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Abstract 

 

 

 

 
Durability and sustainability of cementitious materials are two important 

issues in the field of construction materials. Durability is defined as the 
ability of cementitious materials to resist weathering action, chemical attack, 
abrasion or any other process of deterioration. The use of fibers is a viable 
solution to partially overcome the brittle behavior of such materials. At the 
same time it is demonstrated that fibers, by reducing cracking phenomena, 
allow to face the durability related issues. Different fibers have been used 
according to the aims of composite materials: high strength fibers are 
generally used for structural purposes (toughness increase) while low 
modulus synthetic fibers are mainly used to avoid plastic shrinkage cracking. 
The effectiveness of fibers reinforcing action lies mainly on the fiber/matrix 
interactions. Three types of interactions can be recognized: i) physical and/or 
chemical adhesion; ii) friction and iii) mechanical anchorage induced by 
deformations on the fiber surface (e.g. crimps, hooks, twisted or deformed 
fibers in general). Sustainability can be identified according to the definition 
of sustainable development stated in 1987 by Brundtland et al.: “the 
development that meets the needs of the present without compromising the 
ability of future generations to meet their own needs”. Sustainable 
development should take into account economic growth, social equality and 
environmental protection. The construction industry involves all these fields: 
the main concerns are raw materials consumption and CO2 emissions during 
cement production. Moreover, also the plastic production and disposal 
present several environmental issues. Once again, raw materials 
consumption and the speed with which these materials became waste. 

Thus, seen the aforementioned drawbacks related to cementitious 
materials, this Ph.D. was aimed to study the possibility of using end-of-
waste materials (i.e when waste ceases to be waste and becomes a secondary 
raw material) for the production of synthetic fibers and aggregates 
characterized by improved mechanical interactions with the cementitious 
matrix. To this extent, fibers and aggregates with a rough and porous 
surface, able to offer interlocking positions for the cementitious matrix, were 
produced in laboratory by melt extrusion-foaming process. Moreover, some 
chemical treatments (alkaline hydrolysis and sol-gel deposition of nano-
silica) were performed on fibers, to improve chemical adhesion with the 
cement paste. Finally, taking into account the need for reducing the 
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consumption of raw materials, foamed fibers and aggregates were produced 
starting from a polymeric end-of-waste material made of a polyolefins blend 
(HDPE, LDPE and PP). 

Alkaline hydrolysis promoted the creation of interlocking positions on 
fiber surface but the best behavior was recognized for fibers with nano-silica 
particles on the surface. In this case, a denser ITZ and a great amount of 
hydration products were observed by SEM investigations. Pull-out tests 
confirmed the better performances of treated fibers: a higher pull-out peak 
load was achieved and an increase of pull-out energy was evident. 

Subsequently, a foam extrusion process was used to manufacture 
polymeric fibers (both virgin and recycled) with a rough surface, to improve 
mechanical friction with the cementitious matrix. Optimizing foaming agent 
quantity and processing parameters was possible to produce fibers having 
adequate surface texture and diameter to be used in fiber reinforced mortars. 
Although fiber reinforced mortars workability decreases at increasing fiber 
volume fraction, the results demonstrated that this happens to a lower extent 
for mortars containing foamed fibers. Fibers mechanical properties 
decreased at increasing fibers porosity but fiber reinforced mortars 
mechanical properties, flexural and compressive strength, were not 
influenced by fibers addition nor their morphology. The rougher surface 
gives rise to a better fiber/matrix adhesion, as confirmed by pull-out tests. 
Durability investigations on the fiber reinforced mortars reported good 
results for capillary water absorption, sulfate attack and plastic shrinkage 
cracking. In particular, fibers length and volume fraction are key parameters 
in controlling plastic shrinkage cracking. Moreover, mortar samples 
containing foamed fibers displayed a better control of shrinkage cracking: 
cracks opening was delayed and the improved fiber/matrix bond was able to 
reduce crack width, compared to mortars containing smooth fibers. 

Finally, lightweight artificial aggregates (LWAs) were produced, starting 
from foamed strands. At increasing LWAs substitution, a sharp decrease of 
density was achieved. Also workability and mechanical properties 
decreased, but a more ductile behaviour was recognizable. Thermal 
conductivity and water vapor resistance were proportional to mortars density 
which obviously decreased at increasing natural sand substitutions. 
Moreover, the use of aggregates porosity as reservoir of internal curing 
water showed promising preliminary results. 

In brief, the results of this study demonstrate that engineered fibers with 
improved fiber/matrix bond allow to optimize (i.e. to reduce) fibers volume 
fraction in cementitious mortars. Foamed fibers characteristics can be in turn 
optimized by changing the manufacturing process conditions. Benefits could 
be not only in the control of plastic shrinkage cracking but also in the 
workability of fresh mortars, mechanical strength and durability of the 
hardened composite. In addition, using end-of-waste materials a more 
sustainable product can be obtained. In particular, replacing natural 
aggregates with plastic aggregates, is possible to reduce raw materials 
consumption and improve mortar properties (mainly unit weight, thermal 
conductivity and water vapor permeability). 
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Dans le domaine de matériaux de construction, la durabilité des ouvrages 

en béton et le développement durable représentent deux aspects très 

importants. La durabilité de l’ouvrage caractérise sa capacité à conserver, 

pendant le temps, les fonctions d’usage pour lesquelles il a été conçu. 

L’utilisation des fibres dans les matériaux à base de ciment permet 

d’améliorer la ductilité et réduire les effets du retrait, dont la fissuration, et 

prolongent ainsi la durée de vie de l’élément en béton. On distingue trois 

grandes familles de fibres selon leur nature (métalliques, synthétiques, 

minérales) qui peuvent être utilisées à des fins structurelles ou non, en 

fonction de leurs propriétés mécaniques. Pour être efficaces, une bonne 

adhérence (chimique, mécanique ou par friction) fibre/matrice doit est 

assurée. Le développement durable a été défini dans le rapport Brundtland 

en 1987: «il s’agit d’un développement qui répond aux besoins du présent 

sans compromettre la capacité des générations futures à répondre à leurs 

propres besoins». Dans l'industrie de la construction, notamment celle du 

ciment, les problèmes principaux dérivent de la consommation des matières 

premières et des émissions de CO2 dans l’atmosphère. De plus, la production 

de polymères et l’élimination des déchets plastiques posent divers problèmes 

environnementaux, notamment au travers de l’utilisation du pétrole et de la 

très faible vitesse à laquelle les produits plastiques deviennent déchets.  

Étant donné les différentes problématiques mentionnées ci-dessus, le but 

de cette étude est la production de fibres et agrégats en plastique ayant une 

meilleure adhérence avec la pâte de ciment, en utilisant un matériau «end-of-

waste» (c’est-à-dire lorsqu’un déchet cesse d'être un déchet et devient une 

matière première secondaire) et un processus de «foam extrusion». Le 

processus de «foam extrusion» a été utilisé pour produire des fibres et des 

agrégats avec une surface rugueuse et poreuse, sous forme de cavités dans 

lesquelles la matrice cimentaire peut pénétrer. De plus, certains traitements 

chimiques (hydrolyse alcaline et dépôt sol-gel de nano-silice) ont été 

effectués sur des fibres pour améliorer l'adhérence chimique avec la pâte de 

ciment. Enfin, prenant en compte le désir de réduire la consommation de 

matières premières et le but d'augmenter l'utilisation de matériaux recyclés, 

les fibres et les agrégats expansés ont été produits en utilisant un matériau 
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fin-de-déchet qui est un mélange de plusieurs polyoléfines (HDPE, LDPE et 

PP). 

L'hydrolyse alcaline a produit de cavités sur la surface des fibres, mais le 

meilleur comportement a été trouvé pour les fibres avec des particules de 

nano-silice sur la surface. Dans ce cas, une Zone de Transition Interfaciale 

(ITZ) plus dense et une grande quantité de produits d'hydratation ont été 

observés par des investigations SEM. Les tests de pull-out ont confirmé les 

meilleures performances de fibres traitées: une charge maximum de pull-out 

plus élevée a été mesurée, avec une augmentation évidente de l'énergie 

d’extraction. Ensuite, un processus d’extrusion de mousse a été utilisé pour 

fabriquer des fibres polymères (tant vierges que recyclées) avec une surface 

rugueuse. L'optimisation de la quantité d'agent moussant et des paramètres 

de processus a permis la production de fibres ayant une texture superficielle 

et un diamètre adéquats. L’ouvrabilité des mortiers fibrés diminue avec 

l’augmentation de la quantité des fibres, mais, de manière plus faible dans le 

cas de mortiers renforcés avec les fibres moussées. Les propriétés 

mécaniques des mortiers fibrés ne sont pas influencées par l'addition des 

fibres ni par leur morphologie. La surface plus rugueuse offre une meilleure 

adhérence fibre/matrice, comme confirmé par les essais de pull-out. Les 

études de durabilité sur les mortiers renforcés ont rapporté de bons résultats 

en ce qui concerne l'absorption d'eau par capillarité, l'attaque par les sulfates 

et la fissuration au jeune âge. En particulier, les échantillons de mortier 

contenant des fibres moussées ont permis d’obtenir un meilleur contrôle de 

la fissuration car l'ouverture des fissures a été retardée et la bonne adhérence 

fibre/matrice a permis de réduire la largeur des fissures, par rapport aux 

mortiers contenant des fibres lisses. Enfin, des agrégats artificiels légers ont 

été produits à partir des fibres moussées. La substitution du sable naturel par 

les agrégats plastiques a engendré une forte diminution de la densité. La 

maniabilité et les propriétés mécaniques diminuent également, mais un 

comportement plus ductile est observé. La conductivité thermique et la 

résistance à la vapeur d'eau diminuent avec l’augmentation du taux de 

substitution de sable naturel,  proportionnellement à la densité de mortiers. 

Enfin, l'utilisation de la porosité des agrégats comme réservoir d'eau a donné 

des résultats préliminaires prometteurs. 
En résumé, les résultats de cette étude démontrent la possibilité 

d'optimiser la fraction volumique des fibres dans les mortiers de ciment à 
l'aide de fibres moussées, c'est-à-dire de fibres ayant une adhérence 
fibre/matrice améliorée. Les avantages pourraient être non seulement dans le 
contrôle de la fissuration au jeune âge, mais également dans la maniabilité 
des mortiers frais, la résistance mécanique et la durabilité du composite 
durci. En outre, en utilisant des matériaux de recyclage, on peut obtenir un 
produit plus durable grâce à la réduction de l'utilisation des matières 
premières. En particulier, le remplacement des agrégats naturels par des 
agrégats en polymère permet de réduire la consommation de matières 
premières et d'améliorer les propriétés du mortier (réduction du poids et de la 
conductivité thermique et augmentation de la perméabilité à la vapeur d'eau). 
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I.1 Cementitious materials 

Cementitious materials (or, more precisely, cementing materials) have 

been used since ancient times. The Egyptians, the Greeks and, significantly, 

the Romans used materials that harden after have been mixed to water. The 

Romans were the first producers of concrete and pozzolanic cement, that 

used to build structures that still exist (Neville, 1995). Nowadays, concrete is 

basically a mixture of water, cement, aggregates and additives (plasticizers, 

superplasticizer, shrinkage reducing admixtures, air entraining agents, set-

retarding etc.). 

Concrete is the most extensively used construction material, particularly 

combined with steel, thanks to a relative low price, is easily molded, has a 

good compressive strength and an adequate stiffness for structural uses. On 

the other side, as negative aspects, concrete is not eternal and is brittle. 

Long-term performances of concrete are of widespread importance both for 

new constructions and existing structures. The brittle behavior means a very 

low tensile strength and lack of ductility. To overcame this drawback, one of 

main strategies is the addition of fibers, as will be discussed in the following. 

Concerning concrete durability, cementitious materials porosity is the key 

parameter: governing porosity and thus permeability is possible to produce a 

more durable material. 

Porosity, however, is an intrinsic property of the cementitious materials 

and, despite the efforts to reduce and control this parameter, it is not possible 

to completely prevent voids formation. Generally voids are classified 

considering their size in: gel pores, capillary pores, macro-voids (entrapped 

and entrained air) and cracks (Table I.1). Porosity greatly influences not only 

durability properties but also mechanical strength (Neville, 1995). The 

presence of accessible pores and the presence of interconnected galleries 

represents an easy way for the penetration of several agents: water, 

chlorides, sulfates, carbon dioxide, etc., that determine the increase of decay 

rate and deterioration of cementitious materials. 
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Table I.1 Pores classification, dimension and influenced properties 

Type of pore Size Influenced properties 

Gel pores 1-10 nm Shrinkage, creep 

Capillary pores 0.01-10 m 
Permeability, strength 

and shrinkage 

Macro-voids 
Entrained air 0.06-1 mm 

Permeability, strength 
Entrapped air 1-5 mm 

Micro-cracks 50-200 m Permeability, strength 

Macro-cracks mm order Permeability, strength 

 

I.2 Durability of cementitious materials 

Durability of cementitious materials is defined as its ability to resist 

weathering action, chemical attack, abrasion, or any other process of 

deterioration. Durable concrete will retain its original form, quality, and 

serviceability when exposed to its environment (ACI 201.2R-01). 

As previously discussed, porosity is the main aspect that should be 

considered in the evaluation of cementitious materials durability. In the 

following paragraphs transport mechanisms and degradation phenomena will 

be discussed. 

 

I.2.1 Transport mechanisms in cementitious materials 

Generally, deterioration agents could be present in the environment 

where the structure is built but they can be already present in the structure, 

due to a lack of controls on raw materials, for example. Thus, deterioration 

occurs because attacking agents are able to penetrate throughout the concrete 

(i.e. concrete should be permeable) and move inside pores due to pressure, 

concentration, moisture and temperature gradients. The mechanisms and the 

causes of mass transports can be summarized in: 

- Permeability: the transport is determined by a pressure gradient; 

- Diffusion: a concentration gradient causes the movement; 

- Sorption: generated by the forces of surface adhesion, depending on 

the affinity of a liquid, water in particular, with the surfaces of a solid 

(i.e. concrete).  

Thus, cementitious materials durability, is governed by transport 

properties that are influenced and controlled by porosity (number, type, size 

and distribution of the pores) and cement paste/aggregates interfacial 

transition zone (ITZ).  

As seen, depending on the driving force and the nature of the transported 

matter (gas, liquid or ion), different transport processes are recognizable as 

permeability, diffusion and sorption. 
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I.2.1.1 Permeability 

Permeability is a measure of the ability of a porous material to allow 

fluids to pass through it. In particular, the driving force derives from the 

action of a pressure differential. Permeability is clearly dependent not only 

on the porosity but also on the level of connection of the pores. Darcy’s law 

states that the steady-state rate of flow is directly proportional to the 

hydraulic gradient (eq. I.1), i.e.:  

 

𝑣 =  
𝑄

𝐴
= −𝐾 (

𝑑ℎ

𝑑𝐿
)                                     (I.1) 

 

where  is the apparent velocity of flow, Q is the flow rate, A is the cross-

sectional area of flow, dh is the head loss over a flow path of length dL, K is 

called the coefficient of permeability (Basheer et al., 2001).  

Darcy’s law has been generalized to apply to any fluid flowing in any 

direction through a porous material, so long as the conditions of flow are 

viscous. The law can be expressed by the equation:  

 

𝑣 =  
𝑄

𝐴
= − (

𝑘

𝜇
) (

𝑑𝑝

𝑑𝐿
)                                  (I.2) 

 

where dP is the pressure loss over the flow path dL, μ is the viscosity of the 

fluid, k is referred to the intrinsic permeability of the porous medium. 

Intrinsic permeability, measured in m
2
, depends only on the characteristics of 

the porous medium and is independent of those fluid characteristics which 

govern the flow, i.e. viscosity μ, expressing the shear resistance of the fluid 

(Basheer et al., 2001). 

 

I.2.1.2 Diffusion 

When the matter is transported from one part of a system to another due 

to a concentration gradient, it refers to the diffusion process. The 

macroscopic movement occurs as a result of small random molecular 

motions, which take place over small distances. The progress of diffusion is 

much faster in gases than in liquids, being the slowest in solids (Basheer et 

al., 2001). The permeant, i.e. the molecules that are in movement, flow from 

high concentration to low concentration across the interface: flux is a 

measure of diffusion and represents the flow rate per unit area at which mass 

moves. Fick’s first law of diffusion, eq. I.3, states that the rate of transfer of 

mass through unit area of a section, J, is proportional to the concentration 

gradient dc/dx and the diffusion coefficient: 

 

𝐽 = −𝐷
δc

𝛿𝑥
                                         (I.3) 

 



Chapter I 

4 

For non-steady state conditions, the concentration c at the location x 

changes with time, and the balance equation generally referred to as Fick’s 

second law of diffusion (eq. I.4) describes the change in a unit volume with 

time:  
𝜹𝒄

𝜹𝒕
= 𝑫

𝜹𝟐c

𝜹𝒙𝟐                                          (I.4) 

 

In this equation, D may be constant or a function of different variables, 

such as time, temperature, concentration, location, etc. For a constant D, the 

solution of the above equation for the boundary condition of c = c(0,t) and the 

initial condition of c = 0 for x > 0 and t = 0, is given by eq. I.5:  

 

𝑪 = 𝒄𝟎 (𝟏 − 𝒆𝒓𝒇 (
𝒙

𝟐√𝑫𝒕
))                             (I.5) 

 

where erf  is the standard error function. A factor to consider while dealing 

with the diffusion process is the chemical reactions taking place between the 

penetrating substances and concrete. For example, the diffusion of chloride 

ions into the concrete is accompanied by reaction such as physical and 

chemical binding at the hydration products. The reaction reduces the 

concentration of movable chloride ion at any particular site and, hence, the 

tendency for inward diffusion is further reduced. In experiments, which do 

not explicitly consider binding, erroneous estimates are made using the 

diffusion equation (eq.I.4) (Basheer et al., 2001). 

 

I.2.1.3 Sorption 

Sorptivity, represents the capacity of a medium to absorb (or desorb) 

liquid by capillarity. Absorption is a process in which atoms, molecules or 

ions enter in a material (that could be in gas, liquid or solid form) and the 

capillary action is the ability of a liquid to flow in pore spaces initially filled 

with a fluid, due to interfacial pressure differences. In particular, the affinity 

between a liquid with a solid (in our case water and concrete, respectively), 

generates adhesive forces due to surface tension, generating a depression that 

determines water capillary rise. Depression can be determined using Laplace 

equation: 

 

𝑷𝒄𝒂𝒑 =
𝟐𝝈 𝐜𝐨𝐬 𝝑

𝒓
                                         (I.6) 

 

where Pcap is the depression in the capillary pores,  is the superficial tension 

of the water (7.210
-2

 N/m a 25°C),  is the contact angle between the liquid 

and the pore surfaces and r is the radius of the pore. Considering some 

boundary conditions (laminar and unidirectional flow) and integrating the 

resulting equation in the direction of pore, is possible to determine the water 

absorbed per unit surface, due to the capillary rise (I.7). 
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In particular, the water absorbed by surface unit at time ti and the square root 

of the time are correlated by the sorptivity (or coefficient of capillary 

sorptivity): 

 

𝑰𝒕𝒊
= 𝑺√𝒕                                         (I.7) 

 

Basheer et al. (2001), report a modified equation in which is considered also 

the initial disturbance (due to the surface finish probably): 

 

𝑰𝒕𝒊
= 𝑺√𝒕+C                                     (I.8) 

 
where C is the initial disturbance. 

 

I.2.2 Degradation of cementitious materials 

As stated before, the degradation of cementitious materials can be due 

either to external factors deriving from the environment or by internal 

agents, i.e. already present within the material. Causes of degradation can be 

classified in three categories: physical, chemical and mechanical (Neville, 

1995). Physical causes of deterioration include the effects of temperature: 

exposure to high temperature or of the differences in thermal expansion of 

aggregate and of the hardened cement paste but also freeze/thawing cycles. 

The chemical causes of deterioration include the alkali-silica and alkali-

carbonate reactions, the action of aggressive ions, such as chlorides, sulfates, 

or of carbon dioxide, as well as many natural liquids and gases or industrial 

pollutants. Mechanical damage is caused by impact, abrasion, erosion or 

cavitation. 

It should be observed that the physical and chemical processes of 

deterioration can act in a synergistic manner, for example the associated 

action of de-icing salts and freeze/thawing deterioration. Thus, concrete 

degradation is rarely due to one isolated cause. 

The most important causes that determine the decrease of cementitious 

materials durability, will be briefly discussed in the following paragraphs. 

 

I.2.2.1 Physical causes of deterioration 

I.2.2.1.1 Freeze/thaw cycles 

In cold climates, it is impossible to avoid the exposure of concrete to 

alternating freezing and thawing cycles. Freezing of water results in an 

increase in volume of approximately 9%, thus the water held in the capillary 

pores expands. Repeated cycles of freezing and thawing have a cumulative 

effect and when the dilating pressure in the concrete exceeds its tensile 

strength, damage occurs. Concrete deterioration starts from the exposed 
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surface and proceeds through its depth. Each cycle of freezing causes a 

migration of water to locations where it can freeze. These locations include 

fine cracks which become enlarged by the pressure of the ice and remain 

enlarged during thawing when they become filled with water. Subsequent 

freezing repeats the development of pressure and its consequences. As the 

larger voids in concrete, arising from incomplete compaction, are usually 

air-filled and, therefore, not appreciably subject to the action of frost. While 

the resistance of concrete to freezing and thawing depends on its various 

properties (e.g. strength of the hardened cement paste, extensibility, and 

creep), the main factors are the degree of saturation and the pore system of 

the hardened cement paste (Neville, 1995). 

 

I.2.2.1.2 High temperatures 

The effect of high temperature on reinforced concrete is disruptive. Steel 

bars can resist up to 500 °C while concrete compressive strength decreases 

dramatically between 300 and 800 °C, in particular after 650 °C (Ma et al., 

2015). The protective action exerted by the concrete cover is of widespread 

importance because delays the heat transfer: higher the cover higher is the 

time necessary for the steel bars to reach the collapse temperature. 

Moreover, the temperature increase determines also an increase of steel bars 

volume, generating tensions that can lead to the cover spalling. Attention 

must be paid during the fire extinguishing operations at water temperature 

and lime formation. 

 

I.2.2.1.3 Shrinkage and cracking 

Shrinkage of cementitious materials is one of the most important 

durability related issues because can determine the occurrence of cracking 

phenomena. Shrinkage of concrete takes place in two distinct stages: early 

and later ages. As early stages, the first 24 h can be considered while setting 

and hardening are occurring. Thus, later ages refer to 24 h and over (i.e. long 

term). In these two distinct periods, several types of shrinkage can be 

identified (Figure I.1): plastic, drying, autogenous, thermal and carbonation. 

 

 

 

 

 

 

 

Figure I.1 Diagram of shrinkage types and age 
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In the fresh state of concrete, when is not fully rigid, water movements in 

the porous structure cause contractions. Moreover, during the hydration 

reactions of cement, volume changes occur and the volumetric contraction is 

about 1% of the absolute volume of the dry cement (Neville, 1995). Finally, 

in the plastic stage, water can also be lost by evaporation from the surface of 

concrete. All the aforementioned phenomena contribute to the plastic 

shrinkage until the concrete is in the plastic state. The key parameter is the 

amount of water lost from the surface that is influenced both by temperature 

and relative humidity of the environment but also by wind speed. If the 

amount of water lost per unit area exceeds the amount of water brought to 

the surface by bleeding and is large, surface cracking can occur. This is 

known as plastic shrinkage cracking: a correct curing after casting, i.e. a rate 

of evaporation of water lower than 1 kg/m
2
 per hour, eliminates plastic 

cracking. Plastic shrinkage is greater the greater the cement content of the 

mix and the lower the w/c ratio (Neville, 1995). 

Once that setting has taken place, volume changes can still occur. 

Expansion occurs if water is continuously supplied, continuing hydration, 

while shrinkage occurs if no moisture movement is permitted. The water 

present in the capillary pores is consumed to continue the hydration of 

unhydrated cement: this phenomenon is more pronounced for very low w/c 

ratios. This process is called autogenous shrinkage and is restrained by the 

rigid skeleton of the already hydrated cement paste and also by the aggregate 

particles. As self-desiccation is greater at lower water/cement ratios, 

autogenous shrinkage could be expected to increase but this may not occur 

because of the more rigid structure of the hydrated cement paste at low w/c 

ratios (Neville, 1995).  

While autogenous shrinkage of cement paste and concrete is defined as 

the macroscopic volume change occurring with no moisture transferred to 

the exterior surrounding environment, drying shrinkage results from a loss of 

water from the concrete. High w/c ratios correspond to more unbound water 

and thus higher drying shrinkage but the change in volume of drying 

concrete is not equal to the volume of water removed. The loss of free water, 

which takes place first, causes little or no shrinkage. As drying continues, 

adsorbed water is removed and the change in the volume of unrestrained 

hydrated cement paste at that stage is equal approximately to the loss of a 

water layer one molecule thick from the surface of all gel particles. Since the 

thickness of a water molecule is about 1 % of the gel particle size, a linear 

change in dimensions of cement paste on complete drying would be 

expected to be of the order of 10 000 × 10
–6

; values up to 4000 × 10
–6

 have 

actually been observed (Neville, 1995). 

Carbonation shrinkage is a long-term shrinkage that occurs when there is 

a high CO2 concentration in the air around the concrete (the process of 

carbonation is discussed in the following, § 1.2.2.2.1). However, it should be 

noted that, because carbon dioxide is fixed by the hydrated cement paste, the 
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mass of the latter increases. Consequently, the mass of concrete also 

increases. When concrete dries and carbonates simultaneously, the increase 

in mass on carbonation may at some stage give the misleading impression 

that the drying process has reached the stage of constant mass, i.e. 

equilibrium (Neville, 1995).  

Carbonation shrinkage is probably caused by the dissolving of crystals of 

Ca(OH)2 while under a compressive stress (imposed by the drying 

shrinkage) and depositing of CaCO3 in spaces free from stress; the 

compressibility of the hydrated cement paste is thus temporarily increased. 

Carbonation increases the shrinkage at intermediate humidities, but not at 

100 % or 25 %. In the latter case, there is insufficient water in the pores 

within the cement paste for CO2 to form carbonic acid (H2CO3). On the other 

hand, when the pores are full of water, the diffusion of CO2 into the paste is 

very slow; it is also possible that the diffusion of calcium ions from the paste 

leads to precipitation of CaCO3 with a consequent obstruction of surface 

pores. 

 

I.2.2.2 Chemical causes of deterioration 

I.2.2.2.1 Aggression by Carbon Dioxide 

One of the most important chemical aggression, for cement based 

materials, is that deriving from carbon dioxide (CO2). Two different 

deterioration phenomena can occur: carbonation and leaching.  

Carbonation is the reaction of calcium hydroxide, Ca(OH)2, with 

atmospheric carbon dioxide and the consequent production of calcium 

carbonate: 

 

CO2 + Ca(OH)2           CaCO3 + H2O 

 

This reaction is favored by the presence of moisture, and is faster if there is 

the presence of sodium ions or potassium ions (i.e. alkali). CO2 diffuses into 

the air contained in the pores of the concrete, as a result of a difference in 

concentration of CO2 (driving force) between the interior mortar and the 

outside environment. The reaction reduces the pH of the pores solution 

(generally around 13), causing problems in the case of reinforced concrete 

frames where passivation is no longer assured. Passivity is ensured by the 

presence of a thin iron oxide film on the surface of the metal. It should be 

noticed that carbonation is greatly influenced by the concrete moisture: the 

most dangerous relative humidity range is between 50-80%. If pores are dry 

or saturated, carbonation cannot occurs. Therefore, CO2 diffusion is very 

fast if pores contain only air and quite slow is moisture is present. In 

conclusion, carbonation is dangerous particularly for reinforced concrete 

structures. 
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Leaching is the dissolution of various minerals present in the cement 

based materials due to a mechanical action of the water flow. This 

phenomenon is more pronounced when water is more acid due to carbon 

dioxide or pollutants present in the environment (acid rain). 

 

I.2.2.2.2 Sulfate attack 

Another important chemical cause of deterioration is sulfate attack. When 

salts are present in solution they can react with hydrated cement paste 

producing expansive compounds. In soil or groundwater is not rare to found 

sulfates of sodium, potassium, magnesium and calcium. An example of 

sulfate attack can be the reaction of sodium sulfate with calcium hydroxide 

that produces gypsum (calcium sulfate dihydrate). Gypsum can attack 

calcium aluminate hydrate to form ettringite, i.e. calcium sulfoaluminate 

(3CaOAl2O33CaSO432H2O). The formation of ettringite is followed by an 

increase of volume that leads to delamination, swelling and cracking. In 

particular conditions (low temperature and high relative humidity) an even 

more dangerous compound can be produced, i.e. thaumasite. 

The reactions with sulfate magnesium are less common but more 

disruptive.  

 

I.2.2.2.3 Alkali-aggregates reaction 

Alkali-silica reaction occurs between the active silica constituents of the 

aggregates and the alkalis present in the cement (Na2O and K2O). The 

reactive forms of silica are opal (amorphous), chalcedony (cryptocrystalline 

fibrous) and tridymite (crystalline) (Neville, 1995). The alkaline hydroxides 

present in the pore water, derived from the alkalis, attack the siliceous 

minerals in the aggregates producing an alkali-silicate gel. This compound 

can attract water by absorption or by osmosis, increasing its volume. Since 

the gel is confined by the surrounding hydrated cement paste, thus hardened, 

internal pressures are generate resulting in expansion, cracking and 

disruption of the cement paste (pop-out and spalling). 

The alkali–silica reaction occurs only in the presence of water. The 

minimum relative humidity in the interior of concrete for the reaction to 

proceed is about 85% at 20 °C. At higher temperatures, the reaction can take 

place at a somewhat lower relative humidity. Because water is essential for 

the alkali–silica reaction to continue, drying out the concrete and prevention 

of future contact with water is an effective action to stop the reaction. 

However, the alkali–silica reaction is very slow, and its consequences may 

not manifest themselves until after many years (Neville, 1995). 
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I.2.2.2.4 Chlorides 

Chlorides, particularly calcium chloride (CaCl2) and sodium chloride 

(NaCl) have two detrimental actions on concrete structures. Chlorides can 

leach calcium hydroxide leading to a loss of strength, but they can also 

attack the steel reinforcement present in reinforced concrete, promoting 

corrosion. In fact, the presence of chlorides in the pore solution can reduce 

the passivation of the alkaline cement paste pore solution. There is a 

threshold concentration of the chloride ions which must be exceeded before 

corrosion occurs. The corrosion due to chloride ingress progresses at a much 

higher rate than that due to carbonation and it can be both generalized and 

localized (i.e. pitting). General corrosion may have more total loss in iron, 

but pitting corrosion causes more loss in cross-sectional area and hence is 

more dangerous (Basheer et al., 2001). Several transport mechanism can 

participate: if capillary pores are relatively dry, absorption dominates and 

when they are relatively saturated, diffusion becomes the dominant transport 
process. 
 

I.2.2.3 Mechanical causes of deterioration 

I.2.2.3.1 Abrasion 

Abrasion damage occurs when the surface of concrete is unable to resist 

wear caused by rubbing and friction. This phenomenon is common for 

vehicular traffic surfaces. Moreover, it can occurs also in hydraulic 

structures, such as dams, spillways, and tunnels. A minor influence have the 

particles transported by the wind. As the outer paste of concrete wears, the 

fine and coarse aggregate are exposed, increasing the rate of deterioration. 

 

I.2.2.3.2 Impacts 

As concrete is a brittle material, if the intensity of the impact is high, 

degradation occurs, reducing concrete strength.  

 

I.2.2.3.3 Erosion 

Erosion, is a particular type of wear due to the wind, water or ice, that 

produces the removal of material from the surface of structures. It depends 

from the speed, the amount of hard dust in the fluid (i.e. wind or water) and 

the quality of concrete. 

 

I.2.2.3.4 Cavitation 

Cavitation occurs where there is the presence of water in movement 

(speed > 12 m/s). The high speed of the water and the presence of an 

irregular surface produce a turbulence flow that creates bubbles (or cavities) 

in the water flow with a local drop of pressure that wear the surface. 
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I.3 Sustainability and waste management  

I.3.1 Generalities 

The idea of a sustainable development can be traced back in the centuries 

since XVIII century when raised up the problem of the forest management in 

Europe, but only in 1980 appeared the term sustainable development when 

the International Union for the Conservation of the Nature published a 

document for the world conservation strategy (IUCN, 1980). Finally, in 1987 

a clear definition of the sustainable development was present in the 

Brundtland Report (Brundtland et al., Our Common Future, 1987): 

 

“Sustainable development is the development that meets the needs 

of the present without compromising the ability of future generations 

to meet their own needs”. 

 

Sustainable development should take into account several fields and 

aspects: economic growth, social equality and environmental protection 

(Figure I.2). 

 

 

 

 

 

 

 

 

 

 

Figure I.2 The three dimensions of the sustainable development 

After the Brundtland Report, the actions, the initiatives and also the 

goals, were defined in the “Agenda 21” in 1992 (United Nations, 1992). This 

first report was followed by other publications, as a result of several events 

organized by the United Nations in 1997, 2002 and 2012.  

Seen the desire of a sustainable development, this theme will be 

discussed more deeply in the following paragraphs, focusing the attention on 

the topics of interest of the present thesis. In particular, attention will be paid 

to the issues deriving from the cement industry and plastic disposal/recovery, 

presenting the life cycle assessment (LCA) methodology as a viable 

instrument to take into account sustainability related aspects. 

One of the most important concerns associated to the construction and 

plastic industries is the waste management (Sharma and Bansal, 2016; 
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Butera et al., 2015; Horvath, 2004; Turk et al., 2015, Rigamonti et al., 2014). 

Recycling, recovering energy from waste materials and reducing the 

consumption of raw resources are viable strategies to make economy more 

sustainable and competitive. During last years, the concept of circular 

economy has grown and established itself as an opportunity to make World’s 

economy cleaner and more competitive (Figure I.3). 

                                                                         

Figure I.3 Difference between traditional linear economy and innovative 

circular economy (Henry, 2016) 

In the European legislation, the idea of circular economy was firstly 

introduced in the Manifesto for a Resource Efficient Europe (European 

Commission. Brussels, December 2012) and recently confirmed in a 

communication from the commission to the European parliament were the 

attention is focused not only on the waste but also on the full product cycle, 

i.e. from the invention and manufacturing of a product (European 

Commission. Brussels, December 2015). 

The current EU waste policy establish a concept known as the waste 

hierarchy (Figure I.4) were, ideally, waste should be prevented, and what 

cannot be prevented should be reduced, reused, recycled or recovered as 

much as possible, with landfilling being the least favored option (Directive 

2008/98/EC). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4 The waste hierarchy: from the most favored option to the least 

one (from the top to the down, respectively) 
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The Waste Framework Directive (Directive 2008/98/EC, November 

2008) defines the so called end-of-waste materials, i.e. when waste ceases to 

be waste and becomes a secondary raw material. In particular, waste shall 

cease to be waste when it has undergone a recovery, including recycling, 

operation and complies with specific criteria to be developed in line with 

certain legal conditions (article 6, Directive 2008/98/EC, November 2008). 

The European Commission (EC) prepared some proposals for end-of-waste 

criteria for specific waste streams, according to the legal conditions and 

following the Joint Research Centre (JRC) methodology guidelines. So far, 

the criteria have been laid down for: 

- Iron, steel and aluminum scrap (Council Regulation N° 333/2011); 

- Glass cullet (Council Regulation N° 1179/2012); 

- Copper scrap (Council Regulation N° 715/2013); 

- Waste paper (Technical proposal April 2011; rejected by the 

European Parliament in December 2013). 

Regarding the waste plastics, after two workshops (November 2011 and May 

2012) a final report concerning end-of-waste criteria for plastics was 

published in October 2014. The scope of the document and the proposals of 

end-of-waste criteria included in it refer to waste plastic for conversion, i.e. 

waste plastic that is reprocessed into a ready input for re-melting in the 

production of plastic articles and products (Report EUR 26843 EN, 

Villanueva and Eder, 2014). Plastic conversion is understood as the 

transformation of plastic materials by application of processes involving 

pressure, heat and/or chemistry, into finished or semi-finished plastic 

products for the industry and end-users. The process normally involves 

sorting, size reduction operations to shred, flake or regrind, cleaning 

(including or not washing), agglomeration, melt-filtering, and final shaping 

into granular (pellet) or powder form, although some of the mentioned steps 

may be omitted. Once recyclate is in a suitable form and is of the required 

standard, it can be converted into a finished article (Report EUR 26843 EN, 

Villanueva and Eder, 2014). Further discussion on the issues related to waste 

plastics will be discussed in the following (§ I.3.3).  

Finally, cementitious materials deterioration makes structures unsafe 

(social concern), maintenance and thus raw materials consumption are 

necessary (economical and environmental concerns, respectively), leading to 

sustainability related issues. As previously discussed, durability of 

cementitious materials is very important and several deterioration 

phenomena are possible (§ I.2.2). It is only from 70s that durability of 

cementitious materials started to be investigated and discussed in literature, 

reaching more than 1200 publications only in 2015 (Figure I.5). The 

durability and the sustainability of construction materials are strictly 

correlated since the cement industry is one of most important polluters and, 

more in general, the construction field poses some problems concerning the 

topic of sustainability as will be discussed in the following. 



Chapter I 

14 

 

Figure I.5 Number of publications about concrete durability (source Scopus, 

06/10/2016) 

I.3.2 Environmental effects of the cement industry 

Sustainability is the intersection of different fields (Figure I.2): social, 

environmental and economical. The construction sector takes into account 

all the aforementioned fields because involves numerous manufacturing 

sectors (principally building materials), systems (heating, ventilation and air 

conditioning) and people (engineers, customers etc.). Among all the 

materials, crushed rock, gravel, sand, water and cement (i.e. the main 

constituents of the traditional concrete) are the most used as concrete is the 

most widely used construction material in the world, with annual 

consumption estimated at between 20 and 30 billion tons (Sabnis, 2015). It is 

worth to mention that exists an important difference, in terms of 

sustainability, between concrete and cement: the former can be considered 

an ecofriendly material while cement production generates about 5-7% of 

worldwide CO2 emissions, about 1 ton of CO2 emitted per ton of cement 

produced (Sabnis, 2015; Meyer, 2009). Moreover, the production of ordinary 

Portland cement (OPC) is also very energy intensive: each ton of OPC 

produced requires 60-130 kg of fuel oil (or equivalent) and about 110 kWh 

of electricity (Imbabi et al., 2012). Finally, the large amount of required 

water to produce concrete is a further environmental issue. On the contrary, 

considering not only the environmental impact during the manufacturing 

process but also during the entire life cycle of the product, concrete is highly 

durable and energy efficient if well designed and cast. Furthermore, 

construction and demolition wastes (CDWs) have shown promising results 

in substitution of natural aggregates in pavements (Ossa et al., 2016), 

geotechnical applications (Cardoso et al., 2016) and concrete-filled steel 
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tubes (Chen et al., 2016). Therefore, is possible to use concrete, but with as 

little OPC quantity as possible. This means an improvement in the use of 

recycled materials in place of natural resources but also in the use of 

supplementary cementitious materials, especially those that are by-products 

of industrial processes. Meyer (2009), summarized the use of recycled 

materials in concrete, focusing the attention on silica fume, fly ash, ground 

granulated blast furnace slag, as supplementary cementitious materials, i.e. 

that is possible to use in place of the OPC; CDWs, post-consumer glass and 

recycled plastic, as natural aggregates replacement. Moreover, Aprianti 

(2017) reviewed also the agricultural wastes that have been investigated as 

supplementary cementitious materials: rice husk ash, palm oil fuel ash, 

bagasse ash, wood waste ash, bamboo leaf ash and corn cob ash.  

In recent years, particularly attention has been paid also to the reuse of 

waste water (mostly deriving from ready-mixed concrete plants) for trucks 

washing or concrete production (Audo at al., 2016; Schoon et al., 2015). 

Finally, as in other fields, also in the construction sector, researchers are 

trying to take advantages from the use of nanoparticles. The use of 

nanoparticles modifies not only mechanical and durability properties, but is 

also able to introduce new functionalities: photocatalytic action, anti-

microbial activity, anti-fogging, self-sensing and self-cleaning (Shah et al., 

2015; Jayapalan et al., 2013). The improvement of concrete durability (i.e. 

the reduction of maintenance operations and costs) represent an 

improvement of concrete sustainability, mitigating the negative effects of the 

cement industry. 

 

I.3.3 The problem of plastics 

The plastic is the most common material of the 21th century and in 2013 

plastics world production (Figure I.6) reached the three hundred megaton 

(Plastics-The facts, 2015). Thanks to its advantageous properties (versatility, 

lightweight, low cost and ease to process) the use of plastics seems to be 

essential in our life. However, plastic production and disposal present 

several environmental issues. One of the disadvantages resides on the speed 

with which these materials immediately became waste. In Europe 

(EU28+NO/CH) in 2014, 25.8 million tons of post-consumer plastics waste 

ended up in the waste upstream: 69.2% was recovered through recycling and 

energy recovery processes while 30.8% still went to landfill (Plastics-The 

facts, 2015). The only key to reduce environmental issues caused by waste 

disposal and use of non-renewable resources is recycling. According to the 

waste hierarchy (Figure I.4) and the waste framework directive previously 

mentioned (Directive 2008/98/EC, November 2008), in the EU member 

states, not less than 30% of plastic waste should be reused or recycled. 

Moreover, the directive clearly states that by 2020, all solid waste streams 

(including plastics) should be redirect towards thermal and/or mechanical 
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treatment and energy recovery reducing the percentage of solid waste being 

landfilled to a minimal. 
 

 

Figure I.6 Plastics production in the World and Europe (EU28+NO/CH), 

source: Plastics-The facts 2015 

Four different categories of plastics waste recycling can be defined 

(Figure I.7): re-extrusion (primary recycling), mechanical (secondary 

recycling), chemical (tertiary recycling) and energy recovery (quaternary 

recycling). Each method provides a unique set of advantages that make it 

particularly beneficial for specific locations, applications or requirements. 

Primary mechanical recycling is the direct reuse of uncontaminated 

discarded polymer into a new product without loss of properties. In most 

cases, primary mechanical recycling is conducted by the manufacturer itself 

for post-industrial waste. In principle, also post-consumer waste can be 

subjected to primary recycling; however, in this case, a number of additional 

processes are necessary that significantly increase the costs of recyclates. 

Before reintegration of a used material into a new product, it normally 

requires grinding (i.e. shredding, crushing, or milling). These processes 

make the material more homogeneous and easier to blend with additives and 

other polymers for further processing. Therefore, only thermoplastic 

polymers, such as PP, PE, PET and PVC, can normally be mechanically 

recycled. The best-known methods of this type of processing of mechanical 

recyclates are injection molding, extrusion, rotational molding and heat 

pressing (Ignatyev et al., 2014). Secondary mechanical recycling (i.e. 

secondary or material recycling) involves physical treatment, whilst 

chemical recycling (i.e. tertiary encompassing feedstock recycling) produces 

feedstock chemicals for the chemical industry, and energy recovery involves 

complete or partial oxidation of the material, producing heat, power and/or 

gaseous fuels, oils and chars besides by-products that must be disposed of, 

such as ash (Al-Salem et al., 2010). 
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Figure I.7 Treatment methods related to polymers lifecycle (readapted from 

Ignatyev et al., 2014; Al-Salem et al., 2010) 

The pre-treatment and sorting operations for plastics waste enable this 

valuable resource to be diverted from landfill and to deliver recyclate of the 

required market-driven qualities. A wide range of technologies are currently 

used for waste pre-treatment and sorting. These range from manual 

dismantling and picking to automated processes such as shredding, sieving, 

air or liquid density separation, magnetic separation and highly sophisticated 

spectrophotometric sorting technologies, e.g. UV/VIS, NIR, Laser, etc. 

Modern sorting plants are often complex infrastructures applying several of 

these technologies that have been adapted to specific waste streams in order 

to reach an optimal output and cost performance (PlasticsEurope). Plastic 

waste sorting allows the recovery of large volumes of polymeric fractions 

but while rigid plastics are easy to separate and recycle, more difficulties are 

found for flexible films which represent a great part of plastic waste. 

Moreover, the presence of different plastic types, which are not easy to 

separate and often are also immiscible at micro-scale produces materials 

with very poor properties (Bertin and Robin, 2002; Shanks et al., 2000; 

Dintcheva et al., 2001). 

Recently, a possibility for the effective increase of polymeric blends 

properties is the addition of suitable additives (commercial compatibilizers 

are graft or block copolymers), to improve the interfacial adhesion and the 

dispersion of the mixture components. However, traditional block and graft 

copolymers are specific, relatively expensive to engineer, and very difficult 

to produce for polymeric mixtures with more than two components. Another 

viable solution is the use of nanoclay that act as nucleating agents for in-situ 

graft formation (Garofalo et al., 2015).  
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I.3.4 Life Cycle Assessment (LCA) 

The International Organization for Standardization (ISO) adopted an 

environmental management standard in the 1990s as part of its 14000 

standards series, with the 14040 series (EN ISO 14040 and EN ISO 14044, 

2006) focusing on establishing methodologies for life cycle assessment 

(Singh et al., 2011). ISO 14040 defines life cycle as the ‘‘consecutive and 

interlinked stages of a product system, from raw material acquisition or 

generation from natural resources until its final disposal’’ (EN ISO 14040, 

2006). Moreover, the life cycle assessment (LCA) is the compilation and 

evaluation of the inputs, outputs and the potential environmental impacts of 

a product system throughout its life cycle (EN ISO 14040, 2006). LCA is a 

valid tool to learn about the environmental effects of a certain product, work, 

process etc. Regarding at the building and construction field, LCA 

determines the environmental effects deriving from the construction of a 

given structure, its service life, reuse, demolition and waste management. In 

addition, some important aspects must be necessarily considered: restoration, 

maintenance and repair actions of the structure. LCA methodology should 

also take into account preventive maintenance programs which will require 

an effort and commitment by future generations (Mora, 2007). One of most 

important aspect of the LCA is the possibility to take into account materials 

(or, more in general, products) end-of-life. The possibility of materials reuse, 

recycle, recover, etc., is the principal idea of sustainability, strictly linked to 

the effects on the environment, i.e. the irreversibility of an action. Remaining 

in the field of constructions, LCA is a systematic analysis of not only the 

direct but also the indirect environmental effects of construction materials. 

Direct effects relate to the energy and material use in the materials 

production stage, whereas indirect effects reveal the contributions of the 

supply chains (Mora, 2007). ISO standard define a four stage iterative 

framework for performing LCA analyses. The four steps are: goal and scope 

definition, inventory analysis, life-cycle impact assessment (LCIA) and 

interpretation (Figure I.8). 
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Figure I.8 Phases of LCA according to ISO 14040 

The first step includes identification of the purpose and boundary of the 

study, establishing the functional unit of analysis, and defining the key 

processes, material and energy flows for analysis. Inventory analysis 

involves collection of data and the analysis of material and energy flows for 

each stage of the product life cycle. According to the standard, LCIA is the 

phase of LCA aimed at understanding and evaluating the magnitude and 

significance of the potential environmental impacts for a product system 

throughout the life cycle of the product (EN ISO 14040, 2006). The last step 

includes interpretation of the environmental impact results, either to assist 

environmentally preferable product and process selection, or to provide 

recommendations for system improvements (Singh et al., 2011).  

The most significant problems with LCA studies have been the issues 

with boundary definition, data acquisition, data quality, uncertainty, and 

interpretation of results. Various assessments of the same material may yield 

radically different results because of varied assumptions about scope and 

data sources (Mora, 2007). Such decisions may compromise research 

objectivity and the reliability of results but is difficult to give scientific 

criteria for exclusion of certain processes and inputs. The above LCA 

methodology recommended by ISO standards is referred to as a         

process-based LCA. Another method is the economic input-output LCA 

(EIO-LCA) that has been used as a way to address some of aforementioned 

issues (Singh et al., 2011). The EIO-LCA method employs a geographical 

region, typically a national economy, as the boundary of analysis and 

incorporates economy-wide interdependencies by using input-output 

matrices. It uses publicly available and regularly compiled data on industry 

sector-level inputs, energy use, and emissions. However, EIO-LCA methods 
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suffer from another set of limitations, including the high level of aggregation 

of disparate products in industry and commodity sectors in the national 

input-output tables, and dependence on sector-level monetary flows which 

may distort physical input-output technology relationships. High levels of 

aggregation in EIO-LCA models make them unsuitable for LCAs of 

products that are atypical outputs of industry sectors, or for comparative 

LCAs of products within the same industry sector. Hybrid methods that 

combine EIO-LCA and process-based LCA have been developed to 

maximize the advantages of both approaches (Singh et al., 2011). 

Considering the field of constructions, several LCAs have been carried 

out to investigate sustainability of different materials, in particular 

cementitious materials containing waste or end-of-waste materials. The use 

of waste materials in the concrete sector, is a viable way to reduce the 

environmental footprint of conventional concrete. As seen previously (§ 

I.3.2), different end-of-waste materials can be used (construction and 

demolition waste, .industrial wastes etc.). However, the prerequisite for their 

use as a substitute for natural materials is their environmental acceptability 

and their technical adequacy (Turk et al., 2015). Attention must be paid at 

the boundary conditions, functional units, exclusion criteria etc., otherwise 

LCAs interpretation could be incorrect. For example, Knoeri et al. (2013) 

analyzed the life cycle impacts of 12 recycled concrete (RC) mixtures and 

compared them with those of corresponding conventional concretes (CC). 

While previous studies showed equal or even higher environmental impacts 

of RC compared to CC, this study demonstrated that RC reduces the 

environmental impacts to about 70 % of the CC impacts if co-products from 

the recycling process are not excluded from the scope. This was mainly 

attributed to the benefits obtained from the recovered scrap iron (from the 

steel reinforcement), as well as to the avoidance of the need to transport 

construction and demolition waste to a landfill site, and to the avoided 

impacts of such disposal (Knoeri et al., 2013). Another example is the 

investigation of Turk et al. (2015). Authors reported about environmental 

impacts of several “green concretes”, i.e. concretes containing industrial 

waste products (fly ash, foundry sand and electric arc furnace, EAF S, slag) 

and waste concrete showing significant reduction of environmental impacts. 

The main reason for the significant improvement in their environmental 

friendliness lies in the greater credit related to the avoided impacts, such as 

the prevention or reduction of landfilling (i.e. the landfilling of both the 

waste concrete and the alternative material is avoided, which results in a 

relatively high credit) (Turk et al., 2015). Recently, Napolano et al. (2016), 

investigated environmental impacts of the production of different types of 

lightweight concretes comparing the use of natural lightweight aggregates 

(i.e. natural clay) and recycled wastes (i.e. muds deriving from industrial 

processes). Considering a functional unit of 1m
3
 of lightweight concrete, it 

can be pointed out that the concrete with natural lightweight aggregates, 
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presents a larger impact than all of the mixes containing recycled aggregates, 

in all the damage and impact categories. Furthermore, the environmental 

impact of natural lightweight aggregates in the concrete production accounts 

for around 55% of the total environmental burden, whereas the 

environmental impact of recycled lightweight aggregates is almost 15% of 

total environmental burden in lightweight concrete production. These results 

were confirmed also when a CO2 rule was applied as allocation approach 

(Napolano et al., 2016). 

As previously discussed, also the plastic sector poses issues and concerns 

in the field of sustainability (I.3.3). To this extent, several studies 

investigated the reduction of environmental effects when plastic wastes were 

used in the sector of constructions. For example, Intini and Kühtz (2011) 

investigated the energy savings and the environmental benefits of the use of 

PET bottles postconsumer to manufacture products for buildings thermal 

insulation. Another example is the study to assess the environmental impact 

of four alternative scenarios for reinforcing concrete footpath using also 

recycled fibers carried out by Yin et al. (2016). In particular, the four options 

considered were: a) steel reinforcing mesh (SRM), b) virgin polypropylene 

(PP) fibers, c) recycling industrial PP waste and d) recycling domestic PP 

waste. Significant environmental benefits were assed in terms of CO2, water 

and oil equivalent savings. However, domestic recycled PP fibers require 

more water for the washing processes (Yin et al., 2016).  

Finally, it is important to consider not only the materials production and 

end-of-life sustainability, but all the project should be sustainable. To this 

extent, the idea of a marketable green certification systems was developed 

leading to several certifications. One of the most important is the Leadership 

in Energy and Environmental Design (LEED) rating systems, developed by 

the United States Green Building Council (USGBC, 2008). The LEED rating 

systems provide guidance for implementing sustainable design and 

construction strategies and award green building certification for having 

utilized such strategies (Singh et al., 2011). Some recent reviews about green 

buildings have been carried out by several authors (Zuo and Zhao, 2014; 

Robichaud and Anantatmula, 2011). 
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I.4 Fiber reinforced cementitious materials (FRC) 

As discussed in the previous paragraphs, cementitious materials have 

some drawbacks: are brittle materials, have some durability related issues 

and negative environmental effects. In this paragraph, the use of fibers into 

cementitious materials will be presented as a viable solution to partially or 

fully overcome the aforementioned drawbacks. Moreover, the use of plastic 

wastes to produce synthetic fibers is a sustainable way to recycle, according 

to the theory of circular economy. 

 

I.4.1 Generalities 

Brittle materials are reinforced since ancient times using fibers, resulting 

in a composite material. The last decades have seen an increasing use of 

fibers both in concrete and in mortar. The low tensile strength which 

characterizes cementitious materials can be improved by adding short 

randomly distributed fibers which can also reduce plastic shrinkage 

cracking. Fibers increase the early tensile strength and hinder, by mechanical 

bridging, the growth of initial cracks. For such applications short and thin 

fibers, even with low strength, may fulfill the requirements. The parameters 

that affect fibers efficiency are fibers mechanical properties, volume fraction 

and aspect ratio (i.e. shape and dimensions). Moreover, fiber/matrix 

interactions are of fundamental importance for the composite performances. 

The role of interfacial bond between fibers and the cementitious matrix has 

been widely investigated with several kind of fibers. Generally polymeric 

fibers have a smooth surface resulting in a weak bond and a poor adhesion 

with the cementitious matrix. Consequently, to improve the composite 

properties is necessary to develop fibers with special features able to 

increase the interfacial bond (Kakooei et al., 2012; Aly et al., 2008; Banthia 

and Gupta, 2006; Kim et al., 2010; Shannag et al., 1997; Naaman, 2003). 

The key mechanical properties for a successful cementitious composite 

were summarized by Naaman (Figure I.9): 
 

 

Figure I.9 Desirebale fiber versus matrix properties (Naaman, 2003) 
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Different fibers (glass, steel, carbon, aramid, nylon, polyethylene and 

polypropylene) have been used according to the aim of the composite. High 

strength fibers are generally used for structural purposes (toughness 

increase) while low modulus synthetic fibers are used to avoid shrinkage 

cracking, concrete spalling and improve impact resistance (Fraternali et al., 

2011; Coppola et al., 2014a; Coppola et al., 2014b). Fibers are chosen not 

only for their mechanical properties, but also for their cost and effectiveness. 

Some common fibers and their typical properties are reported in Table I.2. 

Table I.2 Typical properties of fibers (Bentur and Mindess, 2006) 

Fiber 
Diameter 

(m) 

Specific 

gravity 

Modulus 

of 

elasticity 

(GPa) 

Tensile 

strength 

(GPa) 

Elongation 

at break 

(%) 

Steel 5-500 7.84 200 0.5-2.0 0.5-3.5 

Glass 9-15 2.6 70-80 2-4 2-3.5 

Abestos      

Crocidolite 0.02-0.4 3.4 196 3.5 2.0-3.0 

Chrysolite 0.02-0.4 2.6 164 3.1 2.0-3.0 

Polypropylene 20-400 0.9-0.95 3.5-10 0.45-0.76 15-25 

Aramid (Kevlar) 10-12 1.44 63-120 2.3-3.5 2-4.5 

Carbon (High 

strength) 

8-9 1.6-1.7 230-380 2.5-4.0 0.5-1.5 

Nylon 23-400 1.14 4.1-5.2 0.75-1.0 16.0-20.0 

Cellulose - 1.2 10 0.3-0.5 - 

Acrylic 18 1.18 14-19.5 0.4-1.0 3 

Polyethylene 25-1000 0.92-0.96 5 0.08-0.60 3-100 

Wood fiber - 1.5 71.0 0.9 - 

Sisal 10-50 1.5 - 0.8 3.0 

Cement matrix 

(for comparison) 

- 1.5-2.5 10-45 0.003-0.007 0.02 

 

Fibers addition significantly modifies the behaviour of the composite. In 

particular, if a high volume fraction of high modulus fibers is added, a strain 

hardening behaviour is achieved (Figure I.10). For example, in thin sheet 

components, in which conventional reinforcing bars cannot be used, and in 

which the fibers therefore constitute the primary reinforcement, the fibers 

volume fraction is very high (typically > 5%). In these applications fibers are 

able to increase both the strength and the toughness (i.e. strain hardening) of 

the composite, and can be classified as high performance FRC (Bentur and 

Mindess, 2006). On the contrary, a low volume fraction of normal modulus 

fibers leads to a strain softening behaviour (Figure I.10). In these 

applications, fibers are often referred to as secondary reinforcement. In this 

case fibers provide post-cracking ductility, but the stresses are smaller than 

the first crack stress, that is a strain softening material. In both cases, the 

brittle failure of traditional cementitious materials is avoided (Figure I.10). 
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Figure I.10 Typical stress-strain curves for conventional and high 

performance FRC (Bentur and Mindess, 2006) 

More recently, much work has been done in the fibers optimization: new 

fiber types and geometries have been developed but also surface treatments 

to improve fiber/matrix interactions. In this way, fibers can be tailored to be 

applied for specific applications for which conventional cementitious 

systems are not suitable. At the same time, new production technologies 

have evolved as new fibers have been developed. For example, exists a 

strong contradiction between the fiber geometry required to allow easy 

handling of the fresh FRC (i.e. good workability) and that required for 

maximum efficiency in the hardened composite. Longer fibers of smaller 

diameter will be more efficient in the hardened FRC, but will make the fresh 

FRC more difficult to handle (Bentur and Mindess, 2006). To overcome this 

difficulty, there are a number of possible alternatives: 

1. modification of the fiber geometry, to increase bonding without an 

increase in length (e.g. hooked fibers, deformed fibers or fibrillated 

networks); 

2. chemically treating the fiber surface to improve its dispersion in the 

fresh matrix; 

3. modifying the rheological properties of the matrix, through the use of 

chemical admixtures (mainly high range water reducers) and mineral 

admixtures (e.g. silica fume and fly ash) as well as optimization of 

the matrix particle size distribution; 

4. using special production techniques to ensure that a sufficiently large 

volume of fibers can be dispersed in the mix. 

In the following paragraphs, some of the aforementioned alternatives will 

be discussed more deeply. In addition, a focus on synthetic and non-

synthetic fibers mostly used in FRC will be presented. It should be 

considered that in recent years also fibers hybridization is widely studied in 

literature (Abbas and Khan, 2016). Finally, emphasis will be given to the use 

of synthetic fibers to reduce plastic shrinkage cracking.  
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I.4.2 Synthetic Fibers 

Synthetic (polymer) fibers are widely used for the reinforcement of 

cementitious materials. Many synthetic fibers are present in commerce 

(particularly polyolefin fibers) and a lot of synthetic fibers have been studied 

in literature. As shown in Table I.2, strength and modulus of elasticity vary 

significantly among these class of fibers. Moreover, as reported in Figure I.9, 

to increase the strength of the composites, fibers must have a modulus of 

elasticity greater than that of the matrix. However, for cementitious 

materials, for which the modulus of elasticity ranges from about 15 to 40 

GPa, this condition is difficult to meet with most synthetic fibers (Bentur and 

Mindess, 2006). 

Plastic fibers can be in the form of micro fibers or macro fibers. The 

micro plastic fibers refer to the plastic fibers whose diameter ranges from 5 

to 100 m and length is 5–30 mm. These micro fibers can effectively control 

plastic shrinkage cracking, as will be later discussed, however, they normally 

do not have evident effects on the properties of hardened concrete (Yin et al., 

2015). It is noteworthy that some micro plastic fibers, such as nylon fibers, 

can provide good thermal energy storage to concrete (Ozger et al., 2013), 

effectively control shrinkage of concrete (Song et al., 2005) and also 

significantly improve tensile strength and toughness of concrete (Spadea et 

al., 2015). The macro plastic fibers normally have a length of 30–60 mm and 

cross section of 0.6–1 mm
2
 (Yin et al., 2015a). The macro plastic fibers are 

able to control not only plastic shrinkage but also drying shrinkage (i.e. the 

shrinkage that occurs in the hardened concrete). Another significant benefit 

is the post-cracking performance provided by the macro plastic fibers. 

Therefore, when concrete breaks, the common large single cracks can be 

substituted by dense micro-cracks due to the presence of fiber reinforcement. 

It is possible to divide synthetic fibers according their elastic modulus, 

among low modulus fibers we can find: polypropylene (PP), polyethylene 

(PE), acrylic (PAN), nylon, polyester (PET). On the contrary, high modulus 

synthetic fibers are: carbon fibers, aramid fibers (Kevlar), polyvinyl alcohol 

(PVA). From the first group, PP fibers are the most used thanks to easy of 

production, good mechanical properties (in comparison with PE) and good 

resistivity in alkaline environment (compared to PET) (Yin et al., 2015). As 

high modulus synthetic fibers, PVA fibers have been widely investigated 

thanks to the good affinity with the cementitious matrix, low cost (compared 

to carbon and Kevlar fibers) and high elastic modulus (Thong et al., 2016). 

Moreover, seen the desire to reuse and recycle plastic wastes, in 

literature, many authors investigated the possibility to produce synthetic 

fibers from waste materials. Li et al. (2004) investigated the use of waste tire 

for fibers production. Authors found that longer fibers tend to entangle and 

suggested 50 mm as maximum length. In addition, increasing the stiffness of 

the waste tire fibers can increase the strength and stiffness of the rubberized 
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concrete. Therefore, using truck tire fibers is better than using car tire fibers 

and fibers with steel belt wires are better than fibers without steel belt wires 

(Li et al., 2004). Yin et al. (2015b), explored the feasibility of using an 

improved melt spinning and hot drawing process to produce virgin and 

recycled PP fibers of high mechanical properties in an industrial scale. 

Virgin PP fibers of high tensile strength and high Young modulus (457 MPa 

and 7526 MPa, respectively) were produced by the melt spinning and hot 

drawing process under factory conditions. However, the recycled PP fiber 

produced by the same method showed significantly lower tensile strength 

but comparable Young modulus (342 MPa and 7115 MPa, respectively). 

One of the most investigated recycled matrix for synthetic fibers was 

polyethylene terephthalate (PET). Ochi et al. (2007), developed a method to 

produce recycled PET fiber to be used as reinforcing in concrete. Authors 

investigated also the concern of alkali resistance and it was found that there 

was no problem when used in normal concrete. Moreover, the measured 

wetting tension of PET (40 mN/m) was lower than that of PVA (45 mN/m) 

but higher than that of PP (35 mN/m). Finally, an increase of bending 

strength and toughness index was achieved at increasing fibers volume 

fraction (Ochi et al., 2007). Also Kim et al. (2008) investigated the use of 

recycled PET but focused the attention on the mechanical modification of 

fibers surface to improve fiber/matrix interactions. As stated before and as 

will be in the following discussed, one of the main concern in the use of 

synthetic fibers is their low wettability resulting in a weak adhesion with the 

cementitious matrix. Recently, also the use of recycled HDPE was 

investigated for fibers production (Pešic´et al., 2016). Authors found that 

HDPE fibers improved concrete durability thanks to a reduction of concrete 

water permeability and of plastic shrinkage cracks width, compared to the 

equivalent plain concrete (Pešic´et al., 2016). 

 

I.4.3 Non-Synthetic Fibers 

Non-synthetic fibers is a wide class containing fibers of different nature: 

steel, glass and natural (Alizade et al., 2016; Bentur and Mindess, 2006; 

Pacheco-Torgal and Jalali, 2011). Among all the natural fibers, researchers 

focused the attention on the use of basalt, bamboo, hemp, jute, sisal, 

coconut, bagasse and sugar cane fibers. All the three aforementioned fibers 

have some durability problems: the steel fibers can be exposed to corrosion; 

the glass fibers have some issues with the alkalinity of the cementitious 

matrix and the natural fibers may undergone to degradation. 

As stated before, hybrid fiber-reinforced concretes, i.e. containing two or 

more different types of fibers are attracting an increasing interest among 

researchers, thanks to the ability to select fibers according the properties that 

is necessary to improve or confer to the concrete (Afroughsabet and 

Ozbakkaloglu, 2015; Abbas and Khan, 2016). 
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I.4.4 Fiber/matrix interactions 

I.4.4.1 Stress transfer, bond and pull-out 

The effectiveness of fibers reinforcing action depends to a large extent on 

the fiber/matrix interactions. Three types of interactions are particularly 

important (Bentur and Mindess, 2006): 

1. physical and chemical adhesion; 

2. friction; 

3. mechanical anchorage induced by deformations on the fiber surface 

(e.g. crimps, hooks, twisted, deformed fibers). 

The adhesional and frictional bonding between a fiber and cementitious 

matrix are relatively weak. They have however significant contribution and 

practical significance in the case of composites having high surface area 

fibers and advanced cementitious matrices which are characterized by an 

extremely refined microstructure and very low porosity (i.e. very low 

water/binder ratios). In conventional fiber reinforced concretes, where the 

matrix water/binder ratio is 0.40 and above, and the fibers are of a diameter 

in the range of 0.1 mm or bigger, efficient reinforcement cannot be induced 

by adhesional and frictional bonding, and mechanical anchoring is required. 

For this purpose a variety of fiber shapes have been developed and are used 

commercially, as will be discussed in the following. 

The schematic diagram in Figure I.11 shows the different failure modes 

associated with the fiber reinforced concrete (Zollo, 1997; Yin et al., 2015). 

Fiber rupture (1), pull-out (2) and debonding of fiber from matrix (4) can 

effectively absorb and dissipate energy to stabilise crack propagation within 

concrete. Fiber bridging the cracks (3) reduces stress intensity at the crack 

tip. In addition, the fiber bridging can decrease crack width, which prevents 

water and contaminants from entering the concrete matrix to corrode 

reinforcing steel and degrade concrete. Fiber in the matrix (5) prevents the 

propagation of a crack tip. Consequently, minor cracks will be distributed in 

other locations of the matrix (6). Although every individual fiber makes a 

small contribution, the overall effect of reinforcement is cumulative. 

Therefore, fibers can effectively control and arrest crack growth, hence 

preventing plastic and dry shrinkage cracks, retaining integrity of concrete 

and altering the intrinsically brittle concrete matrix into a tougher material 

with enhanced crack resistance and ductility (Yin et al., 2015).  

Thus, in all the mechanisms, the key parameter is fiber/matrix bond that 

is generally quantified by pull-out tests. In the past, direct and indirect 

experimental methods were developed to quantify the fiber/matrix bond of 

FRC (Abbas and Khan, 2016). As stated, the frictional bond governs 

fiber/matrix interactions while physical/chemical bond plays a minor role. 

The study of these interactions is extremely sophisticated because of the 

presence of nonlinear interactions: interfacial debonding, plastic material 
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deformations, mechanical bond deformations, and frictional sliding (Abbas 

and Khan, 2016). 
 

 

Figure I.11 Failure mechanisms in fiber reinforced concrete (Zollo, 1997; 

Yin et al., 2015) 

To determine the fiber/matrix bond behavior, uniaxial tensile tests are 

carried out, according the simple pull-out geometry and stresses distribution 

shown in Figure I.12. This simple test allows the determination of the pull-

out load and the corresponding fiber slippage during the test. This test can 

provide important information on the fiber/matrix bond of FRC because it 

simulates the debonding and pull-out of fibers, i.e. the mechanisms 2 and 4 

of Figure I.11 (Abbas and Khan, 2016). It should be noticed that because of 

the nonlinearities associated with the fiber/matrix shear stress distribution 

along the fiber length, particularly for deformed fibbers, some assumption 

and hypothesis are necessary. Anyway, fiber pull-out test is a valid solution 

to assess the efficiency of fibers surface treatments. 
 

 

Figure I.12 Pull-out geometry to simulate fiber/matrix interactions (Bentur 

and Mindess, 2006) 

Pull-out tests report pull-out load vs. fiber slippage, thus constitutive 

relations (which are at the basis of the analytical models applied to interpret 

these curves) are necessary to provide interfacial shear stress vs. pull-out 

displacement. Generally, the pull-out behavior of straight fibers is classified 

into two modes of fracture: elastic physical/chemical adhesion between the 

fiber and the matrix; frictional sliding. As reported in Figure I.13a, different 

behaviors are recognizable during straight fibers pull-out: from slip softening 
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to slip hardening. Moreover, many of the models assume a constant 

frictional interfacial shear behavior (Figure I.13b). 

 

Figure I.13 Ideal interfacial shear stress–slip curves: (a) range of behaviors 

demonstrating slip softening to slip hardening; (b) ideal presentation of a 

sharp transition from elastic stress transfer to a constant frictional stress 

transfer (Bentur and Mindess, 2006) 

However, fibers pull-out behavior depends on fibers geometry and 

affinity with the cementitious matrix. In fact, for deformed fibers, more 

complex models are necessary and also fibers properties should be 

considered. In particular, it can be assumed that the anchoring mechanisms 

involve two processes: the energy is dissipated as the fiber undergoes to 

plastic deformation while being pulled out and/or the stressing and cracking 

of the matrix near the fiber. In the case of deformed fibers, the sphere of 

influence of the fiber is wider than that of a straight fiber. Thus, when using 

deformed fibers, are important in controlling the bonding not only fiber 

properties but also matrix bulk properties (Bentur and Mindess, 2006). 

In brittle matrix composites, as cementitious materials, two different 

cases should be considered for the stress-transfer: the pre-cracking stage and 

the post-cracking stage. Before any cracking has taken place, elastic stress 

transfer is the dominant mechanism, and the longitudinal displacements of 

the fiber and matrix at the interface are geometrically compatible. The stress 

developed at the interface is a shear stress which is required to distribute the 

external load between the fibers and matrix (since they differ in their elastic 

moduli), so that the strains of these two components at the interface remain 

the same. This elastic shear transfer is the major mechanism to be considered 

for predicting the limit of proportionality and the first crack stress of the 

composite. The elastic shear stress distribution along the fiber/matrix 

interface is non-uniform. At more advanced stages of loading, debonding 

across the interface usually takes place and the process controlling stress 

transfer becomes one of frictional slip. In this case relative displacements 

between the fiber and the matrix take place. The frictional stress developed 

is a shear stress, which is assumed in many models to be uniformly 

a) b) 
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distributed along the fiber/matrix interface. This process is of greatest 

importance in the post-cracking zone, in which the fibers bridge across 

cracks. Properties such as the ultimate strength and strain of the composite 

are controlled by this mode of stress transfer. The transition from elastic 

stress transfer to frictional stress transfer occurs when the interfacial shear 

stresses due to loading exceed the fiber/matrix shear strength. This will be 

referred to as the adhesional shear bond strength, au. As this stress is 

exceeded, fiber/matrix debonding is initiated and frictional shear stress will 

act across the interface in the debonded zone. The maximum frictional shear 

stress (i.e. the frictional shear strength) that can be supported across the 

interface will be called fu. The values of fu and au are not necessarily the 

same. The value of fu is very sensitive to normal stresses and strains; in 

most analytical treatments it is assumed to be constant over the entire pull-

out range, implying the ideal interfacial shear stress–displacement curve 

shown in Figure I.13b. However, in practice, fu may be reduced at advanced 

stages of loading (slip softening) or increased (slip hardening), depending on 

the nature of the interaction and the damage developed across the interface 

during the slip process. The transition from elastic stress transfer prior to 

debonding, to frictional stress transfer after debonding, is a gradual process, 

during which both types of mechanisms are effective. Debonding may even 

take place prior to the first cracking of the matrix, and thus, the combined 

effect of these two mechanisms may influence the shape of the stress–strain 

curve prior to matrix cracking. The occurrence of such a sequence of events 

depends upon the fiber/matrix adhesional shear bond strength and on the 

tensile strength of the matrix. If the latter is high, one may expect debonding 

to occur prior to matrix cracking, when the elastic shear stress exceeds the 

adhesional shear bond strength (Bentur and Mindess, 2006).  

Summarizing, three different step are necessary in the modelling of fibers 

pull-out (Abbas and Khan, 2016): 

1. assume an elastic fiber/matrix bond until the initiation of the first 

crack; 

2. assume a notably simple post-cracking model; 

3. estimate the stress distribution along the fiber/matrix interface, using 

semi-empirical methods. 

It is important to highlight that many of the analytical models developed 

for smooth, straight fibers may not be applicable quantitatively (or even 

qualitatively) to complex shaped fibers. 

As stated, most of the available models consider a constant fiber/matrix 

interfacial bond but more complex models are reported in literature, 

considering also a variable stress distribution along the fiber/matrix 

interface, in particular in the post-cracking stage (Abbas and Khan, 2016). In 

fact, the initiation of the initiation of the first crack changes the role of the 

fiber/matrix interfacial bond. Before the first crack begins, the ultimate 

shearing stress over the fiber surface is located at its edges (Figure I.14a). 
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However, after the first crack, the ultimate shearing stress is located at 

approximatively at the mid-length of the fiber (Figure I.14b). 
 

 

Figure I.14 Nonlinear distribution of shearing stress over the fiber surface: 

(a) at pre-cracking stage, (b) at post-cracking stage (Abbas and Khan, 2016) 

After this brief theoretical modeling introduction, few words are 

necessary concerning physical modeling. Fiber/matrix interfacial interactions 

have been investigated using direct and indirect methods. Direct methods are 

based on pull-out tests of single fiber or group of fibers. In indirect methods, 

the fiber/matrix interfacial bond is quantified from a mechanical property of 

a type of FRC, generally flexural strength. A comprehensive review on pull-

out methods has been carried out by Abbas and Khan (2016). As highlighted 

by the authors, despite the great efforts to develop an ideal pull-out test 

method, none of the used setups satisfies all the technical requirements for a 

perfect physical simulation of the fiber/matrix interactions. 

 

I.4.4.2 The issue of the adhesion 

The composite behaviour is greatly affected by the fiber/matrix bond and 

the effectiveness of fibers bridging across cracks strictly depends on it. The 

improvement of the fiber/matrix interactions can prevent the fiber/matrix 

debonding under load. 

However, synthetic fibers, particularly polypropylene (PP) fibers, are 

chemically inert into a cementitious matrix. On the one hand, due to 

chemical inertness, PP fibers are durable in the alkaline environment of a 

cementitious composite, but on the other hand their poor wettability implies 

a weak fiber/matrix bond. Moreover, polymeric fibers have a smooth 

surface, resulting in a poor adhesion. To improve the adhesion and/or the 

interactions between fibers and the cementitious matrix several technics have 

been investigated: fibers mechanical deformation, surface chemical 

treatments but also interfacial transition zone (ITZ) densification. In the first 

case the aim is to increase the surface area of contact using crimped, twisted, 

fibrillated or embossed fibers (Kim et al., 2008; Chan and Li, 1997; Wu and 

Li, 1999; Rottstegge and al., 2006; Coppola et al., 2015). In the second one, 

an increase of fiber/matrix chemical affinity was obtained. In the latter, a 

densification of the interface transition zone between fibers and matrix is 

achieved adding silica fume or other fillers to the mix. The effects of these 

modifications on the composite are generally evaluated by fiber pullout tests 

(Shannag et al., 1997; Kim et al., 2008; Singh et al., 2004). 

a) b) 
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Cementitious composites are characterized by an interfacial transition 

zone (ITZ) in the vicinity of the reinforcing inclusion, in which the 

microstructure of the paste matrix is considerably different from that of the 

bulk paste, away from the interface. The nature and size of this transition 

zone depends on the type of fiber and the production technology; in some 

instances it can change considerably with time (Bentur and Mindess, 2006).  

Generally, the matrix in the vicinity of the fibre is much more porous 

than the bulk paste matrix, and this is reflected in the development of the 

microstructure as hydration advances: the initially water-filled transition 

zone does not develop the dense microstructure typical of the bulk matrix, 

and it contains a considerable volume of CH crystals, which tend to deposit 

in large cavities. Intensive mixing can result in the densification of the ITZ, 

by reducing bleeding and forcing a better packing of the cement particles at 

the fiber surface. The special microstructure has two consequences:  

1. a porous and weak interface which will cause an overall reduction in 

bonding;  

2. a weak interface which is not at the fibre surface, but rather in the 

porous layer of the ITZ, somewhat away from the fibre surface.  

The first characteristic directly affects the bond and the pull-out 

resistance, whereas the second one will have an indirect effect by 

influencing the mode of debonding when cracks develop in the matrix and 

propagate towards the fiber (Bentur and Mindess, 2006). 

In the following paragraphs, several technics used to improve 

fiber/matrix interactions are reported and discussed. 

 

I.4.4.3 Mechanical modification of fiber surface 

Fibers physical modification consists in changing the shape of the fibers 

that can be twisted, crimped, hooked and fibrillated (Lanzoni et al., 2012; 

Kim et al., 2008). Fibers mechanical deformation increases fiber/matrix 

contact area improving friction and thus pull-out resistance, delaying 

fiber/matrix debonding under load (Borg et al. 2016). Naaman (2003) 

developed twisted steel fibers, known as “Torex”, able to enhance FRC 

ductility. Singh et al. (2004), proposed a mechanical indentation for 

polypropylene fibers, reporting a sharp increase in the fiber/matrix bond (up 

to 300 %), avoiding fibers tensile failure. 

 

I.4.4.4 Fiber surface chemical modification 

More recently, fibers chemical treatments, oxygen plasma, graft 

copolymerization of acrylic acid (Pei et al., 2004), alkaline hydrolysis 

(Lopez-Buendia et al., 2013; Machovič et al., 2013) and nano-silica 

deposition (Yang et al., 2013) are attracting growing research interest. Fibers 

chemical treatments allow chemical interactions between fiber surface and 

cement paste (Coppola et al., 2015). 
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I.4.4.5 Densification of the interfacial transition zone (ITZ) 

The interfacial transition zone (ITZ) densification and the physical 

modification of fibers surface were demonstrated particularly effective. The 

ITZ densification, especially around fibers, is commonly obtained using low 

w/c ratios and nanosized additives such as silica fume. It is largely 

demonstrated, in fact, that nanoparticles are effective in reducing the 

porosity of  cementitious materials (Chang et al., 2007; Pacheco-Torgal and 

Jalali, 2011). ITZ densification provides a more uniform and continuous 

interphase between the two components (i.e. the polymeric fibers and the 

cementitious matrix). 

 

I.4.5 Use of synthetic fibers to reduce plastic shrinkage cracking 

American Concrete Institute (ACI) defines the plastic shrinkage as the 

shrinkage that takes place before cement paste, mortar, grout, or concrete 

sets (Uno, 1998). Plastic shrinkage cracking is caused by the volumetric 

contraction of the cement paste which is accelerated by moisture loss after 

casting via evaporation. The presence of superficial cracks represents not 

only an aesthetic issue but also a serious problem regarding durability of 

construction materials. Plastic shrinkage cracking occurs at early age, before 

set and prior that mortar (or concrete) has a sufficient tensile strength. 

Generally, if the moisture evaporation rate exceeds 0.5-1 kg/m
2
/h, it causes 

negative capillary pressure inside the concrete, resulting in internal strain 

(Uno, 1998; Banthia and Gupta, 2006; Yin et al., 2015a). Although synthetic 

fibers are not able to control moisture evaporation, at low volume fractions 

are generally used to control plastic shrinkage cracking. To this extent, 

different fibers have been investigated by researchers: PP (Banthia and 

Gupta, 2006), PE and PET (Borg et al. 2016, Kim et al., 2008), in particular. 

During last years, seen the need to increase recycled materials usage, several 

authors investigated the possibility of using recycled polymeric fibers from 

post consumers materials (Kim et al., 2008; Pešić et al., 2016, Borg et al. 

2016). Generally, longer fibers are more efficient than shorter fibers in 

controlling plastic shrinkage cracking. 

The main parameters that influence the extent of mortar shrinkage are 

temperature and relative humidity of the environment. A simple formula was 

proposed by Uno (1998) to determine the evaporation rate: 

 

𝑬 = 𝟓[(𝑻𝒄 + 𝟏𝟖)𝟐.𝟓 − 𝒓(𝑻𝒂 + 𝟏𝟖)𝟐.𝟓] ∙ (𝑽 + 𝟒) ∙ 𝟏𝟎−𝟔           (I.9) 

 

where E is the evaporation rate (kg/m
2
/h), Tc is the concrete (water surface) 

temperature (°C), Ta the air temperature (°C), r the relative humidity and V 

the wind velocity (km/h). 
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I.5 Lightweight aggregates 

I.5.1 Generalities 

Lightweight aggregates have been successfully used for over two 

millennia and gained a renewed interest during last fifteen years (Figure 

I.15). Using lightweight aggregates to produce a lightweight concrete leads 

not only to weight reduction, but also to improved thermal properties, fire 

resistance, durability enhancement and architectural expression (thinner 

slabs, longer spans, expressive roof design, taller buildings etc.). 

Reducing structures dead load is possible to decrease columns and/or 

beams cross section but also walls and foundations. Moreover, since the 

earthquake loads that act on structures and buildings are proportional to their 

mass, is possible to reduce the risk of earthquake damages to structures 

(Hassanpour et al., 2012; Libre et al., 2011). 

 

 

Figure I.15 Number of publications about lightweight aggregate (source 

Scopus, 25/10/2016) 

As stated before, the first known use of lightweight concrete dates back 

over 2000 years. The most notable example is the Pantheon, finished in                

27 B.C. (another well-known example is the Coliseum, 75-80 A.D.), that 

incorporates concrete varying in density from the bottom to the top of the 

dome. For the Pantheon, the Romans varied the concrete weight by 

decreasing the thickness of the dome as the height increases and changed the 

aggregate weight within the concrete three different times (Figure I.16). The 

aggregate in the concrete changes from broken bricks at the base of the dome 
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to bricks and tuff in a small midsection and ends with tufo giallo and scoria 

for the top portion (Lancaster, 2005; Ries and Holm, 2004). 

 

 

Figure I.16 Section of the Pantheon showing the different concrete 

aggregates (Lancaster, 2005) 

Lightweight concretes are mainly divided in two categories: structural 

lightweight concrete and non-structural lightweight concrete (mainly for 

insulating properties or non-structural elements). Commonly, the reduction 

of the unit weight of concretes is reached by substituting natural aggregates 

with lightweight ones. Generally, lightweight aggregates are classified 

according their nature (artificial or natural aggregates). In the following 

paragraphs a description of the different lightweight aggregates is reported, 

focusing the attention on plastic aggregates. Finally, the advantages and the 

issues deriving from the use of lightweight aggregates are discussed. 

 

Broken 

Bricks 

Tuff & 

Broken Tiles 

Travertine 

& Tuff 

Travertine  

Bricks 

& Tuff  

 

Tufo Giallo 

& Scoria 

 



Chapter I 

36 

I.5.2 Lightweight aggregates classification 

I.5.2.1 Plastic aggregates 

As previously discussed, plastic is a lightweight, low cost and easy 

produced material. These unique properties promoted the use of plastics, 

making plastic one of the most used materials in the world. Thanks to plastic 

low specific weight, adding plastic aggregates to concrete, its specific weight 

decreases. Moreover, also mechanical (mainly flexural and compressive 

strength) and physical properties (thermal conductivity, water vapor 

permeability, water absorption et.) change, as will be later discussed. The 

main drawbacks are the influence on concrete (or mortar) workability, the 

reduction of compressive strength and the low adhesion between plastic 

aggregates and cement paste. 

As plastic is one of the most used materials, a high quantity of plastic 

wastes have to be managed. Many authors investigated the possibility to 

produce plastic aggregates from plastic wastes, particularly in the last ten 

years (Figure I.17). 

Plastic aggregates of different shape (pellets, flakes etc.) and typology 

(expanded and non-expanded) have been studied. A brief literature review is 

presented in the following.  

 

 

Figure I.17 Number of publications about plastic waste aggregate (source 

Scopus, 25/10/2016) 
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I.5.2.1.1 Expanded plastic aggregates 

Several authors studied the use of expanded plastics as aggregates 

replacement revealing some issues: i.e. aggregates proportioning, 

deformability, water absorption and buoyancy. On the contrary, foams 

porous surface enables water and cement paste penetration resulting in a 

better aggregates/paste adhesion. The most investigated foamed plastic 

aggregates were polyurethane and polystyrene.  

Gutierrez-Gonzalez et al. (2012) investigated the use of polyurethane 

(PU) foam wastes deriving both from automobile and construction industry. 

Authors reported a decrease of consistency at increasing plastic foam 

percentage and a sharp decrease of density (up to 65 % for a plaster/polymer 

ratio of 1/4). Moreover, they found that the adherence force decreases 

proportional to the percentage of polyurethane foam but all the samples were 

broken due to cohesion (i.e. cohesive failure). The failure occurred at the 

interface between plaster and polyurethane where high porosity and low 

homogeneity were found. The authors found also a sharp decrease of thermal 

conductivity (up to 66 %, compared to the reference material, i.e., without 

foam plastic wastes). Mounanga et al. (2008) reported the same issues in 

proportioning polyurethane foam waste focusing the attention on the 

difficulties in the estimation of the PUR foam density, which is greatly 

influenced by both the high compressibility and absorption of the 

lightweight aggregates. Also in this case an important reduction of both 

thermal conductivity and density was obtained but also of mechanical 

resistance. In addition, authors measured a drying shrinkage 4-5 times more 

important compared to the control specimen. 

Madandoust et al. (2011) investigated the use of expanded polystyrene 

(EPS) in the production of self-compacting lightweight concrete, focusing 

the attention on fresh properties. In this case, thanks to the hydrophobic 

nature of EPS aggregates and the lower internal friction (due to the spherical 

shape of artificial aggregates compared to angular natural aggregates) at 

increasing EPS percentage a minor dosage of high range water reducer was 

necessary, to obtain the same slump flow. On the contrary, the segregation 

tendency of EPS aggregates can be reduced by using nano-SiO2. As 

expected, the use of EPS aggregates reduced compressive strength. Kan and 

Demirboğa (2009a and b) tried to overcame the issues deriving from the 

high compressibility and thus low mechanical properties of EPS using a 

thermal treatment. In this way EPS shrinks, increasing density and 

increasing its compressive strength. However, a decrease of concrete 

strength was measured at increasing lightweight aggregates content. Babu 

and Babu (2003) improved lightweight concrete (containing EPS beads) 

strength adding silica fume. Silica fume and EPS shape increased flow 

values without adding superplasticizer. Moreover, good durability properties 

(waster absorption and chloride diffusion) were also obtained. 
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Other foamed rubber were investigated by Corinaldesi et al. (2011). 

These authors investigated the use of different waste rubber particles in 

mortar: styrene butadiene rubber (SBR) or polyurethane (PU) waste particles 

or scraps coming from wasted rubber-shoe outsoles. In all cases a lighter 

mortar was achieved, with a higher unit weight decrease for mortars 

containing PU particles. Moreover, authors found that the contemporary 

addition of limestone powder and superplasticizer can mitigate the 

detrimental effect of rubber particles on compressive strength. Also flexural 

tests reported a decrease of flexural strength but less sharp for mortars 

containing PU particles. By SEM pictures, authors investigated the ITZ 

between rubber particles and cement paste, evidencing a good adhesion in 

the case of PU particles and a weak bond for SBR particles.  

Finally, Tittarelli et al. (2016), demonstrated also that using recycled EPS 

instead of virgin EPS was possible to obtain an economical saving over than 

25 %. 

 

I.5.2.1.2 Dense plastic aggregates  

As previously stated, in cementitious materials, not only expanded 

aggregates but also dense plastic aggregates have been investigated. In 

particular, most of the works in literature are carried out considering 

polyethylene terephthalate (PET), high density polyethylene (HDPE) and 

other rigid plastics for aggregate production. 

Ferreira et al. (2012) investigated the use of different typologies of waste 

PET aggregates. In particular, two lamellar aggregates and one cylindrical 

particle were investigated. Authors found that plastic waste aggregates 

addition decreases compressive strength, splitting tensile strength and 

modulus of elasticity, regardless of the type of artificial aggregates. Ferreira 

et al. (2012) investigated also different curing regimes and w/c ratios. Waste 

PET lightweight aggregates were produced also by Choi et al. (2009) and 

used both in mortar and concrete. In this case, waste PET aggregates were 

sand coated to improve aggregates/cement paste adhesion. 

A mixture of PET and polyolefin for the production of plastic aggregates 

was investigated by Liguori et al. (2014). Authors reported a chemical 

interaction between plastic aggregates and cement paste probably due to the 

exothermic nature of the hydration reaction and the alkalinity of the 

cementitious environment. Moreover, composite systems showed a higher 

decomposition temperature, compared to the neat components and the scarce 

sensitivity to flashover (that is the ignition of exposed combustible material 

in an area near a fire). Also Iucolano et al. (2013) investigated a mixture of 

PET and polyolefin producing a plastic sand whose particle size and 

morphology appears extremely heterogeneous. As a result of this 

heterogeneity combined to the poor chemical compatibility with the 

cementitious matrix, an increase of porosity was measured. To improve 

plastic particles/cementitious matrix interactions, Li et al. (2004) 
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investigated the effect of chemical and mechanical treatments of particles 

surface. In particular, two methods were investigated: immersion of the 

particles in a saturated solution of NaOH and formation of a hole in the 

particles. However, both treatments (chemical and physical) lead only to 

partial improvements.  

Wang and Meyer (2012) investigated the use of high impact polystyrene 

(HIPS) as aggregates in a cement mortar. Authors obtained a decrease of 

compressive strength and splitting tensile strength but also of thermal 

conductivity and water vapor permeability. Generally, using plastic 

aggregates, an improvement of water vapor permeability is achieved.  

 

I.5.2.2 Non-plastic lightweight aggregates 

Traditional non-plastic lightweight aggregates are pumice and scoria, that 

are naturally occurring lightweight aggregates mined from volcanic deposits. 

Lightweight aggregates can also be produced in manufacturing plants by 

thermal treatments from raw materials (shales, clays, fly ashes or blast-

furnace slags). Generally, raw materials are introduced in a rotary kiln 

process heated at more than 1000 °C (Ries and Holm, 2004). During the 

heating process a cellular pore system is created due to the gases formed 

causing the expansion. 

Other typical lightweight aggregates are tuff stone (Al-Zboon and Al-

Zou’by, 2016; Cai et al., 2016, Bogas and Gomes, 2015), vermiculite 

(Rashad, 2016), cork (Hernandez-Olivares at al., 1999; Nóvoa et al., 2004; 

Panesar and Shindman, 2012). 

 

I.5.3 Advantages and issues deriving from the use of plastic LWAs 

In this paragraph, a brief summary on the advantages and issues deriving 

from the use of plastic lightweight aggregates (LWAs) in cementitious 

materials will be presented.  

Considering the issues, a decrease  both of workability and mechanical 

properties should be taken into account. Moreover, one of the main 

drawbacks in the use of plastic aggregates is the low wettability of artificial 

aggregates, due to their hydrophobicity, and thus the poor ITZ with the 

cementitious matrix. In addition, the presence of free water around plastic 

aggregates causes not only a more porous ITZ but also the reduction of the 

hydration products around artificial aggregates. ITZ microstructure has a 

great influence on diffusive transport into cementitious matrix: a denser ITZ 

corresponds to a better water and gases barrier. In the fresh state, particular 

attention must be paid to buoyancy, segregation and compaction. 

On the other side, using plastic aggregates is possible to produce lighter 

and sustainable concrete with promising properties in terms of fracture 

mechanism (toughness increase), thermal conductivity and water vapor 
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permeability. More recently, some authors investigated also the residual 

properties of concrete containing plastic aggregates after high temperatures 

or fire exposure. 

 

I.5.4 Use of porous aggregates for the internal curing 

Internal curing refers to the possibility of supply an internal water source 

for cementitious materials that promotes cement hydration and reduces 

internal desiccation. Moreover, the internal curing can reduce the effects 

related to the autogenous shrinkage, characteristics of low w/c ratio 

mixtures. Internal curing can be provided by adding saturated lightweight 

aggregates (LWAs) or superabsorbent polymers (SAP) to the concrete. 

According to Jensen and Hansen (2001), SAPs offer more advantages 

because can be used as a dry concrete admixture and avoid the presence of 

large amount of mechanically poor aggregate particles.  

The key parameter is the ease with which the water can be released from 

the internal curing reservoirs upon necessity. This phenomenon mainly 

depends on the pore size, the gradient of internal humidity and capillary 

pressure. Moreover, also the cementitious matrix structure is influent since 

the released water moves towards low humidity areas.  

As reported by several authors in literature (Golias et al., 2012; Bentz et 

al., 2005; Castro et al., 2011), the mass of LWAs required to provide enough 

internal curing water to compensate the chemical shrinkage of the mixture, 

as a function of the degree of saturation, is: 

 

𝑴𝑳𝑾𝑨 =
𝑪𝒇×𝑪𝑺×𝜶𝒎𝒂𝒙

𝑺×𝝓𝑳𝑾𝑨
                                (I.10) 

 

where MLWA (kg/m
3
) is the mass of LWA (in a dry state) that needs to be 

water filled to provide water to fill in the voids created by chemical 

shrinkage, Cf (kg/m
3
) is the cement content of the mixture, CS (g of water 

per g of cement) is the chemical shrinkage of the cement, max (unit less) is 

the expected maximum degree of hydration (0-1), S (unit less) is the 

expected maximum degree of saturation of the LWA and LWA (kg of 

water/kg of dry LWA) is the absorption capacity of the LWA. 

Castro et al. (2011) investigated the time dependent absorption and 

desorption of lightweight aggregates, useful in the mixture proportioning 

(according to eq. I.10). Kong et al. (2009), demonstrated that pre-wetting 

LWA was possible to improve concrete durability, since the reduction of the 

ITZ permeability thanks to the promoted hydration by internal curing. Golias 

et al. (2012) investigated different degree of saturation of lightweight 

aggregates, reporting that also with oven-dry LWAs was possible to obtain 

internal curing advantages if mixing water is adjusted. 
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I.6 Aim of the work and thesis structure 

This Ph.D. study focuses the attention on the possibility to improve the 

interactions between polymeric fibers (or aggregates) and cementitious 

materials. In particular, as widely reported in literature, one of the main 

drawbacks in the use of synthetic fibers and artificial plastic aggregates is 

their low chemical affinity with cement paste. To this extent, the production 

of fibers and aggregates with very rough and porous surface was achieved by 

making use of an extrusion-foaming process on a laboratory scale. Such 

engineered fibers demonstrated to be able to offer interlocking positions for 

the cementitious matrix. Moreover, some chemical treatments (alkaline 

hydrolysis and sol-gel deposition of nano-silica) were performed on smooth 

fibers, to improve chemical adhesion with the cement paste. Besides the 

results obtained with virgin polymers, foamed fibers and aggregates were 

produced starting from an end-of-waste material. This allow to take into 

account the sustainability issues related to the use of cementitious mortars 

and the necessity of reducing the consumption of raw materials. Indeed, by 

using end-of-waste materials in cementitious composites makes possible to 

reduce the amount of plastic wastes that goes to landfill and to increase the 

final product sustainability. At the same time, the addition of foamed fibers 

(i.e. fibers with high fiber/matrix interactions) allows to improve mortar 

durability. Moreover, the substitution of natural aggregates with plastic 

particles into cementitious mortars allows not only the reduction of the unit 

weight and the thermal conductivity, but also improves water vapor 

permeability. 

 

The thesis is structured in five chapters: 

 

- In the first chapter a state of the art is presented and particular 

attention is paid at the durability issues of cementitious materials. 

Strictly related are the concept of sustainability and waste 

management: the theory of circular economy and the life cycle 

assessment (LCA) are discussed. Finally, the advantages and 

disadvantages deriving from the use of fibers and lightweight 

aggregates (LWAs) in cementitious materials are reviewed; 

 

- In the second chapter materials and methods used for the 

experimental part are described. Moreover, also some principles of 

the foam extrusion process are reported, to better understand the 

processes of nucleation, bubble growth and foam stabilization; 
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- In the third chapter the results of the investigations on chemically 

modified fibers are reported. In particular, fibers characterization and 

their use into a cementitious mortar are discussed, focusing the 

attention on the benefits obtained in terms of fiber/matrix interactions 

by pull-out tests and ITZ investigations; 

 

- In the fourth chapter the optimization of the foam extrusion process, 

to obtain rough fibers, is presented. Once fibers with adequate 

diameter and surface texture were obtained, it was possible to use 

them into a cementitious mortar. Fiber reinforced mortar rheological, 

mechanical and durability properties were investigated. In particular, 

attention was paid to fiber/matrix interactions and the influence of the 

improved adhesion on fiber reinforced mortar properties; 

 

- In the fifth chapter the characterization and use of lightweight plastic 

aggregates into a cementitious mortar are discussed. Rheological, 

mechanical and physical properties of the produced lightweight 

mortar were investigated. In particular, specific weight, thermal 

conductivity and water vapor permeability were studied, since such 

properties are of interest for a plaster or rendering mortar. Finally, 

some preliminary results on the use of foamed aggregates (with a 

porous structure) as water reservoir for internal curing are presented. 

 

This Ph.D. work is the result of a joint Ph.D. between University of 

Salerno (Italy) and University of Liège (Belgium).  
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Experimental: materials and 

methods 

 

 

 

 
II.1 Polymeric materials 

In this study, two different polymeric materials were used to produce 

synthetic fibers and artificial aggregates. In particular, chemical treatments 

were performed on polypropylene fibers (§ Chapter III) while foamed fibers 

were produced using both polypropylene and end-of-waste materials              

(§ Chapter IV). In the end, also artificial aggregates were produced starting 

from end-of-waste materials (§ Chapter V). In the following, the main 

characteristics of the different polymeric materials are discussed. 

 

II.1.1 Virgin polymer 

A commercial polypropylene (MOPLEN V79S, Montell Polyolefins) 

with melt flow index of 2.1 g/10 min (230 °C, 2.16 kg) and density of        

0.91 g/cm
3
 was used to produce different type of fibers. 

 

II.1.2 End-of-waste polymer 

The end-of waste polymer used to produce fibers and aggregates comes 

from post-consumer flexible packaging and was supplied in densified 

pellets. It was a polyolefin blend containing polypropylene (PP) and 

polyethylene (PE). As previously stated, particular attention should be paid 

to processing a polymeric blend as a result of the different melting 

temperature of each component. In particular, DSC analysis carried on 

recycled material showed three different melting peaks, as reported in  

Figure II.1. The first sharp melting peak (126°C) is representative of 

polyethylene (PE) while the second one (162°C) of polypropylene (PP). 

Moreover, the presence of a shoulder (109°C) in the shape of the peak may 

be associated to the presence of heterogeneous crystalline phases.  
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Figure II.1 DSC thermograms of end-of-waste polymer pellets 

As will be discussed in the experimental part (§ …), an heterogeneous 

dispersion of PP droplets in the continuous PE matrix can be found     

(Figure IV.10). PE/PP incompatibility has been widely proved and explained 

in literature (Bertin and Robin, 2002; Shanks et al., 2000; Dintcheva et al., 

2001) and represents the main reason for the unsatisfactory mechanical 

properties of these recycled mixed plastics. 

 

II.2 Foam extrusion 

II.2.1 Principle 

A foam can be simply defined as a substance in which a gaseous void is 

surrounded by a much denser continuum matrix that can be in liquid or solid 

phase (Lee and Park, 2014). Foams exist in nature (cellulosic wood, marine 

organisms etc.) or can be produced synthetically. According to Lee and Park 

(2004), foamed plastics can be classified in different ways (Table II.1): 

Table II.1 Foam classification (Lee and Park, 2014) 

Category Terminology Range 

Density High, medium, and low 
> 0.5, 0.2-0.5, < 0.2 (specific 

gravity) 

Dimension 
Board, thick and thin 

sheet 
> 2 cm, 1-2 cm, < 1 cm 

Structure Open and closed cell 50% open cell as the borderline 

Cell size Nano, microcellular, foam < 1m, 1-100 m, > 100 m 

Nature Flexible and rigid N/A 
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In particular, regarding the foam extrusion process of thermoplastic 

polymers, two main strategies are viable: thermal activation foaming (using 

chemical blowing agents) and gas dissolution foaming (by physical blowing 

agents). The former is dependent on chemical reaction and the latter involves 

physical variation in polymer states. In both methodologies, the same three 

steps: gas implementation, gas expansion and foam stabilization, are 

involved (Lee and Ramesh, 2004). Thermoplastic foams are generally 

produced by a process based on the phase separation that occurs within a 

polymer/gas solution and thus the key parameter is the gas solubility in the 

molten polymer. Equations of state (EOSs) are viable solutions to model gas 

solubility and different theories have been proposed (Lee et al., 2007; Lee 

and Park, 2014): Flory-Huggins, Sanchez-Lacombe and Simha–Somcynsky.  

It is worth to mention that during the foaming process of thermoplastic 

polymers, state changes occurs, as reported in Figure II.2. The raw plastic 

material is first heated and pressurized (state A) then a blowing agent (both 

chemical and physical) is added (state B). The foam structure is developed 

by lowering the pressure (state C), and finally, a foam product is yielded by 

cooling the polymer matrix (state D) (Lee et al., 2007). 

 

 

Figure II.2 P-T-V change of foam extrusion from A to D; A: low V, low P, 

low T., B: low V, high P, high T, C: high V, low P, high T, D: high V, low P 

low T (Lee et al., 2007) 

As stated before, after gas solubilization, bubble formation (or 

nucleation), bubble growth and structure stabilization occur. Bubble 

nucleation can occurs in two different process: homogeneous nucleation and 

heterogeneous nucleation, respectively. The first takes place if the bubbles 

are generated from a single homogeneous phase containing no impurity or 

dirt. In reality, most of the commercial resins contain additives inside for 

several purposes, thus this process is quite rare. On the contrary, 
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heterogeneous nucleation occurs if tiny particles are present in the liquid, 

and if they assist in the formation of cells, since the nucleation took place at 

the solid/liquid interface. 

 

II.2.1.1 Homogeneous nucleation 

In the classical theory of nucleation, the nucleation rate is governed by 

the rate at which invisible gas clusters are energized by effective diffusion as 

a result of supersaturation to exceed the critical radius (Lee and Park, 2014). 

Homogeneous nucleation occurs when a sufficient number of dissolved gas 

molecules form clusters for a long enough time to make a critical bubble 

radius to cross over the resistance path as shown in Figure II.3 (Lee and 

Ramesh, 2004). 

 

Figure II.3 Homogeneous bubble nucleation (Lee and Ramesh, 2004) 

Thus, initially a molten polymer is saturated with gas at a certain 

pressure. After, reducing the pressure, the nucleation of tiny bubbles occurs 

due to the thermodynamic instability. Formation of bubbles involves the 

creation of new surfaces with certain volumes. Bubbles formation (in a 

liquid or in a solid) requires an increase in the free energy of the system, 

used to create new surfaces. Moreover, the birth of a gas bubble in a polymer 

through a reversible thermodynamic process has an excess free energy 

associated with it. It should be distinguished two phases: a metastable region 

and the equilibrium (Lee and Park, 2014). 

Mathematically, in the metastable region, the total work for the surface 

area generation, size expansion and evaporation can be expressed as: 

 

∆𝐺 = −𝑉𝑏(𝑃𝑔 − 𝑃𝑙) + 𝐴𝜎 + 𝑛(𝜇𝑔 − 𝜇𝑙)                   (II.1) 

 

where , A, V, P and  denote the surface tension of the liquid (the polymer 

in this case), bubble surface area and volume, pressure and gas molecules 

chemical potential (of the liquid, l, and the gas, g), respectively. Thus, 

lowering the surface tension by using surfactants will assist in the formation 

of bubbles. Nucleating agents such as talc, diatomaceous earth, and silica are 

more effective because they offer voids at the interface (Lee and Ramesh, 

2004). 

Free Energy G 
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At the equilibrium, the chemical potentials g and l are equal. Moreover, 

assuming that the embryos are spherical in size as the spherical shape 

contains the minimum surface area (or surface energy), eq. II.1 can be 

rewritten as: 

 

∆𝐺 = −
4

3
𝜋𝑟3∆𝑃 + 4𝜋𝑟2𝜎                             (II.2) 

 

where r is the bubble radius; P is the pressure drop (e.g., die pressure drop 

in extrusion foaming); and  is the surface tension of the polymer matrix. 

The maximum value of G, denoted as G*, occurs at a critical size r*, or 

when there is a critical number of gas molecules in the embryo, and 

represents the free energy of formation of the critical nucleus (Figure II.3). It 

is worth to mention that in polymeric systems, non-spherical geometries 

might be encountered. But the assumption of the spherical shape of the 

nucleus is reasonable, because offers the minimum resistance for nucleation 

for a given volume. The activation free energy for homogeneous nucleation 

of a critical nucleus is derived as:  

 

∆𝐺ℎ𝑜𝑚𝑜
∗ =

16𝜋𝜎3

3∆𝑃2                                        (II.3) 

 

where is the surface tension of the polymer and P = Psat – Ps is the 

supersaturated pressure. From eq. II.3 is clear that when the degree of 

supersaturation is increased, both critical radius and critical free energy 

decrease. Physically this means that a greater amount of gas in the polymer 

makes it easier for bubbles to form. Similarly, the higher the pressure drop, 

the higher the nucleation rate of bubbles. (Lee and Ramesh, 2004). Since a 

polymer always contains residual catalyst or unreacted monomers or 

contaminants, from the thermodynamic perspective, it is hardly possible to 

justify homogeneous nucleation in polymeric melt foaming. However, when 

the pressure gradient and the surface tension dominate, it is not surprising to 

find good agreement with homogeneous predictions (Lee and Park, 2014). 

 

II.2.1.2 Heterogeneous nucleation 

In the practice, heterogeneous nucleation is the common type of 

nucleation found in polymer systems containing additives. The efficiency of 

producing bubbles depends on several factors, such as the type and shape of 

nucleating particles and interfacial tensions of solid and solid–gas interface. 

The primary benefit comes from the interface, which acts like a catalyst for 

nucleation. The presence of tiny particles and cavities reduces the activation 

energy required to achieve a stable nucleus. Figure II.4 shows the reduction 

of Gibbs free energy associated with the heterogeneous nucleation process. 
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Figure II.4 Heterogeneous bubble nucleation: G*hetero < G*homo (Lee and 

Ramesh, 2004) 

Blander and Katz proposed a simple heterogeneous nucleation model for 

liquids in 1975: 

 

∆𝐺 = 𝜎𝑙𝑔𝐴𝑙𝑔 − ∆𝑃𝑉𝑏 + 𝐴𝑠𝑔(𝜎𝑠𝑔 − 𝜎𝑠𝑙) + 𝑛(𝜇𝑔 − 𝜇𝑙)         (II.4) 

 

The subscripts lg, sg and sl represent liquid-gas, solid-gas and solid-liquid 

interfaces, respectively. The thermodynamics of heterogeneous nucleation 

and its mathematical analysis are given in Uhlmann and Chalmers (1965). 

The heterogeneity factor can be used to correct the activation energy term 

derived for homogenous nucleation: 

 

∆𝐺ℎ𝑒𝑡𝑒𝑟𝑜
∗ = ∆𝐺ℎ𝑜𝑚𝑜

∗ 𝑓(𝜃)                              (II.5) 

 

Because of the presence of solid surface, a chemical equilibrium between 

gas and melt is not useful for bubble formation. Its interfacial phenomenon is 

depicted in Figure II.5. 

 

Figure II.5 Schematic of nucleating particle interaction with gas and 

polymer (Lee and Ramesh, 2004) 

Considering the configuration of Figure II.5, Uhlmann and Chalmers 

(1965) derived and expression for f ():  

 

𝑓(𝜃) =
(2+𝑐𝑜𝑠𝜃)(1−𝑐𝑜𝑠𝜃)2

4
                                  (II.6) 

 

 

Free Energy G 
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Combining equations II.6, II.5 and II.3 is possible to express the 

activation energy for heterogeneous nucleation as: 

 

∆𝐺ℎ𝑒𝑡𝑒𝑟𝑜
∗ =

16𝜋𝜎3

3∆𝑃2 𝑓(𝜃)                              (II.7) 

 

where  is the wetting angle, f () is the heterogeneity factor, and  

represents the interfacial tensions of a polymer–gas bubble (Lee and 

Ramesh, 2004). 

 

II.2.1.3 Bubble growth 

After cell nucleation, the bubbles grow due to the diffusion of excess gas 

in the polymer. The viscosity of the polymer, the gas concentration, the 

foaming temperature, and the amount of nucleating agent and its nature are 

some of the variables that control the foam growth process (Lee and 

Ramesh, 2004). The bubble growth is essentially the main mechanism to 

dissipate the super-saturation state that is inherent to the polymeric foaming 

phenomena. In fact, the degree of super-saturation appears to be the main 

driving force in most bubble growth. Moreover, diffusion and expansion are 

interrelated during bubble growth: diffusion causes influx to bubble, and 

expansion tends to reduce gas concentration in the bubble for diffusion (Lee 

et al., 2007). 

However, in reality, bubble expansion takes place in a finite polymeric 

medium, and possibly in a different thermal environment. When foam exits 

into room temperature the natural cooling will solidify the surface to cause 

extra resistance for growth. In addition, gas molecules close to the boundary 

or surface can diffuse to the surface and escape from the surface, rather than 

into the cell as illustrated in Figure II.6. 
 

 

Figure II.6 Gas molecules diffusion and surface escape in cell growth (Lee 

et al., 2007) 

 



Chapter II 

50 

II.2.1.4 Foam stabilization 

As stated previously, the foaming process in unstable in nature. Both 

nucleation and growth dissipate energy to re-establish the equilibrium. To 

keep the foamed product stable, cooling is necessary to freeze the cellular 

structure. During solidification, material strength increases and due to the 

viscosity reduction, expansion slows down. Moreover, gas molecules close 

to the skin of the foam tend to diffuse and escape from the surface, as 

previously described (Figure II.6). As soon as cooling begins, the 

replacement of the blowing gas contained in the foam cells with the 

surrounding gas (i.e., air) begins. It is driven by the concentration gradient 

existing between the inside and the outside of the foamed product (Lee et al., 

2007). 

 

II.2.2 Procedure 

To produce foamed fibers and aggregates a foam extrusion process was 

performed, using a commercial chemical blowing agent (CBA): Hrydrocerol 

CF, Clariant. This agent was dry blended with polymer pellets and then 

extruded by a single screw extruder (Brabender Do-Corder E330                          

L = 400 mm and L/D = 20). Above 150 °C, the CBA starts to decompose, a 

gas is produced and bubbles appear at the outlet of the die, due to the 

pressure gradient. As reported in literature (Sauceau et al., 2011), this 

operation does not give good control of porosity and products often exhibit 

non-uniform cellular structures. Moreover, CBA decomposition temperature 

is a key parameter because should match with polymer matrix melting 

temperature. If decomposition temperature is too low, gas could be 

generated prematurely, thus leading to gas loss and/or premature generation 

of cells. Conversely, if the decomposition temperature is too high, the CBAs 

might not be activated completely, which might result in non-uniform cell 

structure and/or limited foam expansion (Lee and Park, 2014). 

Another issue derives from the difficulties generally reported in literature 

about the foaming of polypropylene (PP). In particular, as reported by Yu et 

al. (2013), PP has a high crystallinity and low melt viscosity. The issue 

derives from the non-dissolvability of the gas in the crystallites and the non-

uniformity of the polymer-gas solution. Thus, processing parameters 

(temperatures profile, screw speed rotation, take-up speed, capillary die 

diameter) were optimized, in order to achieve the desired characteristics. In 

the next paragraph (§ II.3), fibers production is analyzed more in detail. 

As stated before, bubble growth takes place outside the forming die and 

involves extensional (or elongational) flow. As the bubbles grow during 

foaming, bubbles walls are stretched in the flow direction (similarly to what 

occurs during film blowing). Thus, it is possible to conclude that foam 

morphology and consequently foam properties, are governed by the 

extensional rheology. 
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II.3 Fibers production 

As stated before, fibers were produced using a single screw extruder. 

Processing parameters and fibers nomenclature are reported in Table II.2. 

The optimization of the foamed fibers extrusion process was necessary in 

order to achieve the desired surface roughness. To this extent, different 

foaming agent contents (0.5, 1, 2 and 5 wt.%) were investigated. Moreover, 

also temperatures profile and screw speed rotations were modified during the 

optimization. The three temperatures correspond to the different zones of the 

extruder from the hopper to the die. Finally, in order to obtain a smaller 

diameter, also capillary die was modified. Some of the produced fibers are 

reported in Figure II.7-8. 

Concerning the end-of-waste material, pellets were oven dried for 12 h at 

70 °C before the extrusion. 

Table II.2 Fibers nomenclature and extrusion parameters  

Name 
Capillary 

die (mm) 

Temperature 

profile (°C) 

Screw 

speed 

(rpm) 

Foaming 

agent 

(wt.%) 

Take-up 

speed 

(m/min) 

PP
1
 2 180-220-180 24 - 30 

PP
2
 0.5 190-220-200 1 - 9.5 

PP+0.5FA 2 180-210-180 30 0.5 30 

PP+1FA 2 180-220-180 24 1 16 

PP+2FA 2 180-220-180 16 2 12 

PP+5FA 0.5 190-220-200 3 5 5.5 

Recycled 0.5 165-230-195 1 - 1.5 

Recycled+2FA 0.5 165-230-195 1 2 1 
1
 Used for chemical treatments (Chapter III); 

2
 Used as non-foamed fibers for comparison (Chapter IV). 

 

      

Figure II.7 a) PP+1FA and b) PP+2FA foamed fibers 
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Figure II.8 a) PP fibers and b) Recycled+2FA foamed fibers 

 

II.4 Fibers chemical surface treatments 

Chemical treatments were performed on PP fibers (Table II.2) in order to 

investigate the influence of such treatments on fiber/matrix interactions  

 

II.4.1 Alkaline hydrolysis 

A solution with 40 g of NaOH (Sigma-Aldrich) and 100 g of distilled 

water was prepared. Fibers were maintained in the solution at 95 °C for 2 h 

and then left for 12 h at room temperature. Elapsed this time, fibers were 

washed with distilled water (till any alkalinity trace was removed) and dried 

at room temperature. 

 

II.4.2 Sol-gel deposition of nano-silica 

The sol-gel process involves the synthesis of colloidal suspension of solid 

particles (sol) in a liquid (gel). The chemical reaction can be divided in two 

following steps: a precursor reacts with water producing an hydroxyl ion 

(hydrolysis) then hydrolysed molecules can link together in a condensation 

reaction, liberating water or alcohol. As this reaction goes on, large 

molecules containing silicon are created by a process of polymerization. 

Metal alkolxides are popular precursors and the most used is tetraethyl 

orthosilicate (TEOS) which chemical formula is Si(OC2H5)4. The chemicals 

used for the sol-gel reaction were: TEOS (99 %, Sigma-Aldrich), ammonium 

hydroxide solution (28 % NH3 in H2O, Sigma-Aldrich), absolute ethanol (Jt 

Baker) and distilled water. According to the procedure used by Yang et al. 

(2013) fibers were dipped in a mixture of absolute ethanol (200 g), deionized 

water (20 g) and ammonia water (30 g). Fibers and the mixture were 

maintained for 10 min at 60 °C and then TEOS (40 g) was gradually added 

into solution. After 1 h of continuous magnetic stirring, fibers were filtered 

and dried at room temperature. 
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II.5 Fibers characterization 

II.5.1 Physical and morphological properties 

Fibers diameter was evaluated by an optical microscope (Zeiss Axioskop 

40): the measure is the average of at least three measurements. In the case of 

fibers with a surface roughness, pictures were taken also by a digital camera 

and then the profile was plotted to define a roughness coefficient (§ IV.1.1). 

Fibers density was measured by means of a gas pycnometer, using helium as 

gas. The average value of five measurements for each sample was taken as 

fiber density. Porosity of the cross section and surface roughness were 

determined by SEM (SEM, LEO model 420) images analysis.  

 

II.5.2 Mechanical properties 

Mechanical properties of fibers were determined by tensile tests, 

according to ASTM C 1557-03. The tests were carried out at two cross-head 

speeds using a universal testing machine with a load cell of 1 kN (SANS 

CMT 6000). For each sample ten fibers were tested at a lower cross-head 

speed (4 mm/min) for determining elastic modulus (E) while other ten fibers 

were tested at a higher cross-head speed (40 mm/min) to evaluate tensile 

strength and strain at failure (b and εb). Gauge length was always 40 mm.  

 

II.6 Fiber reinforced mortar preparation 

All the investigated mortars were prepared according the procedure 

described in EN 196-1. Mortars constituents are described in the following.  

Fibers length, volume fraction and mortars nomenclature are reported in 

each chapter for ease of reference. 

 

II.6.1 Mortar constituents: sand, cement and water 

Two different sands were used for mortars preparation (both with particle 

size 0/2mm): a calcareous sand and a quartz sand. In particular, the former 

was used to produce mortars with chemically modified fibers while the latter 

was used both for mortars containing foamed fibers and lightweight mortars 

(for lightweight mortars preparation see § II.9). Aggregates/cement ratio was 

always 3. 

The cements used were CEM II/A-LL 42.5 R and CEM I 42.5 N. The 

first was used for mortars containing chemically modified fibers while the 

second for mortar reinforced with foamed fibers and lightweight mortars. 

A w/c ratio of 0.50 was used for all the fiber reinforced mortars, using 

always tap water at room temperature. 
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II.7 Fiber reinforced mortar characterization 

II.7.1 Rheological properties 

Characterization of cementitious materials properties at fresh state is of 

widespread importance, in order to evaluate workability issues deriving from 

the investigated mixture composition. The quality of fresh concrete is 

determined by the ease and homogeneity with which it can be mixed, 

transported, compacted and finished (Ramachandran and Beaudoin, 2000). 

Moreover, according to Neville (1995), workability can be defined as the 

amount of internal work necessary to produce full compaction. Obviously, a 

key parameter that affects cementitious materials workability is the amount 

of water in mixture. But, it is widely known the negative influence of an 

excess of water (porosity, mechanical properties, durability, segregation, 

bleeding etc.). Workability may also be modified by the addition of 

admixtures (plasticizers and air entraining agents) or fine particles 

(Westerholm et al., 2008; Nehdi et al., 1998; Ferraris et al., 2001). Other 

parameters that affect workability are: aggregates size, grading, shape and 

surface roughness; proportion between cement paste and aggregates. 

Consistency (or fluidity) describes the ease with which a substance flows but 

a concrete having the same consistency may, however, have different 

workability characteristics (Ramachandran and Beaudoin, 2000).  

Several standards or methodologies describe how to determine some 

parameters (in most of them consistency) describing the mixture workability 

but none is capable of measuring this property directly. The most extensively 

used test is the slump test. This method is described by EN 1015-3 (for 

mortar) and by EN 12350-2 (for concrete). Slump, of course, is a rheological 

measurement, but slump only describes a part of the behavior and is an 

empirical measure; it cannot be compared with other rheological measures. 

Other measures of cementitious materials workability exist, but they are less 

common principally due to the necessity of expensive rheometers. 

The fresh cementitious materials properties can be assimilated to the flow 

behavior of concentrated suspensions. Basic principles of rheology are 

discussed in the following paragraph 

 

II.7.1.1 Principle 

The study of flow behavior is called rheology and is generally applied to 

fluid materials (or materials that exhibit a time-dependent response to the 

stress). Flow is typically measured using shear and the shear parameters of 

stress () and strain rate (𝛾̇) are calculated from measurements of torque and 

flow rate.  
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The apparent viscosity () is defined as: 

 

𝜇 =
𝜏

𝛾̇
                                                 (II.7) 

 

It is important to always specify at which viscosity we are referring to (i.e. 

apparent viscosity, plastic viscosity, differential viscosity etc.). 

Several models have been proposed for flow behavior description (Figure 

II.9). The simplest and ideal behavior is the Newtonian one, with a linear 

relationship between stress and strain rate (starting from zero, i.e., at zero 

stress corresponds zero strain rate). In other cases, flow initiates only above 

some level of stress (called yield stress, 0); these materials are called 

Bingham fluids and have a plastic behavior with a linear relationship 

between stress and strain. Another common behavior is pseudo-plastic (or 

shear thinning), in which viscosity decreases as strain rate increases. Finally, 

there is the shear thickening (or dilatant) behavior, found particularly for 

self-compacting concrete (Feys et al., 2008). For self-compacting concrete 

(SCC) some thickenings are necessary to avoid aggregates segregation.   

 

 

Figure II.9 Different rheological behaviors 

Also from the slump test is evident that cementitious materials are able to 

stand unsupported without flowing under their own weight, thus exists a 

limit of stress above which the flow starts. As discussed previously, the 

simplest model that take into account this behavior is the Bingham one: 

 

𝜏 = 𝜏0 + 𝜇 ∙ 𝛾̇                                          (II.8) 

 

The yield stress is a consequence of the interparticle forces: links between 

particles are broken by the shearing, thus the measured yield stress depends 

upon time and previous shear history (Banfill, 2006) 



Chapter II 

56 

The constitutive relationship for the pseudo-plastic behavior is the power 

low equation: 

 

𝜏 = 𝐾 ∙ 𝛾̇𝑛                                          (II.9) 

 

where K is the consistency and n the power index, which represents the 

deviation from Newtonian behavior (n is less than unity for shear thinning 

systems and higher than the unity for shear thickening materials). A 

combination of the power law (eq. II.9) and the Bingham model (eq. II.8) is 

the Herschel- Bulkley law: 

 

𝜏 = 𝜏0 + 𝐾 ∙ 𝛾̇𝑛                                  (II.10) 

 

More complex laws have been proposed and reviewed by Banfill (2006). 

Moreover, cementitious materials exhibit also a time-dependent behavior: at 

a constant stress level, a progressive and reversible decrease in viscosity is 

achieved. Materials with the as described behavior are called thixotropic 

fluids. 

A more detailed analysis is necessary for fiber reinforced cementitious 

materials. It is widely proven that fibers addition decreases cementitious 

materials workability. This influence is strictly correlated to fibers aspect 

ratio, r, and volume fraction, f: 

 

𝑟 =
𝐿𝑓

𝐷𝑓
                                         (II.11) 

 

where Lf and Df are fibers length and diameter, respectively. Moreover, due 

to their elongated shape, fibers effect depends on the position and the 

orientation within a structure relative to principal stresses. Fibers are 

needlelike particles that increase the resistance to flow and contribute to the 

formation of an internal structure of aggregate grains and fibers (Grünewald, 

2012), as shown in Figure II.10. 

 

 

Figure II.10 Effect of a fiber on the packing of gravel and sand mixtures 

(Martinie et al., 2010) 
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According to Grünewald, the effect of fibers on workability is mainly due 

to four reasons: 

1) The shape of the fibers is more elongated than the shape of the 

aggregates; the surface area at the same volume is larger; 

2) Stiff fibers change the structure of the granular skeleton, whereas 

flexible fibers fill the space between them. Stiff fibers push apart 

particles that are relatively large compared to the fiber length, which 

increases the porosity of the granular skeleton; 

3) The surface characteristics of fiber differ from that of cement and 

aggregates, i.e. plastic fibers might be hydrophilic or hydrophobic; 

4) Fibers can be deformed (i.e. have hooked ends, be crimped or 

waveshaped) to improve the anchorage between them and the 

surrounding matrix. 

The phenomenon described at the point two, and illustrated in Figure II.10, 

is very important, because the packing density is reduced with fiber addition 

in a slightly larger way with coarse aggregate than with sand, because the 

sand is able to pack tightly around the fiber, whereas coarse aggregates are 

pushed apart by the fiber's presence (Martinie et al., 2010). 

Plastic fibers mainly affect the rheological behavior of the cement paste 

(due to their deformability and ability to form entangled structures) while 

steel fibers affect the yield stress of concrete.  

In this thesis, two investigations were carried out: flow table tests and 

rheological measurements using a rheometer (RheoCAD 200), in order to 

study low and high shear rates, respectively. 

 

II.7.1.2 Flow table test 

Fresh mortar workability was determined by flow table test, according to 

EN 1015-3. The diameter of the spread mortar was measured in two 

perpendicular directions using a caliper and then consistency was calculated 

considering the ratio with the initial diameter (100 mm). Three tests were 

carried out for each composition. Flow table tests were performed on fiber 

reinforced mortars (with both foamed and non-foamed fibers) and 

lightweight mortars containing artificial plastic aggregates. 

 

II.7.1.3 Rheometer RheoCAD 

The main shear test was performed using a RheoCAD 200                

(CAD Instrumentations), reported in Figure II.11a. The rheometer is 

computer controlled: the torque is measured at imposed rotational speed. The 

shear is given by an anchor-like shaped stirrer (Figure II.11b) while an outer 

stirrer (hook-like shaped) is necessary for the homogenization of the mixture 

before and after a measurement. Homogenization of the mortar may become 

necessary as the applied momentum, i.e. the centrifugal force, may lead to 

(partial) segregation of the mixture. The rotational speed profile used for 
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rheological tests is reported in Figure II.12. Careful calibration of the system 

allows to transfer the relation between torque and rotation rate to plastic 

viscosity and yield stress: 

 

𝑇 = 𝑔 + 𝑁 ∙ ℎ                                  (II.12) 

 

where T is the torque (Nm), N is the rotation rate (rpm), g is the relative 

yield stress (Nm) and h is the relative plastic viscosity (Nm/rpm).  

 

          

Figure II.11 a) RheoCAD 200 and b) anchor-like stirrer 

The rotational speed profile used for rheological tests (Figure II.12) 

contains three different zones, in order to achieve several requirements 

(Corcella et al., 2004): 

1) Minimize the effects of mortar preparation and loading in the 

rheometer (all the mortars were prepared according EN 196-1, but 

after mixing mortar was transferred into the rheometer) removing the 

initial history; 

2) Acquisition of the data necessary for the construction of the flow 

curves (torque vs. rotational speed), in the descending part of the 

triangle; 

3) Evaluate the thixotropic behavior of the mortar. 

The results obtained can be then analyzed and discussed using the models 

previously described, in particular Bingham (eq. II.8) and Hershel-Bulkley 

(eq. II.10). 

RheoCAD was used to determine the rheological behavior of mortars 

containing both foamed and non-foamed fibers. 

 

 

a) b) 
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Figure II.12 Rotational speed profile used for rheological tests 

II.7.2 Mechanical properties 

Mortars mechanical properties were determined according to EN 196-1. 

Specimens of 40 mm x 40 mm x 160 mm were casted in steel molds and 

compacted by a jolting table; three specimens for each composition were 

tested after 28 days of wet curing. 

 

II.7.2.1 Flexural strength 

Mortar flexural strength was determined by three-point bending test 

(Figure II.13). Flexural strength was obtained by the following equation:  

 

3

5.1

B

LF
R

f

f


                                   (II.13) 

 

where Ff is the maximum applied load, L is the distance between the 2 

supports and B is the side of the square section of the specimen (40 mm). 

 

    

Figure II.13 Mortar specimen before (a) and after (b) the test to determine 

flexural strength 
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II.7.2.2 Compressive strength 

Compression tests were performed on the half prisms resulting from 

flexural tests (Figure II.14). Compressive strength was determined by 

equation:  

 

A

F
R c

c                                               (II.14) 

 

where Fc is the maximum applied load and A is the specimen section      

(1600 mm
2
). 

 

    

Figure II.14 a) mortar specimen before and b) after compression test 

II.7.3 Durability properties 

As stated in the previous chapter, cementitious materials are inevitably 

porous materials and porosity allows the access of several dangerous agents 

for mortar/concrete durability. In the following, the methods used to 

investigate durability properties are described. 

 

II.7.3.1 Water absorption 

Mortar water absorption was determined both via capillary water 

absorption tests and total immersion tests. The tests were carried out on the 

same specimens (before tested for the determination of the capillary rise and 

then for total immersion) after 28 days of wet curing. Three prismatic 

samples (75 mm x 75 mm x 150 mm) were investigated for each mixture. 

 

II.7.3.1.1 Capillary water absorption 

 

Capillary water absorption tests were performed according to EN 1015-

18. After 28 days of wet curing, samples were dried at 40°C until constant 

mass was achieved, named M0. Also the mass of saturated specimen was 

measured and named Ms. Then, specimens were immerged in water and the 

mass was evaluated at several times: 1, 10, 15, 30 and 60 min; 2, 4, 6, 24, 48 

a) b) 
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and 72 h. Determining the amount of absorbed water, M, was possible to 

calculate the absorbed water per unit surface (A) at time t i, iti, and the 

capillary water absorption coefficient, Sti: 

 

𝑖𝑡𝑖 =
Δ𝑀

𝐴
                                             (II.15) 

 

𝑆𝑡𝑖 =
𝑖𝑡𝑖

√𝑡𝑖
                                             (II.16) 

 

II.7.3.1.2 Total immersion absorption 

 

With this test is possible to calculate porosity open to water starting from 

the total amount of water absorbed after total immersion of the sample. 

 

𝐴𝑏 =
𝑀𝑠−𝑀0

𝑀0
∙ 100                                  (II.17) 

 

𝑃 =
∆𝑀

𝑉
∙ 100                                     (II.18) 

 

where Ms is the saturated mass, M0 the oven-dry mass and V is the volume 

of the sample. It should be noticed that this is the porosity open to water and 

that M represents the volume occupied by the water (considering that 1 g of 

water have a volume of 1 cm
3
 because water density is 1 g/cm

3
). 

 

II.7.3.2 Sulfate attack 

Cementitious materials exposed to sulfate solutions can exhibit signs of 

deterioration due to the formation of gypsum, ettringite and thaumasite (or a 

mixture of these compounds) (§ I.2.2). The samples were immersed in a 

saturated solution of sodium sulphate (NaSO4) and oven-dried (110 °C), 

according to ASTM C88-05. The evaluation of sulphate attack was made by 

measuring the samples weight variation along a total of ten cycles. 

Moreover, in order to evaluate also visually the degradation at the end of 

each cycle, pictures of the samples were taken. Three prismatic samples (75 

mm x 75 mm x 150 mm) were investigated for each mixture. The solution 

was prepared with 215 g of anhydrous NaSO4 per liter of water. 
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II.7.4 Physical properties 

Fiber reinforced mortar physical properties were investigated in order to 

study the influence of the different fiber/matrix interactions. In particular, 

fiber/matrix bond was evaluated by pull-out tests and SEM investigations. 

Moreover, the influence of fibers addition and their bond with the cement 

paste on plastic shrinkage cracking was evaluated by a modified Kraai’s 

method (Kraai, 1985). 

 

II.7.4.1 Fiber/matrix bond investigation 

II.7.4.1.1 Pull-out test 

 

As stated in the previous chapter single fiber pull-out tests are not 

regulated by national or international standards (except the Japanese JCI    

SF-8), but common procedures exist in literature (Abbas and Khan, 2016). In 

particular, the test configuration used in this study consists of a single fiber 

embedded in a 50 mm cubic mortar specimen. Three fiber embedment 

lengths were investigated (10, 20 and 30 mm). Tests were performed with a 

universal testing machine (Instron 4301) equipped with a 1 kN load cell at a 

constant displacement rate of 1 mm/min. Five samples for each fiber were 

investigated. Pullout load versus displacement curves were obtained and the 

pullout strength, tmax, was determined with the following equation: 

lr

P




)2(

max
max


                                        (II.19) 

where Pmax is the pull-out peak load; l is the embedded fiber length and 

(2pr) is the fiber circumference. 

 

II.7.4.1.2 ITZ investigation 

 

Fiber/matrix interfacial transition zone (ITZ) was investigated by SEM 

observations on the fracture surface of specimens cured for 28 days in water. 

Attention was paid to the presence of hydration products on the fiber surface 

and the matrix adhesion onto fibers.  

 

II.7.4.2 Shrinkage cracking test 

Restrained plastic shrinkage cracking tests were performed according to a 

literature consolidated methodology firstly proposed by Kraai (Kraai, 1985) 

and then adapted by several researchers. Slabs of 50x50x5 cm restrained by 

angular steel profile were used. After casting, specimens were taken for 8 

hours in a climatic chamber with a fixed wind speed. Weight, temperature 

and relative humidity were monitored and the rate of water evaporation was 
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determined by measuring the loss in weight of the mortar slabs before crack 

pattern evaluation. The crack pattern of each specimen was observed and 

photographs were taken every hour.  

 

II.8 Foamed aggregates production 

Lightweight aggregates (LWAs) manufacturing consisted of three 

following steps: foam extrusion process, strands grinding and aggregates 

sieving. The foam extrusion process was performed as described before for 

fibers production (§ II.2.2 and II.3). Pellets and chemical foaming agent 

(Hydrocerol CF) at 2wt.% were dry blended and then extruded by a single 

screw extruder (BRABENDER DO-CORDER E330, L/D = 20 with a     

Dscrew = 20 mm, capillary die of 0.5 mm) operating at the following 

temperature profile: 165°C-230°C-170°C, varying screw speed rotation to 

obtain foamed strands with different diameters. Filaments were collected by 

a winder and then grinded by a pelletizer. In the last step aggregates were 

sieved according to EN 933-1 and separated in four different particle size 

grades: 2-1.4 mm, 1.4-1.0 mm, 1.0-0.50 mm and 0.50-0.18 mm. The four 

aggregates were mixed in order to reproduce, almost completely, the 

standard EN 196-1 sand particle size distribution (Figure II.15). Aggregates 

grading, i.e. particle size distribution, is of wide importance for mortar 

density, porosity, aggregates distribution and also mechanical properties (He 

et al., 2015). LWAs particle distribution (Figure II.15) was almost the same 

of quartz sand grading curve but with less fine sand. 

 

 

Figure II.15 Aggregates particle size distribution (LWAs = LightWeight 

Aggregates) 
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As reported in Table II.3, LWAs are coarser, i.e. the presence of coarse 

aggregates is higher, as evident also by the higher modulus of fineness. In 

this study, the use of fine artificial aggregates was excluded for the difficulty 

in producing a such small particle size with the described procedure. 

Table II.3 Natural and artificial sand cumulative passing 

Mesh opening (mm) 
Cumulative passing (%) 

Natural sand LWAs 
2.00 100 100 

1.60 93 - 

1.40 - 82 

1.00 67 63 

0.50 33 22 

0.18 - 0 

0.16 13 - 

0.08 0 - 

Modulus of fineness 2.94 3.33 

 

II.9 Lightweight mortar production and characterization 

II.9.1 Mix design 

All the mortar samples were prepared in accordance with the procedure 

described in EN 196-1. Nomenclature and composition of the studied 

mixtures are reported in Table V.2. LWAs were used both in saturated and 

unsaturated conditions and three w/c ratios were investigated (0.30, 0.45 and 

0.50, respectively). Saturated LWAs were soaked in part of the mixing water 

for 24 hours under vacuum. Four natural quartz sand volume replacement 

were investigated (5, 10, 25 and 50%) comparing lightweight mortars 

(LWMs) with control specimens, i.e. without LWAs. In some compositions 

was also used a superplasticizer (Dynamon SX, Mapei) at two different wt.% 

respect the used cement (0.5 and 4.5 %). 

For the compositions used for the investigation on the use of LWAs as 

water reservoir for internal curing, additional water was added at the mixing 

water, then aggregates were saturated under vacuum for 24 h, as previously 

described. In particular, considering an average porosity of 8 % for LWAs, 

the amount of water necessary to saturate aggregates pores was calculated 

for the different natural sand volume fraction replacements.  
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II.9.2 Rheological properties 

Lightweight mortars consistency was evaluated after flow table test as 

previously described (§ II.7.1.2) according EN 1015-3. 

 

II.9.3 Mechanical properties 

Flexural and compressive strength were  measured in accordance to what 

previously exposed concerning fiber reinforced mortars (§ II.7.2). 

 

II.9.4 Physical properties 

II.9.4.1 Aggregates distribution 

Natural and lightweight aggregates interaction with cement paste and 

distribution in the cross section were investigated by SEM analysis. Pictures 

were taken both on polished and fractured surfaces. 

 

II.9.4.2 Oven-dry density 

The oven-dry density, d, of hardened mortars was determined on 

specimens dried at 105°C until constant mass, according to EN 12390-7. 

Three specimens for each composition were tested. 

 

II.9.4.3 Thermal conductivity 

Thermal properties of building materials, in particular thermal 

conductivity, are important for the realization of eco-efficient building with a 

lower energy demand. Thermal conductivity can be measured both in steady 

state and transient conditions but with a different accuracy (Dubois and 

Lebeau, 2015). The most used method is the so-called “guarded hot plate 

technique” (GHP), defined in the ISO 8302 and specified in European 

standards EN 12664 and EN 12667. Its principle is to reproduce the uniform, 

unidirectional and constant thermal flux density existing through an infinite 

homogeneous slab-shaped specimen caught between two infinite isothermal 

planes (Dubois and Lebeau, 2015). 

The device used in this research was provided by Prof. F. Lebeau. A 

specimen is sandwiched between an electrically-heated hot plate maintained 

at temperature Th and a cold plate maintained at a lower temperature Tc. The 

heat dissipated by the Joule effect in the hot plate would travel to the cold 

plate through the sample, but also backwards and laterally on the edges of 

the hot plate. Back and lateral guard zones are then necessary to neutralize 

these leaks.  
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Thermal conductivity can be thus determined with the one-dimensional 

Fourier equation:   

                                        λ =  
𝐹∙𝑠

𝐴(𝑇h−𝑇𝑐)
                                    (II.20) 

where F (W) is the heat flow-rate that in an ideal unidirectional condition 

would traverse the specimen through an area A (m
2
) called measurement 

area; s (m) is the thickness of the specimen. It’s important to notice that the 

thermal flux F is equal to the electric power injected in the heater plate only 

if the instrument is perfect (Dubois and Lebeau, 2015).  

The difference of temperature generates a heat flow from the hot plate to 

the cold one (in accordance with the first principle of thermodynamics). 

When the thermal equilibrium is achieved, the instrument is able to 

determine the thermal conductivity () of the sample. 

Thermal conductivity measurements were carried out on mortar 

specimens of size equal to 30x30x5 cm
3 

(Figure II.16a), manufactured in 

wooden molds. After 28 days of water curing specimens were conditioned 

(25 °C and 50 % RH) until constant mass before testing. 

The slab square-shaped specimen is placed between a hot plate assembly and 

an upper cold plate assembly, mounted horizontally on a support frame 

(Figure II.16b). A rail system allows to displace the cold plate assembly 

vertically, to adjust the GHP to the thickness of the sample. On its lateral 

faces, the sample is surrounded by insulation panels. 

 

    

Figure II.16 a) slab-shaped  specimen (30 x 30 x 5 cm3) and b) GHP 

apparatus 

 

 

a) b) 
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II.9.4.4 Autogenous and total shrinkage 

Autogenous and free total shrinkage tests were performed in order to 

evaluate the effectiveness of foamed plastic aggregates as reservoir for 

internal curing water. Three prisms (40 mm x 40 mm x 160 mm) were tested 

for each composition and test (i.e. fixed the composition, three were used for 

the evaluation of the autogenous shrinkage and three for the total shrinkage). 

Specimens were provided of metal plugs at the extremities, according to     

EN 12617-4. Samples for autogenous shrinkage were wrapped in aluminum 

foil and covered with epoxy resin. All the samples were stored in a climatic 

chamber at constant temperature and relative humidity (20 °C and 50%, 

respectively). Length variations were measured each day for the first month 

and once a week for the remaining time, using a digital comparator. 

Dimensional variations were controlled for 120 days (4 months) 

approximatively. 

 

II.9.4.5 Water vapor permeability 

Water vapor permeability of lightweight mortar samples was determined 

according EN 1015-19 that defines a test method to determine water vapor 

permeability in steady-state conditions. Four flat cylindrical specimens 

(diameter of 75 mm and thickness of about 20 mm), conditioned at relative 

humidity of 50 % and 20 °C, were prepared for each lightweight mortar and 

sealed on glass containers, in which a saturated solution of KNO3 was 

contained (Figure II.17). This solution, at 20°C, provides a relative humidity 

of 93.2%: the gradient of water vapor pressure between the lower part of the 

sample (RH = 93.2%) and the environment in which samples are stored    

(RH = 50 %) causes a water vapor flow through the mortar sample 
 

 

 

 

Figure II.17 Water vapor permeability test, sample set-up 

Water vapor transmission rate (WVT) per surface unit represents the 

amount of water vapor flowing during the time through the sample surface 

and can be determined according eq. II.1: 
 

𝑊𝑉𝑇 =  
∆𝐺

∆𝑡∙𝐴
                                              (II.21) 

 

where G (kg) is the mass variation, t (s) is time interval and A (m
2
) is the 

sample area.  

Sample 

Saturated solution  

of KNO3 
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Moreover, water vapor permeability (Wvp) can be calculated cosidering 

also a unit gradient of water vapor tension and sample thickness, according 

eq. II.2: 
 

𝑊𝑣𝑝 =
𝑠

∆𝑝

𝑊𝑉𝑇
−𝑅𝐴

                                         (II.22) 

 

where s is the sample thickness (m), p is the gradient of water vapor 

tension between saturated solution and samples storing chamber (Pa) and RA 

is the resistance to water vapor diffusion in the air between the sample and 

the KNO3 saturated solution (0.04810
9
 Pa m

2
 s/kg, for 10 mm of interspace). 

Finally, water vapor resistance factor () is measured in comparison to the 

properties of air (eq. II.3): 
 

𝜇 =
𝛿𝐴

𝑊𝑣𝑝
                                             (II.23) 

 

where A is air permeability (1.9410
-10

 kg/Pa m s) in test conditions (20 °C 

and 50% RH). 



 

 

Chapter III 

Chemically modified fibers: 

characterization and use into a 

cementitious mortar 

 

 

 

 
III.1 Fibers characterization 

Fibers surface chemical modification could affect not only the interaction 

between fibers and the cementitious matrix, but also fibers physical and 

mechanical properties. To this extent, before the use of chemically modified 

fibers, their properties were investigated. 

 

III.1.1 Fibers physical and mechanical properties 

As reported in Table III.1, chemical treatments were not influent on fibers 

radius while the sol-gel deposition slightly affects fibers density. For PP T2 a 

negligible increase of density, , (from 0.91 to 0.93 g/cm
3
) is recognizable. 

Table III.1 Nomenclature, density () and radius (r) of fibers (Coppola et 

al. 2015) 

Fiber 
Chemical 

treatment  
 (g/cm

3
) r (mm) 

PP - 0.91 0.38 

PP T1 
Alkalyne 

hydrolysis 
0.91 0.38 

PP T2 Sol-Gel process 0.93 0.38 

 

It is important to verify that chemical treatments have no negative 

influence on fibers mechanical properties, before to use chemically treated 

fibers as reinforcing phase into a cementitious composite. As reported in 

Table III.2, tensile strength of fibers was not affected by chemical treatments 
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while a low decrease of strain at failure (about 15 %) for PP T1 fibers was 

recognizable. The slight decrease of ductility is due to material removal from 

PP T1 fibers surface during alkaline hydrolysis (Figure III.1). A small 

increase of elastic modulus (about 15 %) was measured for both chemically 

treated fibers, probably due to an increase of crystallinity resulting from 

fibers exposure to high temperatures during chemical treatments. 

Thus, it is possible to assess that chemical treatments have no significant 

influence on fibers mechanical properties. 

Table III.2 Fiber mechanical properties: modulus (E), stress at break (b), 

elongation at break (b) (Coppola et al. 2015) 

Fiber E (MPa) b (MPa) b (%) 

PP 895 39 1345 

PP T1 1036 45 1173 

PP T2 1082 37 1330 

 

III.1.2 Fibers morphology 

Fiber surface texture and its chemical affinity with the cement paste are 

the key parameters to have a good fiber/cementitious matrix bond. Figure 

III.1a shows the smooth surface of a non-treated PP fiber while Figure III.1b 

reports the effects of the alkaline hydrolysis. The high aggressiveness of this 

treatment results in the subtraction of fiber surface portions (Figure III.1b). 

The presence of superficial cavities leads to an improvement of the 

fiber/matrix interactions, thanks to the offered interlocking positions for the 

cement paste. Whit regard to the sol-gel treatment, Figure III.2a shows the 

distribution of nano-silica particles, which appear as a powder and is well 

recognizable also at naked eye, on the fiber surface; at higher magnification 

(Figure III.2b) the spherical shape and low diameter dispersion (with a mean 

value of 300 nm ) of particles is evident. 

 

     

Figure III.1 SEM micrographs of a) PP fiber and b) PP T1 fiber surface 

(Coppola et al. 2015) 

a) b) 
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Figure III.2 a) PP T2 fiber and b) nano-silica particles on fiber surface 

(Coppola et al. 2015) 

FTIR spectroscopy was performed on PP and PP T2 fibers and the 

obtained infrared spectra are reported in Figure III.3. The three main 

absorption peaks characteristic of silica groups appear at 1096 cm
-1

 

(asymmetric vibration of Si-O), 948 cm
-1

 (asymmetric vibration of Si-OH) 

and 808 cm
-1

 (symmetric vibration of Si-O) (Innocenzi et al., 2003; Edrissi et 

al. 2011).
 
                 

 

Figure III.3 Infrared spectra of PP and PP T2 fiber in the 600-400 cm-1 

wavelength range (Coppola et al. 2015) 
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III.2 Fiber reinforced mortar characterization 

III.2.1 Mechanical properties 

In order to investigate the effects of fiber length (lf), volume fraction (Vf) 

and chemical treatment on fiber reinforced mortars flexural strength, the 

different mortar samples were submitted to flexural tests. The nomenclature 

and composition of the investigated systems are reported in Table III.3, 

together with the values of the flexural strength Rf. The same Rf values are 

also reported in graph in Figure III.4, to better compare the flexural 

behaviour of the mixtures.  

Table III.3 Mixture nomenclature, composition and flexural strength (Rf) 

(Coppola et al. 2015) 

Mixture Fiber 
Fiber Length  

(mm) 

Vf  

(%) 

Rf  

(MPa) 

Reference - - - 7.09 ± 0.33 

PP-FRMA15 

PP 

15 
0.50 8.36 ± 0.70 

PP-FRMB15 1.00 8.57 ± 0.86 

PP-FRMA30 
30 

0.50 9.04 ± 0.16 

PP-FRMB30 1.00 9.17 ± 0.08 

PPT1-FRMA15 

PP T1 

15 
0.50 7.69 ± 0.33 

PPT1-FRMB15 1.00 9.45 ± 0.42 

PPT1-FRMA30 
30 

0.50 9.52 ± 0.46 

PPT1-FRMB30 1.00 9.56 ± 0.29 

PPT2-FRMA15 

PP T2 

15 
0.50 9.88 ± 0.24 

PPT2-FRMB15 1.00 9.20 ± 0.54 

PPT2-FRMA30 
30 

0.50 9.09 ± 0.70 

PPT2-FRMB30 1.00 9.74 ± 0.77 

 

As shown in Figure III.4, a general increase of flexural strength (Rf) over 

the reference sample was achieved. As expected, at increasing fiber volume 

fraction higher flexural strengths were obtained. On the contrary, fiber 

length was not particularly influent. As mentioned before, fiber chemical 

treatments improve fiber/matrix adhesion resulting in an increase of flexural 

strength for mix containing treated fibers compared to mix containing 

untreated fibers. Moreover, slight higher values of flexural strength were 

reported for mortars containing PP T2 fibers respect mixtures with PP T1 

fibers. Thus, the presence of nano-silica particles on fibers surface 

strengthens fiber/matrix bond resulting in a better transmission of stresses 

between matrix and fibers. 
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Figure III.4 Comparison of fiber reinforced mortars flexural strengths 

(Coppola et al. 2015) 

 

III.2.2 Fiber/matrix interactions 

III.2.2.1 Single fiber pull-out 

Pull-out tests confirmed the weak interactions between untreated 

polypropylene fibers and the cementitious matrix: Figure III.5 shows the 

complete debonding of a smooth polypropylene fiber during the test.  

Figures III.6-8 report load vs. displacement curves recorded during pullout 

tests considering the three investigated embedded lengths: 10, 20 and 30 

mm, respectively. The mechanism of fiber pullout consists in two different 

steps: first, fiber debonding and then fiber slipping. Thus, after the initial 

linear load/displacement relationship up to a peak load value (clearly 

recognizable in Figures III.6-8), two potential behaviours are possible:    

slip-softening and slip-hardening. In the first case, the complete fiber pullout 

takes places and friction influence is quite negligible; in the second case, 

after fiber debonding, the slipping resistance contribution is high.  

In this case, at increasing fiber embedded length an increase of friction 

was achieved, resulting in a slip-hardening behavior, particularly evident for 

the embedment length of 20 and 30 mm. The slip-hardening behavior 

corresponds to an increase of pullout energy, i.e. the energy absorbed during 

pullout, that is the area under pullout curve. 
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Figure III.5 Pull-out setup and PP fiber debonding during the test (Coppola 

et al. 2015) 

 

 

Figure III.6 Pull-out curves for PP, PP T1 and PP T2 (embedment length 

10 mm) (Coppola et al. 2015) 

 

 

Figure III.7 Pull-out curves for PP, PP T1 and PP T2 (embedment length 

20 mm) (Coppola et al. 2015) 
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Figure III.8 Pull-out curves for PP, PP T1 and PP T2 (embedment length 

30 mm) (Coppola et al. 2015) 

The mean values of the pull-out peak load (Fmax), i.e. the load after elastic 

behavior, obtained from the pull-out test, are reported in Table III.4. Both T1 

and T2 lead to an increase of Fmax, having slight higher values for fibers 

treated by alkaline hydrolysis. PP fibers show a slip-softening mode in the 

case of 10 and 20 mm while a slip-hardening behavior is recognizable in the 

case of 30 mm embedment length, thanks to the higher fiber abrasion during 

pull-out.  

Table III.4 Maximum pullout load varying fibers and embedded length 

(Coppola et al. 2015) 

Mix Embedded length (mm) Fmax (N) 

PP 

10 1.92 ± 0.15 

20 

30 

10 

20 

3.57 ± 0.39 

3.93 ± 0.75 

PP T1 

5.34 ± 0.08 

7.40 ± 0.44 

30 

10 

20 

30 

7.54 ± 0.51 

4.91± 0.33 

PP T2 6.19 ± 0.40 

6.67 ± 0.75 

 

In order to better highlight the influence of fibers embedded length on the 

pull-out peak load, the data of Table III.4 are also plotted in Figure III.9. A 

sharp increase of load is recognizable from 10 to 20 mm (85, 39 and 26 % 

for PP, PP T1 and PP T2 fibers, respectively). On the contrary, a slight 

increase of pullout peak load was registered for 30 mm of embedment 

length. An explanation of this phenomena derives on what stated before: at 
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increasing fiber embedded length a greater friction during pullout is 

achieved.  

 

 

Figure III.9 Maximum pullout load vs. embedment length (Coppola et al. 

2015) 

III.2.2.2 Fiber/matrix ITZ investigations 

SEM is a valid methodology to investigate fiber/matrix interactions and 

observe the ITZ. The different ways the fibers can interact with the 

cementitious matrix can be recognized from Figure III.10. The low 

wettability of pristine PP fibers (Figure III.10a) results in a poor adhesion 

with the cement paste and the formation of a high porous ITZ (Machovič et 

al., 2013). The presence of interlocking positions onto PP T1 fibers (Figure 

III.1b) contributes to have a less porous ITZ but fiber surface (as in the case 

of pristine PP fibers) shows a limited presence of hydration products (Figure 

III.10b). In the case of PP T2 fibers, not only a dense ITZ is recognizable but 

is evident also the high presence of hydration products on the fiber surface 

(Figure III.10c) due to the well-known chemical reactivity of silica particles 

into a cementitious matrix (Du et al., 2015; Jo et al., 2007).  

On PP T2 fibers surface, at higher magnification, distinct rhombohedral 

shaped crystals of CaCO3 can be found in addition to the hydration products 

(Figure III.10d). 
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Figure III.10 Fiber/matrix interfacial transition zone of: a) PP; b) PP T1 

and c) PP T2, respectively; d) detail of hydration products and CaCO3 

(Coppola et al. 2015) 
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III.3 Conclusions 

The aim of the work discussed in this chapter was to improve the 

adhesion between polypropylene fibers and cementitious mortar modifying 

the chemical affinity by means of fibers surface chemical treatments. In fact, 

the poor wettability of PP fibers results in a weak bond with the cement 

paste and thus mechanical or chemical treatments are necessary to improve 

fiber bridging ability in stress transfer.  

To this extent, two chemical treatments have been investigated: alkaline 

hydrolysis and nano-silica sol-gel particles deposition. SEM images revealed 

that alkaline hydrolysis increases fibers roughness while tensile tests 

reported a slight decrease of fibers ductility. On the contrary, sol-gel process 

produces nano-silica spheres particles on fibers surface and mechanical 

properties are not affected. 

SEM pictures of ITZ reveal a poor adhesion between PP fibers and 

cement paste, a very porous ITZ and the absence of hydration products on 

fiber surface. Also for PP T1 fibers the surface is quite free of hydration 

products but the presence of interlocking positions contributes to have a less 

porous ITZ. In the case of PP T2 fibers, not only a denser ITZ was 

recognizable but also the high presence of hydration products on the fiber 

surface. 

Pull-out tests confirmed the better performances of treated fibers: an 

higher pull-out peak load was achieved and an increase of pull-out energy 

was evident considering the slip-hardening behaviour showed by PP T1 and 

PP T2 fibers. Also bending tests report an increase of fiber reinforced mortar 

flexural strength over the unreinforced mortar. Slight higher values of 

flexural strength were reported for mortars containing PP T2 fibers respect 

mixes with PP T1 fibers. 

Thus, the interesting results confirm the promising application of nano-

silica treated fibers for improving fiber/matrix interactions. The presence of 

nano-silica particles not only reduces the ITZ porosity, as shown by SEM 

analysis, thus giving beneficial effects on mortar durability, but also 

improves the fiber/matrix bond increasing the stress transfer, i.e. the fiber 

reinforced mortar strength. 
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Chapter IV 

Foamed fibers: characterization 

and use into a cementitious mortar 

 

 

 

 
IV.1 Fibers characterization 

IV.1.1 Fibers optimization and morphology 

Foamed fibers are a new class of fibers in which a foaming agent is dry 

blended with polymer pellets before the extrusion process (as described 

previously § …) and then extruded with a traditional extruder. Since this 

process has never been investigated in literature before, its optimization was 

necessary to obtain a stable process but also to achieve an adequate surface 

texture. The aim was to produce foamed fibers having a rough surface, in 

order to increase fiber/matrix interactions. To this extent, foaming agent 

content and processing conditions were adapted (Table II.2) and the results 

are discussed as follows.  

As evident from Table IV.1, fibers physical and mechanical properties 

are greatly affected both by processing parameters (capillary die, take-up 

speed, screw speed etc.) and foaming agent content. First of all, it was 

necessary to find the optimal foaming agent content, in order to obtain fibers 

with a rough surface. Using a capillary die of 2 mm, the higher foaming 

agent quantity the higher diameter (Table IV.1), as expected, due to the 

foamed strand swelling out of the extruder. Reducing the capillary die, was 

possible to obtain thinner fibers, but was necessary to modify processing 

parameters (§ II.2). Thus, the parameters that governed fibers optimization 

were fibers diameter and surface roughness, both investigated by SEM 

investigations. 

As expected, elastic modulus of PP fibers (i.e. non-foamed fibers) is the 

highest one. It should be noticed that PP fibers used in comparison with 

foamed fibers are a further optimization (the aim was to have a lower 

diameter) of PP fibers used for chemical treatments. The addition of a low 

amount of foaming agent reduced fibers elastic modulus but increased 
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tensile strength and break at failure. The main reason is that PP fibers draw 

ratio (i.e. the ratio between take-up speed and extrusion speed) is higher than 

PP+0.5FA, resulting in more oriented fibers with higher elastic modulus but 

lower ductility (Table IV.1). To achieve a rougher surface, the foaming 

agent content was increased and, contextually, screw speed and take-up 

speed were decreased. Increasing the foaming agent loading, a higher 

quantity of gas was produced, due to its decomposition, resulting in higher 

diameters (Table IV.1). To overcome this drawback, it was decided to 

change the capillary die with a smaller one (from 2 mm to 0.5 mm). In this 

way, it was possible to obtain foamed fibers having a lower radius, but, at 

the same time, it was necessary to increase foaming agent content up to 

5wt.%. Once that processing parameters were fixed for the virgin material, 

the foam extrusion process was performed also on the end-of-waste material. 

In this case, due to the material heterogeneity, a lower amount of foaming 

agent was necessary to obtain an adequate surface roughness. 

Table IV.1 Fibers physical and mechanical properties 

Fiber 
r  

(mm) 

P 

(%) 


(g/cm
3
) 

E  

(MPa)
b 

(MPa) 

b  

(%) 

PP 0.13 - 0.910 1007 26 813 

PP+0.5FA 0.39 10 0.776 730 32 1139 

PP+1FA 0.81 38 0.568 314 13 232 

PP+2FA 0.84 16 0.709 327 19 816 

PP+5FA 0.39 16 0.791 466 14 351 

Recycled 0.22 - 0.883 250 11 283 

Recycled+2FA 0.53 9 0.869 289 10 14 

 

Concerning surface texture, non-foamed and foamed fibers with the 

lowest foaming agent content (PP and PP+0.5FA fiber, respectively) present 

a smooth surface (Figure IV.1). Increasing the foaming agent content, a 

greater amount of yielded gas tends to migrate on fibers external surface, 

achieving a rougher surface (Figure IV.2). Finally, both virgin foamed fibers 

(PP+5FA), with the required radius, and end-of-waste foamed fibers 

(Recycled+2FA), with a slightly higher radius, show an optimal surface 

roughness (Figure IV.3).  

A more irregular surface is responsible of better fiber/matrix interactions, 

offering interlocking position for the cement paste. Moreover, fibers porosity 

and mechanical properties are strictly dependent on the different cell 

morphology, as discussed in the following. 
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Figure IV.1 Surface of virgin fibers and foamed virgin fibers with 0.5 wt.% 

of foaming agent 

 

      

Figure IV.2 Surface of virgin foamed fibers with 1 and 2 wt.% of foaming 

agent, respectively 

 

      

Figure IV.3 Surface of a) virgin and b) end-of-waste foamed (with 5 and 

2wt.% of foaming agent, respectively) fibers 

 

 

 

 

a) b) 

a) b) 

a) b) 
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Also fibers internal morphology is influenced by the foam extrusion 

process and foaming agent content. Fibers cross section was evaluated on 

cryogenically broken fibers by SEM images. Non-foamed fibers have a solid 

circular cross-section without any pores (Figure IV.4a). A low addition of 

foaming agent (0.5wt.%) leads to the formation of an internal porosity, with 

bigger pores in the fibers core (Figure IV.4b). Such pores distribution is due 

to the temperature profile of the extruded filament: the temperature in the 

fibers core is higher than the strands surface one. Higher temperatures, in the 

inner part of the extruded filament, allow bubbles growth in the polymer 

melt while in more external fibers zones (i.e. at lower temperature) bubbles 

achieve the stabilization phase more rapidly. PP+1FA and PP+2FA fibers 

contain more voids, as clearly visible in Figure IV.5a and Figure IV.5b, 

respectively. Moreover, PP+1FA fibers show bigger cells than PP+2FA 

fibers that have more voids but with a smaller average area.  

 

      

Figure IV.4 Cross section of virgin fibers and foamed virgin fibers with 0.5 

wt.% of foaming agent 

 

      

Figure IV.5 Cross section of virgin foamed fibers with 1 and 2 wt.% of 

foaming agent, respectively 

 

 

a) b) 

a) b) 

 0                    500 m  0                    500 m 

 0                    500 m  0                                         500 m 
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Increasing the foaming agent content and changing the capillary die, 

internal porosity changed again (Figure IV.6a). Large pores are present in 

the PP+5FA fibers cross section and a very high surface porosity is also 

recognizable. End-of-waste foamed fibers (Figure IV.6b) present smaller 

pores and a more regular rough surface. 

 

      

Figure IV.6 Cross section of a) virgin and b) end-of-waste foamed (with 5 

and 2wt.% of foaming agent, respectively) fibers 

 

IV.1.2 Fibers profile roughness 

A further analysis of fibers profile was carried out using images taken 

with a digital camera (Figure IV.7). A roughness coefficient could be 

defined in terms of profile linear roughness ratio, RI, that is the ratio between 

the length of the profile line, L, and the projected length of the profile line, 

L0: 

𝑅𝐼 =  
𝐿

𝐿0
                                        (IV.1) 

 

  

   

Figure IV.7 Profile roughness of a) PP, b) PP+1FA, c) PP+2FA and           

d) Recycled+2FA fibers, respectively 

 

a) b) 

 0                                         500 m  0                            500 m 

a) b) 

c) d) 
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As evident from the images (Figure IV.7), a relevant increase of surface 

roughness was achieved. In particular, the increase of RI, respect PP smooth 

fibers, was 1, 16, 15 and 7%, for PP+1FA, PP+2FA, PP+5FA and 

Recycled+2FA fibers, respectively. 

 

IV.1.3 Fibers density 

Fibers density and porosity are strictly correlated to what previously 

observed in terms of internal morphology (pores dimension, distribution and 

numbers). In general, fibers internal porosity leads to a density decrease 

(Table IV.1).  

In particular, for PP fibers, at increasing foaming agent content, a 

progressive porosity increase was observed, corresponding to a linear 

density decrease (Figure IV.8). A maximum of porosity is reached for 

PP+1FA fibers (38 %) while further increasing the foaming agent content a 

sharp decrease of porosity was obtained and, consequently, also fibers 

density increased again. Moreover, for fibers with the 5wt.% of foaming 

agent (i.e. PP+5FA), porosity and density are the same as PP+2FA fibers 

(Table IV.1). 

In the case of end-of-waste fibers, due to the relative low porosity (9 %), 

a very slight decrease of porosity was measured (1.6 %) respect non-foamed 

end-of-waste fibers. 

 

 

Figure IV.8 Fibers density (     ) and porosity (    ) for the investigated 

samples at different foaming agent content 
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IV.1.4 Fibers mechanical properties 

Fibers mechanical properties, in particular tensile properties, are greatly 

affected by internal and external morphology. As a matter of fact, the 

foaming process leads to a decrease of elastic modulus, tensile strength and 

ductility except for recycled fibers (Table IV.1). 

As stated before, PP+0.5FA fibers report a lower elastic modulus but an 

increase of ductility. Considering the different processing conditions and the 

different internal morphology, the increase of ductility can be explained not 

only by the different drawing but also by the ability of cells to deform 

themselves before rupture promoting the drawing of the cell walls. 

The influence of porosity and cells structure is evident for PP+1FA and 

PP+2FA fibers where in both cases a sharp reduction of elastic modulus was 

observed. PP+2FA fibers are more ductile thanks to a lower porosity and a 

different orientation of the voids. As clear in Figure IV.9a, PP+1FA fibers 

cells are oriented in the flow direction and during the tensile test cells walls 

are broken easier. On the contrary, PP+2FA fibers have a different 

longitudinal section: cells are not aligned in the flow direction and pores 

walls are thicker (Figure IV.9b).  

    

Figure IV.9 Longitudinal section of PP+1FA and PP+2FA fibers, 

respectively 

Non-foamed end-of-waste fibers have very low mechanical properties 

compared to non-foamed fibers produced with virgin material. As previously 

discussed, recycled fibers are made of a polyolefin mix, in particular PP and 

PE. Since the incompatibility of these two polymers, in Figure IV.10 PP 

droplets in a continuous PE matrix are recognizable. These incompatibility 

represents the main reason for the unsatisfactory mechanical properties of 

these recycled mixed plastics.  

Comparing non-foamed and foamed recycled fibers, thanks to a better 

dispersion of PP phase into PE ones promoted by the foaming process, a 

slight increase of elastic modulus was observed. On the contrary, a 

dramatically decrease of ductility was achieved. SEM micrographs obtained 

on cryogenically fractured fibers show the widespread presence of micro-

a) b) 
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pores (Figure IV.10) with very thin walls. Such morphology combined to the 

incompatibility of the two polymers is responsible of fibers mechanical 

behavior. 

 

    

Figure IV.10 SEM micrographs showing Recycled fibers foamed structure 

and PP droplets into PE matrix (Coppola et al. 2016) 

 

IV.1.5 Fiber intrinsic efficiency ratio (FIER) 

Generally, for fibers with circular, square or rectangular geometry a 

paramount parameter is the aspect ratio, that is the ratio between fibers 

length and diameter (or equivalent diameter for non-circular fibers). 

However, for fibers with irregular section profile the definition of an 

equivalent diameter should be not suitable for expressing the improved 

fiber/matrix mechanical interactions. Thus, a parameter that contains the 

ratio of perimeter to cross sectional area could better explain the improved 

roughness of the fiber cross section. Antoine Naaman (Naaman, 2003) 

proposed a simple way to characterize the influence of the perimeter/area 

ratio by a variable defined as the Fiber Intrinsic Efficiency Ratio (FIER): 

 

FIER =  
𝜔𝐿

𝐴
                                          (IV.1) 

 

where  is the fiber cross section perimeter (m), L is the fiber length (m) and 

A is the cross section area (m
2
). 

Considering the eq. IV.1, it was possible to determine the FIER for the 

investigated foamed fibers (Table IV.2). Moreover, to measure the efficiency 

of each foamed fiber profile, the variation of FIER respect to a smooth 

circular fiber was determined. As example, in Figure IV.11 are reported a 

PP+2FA fiber cross section and a circular fiber with the same cross section 

area. It is worth to mention that a higher surface roughness (i.e. a bigger 

perimeter) assures a higher interfacial area, that means an improved 

fiber/matrix adhesion 
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Figure IV.11 a) PP+2FA fiber and b) circular fiber having the same cross 

section area 

The highest increase of the FIER parameter was measured for PP+2FA 

fibers (+ 58 % compared to a circular fiber with the same cross section area), 

but the diameter of these fibers was still too high. Varying processing 

parameters, capillary die and foaming agent content PP+5FA fibers were 

produced and these fibers have a FIER parameter +14 % higher than circular 

smooth fibers (Table IV.2). Comparing PP+5FA and Recycled+2FA fibers, 

the latter have a more irregular surface while the former present a regular 

order in the surface roughness. The reason of the different diameter and 

surface texture, lies in the processing parameters. In order to have an 

adequate surface roughness, take-up speed was slightly lower in the case of 

recycled fibers (Table II.2). As consequence of the different take-up speed, 

Recycled+2FA fibers diameter was higher and more gases move toward 

fibers surface, resulting in a more irregular texture.  

Clearly, FIER and FIERcf are the same for circular fibers, thus FIER is 

equal to zero. 

Table IV.2 Fiber Intrinsic Efficiency Ratio (FIER) and relative FIER 

variation of the investigated fibers 

Fiber FIER FIERcf* FIER (%)° 

PP+1FA 0.0032 0.0029 10 

PP+2FA 0.0046 0.0029 58 

PP+5FA 0.0065 0.0057 14 

Recycled+2FA 0.0043 0.0034 26 

* FIERcf is the FIER of a circular fiber with a cross section area equal to the 

foamed fiber area; 

° FIER is the increase of foamed fibers FIER respect to the FIERcf. 

 

a) b) 
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IV.2 Fiber reinforced mortar characterization 

Once that the optimization of fibers surface texture and diameters was 

done, foamed and non-foamed fibers were used into a cementitious mortar. 

Rheological, mechanical and durability properties of the fiber reinforced 

mortar were investigated in order to study the influence of fibers addition. 

Moreover, due to the different surface roughness, both the interfacial 

transition zone (ITZ) and pull-out resistance were studied. 

 

IV.2.1 Rheological properties 

The rheological behavior of cementitious materials is particular decisive 

in terms of their workability, which is usually characterized by means of 

performing slump and/or spread tests. These tests, however, only address a 

limited regime of shear rates, i.e. very low ones. Few investigations have 

focused at higher shear rates. Such rates can be attained in rheometers and 

may allow for characterizing the impact of admixtures, fine particles or 

fibers, by means of measuring the torque upon mixing. Fibers parameters 

(i.e. volume fraction, diameter, length, stiffness etc.) greatly affect 

cementitious materials workability. To this extent, flow table tests and 

rheological tests using a rheometer were performed. 

 

IV.2.1.1 Flow table test 

Considering the spreading of the mortar on the table, consistency of fiber 

reinforced and reference samples was measured (according to the procedure 

described previously, § II.7.1.2). All the mixtures were prepared with a w/c 

ratio of 0.5 and a sand/binder ratio of 3, according to EN 196-1. The 

investigated samples nomenclature, fiber length and content are reported in 

Table IV.3. Rheological properties of mortars containing only PP and 

PP+5FA fibers were studied after that some preliminary results led to effects 

very similar to their corresponding end-of-waste fibers (Recycled and 

Recycled+2FA, respectively). 

In general, fibers addition leads to an overall workability decrease, more 

pronounced for non-foamed fibers (Figure IV.14). In order to better 

understand fibers influence, some pictures of the flow table test are reported 

for comparison (Figures IV.12-13). The reference mortar (i.e. without fibers) 

is reported in Figure IV.12a. 
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Figure IV.12 Spreading on the table of the (a) reference, (b) FPP-FRMC30 

and (c) PP-FRMC30 samples, respectively 

 

       

Figure IV.13 Spreading on the table of the (a) PP-FRMB30, (b) FPP-

FRMC15 and (c) PP-FRMC15 samples, respectively 

As expected, at increasing fibers volume fraction, a decrease of 

consistency was obtained (Figure IV.14). Mortars reinforced with foamed 

fibers reported always a higher consistency, compared to mortars reinforced 

with non-foamed fibers, at fixed volume fraction. Foamed fibers lower 

density and higher diameter result in a lower amount of fibers, at fixed 

volume fraction, respect non-foamed fibers (Figure IV.21) producing a more 

workable mortar. 

Moreover, longer fibers influence differently mortar consistency:             

PP-FRMC15 mortar has a slight higher consistency respect to PP-FRMC30; 

on the contrary, FPP-FRMC15 mortar has a lower consistency than           

FPP-FRMC30. PP fibers are more flexible than FPP ones and easily weave 

together to form fibers bundles; such drawback is more pronounced for 

longer fibers. 

a) b) c) 

a) b) c) 
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Figure IV.14 Consistency of the reference and fiber reinforced investigated 

samples 

IV.2.1.2 Rheometer (RheoCAD) 

For this test, only preliminary results are reported because other tests are 

in course, in order to ensure reproducibility. Flow curves were obtained 

according the procedure described in § II.7.1.3. An example of flow curve is 

reported in Figure IV.15. 

 

 

Figure IV.15 Flow curve (torque vs. rotational speed) of Reference mortar 

and mortars reinforced with 1% of PP and FPP fibers 15 mm length  
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As evident, data are well interpolated by the simple model of Bingham. 

Moreover, according to eq. II.12, the slope of the flow curve is proportional 

to plastic viscosity and the constant term is proportional to yield stress. As 

expected, plastic viscosity of the reference mortar is lower than plastic 

viscosity of the fiber reinforced samples. The torque is proportional to the 

shear stress and the necessary torque to activate the rotation is proportional 

to the yield stress. In the case of PP-FRMB15 a lower yield stress was 

measured compared to the reference mortar and FPP-FRMB15. Due to the 

high amount of fibers in FPP-FRMB15 thus a relevant 

fiber/aggregates/matrix interaction, a lower torque was necessary to activate 

the movement of the mortar in the rheometer  

The influence of fibers on the thixotropic behavior was assessed 

measuring the torque at a fixed rpm. As evident in Figure IV.16, torque 

reduction for the Reference mortar (i.e. without fibers) is more pronounced 

than the torque of PP-FRMB15 fiber reinforced mortar. 

 

 

Figure IV.16 Torque variation at constant rpm 

Further analysis are ongoing in order to study the influence of fibers 

length and volume fraction. 
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IV.2.2 Mechanical properties 

To determine flexural strength, 25 mixtures were prepared and tested (1 

as reference, i.e. without fibers, and 24 fiber reinforced), according the 

procedure described in § II.7.2.1. Nomenclature of the tested samples is 

reported in Table IV.3. 

Table IV.3 Investigated compositions: nomenclature, fibers length and 

volume fractions 

Name Fiber 
Fiber length 

(mm) 

Fiber volume fraction 

(%)° 

Reference - - - 

PP-FRMA15 PP 15 0.50 

PP-FRMB15 PP 15 1.00 

PP-FRMC15 PP 15 2.00 

PP-FRMA30 PP 30 0.50 

PP-FRMB30 PP 30 1.00 

PP-FRMC30 PP 30 2.00 

FPP-FRMA15 PP+5FA 15 0.50 

FPP-FRMB15 PP+5FA 15 1.00 

FPP-FRMC15 PP+5FA 15 2.00 

FPP-FRMA30 PP+5FA 30 0.50 

FPP-FRMB30 PP+5FA 30 1.00 

FPP-FRMC30 PP+5FA 30 2.00 

R-FRMA15 R 15 0.50 

R-FRMB15 R 15 1.00 

R-FRMC15 R 15 2.00 

R-FRMA30 R 30 0.50 

R-FRMB30 R 30 1.00 

R-FRMC30 R 30 2.00 

FR-FRMA15 R+2FA 15 0.50 

FR-FRMB15 R+2FA 15 1.00 

FR-FRMC15 R+2FA 15 2.00 

FR-FRMA30 R+2FA 30 0.50 

FR-FRMB30 R+2FA 30 1.00 

FR-FRMC30 R+2FA 30 2.00 
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IV.2.2.1 Flexural strength 

Taking into account the non-structural use of the investigated fibers, 

flexural strength was investigated to highlight if fibers addition and the 

different fibers morphology can affect mechanical properties. 

In general, flexural strength is not influenced by fibers addition and the 

average value is 6.76 ± 0.32 MPa. As example, flexural strength of            

PP-FRXY (X is fibers volume fraction and Y fibers length) samples are 

reported in Figure IV.17. Considering the relative low elastic modulus of the 

investigated synthetic fibers (both foamed and non-foamed) no increase of 

flexural strength was expected. 

 

 

Figure IV.17 Flexural strength of mortars reinforced with PP fibers 

On the contrary, post-cracking behavior was greatly influenced by fibers 

addition as the presence of a post-cracking branch was clearly recognizable. 

In Figure IV.18 the load/deflection curves of fiber reinforced mortar 

samples, at fixed fibers volume fraction (i.e. 2 %), are reported as example. 

Residual strength of mortars reinforced with PP fibers is higher than that of 

mortars containing Recycled fibers because former fibers have higher elastic 

modulus and tensile strength than the latter. In Figure IV.18 is also clear that 

longer fibers give rise to higher residual strength than shorter ones, for 

mortars reinforced with PP fibers. Fibers mechanical properties affect 

samples residual strength because after cracking fibers tensile properties are 

involved in the load transmission. Moreover, fiber/matrix adhesion is of 

widespread importance in the fibers bridging across cracks. 
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Figure IV.18 Example of load/deflection curve at fixed volume fraction   

(2.0 %) varying fibers length (15 and 30 mm, respectively) 

In order to investigate the influence of fibers length, material, volume 

fraction and morphology on post-cracking behavior, residual strengths of the 

studied samples are compared in Figures IV.19-20. 

Cementitious materials have a low tensile strength resulting in a brittle 

failure. As consequence, the reference mortar reports no residual strength 

after cracking. On the contrary, at increasing fibers volume fraction, an 

increase of residual strength was obtained. As expected, mortars containing 

2% of fibers have the higher residual strength. In general, PP fibers (both 

foamed and non-foamed) give rise to higher residual strength, due to the 

higher mechanical properties of fibers. Moreover, mortars reinforced with 

foamed fibers have always better performances except for PP-FRMC30 

where the high amount of non-foamed fibers prevail on the improved 

adhesion. Thus, despite the lower amount of fibers in the cross section and 

fibers mechanical properties, the improved fiber/matrix interaction allowed 

better load transfers. In the case of FPP-FRMA30 probably the very low 

quantity of fibers was not able to give a residual strength. Furthermore, is 

clear that longer fibers are more efficient than shorter ones. 
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Figure IV.19 Ratio between residual strength and maximum load of mortar 

samples reinforced with foamed and non-foamed PP fibers 

Regarding the use of end-of-waste foamed fibers, due to their very low 

mechanical properties, mortars reinforced with such fibers present 

approximatively the same residual strength, independently from fibers length 

and volume fraction. In particular, the main drawback is fibers very low 

elongation at break. 

 

 

Figure IV.20 Ratio between residual strength and maximum load of mortar 

samples reinforced with foamed and non-foamed Recycled fibers 
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As stated previously, concerning fiber reinforced mortar workability, due 

to the different density and diameter of the investigated fibers, at fixed fiber 

volume fraction the amount of fibers to be used is dramatically different 

using foamed and non-foamed fibers. In Figure IV.21 are reported, as 

examples, the fibers used to produce PP-FMC15 (Figure IV.21a) and       

FPP-FRMC15 (Figure IV.21b), respectively. As clear, at fixed fibers length 

and volume fraction, the quantity of fibers to be used is considerably 

different. The significant lower amount of foamed fibers gives rise to more 

workable mortars and improved post-cracking behavior, as showed for      

FPP-FRMs. PP+5FA fibers diameter is 3 times higher than PP fibers one, as 

reported in Table IV.1.  

 

    

Figure IV.21 Fibers amount for the production of a) PP-FRMC15 and        

b) FPP-FRMC15 

To further confirm what previously stated, after flexural tests, polished 

cross sections were observed by an optical microscope to investigate fibers 

dispersion and quantity in mortar samples. As expected, the ratio between 

fibers area and specimen cross section is approximatively corresponding to 

the fibers volume fraction. At fixed volume fraction and fibers length (2% 

and 15 mm, respectively), a quantity of fibers lower than 85 % is observed 

for mortars containing foamed fibers (Figure IV.22). Such important 

difference contributed for the obtainment of a better workability while on 

post-cracking behavior were determinant fibers mechanical properties. 

a) b) 
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Figure IV.22 Fibers quantity in a) FR-FRMC15 and b) PP-FRMC15 

polished cross sections after flexural test  

IV.2.2.2 Compressive strength 

Also for compressive strength, as for the flexural one, any meaningful 

influence of fibers (both foamed and non-foamed) was observed on it and 

the average value is 70.12 ± 4.47 MPa. 

A slight decrease (8-10 %) was observed only for mortars containing high 

fibers volume fraction (2 %) and longer fibers (30 mm). These results are 

mainly explained considering the reduced workability, resulting in a worse 

compaction and thus an increased porosity, as reported in the following.  

On the contrary, the fibers presence is very important for the compression 

failure mode (Figure IV.23). For the reference mortar, the typical hourglass 

shaped rupture was observed (Figure IV.23a) while the reinforced sample 

showed a multiple-cracking without specimen disintegration                  

(Figure IV.23b). 

 

    

Figure IV.23 Compression failure of mortar specimen: a) reference sample, 

hourglass shaped failure; b) fiber reinforced sample, multi-cracking failure 

a) b) 

a) b) 
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IV.2.3 Fiber/matrix interactions 

IV.2.3.1 Single fiber pull-out 

Single fiber pull-out tests were carried out on PP, PP+1FA and PP+2FA 

fibers, respectively. Two fiber embedment lengths were investigated (10 and 

20 mm, respectively). Pull-out tests of PP fibers were already discussed 

previously (§ III.2.2.1). The complete debonding of PP fibers was observed 

due to the poor adhesion, as they present a smooth surface. Concerning 

foamed fibers, pull-out tests were performed on PP+1FA and PP+2FA 

fibers, in order to study the influence of the different morphology and 

mechanical properties on the pull-out resistance. In both cases, it was not 

observed fibers debonding. As clear in Figure IV.24, two different behavior 

were recognizable: a tensile failure was observed for PP+1FA fibers (Figure 

IV.24a) while stretching occurred for PP+2FA fibers (Figure IV.24b). The 

different failure mode is mainly due to the different strain at failure of the 

investigated fibers (Table IV.1). PP+2FA fibers have not only a slight higher 

elastic modulus and tensile strength compared to PP+1FA fibers, but also a 

significantly higher strain at failure (816 % respect 232 % of PP+1FA 

fibers).  

Pull-out curves are useful to obtain information about the maximum pull-

out load and the interfacial toughness. The pull-out curves of the 

investigated fibers are reported in Figure IV.25. 

 

    

Figure IV.24 Pullout of a) PP+1FA fiber and b) PP+2FA from a mortar 

sample 

 

 

a) b) 
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The improved behavior of foamed fibers can be recognized comparing 

pullout curves. For smooth fibers slipping occurs after the peak load that is, 

for PP fibers, significantly lower compared to the maximum pull-out load of 

foamed fibers. On the other hand, foamed fibers, whose surface roughness 

offers interlocking positions, show higher adhesion to the cement paste. 

Thus, after the peak load, fibers start to be stretched. These phenomena have 

a key role for the behavior of the composite because determine the 

achievement of the maximum contribute of fibers. Moreover, the improved 

adhesion will results in a better fiber bridging during crack opening. As 

evident from Figure IV.25, maximum pullout load for foamed fibers 

increases considerably, particularly for PP+2FA fibers.  

Considering the post-peak branch, is evident for PP fibers a strain 

hardening behavior mainly due to fiber abrasion and the presence of debris, 

that increase friction during pull-out. In the case of foamed fibers, after the 

peak load a plateau is recognizable, corresponding to the fiber stretching. 

The interfacial toughness, that is the energy absorbed during pullout, is 

represented by the area under the pullout curve. Considering the area up to    

3 mm (before that fibers start to be stretched) it is clear the remarkable 

increase of interfacial toughness. 

 

  

Figure IV.25 Pull-out curves, embedment length of a) 10 mm and b) 20 mm, 

respectively 

IV.2.3.2 Fiber/matrix ITZ investigations 

The different surface textures result into different fiber/matrix 

interactions. First of all, PP fibers are completely separated from the cement 

paste (Figure IV.26a). Moreover, the low interaction implies also an increase 

of interface porosity (Figure IV.26b). Fibers surface does not show the 

presence of hydration products. ITZ is mainly constituted by needles of 

ettringite and pores. The thickness ranges between 120 and 205 m. 
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Figure IV.26 Interfacial transition zone between a PP fiber and mortar 

In the case of foamed fibers the different interface arrangement is clearly 

shown in Figure IV.27. The irregular surface offers interlocking positions for 

the cement paste, resulting in a better adhesion. Moreover, also mechanical 

bond is improved, as demonstrated by pull-out tests. 

 

    

Figure IV.27 Interfacial transition zone between PP+2% HCF fiber and 

mortar 
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IV.2.4 Durability of fiber reinforced mortars 

IV.2.4.1 Water absorption 

Cementitious materials are characterized by a wide range of pores, of 

different dimensions, and water can penetrates through the material pores in 

several ways. Building materials usually contain an amount of physically 

bound water without affecting their durability. But if the material’s moisture 

content is above a certain percentage, the deterioration effect of moisture is 

activated causing numerous issues. Thus, the knowledge of the water 

movement within cementitious materials is of great importance to determine 

the degradation ability of a material. 

Tests were performed on reference and fiber reinforced samples 

according the nomenclature reported in Table IV.3. In particular, mortar 

samples containing 0.5 and 1 % volume fraction of non-foamed fibers and 1 

and 2% volume fraction of foamed fibers were investigated. In order to 

investigate not only the influence of the different morphology, but also the 

different material both PP and Recycled fibers were used. 

 

IV.2.4.1.1 Capillary water absorption 

 

According to the standard EN 13057, water absorbed per surface unit 

versus the square root of the testing time was reported in graph. One of the 

curves is reported in Figure IV.28 as example. As evident, the behavior is 

clearly non-linear. 

 

 

Figure IV.28 Water absorbed for surface unit versus time (square root of 

testing time) 
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Due to the non-linearity, the water capillary absorption coefficient was 

calculated at 24 h and the results are reported in Figure IV.29. As evident, 

fibers addition greatly influenced water absorption. In particular, considering 

non-foamed fibers, the presence of shorter fibers increases capillary water 

absorption coefficient respect the reference mortar while mortars reinforced 

with longer non-foamed fibers have approximatively the same value, of this 

parameter, compared to the reference sample. The great influence of fibers 

length could be explained in terms of fibers quantity. At fixed fibers volume 

fraction, mortars reinforced with 15 mm fibers contain the double amount of 

fibers compared to mortars containing 30 mm length fibers, as previously 

stated (§ IV.2.2.1). At fixed non-foamed fibers length, at increasing volume 

fraction a slight increase of water absorption was measured. Considering 

mortars containing foamed fibers, an opposite trend is recognizable: at 

increasing fibers length, an increase of capillary water absorbed water was 

observed. A more evident influence exists, concerning capillary water 

absorption, at increasing fibers volume fraction. As evident also from fiber 

reinforced mortars consistency (Figure IV.14), at increasing foamed fibers 

content, a sharper decrease of consistency was achieved, compared to 

mortars containing non-foamed fibers. Consistency influences mortar 

compaction and thus porosity, as will be later discussed. Moreover, mortars 

containing foamed recycled fibers have always lower water absorption 

coefficient than the reference sample thanks to a slight bigger diameter.  

 

 

Figure IV.29 Absorption coefficient of the investigated fiber reinforced 

mortars after 24 h 
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The better behavior of foamed fibers is mainly due to the higher 

workability (thus the obtainment of a better compaction) of mortars 

reinforced with foamed fibers, that leads to a lower number of capillary 

pores. Moreover, the good adhesion between foamed fibers and cement paste 

avoids the formation of a porous ITZ, as discussed previously (Figures 

IV.27-28).  

Concerning the capillary rise, in Figure IV.30 is shown a picture of some 

specimens during the test and capillary rise values are reported in Figure 

IV.31. According to what previously stated for the water absorption 

coefficient, two different behavior are recognizable for mortars containing 

foamed and non-foamed fibers, respectively. In particular, for mortars 

reinforced with non-foamed fibers, at increasing fibers length a decrease of 

capillary rise was observed. Moreover, samples containing Recycled fibers 

have a lower capillary rise than mortars containing PP fibers. PP and 

Recycled fibers have a different diameter (Table IV.1) that influences the 

amount of fibers but also the pores network in the specimen. On the 

contrary, for foamed fibers reinforced samples, at increasing fibers length an 

increase of capillary rise was recognizable. As evident both from Figure 

IV.29 and Figure IV.31, capillary rise of mortars containing fibers with a 

bigger diameter is lower. 

 

 

Figure IV.30 Example of water capillary raise in mortar specimens 
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Figure IV.31 Capillary rise of the investigated fiber reinforced mortar 

samples after 24 h of testing 

It is possible to conclude that in general, at increasing fibers volume 

fraction an increase of capillary water absorption coefficient was observed, 

more pronounced for non-foamed fibers. Furthermore, 15 mm length fibers 

are preferable in the case of foamed fibers while mortar samples containing 

non-foamed fibers 30 mm length have a lower water uptake than samples 

with 15 mm length non-foamed fibers. 

 

IV.2.4.1.2 Total immersion absorption 

 

Water absorption and porosity of the investigated samples are reported in 

Figure IV.32 and Figure IV.33, respectively. An overall decrease of water 

absorption and, consequently, of porosity were observed for all the fiber 

reinforced samples compared to the reference sample. The only exception is 

represented by mortars containing foamed recycled fibers 30 mm length (i.e. 

FR-FRMB30 and FR-FRMC30) whose water absorption and porosity were 

approximatively equal to the reference values.  

Water absorption of mortars containing non-foamed fibers decreases at 

increasing fibers length, similarly to what previously observed in the case of 

capillary water absorption. Moreover, at fixed non-foamed fibers length and 

increasing fibers volume fraction, the water absorption is constant for 

mortars reinforced with PP fibers while decreases for R-FRMs. 

Mortars containing foamed fibers have higher water absorption values 

compared to mortars reinforced with non-foamed fibers, but anyway lower 

than the reference sample (except the cases mentioned before). It is worth to 

mention that in this case (i.e. total immersion in water), is the total porosity 
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that plays an important role in the water absorption. As already stated          

(§ IV.2.1.1) non-foamed fibers are more flexible than foamed ones, thus the 

compaction of these mortars could be worse, despite the better fiber/matrix 

adhesion and the higher consistency of mortars containing foamed fibers. 

 

 

Figure IV.32 Water absorption of the investigated mortars 

The porosity measured after total water immersion test is the porosity 

open to water, that is the porosity that allows water to penetrate (in our case 

under atmospheric pressure) (Figure IV.33).  

 

 

Figure IV.33 Porosity of the investigated mortars 
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There are no significant changes among the investigated samples, except 

for R-FRMs that show a lower porosity (independently from fibers length 

and volume fractions). Moreover, among the fiber reinforced samples, the 

mortars containing longer fibers (30 mm) at high volume fraction (2 %) have 

the highest porosity, coherently with the slight reduction of compressive 

strength observed for such samples. 

 

IV.2.4.2 Sulfate attack 

In this test, the mass variation of mortar specimens during sulfate attack 

cycles was evaluated. In particular, a negative variation was measured for 

mortars containing non-foamed fibers, meaning a loss of mass due to the 

formation of expansive products (i.e. ettringite). At increasing fibers length 

and volume fraction a mass decrease was obtained. On the contrary, an 

increase of mass was registered for samples containing foamed fibers. The 

different behavior can be explained considering the different fiber/matrix 

interactions. The interlocking positions onto foamed fibers avoid mortar loss 

despite the ongoing degradation. Thus, even if mortars reinforced with 

foamed fibers are more porous than the other fiber reinforced samples (as 

discussed in the previous paragraph), such fibers are more able to keep 

together mortars parts under expansion and degradation, due to sulfate 

attack. A further confirmation of this hypothesis derives from the reference 

mortar (i.e. without fibers) that has the highest mass loss. 

Also a visual analysis was carried out on the investigated samples, in 

order to estimate the superficial degradation of the specimens. As example, 

the degradation analysis of mortars containing PP and FPP fibers are 

reported in Figure IV.34 and Figure IV.35, respectively. The initial shape 

and geometry of the sample are better preserved in the case of mortars 

containing foamed fibers. 
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Cycles              0                            5                           10                                  x 

 

Figure IV.34 Comparison of the superficial degradation of PP fiber 

reinforced mortars at different cycles 
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Cycles              0                            5                           10                                  x 

 

Figure IV.35 Comparison of the superficial degradation of FPP fiber 

reinforced mortars at different cycles 
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IV.2.4.3 Shrinkage cracking test 

Shrinkage cracking tests were performed on the reference mortar and 

mortars reinforced with recycled fibers both foamed and non-foamed.  

Figure IV.36 shows the average rate of evaporation for all the performed 

tests. Several authors refer as a critical limit a rate of evaporation equal to1 

kg/m
2
/h. In our study, this value was reached after 3 hours but all the 

samples reported cracks after the second hour of test. After the third hour, as 

the critical limit is exceeded and thus shrinkage induced stresses increase, a 

consequent sharp increase of cracks width was noticed. 

 

 

Figure IV.36 Average rate of evaporation of water from mortar slabs 

(Coppola et al. 2016b) 

Figures IV.38-42 show the crack pattern at the end of the test (8 hours) 

for the investigated samples. In particular, Figure IV.37 shows the reference 

sample at the end of the test and the relative crack pattern, as example of the 

implemented procedure. 
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Figure IV.37 Reference panel at the end of the test (8 hours) (Coppola 

et al. 2016b) 

Fibers addition has several advantages in controlling cracks opening. 

First of all, a reduction of the number of cracks on the slab surface was 

achieved. In particular, the higher the fiber volume fraction the lower is the 

number of cracks. In addition, longer fibers lead to a lower number of 

cracks. Moreover, using longer fibers, the diagonal cracks that connect the 

inner square (formed by cracks) to the outer one disappeared. Finally, also 

cracks width is influenced both by fiber length and volume fraction. Fibers 

volume fraction influences also cracks length and width. At increasing 

volume fraction, a reduction of cracks length is obtained. The presence of an 

higher fibers quantity hinders cracks propagation, resulting in micro-cracks 

openings.  

 

 

Figure IV.38 a) FR-FRMA15 and b) R-FRMA15 at the end of the test 

(8 hours) (Coppola et al. 2016b) 

 

a) b) 
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Figure IV.39 a) FR-FRMB15 and b) R-FRMB15 at the end of the test 

(8 hours) (Coppola et al. 2016b) 

 

 

Figure IV.40 a) FR-FRMA30 and b) R-FRMA30 at the end of the test 

(8 hours) (Coppola et al. 2016b) 

 

 

Figure IV.41 a) FR-FRMB30 and b) R-FRMB30 at the end of the test 

(8 hours) (Coppola et al. 2016b) 

 

 

a) b) 

a) b) 

a) b) 



Chapter IV 

114 

As expected, all the mortars containing fibers show a lower cracks width 

compared to the reference sample. Comparing foamed fibers to smooth 

fibers is possible to highlight several important results. In general, fibers 

addition delays cracks opening and their growth. Figure IV.42 and Figure 

IV.43 show the relationship between different fiber volume fractions and 

related cracks width. In particular, shorter fibers (Figure IV.42) are less 

efficient than longer ones (Figure IV.43). Moreover, due to the better 

fiber/matrix adhesion, foamed fibers lead to a lower crack width for the 

investigated volume fractions. Foamed fibers (15 mm length) were able to 

reduce cracks width by 28 and 33%, for 0.5 and 1.0% volume fraction, 

respectively. On the contrary, cracks width reduction for smooth fibers was 

20 and 26%. Longer foamed fibers (30 mm) reduced cracks width of 33 and 

38% whilst smooth fibers of 25 and 32%. 

 

 

Figure IV.42 Relationship between fiber volume fraction (lf = 15mm) 

and crack width after 8h (Coppola et al. 2016b) 
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Figure IV.43 Relationship between fiber volume fraction (lf = 30mm) 

and crack width after 8h (Coppola et al. 2016b) 

For the investigated parameters (fibers length and volume fraction), 

foamed fibers show a higher efficiency (Figure IV.44). With reference to the 

combined effects of fiber length and volume fraction, it can be observed that 

both for foamed and smooth fibers, cracks width reduction is the same when 

15 mm length fibers at 1.0% and 30 mm length fibers at 0.5% are added. 

Coherently with all the results, the best performance was exhibits by FR-

FRMB30, i.e. the mortar sample containing 30 mm foamed fibers at 1.0% 

volume fraction.  

 

 

Figure IV.44 Relationship between fiber parameters (length and 

volume fractions) and crack width (Coppola et al. 2016b) 
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IV.3 Conclusions 

The use of fibers both in concrete and mortar is a common and efficient 

practice to improve not only mechanical properties but also to reduce 

shrinkage cracking. One of the main drawback of synthetic fibers, in 

particular of polyolefin fibers, is the weak bond between these fibers and the 

cementitious matrix. In the previous chapter the fibers chemical surface 

modification was presented as a possible solution. Another way to overcame 

the weak interactions between fibers and the cement paste is the 

improvement of mechanical friction. To this extent, a foam extrusion process 

was carried out to manufacture polymeric fibers having a rougher surface 

than the traditional smooth one. 

Moreover, due to the increasing environmental issues linked to plastic 

production and disposal, the possibility to produce fibers starting from an 

end-of-waste material was investigated.  

Experimental investigations demonstrated that foam cell dimensions and 

distribution can be controlled by foaming agent content and processing 

conditions. In particular, optimizing foaming agent quantity and processing 

parameters was possible to produce fibers having an adequate surface 

texture, suitable for mortar reinforcement. The foam extrusion produced 

fibers with increased surface roughness but a reduction of fibers mechanical 

properties was obtained. The optimal foamed fibers were produced using a 

capillary die of 0.5 mm; 5 wt.% and 2 wt.% of foaming agent for PP and 

Recycled fibers, respectively. The foaming process produced fibers with a 

reduced density, due to the internal porosity, resulting in a tensile properties 

decay. Only recycled fibers reported a slight higher elastic modulus tanks to 

a better dispersion of the constituent phases (i.e. PP, LDPE and HDPE). 

Concerning fiber reinforced mortars at the fresh state, fibers addition 

leads to an overall workability decrease, more pronounced for mortars 

containing non-foamed fibers. Moreover, as expected, at increasing fibers 

volume fraction, a decrease of consistency was obtained. Also the increase 

of fibers length influenced workability, increasing and decreasing 

consistency in the case of foamed and non-foamed fibers, respectively. 

Fiber reinforced mortars mechanical properties, flexural and compressive 

strength, were not influenced by fibers addition nor their morphology. A 

residual strength was observed both using foamed fibers and non-foamed 

fibers. In particular, at increasing volume fraction and fibers length an 

increase of residual load was measured. The effectiveness of foamed fibers 

rough surface is evident as PP foamed fibers reinforced samples have the 

same residual strength of PP non-foamed FRMs despite their lower 

mechanical properties and reduced number in the specimens cross-section. 

Regarding the use of recycled foamed fibers, a very low residual strength 

was measured, due to their low elongation at break. 

SEM images show the different interaction between smooth fibers, i.e. PP 
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fibers, and foamed fibers. The rougher surface gives rise to a better 

fiber/matrix adhesion as confirmed by pull-out tests which showed a 

considerable increase of maximum pull-out load and consequently interface 

toughness. Pull-out tests have shown that the use of fibers with a good 

mechanical bond with the cement paste, implies a significant improvement 

of total energy absorption due to the increased contact area. 

Capillary water absorption tests demonstrated the effectiveness of fibers 

in reducing capillary water absorption coefficient, in particular for mortars 

containing shorter foamed fibers. The same evidence was found for water 

absorption after total immersion in water under atmospheric pressure. 

Fibers length and volume fraction are key parameters in controlling 

plastic shrinkage cracking. To this extent, mortar slabs containing both 

smooth and foamed fibers were prepared using two fibers length (15 and 30 

mm, respectively) and two volume fractions (0.5 and 1.0%, respectively). 

Fibers addition is able to influence cracks number, length and width. In 

particular, increasing fibers volume fraction a decrease of cracks number and 

length was achieved whilst longer fibers are more efficient in reducing 

cracks width. Moreover, mortar samples containing foamed fibers reported a 

better control of shrinkage cracking: cracks opening was delayed and also 

crack pattern changed. In particular, the improved fiber/matrix bond was 

able to reduce crack width, compared to mortar slabs containing smooth 

fibers. 

The results of this study demonstrate the possibility to optimize fibers 

volume fraction in cementitious mortars using foamed fibers, that are 

engineered fibers with an improved fiber/matrix bond, by simply changing 

the manufacturing process. In addition, using end-of-waste materials a more 

sustainable product can be obtained. Benefits could be not only in the control 

of plastic shrinkage cracking but also in the workability of fresh mortars, 

mechanical strength and durability of the hardened composite.  
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Chapter V 

Foamed aggregates: 

characterization and use into a 

cementitious mortar 

 

 

 

 
V.1 Aggregates characterization 

Aggregates represent about the 70 % of the volume of cementitious 

composites (He et al., 2015; León and Ramírez, 2010) and is clear the great 

influence that also low volume fraction substitutions could have on the 

properties of the end product. Thus, a complete characterization of the 

artificial aggregates is necessary before their use into a cementitious mortar. 

Moreover, the possibility to use an end-of-waste material to produce 

plastic aggregates represent an important choice in the perspective of a 

sustainable development. 

After the optimization of foaming extrusion process to produce rough 

fibers (as discussed in the previous chapter), the same principle was used to 

produce foamed strands subsequently grinded to became aggregates. 

 

V.1.1 Morphological properties 

A satisfactory aggregate should be well graded with a good proportion 

between rounded and angular particles and a surface texture not too smooth. 

Natural weathering and abrasion processes confer to quartz sand a smooth 

surface and result in round particles as shown in Figure V.1. On the contrary, 

artificial aggregates present an elongated shape (Figure V.2), i.e. cylindrical 

shape, as a result of the manufacturing process: extrusion produces foamed 

strands (§ II.8) that later are grinded to became aggregates. Moreover, 

artificial aggregates present a surface porosity not present in the case of 

natural aggregates. Surface cavities and the rough texture resulting from the 

foam extrusion process, increase cement paste ability to adhere and penetrate 

inside superficial voids and cavities, as will be later discussed.  
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Figure V.1 SEM pictures of natural quartz sand grains (Coppola et al. 

2016) 

    

Figure V.2 Lightweight aggregates (LWAs) SEM pictures(Coppola et al. 

2016) 

As clear from Figures V.3, at fixed particle size, natural sand grains are 

irregular and inhomogeneous while artificial plastic aggregates are regular 

and homogenous (Figure V.4). The different morphology is important 

because rounder particles have a lower specific surface area; on the contrary, 

elongated particles, as in the case of foamed aggregates, have a greater 

specific surface area, that means a higher need of cement paste to have the 

same workability.  

 

   

Figure V.3 Natural sand: a) 1.40/2.00 and b) 0.50/1.00 

a) b) 

a) b) 

a) b) 
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Figure V.4 Artificial aggregates: a) 1.40/2.00 and b)  0.50/1.00 

 

V.1.2 Physical properties 

One of the main advantages in the use of plastic aggregates is their low 

density resulting in a lightweight composite material. As a consequence, the 

risk of aggregates segregation due to plastic particles buoyancy is very high. 

It is worth to mention that a reduction of aggregates weight reduces the 

overall dead weight of the structure, resulting in cost savings and reduced 

seismic loads.  

Particle and bulk density of LWAs were investigated and results are 

reported in Table V.1. At increasing particle size lower values of particle 

density were measured: fine aggregates are slightly heavier than coarse ones. 

The reason is that bigger particles are more porous than smaller ones, due to 

the ability of bubbles to growth and stabilize inside a thicker foamed strand. 

As reported by several authors (Albano et al., 2009; Kan et al., 2009; 

Marzouk et al., 2007; Madandoust et al., 2011), one of the main issue is 

LWAs dispersion due to the low density which causes aggregates floating if 

not well dispersed into the matrix. Bulk density shows the same behavior: 

fine particles have a higher bulk density than coarser ones. Artificial 

aggregates density is lower than natural quartz sand density of 65% 

approximately, considering an average particle density of 913 kg/m
3 

for 

LWAs. 

Table V.1 LWAs particle and bulk density (Coppola et al. 2016) 

Mesh size 

(mm) 

LWA 

Particle density 

(kg/m
3
) 

Bulk density 

(kg/m
3
) 

1.40/2.00 897 348 

1.00/1.40 914 361 

0.50/1.00 920 387 

0.18/0.50 922 402 

a) b) 
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V.2 Lightweight mortar characterization 

After natural and artificial aggregates characterization, lightweight and 

reference (i.e. without plastic aggregates) mortars were prepared. Natural 

quartz sand was substituted by volume. 

The nomenclature and composition of the investigated lightweight mortar 

samples are reported in Table V.2. Three different water to cement (w/c) 

ratios (0.30, 0.45 and 0.50, respectively) and four lightweight aggregates 

(LWAs) volume fractions (5, 10, 25 and 50 %, respectively) were 

investigated. Moreover, LWAs were used both in saturated and unsaturated 

conditions. Mixtures preparations and further details are discussed in § …. 

Depending on the property of interest, appropriate mixtures were 

investigated. 

Table V.2 Nomenclature and composition of lightweight mortar samples   

(IC = Internal Curing water; S = Saturated; Sp = SuperPlasticizer) 

Mortar w/c 
LWA  

(%) 
Saturated 

Sp 

(wt.% of cem) 

Reference/0.30 Sp 0.30 - - 4.5 

Reference/0.45 Sp 0.45 - - 0.5 

Reference/0.45 0.45 - - - 

Reference/0.50 0.50 - - - 

LWM5-IC/0.30 Sp 0.30 5 x 4.5 

LWM5-IC/0.45 Sp 0.45 5 x 0.5 

LWM10-IC/0.30 Sp 0.30 10 x 4.5 

LWM10-IC/0.45 Sp 0.45 10 x 0.5 

LWM10-S/0.45 0.45 10 x - 

LWM10-S/0.50 0.50 10 x - 

LWM10/0.50 0.50 10 - - 

LWM25-IC/0.30 Sp 0.30 25 x 4.5 

LWM25-IC/0.45 Sp 0.45 25 x 0.5 

LWM25-S/0.45 0.45 25 x - 

LWM25-S/0.50 0.50 25 x - 

LWM25/0.50 0.50 25 - - 

LWM50/0.50 0.50 50 - - 
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V.2.1 Rheological properties 

Flow table tests were performed for all the mixtures except for those 

containing superplasticizer because their consistency was fixed in order to 

have a mortar with a good workability. Pictures of the flow tests are reported 

in Figures V.5-7. Mortar workability is affected both by LWAs shape and 

porous surface. The porous structure of LWAs influences workability of 

fresh mortar due to the absorption of both mixing water and cement paste 

inside pores (Kan et al., 2009). On the contrary, as discussed before, natural 

quartz sand has a smooth surface and water absorption is close to zero. 

Moreover, also aggregates shape affects mortar rheology: rounder particles 

produce a more workable mortar while elongated particles, as LWAs, give 

rise to higher friction and reduce consistency. To partially overcome these 

drawbacks, LWAs could be soaked and saturated into part of mixing water 

before mixtures preparation. For both w/c ratios, at increasing LWAs content 

a reduction of workability was observed and it was proportional to LWAs 

substitution. Considering the already reduced workability of mortars 

prepared with saturated LWAs and a w/c of 0.45, mortars containing 

unsaturated LWAs and w/c of 0.45 were not prepared. On the contrary, 

saturating LWAs, in the case of w/c ratio of 0.50, was possible to decrease 

the loss in consistency of about 3% (Figure V.8).  

 

    

Figure V.5 a) Reference/0.45 and b) Reference/0.50 (Coppola et al. 2016) 

     

Figure V.6 a) LWM10-S/0.45 ; b) LWM10/0.50 and c) LWM10-S/0.50 

(Coppola et al. 2016) 

a) b) 

b) a) c) 
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Figure V.7 a) LWM25-S/0.45; b) LWM25/0.50 and c) LWM25-S/0.50 

(Coppola et al. 2016) 

 

Figure V.8 Fresh mortar consistency vs. w/c ratios (s = saturated and         

ns = non saturated) (Coppola et al. 2016) 

V.2.2 Physical properties 

V.2.2.1 Density of lightweight mortar 

Dry density values, d, of hardened mortar are reported in Table V.3. 

Natural aggregates replacement leads to a sharp decrease of density, in 

particularly for mortars with the highest w/c ratio and saturated aggregates. 

It is generally known that lower w/c ratios correspond to denser cementitious 

pastes resulting in heavier mortars. Considering the w/c ratio of 0.5, when 

LWAs are not saturated (i.e., LWM10/0.50 and LWM25/0.50), density 

decrease is lower due to the porous structure of aggregates which absorb 

water reducing the free water respect the mixtures in which aggregates are 

saturated. On the contrary, when LWAs are saturated, part of the water 
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contained into pores is given back to the mixture increasing porosity and 

weakening the interfacial transition zone (ITZ). These assumptions are 

confirmed by the lower compressive strength and higher porosity (Table 

V.3) of mortars with saturated aggregates. In all the investigated mortar 

samples, at increasing sand replacement a linearly decrease of dry density 

was observed (Figures V.9-10) and mixtures with non-saturated aggregates 

have an effective w/c of 0.46, considering as 8 % aggregates porosity. As 

results of the lower effective w/c ratio and higher density, an improvement 

of mechanical properties was achieved (§ V.2.3). Considering the mixtures 

containing additional water for the internal curing (§ V.3) a slight decrease 

of density and increase of porosity were measured, indicating that water is 

actually released increasing the porosity, but this water, at the same, 

promotes a further hydration of the cement since the compressive strength of 

these mortars is slightly higher (Table V.3).  

As expected, the lowest values of porosity were measured for mortars 

prepared with w/c = 0.30. As a consequence, at fixed sand volume 

replacement, these mortars were also the most heaviest.  

Table V.3 Mortars physical and mechanical properties (d = dry density;   

Rf = flexural strength and Rc = compressive strength) 

Mortar 
d 

(g/cm
3
) 

Porosity 

(%) 

Rf 

(MPa) 

Rc 

(MPa) 

Reference/0.30 Sp 2.197 13 9.17 74.17 

Reference/0.45 Sp 2.092 17 7.55 59.53 

Reference/0.45 2.212 17 6.93 58.38 

Reference/0.50 2.143 16 6.88 51.97 

LWM5-IC/0.30 Sp 2.148 14 9.06 72.15 

LWM5-IC/0.45 Sp 1.995 18 6.42 46.52 

LWM10-IC/0.30 Sp 2.085 14 7.96 62.09 

LWM10-IC/0.45 Sp 1.933 17 6.21 38.91 

LWM10-S/0.45 1.994 16 5.33 37.69 

LWM10-S/0.50 1.923 18 5.04 32.13 

LWM10/0.50 1.981 16 5.09 35.56 

LWM25-IC/0.30 Sp 1.969 14 7.15 43.78 

LWM25-IC/0.45 Sp 1.804 19 4.88 25.52 

LWM25-S/0.45 1.809 17 4.38 24.61 

LWM25-S/0.50 1.756 19 4.19 21.02 

LWM25/0.50 1.805 17 3.84 22.97 

LWM50/0.50 1.374 23 2.87 14.05 
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Figure V.9 Lightweight mortars (containing saturated and unsaturated 

aggregates) dry density reduction varying the volume of natural sand 

replacement  

 

 

Figure V.10 Lightweight mortars (containing additional water for internal 

curing and superplasticizer) dry density reduction varying the volume of 

natural sand replacement 
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V.2.2.2 Thermal conductivity 

The incorporation of plastic aggregates in mortar or concrete, generally 

leads to a quite sharp decrease of thermal conductivity. Moreover, if porous 

aggregates (plastic or not) are used, the air contained in the aggregates pores 

contributes to lower thermal conductivity (Mounanga et al., 2008). It is 

worth to mention that air thermal conductivity is 0.026 W/m K (at 20 °C and 

atmospheric pressure) while for a typical insulating material, i.e. expanded 

polystyrene (EPS) is 0.035 W/m K. 

Tests to determine thermal conductivity were performed on mortar 

samples containing different artificial aggregates volume fractions 

(Reference/0.50, LWM10/0.50, LWM25/0.50 and LWM50/0.50) according 

to the procedure described in § …. 

Thermal conductivity is inversely proportional to the gradient of 

temperature (eq. V.1) existing between the two surfaces of the investigated 

specimen (mortar slab in this case): 

𝝀 =  
𝑭𝒔

𝑨∆𝑻
                                           (V.1) 

where  is the thermal conductivity (W/m K), F is the heat flow rate (W), s 

is the specimen thickness (m), A is the measurement area (m
2
) and T is the 

thermal gradient between specimens surfaces. 

Considering the thermal flux constant, thermal conductivity () and 

temperature gradient (T) are represented by an equilateral hyperbola (i.e. 

with perpendicular asymptotes) with Cartesian axes as asymptotes         

(Figure V.11). 

 

 

Figure V.11 Thermal conductivity of the investigated lightweight mortars at 

different temperature gradients 
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As expected, at increasing natural sand replacement, a decrease of 

thermal conductivity was measured. Moreover, seen the relationship 

between thermal conductivity and temperature gradient (eq. V.1), at 

increasing T a decrease of  was registered. Thermal conductivities for T 

of 1°C and 10°C ( and 10, respectively) of the investigated samples are 

reported in Table V.4. Five tests were performed for each mortar sample to 

ensure the reproducibility. 

Table V.4 Thermal conductivity of investigated lightweight mortars 

Specimen W/m K (W/m K) % 

Reference/0.50 1.408 0.141 - 

LWM10/0.50 1.365 0.136 3 

LWM25/0.50 1.311 0.131 7 

LWM50/0.50 1.266 0.127 10 

 

A reduction of thermal conductivity of 3, 7 and 10 % was obtained 

replacing 10, 25 and 50% of natural quartz sand, respectively. Lightweight 

insulating mortars can be used as plaster or rendering mortars. A lower 

thermal conductivity means that using a lightweight mortar, instead of the 

reference one, at fixed thickness, a better thermal insulation will be 

achieved. On the contrary, to obtain the same thermal insulation, a lower 

thickness of mortar will be necessary, reducing the material consumption 

(i.e. reducing costs). 

Moreover, a linear relationship is recognizable between thermal 

conductivity and both sand volume replacement and dry density (Figure 

V.12). As stated previously, at increasing sand replacement, a decrease of 

dry density was achieved. The lightweight mortar with the lowest dry 

density and thermal conductivity, as expected, is LWM50/0.50 (i.e. the 

mortar with the highest sand replacement). In literature, also other authors 

reported linear relationships between thermal conductivity and sand volume 

replacements or dry density (Nguyen et al., 2014; Corinaldesi et al., 2015). 

It should be noticed, that when more porous aggregates are used (i.e. the 

air content in pores is higher) a more pronounced decrease of thermal 

conductivity is achieved. At the same time, it is necessary to consider that 

the gain in thermal insulation is paid by a decrease in compressive strength 

as widely reported in literature (Nguyen et al., 2014; Mounanga et al., 2008; 

Corinaldesi et al., 2011; Ferrándiz-Mas et al., 2014; Corinaldesi et al., 2015). 

Thus an optimization of the balance between mechanical properties and 

physical properties should be found. 
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Figure V.12 Thermal conductivity (10) of lightweight investigated mortars 

versus sand replacement (     ) and dry density (     ) 

 

V.2.2.2 Water vapor permeability 

In order to obtain information about the effect of the natural sand 

replacement on the water vapor transmission rate of the mortar, water vapor 

permeability tests were performed on the reference sample, used as control, 

and on three lightweight mortars (LWM10/0.50, LWM25/0.50 and 

LWM50/0.50, respectively).  

Representing the mass variation versus time during water vapor 

permeability tests (Figure V.13), it is possible to determine water vapor 

transmission rate per surface unit (WVT) that is the slope of the line fittings 

data points dived for the sample test area. The linear relationships existing 

between the mass variation over time of the lightweight mortar samples, 

ensure the steady state condition (i.e. the water vapor that flows through the 

sample is constant in time).  

At increasing artificial aggregates content, the slope of the fitting lines 

increases, meaning an increase of WVT (i.e. a decrease of the water vapor 

transmission resistance).  

These observations are in accordance to the water vapor permeability 

(Wvp) and resistance () of the investigated samples, calculated according 

the standard EN 1015-19 (§ II.9.4.5) and reported in Table V.5. Moreover, 

several authors reported about the reduction of water vapor resistance of 

lightweight mortars (Gadea et al., 2010; Corinaldesi et al., 2015; Pedro et al., 

2013; Iucolano et al., 2013). 
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Figure V.13 Mass variation versus time during water vapor permeability 

test for the investigated lightweight mortars 

The progressive increase in permeability is proportional to natural sand 

replacement. In particular, a reduction of water vapor permeability of 13, 25 

and 48 % was measured for lightweight mortars containing 10, 25 and 50 % 

of plastic aggregates. The linear relationship existing between water vapor 

resistance and sand replacement is recognizable in Figure V.14. 

Although the low porosity variation (Table V.3), significant only for 

LWM50/0.50 samples, water vapor permeability changes significantly. It 

means that artificial aggregates addition influence mostly other ranges of 

pores than that open to water (in fact, the porosity reported in Table V.3 is 

the porosity open to water). Probably the capillary pores network increased 

due to the reduced workability of lightweight mortars. Moreover, aggregates 

have a porous structure that can facilitate water vapor transport through the 

mortar.  

Table V.5 Water vapor permeability (Wvp), resistance () and resistance 

variation, compared to reference mortar, of the investigated specimens 

Specimen 
WVP 

(kg/m s Pa) 
 



(%)

Reference/0.50 2.9710
-11

 6.56 - 

LWM10/0.50 3.6010
-11

 5.72 13 

LWM25/0.50 3.9710
-11

 4.90 25 

LWM50/0.50 5.8810
-11

 3.38 48 
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Figure V.14 Water vapor resistance of the investigated lightweight mortars 

at different natural sand volume replacement  

 

V.2.3 Mechanical properties 

The replacement of natural silica sand with artificial plastic aggregates 

greatly influences mortar mechanical properties. As widely reported in 

literature, generally mechanical properties decrease due to the lower 

mechanical properties of the plastic aggregates or the weak adhesion 

between plastic aggregates and cement paste (Ferrándiz-Mas et al., 2014; 

Corinaldesi et al., 2011; Saikia and de Brito, 2012; Pedro et al., 2013; 

Correia et al., 2010; da Silva et al., 2014). The results of mechanical tests, 

i.e. flexural and compressive strength, are reported in Table V.3. 
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Reference/0.30 Sp to 6.88 MPa of Reference/0.50). Moreover, at fixed w/c 

ratio, the use of a superplasticizer increased the flexural strength (for 

example, from 6.93 MPa of Reference/0.45 to 7.55 MPa of       

Reference/0.45 Sp). 

 

 

Figure V.15 Example of load/displacement curve obtained from flexural test 

(Coppola et al. 2016) 

 

V.2.3.2 Compressive strength 

Compressive strength decrease is mainly due to natural aggregates 

substitution as results of LWAs lower mechanical properties. Moreover, also 

porosity variation among the different investigated samples is responsible of 

compressive strength decay. Comparing flexural and compressive strength 

results reported in Table V.3 is possible to appreciate the different behavior 

exhibited by investigated lightweight mortar samples. Flexural strength 

decrease is less pronounced than compressive one because for flexural 

strength plays an important role the good adhesion between aggregates and 

cement paste but also artificial aggregates higher deformability. On the 

contrary, for compressive strength, are relevant porosity and aggregates 

mechanical properties. Thus, to enhance compressive strength is necessary to 

modify mortar porosity and/or aggregates mechanical properties. As a 

consequence, compressive strength of LWMs with the lowest w/c (i.e. 0.30) 

have is higher than that of LWMs produced with w/c equal to 0.45 or 0.50. 

Compressive strength decrease is proportional to LWAs content and 

LWMs dry density, as reported in Figures V.16-17. 
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Figure V.16 Compressive strength vs. dry density of lightweight mortars 

with w/c 0.50 and 0.45 (Coppola et al. 2016) 

 

 

Figure V.17 Compressive strength vs. dry density of lightweight mortars 

with w/c 0.45 and 0.30, containing internal curing water (IC) and 

superplasticizer (Sp). For nomenclature § Table V.2 
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Moreover, reporting on the same graph (Figure V.18) the compressive 

strength values versus dry densities of all the investigated mortars, a power 

law relationship can be recognized as reported in literature also by Babu et 

al. (2006) and Tittarelli et al. (2016).  

 

 

Figure V.18 Compressive strength vs. dry density of all the investigated 

lightweight mortars 

Flexural and compressive strength are strictly correlated and a linear 

relationship could be found between these properties (Figure V.19).  

 

 

Figure V.19 Compressive strength vs. flexural strength of all the 

investigated lightweight mortars 
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It should be noticed that compressive strength of LWMs was always 

higher than minimum requirements for rendering and plastering mortars 

(Table V.6) or masonry mortars (Table V.7). All of the LWMs are of CS IV 

type, according to EN 998-1. Considering masonry mortars classification 

(EN 998-2, Table V.7), all the LWMs have a compressive strength higher 

than 20 MPa (Table V.3) except LWM50/0.50 whose compressive strength 

is 14.05 MPa. 

Table V.6 Rendering and plastering mortar classification in accordance 

with EN 998-1 

Property Type Mean values 

Compressive 

strength at 28 days 

(MPa) 

CS I 0.4-2.5 

CS II 1.5-5.0 

CS III 3.5-7.5 

CS IV > 6 

Capillary water 

absorption 

(kg/min
0.5

 m
2
) 

W 0 Not specified 

W 1  0.40 

W 2  0.20 

Thermal 

conductivity     

(W/m K) 

T 1  0.1 

T 2  0.2 

 

Table V.7 Masonry mortar classification in accordance with EN 998-2 

Class 
Compressive strength  

(MPa) 

M 20 20 

M 15 15 

M 10 10 

M 5 5 

M 2.5 2.5 

M 1 1 
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V.2.4 Aggregates/matrix interactions 

The low density of artificial aggregates may lead to segregation or not 

good dispersion of artificial aggregates. As the occurrence of this 

phenomenon can compromise final properties of the composite mortar, it is 

interesting to study specimens cross section. For this purpose one cross 

section of each mix was investigated by an optical microscope on polished 

surfaces. Figure V.20 shows that an homogeneous dispersion of artificial 

aggregates (artificial aggregates are the black particles) was achieved. 

Moreover, despite the reduction in workability, a good compacity is 

recognizable as well as an optimal distribution of the different aggregate 

sizes. 

 

 

 

Figure V.20 Cross section analysis (clockwise from top left): 

Reference/0.50, LWM10/0.50, LWM25/0.50 and LWM50/0.50 
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A more detailed analysis is reported in Figure V.21 that shows the natural 

and artificial aggregates (NA and LWA, respectively) distribution for 

LWM25/0.50 sample taken by optical and scanning electron microscope on 

a polished specimen.  

    

Figure V.21 a) LWM25/0.50 polished surface (optical microscope) and b) 

SEM picture of aggregates distribution in the same mortar sample (Coppola 

et al. 2016) 

Many authors (Hannawi et al., 2010; Saikia and de Brito, 2014; Gadea et 

al., 2010; Choi et al., 2005) reported a weak adhesion between artificial 

aggregates and cement paste due to the increase of water content at the 

interface: a weak adhesion is generally responsible of porosity increase and 

decay of mechanical properties. As shown by Figure V.22a, natural and 

LWAs present the same ITZ without any increase in distance between 

artificial aggregates surface and cement paste. Moreover, Figure V.22b 

shows the increase of interfacial adhesion between LWAs and matrix, due to 

the interlocking positions offered by aggregates surface roughness.  

 

    

Figure V.22 a) Natural and artificial aggregates ITZ and b) detail of cement 

paste penetrated into LWA (Coppola et al. 2016) 

SEM pictures taken on fractured surfaces confirm what stated before: the 

ITZ between natural aggregates and cement paste (Figure V.23) is the same 

than for artificial aggregates (Figure V.24). Moreover, LWAs, offer 

interlocking positions while natural aggregates are smoother and only in the 

case of surface irregularities cement paste adhere onto them.  
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Figure V.23 a) ITZ between natural aggregate (NA) and cement paste 

(fractured surface) and b) detail (Coppola et al. 2016) 

    

Figure V.24 a) ITZ between lightweight aggregate (LWA) and cement paste 

(fractured surface) and b) detail (Coppola et al. 2016) 

At higher magnifications (Figure V.25) details of the hydration products 

grown into aggregates pores are shown. 

 

       

Figure V.25 Detail of the hydration products grown into LWAs surface 

pores (Coppola et al. 2016) 
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V.3 Use of foamed aggregates as internal curing reservoir 

For this investigation, only preliminary results are reported, because tests 

are still in course. Shrinkage tests are considering the use of artificial 

aggregates as reservoir for internal curing water. In particular, two different 

w/c ratios (0.30 and 0.45) and two different tests (autogenous and total 

shrinkage) are ongoing.  

As example, specimens length variation is reported in Figure V.26. It is 

clear the great influence of aggregates saturation on the dimensional 

stability. Moreover, at increasing volume sand replacement, a decrease of 

shrinkage was measured. Thus, despite the different rigidity of plastic 

aggregates, the saturation can reduce total shrinkage. 

Other studies are evaluating the influence of w/c ratio and the amount of 

length variation due to the autogenous shrinkage. 

 

Figure V.26 Length variation due to total shrinkage (w/c =0.30) 

 

 

 

 

 

 

 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100 120 140

L
en

g
th

 v
a
ri

a
ti

o
n

 (
%

) 

Time (days) 

Reference/0.30 Sp

LWM5-IC/0.30 Sp

LWM10-IC/0.30 Sp

LWM25-IC/0.30 Sp



Chapter V 

140 

V.4 Conclusions 

In this chapter, the possibility to use foamed plastic wastes for the 

production of artificial aggregates was investigated. Using plastic waste 

aggregates was possible to obtain a lighter and sustainable mortar. 

Aggregates were manufactured by a foam extrusion process, in order to have 

artificial aggregates with a rough surface. In particular, lightweight 

aggregates (LWAs) present a cylindrical shape, due to manufacturing 

process, and an irregular surface texture. On the contrary, natural aggregates 

are smooth and well rounded. The different shape and surface texture 

influence mortar workability reducing the consistency but saturating 

aggregates is possible to slight overcame to this drawback. Increasing LWAs 

content, a sharp decrease of density was achieved, proportional to LWAs 

volume fraction. The presence of free water, when aggregates are saturated, 

produces an increase of porosity and consequently a decrease of compressive 

strength respect to mixtures containing unsaturated aggregates. At increasing 

LWAs content a decrease of mechanical properties was achieved but a less 

brittle behavior was recognizable. However, for all the investigated 

lightweight mixtures, compressive strength values were higher than the 

minimum requirements for masonry and repair mortars. LWAs saturation is 

not influent on flexural strength while a small influence has the use of a 

lower w/c ratio. Although LWAs low density (65% lower than natural quartz 

sad) a good dispersion was obtained. Moreover, SEM investigations revealed 

the presence of interlocking positions onto aggregates surface due to the high 

porosity and rough surface of foamed aggregates. Thermal conductivity and 

water vapor resistance decrease at increasing natural sand substitutions and 

proportionally to mortars density. Finally, the possibility to use aggregates 

porosity as reservoir of internal curing water was investigated, resulting in 

promising preliminary results. 
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This Ph.D. thesis faced the principles and the experimental practice of 

improving the fiber/cement matrix adhesion in cementitious mortars. In 
particular, two different methods were attempted: i) the chemical treatments 
of smooth fibers and ii) the production (by the customization of the 
extrusion-foaming process) of fibers with a rough surface texture and high 
porosity. Moreover, also lightweight artificial aggregates were produced and 
used into a cementitious mortar. Both for fibers and aggregates production, 
an end-of-waste material was used. In particular, the end-of-waste plastic 
consists of a polyolefin blend (PE and PP). In order to improve fiber/matrix 
chemical affinity, two chemical treatments were investigated while to 
promote fiber/matrix mechanical bond, a foam extrusion process was 
implemented, in order to produce foamed fibers.  

In the first phase of the research, two chemical treatments have been 
investigated: alkaline hydrolysis and nano-silica sol-gel particles deposition. 
The first treatment increases fibers roughness while tensile tests reported a 
slight decrease of fibers ductility; the latter produces nano-silica spherical 
particles on fibers surface and mechanical properties are not affected. As 
expected, PP fibers have a very poor adhesion with the cement paste, 
resulting in a porous ITZ. Alkaline hydrolysis promoted the creation of 
interlocking positions on fiber surface but the best behavior was recognized 
for fibers with nano-silica particles on the surface. In this case, a denser ITZ 
and a great amount of hydration products were observed by SEM 
investigations. Pull-out tests confirmed the better performances of treated 
fibers: a higher pull-out peak load was achieved and an increase of pull-out 
energy was evident. 

Subsequently, the possibility to improve fiber/matrix adhesion producing 
synthetic fibers with a surface texture different from the traditional smooth 
one was investigated. A foam extrusion process was used to manufacture 
polymeric fibers with a rough surface, in order to improve mechanical 
bonding with the cementitious matrix. Moreover, foamed fibers were 
produced using both a virgin polymer and an end-of-waste material. 
Optimizing foaming agent quantity and processing parameters was possible 
to produce fibers having adequate surface texture and diameter, suitable for 
mortar reinforcement. The optimal foamed fibers were produced using a 
capillary die of 0.5 mm; 5 wt.% and 2 wt.% of foaming agent for virgin PP 
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and Recycled fibers, respectively. Concerning fiber reinforced mortars at the 
fresh state, fibers addition leads to an overall workability decrease, more 
pronounced for mortars containing non-foamed fibers. Fibers with increased 
surface roughness showed a reduction of mechanical properties.  However 
mechanical properties, (both flexural and compressive strength) of fiber 
reinforced mortars, were not influenced by fibers addition nor their 
morphology. A residual flexural strength was observed both using foamed 
fibers and non-foamed fibers. In particular, at increasing volume fraction and 
fibers length an increase of residual load was measured. The effectiveness of 
rougher surface is evident as samples reinforced with PP foamed fibers have 
the same residual strength of PP non-foamed FRMs (despite their lower 
mechanical properties and reduced number of fibers in the specimens cross-
section). As expected, the rougher surface gives rise to a better fiber/matrix 
adhesion, as confirmed by pull-out tests which showed a considerable 
increase of maximum pull-out load and, consequently, interface toughness.  

Durability investigations on the fiber reinforced mortars reported good 
results for capillary water absorption, sulfate attack and plastic shrinkage 
cracking. In particular, fibers length and volume fraction are key parameters 
in controlling plastic shrinkage cracking: increasing fibers volume fraction, a 
decrease of cracks number and length was achieved whilst longer fibers are 
more efficient in reducing cracks width. Moreover, mortar samples 
containing foamed fibers reported a better control of shrinkage cracking 
because cracks opening was delayed and the improved fiber/matrix bond 
was able to reduce crack width, compared to mortar slabs containing smooth 
fibers. 

Finally, once that the foaming process was optimized for the end-of-
waste material, lightweight artificial aggregates were produced, starting from 
foamed strands. At increasing LWAs substitution, a sharp decrease of 
density was achieved. Also workability and mechanical properties decrease, 
but a more ductile behavior was recognizable. Thanks to the porous and 
rough surface texture, aggregates buoyancy was avoided and a good 
aggregates/cement paste ITZ was achieved. Thermal conductivity and water 
vapor resistance decrease at increasing natural sand substitutions and 
proportionally to mortars density. Moreover, the possibility to use aggregates 
porosity as reservoir of internal curing water showed promising preliminary 
results. 

In conclusion, the results of this study demonstrate the possibility to 
optimize fibers volume fraction in cementitious mortars using engineered 
fibers with an improved fiber/matrix bond.  Surface roughness improvement 
obtained in foamed fibers resulted to be more effective respect to the 
chemical treatments. Benefits could be seen not only in the control of plastic 
shrinkage but also in the workability of fresh mortars, mechanical strength 
and durability of the hardened composite. Finally, concerning the materials 
sustainability, it was demonstrated that fibers and light weight aggregates, 
characterized by high compatibility with cementitious matrix, can be 
produced from end-of-waste materials. 
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