanced partitioning. The field partitioning, in this case, is described
by a tree data structure [OL82] where each leaf represents a cell (see Figure
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2.7 and 2.8). In this case the cell size may vary in order to counterbalance the
non-uniformity of agents on the field or their computational complexity.

Fig. 2.6.: Uniform field partitioning with 9 LPs.

The Appendix B provides an analytical study about the field partitioning methods,
in particular, the study is focused on the communication effort induced by the
field partitioning approach used. This study motivates the introduction of the non-
uniform field partitioning approach. Scalability of field partitioning strategies will
be analyzed in Section 2.6.1.

Load Balancing The problem of a field partitioning approach is that since agents
can migrate between adjacent cells, the association between workers and agents
changes during the simulation. Moreover, load balancing is not guaranteed and need
to be addressed by the application. To better exploit the computing power provided
by the workers of the system, it is necessary to design the system to avoid bottlenecks.
Since the simulation is synchronized after each step, the system advances with the
same speed provided by the slower worker in the system. For this reason it is
necessary to balance the load among workers.

The choice of the partitioning strategy is important for the efficiency of the whole
system. Two key factors need to be considered: (i) static vs dynamic partitioning
and (ii) the granularity of the world decomposition. Dynamic partitioning can
be useful, for instance, when the workload of the simulation changes along the
time. Unfortunately, the management of dynamic cells requires a large amount of
communication between workers that consumes bandwidth and introduces latency.
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Fig. 2.7.: Non-uniform field partitioning with 25 LPs.

Similarly the granularity of the world decomposition (that is, the cell size and,
consequently, the number of cells, which a given space is partitioned into) determines
a trade–off between load balancing and communication overhead. The finer is the
granularity adopted, the higher is the balancing that, ideally, can be reached by the
system. However, due to agents’ interdependency and system synchronizations, finer
granularity usually determines a huge amount of communication which may harm
the overall performances.

D-MASON uses a simple but efficient technique to cope with heterogeneity. The
idea is to clone the software ran by high capable workers so that they could serve as
multiple workers; i.e., a worker that is x times more powerful than other workers
could execute x virtual workers (that is by simulating, concurrently, several cells).
D-MASON uses a static partitioning while the granularity of the decomposition is
chosen by the user according to the expected unbalancing of the model and the
performances of the communication layer.

Communication

D-MASON LPs communicate via a well-known mechanism, based on the Publish/-
Subscribe (P/S) design pattern: a multicast channel is assigned to each cell; LPs
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Fig. 2.8.: Non-uniform field partitioning with 9 LPs and the associated decomposition tree.
The color map describes the agents density on the field.

then simply subscribe to the topics associated with the cells which overlap with their
Area of Interest (AOI) in order to receive relevant message updates. Other topics are
also used for system management and visualization.

The first version of D-MASON uses Java Message Service (JMS) for communication
between LPs, by running Apache ActiveMQ Server [Apa11] as JMS provider. These
functionalities are provided by the Communication Layer of D-MASON described in
the section 2.4.2.

D-MASON, however, is designed to be used with any Message Oriented Middleware
that implements the PS pattern. By providing a mapping between the abstract D-
MASON’s mechanism and the concrete implementation, it is possible, for instance,
to use Scribe [Cas+02], a fully decentralized application-layer multicast built on top
of the DHT Pastry [DR01]. Even simpler communication protocols (such as sockets,
Remote Method Invocation, etc.) can be used but the effort of the programmer will
be more consistent, since a mapping between a semantically rich paradigm, such
as the Publish/Subscribe design pattern, and a simpler communication mechanism
(stream, remote invocations, etc.) is needed.

D-MASON can also be deployed on HPC systems. In order to better exploit such ho-
mogeneous environments D-MASON provides also an MPI-based Publish/Subscribe
communication (see Section 2.4.2).

Synchronization

As described above, D-MASON uses a space partitioning model where each LP
maintains a portion of the simulated space (cell), and is responsible for the sim-
ulation of agents belonging to such cell. In order to guarantee the consistency of
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Fig. 2.9.: D-MASON LPs’ synchronization.

parallel implementation with respect to the sequential one, each LP needs to collect
information about the adjacent cells. Each simulation step is formed by two phases:
communication/synchronization and simulation (see Figure 2.9). First of all, the LP w
sends to its neighbors (i.e., the LPs responsible for its adjacent cells) the information
about:

• the agents that are migrating to them;
• the agents that may fall into the AOI of the agents in the neighborhood of w.

This information exchange is locally synchronized in order to let the simulation run
consistently (see Figure 2.9).

D-MASON uses a conservative–synchronization approach to achieve a consistent
integration of the distributed simulations: each step is associated with a fixed state of
the simulation. Cells are simulated step by step. Since the step t of cell r is computed
by using the states t− 1 of r’s neighborhood, the step t of a cell cannot be executed
until the states t − 1 of its neighborhood have been computed and delivered. In
other words, before each simulation steps, the state of each cell is synchronized with
its adjacent cells.

Reproducibility

In order to guarantee an easy parallelization and to assure the reproducibility of
results, paramount objective of the research areas interested in the ABMs, it is
important to design the simulation in such a way that agents evolve simultaneously.
In other words, considering a simulation as an iterative process where, at each
step, each agent updates its state, in the simultaneous model each agent computes
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its state at step i based on the state of its neighbors at step i−1. Thereafter all
the agents updates their state simultaneously. Using this approach the simulation
become embarrassingly parallelizable (there are no dependencies between agents’
state), each simulation step can be executed in parallel overall the agents. Moreover,
the order in which agents are scheduled does not affect the reproducibility of results.
Some simulations, especially those that evolve using a randomized approach, still
require a mechanism that allows scheduling agents always in the same order.

When the behavior of a simulations is not deterministic (that is, it is influenced
by a random component) the reproducibility of results become hard to achieve in
a distributed environment. To achieve reproducibility, each cell must use its own
copy of the random source (e.g. MersenneTwisterFaster) and the scheduler must
ensure that the agents are always elaborated in the same arbitrary order.
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2.4 D-MASON Architecture
D-MASON is designed under the scalability principle in all of its forms. D-MASON
architecture provides five design requirements and is divided in layers. The design
requirements are: efficiency for exploiting hardware architecture, effectiveness for
modelling different kind of ABM, usability from the users experience point of view
and correctness of the results. The D-MASON function blocks (or layers) and
their interaction aim to meet these requirements. The D-MASON functional blocks
(or layers) are: Distributed Simulation, Communication, Visualization and System
Management. Figure 2.10 depicts the layers interactions and how these meet the
design requirements.

Fig. 2.10.: D-MASON design goals and layers interactions.

Figure 2.11 depicts the D-MASON architecture, showing the corresponding architec-
tural layer for each of the D-MASON component. As shown, Distributed Simulation
and Communication layers are dependent on each other, both are needed to build a
distributed simulation in D-MASON. But there are no dependencies between the
System Management and Visualization layer with other layers, these are independed
module of D-MASON.

The next four sections describes the D-MASON layers while the Appendix C provides
a comparison between the implementations of a simulation example written in D-
MASON and MASON.
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Fig. 2.11.: D-MASON Architecture and Design requirements.
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2.4.1 Distributed Simulation Layer
D-MASON uses a framework-level solution to deal with the scalability issues earlier
discussed in this thesis. The Distributed Simulation (DS) layer adds some features to
the simulation layer that allows the distribution of the simulation work on multiple,
even heterogeneous machines. Notice that the new layer does not alter in any way
the existing MASON layers. Moreover, it has been designed so as to enable the
porting of existing applications on distributed platforms in a transparent and easy
way.

D-MASON DS layer consists of two main packages: Engine and Field (see Figure
2.12). This choice is dictated by choice to maintain the same structure as MASON
in order to provide the developer with a friendly environment.

Fig. 2.12.: D-MASON Distributed Simulation Layer Packages

Engine

The Engine package, depicted in Figure 2.13, consists of three objects, each one being
a distributed version of a correspondent one in MASON. The first, DistributedState,
represents the state of the simulation in a distributed environment and includes:

• a method to create a reproducible sequence of identifiers to be assigned to
agents created by each cell of the simulation;

• a cell identifier;
• a method to retrieve the implementation of the specific field to be used by the

simulation;
• a method to add agents in the cell (this method enables the migration of agents

between cells).
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Fig. 2.13.: D-MASON Distributed Simulation Layer Core Classes

The second object, DistributedMultiSchedule, represents the time of distributed
simulation and allows the self-synchronization between successive simulation steps.
This object also adds a “zombie” step-able object to the schedule. This object, which
does not perform any action, is required to avoid the end of the simulation when a
cell become empty. Indeed, MASON ends the simulation when, during a step, the
schedule queue is empty.

The last object is RemoteAgent, which represents the abstraction of a distributed
object Steppable. This object is parametrized according to the kind of distributed
field used by the simulation. RemoteAgent provides also a unique identifier for
the agent across the system. The unique identifier is required because agents can
migrate from one cell to another.

These three objects are the core of D-MASON. Listing 2.1 depicts a basic example of
a DistributedState. This toy simulation uses a DContinuousGrid2D (described
in the following), a continuous space field corresponding to the Continuous2D field
of MASON. The simulation initializes 100 agents for each LP, and sets their positions
randomly on the field.

Listing 2.1: DSimulation

1 pub l i c c l a s s DSimulation extends D i s t r i b u t ed S t a t e <Double2D>
2 {
3 pub l i c DContinuousGrid2D s i m _ f i e l d ;
4 pub l i c DSimulation ( GeneralParam params , S t r i ng p r e f i x )
5 {
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6 super ( params , new Dis t r ibutedMul t iSchedule<Double2D>() , p re f i x ,
params . getConnectionType () ) ;

7 }
8 @Override
9 pub l i c void s t a r t ( )

10 {
11

12 super . s t a r t ( ) ;
13 t r y
14 {\\Tua .
15 s i m _ f i e l d =

DContinuousGrid2DFactory . createDContinuous2D (10.0/1.5 ,200 ,
200 , th i s ,

16 super . AOI , TYPE . pos_i , TYPE . pos_j ,
super . rows , super . columns ,MODE, " d f i e l d 1 " ,
t o p i c P r e f i x , t rue ) ;

17 i n i t _ c o n n e c t i o n () ;
18 } catch ( DMasonException e ) { e . p r in tS tackTrace () ; }
19

20 DAgent agent = nu l l ;
21 f o r ( i n t i = 0; i < 100; i++) {
22 agent=new DAgent ( th i s , new Double2D (0 ,0) ,

t h i s . random . nex t In t () ) ;
23 agent . se tPos ( s i m _ f i e l d . getAvai lableRandomLocation () ) ;
24 s i m _ f i e l d . s e tOb j e c tLoca t i on ( agent , agent . pos ) ;
25 agent . s e tCo lo r ( Color .RED) ;
26 schedule . scheduleOnce ( s i m _ f i e l d ) ;
27 }
28

29 }
30 @Override
31 pub l i c D i s t r i bu tedF ie ld2D g e t F i e l d ()
32 {
33 re turn s i m _ f i e l d ;
34 }
35 @Override
36 pub l i c void addToField ( RemotePosit ionedAgent rm , Double2D loc )
37 {
38 s i m _ f i e l d . s e tOb j e c tLoca t i on (rm , loc ) ;
39

40 }
41 @Override
42 pub l i c SimState ge tS ta t e ()
43 {
44 re turn t h i s ;
45 }
46 }

44 Chapter 2 Distributed Agent-Based Simulation



Listing 2.2 depicts the code for the toy agent. An agent is build by two object:
RemoteDAgent and its real implementation DAgent. RemoteDAgent is and ab-
stract class that implements RemoteUnpositionedAgent or RemotePositionedAgent.

These two objects are a subclass of RemoteAgent and are, respectively, an instance
of an agent that has a position in the space (e.g. an agent in a continuous 2D space)
and an instance of an agent without any positioning (e.g. an agent in a Network).

This hierarchy is necessary to exploit all MASON features. Indeed, some MASON
features, like some type of agents visualization, are obtained by extending a visu-
alization class. On the other hand, in D-MASON the agent class should extend a
RemoteAgent class, while unfortunately Java does not support multiple inheritance.
This reasoning justify the hierarchy described above and ensures the compatibility
with all MASON functionalities.

Listing 2.2: DAgent

1 // Abs t ra c t based agent c l a s s
2 pub l i c a b s t r a c t c l a s s RemoteDAgent<E> implements S e r i a l i z a b l e ,

RemotePositionedAgent<E> {
3

4 p r i v a t e s t a t i c f i n a l long se r i a lVe r s i onUID = 1L ;
5 pub l i c E pos ; // Locat ion of agents
6 pub l i c S t r i ng id ; // id remote agent . An id uniquely i d e n t i f i e s the

agent in the d i s t r i b u t e d −f i e l d
7 pub l i c RemoteDAgent () {}
8 pub l i c RemoteDAgent ( D i s t r i b u t ed S t a t e <E> s t a t e ) {
9 i n t i=s t a t e . next Id () ;

10 t h i s . id=s t a t e . getType () . t o S t r i n g ()+"−"+i ;
11 }
12 @Override
13 pub l i c E getPos () { re turn pos ; }
14 @Override
15 pub l i c void se tPos (E pos ) { t h i s . pos = pos ; }
16 @Override
17 pub l i c S t r i ng ge t Id () { re turn id ;}
18 @Override
19 pub l i c void s e t I d ( S t r ing id ) { t h i s . id = id ;}
20 @Override
21 pub l i c boolean equals ( Object obj ) {
22 i f ( t h i s == obj ) re turn t rue ;
23 i f ( ob j == n u l l ) re turn f a l s e ;
24 i f ( ge tC l a s s () != obj . ge tC l a s s () ) re turn f a l s e ;
25 RemoteFlock other = ( RemoteFlock ) obj ;
26 i f ( id == n u l l ) {
27 i f ( other . id != n u l l ) re turn f a l s e ;
28 } e l s e i f ( ! id . equals ( other . id ) ) re turn f a l s e ;
29 i f ( pos == n u l l ) {
30 i f ( other . pos != n u l l ) re turn f a l s e ;
31 } e l s e i f ( ! pos . equals ( other . pos ) ) re turn f a l s e ;

2.4 D-MASON Architecture 45



32 re turn t rue ;
33 }
34 }
35 // Agent c l a s s
36 pub l i c c l a s s DAgent extends RemoteDAgent<Double2D>{
37 p r i v a t e i n t va l ;
38 pub l i c DAgent () {} // Required f o r D−MASON s e r i a l i z a t i o n
39 pub l i c DAgent ( S t r ing id , Double2D loca t ion , In t ege r va l ) {
40 t h i s . id = id ;
41 t h i s . pos = l o c a t i o n ;
42 t h i s . va l = va l ;
43 }
44 pub l i c Bag getNeighbors ( D i s t r i b u t ed S t a t e <Double2D> sm)
45 {
46 re turn (( DContinuousGrid2D )sm . g e t F i e l d () ) .
47 getNe ighborsExac t lyWi th inDis tance ( pos ,
48 (10 , t rue ) ;
49 }
50 @Override
51 pub l i c void s tep ( SimState s t a t e ) {
52 Bag b = getNeighbors (( D i s t r i b u t e d S t a t e ) s t a t e ) ;
53 i n t max=va l ;
54 f o r ( Object f : b) {
55 DAgent d=(DAgent ) f ;
56 i n t dval =d . getVa l () ;
57 i f (max < dval ) max=dval ;
58 }
59 t h i s . va l = max;
60 }
61 pub l i c i n t getVa l ( D i s t r ibu tedMul t iSchedu le schedule ) {
62 re turn va l ;
63 }
64

65 }

Listing 2.3 depicts the example code for executing D-MASON simulation on a
local machine. This code considers that an instance of the message broker Apache
ActiveMQ is running on the local machine (see Section Communication Layer). The
test initializes and executes 8 LPs (DSimulation object), using a uniform partitioning
approach.

Listing 2.3: DTestLocalMachine

1 pub l i c c l a s s DTestLocalMachine {
2 p r i v a t e s t a t i c i n t numSteps = 100; //number of s tep
3 p r i v a t e s t a t i c i n t rows = 2; //number of rows
4 p r i v a t e s t a t i c i n t columns = 4; //number of columns
5 p r i v a t e s t a t i c i n t AOI=10; //AOI
6 p r i v a t e s t a t i c i n t CONNECTION_TYPE=ConnectionType . pureActiveMQ ;
7 p r i v a t e s t a t i c S t r i ng ip=" 127.0 .0 .1 " ; // ip of activemq
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8 p r i v a t e s t a t i c S t r i ng por t=" 61616 " ; // por t of activemq
9 p r i v a t e s t a t i c S t r i ng t o p i c P r e f i x=" " ; // unique s t r i n g to i d e n t i f y

t o p i c s f o r t h i s s imula t ion
10 p r i v a t e s t a t i c i n t MODE =

Dis t r i bu tedF ie ld2D . UNIFORM_PARTITIONING_MODE;
11

12 pub l i c s t a t i c void main( S t r ing [] args )
13 {
14 c l a s s worker extends Thread
15 {
16 p r i v a t e D i s t r i b u t ed S t a t e <?> ds ;
17 pub l i c worker ( D i s t r i b u t ed S t a t e <?> ds ) {
18 t h i s . ds=ds ;
19 ds . s t a r t ( ) ;
20 }
21 @Override
22 pub l i c void run () {
23 i n t i =0;
24 while ( i !=numSteps )
25 {
26 ds . schedule . s tep ( ds ) ;
27 i++;
28 }
29 System . e x i t (0) ;
30 }
31 }
32

33 ArrayL i s t <worker> myWorker = new ArrayL i s t <worker >() ;
34 f o r ( i n t i = 0; i < rows ; i++) {
35 f o r ( i n t j = 0; j < columns ; j++) {
36

37 GeneralParam genParam = new GeneralParam ( nul l , nul l , AOI ,
rows , columns , nul l , MODE, CONNECTION_TYPE) ;

38 genParam . s e t I ( i ) ;
39 genParam . s e t J ( j ) ;
40 genParam . s e t I p ( ip ) ;
41 genParam . s e t P o r t ( por t ) ;
42 ArrayL i s t <EntryParam<Str ing , Object>> simParams=new

ArrayL i s t <EntryParam<Str ing , Object >>() ;
43 DSimulation sim = new DSimulation (genParam ,

simParams , t o p i c P r e f i x ) ;
44 worker a = new worker ( sim ) ;
45 myWorker . add(a ) ;
46 }
47 }
48 f o r ( worker w : myWorker) w. s t a r t ( ) ;
49 }
50 }
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Engine: Memory Consistency Mechanism (MCM)

As observed in [Hyb+06], ABMs are very expressive; they implement the sense-think-
act cycle and offer a real agent-based programming model. Unfortunately, due to the
high level of interdependencies between agents, these models [Min+96; Luk+05;
Nor+07] are not easy to parallelize.

As said above, D-MASON provides a self-synchronized environment where, before
starting each simulation step, each LP exchanges some data with neighbors’ LPs in
order to obtain all the information required to execute the step (no other information
is exchanged during the step execution).

Theoretically, all the agents update their status at step t, considering the status of
all neighbor agents at step t− 1 (synchronous update). Specifically, in synchronous
updating, the agent v at the t-th iteration updates its state based on the state of its
neighbors at the (t− 1)-th iteration. Suppose agent v has k neighbors u1, u2, . . . , uk.
Let Sv[t] be the state of agent v at the t-th iteration. Hence,

Sv[t] = fupd(Su1 [t− 1], Su2 [t− 1], . . . , Suk
[t− 1]),

where fupd computes the state of an agent. Using a sequential environment, the
agents are updated asynchronously, that is

Sv[t]=fupd(Su1 [t], . . . , Sum [t], Sum+1 [t−1], . . . , Suk
[t−1]),

where u1, u2, . . . , um are the neighbors of v that have already performed their com-
puting in the current iteration, while um+1, um+2, . . . , uk are the neighbors that have
not yet performed the computing. Asynchronous execution exhibits a very strong
side effect: the behavior of the model is influenced by the order of agents’ executions
[LM09]. So in order to meet the reproducibility feature (see Section 2.3.2), it is
extremely important to update the agents using a deterministic strategy. Indeed, the
asynchronous approach, performed on a sequential environment, adds unnecessary
dependencies that harm the efficiency of the system.

Asynchronous execution becomes even harder on a distributed environment that
exploits the space partitioning approach. Such systems use some ghost agents (which
lay on a different cell, but are close enough to influence the behavior of some cell
agents). The problem is that ghost agents are never updated but receive the novel
state only at the end of the simulation step, so in order to realize an asynchronous
update strategy the system has to be synchronized after each agent update.

Although there are several approaches, like double buffering, which enable imple-
menting the synchronous approach even in a sequential environment, it is worth
mentioning that these strategies

48 Chapter 2 Distributed Agent-Based Simulation



• are usually not straightforward for the model designer (with limited knowledge
of distributed programming);

• have their drawbacks either in terms of increased usage of memory or in
terms of efficiency, since they need to update the agents’ status even when it
has not changed. Such strategies have been conceived for massively parallel
architectures (like GPUs) where the cost of a memcopy is negligible.

MCMStrategy. D-MASON provides a memory consistency mechanism which, during
the t-th simulation step, ensures that the read of an agent state will return the state
at the end of step t− 1 when the read is performed from an outside agent while it
returns the updated status when the read is performed inside the agent. The idea of
the mechanism is quite simple. During the simulation step t, the first time an agent
state is updated the preceding state (that is the state at the end of step t − 1) is
saved into an hashmap which maps the agent identifier to its state at the end of step
t− 1. Then all the remaining write operations operate normally. The read operation
performed from the outside (that is using the getter method), first checks whether
the hashmap contains an entry for the corresponding agent. In case of success, the
agent state is read from the hashmap, otherwise the state has not changed and can
be recovered in the standard way. Once the simulation step is completed for all the
agents, the hashmap is cleaned so that a unique state is stored. Using this approach
the memory overhead is limited because each agent state is stored at most twice and
a copy is generated only when necessary.

MCM Implementation Details. Clearly the mechanism described above is quite hard
to implement, especially for model designers with limited experience in object ori-
ented programming. In D-MASON this mechanism is easily affordable for every user
because D-MASON solves the problem at framework level. A former implementa-
tion of the memory consistency mechanism was based on the Byte Code Generation
Library (cglib [cgl16]) to inject, at runtime, the code needed to realize the above
mechanism. The cglib is high level API to generate and transform JAVA byte code.
It is used by Aspect Oriented Programming, testing, data access frameworks to
generate dynamic proxy objects and intercept field access. Unfortunately this former
implementation introduces a performance slowdown mainly due to Java Reflection
overhead (see Figure 2.14).

Another implementation of the memory consistency mechanism is based on Java
Method Handles, which, using Java 8, provides better performance than the Java Re-
flection. The package engine provides the class RemoteAgentStateMethodHandler
that is an object that enable to access “consistently” the state of an agent. The same
package also provides the StateVariable object, which binds each state variable
name with the corresponding type.
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Basically, in order to use the memory consistency mechanism of D-MASON, the
model’s programmer has to:

• define all access methods to the agent state variables;
• select the variables that define the agent state. In order to do that, each state

variable must be declared as part of the agent’s state. The agent’s state is
defined in the agent class by a static list of StateVariable (see Listing 2.4);

• define a new static object RemoteAgentStateMethodHandler, in order to ac-
cess the agent’s state in the step method of the agent.
The RemoteAgentStateMethodHandler provides two methods getState(. . .)
and setState(. . .) to get and set the agents’ state (see Listing 2.4).

In order to better explain the coding effort needed to use the D-MASON memory
consistency mechanism, in the following, we provide a toy example: The state of
each agent is represented by an integer. Agents wanders into a geometric field.
During each simulation step, each agent read the state of all its neighbors (i.e., the
agents within a certain distance) and updates its value as the maximum among its
state and the states of all its neighbors. The following code (Listing 2.4) implements
the above logic using the memory consistency mechanism. The same logic without
MCM is shown in the Listing 2.2.

First is declared the variables, which compose the agents’ state, after that it is
declared the RemoteAgentStateMethodHandler object to access consistently the
agents state (see Listing 2.4). Notice that, in the step method, the access to the state
variable val is always performed using getState(. . .) and setState(. . .) of the
RemoteAgentStateMethodHandler object. It is worth mentioning that, although the
methods getVal and setVal are implemented in the standard way by the modeler,
they will be used by RemoteAgentStateMethodHandler for access “consistently” the
agents’ state.

Listing 2.4: DAgent

1 pub l i c c l a s s DAgent extends RemoteDAgent<Double2D>{
2 p r i v a t e i n t va l ;
3 // Agent s t a t e d e f i n i t i o n
4 s t a t i c Ar rayL i s t <Sta teVar i ab l e > s t a t e v a r i a b l e s=new

ArrayL i s t <Sta teVar i ab le >() ;
5 s t a t i c {
6 s t a t e v a r i a b l e s . add(new S t a t e V a r i a b l e ( " va l " , i n t . c l a s s ) ) ;
7 }
8 f i n a l s t a t i c RemoteAgentStateMethodHandler memory = new

RemoteAgentStateMethodHandler DAgent . c l a s s , s t a t e v a r i a b l e s ) ;
9 //end Agent s t a t e d e f i n i t i o n

10 pub l i c DAgent () {}
11

12 pub l i c DAgent ( S t r ing id , Double2D loca t ion , In t ege r va l ) {
13 t h i s . id = id ;
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14 t h i s . pos = l o c a t i o n ;
15 t h i s . va l = va l ;
16 }
17

18 @Override
19 pub l i c void s tep ( SimState s t a t e ) {
20 Bag b = getNeighbors (( D i s t r i b u t e d S t a t e ) s t a t e ) ;
21 i n t max=va l ;
22 f o r ( Object f : b) {
23 DAgent d=(DAgent ) f ;
24 i n t dval = ( i n t ) memory . ge tS ta t e (

( D i s t r ibu tedMul t iSchedu le ) s t . schedule , d , " va l " ) ;
25 i f (max < dval ) max=dval ;
26 }
27 memory . s e t S t a t e ( ( D i s t r ibu tedMul t iSchedu le ) s t . schedule , t h i s ,

" va l " , max) ;
28 }
29

30 pub l i c i n t getVa l ( D i s t r ibu tedMul t iSchedu le schedule ) {
31 re turn va l ;
32 }
33

34 pub l i c void se tVa l ( D i s t r ibu tedMul t iSchedu le schedule , i n t va l ) {
35 t h i s . va l=va l ;
36 }
37 }

MCM Performance. Four MCM implementations in Java have been tested:

• Double Buffering (DB), uses the well know double buffering strategy imple-
mented ad hoc in the agent.

• Java Reflection (Reflection), uses the Byte Code Generation Library (cglib
[cgl16]) to inject, at runtime, the code change the effect of access methods
exploiting the Java Reflection Proxy to intercept all methods calls.

• Method Handler, uses the Method Handler mechanism of Java 8. Two kind of
binding have been considered:

– Dynamic Lookup (MHDL), where the methods handler, for each access
method, are obtained dynamically;

– Static Lookup (MHSL), where the methods handler are bound in a static
context, as show in Listing 2.4.

The figure 2.14 depicts the performance obtained by different memory consistency
mechanisms.

The different implementations were tested on a cluster machine of 16 nodes. Each
node is a Linux machine configured with 24 cores, 32 GB of RAM and Java Virtual
Machine 1.8. The test simulation used was a naive SIR model implementation.
Each agents wander on a bi-dimensional field (of size 4000 × 4000) exchanging
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an information among neighboring agents. Each test has been performed with
4, 16, 36, 64 and 144 LPs and 500000 agents for 100 simulation steps. The overall
completion time have been collected and depicted in Figure 2.14. The figure shows
that the worst performance is achieved by the Reflection implementation due to
the overhead introduced by the Java Reflection mechanism. On the other hand,
the MHSL implementation provides almost the same performance of the Double
Buffering implementation, which as discussed above, requires strong programming
skills and heavily impacts on the usage of memory.

Fig. 2.14.: Memory Consistency Performances: Simulation time obtained running a SIR
simulation using four different memory consistency implementations with
4, 16, 36, 64 and 144 LPs.

Field

The package Field, depicted in Figure 2.13, is the real core of D-MASON: indeed this
package defines the logic of agents’ distribution. This package provides classes in
common with all the fields and the distributed versions of several MASON fields.

The new hierarchy of fields in Distributed MASON is based on a Java interface called
DistributedField that represents an abstraction of a distributed field (cell): all
the fields that are meant to be distributed must implements this interface, so that
they have to expose functionalities, such as evaluating whether a given position
belongs to the current cell or not or a method to generate a random position in the
current cell. The interface also exposes a method synchro() that allows the local
synchronization among cells and hence the update of the simulation (see Figure
2.9).
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D-MASON local synchronization is made through the object UpdateMap that asyn-
chronously receives messages by neighbors cells. When all the messages, related to
the current step, are received, the synchronization is complete and the cell is ready
to perform another simulation step. Each update message, represented by the class
DistributedRegion, is composed by two lists of agents: one represents the agents
that are migrating to the cell that receive the message; and one that contains the
agents, aka ghost agents, that may fall into the AOI of an agent in the receiving
cell. The agents, which are migrated to the cell, need to be scheduled for the next
simulation step, while ghost agents will be used to compute the behavior of simu-
lated agent (even if they are not simulated). In order to assure the reproducibility of
results, agents are scheduled using a priority queue which does not depend on the
order in which messages are received.

D-MASON provides a distributed version for almost all the MASON fields. For in-
stance, the sub-packages grid and continuous provide two specializations of the 2D
fields of MASON, SparseGrid2D, Continuos2D, IntGrid2D and DoubleGrid2D,
two types of class factory to create the right field according to the type of partition-
ing (e.g., DSparseGrid2DXY and DContinuosGrid2DXY for uniform partitioning
and DSparseGridNonUniform and DContinuosGridNonUniform for non-uniform
partitioning) and the corresponding abstract classes for the fields, DSparseGrid2D e
DContinuousGrid2D.

As anticipated in the Section 2.3.2, currently, in D-MASON there are two kind
of field partitioning: uniform and non-uniform. Listing 2.1 shown the code of
a toy simulation. Line 15 shows the code for instantiating a DContinuous2D
field using the factory DContinuousGrid2DFactory that instantiates a new dis-
tributed field using the given constructions parameters. This example uses the
method createDContinuonus2D which performs a uniform partitioning. On the
other hand, the method createDContinuous2DNonUniform can be used to perform
a non-uniform partitioning.

Field: Distributed Network Field

Unfortunately, the basic field partitioning approach is inappropriate and inefficient
when the simulation field is not an Euclidean space (e.g., a Network field). In such a
case, the partitioning strategies cannot use space information, but should instead be
based on the relationship among the agents, described in forms of a communication
graph. D-MASON provides the DNetwork field, that is the distributed version of
MASON Network field. The DNetwork field exploits a different partitioning strategy
that will be discussed in details within Appendix A.

Why Networks are important in ABM simulation? Networks are everywhere. Com-
plex interactions between different entities play an important role in modeling the

2.4 D-MASON Architecture 53



behavior of both society and the natural world. Such networks – which comprise
the World Wide Web, metabolic networks, neural networks, communication and
collaboration networks, and social networks – are the subject of a growing number
of research efforts. Indeed, many interesting phenomena are structured as networks
(i.e., sets of entities – aka nodes – joined in pairs by lines – aka edges – representing
relations or interactions).

The study of networked phenomena has experienced a particular surge of interest
due to the increasing availability of massive data about the static topology of real
networks, as well as the dynamic behavior generated by the interactions among
network entities. The analysis of real networks topologies has revealed several
interesting structural features, like the small-world phenomena, as well as the
power-law degree distribution [EK10], which appear in several real networks and
can be extremely helpful for the design of artificial networks. On the other hand,
understanding the dynamic behavior generated by complex network systems is
extremely hard. Networks are often characterized by a dynamic feedback effect
which is hard to predict analytically.

DNetwork field. The field partitioning approach, implemented on D-MASON, and
described in the previous Section, is devoted to decomposing ABMs based on ge-
ometric fields. On the other hand, when agents lie and/or interact on a network
[CH05] – where the network can represent social, geographical or even a semantic
space – a different approach is needed. The problem is to (dynamically) partition
the network into a fixed set of sub-networks in such a way that:

• the components have roughly the same size;
• both the number of connections and the communication volume between

nodes belonging to different components are minimized (see Figure 2.15).

This problem is well known in literature as the graph partitioning problem. It
has been extensively studied (see [Bad+13] for a comprehensive presentation)
and is known to be NP-hard [GJ90]. Being a hard problem, exact solutions are
found in reasonable time only for small networks. However the applications of this
problem require partitioning much larger networks. For this reason, several heuristic
solutions have been proposed in literature and are discussed, in the context of ABM
simulations, in the Appendix A.

D-MASON provides a distributed network field, named DNetwork (see Figure 2.15),
based on METIS [KK98], a graph multilevel k-way partitioning suite, developed in
the Karypis lab of University of Minnesota, evaluated for our specific purpose in
[Ant+15].
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Fig. 2.15.: DNetwork Field D-MASON.

DNetwork field: Usage. The following Listing 2.5 shows the code of the start
method for an D-MASON simulation on the DNetwork field. For visualization
purposes, the agents also lie on a Continuous2D field.

The method PartitionManager.getNetworkPartition(graph_path, graph_parts_path)
loads the network and its partitioning (obtained through any k-way partitioning
algorithm) and computes the communication overlay. Then the distributed network
is generated using the factory DNetworkFactory, which takes as parameter the
communication overlay structure. Thereafter all the agents, that belong to the part
assigned to the current LP, are added to the fields (DNetwork and Continuous2D)
and to the schedule. Finally, the edges among the agents are created. During
this phase some ghost agents (i.e., agents that belong to a different part but are
connected to at least one agent already in the field) are added to the field (but not
scheduled).

Listing 2.5: DNetwork usage

1 pub l i c DNetwork network ;
2 pub l i c Continuous2D yard = new Continuous2D (1.0 ,100 ,100) ;
3

4 @Override
5 pub l i c void s t a r t ( )
6 {
7 super . s t a r t ( ) ;
8 i n t commID = (TYPE . pos_ i *rows )+TYPE . pos_ j ;
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9 NetworkPar t i t ion par t s_da ta=Part i t ionManager . ge tNetworkPar t i t ion (
graph_path , graph_parts_path ) ;

10 network = DNetworkFactory . createDNetworkField ( th i s , super . rows ,
super . columns , TYPE . pos_i , TYPE . pos_j ,
pa r t s_da ta . g e t E d g e s _ s u b s c r i b e r _ l s i t ( ) , " mygraph " , t o p i c P r e f i x ) ;

11 HashMap<Integer , Agent> myAgents = new HashMap<Integer , Agent >() ;
12 HashMap<Integer , Agent> myGhostAgents = new

HashMap<Integer , Agent >() ;
13 SuperVertex my_ver t i ces=par t s_da ta . getParts2SuperGraph () . get (

commID) ;
14 f o r ( Vertex v : my_ver t i ces . g e t O r i g i n a l _ v e r t e x () ) {
15 Double2D pos=new Double2D ( yard . getWidth () *

random . nextDouble () , yard . getHeight () *
random . nextDouble () ) ;

16 Agent netSource = ( Agent ) D i s t r i bu tedAgentFac to ry . newIstance (
Agent . c l a s s , new Clas s []{ SimState . c l a s s , I n t ege r . c l a s s ,
Boolean . c l a s s , S t r i ng . c l a s s , Double2D . c l a s s } , new
Object []{ th i s , my_ver t i ces . ge t Id () , f a l s e , v . ge t Id ()+" " ,
pos } , DVertexState15 . c l a s s ) ;

17 myAgents . put ( v . ge t Id () , netSource ) ;
18 schedule . scheduleOnce ( netSource ) ;
19 network . addNode( netSource ) ;
20 yard . s e tOb j e c tLoca t i on ( netSource , pos ) ;
21 }
22 f o r ( Edge e : par t s_da ta . ge tOr ig ina l_graph () . edgeSet () ) {
23 Vertex source = ( Vertex ) par t s_da ta .

ge tOr ig ina l_graph () . getEdgeSource ( e ) ;
24 Vertex t a r g e t = ( Vertex ) par t s_da ta .

ge tOr ig ina l_graph () . getEdgeTarget ( e ) ;
25 I n t ege r sourceComm = par t s_da ta . getGraph2parts () . get ( source ) ;
26 I n t ege r targetComm = par t s_da ta . getGraph2parts () . get ( t a r g e t ) ;
27 Agent netSource = myAgents . get ( source . ge t Id () ) ;
28 Agent netTarget = myAgents . get ( t a r g e t . ge t Id () ) ;
29 i f ( netSource==n u l l && netTarget==n u l l ) cont inue ;
30 i f ( netSource==n u l l && myGhostAgents . get ( source . ge t Id () )==n u l l ) {
31 Double2D pos=new Double2D ( yard . getWidth () *

random . nextDouble () , yard . getHeight () *
random . nextDouble () ) ;

32 netSource = ( Agent ) D i s t r i bu tedAgentFac to ry . newIstance (
Agent . c l a s s , new Clas s []{ SimState . c l a s s , I n t ege r . c l a s s ,
Boolean . c l a s s , S t r i ng . c l a s s , Double2D . c l a s s } , new
Object []{ th i s , sourceComm , f a l s e , source . ge t Id ()+" " ,
pos } , DVertexState15 . c l a s s ) ;

33 myGhostAgents . put ( source . ge t Id () , netSource ) ;
34 network . addNode( netSource ) ;
35 yard . s e tOb j e c tLoca t i on ( netSource , pos ) ;
36 }
37 i f ( netTarget==n u l l && myGhostAgents . get ( t a r g e t . ge t Id () )==n u l l ) {
38 Double2D pos=new Double2D ( yard . getWidth () *

random . nextDouble () , yard . getHeight () *
random . nextDouble () ) ;
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39 netTarget = ( Agent ) D i s t r i bu tedAgentFac to ry . newIstance (
Agent . c l a s s , new Clas s []{ SimState . c l a s s , I n t ege r . c l a s s ,
Boolean . c l a s s , S t r i ng . c l a s s , Double2D . c l a s s } , new
Object []{ th i s , targetComm , f a l s e , t a r g e t . ge t Id ()+" " ,
pos } , DVertexState15 . c l a s s ) ;

40 myGhostAgents . put ( t a r g e t . ge t Id () , netTarget ) ;
41 network . addNode( netTarget ) ;
42 yard . s e tOb j e c tLoca t i on ( netTarget , pos ) ;
43 }
44 network . addEdge ( netSource , netTarget , n u l l ) ;
45 }
46 i n i t _ c o n n e c t i o n () ;
47 }
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2.4.2 Communication Layer
The package Util.Connection, depicted in Figure 2.16, contains the interface Con-
nection (see Listing 2.6) which defines the API of the D-MASON Publish/Subscribe
pattern used. D-MASON’s architecture enables the customization of the communi-
cation mechanism via the specialization of the interface Connection, so that different
communication mechanisms can be used.

Listing 2.6: Connection

1 pub l i c i n t e r f a c e Connection {
2 pub l i c boolean setupConnect ion ( Address providerAddr ) throws

Except ion ;
3

4 pub l i c boolean crea teTop ic ( S t r i ng topicName , i n t numFields ) throws
Except ion ;

5

6 pub l i c boolean publ ishToTopic ( S e r i a l i z a b l e ob jec t , S t r i ng
topicName , S t r ing key ) throws Except ion ;

7

8 pub l i c boolean subscr ibeToTopic ( S t r i ng topicName ) throws Except ion ;
9

10 pub l i c boolean asynchronousReceive ( S t r i ng key ) ;
11

12 pub l i c Ar rayL i s t <Str ing> g e t T o p i c L i s t ( ) throws Except ion ;
13

14 pub l i c boolean unsubscr ibe ( S t r ing topicName ) throws Except ion ;
15 }

Considering the good results obtained by the first version of D-MASON, which was
mainly devoted to heterogeneous clusters of workstations with a limited number
of LPs, the focus moved to dedicated installations, such as massively parallel ma-
chines or supercomputing centers. These platforms usually offer a large number
of homogeneous machines that, on one hand, simplify the issue of balancing the
load among LPs, but, on the other hand, the considerable computational power
provided by the system weakens the efficiency of the centralized communication
server. Indeed, centralized solutions can not scale both in terms of the growth of the
computing power, which affects the amount of communication, and in terms of the
number LPs, which affects the number of communication channels. For this reasons,
a novel decentralized communication mechanism, which realizes a Publish/Sub-
scribe paradigm through a layer based on the MPI standard, was implemented in
D-MASON [Cor+14b].

The current version of D-MASON, as anticipated in the Section 2.3.2, provides two
kind of communication specialization. A centralized communication, which is used
for general purposes architecture (heterogeneous computing or cloud computing),
exploits the Java Message Service standard, exposed by the ConnectionJMS interface

58 Chapter 2 Distributed Agent-Based Simulation



and implemented in ConnectionWithActiveMQ. The Server side is represented by
Apabibte che ActiveMQ Server [Apa11]. The decentralized communication, designed
mainly for homogeneous computing (such Extreme-Scale computing), is based
on the Message Passing Interface (MPI) [MPI16]. The ConnectionMPI interface
defines this kind of communication which has been implemented in three different
versions: ConnectionMPIWithBcastMPIBYTE, ConnectionMPIWithGatherMPIBYTE
and ConnectionMPIWithParallelMPIBYTE. These three version are described in
details in the Section 2.4.2.

Fig. 2.16.: D-MASON Communication Layer: Core Classes

The functionalities of the layer for homogeneous computing were tested on the
OpenMPI [Ope16c] implementation. Using MPI, the overall communication is com-
pletely decentralized. Moreover, when the system requires some system management
functionalities, D-MASON communication is performed using a hybrid approach:
the communication among LPs is handled by the MPI infrastructure (in order to
achieve scalability) while the management messages, being asynchronous, operate
through the ActiveMQ Server.

Connection Types. In order to manage different communication types, D-MASON
provides a class, named ConnectionTypes, that exposes the macros for all the
available communication strategies (see Listing 2.7). The following strategies are
currently available:

1. pureActiveMQ: uses Apache ActiveMQ as message broker for both the manage-
ment and LPs’ synchronization messages;

2. pureMPI, uses only the MPI layer and can be used only when there are no
management services (like centralized visualization). Three different MPI
communication mechanisms are available [Cor+14b; Cor+14a]:

• pureMPIBcast, exploits a broadcasting mechanism between the LPs
groups (i.e., LPs managing adjacent cells);

• pureMPIGather, using the function MPI Gather an LP is able to get, in
a single step, all the information needed from its neighborhood. This
strategy allows to decrease the number of communication rounds but
increases the message size.
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• pureMPIParallel, tries to maximize the degree fo parallelism during
the communications between different LPs in order to reduce the number
of communication rounds; this approach is based on a randomized graph
coloring algorithm. It is highly recommended for simulations having a
large number of LPs.

3. hybridActiveMQMPI, uses Apache ActiveMQ for the communication between
LPs and the system management or the visualization components, while it uses
MPI for simulation updates between LPs. Also in this case, it is possible to
choose the desired MPI communication mechanism.

Listing 2.7: ConnectionType

1 pub l i c f i n a l c l a s s ConnectionType implements S e r i a l i z a b l e {
2

3 pub l i c s t a t i c f i n a l i n t unitTestJMS = −5;
4

5 pub l i c s t a t i c f i n a l i n t pureMPIBcast = 1;
6 pub l i c s t a t i c f i n a l i n t pureMPIGather = 2;
7 pub l i c s t a t i c f i n a l i n t pureMPIPara l le l = 3;
8

9 pub l i c s t a t i c f i n a l i n t pureActiveMQ = 0;
10

11 pub l i c s t a t i c f i n a l i n t hybridActiveMQMPIBcast = −1;
12 pub l i c s t a t i c f i n a l i n t hybridActiveMQMPIGather = −2;
13 pub l i c s t a t i c f i n a l i n t hybr idAct iveMQMPIParal le l = −3;
14

15 p r i v a t e s t a t i c i n t ConnectionType = pureActiveMQ ;
16 }

D-MASON Decentralized Communication

D-MASON provides the communication layer for Extreme-Scale computing using
MPI. Obviously MPI does not allow directly Publish/Subscribe functionalities so we
had to manage them in a different layer according to the Communication interface
of D-MASON which exposes some routines to publish and receive messages on
specific topics.

The design strategy that enables to use MPI in D-MASON is based on the concept of
synchronization time that is the time required to exchange all the synchronization
messages at the end of a simulation step. The system associates an MPI Process to
each D-MASON LP and uses MPI communication groups to define the communication
among cells. The synchronization time is partitioned in communication rounds, each
of which is dedicated to a different communication group.

MPI. MPI is a library specification for message-passing, designed for high perfor-
mance on both massively parallel machines and on workstation clusters. MPI has

60 Chapter 2 Distributed Agent-Based Simulation



emerged as one of the primary programming paradigms for writing efficient parallel
applications, it provides point-to-point and collective communications and guaran-
tees portability with all platforms compliant with the MPI Standard. MPI provides
several collective operations which are very important because they sustain very
high parallel speed-ups for parallel applications[MPI13]. Two solutions for using
MPI in D-MASON have been considered: a Java implementation of MPI and a Java
binding of MPI.

The need for thread safety. Since the architecture of D-MASON uses a thread for
each operation (send or receive) on the same cell, during the choice of the MPI
implementation, it is important to consider thread safety implementations.

D-MASON uses a programming model that is a mixture of message passing and
multithreading, hence an MPI process has to include multiple threads making MPI
calls. An MPI process together with its threads is uniquely identified by the MPI
layer, so when an MPI process, handling one or more threads, receives a message, it
will be received by all the threads of that process.

Before MPI-2 there was no solution to enable users to write user-level threads, in
MPI programs, able to make calls to MPI. The MPI-2 Standard has clearly defined
the interaction between MPI and user-level threads in MPI programs. There are four
levels of thread safety supported by the standard, that a user must explicitly select
according to his/her necessities [GT07].

In the literature there are several Java implementations of the MPI standard [Wei+00;
Haf+11; Bak+06]. MPJ Express is an open-source library for message passing com-
pliant with MPI-1.1, offering the same thread-safety guarantees of MPI-2. The
comparison between MPJ Express and other MPI implementations is reported in
[exp13]. Open MPI Project [Ope13] is an open source MPI-2 Standard implemen-
tation that is developed and maintained by a consortium of academic, research
and industry partners. Combining the expertise, technologies, resources from all
across the HPC community, it offers the best MPI library available. The prerelease
1.9a1r27886 of Open MPI and the current trunk on Open MPI’SVN [Ope13] offers
mpiJava, a Java binding of MPI-1.1 Standard [Bak+99; Car+99].

D-MASON uses mpiJava as MPI implementation, because it provides the best
performance, even though it offers no guarantee of thread safety in the version relase
1.9. The current release 2.0 of mpiJava in OpenMPI supports full MPI-3.0 Standard,
and is declared to be thread safe. Experiments on a communication strategies that
uses multiple receiving threads on each LPs is object of future work.

Group Communication. The communication model in D-MASON is potentially
n − to − n, that means that each node of the network may need to communicate
with all others. We chose the Publish/Subscribe paradigm to meet the requirements
of flexibility and scalability of the system.
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The collective communications offered by MPI allows to make a series of point-to-
point communications in one single call. MPI processes can be grouped and managed
by an object called Communicator [Mes97].

The group communication routines we used are:

• MPI_Bcast: sends the same data to all processes in a communicator;
• MPI_Gather: collects data from many processes to one single process, the root

process, allowing a group to get all needed information in a single step.

Significant research has been carried out in the past for improving collective commu-
nication using parallel algorithms based on the message size and optimized for the
specific platform. As an example, the function MPI_Bcast for small messages uses
binomial tree algorithms, for shared memory systems employs pipelining to improve
buffer utilization [Mam+]

D-MASON Decentralized Communication: Architecture. The Communication Layer
of D-MASON exploits the flexibility of the Publish/Subscribe paradigm to virtualize
groups of communication between the agents. In the distributed simulation these
groups communicate at the end of each simulation step.

Two states of the computation are present in D-MASON in which all the processes
are performing the same action: the connection with the Publish/Subscribe server,
because after this phase all workers are connected in the network and the master
can see them and spread the computation; the end of each simulation step because
at this point of the simulation, each cell has to receive and send updates to start
the next step. The purpose of the strategy is to create an MPI infrastructure that
abstracts the Publish/Subscribe pattern used in D-MASON, ensuring the decoupling
between topics and MPI processes and the scalability of the number of topics by
exploiting the collective communication primitives offered by the MPI Standard.

The communication layer using MPI is based on the following set of assumptions:

1. each cell creates its own topic to publish its updates;
2. each cell subscribes to at least one topic; a cell can not start a new simulation

step until it receives updates from all the topics it is subscribed to;
3. subscription is static: each cell executes the subscription routines only before

starting the simulation;
4. the simulation and communication/synchronization phase do not interleave.

The publish is invoked only at the end of the simulation step when all the
updates for each field are available.

Each cell is associated with MPI process and a topic is represented with an MPI
Group. So in order to create a topic, an MPI process creates an MPI Group and a
subscription corresponds to a MPI Group join.
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Using the centralized communication, the initialization of the communication can
happen before the creation and subscription of topics. On the other hand, using the
MPI approach, the creation and subscription of topics has to be performed before
any communication.

The assumptions 2 and 3 are exploited in order to perform a global communication
phase to exchange information of topics among the MPI processes. This phase is
divided in n rounds: in the i-th round the process with rank i sends information
about the topic created and the topic which it is subscribed to. The other processes
receive this information and update their local list of topics. At the end of this phase,
each cell of the simulation knows, for each topic, who are the publishers and the
subscribers.

Summarizing, using the centralized communication the communication phases are:
connection to the server Publish/Subscribe, creation and subscription to topics. In
the decentralized/MPI strategy the communication phases are: creation and addition
to MPI Groups (that represent D-MASON topics), creation of MPI Communicators.

The main difference between the centralized communication and the MPI one is
the synchronization. In the centralized communication, the synchronization is
implemented at the framework level using a data structure that indexes, for each
step, the updates and acts as barrier, so that each cell remains locked until it receives
all the required updates. On the other hand, the MPI strategy takes advantage of the
intrinsic synchronization of MPI, because the collective communication primitives
are blocking.

Another key difference between centralized communication and decentralized one
is that, in the centralized communication, the communication is asynchronous: At
the end of a simulation step each cell sends (or publishes) to its topics and creates
some message listeners. Each message listener is executed on a separate thread, to
receive the updates from the topics to which it is subscribed. In the decentralized
communication, on the contrary, the communication is scheduled by the MPI layer,
forcing the process in a ordered sequence of communication.

Proposed implementations. Three different implementations, based on the assump-
tions 2 and 4, have been designed. According to the assumptions 2 and 4, at the end
of a simulation step, each cell publishes on its topics; when the last publish routine
is invoked it is possible to start the synchronization phase. Since we use the same
communication schedule on each cell, we avoid communication deadlocks due to
multiple concurrent accesses to the MPI layer.

MPI_Bcast. The first proposed solution uses as collective communication primitive
the MPI_Bcast function. In this model time is divided in t time-slots, each slot is
associated to a D-MASON topic, as in Figure 2.17. The i-th slot is in turn divided in
p minislot, each of which represents the publication turn of one process publisher
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Fig. 2.17.: MPI_Bcast approach.

of the topic i. In the j-th minislot, one publisher process invokes MPI_Bcast to
send updates to subscribers, while the other processes, subscribed to topic i, invoke
MPI_Bcast to receive updates from the topic i.

MPI_Gather. By observing that, during each simulation step, each cell needs to
collect information from its neighborhood, the second implementation uses the
MPI_Gather function in order to gather all the messages needed in a single time step.
This allows to decrease the number of communication phases while increasing the
messages size. In this solution, a communication phase is divided into n time-slots,
where n is the number of MPI processes (cf. Figure 2.18). During the i-th phase the
process i invokes the MPI_Gather function in order to receive updates from all its
neighborhood.

The Gather strategy is based on two concept:

• Union Groups. For each i = 1, 2, . . . , n, the Union Group i contains all MPI pro-
cesses present in the MPI Group of the topics to which the cell i is subscribed;

• Communicator Groups. The Communicator Group i is the Communicator of
the Union Group i.

During the phase i:

• The MPI process i executes an MPI_Gather in reception.
• All the MPI processes j 6= i in the Union Group of i: create a message for i

containing all messages from the topics for which j is the publisher and to
which i is subscribed, and invoke an MPI_Gather in sending.

Parallel. We performed a deep analysis of mpiJava analyzing also several details of
its code. In particular, inspecting the source code of the version of mpiJava used,
available at [Ope13], we observed that in the implementation of MPI_Bcast and
MPI_Gather there is a type check on the data: when it detects that the data to be
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Fig. 2.18.: MPI_Gather approach.

sent or received is an Object type, it invokes a sequence of MPI_Send or MPI_Receive
to the members of the MPI Group (without exploiting any sort of parallelism). We
then found out that in the MPI Strategy, when a cell invokes a routine for collective
communication, it executes MPI_Send and MPI_Receive sequentially to or from all
the members of the group.

This explains why the first two strategies use native Java Serialization of the objects,
and send and receive arrays of bytes. The problem is that the serialization/deserial-
ization of objects can be computational expensive and for this reasoning an ad-hoc
strategy, named parallel, was developed without using any collective communication
routines in order to increase the degree of parallelism during the communication.

The novel strategy is depicted in Figure 2.19. The problem to be addressed is the
following. At the end of each step there are c communications to be executed (com-
munications are represented by a pair 〈sender, receiver〉) during the synchronization
phase. Each process can invoke one function (send or receive) at a time, so while it
is receiving it can not send anything.

The synchronization phase is partitioned, as shown in Figure 2.20, in r rounds where
for each round i = 1, 2, . . . , r contains ci disjoint pairs, that can communicate at the
same time (that is, each process appears only once as a sender or a receiver).

Clearly the goal is to minimize the size of r. If one maps this problem on a graph
where there is a node for each process and a directed edge between two processes q
and p if, during the synchronization phase, q has to send a message to p, the problem
above become the well-known Edge coloring problem, which is known to be NP-hard
[MG92]. An edge coloring of a graph is a minimum assignment of colors (rourds in
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Fig. 2.19.: Possibles simultaneous communications using 4 LP and uniform partitioning
mode.

our case) to the edges of the graph so that no adjacent edges have the same color.
The number of colors needed to edge color a simple graph is at least ∆ where ∆
is the maximum degree of the graph. Edge coloring has applications in scheduling
problems and in frequency assignment for fiber optic networks. In the literature
there are several greedy strategies that construct coloring that use at most ∆ + 1
colors. The Parallel strategy uses the following simple randomized strategy. Let E be
the edges set and C be the set of colors (rounds). Consider a random permutation
of the edges in E. For each uncolored edge e ∈ E, check whether there is a color in
C which, once assigned to e, avoids conflicts. If no colors are available, the strategy
generates a new color for e, and adds it to C. This greedy algorithm runs, in the
worst case, in O(|E|2), and uses, ∆ + 1 colors on average.

MPI strategies comparison The tree different MPI strategies and the centralized
communication were compared running two simulations: Flockers and Ant forag-
ing.

Flockers is a model stated in 1987 [Rey87] by Craig Reynolds that simulates the
behaviour of a flock. In this model "flockers" moves according to three simple rules:
separation, they steer to avoid crowding local flockers, alignment, they steer toward
the average heading of local flockers, cohesion, they steer to move toward the average
position (center of mass) of local flockers.

Ant Foraging simulates the foraging process of ant colonies. At the start of the
simulation ants are in the nest and no ant knows where the food source is. The
food discovery happens through an adaptive and iterative process: ants forager
random walk on several paths, lying pheromone traces along the visited path, that is
used by future ants to evaluate the quality of the path, and once they find the food
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Fig. 2.20.: Parallel approach.

source they come back to the nest reinforcing the good path with pheromone traces
in a stigmatic fashion. This kind of simulation is characterized by a non-uniform
distribution of agents on the field: when the ants find the food source, then they will
move only on the shortest path between the nest and the food source.

Simulations were run using 4 LPs, for 100 simulation steps (Flockers) and until the
first ant reaches the food (Ants). Several configurations were considered where the
parameters:

• The AOI (that influence the amount of communications) ranges from 10 to
50.

• The number of agents (A) range from 500, 000 to 5, 000, 000.

The size of the simulation field has been changed in a way that keeps constant the
field’s density density def= A

w×h , where w and h denote respectively the width and the
height of the field. The density has been chosed according to the original density
of the sequential version of the simulations available in MASON. For instance on
Flockers we start using a 2D field of dimension 7, 500× 7, 500 with 500, 000 agents
up to a 2D field of dimension 23, 800× 23, 800 with 5, 000, 000 agents. The tests have
been performed on 4 machines configured ad follow:

• CPU Intel Core i7 2.53Ghz;
• Memory 8GB;
• Operating System Ubuntu 11.04;
• Oracle JDK 1.6.35;
• ActiveMQ 5.51v (for JMS communication);
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Fig. 2.21.: Performance comparison among JMS Strategy, Bcast, Gather, Parallel. TheX axis
represents the number of agents while the y axis represents the time difference
expressed in percentage compared to the JMS Strategy (lower is better)

• OpenMPI 1.9a1r27886 nightly snapshot of 01/21/2013.

The following strategies were tested: JMS (centralized) and MPI (Bcast, Gather,
Parallel). Figure 2.21 depicts the comparison between the four strategies, JMS,
Bcast, Gather and Parallel, on Flockers with AOI = 10. The JMS performance are
placed on the X axis as a benchmarks for the other strategies. In general, the MPI
strategies tend to be better on massive simulations up to a certain value where the
MPI Strategies show an additional load due to the Garbage Collection and an heavy
disk I/O burst.

It is worth to mention that in our small test scenario, with only 4 workers, the benefit
of the Parallel solution with respect to the other solutions do not appear yet. On
the other hand in bigger simulations, with a high number of cells (at least 16) it is
expected significant enhancements of the performance.

Indeed using n MPI processes with a neighborhood size (degree) ∆, the random
algorithm uses at most ∆ + 1 communications rounds. In a 2× 2 grid in which each
cell has 8 neighbours (topic subscriptions), there are 8× 4 communication rounds
using the Bcast and at most (8 + 1) × 2 communication rounds (we multiply by 2
because each edge of the communication graph is bidirectional) using the Parallel:
the gain in percentage is less than the 50% of rounds. In a 4× 4 grid in which each
cell has 8 neighbors, there are 8× 16 = 128 communication rounds using the Bcast
and again at most (8 + 1) · 2 communication rounds using the Parallel, so the gain in
percentage is greater than the 85% of rounds.
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The section 2.6.2 will present a deeper analysis of communication strategies dis-
cussing D-MASON scalability with a increasing number of LPs both on an HPC
system.
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2.4.3 System Management Layer
The System Management Layer was introduced to improve D-MASON usability and
engagement. The main purpose of the System Management Layer is to provide a
better user experience to scientist that are using D-MASON for their experiments.
The management of an application in distributed system is a challenging issue
in terms of either efficiency, effectiveness and usability that may determinate the
success (or failure) of an application.

As mentioned in Section 2.3.1, D-MASON is based on the Master/Worker paradigm.
The D-MASON Master application is used for the discovery of workers (the machines
that provides the computational power), the bootstrap and the management of sim-
ulations in a simple and efficient way. By exploiting the underlying communication
layer it is possible to discover the workers with their hardware and software features.
Using this information it is possible to balance the workload between workers, i.e.,
the number of LPs to be assigned to each worker.

Two different versions of D-MASON System Management were designed. The
former version was a standalone Java application, while the last version is a Web
based application that better meet the users needs.

The first version of the System Mangement is available in the
experimentals.util.management package, and is composed by two fundamental
classes:

• JMasterUI that provides a GUI to discover workers, collect information on their
hardware (e.g. processor type, memory, etc . . . ) and to setup the simulation.
Once the user has chosen which simulation to perform, it allows setting up the
following parameters: type of field partitioning, number of cells, AOI range,
field width, field height and number of agents. Thereafter, it is possible, for
each specific worker, to intantiate a certain number of LPs according to its
capability. When all the parameters are set, it is possible to start and interact
with the entire distributed simulation (play, pause and stop features);

• WorkerWithGui, represents the application executed worker-side that interacts
with the JMasterUI to receive the parts (i.e., cells or subnetworks) to be simu-
lated as well as messages (i.e., commands) for playing, pausing or stopping
the simulation.

D-MASON Web System Management

The first version of D-MASON system management had two disadvantages: first, it
was not fully decoupled from the simulation part. Hence, adding new features often
requires complex interventions with a considerable waste of time. Moreover, the
system was designed for local interactions (that is assuming that both the simulation
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and the management applications are reachable on several IP ports). Unfortunately,
this is not always the case, both NAT and firewall services may result in unreachable
ports. For the reasoning above, a fully decoupled system management services easily
available via web services was designed and developed.

Design. According to the usability requirement, the Web System Management
includes a lightweight web server into its architecture, in this way it is possible
to deploy D-MASON more easily on each Java distributed environment. After a
deep analysis of the open web servers available for Java, Jetty [Jet13] web server
was adopted. In order to develop an efficient, pleasant and engaging interface, the
Web System Mangement design was based on Google material design [Goo16c],
the guidelines provided by Google for the development of design interfaces. The
interface is based on the Polymer library [Goo16b], which has been designed to
create components for the modern web, following the material design guideline.

Architecture. The novel web server components has been encapsulated into the
D-MASON Master application, and is available on /resources/
systemmanagement folder and experimentals.systemmanagement package, which
now comprises two communication components:

• ActiveMQ, for centralized communication (see Section 2.4.2) between D-
MASON applications (either master-worker or worker-worker);

• Jetty, for communication between the user and the master application (via
web interface).

When the user starts the Master application, both the ActiveMQ and the Jetty server
will run on the host. In particular the Jetty server is reachable on a TCP port (default
is 8080) and the user can access the management console via browser. Using this
approach the user can manage and monitor its simulation, considering that the port
8080 of the Master node is reachable on the Internet.

It is worth to mention that the load of the Jetty Server will not harm the performance
of the system. This is true especially when the number of users is small and the
user interaction is limited. Indeed, the load of the Jetty server is only due to the
activity of discovering and monitoring of LPs. In any case, when this load increases
(i.e., a huge number of users continuously interacting with the master and/or a
large number of LPs to be monitored) the master node can be configured to use an
external ActiveMQ communication server in order to separate the communication
and monitoring effort.

A dedicated hand-shaking mechanism enables the negotiation between the Master
application and the available workers. When a worker joins the system, it communi-
cates how many slots (LPs) it can afford. As soon as the master realizes that he has
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enough LPs to start the simulation, the system enables the user to interact with the
desired simulation.

The Web System Management provides four main views, selectable by a control
panel (see Figure 2.22):

Fig. 2.22.: Master control panel.

1. Monitoring, enables the user to monitor the resources available on all connected
workers (see Figure 2.23). Using such information, the user is able to choose
appropriately the workers to be engaged for future simulations. The system

Fig. 2.23.: Workers seen from Master.

management provides a library of preloaded simulation but at the same time,
it is possible to upload a novel simulation as a jar file. Once a simulation has
been chosen, the user selects the simulation’s parameters and submit them to
the selected workers (see Figure 2.24).

2. Simulations, enables the user to monitor the running simulations (see Figure
2.25). The simulations view shows the list of all the simulations running on
the system; for each simulation, using the Simulation Controller (see Figure
2.26 (left)), the user can start, pause or stop the execution until the end of
the simulation. In order to monitor the evolution of a simulation, a logging
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Fig. 2.24.: Simulation Controller.

mechanism has been implemented. All the log files are available at run-time
on the Simulation Info panel (see Figure 2.26 (right)).

Fig. 2.25.: Simulations view.

3. History, enables the user to visualize the performed simulations (see Figure
2.25). The history page allows also downloading log files of the simulations.

4. Settings, enables the user to change system configurations, for instance the IP
and PORT number for the JMS server.

The Appendix C.2 describes other D-MASON feature that help to execute D-MASON
on a cluster environment and/or a cloud infrastructure.
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Fig. 2.26.: Simulation Controller (left) and Simulation Info (right)

Fig. 2.27.: History view.

2.4.4 Visualization Layer
The Visualization Layer was introduced in D-MASON to face to the usability require-
ment. The idea of the Visualization Layer is to provide an efficient architecture to
visualize massive simulation. The visualization of a massive simulation is an complex
problem due to the high numbers of agents to be visualized. A straightforward
strategy is to send all agents to a single worker in the system, which visualize each
of them. This strategy is clearly not scalable and may degrade the overall simulation
performances. Sending all agents may cause both a communication overhead and
computation overhead, each LPs must send in a message all its agents. Furthermore,
the node that visualize the whole simulations must unpack all messages and iterate
over all agents in order to visualize them. This is not feasible for a scalable visualiza-
tion of massive simulation. Moreover considering the memory limit of a single node,
it may not be possible to put all the agents in a single node.
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Fig. 2.28.: Visualization Strategy

The initial version of the visualization layer was a standalone Java application, while
in the last version of D-MASON, the visualization layer is included in the Web
System Management Layer functionality, although the two layer are yet independent.
The solutions adopted in the first implementation, and described in the next Section,
have been taken similarly in the new version.

2.4.5 Visualization Strategy
The global visualization in D-MASON is inspired by data compressing algorithms.
Each LPs send its agents in a compressed way to a system node that is responsable
for visualize them. The visualization strategy asssumes that each LP is simulating a
rectangular cell. For each simulation step, each LP creates an image (compressing
the agents) which represents a snapshot and summarizes some data (for example
agents’ positioning). Each image is sent to a node (global visualization node), which
places the image in the corresponding position of a canvas representing the whole
field, without any further elaboration.

2.4 D-MASON Architecture 75



With more details, each LP i simulates a cell of a bi-dimensional space having
top-left coordinates (xi, yi) and size wi × hi. Each simulation step is preceded by
a synchronization phase, during which each LP builds a bitmap image depicting
agents’ information on that cells. The bitmap image is packed into a RemoteSnap
object together with cell ID, top-left coordinates and step number. The RemoteSnap
object is, then, published to a management topic named GLOBALS. The visualization
node subscribes to GLOBALS so that it will receive RemoteSnaps from every LP at
every step and puts them in a priority queue ordered according to the step number
(see Figure 2.28). The visualization node waits for all the RemoteSnap objects of the
step being inspected and paints the whole image using the received bitmaps, the
top-left coordinates and cell sizes. It is important to store top-left coordinates and
cell sizes within RemoteSnaps at every step, because the load-balancing mechanism
of D-MASON can expand or reduce LP’s area of concern. All these operations
are implemented at framework level, so the whole process will work transparently
provided that agents’ information are defined.

The strategy allows to change the level of details of the visualization, according to
the size of cells, the level of details needed, the network speed and the computa-
tional power available on both, workers and the collector. Strategies like image
compression/decompression can be implemented in order to make the system more
efficient.

Global Viewer Standalone Application

The visualization strategy was implemented, initially, in a standalone Java application
available in the package experimentals.util.visualization. The visualization
feature is given by two main components: Global Viewer e Zoom App. The former
allows the user to visualize the whole simulation, while the second allows to execute
the MASON agents visualization of a selected cell.

Zoom App. The compressed visualization provided by the Global Viewer is not
enough to ensure the usability and effectiveness requirements of D-MASON. As-
suming that it is not possible to view detailed visualization, of whole simulation
field, on a single node, D-MASON provides an additional mechanism to view the
detailed visualization of the agents of one cell at time. The idea consists to enable the
visualization of a single LP from the Global Viewer, by clicking on the corresponding
space in the view, that results in the activation the MASON visualization, which the
other hand may be seen as a zoom operation.

The zoom application is synchronized with the simulation, due to the massive
number of agents to be visualized (but for smaller simulation it is also possible to
execute the zoom in asynchronous way). After the activation of the zoom, for a
particular LP, the LP packs and sends its agents, at end of each simulation step, on a
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Fig. 2.29.: Zoom App application architecture

topic named GRAPHICS-ID_LP. The zoom application is listening on this topic and
uses the MASON components to visualize the agents.

The zoom application exploits the MASONvisualization. Basically, a zoom applica-
tion is an original MASON visualization, without agents’ simulation. In this case
the fake simulation schedules an agent that extends the Updater class. The Updater
object is responsible for receiving the agents, at the end of each simulation step,
and visualizing them using the MASON gui library. Each LP in their SimState
initializes an object of the class ZoomViewer. The ZoomViewer object provides all
functionalities needed to the zoom application (e.g., the Updater object uses this
object to receive the agents). The zoom application architecture is shown in Figure
2.29.

Global Viewer Web Application

The last version of the System Management Layer, described in the Section 2.4.3,
embed the global visualization. Figure 2.30 shows the global visualization from the
Visualization page of the Web System Management.
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Fig. 2.30.: Global Viewer Web application
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2.5 D-MASON on the Cloud
D-MASON was designed for scalable distributed Agent-Based simulations, the
current trend in massive computation is to use Cloud Computing infrastructures.
D-MASON was tested and experimented on the Amazon Web Services (AWS) cloud
infrastructure. In the following sections are described the architecture used, in order
to execute D-MASON on the cloud, and a complete analysis and cost evaluation
of the experiments. The idea was to realize a SIMulation-as-a-Service (SIMaaS)
environment.

2.5.1 The Cloud Infrastructure: Amazon Web Services
Amazon Web Services (AWS) is a scalable and highly reliable cloud infrastructure
for deploying applications on demand. The main idea is to let the user building its
services with minimal support and administration costs. AWS provides different
services on the cloud. Amazon Elastic Compute Cloud (Amazon EC2) provides
resizable computing capacity in the cloud. In terms of abstraction layers, the
Amazon EC2 is an instance of the Infrastructure as a Service (IaaS) model, where
the Amazon infrastructure is seen as a complete virtual environment which allows to
execute different instances of virtual machines. Specifically, Amazon allows bundling
operating system, application software and configuration settings into an Amazon
Machine Image (AMI). Each user can configure and deploy a cluster of machines
using a specific AMI instance to run distributed simulations. Advanced users may
also create their own AMIs and publish them on the Amazon Marketplace Web
Service (Amazon MWS).

In terms of business model, Amazon offers three different purchasing mechanisms:
On-Demand Instances, Reserved Instances and Spot Instances. On-Demand Instances
have fixed price (per hour) and enable using the resources immediately. With
Reserved Instances, it is possible to reserve the utilization of some instances for a
predefined period (from 1 to 3 years) with lower payment. Finally, when the timing
is not crucial, with Spot Instances, it is also possible to bid for unused resources in
order to reduce drastically the costs.

2.5.2 Cluster-computing toolkit: StarCluster
The main issue a user needs to solve in order to use an IaaS service, to run a
distributed application, is the configuration and management of each machine. Even
using a dedicated AMI, which bundle the basic software components, there are still
several parameters that have to be configured separately on each machine. Moreover,
the management of the machines is usually time-consuming and requires repetitive
tasks that need to be executed for each instance and therefore should be automate
to avoid human mistake. To face this issue, a cluster-computing toolkit, StarCluster
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[Sta16], released under the LGPL license, has been deployed to configure and
manage Amazon EC2 instances. StarCluster enables users to easily setup a cluster
computing environment in the cloud, suited for distributed and parallel computing
applications and systems.

StarCluster is useful to configure the network of the cluster, create user accounts,
enable password-less connections sharing the SSH password between the cluster’s
nodes, setup NFS shares and the queuing system for the jobs. StarCluster is also
customizable via plug-ins, which enable users to configure the cluster with their
specific configuration. Plug-ins are written in Python exploiting StarCluster API to
interact with the nodes. The API supports the execution of commands, copy of files,
and other OS-level operations on the nodes. StarCluster supports also the use of
Spot instances allowing the user to run on-demand experiments in easy way and at
affordable prices.

2.5.3 Architecture

Fig. 2.31.: D-MASON on the Cloud: Archi-
tecture.

D-MASON on the cloud has been re-
alized with the purpose to provide a
SIMulation-as-a-Service (SIMaaS) envi-
ronment. The architecture of the sys-
tem is depicted in Figure 2.31. D-
MASON on the cloud is based on a mod-
ular approach, which comprises three
levels: The Infrastructure is given by
Amazon EC2 which provides a wide
portfolio of instance types [Ama16] de-
signed to be adopted for different use
cases. Instance types vary by CPU per-
formances, memory, storage (size and
performance), and networking capacity.
The user is free to select an AWS cell
according to prices and availability or
resources. Starting with a free available
Amazon AMI (ami-52a0c53b), which in-
cludes a minimal software stack for dis-
tributed and parallel computing [Sta16],
an AMI, specifically configured for ex-
ecuting D-MASON on the cloud, was
realized. The D-MASON AMI, public
available on Amazon Infrastructure, pro-
vides also Java 8, Maven. On top of that,
we developed a StarCluster plug-in, which exploits all the functionality provided
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by StarCluster in order to create automatically a runnable D-MASON environment
based on the D-MASON AMI. With more details, the StarCluster plug-in:

• configure the cluster network environment (users account, hostnames setting,
SSH key share, NFS setup);

• install and configure the D-MASON environment;
• appoint one of the machines as a Master node.

The master node runs the D-MASON Master application, the JMS message broker
(ActiveMQ) and the web system management server (see Section 2.4.3). The
other machines run the D-MASON Worker applications, which communicate using
the JMS message broker running on the Master node. Each D-MASON Worker
application provides a simulation slot for each core available on the machine. The
StarCluster D-MASON Plugin is freely available on GitHub D-MASON source code
repository [Repce].

The D-MASON tier did not require any particular change: the engine of the system
will be executed on the cloud environment and the management is performed thanks
to the Web system management interface described 2.4.3.
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2.6 D-MASON Performances
Several benchmarks have been performed in order to evaluate the scalability of
D-MASON using several partitioning (see Section 2.6.1) and communication (see
Section 2.6.2) strategies. An overall evaluation of D-MASON performance is pro-
vided in Section 2.6.3. Eventually in Section 2.6.4 we analyze the computational
and economic efficiency of running D-MASON on the Amazon Web Services EC2
instances.

2.6.1 Scalability of field partitioning strategies
This analysis aims to evaluate the scalability of the different field partitioning
strategies adopted in D-MASON and described in Section 2.3.2. The simulation
used is a variant of the Boids Reynolds model [Rey87], in which the agents move
over a 2-dimensional euclidean field. The agent speed is limited to a fixed range, in
order to keep roughly constant the initial distribution of agents on the field.

The simulation experiments compare two field partitioning strategies:

• Uniform partitioning (henceforth Square), which partition a field in k cells
(number of LPs), using a

√
k×
√
k matrix (all the cells have the same dimensions((

w/
√
k
)
×
(
h/
√
k
))

, where w and h are the dimensions of the field).
• Non-uniform partitioning (henceforth Tree), the Quad-Tree based partition-

ing. The Tree partitioning strategy is implemented on top of D-MASON using
a variant of the Quad-tree data structure. The Java code is available on a public
Git repository1.

The strategies have been tested on two distributions of agents:

• QU (Quasi-Uniform distribution), the agents are distributed in 8 groups, 3
groups of 25% of the total agents and 5 of 5% of the total agents.

• NU (Non-Uniform distribution), the agents are distributed in giant group on
the left-bottom of the field.

This experiments compare the performances of 2 partitioning strategies (Square,
Tree) on 2 agents configurations (QU, NU) with 5 degree of granularity k ∈
{4, 9, 16, 25, 36} varying the number of agents in the field in 2 ways, so as to analyze
both the weak and the strong scalability. Simulations with granularity k have been
executed using k LPs. Overall 2 × 2 × 5 × 2 = 40 simulation test settings were
performed.

The performance of each test is measured in terms of the number of simulation steps
performed in a time span of 120 seconds. Since each configuration involves some

1D-MASON GitHub repository – Quad Tree Java implementation – https://goo.gl/9JAupK
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randomization, we executed each test setting 10 times. The results were compared
using means of simulation steps performed (the observed variance was negligible).

The simulation was performed using the centralized communication of D-MASON
(see Section 2.4.2), which uses the Java Message Broker Apache ActiveMQ 5.5.1 for
the communication between the simulation LPs [Cor+14a].

In the following are described the performance results in terms of weak and strong
scalability.

Field partitioning: Weak scalability

In the weak scalability test is explored the ability of the partitioning strategies to scale
using a fixed amount of computation for each logical processor (see Section 1.4.1).
In order to do that, the number of agents is proportional to k (i.e., A = 28000× k)
while the dimensions of the field are set in order to keep the agents’ density constant
(i.e., density =

(
w×h

A

)
≈ 100, where w and h denotes the weight and the height of

the field) for each weak scalability test.

Twenty configurations varying the value of k ∈ {4, 9, 16, 25, 36}, the partitioning
strategy (Square and Tree) and the agents distribution (QU and NU) were tested.
The Figure 2.32 depicts the weak scalability results as the the number of simu-
lation steps performed in a time span of 120 seconds (Y-axis), for each value of
k ∈ {4, 9, 16, 25, 36} (X-axis) and for each partitioning strategy-agents distribution
(series).

The Tree strategy gives the best performances for both the agents distribution.
Furthermore, we notice that the performance trends are affected by the granularity
of the decomposition, which impacts on the communications overhead. Using the
Square strategy, the amount of communication overhead is proportional to k (8
communication channels for each cell). The tree strategy generates more channels
(see table 2.4.2). Hence, with small values of k, the gap is sensible. Increasing k, the
improvement tends to decrease as the communication overhead increases, especially
using a centralized communication approach.

Field partitioning: Strong scalability

The strong scalability test explores the ability of the partitioning strategies to scale
using a fixed amount of computation (see Section 1.4.1). In our case the amount
of computation consists of 1M agents moving on a 2-dimensional field of size
10000 × 10000. The Figure 2.33 depicts the strong scalability results as the the
number of simulation steps performed in a time span of 120 seconds (Y-axis), for
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Fig. 2.32.: Field Partitioning Strategies: Weak Scalability

each value of k ∈ {4, 9, 16, 25, 36} (X-axis) and for each partitioning strategy-agents
distribution (series).

The Tree strategy gives the best performances for both the agents distribution. The
improvement ranges from×2 for the QU agents distribution to×30 for the NU agents
distribution. The figure shows also that the Tree strategy is able to counterbalance
the non-uniform agents distribution. Indeed, especially for k = 16 and k = 25, the
performance of the Tree strategy is not affected by agents distribution.

2.6.2 Scalability of the Communication layer
This analysis aims to evaluate the scalability of the different communication strategies
adopted in D-MASON and described in Section 2.4.2.

Different experiments have been carried on several configurations obtained vary-
ing: number of agents (A), communication scheme (S), number of cells (P), AOI
radius and fields dimensions. Such parameters determine a ratio between the
communication and computation requirements.

Setting and goals of the Experiments. These tests were performed on a cluster of
eight nodes, each equipped as follows:

• CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16, #threads 32)
• RAM: 256 GB
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Fig. 2.33.: Field Partitioning Strategies Strong Scalability

• Network: adapters Intel Corporation I350 Gigabit

Considering the high computational power of each node, the tests were able to run
several (up to 90) LPs on each node. Simulations have been conducted on a scenario
consisting of seven machines for computation and one for managing the simulations
and running the ActiveMQ server when needed. As in the previous test, the tests
was executed using the simulation Flockers (see Section 2.4.2). Among the three
decentralized discussed and preliminary evaluated in Section 2.4.2, we decided
to analyze only the Parallel MPI strategy, which have been shown to be extremely
efficient on simulation involving a large number of LPs.

Two experiments were conducted:

1. Communication scalability: this test aims to evaluate the scalability of the
communication layer in terms of the number of LPs. As the number of LPs
increases, the communication requirements become crucial in the efficiency. On
the other hand, on very large simulations the ability to run a large number of
LPs is essential in order to partition the overall computation without exceeding
the physical limits of each LP in the system;

2. Computation scalability: this test aims to evaluate the scalability of the com-
munication layer in terms of the number of simulated agents. In this case an
increase of the number of agents corresponds to an increase of the computa-
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Fig. 2.34.: Communication scalability.

tional power required, and consequently to a reduction of the communication
/ computation ratio.

Communication scalability test. For this experiment, the field size (10, 000 ×
10, 000), the number of agents (1 million) and the AOI (10), were fixed. This
experiment is defined by 16 test settings, each characterized by: the field partitioning
configuration (number of rows and columns), which determines also the number
of Logical Processes (Number of LPs = [R]ows× [C]olums) and the communication
scheme (decentralized or centralized). A couple (P, S) identifies each test setting
where

• P ∈ {2 × 2, 3 × 3, 4 × 4, 5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25} is the field
partitioning configuration.

• S ∈ {ActiveMQ (centralized),MPI (decentralized)} is the communication
scheme.

The two communication schemes (decentralized or centralized) were compared by
running the simulation Flockers for 3, 000 simulation steps. Each simulation has been
executed several times in order to check for any fluctuations in the results but the
observed variance was negligible.

Figure 2.34 presents the results. The X−axis indicates the value of P (left to right
the number of LPs is increasing), while the Y−axis indicates the overall execution
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time in seconds. Notice that there is a point missing because the test setting
(25× 25, ActiveMQ) crashes after few steps (the centralized ActiveMQ server was
not able to manage the communication generated by 625 LPs.)

When the number of LPs is small, the advantage of the decentralized communication
does not appear because the message broker is much efficient comparing to the
coarse grain synchronization requirement of the decentralized one. By increasing
the number of LPs, the efficiency of the centralized message broker gets down
dramatically and the simulation performance does exhibit the benefits of using the
decentralized communication. This trend is due to the fact that by increasing the
LPs number there are much more messages in the system and the effort needed to
have a synchronizing mechanism in the decentralized communication approach is
hidden by the time taken by the message broker to deliver all the messages.

Computation scalability test. For this experiment, the density of the field (100) and
the AOI range (10), were fixed. This experiment is defined by 72 test settings, each
characterized by: the field partitioning configuration, the communication scheme
and the number of agents. Each test setting is identified by a triple (P, S,A) where

• P ∈ {10× 10, 15× 15, 20× 20} is the field partitioning configuration.
• S ∈ {ActiveMQ (centralized),MPI (decentralized)} is the communication

scheme.
• A ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}×1, 000, 000 (M) is the num-

ber of agents.

Six configurations were compared, each one characterized by a field partitioning
configuration and a communication scheme, by running the simulation Flockers for
3, 000 simulation steps.

Figure 2.35 presents the results. The X−axis indicates the number of agents A,
while the Y−axis indicates the overall execution time in seconds. The test starts
with a field size of 10, 000×10, 000 and one million of agents, these values are scaled
up proportionally in such a way to keep a fixed density along the overall test.

The figure 2.35 shows that for each field configuration the decentralized approach
performs better than the centralized one up to a certain number of agents (i.e.,
64M for 10 × 10 configuration) that is when the computational requirement are
significantly higher than the communication one. However, the figure shows also
that, if this is the case, then the system deserves a finer field partitioning. Indeed, by
increasing the number of LPs (i.e., moving from 10× 10 to 15× 15).

Moreover increasing the number of LPs requires more communication, which in-
creases the ratio communication / computation and consequently shifts the “cross-
point” (1024M for 15×15 configuration). It is worth mentioning that in the last field
configuration (20×20), the cross point has not been reached because the centralized
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Fig. 2.35.: Computation scalability.

server was not able to manage the communication generated by more than 2048M
agents.

2.6.3 Beyond the Limits of Sequential Computation
This analysis aims to evaluate the scalability D-MASON to exploit the computational
power of D-MASON on a larger infrastructure: a cluster of 15 nodes, each equipped
as follows:

• CPUs: 2 x Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz (#core 12, #threads
24)

• RAM: 32 GB
• Network: adapters Intel Corporation I350 Gigabit
• Software: Ubuntu 14.04.3 LTS, Oracle Java Virtual Machine 1.8.

The two communication schemes (centralized and decentralized) were compared by
running the Flockers simulation for 15 minutes. Each simulation has been executed
several times in order to check any fluctuations in the results. However, no significant
changes were observed in the results.

88 Chapter 2 Distributed Agent-Based Simulation



Weak Scalability

This test aims to evaluate the weak scalability of D-MASON varying the number
of LPs. The amount of computation for each LP consists of around 90000 agents.
Several tests were performed varying the number of LPs from 4 (360000 Agents) up
to 225 (20M Agents).

Figure 2.36 presents the results. The X−axis indicates the number of logical
processors, while the Y−axis indicates the number of steps performed within a time
span of 15 minutes. The system scales pretty well, the overall performance degrades
gracefully. Moreover, with this configuration the centralized approach seems to
perform better than the decentralized one.

Fig. 2.36.: D-MASON Weak Scalability

Strong Scalability

This test aims to evaluate the strong scalability of D-MASON fixing the overall
amount of computation (20M agents) and varying the number of LPs (from 4 to
225).

Figure 2.37 presents the results. The X−axis indicates the number of logical
processors, while the Y−axis indicates the number of steps performed within a time
span of 15 minutes. The speedup provided is always better than the 50% of the
ideal speedup. Again, with this configuration the centralized approach seems to
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perform better than the decentralized one. Hence both these tests suggests that the
ActiveMQ server is much more efficient on this more performing machine and a
further communication-intensive experiment has been designed and performed.

Fig. 2.37.: D-MASON Strong Scalability

A Massive simulation case study

This test aims to evaluate the limits of D-MASON for a particular cluster machine.
This test is similar to the weak scalability test described above but here the amount
of computation for each LP consists of 450000 agents. Tests were performed varying
the number of LPs from 4 (18000000 Agents) up to 225 (100M Agents). The results
depicted in figure 2.38 show the limit of centralized approach. The two communica-
tion strategy provide similar trends up to 125 LPs. After that the performance of the
centralized communication sensibly drops.

2.6.4 Scalability and Cost evaluation on a cloud infrastructure
This benchmarks have been performed on the Amazon AWS cloud infrastructure
in order to evaluate the efficiency/cost tradeoff between D-MASON SIMaaS and
D-MASON on an HPC infrastructure.

All the tests have been performed on Flockers. Boids/Agents have been simulated
on a 2D geometric field having size 6400 × 6400. For each test we executed a
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Fig. 2.38.: D-MASON Scalability beyond the limits of sequential computation

reproducible simulation with 1M agents for 15 minutes. At the end of the simulation,
the number of simulation steps performed was collected. The web-based system
management, described in Section 2.4.3 was used, to start and stop the simulation
and to collect the log files.

Five space partitioning strategies (2 × 2, 2 × 4, 3 × 4, 4 × 4, 4 × 5) have been
considered. All the simulations have been performed with a number of LPs (cores)
equal to the number of cells described by the partitioning strategy on four infrastruc-
tures (either cloud or HPC). Specifically we tested two cloud instances available on
Amazon EC2:

c3.large, processor Intel Xeon E5-2680 v2 (Ivy Bridge) with 2 vCPU, 3.75GB of
memory and 2 x 16GB SSD storage (cost $0.105 /h — or 0.019/h for spot at
the low price range);

c3.xlarge, processor Intel Xeon E5-2680 v2 (Ivy Bridge) with 4 vCPU, 7.5GB of
memory and 2 x 40GB SSD storage. (cost $0.210 /h — or 0.039/h for spot at
the low price range).

In order to compare the results against a dedicated on–site environment, we per-
formed the same tests on an HPC cluster. The HPC cluster consists of 16 nodes –
each one equipped with 2 × Intel(R) Xeon(R) CPU E5-2430 with 12 vCPU, 16GB of
memory and 1TB HDD storage – interconnected through a Gigabit Ethernet. Each
node is running Ubuntu 14.04 operating system with latest updates. The (per node)
cost of the considered HPC environment is reported in Table 2.2.
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Cost factor Value Calculated cost
Hardware purchase $6500
Amortization - number of months 36
Monthly server hardware cost $200
Average number of hours in month 730
Server usage % 50%
Average number of effective hours in month 365h
Hardware cost for effective hour $0.49$
Power consumption full load 500W
Power consumption stand by 200W
Power management unit (PMU) 2.5
Server usage % 50%
Average hourly consumption 350×2.5 = 875W
Electricity price per KWh $0.13
Electricity cost for effective hour $0.11
Rack space $30 / month
UPS $20 / month
Internet connection $20 / month
Collocation effective hour $0.19
Human hardware maintenance $200 / server×month
Managing per effective hour $0.55
Total effective costs per server hour $1.34
Number of CPUs 16
Total effective costs per CPU $0.08

Tab. 2.2.: Cost calculation for in-house hosting of a single server with 8 Xeon 2-cores
processors.

Two different HPC configurations were considered. In the former one, named HPC1,
all the LPs are executed using a single node, while in the latter, named HPC∗, we
executed exactly 2 LPs for each machine. Hence in this last configuration the system
uses up to 10 nodes.

Four instances were tested (c3.large, c3.xlarge, HPC1, HPC∗) with 5 partitioning
configuration (20 tests overall). Notice that all the tests have been executed on a
reproducible deterministic simulation using the same JVM (version 1.8.0_72). Each
tests was executed 10 times. The results are compared using means of simulation
steps performed (we observed a minimum variance in the cloud instance results,
while on the HPC instances the variance was negligible). Results about performance
and costs are reported in Table 2.3.

Analyzing the results from Table 2.3: D-MASON on the cloud provide a good degree
of scalability with very affordable prices. The HPC∗ instance provides the best
performance. This result was expected and we believe that it is mainly due to the
quality of the dedicated interconnection network. It should be highlighted, however,
that the HPC∗ configuration is considerably more expensive. On the other hand the
cloud instances are much cheaper than the HPC ones. Moreover, both the cloud
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Instance type # of # of LPs Partitioning Performed steps Overall cost Overall cost Cost (x Step)
Instances in 15 min (Avg) EC2 Spot $/1000

c3.large 2 4 2 × 2 110 $0.210/h $0.038/h 0.48
c3.large 4 8 2 × 4 271 $0.420/h $0.076/h 0.39
c3.large 6 12 3 × 4 408 $0.630/h $0.114/h 0.39
c3.large 8 16 4 × 4 601 $0.840/h $0.152/h 0.35
c3.large 10 20 4 × 5 846 $1.05/h $0.19/h 0.31
c3.xlarge 1 4 2 × 2 139 $0.210/h $0.038/h 0.38
c3.xlarge 2 8 2 × 4 325 $0.420/h $0.076/h 0.32
c3.xlarge 3 12 3 × 4 555 $0.630/h $0.114/h 0.28
c3.xlarge 4 16 4 × 4 598 $0.840/h $0.152/h 0.35
c3.xlarge 5 20 4 × 5 955 $1.05/h $0.19/h 0.27

HPC1 1 4 2 × 2 245 $1.34/h N/A 1.37
HPC1 1 8 2 × 4 336 $1.34/h N/A 1
HPC1 1 12 3 × 4 375 $1.34/h N/A 0.89
HPC1 1 16 4 × 4 387 $1.34/h N/A 0.87
HPC1 1 20 4 × 5 389 $1.34/h N/A 0.86
HPC∗ 2 4 2 × 2 326 $2.68/h N/A 2.05
HPC∗ 4 8 2 × 4 651 $5.36/h N/A 2.06
HPC∗ 6 12 3 × 4 966 $8.04/h N/A 2.08
HPC∗ 8 16 4 × 4 1293 $10.72/h N/A 2.07
HPC∗ 10 20 4 × 5 1591 $13.4/h N/A 2.11

Tab. 2.3.: Performance and Costs comparison.

instances scale better than the HPC1, which have comparable costs. Finally, in order
to measure the trade-off between performances and cost, we computed the cost (per
step) of each test setting (see last column of Table 2.3). The results show that the
cloud instances are much cheaper than dedicated instances. Figure 2.39 summarizes
the results shown in the table 2.3. The number of LPs appear on the X-axis, the
number of steps performed in 15 min (avg) appear along Y -axis and the instance
configuration are reported as series. The radii of the bubbles are proportional with
costs (× step).

Fig. 2.39.: D-MASON performances on the Cloud and HPC system
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3SWIFT/T Parallel Language and
JVM scripting

„I know how to make 4 horses pull a cart – I don’t
know how to make 1024 chickens do it.

— Enrico Clementi

3.1 Swift/T: High-Performance Dataflow Computing
The Swift programming language [Wil+09] is a programming scripting for large
computational power machines. Swift has been proposed to enabling scientific
programmers to easily exploit parallel computing resources in their problems. The
first implementation of Swift was called Swift/K because it is based on a system called
Karajan grid workflow engine, Karajan and its libraries exploit diverse schedulers
(PBS, Condor, etc.) and data transfer technologies in order to orchestrate the
computation. Swift/K was designed for coordination of large-scale distributed
computations over supercomputing systems. However, Swift/K allows to dispatch at
most 500–1000 tasks per second.

To address more demanding parallel applications, a high-performance implementa-
tion of Swift, that parallelizes and distributes the executions across several nodes,
was designed . Swift/T [Com] is the last implementation of the Swift language.The
Swift script is translated into an MPI program, to better exploit the underlying
system. The Swift/T syntax and semantics are derived from the Swift, and aims
to obtain an high-scalable fine-grained task parallelism. For more details, see the
Swift/T website.

Swift/T provides an attractive feature, which makes it of particular interest in the
field of Computational Science, that is the ability to invoke code fragments written in
other languages including C, C++, Fortran, Python, R, Tcl, Julia, Qt Script, as well
as the ability to invoke binary programs. This is achieved by using special function
called leaf function.

This chapter discusses the design and the development of a new Swift/T feature:
the ability to invoke Java Virtual Machine (JVM) based interpreted languages, like
Clojure, Groovy, Javascript, Scala etc. This feature is becoming more and more
attractive from the Computational Science point of view, due to the high number
of open-source scientific programming libraries. Furthermore, many vendors of
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supercomputing systems provide in their systems the ability to execute JVM based
languages, such as Cray Inc.

The next sections summarize the syntax and basic semantics of the Swift/T lan-
guage.

3.2 Swift/T Background
This Section summarizes the syntax, the programming model and the basic semantics
of the Swift/T language. Then in Section 3.3, the support for interpreted external
languages will be extended to (JVM) based interpreted languages. Finally, the
support for interpreted external languages is described.

3.2.1 Syntax
The Swift language uses C-like syntax and conventional data types such as int,
float, and string. It also has typical control constructs such as if, for, and
foreach. Swift code can be encapsulated into functions, which can be called recur-
sively. As shown in 3.1, Swift can perform typical arithmetic and string processing
tasks quite naturally. Swift also has a file type, that allows dataflow processing on
files.

Listing 3.1: Sample Swift syntax

1 add( i n t v1 , i n t v2 ) {
2 p r i n t f ( " v1+v2=%i " , v1+v2 ) ;
3 }
4 i n t x1 = 2;
5 i n t x2 = t o i n t ( " 2 " ) ;
6 add(x1 , x2 ) ;

3.2.2 External execution
Swift is primarily designed to call into external user code, such as simulations
or analysis routines implemented in various languages. Like many other systems,
Swift/T supports calls into the shell. However, this is not efficient at large scale,
therefore Swift/T also supports calls into native code libraries directly.

Listing 3.2: Swift used as a Makefile

1 app ( f i l e o) gcc ( f i l e c , s t r i n g optz ) {
2 " gcc " "−c " "−o " o optz c ;
3 }
4 app ( f i l e x )F( f i l e o) {
5 " gcc " "−o " x o ;
6 }
7 f i l e c = input ( " f . c " ) ;
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8 f i l e o<" f . o "> = gcc ( c , "−O3" ) ;
9 f i l e x<" f "> = l i n k (o) ;

An example use of Swift for shell tasks is shown in 3.2. This example demonstrates
a fragment of a software build mechanism. The user defines two app functions,
which compile and link a C language file. Swift app functions differ from other Swift
functions because they operate primarily on variables of type file.

Other forms of external execution in Swift/T allow the user to call into native code
(C/C++/Fortran) directly by constructing a package with SWIG. Such libraries can
be assembled with dynamic or static linking. In the static case, the Swift script and
the native code libraries are bundled into a single executable, with minimal system
dependencies (for the most efficient loading on a large-scale machine).

3.2.3 Concurrency

Listing 3.3: Code Overview Swift/T Concurrency

1 i n t X = 100 , Y = 100;
2 i n t A [ ] [ ] ;
3 i n t B [ ] ;
4 foreach x in [0 :X−1] {
5 foreach y in [0 :Y−1] {
6 i f ( check (x , y ) ) {
7 A[x ][ y ] = g( f ( x ) , f ( y ) ) ;
8 } e l s e {
9 A[x ][ y ] = 0;

10 }
11 }
12 B[x] = sum(A[x ]) ;
13 }

The key purpose of Swift/T is to provide an easily to manage environment to perform
multiple concurrent executions. This is accomplished in Swift/T through the use
of data flow instead of control flow [EK13]. Adopting the data flow model Swift/T
does not have an instruction pointer. The execution of each task is triggered by the
data availability. This results in an implicit parallel programming model. Listing 3.3
shows an example of Swift/T code, while the Figure 3.1 depicts the corresponding
computational workflow.

3.2.4 Features for large-scale computation
Swift/T provides multiple features to support the needs of workflow applications,
including support for locations and MPI tasks. The underlying call from Swift/T to
external code (via the shell, a script, or native code) is called a leaf function as its
execution is opaque to Swift/T. These features are accessed by Swift/T annotations
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Fig. 3.1.: Diagram Overview Swift/T Concurrency.

that are applied to the leaf function invocation. A generic annotation takes the
form

type result = @key=value f(params);

where the key and the value denote the annotation type.

Task locations. Task locations allow the developer to specify the location of task
execution in the system. Locations are optional; by default, Swift/T places the next
task in a location determined by the tasks load balancer. Locations can be used
to direct computation to part of the system for multiple reasons [Dur+16]. In a
data-intensive application, tasks can be sent to the location containing the data to
be processed. In a workflow with resident tasks [Ozi+15], certain processes retain
state from task to task, and can be queried by sending a task to that process.

A location object L in Swift/T is a data structure containing an MPI rank R and
optionally other location-aware scheduling constraint information. The MPI rank
is the target of the location, it is simply a rank integer in the overall Swift/T run,
representing a single process. The code in 3.4 shows the Swift steps for looking up a
hostname, constructing a location object, and sending a task there.

Listing 3.4: Use of location in Swift.

1 R = hostmapOneWorkerRank( " node1 " ) ;
2 L = l o c a t i o n (R) ;
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3 y = @location=L f ( x ) ;

3.2.5 Parallel tasks
Swift/T offers the ability to construct workflows containing large numbers of
MPI tasks that run on variably-sized communicators [Woz+13]. These tasks ob-
tain a communicator of a programmatically-determined size, specified with the
@par annotation, and (optionally) destroy it on completion. Swift/T obtains the
given number of worker processes and constructs these communicators using the
MPI_Comm_create_group() function in MPI 3. Parallel tasks can be configured to
run on contiguous processes, or on any available processes. The @par annotation
can be combined with other annotations such as @location (see Listing 3.5).

Listing 3.5: Swift parallel tasks

1 foreach i in [0:9] {
2 @par=i s imula te ( i ) ;
3 }

3.2.6 Support for interpreted languages
Swift/T also provides high-level, easy to use interfaces for Python, R, Julia and Tcl,
allowing the developer to pass a string of code into the language interpreter for
execution (via its C or C++ interface). These interpreters are optionally linked to
the Swift/T runtime when it is built. This allows the user to tightly integrate Swift/T
logic with calls to the interpreters, as the interpreter does not have to be launched
as a separate program for each call. This is a significant performance benefit on very
large scale supercomputers, enabling to make millions of calls to the interpreter per
second [Com].

Python Support

Python is a widely used high level programming languages used in several scientific
fields. During the years the Python community has developed several libraries as
well as code fragments for a wide range of problems.

Listing 3.6: Python example python-f.sh

1 export PYTHONPATH=$PWD
2 swi f t −t −p python−f . s w i f t

For this reason many users ask for tools that enable to access Python from the top
level of the scientific workflow; and optionally call down from the interpreted level
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into native code, to gain high-performance operations for numerical methods or
event-based simulation. A popular example of this model is Numpy, which provides a
high-level interface for interaction, with high-performance, vendor-optimized BLAS,
LAPACK, and/or ATLAS numerical libraries underneath.

A basic example of Python usage from Swift/T is shown in Listings 3.7, 3.8 and 3.6.
In this three codes fragment, a short module is defined in F.py (Listing 3.7) which
provides an addition function named f().

Listing 3.7: Python example F.py

1 def f (x , y ) :
2 re turn s t r ( x+y )

A call to this function from Swift/T is shown in python-f.swift (Listing 3.8) lines
3-5. The string containing the python code is populated with the Pythonic % operator,
which fills in values for x and y at the conversion specifiers %i. The Python function
F.f() receives these values, adds them, and returns the result as a string. Swift/T
receives the result in z and reports it with the Swift/T builtin trace() function.

Listing 3.8: Python example python-f.swift

1 import python ;
2 x = 2; y = 3;
3 z = python ( " import F " ,
4 " F . f (%i ,% i ) "
5 % (x , y ) ) ;
6 t r a c e ( z ) ;

Thus, data can easily be passed to and from Python with Pythonic conventions; only
a string formatting is required. To execute, the user simply sets PYTHONPATH (Listing
3.6) so that the Python interpreter can find module F, and runs swift-t.

R Support

The R support in Swift/T is similar to the Python support. An example use case
is shown in Listing 3.9. This script is devoted to run a collection of simulations in
parallel, then send result values to R for statistical processing. The first section (lines
1-4) simply imports requisite Swift packages. The second section (lines 6-10) defines
the external simulation program, which is implemented as a call to the bash shell
random number generator, seeded with the simulation number i. The output goes
to temporary file o. The third section (lines 11-15) calls the simulation a number of
times, reading the output number from disk and storing it in the array results. The
fourth section (lines 16-19) computes the mean of results via R. It joins the results
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into an R vector, constructed with the R function c(), then it uses the R function
mean(), and returns the mean as a string mean that is printed by Swift.

Listing 3.9: R example stats.swift

1 import io ;
2 import s t r i n g ;
3 import f i l e s ;
4 import R;
5

6 app ( f i l e o) s imula t ion ( i n t i ) {
7 " bash " "−c "
8 ( "RANDOM=%i ; echo $RANDOM" % i )
9 @stdout=o ;

10 }
11 s t r i n g r e s u l t s [ ] ;
12 foreach i in [0:9] {
13 f = s imula t ion ( i ) ;
14 r e s u l t s [ i ] = read ( f ) ;
15 }
16 A = j o i n ( r e s u l t s , " , " ) ;
17 code = "m = mean( c(%s ) ) ) " % A;
18 mean = R( code , " t o S t r i n g (m) " ) ;
19 p r i n t f (mean) ;

3.3 Support for JVM interpreted languages
As described in Section 3.2.6, Swift/T provides a simple mechanism to invoke Python
and R code. Similar strategy can be uses to invoke Julia, Tcl and C code. This Section
describes a novel contribution to Swift/T that allows to invoke JVM interpreted
languages. Whit more details, Section 3.3.1 will present the architecture and the
implementation of a C-JVM engine that enable to invoke different Java Virtual
Machine (JVM) interpreted languages from C code. Section 3.3.2 describes how to
use C-JVM engine within Swift/T for supporting JVM interpreted languages.

3.3.1 C-JVM interpreted languages engine
The C-JVM engine is published on [Ca] public repository. It aims to provide an
easily C API to invoke JVM interpreted languages. An interpreted language is a
programming language for which most of its implementations execute instructions
directly, without previously compiling a program into machine-language instructions.
Many interpreted languages are first compiled to Java bytecode and after executed
directly on a JVM. The most famous JVM interpreted languages are:

• Clojure ([Lan]), is a dialect of the Lisp programming language and particularly
devoted to functional programming;
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• Groovy ([Jp]), is an object-oriented programming language for the Java plat-
form, but is possible to use it as a scripting language, similar to Python;

• Scala ([lan]), is a general-purpose programming language. Scala has full
support for functional programming and a strong static type system. Scala
supports the scripting;

• JavaScript ([Jav]), is a high-level, dynamic, untyped, and interpreted program-
ming language mostly used in Web production.

The C-JVM engine supports up to now all the above languages, but the support for
others languages and frameworks, like Apache Spark Library are currently ongoing
works. The architecture of the C-JVM engine follows.

C-JVM engine: Architecture

The C-JVM engine is composed by two functional blocks: a C library (named
C-JVM-c) that provides the ability to invoke the considered interpreted languages,
and a Java library (named C-JVM-j) that concretely implements the evaluation of
the code.

The C-JVM-c uses the Java Java Native Interface (JNI) API to initialize a new JVM
and invoke Java codes to evaluate a string, containing the code of a interpreted
language, by using the C-JVM-j. JNI is a programming framework that enables Java
code to call and to be called by native applications such as C, C++ and assembly.
The Listing 3.10 depicts the C code of the C-JVM-c interface. The reader will observe
that the functions exported are those for evaluating a string of code written in each
of the supported interpreted languages.
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Listing 3.10: C-JVM-c interface

1 #i f n d e f SWIFT_JVM_H_ /* Inc lude guard */
2

3 #def ine SWIFT_JVM_H_
4

5 // extern char path_java_code []=" c l a s s e s " ;
6 /* Evaluate C lo ju re Code and re turn a char array of the s t d i o */
7 char * c l o j u r e ( char *code ) ;
8 /* Evaluate Groovy Code and re turn a char array of the s t d i o */
9 char * groovy ( char *code ) ;

10 /* Evaluate Sca la Code and re turn a char array of the s t d i o */
11 char * s c a l a ( char *code ) ;
12 /* Evaluate JavaSc r i cp t Code and re turn a char array of the s t d i o */
13 char * j a v a s c r i p t ( char *code ) ;
14

15 #end i f //SWIFT_JVM_H_

The code in Listing 3.11 shows the implementation of C-JVM-c. The C code uses JNI
to call static Java methods, provided by C-JVM-j. These methods enable to evaluate
strings of code. Two type of evaluation are supported: one will be used when the
code is supposed to provide an output (as a string) and one will be used when no
output is expected. For instance, lines 40 − 46 evaluates a string of Groovy code
that is supposed to provide an output. The first step shown in line 42 is the JVM
initialization. Then, two C-JVM-j methods are invoked, the first method set the
engine of the JVM interpreter as Groovy, while the second invokes the method eval
that returns the output string, given by the evaluation of the Groovy code.

Listing 3.11: C-JVM Engine

1

2 #inc lude " swi f t −jvm . h "
3 /* −− Inc ludes D e f i n i t i o n s */
4 /* hide */
5

6 /* −− Macro D e f i n i t i o n s */
7 /* hide */
8

9 JNIEnv * env ;
10 JavaVM * jvm ;
11

12 s t a t i c i n l i n e void pdebug ( const char * fmt , const char * s )
13 {
14 p r i n t f ( fmt , s ) ;
15 f f l u s h ( s tdout ) ;
16 }
17

18 char * c r e a t e C l a s s P a t h S t r i n g ( char * j a r s _ d i r )
19 {
20 /* hide */
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21 }
22 void c a l l _ j a v a _ s t a t i c _ m e t h o d ( char * java_class_name , char

*method_name , char * arg )
23 {
24 /* hide */
25 }
26

27 char * ca l l _ j ava_ s t a t i c _ cha r_me thod ( char * java_class_name , char

*method_name , char * sengine , char * scode )
28 {
29 /* hide */
30 }
31

32 s t a t i c i n t i n i t _ j vm () {
33 /* hide */
34 }
35 void destroy_jvm ()
36 {
37 /* hide */
38 }
39 /* Evaluate Groovy Code and re tu rns a char array of the s t d i o */
40 char * groovy ( char *code )
41 {
42 i f ( jvm == NULL) in i t _ j vm () ;
43 c a l l _ j a v a _ s t a t i c _ m e t h o d (

" i t / i s i s l a b / s w i f t / i n t e r f a c e s / Swif tJVMScr ipt ingEngine " ,
" se tEngine " , " groovy " ) ;

44 char * to r = ca l l _ j ava_ s t a t i c _ cha r_me thod
( " i t / i s i s l a b / s w i f t / i n t e r f a c e s / Swif tJVMScr ipt ingEngine " , " eva l " ,
" groovy " , code ) ;

45 re turn to r ;
46 }
47 /* Evaluate C lo ju re Code and re tu rns a char array of the s t d i o */
48 char * c l o j u r e ( char *code )
49 {
50 i f ( jvm == NULL) in i t _ j vm () ;
51 char * to r=ca l l _ j ava_ s t a t i c _ cha r_me thod

( " i t / i s i s l a b / s w i f t / i n t e r f a c e s / Swif tJVMScr ipt ingEngine " , " eva l " ,
" c l o j u r e " , code ) ;

52 re turn to r ;
53 }
54 /* Evaluate Sca la Code and re tu rns a char array of the s t d i o */
55 char * s c a l a ( char *code )
56 {
57 i f ( jvm == NULL) in i t _ j vm () ;
58 char * to r=ca l l _ j ava_ s t a t i c _ cha r_me thod

( " i t / i s i s l a b / s w i f t / i n t e r f a c e s / Swif tJVMScr ipt ingEngine " , " eva l " ,
" s c a l a " , code ) ;

59 re turn to r ;
60 }
61 /* Evaluate JavaSc r i cp t Code and re tu rns a char array of the s t d i o */

104 Chapter 3 SWIFT/T Parallel Language and JVM scripting



62 char * j a v a s c r i p t ( char *code )
63 {
64 i f ( jvm == NULL) in i t _ j vm () ;
65 char * to r=ca l l _ j ava_ s t a t i c _ cha r_me thod

( " i t / i s i s l a b / s w i f t / i n t e r f a c e s / Swif tJVMScr ipt ingEngine " , " eva l " ,
" j a v a s c r i p t " , code ) ;

66 re turn to r ;
67 }

The listing 3.12 depicts the usage of the C-JVM-c library from C code, for evaluating
a string of Groovy code.

Listing 3.12: C-JVM Engine Test (Groovy)

1 #inc lude " swi f t −jvm . h "
2 #inc lude <a s s e r t . h>
3 #inc lude <s t r i n g . h>
4 #inc lude <s t d i o . h>
5 i n t main( void )
6 {
7 char * groovyoutput=groovy ( " import java . s e c u r i t y . MessageDigest \n

def hash ( t e x t ) { MessageDigest . ge t In s t ance ( \ "SHA−512\") .
d i g e s t ( t e x t . ge tBy tes ( \ "UTF−8\") ) . encodeBase64 ()
. t o S t r i n g () }\n p r i n t l n hash (UUID . randomUUID() . t o S t r i n g () ) " ) ;

8 p r i n t f ( " Groovy : ok , Output : %s \n " , groovyoutput ) ;
9

10 }

The C-JVM-j is a Java library developed using Maven. C-JVM-j is composed by six
modules: swift-jvm-build, swift-clojure, swift-groovy, swift-scala and swift-javascript,
swift-interfaces. The swift-jvm-build module defines the build of the library. The
swift-*(language-name) modules define the Java classes for evaluating the code of a
particular interpreted languages. Finally, the swift-interfaces module is the hearth of
C-JVM-j as it provides the external library functionalities. In the following a detailed
description of the module swift-interfaces will be provided.

Swift-interfaces module. The swift-interfaces module is composed by three Java
classes:

• SwiftJVMScriptingInterface (see Listing 3.13), a Java interface to define
new language engine class. It is composed by two methods: init and eval.
The init method allows to initialize the language interpreter and the eval
method that evaluates the given string of code and returns an Object;

Listing 3.13: C-JVM-j SwiftJVMScriptingInterface.java

1 package i t . i s i s l a b . s w i f t . i n t e r f a c e s ;
2 import javax . s c r i p t . S c r i p tExcep t i on ;
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3 pub l i c i n t e r f a c e Swi f t JVMScr ip t ing In te r f a ce {
4 pub l i c void i n i t ( ) throws Sc r ip tExcep t i on ;
5 pub l i c Object eva l ( S t r i ng code ) throws Sc r ip tExcep t i on ;
6 }

• SwiftJVMScriptingEngine (see Listing 3.14), a Java Plain Old Java Object
(POJO) class that allows to operate in two different way. The first way is to
set up the language (using the setEngine method) and call each time the
method String eval(String code), directly without setting the language.
The second way uses the method String eval(String engine_name_given,
String code) that initializes the corresponding interpreter and evaluates the
code given as parameter;

Listing 3.14: C-JVM-j SwiftJVMScriptingEngine.java

1 package i t . i s i s l a b . s w i f t . i n t e r f a c e s ;
2 import j ava . io . S t r ingWr i t e r ;
3 import javax . s c r i p t . Sc r ip tContex t ;
4 import javax . s c r i p t . Sc r ip tEng ine ;
5 import javax . s c r i p t . ScriptEngineManager ;
6 import javax . s c r i p t . S c r i p tExcep t i on ;
7 import i t . i s i s l a b . s w i f t . s c a l a . Sca laSc r ip tEng ine ;
8 import i t . i s i s l a b . s w i f t l a n g . s w f i t _ c l o j u r e . C lo ju reSc r ip tEng ine ;
9 pub l i c c l a s s Swif tJVMScr ipt ingEngine {

10 pub l i c s t a t i c Scr ip tEng ine engine ;
11 pub l i c s t a t i c S t r i ng engine_name ;
12 pub l i c s t a t i c void setEngine ( S t r ing engine_name_given )
13 {
14 engine_name=engine_name_given ;
15 t r y {
16 switch ( engine_name ) {
17 case SwiftJVMScriptingEngineNames . CLOJURE:
18 engine = new Clo ju reSc r ip tEng ine () ;
19 break ;
20 case SwiftJVMScriptingEngineNames .GROOVY:
21 engine = new ScriptEngineManager () . getEngineByName

( SwiftJVMScriptingEngineNames .GROOVY) ;
22

23 break ;
24 case SwiftJVMScriptingEngineNames . SCALA :
25 engine = new Sca laSc r ip tEng ine () ;
26 break ;
27 case SwiftJVMScriptingEngineNames . JAVASCRIPT :
28 engine = new ScriptEngineManager () . getEngineByName (

SwiftJVMScriptingEngineNames . JAVASCRIPT) ;
29 break ;
30 d e f a u l t :
31 break ;
32 }
33 } catch ( Sc r ip tExcep t i on e ) {
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34 e . p r in tS tackTrace () ;
35 }
36 }
37 pub l i c s t a t i c S t r i ng eva l ( S t r i ng code )
38 {
39 Object output=nu l l ;
40 t r y {
41 switch ( engine_name ) {
42 case SwiftJVMScriptingEngineNames . CLOJURE:
43 output=(engine . eva l ( code , engine .

getContext () ) ) . t o S t r i n g () ;
44 re turn output!= n u l l ? output . t o S t r i n g () : " " ;
45 case SwiftJVMScriptingEngineNames .GROOVY:
46 case SwiftJVMScriptingEngineNames . JAVASCRIPT :
47 S t r ingWr i t e r wr i t e r = new St r ingWr i t e r () ;
48 Scr ip tContex t contex t = engine . getContext () ;
49 contex t . s e tWr i t e r ( wr i t e r ) ;
50 engine . eva l ( code ) ;
51 output = wr i t e r . t o S t r i n g () ;
52 re turn output!= n u l l ?( S t r i ng ) output : " " ;
53 case SwiftJVMScriptingEngineNames . SCALA :
54 output=engine . eva l ( code ) ;
55 re turn output!= n u l l ? output . t o S t r i n g () : " " ;
56

57 d e f a u l t :
58 re turn n u l l ;
59 }
60 } catch ( Sc r ip tExcep t i on e ) {
61 e . p r in tS tackTrace () ;
62 re turn n u l l ;
63 }
64

65 }
66 pub l i c s t a t i c S t r i ng eva l ( S t r i ng engine_name_given , S t r i ng

code )
67 {
68 Object output=nu l l ;
69 S t r ingWr i t e r wr i t e r ;
70 Scr ip tContex t contex t ;
71 engine_name=engine_name_given ;
72 t r y {
73 switch ( engine_name ) {
74 case SwiftJVMScriptingEngineNames . CLOJURE:
75 engine = new Clo ju reSc r ip tEng ine () ;
76 output=(engine . eva l ( code , engine .

getContext () ) ) . t o S t r i n g () ;
77 re turn output!= n u l l ? output . t o S t r i n g () : " " ;
78 case SwiftJVMScriptingEngineNames .GROOVY:
79 engine = new ScriptEngineManager () .

getEngineByName ( SwiftJVMScriptingEngineNames .GROOVY) ;
80 wr i t e r = new St r ingWr i t e r () ;
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81 contex t = engine . getContext () ;
82 contex t . s e tWr i t e r ( wr i t e r ) ;
83 engine . eva l ( code ) ;
84 output = wr i t e r . t o S t r i n g () ;
85 re turn output!= n u l l ?( S t r i ng ) output : " " ;
86 case SwiftJVMScriptingEngineNames . SCALA :
87 engine = new Sca laSc r ip tEng ine () ;
88 output=engine . eva l ( code ) ;
89 re turn output!= n u l l ? output . t o S t r i n g () : " " ;
90 case SwiftJVMScriptingEngineNames . JAVASCRIPT :
91 engine = new ScriptEngineManager () . getEngineByName (

SwiftJVMScriptingEngineNames . JAVASCRIPT) ;
92 wr i t e r = new St r ingWr i t e r () ;
93 contex t = engine . getContext () ;
94 contex t . s e tWr i t e r ( wr i t e r ) ;
95 engine . eva l ( code ) ;
96 output = wr i t e r . t o S t r i n g () ;
97 re turn output!= n u l l ?( S t r i ng ) output : " " ;
98 d e f a u l t :
99 re turn n u l l ;

100 }
101 } catch ( Sc r ip tExcep t i on e ) {
102 e . p r in tS tackTrace () ;
103 re turn n u l l ;
104 }
105 }
106 }

• SwiftJVMScriptingEngineNames (see Listing 3.15), a Java class that exports
the available languages names.

Listing 3.15: C-JVM-j SwiftJVMScriptingEngineNames.java

1 package i t . i s i s l a b . s w i f t . i n t e r f a c e s ;
2 pub l i c c l a s s SwiftJVMScriptingEngineNames {
3 s t a t i c f i n a l S t r i ng CLOJURE = " c l o j u r e " ;
4 s t a t i c f i n a l S t r i ng GROOVY = " groovy " ;
5 s t a t i c f i n a l S t r i ng SCALA = " s c a l a " ;
6 s t a t i c f i n a l S t r i ng JAVASCRIPT = " j a v a s c r i p t " ;
7 }
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Usage

The C-JVM requires different tools for building the library: Java Development Kit
(JDK) version major/equal to 1.7, Maven 3, gcc 4.2, autoconf (GNU Autoconf) 2.69
and automake (GNU automake) 1.14. The commands in the Listing 3.16 allows to
build the C-JVM (assuming that the script is executed from the root of the project).

Listing 3.16: Build C-JVM

1 . / boot s t rap
2 . / con f igure
3 make
4 #change t h i s with a d d i t i o n a l j a r f o l d e r l i b r a r i e s
5 export SWIFT_JVM_USER_LIB= swi f t −jvm/ swi f t −jvm−bu i ld /

t a r g e t / swi f t −jvm−bui ld −0.0.1− bin / swi f t −jvm/ c l a s s e s /
6 #change t h i s with JVM home
7 export LD_LIBRARY_PATH= / usr / l i b / jvm/ java−8−orac l e / j r e / l i b /

amd64/ se rve r

3.3.2 C-JVM and Swift/T
This section describes the software integration of C-JVM in Swift/T language. The
Swift/T code is available on the public repository [Com] which provides also a guide
[Gui16] on how to contribute to the project ( allowing the developers to add new
language features). Starting from the guidelines of Swift/T project, two principal
entities are developed. A C back-end that exports the functions implementation in
Tcl and a Swift function for each interpreted languages.

Listing 3.17: Swift JVM tcl-jvm.h in turbine/code/src/tcl/jvm/

1 #i f n d e f TCL_JVM_H
2 #def ine TCL_JVM_H
3 void t c l _ j v m _ i n i t ( Tc l _ In t e rp * i n t e r p ) ;
4 #end i f

Listing 3.17 and 3.18 refer to the implementation of the C back-end that exploits
the C-JVM library (see Section 3.3.1) to evaluate code in Groovy, Clojure, Scala
and JavaScript. For instance, the function Clojure_Eval_Cmd (see Listing 3.18,
lines 14 − 31) allows to evaluate a string code of Groovy language. The C-JVM
clojure function is called (line 24) to evaluate the string code parameter (recoverd
at line 19). Finally, at lines 110 − 113, the four functions clojure, groovy, scala
and javascript are exported to the Tcl environment (the C code is converted in Tcl
package). Therefore, these functions can be used to define new Swift/T functions,
shown in the Listing 3.19. The Listing 3.20 depicts the instructions to build the TCL
module.
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Listing 3.18: Swift JVM tcl-jvm.c in turbine/code/src/tcl/jvm/

1 #inc lude " con f i g . h "
2 #i f HAVE_JVM_SCRIPT==1
3 #inc lude " swi f t −t−jvm/ s r c / swi f t −jvm . h "
4 #end i f
5 #inc lude <s t d i o . h>
6 #inc lude <t c l . h>
7 #inc lude <s t r i n g . h>
8 #inc lude < l i s t . h>
9 #inc lude " s r c / u t i l /debug . h "

10 #inc lude " s r c / t c l / u t i l . h "
11 #inc lude " t c l −jvm . h "
12 #i f HAVE_JVM_SCRIPT==1
13 s t a t i c i n t
14 Clojure_Eval_Cmd ( Cl ien tData cdata , Tc l _ In t e rp * in terp ,
15 i n t objc , Tcl_Obj * const objv [ ] )
16 {
17 TCL_ARGS(3) ;
18 // A chunk of C lo ju re code
19 char * code = Tc l_GetS t r ing ( objv [1]) ;
20 // A chunk of C lo ju re code tha t r e tu rn s a value
21 char * expr = Tc l_Ge tS t r ing ( objv [2]) ;
22 c l o j u r e ( code ) ;
23 // The s t r i n g r e s u l t from Clo ju re : Defau l t i s empty s t r i n g
24 char * s = c l o j u r e ( expr ) ;
25 TCL_CONDITION( s != NULL , " c l o j u r e code f a i l e d : %s " , code ) ;
26 Tcl_Obj * r e s u l t = Tcl_NewStringObj ( s , s t r l e n ( s ) ) ;
27 i f ( s t r l e n ( s )>0)
28 f r e e ( s ) ;
29 Tc l_Se tOb jResu l t ( in te rp , r e s u l t ) ;
30 re turn TCL_OK ;
31 }
32 s t a t i c i n t
33 Groovy_Eval_Cmd ( Cl ien tData cdata , Tc l _ In t e rp * in terp ,
34 i n t objc , Tcl_Obj * const objv [ ] )
35 {
36 TCL_ARGS(2) ;
37 // A chunk of Groovy code :
38 char * code = Tc l_GetS t r ing ( objv [1]) ;
39 // The s t r i n g r e s u l t from Groovy : Defau l t i s empty s t r i n g
40 char * s = groovy ( code ) ;
41 TCL_CONDITION( s != NULL , " groovy code f a i l e d : %s " , code ) ;
42 Tcl_Obj * r e s u l t = Tcl_NewStringObj ( s , s t r l e n ( s ) ) ;
43 i f ( s t r l e n ( s )>0)
44 f r e e ( s ) ;
45 Tc l_Se tOb jResu l t ( in te rp , r e s u l t ) ;
46 re turn TCL_OK ;
47 }
48 s t a t i c i n t
49 JavaScript_Eval_Cmd ( Cl ientData cdata , Tc l _ In t e rp * in terp ,
50 i n t objc , Tcl_Obj * const objv [ ] )
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51 {
52 TCL_ARGS(2) ;
53 // A chunk of JavaSc r ip t code :
54 char * code = Tc l_GetS t r ing ( objv [1]) ;
55 // The s t r i n g r e s u l t from JavaSc r ip t : De fau l t i s empty s t r i n g
56 char * s = j a v a s c r i p t ( code ) ;
57 TCL_CONDITION( s != NULL , " j a v a s c r i p t code f a i l e d : %s " , code ) ;
58 Tcl_Obj * r e s u l t = Tcl_NewStringObj ( s , s t r l e n ( s ) ) ;
59 i f ( s t r l e n ( s )>0)
60 f r e e ( s ) ;
61 Tc l_Se tOb jResu l t ( in te rp , r e s u l t ) ;
62 re turn TCL_OK ;
63 }
64 s t a t i c i n t
65 Scala_Eval_Cmd ( Cl ientData cdata , Tc l _ In t e rp * in terp ,
66 i n t objc , Tcl_Obj * const objv [ ] )
67 {
68 TCL_ARGS(2) ;
69 // A chunk of Sca la code :
70 char * code = Tc l_GetS t r ing ( objv [1]) ;
71 // The s t r i n g r e s u l t from Scala : Defau l t i s empty s t r i n g
72 char * s = s c a l a ( code ) ;
73 TCL_CONDITION( s != NULL , " s c a l a code f a i l e d : %s " , code ) ;
74 Tcl_Obj * r e s u l t = Tcl_NewStringObj ( s , s t r l e n ( s ) ) ;
75 i f ( s t r l e n ( s )>0)
76 f r e e ( s ) ;
77 Tc l_Se tOb jResu l t ( in te rp , r e s u l t ) ;
78 re turn TCL_OK ;
79 }
80 #e l s e // JVM SCRIPT d i sab led
81 /*
82 HIDE THIS CODE
83 I t r e tu rns f o r each command:
84 `Turbine not compiled with JVM s c r i p t i n g support '
85 */
86 #end i f
87 /**
88 Shorten o b j e c t c r ea t i on l i n e s . jvm : : namespace i s prepended
89 */
90 #def ine COMMAND( t c l _ f u n c t i o n , c_ func t ion ) \
91 Tcl_CreateObjCommand ( in terp , " jvm : : " t c l _ f u n c t i o n , c_ funct ion , \
92 NULL , NULL) ;
93 /**
94 Cal led when Tc l loads t h i s ex tens ion
95 */
96 i n t DLLEXPORT
97 Tc l j vm_ In i t ( Tc l _ In t e rp * i n t e r p )
98 {
99 i f ( T c l _ I n i t S t u b s ( in te rp , TCL_VERSION , 0) == NULL)

100 re turn TCL_ERROR;
101

3.3 Support for JVM interpreted languages 111



102 i f ( Tcl_PkgProvide ( in te rp , " jvm " , " 0.1 " ) == TCL_ERROR)
103 re turn TCL_ERROR;
104

105 re turn TCL_OK ;
106 }
107 void
108 t c l _ j v m _ i n i t ( Tc l _ In t e rp * i n t e r p )
109 {
110 COMMAND( " c l o j u r e " , Clojure_Eval_Cmd ) ;
111 COMMAND( " groovy " , Groovy_Eval_Cmd ) ;
112 COMMAND( " j a v a s c r i p t " , JavaScript_Eval_Cmd ) ;
113 COMMAND( " s c a l a " , Scala_Eval_Cmd ) ;
114 }

Listing 3.19: Swift JVM Export jvm.swift in turbine/code/src/export

1 @dispatch=WORKER
2 ( s t r i n g output ) c l o j u r e ( s t r i n g code , s t r i n g expr )
3 " tu rb ine " " 0 .1 .0 "
4 [ " s e t <<output>> [ jvm : : c l o j u r e <<code>> <<expr>> ] " ] ;
5

6 @dispatch=WORKER
7 ( s t r i n g output ) groovy ( s t r i n g code )
8 " tu rb ine " " 0 .1 .0 "
9 [ " s e t <<output>> [ jvm : : groovy <<code>> ] " ] ;

10

11 @dispatch=WORKER
12 ( s t r i n g output ) j a v a s c r i p t ( s t r i n g code ) " tu rb ine " " 0 .1 .0 "
13 [ " s e t <<output>> [ jvm : : j a v a s c r i p t <<code>> ] " ] ;
14

15 @dispatch=WORKER
16 ( s t r i n g output ) s c a l a ( s t r i n g code )
17 " tu rb ine " " 0 .1 .0 "
18 [ " s e t <<output>> [ jvm : : s c a l a <<code>> ] " ] ;

Listing 3.20: Swift JVM module.mk.in

1 # MODULE TCL−JVM
2 DIR := s r c / t c l / jvm
3 TCL_JVM_SRC := $(DIR) / t c l −jvm . c

The final operation to be performed, in order to include C-JVM in Swift/T, is
to include in the build process of Swift/T the new support for JVM interpreted
languages. Therefore, the configure.ac and the Makefile.in of Swift/T Turbine engine
have been updated. These changes are shown, respectively, in the Listing 3.21 and
3.22. This allows to configure the building of the Turbine core enabling the support
for JVM interpreted languages (by using the parameter –enable-jvm-scripting).
Furthermore, the configuration allows to specify the home path of JVM and the path
for externals Java libraries.
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Listing 3.21: Swift JVM Turbine configure.ac

1 . . .
2 . . .
3 # JVM s c r i p t i n g support : Disabled by d e f a u l t
4 HAVE_JVM_SCRIPT=0
5 USE_JVM_SCRIPT_HOME=0
6 AC_ARG_ENABLE( jvm−s c r i p t i n g ,
7 AS_HELP_STRING([−−enable−jvm−s c r i p t i n g ] ,
8 [ Enable c a l l i n g JVM s c r i p t i n g languages ]) ,
9 [

10 HAVE_JVM_SCRIPT=1
11 USE_JVM_SCRIPT_HOME=swi f t −t−jvm
12 ])
13 AC_ARG_WITH( jvm−s c r i p t i n g ,
14 AS_HELP_STRING([−−with−jvm−s c r i p t i n g ] ,
15 [ Use t h i s JVM s c r i p t i n g plug in home d i r e c t o r y ]) ,
16 [
17 HAVE_JVM_SCRIPT=1
18 USE_JVM_SCRIPT_HOME=${ withva l }
19 ])
20 i f ( ( ${HAVE_JVM_SCRIPT} ) )
21 then
22 AC_CHECK_FILE(${USE_JVM_SCRIPT_HOME}/ s r c / swi f t −jvm . h , [ ] ,
23 [AC_MSG_ERROR([ Could not f ind JVM s c r i p t i n g

header ! ] ) ])
24 AC_MSG_RESULT([JVM s c r i p t i n g enabled ])
25 e l s e
26 AC_MSG_RESULT([JVM s c r i p t i n g d i sab led ])
27 f i
28

29 AC_DEFINE_UNQUOTED([HAVE_JVM_SCRIPT] ,$HAVE_JVM_SCRIPT , [ Enables JVM
s c r i p t i n g ])

30 AC_SUBST(HAVE_JVM_SCRIPT)
31 AC_SUBST(USE_JVM_SCRIPT_HOME)
32

33 #JVM HOME
34 AC_SUBST(JVMHOME, " / usr / l i b / jvm/ java−8−orac l e " )
35 AC_ARG_WITH([ jvm−home] ,
36 [AS_HELP_STRING([−−with−jvm−home] ,
37 [ Set up the jvm home d i r e c t o r y ( d e f a u l t :

/ usr / l i b / jvm/ java−8−orac l e ) ]) ] ,
38 [AC_SUBST(JVMHOME, $withval ) ] ,
39 )
40

41 #JVM SWIFT−T LIBs
42 AC_SUBST(JVMLIB , $(pwd) " / swi f t −jvm/ swi f t −jvm−bu i ld / t a r g e t /

swi f t −jvm−bui ld −0.0.1− bin / swi f t −jvm/ c l a s s e s " )
43 AC_ARG_WITH([ swi f t −jvm−engine−l i b ] ,
44 [AS_HELP_STRING([−−with−swi f t −jvm−engine−l i b ] ,
45 [ Set up the s w i f t jvm engine l i b ( d e f a u l t : c l a s s e s ) ]) ] ,
46 [AC_SUBST(JVMLIB , $withval ) ] ,
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47 )
48 # End of JVM s c r i p t i n g con f i gu ra t i on
49 . . .
50 . . .

Listing 3.22: Swift JVM Turbine Makefile.in

1 HAVE_JVM_SCRIPT = @HAVE_JVM_SCRIPT@
2 USE_JVM_SCRIPT_HOME= @USE_JVM_SCRIPT_HOME@
3 . . .
4 . . .
5 # LIBS : l i n k s to ADLB , c−u t i l s , MPE, and MPI
6 . . .
7 . . .
8 i f e q ($(HAVE_JVM_SCRIPT) ,1)
9 SWIFTTJVM_LIB = $(USE_JVM_SCRIPT_HOME) / s r c

10 LIBS += −L$(SWIFTTJVM_LIB) / . l i b s − l s w i f t t j v m
11 end i f
12 . . .
13 . . .
14 ### INCLUDES
15 . . .
16 . . .
17 inc lude s r c / t c l / jvm/module .mk
18 . . .
19 . . .
20 TURBINE_SRC += $(JVM_SCRIPT_SRC)
21 TURBINE_SRC += $(TCL_JVM_SRC)
22 . . .
23 . . .

Listing 3.23 provides an example of code, which explains the usage of the JVM
interpreted languages support in Swift/T.

Listing 3.23: Swift JVM test

1 import jvm ;
2

3 s1 = groovy ( " p r i n t l n \ "GROOVY WORKS\" " ) ;
4 t r a c e ( s1 ) ;
5

6 s2 = j a v a s c r i p t ( " p r i n t ( \ " JAVASCRIPT WORKS\ " ) ; " ) ;
7 t r a c e ( s2 ) ;
8

9 s3 = s c a l a ( " p r i n t l n ( \ " SCALA WORKS\ " ) " ) ;
10 t r a c e ( s3 ) ;
11

12 s4 = c l o j u r e ( " \ "CLOJURE SETUP\" " , " \ "CLOJURE WORKS\" " ) ;
13 t r a c e ( s4 ) ;

114 Chapter 3 SWIFT/T Parallel Language and JVM scripting



4Simulation Optimization

„We assume that you are here with a computer
simulation of a complicated physical model that
includes several input parameters . . . the
methods need too much computation in high
dimensions – more computation that you have
available.

— Paul G. Constantine
(Active Subspaces: Emerging Ideas for Dimension

Reduction in Parameter Studies, 2015)

4.1 Introduction
Complex system simulation are continuously gaining relevance in business and
academic fields as powerful experimental tools for research and management, in
particular for Computational Science. Simulations are mainly used to analyze be-
haviours that are too complex to be studied analytically, or too risky/expensive to be
tested experimentally [Law07; TS04]. The representation of such complex systems
results in a mathematical model comprising several parameters. Hence, there arises
a need for tuning a simulation model, that is finding optimal parameter values which
maximize the effectiveness of the model. Considering the multi-dimensionality of
the parameter space, finding out the optimal parameters configuration is not an easy
undertaking and requires extensive computing power. Simulations Optimization
(SO) [TS04; He+10] and Model Exploration (ME) is used to refer to the techniques
studied for ascertaining the parameters of the model that minimize (or maximize)
given criteria (one or many), which can only be computed by performing a simula-
tion run. This work consideres the SO process as general case of ME, where the ME
is guided by some optimization algorithms.

This work is mainly focused on Agent-based models (ABMs) where the simulation is
based on a large set of independent agents, interacting with each other through sim-
ple rules, generating a complex collective behaviour. What makes ABMs particularly
interesting is that they allow the reproduction of complex and significant aspects of
real phenomena by defining a small set of simple rules regulating how agents interact
in social structures and how information is spread from agent to agent. ABMs have
been successfully applied in several fields such as biology, sociology, economics,
military and infrastructures – for a review of ABM applications see [MN05]. The
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computer science community has responded to the need for tools and platforms that
can help the development and testing of new models in each specific field by provid-
ing libraries and frameworks that speed up and make easier the tasks of developing
and testing simulations. Some examples are NetLogo [TW04], MASON [Luk+04;
Luk+05] and Repast [Nor+07], described in Section Agent-Based Simulation: State
of Art.

It should be noted that although ABMs are governed by simple rules, interactions
between agents generate network effects that lead to a high degree of complex
behaviour [MN05] where it is quite hard to discern any relation between changes
in variables and changes in the resulting global behaviour. In particular, the shape
of the objective functions is irregular: there are large areas where changes in the
parameters do not affect the final behaviour but at the same time a small change,
like the butterfly effect, may provide a significant shift within a complex simulation
[CH05]. To make matters even more complicated, as a consequence of the stochastic
character of the simulation, a static surface does not even exist but has to be
approximated by multiple simulation runs [DK14; Law07].

Moreover, a SO strategy has to cope with a high-dimensional search space and
therefore has to handle a corresponding number of heterogeneous variables. Some
variables configure the behavioural model of the agents while others constitute the
global environment. Hence, a brute-force enumeration of all possible solutions is
not feasible from a resource perspective.

In summary, complex simulations, and ABM in particular, are powerful tools for
modeling aspects of real systems. On the other hand, due to the the high dimen-
sionality of the search space, the heterogeneity of parameters, the irregular shape
and the stochastic nature of the objective evaluation function, the tuning of such
systems is extremely demanding from the computational point of view. This raises
the need for tools, which exploit the computing power of parallel systems to improve
the effectiveness and the efficiency of SO strategies. The crucial characteristics of
such tools are: zero configuration, ease of use, programmability and efficiency. Zero
Configuration and easiness of use are required because both the design and the
use of SO strategies are performed by domain experts who seldom are computer
scientists and have limited knowledge of managing modern parallel infrastructures.
Programmability is mandatory because different models usually requires different
SO strategies. Finally, the system must be efficient in order to be able to exploit the
computing power provided by extreme scale architectures.

This Chapter discusses two framework for SO process, respectively, primarily de-
signed for Cloud infrastructure and HPC systems.

The first frameworks is SOF: Zero Configuration Simulation Optimization Framework
on the Cloud (discussed in the Section 4.2) and it was designed to run SO process in
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the cloud. SOF is based on the Apache Hadoop infrastructure [Tur13]. The second
framework is EMEWS, Extreme-scale Model Exploration with Swift/T (discussed in the
Section 4.3) designed at Argonne National Laboratory (USA). EMEWS as SOF allows
to perform SO process in distributed memory architectures. Both the framework
have been designed for and tested on ABS. In particular EMEWS was tested using
the ABS simulation toolkit Repast. Initially, EMEWS was not able to execute out
of the box simulations written in MASON and NetLogo [TW04]. This dissertation
presents the novel functionalities of EMEWS that enable to execute MASON and
NetLogo simulations in EMEWS.

4.1.1 Model Exploration and Simulation Optimization
A Simulation is an attempt to reproduce the behaviour of a real-life process or system
over time. A system is understood as a collection interacting on entities [Ack71].
[Law07] defines a simulation as “numerically exercising the model for the inputs in
question to see how they affect the output measures of performance”. Hence, the
goal of a simulation is to experiment, observe, understand, infer and answer “what
if” questions about a complex system described with a model. Simulations can either
be used to design a novel system or for predicting the effect of changes in an existing
system [CL10]. The main advantage of simulation is that it can be used to explore
certain behaviour without causing disruption in the actual system.

The simulation modeler usually needs to execute a large number of simulations in
order to find the optimal configuration of input parameters (that is the configuration
which allows them to imitate the desired system). This process is named parameter
space exploration (PSE), parameter sweep or Model Exploration (ME). Simulation
results are evaluated using an objective (evaluating) function which associates
a score with each simulation performed with a given set of parameters. As the
number of the parameters of a model increases, the parameter space to be explored
expands exponentially and it becomes unfeasible to handle the parameter space
exploration process – which comprises parameters selection, simulations run and
output evaluations – manually. Moreover, the feedback obtained from the simulation
of previous configurations can be used to select future configurations to be simulated
and evaluated. This cyclic process: a) choice of initial configurations, b) execution,
c) evaluation and d) selection of new candidates, is referred to as Simulation
Optimization (SO) process.

Simulation Optimization Problem definition

The simulation optimization (SO) problem [CL10; TS04; Amm+11; Nel10] can be
presented as

min
x∈D

Γ(x),
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where D ⊆ Θ is the feasible decision space, Θ is the whole parameters space, x ∈ D
is an 1-dimensional vector having size δ representing a single configuration (δ is the
number of parameters of the simulation), and Γ(x) is a function being estimated
with simulation. The feasible decision space D can be either discrete or continuous.
A user library implements a particular SO algorithm and the selection of points in
decision space is usually handled within algorithms. Hence, it is not necessary to
assume either a continuous or discrete decision space in advance. This work is not
focused on introducing or evaluating new ways to explore the parameters space.
Instead, is focused on a support tool to perform the parameters space exploration
using an SO approach.

Generally, the problem has a single objective (i.e., Γ(x) ∈ R), however multi-
objective optimization problems (Γ(x) ∈ Rn) can be also considered. For the remain-
der of the Chapter, single-objective optimization problems are considered; however,
the proposed methodology can easily be applied to multi-objective optimization in a
similar fashion, as described in [BM05]. The stochastic nature of simulation means
that the output of a simulation run is not deterministic and we calculate an expected
value for it as E[Φ(x, ε)], where Φ(x, ε) is the result of a stochastic simulation run
on configuration x and a random feed ε. Finally we calculate Γ(x) = f(E[Φ(x, ε)]),
where f(·) is a function that evaluates the result of a simulation and calculates a
single rank value. For instance, in [CL10], the value of E[·] is estimated as a mean
result of r ≥ 1 simulation runs.

4.1.2 State of Art for ABM
Capabilities of existing ABM tools. Many ABM toolkits allow users to define a
parameter space and then enable automated iteration through that space. The
parameter space is defined in a toolkit-specific format specifying each parameter in
terms of a range, and a step value, or as a list of elements. The toolkit takes this a
priori determined parameter space as input and executes the required simulation
runs. The model exploration advanced capabilities of the most popular ABM toolkits
are:

• Repast Simphony, [MN+13] is the Java based toolkit of the Repast Suite. Given
a parameter space as input, Repast Simphony’s batch run functionality can
divide that space into discrete sets of parameter values and execute simulations
over those discrete sets in parallel. The simulations can be run on a local
machine, on remote machines accessible through secure shell (ssh), in the
cloud (e.g., Amazon EC2) or on some combination of the three. Using an
InstanceRunner interface, Repast Simphony models can be launched by other
control applications such as a bash, Portable Batch System (PBS), or Swift
scripts. For example, [Ozi+14] describes how the InstanceRunner can be used
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with Swift to perform an adaptive parameter sweep using simulated annealing,
and the InstanceRunner is used in three use cases (see Section 4.3.2).

• NetLogo [TW04] has both GUI (BehaviorSpace [Beh]) and command line
based batch run capabilities. [Sto11] developed the Behavior Search tool
which provides an easy to use interface for running an included set of heuristic
model exploration techniques, e.g., simulated annealing, genetic algorithm, on
NetLogo models.

• MASON simulation library [Luk+05] offers a set of capabilities for creating
ABMs. Its modularity allows MASON models to be called either via the com-
mand line or as libraries from Java-based programs for model exploration
purposes.

• AnyLogic is a proprietary multi-method simulation toolkit. AnyLogic comes
with the ability to carry out Experiments, including optimization, calibration,
and user-defined custom experiments using the AnyLogic engine Java API.
(Note that many of the experiment capabilities are available only for AnyLogic
Professional and University Researcher editions.)

None of the ABM toolkits on their own offer the capabilities or scope, in terms of flexible,
simple integration of external model exploration tools and performance on massively
parallel computing resources, that SOF and EMEWS framework aim to provide.

Model exploration libraries and frameworks. In the following, the existing model
exploration (ME) or in general simulation optimization (SO) libraries and frame-
works are briefly discussed. While most can be used as standalone ME tools, some of
the these libraries can also be used as ME modules within the presented frameworks.
Most of the following software falls under the metaheuristics umbrella. For an
overview of metaheuristics see [Luk13], for reviews of more metaheuristics frame-
works see [Par+11] and for parallel metaheuristics frameworks see [Alb+13].

• OpenMOLE [Reu+13], provides an execution platform that distributes sim-
ulation experiments on high performance computing environments using a
domain–specific language (DSL) that is an extension of the Scala programming
language.

• Model Exploration ModulE (MEME) [Gul+11], is based on virtual hosts spe-
cially prepared for simulation experiments, deployed on EC2 (the Amazon
Elastic Cloud).

• OptTek [opt] offers proprietary tools for metaheuristic optimization capabilities
and the ability to wrap custom objective functions. OptTek’s optimization
engine is also directly integrated into a number of ABM and simulation tools
(e.g., AnyLogic, Simio). While parallel optimization capabilities are available,
the focus of OptTek products appears to be on desktop applications.

• ECJ [ECJ] is an open source (AFL v3) research system for evolutionary compu-
tation. ECJ can be used for developing evolutionary algorithms and general

4.1 Introduction 119



integration of simulation code on massively parallel systems. ECJ is able to
integrate Java based simulation code (e.g., written with MASON or Repast
Simphony) and the evolutionary algorithms can be parallelized in various
ways,

• ParadisEO [Par], published under the CeCILL license, and MALLBA, published
under a non-commercial license, are framework for metaheuristics. They
include extensive metaheuristics capabilities, including parallel metaheuristics
methods. Similarly to ECJ, the general integration of external codes is not the
focus.

• Dakota [Dak] combines a number of optimization, design of experiment and
uncertainty quantification libraries developed by Sandia National Laboratories
(e.g., DDACE, HOPSPACK), in addition to other external libraries. Dakota can
be used on machines from desktops to massively parallel computers.
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4.2 Simulation Optimization and exploration Framework
on the cloud
Observing the computation workflow needed for an SO process, it is clear that
looks like an instance of the well known bag-of-tasks application [Adl+03], i.e.,
an application made of a collection of independent tasks, to be scheduled on a
master–worker platform. Nevertheless, a mechanism for the spread of the task and
the collection of results is required.

Hence this framework was designed exploiting the assumption that SO processes
can be easily deployed by exploiting the MapReduce (MP) programming model.
Moreover, an SO process potentially requires several optimization loops in which a
large amount of data is generated. The amount of inputs and outputs generated in a
SO process, that must be managed in a distributed storage environment, is usually
quite large. The MapReduce paradigm and Apache Hadoop will be briefly described
in the following.

MapReduce Paradigm Overview. MP [DG08] is a programming model, proposed
by Google, for processing large data sets exploiting parallel/distributed computations
on a set of loosely coupled machines. MP is based on two principal functions named
Map and Reduce, commonly used in functional programming languages such as
Lisp. Each function takes an input pair expressed as key/value to compute some
transformation on it. The Map function produces a sets of intermediate results
while the Reduce function merges the intermediate results in a new set of key/value.
Historically, MP has been used for indexing and calculating PageRank, but since
its creation the research community adopted the programming model for several
purposes, in particular when the amount of computation is large and the whole
computation can be easily decomposed into smaller independent tasks.

Apache Hadoop. Apache Hadoop is an open-source alternative to the Google tech-
nologies: Google File System [Ghe+03] and MapReduce [DG08]. Hadoop is the
top-level of many subprojects comprising Hadoop Distributed File System (HDFS) and
MapReduce.

HDFS is a distributed filesystem that enables storage of a huge dataset across a
distributed system. HDFS is designed to accommodate the following requirements
[Shv+10]: Large Data Sets, Simple Coherency Model, Moving Computation is Cheaper
than Moving Data (it attempts to assign a computation to a node that maintains the
data instead of move the data around the nodes), Portability Across Heterogeneous
Hardware and Software Platforms and Hardware Failure.

Hadoop defines a specification for the Map and Reduce functions, the developers
must provide the input/output specific and the implementations of Map and Reduce
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functions, often referred as mappers and reducers. Then the framework manages all
the functionality needed to run an MP application as job execution, parallelization,
and coordination. A typical MP program, on Hadoop, starts on a single node
that launches and manages the execution of the entire distributed program on the
distributed system. Then several components operate at different stages:

• Splitter, handle the single data source providing input pairs (key/value) to
mappers.

• Mapper, process a key/value pair to generate a set of intermediate key/value
pairs.

• Combiner, also called “Local Reducer” (optional). It can help cutting down the
amount of data exchanged between Mappers and Reducers.

• Partitioner, also called the “Shuffle Operation”. It ensures that records with the
same key will be assigned to the same Reducer.

• Reducer, gathers the results of the computation and concludes the job giving
outputs the new set of key/value, typically stored in the HDFS.

4.2.1 Architecture
This Section presents the Simulation exploration and Optimization Framework on the
cloud (SOF), a framework that allows us to run and collect results for two kinds of
optimization scenarios: parameter space exploration or model exploration (PSE or
ME) and simulation optimization (SO).

Fig. 4.1.: SOF Work Cycle.

Figure 4.1 depicts the SOF work cycle which comprises three phases: selection,
parallel simulations and evaluation. SOF provides a set of functionality that allows
developers to construct their own simulation optimization strategy. The framework
was designed under the following objectives:
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• zero configuration: the framework neither requires the installation nor the
configuration of any additional software, only Hadoop and a SSH access to the
hosting platform are required;

• ease of use: the tool is transparent to the user, since the user is totally unaware
that system operates on a distributed environment;

• programmability: both the simulation implementation and the simulation
optimization functionalities can be implemented using different simulation
toolkits (MASON, NetLogo, etc.) and/or by exploiting different programming
languages, provided that the hosting platform supports them;

• scalability: by executing several independent tasks (simulations) concurrently,
the framework adequately exploits the resources available on the hosting
platforms.

SOF uses a particular simulation optimization scenario described in the following.
Two algorithms – inspired by evolutionary algorithms [Cas06] – allow to define
the scenarios achievable in SOF. The following symbols are used in the algorithms
description:

• Θ, parameters space;
• D ⊆ Θ, feasible decision space;
• X ⊆ D is a set of configurations from the feasible decision space D, X =
{x1, x2, . . . : xi ∈ D};

• r denotes the number of simulation run;
• Φ(x, ε) denotes the results of a stochastic simulation run on configuration x

and a random feed ε;
• E[· · · ] denotes the expected results of a set of stochastic simulation run;
• Y is the set of expected simulation results corresponding to the configuration

in X.
• t is the current optimization loop;
• � contains the ranking values associated to the configurations in X;

Algorithm 4.2.1: PSE()

INPUT: X,Φ(·, ·)
OUTPUT: Y

parallel



for each xi ∈ X

do


for j ← 1 to r

do Zj ← Φ(xi, εj)
Yi ← E[Z1, Z2, . . . , Zr]

Y = {Y1, Y2, . . .}

PSE Algorithm (PSE). The PSE or ME scenario describes a generic process of sim-
ulation optimization where a fixed set of configuration X is executed and all the
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corresponding results are collected. The algorithm 4.2.1 performs this task and also
handles stochastic simulations, which require several execution runs (with different
random seed) and the estimate of the expected values. The algorithm 4.2.1 performs
r simulations for each point xi ∈ X and collects the simulation results in a set Y.

Algorithm 4.2.2: SO()

INPUT: D,Φ(·, ·), f_ Selection(·, ·, ·), f_ Evaluate(·)
OUTPUT: {Y1,Y2, . . .}, {�1,�1, . . .}
t = 1
while ((Xt=f_ Selection(D, {X1, ...,Xt−1}, {�1, ...,�t−1})! =∅)

parallel



for each xi ∈ Xt

do


for j ← 1 to r

do Zj ← Φ(xi, εj)
Yi ← E[Z1, Z2, . . . , Zr]

Yt = {Y1, Y2, . . .}
for each Yi ∈ Yt

do Γi ← f_Evaluate(Yi)
�t = {Γ1,Γ2, . . .}

t = t+ 1

SO Algorithm (SO). The simulation optimization is a general case of PSE and
corresponds to the execution of several loops of the PSE algorithm. For each
optimization loop t, the set of configurations to be executed and evaluated, Xt,
depends on the results obtained from the previous loops. The algorithm 4.2.2
describes the SO process. Each optimization loop uses the function f_Selection(·, ·, ·)
to generate a novel set of configurations. At the end of each loop, the function
f_Evaluate(·) computes the ranking values associated with each configuration in
Xt. The SO algorithm ends when the selection function returns an empty set.

A contributor who implements a SO package needs to provide a functional mechanism
for the definition of the feasible decision space D and the implementation of both
the f_Selection and f_Evaluate functions.

Then the modeler wishing to use an implementation of SO developed for SOF must
provide:

• the definition of D according to the mechanism provided by the SO package;
• a stochastic simulation model Φ(x, ε);
• all the parameters required by the f_Selection(. . .) and f_Evaluate(. . .) func-

tions.
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4.2.2 Working Cycle
The SOF architecture has been designed according to the Work Cycle shown in Figure
4.1 and the algorithms shown in section 4.2.1. The framework is divided into three
functional blocks: the User Front-end (Figure 4.1, left); the SOF core which act as a
controller (Figure 4.1, middle); the computational resources (Figure 4.1, right).

The User front-end is implemented as a web or a standalone application through
which the user provides the inputs to the system: Simulation Implementation, Selec-
tion Function, Evaluation Function. In order to ensure flexibility, an XML schema for
the description of Domain (Parameters Domain), Input (Simulation Input), Output
(Simulation Output) and Rating (Simulation Rating) has been included in the request
to the system. The application level of SOF provides a tool to easily generate the
needed XML files. The execution of the system is described by the loop shown in
Figure 4.1. We summarize it in the following key phases:

1. User Request. The user submits the Simulation Implementation, the Selection
Function and the Evaluation Function written using any language supported
by the cloud environment. Then s/he defines the Parameters Domain, the
Simulation Input, Output and Rating format in XML using the SOF XML
schema.

2. Selection. The system processes the request using the Selection Function and
generates a set of parameters according to the XML schema defined by the
user.

3. Spread. The generated XML inputs are dynamically assigned to the compu-
tational resources. We notice that our system delegates to the distributed
computing environment (Hadoop in our case) both scheduling and load bal-
ancing of tasks (simulations).

4. Collect. When all the simulations run terminated, the computation state is syn-
chronized and the outputs are collected according to the XML schema defined
by the user, through a set of messages exchanged between the computational
resources and the system.

5. Evaluation Phase. The system applies the evaluation function on the collected
outputs and generates the rating (again in the desired XML format).

After the evaluation phase, the system goes back to the selection phase, which, also
using the evaluation results obtained during the preceding steps, generates a new
set of XML inputs. Obviously, the selection function also includes a stopping rule
which allows to end the SO process.

During the spread phases, the framework executes a large number of simulations
in order to achieve the results of a PSE or a SO scenario. The challenge is “How
to elaborate a large number of inputs, on a distributed system, in order to ensure
fault tolerance and good performance, even for different SO processes running
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Fig. 4.2.: SOF - Hadoop Architecture

concurrently?”. SOF exploits the Apache Hadoop framework to answer to this
question.

Apache Hadoop, briefly described in Section 4.2, provides some tools for managing
MapReduce applications and the HDFS File System. It also provides a set of Java
libraries for writing MapReduce applications. According to the language used by the
Simulation Implementation, it will be possible to run the MapReduce application
in several ways. For instance, when the implementation is written in Java (e.g,
MASON, Repast Simphony) is it possible to write a MapReduce application that
initializes the simulation at code level by using mechanisms like Java Reflection.
Other frameworks, like Netlogo, provide a Java library for executing simulations
from a Java application. Eventually, in the case of generic implementations, the
setting of simulation parameters is performed using the Java Runtime to set the
input as command line arguments of the executable.

4.2.3 Software Layers
As shown in Figure 4.2, the system workflow presents two main entities: the
SOF client and the remote host (on which is installed Apache Hadoop). The SOF
architecture is divided into three main software components:

• the SOF front-end (client side), which is the SOF application for running and
managing the simulation on the Hadoop infrastructure;

• the Hadoop layer (remote side), which comprises software and libraries pro-
vided from Hadoop infrastructure;

• the SOF core, composed of six functional blocks, that are used on both the
client and the remote side.

The core. The main objective of the SOF core is to ensure the flexibility in terms
of the ability to use any Hadoop installation on-the-fly without requiring a specific
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configuration of Hadoop infrastructure or a particular software installation on
the remote host. The SOF core uses the Secure SHell (SSH) protocol for the
communication between client and remote host to ensure the highest flexibility level
and a secure consolidated communication mechanism. With more details, the SOF
core comprises:

• Parameters Manager: defines the XML schema of the Parameters Domain Defini-
tion, Simulation Input Definition, Simulation Output Definition and Simulation
Rating Definition. It also provides routines for creating, managing and verifying
the XML files.

• File System: defines the structure of the SOF Environment, that is the directories
hierarchy on the HDFS, Remote and Client hosts. This block exposes routines
to get the paths of a simulation, a simulation loop or for temporary files and
folders on both the remote and client hosts.

• HDFS Manager: is responsible for monitoring and creating files on the HDFS.
• MapReduce (SOF process) and Asynchronous Executor (SOF-RUNNER): allow

execution of the SO algorithm on a Hadoop environment.
• Simulation Manager: is the fundamental block in the SOF architecture and

provides the routines for executing and monitoring simulations. This block
uses SSH to invoke an asynchronous execution of the SOF-RUNNER. When an
SO process is started, the remote process ID is stored in the XML simulation
descriptor file on the HDFS. In this way it is always possible to monitor the SO
process on the remote machine and it is also possible to stop/restart or abort
the SO process.

The interactions with Hadoop. SOF was designed under the assumption that the
remote host is a Unix machine. Therefore, the interactions between client, remote
host and Hadoop system are made using SSH and Unix commands. An important
contribution of SOF is that presents a novel approach to managing SO processes by
embedding them in the MapReduce paradigm. SOF is focused on ABM simulations,
hence considers three types of simulation frameworks: MASON, NetLogo and a
generic. The first two are the most relevant ABM frameworks in the ABM community;
the last refers to any application executable on the computation host.

Following are described in detail the interaction between the SOF core and Hadoop.
The main events in the system are:

• User Login: After the user login on the Remote machine, the system automati-
cally builds a new SOF Environment on the Remote machine and the HDFS and
copies two programs onto the remote machine: SOF and SOF-RUNNER. SOF is
the MapReduce application specialized for execution, on Hadoop, of MASON,
NetLogo or a generic simulation framework. SOF-RUNNER is the SOF process
manager, this process is responsible for executing the PSE or SO algorithm
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exploiting the SOF MapReduce application. The Simulation Environment al-
lows the storage of all request and output files for the simulation process. The
structure of the Simulation environment is defined by the SOF File System;

• Simulation Creation: The user prepares the simulation environment exploiting
the features provided by the SOF frontend. Then subsequently, all simulation
files: Simulation Implementation, Selection Function, Evaluation Function, Pa-
rameters Domain Definition, Simulation Input Definition, Simulation Output
Definition and Simulation Rating Definition are copied onto the HDFS using a
structure defined by the SOF File System;

• Simulation Submission: The SOF Core provides a routine to run a new process
that launches the SOF-RUNNER via SSH on a particular simulation. The SOF-
RUNNER executes the PSE or SO algorithm exploiting the Selection Function
and the SOF MapReduce application on the Hadoop infrastructure, for parallel
executions of the Simulation Implementation and the Evaluation Phase.

Due to the asynchronous nature of the system and decoupling from the Hadoop
infrastructure, all states of the processes are visible only by reading the state of
the SOF Environment, which comprises the Simulation Environment of all the SO
processes in the system. On the HDFS, the SOF Environment contains the state of
the simulation and the state of the optimization loop for any SO process. On the
Remote machine the SOF Environment stores the state of the SOF-RUNNER process:
in this way, it is also possible to stop/restart or abort any SO process. SOF has
been designed for the concurrent optimization of different simulations performed by
one or many users. In order to avoid the concurrency issues, SOF uses a separated
Simulation Environment with a unique identifier for each SO process.

The MapReduce embedding. The computation schema of an SO process, as men-
tioned above, looks like the well known paradigm MapReduce. In particular, we
consider the parameter space Θ as a dataset of Key/Value, where the Keys are the
input IDs and the Values are a feasible set of values for the simulation parameters.
MP-SOF application consists of two main transformations of the inputs: transform
the input x ∈ Θ in the simulation output Φ(x) and evaluate the simulation output
f(Φ(x)). The first transformation requires the execution of the simulation on the
desired set of parameters, while the second transformation evaluates the output
using an evaluating function (f_Evaluate(·)) according the SO adopted scenario
(see Section 4.2.1).

The SOF-RUNNER, depicted in Fig. 4.3, performs the following steps:

1. First, it executes the selection function using the Java Runtime. The selection
function takes three arguments: the path to the input sets already executed,
the path to the rating corresponding to the input sets executed and the path
where the function creates the novel input set.
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Fig. 4.3.: Simulation Optimization embedding in MP.

2. When the selection function ends, the SOF-RUNNER transforms the input set
from XML format to a standard format for Hadoop MapReduce application
and copies it on the HDFS (this is not strictly necessary because Hadoop in the
latest version support also XML input but, to ensure compatibility with a larger
number of Hadoop cluster, we preferred to use a standard format).

3. Then it launches the SOF MapReduce application. The MapReduce application
(SOF) consists of two main routines map and reduce as described in the section
4.2:

a) the map routine corresponds to executing the simulation and generating
an output XML file, which represents the final state of the executed
simulation;

b) the reduce executes the evaluation function, using the Java Runtime. The
evaluation function takes two arguments: the path of the output XML
files and the path where the function creates the rating XML file.

4. When the evaluation function ends the reducer puts the rating XML file on the
HDFS.

The mapper routine should be specialized according to the specific simulation
framework used. For MASON and NetLogo, the system can automatically read the
final state of the simulation and generate the output XML. In order to ensure this
kind of functionality, the system requires the definition of the XML format for the
input and the output files. Such files do not contain any values for the parameters
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but are needed just to inform the system about the names of the parameters to be
initialized at the beginning of the simulation and to be returned at the end. In the
case of a generic simulation framework, the modeler of the simulation is responsible
for generating the output files using a specific XML format in a predefined output
folder. It is worth mentioning that, although the system is designed for Hadoop, by
changing the SOF application, it is still possible to use the system on other environments
for distributed computing [Adl+03].

4.2.4 Evaluation
This Section describes the benchmarks used to evaluate SOF scalability and give the
results obtained on an Hadoop cluster machine.

The Benchmark Datasets. We have tested a simple SO process test on NetLogo Fire
model [Wil97]. This model simulates the spread of a fire through a forest. It shows
that the fire’s chance of reaching the right edge of the forest depends critically on
the density of trees. This is an example of a common feature of complex systems,
the presence of a non-linear threshold or critical parameter. In particular, at 59%
density, the fire has a 50/50 chance of reaching the right edge. The Fire model has
also been used to validate the OpenMOLE platform [Reu+13].

Since we are evaluating the performance of the framework, the SO process is based
on an empty f_ Evaluate(·) function while the f_Selection(·, ·, ·) function generates
a set of n configurations for the first 10 loops and an empty set, at the end of the 10th

loop, so that the SO process terminates. Each configuration consists of the density
parameter and a seed for the random generator. All the simulations perform 1000
simulation steps.

The Simulation Environment. Simulations have been performed on an Hadoop
cluster of four nodes, each equipped as follows:

• Hardware:
– CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16, #threads

32)
– RAM: 256 GB
– Network: adapters Intel Corporation I350 Gigabit

• Software:
– Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic x86_64)
– Java JDK 1.6.25
– Apache Hadoop 2.4.0

Experimental settings. Fifteen test setting experiments were performed varying
both the number of cluster nodes (p ∈ {1, 2, 4}) and the number of configuration
generated per loop (n ∈ {2000, 4000, 8000, 16000, 32000}). Such values have been
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selected in order to be able to evaluate both the strong an weak scalability of the
framework. Table 4.1 depicts the completion time in seconds required for the
execution of each test. Results show that the system scales pretty well especially
when the number of configurations is large. This result was not surprising since the
tasks are all independent and do not generate any communication overhead.

p / n 2000 4000 8000 16000 32000
1 1817 3109 6615 12516 25656
2 1330 2517 3620 6562 13420
4 1058 1440 2471 4093 7854

Tab. 4.1.: Completion time (s) with different test settings where n is the number of simula-
tion performed per loop and p is the number of cluster nodes.

Strong and Weak Scalability. In order to better evaluate the scalability efficiency
of the framework, the weak and strong scaling efficiency (described in Section 1.4)
test were computed. The strong scaling efficiency measures the capability of the
framework to complete a set of simulations in a reasonable amount of time. In
order to compute the strong scalability efficiency the problem size stays fixed but
the number of processing elements are increased. The strong scalability efficiency
(as percentage of the optimum) is given by (t1 × 100)/(p× tp)% where ti denotes
the completion time to perform the overall set of simulations using i cluster nodes.
In our cases the strong scaling efficiency ranges from 34.16% (p = 4, n = 2000) to
95.59% (p = 2, n = 32000). The weak scaling efficiency measures the capability
of the framework to solve larger problems as the number of processing element
increases. In order to compute the weak scalability efficiency the problem size
assigned to each processing element stays constant and additional elements are
used to solve a larger problem. The weak scalability efficiency (as percentage of the
optimum) is given by (t1/tp)× 100% and in our cases is equal to 100% for p = 2 and
84.22% for p = 4. The speedup, on the larger problem (n = 32000), is 1.91 for p = 2
and 3.27 for p = 4.
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4.3 EMEWS: Extreme-scale Model Exploration With
Swift/T
Extreme-scale Model Exploration With Swift/T (EMEWS), uses the general-purpose
parallel scripting language Swift [Arm+14] (described in Chapter 3) to generate
highly concurrent simulation workflows. These workflows enable the integration of
external ME algorithms to coordinate the running and evaluation of large numbers
of simulations, these allow also to easily implement SO process. The general-purpose
nature of the programming model allows the user to supplement the workflows with
additional analysis and post-processing as well.

QueueQueue WorkerWorker WorkerWorker ......

M EM E ModelModel ModelModel

Obtain parameters
Record results

Swift ScriptSwift Script

Distribute work

Model Exploration algorithm
State is retained between calls

E.g., ABM, including
parallel tasks over MPI

EMEWS: Extreme-scale Model Exploration with Swift/T
● High-level, scripted control
● Parallel MPI simulations (C++)
● Inversion of control

Fig. 4.4.: Overview of Extreme-scale Model Exploration with Swift/T (EMEWS) framework.

Figure 4.4 illustrates the main components of the EMEWS framework. The main
user interface is the Swift script, a high-level program. The core novel contributions
of EMEWS are shown in green, these allow the Swift script to access a running ME
algorithm. This algorithm can be expressed in Python, R, C, C++, Fortran, Julia,
Tcl, or any language supported by Swift/T.

EMEWS provides a high-level queue-like interface with (currently) two implemen-
tations: EQ/Py and EQ/R (EMEWS Queues for Python and R). These allow the
Swift script to obtain candidate model parameter inputs and return model outputs
to the ME. The simulation models are distributed by the Swift/T runtime over a
potentially large computer system, but smaller systems that run one model at a time
are also supported. The simulations can be implemented as external applications
called through the shell, or in-memory libraries accessed directly by Swift (for faster
invocation).
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EMEWS thus offers the following contributions to the science and practice of simula-
tion ME studies:

1. it offers the capability to run very large, highly concurrent ensembles of
simulations of varying types;

2. it supports a wide class of model exploration algorithms, including those
increasingly available to the community via Python and R libraries;

3. it offers a software sustainability solution, in that simulation studies based
around EMEWS can easily be compared and distributed.

EMEWS as SOF is focused on agent-based models (ABMs). Extracting knowledge
from ABMs requires the use of approximate, heuristic ME methods involving large
simulation ensembles. To improve the current state of the art it has been noted
elsewhere that: “. . . there is a clear need to provide software frameworks for meta-
heuristics that promote software reuse and reduce developmental effort." [I.+13].

The EMEWS design aims to ease software integration while providing scalability
to the largest scale (petascale plus) supercomputers, running millions of ABMs,
thousands at a time. Initial scaling studies of EMEWS have shown robust scalability
[Ozi+15]. The tools are also easy to install and run on an ordinary laptop, requiring
only an MPI (Message Passing Interface) implementation, which can be easily
obtained from common OS package repositories.

Section 4.3.2 describes three EMEWS use cases, which exploit ME algorithm to
optimize the results of Repast simulation. This use cases are published on a public
repository.

4.3.1 ABM integrations in EMEWS
EMEWS initially supports Repast and generic executable simulations. Two applica-
tions (wrappers) to easily integrate MASON and NetLogo simulations are described
in the following. The use cases that are described in Section 4.3.2 are also im-
plemented using MASON and NetLogo simulations and are published on public
repository (mutisim branch).

The Repast simulator allows to easily execute Repast simulation from command
line. The Listing 4.1 depicts an example Bash script to execute Repast simulation.
As shown, the most attractive feature of Repast is that it allows to run a partic-
ular parameters configuration (param_line) of a simulation model (-scenario
‘$scenario’).

MASON and NetLogo do not provide the same feature. Hence, it is quite complex to
integrate these ABM toolkits in frameworks as EMEWS or SOF. In SOF the integration
has been made by a programming level approach (the parameters configuration is
loaded from Java code); On the other hand, EMEWS is based on Swift/T language
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Listing 4.1: Repast script to execute simulation

1 #!/ bin /bash
2 s e t −eu
3 # The upf param l ine , s imula t ion arguments
4 param_line=$1
5

6 # The in s tance d i r e c t o r y
7 i n s t anceD i r=$2
8

9 #root d i r e c t o r y of the p r o j e c t
10 tp roo t=$3
11

12 #d i r e c t o r y of the s imula t ion model
13 modelDir=$tproot " / complete_model / "
14

15 #mkdir $ ins tanceD i r # s ince the s w i f t s c r i p t i s making t h i s
16 cd $ ins tanceDi r
17 ln −s $modelDir " data " data
18

19 cPath=$modelDir " l i b /* "
20 pxml=$modelDir " s cenar io . r s / batch_params . xml "
21 s cenar io=$modelDir " s cenar io . r s "
22

23 i f [ [ ${JAVA:−0} == 0 ]]
24 then
25 JAVA=java
26 f i
27

28 #Execute Repast Simphony
29 $JAVA −Xmx1536m −XX:−UseLargePages −cp " $cPath "

r epas t . simphony . batch . InstanceRunner −pxml " $pxml " −s cenar io
" $scenar io " −id 1 " $param_line "
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Listing 4.2: MASON script to execute simulation

1 #!/ bin /bash
2

3 s e t −eu
4

5 # Args
6 param_line=$1 # The upf param l i n e
7 #echo " $param_line "
8 i n s t anceD i r=$2 # The in s tance d i r e c t o r y
9 tp roo t=$3

10

11

12 i f [ [ ${JAVA:−0} == 0 ]]
13 then
14 JAVA=java
15 f i
16

17 echo " INPUT " $param_line
18

19 $JAVA −Xmx1536m −XX:−UseLargePages
20 − j a r $ tproot /mason_model/mason−1.0−wrapper . j a r
21 −m $tproot /mason_model/JZombieMason . j a r
22 −s ims ta t e i t . i s i s l a b . s w i f t l a n g . abm. mason . zombie . JZombie
23 −o u t f i l e $tproot / s w i f t / $ ins tanceDi r / counts . csv
24 −runid 1
25 −s 150
26 − t r i a l 1
27 − i $param_line
28 −o human_count , zombie_count

which does not allow to execute Java pure code, and consequently needs a different
strategy. Two Java Wrappers (for MASON, see Listing 4.2 and NetLogo, see Listing
4.3) have been designed to add on EMEWS the support for both the MASON and
NetLogo, with the same features available for Repast. Chapter 3, describes the new
functionalities of Swift/T to invoke languages based for JVM (available from Swift/T
1.0), these new functionalities allow to configure the simulation by code, instead of
executing bash script.

Two Java wrappers1 were designed to face to this problem and are (the project is
released under MIT License). Both the wrappers use the ABM toolkits Java API in
order to create, initialize and execute new simulations. The wrappers usage is pretty
similar, and change according the ABM toolkits characteristics. For instance the
simulation model in MASON is specified using the full qualified name (parameter
-simstate) of the MASON model class and the the simulation (parameter -m) is
defined by a Jar file (see line 21− 22 Listing 4.2). Instead, in NetLogo (see line 21
Listing 4.3) the simulation (parameter -m) is a *.nlogo file, which describes also the
model. Both the wrappers allow to take the parameters configuration string (CSV

1Available on https://github.com/spagnuolocarmine/swiftlangabm public repository.
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Listing 4.3: NetLogo script to execute simulation

1 #!/ bin /bash
2

3 s e t −eu
4

5 # Args
6 param_line=$1 # The upf param l i n e
7 #echo " $param_line "
8 i n s t anceD i r=$2 # The in s tance d i r e c t o r y
9 tp roo t=$3

10

11

12 i f [ [ ${JAVA:−0} == 0 ]]
13 then
14 JAVA=java
15 f i
16

17 echo " INPUT " $param_line
18

19 $JAVA −Xmx1536m −XX:−UseLargePages
20 − j a r $ tproot / netlogo_model / netlogo −1.0−wrapper . j a r
21 −m $tproot / netlogo_model /JZombiesLogo . nlogo
22 −o u t f i l e $tproot / s w i f t / $ ins tanceDi r / counts . csv
23 −runid 1
24 −s 150
25 − t r i a l 1
26 − i $param_line
27 −o human_count , zombie_count
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formatted), given as input using the parameter −i. The others parameters for the
wrappers are:

• -outfile, output file for the outputs parameters;
• -runid, execution identify;
• -trial, number of trial to execute (for each trial a different random seed is

used);
• -s, total number of simulation steps to execute;
• -o, list of output parameters (notice that the name of the parameters corre-

spond to the name of the variables used in the MASON and NetLogo model
implementations).

4.3.2 EMEWS USE CASES
There are many freely accessible libraries relevant to model exploration published in
Python, Java, and R. For instance some of which are utilized in use cases 4.3.2 and
4.3.2.

In Python, the Distributed Evolutionary Algorithms in Python (DEAP) toolkit [For+12]
is a framework for developing evolutionary algorithms. The scikit-learn package2

provides a large number of machine learning methods and Theano3 and Lasagne4

enable deep learning, capabilities which are useful for surrogate/meta-modeling and
active learning [Set12] applications.

On the R side, the EasyABC [F.+13] and ABC [Csi+12] packages provide approxi-
mate Bayesian computation (ABC) capabilities that are increasingly being applied to
ABM. For machine learning and other statistical applications, R includes packages
such as caret [Kuh08], randomForest [LW02], and many others.

In the following sections are described three use cases of EMEWS in combination
with Java Repast, MASON, NetLogo simulation and ME libraries in Python and R.
These examples are published on a public repository 5.

Simple Workflows with ABM

For a first demonstration ABM use case, the first example presents a Swift/T parallel
parameter sweep to explore the parameter space of a model (PSE or ME process).
The full Use Case One [UC1] project can be found at the tutorial website where, in
addition to the Repast Simphony use cases examples, the repository branch multisim
provides also NetLogo and MASON examples, developed using the ABM software
integration described in the Section 4.3.1).

2Available at http://scikit-learn.org.
3Available at http://deeplearning.net/software/theano/.
4Available at http://lasagne.readthedocs.io/.
5Available at https://bitbucket.org/jozik/wintersim2016_adv_tut.
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The example model used here is an adaptation of the JZombies demonstration model
distributed with Repast Simphony [CN15]. (The fictional Zombies versus Humans
model is intended to illustrate that Swift/T and Repast Simphony are domain
agnostic.) The model has two kinds of agents, Zombies and Humans. Zombies
chase the Humans, seeking to infect them, while Humans attempt to evade Zombies.
When a Zombie is close enough to a Human, that Human is infected and becomes a
Zombie. During a typical run all the Humans will eventually become Zombies.

These agents are located in a two dimensional continuous space where each agent
has a x and y coordinate expressed as a floating point number (and in a corre-
sponding discrete grid with integer coordinates). Movement is performed in the
continuous space and translated into discrete grid coordinates. The grid is used
for neighborhood queries (e.g. given a Zombie’s location, where are the nearest
Humans). The model records the grid coordinate of each agent as well as a count
of each agent type (Zombie or Human) at each time step and writes this data to
two files. The initial number of Zombies and Humans is specified by model input
parameters zombie_count and human_count, and the distance a Zombie or Human
can move at each time step is specified by the parameters zombie_step_size and
human_step_size .

In order for Swift/T to call an external application such as the Zombies model, the
application must be wrapped in a leaf function [fun16]. The Zombies model is
written in Java which is not easily called via Tcl and thus an app function is the
best choice for integrating the model into a Swift script. Repast Simphony provides
command line compatible functionality, via an InstanceRunner class, for passing a
set of parameters to a model and performing a single headless run of the model
using those parameters. The command line invocation of Repast Simphony was
wrapped in a bash script repast.sh that eases command line usage.

Listing 4.4: Zombies model parameter sweep

1 s t r i n g tp roo t = getenv ( "T_PROJECT_ROOT" ) ;
2 app ( f i l e out , f i l e e r r )
3 _F_repast_C__C_ ( f i l e repast_sh , f i l e upf , i n t i ,
4 s t r i n g output , s t r i n g scenar io ) {
5 " bash " repas t_ sh i output s cenar io tp roo t
6 @stdout=out @stderr=er r ;
7 }−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 cp_message_center () => {
9 f i l e repas t_ sh =

10 input ( tp roo t+" / s c r i p t s / repas t . sh " ) ;
11 f i l e upf = input ( argv ( " f " ) ) ;
12 s t r i n g scenar io = argv ( " sd " , " s cenar io . r s " ) ;
13 s t r i n g u p f _ l i n e s [] = f i l e _ l i n e s ( upf ) ;
14 foreach s , i in u p f _ l i n e s {
15 s t r i n g in s t ance = " ins tance_%i / " % i +1;
16 make_dir ( in s t ance ) => {
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17 f i l e out <ins tance+" out . t x t " >;
18 f i l e e r r <ins tance+" e r r . t x t " >;
19 f i l e ups <ins tance+" upf . t x t "> = wri te ( s ) ;
20 ( out , e r r ) = repas t ( repast_sh , ups , i +1,
21 i n s t ance_d i r , s cenar io ) ;
22 }
23 }
24 }

The Swift app function that calls Repast Simphony is shown in the top of 4.4. Prior to
the actual function definition, the environment variable T_PROJECT_ROOT is accessed.
This variable is used to define the project’s top level directory, relative to which other
directories (e.g., the directory that contains the Zombies model) are defined. On
line 2, the app function definition begins. The function returns two files, one for
standard output and one for standard error. The arguments are those required to
run repast.sh: the name of the script, the current run number, the directory where
the model run output should be written, and the model’s input scenario directory.
The body of the function calls the bash interpreter passing it the name of the script
file to execute and the other function arguments as well as the project root directory.
@stdout=out and @stderr=err redirect stdout and stderr to the files out and err.
It should be easy to see how any model or application that can be run from the
command line and wrapped in a bash script can be called from Swift in this way.

The full script performs a simple parameter sweep using the app function to run the
model. The parameters to sweep are defined in a file where each row of the file
contains a parameter set for an individual run. The script will read these parameter
sets and launch as many parallel runs as possible for a given process configuration,
passing each run a parameter set.

The Swift script is shown in 4.4. The script uses two additional functions that
have been elided to save space. The first, cp_message_center, calls the unix cp
command to copy a Repast Simphony logging configuration file into the current
working directory. The second, make_dir, calls the Unix mkdir command to create a
specified directory. Script execution begins in line 8, calling the cp_message_center
app function. In the absence of any data flow dependency, Swift statements will
execute in parallel whenever possible. However, in this case, the logging file must
be in place before a Zombie model run begins. The => symbol enforces the required
sequential execution: the code on its left-hand side must complete execution before
the code on the right-hand side begins execution.

Lines 11 and 12 parse command line arguments to the Swift script itself. The first of
these is the name of the unrolled-parameter-file that contains the parameter sets that
will be passed as input to the Zombies model. Each line of the file contains a parame-
ter set, that is, the random_seed, zombie_count, human_count, zombie_step_size
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and human_step_size for a single model run. The parameter set is passed as a sin-
gle string (e.g. random_seed = 14344, zombie_count = 10 ...) to the Zombies
model where it is parsed into the individual parameters. The scenario argument
specifies the name of the Repast Simphony scenario file for the Zombies model. This
defaults to “scenario.rs” if the argument is not given.

In line 13 the built-in Swift file_lines function is used to read the upf file into an
array of strings where each line of the file is an element in the array. The foreach
loop that begins on line 14 executes its loop iterations in parallel. In this way, the
number of model runs that can be performed in parallel is limited only by hardware
resources.

The variable s is set to an array element (that is, a single parameter set represented
as a string) while the variable i is the index of that array element. Lines 15 and
16 create an instance directory into which each model run can write its output.
The => symbol is again used to ensure that the directory is created before the actual
model run that uses that directory is performed in line 20. Lines 17 and 18 create
file objects into which the standard out and standard error streams are redirected
by the repast function (4.4). The Repast Simphony command line runs allows for
the parameter input to be passed in as a file and so in line 19 the parameter string
s is written to a upf.txt file in the instance directory. Lastly, in line 20, the app
function, repast, that performs the Zombie model run is called with the required
arguments.

In script 4.4 is shown how to run multiple instances of the Zombies model in parallel,
each with a different set of parameters. The next example builds on this by adding
some post-run analysis that explores the effect of simulated step size on the final
number of humans. This analysis will be performed in R and executed within the
Swift workflow. We present this in two parts. The first describes the changes to the
foreach loop to gather the output and the second briefly describes how that output
is analyzed to determine the “best” parameter combination.

This example assumes an unrolled-parameter-file where we vary zombie_step_size
and human_step_size. For each run of the model, that is, for each combination of
parameters, the model records a count of each agent type at each time step in an
output file. As before the script will iterate through the “upf” file performing as many
runs as possible in parallel. However an additional step that reads each output file
and determines the parameter combination or combinations that resulted in the most
humans surviving at time step 150 has been added. The relevant parts of the new
script are shown in 4.5. Here the repast call is now followed by the execution of an
R script (lines 2-3, a Swift multiple-line string literal) that retrieves the final number
of humans from the output file. The R script reads the CSV file produced by a model
run into a data frame, accesses the last row of that data frame, and then the value
of the human_count column in that row. The count_humans string variable holds a
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template of the R script where the instance directory (line 3) in which the output
file (counts.csv) is written can be replaced with an actual instance directory. Line
11 performs this substitution with the directory for the current run. The resulting R
code string is evaluated in line 12 using the Swift R() function. In this case, the res
variable in the R script (line 3) contains the number of surviving humans, and the
second argument in the R call in line 15 returns that value as a string. This string is
then placed in the results array at the ith index.

Listing 4.5: Zombies sweep with human count

1 s t r i n g count _humans = −−−−
2 l a s t . row <− t a i l ( read . csv ( "%s / counts . csv " ) , 1)
3 r e s <− l a s t . row[ 'human_ count ' ]
4 −−−−;
5

6 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 . . .
8 s t r i n g r e s u l t s [ ] ;
9 foreach s , i in upf _ l i n e s {

10 . . .
11 ( out , e r r ) = repas t ( r epas t _sh , ups , i +1,
12 ins tance , s cenar io ) => {
13 s t r i n g code = count _humans % ins tance _ d i r ;
14 r e s u l t s [ i ] = R( code , " t o S t r i n g ( re s ) " ) ;
15 }
16 }

An additional workflow step in which R is used to determine the indices of the
maximum values in the results array can be seen in the full script. Given that the
value in results[i] is produced from the parameter combination in upf_lines[i],
the index of the maximum value or values in the array is the index of the “best”
parameter combination or combinations. Swift code is used to iterate through the
array of best indices as determined by R and write the corresponding best parameters
to a file.

Workflow control with Python-based external algorithms

Due to the highly non-linear relationship between ABM input parameters and model
outputs, as well as feedback loops and emergent behaviors, large-parameter spaces
of realistic ABMs cannot generally be explored via brute force methods, such as
full-factorial experiments, space-filling sampling techniques, or any other a priori
determined sampling schemes. This is where adaptive, heuristics-based approaches
are useful and this is the focus of the next two use cases.

Listing 4.6: Setting up a DEAP call from Swif

1 import EQPy ;
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2 ( void o) _F_deap_C__C_ ( i n t ME_rank , i n t i t e r s , i n t pop ,
3 i n t t r i a l s , i n t seed ) {
4 l o c a t i o n ME = locationFromRank (ME_rank) ;
5 algo_params = "%d,%d,%d,\"% s \ " " %
6 ( i t e r s , pop , seed , params_csv ) ;
7 EQPy_init_package (ME, " deap_ga " ) =>
8 EQPy_get (ME) =>
9 EQPy_put (ME, algo_params ) =>

10 doDEAP(ME, ME_rank , t r i a l s ) => {
11 EQPy_stop (ME) ;
12 o = propagate () ;
13 }
14 }

In [Ozi+15] we describe an inversion of control (IoC) approach enabled by resident
Python tasks in Swift/T and simple queue-based interfaces for passing parameters
and simulation results, where a metaheuristic method (GA) developed with DEAP
[For+12] is used to control a large workflow. The second use case shows how this is
done with the EQ/Py extension. The benefit of using external libraries directly is
threefold. First, there is no need to port the logic of a model exploration method
into Swift/T, thereby removing the (possibly prohibitive) effort overhead and the
possibility for translation errors. Second, the latest methods from the many available
model exploration toolkits can be easily compared with each other for utility and
performance. Third, the external libraries are not aware of their existence within the
EMEWS framework, so methods developed without massively parallel computing
resources in mind can be nonetheless utilized in such settings.

In this use case is still used the Repast Simphony JZombies demonstration model.
For resident tasks, which retain state, the location of a worker is used so that
the algorithm state can be repeatedly accessed. The EQ/Py extension provides
an interface for interacting with Python-based resident tasks at specific locations.
4.6 listing shows how EQ/Py is used in the current example.The extension was
imported at line 1. The deap function is defined to take the arguments py_rank
(a unique rank), iters (the number of GA iterations), trials (the number of
stochastic variations per parameter combination, or individual), pop (the number
of individuals in the GA population), and seed (the random seed to use for the
GA). A location ME is generated from ME_rank in line 4. This location is passed to
the EQPy_init_package call, along with a package name (deap_ga), which loads
the Python file named deap_ga.py (found by setting the appropriate PYTHONPATH
environment variable), initializes input and output queues, and starts the run
function in the deap_ga.py file, before returning.

At this point the resident task is available to interact with through the EQPy_get()
and EQPy_put() calls, which get string values from and put string values into the
resident task OUT and IN queues, respectively. The first call to EQPy_get() (line 8) is
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made in order to push initialization parameters to the resident task via EQPy_put(ME,
algo_params) (line 9). Then the doDEAP() function, to be discussed next, is called
and, when it finishes executing, EQPy_stop() is called to shut down the resident
task.

Listing 4.7 shows the main DEAP workflow loop, a general pattern for interacting
with resident tasks. Unlike the foreach loop, which parallelizes the contents of its
loop, the Swift for loop iterates in a sequential fashion, only guided by dataflow
considerations. The for loop continues until the EQPy_get() call receives a message
“FINAL”, at which point EQPy_get() is called again to retrieve the final results
and doDEAP() exits the loop and returns (lines 12-15). Otherwise, the next set of
parameters is obtained by splitting (line 17) the string variable retrieved on line
10. The contents of the pop array are individual parameter combinations, also
referred to as individuals of a GA population. Each individual is then sent to a
summary objective function obj which creates trials stochastic variations of the
individual, evaluates their objective function (the number of Humans remaining, the
count_humans R code from 4.5) and returns the average value, (not shown here,
full script] on tutorial website). Lines 25-29 transform the summary objective results
for each individual into a string representation that can be evaluated within the
Python resident task, and this value is sent to it via EQPy_put() (line 30).

The EQ/Py extension makes two functions, IN_get and OUT_put, available for the
Python resident task and these can be used to pass candidate parameters to and
get results from any Swift/T workflow. These functions are the complements to the
EQPy_get() and EQPy_put() functions on the Swift/T side.

The DEAP framework provides flexibility in defining custom components for its
GA algorithms and is taking advantage of this by overriding the map() function
used to pass candidate parameters for evaluation to our custom evaluator with
toolbox.register("map", queue_map). The queue_map function executes calls to
OUT_put and IN_get. In this way the Python resident task is unaware of being a
component in an EMEWS workflow. The full Python resident task code (deap_ga.py)
along with the full DEAP use case can be found in the Use Case Two (UC2) project,
also for MASON and NetLogo in the branch multisim.

Calling a distributed MPI-based Model

In this use case, we will show how to integrate a multi-process distributed native code
model written in C++ into a Swift/T workflow. The model is a variant of the Java
Zombies model, written in C++ and using MPI and the Repast HPC toolkit [CN12]
to distribute the model across multiple processes. The complete two dimensional
continuous space and grid span processes and each individual process holds some
subsection of the continuous space and grid. The Zombies and Humans behave as
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Listing 4.7: The main DEAP workflow loop

1 ( void v ) _F_doDEAP_C__C_( l o c a t i o n ME, i n t ME_rank ,
2 i n t t r i a l s ) {
3 s t r i n g param_names =
4 " zombie_step_s ize , human_step_size , " +
5 " zombie_count , human_count " ;
6 f o r ( boolean b = true , // Loop v a r i a b l e s
7 i n t i = 1;
8 b ; // Loop cond i t ion
9 b=c , i = i + 1) { // Loop updates

10 s t r i n g params = EQPy_get (ME) ;
11 boolean c ;
12 i f ( params == " FINAL " ) {
13 s t r i n g f i n a l s = EQPy_get (ME) ;
14 p r i n t f ( " Re su l t s : %s " , f i n a l s ) =>
15 v = make_void () => c = f a l s e ;
16 } e l s e {
17 s t r i n g pop [] = s p l i t ( params , " ; " ) ;
18 f l o a t f i t n e s s e s [ ] ;
19 foreach p , j in pop {
20 f i t n e s s e s [ j ] =
21 obj (param_names , p , t r i a l s ,
22 "%i _%i _%i " % (ME_rank , i , j ) ,
23 " deap_ga " ) ;
24 }
25 s t r i n g r s [ ] ;
26 foreach f i t n e s s , k in f i t n e s s e s {
27 r s [k] = f romf loa t ( f i t n e s s ) ;
28 }
29 s t r i n g re s = j o i n ( rs , " , " ) ;
30 EQPy_put (ME, re s ) => c = true ;
31 }
32 }
33 }
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before but may cross process boundaries into another subsection of the continuous
space and grid as they move about the complete space. The HPC Zombies source,
a Makefile, the various files required to integrate it with Swift/T, and the Swift
scripts can be found in the Use Case Three (UC3) project. There, the HPC Zombie
model runs are driven by an active learning [Set12] algorithm using EQ/R, the R
counter-part to EQ/Py described above 4.3.2.

In contrast to the previous two examples the MPI-based HPC Zombies model is
compiled as a shared library that exposes a Swift/T Tcl interface [Woz+15]. Swift/T
runs on Tcl and thus wrapping the library in Tcl provides tighter integration than an
app function, but is also necessary in the case of multi-process distributed models
that use MPI. Such models when run as standalone applications initialize an MPI
Communicator of the correct size within which the model can be distributed and
run. Since the HPC Zombies model uses MPI, as do all Repast HPC based models, it
must be treated as an MPI library and passed an MPI communicator of the correct
size when run from Swift/T 3.2.3.

Listing 4.8: Zombies model Swift interface

1 @par @dispatch=WORKER ( s t r i n g z ) zombies_model_run ( s t r i n g conf ig ,
s t r i n g params )

2 " zombies_model " " 0.0 " " zombies_model_tcl " ;

The first step in integrating the HPC Zombies model with Swift/T is to compile it
as library, converting main() into a function that runs the model. The next step is
to make that function callable from Tcl via a SWIG created binding. SWIG[Bea96]
is a software tool that generates the ‘glue code’ required for some target lan-
guage, such as Tcl, to call C or C++ code. The SWIG tool processes an inter-
face file and produces the ‘glue-code’ binding as a source code file. In this case,
the C++ code we want to call from Tcl and ultimately from Swift is the Zom-
bies model function: std::string zombies_model_run(MPI_Comm comm, const
std::string& config, const std::string& parameters). The function takes
the MPI communicator in which the model runs, the filename of a Repast HPC config
file, and the parameters for the current run. When called, it starts a model run using
these arguments.

The SWIG interface file is run through SWIG and the resulting source code is com-
piled with the HPC Zombies model library code. The result is a zombie_model_run
function that is callable from Tcl. The Makefile target, ./src/zombies_model_wrapper.cpp
in the Makefile template is an example of this process.

The next step is to create the Swift bindings for the library function. The Swift
bindings define how the zombie_model_run function will be called from Swift. The
Swift code is shown in 4.8. The function is annotated with @par 3.2.4 allowing it to
be called as a parallel function. The @dispatch=WORKER 3.2.4 directs the function to
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run on a worker node. The function itself returns a string that contains the number
of humans and zombies at each time step. For arguments, the function takes the
config file file name and a string containing the parameters for the run. The model
will parse the individual parameters from this params string. The final 3 parts of the
function definition are the Tcl package name, the required package version, and the
Tcl function to call in the package. With this code included in the Swift script (either
directly or through an import), it is possible to execute the HPC Zombies model with
a call like:

string output = @par=4 zombies_model_run(config_file, params);

The Swift binding references a zombies_model Tcl package and a zombies_model_tcl
function in that package. The final step in integrating the HPC Zombies model with
Swift is to create this package and the function. A Tcl package is defined by its
pkgIndex.tcl file that specifies the libraries that need to be loaded as part of
the package and the Tcl code that is in the package. Tcl has a built-in function
::pkg::create that can be used to create a pkgIndex.tcl given a package name,
version, the name of the library to load, and the Tcl code file name. The HPC Zombies
example uses some simple Tcl code to call this function as part of a Makefile to create
the package (c.f. the zombies_tcl_lib Makefile target and the make-package.tcl
script).

Listing 4.9: Swift/T Tcl interface functions for HPC Zombies

1 proc zombies_model { outs i n s args } {
2 ru l e $ ins \
3 " zombies_model_body $outs {*} $ins " \
4 {*} $args type $turb ine : :WORK
5 }
6

7 proc zombies_model_body { z c fg prms } {
8 s e t c [ r e t r i e v e _ s t r i n g $cfg ]
9 s e t p [ r e t r i e v e _ s t r i n g $prms ]

10 # Look up MPI in format ion
11 s e t comm [ turb ine : : c : : task_comm ]
12 s e t rank [ adlb : : rank $comm]
13 # Run the Zombies model
14 s e t z_value \
15 [ zombies_model_run $comm $c $p ]
16 i f { $rank == 0 } {
17 s t o r e _ s t r i n g $z $z_value
18 }
19 }

The code in the zombies_model Tcl package that the Swift function calls is shown
in 4.9. For parallel tasks, Swift/T currently requires two Tcl procedures, a dataflow
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interface (line 1) and a body (line 7) that calls the zombies_model_run function.
The rule command (line 2) registers dataflow execution: when all input IDs ins
are available, zombies_model_body will be released to the load balancer and exe-
cuted on an available subset of workers. The args are Swift-specific task settings,
including the @par parallel settings, and are not accessed by the user. The body
function retrieves the input parameter values from Swift by applying the provided
retrieve_string function on the IDs, obtaining the configuration file name and
the sample model parameters. The MPI subcommunicator for the parallel task and
the current MPI rank in that communicator are accessed using functions by Swift
(lines 11-12). The communicator comm will be of the size specified by the @par
annotation. The HPC Zombies library interface is called (line 15) and returns a
string containing the model output that is stored in z_value. Only one process need
store the output z in Swift memory; we use rank 0 (lines 16-17). (This interface /
body pattern can easily be adapted for any MPI library, adjusting for any differences
in the wrapped library function arguments and additional input/output parameters.)
With the various bindings having been created, the HPC Zombies model can now be
called from a Swift script.

4.3.3 Tutorial Site for EMEWS
A detailed tutorial6 has been produced to present the Extreme-scale Model Explo-
ration With Swift (EMEWS) framework for combining existing capabilities for model
exploration approaches (e.g., model calibration, metaheuristics, data assimilation)
and simulations (or any “black box” application code) with the Swift/T parallel
scripting language to run scientific workflows on a variety of computing resources,
from desktop to academic clusters to Top 500 level supercomputers. The tutorial
presents the use-cases described in Section 4.3.2. With more details, the tutorial
aims to describe through examples the following main elements of the EMEWS
framework:

• How external code can be incorporated with minimal modifications;
• How the EMEWS Queues (EQ/Xs) are used to communicate between model

exploration code and Swift;
• How EMEWS enables the scaling of simulation and black box model exploration

to large computing resources;
• How modularized, multi-language code can be effectively tested and integrated

within the EMEWS framework.

Tutorial Window. The tutorial has been designed with an innovative approach
which is able to provide within a single web IDE the description, the code and the
project structure. The tutorial window, depicted in Figure 4.5, is composed of five
panes. The tutorial text appears in pane 1. Within the tutorial text you will see

6Available at http://www.mcs.anl.gov/~emews/tutorial/.

4.3 EMEWS: Extreme-scale Model Exploration With Swift/T 147

http://www.mcs.anl.gov/~emews/tutorial/


Fig. 4.5.: EMEWS Tutorial Site – http://www.mcs.anl.gov/~emews/tutorial/

hyperlinks to source code that is being explained. These links are of two types. Both
types will display the content of the relevant source code file in pane 2. The second
type will also scroll the source code and highlight lines of interest. For example,
clicking on the link: swiftrun.swift will open the swiftrun.swift file in pane 2, and
clicking on this one will scroll and highlight lines 13−−15 in that file. Other links
refer to sections in other tutorials, or bibliographic references. These will appear as a
modal browser window, displaying the relevant text. Pane 3 displays the source files
and project structure for the tutorial currently displayed in pane 1. Double-clicking
a folder or single-clicking the triangle symbol to the left of the folder will reveal its
contents. Pane 4 displays a table of contents for the current tutorial. Single click on
an entry to scroll the tutorial text in pane 1 to that section. Pane 5 displays the list of
tutorials. Double click on an entry to open that tutorial.
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5Scalable Web Scientific
Visualization

„The greatest value of a picture is when it forces
us to notice what we never expected to see.

— John Tukey
American Mathematician

5.1 Introduction
As discussed in Section 1.1, the Computational Science field comprises research
interests on scientific data visualizations. Despite the fact that scientific data vi-
sualization many times is considered as a subfield of computer graphics, it is an
interdisciplinary research branch which aims to visualize data, using a computational
approach and/or computer science tools, in a way that helps the reader grasp the
nature of (potentially) large datasets.

This Chapter describes an extensible and pluggable architecture for the visualization
of data on the Web, tailored particularly for Open Data. Open data is data freely
available to everyone, without restrictions from copyright, patents or other mecha-
nisms of control. The advantage of the Open data is that they are freely accessible on
the Web in machine readable format. The architecture aims to introduce a scalable
way to easily visualize Open data in classical HTML pages.

The most important feature of the proposed architecture is that it moves the compu-
tation client side: data gahtering, data filtering and the rendering of the visualization
are made client side, and not server side, as in other architecture. This ensure
the scalability in terms of number of concurrent visualizations, data trustiness and
privacy (because the data are dynamically loaded client side, without any server
interactions). These design features are the fundamentals of a novel paradigm of
Distributed Computing named Edge-Centric Computing or Fog Compunting.

5.1.1 Edge-centric Computing
Edge-centric Computing (EcC) is a novel Distributed Computing paradigm presented
in [Lop+15]. This paradigm is based on an observation that in Computing as in in
many aspects of human activity there has been a continuous struggle between the
forces of centralization and decentralization.
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Fig. 5.1.: Centralized cloud model (left) versus Edge-centric Computing (right).

In EcC the most of the computation is moved client side, this affects the cloud
paradigm that becomes a support infrastructure to the computing. These kind of
decentralization allows to easily ensure the data trustiness and scalability on million
of users, moreover, allows to develop novel kind of human-centered applications.

The Figure 5.1 depicts the difference between the classical Cloud Computing and EcC
paradigms. The EcC architecture is composed of a core and some edges. The core
is represented by smaller web servers and content distribution networks, while the
edges consist of individual human-controlled devices such as desktop PCs, tablets,
smart phones, and nano data centers. As shown in the picture the core (that may
be a cloud infrastructure or service provider) is responsible for a minimum part
of the total computation and information sharing, the edges in the architecture
should operate without of core interference in order to ensure trust and massive
number of operations. The EcC architecture may be seen as an attractive and
complete definition of other architectures, such as Content Delivery Networks(CDN),
Peer-to-Peer(P2P), Decentralized Cloud Architecture and Fog Computing.

Problem of centralized computing. The EcC has been designed to face three main
problems. The first fundamental problem is the loss of privacy by releasing personal
and social data to centralized services. A second fundamental problem is the
delegation of the total control to cloud or service infrastructures. These can not
easily ensure any kind of trust both on the data and on the operations performed on
it. For instance, delegating the visualization of some data to a cloud service, requires
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that the user must trust the service provider, that may change the data or use them
for other purposes. The final problem is the scalability, the centralization does not
allow to design scalable application on a massive number of computations. Moreover
it misses the opportunity of exploiting the enormous amount of computation of
modern personal devices (e.g. Desktops, Laptops, Smart phones, etc..).

5.1.2 Data Visualization process
A “visualization is worth then thousands of words”, and very often they are used
to convey information in a pleasant, understandable and intuitive way. Hence, our
vision is to provide a tool to help and engage users in the creation of interactive
visualizations of data. In this way, the data can be represented through visualizations,
such as, line charts, bar charts, maps and so on, that summarizes and emphasizes
the information hidden behind the data.

The data visualization process may be described by three main steps:

1. Formulate the question, the first step of the data visualization process is to be
clear on the question to be answered. The answer to the question will be given
by a visualization of data. However, the question may be refined, often, after a
good understanding, gathering and filtering of data.

2. Data gathering, once the question has been identified, it is necessary to identify
and collect data related to the formulated question. This can be done by
using own data or using data available elsewhere, as in the case of Open Data.
These kind of data are accessible by service providers. Table 5.1 shows 6
popular open data software providers. Many of them allow to access the data
in machine readable formats using Web API.

3. Apply a visual representation, the last step correspond to identify the appropri-
ate way to visualize the data. The challenges facing visualization researchers
often involve finding innovative graphic and interactive techniques to represent
the complexity of information structures. In general, the visual representation
of data is the crucial point in data visualization process, and may be a complex
task. It is important to have some tools able to help users to chose to right way
of visualizing the data.

The architecture described in this chapter aims to help in the final two steps of
the Data Visualization process, providing automatic mechanisms to gather the data,
software libraries and Web tools to apply a visual representation to the data.
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5.1.3 Open Data in a Nutshell
An adequate single definition of Open Data is the Open Definition published by Open
Knowledge. In which Open mean:

“Knowledge is open if anyone is free to access, use, modify, and share it — subject,
at most, to measures that preserve provenance and openness.”

An Open Data [Ope16a] covers two different aspects usage:

1. it is published under an open license, hence is legally open;
2. it is free to access for everybody, without using property format or restriction,

and should be searchable in machine readable format. That means that is
technically open;

3. in other words, it it can be freely used, modified, and shared by anyone.

The architecture, we are going to present, is based on the fundamentals of Open Data
[Ope16a], exploiting the standardization induced by their definition, in order to
provide an easily/scalable mechanism to visualize data on Web pages. Many are the
advantages of having an architecture able to easily exploit Open Data. For instance, it
can be used to improve transparency of governments and public administration, that
could provide to citizen information about their activities and tools for understanding
them. Making public sector data open is crucial for different reasons:

• allow citizens to understand better the government and public activities;
• enable the citizens to be better involved in the public choices;
• represent a starting point to develop new services for citizens.

The Open Data is a structured data and is developed to be easily processed by
machines. Different types of machine-readable data are considered according to
the level of interoperability that exploits, the Table 5.2 shows several data format
classified according to their level of interoperability. JSON and CSV formats are the
most common adopted by the Web API of Open Data platforms that are typically
available through RESTful Web API, establishing an automated way to gather data.
The communities has produced, during the last decade, many Open Data platforms
such as CKAN [Ope16d] and OpenDataSoft [Ope16b] that support these kinds of
interactions.

Following the EcC paradigm, in this dissertation, is proposed DatalEt-Ecosystem
Provider (DEEP), an open source, extensible and pluggable architecture for the
visualization of data which enables to gather (dynamic data), query and visualize
data in classical HTML pages for a massive amount of concurrent visualizations
(briefly described in [Mal+16]). The most important design feature concerns data
manipulation that is made on the client side, and not on the server side, as in
other architectures. This ensures the scalability in terms of number of concurrent
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Machine Readable Geodata Machine Readable Less Readable Closed
JSON Shapefile PDF Images (PNG, JPG,etc.)
XML GeoJSON Text Charts
RDF GML HTML
CSV KML Excel
TSV WKT Word
ODF

Tab. 5.2.: Open Data formats and machines interoperability.

Fig. 5.2.: Edge-centric Computing Architecture of DatalEt-Ecosystem Provider
.

visualizations, and dependability of the data and privacy (because the data are
dynamically loaded client side, without any server interactions).

5.2 DatalEt-Ecosystem Provider
DEEP is an open source, extensible and pluggable architecture providing visualiza-
tions of Open Data in a distributed web computing fashion. The code is published on
a public repository1, introduced in [Mal+16]. The visualizations are provided by an
object that is an off-the-shelf, reusable web-component able to load, query, filter, and
visualize any dataset content, that includes all the information to be rendered by a
standard web page. This kind of object, named Datalet, is based on the novel web
standard of web-component [Wor16] and exploits different JavaScript visualization
libraries like Highcharts [Hig16] or Leaflet[Lea16]. Close to our architecture is

1DEEP code repository: https://github.com/routetopa/deep

154 Chapter 5 Scalable Web Scientific Visualization

https://github.com/routetopa/deep


Google Charts [Goo16a], however it does not support different visualization libraries
and dynamic data (it supports only the Chart Tools Datasource protocol).

The DEEP architecture is compliant with the EcC architecture (see the grey func-
tional blocks in Fig. 5.2): Datalets guarantee the provenance of data (see [Data
Gathering] in Fig.5.2), showing the link to the original dataset used to create the
visualization. In this way, any user can determine whether information is trusted,
and whether data have been manipulated; Datalets ensure the scalability in terms
of visualizations (see [Datalet] in Fig. 5.1). The computation is made client side,
and does not experience bottlenecks due to overloading of the core. The core may
provide other services to the edges; for instance: reports, statistics, forecasting for
certain data exploiting the Datalets usage (see [Visualization Statistics] in Fig.
5.1).

DEEP may be seen as a cloud provider of visualization for some Open Data. An
increasing interest about public discussion around data visualization is witnessed by
several sites of data-journalism. Among the other, the Economist’s Graphic detail
blog2 regularly posts data visualizations (i.e., charts, maps and info-graphics) along
with the articles. On-line users contribute by actively commenting and sharing their
interpretations, observations, and hypothesis of the visualizations. A recent study
of the users’ comments [Hul+15] observed that 42.2% of them are focused on
the available content, such as, the visualizations, data and articles. On this blog,
the comments are text-based without the opportunity for users to create and share
alternative visualizations of the same dataset or other datasets. The aim, through
the DEEP architecture is to enable the social sharing and the collaboration around
data visualizations. The idea is that users can reuse and share data visualizations
to explain their interpretation of data and support their argumentation during the
discussion.

Visualization of Open Data is an essential tool to understand and interpret the
dataset content, foster the collaboration and engage users in discussions. In their
comments, users can support the same argumentation or answer back by creating
and commenting with other datalets. In particular, a user can reply by commenting
with another visualization of the same dataset or a Datalet of a different dataset. In
this way, social interactions evolve around visualizations through the creation and
posting of datalets to support argumentations. Datalets guarantee the provenance
of data, showing the link to the original dataset used to create the visualization. In
this way, any user can determine whether information is trusted, which is the data
source and how to trust it, whether data have been manipulated.

2Economist’s Graphic Detail blog is accessible to http://www.economist.com/blogs/
graphicdetail
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5.2.1 DEEP Background

Web Components Standard

A Datalet may be seen as reusable web widgets, DEEP exploits the web compo-
nents standard, currently being produced by Google engineers compliant with W3C
specification [Wor16]. The goal is to use component-based software engineering
to develop a bundle of web widgets that can be used whenever needed, without
having to rewrite the common fragments shared by several pages of the platform.
The components model allows for encapsulation and interoperability of individual
HTML element.

The web component technologies enable to create your own HTML elements and
the support for these components is present in some WebKit-based browsers like
Google Chrome, Opera and in Mozilla Firefox (but it requires a manual configuration
change). Microsoft’s Internet Explorer has not implemented any Web Components
specifications yet. Backward compatibility with older browsers is implemented using
JavaScript-based polyfills [Web16] (a library you can import in the web page that
implements the web component specification).

Web components specifications consist of four elements, which can be used also
separately:

1. Custom Elements3, define the method to create new types of DOM elements
in a document. The element definition consists of custom element type, local
name, namespace, custom element prototype and lifecycle callbacks.

2. HTML Imports4, is a way to include and reuse HTML documents, typically web
component definitions, in other HTML document called master document. The
imported definitions are linked as external resources to master document.

3. Templates5, describe a method to declare inert DOM subtree in HTML and
manipulate them to instantiate document fragment with identical content.

4. Shadow DOM6, defines a method of establishing and maintaining functional
boundaries between DOM tree and how these trees interact with each other
within document enabling better functional encapsulation within the DOM.

The major support libraries that implements the web components are:

• X-Tags by Mozilla [X-T16]: allows developers to easily create elements to
encapsulate common operations.

3http://w3c.github.io/webcomponents/spec/custom/
4http://w3c.github.io/webcomponents/spec/imports/
5https://html.spec.whatwg.org/multipage/scripting.html#the-template-element
6http://w3c.github.io/webcomponents/spec/shadow/
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• Polymer by Google[Goo16b]: allows developers to create interoperable custom
elements that extend HTML. Polymer allows to enable browsers that does not
support the standard to use web components.

• Bosonic[Bos16]: similar to Polymer library.

According to the specifics of the web components standard, DEEP architecture uses
Polymer. Polymer is the library that supports the major number of requirements
as template, web components, material components, data binding, filters, events
handling, touch and gestures, and AJAX/REST.

JavaScript Chart Libraries

The idea is to provide to the user an easily developing to include a data visualiza-
tion in web pages. However, this work does not aim to develop new JavaScript
visualization libraries, but reusing existing libraries and providing an innovative
transparent way to use it. Visualizations JavaScripts libraries are defined by the
following features:

1. Cross Browser Compatibility: a visualization library must be compatible with
all browsers or modern browser taking in account the target audience;

2. Cross Device Compatibility: a visualization library must be responsive on both
desktop and hand-held devices;

3. Input Data Format: supports to different input data format, such as JSON
(Javascript Object Notation);

4. Customizability: possibility to customize the visualizations, for instance, config-
uring legends, attaching events (e.g., hover, click);

5. A set of available charts: number of visualizations offered by the library;
6. Performance: many factors must be consider, such as, size of library, memory

usage, garbage collection and number of browser repaint cycles;
7. Exporting: support to export visualizations in different formats, such as PDF or

images (e.g. JPEG, PNG, SVG stc.);
8. License: the license of the library is a crucial point, due to this work is an open

source project.

Many popular JavaScript for visualizations are:

1. Dygraphs[Dyg16] is fast, flexible open source library that allows users to
explore and interpret dense dataset. It is customizable, it works in all major
browsers with zoom and mobile and tablet devices support.

2. Leaflet[Lea16] is a library for maps based on OpenStreetMap. It provides an
interactive geo-localized data visualization in an HTML5/CSS3 wrapper. It
is extensible with a wide range of plugins with specific functionality such as
animated markers, masks and heatmaps.
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3. jqPlot[A V16] is a jQuery (a well-know general purpose JavaScript library)
plugin for line and point charts. It has a few additional features such as the
ability to generate trend lines automatically. It is extensible by plugins. There
are plenty of hooks into core code allowing for custom event handlers, creation
of new plot type and more. It has been tested on IE7, IE8, Firefox, Safari and
Opera.

4. D3.js[D3.16] is a very powerful library that uses HTML, SVG and CSS to render
different set of diagram and chart from a variety data source. It is, more than
most, capable to provide some seriously advanced visualization with complex
features and includes some advanced user interaction support.

5. Highcharts[Hig16] is a charting library with a very huge range of chart options
available. It uses SVG for modern browsers and VML in Internet Explorer. All
charts have a really attractive looks and animation. It is well documented and
used by a tens of thousands of developers (great community support) and it is
also very simple to use.

6. Google Charts[Goo16a] is a set of powerful chart tools that provide a way to
visualize data on a website. The charts gallery provides a large number of
ready-to-use chart type, from simple line chart to complex hierarchical tree
map. It is used by embedding simple Javascript in the webpage. Charts are
highly interactive and expose events that the developer could use to create
complex dashboard or advanced user interaction mechanism. All charts are
rendered using HTML5/SVG technology to provide cross-browser compatibility.
The purposes of this library are similar to the DEEP ones, but it is not open
source, it does not ensure mechanism to gathering data, and the computation
in its initial implementation is made on the severs side.

7. Crossfilter[Cro16] is a library for exploring large multivariate datasets in
the browser. Crossfilter is specialized to support extremely fast (< 30ms)
interaction with coordinates view with datasets containing a million or more
records. This library displays data and make user able to restrict the range of
data and see other linked charts react.

8. Polymaps[A J16] is a free library for making dynamic, interactive vector-tiled
maps and images in modern web browser using SVG. It allows to define the
design of the data by CSS rules and provides the display of multi-zoom datasets
over maps, supports a variety of visual presentation for tiled vector data. It is
ideal for showing information from country level on down to state, cities and
individual streets because of it can load data at full range of scales.

9. Flot[Att16] is an attractive charting library for JQuery with focus on simple
usage, attractive looks and interactive features. It is extensible by plugin and
provides a basic support for lines, points, filled areas, bars and other type of
charts.

10. Raphael[Rap16] is a very simple and small library that provides support for a
wide range of data visualization options, which are rendered using SVG.
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11. jQuery Visualize[jQu16] is written by the team behind jQuery’s ThemeRoller
and jQuery UI websites, jQuery Visualize Plugin is an open source charting
plugin for jQuery that uses HTML Canvas to draw a number of different chart
types. One of the key features of this plugin is its focus on achieving ARIA
support, making it friendly to screen-readers.

12. OpenLayers[Ope16e] is probably the most robust of mapping libraries. The
documentation is not great and the learning curve is steep, but for certain
tasks nothing else can compete.

13. Dimple[Dim16] is a library to aid in the creation of standard business visual-
izations based on D3.js. It makes easy for anyone, analyst or not, to develop
stunning, three-dimensional graphics without any real JavaScript training.
The dimple API tested against Firefox, Chrome, Safari and IE9. Its browsers
support is largely inherited from D3.js so using it on IE8 and earlier will be
difficult/impossible.

5.2.2 DEEP Architecture
The core of the DEEP architecture is the concept of Datalet. Datalets move the data
visualizing work-flow to the edges of the network providing scalability, data trustiness
and privacy. Furthermore, it enables all users (not only computer or data scientists)
to include visualizations in their Web pages, while the system automatically ensures
the scalability in terms of efficiency of visualization. That means that the users are
sure about the performances of their pages, because the computation is made client
side, and no server overload is possible. Datalets ensure also that the visualizations
code is each time automatically updated, see Figure 5.1 [Datalet].

DEEP Datalets

A Datalet may be seen as reusable web widgets; the DEEP exploits the web components
standard compliant with W3C specification [Wor16]. According to this standard,
in this architecture we exploit Polymer [Goo16b] (see section 5.2.1), a library
developed by Google engineers that supports the major number of requirements
as template, web components, material components, data binding, filters, events
handling, touch and gestures, and AJAX/RESTful support.

The idea is to provide to the user an easy development tool to include a data
visualization in web pages. However, this work does not aim to develop new
JavaScript visualization libraries, but on reusing of existing libraries, providing an
innovative transparent way to use them.

Datalets have been designed to process any dataset as input, provided that the Data
Provider enables to access the data using Web API in a machine readable format
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(such as JSON or CSV). In the current implementation, datalets are tested on data
from CKAN installations, and from a commercial provider such as OpenDataSoft.

The datalet design follows the Object-Oriented paradigm (OOP), according to it
all the datasets are build, brick by brick, inheriting from other bricks. Each brick
is a web component that exports some functionalities. The building of a datalet
is made on top of four layers, see Figure 5.3: Architectural layer; Library layer;
Visualization-depended layer; the Datalet layer.

The Architectural layer provides common behaviors for all datalets, that are:

• BaseDataletBehavior, which defines the mandatory attributes that all datalet
must have:

– data_url: a string URL used to get the data from the open data provider
(e.g. the CKAN API).

– fields: a JSON array of strings representing user selected dataset fields.
– data: an array data structure that store the data retrieved from open data

provider.
• WorkcycleBehavior, which implements the work-cycle of each datalets, com-

posed by the following steps:
– GET: it is responsible for data retrieving from an open data platform.
– SELECT: it is responsible for extracting a query related subset of infor-

mation from the entire dataset. A multidimensional array will be made
available for the transformation step.

– FILTER: it enable to select a certain number of row by applying one of
the following relational operators (<,>, =, <=, >=, etc.).

– TRANSFORM: it is responsible for aggregating and organizing the data in
order to obtain a coherent data representation.

– PRESENT: it provides a specific visualization for the selected data.
• AjaxJsonAlasqlBehavior, which uses AJAX to request, select, filter data.

The Library layer includes all behavior referred to a particular visualization library
(e.g. Highcharts [Hig16]).

The Visualization-depended layer encloses the behavior refereed to a specific visual-
ization (e.g. Bar chart, table chart, etc.) developed using a particular library.

The Datalet layer is the real implementation of the web component datalet, and is
developed by some of the hierarchy behavior.

Clearly, the datalet building process takes advantage of this hierarchy; different
datalets may share low level behaviors facilitating code reuse and error fix to datalet
developers.

Hence, each datalet is a web-component that implements a reusable lifecycle (see
Fig. 5.4) with all required behaviors to load the datalet source code, the dataset
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Fig. 5.3.: Datalets Object-Oriented paradigm embedding. The four layer of DEEP datalets
architecture.
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Fig. 5.4.: Datalet lifecycle..

content, filter and group the data to finally render the visualization in the web-page.
Fig. 5.4 shows the whole process that evolves from left to the right; on top, there are
the inputs, below repositories. The datalet is included in the web-page source code.
When the browser loads the web-page, it processes the datalet source code that is
self-consistent with all parameters (i.e., datalet url, dataset URL, filters and other
configuration parameters). When the web page loads for the first time, the browser
contacts the DEEP architecture (see Figure 5.6) to download the datalet source code
from the datalets repository. The datalet source code reads the URL of the input
dataset, thus, it downloads the data in real-time and performs further processing
(such as data filtering, grouping and so on).

DEEP Web Service

The DEEP component is a simple RESTful service, providing the list of available
datalets (i.e., a lookup service) and the mapping among the visualization names and
their relevant URL within a datalet repository. A datalet takes as input: a dataset
URL, a query to be performed on the data, and -optionally- a filter and/or some
additional configuration parameters. Currently, on http://deep.routetopa.eu
several kind of datalets (bar chart, map, treemap and others) are available, and
many more are planned. All datalets are published on a public repository7.

Both the DEEP and the Datalet repository have been designed to be extensible:
they can log all the visualization requests and, as planned future work, they could
also provide aggregated statistics on both users preferences and on data and their
visualizations. For instance, the most popular Datalet visualizations, most used
datasets, most popular visualizations for a particular dataset, most visualized field
for a particular dataset, and so on (see Figure 5.2 [Visualization Statistics]). Such
information will be also used to provide useful suggestions to inexpert users, both
on data selection, their filtering and their visualization.

From the user point of view, datalets are interactive, real-time and dynamic visualiza-
tions for Open Data. Datalets are interactive (they are not static pictures), allowing

7DEEP Datalets code repository: https://github.com/routetopa/deep-components
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Fig. 5.5.: An Example of datalet..

users to zoom in and out in the data, move the mouse on the visualization items and
have additional information. Figure 5.5 is an example of datalet: a bar chart that
shows the number of Wi-Fi antennas for each subarea in the city of Prato (Italy).

5.2.3 Datalets in HTML page
Datalets are reusable and portable in any web-page. For example, a data journalist
can write an article exploiting open data from government portals and publish the
article content along with visualizations to explain and show, for instance, trends.
They can be published along with the blog posts.

The Figure 5.6 depicts the work-cycle to include a Datalet in a Web page, that is
composed by:

• Client web page that exploits DEEP-Client functionality;
• DEEP (DatalEts-Ecosystem Provider);
• Datalet.

First, (1) the Client page sends a request to DEEP for a specific datalet. Then, (2)
the DEEP responds with the information needed to inject the datalet into the page.
Finally, (3) the Client retrieves the Datalet from the DEEP repository and includes it
into the page. When the datalet is injected in the page the behavior of the datalet is
executed.
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Fig. 5.6.: Datalets usage in HTML page.

Listing 5.1 shows the code to include a datalet in a classical web page. Lines 2, 3, 4
load the JavaScript libraries, in particular the deepClient.js8 library enables the
page to dynamically download the Datalet code from the DEEP repository. This
request is made using jQuery (lines 6–14), specifying the needed parameters. The
DEEP answer with the corresponding datalet code, which is then injected into the
page.

Listing 5.1: Datalet in HTML page

1 <html> <head>
2 <s c r i p t type=" t e x t / j a v a s c r i p t " s r c=" j s / jquery −1.11.2.min . j s "></ s c r i p t>
3 <s c r i p t type=" t e x t / j a v a s c r i p t " s r c=" j s /webcomponents . j s "></ s c r i p t>
4 <s c r i p t type=" t e x t / j a v a s c r i p t " s r c=" j s / deepCl ient . j s "></ s c r i p t>
5 <s c r i p t type=" t e x t / j a v a s c r i p t ">
6 jQuery ( document ) . ready ( func t ion ($) {
7 var data let_params ={
8 component : "DATALET_NAME" ,
9 params : { data−u r l : "DATA_URL" , layout−param−1: "LAYOUT−VALUE" }

10 f i e l d s : Array ( " FIELD1 " , " FIELD2 " ) ,
11 placeHolder : "HTML_PLACEHOLDER" } ;
12 ComponentService . deep_url = ' DEEP_URL ' ;
13 ComponentService . getComponent ( data let_params ) ;
14 }) ;
15 </ s c r i p t></head><body>
16 <div id="HTML_PLACEHOLDER"></ div>
17 </body></html>

8DEEP Client JS: https://github.com/routetopa/deep-client/blob/master/js/deepClient.
js
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5.2.4 Controllet
In order to easily develop the code to include a datalet, a web wizard controllet9 is
available online. This wizard allows the users to create their own datalets (guiding
the choice of the dataset, the type of visualization and the additional parameters)
to be included in sites, blogs, forums and so on, through a copy-and-paste of its
generated source code. The wizard guides also users reducing errors and helping
them to understand the dataset quality.

The wizard is composed by three steps:

• The first step is the dataset selection. The Controllet provides a list of pre-
configured datasets. When the user selects a dataset from the list, the system
shows the relevant meta-data. Of course, the user if free to select datasets
available in other external data portals by providing the data URL.

• Once the dataset has been selected, the next step is to decide what data to
display in the visualization. Practically this means that the user must select
the column of the datasets to pick up the data to display. Then it is possible
to filter (selecting the row that satisfy some specific requirements) the data.
Grouping operations are also available to group together rows based on the
same value of a specific column. Of course, it is essential to specify a rule that
explain how to aggregate data.

• The final step supports the selection of the visualization. The Controllet assists
the user in the selection of a compatible visualization with the filtered dataset.
For instance, when the user selects latitude and longitude from a dataset, the
Controllet suggests the map as possible visualization.

5.2.5 DEEP Use case: Social Platform for Open Data
The DEEP architecture has exploited in the Social Platform for Open Data (SPOD)
[Cor+16a] within the Raising Open and User-friendly Transparency-Enabling Tech-
nologies fOr Public Administrations10 (ROUTE-TO-PA) Horizon 2020 European
funded innovation project.

Within SPOD, discussions evolve using a forum-like approach, where the users post
visualizations, comments and can discuss in a time-centric way. SPOD has been
designed considering the well-known issues pointed out in literature for this type
of interactions, such as scattered content, low-signal-to-noise ratio, dysfunctional
argumentation [Kle10]. In contrast, another approach is to collaborate using a map-
based visualization [KC14], where users interact by adding, moving and modifying
concepts as well as linking them. This kind of visualization aims to support better
exploration of the problem space, to provide a rational organization of the content,

9DEEP Wizard: http://deep.routetopa.eu/deep_1_9_rev/COMPONENTS/demo.html
10ROUTE-TO-PA site: http://routetopa.eu/about-project/
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Fig. 5.7.: Overall architecture with the Open Data platforms on top, SPOD in the center,
and the DEEP component, which provides visualizations of open datasets..

to stimulate critical thinking. This also showed its limitations, because it suppresses
conversational dynamics and the usual reply structure, therefore disrupting the
way people communicate [Ian+15]. SPOD introduces an hybrid approach where
the forum-like approach is alongside the map-based visualization, and the two are
interlinked. Selecting a Datalet visualization node on the map, one can see all the
comments that contain the selected dataset to support their argumentations.

SPOD has built over Oxwall [Oxw16], and exploiting the DEEP architecture is
able to access to external existing Open Data platforms based on CKAN [Ope16d],
OpenDataSoft [Ope16b], or any other platform. Fig. 5.7 shows the architecture,
where SPOD is in the middle, and on top there are the external open data portals.
SPOD retrieves the dataset directly from these sources any time the Datalet is
visualized. SPOD belongs a federation of other systems, thus a central authentication
server, the RAS (ROUTE-TO-PA Authentication Server) has been provided. End-users
have one username and password to gain access to the federation systems.
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6Conclusion

Computational Science aims to solve complex problem through a computational
approach. This novel way to do science, is extremely demanding in terms of
computational requirements and consequently has to exploit efficiently the resources
available in HPC and Cloud infrastructures. From a Computer Science point of view,
the challenge in SC is to improve the current status of methods, algorithms and
applications in order to enhance the support for SC in terms of both efficiency and
effectiveness of the solutions.

This thesis analyzed Frameworks, Parallel Languages and Architectures for SC consid-
ering the scalability of the proposed solutions as the central challenge, is to realize
our idea of a Scalable Computational Science.

Frameworks for SCS. Problems and framework level design solutions for efficient
and scalable Distributed and Parallel Agent-Based Simulation (DPABS) have been
discussed. The proposed solutions are fully developed and tested on the DPABS
framework D-MASON, a distributed version of the well known ABS Java toolkit
MASON.

Summarizing, the proposed solutions in DPABS have been designed to face the
following issues:

Work partitioning. The problem of decomposing a program to a set of processors
(LPs) in order to achieve load balancing and efficient communication. D-
MASON provides three different kinds of work partitioning strategy. The
first two strategies use a space partitioning approach that exploits spatial
relationships of the agents: Uniform partitioning in which the simulation field
is evenly divided among the LPs. This solution does not consider that the
agents can be non-uniformly positioned on the field; Non-uniform partitioning
in which the simulation field is partitioned in such a way to balance the
workload among the LPs. The last partitioning strategy does not use the
spatial relationships, but considers that the relationships between the agents
are described through a graph. In this case, the simulations use a Network
field for mapping the relationships between the agents. D-MASON provides
a new distributed field, called DNetwork. This field is extremely useful in
several areas such as biology (cellular networks), social and political science
(communication and collaboration networks) as well as chemistry (metabolic
network) and so on.
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Memory consistency. In an ABM, the overall system evolves in discrete events
(ideally all agents change their state simultaneously). However, the agents of a
region are updated sequentially. In this case, the system, or the modeler, must
ensure that the accesses to the states of the agents are consistent. D-MASON
solves this problem at framework-level, by exploiting the Java Method Handler
mechanism.

Scalable communication. D-MASON LPs communicate via a well-known mechanism,
based on the Publish/Subscribe (P/S) design pattern: a multicast channel is
assigned to each topic; LPs then simply subscribe to their interested topics
in order to receive relevant message updates. D-MASON is designed to be
used with any Message Oriented Middleware that implements the PS pattern.
Furthermore, D-MASON can also be deployed on HPC systems. In order
to better exploit such homogeneous environments, D-MASON provides an
MPI-based Publish/Subscribe communication.

Execution on Cloud Computing systems. SIMulation-as-a-Service (SIMaaS) infras-
tructure provides a very attractive prospective for the future environment to
execute simulations, due to the good price-performance ratio. D-MASON
provides easy-to-use system management based on Web technologies and tools
to execute and visualize simulations on cloud computing systems.

The simulation method is mainly used to analyze behaviors that are too complex
to be studied analytically, or too risky/expensive to be tested experimentally. The
representation of such complex systems results in a mathematical model comprising
several parameters. Hence, there arises a need for tuning a simulation model,
that is finding optimal parameter values which maximize the effectiveness of the
model. Considering a multi-dimensionality of the parameter space, finding out the
optimal parameters configuration is not an easy undertaking and requires extensive
computing power. Simulations Optimization (SO) and Model Exploration (ME) are
used to refer to the techniques studied for ascertaining the parameters of the model
that minimize (or maximize) given criteria (one or many), which can only be
computed by performing a simulation run. Scalable solutions for such problems have
been analyzed. Moreover two frameworks for SO and ME, focusing respectively on
Cloud Computing (SOF: Simulation Optimization Framework) and on HPC systems
(EMEWS: Extreme-scale Model Exploration with Swift/T) have been presented.

Parallel languages for SCS. The EMEWS framework is made on the top of a parallel
programming language for scientific workflow, named Swift/T. A scientific workflow
is designed specifically to compose and execute a series of computational or data
manipulation steps in a scientific application. One peculiarity of Swift/T is that it
enables to easily execute code written in other languages, such as C, C++, Fortran,
Python, R, Tcl, Julia, Qt Script, but also invoke executable programs. EMEWS exploits
the capability of Swift/T to realize SO and ME workflows adopting optimization
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algorithms provided by general purpose libraries written in R and Python languages.
This dissertation presented the architecture and a library that has been integrated in
Swift/T (since the version 1.0) for supporting others kinds of interpreted languages.
The presented architecture enables to invoke, from Swift/T, code supported by a
Java Virtual Machine (JVM). In particular, the support for four JVM-based interpreted
languages: Clojure, Groovy, Javascript and Scala, has been described.

Architectures for SCS. The final contribution of this dissertation is an architecture
for scalable scientific visualization of Open-Data on the Web. The described archi-
tecture is an instance of Edge-centric Computing (EcC) paradigm. EcC is a novel
Distributed Computing paradigm based on the observation that in computing, as in
in many aspects of human activity, there has been a continuous struggle between
the forces of centralization and decentralization. Following the EcC paradigm, this
work presented the DatalEt-Ecosystem Provider (DEEP), an architecture for the
visualization of data which enables to gather, query and visualize (dynamic) data
in standard HTML pages for a massive amount of concurrent visualizations. The
most important design feature concerns data manipulation that is made on the
client side, and not on the server side, as in other architectures. This ensures the
scalability in terms of number of concurrent visualizations, and dependability of the
data and privacy (because the data is dynamically loaded client side, without any
server interactions).
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AGraph Partitioning Problem for
Agent-Based Simulation

As discussed in Section 2.3.1, D-MASON adopts a framework-level parallelization
mechanism approach, which allows the harnessing of computational power of a
parallel environment and, at the same time, hides the details of the architecture
so that users, even with limited knowledge of parallel computer programming, can
easily develop and run simulation models. D-MASON allows modelers to parallelize
simulation based on geometric fields. It adopts a space partitioning approach,
see Section 2.3.2, which allowed the balancing of workload among the resources
involved for the computation with a limited amount of communication overhead.

The space partitioning approach described in Section 2.3.2 is devoted to decomposing
ABMs based on geometric fields. On the other hand, when agents lie and/or interact
on a network [CH05] – where the network can represent social, geographical or even
a semantic space – a different approach is needed. The problem is to (dynamically)
partition the network into a fixed set of sub-networks in such a way that: (i) the
components have roughly the same size and (ii) both the number of connections
and the communication volume between vertices belonging to different components
are minimized. D-MASON enables developers to use the Network field providing
its distributed version, named D-Network field, described in Section 2.4.1. The
D-Network field is designed according to the following results.

A.1 k-way Graph partitioning Problem
Finding good network partitions (see Figure A.1) is a well-studied problem in graph
theory [AK95]. Several are the problems that motivate the study of this problem.
They range from computer science problems like integrated circuit design, VLSI
circuits, domain decomposition for parallel computing, image segmentation, data
mining [KL70; Kar+99], etc., to other problems raised by physicists, biologists, and
applied mathematicians, with applications to social and biological networks (com-
munity structure detection, structuring cellular networks and matrix decomposition
[Gup96; New06]).

The most common formulation of the balanced graph partitioning problem is the
following:

BALANCED k-WAY PARTITIONING(G, k, ε).
Instance: A graph G = (V,E), an integer k > 1 (number of components) and a
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Fig. A.1.: Graph partitioning Problem for DNetwork Field.

rational ε (imbalance factor).
Problem: Compute a partition Π of V into k pairwise disjoint subsets (components)
V1, V2, . . . , Vk of size at most (1+ε)d|V |/ke, while minimizing the size of the edge-cut∑

i<j |Eij |, where Eij = {(u, v) ∈ E : u ∈ Vi, v ∈ Vj} ⊆ E.

This problem has been extensively studied (see [Bad+13] for a comprehensive
presentation) and is known to be NP-hard [GJ90].

Being a hard problem, exact solutions are found in reasonable time only for small
graphs. However the applications of this problem require to partition much larger
graphs and so several heuristic solutions have been proposed.

The graph partitioning problem was faced using several approaches. Two version of
this problem have been considered: the former takes into account the coordinate
information in the space of the vertices (this is common in graphs describing a
physical domain) while, in the latter problem, vertices are coordinate free. In this
thesis is discussed the coordinate free problem which better fits the ABMs’ domain.

The graph partitioning coordinate free problem requires combinatorial heuristics
to partition them. For instance, considering the simplest version of the partitioning
problem (2-way partitioning), that is find a bisection of the graph G = (V,E) that
minimize the size of the cut. A really simple solution of the problem uses the breadth
first search (BFS) visit of the graph to generate a subgraph T = (V,E′ ⊆ E) of G
also called a BFS tree. Given the subgraph T , is possible to find a cut to generate
two disjoint subnetwork N1 and N2 such that (i) N1 ∪N2 = V and (ii) |N1| ≈ |N2|.
The fact that T has been built using the BFS ensures that the size of the edge-cut is
bounded.

This solution, which works well for planar graphs, is not efficient for complex graph.
A different approach is presented in the Kernighan-Lin (KL) algorithm [KL70] that,
starting with two sets N1 and N2 (describing a partition of V ), greedily improves
the quality of the partitioning by iteratively swapping vertices among the two sets.
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This solution converges to the global optimum if the initial partition is fairly good.
Other approaches are the Spectral partitioning [ST96] and the Multilevel Approach
[KK98].

The most promising techniques that either use a multilevel approach or a distributed
algorithm exploiting a local search approach are:

• METIS is a graph multilevel k-way partitioning suite developed in the Karypis
lab of University of Minnesota. Shortly, METIS comprises three phases: during
the coarsening phase the vertices are collapsed in order to decrease the size of
the initial graph G. Consequently, starting from G = G0 a sequence of graphs
G0, G1, . . . , G` is generated. Then a k-way partitioning is performed on the
smallest graph G`. Then, during the uncoarsening phase the partitioning is
refined, using a variant of the KL algorithm, and is projected to larger graphs
on the above sequence.

• KaHIP (Karlsruhe High Quality Partitioning) is a suite of graph partitioning
algorithms. The suite comprises two main algorithms KaFFPa (Karlsruhe Fast
Flow Partitioner) [SS13], which is a multilevel graph partitioning algorithm,
and KaFFPaE (KaFFPa Evolutionary) that uses an evolutionary algorithm ap-
proach. KaFFPa, like METIS, uses the multilevel graph partitioning approach
with a different strategy for the uncoarsening phase, which exploits a local
search method instead of the KL approach.

• Ja-be-Ja[Rah+13] exploits a distributed computing approach. It uses a local
search technique (simulated annealing), to find a good partitions of the graph
minimizing the edge-cut size. The energy of the system is measured by counting
the number of edges that have endpoints in different components. Ja-be-Ja
starts with a random balanced partitioning and then it iteratively applies the
local search heuristic to obtain a configuration having a lower energy state
(edge-cut size). The size of the initial components is preserved since Ja-be-Ja
allows only the swapping of vertices among two components.

A.2 Experiment Setting
Five k-way partitioning algorithms on several networks, taken from [Thece], were
considered for the experiments. The data sets considered include networks having
different structural features (see Table A.1). For each network, partitions into
k = 2, 4, 8, 16, 32 and 64 components have been considered.

The tests performed aim to compare the analytical results obtained (i.e., size of
the edge-cut, number of communication channels required and imbalance) by
each algorithm with the real performances (overall simulation time) in an ABM
scenario.
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Name # of vertices # of edges Avg degree Max degree Triangles Clustering Coeff Modularity
uk 4824 6837 2.83 3 1 0 0.7934
data 2851 15093 10.59 17 24442 0.485719 0.7596
4elt 15606 45878 5.88 10 30269 0.40765 0.6274
cti 16840 48232 5.73 6 362 0.004895 0.9063
t60k 60005 89440 2.98 3 0 0 0.5419
wing 62032 121544 3.92 4 6685 0.055595 0.5403
finan512 74752 261120 6.99 54 211456 0.503401 0.6469
fe_ocean 143437 409593 5.71 6 0 0 0.5947
powergrid 4941 6594 2.67 19 651 0.1065 0.6105

Tab. A.1.: Networks.

A.2.1 Simulation Environment
To evaluate real performances a toy distributed SIR (Susceptible, Infected, and
Removed) simulation was developed, where, for each simulation step, each agent (a
vertex of the network) has to communicate with its neighbors. The SIR simulation
has been developed on top of D-MASON, exploiting the novel communication
strategy which realizes a Publish/Subscribe paradigm through a layer based on the
MPI standard [Cor+14a; Cor+14b] (see Section 2.4.2). Simulations have been
performed on a cluster of eight computer nodes, each equipped as follows:

• Hardware:
– CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16, #threads

32)
– RAM: 256 GB
– Network: adapters Intel Corporation I350 Gigabit

• Software:
– Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic x86_64)
– Java JDK 1.6.25
– OpenMPI 1.7.4 (feature version of Feb 5, 2014).

Simulation results, on k-way partitioning, have been obtained using k logical pro-
cessors (one logical processor per component). Notice that, when the simulation
is distributed, the communication between agents in the same component is much
faster than the communication between agents belonging to different components.
On the other hand, balancing is important because the simulation is synchronized
and evolves with the speed of the slowest component.

A.2.2 The competing algorithms
The five algorithms, briefly discussed in Section A.1, were compared:

• Multilevel approach:
– METIS: (cf. Section A.1);
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– METIS Relaxed: this version of the METIS algorithm uses a relaxed
version of the balancing constraint (i.e., a larger value of the parameter
ε), in order to improve on other parameters (like the egde-cut size);

– KaFFPa: (cf. Section A.1);
• Distributed Computing Approach:

– Ja-be-Ja: (cf. Section A.1). Unfortunately, we were not able to find a real
implementation of the algorithm. We used an implementation available
on the public Ja-be-Ja GitHub repository [Ja-ce]. This implementation is
not truly distributed but is simulated through the use of the Java library
GraphChi [Grace], that enables modellers to simulate a distributed com-
putation on multi-cores machines. Clearly the computational efficiency of
this implementation is limited and, for this reason, we could only run 100
iterations of the algorithm for each test setting. We assume that the poor
results of the algorithm (cf. Section A.3) are, at least, partially due to the
small number of iteration used in our tests. In order to better evaluate
the real performances of the algorithm, a real distributed implementation
of the Ja-be-Ja algorithm is needed.

• Random: This algorithm assigns each vertex to a random component. It
always provides an optimal balancing. This algorithm will be used as baseline
in our comparisons.

A.2.3 Performance metrics
Let G = (V,E) the analyzed network and let Π = (V1, V2, . . . , Vk) the partition
provided by a given algorithm, we evaluate algorithms’ performances using the
following metrics:

• Edge-cut size (W), the total number of edges having their incident vertices in
different components;

• Number of communication channels (E), two components U1 and U2 requires
a communication channel when ∃v1 ∈ U1, v2 ∈ U2 such that (v1, v2) ∈ E.
In other words, we are counting the number of edges in the supergraph SG

obtained by clustering the nodes of each component in a single node.
Notice that this unconventional metric is motivated by our specific distributed
ABMs scenario. In this simulation environment, a communication channel,
between two components U1 and U2, is established when at least two ver-
tices (agents) u1 ∈ U1 and u2 ∈ U2 share an edge. Thereafter, the same
communication channel is used for every communication between U1 and U2,
consequently, these additional communications have less impact on system
performances;

• Imbalance (I), the minimum value of ε such that each component has size at
most (1 + ε)d|V |/ke.
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Fig. A.2.: Edge-cut size (W) comparison:(left) k = 4, (right) k = 64. Y -axes appear in log
scale.

Moreover, the real performances of each strategy, by measuring the overall simulation
time (T) to perform 10 simulation steps on the distributed SIR simulation, were
evaluated.

Summarizing, the experiments compares the performances (both analytically and
on a real setting) of 5 k-way partitioning algorithms (A ∈ {METIS, METIS Relaxed,
KaFFPa, Ja-be-Ja and Random}) with k ∈ {2, 4, 8, 16, 32, 64} on 9 networks (N ∈ {uk,
data, 4elt, cti, t60k, wing, finan512, fe_ocean, powergrid}). Overall, 5× 6× 9 = 270
tests have been performed.

A.3 Analytical results
Figures A.2, A.3 and A.4 depict the analytical results for k ∈ {4, 64}; results for the
other values of k exhibit similar behaviors. For each plot the networks appear along
the X-axis, while the values of the measured parameter appear along the Y -axis.

Analyzing the results from Figures A.2 and A.3 notice that the performances of the
multilevel approach algorithms are comparable both in terms of edge-cut size and
number of communication channels. Ja-be-Ja performances are a bit worse (this
is probably due to the small number of iteration used in our tests as observed in
Section A.2) but always better than the random strategy.

Results on imbalance are fluctuating (see Figure A.4). In general all the algorithms
provide a quite balanced partition. Apart from the random strategy that by construc-
tion provides the optimal solution, no strategy dominates the others.

A.4 Real setting results
Figure A.5 reports on the results obtained in the real simulation setting. The results
are consistent with the analytical ones, in terms of both edge-cut size and number of
communication channels, although the gaps are amplified. The results thus confirm
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Fig. A.3.: Number of communication channels (E) comparison:(left) k = 4, (right) k = 64.
Y -axes appear in log scale.

Fig. A.4.: Imbalance (I) comparison: (left) k = 4, (right)k = 64.

Fig. A.5.: Simulation time (T) comparison:(left) k = 4, (right) k = 64. Y -axes appear in
log scale.

that the choice of partitioning strategy has a significant impact on performance in a
real scenario.

In order to better understand how the metrics evolves according to k, Figure A.6
depicts four plots which describes, for each algorithm, the growth of the Edge-cut
size (top-left), the Imbalance (top-right), the number of communication channels
(bottom-left) and the Simulation time on the f_ocean network as function of the
parameter k (X-axis).
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Fig. A.6.: Edge-cut size (top-left), Imbalance (top-right), Number of communication chan-
nels (bottom-left) and Simulation Time(bottom-right) on the f_ocean network,
k ∈ {2, 4, 8, 16, 32, 64}.

A.5 Correlation between analytical and real setting
results
Analyzing the results from Figures A.2 - A.5, is possible to observe that the perfor-
mances of the distributed simulations are influenced by the analytical metrics.

In order to better evaluate the relation between the overall simulation times and the
performances of the algorithm (measured considering the edge-cut size, the number
of communication channels and the imbalance), we measured the correlation using
a statistical metric: the Pearson product-moment Correlation Coefficient (PCC).

PCC is one of the measures of correlation which quantifies the strength as well
as direction of the relationship between two variables. The correlation coefficient
ranges from −1 (strong negative correlation) to 1 (strong positive correlation). A
value of 0 implies that there is no correlation between the variables. The correlation
PCC between simulation time (T) and the three analytical metrics (W, E and I) was
computed, with all the considered value of the parameter k.

In particular, four variables were considered that are parametrized by the class N
of Networks (N ∈ {uk, data, 4elt, cti, t60k, wing, finan512, fe_ocean, powergrid}),
the considered algorithm A (A ∈ {METIS, METIS Relaxed, KaFFPa, Ja-be-Ja and
Random}), and the number of components k (k ∈ {2, 4, 8, 16, 32, 64}).
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The variable T (N,A, k) denotes the Simulation time; the variable W (N,A, k) de-
notes Edge-cut size; E(N,A, k) denotes the Number of communication channels;
finally the variable I(N,A, k) denotes the Maximum Imbalance. Table A.2 presents
the correlation values obtained.

It is possible to observe that:

• there is a strong positive correlation between simulation time and edge-cut
size (the PCC always over 0.92);

• there is a weak/moderate positive correlation between simulation time and
the number of communication channels1 (the PCC ranges between 0.22 and
0.4). Moreover this correlation seems to be increasing in k;

• there is a weak negative correlation between simulation time and imbalance
(the PCC ranges between −0.22 and −0.32).

This final result is counterintuitive: theoretically, the greater the imbalance, the
larger the simulation time should be and this should lead to a positive correlation.
The key observation is that a small amount of imbalance has a limited impact on
the simulation time but can be extremely helpful for reducing both the edge-cut size
and the number of communication channels, which seems to have a sensible payoff
in terms of real performances.

k

2 4 8 16 32 64
r(T, W ) 0.9256 0.9392 0.9431 0.9424 0.9473 0.9474
r(T, E) N.A. 0.2265 0.3094 0.3349 0.3509 0.3922
r(T, I) -0.2244 -0.2750 -0.2903 -0.3188 -0.2971 -0.3025

Tab. A.2.: Correlation between analytical and real setting results.

A.6 Best practices for ABS and Network
Considering the problem of partitioning a network into k balanced components such
that the number of edges that cross the boundaries of components is minimized.
Experimental results show that the choice of the partitioning strategy strongly
influence the performance of a real distributed environment. Moreover analytical
results (the edge-cut size in particular) correlate with the overall simulation time
in a real setting. On the other hand, according to the previous results, the quality
of the balance among components does not relate to the real performances on the
field. The best practice is to partition the graph using one of these heuristics (METIS
show the best results) and load the agents in the simulation according to the given
partition.

1The correlation between T (N, A, 2) and E(N, A, 2) cannot be computed, since for k = 2 all the
partitioning strategy require exactly 1 communication channel and so E(N, A, 2) has standard
deviation equal to 0.
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BD-MASON Work Partitioning and
GIS

— More realistic (complex) is better? — The design of a social simulation model is
an intricate task [GT05]. Social dynamics are the result of complex structures of
interactions that involve at different levels individual cognition and behavior, groups,
institutions and the surrounding environment. The modeling enterprise implies the
operational description of factors involved in generating the macro phenomenon
under investigation.

This Appendix describes some technical issues arising when dealing with simulations
with a high number of agents, real data, and GIS based environment. The goal
is twofold: analyze computational and programming issues arising when adding
complexity to a relatively simple social simulation model, in particular showing how
to use GIS in D-MASON simulation; show how distributed computing can support
advances in the investigation of social issues.

B.1 Agent-based model and Geographical Information
Systems
GIS [GIS16] (Geographic Information Science or Geographic Information Systems)
term refers to a set of theories and techniques (especially computer-based) that
enable to add geographical data and metadata in the modeling of ABM. GIS has been
used in many fields as geography, geology, ecology, sociology, urban planning, health
studies, and others. The application of GIS data in the field of ABM is relatively
recent, but the interest in this field led to the creation of dedicated community [com]
and, as described in the chapter four of a recent book “Geocomputation: a practical
primer” [BS15], the interest in this field is intended to grow.

GIS data into an ABM model, in a first instance, may be seen as an unnecessary level
of details, but simulation is a model based approximation of a real system and so
adding more details may produce better results. GIS can be thought of as a high-tech
equivalent of a geospatial map. This high-tech map provides a number of additional
data about the environments and the status of it. This information can be used to
model more complex interactions between the agents and the environment. Hence,
the complexity of the models getting bigger inevitably requires the introduction of
parallel and distributed computing.

Many ABM tools support the GIS data. Among them we have:
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• MASON [Bal+03] toolkit (see also Section 2.2). MASON provides support
for GIS data in an additional library named GeoMASON[Sul+10].
GeoMASON follows the same MASON design philosophy of being lightweight,
modular, and efficient. GeoMASON represents the basic GIS data in a geo-
metric shapes supported via the JTS (Java Topology Suite API), which allows
geometries related operations. GeoMASON supports the ESRI [for] shape files
providing a GeomVectorField Java object that represents the GIS data in the
memory, and provides functionalities to access to geometries in order to read
geospatial metadata and obtain geospatial positions of the objects.

• Netlogo [TW04] is a multi-agent programmable modeling environment. It is
developed at the The Center for Connected Learning (CCL) and Computer-
Based Modeling at Northwestern University. Netlogo provides an extension to
support GIS data field. The extension allows the programmer to load vector
GIS data (points, lines, and polygons), and raster GIS data (grids) into their
models. Netlogo extension also supports the ESRI shapefiles.

The next sections describes how to use GIS in D-MASON simulation and the results
obtained on a GIS simulation scenario.

B.2 The simulation scenario
This section describes the simulation model used to experiment the distribution of
ABM that uses GIS in D-MASON.

B.2.1 Model space representation
The environment in ABM [Ben13] is not only a particular property of the model,
but could be a relevant entity to understand the complex behavior of natural and
artificial systems. Interesting features of ABM, compared to others modeling tools,
concern the interactions between the agents that do not take place in a vacuum, but
happen in a structured environment that could influence and could be influenced by
the agents interactions. These structured environments are named fields and can
be social and physical environments (fields based on mathematical modeling like
matrix), but also more complex structure like networks.

The environment representation is really crucial in order to address real-world prob-
lems (e.g., simulating the segregation in a particular area or simulating emergency
strategies in natural disaster [CW13]). In this work we used a set of GIS data
(“Campania dataset”) to support a model that simulates an experiment, inspired by a
cognitive architecture model [BS15].

GIS Campania dataset. The open-data platform of the “Regione Campania” provides
the GIS dataset [Cam15] about its region. The dataset is a ShapeFile ESRI shape
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on the geographical coordinate system WGS84 UTM zone 32N and provides the
subdivision of the region in geographical zones identified by a unique identifier.

B.2.2 Model agents movement representation
A single agent in our model is a citizen living in Campania that has to travel every
day to his work/study place. Agents behavior is based upon public available data
released by ISTAT [dat16] (the Italian National Institute of Statistics), produced after
the national population census made in October 2011.

The ISTAT’s table contains information about 2.5M citizens living in Campania, which
each day travel to work (or study) and then go back home. It contains two kind of
records: a S-record and a more detailed L-record.

L-records exposes the following data: city of residence, gender, reason to travel
(work or study), city of work/study, vehicle (on foot, by car, by train, etc.), time of
departure, travel duration.

Since each record is aggregate (that is, each record represents several people with
the same attributes), time of departure and travel duration fields are quantized,
meaning that data is represented in classes. For instance, travel duration can be one
of these classes: up to 15 minutes; from 16 to 30 minutes; from 31 to 60 minutes; 61
minutes or more. Considering the table format, we chose to randomize data. For
instance, if a record says that 100 people travel for 16− 30 minutes, each of the 100
agents created will travel for a number of minutes randomly chosen in the 16− 30
minutes interval.

B.2.3 Simulation Model description
The model is a simplified version of the cognitive model designed by Andrighetto
et al. in [And+14]. In the proposed model, agents move in a representation of
the Campania environment: agents’ home and working places are placed on the
Campania map according to real data from ISTAT.

Here is described the cognitive aspect of the model. There is a set of norms (graphi-
cally depicted using different colors). For each norm, agents will hold a salience (a
value in the [0,1] interval) that represents how much that norm is important for
the agent. The norm that is the most important for an agent, will characterize the
agent’s color (belief of the norm).

Agents continuously interact with neighbor agents trying to spread their opinion
(color). When an agent meet an agent advertising a particular color, it will increase
the salience for that specific norm. Agents are influenced by neighbors throughout
the day, but with different weight depending on agent’s state (traveling, staying at
home, staying at work/study). Of course, saliences will naturally decay over time.
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Example. Imagine there is an agent A of color Blue. During its travel and staying at
work, he meets a lot of Red agents. He will so receive a lot of input about the Red
norm, while salience about the Blue norm decreases time after time. At some point,
agent A will turn Red and start spreading to other agents that Red is the right norm
to follow, thus trying to convert other agents to its color.

Campania is divided into five provinces: Naples, Salerno, Benevento, Avellino and
Caserta. Suppose that in each province of Campania there is a norm that is prevalent
(i.e. 80% of the inhabitants are of that color). For instance: Naples is mostly Red;
Salerno is mostly Green; Avellino, Benevento, Caserta are mostly Blue. In the
remaining 20% of the population, the 15% will be Yellow (the color not advertized by
any region), while the last 5% will be of a random color (different from the region’s
color). Back to our example, 80% of people in the Salerno province will be Green;
15% will be Yellow, and the remaining 5% will be a random chosen between Red
and Blue.

The model simulates an entire day (24 hours) starting from midnight. When the
simulation starts, agents are at their home. Time of departure, travel duration, time
of stay at work/study all depend on ISTAT data. Times and durations need to be
converted into simulation steps: for instance, if travel duration for the agent is from
16 to 30 minutes, the simulation will assign a random duration in that interval. This
duration will be converted in a number of steps, according to discretization time of
the simulation (see section B.4).

The size of the simulated field and discretization time have a significant impact on
the performances (in terms of efficiency) of the simulation. An agent moves at a
speed that is calculated dividing the travel distance by the travel duration (simulation
steps). This gives the speed of an agents, that is the maximum distance covered
in a single simulation step. The largest agents’ travel distance is called maximum
agents ride (α) and will require a certain number of steps (maximum number of
steps to perform a ride, β). So we can compute the maximum speed (α/β): this
parameter has a strong impact on the distributed model performances (the smaller
the better).

In order to evaluate the performances of the distributed simulation framework D-
MASON, two modifications of the model, concerning the way in which the agents are
placed on the map, have been included. Three different agents model distribution
are considered. Real positions; agents are place according to the real population
density. A second model, called CRandom, places agents uniformly at random on the
entire Campania territory. The latest model, called Random, places agents uniformly
random on a 2D continuous space. The latest model represents the best case for
distribution, as it allows the model to balance the workload on multiple LPs (Logical
Processors). It is, although, very unrealistic. The CRandom model represents an
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in-between case, since agents are uniformly distributed on the territory, but are still
placed within the Campania boundaries.

B.3 D-MASON Simulation
Noticing that most ABMs are inspired by natural models, where agents’ limited
visibility allowa to bound the range of interaction to a fixed range named agent’s
Area of Interest (AOI), D-MASON adopta the so-called space-partitioning technique
[Cos+11], where the agents’ world (the field) is split into tiles, each assigned to an
LP.

Since citizens are basically moving on a map, the agents’ space consists in a rectan-
gular area. MASON includes the Continuous2D field, where agents contained in it
are located by a couple of continuous coordinates ranging from point (0,0) to point
([W ]idth, [H]eight)). The distributed version embedded into D-MASON is called
DContinuous2D: it retains all the features of the Continuous2D field, adding the
support for two approaches to distribute the field and agents contained in it: dividing
the space into vertical rectangles (1-dimensional space partitioning or horizontal);
or dividing it into a rows × columns matrix (2-dimensional space partitioning or
square, see Figure B.3) . The square partitioning (space-based) mode provides a
significant speedup over the horizontal partitioning, lowering the communication
effort while distributing the computational workload of the agents to LPs.

The behavior of agents is influenced by GIS data (map, zones and cities), nevertheless
GIS data is static and does not require any synchronization among LPs.

When reading ISTAT data, each LP manages an area of competence, and take care
of agents that live in its area of competence. This is done by reading agent’s home
location from the ISTAT dataset, looking for correspondent coordinates into GIS data,
and converting it into 2-dimensional D-MASON coordinates.

B.4 Experiments
Simulation Environment. Server test was performed to evaluate the performance of
the model in D-MASON. Both the communications strategies available in D-MASON
were tested: AMQ (Apache ActiveMQ) that is the centralized communication strat-
egy; and MPI that uses the MPI standard [Cor+14a; Cor+14b]. Simulations have
been performed on a cluster of eight computer nodes, each equipped as follows:

• Hardware:
– CPUs: 2 x Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz (#core 16, #threads

32)
– RAM: 256 GB
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– Network: adapters Intel Corporation I350 Gigabit
• Software:

– Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic x86_64)
– Java JDK 1.6.25
– OpenMPI 1.7.4 (feature version of Feb 5, 2014).

Experiments settings. The scalability of the simulation considering the overall
simulation time needed to simulate a 5 (simulated) minutes of real world system,
was investigated changing both the number of LPs and the simulation workload (#
of agents). As described above the model uses a discretization time to simulate the
real life clock. In the following tests, the discretization time is 2400 steps per hour,
the field size is 3600× 2400 and the neighbors’ influence radius (NIR) is 1.

D-MASON allows two kinds of square space partitioning: 1-dimensional and 2-
dimensional. After several pilot experiments, only the 2-dimensional partitioning
was considered. The unbalanced density of agents will be a crucial part of our
investigation.

The performance trend was investigated by varying the agents positioning over the
field: Real that is the positioning of the agents among the region using the real data;
Random is positioning strategy that set the agents uniformly random among the
whole field; CRandom sets the agents among the field uniformly random but only
in the limits of the region.

Two kinds of experiments are presented:

Simulate 5 minutes of real life. In this test we are interested in evaluating How
much time is needed to simulate 5 minutes of real life? (which corresponds to 200
simulation steps). Four configurations were tested using different partitioning
scheme of the field in 4× 4, 6× 6, 8× 8 and 10× 10 cells assigned, respectively, to
16, 36, 64 and 100 LPs (each test uses one region per LP). Each configuration was
performed on 2.5 million of agents. Figure B.1 shows the results for each model (Real,
Random and CRandom) and for each communication layer (MPI and AMQ). For each
configuration, we show the total simulation time as well as how it is partitioned into
the communication overhead (that includes the management overhead introduced
by D-MASON) and the computation time.

The performance of the simulation is strongly influenced by the positioning model.
The Random and CRandom models exhibit the same unimodal trend, as the number
of LPs increase and manifest a balanced ratio of communication and computation.

The Real test provides the worst performance and unusual trend due to an un-
balanced communication overhead. We investigated this problem analyzing the
simulations with different agents positioning models and we discovered that this
trend is due to the non uniform positioning of the agents (see Figure B.4).
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Fig. B.1.: Simulation performance with 4×4, 6×6 , 8×8, 10×10 partitionings - 5 minutes of
real clock.

Weak scalability. This experiment aims to evaluate the simulation efficiency varying
the total computation workload. In this test four configurations was considered by
changing the total number of agents 10%, 40%, 70% and 100% (100% = 2.5M). Each
configuration was performed on a 10 × 10 partitioning with 100 LPs. Figure B.2
depicts the results of the three models for each communication layer. Moreover we
also compare the performances with the sequential version of the model implemented
in MASON (we refers to this with the name SEQ). Random and CRandom tests
provide a similar behavior showing good scalability. This results demonstrate the
good performance of a 2-dimensional field partitioning on a uniform and quasi-
uniform positioning density. On the other hand, the Real model manifests the worst
scalability (just a bit better than the sequential version). This result is due to the
communications overhead that is extremely irregular over the LPs. The table B.1
reports the speedup obtained during the weak scalability test. For each configuration,
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Fig. B.2.: Weak scalability. 10×10 partitioning, 5 minutes of real clock.

the minimum and maximum speedup are emphasized in bold. The best results have
been obtained by the Random model with 70% of computation amount and AMQ
as communication layer; the worst performance is achieved by the Real positioning
using the MPI communication layer. This confirms the hypothesis that the speedup
is strongly related to agents distribution.

Workload
Test Name 10 % 40% 70% 100%
AMQ - Real 3,36 2,49 1,97 1,74
MPI - Real 3,07 2,32 1,79 1,46
AMQ - Random 11,32 25,14 35,53 33,06
MPI - Random 7,63 20,01 27,29 27,78
AMQ - CRandom 7,69 21,13 29,14 31,86
MPI - CRandom 5,60 15,53 23,38 26,78

Tab. B.1.: Experiments speedup varying the workload. 10×10 partitioning, 5 minutes of
real clock.

B.5 Analytical analysis of ABM and GIS
Considering the results obtained in the preceding section, in this sections is described
an analytically evaluation of the communication effort required by a GIS based
distributed simulation that exploits a uniform 2D space partitioning approach (Figure
B.3).
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Fig. B.3.: D-MASON 2-dimensional uniform field partitioning on p tiles.

When a space partitioning approach is used, the amount of communication per-
formed before each simulation step is related to: the size of the whole field
([W ]idth × [H]eight in this specific analysis), the agents density distribution (d)
i.e., the positioning of the agents over the field, the number of LPs (p), the maximum
agents ride distance (α), the maximum number of steps to perform a ride (β) and
the agents area of interest radius (AOI) which depends on the neighbors’ influence
radius (NIR).

Recalling that using the space partitioning approach we have

AOI ≥ max
(
NIR,

α

β

)
, (B.1)

therefore the AOI should be at least equal to the ratio α/β.

Since, in euclidean space, the diameter of our field is α =
√
W 2 +H2, one can easily

verify that
W +H

2 ≤ α ≤W +H. (B.2)

Hence, by using (B.1) and (B.2) we have that

AOI ≥
√
W 2 +H2

β
≥ W +H

2β (B.3)

We can now evaluate the communication effort required by a GIS based distributed
simulation. For each region, the communication effort δc is obtained by counting
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the number of agents which belong to the edges of the region. The edges space, as
shown in figure B.3, is composed by 16 regions of sizes W√

p ×AOI (top and bottom),
H√

p × AOI (left and right) and AOI × AOI (corners). The expected number of
agents is obtained multiplying the size of the above described region by the density.
Overall we have,

δc = p×
[
4
(
W
√
p
AOI

)
+ 4

(
H
√
p
AOI

)
+ 8AOI2

]
× d

= 4p× d×
[
AOI ×

(
W +H
√
p

)]
+ 8p× d×AOI2

= 4√p× d×AOI × (W +H) + 8p× d×AOI2

≤ 8√p× d× β ×AOI2 + 8p× d×AOI2

= 8√p× d×AOI2 × (β +√p) (B.4)

where the inequality is due to Equation (B.3).

Consequently the communication effort is influenced by the AOI (which depends on
the simulation model) and the density distribution of agents (d). In details the value
of δc varies according to the agents positioning over the field. When such value is
irregular, the communication increases and affects all the regions since the whole
system synchronizes before each simulation step.

This analysis motivates the poor performance of the simulation in the Real agents
positioning experiment. Figure B.4 depicts the positioning of the agents on the
geographical zones in the Campania region. Real positioning provides a lots of zones
with a small number of agents but there are also a small number of highly populated
zones. Indeed, the density d over the field is non-uniform (the variance, in the
number of agents per zone, is 302600129.2) and by equation (B.3) the communication
effort δc grows proportionally with the larger value of d.

B.6 Motivation to Non-Uniform D-MASON work
partitioning strategy
Exploiting GIS data in ABM is an important innovation in the ABS. Several ABM
examples [CW13] and users community [com] demonstrate the importance of this
approach for improving the effectiveness of ABM model in complex systems study.

Experimental results on a toy model, inspired by [And+14], demonstrate that
the work partitioning, in a distributed GIS based ABM simulation is quite hard.
According to our analysis, the main issue is the non-uniform distribution of the
agents over the field, which jeopardize the performance of the simulation. Indeed,
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Fig. B.4.: Agents positioning over the region zones in Campania. In the figure is shown the
frequency of zones in Campania with a certain density that ranging from 70 to
57869 people.

the speedup depends on communication effort δc which, in a 2-dimensional uniform
field partitioning approach, is:

δc ≤ 8√p× d×AOI2 × (β +√p).

Therefore, the performance of the simulation scale up as a quadratic function of
the AOI (which depends on the model) and is linearly influenced by the density
distribution (d) of the agents over the field and the discretization time (β) used in
the model.

The above results motivate the need to have a non-uniform work partitioning strategy in
DPABS, that has been developed and is described in Section 2.3.2. Section 2.6.1 provides
a complete analysis of the performances of the non-uniform partitioning strategy in
a real simulation scenario. These analysis shows that the non-uniform partitioning
strategy, ensures better load balancing but introduces a communication overhead.
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CD-MASON: The Developer Point
of View

This appendix aims to provide a guide for D-MASON simulation model developers.
In the following an example of simulation porting from MASON to D-MASON is
discussed. Thereafter, the usage of D-MASON on HPC systems is briefly described.

C.1 Simulation Example: Particles
As described in the Chapter 2 one of the D-MASON goal was to maintain the
compatibility with MASON. This section provides an example of simulation porting
from MASON to D-MASON. The considered simulation is the MASON simulation
Particles (available in the Tutorial3 of MASON [MAS16]). The Particles simulation is
an example of 2D particles bouncing around on a grid. When particles collide, they
bounce off in a random direction (including staying put). Moreover, the particles
bounce off the wall and leave trails of their passage.

According to the MASON guidelines a simulation package is composed by three
classes:

1. agent, a class that implements the simulation agents;
2. state, a class that represents the simulation environment;
3. gui, a class that provides visualization of the simulation.

As discussed in Section 2.4, D-MASON provides the distributed version of the three
main classes above:

1. distributed agent, a class that implements the simulation agents in a distributed
system;

2. distributed state, a class that represents the simulation environment in a dis-
tributed system;

3. gui, a class that provide the visualization of the simulation in the distributed
system.

Particles Simulation. The package sim.app.tutorial3 is composed by three classes:

1. Particle, which implements the agent;
2. Tutorial3, which implements the simulation environment;
3. Tutorial3WithUI, which implements the simulation GUI.
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In D-MASON the simulation is named DParticles and is available on the D-MASON
source code repository [Repce].

C.1.1 (D)Agent definition
The MASON Particle agent implements the Steppable interface and, in particular,
the step() method defines the agent’s behavior. In D-MASON the abstract class
RemoteParticle implements RemotePositionedAgent that is a sub-interface of
Steppable. The concrete implementation of agents in D-MASON is provided by the
class DParticle that extends the class RemoteParticle.

In this example, the class RemotePositionsAgent is parameterized with an Int2D
object-type, that corresponds to the object used to maintain the agent’s position.

The Particle class, shown in the Listing C.1, implements the interface Steppable
and declares a constructor that takes two integer parameters, xdir and ydir (which
represents the direction of a particle).

Listing C.1: Particle constructor

1 . . .
2 pub l i c P a r t i c l e implements Steppable {
3 pub l i c boolean randomize = f a l s e ;
4 pub l i c i n t xd i r ; // −1, 0 , or 1
5 pub l i c i n t yd i r ; // −1, 0 , or 1
6

7 pub l i c P a r t i c l e ( i n t xdir , i n t yd i r )
8 {
9 t h i s . xd i r = xd i r ;

10 t h i s . yd i r = yd i r ;
11 }
12

13 . . .

In D-MASON, the DParticle class, shown in the Listing C.2, extends the
RemoteParticle and declares two constructors: the first takes no parameters
and it is required for D-MASON object serialization, and the second that takes
a DistributedState as parameter.
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Listing C.2: DParticle constructor

1 . . .
2 pub l i c c l a s s D P a r t i c l e extends RemotePart ic le<Int2D> {
3 pub l i c i n t xd i r ; // −1, 0 , or 1
4 pub l i c i n t yd i r ; // −1, 0 , or 1
5 pub l i c D P a r t i c l e () { }
6 pub l i c D P a r t i c l e ( D i s t r i b u t e d S t a t e s t a t e ) {
7 super ( s t a t e ) ;
8 }
9 . . .

The agent’s behavior is defined for both version in the method step. The Listing C.3
and C.4 show, respectively, the code for the MASON and D-MASON implementa-
tions.

The reader can observe that the two implementation are basically the same, the
difference consists in the way the particles movements are randomized. The changes
in the two implementation are mainly due to the fact that MASON and D-MASON
exploit a different synchronization strategy: as discussed in Section 2.4.1, D-MASON
provides a self-synchronized environment where, all the agents update their status at
step t, considering the status of all neighbor agents at step t−1(synchronous update);
on the other hand, in MASON, agents are updated asynchronously, that is, their
status reflect the changes of the agents that have already performed their computing
in the current iteration. Consequently, the randomization of the movement in D-
MASON is computed, synchronously, at the beginning of each agents step method
while in MASON the randomization is performed asynchronously.

Furthermore, the method used to update the position of the agent is
setDistributedObjectLocation. This method enables to change the position of
the agent on the field handling the migration of the agent to another cells whenever
is needs.

Listing C.3: Particle step method

1

2 . . . .
3 pub l i c void s tep ( SimState s t a t e ) {
4 Tuto r i a l3 t u t = ( Tu to r i a l3 ) s t a t e ;
5 Int2D l o c a t i o n = t u t . p a r t i c l e s . ge tOb jec tLoca t ion ( t h i s ) ;
6 t u t . t r a i l s . f i e l d [ l o c a t i o n . x ][ l o c a t i o n . y ] = 1 .0 ;
7 i f ( randomize )
8 {
9 xd i r = t u t . random . nex t In t (3) − 1;

10 yd i r = t u t . random . nex t In t (3) − 1;
11 randomize = f a l s e ;
12 }
13 i n t newx = l o c a t i o n . x + xd i r ;
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14 i n t newy = l o c a t i o n . y + yd i r ;
15 i f (newx < 0) { newx++; xd i r = −xd i r ; }
16 e l s e i f (newx >= t u t . t r a i l s . getWidth () ) {newx−−; xd i r =−xd i r ;

}
17 i f (newy < 0) { newy++ ; yd i r = −yd i r ; }
18 e l s e i f (newy >= t u t . t r a i l s . getHeight () ) {newy−−; yd i r =

−yd i r ; }
19 Int2D newloc = new Int2D (newx , newy) ;
20 t u t . p a r t i c l e s . s e tOb j e c tLoca t i on ( th i s , newloc ) ;
21

22 Bag p = t u t . p a r t i c l e s . ge tOb jec t sA tLoca t ion ( newloc ) ;
23 i f (p . numObjs > 1)
24 {
25 f o r ( i n t x=0;x<p . numObjs ; x++)
26 (( P a r t i c l e ) (p . ob j s [ x ]) ) . randomize = true ;
27 }
28 }

Listing C.4: DParticle step method

1 . . . .
2 . . . .
3 pub l i c void s tep ( SimState s t a t e ) {
4 D P a r t i c l e s t u t = ( D P a r t i c l e s ) s t a t e ;
5 Int2D l o c a t i o n = t u t . p a r t i c l e s . ge tOb jec tLoca t ion ( t h i s ) ;
6 t u t . t r a i l s . s e t D i s t r i b u t e d O b j e c t L o c a t i o n ( loca t ion , 1 . 0 , s t a t e ) ;
7 Bag p = t u t . p a r t i c l e s . ge tOb jec t sA tLoca t ion ( l o c a t i o n ) ;
8 i f (p . numObjs > 1)
9 {

10 xd i r = t u t . random . nex t In t (3) − 1;
11 yd i r = t u t . random . nex t In t (3) − 1;
12 }
13 i n t newx = l o c a t i o n . x + xd i r ;
14 i n t newy = l o c a t i o n . y + yd i r ;
15 i f (newx < 0) { newx++; xd i r = −xd i r ; }
16 e l s e i f (newx >= t u t . gridWidth ) {newx−−; xd i r = −xd i r ; }
17 i f (newy < 0) { newy++ ; yd i r = −yd i r ; }
18 e l s e i f (newy >= t u t . gr idHeight ) {newy−−; yd i r = −yd i r ; }
19 Int2D newloc = new Int2D (newx , newy) ;
20 t u t . p a r t i c l e s . s e t D i s t r i b u t e d O b j e c t L o c a t i o n ( newloc , th i s ,

s t a t e ) ;
21 }
22 . . . .

C.1.2 (D)Simulation State
The second class is the simulation state. In MASON the class Tutorial3 extends the
SimState class, while in D-MASON the class DParticles extends DistributedState
and is parametrized with an Int2D object.
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The Listing C.5 shows the significant part of the Tutorial3 class in MASON. Listing
C.6 shows the code for the D-MASON class DParticles.

The mainly differences between the two implementations are:

• The initializations of the simulation field and of the agents. In Tutorial3 there
are two fields: the former contains the agents, while the latter contains the
trails. In the original simulation, after the initialization of simulation fields all
agents are initialized and randomly positioned over the field. In D-MASON
not all agents can be initialized and positioned, but only the agents that must
be simulated by the corresponding LP. Hence, each LP initializes a portion of
the agents (proportional to the size of the associated cells) and position them
to the associated cell. The method getAvailableRandomLocation enable to
generate a random position on a particular cell of a D-MASON simulation
field.

• The method used to schedule agents. MASON schedules the agents using the
method scheduleRepeating, which schedules an agent, for each simulation
step. In D-MASON agents can migrate from one LP to another. For this reason
the method scheduleRepeating is forbidden (it may happen that in a succes-
sive step the agent must be scheduled by another LP). In D-MASON uses the
method scheduleOnce that schedule an agent only for the successive simula-
tion step. Hence, the method scheduleOnce has to be executed for each simula-
tion step. This is performed by the method setDistributedObjectLocation
which, handling the migration of agents, id always aware of the agents that
need to scheduled for each simulation step.

Listing C.5: Tutorial3

1 pub l i c c l a s s Tu to r i a l3 extends SimState {
2 pub l i c DoubleGrid2D t r a i l s ;
3 pub l i c SparseGrid2D p a r t i c l e s ;
4 . . .
5 pub l i c Tu to r i a l3 ( long seed ) {
6 super ( seed ) ;
7 }
8 pub l i c void s t a r t ( ) {
9 . . .

10 f o r ( i n t i=0 ; i<numPart i c les ; i++) {
11 p = new P a r t i c l e ( random . nex t In t (3) − 1 , random . nex t In t (3)

− 1) ; // random d i r e c t i o n
12 schedule . scheduleRepeat ing (p) ;
13 . . .
14 p a r t i c l e s . s e tOb j e c tLoca t i on (p , new Int2D (x , y ) ) ; // random

l o c a t i o n
15 }
16 }
17 pub l i c s t a t i c void main( S t r ing [] args ) {
18 doLoop ( P a r t i c l e s . c l a s s , args ) ;
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19 System . e x i t (0) ;
20 }
21 }

Listing C.6: DParticles

1 . . .
2 pub l i c c l a s s D P a r t i c l e s extends D i s t r i b u t ed S ta t e <Int2D> {
3 pro tec ted DSparseGrid2D p a r t i c l e s ;
4 pro tec ted DDoubleGrid2D t r a i l s ;
5 pro tec ted SparseGr idPortraya l2D p ;
6 pub l i c i n t gridWidth ;
7 pub l i c i n t gr idHeight ;
8 pub l i c i n t MODE;
9 p r i v a t e S t r i ng t o p i c P r e f i x = " " ;

10 pub l i c D P a r t i c l e s () { super () ; }
11 pub l i c D P a r t i c l e s ( GeneralParam params , S t r i ng p r e f i x )
12 {
13 super ( params , new Dis t r ibutedMul t iSchedule<Int2D >() ,
14 pre f i x , params . getConnectionType () ) ;
15 t h i s .MODE=params . getMode () ;
16 t h i s . t o p i c P r e f i x=p r e f i x ;
17 gridWidth=params . getWidth () ;
18 gr idHeight=params . getHeight () ;
19 }
20

21 @Override
22 pub l i c void s t a r t ( ) {
23 super . s t a r t ( ) ;
24 t r y {
25

26 p a r t i c l e s =
DSparseGrid2DFactory . createDSparseGrid2D ( gridWidth ,

27 gr idHeight , t h i s ,
28 super . AOI , TYPE . pos_i , TYPE . pos_j ,
29 super . rows , super . columns ,MODE,
30 " p a r t i c l e s " , t o p i c P r e f i x , f a l s e ) ;
31 t r a i l s = DDoubleGrid2DFactory . createDDoubleGrid2D ( gridWidth ,
32 gr idHeight , t h i s ,
33 super . AOI , TYPE . pos_i , TYPE . pos_j ,
34 super . rows , super . columns ,MODE,
35 0 , f a l s e , " t r a i l s " , t o p i c P r e f i x , f a l s e ) ;
36

37 i n i t _ c o n n e c t i o n () ;
38

39 } catch ( DMasonException e ) { e . p r in tS tackTrace () ; }
40

41 D P a r t i c l e p=new D P a r t i c l e ( t h i s ) ;
42 i n t agentsToCreate=0;
43 i n t remainder=super .NUMAGENTS%super .NUMPEERS;
44 i f ( remainder==0){
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45 agentsToCreate= super .NUMAGENTS / super .NUMPEERS;
46 }
47

48 e l s e i f ( remainder!=0 && TYPE . pos_ i==0 && TYPE . pos_ j==0){
49 agentsToCreate= ( super .NUMAGENTS /
50 super .NUMPEERS)+remainder ;
51 }
52 e l s e {
53 agentsToCreate= super .NUMAGENTS / super .NUMPEERS;
54 }
55

56 while ( p a r t i c l e s . s i z e () != agentsToCreate )
57

58 p . se tPos ( p a r t i c l e s . getAvai lableRandomLocation () ) ;
59 p . xd i r = random . nex t In t (3) −1;
60 p . yd i r = random . nex t In t (3) −1;
61

62 i f ( p a r t i c l e s . s e tOb j e c tLoca t i on (p , new
Int2D (p . pos . getX () ,p . pos . getY () ) ) )

63 {
64 schedule . scheduleOnce ( schedule . getTime () +1.0 ,p) ;
65

66 i f ( p a r t i c l e s . s i z e () != super .NUMAGENTS) p=new
D P a r t i c l e ( t h i s ) ;

67 }
68 }
69 Steppable decreaser = new Steppable ()
70 {
71 @Override
72 pub l i c void s tep ( SimState s t a t e ) { t r a i l s . mu l t ip l y (0 .9) ; }
73 } ;
74 schedule . scheduleRepeat ing ( Schedule .EPOCH,2 , decreaser , 1 ) ;
75 }
76 pub l i c s t a t i c void main( S t r ing [] args )
77 {
78 doLoop ( D P a r t i c l e s . c l a s s , args ) ;
79 System . e x i t (0) ;
80 }
81 @Override
82 pub l i c D i s t r i bu tedF ie ld2D g e t F i e l d () { re turn p a r t i c l e s ; }
83 @Override
84 pub l i c SimState ge tS ta t e () { re turn t h i s ; }
85 @Override
86 pub l i c void addToField ( RemotePositionedAgent<Int2D> rm , Int2D loc ) {
87 p a r t i c l e s . s e tOb j e c tLoca t i on (rm , loc ) ;
88 }
89 pub l i c boolean s e t P o r t r a y a l F o r O b j e c t ( Object o) {
90 i f (p!= n u l l ) {
91 p . s e t P o r t r a y a l F o r O b j e c t (o ,
92 new sim . p o r t r a y a l . s imple . OvalPortrayal2D ( Color .YELLOW) ) ;
93 re turn t rue ;
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94 }
95 re turn f a l s e ;
96 }
97

98 }

C.1.3 (D)Visualization
The visualization of the simulation is provided for MASON in the class
Tutorial3WithUI (see Listing C.7), while for D-MASON it is in the class
DParticlesWithUI (see Listing C.8). Both the classes are subclasses of the MASON
class GUIState. In this case there are no significant differences between the two im-
plementations, this is due to the fact that the visualization refers to the visualization
of the status of corresponding LP, so the status of the others LPs is not required for
the visualization.

Listing C.7: DParticles

1 pub l i c c l a s s Tutor ia l3WithUI extends GUIState {
2 . . .
3 pub l i c s t a t i c void main( S t r ing [] args ) {
4 Tutor ia l3WithUi t = new Tutor ia l3WithUi () ;
5 t . c r e a t e C o n t r o l l e r () ;
6 }
7 pub l i c Tutor ia l3WithUI () {
8 super (new Tuto r i a l3 ( System . cu r ren tT imeMi l l i s ( ) ) ) ;
9 }

10 pub l i c Tutor ia l3WithUI ( SimState s t a t e ) {
11 super ( s t a t e ) ;
12 }
13 . . .
14 }

Listing C.8: DParticlesWithUI

1 pub l i c c l a s s DPar t i c le sWi thUI extends GUIState {
2 . . .
3 pub l i c s t a t i c S t r i ng name ;
4 . . .
5 pub l i c DPar t i c le sWi thUI ( Object [] args ) {
6 super (new D P a r t i c l e s ( args ) ) ;
7 name = St r ing . valueOf ( args [7]) + " " +

( S t r i ng . valueOf ( args [8]) ) ;
8 }
9 pub l i c s t a t i c S t r i ng getName () {

10 re turn " Peer : <"+name+">" ;
11 }
12 . . .
13 }
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C.2 D-MASON usage on a HPC environment
D-MASON is a Java project and is deployed using Apache Maven. D-MASON is
distributed under MIT license on a public repository [Repce]. After building the
project, by Maven commands, it is possible to execute the D-MASON System Man-
agement, described in Section 2.4.3. Assuming that we want to perform a simulation
on an HPC environment that supports Java. First of all the D-MASON Master has to
be started, using the following command: java -jar DMASON-X.X.jar -m master.
Then it is possible to start the workers. There are two way to run the workers.

1. Running on each node the command: java -jar DMASON-X.X.jar -m worker
-ip <ipactivemQ> -p <portActivemq> -ns M, where M is the number of
LPs that this worker may execute.

2. Running the command: java -jar DMASON-X.X.jar -m worker
-ip <ipactivemq> -p <portactivemq>
-h <ipslave1 ipslave2 ... ipslaveN> -ns <M>, that execute automati-
cally the D-MASON worker on each slave node given in input to the command
using the parameter −h.

Both the commands above assumes that the nodes of the HPC systems uses a SSH
Key-Based Authentication1.

Finally it is possible to execute the simulation using the system management (see
Section 2.4.3). It enable to access the Master web control, from any web browser,
where it is possible to submit new simulations. Simulations consist of Java Jar
containers that comprise all classes and resources required to perform a D-MASON
simulation.

1SSH Key-Based Authentication https://cs.calvin.edu/courses/cs/374/MPI/ssh.html accessed
on February 28, 2017.
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