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Abstract

We consider the following matrix Schrödinger operator

Au = div(Q∇u)− V u =

(
div(Q∇uj)−

m∑
k=1

vjkuk

)
1≤j≤m

acting on vector valued functions u : Rd → Cm, where Q is a symmetric real
matrix-valued function which is supposed to be bounded and satisfy the ellipticity
condition, and V is a measurable unbounded matrix-valued function.

We construct a realization Ap of A in the spaces Lp(Rd,Cm), 1 ≤ p < ∞,
that generates a contractive strongly continuous semigroup. First, by using form
methods, we obtain generation of holomorphic semigroups when the potential V
is symmetric. In the general case, we use some other techniques of functional
analysis and operator theory to get a m-dissipative realization. But in this case
the semigroup is not, in general, analytic.

We characterize the domain of the operator Ap in Lp(Rd,Cm) by using firstly
a non commutative version of the Dore-Venni theorem, see [50], and then a
perturbation theorem due to Okazawa, see [52, 53].

We discuss some properties of the semigroup such as analyticity, compactness
and positivity. We establish ultracontractivity and deduce that the semigroup is
given by an integral kernel. Here, the kernel is actually a matrix whose entries
satisfy Gaussian upper estimates.

Further estimates of the kernel entries are given for potentials with a diagonal
of polynomial growth. Suitable estimates lead to the asymptotic behavior of the
eigenvalues of the matrix Schrödinger operator when the potential is symmetric.

vii





Introduction

Second-order elliptic differential operators with unbounded coefficients appear
naturally as infinitesimal generators of diffusion processes; the associated parabolic
equation is then the Kolmogorov equation for that process. While the scalar
theory of such equations is by now well developed (see [54] and [44] for bounded
and unbounded coefficients respectively, and the references therein), the literature
on systems of parabolic equations with unbounded coefficients is still sparse.

Elliptic and parabolic systems with unbounded coefficients is then a new
and fertile branch of Partial Differential Equations. The question arising is to
extend the results of the theory of scalar elliptic equations to the vectorial ones.
In particular, to associate a semigroup in Lp-spaces to a vector-valued elliptic
operator with unbounded coefficients and to investigate further qualitative and
quantitative properties.

Beside their own interests, such systems appear naturally in the study of
backward-forward stochastic differential systems, in the study of Nash equilibria
to stochastic differential games, in the analysis of the weighted ∂-problem in Cd,
in the time-dependent Born–Openheimer theory and also in the study of Navier–
Stokes equations. We refer the reader to [2, Section 6], [31, 16, 11, 36, 35, 30, 27]
for further details.

Recently, it starts to appear some works in this direction, see for instance [2],
[3], [19] and [34]. In the framework of semigroup theory, to our knowledge, one
of the first articles dealing with systems of parabolic equations with unbounded
coefficients is [34]. Here the diffusion coefficients were assumed to be strictly
elliptic, bounded, the drift F and the potential V can grow as |x| log(1 + |x|) and
log(1 + |x|) coupling respectively. It should be noted that for V = 0 and a drift
term growing as |F (x)| � |x|1+ε one can not expect generation of a C0-semigroup
on Lp with respect to Lebesgue measure, even in the scalar case, see [57]. Due to
the interaction between drift and potential terms, there are additional assumptions
on the potential which in absence of a drift term are somehow restrictive. Indeed,
for symmetric potentials, the assumptions made in [34] imply the boundedness of
the potential term.

Subsequently, there were some other publications [2, 3, 19] where the coeffi-
cients of the differential operators are assumed to be locally Hölder continuous,
and unbounded diffusion coefficients can be considered. The strategy in these
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2 INTRODUCTION

references is quite different from that in [34]. Namely, in [2, 3, 19] solutions
to the parabolic equation are at first constructed in the space of bounded and
continuous functions. Afterwards the semigroup is extrapolated to the Lp-scale.
Consequently, even though this approach more general coefficients are allowed,
one obtains no information about the domain of the generator of the semigroup –
a crucial information for applications. Moreover this approach cannot be applied
for operators having only measurable singular or non smooth coefficients.

In this thesis we propose to study a particular vector-valued elliptic operator
which is the vector–valued (matrix) Schrödinger operator, for which we adopt the
following definition

(0.0.1) Au = div(Q∇u)− V u,
acting on vector–valued functions u = (u1, . . . , um) : Rd → Cm, where

• div(Q∇u) := (div(Q∇u1), . . . , div(Q∇um)) will be denoted simply by
∆Qu;
• (V u)(x) = V (x)u(x) to be understood as a matrix vector product;
• Q : Rd → Rd×d is a measurable bounded matrix map satisfying, for every
x ∈ Rd, Q(x) is symmetric and there exists η1 > 0 such that

〈Q(x)ξ, ξ〉 ≥ η1|ξ|2, x, ξ ∈ Rd.

• V : Rd → Rm×m is a measurable matrix-valued function such that

〈V (x)ξ, ξ〉 ≥ 0, x ∈ Rd, ξ ∈ Rm.

The above algebraic conditions on Q and V guarantee the dissipativity of the
operator A.

The theory of strongly continuous (or C0-) semigroups, see Appendix A,
allows to solve the parabolic system ∂tu = Au, once the operator A admits some
realization that generates a strongly continuous semigroup in some function space.

The Schrödinger system i∂tu = Au can be solved in L2(Rd,Cm) when the
operator A is dissipative and self-adjoint, which can be the case only for symmetric
potentials.

In the scalar case, Schrödinger operator has the form

ASu = div(Q∇u)− vu = ∆Qu− vu,
acting on smooth functions u : Rd → C, where Q called diffusion matrix, is a
symmetric matrix of size d and v a measurable function called potential. The scalar
Schrödinger operators with real potential are widely studied in literature. The
most studied Schrödinger operator in literature is the one of the form ∆−V , where
V is an unbounded positive potential (potential of sign changing is also considered
in literature), see [17, Chapter 4], [64, 60, 66] and related references. Moreover,
Schrödinger operators with magnetic field are also considered in literature, see
[6, 7, 8, 32]. In quantum physics, the associated Schrödinger equation i∂tu = ASu
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models the movement of a non-relativistic particle under the action of the electric
field ~E = −∇v. The term ∆Q refers to the kinetic energy (−∆Qu, u) of the
particle and v to its potential energy (vu, u).

The matrix Schrödinger operator, in non–relativistic mechanical quantum,
appears as the Hamiltonian for a system of interacting adsorbate and substrate
atoms. The entries of the potential matrix V represent the interparticle electrical
interactions; namely, electron–electron repulsions, electron–nuclear attractions
and nuclear–nuclear repulsions. For more details we refer to [68, 69, 65] and the
references therein.
For adiabatic systems, an approximation called Born-Oppenheimer Approximation
applies. Due to this approximation, the Hamiltonian (matrix Schrödinger operator)
can be substituted by a diagonal operator with diagonal matrix potential. The
non adiabatic, sometimes called also diabatic systems, is the case where such an
approximation does not apply. Thereby, the necessity of the study of the matrix
Schrödinger operator, taking in consideration all diagonal and off-diagonal entries
of the potential matrix, see for instance [68].

Schrödinger equations with complex valued potential can be also transformed
into a system of coupled real Schrödinger equations. For more details we refer to
Section 3.5. We thus get another field where matrix Schrödinger operators can
play a crucial role. Historically, Schrödinger operators with complex potentials
were not an attracting topic as much as for real potentials. However, nowadays,
these operators start to get attention. The particularity of such operators is that
they are not self-adjoint, and thus spectral theory and techniques of self-adjoint
operators are not applicable. Actually, one may not have a real spectrum; this
is the case for some purely imaginary potentials, as in Example 2.16. Most of
the bibliography about complex Schrödinger operators deal with spectral theory.
However, in [32] the authors characterize the domain of a class of complex
Schrödinger operators and give necessary conditions for the compactness of their
resolvent which yields the discreteness of the spectrum. They have considered
C∞–potentials, which appears as a very strong regularity requirement. A series
of papers dealing with spectral theory of complex Schrödinger operators appear
recently by David Kreječiřik and his co-authors, see [40, 25, 33]. We also refer
to [13, 22, 26] and references therein for more literature on complex Schrödinger
operators.

In this thesis we want to use the semigroup approach in order to study
qualitative behavior of solutions of a system of evolution equations involving a
matrix Schrödinger operator of type (0.0.1). More precisely, we would like to
construct realizations, in Lebesgue spaces Lp(Rd,Cm) for 1 ≤ p < ∞, of the
differential operator A that generate consistent strongly continuous semigroups.

Since matrix Schrödinger operator is classified as an elliptic operator, we
thought about applying form methods, which is an easiest way to get generation
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of semigroups and requires minimal regularity conditions on the coefficients of
the operator. In the case where the potential matrix V is symmetric, the form
methods apply and one obtains a dissipative self adjoint realization in L2(Rd,Cm)
of A which generates a strongly continuous semigroup. This semigroup can be
extended to an analytic semigroup on Sπ/2 (the right half plan of C). However, we
discovered, via a counter example, that we cannot associate a continuous form to
the matrix Schrödinger operator with some unbounded antisymmetric potentials.
Later on, we proved that the semigroup (constructed otherwise) associated to such
operators is not analytic. We then became convinced that form methods work
only for symmetric potentials and we though otherwise for nonsymmetric ones.
We then decide to dedicate the first chapter of this thesis to study symmetric
Schrödinger operators.

In Chapter 1, we consider a symmetric Schrödinger operator and associate it
to a sesquilinear form assuming that Q is only bounded (no more regularity is
required) and the entries vij, i, j ∈ {1, . . . ,m}, of V are locally integrable. In the
first section we introduce the sesquilinear form

a(f, g) =

∫
Rd

m∑
j=1

〈Q(x)∇fj(x),∇gj(x)〉Cd dx+

∫
Rd
〈V (x)f(x), g(x)〉Cm dx.

defined on the domain

D(a) = {f = (f1, . . . , fm) ∈ H1(Rd,Cm) :

∫
Rd
〈V (x)f(x), f(x)〉Cm dx < +∞}.

Note that if f and g are two elements of D(a), then x 7→ 〈V (x)f(x), g(x)〉 is
integrable over Rd. This can seen by rewriting 〈V (x)f(x), g(x)〉 as

〈V 1/2(x)f(x), V 1/2(x)g(x)〉

and applying the Cauchy-Schwartz inequality. Such an argumentation is not valid
when V is antisymmetric.

Therefore, we check that a is an accretive, densely defined, closed and contin-
uous sesquilinear form and conclude that it is associated to a closed self adjoint
operator −A. Then A generates a strongly continuous semigroup {T (t) : t ≥ 0} in
L2(Rd,Cm). Of course no concrete information about the domain of A is obtained.
Afterwards we extrapolate this semigroup to the Lp-scale. For that end, and since
the semigroup {T (t) : t ≥ 0} is symmetric, it is enough for {T (t) : t ≥ 0} to be
L∞-contractive, that is

‖T (t)f‖∞ ≤ ‖f‖∞, ∀f ∈ L2(Rd,Cm) ∩ L∞(Rd,Cm),

which allows to extended every operator T (t) to a bounded linear operator in
L∞(Rd,Cm), and by duality in L1(Rd,Cm). Then, by using the Riesz-Thorin
interpolation theorem, the semigroup is extended to all spaces Lp(Rd,Cm), 1 ≤ p <
∞. As a consequence of the Stein interpolation theorem, see [17, Section 1.1.6],
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the extrapolation {Tp(t) : t ≥ 0} is actually a holomorphic (analytic) semigroup
for 1 < p <∞.

It remains only to establish the L∞-contractivity property to get a consistent
semigroup in all Lp-spaces associated to the realization Ap of A in Lp(Rd,Cm).
The L∞-contractivity property is equivalent to the invariance of the restriction
to L2(Rd,Cm) of the L∞–unit ball under the semigroup {T (t) : t ≥ 0}. Denoting
B∞ this restriction. One has

B∞ := {f ∈ L2(Rd,Cm) : ‖f‖∞ ≤ 1}.
B∞ is a closed convex subset of L2(Rd,Cm). It thus suffices to identify the (unique)
projection over B∞ and apply the generalized Beurling-Deny criterion of invariance
of convex subsets by the semigroups. For general Beurling-Deny criteria, we refer
to the book by E. M. Ouhabaz [54, Chapter 2] and for the L∞-contractivity
criterion for vector valued functions we refer to [55] of the same author.

The conditions of the Beurling-Deny criterion of the L∞-contractivity for
semigroups are recalled in this manuscript in Theorem B.8.

In the above construction everything is similar to the scalar Schrödinger
operator, see [17, Section 4.2]. The difference starts to appear when talking about
(componentwise) positivity of the semigroup. In the scalar case, Schrödinger
operators with nonnegative locally integrable potential are always generators of
positive semigroups. However, the matrix Schrödinger semigroup {T (t) : t ≥ 0}
is positive if, and only if, the off-diagonal entries of the potential matrix V are
nonpositive, i.e. vij ≤ 0, for all i 6= j.

An investigation on compactness of the semigroup {T (t) : t ≥ 0} is also done.
More precisely, we show that a sufficient condition is that the lowest eigenvalue of
V blows up at infinity, i.e.

〈V (x)ξ, ξ〉 ≥ µ(x)|ξ|2, ∀(x, ξ) ∈ Rd × Rm,

where µ is a nonnegative locally bounded function which goes to ∞ when |x|
tends to ∞. We end Chapter 1 by an example where the compactness condition
is not satisfied and the semigroup {T (t) : t ≥ 0} is not compact even if all entries
of the potential matrix blow up at infinity.

The question arising now is that if we can associate a semigroup in Lp–spaces
to the operator A in the nonsymmetric case. This is the topic of Chapter 2. In
this chapter, we first construct a realization of A in L2(Rd,Cm) by following the
same strategy as in [37], where the author constructed a m-accretive realization in
L2(Rd,C) of a scalar Schrödinger operator with complex potential. In [37], Kato
considered complex potentials v with nonnegative real part such that v ∈ Lsloc(Rd),
where the exponent s = 2d(d− 2)−1 if d ≥ 3, s > 1 if d = 2 and p = 1 if d = 1.
In our construction, see Section 2.3, we consider locally bounded potentials, i.e.
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vij ∈ L∞loc(Rd), for each i, j ∈ {1, . . . ,m}. Of course, weaker condition as the
one of [37] can be considered. Nevertheless, we are concerned with more than
generation of semigroup in L2(Rd,Cm). Since we aim to extrapolate the semigroup
to all Lp–spaces, we need to have the space of test functions as a core for A in
L2(Rd,Cm), which requires local elliptic regularity for A. So, this is why one
needs locally bounded coefficients.
Considering the operator A as the realization of A in L2(Rd,Cm) with domain

D(A) = {u ∈ H1(Rd,Cm) : Au ∈ L2(Rd,Cm)},

we prove that (A,D(A)) is m-dissipative. Hence, it generates a contractive strongly
continuous semigroup {T (t) : t ≥ 0} in L2(Rd,Cm). This can be obtained by
considering an auxiliary operator L which is the realization of A acting from the
Sobolev space H1(Rd,Cm) into its dual H−1(Rd,Cm), endowed with the (maximal)
domain

D(L) = {u ∈ H1(Rd,Cm) : Au ∈ H−1(Rd,Cm)}.
We show that −L is a maximal monotone operator, which implies that −A is
m-accretive. The main ingredient of the proof is the following Kato type inequality,
established for the operator ∆Q acting on vector valued functions:

∆Q|u| ≥ 1{u6=0}
1

|u|

m∑
j=1

uj∆Quj, u ∈ H1
loc(Rd,Cm).

Subsequently, we prove that the space of test functions is a core for A and
consequently the semigroup {T (t) : t ≥ 0} is given by the Trotter-Kato product
(Chernoff) formula

T (t) = lim
n→∞

[
e
t
n

∆Qe−
t
n
V
]n
,

where {et∆Q} is the semigroup generated by the operator ∆Q and {e−tV } the
multiplication semigroup generated by the dissipative multiplication operator
−V . Since both {et∆Q} and {e−tV } are contractive semigroups in Lp–spaces,
1 < p <∞, it follows that T (t) is Lp-contractive, for every 1 < p <∞. Then we
extrapolate the semigroup {T (t) : t ≥ 0} to all Lp–spaces, 1 < p <∞.
After constructing the semigroups {Tp(t) : t ≥ 0}, p ∈ (1,∞), we then look for
the domain of the generators Ap. Similarly to the case p = 2, we show that the
space of test functions C∞c (Rd,Cm) is a core for Ap and consequently, the domain
of Ap coincides with the maximal domain

Dp,max(A) = {u ∈ Lp(Rd,Cm) ∩W 2,p
loc (Rd,Cm) : Au ∈ Lp(Rd,Cm)}.

Note that the construction of realizations and semigroups made in this chapter
is compatible with the one of Chapter 1 for symmetric potential. Moreover, in
Chapter 2, we obtain further information about the domain of the operators Ap.
We establish a semigroup in L1(Rd,Rm) which is consistent with the semigroups
{Tp(t) : t ≥ 0} and its generator is an L1-realization of A.
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We end this chapter by establishing some properties of the semigroups {Tp(t) :
t ≥ 0}. We again obtain the same result for positivity of {T (t) : t ≥ 0} as in
Chapter 1. Namely, {T (t) : t ≥ 0} is positive if, and only if, vij ≤ 0, for all
i 6= j ∈ {1, . . . ,m}. We first apply the so-called positive minimum principle
to get the necessary condition and show that is actually sufficient by using the
Trotter-Kato product formula. For the analyticity, we first give an example where
the semigroup {T (t) : t ≥ 0} is not analytic and then give a sufficient condition
to obtain analyticity, which is

Re 〈V (x)ξ, ξ〉 ≥ C |Im 〈V (x)ξ, ξ〉| ,

for all x ∈ Rd and ξ ∈ Cm and some C > 0. This condition means that the
numerical range of V (x), then its spectrum, is included in a sector of angle
θ = arctan(1/C) < π/2, uniformly with respect to x. Such condition is never
satisfied for antisymmetric matrix potentials, since their spectrum lie on the
imaginary axis.

Now, after obtaining a semigroup {Tp(t) : t ≥ 0} associated to the realization
Ap ofA with maximal domain, we ask if the domain Dp,max(A) may coincide with
the so-called natural domain of Ap, 1 < p <∞, which is W 2,p(Rd,Cm) ∩D(Vp).
Obviously, the natural domain is a subset of the maximal one. On the other hand,
it contains the space of test functions, which is a core for Ap. The last statement
means that Ap is the closure of the realization of A defined over C∞c (Rd,Cm).
Therefore, if A is closed on the natural domain W 2,p(Rd,Cm) ∩ D(Vp), then it
follows that the domains coincide.

Chapter 3 is devoted to investigate the closure of Ap on the natural domain.
As a consequence we get the so-called maximal inequality

‖u‖2,p + ‖V u‖p ≤ C(‖u‖p + ‖∆Qu− V u‖p)

for some positive constant C, where ‖ · ‖2,p denotes the norm of W 2,p(Rd,Cm).
The above inequality implies the equivalence between the graph norm of Ap and
the norm ||| · ||| : u 7→ ‖u‖2,p + ‖V u‖p.

Our strategy is to apply a noncommutative version of the Dore-Venni theorem
proved by Monniaux and Prüss in [50]. To that purpose we consider in Lp(Rd,Cm)
for p ∈ (1,∞), the operators Dp defined as Dpu = ∆Qu− u for u ∈ W 2,p(Rd,Cm)
and Vp as the multiplication operator by V . We assume that V (x) is an injective
matrix for all x ∈ Rd likewise, the operator Vp becomes injective. We can also
make a rescaling for Vp in order to avoid the requirement of injectivity. Here
we impose injectivity since we are going to deal with imaginary powers and
general functional calculus for the operators Dp and Vp. So it is just a technical
requirement.
In addition to the hypotheses on Q and V considered in Chapter 2, we assume
that V has locally bounded first-order derivatives, i.e. V ∈ W 1,∞

loc (Rd,Rm) and
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satisfy

sup
x∈Rd
|∂jV (x)(V (x))−α| <∞ or

sup
x∈Rd
|(V (x))−α∂jV (x)| <∞,

for all j ∈ {1, . . . ,m} and some α ∈ [0, 1
2
). The above condition allows Lipschitz

potentials (by taking α = 0). For particular potentials of the form V (x) = v(x)V0,
with v a locally bounded nonnegative real function and V0 a constant accretive
matrix, the condition becomes

|∇v| ≤Mvα, M > 0, α ∈ [0, 1/2).

Such a condition is satisfied for v(x) = |x|r with r ∈ [1, 2). However, for scalar
Schrödinger operators, the maximal inequality hold for all polynomial radial
potentials, see [60] and [52]. We thus think to get maximal inequality for
potentials that have a same diagonal entry which can be a radial polynomial
function, or more generally, nonnegative functions v such that log(v) is Lipschitz
continuous. For this purpose we apply Okazawa’s perturbation theorem, see
Theorem A.20.

A compactness condition is also established for potential satisfying the maximal
inequality. Such condition coincides with the one of Chapter 1 for symmetric
potentials.

Last, we showed how scalar Schrödinger operators with complex potentials
can be seen as a particular matrix Schrödinger operator and showed that the
compactness of the resolvent and then discreteness of the spectrum of the scalar
Schrödinger operators with complex potential is obtained whence either real or
imaginary part of the potential blow up at infinity.

The last chapter of this thesis is concerned with regularity properties of the
matrix Schrödiner semigroup {T (t) : t ≥ 0}. We first state ultracontractivity prop-
erty of {T (t) : t ≥ 0}. We prove that, for every t > 0, T (t) maps L1(Rd,Cm) into
L∞(Rd,Cm) continuously, with continuity norm of order t−d/2. As a consequence,
the semigroup {T (t) : t ≥ 0} is then given by a matrix integral kernel

T (t)f(x) =

∫
Rd
K(t, x, y)f(y)dy, t > 0 x ∈ Rd.

For every t > 0, K(t, ·, ·) is a bounded matrix valued function. This is obtained by
adapting the Dunford–Pettis theorem, which holds basically for scalar functions,
see [4], to vector-valued functions. Afterward, we follow the classical method of
establishing ultracontractivity of the twisted semigroup and we get upper Gaussian
estimate for all entries of the matrix kernel:

|kij(t, x, y)| ≤ Ct−
d
2 exp{−τ |x− y|

2

4t
}, t > 0, x, y ∈ Rd,
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for some C > 0 and τ ∈ R and all i, j ∈ {1, . . . ,m}.
Noting that, for each i ∈ {1, . . . ,m}, kii coincides with the kernel associated

to the scalar Schrödinger operator ∆Q − vii, and one knows several bounds for
kii from the literature about kernel estimates of scalar Schrödinger operators, cf.
[45, 48, 49, 56, 61] and [17, Section 4.5].

Furthermore, in the symmetric case, one can dominate the off–diagonal entries
of the kernel matrix by the diagonal ones as follows

|kij(t, x, y) + kij(t, y, x)| ≤ 2
√
kii(t, x, y)

√
kjj(t, x, y)

for all i 6= j ∈ {1, . . . ,m}, every t > 0 and almost every x, y ∈ Rd.

We then focus on the so-called diagonal estimates, which means estimates of
kii(t, x, x) for all x ∈ Rd and i ∈ {1, . . . ,m}. The importance of such estimates is
that for symmetric potentials, they permit to deduce the behavior of the trace of
the matrix Schrödinger semigroup, in the case of compactness. Actually, in the
symmetric case, we prove that the trace of T (t) is given by

tr(T (t)) =

∫
Rd

m∑
i=1

kii(t, x, x) dx, t > 0.

We recall that, under the compactness condition, the eigenvalues of T (t) are e−λnt,
n ∈ N, where {λn : n ∈ N} is the discrete spectrum of −Ap (−Ap is accretive and
has nonnegative eigenvalues) and the trace of T (t) is the sum of e−λnt, which may
be finite or infinite. In the case of finite trace, T (t) is called a Hilbert-Schmidt
operator.

Estimates of Sikora’s type, see [61, 49], yields the behavior near 0 of the trace
of T (t). From which we deduce, by using a Karamata’s theorem, the asymptotic
distribution of the eigenvalues of the Schrödinger operator A = A2. This is done
in the particular case when diagonal entries vii, i ∈ {1, . . . ,m}, of the potential
V have the same behavior when |x| goes to infinity. This ends the main matter of
this thesis.

This thesis contains also some appendices where we summarized briefly some
mathematical background used when dealing with matrix Schrödinger operators.

In Appendix A we recall some results and terminology on operators and
semigroup theory. Appendix B deals with the topic of sesquilinear forms and
associated operators and semigroups. In Appendix C we introduce the theory of
functional calculus for sectorial operators as it is presented in [29]. This appendix
helps in elaborating many results of Chapter 3. Finally, in Appendix D we give
some basic results on the operator multiplication by a matrix–valued function in
Lp–spaces.





CHAPTER 1

Symmetric matrix Schrödinger operators

The easiest way to get generation of semigroup in Lp-spaces is the form
methods; which consists in associating a sesquilinear form to the operator in
question in the Hilbert space L2. Establishing some suitable properties of the
sesquilinear form allows to associate an analytic semigroup, in L2, to the operator
and by extrapolation techniques one could extend the semigroup to Lp-spaces,
1 < p <∞.

As we get always an analytic semigroup from form methods, we can apply
such a method only for sectorial (quasi-sectorial) operators with numerical range
in a sector of angle less than π/2. In particular, for symmetric operators.
However, matrix Schrödinger operators, unless the matrix potential is symmetric,
is not in general symmetric operators. Moreover, it may happen that a matrix
Schrödinger operator generates a strongly continuous semigroup which is NOT
analytic as we will see in Example 2.16. This is the reason why in this chapter we
limit ourself to matrix Schrödinger operators with symmetric potential.

In this chapter we consider the matrix Schrödinger operator

A = div(Q∇·)− V = ∆Q − V,

where V = (vij)1≤i,j≤m is a symmetric semi-definite positive matrix-valued function
and Q a bounded symmetric matrix satisfying the ellipticity condition (1.1.1).
Similarly to the scalar case, see [17, Section 1.8], under the weakest condition on
V , vij ∈ L1

loc(Rd) for all i, j ∈ {1, . . . ,m}, we associate a symmetric sesquilinear
form to −A and prove that A admits a dissipative self-adjoint realization in
L2(Rd,Cm) that generates a contractive strongly continuous semigroup. Using the
’Beurling-Deny’ criterion of L∞-contractivity in its vectorial version, one deduces
that this semigroup can be extrapolated to the spaces Lp(Rd,Cm), 1 < p < ∞.
We also investigate on positivity and compactness of this semigroup.

This chapter is structured as follow: In Section 1.1 we study the associated
form to A and show that A has a self-adjoint realization A that generates an
analytic strongly continuous semigroup {T (t) : t ≥ 0} in L2(Rd,Cm). In Section
1.2, we apply a ’Beurling-Deny’ criterion type, see [55, Theorem 2], to establish
L∞-contractivity of the semigroup {T (t) : t ≥ 0} and thus extrapolate it to
Lp(Rd,Cm). Section 1.3 is devoted to characterize positivity, study compactness
of the semigroup and analyze the spectrum of A.

11
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The contents of this chapter are taken from the paper [46].

1.1. Generation of semigroup in L2

Throughout this chapter we assume the following hypotheses:

1.1.1. Hypotheses.

(a) Let Q : Rd → Rd×d be a symmetric matrix-valued function. Assume that
there exist positive constants η1 and η2 such that

(1.1.1) η1|ξ|2 ≤ 〈Q(x)ξ, ξ〉 ≤ η2|ξ|2, x, ξ ∈ Rd.

(b) Let V : Rd → Rm×m be a matrix-valued operator such that vij = vji ∈
L1
loc(Rd) for all i, j ∈ {1, . . . ,m} and

(1.1.2) 〈V (x)ξ, ξ〉 ≥ 0, x ∈ Rd, ξ ∈ Rm.

We introduce, for x ∈ Rd, the inner–product 〈·, ·〉Q(x) given, for y, z ∈ Rd, by

〈y, z〉Q(x) := 〈Q(x)y, z〉 and its associated norm |z|Q(x) :=
√
〈Q(x)z, z〉 for each

z ∈ Rd.

1.1.2. The L2-sesquilinear form. Let us define the sesquilinear form

(1.1.3) a(f, g) :=

∫
Rd

m∑
j=1

〈Q(x)∇fj(x),∇gj(x)〉dx+

∫
Rd
〈V (x)f(x), g(x)〉dx,

for f, g ∈ D(a). Here D(a) denotes the domain of a and is defined by
(1.1.4)

D(a) := {f = (f1, . . . , fm) ∈ H1(Rd,Cm) :

∫
Rd
〈V (x)f(x), f(x)〉dx < +∞}.

We endow D(a) with the norm

‖f‖a =

(
‖f‖2

H1(Rd,Cm) +

∫
Rd
〈V (x)f(x), f(x)〉dx

)1/2

=

(
‖f‖2

L2(Rd,Cm) +
m∑
j=1

‖∇fj‖2
L2(Rd,Cm) +

∫
Rd
〈V (x)f(x), f(x)〉dx

)1/2

.

We now give some properties of a.

Proposition 1.1. Assume Hypotheses 1.1.1 are satisfied. Then,

(i) a is densely defined, i.e. D(a) is dense in L2(Rd,Cm).
(ii) a is accretive.

(iii) a is continuous, i.e. exists M > 0 such that

|a(f, g)| ≤M‖f‖a‖g‖a, f, g ∈ D(a).



1.1. GENERATION OF SEMIGROUP IN L2 13

(iv) a is closed, i.e. (D(a), ‖.‖a) is a complete space.

Proof. (i) It is easy to see that C∞c (Rd,Cm) ⊂ D(a). Indeed, C∞c (Rd,Cm) ⊂
H1(Rd,Cm) and, for f ∈ C∞c (Rd,Cm)∣∣∣∣∫

Rd
〈V (x)f(x), f(x)〉dx

∣∣∣∣ ≤ ∫
Rd
|V (x)f(x)||f(x)|dx

≤
∫
Rd
|V (x)||f(x)|2dx

≤ ‖f‖2
∞

∫
supp(f)

|V (x)|dx <∞.

Hence, D(a) is dense in L2(Rd,Cm).
(ii)Accretivity: For f ∈ D(a) one has

Re a(f) =

∫
Rd

m∑
j=1

|Q1/2(x)∇fj(x)|2dx+

∫
Rd

Re 〈V (x)f(x), f(x)〉dx ≥ 0.

(iii) Continuity: Let f, g ∈ D(a). By application of Cauchy–Schwartz and Young
inequalities one gets

|a(f, g)| ≤ η2

m∑
j=1

∫
Rd
|∇fj(x)||∇gj(x)|dx+

∫
Rd
|〈V (x)1/2f(x), V (x)1/2g(x)〉|dx

≤ η2

m∑
j=1

‖∇fj‖2‖∇gj‖2 +

(∫
Rd
|V (x)1/2f(x)|2dx

)1/2(∫
Rd
|V (x)1/2g(x)|2dx

)1/2

≤ η2

(
m∑
j=1

‖∇fj‖2
2

) 1
2
(

m∑
j=1

‖∇gj‖2
2

) 1
2

+

(∫
Rd
〈V (x)f(x), f(x)〉dx

)1/2(∫
Rd
〈V (x)g(x), g(x)〉dx

)1/2

≤ (1 + η2)‖f‖a‖g‖a.

(iv) Closedness: Let (fn)n∈N ⊂ D(a) be a Cauchy sequence in (D(a), ‖ · ‖a). Then

‖fn − fl‖H1(Rd,Cm) +

∫
Rd
〈V (x)(fn(x)− fl(x)), (fn(x)− fl(x)〉dx −→

n,l→∞
0.

This yields {
fn − fl −→ 0 in H1(Rd,Cm)∫
Rd |V

1/2(fn − fl)|2 −→ 0
.
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Hence, (fn)n∈N and (V 1/2fn)n∈N are Cauchy sequences respectively in H1(Rd,Cm)
and L2(Rd,Cm). Therefore{

fn −→ f in H1(Rd,Cm)

V 1/2fn −→ g in L2(Rd,Cm)
.

The pointwise convergence of subsequences implies that

V 1/2f = g ∈ L2(Rd,Cm).

Then f ∈ D(a) and

a(fn − f) = ‖fn − f‖2
H1(Rd,Cm) +

∫
Rd
|V 1/2(x)(fn − f)(x)|2dx −→

n→∞
0,

which ends the proof. �

Now, let A defined in (0.0.1), i.e.

(1.1.5) A = div(Q∇·)− V = ∆Q − V.

Thanks to Proposition 1.1 and applying Theorem B.6, we obtain

Corollary 1.2. A admits a realization A in L2(Rd,Cm) that generates a bounded
strongly continuous and analytic semigroup {T (t) : t ≥ 0}. Moreover, A is
self–adjoint and −A is the linear operator associated to the form a.

Remark 1.3. The form method does not apply for non symmetric potentials. In
fact, semigroups associated to continuous sesquilinear forms are always analytic
semigroups. However, matrix Schrödinger semigroups are not always analytic, as
Example 2.16 shows, where it has been proved that the semigroup associated to
matrix Schrödinger operator with matrix potential(

0 −x
x 0

)
, x ∈ R,

is not analytic. Otherwise, we show by a direct computation that the continuity
property of the associated form fails when we take, instead of a symmetric potential,
the same antisymmetric potential

V (x) =

(
0 −x
x 0

)
, x ∈ R.

Indeed, let ϕ ∈ C∞c (Rd) be such that χB(1) ≤ ϕ ≤ χB(2). Consider, for n ≥ 1,

fn(x) =
ϕ(x/n)√
1 + |x|2

e1 and gn(x) =
ϕ(x/n)√
1 + |x|2

e2,
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where {e1, e2} is the canonical basis of R2, and take, for simplicity, Q = I, the
identity matrix in Rd. Since V = −V ∗ then 〈V (x)ξ, ξ〉 = 0, for all ξ ∈ R2. Thus,

a(fn) = a(gn) =

∫
R

∣∣∣∣∣− ϕ(x/n)

(1 + |x|2)
3
2

x+
1

n

1√
1 + |x|2

∇ϕ(x/n)

∣∣∣∣∣
2

dx

and

|a(fn, gn)| =
∫
Rd

|x|
(1 + |x|2)

ϕ(x/n)dx.

If the continuity property of the form were satisfied, then there will exist C > 0
such that

|a(fn, gn)| ≤ C‖fn‖a‖gn‖a = C(‖fn‖2
L2(Rd,R2) + a(fn)).

By the Lebesgue dominated convergence theorem one can let n tends to ∞ and
obtains ∫

Rd

|x|
1 + |x|2

dx ≤ C

(∫
Rd

|x|2

(1 + |x|2)3
dx+

∫
Rd

1

1 + |x|2
dx

)
<∞.

However, the integral of the left-hand side is infinite.

1.2. Extension to Lp

In this section we will show that A has a Lp-realization which generates a
holomorphic semigroup in Lp(Rd,Cm), 1 < p <∞. In order to do so we prove that,
for every t > 0, the restriction T (t)|L2∩L∞ of T (t) to L2(Rd,Cm)∩L∞(Rd,Cm) can
be extended to a bounded operator Tp(t) in Lp(Rd,Cm), 2 < p < ∞. Then, we
show that {Tp(t) : t ≥ 0} is strongly continuous. Moreover, since {T (t) : t ≥ 0}
is self-adjoint, the semigroups {Tp(t) : t ≥ 0}, for 1 < p < 2 is the adjoint of
{Tp′(t) : t ≥ 0}, where 1

p
+ 1

p′
= 1 and so p′ > 2. For this aim it suffices that

{T (t) : t ≥ 0} satisfies the L∞-contractivity property:

(1.2.1) ‖T2(t)f‖∞ ≤ ‖f‖∞, ∀f ∈ L2(Rd,Cm) ∩ L∞(Rd,Cm).

A characterization of (1.2.1) via the associated form is given in [55], see Theorem
B.8. According to this characterization, (1.2.1) holds true when the following are
satisfied:

(i) f ∈ D(a) =⇒ (1 ∧ |f |)sign(f) ∈ D(a),
(ii)

a((1 ∧ |f |)sign(f)) ≤ a(f), ∀f ∈ D(a),

where sign(f) := f
|f |χ{f 6=0} for f ∈ L2(Rd,Cm).

We start by the following lemma where we establish (i).
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Lemma 1.4. a) Assume f ∈ H1(Rd,Cm). Then, |f | ∈ H1(Rd) and

(1.2.2) ∇|f | =
∑m

j=1 fj∇fj
|f |

χ{f 6=0}.

b) Let f ∈ D(a). Then (1 ∧ |f |)sign(f) ∈ D(a). In particular,

∇((1 ∧ |f |)sign(f))j =
1 + sign(1− |f |)

2

fj
|f |
χ{f 6=0}∇|f |(1.2.3)

+
1 ∧ |f |
|f |

(∇fj −
fj
|f |
∇|f |)χ{f 6=0}

for every j ∈ {1, ...,m}.

Proof. a) Let f ∈ H1(Rd,Cm). Define, for ε > 0, fε =

(
m∑
j=1

|fj|2 + ε2

) 1
2

−ε.

One has

0 ≤ fε =
|f |2(

m∑
j=1

|fj|2 + ε2

) 1
2

+ ε

≤ |f |.

Hence, by dominated convergence theorem fε −→
ε→0
|f | in L2(Rd). On the other

hand, fε ∈ H1
loc(Rd) and

∇fε =

m∑
j=1

fj∇fj

(∑m
j=1 |fj|2 + ε

) 1
2

−→
ε→0

m∑
j=1

fj∇fj

|f |
χ{f 6=0}.

Again, the dominated convergence theorem yields |f | ∈ H1(Rd) and (1.2.2).
b) Let f ∈ D(a), i.e. f ∈ H1(Rd,Cm) and V 1/2f ∈ L2(Rd,Cm). One has∫
Rd
〈V (x)(1 ∧ |f |)sign(f), (1 ∧ |f |)sign(f)〉dx ≤

∫
{f 6=0}

(
1 ∧ |f |
|f |

)2

〈V (x)f(x), f(x)〉dx

≤
∫
Rd
〈V (x)f(x), f(x)〉dx <∞.

It remains now to show that (1 ∧ |f |)sign(f) ∈ H1(Rd,Cm). Set

Pf := (1 ∧ |f |)sign(f) = (1 ∧ |f |) f
|f |
χ{f 6=0},

and

Pεf := (1 ∧ |f |) f

|f |+ ε
=

1 + |f | − |1− |f ||
2

f

|f |+ ε
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for ε > 0. Since |Pεf | ≤ (1 ∧ |f |) ≤ |f | and Pεf −→
ε→0

Pf a.e., It follows, be

dominated convergence theorem, that Pεf −→
ε→0

Pf in L2(Rd,Cm).

On the other hand, Pεf ∈ H1
loc(Rd,Rm) and

∇(Pεf)j = ∇
(

1 + |f | − |1− |f ||
2

fj
|f |+ ε

)
=

1 + |f | − |1− |f ||
2

(
∇fj
|f |+ ε

− fj
(|f |+ ε)2

∇|f |
)

+
1

2

fj
|f |+ ε

(∇|f |+ sign(1− |f |)∇|f |)

=
1 ∧ |f |
|f |+ ε

(
∇fj −

fj
|f |+ ε

∇|f |
)

+
1

2

fj
|f |+ ε

(1 + sign(1− |f |))∇|f |.

Hence,

lim
ε→0
∇(Pεf)j =

1 ∧ |f |
|f |

(
∇fj −

fj
|f |
∇|f |

)
χ{f 6=0}

+
1

2

fj
|f |

(1 + sign(1− |f |))χ{f 6=0}∇|f |,

and

|∇(Pεf)j| ≤
1 ∧ |f |
|f |

(|∇fj|+ |∇|f ||) + |∇|f || ≤ |∇fj|+ 2|∇|f || ∈ L2(Rd).

By the dominated convergence theorem we conclude that Pf = lim
ε→0

Pεf ∈
H1(Rd,Cm), and

∇(Pf)j := lim
ε→0
∇(Pεf)j

=
1 ∧ |f |
|f |

(
∇fj −

fj
|f |
∇|f |

)
χ{f 6=0} +

1

2

fj
|f |

(1 + sign(1− |f |))χ{f 6=0}∇|f |.

�

In the following we state another lemma where we prove (ii).

Lemma 1.5. Let f ∈ D(a). Then

(1.2.4) a((1 ∧ |f |)sign(f)) ≤ a(f).
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Proof. Let f ∈ D(a). One has,

αf := 〈Q∇((1 ∧ |f |)sign(f)),∇((1 ∧ |f |)sign(f))〉

=
m∑
j=1

∣∣∣∣1 ∧ |f ||f |

(
∇fj −

fj
|f |
∇|f |

)
χ{f 6=0} +

1

2

fj
|f |

(1 + sign(1− |f |))χ{f 6=0}∇|f |
∣∣∣∣2
Q

=
(1 + sign(1− |f |))2

4
χ{f 6=0}|∇|f ||2Q +

(1 ∧ |f |)2

|f |2
χ{f 6=0}

m∑
j=1

|∇fj −
fj
|f |
∇|f ||2Q

+ (1 + sign(1− |f |))1 ∧ |f |
|f |

χ{f 6=0}

m∑
j=1

〈Q∇|f |, (∇fj −
fj
|f |
∇|f |)〉 fj

|f |

=
(1 + sign(1− |f |))2

4
χ{f 6=0}|∇|f ||2Q

+
(1 ∧ |f |)2

|f |2
χ{f 6=0}

(
m∑
j=1

〈Q∇fj,∇fj〉+ |∇|f ||2Q − 〈∇|f |2,
∇|f |
|f |
〉Q

)

+ (1 + sign(1− |f |))1 ∧ |f |
|f |

χ{f 6=0}

(
1

2
〈Q∇|f |,∇|f |2〉 − |f |〈Q∇|f |,∇|f |〉

)
︸ ︷︷ ︸

0

=
(1 + sign(1− |f |))2

4
χ{f 6=0}|∇|f ||2Q +

(1 ∧ |f |)2

|f |2
χ{f 6=0}

(
m∑
j=1

〈Q∇fj,∇fj〉 − |∇|f ||2Q

)

=

(
(1 + sign(1− |f |))2

4
− (1 ∧ |f |)2

|f |2

)
χ{f 6=0}|∇|f ||2Q +

(1 ∧ |f |)2

|f |2
χ{f 6=0}

m∑
j=1

〈Q∇fj,∇fj〉.

Discussing the different cases |f | < 1, |f | = 1 and |f | > 1, one can easily see that

(1 + sign(1− |f |))2

4
− (1 ∧ |f |)2

|f |2
≤ 0.

Thus,

αf ≤
(1 ∧ |f |)2

|f |2
χ{f 6=0}

m∑
j=1

〈Q∇fj,∇fj〉

≤
m∑
j=1

〈Q∇fj,∇fj〉.
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Integrating over Rd, one gets

a0((1 ∧ |f |)sign(f)) :=

∫
Rd
〈Q∇((1 ∧ |f |)sign(f)),∇((1 ∧ |f |)sign(f))〉dx

≤
∫
Rd

m∑
j=1

〈Q∇fj,∇fj〉dx := a0(f).

Therefore,

a((1 ∧ |f |)sign(f)) = a0((1 ∧ |f |)sign(f)) +

∫
Rd
〈V (x)(1 ∧ |f |)sign(f), (1 ∧ |f |)sign(f)〉dx

≤ a0(f) +

∫
Rd
〈V f, f〉dx = a(f).

�

Consequently, we get

Corollary 1.6. The semigroup {T (t) : t ≥ 0} is L∞-contractive.

Now, we are able to state the main theorem of this section.

Theorem 1.7. Let 1 < p <∞. Then, A admits a realization Ap in Lp(Rd,Cm)
that generates a bounded strongly continuous and analytic semigroup {Tp(t) : t ≥
0}.

Proof. Let 2 < p <∞. According to Corollary 1.2 and Corollary 1.6 {T (t) :
t ≥ 0} is self–adjoint and L∞–contractive. Hence, by the interpolation theorems
of Riesz-Thorin and Stein, see [17, Section 1.1.5; Section 1.1.6], {T (t) : t ≥ 0}
admits a unique analytic contractive extension {Tp(t) : t ≥ 0} to Lp(Rd,Cm).
Moreover, for every f ∈ L2(Rd,Cm) ∩ L∞(Rd,Cm),

‖T (t)f − f‖p ≤ ‖T (t)f − f‖θ2‖T (t)f − f‖1−θ
∞ ≤ 21−θ‖f‖1−θ

∞ ‖T (t)f − f‖θ2,
where θ = 2

p
. This shows how {Tp(t) : t ≥ 0} is strongly continuous.

Concerning the case 1 < p < 2, we prove by duality argument that (1.2.1)
implies ‖T (t)f‖1 ≤ ‖f‖1, for every t > 0 and f ∈ L1(Rd,Cm). Applying again
the Riesz–Thorin interpolation theorem, and arguing similarly, we obtain an
analytic extrapolation of {T (t) : t ≥ 0} to Lp(Rd,Cm); such extrapolation is
always strongly continuous.

�

Remark 1.8. We can extrapolate the semigroup {T (t); t ≥ 0} to a strongly
continuous one in L1(Rd,Cm). This follows by consistency and Lp-contractivity
of the semigroup {T (t) : t ≥ 0} and according to [67]. The detailed proof can be
found in Section 2.6.
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1.3. Further properties of the semigroup

In this section we study positivity, compactness of {T (t)}t≥0 and spectrum of
A.

1.3.1. Positivity. In this subsection we give a necessary and sufficient con-
dition for positivity of the semigroup {T (t) : t ≥ 0}. We use the form characteri-
zation of the invariance of convex subsets via semigroups. For this purpose we
introduce the closed convex subset of L2(Rd,Rm)

C+ := {f = (f1, . . . , fm) ∈ L2(Rd,Rm) : f ≥ 0 a.e.}.

The projection P+ on C+ is given by

P+f := f+ = (fj ∧ 0)1≤j≤m, ∀f ∈ L2(Rd,Rm).

One knows that the projection on a closed convex subset of a Banach space
is uniquely defined and it is easy to check that P+ defined above is the right
one for C+. We recall that {T (t) : t ≥ 0} is positive if, and only if, for every
f ∈ L2(Rd,Rm) such that f ≥ 0, T (t)f ≥ 0 for all t > 0, see Section A.4 for more
details. According to Corollary B.9, {T (t) : t ≥ 0} is positive if, and only if,

• f+ ∈ D(a) for all f ∈ D(a);
• a(f+, f−) ≤ 0 for all f ∈ D(a).

Now, applying the above criterion, we get the following characterisation of
positivity of {T (t)}t≥0 in term of entries of the potential matrix V as follows

Theorem 1.9. The semigroup {T (t) : t ≥ 0} is positive if and only if vij ≤ 0, for
all i 6= j ∈ {1, . . . ,m}.

Proof. Suppose that {T (t) : t ≥ 0} is positive. Let i 6= j ∈ {1, . . . ,m} and
consider f = ϕ(ei − ej) where 0 ≤ ϕ ∈ C∞c (Rd) is arbitrarily chosen. One has
f+ = ϕei, f

− = ϕej and 〈Q∇f+,∇f−〉 = 0.

Applying Corollary B.9, we obtain

0 ≥ a(f+, f−) =
m∑
k=1

∫
Rd
〈Q∇u+

k ,∇f
−
k 〉dx+

∫
Rd
〈V f+, f−〉dx =

∫
Rd
vijϕ

2dx,

which yields vij ≤ 0 a.e. Conversely, assume that the off-diagonal coefficients
vij, i 6= j, are less than or equal to 0 and let f ∈ D(a). Let us show first that
f+ ∈ D(a). According to [28, Lemma 7.6] one has, ∇f+

k = χ{fk>0}∇fk and
∇f−k = χ{fk<0}∇fk. Therefore, f+ ∈ H1(Rd,Rm) and 〈Q∇f+

k ,∇f
−
k 〉 = 0. On the
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other hand,

〈V f, f〉 = 〈V (f+ − f−), (f+ − f−)〉
= 〈V f+, f+〉+ 〈V f−, f−〉 − 2〈V f+, f−〉

= 〈V f+, f+〉+ 〈V f−, f−〉 − 2
m∑

i,j=1

vijf
+
i f
−
j

= 〈V f+, f+〉+ 〈V f−, f−〉 − 2
∑
i 6=j

vijf
+
i f
−
j︸ ︷︷ ︸

≤0

≥ 〈V f+, f+〉+ 〈V f−, f−〉
≥ 〈V f+, f+〉.

Thus ∫
Rd
〈V f+, f+〉dx ≤

∫
Rd
〈V f, f〉dx <∞.

Consequently f+ ∈ D(a) and

a(f+, f−) =
m∑
k=1

∫
Rd
〈Q∇f+

k ,∇f
−
k 〉dx+

∫
Rd
〈V f+, f−〉dx

=

∫
Rd

m∑
i,j=1

vijf
+
i f
−
j dx

=

∫
Rd

m∑
i=1

viif
+
i f
−
i dx+

∫
Rd

∑
i 6=j

vijf
+
i f
−
j dx

=

∫
Rd

∑
i 6=j

vijf
+
i f
−
j dx ≤ 0.

�

Remark 1.10. In Chapter 2, we get the same characterization of positive matrix
Schrödinger semigroup, even if the matrix potential is not symmetric. The result
was obtained by applying the positive minimum principle, see Theorem A.4.1,
which gives a necessary condition, but in our situation will be also a sufficient
condition.

1.3.2. Compactness. In this subsection we give a necessary condition for
compactness of the resolvent of the operator A in L2(Rd,Rm) and give counter
example when the condition is not satisfied. Our assumption is that the smallest
eigenvalue µ(x) of V (x) blow up at infinity, which we rewrite as follows.
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There exists µ : Rd → R+ locally integrable such that lim
|x|→∞

µ(x) = +∞, and

(1.3.1) 〈V (x)ξ, ξ〉 ≥ µ(x)|ξ|2, ∀ξ ∈ Rm, ∀x ∈ Rd.

Proposition 1.11. Assume that (1.3.1) is satisfied. Then, Tp(t) is compact in
Lp(Rd,Rm), for every t > 0. Consequently, the spectrum of Ap is independent
of p ∈ (1,∞), countable and consists of negative eigenvalues that accumulate at
−∞.

Proof. It suffices to prove D(a) is compactly embedded in L2(Rd,Rm). In-
deed, this implies that A has a compact resolvent and, by analyticity, T (t)
is compact in L2(Rd,Rm), for every t > 0. The compactness in Lp(Rd,Rm),
1 < p <∞, is a consequence of the consistency of the semigroups {Tp(t) : t ≥ 0}
and the compactness in L2(Rd,Rm), see for instance [17, Theorem 1.6.1]. The
p-independence of the spectrum is a consequence of [17, Corollary 1.6.2].

Let us consider the ’diagonal’ sesquilinear form

aµ(f, g) =

∫
Rd

m∑
j=1

〈Q(x)∇fj(x),∇gj(x)〉dx+

∫
Rd

m∑
j=1

µ(x)fj(x)gj(x)dx

with domain

D(aµ) = {f ∈ H1(Rd,Cm) :

∫
Rd

m∑
j=1

µ(x)|fj(x)|2dx < +∞}.

By (1.3.1) we deduce that D(a) ⊆ D(aµ) and aµ(f) ≤ a(f) for all f ∈ D(a). That
is, D(a) is continuously embedded in D(aµ). It thus suffices to prove that D(aµ) is
compactly embedded in L2(Rd,Rm). This holds actually, since lim

|x|→∞
µ(x) = +∞.

Indeed, let us show that the closed unit ball of D(aµ) is compact in L2(Rd;Rm).
Let f belongs to the unit ball of D(aµ) so that in particular ‖µf‖2 ≤ aµ(f) ≤ 1.
Given ε > 0 we fix R > 0 sufficiently large so that 1 ≤ µε outside the ball
BR := {x ∈ Rd : |x| < R}. Then,∫

Rd\BR
|f(x)|2 dx ≤ε2

∫
Rd\BR

µ(x)2|f(x)|2 dx

≤ε2

∫
Rd
µ(x)2|f(x)|2 dx ≤ ε2‖µf‖2

2 ≤ ε2.

Since the set of restriction to BR of functions in D(aµ) is embedded in H1(BR;Rm)
which is compactly embedded into L2(BR;Rm) by Sobolev embedding theorem,
see [?, Theorem 6.2]. Thus, we can find finitely many functions g1, . . . , gk ∈
L2(BR;Rm) such that, for every f in the unit ball of D(aµ), there exists j ∈
{1, . . . , k} such that ∫

BR

|f(x)− gj(x)|2 dx ≤ ε2.
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Extending by the function gj by 0 to Rd and denoting by g̃j this extension, we get∫
Rd
|f(x)− g̃j(x)|2 dx =

∫
BR

|f(x)− gj(x)|2 dx+

∫
Rd\BR

|f(x)|2 dx ≤ 2ε2.

This shows that the unit ball of D(aµ) is covered by the balls of L2(Rd;Rm)

centered at g̃j of radius
√

2ε. By arbitrariness of ε > 0, it follows that the unit
ball of D(aµ) is totally bounded in L2(Rd;Rm).
Therefore, the embedding D(aµ) ↪→ L2(Rd,Rm) is compact, and thus so is D(a) ↪→
L2(Rd,Rm).

The discreteness of the spectrum follows now by the spectral mapping theorem,
since A has compact resolvent. �

Example 1.12. Here we give a counter-example where Proposition 1.11 cannot
apply and the compactness result fails even if all entries of the matrix potential
blow up at infinity. We even have a spectrum which is not reduced only to
eigenvalues. Let us consider the following two-size matrix-valued function

x 7→ V (x) := v(x)

(
1 −1
−1 1

)
= v(x)J,

where v ∈ L1
loc(Rd) can be any nonnegative function satisfying lim

|x|→∞
v(x) = +∞.

Obviously V is symmetric and satisfies (1.1.2). Diagonalizing V , we obtain

V (x) = P−1

(
2v(x) 0

0 0

)
P,

where P :=

(
1 1
−1 1

)
. The Schrödinger operator A with Q = I2 becomes

A = ∆− V = P−1

(
∆− 2v(x) 0

0 ∆

)
P.

Since the Laplacian operator ∆ has no compact resolvent on L2(Rd), thus(
∆− 2v(x) 0

0 ∆

)
also has no compact resolvent and then A also. Moreover,

the spectrum of A, σ(A) = σ(∆)∪ σ(∆− 2v) =]−∞, 0] is not discrete. However,
the punctual spectrum σp(A) = σ(∆− 2v) is actually countable, since the scalar
potential 2v blows up at infinity.

Such potentials can be constructed even for higher dimensions, m ≥ 3. One can
consider V (x) = v(x)Jm, where v is any nonnegative locally integrable function
that blows up at infinity and Jm a symmetric semi–definite (m×m)-matrix having
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0 as an eigenvalue. For example, one can take

Jm =


m− 1 −1 · · · −1

−1 m− 1
. . .

...
...

. . . . . . −1
−1 · · · −1 m− 1

 .

Remark 1.13. Under the condition (1.3.1) which guaranties compactness of the
resolvent of A, one can get more information about the spectrum σ(A) of A by
application of the min–max principle.

Indeed, let µ, ν : Rd → R+ be locally integrable such that µ blows up at
infinity and

(1.3.2) µ(x)|ξ|2 ≤ 〈V (x)ξ, ξ〉 ≤ ν(x)|ξ|2,
for every x ∈ Rd and ξ ∈ Rm. Denotes by {λ1 < λ2 < . . . } the increasing sequence
of eigenvalues of −A. By {λµ1 < λµ2 < . . . } we denote the eigenvalues of the scalar
operator −∆Q + µ acting on L2(Rd); we use the same notation for ν. According
to the min-max principle, one has λνn ≤ λn ≤ λµn, for all n ∈ N.

We recall that the min-max principle is a way to express eigenvalues of an
operator via its associated form. Applying it for A one obtains

λn = max
F1,...,Fn−1∈H

inf{a(f) : f ∈ {F1, . . . , Fn−1}⊥ ∩D(a) with ‖f‖ = 1}.

We particularly can choose, for almost every x ∈ Rd, µ(x) as the smallest
eigenvalue of V (x) and ν(x) to be the greatest eigenvalue of V (x). If, it happened
that µ and ν behaves (especially asymptotically) in a way such that one gets
the same asymptotic distribution of eigenvalues of ∆Q − ν and ∆Q − µ, then the
asymptotic distribution of the eigenvalues of ∆Q − V will be the same as ∆Q − ν
and ∆Q − µ. This will be the subject of Section 4.5.



CHAPTER 2

Semigroup associated to matrix Schrödinger operators

In this chapter we analyze the paper [42]. The question arising is to associate a
strongly continuous semigroup for a realization of A in Lp-spaces, in the case where
V is not symmetric. Actually, in the scalar case, the Schrödinger operator is always
symmetric when the potential is of real–valued. However, this is not the case
for complex–valued potentials. On the other hand, there exists a correspondence
between scalar Schrödinger operators with complex potentials and some matrix
Schrödinger operators with real nonsymmetric potentials. Such correspondence is
well clarified in Section 2.8.

The literature on Schrödinger operators with complex potential is not as rich
as for real potentials. However, there exist some references on this direction. We
particularly mention [37], which is an earlier publication dealing with this topic,
and [32, 43] and the references therein.

In this Chapter we use the same approach applied by T. Kato in [37] to
construct an m-dissipative realization A of A in L2(Rd,Rm). Thus one obtains a
strongly continuous semigroup in L2(Rd,Rm). Afterward, we call again tools from
semigroup theory to extrapolate the semigroup to all Lp–spaces, p ∈ (1,∞). More
precisely, we first prove that the space of test functions is a core for A. Moreover
the Trotter–Kato product formula, see (2.4.1), for the semigroup in L2(Rd,Rm)
holds. This formula permits to extrapolate the semigroup to the Lp–scale.

Once we obtain a consistent semigroup in all Lp-spaces, 1 < p < ∞, we
investigate on further properties. We start by identifying the domain of Ap, the
realization of A in Lp(Rd,Rm) with the maximal domain Dp,max(A). We then
study the analyticity and positivity of the semigroup. We first show that the
space of test functions is a core for Ap, 1 < p <∞, and then by using the local
elliptic regularity of ∆Q, we prove that the domain D(Ap) of Ap is actually the
maximal domain. For the analyticity, we suppose furthermore that the potential
V has numerical range (hence spectrum) included in a sector of angle less than
π/2 and that this hold uniformly with respect to x. Likewise, the spectrum of Ap
will be included in a sector of angle less than π/2 and −Ap is then sectorial of
angle less than π/2. Finally, we characterize positivity by applying the positive
minimum principle for generators of semigroups to get the necessary condition,
which we check that is also sufficient by applying again the crucial (2.4.1).

25
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This chapter is organised as follows: We start by a motivation and some
examples in Section 2.1, and then in Section 2.2 we give some preliminary results.
In Section 2.3, we state and prove the generation of semigroup in L2(Rd,Cm).
In Section 2.4, we extrapolate the semigroup to all Lp-spaces, p ∈ (1,∞). We
then show in Section 2.5 that the domain of the Lp-realization Ap of A coincides
with the maximal domain Dp,max(A). In Section 2.6 we extend the semigroup
to L1(Rd,Rm) and in Section 2.7 we collect some properties of the semigroup,
especially positivity and analyticity. Last, in Section 2.8 we apply our results to
Schrödinger operators with complex potentials.

2.1. Motivation

Throughout this chapter we assume the following hypotheses

Hypotheses 2.1. (a) Q : Rd → Rd×d be Lipschitz continuous such that
qij = qji, for all i, j ∈ {1, . . . , d} and satisfy

η1|ξ|2 ≤ 〈Q(x)ξ, ξ〉 ≤ η2|ξ|2(2.1.1)

(b) V : Rd → Rm×m be such that vij ∈ L∞loc(Rd) and

(2.1.2) 〈V (x)ξ, ξ〉 ≥ 0,

for all x ∈ Rd and ξ ∈ Rm.

We now present an example which shows that without an assumption on V as
in (2.1.2) we cannot expect generation of a semigroup in general.

Example 2.2. We consider the situation where d = 1 and m = 2. Let A be the
vector-valued operator defined on smooth functions ζ : R→ R2 by A ζ = ζ ′′+V ζ,
where

V (x) =

(
0 x
0 0

)
, x ∈ R.

Obviously, the quadratic form ξ 7→ 〈V (x)ξ, ξ〉 takes for x 6= 0 arbitrary values
in R so that V does not satisfy the semiboundedness assumption (2.1.2). Fix
p ∈ (1,∞). We are going to prove that no realization in Lp(R;R2) of the operator
A generates a semigroup. For this purpose, it suffices to prove that, for every
λ > 0 and properly chosen f ∈ Lp(R;R2), the resolvent equation λu−A u = f
does not admit any solution in the maximal domain Dp,max(A ) = {u ∈ Lp(R;R2) :
A u ∈ Lp(R;R2)}. The resolvent equation can be rewritten as a system as follows:{

λu1(x)− u′′1(x)− xu2(x) = f1(x), x ∈ R,
λu2(x)− u′′2(x) = f2(x), x ∈ R.
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For simplicity, we will only consider functions f1, f2 which are supported in
[1,∞). Solving the second equation in Lp(R), we find that the unique solution u2

is given by

u2(x) =
1

2
√
λ

∫ ∞
x

e
√
λ(x−t)f2(t) dt+

1

2
√
λ

∫ x

1

e−
√
λ(x−t)f2(t) dt+ ce−

√
λx

for x ≥ 1 and u2(x) = 0 for x < 1. The constant c is chosen such that u2(1) = 0
so that u2 is a continuous function.

From now on, we pick f2(t) = t−1 for t ≥ 1 and f2(t) = 0 for t < 1. One has
xu2(x) converges to λ−1 as x→∞. In particular, there exists x0 > 1 such that
xu2(x) ≥ (2λ)−1 for all x ≥ x0. Inserting this into the first equation and choosing
f1 ≡ 0, we obtain the differential inequality u′′1 ≤ λu1 − (2λ)−1.

Integrating this inequality, we obtain first

u′1(x) ≤ c1,λ + λ

∫ x

x0

u1(t) dt− x

2λ
, x ≥ x0,

and then

(2.1.3) u1(x) ≤ c2,λ + c1,λx+ λ

∫ x

x0

∫ t

x0

u1(s) ds dt− x2

4λ
, x ≥ x0,

for certain constants c1,λ, c2,λ. Suppose now that our resolvent equation has a
solution (u1, u2) ∈ Lp(R;R2). As u1 ∈ Lp(R), we can use Hölder’s inequality to
estimate ∣∣∣∣ ∫ x

x0

∫ t

x0

u1(s) ds dt

∣∣∣∣ ≤ ‖u1‖p
∫ x

x0

t1−
1
p dt = c3x

2− 1
p + c4

for all x ≥ x0. Inserting this into (2.1.3) and letting x→∞ we obtain that u1(x)
diverges to −∞ for x→∞, which contradicts the condition u1 ∈ Lp(R).

2.2. Preliminaries

To simplify notation, we write for ξ, η ∈ Rd

〈ξ, η〉Q :=
d∑

i,j=1

qijξiηj and |ξ|Q :=
√
〈ξ, ξ〉Q.

We define the operator ∆Q : W 1,1
loc (Rd)→ D(Rd) by setting

(2.2.1) 〈∆Qu, ϕ〉 = −
∫
Rd
〈∇u,∇v〉Q dx.

for any test function ϕ ∈ C∞c (Rd). As usual, we will say that ∆Qu ∈ L1
loc(Rd), if

there is a function f ∈ L1
loc(Rd) such that

〈∆Qu, ϕ〉 =

∫
Rd
fϕ dx
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for all ϕ ∈ C∞c (Rd). In this case we will identify ∆Qu and the function f .

We first state a lemma which gives a generalisation of the Stampacchia theorem
of weak derivation of the function asbolute value, see [28, Lemma 7.6], to vector–
valued functions

Lemma 2.3. Let 1 < p <∞ and u = (u1(x), . . . , um(x)) ∈ W 1,p(Rd,Cm). Then,
|u| ∈ W 1,p(Rd) and

(2.2.2) ∇|u| = 1

|u|

m∑
j=1

Re (ūj∇uj)χ{u6=0}.

Moreover,

(2.2.3) |∇|u||2Q ≤
d∑
j=1

|∇uj|2Q.

Proof. (i) Let ε > 0 and define aε(u) = (
m∑
j=1

u2
j + ε2)

1
2 − ε. Then, aε(u) ∈

W 1,p(Rd) and

∇aε(u) =

m∑
j=1

Re (ūi∇uj)

(
m∑
j=1

u2
j + ε2)

1
2

.

We have the following pointwise convergence: aε(u) −→
ε→0
|u| and

∇aε(u) −→
ε→0

1

|u|

m∑
j=1

Re (ūj∇uj)χ{u6=0}.

Now, since aε(u) =
|u|2

(
m∑
j=1

u2
j + ε2)

1
2 + ε

≤ |u| and by Young inequality |∇aε(u)| ≤

|∇u|, thus the dominated convergence theorem yields |u| ∈ W 1,p(Rd) and (2.2.2).
(ii) One knows that

Re (ūj∇uj) =
1

2
∇|uj|2 and |u|∇|u| = 1

2
∇|u|2 =

1

2

m∑
j=1

∇|uj|2.
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Hence, by the use of Cauchy-Schwartz inequality,

|u||∇|u||Q =
1

2

∣∣∣∣∣
m∑
j=1

∇|uj|2
∣∣∣∣∣
Q

≤ 1

2

m∑
j=1

|∇|uj|2|Q

≤
m∑
j=1

|Re (uj∇uj)|Q

≤
m∑
j=1

|uj∇uj|Q

≤ |u|

(
m∑
j=1

|∇uj|2Q

) 1
2

.

Thus, |∇|u||2Q ≤
d∑
j=1

|∇uj|2Q. �

Proposition 2.4. Let u = (u1, . . . , um) ∈ W 1,2
loc (Rd;Rm) be such that ∆Quj ∈

L1
loc(Rd) for j = 1, . . . , d. Then

(2.2.4) ∆Q|u| = 1{u6=0}
1

|u|

( m∑
j=1

uj∆Quj +
m∑
j=1

|∇uj|2Q − |∇|u||2Q
)
.

Moreover, we have

(2.2.5) ∆Q|u| ≥ 1{u6=0}
1

|u|

m∑
j=1

uj∆Quj

in the sense of distributions.

Proof. As in the proof of Lemma 2.3 we set aε(u) =
(
|u|2 + ε2

) 1
2 − ε. It

was seen there that aε(u) → |u| in W 1,p(Rd). From this it easily follows that
∆Qaε(u)→ ∆Q|u| in D(Rd).
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Recalling from the proof of Lemma 2.3 that ∇aε(u) = 1
uε+ε

∑m
j=1 uj∇uj, we

see that for a function ϕ ∈ C∞c (Rd), we have

〈∆Qaε(u), ϕ〉 = −
∫
Rd
〈Q∇aε(u),∇ϕ〉 dx = −

d∑
j=1

∫
Rd

uj
aε(u) + ε

〈Q∇uj,∇ϕ〉 dx

= −
d∑
j=1

∫
Rd

〈
Q∇uj,∇((aε(u) + ε)−1ujϕ)

〉
dx

+
d∑
j=1

∫
Rd

〈
Q∇uj,∇((aε(u) + ε)−1uj)

〉
ϕdx

=
d∑
j=1

∫
Rd

uj
aε(u) + ε

∆Qujϕdx+
d∑
j=1

∫
Rd

1

aε(u) + ε
〈Q∇uj∇uj〉ϕdx

−
d∑
j=1

∫
Rd

uj
(aε(u) + ε)2

〈Q∇uj,∇aε(u)〉ϕdx

=
d∑
j=1

∫
Rd

uj
aε(u) + ε

∆Qujϕdx+
d∑
j=1

∫
Rd

1

aε(u) + ε
〈Q∇uj∇uj〉ϕdx

−
∫
Rd

1

aε(u) + ε
〈Q∇aε(u),∇aε(u)〉ϕdx.

We can now let ε→ 0. Recall, that aε(u)→ |u| in Lploc(Rd) and ∇aε(u)→ ∇|u|
in L2

loc(Rd,Rm). Note, that
uj

aε(u)+ε
is uniformly bounded by 1, so that we can use

dominated convergence for the first integral above. For the other two integrals,
we use monotone convergence, using that Q is strictly elliptic and observing that
aε(u)−1 ↑ |u|−1. Note that in all integrals it sufficed to integrate over the set
{u 6= 0}. For the first and third integral, this is obvious, as there are functions uj
appearing, which vanish on {u = 0}. However, by Stampacchia’s lemma we have
∇uj = 0 on {u = 0} as well, taking care of the second integral. We obtain

〈∆Q|u|, ϕ〉 =

∫
{u6=0}

m∑
j=1

( uj
|u|

∆Quj +
1

u
|∇uj|2Q

)
ϕdx−

∫
{u6=0}

1

|u|
∣∣∇|u|∣∣2

Q
ϕdx.

It thus follow 2.2.4. Taking into the account (2.2.3), one obtains (2.2.5). �

2.3. Generation of semigroup in L2(Rd,Rm)

Define A to be the realization on L2(Rd,Rm) of A with domain

D(A) = {u ∈ H1(Rd,Rm) : Au ∈ L2(Rd,Rm)}.
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Our aim is to prove thatA generates a strongly continuous semigroup in L2(Rd,Rm).
To do so, we use standard arguments of functional analysis and operator theory
to establish that −A is maximal accretive and then conclude by Lumer–Philips
theorem.

We introduce the following two operators: (L0, D(L0)) and (L,D(L)) given by

L0u = Au, ∀u ∈ D(L0) := C∞c (Rd,Rm)

and

Lu = Au, ∀u ∈ D(L) := {u ∈ H1(Rd,Rm) : Au ∈ H−1(Rd,Rm)}.
L0 and L are realizations of A acting from H1(Rd,Rm) into H−1(Rd,Rm). We
define Āu = ∆Q − V ∗ to be the formal adjoint of A, where V ∗ is the conjugate
matrix of V . Similarly, we define Ā, L̄ and L̄0 with potential V ∗ instead of V .

Once −L is showed to be monotone then follows that −A is an accretive
operator. On the other hand, if −L is maximal i.e., (1− L)D(L) = H−1(Rd,Rm)
then so is −A. Indeed, let f ∈ L2(Rd,Rm) ⊂ H−1(Rd,Rm) and u ∈ D(L)
such that u − Au = f . Thus Au = u − f ∈ L2(Rd,Rm), then u ∈ D(A) and
(1− A)u = f .

In the following proposition we collect some properties of L0.

Proposition 2.5. (1) L̄ is the adjoint of L0: L̄ = L∗0 and L = L̄∗0. Consequently
L̄ and L are closed.
(2) L0 is closable and its closure is equal to L∗∗0 .

Proof. (1) Let f ∈ D(L̄) and g ∈ C∞c (Rd,Rm). Then

(L̄f, g) =

∫
Rd
〈f(x), div(Q∇g)(x)〉dx−

∫
Rd
〈V ∗(x)f(x), g(x)〉dx

=

∫
Rd
〈f(x), div(Q∇g)(x)〉dx−

∫
Rd
〈f(x), V g(x)〉dx

= (f, L0g)

Thus L̄ = L∗0 is closed. In a similar way one shows that L = L̄∗0 and thus L is also
closed.
(2) One has L∗0 = L̄ and L̄ is densely defined, hence L∗∗0 exists and equal to the
closure of L0. �

Now, we give the main theorem of this section

Theorem 2.6. −L is maximal monotone.

Proof. Step 1: We first show that −L∗∗0 is maximal monotone. It is easy to
see that −L0 is monotone. Indeed,

(−L0ϕ, ϕ) =

∫
Rd
|∇ϕ(x)|2Q(x)dx+

∫
Rd
〈V (x)ϕ(x), ϕ(x)〉dx ≥ 0,
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for all ϕ ∈ C∞c (Rd,Rm). Then

‖(1− L0)u‖H−1 ≥ ‖u‖H1 , ∀u ∈ C∞c (Rd,Rm).

Thus −L∗∗0 is also monotone as it is the closure of L0. In particular, rg(1− L∗∗0 )
is a closed subset of H−1. It thus suffices to show that (1− L∗∗0 )C∞c (Rd,Rm) is
dense in H−1(Rd,Rm) and deduce that −L∗∗0 is maximal. For that purpose, let
u ∈ H1(Rd,Rm) such that ((1− L0)ϕ, u) = 0, for all ϕ ∈ C∞c (Rd,Rm). Thus

(2.3.1) u−∆Qu+ V ∗u = 0.

The above equality is in the distribution sense. Therefore

∆Quj = uj +
m∑
l=1

vljul,

for every j ∈ {1, . . . ,m}. Applying (2.2.4), one obtains

∆Q|u| ≥
1

|u|

m∑
j=1

uj∆Qujχ{u6=0}

≥
χ{u6=0}

|u|
(
m∑
j=1

u2
j +

m∑
j,l=1

vljuluj)

≥
χ{u6=0}

|u|
|u|2 = |u|

Thus ∆|u| ≥ |u| in the sense of distributions. Now, let (φn)n ⊂ C∞c (Rd) be such
that φn ≥ 0 and φn → |u| in H1(Rd). One has

0 ≤ (∆Q|u|, φn)− (|u|, φn) = −
∫
Rd
〈∇|u|,∇φn〉Qdx+

∫
Rd
|u|φn dx

Letting n tends to ∞, one obtains −‖∇|u|‖2
2 − ‖u‖2

2 ≥ 0. Therefore u = 0.
Step 2: Now we prove that L = L∗∗0 . One knows that L is a closed extension
of L0. Hence L∗∗0 ⊂ L. In order to get the converse, it suffices to show that
ρ(L)∩ ρ(L∗∗0 ) 6= ∅. Since L∗∗0 is maximal monotone then, 1 ∈ ρ(L∗∗0 ). On the other
hand, (1−L)D(L) ⊃ (1−L∗∗0 )D(L∗∗0 ) = H−1(Rd,Rm). Hence, 1−L is surjective.
For the injectivity, one has ker(1 − L) = rg(1 − L∗)⊥, where ker(1 − L) is the
null space of 1− L and = rg(1 + L∗)⊥ the orthogonal space of rg(1 + L∗). Since
L∗ = L̄∗∗0 is maximal and this follows from step 1 applied for V ∗ instead of V .
Thus ker(1− L) = 0 and 1 ∈ ρ(L), which ends the proof. �

The following corollary states the result of generation of semigroup

Corollary 2.7. The operator A generates a contractive strongly continuous semi-
group {T (t) : t ≥ 0} on L2(Rd,Rm).
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Proof. As it is explained on the beginning of this section, since−L is maximal
then so is −A. −A is also accretive. In fact, let u ∈ D(A), then Au ∈ L2. Thus

〈−Au, u〉 =

∫
Rd
〈−Au(x), u(x)〉dx = (−Lu, u) ≥ 0.

The claim follow by application of Lumer-Philips theorem. �

2.4. Extension of the semigroup to Lp(Rd,Rm)

In this section we construct an extrapolation of the semigroup {T (t)} into the
spaces Lp(Rd,Rm), 1 ≤ p < ∞. For this purpose, we first show that {T (t)} is
given by the Trotter-Kato product formula:

(2.4.1) T (t)f = lim
n→∞

[
e
t
n

∆Qe−
t
n
V
]n
f,

for all t > 0 and f ∈ L2(Rd,Rm), where {et∆Q} is the semigroup generated, in
L2(Rd,Rm), by ∆q. In order to apply (2.4.1), we assume that vij ∈ L∞loc(Rd) and
use the following statement

Proposition 2.8. Assume that Hypotheses 2.1 hold. Then, C∞c (Rd,Rm) is a core
for A.

Proof. Since−A is maximal accretive, it suffices to show that (1−A)C∞c (Rd,Rm)
is dense in L2(Rd,Rm). Let u ∈ L2(Rd,Rm) such that 〈(1− A)ϕ, u〉 = 0, for all
ϕ ∈ C∞c (Rd,Rm). Thus u−∆Qu+ V ∗u = 0 in the distribution sense. Hence

∆Quj = uj +
m∑
l=1

vljul.

In particular, ∆Quj = div(Q∇uj) ∈ L2
loc(Rd), for for each j ∈ {1, . . . ,m}, equiv-

alently ∆uj also belongs to L2
loc(Rd). Then, by local elliptic regularity, cf [1,

Theorem 7.1], uj ∈ H2
loc(Rd). Therefore, |u| = lim

ε→0
(|u|2 + ε2)

1
2 belongs to H2

loc(Rd).

In particular, (2.2.4) still hold true i.e.,

∆Q|u| ≥
χ{u6=0}

|u|

m∑
j=1

uj∆Quj

pointwisely. Consequently,

∆Q|u| ≥
χ{u6=0}

|u|
(|u|2 + 〈V u, u〉) ≥ |u|.

Now, let ζ ∈ C∞c (Rd) be such that χB(1) ≤ ζ ≤ χB(2) and define ζn(x) = ζ(x/n)
for x ∈ Rd and n ∈ N. We multiply both two sides of the inequality ∆Q|u| ≥ |u|
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by ζn|u| and integrating by part, we obtain

0 ≥
∫
Rd
|u(x)|2ζn(x)dx−

∫
Rd

∆Q|u|(x)ζn(x)|u(x)|dx

≥
∫
Rd
|u(x)|2ζn(x)dx+

∫
Rd
〈∇(ζn|u|)(x), Q(x)∇|u|(x)〉dx

≥
∫
Rd
|u(x)|2ζn(x)dx+

∫
Rd
|∇|u|(x)|2Q(x)ζn(x)dx+

∫
Rd
〈∇ζn(x),∇|u|(x)〉Q(x)|u|dx

≥
∫
Rd
|u(x)|2ζn(x)dx+

1

2

∫
Rd
〈Q(x)∇ζn(x),∇|u|2(x)〉dx

=

∫
Rd
|u(x)|2ζn(x)dx− 1

2

∫
Rd

∆Qζn(x)|u(x)|2dx.

Straightforward computations yields

∆Qζn := div(Q∇ζn) =
1

n

m∑
i,j=1

∂iqij∂jζ(·/n) +
1

n2

m∑
i,j=1

qij∂ijζ(·/n).

In particular, one can deduce that ‖∆Qζn‖∞ → 0 as n tends to ∞. Hence,
letting n tends to ∞ in the above last inequality, one obtains ‖u‖2 ≤ 0, and thus
u = 0. �

Since C∞c (Rd,Rm) ⊂ D(∆Q)∩D(V ), whereD(∆Q) = H2(Rd,Rm) andD(V ) =
{u ∈ Lp(Rd,Rm) : V u ∈ L2(Rd,Rm)}, therefore one can apply [23, Corollary 5.8]
and conclude that

Proposition 2.9. Assume that Hypotheses 2.1 hold. Then the semigroup {T (t) :
t ≥ 0} is given by the Trotter–Kato product formula (2.4.1).

Now, we are able to extend {T (t) : t ≥ 0} to Lp(Rd,Rm)

Theorem 2.10. Let 1 < p <∞ and assume Hypotheses 2.1. Then {T (t) : t ≥ 0}
can be extrapolated to a C0–semigroup {Tp(t) : t ≥ 0} on Lp(Rd,Rm). Moreover, if
we denote by (Ap, D(Ap)) its generator. Then, Apu = Au, for all u ∈ C∞c (Rd,Rm).

Proof. Let 1 < p <∞ and f ∈ L2(Rd,Rm) ∩ Lp(Rd,Rm). The assumption
(2.1.2) yields |e−tV (x)f(x)| ≤ |f(x)| for all x ∈ Rd and t ≥ 0. So, ‖e−tV f‖p ≤ ‖f‖p,
for all t ≥ 0.

On the other hand, it is well–known that {et∆Q}t≥0 is a contractive C0-
semigroup on Lp(Rd,Rm). Consequently, for every t > 0, both et∆Q and e−tV

leave invariant the set

Bp := {f ∈ L2(Rd,Rm) ∩ Lp(Rd,Rm) : ‖f‖p ≤ 1}.
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By Fatou’s lemma we conclude that Bp is a closed subset of L2(Rd,Rm). So,
applying (2.4.1), it follows that T (t)Bp ⊂ Bp, for every t ≥ 0. Thus,

‖T (t)f‖p = ‖ lim
n→∞

[et/n∆qe−t/nV ]nf‖ ≤ ‖f‖p.

Therefore, we can extend {T (t) : t ≥ 0} to a semigroup of bounded linear operators
in Lp(Rd,Rm). Moreover, let pε ∈ (1,∞) given by pε = p+ε if p > 2 and pε = p−ε
if p < 2, for suitable ε > 0. Thus, by Hölder’s inequality,

‖T (t)f − f‖p ≤ ‖T (t)f − f‖1−θ
2 ‖T (t)f − f‖θpε ≤ 2θ‖T (t)f − f‖1−θ

2 ‖f‖θpε ,

for some θ ∈ (0, 1) and every f ∈ C∞c (Rd,Rm). Therefore limt→0 T (t)f = f in
Lp(Rd,Rm) for all C∞c (Rd,Rm). Thus, by density, the strong continuity of the
semigroup {Tp(t) : t ≥ 0} follows. Now, fix t > 0 and f ∈ C∞c (Rd,Rm). Thus
f ∈ D(A) and

(2.4.2) T (t)f − f =

∫ t

0

AT (s)f ds =

∫ t

0

T (s)Af ds,

where the integral is computed in L2(Rd,Rm). However, Af is of compact support,
thus Af ∈ Lp(Rd,Rm) and t 7→ Tp(t)Af is a continuous map from [0,∞) into
Lp(Rd,Rm). Hence, (2.4.2) holds true in Lp(Rd,Rm), i.e.

Tp(t)f − f =

∫ t

0

Tp(s)Af ds.

This implies that t 7→ Tp(t)f is differentiable in [0,∞). Hence, f ∈ D(Ap) and
Apf = Af , which ends the proof. �

2.5. Maximal domain of Ap

In this section we characterize the domain D(Ap) in terms of its Lp-maximal
domain. To this purpose we first show that the space of test functions is a core
for Ap.

Proposition 2.11. Let 1 < p <∞. Assume Hypotheses 2.1. Then,

(i) the set of test functions C∞c (Rd,Rm) is a core for Ap,
(ii) the semigroup {Tp(t) : t ≥ 0} is given by the Trotter-Kato product formula

Proof. (i) Fix 1 < p <∞. Since −Ap is m-accretive and the coefficients of
A are real, it suffices to show that (1− Ap)C∞c (Rd,Rm) is dense in Lp(Rd,Rm).
Let u ∈ Lp′(Rd,Rm), where p′ = p

p−1
is the conjugate of p, be such that 〈(1 −

A)ϕ, u〉p,p′ = 0 for all ϕ ∈ C∞c (Rd,Rm). So,

(2.5.1) u−∆Qu+ V ∗u = 0
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in the sense of distributions. In particular,

∆Quj = uj +
m∑
l=1

vljul ∈ Lp
′

loc(R
d)

for all j ∈ {1, . . . ,m}. By local elliptic regularity, uj ∈ W 2,p′

loc (Rd) for all j ∈
{1, . . . ,m}. Then, (2.5.1) holds true pointwisely in Rd.

Consider ζ ∈ C∞c (Rd) such that χB(1) ≤ ζ ≤ χB(2) and define ζn(·) = ζ(·/n)

for n ∈ N. For p′ < 2 we multiply in (2.5.1) by ζn(|u|2 + ε2)
p′−2

2 u ∈ Lp(Rd,Rm)
for ε > 0, n ∈ N, and integrating by part, we obtain

0 =

∫
Rd
ζn(|u|2 + ε2)

p′−2
2 |u|2 dx+

m∑
j=1

∫
Rd
〈∇uj,∇

(
ζn(|u|2 + ε2)

p′−2
2 uj

)
〉Q dx

+

∫
Rd
ζn(|u|2 + ε2)

p′−2
2 〈V ∗u, u〉 dx

≥
∫
Rd
ζn(|u|2 + ε2)

p′−2
2 |u|2 dx+

m∑
j=1

∫
Rd
|∇uj|2Q(x)ζn(|u|2 + ε2)

p′−2
2 dx

+
m∑
j=1

∫
Rd
〈∇uj,∇ζn〉Q(|u|2 + ε2)

p′−2
2 uj dx

+(p′ − 2)
m∑
j=1

∫
Rd
〈∇uj,∇|u|〉Quj|u|ζn(|u|2 + ε2)

p′−4
2 dx

≥
∫
Rd
ζn(|u|2 + ε2)

p′−2
2 |u|2 dx+

m∑
j=1

∫
Rd
|∇uj|2Q(x)ζn(|u|2 + ε2)

p′−2
2 dx

+

∫
Rd
〈∇|u|,∇ζn〉Q(|u|2 + ε2)

p′−2
2 |u| dx

+(p′ − 2)

∫
Rd
|∇|u||2Qζn|u|2(|u|2 + ε2)

p′−4
2 dx.

It follows now from (2.2.3) that

0 ≥
∫
Rd
ζn(|u|2 + ε2)

p′−2
2 |u|2 dx+

∫
Rd
〈∇|u|,∇ζn〉Q(|u|2 + ε2)

p′−2
2 |u| dx

+(p′ − 1)

∫
Rd
|∇|u||2Qζn|u|2(|u|2 + ε2)

p′−4
2 dx

≥
∫
Rd
ζn(|u|2 + ε2)

p′−2
2 |u|2 dx+

1

p′

∫
Rd
〈∇((|u|2 + ε2)

p′
2 )),∇ζn〉Q dx

=

∫
Rd
ζn(|u|2 + ε2)

p′−2
2 |u|2 dx− 1

p′

∫
Rd

∆Qζn(|u|2 + ε2)
p′
2 ) dx.
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By letting ε goes to 0, one obtains

∫
Rd
ζn|u|p

′
dx− 1

p′

∫
Rd

∆Qζn|u|p
′
dx ≤ 0.

Hence, as in the proof of Proposition 2.8, we conclude, by letting n tends to ∞,
that ∫

Rd
|u|p′ dx ≤ 0.

Therefore, u = 0.
In the case when p′ > 2, one multiplies in (2.5.1) by ζn|u|p

′−2u and argues in a
similar way.
(ii) This is an immediate consequence of (i) and [23, Corollary III-5.8]. �

In the next result we show that the domain D(Ap) is equal to the Lp-maximal
domain of A.

Proposition 2.12. Let 1 < p <∞. Assume Hypotheses 2.1. Then

D(Ap) = {u ∈ Lp(Rd,Rm) ∩W 2,p
loc (Rd,Rm) : Au ∈ Lp(Rd,Rm)} := Dp,max(A).

Proof. Let us show first that D(Ap) ⊆ Dp,max(A). Take u ∈ D(Ap). Since
C∞c (Rd,Rm) is a core for Ap, it follows that there exists (un)n ⊂ C∞c (Rd,Rm) such
that un → u and Aun → Apu in Lp(Rd,Rm), and in particular in Lploc(Rd,Rm).
As V ∈ L∞loc(Rd,Rm), we deduce that V un → V u in Lploc(Rd,Rm). Consequently,

∆Qu = Apu+ V u = lim
n→∞

Aun + V un ∈ Lploc(R
d,Rm).

So, by local elliptic regularity, we obtain u ∈ W 2,p
loc (Rd,Rm). Hence, Au = Apu

belongs to Lp(Rd,Rm), which shows that u ∈ Dp,max(A).

In order to prove the other inclusion it suffices to show that λ−A is injective
on Dp,max(A), for some λ > 0. To this purpose, let u ∈ Dp,max(A) such that
(λ−A)u = 0. Assume that p ≥ 2. Multiplying by ζn|u|p−2u and integrating (by
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part) over Rd one obtains

0 = λ

∫
Rd
ζn(x)|u(x)|pdx+

∫
Rd

m∑
j=1

〈Q∇uj,∇(|u|p−2ujζn)〉dx

+

∫
Rd
〈V (x)u(x), u(x)〉|u(x)|p−2ζn(x)dx

≥ λ

∫
Rd
ζn(x)|u(x)|pdx+

∫
Rd
|u(x)|p−2ζn(x)

m∑
j=1

〈Q(x)∇uj(x),∇uj(x)〉dx

+

∫
Rd

m∑
j=1

|u(x)|p−2uj(x)〈Q(x)∇uj(x),∇ζn(x)〉dx

+(p− 2)

∫
Rd
|u(x)|p−2ζn(x)〈Q(x)∇|u|(x),∇|u|(x)〉dx

≥ λ

∫
Rd
ζn(x)|u(x)|pdx+

∫
Rd
|u(x)|p−1〈Q(x)∇|u|(x),∇ζn(x)〉dx

≥ λ

∫
Rd
ζn(x)|u(x)|pdx+

1

p

∫
Rd
〈Q(x)∇ζn(x),∇|u|p(x)〉dx

≥ λ

∫
Rd
ζn(x)|u(x)|pdx− 1

p

∫
Rd

∆Qζn(x)|u(x)|pdx.

So, as in the proof of the above proposition, we conclude that u = 0.

The case p < 2 can be obtained similarly, by multiplying the equation (λ−
A)u = 0 by ζn(|u|2 + ε)

p−2
2 u, ε > 0, instead of ζn|u|p−2u.

�

2.6. Semigroup in L1(Rd,Rm)

We next address the case where p = 1. We can easily extend the semigroups
{Tp(t)} to a consistent contraction semigroup on L1(Rd;Rm). Note, however, that
we no longer have knowledge of the domain of the generator.

Theorem 2.13. There exists a realization A1 of A in L1(Rd;Rm) that generates
a strongly continuous semigroup of contractions {S1(t) :≥ 0}, this semigroup is
consistent with all {Tp(t) : t ≥ 0} for p ∈ (1,∞).

Proof. Consider f ∈ C∞c (Rd;Rm). Then, f ∈ Lp(Rd;Rm) for every p ∈
(1,∞) and by consistency of the semigroups, we have T2(t)f = Tp(t)f ∈ Lp(Rd;Rm).
Since {Tp(t) : t ≥ 0} is a contraction, we obtain∫

Rd
|T2(t)f |p dx ≤ ‖f‖pp ≤ ‖f‖1‖f‖p−1

∞ .
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for every t ≥ 0. Applying the well–known Fatou’s lemma to let p→ 1+, we infer
that T2(t)f ∈ L1(Rd;Cm) and ‖T2(t)f‖1 ≤ ‖f‖1. Thus, by density of C∞c (Rd;Rm)
in L1(Rd;Rm), T2(t) can be uniquely extended to a linear bounded operator T1(t)
on L1(Rd;Rm), for all t ≥ 0. The semigroup law for {T1(t) : t ≥ 0} follows by
uniqueness of the extension.

Now, let us prove that the semigroup {T1(t)} is strongly continuous. To that
end, since C∞c (Rd;Rm) is contained in D(Ap), we can write

‖T1(t)f − f‖p =

∥∥∥∥∫ t

0

T (s)Af ds
∥∥∥∥
p

≤
∫ t

0

‖T (s)Af‖pds

≤‖Af‖pt

≤‖Af‖
1
p

L1(Rd;Rm)
‖Af‖

1− 1
p

∞ t

for all t > 0 and f ∈ C∞c (R;Rm). Using the same arguments as above, we can
easily show that

‖T1(t)f − f‖L1(Rd;Rm) ≤ ‖Af‖L1(Rd;Rm)t, t > 0.

Hence, T1(t)f converges to f in L1(Rd;Rm) as t→ 0+. Since each operator T1(t)
is a contraction, we can extend the previous convergence to any f ∈ L1(Rd;Rm)
by density arguments.

Note that once {T1(t) : t ≥ 0} is a contractive consistent semigroup. We can
conclude directly by applying [67, Proposition 4] that {T1(t) : t ≥ 0} is strongly
continuous.

Noting that a function f ∈ L1(Rd;Rm) ∩ L2(Rd;Rm) can be approximated,
simultaneously in L1 and in L2, by a sequence of test functions, we see that
{T1(t) : t ≥ 0} and {T2(t) : t ≥ 0} are consistent. Similarly, we see that
{T1(t) : t ≥ 0} and {Tp(t) : t ≥ 0} are consistent for every p ∈ (1,∞).

To complete the proof we shall show that Ap = A on C∞c (Rd,Rm). For this
purpose fix t > 0 and f ∈ C∞c (Rd;Rm). One has f ∈ D(A) and

(2.6.1) T (t)f − f =

∫ t

0

AT (s)f ds =

∫ t

0

T (s)Af ds,

where the integral is computed in L2(Rd,Rm). However, Af is of compact support,
thus Af ∈ Lp(Rd,Rm) and t 7→ Tp(t)Af is a continuous map from [0,∞) into
Lp(Rd,Rm). Hence, (2.6.1) holds true in Lp(Rd,Rm), that is

Tp(t)f − f =

∫ t

0

Tp(s)Af ds.

This yields t 7→ Tp(t)f is differentiable in [0,∞), then f ∈ D(Ap) and Apf = Af ,
which ends the proof. �
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Remark 2.14. From Theorem 2.13 we do not obtain explicitly the domain D(A1)
of A1 and we cannot even say that the subspace of test function is a core for it.
However, as the semigroups {Tp(t) : t ≥ 0} are consistent for 1 ≤ p <∞, so are
the resolvent (λ− Ap)−1 for every λ > 0. Indeed, if f ∈ Lp(Rd;Rm) ∩ L1(Rd;Rm)
for some p ∈ (1,∞), then for g ∈ L∞(Rd;Rm) with compact support we have

〈(λ− Ap)−1f, g〉p,p′ =

∫ ∞
0

e−λt〈Tp(t)f, g〉p,p′ dt

=

∫ ∞
0

e−λt〈T1(t)f, g〉1,∞ dt = 〈(λ− A1)−1f, g〉1,∞.

As g was arbitrary, it follows that (λ− Ap)−1f = (λ− A1)−1f .

2.7. Further properties of the semigroup

2.7.1. Positivity. We start by characterizing positivity of the semigroup.

Proposition 2.15. Let 1 < p < ∞. The semigroup {Tp(t)} is positive if and
only if the off–diagonal entries of V satisfy vkl(x) ≤ 0 for almost every x ∈ Rd

whenever k 6= l.

Proof. Assume that {Tp(t)} is positive. Let us denote the canonical basis
of Rm by (ek)1≤k≤m. One has, for 0 ≤ ϕ ∈ C∞c (Rd) the nonnegative function
ϕek belongs to D(Ap) as well as to the dual space of Lp(Rd;Rm), for each k ∈
{1, . . . ,m}. By application of TheoremA.31, it follows that for k 6= l we have

0 ≤ 〈Apϕel, ϕek〉 =

∫
Rd

div(Q∇ϕ)ϕ〈el, ek〉 dx−
∫
Rd
ϕ2〈V el, ek〉 dx

= −
∫
Rd
vklϕ

2 dx.

As ϕ is arbitrary, this implies that vkl ≤ 0 as claimed.

To prove the converse, assume that vkl(x) ≤ 0 for k 6= l and almost every
x ∈ Rd. This is precisely the positive minimum principle for the matrix −V (x).
For matrices positive minimum principle is not only necessary, but also sufficient
to generate positive semigroup, see [10, Theorem 7.1]. Hence, we see that the
multiplication semigroup e−tVp is positive. As the semigroup {et∆Q} is positive, see
[54, Corollary 4.3], the positivity of {Tp(t) : t ≥ 0} follows by the Trotter–Kato
product formula. �

2.7.2. Analyticity. The semigroup {Tp(t) : t ≥ 0} generated by Ap is not,
in general, analytic. This depends upon the potential matrix V . Indeed, if V is
symmetric, the semigroup {Tp(t) : t ≥ 0} is analytic in Lp(Rd,Rm), 1 < p <∞,
see Chapter 1. However, if V is antisymmetric it may happen that the semigroup
is not analytic as the following example shows



2.7. FURTHER PROPERTIES OF THE SEMIGROUP 41

Example 2.16. Consider the operator A defined on smooth functions ζ : R→ C2

by A ζ = ζ ′′ − V ζ, where

V (x) =

(
0 x
−x 0

)
, x ∈ R.

By Corollary 3.7, the realization Ap of L , with domain W 2,p(R;C2) ∩ D(Vp)
generates a strongly continuous semigroup on Lp(R;C2) for p ∈ (1,∞).

We diagonalize the matrix

(
0 1
−1 0

)
and so we obtain that Ap is similar to the

operator

Ãp := P−1ApP =

(
∆ 0
0 ∆

)
− x

(
i 0
0 −i

)
,

where P =

(
1 1
−i i

)
. Hence the semigroup {Tp(t) : t ≥ 0} generated by Ap is

analytic if and only if both the two semigroups generated by ∆± ix are analytic
on Lp(R).

To see that the semigroup generated by B := ∆− ix is not analytic on Lp(R)
we introduce the transformation

Uσf(x) = f(x− σ), x ∈ R, f ∈ Lp(R),

for arbitrary fixed σ ∈ R. So, we have

U−σBUσ = B − iσI.

Hence,

U−σ(µ− iσ −B)−1Uσ = (µ−B)−1

and thus,

‖(µ− iσ −B)−1‖L(Lp(R)) = ‖(µ−B)−1‖L(Lp(R))

for arbitrary σ ∈ R and every µ > 0. Therefore, by [23, Theorem II.4.6] the
semigroup generated by B is not analytic.

If one looks to the spectrum of V on obtains the following: Whenever V is
symmetric obviously, σ(V ) belongs to the positive real axis [0,∞) (we suppose
that (2.1.2) is satisfied). However, if V is antisymmetric, as in the above example,
the spectrum of V is the imaginary axis (in Example2.16, σ(V (x)) = ±ix and
x ∈ R); thus, in this case one cannot find a sector of angle less than π/2 that
includes the spectrum of V .

Our idea to construct an analytic semigroup is then to impose on the spectrum
of V (x) to be included in a sector of angle less than π/2, uniformly in x
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Proposition 2.17. Assume that, there exists a constant C > 0 such that

(2.7.1) Re 〈V (x)ξ, ξ〉 ≥ C |Im 〈V (x)ξ, ξ〉| ,
for all x ∈ Rd and ξ ∈ Cm. Thus, the semigroup {Tp(t) : t ≥ 0} generated by Ap
is analytic, for every 1 < p <∞. That is it admits a holomorphic extension to
Σπ/2−arctan(C−1).

Proof. Let us show that

Re 〈−Apu, |u|p−2u〉 ≥ Cp|Im 〈−Apu, |u|p−2u〉|,
for all u ∈ D(Ap) and suitable Cp > 0. It suffices to prove it for all u ∈
C∞c (Rd,Cm), since the set of test functions is a core for Ap.

Let u ∈ C∞c (Rd,Cm). According to [54, Theorem 3.9], one has

Re 〈−∆Qu, |u|p−2u〉 ≥ |p− 2|
2
√
p− 1

|Im 〈∆Qu, |u|p−2u〉|,

Set Cp = min(C, |p−2|
2
√
p−1

). Thus

Re 〈−Apu, |u|p−2u〉 = Re 〈−∆Qu, |u|p−2u〉+ Re 〈V u, |u|p−2u〉

≥ |p− 2|
2
√
p− 1

|Im 〈−∆Qu, |u|p−2u〉|+
∫
Rd

Re 〈V (x)u(x), u(x)〉|u(x)|p−2dx

≥ |p− 2|
2
√
p− 1

|Im 〈−∆Qu, |u|p−2u〉|+ C

∫
Rd
|Im 〈V (x)u(x), u(x)〉||u(x)|p−2dx

≥ Cp|Im 〈Apu, |u|p−2u〉|.
�

2.8. Application to Schrödinger operators with complex potentials

Let us consider the matrix potential

V (x) :=

(
v(x) −w(x)
w(x) v(x)

)
= w(x)

(
0 −1
1 0

)
+ v(x)

(
1 0
0 1

)
where w ∈ L∞loc(Rd) and 0 ≤ v ∈ L∞loc(Rd). So, Hypotheses 2.1 are satisfied
and therefore, we deduce, by Theorem 2.10 and Proposition 2.12, that Lp, the
Lp-realization of the operator

L =

(
∆ 0
0 ∆

)
−V with domain {u ∈ Lp(Rd,C2)∩W 2,p

loc (Rd,C2) : Lu ∈ Lp(Rd,C2)},

generates a C0-semigroup on Lp(Rd,R2). Moreover C∞c (Rd,R2) is a core for Lp.

Now, we diagonalize the matrix

(
0 −1
1 0

)
and so we obtain that Lp is similar to
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the operator

P−1LpP =

(
∆ 0
0 ∆

)
−
(
v + iw 0

0 v − iw

)
,

where P =

(
1 1
−i i

)
. Thus the following Schrödinger operators with complex

potentials ∆− v ± iw with domain

{f ∈ Lp(Rd,C) ∩W 2,p
loc (Rd,C) : ∆f ± iwf − vf ∈ Lp(Rd,C)}

generates C0-semigroups on Lp(Rd,C) and C∞c (Rd,C) is a core. In general the
semigroups are not analytic, see 2.16. However, if we assume that there is a
positive constant C such

|w(x)| ≤ Cv(x), for a.e. x ∈ Rd,

then

|Im 〈V (x)ξ, ξ〉| = |v(x)(ξ1ξ2 − ξ1ξ2)|
≤ 2|v(x)||ξ1ξ2|
≤ Cw(x)|ξ|2 = CRe 〈V (x)ξ, ξ〉.

Applying Proposition 2.17 we deduce that ∆± iw − v with domain

{f ∈ Lp(Rd,C) ∩W 2,p
loc (Rd,C) : ∆f ± ivf − wf ∈ Lp(Rd,C)}

generates an analytic C0-semigroups on Lp(Rd,C).





CHAPTER 3

Domain characterization of matrix Schrödinger operators

In the previous Chapter 2, we associated a C0-semigroup in Lp-spaces, 1 ≤
p < ∞, to a realization Ap of A. We then showed that, in reflexive Lp-spaces,
1 < p <∞, Ap is the closure of A defined on the space of test functions and thus
the domain of Ap is the maximal domain Dp,max(A).

Since A is the sum of a diffusion term ∆Q and potential term −V . We, now
ask if we may coincide Dp,max(A) with the so-called natural domain of A, which
will be the intersection between W 2,p(Rd,Rm) which represents the domain of the
diffusion part ∆Q and D(Vp) the (maximal) domain of the operator multiplication
by V .

Such a coincidence between the maximal and natural domains leads to a
maximal regularity for solutions to the parabolic system ∂tu = Au, when the
semigroup is analytic. Indeed, in such a situation the domain D(Ap) will be
continuously embedded into W 2,p(Rd,Rm), which is, in turn, embedded in Hölder
spaces for large enough p’s. Moreover, it holds a maximal inequality of type (3.2.2),
such an inequality is very useful when looking for conditions of compactness of
the resolvent of A.

The aim of this chapter is to investigate on this coincidence between the maxi-
mal and natural domains of A. Such a coincidence is not always satisfied for elliptic
operators as shows in [34, Example 2.2], where there was an unbounded drift
term, in addition to the diffusion and potential terms. However, for Schrödinger
operators, in the scalar case, Shen shows, in [60], that the coincidence of domains
holds for (scalar) potentials belonging to the so-called reverse Hölder class Bq,
for 2q > d. This class contains, in particular, all polynomial radial potentials |x|r,
r > 0. Otherwise, Okazawa in [52], proves the same for nonnegative potentials v
satisfying |∇v| ≤ Cv, for some C > 0, which is equivalent to the fact that log(v)
is Lipschitz continuous. Thus, v may grow as exp(|x|) as well as |x|r, r ≥ 1.

To get similar results for matrix Schrödinger operator, we propose to follow,
firstly, the strategy from [34] in using a noncommutative Dore–Venni theorem
due to Monniaux and Prüss [50], thereby obtaining sectoriality and, in particular,
closedness, of A endowed with the natural domain W 2,p ∩D(Vp). Our approach
allows Lipschitz potential terms, and for some particular potential, entries growing
like |x|r for some r ∈ [1, 2). Secondly, we use a perturbation theorem due to

45
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Okazawa [52, 53] to include more potentials in the diagonal part of the matrix
potential.

We also obtain a sufficient condition for the compactness of the resolvent of A
and apply our results to scalar complex–valued potentials.

This chapter is organized as follows. In Section 3.1 we fix our assumptions,
present some examples satisfying this assumptions and recall some preliminary
results that will be used subsequently. Section 3.2 contains the actual main
theorem obtained by Dore–Venni’s theorem and in Section 3.3, we add a diagonal
perturbation to the potential matrix considered in Section 3.2 and obtain the
same results. We then, establish compactness of the resolvent of Ap in Section 3.4
and end the chapter by a section where we consider Schrödinger operators with
scalar complex-valued potential and we show that they are similar to some special
matrix Schrödinger operators. Finally, we apply the results of this chapter for an
example of matrix Schrödinger operator with polynomial entries.

The material of this chapter is mainly based on the analysis of results of [41,
Section 2 and 3] and [47, Section 3].

3.1. Hypotheses, remarks and preliminaries

Throughout, we make the following assumptions.

Hypotheses 3.1. Let d,m ∈ N.

(a) Let Q = (qi,j) : Rd → Rd×d be a symmetric matrix-valued function with
Lipschitz continuous entries such that (2.1.1) holds. For p ∈ (1,∞) we
define the operator Dp on Lp(Rd;Cm) by D(Dp) = W 2,p(Rd;Cm) and

Dpu :=
[

div(Q∇uk)− uk
]
k=1,...,m

=
[
∆Quk)− uk

]
k=1,...,m

.

(b) Let V : Rd → Rm×m be a matrix–valued function with entries inW 1,∞
loc (Rd)

such that V (x) is injective and satisfy (2.1.2).
Moreover, assume that there exists a constant α ∈ [0, 1

2
) such that, for

every j = 1, . . . , d, either the matrix–valued function x 7→ DjV (x)(V (x))−α

or x 7→ (V (x))−αDjV (x) is uniformly bounded in Rd. That is

sup
x∈Rd
|∂jV (x)(V (x))−α| <∞ or

sup
x∈Rd
|(V (x))−α∂jV (x)| <∞,(3.1.1)

for all j ∈ {1, . . . ,m}.
For p ∈ (1,∞) we define the operator Vp on Lp(Rd;Cm) by setting

D(Vp) = {f ∈ Lp(Rd;Cm) : V f ∈ Lp(Rd;Cm)} and Vpf := V f . Here V f
is to be understood as matrix–vector product.
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Remark 3.2. Without loss of generality we assume that both Dp and Vp are
injective operators. Indeed, if for example V were not injective but still satisfies
(2.1.2), one could rescale it and consider Ṽ = V + Im, which becomes injective.
The injectivity assumption is required to compute imaginary powers.

Once V satisfies Hypotheses 3.1, then do also its conjugate matrix V ∗. In fact,
it is easy to see that V satisfy (2.1.2) if and only if V ∗ do. Now, let us look to
(3.1.1). We now that

∂jV
∗(V ∗)−α = (V −α∂jV )∗.

Hence, ∂jV
∗(V ∗)−α is uniformly bounded if and only if V −α∂jV so is. We thus can

say that actually (3.1.1) is a symmetric property with respect to the adjointness.

It is easy to see that potentials V of Lipschitz entries are allowed by Hypotheses
3.1. Actually, (3.1.1) with α = 0 holds if and only if V is Lipschitz continuous.
We are next going to illustrate that Hypotheses 3.1 allow for potentials V whose
entries grow more than linearly at infinity.

Example 3.3. We again consider the situation where d = 1 and m = 2. Choosing
r ∈ [1, 2), we set

V (x) :=

(
0 1 + |x|r

−(1 + |x|r) 0

)
= (1 + |x|r)

(
0 1
−1 0

)
, x ∈ Rd.

As V (x) is antisymmetric, we find 〈V (x)ξ, ξ〉 = 0 for all x ∈ R and ξ ∈ R2. Note
that V (x) is symmetric for all x ∈ R. One has

(V (x))−α = (1 + |x|r)−α
(

0 1
−1 0

)−α
, x ∈ R,

so that

DxV (x) · (V (x))−α = r|x|r−2(1 + |x|r)−αx
(

0 −1
1 0

)
·
(

0 1
−1 0

)−α
for all x ∈ R. Now, since r < 2, thus r−1

r
< 1

2
. Hence, one can pick α ∈ ( r−1

r
, 1

2
)

so that r − 1− αr < 0 and thus the function x 7→ DxV (x) · (−V (x))−α is indeed
bounded.

Actually, we can consider any constant square matrix V0 which is invertible
and satisfy (2.1.2). Taking V (x) := (1 + |x|r)V0, for some r ∈ [1, 2), with this
choice of V , hypotheses 3.1 are satisfied.

We now collect some properties of the operators Dp and Vp.

Proposition 3.4. Let 1 < p <∞.
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(a) The operator −Dp is invertible, sectorial and admits bounded imaginary
powers. Its power angle is 0. Consequently, for every ϑ > 0 there exists
a constant c such that for s ∈ R and λ ∈ Sπ−ϑ we have

‖(λ−Dp)
−1‖L (Lp(Rd;Cm)) ≤

c

1 + |λ|
, ‖(−Dp)

is‖L (Lp(Rd;Cm)) ≤ ceϑ|s|.

(b) The operator Vp is invertible and admits bounded imaginary powers. Its
power angle is at most π

2
. Consequently, for every ϑ > π

2
there exists a

constant c such that for s ∈ R and λ ∈ Sπ−ϑ we have

‖(λ+ Vp)
−1‖L (Lp(Rd;Cm)) ≤

c

1 + |λ|
, ‖(Vp)is‖L (Lp(Rd;Cm)) ≤ ceϑ|s|.

Proof. (a) We conclude by the fact that for every ϕ ∈ (0, π
2
) the operator

−Ap has a bounded H∞-calculus on Sπ−ϕ, see Proposition C.13 ([21, Theorem
6.1]) and the boundedness of imaginary follows immediately. For more details see
Appendix C.

(b) The claim follow by Theorem (D.4) and Theorem D.5 of Appendix D. �

3.2. The generation result

In this section we are going to prove that the sum −(Dp − Vp), defined on
the domain D(Dp) ∩D(Vp) is closed and quasi–sectorial. To that end, we make
use of a non–commutative version of the Dore–Venni Theorem, see Theorem
C.26, elaborated by Monniaux and Prüss in [50]. This theorem is valid in
arbitrary UMD Banach spaces, see Definition C.20. The spaces X = Lp(Rd;Cm),
1 < p <∞ are a UMD Banach space. For more information we refer the reader
to [14].

Crucial to apply Theorem C.26 is the commutator estimate. To formulate it,
we use the following notation. Given a (sufficiently differentiable) matrix–valued
function M : Rd → Rm×m, we write ∇kM for the matrix whose k-column is the
gradient of the k-th row of M . Thus, if M = (mij), then

∇kM =

∂1mk1 . . . ∂1mkm
...

. . .
...

∂lmk1 . . . ∂lmkm

 .

Lemma 3.5. Fix p ∈ (1,∞), let Dp be defined as in Hypotheses 3.1 and M =
(mij) : Rd → Rm×m be a matrix valued function with entries in W 2,∞(Rd); the
induced multiplication operator on Lp(Rd;Cm) is denoted by Mp. Then, for every
f ∈ W 2,p(Rd,Cm) the k-th entry of (DpMp −MpDp)f is given by

div(Q(∇kM)f) + tr
[
Q(∇kM)Df

]
.
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Proof. Making use of the definition of the operators and the product rule,
we find that the k–th entry of (DpMp −MpDp)f is

d∑
i,j=1

∂i
(
qij∂j(Mf)k

)
−

m∑
l=1

mkl div(Q∇fl)

=
d∑

i,j=1

∂i

(
qij∂j

m∑
l=1

mklfl

)
−

m∑
l=1

mkl div(Q∇fl)

=
d∑

i,j=1

∂i

(
qij

m∑
l=1

[
(∂jmkl)fl +mkl(∂jfl)

])
−

m∑
l=1

mkl div(Q∇fl)

= div(Q(∇kM)f) +
m∑
l=1

d∑
i,j=1

(∂imkl)qij(∂jfl)

= div(Q(∇kM)f) + tr
[
Q(∇kM)∇f

]
for all f ∈ W 2,p(Rd;Cm). �

Theorem 3.6. Assume Hypotheses 3.1 and fix p ∈ (1,∞). Then, the operator
−(Dp− Vp), defined on the domain D(Dp)∩D(Vp), is closed, densely defined and
sectorial.

Proof. We will apply the noncommutative version of Dore–Venni theorem,
see Theorem C.26. According to Proposition 3.4 we can pick θD, θV ∈ (0, π) with
θD + θV < π such that

‖(λ−Dp)
−1‖L (Lp(Rd;Cm)) ≤

c

1 + |λ|
and ‖(−Dp)

is‖L (Lp(Rd;Cm)) ≤ ceθD|s|

for λ ∈ Sπ−θD and

‖(λ+ Vp)
−1‖L (Lp(Rd;Cm)) ≤

c

|λ|
and ‖V is

p ‖L (Lp(Rd;Cm)) ≤ ceθV |s|

for λ ∈ Sπ−θV .

Fixing f ∈ Lp(Rd,Cm), λ ∈ Sπ−θD and µ ∈ Sπ−θV . We now proceed to
estimate

C(λ, µ)f := (−Dp)(λ−Dp)
−1
[
(−Dp)

−1(µ+ Vp)
−1 − (µ+ Vp)

−1(−Dp)
−1
]
f.

and then get the commutator condition of TheoremC.26. In order to apply Lemma
3.5 for the commutator C(λ, µ) we need to approximate the potential V with
smoother potentials. Let (ρn)n∈N be a mollifier sequence and let ζ ∈ C∞c (Rd) be
such that 0 ≤ ζ(x) ≤ 1 for all x ∈ Rd and ζ(x) = 1 for |x| ≤ 1 whereas ζ(x) = 0
for |x| ≥ 2. For a locally integrable function ϕ, we set

(Knϕ)(x) := ζ
(x
n

)∫
Rd
ρn(y)ϕ(x− y) dy, x ∈ Rd, n ∈ N.
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Clearly, Knϕ belongs to C∞c (Rd). It is well-known that Knϕ converges locally
uniformly to ϕ as n→∞, for every continuous function ϕ. Moreover, if ϕ belongs
to W j,p(Rd;Rm) for some j ∈ N, then we also get convergence in W j,p(Rd;Rm).

We now set V (n) := (Knvij) for n ∈ N. Note that 〈V (n)ξ, ξ〉 ≥ 0 on Rd

for every ξ ∈ Rm. Consequently, the induced multiplication operator V
(n)
p on

Lp(Rd;Cm) is m-accretive, whence for µ ∈ C with Reµ > 0 we have µ ∈ ρ(V
(n)
p )

and ‖(µ+ V
(n)
p )−1‖L (Lp(Rd;Cm)) ≤ (Reµ)−1, see Proposition D.1. In particular, for

fixed µ the resolvent operators (µ + V
(n)
p )−1 are uniformly bounded. We claim

that (µ + V
(n)
p )−1 converges strongly to (µ + Vp)

−1. Indeed, for g ∈ Cc(Rd;Cm)
we have

(µ+ V (n)
p )−1g − (µ+ Vp)

−1g = (µ+ V (n)
p )−1(V − V (n))(µ+ Vp)

−1g.

Since (µ+ V )−1g has compact support and V (n) converges to V locally uniformly
on Rd, in particular V (n) converges uniformly in supp((µ+V )−1g) to V , it follows
that (V − V (n))(µ + Vp)

−1g → 0 uniformly and thus in Lp(Rd;Cm). Using the
uniform boundedness of the resolvents, the claim follows.

Thus, setting

Cn,m(λ, µ)f

:=Dp(λ−Dp)
−1
[
(−Dp)

−1(µ+ V (n)
p )−1 − (µ+ V (n)

p )−1(−Dp)
−1
]
DpKm((−Dp)

−1f)

we see that, letting first n and then m tend to ∞, Cn,m(λ, µ)f converges to
C(λ, µ)f in Lp(Rd;Cm). Noting that (µ+ V (n))−1 has C∞-entries which, together
with its derivatives, are bounded, it follows that we can rewrite Cn,m(λ, µ)f as

Cn,m(λ, µ)f = (λ−Dp)
−1
[
Dp(µ+ V (n)

p )−1 − (µ+ V (n)
p )−1Dp

]
Km((−Dp)

−1f).

We can now apply Lemma 3.5. Noting that

Dj(µ+ V (n))−1 = −(µ+ V (n))−1(DjV
(n))(µ+ V (n))−1

we find that

Cn,m(λ, µ)f

=(λ−Dp)
−1 div

(
−Q(µ+ V (n))−1∇V (n)(µ+ V (n))−1Km((−Dp)

−1f)
)

+ (λ−Dp)
−1(µ+ V (n))−1 tr[−Q(∇V (n))(µ+ V (n))−1∇Km((−Dp)

−1f)]

=(−Dp)
1
2 (λ−Dp)

−1(−Dp)
− 1

2 div
(
−Q(µ+V (n))−1∇V (n)(µ+V (n))−1Km((−Dp)

−1f)
)

+ (λ−Dp)
−1(µ+ V (n))−1 tr[−Q(∇V (n))(µ+ V (n))−1∇Km((−Dp)

−1f)].

(3.2.1)

Here,

div
(
−Q(µ+ V (n))−1∇V (n)(µ+ V (n))−1Km((−Dp)

−1f)
)
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should be interpreted as the vector, whose k-th component is

div
(
−Q(µ+ V (n))−1∇kV (n)(µ+ V (n))−1Km((−Dp)

−1f)
)
.

The interpretation of the trace term in (3.2.1) is similar.

To be able to pass to the limit as n→∞, we have to take care of the summand
involving the divergence. To that end, pick q ∈ (1,∞) such that p−1 + q−1 = 1.

Recall that by the results of [5] (the square root problem) the operator (−Dq)
− 1

2

is bounded from Lq(Rd;Cm) to W 1,q(Rd;Cm). Therefore, for j = 1, . . . , d, the

operator
(
∂j(−Dq)

− 1
2

)∗
defines a bounded operator on Lp(Rd;Cm). Consequently,

we can extend (−Dp)
− 1

2 div to a bounded operator S on Lp(Rd;Cm). Since the
function Km((−Dp)

−1f is compactly supported on Rd and ∂jV
(n) converges to

∂jV in Lploc(Rd;Cm) and ∂jV
(n) is locally uniformly bounded for j = 1, . . . , d, we

can affirm that

En := Q(µ+ V (n))−1∇V (n)(µ+ V (n))−1Km((−Dp)
−1f)

converges to

E := Q(µ+ V )−1∇V (µ+ V )−1Km((−Dp)
−1f),

in Lp(Rd;Cm) as n → ∞. Indeed, set ϕ := Km((−Dp)
−1f) ∈ C∞c (Rd,Cm). For

each j ∈ {1, . . . ,m}, one has

Q−1(En − E) = (µ+ V (n))−1∂jV
(n)(µ+ V (n))−1ϕ− (µ+ V )−1∂jV (µ+ V )−1ϕ

= (µ+ V (n))−1{∂jV (n)(µ+ V (n))−1 − ∂jV (µ+ V )−1}ϕ
+
{

(µ+ V (n))−1 − (µ+ V )−1
}
∂jV (µ+ V )−1ϕ

= (I) + (II).

Since ϕ ∈ C∞c (Rd,Rm) then so is (µ+ V )−1ϕ, thus ∂jV (µ+ V )−1ϕ ∈ Lp(Rd,Cm).
Hence, the second term (II), of the right hand side of the above equality, tends
to 0 as n tends to ∞, since the resolvent of −V (n) converges to the resolvent of
−V as seen before. Now, rewriting (I) as

(I) = (µ+V (n))−1{∂jV (n)((µ+V (n))−1−(µ+V )−1)+(∂jV
(n)−∂jV )(µ+V )−1}ϕ,

one gets

‖(I)‖p ≤
1

|µ|
sup
x∈K
|∂jV (x)|

∥∥∥((µ+ V (n))−1 − (µ+ V )−1)ϕ
∥∥∥
p

+
1

|µ|

∥∥∥(∂jV
(n) − ∂jV )(µ+ V )−1)ϕ

∥∥∥
p
,

where K is the support of ϕ. The first term of the left hand side of the above
inequality vanishes at n → ∞, since the resolvent of −V (n) converges to the
resolvent of −V . For the second term, one has ∂jV ∈ Lploc(Rd,Cm), then ∂jV

(n)

converges to ∂jV locally in Lp(Rd,Cm). Thus, as (µ + V )−1ϕ has a compact
support, (∂jV

(n) − ∂jV )(µ+ V )−1)ϕ converges to 0 in Lp(Rd,Cm).
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Similarly, we can show that

(µ+ V (n))−1 tr[Q∇V (n)(µ+ V (n))−1∇Km((−Dp)
−1f)]

converges to

(µ+ V )−1 tr[Q∇V (µ+ V )−1∇Km((−Dp)
−1f)].

Hence, letting n→∞ in Cn,m(λ, µ) and denoting by Cm(λ, µ)f the limit, we thus
find that

Cm(λ, µ)f =(−Dp)
1
2 (λ−Dp)

−1S
(
−Q(µ+ V )−1∇V (µ+ V )−1(Km(−Dp)

−1f)
)

+ (λ−Dp)
−1(µ+ V )−1 tr[−Q∇V (µ+ V )−1∇Km((−Dp)

−1f)]

=: T1 + T2.

We are now very close to provide the crucial commutator estimate of Theorem
C.26. Let us start with the term T1. According to PropositionC.13 −Dp admits

bounded H∞-calculus, consequently (−Dp)
1
2 (λ−Dp)

−1 defines a bounded operator
on Lp(Rd;Cm) and

‖(−Dp)
1
2 (λ−Dp)

−1‖L (Lp(Rd;Cm)) ≤
C

|λ| 12
for a suitable constant C. As noted above, S defines a bounded linear operator,
as does multiplication with the bounded matrix–valued function Q. On the other
hand, ‖(µ+ V )−1‖L (Lp(Rd;Cm)) ≤ C|µ|−1. To estimate the rest of the term T1, we
write

∇V (µ+ V )−1Km((−Dp)
−1f) = (∇V ) · V −αV α(µ+ V )−1Km((−Dp)

−1f),

or

(µ+ V )−1∇V = (µ+ V )−1V αV −α∇V
depends on, in Hypotheses 3.1, whether (∇V ) · V −α or V −α∇V is bounded; the
constant α is the one appearing in Hypotheses 3.1. In both cases, using the
boundedness of the H∞-calculus of −Vp, TheoremD.5, we get

‖V α(µ+ V )−1‖L(Lp(Rd;Cm)) ≤
C

|µ|1−α
.

Taking into the account that (−Dp)
−1 is a bounded operator, it follow that,

overall,

‖T1‖p ≤
M1

|λ| 12 |µ|2−α
‖f‖p.

The term T2 can be estimated similarly, so that, altogether, we have an estimate

‖C(λ, µ)f‖p ≤
M

|λ| 12 |µ|2−α
‖f‖p.

Finally, the assumptions of TheoremC.26 are satisfied which yields the claim. �
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Corollary 3.7. Let Ap the realization of A defined on Chapter2 and {Tp(t); t ≥ 0}
its associated semigroup. One has

D(Ap) = W 1,p(Rd,Rm) ∩D(Vp) = Dp,max(A).

In particular, there exists a constant K > 0 such that

(3.2.2) ‖u‖2,p + ‖V u‖p ≤ K(‖u‖p + ‖∆Qu− V u‖p),
for all u ∈ W 1,p(Rd,Rm) ∩D(Vp). Here ‖ · ‖2,p is the norm of W 2,p(Rd,Rm).
The same results hold true for A∗ the adjoint of A.

Proof. In view of Theorem 3.6, the operator A with domain W 1,p(Rd,Rm)∩
D(Vp) is m-dissipative. Thus, generates a strongly continuous semigroup. Also
(Ap, Dp,max(A)) generates a strongly continuous semigroup according to Chapter2.
Moreover, both the two operators coincide on C∞c (Rd,Rm) which is a core for Ap.
It thus follows that the two domains coincide. �

Remark 3.8. Let θA be the spectral angle of −Ap. If θA <
π
2
, then the semigroup

{Tp(t)}t≥0 (in the sequel simply denoted by {T (t)} to ease the notation) is analytic,
as is well-known, see [23, II Theorem 4.6]. It is a consequence of [50, Corollary 2],
that in the noncommutative version of the Dore–Venni theorem the spectral angle
of the sum is at most the maximum of the power angle of the summands. Thus, if
the power angle of −Vp is strictly less than π

2
, which is for example the case when

V (x) is symmetric with 〈V (x)ξ, ξ〉 ≤ −|ξ|2 for all x ∈ Rd, then {Tp(t) : t ≥ 0} is
analytic.

3.3. Scalar multiplication perturbation of the system

3.3.1. Hypotheses. The condition (3.1.1) allows Lipschitz entries for V or
at most, as Example 2.4 of [41] shows, potentials like

V (x) = ±
(

0 1 + |x|r
−(1 + |x|r) 0

)
with r ∈ [1, 2). Now, we want to establish the same results as in [41] for potentials
of type

Ṽ (x) =

(
|x|δ 1 + |x|r

−(1 + |x|r) |x|δ
)
,

for δ ≥ 1. To do so we split such potentials Ṽ into Ṽ = V + vIm, where V
is a potential satisfying Hypotheses 3.1 and v is a scalar nonnegative potential
(nonnegative real valued function) satisfying

|∇v(x)| ≤ C v(x),

for some C > 0 and all x ∈ Rd. Such condition is satisfied by radial polynomial
potentials and potentials of the form |x|r log(1 + |x|). The Im is nothing but
the matrix identity of Rm. Defining the operator Ã = ∆Q − Ṽ . Ã can be
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seen as Ã = A − v. We consider Ãp the realization on Lp(Rd,Rm) of Ã with

domain D(Ãp) = D(Ap) ∩ D(v) and we use Okazawa’s perturbation theorem,

see TheoremA.20, to show that Ãp generates a contractive strongly continuous
semigroup.

3.3.2. Generation of semigroup. Now, consider 0 < v ∈ W 1,∞
loc (Rd) and

define on Lp(Rd,Cm) the multiplication operator with its maximal domain

(3.3.1) Bpu = vu, u ∈ D(Bp) = {u ∈ Lp(Rd,Cm) : vu ∈ Lp(Rd,Cm)}.

It is easy to see that Bp is m-accretive on Lp(Rd,Cm). Define, for ε > 0 and
u ∈ Lp(Rd,Cm), vε := v(1 + εv)−1 and Bp,εu := vεu. Bp,ε is actually the so-called
Hille-Yosida approximation of Bp.

Let us proceed to establish (A.2.5) of Theorem A.20 for the operators −Ap
and Bp. For that purpose fix 1 < p < ∞, ε > 0 and u ∈ C∞c (Rd,Cm). Define
R := vp−1

ε . We first approximate the left hand side of (A.2.5) as follows

(3.3.2) Re 〈−Apu, |Bp,εu|p−2Bp,εu〉p,p′ = lim
δ→0

Pδ,

where

Pδ := Re 〈−Apu,Rup−2
δ u〉p,p′ ,

and

uδ =

{
(|u|2 + δ)

1
2 , if 1 < p < 2,

|u|, if p ≥ 2.

Taking into the account that up−2
δ u −→ |u|p−2u, as δ → 0, in Lp

′
(Rd,Cm), the

convergence in (3.3.2) follows easily.
We now start estimating Pδ from below. The following lemma yields a first
estimate

Lemma 3.9. Let δ > 0. One has, for p ≥ 2,

Pδ ≥ (p− 1)

∫
Rd
|∇|u(x)||2Q(x)u

p−2
δ (x)R(x)dx

+
1

2

∫
Rd
〈∇|u|2(x),∇R(x)〉Q(x)u

p−2
δ (x)dx,(3.3.3)

and for 1 < p < 2

Pδ ≥ (p− 1)
∑m

j=1

∫
Rd |∇uj(x)|2Q(x)u

p−2
δ (x)R(x)dx

+1
2

∫
Rd〈∇|u|

2(x),∇R(x)〉Q(x)u
p−2
δ (x)dx.(3.3.4)
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Proof. Applying integration by part formula and taking into account (2.1.2)
one obtains

Pδ = −Re 〈Apu,Rup−2
δ u〉p,p′

= −Re

∫
Rd
〈∆Qu(x), R(x)up−2

δ (x)u(x)〉dx+

∫
Rd

Re 〈V (x)u(x), u(x)〉R(x)up−2
δ (x)dx

≥ −
m∑
j=1

∫
Rd

Re
(
div(Q∇uj)(x)ūj(x)R(x)up−2

δ (x)
)
dx

=
m∑
j=1

∫
Rd

Re 〈∇uj(x),∇(Rup−2
δ uj)(x)〉Q(x)dx

=
m∑
j=1

∫
Rd
|∇uj(x)|2Q(x)R(x)up−2

δ (x)dx+
m∑
j=1

∫
Rd

Re 〈∇uj(x),∇R(x)〉Q(x)ūj(x)up−2
δ (x)dx

+
p− 2

2

m∑
j=1

∫
Rd

Re 〈∇uj(x),∇|u|2(x)〉Q(x)ūj(x)R(x)up−4
δ (x)dx

=
m∑
j=1

∫
Rd
|∇uj(x)|2Q(x)R(x)up−2

δ (x)dx+
1

2

m∑
j=1

∫
Rd
〈∇|uj|2(x),∇R(x)〉Q(x)u

p−2
δ (x)dx

+
p− 2

4

m∑
j=1

∫
Rd
〈∇|uj|2(x),∇|u|2(x)〉Q(x)R(x)up−4

δ (x)dx

=
m∑
j=1

∫
Rd
|∇uj(x)|2Q(x)R(x)up−2

δ (x)dx+
1

2

∫
Rd
〈∇|u|2(x),∇R(x)〉Q(x)u

p−2
δ (x)dx

+
p− 2

4

∫
Rd
〈∇|u|2(x),∇|u|2(x)〉Q(x)R(x)up−4

δ (x)dx

=
m∑
j=1

∫
Rd
|∇uj(x)|2Q(x)R(x)up−2

δ (x)dx+ (p− 2)

∫
Rd
|∇|u|(x)|2Q(x)|u(x)|2R(x)up−4

δ (x)dx

+
1

2

∫
Rd
〈∇|u|2(x),∇R(x)〉Q(x)u

p−2
δ (x)dx.

Taking into account (2.2.3) and that uδ = |u| when p ≥ 2, and uδ ≤ |u| and
p− 2 < 0 when 1 < p < 2, one obtains (3.3.3)) and (3.3.4)). �

We next give a second inequality verified by Pδ and an inequality involving
the dual product between −Ap and Bp

Lemma 3.10. Let δ > 0. One has

(3.3.5) Pδ ≥ −
1

4(p− 1)

∫
Rd
up−2
δ (x)|u(x)|2

|∇R(x)|2Q(x)

R(x)
dx,
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and hence

(3.3.6) Re 〈−Apu, |Bp,εu|p−2Bp,εu〉p,p′ ≥ −
1

4(p− 1)

∫
Rd
|u(x)|p

|∇R(x)|2Q(x)

R(x)
dx.

Proof. Let c = 1
2(p−1)

. One can use, for p ≥ 2, the inequality

∫
Rd
up−2
δ (x)

∣∣∣∣∣√R(x)∇|u|(x) +
c√
R(x)

|u(x)|∇R(x)

∣∣∣∣∣
2

Q(x)

dx ≥ 0

which implies that

0 ≤
∫
Rd
up−2
δ (x)R(x)|∇|u|(x)|2Q(x)dx+ c

∫
Rd
up−2
δ (x)〈∇|u|2(x),∇R(x)〉Q(x)

+ c2

∫
Rd
up−2
δ (x)|u(x)|2

|∇R(x)|2Q(x)

R(x)
dx.

Multiplying by p− 1 and using (3.3.3) one obtains (3.3.5). On the other hand,
for 1 < p < 2, one can use the inequality∫

Rd
up−2
δ (x)

m∑
j=1

∣∣∣∣∣√R(x)∇uj(x) +
cuj(x)√
R(x)

∇R(x)

∣∣∣∣∣
2

Q(x)

dx ≥ 0,

arguing similarly as above and using (3.3.4) one obtains (3.3.5). The inequality
(3.3.6) follows now by letting δ → 0 in (3.3.5). �

Now, we prove the main theorem of this section,

Theorem 3.11. Assume that there exist nonnegative constants a and b such that

(3.3.7) |∇vε(x)|2Q(x) ≤ a(vε(x))2 + b(vε(x))3,

for all ε > 0 and x ∈ Rd. Then −Ap + sBp with domain D(Ap) ∩D(Bp) is an

m-accretive operator in Lp(Rd,Cm) for each s >
(p− 1)b

4
.

Proof. We will show the following inequality
(3.3.8)

Re 〈−Apu, ‖Bp,εu‖2−p|Bp,εu|p−2Bp,εu〉 ≥ −
p− 1

4
a‖Bp,εu‖‖u‖ −

p− 1

4
b‖Bp,εu‖2,

for every u ∈ C∞c (Rd,Cm). Since C∞c (Rd,Cm) is a core for Ap, we conclude by
Theorem A.20. Let us prove 3.3.8. Applying (3.3.6) and taking in consideration
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(3.3.7), we obtain

Re 〈−Apu, ‖Bp,εu‖2−p|Bp,εu|p−2Bp,εu〉 ≥ −
1

4(p− 1)
‖Bp,εu‖2−p

∫
Rd
|u(x)|p

|∇R(x)|2Q(x)

R(x)
dx

≥ −p− 1

4
‖Bp,εu‖2−p

∫
Rd
|u(x)|p(vε(x))p−3|∇vε(x)|2Q(x)dx

≥ −p− 1

4
a‖Bp,εu‖2−p

∫
Rd
|u(x)|p|vε(x)|p−1dx

− p− 1

4
b‖Bp,εu‖2−p

∫
Rd
|u(x)|p|vε(x)|pdx.

Taking into account that |Bp,ε(x)u| = |vε(x)||u(x)| and using Hölder’s inequality,
one obtains (3.3.8). By Theorem A.20, one conclude that −(Ap − sBp) is m-

accretive, for every s >
(p− 1)b

4
.

�

Now we state the main result of this section

Corollary 3.12. Assume that there exists c > 0 such that

(3.3.9) |∇v(x)| ≤ c v(x),

for all x ∈ Rd. Then, −Ãp is m-accretive in Lp(Rd,Cm).

Proof. One has ∇vε = ∇(v(1 + εv)−1) = (1 + εv)−2∇v, which implies
|∇vε| ≤ cvε. Thus (3.3.7) is verified with a = c2 and b = 0. Thus Ap− sBp, for all

s > 0, is m-accretive. In particular, Ãp generates a contractive C0-semigroup. �

A consequence of Corollary 3.12 is that−Ãp endowed with domainW 2,p(Rd,Rm)∩
D(Vp) ∩ D(Bp) is closed, even sectorial, where Bp is the multiplication by −v.

According to the result of Chapter 2, Ã := ∆Q − Ṽ is m-accretive, in particular
closed, when endowed with its maximal domain

Dp,max(Ã) = {u ∈ W 2,p
loc (Rd,Rm) : Ãu := ∆Qu− Ṽ u ∈ Lp(Rd,Rm)}.

That means (Ã, Dp,max(Ã)) is a closed extension of Ãp. It thus follow the following
domain coincidence

Theorem 3.13. Assume that (3.3.9) holds. Then, D(Ãp) = Dp,max(Ã). In

particular, there exists L̃ > 0 such that

(3.3.10) ‖u‖2,p + ‖Ṽ u‖p ≤ L̃(‖u‖p + ‖∆Qu− Ṽ u‖p),

for every u ∈ D(Ãp).
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3.4. Compactness and Spectrum of the generator

We first give a compactness result and then we analyze the spectrum of the
operator Ãp. A sufficient condition of compactness is given by the following result.

Theorem 3.14. Assume in addition to Hypotheses 3.1 that there exists a function
κ : Rd → [0,∞) with lim|x|→∞ κ(x) =∞ such that

(3.4.1) |Ṽ (x)ξ| ≥ κ(x)|ξ|,

for all x ∈ Rd and ξ ∈ Rm. Then, for all p ∈ (1,∞), the operator Ãp has compact
resolvent. Consequently, its spectrum is independent of p ∈ (1,∞), discrete and
consists of eigenvalues only.

Proof. Fix p ∈ (1,∞). To show that Ãp has compact resolvent, it suffices to

prove that D(Ãp), endowed with the graph norm of Ãp, is compactly embedded into

Lp(Rd;Rm). The inequality 3.3.10 implies that the graph norm of Ãp is equivalent

to the norm u 7→ |||u||| := ‖u‖2.p + ‖Ṽpu‖p. Now, let us show that the closed unit

ball of D(Ãp) is compact (or, equivalently, totally bounded) in Lp(Rd;Rm). Let

u belong to the unit ball of D(Ap) so that in particular ‖Ṽpu‖p ≤ 1. By our
additional assumption (3.4.1), we have

(3.4.2) ‖Ṽpu‖pp ≥
∫
Rd
κ(x)p|u(x)|p dx

for every u ∈ D(Ãp). Given ε > 0 we fix R > 0 sufficiently large so that κ ≥ ε−1

outside the ball BR := {x ∈ Rd : |x| < R}. Then, from Equation (3.4.2), we
deduce that∫

Rd\BR
|u(x)|p dx ≤εp

∫
Rd\BR

κ(x)p|u(x)|p dx

≤εp
∫
Rd
κ(x)p|u(x)|p dx ≤ εp‖Vpu‖pp ≤ εp.

Since Ṽ ∈ L∞loc(Rd,Rm), then the set of the restriction to BR of functions in D(Ãp)
coincides with W 2,p(BR;Rm). According to the Sobolev embedding theorem (the
Rellich-Kondarov theorem), we refer to [?, Theorem 6.2], [28, Section 7.10] or
[24, Sections 5.6 and 5.7], W 2,p(BR;Rm) is compactly embedded into Lp(BR;Rm).
Thus, overall, we can find finitely many functions g1, . . . , gk ∈ Lp(BR;Rm) such
that, for every u in the unit ball of D(Ãp), there exists an index j ∈ {1, . . . , k}
such that ∫

BR

|u(x)− gj(x)|p dx ≤ εp.
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Denoting the trivial extension of gj to Rd by g̃j, we have∫
Rd
|u(x)− g̃j(x)|p dx =

∫
BR

|f(x)− gj(x)|p dx+

∫
Rd\BR

|u(x)|p dx ≤ 2εp.

This shows that the unit ball of D(Ãp) is covered by the balls in Lp(Rd;Rm)

centered at g̃j of radius 2
1
p ε. As ε > 0 was arbitrary, it follows that the unit ball

of D(Ãp) is totally bounded in Lp(Rd;Rm).

The fact that the spectrum consists only of eigenvalues follows from spectral
properties of compact operators with help of the spectral mapping theorem for
the resolvent, cf. Theorem A.12 together with [23, Theorem IV.1.13].

Since the resolvent operators (λ − Ãp)
−1 are consistent (see Remark 2.14)

and compact, the p-independence of the spectrum follows from [17, Corollary
1.6.2]. �

Remark 3.15. (1) As Ṽ = V +vIm, the assumption (3.4.1) can be obtained
in terms of V and v. In fact, suppose that one of the following is satisfied
• There exists ρ : Rd → R+ measurable such that lim

|x|→∞
ρ(x) =∞ and

|V (x)ξ| ≥ ρ(x)|ξ|, ∀x ∈ Rd, ξ ∈ Rd.

• lim
|x|→∞

v(x) =∞.

If we set κ(x) := min(ρ(x), v(x)). Then, |Ṽ (x)ξ| ≥ κ(x)|ξ|, for all x ∈ Rd

and ξ ∈ Rm. Indeed,

|Ṽ (x)ξ|2 = |V (x)ξ|2 − 2v(x)〈V (x)ξ, ξ〉+ v(x)2|ξ|2 ≥ |V (x)ξ|2 + v(x)2|ξ|2.
(2) Using the Cauchy–Schwartz inequality, we see that the compactness

assumption (3.4.1) is, in particular, satisfied if we have

〈Ṽ (x)ξ, ξ〉 ≥ κ(x)|ξ|2

for all ξ ∈ Rm, which is exactly the one used in Chapter1, for symmetric
potentials. Actually, if Ṽ (x) is symmetric for every x ∈ Rd, then the
two conditions are equivalent. Indeed, the assumption in Theorem 3.14
implies that every eigenvalue λ(x) of Ṽ (x) satisfy λ(x) ≥ κ(x). This, in
turn, is equivalent to the condition 〈Ṽ (x)ξ, ξ〉 ≥ κ(x)|ξ|2, for all ξ ∈ Rm.

However, the assumption in Theorem 3.14 is more general than this,
since it is satisfied for some antisymmetric potentials as in Example 3.3,
i.e.,

Ṽ (x) = V (x) :=

(
0 |x|r
−|x|r 0

)
, x ∈ Rd,

where r ∈ [1, 2). Indeed, in this case we have |Ṽ (x)ξ| = (1 + |x|r)|ξ|, so
that we can choose κ(x) = 1 + |x|r for all x ∈ Rd. On the other hand,
we have 〈Ṽ (x)ξ, ξ〉 = 0 for all x ∈ R and ξ ∈ R2.
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3.5. Application to complex potential

Let us consider the following scalar Schrödinger operator, with complex
potential,

∆Q − (v + iw),

where v, w : Rd → R be measurable real–valued functions. The corresponding
matrix Schrödinger operator to the above complex operator is the following

∆Q −
(
v −w
w v

)
.

Let us denote

Ṽ :=

(
v −w
w v

)
= vI2 + w

(
0 −1
1 0

)
:= vI2 + V.

We thus conclude, by results of Chapter2, that ∆Q− (v+ iw) generates a strongly
continuous semigroup of contraction in Lp(Rd,C), under the conditions v, w are
locally bounded and v ≥ 0. Furthermore, if

sup
x∈Rd

|∇v(x)|
v(x)

<∞ and

sup
x∈Rd

|∇w(x)|
|w(x)|α

<∞,(3.5.1)

for some α ∈ [0, 1/2), thus we conclude by the result of this chapter that the
domain in Lp(Rd,C), 1 < p <∞, of ∆Q − (v + iw) is given by

{f ∈ W 2,p(Rd,C) : (v + iw)f ∈ Lp(Rd,C)},
and it holds the inequality

‖f‖2,p + ‖(v + iw)f‖p ≤M(‖f‖p + ‖(∆Q − (v + iw))f‖p),
for some constant M ≥ 1.

In addition to (3.5.1), if we assume that inf(v, |w|) blows up when |x| → ∞.
Thus, by Remark 3.15, ∆Q − (v + iw) has a compact resolvent and then discrete
spectrum consisting of eigenvalues only.

The equivalent to the analyticity condition (2.7.1) for complex potentials is
the following: There exists C > 0 such that

v(x) ≥ C |w(x)|, ∀x ∈ Rd.

We end this chapter by an example where we take ∆Q = ∆ be the Laplacian

operator and Ṽ with polynomial entries.

Examples 3.16. The condition (2.7.1) is satisfied for symmetric potential ma-
trices but never for antisymmetric ones. Moreover, it has been proved in Exam-
ple 2.16 that the semigroup generated by Ap with the antisymmetric potential
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V (x) =

(
0 −x
x 0

)
is not analytic. However, we find analyticity when perturbing

V by (1 + |x|r)I2, for some r ≥ 1. Indeed, consider Ṽ : R→ R2×2 given by

Ṽ (x) =

(
(1 + |x|r) −x

x (1 + |x|r)

)
=

(
0 −x
x 0

)
− (1 + |x|r)I2,

where r ≥ 1. Let us show that Ṽ verify (2.7.1). Let ξ =

(
ξ1

ξ2

)
∈ C2. One has

〈Ṽ (x)ξ, ξ〉C2 = (1 + |x|r)(ξ2
1 + ξ2

2) + x(ξ1ξ̄2 − ξ̄1ξ2).

Then
Re 〈Ṽ (x)ξ, ξ〉 = (1 + |x|r)(ξ2

1 + ξ2
2)

and
Im 〈Ṽ (x)ξ, ξ〉 = x(ξ1ξ̄2 − ξ̄1ξ2).

Moreover, one has∣∣∣Im 〈Ṽ (x)ξ, ξ〉
∣∣∣ ≤ 2|x||ξ1ξ2| ≤ (1 + |x|r)(ξ2

1 + ξ2
2) = Re 〈Ṽ (x)ξ, ξ〉.

Hence (2.7.1) holds for Ṽ .

Furthermore, conditions of Remark 3.15 are satisfied and thus we have compact
resolvent.





CHAPTER 4

Ultracontractivity, kernel estimates and spectrum

After associating a semigroup to the matrix Schrödinger operator in Chapter
2 and given explicitly its domain in Chapter 3. Now, in this chapter, we want to
establish, under the hypotheses of Chapter 3 (which include the ones of Chapter
2), at first the ultracontractivity property for the matrix Schrödinger semigroup.
The ultracontractivity is a strong regularity property for semigroups. For analytic
semigroups with Lp-domain, 1 < p < ∞, contained in the Sobolev space W 2,p,
this leads to a maximal regularity as Theorem 4.3 shows.

Another crucial consequence of ultracontractivity is that the semigroup will
be given by an integral kernel. For matrix Schrödinger operators we are talking
about matrix kernel:

T (t)f(x) =

∫
Rd
K(t, x, y)f(y)dy, t > 0, x ∈ Rd,

where the product K(t, x, y)f(y) should be understood as matrix–vector product;
K(t, ·, ·) is the matrix kernel and f ∈ Lp(Rd,Rm), for some p ∈ [1,∞).

The matrix kernel is bounded in space variables by the Dunford–Pettis theorem;

and is firstly estimated by Ct−
d
4 . Considering the twisted semigroup Tλ,ϕ(t) =

e−λtT (t)(eλt·), we get a Gaussian upper estimates for all entries of the kernel
K(t, ·, ·):

|kij(t, x, y)| ≤ Ct−
d
2 exp{−τ |x− y|

2

4t
}, ∀i, j ∈ {1, . . . ,m}.

The above estimate becomes, for y = x, kij(t, x, x) ≤ Ct−
d
2 . This is not an optimal

bound for semigroups of Hilbert-Schmidt, for which the trace in L2(Rd,Rm) is
finite, which corresponds with integrability of x 7→ kii(t, x, x) over Rd. Actually,
for every t > 0, the trace of T (t) is given by

tr(T (t)) =

∫
Rd

m∑
j=1

kii(t, x, x)dx.

It is then necessary to look for another way to estimate kii(t, x, x). We first show
that, for each i ∈ {1, . . . ,m}, kii(t, ·, ·) is nothing but the heat kernel associated
to scalar Schrödinger operator with potential the i-th diagonal component of
V . Hence, we obtain upper and lower estimates for kii, i ∈ {1, . . . ,m}, from
the literature of kernel estimates in the scalar case. We remind that for scalar

63
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Schrödinger semigroup, kernel estimates are widely studied, we refer to [45, 49,
48, 56, 61]. Estimates of the off-diagonal kernels kij, i 6= j are also obtained in
different ways.

After establishing suitable estimates of the trace of the semigroup which will
be the sum of its eigenvalues, we apply a Tauberian theorem due to Karamata to
obtain asymptotic behaviour of eigenvalues of the matrix Schrod̈inger operator.

We consider the realization Ap in Lp(Rd,Rm) of A defined in Chapter 2. We
still denote by {Tp(t) : t ≥ 0} its associated semigroup. We assume that the
diffusion matrix is of Lipschitz entries and the potential matrix denoted by V to
be split into the sum of a ’principal part’ V ess that satisfies 3.1 and a diagonal
part vIm with v ≥ 0 and satisfies (3.3.9). Likewise, as showed in Chapter 3,
D(Ap) = W 2,p(Rd,Rm) ∩D(Vp) and thus the maximal inequality of type (3.2.2)
is satisfied for every 1 < p <∞.
Actually any locally bounded potential matrix V satisfying (2.1.2) and (3.2.2) is
allowed.

We divide this chapter into five sections, in the first one we established
ultracontractivity and existence of the kernel, then in Section 4.2, we give a result
of regularity for the Schrödinger semigroup. In Section 4.3, we prove Gaussian
upper estimates for the kernel entries and then in Section 4.4, we investigate
further upper kernel estimates. Finally, Section 4.5 is devoted to the asymptotic
distribution of the eigenvalues.

4.1. Ultracontractivity

In this subsection we will establish ultracontractivity property of the semigroup
{Tp(t) : t ≥ 0}. As a consequence, the semigroup is given by an integral matrix
kernel. Since for 1 ≤ p < ∞ the semigroups {Tp(t) : t ≥ 0} are consistent, we
drop the index p and merely write {T (t) : t ≥ 0} for our semigroup. In what
follows, we denote by {T0(t) : t ≥ 0} the scalar semigroup on Lp(Rd) generated
by the scalar operator ∆Q = div(Q∇·), defined on W 2,p(Rd). We start by the
following technical lemma which gives a pointwise domination of {T (t) : t ≥ 0}.

Lemma 4.1. We have the following semigroup domination

(4.1.1) |T (t)f |2 ≤ T0(t)|f |2, t > 0,

for all f ∈ C∞c (Rd;Rm).

Proof. Let f ∈ C∞c (Rd;Rm) be given. Let us also fix p ∈ (1,∞). We set
u(t, ·) = T (t)f , for t ≥ 0. One has f ∈ D(Aq) which is continuously embedded into
W 2,q(Rd;Rm), according to (3.2.2). Thus u belongs to C([0,∞);W 2,q(Rd;Rm)) ∩
C1([0,∞);Lq(Rd;Rm)) for every q ∈ [1,∞). It thus follows that the scalar function
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|u|2 belongs to C([0,∞);W 2,p(Rd)). Since u solves the system of coupled partial
differential equations ∂tu = (div(Q∇uk)− uk)− V u, we get

1

2
∂t|u|2 = 〈∂tu, u〉 =

m∑
k=1

div(Q∇uk)uk − |u|2 − 〈V u, u〉

≤
m∑
k=1

d∑
i,j=1

∂i(qij∂juk)uk − 2|u|2

=
m∑
k=1

d∑
i,j=1

∂i(qijuk∂juk)−
m∑
k=1

d∑
i,j=1

qij∂juk∂iuk − 2|u|2

≤ 1

2

d∑
i,j=1

∂i(qij∂j|u|2)− 2|u|2

≤ 1

2
∆Q|u|2.

Thus, the function v := ∂t|u|2 − ∆Q|u|2 belongs to C([0,∞);Lp(Rd)) and is
nonpositive. Fix t > 0 and set w(s, ·) = T0(t− s)|u|2(s, ·) for every s ∈ [0, t]. As
is immediately seen,

∂sw(s, ·) =− T0(t− s)∆Q|u|2(s, ·) + T0(t− s)∂s|u|2(s, ·)
=T0(t− s)(∂s|u|2(s, ·)−∆Q|u|2(s, ·))
=T0(t− s)v(s, ·) ≤ 0,

since the semigroup {T0(t)} preserves positivity (see, [54, Corollary 4.3]). Hence,
w(t, ·) ≤ w(0, ·), which is exactly (4.1.1). �

We can now establish ultracontractivity of the semigroup.

Theorem 4.2. There there exists M > 0 such that

(4.1.2) ‖T (t)f‖∞ ≤Mt−
d
2‖f‖1, f ∈ L1(Rd;Rm).

Consequently, for every t > 0, there exists a matrix kernel K(t, ·, ·) ∈ L∞(Rd ×
Rd;Rm×m) such that

(4.1.3) (T (t)f)(x) =

∫
Rd
K(t, x, y)f(y)dy, x ∈ Rd, f ∈ Lp(Rd;Rm).

Moreover, for t > 0, T (t) is positive if, and only if, kij(t, x, y) ≥ 0 for almost
every x, y ∈ Rd.

Proof. Let us first prove Estimate (4.1.2). We fix f ∈ C∞c (Rd;Rm) and show
that

(4.1.4) ‖T (t)f‖∞ ≤Mt−
d
4‖f‖2, t > 0.
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Throughout the proof M is a constant, independent of f and t, which may
vary from line to line. Using (4.1.1) and the ultracontractivity of the semigroup
{T0(t) : t ≥ 0} we get

‖T (t)f‖2
∞ ≤ ‖T0(t)|f |2‖∞ ≤Mt−

d
2‖|f |2‖1 = Mt−

d
2‖f‖2

2

for t > 0. Taking square roots, this shows (4.1.4). Next, we prove the L1–L2

estimate

(4.1.5) ‖T (t)f‖2 ≤Mt−
d
4‖f‖1, t > 0.

To that end, note that the adjoint V ∗ also satisfies the same hypotheses as V .
Hence, (4.1.1) and then (4.1.4) hold true also for {T ∗(t) : t ≥ 0}. Consequently,

‖T (t)f‖2 = sup
‖ϕ‖2=1

〈T (t)f, ϕ〉2,2 = sup
‖ϕ‖2=1

〈f, T ∗(t)ϕ〉2,2

≤ sup
‖ϕ‖2=1

‖T ∗(t)ϕ‖∞‖f‖1 ≤Mt−
d
4‖f‖1

and (4.1.5) thus follows. By the semigroup law, Estimates (4.1.4) and (4.1.5) we
obtain

‖T (t)f‖∞ = ‖T (t/2)T (t/2)f‖∞ ≤Mt−
d
4‖T (t/2)f‖2 ≤Mt−

d
2‖f‖1

for every t > 0. Finally, by density of C∞c (Rd;Rm) in L1(Rd;Rm), we can easily
complete the proof of (4.1.2).

We next establish the existence of matrix kernel. We fix t > 0, f = (f1, . . . , fm)
and denote the canonical basis of Rm by {ei}1≤i≤m. Then, we have

T (t)f =
m∑
j=1

T (t)(fjej) =
m∑

i,j=1

〈T (t)(fjej), ei〉ei.

For i, j ∈ {1, . . . ,m} and u ∈ L1(Rd), let Ti,j(t)u = 〈T (t)(uej), ei〉. Using (4.1.2),
we obtain

‖Ti,j(t)u‖∞ = ‖〈T (t)(uej), ei〉‖∞ ≤ ‖T (t)(uej)‖∞ ≤Mt−
d
2‖uej‖1 = Mt−

d
2‖u‖1.

Thus, Ti,j(t) maps L1(Rd) into L∞(Rd) continuously. We thus conclude by the
Dunford–Pettis theorem, see [4, Theorem 1.3], the existence of a kernel ki,j(t, ·, ·) ∈
L∞(Rd × Rd) such that

(Ti,j(t)u)(x) =

∫
Rd
kij(t, x, y)u(y)dy,

for all x ∈ Rd. Setting K(t, ·, ·) := (kij(t, ·, ·))mi,j=1 the matrix whose entries be

ki,j, 1 ≤ i, j ≤ m, we conclude that K(t, ·, ·) ∈ L∞(Rd × Rd,Rm×m) and

T (t)f =

∫
Rd

m∑
i,j=1

kij(t, x, y)fj(y)eidy =

∫
Rd
K(t, x, y)f(y)dy,
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for all f ∈ Lp(Rd;Rm).

For the positivity, one can deduce from (4.1.3) that if all entries of the
kernel matrix are nonnegative, T (t) is then positive. Conversely, let t > 0,
i, j ∈ {1, . . . ,m} B be any bounded measurable set of Rd. Then

T (t) ≥ 0 =⇒ 〈T (t)(χBei), ej〉 ≥ 0

=⇒
∫
B
kij(t, x, y)dy ≥ 0.

As B was arbitrary chosen, it thus follow kij(t, x, y) ≥ 0 for almost every x, y ∈
Rd. �

4.2. Maximal regularity

The ultracontracitivity property is a crucial result, since it implies that the
solution u(t, ·) = T (t)f , for an initial datum f ∈ L1(Rd,Rm), belongs to all Lp-
spaces, in particular, to L∞(Rd,Rm), that is the solution is bounded. When the
semigroup {T (t) : t ≥ 0} is analytic and since the domain of Ap is (continuously)
embedded in W 2,p(Rd,Rm), one gets more regularity for u thanks to the Sobolev
imbedding. The result is formulated as follow

Theorem 4.3. Assume that Ṽ satisfies (2.7.1). Let p ∈ (1,∞) and t > 0 Then,
for all f ∈ Lp(Rd;Rm), the function u(t, ·) := T (t)f belongs to C1+α

b (Rd;Rm) for
every α ∈ (0, 1).

Proof. Fix t > 0, α ∈ (0, 1). Let us prove the claim for p ∈ (1,∞). Let k be
the smallest integer such that p−1 − 2kd−1 ≤ 0. By repeatedly applying of the
Sobolev embedding theorem, see [24, Section 5.6], we get the assertion. Indeed,
since T (t/(k + 1))f ∈ D(Ap) ↪→ W 2,p(Rd,Rm) and W 2,p(Rd,Rm) ↪→ Lp1(Rd,Rm),
where p−1

1 = p−1 − 2d−1, we conclude that T (t/(k + 1))f ∈ Lp1(Rd,Rm). It thus
follows that

T (2t/(k + 1))f = T (t/(k + 1))T (t/(k + 1))f ∈ W 2,p1(Rd,Rm).

Arguing as above, gives T (2t/(k + 1))f ∈ Lp2(Rd,Rm) where p−1
2 = p−1 − 4d−1.

Iterating this argument we find that T (kt/(k + 1))f ∈ W 2,pk(Rd,Rm), where
p−1
k = p−1 − 2kd−1, so that T (kt/(k + 1))f ∈ Lq(Rd,Rm) for any q ∈ [p,∞).

Hence, T (t)f ∈ W 2,q(Rd;Rm) and choosing q ≥ (1 − α)−1d we conclude that
T (t)f ∈ C1+α(Rd;Rm).

For the case p = 1, the ultracontractivity of {T (t) : t ≥ 0} implies, for
f ∈ L1(Rd,Rm), g = T (t/2)f ∈ Lp(Rd;Rm) for all p > 1. Thus splitting
T (t)f = T (t/2)T (t/2)f = T (t/2)g. Applying the machinery of above for g instead
of f and T (t/2) instead of T (t)f , the claim follows. �
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4.3. Gaussian Kernel estimates

In this section we give a Gaussian upper bound estimate for {T (t) : t ≥ 0}t≥0.
For the proof, we follow the strategy of [34, section 4].

Theorem 4.4. There exist nonnegative constants C1 and C2 such that

(4.3.1) |kij(t, x, y)| ≤ C1t
− d

2 exp{−C2
|x− y|2

4t
},

for all i, j ∈ {1, . . . ,m} and x, y ∈ Rd.

Proof. Let λ ∈ R and ϕ ∈ J := {ψ ∈ C∞b (Rd) : ‖∇ψ‖∞ ≤ 1}. Define the
twisted semigroup {Tλ,ϕ(t) : t ≥ 0} by

Tλ,ϕ(t)f := e−λϕT (t)(eλϕf),

for all 1 ≤ p < ∞, f ∈ Lp(Rd,Rm). {Tλ,ϕ(t) : t ≥ 0} has the following kernel
representation

(4.3.2) Tλ,ϕ(t)f =

∫
Rd
e−λ(ϕ(x)−ϕ(y))K(t, x, y)f(y)dy.

Obviuosely {Tλ,ϕ(t) : t ≥ 0} is a strongly continuous semigroup in L2(Rd,Rm).
Let us denote by Aλ,ϕ its generator. A straightforward calculation yields

Aλ,ϕf = ∆Qf + 2λ〈Q∇ϕ,∇f〉+ (−V + λ∆Qϕ+ λ2|∇ϕ|2Q)f.

and

aλ,ϕ(f) := 〈−Aλ,ϕf, f〉L2(Rd,Rm) = −〈(Aλ,ϕ+V )f, f〉+〈V f, f〉 ≥ −〈Bλ,ϕf, f〉 := bλ,ϕ(f).

for every f ∈ C∞c (Rd,Rm). Where the operator Bλ,ϕ is defined on C∞c (Rd,Rm) by

Bλ,ϕf := ∆Qf + 2λ〈Q∇ϕ,∇f〉+ (λ∆Qϕ+ λ2|∇ϕ|2Q)f

Note that 〈∇ϕ,∇f〉 is the vector valued function whose components are 〈∇ϕ,∇fj〉.
By integrating by parts,

bλ,ϕ(f) =

∫
Rd
〈Q(x)∇f(x),∇f(x)〉dx− 2λ

m∑
i=0

∫
Rd
〈Q(x)∇ϕ(x),∇fi(x)〉fi(x)dx

−
∫
Rd
{λdiv(Q∇ϕ)(x) + λ2|∇ϕ(x)|2Q(x)}|f(x)|2dx

=

∫
Rd
〈Q(x)∇f(x),∇f(x)〉dx− λ2

∫
Rd
〈Q(x)∇ϕ(x),∇ϕ(x)〉|f(x)|2dx

≥ η1‖∇f‖2
2 − η2λ

2‖f‖2
2.

If we set ω = η2λ
2 then

aλ,ϕ(f)− ω||f ||22 ≥ bλ,ϕ(f)− ω||f ||22 ≥ η1‖∇f‖2
2.
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Now, consider γ(t) = ‖e−ωtTλ,ϕ(t)‖−
4
d

2 for all t ≥ 0. One has

γ′(t) =
d

dt
(‖e−ωtTλ,ϕ(t)f‖2

2)−
2
d

= −2

d
‖e−ωtTλ,ϕ(t)f‖−

4
d
−2

2 〈(Aλ,ϕ − ω)f, f〉

≥ 2η1

d
‖e−ωtTλ,ϕ(t)f‖−

4
d
−2

2 ‖∇(e−ωtTλ,ϕ(t)f)‖2
2.

Applying Nash’s inequality, see [17, Theorem 2.4.6], one obtains

γ′(t) ≥ 2η1

dC
‖e−ωtTλ,ϕ(t)f‖−

4
d

1 .

Now, remarking that Bλ,ϕ − ω is actually an elliptic operator with bounded
coefficients which does not represent any coupling and since its associated form
is accretive, we conclude by [54, Chapter 4] that its associated semigroup say
{e−ωtetBλ,ϕ : t ≥ 0} is contractive in all Lp-spaces, in particular in L1(Rd,Rm).
Moreover, one has Aλ,ϕ = Bλ,ϕ − V and |e−tV | ≤ 1. Applying Trotter-Kato
product formula we deduce that {e−ωtTλ,ϕ(t) : t ≥ 0} is Lp-contractive, for every
p > 1 and Fatou’s lemma yields

‖Tλ,ϕ(t)f‖1 ≤ eωt‖f‖1.

It thus follows

γ(t) ≥
∫ t

0

γ′(s)ds ≥ 2η1

dC
t‖f‖−

4
d

1 .

Therefore,

(4.3.3) ‖Tλ,ϕ(t)f‖2 ≤
2η1

dC
eωtt−

d
4‖f‖1.

Since V ∗ verifies the same hypotheses as V , one can reproduce the same for

T ∗λ,ϕ(t) = eλϕT ∗(t)(e−λϕ·)

and obtain

‖T ∗λ,ϕ(t)f‖2 ≤
2η1

dC
eωtt−

d
4‖f‖1.

On the other hand, one has∣∣∣∣∫
Rd
〈Tλ,ϕ(t)f(x), g(x)〉dx

∣∣∣∣ = |〈Tλ,ϕ(t)f, g〉L2|

=
∣∣〈f, T ∗λ,ϕ(t)g〉L2

∣∣
≤ ‖T ∗λ,ϕ(t)g‖2‖f‖2‖g‖1

≤ 2η1

dC
eωtt−

d
4‖f‖2‖g‖1,
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for every g ∈ C∞c (Rd,Rm). Therefore, g 7→
∫
Rd〈Sλ,ϕ(t)f(x), g(x)〉dx can be

extended to a bounded linear form over L1(Rd,Rm) which has L∞(Rd,Rm) as a
dual space. Thus, Tλ,ϕ(t)f ∈ L∞(Rd,Rm) and

(4.3.4) ‖Tλ,ϕ(t)f‖∞ ≤
2η1

dC
eωtt−

d
4‖f‖2.

Combining (4.3.3) and (4.3.4) one obtains Tλ,ϕ(t)f ∈ L∞(Rd,Rm) for every
f ∈ L1(Rd,Rm) and

‖Tλ,ϕ(t)f‖∞ = ‖Tλ,ϕ(t/2)Tλ,ϕ(t/2)f‖∞ ≤
2η1

dC
eωt/2(t/2)−

d
4‖Tλ,ϕ(t/2)f‖2

≤ C1e
ωtt−

d
2‖f‖1,

with C1 = 2d(2η1
dC

)2. It thus follow that the twisted semigroup is ultracontractive

with ‖ · ‖1→∞–norm less than or equal to C1e
ωtt−

d
2 . Taking into account (4.3.2)

one gets

|kij(t, x, y)| ≤ C1t
− d

2 exp{η2λ
2t+ λ(ϕ(x)− ϕ(y))}.

Choosing λ =
ϕ(y)− ϕ(x)

2η2t
, we get

|kij(t, x, y)| ≤ C1t
− d

2 exp{−|ϕ(x)− ϕ(y)|2

4η2t
}.

If we define the distance δ on Rd by

δ(x, y) := sup{ψ(x)− ψ(y) : ψ ∈ J }, x, y ∈ Rd.

It is well-known that δ is equivalent to the euclidean distance in Rd. Finally, there
exists C2 > 0 such that

|kij(t, x, y)| ≤ C1t
− d

2 exp{−C2
|x− y|2

4t
}.

�

4.4. Further kernel estimates

We assume that V = (vij)1≤i,j≤m+vIm, where (vij)1≤i,j≤m satisfies Hypotheses
3.1 and v to be as in Section 3.3. We denote by dii := vii+v, for each i ∈ {1, . . . ,m}.

Let us denote by {T ∗(t) : t ≥ 0} the adjoint semigroup of {T (t) : t ≥ 0} in
L2(Rd,Rm). We start by given the matrix kernel associated to {T ∗(t) : t ≥ 0}

Proposition 4.5. Let g ∈ L2(Rd,Rm) and t > 0. Then,

(4.4.1) T (t)∗(t)g(x) =

∫
Rd
K∗(t, z, x)g(z)dz, ∀x ∈ Rd.

In particular, if V is a symmetric, then K(t, y, x) = K∗(t, x, y) and kij(t, y, x) =
kji(t, x, y), for every x, y ∈ Rd and i, j ∈ {1, . . . ,m}.
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Proof. Let f, g ∈ L2(Rd,Rm). By Fubini’s theorem one obtains

〈T (t)f, g〉L2(Rd,Rm) =

∫
Rd
〈T (t)f(x), g(x)〉dx

=

∫
Rd

∫
Rd
〈K(t, x, y)f(y), g(x)〉dydx

=

∫
Rd
〈f(y),

∫
Rd
K∗(t, x, y)g(x)dx〉dy

Hence, T ∗(t)g(x) =
∫
Rd K

∗(t, z, x)g(z)dz. Moreover, if V is symmetric, thus

{T (t) : t ≥ 0} will be a self-adjoint semigroup in L2(Rd,Rm). Hence, by uniqueness
of the kernel K(t, y, x) = K∗(t, x, y), for almost every x, y ∈ Rd. �

Proposition 4.6. For each i ∈ {1, . . . ,m}, kii(t, ·, ·), the i–th diagonal entry
of the matrix kernel K(t, ·, ·), represents the heat kernel associated to the scalar
Schrödinger operator Aii := ∆Q − dii. Moreover, if we denote by kv(t, ·, ·) the
kernel of ∆Q − v, one gets

(4.4.2) 0 ≤ kii(t, x, y) ≤ kv(t, x, y),

for evey t > 0 and almost every x, y ∈ Rd.

Proof. Let i ∈ {1, . . . ,m} and t > 0. Define Tii(t)f = 〈T (t)(fei), ei〉, for all
f ∈ L2(Rd). One can check easily that {Tii(t) : t ≥ 0} is a strongly continuous
semigroup in L2(Rd). Moreover, one has

Tii(t)f(x) =

∫
Rd
kii(t, x, y)f(y)dy,

for all f ∈ L2(Rd) and all x ∈ Rd. Now, let us compute the infinitesimal generator
of {Tii(t) : t ≥ 0}. Let f ∈ L2(Rd) and t > 0. One has

1

t
{Tii(t)f − f} =

1

t
{〈T (t)(fei), ei〉 − f}

= 〈T (t)(fei)− fei
t

, ei〉.

Hence, f ∈ D(Aii) if, and only if, fei ∈ D(A2) and

Aiif = 〈A(fei), ei〉 = ∆Qf − (vii + v)f.

In particular, kii(·, ·, ·) is the kernel of Aii. According to Proposition D.6, one has
vii ≥ 0, thus −dii ≤ −v, then, by application of Trotter–Kato product formula,
we get the following pointwise semigroup comparison

|Tii(t)f | ≤ |Tv(t)f |, ∀f ∈ L2(Rd).

This implies immediately (4.4.2). �

Here we give another proposition, holding in the symmetric case, which yields
the domination of the off-diagonal entries of the matrix kernel by the diagonal one
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Proposition 4.7. Assume that V is symmetric. Let t > 0 and i 6= j ∈ {1, . . . ,m}.
One has
(4.4.3)

|kij(t, x, y) + kij(t, y, x)| ≤ 2
√
kii(t, x, y)kjj(t, x, y) ≤ kii(t, x, y) + kjj(t, x, y),

for almost every x, y ∈ Rd. In particular,

(4.4.4) |kij(t, x, x)| ≤
√
kii(t, x, x)kjj(t, x, x) ≤ 1

2
{kii(t, x, x) + kjj(t, x, x)},

for almost every x ∈ Rd.

Proof. let ξ ∈ Rd, t > 0 and B any bounded subset of Rd. Consider
f = χBξ ∈ L2(Rd,Rm). Since V is symmetric, then T (t) is self-adjoint. Hence,
〈T (t)f, f〉L2(Rd,Rm) = ‖T (t/2)f‖2

2 ≥ 0. Thus,

0 ≤
∫
Rd
〈T (t)f(x), f(x)〉dx =

∫
Rd

∫
Rd
〈K(t, x, y)ξ, ξ〉χB(x)χB(y)dxdy

=

∫
B×B
〈K(t, x, y)ξ, ξ〉dxdy.

Thanks to the arbitrariness of B, one obtains 〈K(t, x, y)ξ, ξ〉 ≥ 0, for almost every
x, y ∈ Rd. Taking into the account Proposition D.6, one obtains

|kij(t, x, y) + kji(t, x, y)| ≤ 2
√
kii(t, x, y)

√
kjj(t, x, y),

for almost every x, y ∈ Rd. Now, (4.4.3) and (4.4.4) follow taking into the account
Proposition 4.5. �

As a consequence of Proposition 4.6, one obtains the following kernel estimates

Proposition 4.8. Assume that v(x) = |x|α, for some α > 2. Then, for all
i ∈ {1, . . . ,m}, one has

(4.4.5) kii(t, x, y) ≤ Ce−γtect
−b
φ(|x|)φ(|y|),

for large x and y in Rd and all t > 0. Where γ, c and C are some positive
constants and

φ(R) =
exp

(
− 2
√
θ

2+α
R1+α

2

)
R

α
4

+ d−1
2

,

for every R ≥ 0. Here b > α+2
α−2

and θ > 0 is properly chosen. Moreover, if
vlk ≥ 0 for all k 6= l ∈ {1, . . . ,m}, then (4.4.5) holds true also for kij for all
i, j ∈ {1, . . . ,m}.

Proof. Estimate (4.4.2) together with [56, Theorem 2.7] yield (4.4.5). Note
that the constant θ is such that θη2 < 1, where η2 is the constant appearing in
(2.1.1). Moreover, if vlk ≥ 0 for all k 6= l ∈ {1, . . . ,m}, thus by Theorem 4.2,
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kij(t, x, y) ≥ 0, for every t > 0 and x, y ∈ Rd. Due to (4.4.3), it thus follow the
estimate (4.4.5) for kij as well. �

4.5. Asymptotic distribution of eigenvalues of A

In this section, we assume the following:

Hypotheses 4.9. V is symmetric and v(x) = |x|α, for some α ≥ 1 and all
x ∈ Rd. Moreover, suppose that vii(x) = o(v(x)), when |x| goes to infinity, for all
i ∈ {1, . . . ,m}.

Let {λn : n ∈ N} be the eigenvalues of −A and {Ψn : n ∈ N} the orthonormal
basis of L2(Rd,Rm) constituted from the eigenvectors of −A: AΨn = −λnΨn. In
the following proposition we compute the trace of {T (t) : t ≥ 0} in two different
ways

Proposition 4.10. For all i, j ∈ {1, . . . ,m}, one has

(4.5.1) kij(t, x, y) =
∑
n∈N

e−λntΨ(i)
n (x)Ψ(j)

n (y),

for all x, y ∈ Rd and t > 0. Here Ψ
(i)
n (x) is the i-th component of the vector Ψn(x).

In particular,

(4.5.2)

∫
Rd

m∑
i=1

kii(t, x, x)dx =
∑
n∈N

e−λnt, ∀t > 0.

Proof. Let f ∈ L2(Rd,Rm). Thus f =
∑
n∈N

〈f,Ψn〉L2Ψn. Then, by linearity

and continuity of T (t), one gets

T (t)f =
∑
n∈N

〈f,Ψn〉L2T (t)Ψn =
∑
n∈N

〈f,Ψn〉L2e−λntΨn.

for every t > 0. Hence,

〈T (t)f(x), ei〉 =
∑
N

e−λnt
∫
Rd

m∑
j=1

fj(y)Ψ(j)
n (y)Ψ(i)

n (x) dy.

for each i ∈ {1, . . . ,m}. Therefore, for every ϕ ∈ C∞c (Rd),∫
Rd
kij(t, x, y)ϕ(y)dy =≤ T (t)(ϕej)(x), ei〉

=

∫
Rd

∑
N

e−λntΨ(j)
n (y)Ψ(i)

n (x)ϕ(y) dy,
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for all t > 0, x ∈ Rd and i, j ∈ {1, . . . ,m}. From which we deduce (4.5.1).
Moreover,

m∑
i=1

∫
Rd
kii(t, x, x) dx =

∫
Rd

∑
n∈N

e−λntΨ(i)
n (x)2 dx

=
∑
n∈N

e−λnt
∫
Rd
|Ψ(x)|2 dx

=
∑
n∈N

e−λnt.

�

Let us now introduce the measure γ defined over R+ by γ(X) = |{n : λn ∈ X}|.
Define, for λ > 0, N (λ) = γ[0, λ] which corresponds to the number of eigenvalues
λn that are less or equal than λ. Let us denote by γ̂ the Laplace transform of γ:

γ̂(t) :=

∫
R
e−txdγ(x) =

∑
n∈N

e−λnt,

for all t > 0. According to (4.5.2), one has

γ̂(t) =
∑
n∈N

e−λnt =

∫
Rd

m∑
i=1

kii(t, x, x)dx.

We are looking for the asymptotic behavior (λ→∞) of N (λ). This is related to
the behavior near 0 of µ̂ by the famous Tauberian (Karamata’s) theorem, see [62,
Theorem 10.3]. One has the following

Theorem 4.11. Assume that Hypotheses 4.9 hold and Q = Id. Then,

(4.5.3) lim
λ→∞

N (λ)

λd( 1
2

+ 1
α

)
=

1

α

dmωd

(4π)
d
2

Γ(d/α)

Γ(d(1
2

+ 1
α

) + 1)
.

Proof. Taking into account Proposition 4.6 and by [49, Example 2.6], for
each τ < 1, one hass

kii(t, x, x) ≤

(
e−tτ

α|x|α

(4πt)
d
2

+
τ dωdC(d)

(1− τ)dt
d
2

exp

(
−(1− τ)2

4t
|x|2
))

,

for each i ∈ {1, . . . ,m} and every t > 0 and x ∈ Rd. Where C(d) is a constant
depending only on d and ωd = |Sd| the volume of the unit sphere of Rd.
Integrating over Rd and using suitable change of variables, one gets∫
Rd
kii(t, x, x)dx ≤ 1

(4π)
d
2 t

d
2

+ d
α

∫
Rd
e−τ

α|x|αdx+
τ dωdC(d)

(1− τ)dπ
d
2

eCεt
∫
Rd

exp(−(1−τ)2|x|2)dx.
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Hence, by letting τ tends to 1,

(4.5.4) lim sup
t→0

t
d
2

+ d
α

m∑
i=1

∫
Rd
kii(t, x, x)dx ≤ m

(4π)
d
2

∫
Rd
e−|x|

α

dx =
mωd

(4π)
d
2 α

Γ(
d

α
).

On the other hand, according to Hypotheses 4.9 one has dii(x) = |x|α + o(|x|α).
Hence, for every ε > 0, there exists Cε > 0 such that

dii(x) ≤ (1 + ε)|x|α + Cε

for all x ∈ Rd. Therefore,

kii(t, x, x) ≥ e−Cεtkε,α(t, x, x),

where kε,α is the kernel associated to ∆ − (1 − ε)|x|α. Now, arguing as in [17,
Lemma 4.5.9], one obtains

kε,α(t, x, x) ≥ exp((1− ε)(1 + |x|)αt)k∆(t, x, x),

where k∆ is the heat kernel associated to the Dirichlet Laplacian on the ball
B(x, 1), of center x and radius 1, of Rd. The Kac’s principle yields

k∆(t, x, x) ≥ 1

(4πt)
d
2

(1− e−
1
4t ) = γ(t),

for every 0 < t < 1
2d

. Thus,

kii(t, x, x) ≥ e−Cεtγ(t) exp((1− ε)(1 + |x|)αt),

for every 0 < t < 1
2d

, x ∈ Rd and i ∈ {1, . . . ,m}. Now, fix t ∈ (0, 1
2d

) and ε > 0.
Integrating over x and summing over i, one gets∫

Rd

m∑
i=1

kii(t, x, x)dx ≥ me−Cεtγ(t)

∫
Rd

exp((1− ε)(1 + |x|)αt)dx

= me−Cεtγ(t)ωd

∫ ∞
0

exp((1− ε)(1 + r)αt)rd−1dr.

Using the change of variable ρ = t1/α(1 + r), it follows that∫
Rd

m∑
i=1

kii(t, x, x)dx ≥ me−Cεtγ(t)
1

t
d
α

ωd

∫ ∞
t
1
α

e−(1−ε)ρα(ρ− t
1
α )d−1dρ

≥ me−Cεtγ(t)
1

t
d
α

ωd

∫ ∞
t
1
α

e−(1−ε)ραρd−1dρ

=
mωd

(4π)
d
2

e−Cεt
1

t
d
α

+ d
2

(1− e−
1
4t )

∫ ∞
t
1
α

ρd−1e−(1−ε)ραdρ.
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Hence, for every ε > 0,

lim inf
t→0

td( 1
α

+ 1
2

)

∫
Rd

m∑
i=1

kii(t, x, x)dx ≥ mωd

(4π)
d
2

∫ ∞
0

ρd−1e−(1−ε)ραdρ.

Thus, by letting ε tends to 0, one gets

lim inf
t→0

td( 1
α

+ 1
2

)

∫
Rd

m∑
i=1

kii(t, x, x)dx ≥ mωd

(4π)
d
2 α

Γ(
d

α
),

which leads together with (4.5.4) and (4.5.2) to

lim
t→0

td( 1
α

+ 1
2

)

∞∑
n

e−λn t =
mωd

(4π)
d
2 α

Γ(
d

α
).

Now, the claim follows applying [62, Theorem 10.3]. �



APPENDIX A

Semigroup theory

This appendix will cover the theory of semigroups and homogeneous linear
evolution equation. All the result of this appendix are given without proofs, for
more details we refer to [23], the book from which are taken most of content of
this appendix. We start first by some notions of operator theory

A.1. Operator theory

Throughout X is a Banach space over K = R,C. X is endowed by a norm
‖ · ‖X which will be denoted easily ‖ · ‖. Let A be a linear operator acting on a
subspace D(A) of X, called domain of A. We define ‖ · ‖A : D(A)→ R+ given by

‖x‖A := ‖x‖+ ‖Ax‖.
The above norm is called graph norm of A. We now state some definitions

Definition A.1. Let A : D(A) ⊂ X → X be a linear operator. We adopt the
following terminology

• A is called densely defined if D(A) is dense in X.
• A is called bounded if A is densely defined and there exist L ≥ 0 such

that

‖Ax‖ ≤ L‖x‖, ,∀x ∈ X.
In this case D(A) = X and the graph norm ‖ · ‖A is equivalent to the
space norm ‖ · ‖ and

‖A‖ := inf{L ≥ 0 : ‖Ax‖ ≤ L‖x‖, ∀x ∈ X}
is called norm of the operator A.
• A is called closed if D(A) endowed with ‖ · ‖A is a Banach space.

We state the graph theorem

Theorem A.2. [12, Théorème II.7] Let (A,D(A)) be such that D(A) = X. Then,
A is closed if, and only if, A is bounded.

We now define the resolvent set of an operator A by

ρ(A) := {λ ∈ C : λ− A is invertible and (λ− A)−1 ∈ L(X)}
77
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For every λ ∈ ρ(A), we denote R(λ,A) := (λ − A)−1. The application R(·, A) :
ρ(A) → L(X) is called resolvent of A. The spectrum of A is σ(A) := C\ρ(A).
The punctual spectrum σp(A) constitutes of eigenvalues of A.

σp(A) = {λ ∈ C : λ− A is not injective}.
In other words, λ ∈ σp(A) if, and only if, there exists x 6= 0 such that Ax = λx.
Now we give some properties related to the resolvent set and spectrum of a linear
operator.

Proposition A.3. Let A,D(A) ⊂ X → X.

• If A is bounded then σ(A) is a bounded subset of C. Indeed, σ(A) ⊂
B(0, ‖A‖) := {λ ∈ C : |λ| ≤ ‖A‖}.
• If ρ(A) 6= ∅, then A is closed.
• ρ(A) is an open subset of C.
• One has the following resolvent equation

(A.1.1) R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A), ∀λ, µ ∈ ρ(A).

• The resolvent application R(·, A) : ρ(A)→ L(X) is holomorphic.

Closable operators, Core of an operator. The closedness of an operator
depends upon the ’chosen’ domain. Here we introduce extension and restriction
of operators

Definition A.4. Let A : D(A) ⊂ X → X and B : D(B) ⊂ X → X be two
operators. Then, B is said to be an extension of A if D(A) ⊂ D(A) and Bx = Ax,
for all x ∈ D(A). We also say that A is the restriction of B on D(A).

Now, we define closure of operators and core of an operator

Definition A.5. Let A : D(A) ⊂ X → X be an operator. Then,

• (A,D(A)) is said to be closable if it admits a closed extension (B,D(B)).
• If (A,D(A)) is closed then, the closure of A denoted by (Ā,D(Ā)) is the

smallest closed extension of A.
• C ⊂ D(A) is called core of (A,D(A)) if C is dense in (D(A), ‖ · ‖A).

Accretive and m-accrtive operators. We start by a definition

Definition A.6. Let A : D(A) ⊂ X → X be an operator.

• A is said to be accretive if, and only if,

‖(λ+ A)u‖ ≥ λ‖u‖,
for all u ∈ D(A) and λ > 0.
• A is said to be m-accretive (maximal accretive) if it is accretive and there

exists λ0 > 0 such that (λ0 + A)D(A) = X.
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• A is dissipative (resp. m-dissipative) if −A is accretive (resp. −A is
m-accretive)

In order to characterize accretive operators, we first define the so-called duality
map

Definition A.7. Let X be a Banach space and X∗ its dual space. Assume that
X∗ is a uniformly convex Banach space. Let, for every x ∈ X, F (x) be the unique
element of X∗ satisfying

〈x, F (x)〉X,X∗ = ‖x‖2
X = ‖F (x)‖2

X∗ .

The map F : X → X∗ is called duality map. In the case where X is a Hilbert
space, then X∗ = X and F (x) = x, for all x ∈ X.

Now we are able to give a characterization of accretive operators

Proposition A.8. Let A : D(A) ⊂ X → X. A is accretive if and only if

〈Ax, F (x)〉X,X∗ ≥ 0, ∀x ∈ D(A).

In particular, if X is a Hilbert space then, A is accretive if and only if 〈Ax, x〉 ≥ 0,
for all x ∈ D(A).

Compact operators. In the infinite dimensional case dim(X) =∞, bounded
(continuous) operators are not necessarily compact.

Definition A.9. Let T : X → Y be a bounded linear operator, where Y is a
Banach space. T is said to be compact if, and only if, T (B) is relatively compact
on Y , for every bounded subset B of X.
We denote by K(X, Y ) the set of all compact operators.

K(X, Y ) is a subspace of L(X, Y ) and also ideal of it. Indeed, if T ∈ K(X, Y )
and L ∈ L(Y ) (resp. L ∈ L(X)), then LT ∈ K(X, Y ) (resp. TL ∈ K(X, Y )).
Moreover, K(X, Y ) is a closed subspace K(X, Y ).
We now introduce the notion of compact resolvent

Definition A.10. Let (A,D(A)) be a closed operator such that ρ(A) 6= ∅. A has
a compact resolvent if, and only if, R(λ,A) is a compact operator for every\some
λ ∈ ρ(A).

The equivalence between compactness of the resolvent for all λ ∈ ρ(A) and
for only some (at least one) λ ∈ ρ(A) is due to the resolvent equation (A.1.1).
Here we state a characterization of compactness of the resolvent

Proposition A.11. Let (A,D(A)) be a closed operator such that ρ(A) 6= ∅. The
following are equivalent

• A has a compact resolvent,
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• D(A) is compactly embedded in X, i.e., the embedding\injection i :
(D(A), ‖ · ‖A)→ (X, ‖ · ‖A is compact.

We end this section with a very powerful result which yields the spectrum of
compact operators

Theorem A.12. [12, Théorème VI.8] Let T ∈ L(X) be a compact operator.
Then, the spectrum of T is either finite or countable discrete and accumulates at
0. Moreover, the spectrum contains eigenvalues only and 0 ∈ σ(A)\σp(A).

A.2. Strongly continuous semigroups

We give the background about semigroups of bounded operators acting on
Banach spaces. We start by the definition of a semigroup

Definition A.13. Let {T (t) : t ≥ 0} be a family of linear bounded operators
acting on X, i.e., T (t) ∈ L(X), for every t ≥ 0. {T (t) : t ≥ 0} is called semigroup
if, and only if,

i) T (0) = I, where I is the identity operator.
ii) T (t+ s) = T (t) ◦ T (s), for every t, s ≥ 0.

Moreover, if

lim
t→0

T (t)x = x, ∀x ∈ X.

Then, {T (t) : t ≥ 0} is called strongly continuous semigroup or shortly C0-
semigroup.

Strongly continuous semigroups have at most exponential growth of order 1.
That is

Proposition A.14. Let T = {T (t) : t ≥ 0} be a strongly continuous semigroup.
Then, there exist M ≥ 1 and ω ∈ R such that

(A.2.1) ‖T (t)‖ ≤Meωt,

for every t ≥ 0. Consider

ω0(T ) := inf{ω ∈ R : sup
t≥0

e−ωt‖T (t)‖ <∞}.

ω0(T ) is called type of the semigroup T .
When ω = 0 in (A.2.1), the semiroup T is then called contractive semigroup or
semigroup of contraction.

Now, we define the generator of a semigroup
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Definition A.15. Let T = {T (t) : t ≥ 0} be a strongly continuous semigroup.
The infinitesimal generator (A,D(A)) of {T (t) : t ≥ 0} is defined in this way

Ax := lim
t→0

T (t)x− x
t

, ∀x ∈ X.

defined on the domain

D(A) := {x ∈ X : lim
t→0

T (t)x− x
t

exists in X}.

From now on T = {T (t) : t ≥ 0} is a strongly continuous semigroup and
(A,D(A)) its generator. We endow D(A) with the graph norm ‖ · ‖A : x 7→
‖x‖+ ‖Ax‖ and let (M,ω) be such that (A.2.1) is satisfied.

Proposition A.16. One has the following properties

a) D(A) is dense in X,
b) A is closed,
c) C+

ω := {λ ∈ C : Reλ > ω} ⊂ ρ(A) and

‖R(λ,A)‖ ≤ M

Reλ− ω
, ∀λ ∈ C+

ω .

d)

(A.2.2) R(λ,A)f =

∫ ∞
0

e−λtT (t)f dt, ∀λ ∈ C+
ω , f ∈ X.

e)

(A.2.3) T (t)f = lim
n→∞

[
n

t
R(

t

n
, A)]nf, ∀t > 0, f ∈ X.

Here we state further properties

Proposition A.17. One has the following

a) T (t)D(A) ⊆ D(A), for every t ≥ 0 and

AT (t)x = T (t)Ax, ∀x ∈ D(A).

b) For every x ∈ X, t 7→ T (t)x is continuously differentiable and

d

dt
T (t)x = AT (t)x.

c) For every x ∈ D(A) and t ≥ 0, one has

T (t)x− x =

∫ t

0

AT (s)x ds.
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d) If f ∈ D(A). Then, u(·) = T (·)f is the unique strong solution of the
evolution equation

(A.2.4)

{
u′(t) = (Au)(t), t ≥ 0

u(0) = f.

Lummer-Phillips theorem. The Lumer-phillips theorem characterizes gen-
erators of strongly continuous semigroups. C0-semigroups appear naturally as
solutions of evolution equations of the form (A.2.4). So in order to solve such an
equation one needs to show that the operator say A generates strongly continuous
semigroup. We now state Lumer-Phillips theorem

Theorem A.18. [23, Chap II, Theorem 3.8] Let M ≥ 1, ω ∈ R and A : D(A) ⊂
X → X. The following are equivalent

• (A,D(A)) generates a strongly continuous semigroup T = {T (t) : t ≥ 0}
satisfying

‖T (t)‖ ≤Meωt, ∀t ≥ 0.

• A : D(A) ⊂ X → X is closed, densely defined such that (ω,∞) ⊂ ρ(A)
and

‖R(λ,A)n‖ ≤ M

(λ− ω)n
, ∀n ∈ N, λ ∈ (ω,∞).

As a consequence of this theorem, one has

Corollary A.19. Assume that (A,D(A)) is a densely defined m-dissipative oper-
ator. Then, A generates a contractive strongly continuous semigroup.

We end this section by a Theorem due to N. Okazawa that yields m-dissipativity,
then generation of contractive strongly-continuous semigroup, of unbounded
perturbation of an m-disspipative operator

Theorem A.20. [53, Theorem 1.6] Let A and B be linear m-accretive operators
on X with uniformly convex X∗. Let D be a core for A. Assume that there are
nonnegative constants c, a and b such that for all u ∈ D and ε > 0,

(A.2.5) Re 〈Au, F (Bεu)〉 ≥ −c‖u‖2 − a‖Bεu‖‖u‖ − b‖Bεu‖2,

where Bε := B(I + εB)−1 denotes the Yosida approximation of B. If t > b then
A+ tB with domain D(A) ∩D(B) is m-accretive and D(A) ∩D(B) is a core for
A. Furthermore, A+ bB is essentially m-accretive on D(A) ∩D(B).
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A.3. Analytic semigroups

In this section we introduce the notion of analytic (holomorphic) semigroups.
We start by defining such semigroups

Definition A.21. Let T = {T (t) : t ≥ 0} be a strongly continuous semigroup. T
is said to be analytic if there exists δ ∈ (0, π/2] such that T admits a holomrphic
extension {T (z) : z ∈ Sδ} on Sδ satisfying

• T (z1 + z2) = T (z1) ◦ T (z2), for all z1, z2 ∈ Sδ such that z1 + z2 ∈ Sδ,
• lim
z→0,z∈Sδ′

T (z)x = x, for all x ∈ X and all δ′ ∈ [0, δ).

In this case we say that T is analytic of angle δ.

We now characterize generators of analytic semigroups

Proposition A.22. Let T = {T (t) : t ≥ 0} be an analytic semigroup of angle
δ ∈ (0, π/2] and (A,D(A)) its generator. Assume furthermore that

(A.3.1) Mδ′ := sup
z∈Sδ′
‖T (z)‖ <∞,

for every δ′ ∈ (0, δ). Then, −A is a sectorial operator of angle π/2 + δ.
Conversely, assume that −A is sectorial of angle ϕ > π/2. Then, T = {T (t) : t ≥
0} is analytic of angle ϕ− π/2 and satisfies (A.3.1) for every δ′ < ϕ− π/2.

The definition of sectorial operators is given in Appendix C. We choose to
use the definition of sectorial operators used in topics of functional calculus
and harmonic analysis that is why we did not give any definition here in the
appendix about semigroup theory to not confuse the reader, since usually sectorial
operators for a man of semigroup intends generator of holomorphic semigroup
which is incompatible with one we use in this manuscript. For us, when A
is sectorial, in general, neither A nor −A generate analytic semigroup, see for
instance SubsectionD.1 of Appendix D.
Here we state another series of equivalence for setorial operators

Theorem A.23. [23, Chap II, Theorem 4.6] Let A : D(A) ⊂ X → X be a closed
operator. The following are equivalent

a) −A is sectorial with angle of sectoriality ϕ := π/2 + δ with δ > 0.
b) For every ν ∈ (−δ, δ), eiνA generates a bounded strongly continuous

semigroup on X.
c) A generates a bounded strongly continuous semigroup T = {T (t) : t ≥ 0}

which satisfies R(T (t)) ⊂ D(A), for all t > 0 and

M := sup
t>0

t‖AT (t)‖ <∞.
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d) A generates a bounded strongly continuous semigroup T = {T (t) : t ≥ 0}
and it exists L ≥ 0 such that

(A.3.2) ‖R(r + is, A)‖ ≤ L

|s|
,

for all r > 0 and s ∈ R\{0}.

Compact semigroups. Let T = {T (t) : t ≥ 0} be a strongly continuous
semigroup on a Banach space X.

Definition A.24. The semigroup T is said to be compact if, and only if, T (t) ∈
K(X), for every t > 0.

Proposition A.25. Assume that T is compact, then its generator (A,D(A)) has
a compact resolvent. The reverse implication holds true when T is analytic.

As a consequence of TheoremA.12, one has

Theorem A.26. Let T = {T (t) : t ≥ 0} be a strongly continuous semigroup and
(A,D(A)) its generator. Assume that, A has compact resolvent, then the spectrum
of A is punctual, discrete, countable and accumulates at −∞. In other words,
σ(A) = σp(A) = {λn : n ∈ N} such that limn→∞ λn = −∞.

A.4. Positive semigroups

In order to study positivity of semigroups in a Banach space X, one has to
endow X by an order. Moreover, such an order needs to be compatible with the
structure of vector space and some other properties are required for the order
Banach space (X,≤). In literature such Banach spaces are called Banach lattices,
see [51, Part C]. Here we give its definition

Definition A.27. Let (X,≤) be a partially ordered Banach space. (X,≤) is
called a Banach lattice if, and only if,

• f ≤ g implies f + h ≤ g + h, for all h ∈ X;
• f ≥ 0 implies λf ≥ 0, for every λ ≥ 0;
• For all f, g ∈ X, the supremum sup(f, g), denoted also f ∨ g, is defined

(in some sens) and belongs to X and satisfy f ∨ g is equal to g (resp., to
f) when f ≤ g (resp., when g ≤ f);
• |f | = sup(f, 0) belongs to X, for every f ∈ X;
• |f | ≤ |g| implies ‖f‖ ≤ ‖g‖, for all f, g ∈ X.

Once an order ≤ is defined on X, its dual X∗ is endowed by the following
order

x∗, y∗ ∈ X∗, x∗ ≤ y∗ ⇔ 〈f, x∗〉X,X∗ ≤ 〈f, x∗〉X,X∗ , ∀0 ≤ f ∈ X.
We define positive operators on X
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Definition A.28. Let T ∈ L(X). T is said to be positive if, and only if, 0 ≤ f
implies 0 ≤ Tf , for every f ∈ X.

Now we define positive semigroups.

Definition A.29. Let (X,≤) be a Banach lattice and T = {T (t) : t ≥ 0} a
strongly continuous semigroup on X. T is said to be positive if, and only if, T (t)
is a positive operator for every t ≥ 0.

Let T = {T (t) : t ≥ 0} be a strongly continuous semigroup and (A,D(A)) its
generator. Taking into account (A.2.3) and (A.2.2), one obtains the following

Proposition A.30. The semgroup T is positive if, and only if, R(λ,A) is positive
for every λ > ω0(T )

Now, we state a very useful result which yields a necessary condition for
positivity of semigroups, the so-called positive minimum principle

Theorem A.31. [51, Chap C-II, Proposition 1.7] Let T = {T (t) : t ≥ 0} be a
strongly continuous semigroup and (A,D(A)) its generator. Assume that T is
positive. Then, A satisfies the positive minimum principle, i.e.,

(A.4.1) 0 ≤ f ∈ D(A), 0 ≤ f ∗ ∈ X∗, 〈f, f ∗〉X,X∗ = 0 =⇒ 〈Af, f ∗〉X,X∗ ≥ 0





APPENDIX B

Sesquilinear forms

In this appendix we give the essential background about the theory of sesquilin-
ear forms in Hilbert spaces. All terminology and results announced in this appendix
are taken from the book by Ouhabaz [54] where one can find more details an
deep study of the topic of sesquilinear forms and application to elliptic equations.

B.1. Definition and properties of sesquilinear form

Let H be a Hilbert space over K = C and V a linear subspace of H. Let us
denote by (·, ·) the inner product of H and by ‖ · ‖ its corresponding norm. A
sesquilinear form is a map

a : V × V → C
which satisfies, for every α ∈ C and u, v, w ∈ V , the folowing

a(αu+ v, w) = αa(u,w) + a(v, w) and a(u, αv + w) = αa(u, v) + a(u,w).

The space V in which a is defined is called domain of a and denoted D(a) = V.
The quadratic form associated to a is given by D(a) 3 u 7→ a(u) := a(u, u) the
associated quadratic form. If a is a positive form, i.e.,

(B.1.1) Re a(u) ≥ 0 for all u ∈ D(a).

we also say that a is accretive. In this case ‖ · ‖a : D(a)→ [0,∞), defined by

‖u‖a :=
√

Re a(u) + ‖u‖2, ∀u ∈ D(a),

is a norm on D(a) and it derives from the inner-product

(u, v)a := (u, v) +
1

2
{a(u, v) + a(v, u)}, u, v ∈ D(a).

Definition B.1. Let a : D(a)×D(a)→ C be a sesquilinear form. We say that

(a) a is densely defined if

(B.1.2) D(a) is dense in H.

(b) a is continuous if there exists a non-negative constant M such that

(B.1.3) |a(u, v)| ≤M‖u‖a‖v‖a for all u, v ∈ D(a)

where ‖u‖a :=
√

Re a(u) + ‖u‖2.
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(c) a is closed if

(B.1.4) (D(a), ‖ · ‖a) is a complete space.

Similarly to linear operators, the closedness of form depends upon its domain
of definition. Hence, if a form is not closed one asks if it has a closed extension
and how to define its closure, that shall be the smallest closed extension.

Definition B.2. Let (a, D(a)) be a continuous accretive sesquilinear form. a is
said to be closable if there exists a closed accretive form b : D(b) ⊆ H → H such
that D(a) ⊆ D(b) and b(u, v) = a(u, v) for all (u, v) ∈ D(a).

When, an accretive form a is not closed, this means that its domain D(a)
endowed with ‖ · ‖a is not a complete space. Hence, one thinks to ’extend’ D(a)
in order to get complete superspace. This is the idea behind the construction of
the closure of a closable form.

Definition B.3. Let a be an accretive continuous closable form. We define
closure a of a as follows

D(a) = {u ∈ H|∃(un)n ⊂ D(a) : lim
n→∞

un = u, lim
n,m→∞

a(un − um) = 0},

and
a(u, v) := lim

n→∞
a(un, vn),

for u, v ∈ D(a), and (un)n∈N and (vn)n∈N are any Cauchy sequences in (D(a), ‖·‖a)
and converge respectively to u and v in H.

One has the following.

Proposition B.4. Let a be an accretive continuous sesquilinear form. If a is
closable, then a satisfies (B.1.1)-(B.1.4).

We define a core of a densely defined accretive sesquilinear form as follow

Definition B.5. Let (a, D(a)) be a densely defined accretive sesquilinear form
and V0 ⊆ D(a). V0 is said to be a core for a if, and only if, V0 is dense in
(D(a), ‖ · ‖a).

B.2. Associated operator

Now, for a given densely defined sesquilinear form (a, D(a)), we want to
associate a linear operator (A,D(A)) on H. The construction of such operator,
called associated operator to the form a, is the following

D(A) := {u ∈ H| ∃v ∈ H : a(u, φ) = (v, φ), ∀φ ∈ D(a)}, Au := v.

With this construction, one has a is accretive if and only if A is accretive.
The mean result of sesquilinear form theory consists on generation of analytic
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semigroup for the operator associated to a form a. Actually, the form method is
the easiest way to get generation of analytic semigroup. The result is formulated
as follow

Theorem B.6. Let (a, D(a)) be a sesquilinear form satisfying (B.1.1)–(B.1.4).
Let (A,D(A)) be its associated operator. Then, −A generates a contractive strongly
continuous semigroup T = {T (t) : t ≥ 0} on H. Moreover, T has an extension
to a holomorphic semigroup on the sector Sπ

2
−arctanM , where M is the constant

appearing in the continuity assumption (B.1.3).

B.3. Beurling-Deny condition and submarkovian semigroups

Throughout this section H = L2(Rd,Cm) is the Hilbert space of complex
vector-valued functions with square integrable norm.

H := {f = (f1, . . . , fm) : Rd → C :

∫
Rd

m∑
j=1

|fj|2 dx <∞}.

The inner product of H is given by

(f, g) :=

∫
Rd
〈f, ḡ〉 dx =

∫
Rd

m∑
j=1

fj ḡj dx, ∀f, g ∈ H.

Let (a, D(a)) be a sesquilinear form over H satisfying (B.1.1)–(B.1.4), (A,D(A))
its associated operator and T = {T (t) : t ≥ 0} the semigroup generated by −A.

Consider C be a closed convex subset of H. Let P : H → C the projection on C.
We recall that such a projection is uniquely defined and satisfies (Pu, u−Pu) = 0,
for every u ∈ H. We aim to characterize the invariance of C under the semigroup
T via the associated form.

Definition B.7. C is invariant under T if T (t)C ⊂ C, for every t ≥ 0.

The ’generalized’ Beurling-Deny characterizes this invariance as follow

Theorem B.8. [54, Theorem 2.2] The following are equivalent

a) C is invariant under T .
b) P (D(a)) ⊂ D(a) and Re a(Pu, u− Pu) ≥ 0, for every u ∈ D(a).
c) There exists a core V0 of a such that P (V0) ⊂ D(a) and Re a(Pu, u −
Pu) ≥ 0, for every u ∈ V0.

In the case where a is symmetric, the above items are equivalent to

P (D(a)) ⊂ D(a) and a(Pu) ≤ a(u) for every u ∈ D(a).
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As a consequence of the above theorem, one characterizes positive semigroups
on H = L2(Rd,Cm) considering

C+ := {f = (f1, . . . , fm) ∈ L2(Rd,Rm) : fj ≥ 0, ∀1 ≤ j ≤ m},
and P+f = f+ := (f+

j )1≤j≤m, for all f ∈ L2(Rd,Rm).

Corollary B.9. T is a positive semigroup if and only if

• f+ ∈ D(a), for every f ∈ D(a).
• a(f+, f−) ≥ 0, for every f ∈ D(a).

Now, we will characterize the L∞-contractivity of the semigroup T , that is

‖T (t)f‖∞ ≤ ‖f‖∞, ∀f ∈ L2(Rd,Rm) ∩ L∞(Rd,Rm).

Consider C∞ := {f = (f1, . . . , fm) ∈ L2(Rd,Rm) : |f | :=
√∑m

j=1 f
2
j ≤ 1}. The

projection P∞ on C∞ is given by

P∞f = (1 ∧ |f |)sign(f), ∀f ∈ L2(Rd,Rm).

Where sign(f) = f
|f |χ{f 6=0}. One has

Lemma B.10. T is L∞-contractive if, and only if, C∞ is invariant under T .

This lemma together with Theorem B.8 yield

Corollary B.11. T is L∞-contractive if, and only if,

• (1 ∧ |f |)sign(f) ∈ D(a), for all f ∈ D(a).
• a ((1 ∧ |f |)sign(f), f − (1 ∧ |f |)sign(f)) ≥ 0, for all f ∈ D(a).

In the case where the form a is symmetric, the above is equivalent to

• f ∈ D(a) implies (1 ∧ |f |)sign(f) ∈ D(a) and
• a((1 ∧ |f |)sign(f) ∈ D(a)) ≤ a(f), for all f ∈ D(a).

Semigroups in L2(Rd,Rm) which are positive and L∞-contractive are called
submarkovian semigroups.
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Functional calculus for sectorial operators

In this appendix we collect the background about functional calculus for an
unbounded ’sectorial operator’. What we mean by functional calculus for a given
operator A is the definition and study of the family of operators f(A), where f
can be a holomorphic function. In the case where A is a bounded operator on
a Banach space X, f(A) is well defined for all complex functions f which are
holomorphic on a neighborhood of the (finite) spectrum of A. f(A) is defined by
the following Cauchy formula

(C.0.1) f(A) =
1

2πi

∫
γ+
f(z)(z − A)−1dz,

where γ = ∂Ω is the boundary of Ω, a bounded open subset of C which satisfies
σ(A) ⊂ Ω; γ+ indicates the positive orientation (anti-clockwise) of the path γ.
As the spectrum of a unbounded operator is (in general) unbounded, the question
which arise is how to extend (C.0.1) to closed unbounded A’s?

Throughout this Appendix, X is a complex Banach space and A is a closed
densely defined operator on X with domain D(A).

All results, definitions and notation which are given in this appendix are taken
from [29], especially chapters 2,3 and 5. Elsewhere, the reference will be cited
together with the result.

C.1. Sectorial operators and natural functional calculus

We begin by defining sectorial operators; We adopt the definitions and nota-
tions of [29]. For θ ∈ (0, π), we define the sector

Sθ = {z ∈ C : | arg(z)| < θ}
and S0 = (0,∞).

Definition C.1. A : D(A) ⊆ X → X is called sectorial of angle θ ∈ [0, π) if

(i) σ(A) ⊆ S̄θ,

(ii) There exists M > 0 such that ‖λR(λ,A)‖ ≤M , for all λ /∈ S̄θ′ , for each
θ′ ∈ (θ, π).
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Remark C.2. The above definition does not mean that −A generates an analytic
semigroup in X, unless the angle θ < π

2
. This definition is incompatible with the

one of [23, Definition II-4.1], where the sectorial operators are exactly generators
of bounded holomorphic semigroups. Moreover, closed operators satisfying Hille-
Yosida conditions, see Appendix A, are sectorial as shows the following proposition

Proposition C.3. Let A : D(A) ⊂ X → X be a closed operator such that

• (−∞, 0) ⊂ ρ(A),
• M = supt>0 ‖t(t+ A)−1‖ <∞.

Then A is sectorial of angle θ = π − arcsin(M−1).

Notation. Let A be a sectorial operator of angle ω ∈ [0, π) and fix ϕ ∈ (ω, π).
We adopt the following notation: O(Sϕ) (resp. M(Sϕ)) denotes the space of all
holomorphic (resp. meromorphic) function over Sϕ, H∞(Sϕ) the set of all bounded
holomorphic function on Sϕ. We also introduce an intermediate space between
O(Sϕ) and H∞(Sϕ), this space is called the Dunford Riesz Class, denoted by
H∞0 (Sϕ) and is defined by

H∞0 (Sϕ) := {f ∈ O(Sϕ) : f is regularly decaying decay at 0 and∞}.
A function f ∈ H∞(Sφ) is said to be regularly decaying at 0 if |f(z)| = o(|z|α)
when z → 0, for some α > 0. Similarly, we say that f is regularly decaying at ∞
if |f(z)| = o( 1

|z|α ) for |z| → ∞, for some α > 0.

Now, we define f(A), for f ∈ H∞0 (Sϕ) by the Dunford-Riesz integral

Definition C.4. Let f ∈ H∞0 (Sϕ). We define f(A) ∈ L(X) by

(C.1.1) f(A) :=
1

2πi

∫
Γ+
ϕ

f(z)(z − A)−1dz,

where Γϕ = ∂Sϕ is the boundary of Sϕ and Γ+
ϕ indicates the positive orientation

of Γϕ.

Here is a characterization of H∞0 (Sϕ)

Proposition C.5. Let f ∈ O(Sϕ). Then, f ∈ H∞0 (Sϕ) if, and only if, one the
following holds true

a) There exist C ≥ 0 and s > 0 such that |f(z)| ≤ C min(|z|α, |z|−α), for
all z ∈ Sϕ.

b) There exist C ≥ 0 and s > 0 such that |f(z)| ≤ C |z|s
1+|z|2s , for all z ∈ Sϕ.

Remark C.6. The estimate b) of the above proposition together with the sec-
toriality inequality yield the integrability of z 7→ f(z)(z − A)−1. Thus, the
Dunford-Riesz integral (C.1.1) is meaningful. This is why H∞0 (Sϕ) is called the
Dunford-Riesz class.
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We introduce the space E(Sϕ) as the smallest subspace of O(Sϕ) containing
H∞0 (Sϕ), z 7→ (λ + z)−1, λ > 0 and the constant functions. If f ∈ E(Sϕ) such
that f(z) = g(z) + a(λ+ z)−1 + bz, where g ∈ H∞0 (Sϕ), a, b ∈ R and λ > 0. Then,
f(A) can be defined as

f(A) := g(A) + a(λ+ A)−1 + bA.

Now, we define the space of regularisable functions as the greatest space where
one can define functional calculus for the operator A. This space depends on A
as shows the below definition

Definition C.7. The set of regularisable meromorphic functions is defined by
(C.1.2)
MA(Sϕ) := {f ∈M(Sϕ)|∃e ∈ E(Sϕ) : e(A) is injective and ef ∈ E(Sϕ)}.

If f ∈MA(Sϕ) and e as above, then

f(A) := (e(A))−1(ef)(A).

The function e is a kind of regularising function for f .

Remark C.8. The functional set MA(Sϕ) depends upon A. In the case where
A is injective, MA(Sϕ) contains H∞(Sϕ) and all powers z 7→ zα, α ∈ R. Hence,
one could define, for injective A, Aα and f(A), for every bounded holomorphic f .
The following two sections yield more details on those topics.

Composition Rule. Let us assume that A is injective. According to [29,
Proposition 2.4.1] and since A sectorial, A−1 is also sectorial with the same angle.
One has the following

Proposition C.9. Let f ∈M(Sϕ). Then,

f ∈M(Sϕ)A−1 ⇐⇒ f(z−1) ∈M(Sϕ)A.

In this case, f(A−1) = f(z−1)(A).

We intend by composition rule the formula (g ◦f)(A) = g(f(A)). The theorem
related to composition rule is the following

Theorem C.10. [29, Theorem 2.4.2]
Assume the following are satisfied

• f ∈M(Sω)A and f(A) is sectorial of angle ω′.
• g ∈M(Sω′)f(A).
• f(Sω) ⊂ S̄ω′.

Then g ◦ f ∈M(Sω)A and

(g ◦ f)(A) = g(f(A)).
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C.2. Bounded H∞-functionnal calculus

In this section we define f(A) for bounded holomorphic functions f and
injective operators A. Throughout, assume that A is injective.

Proposition C.11. Let f ∈ H∞(Sϕ). Then, f ∈MA(Sϕ).

Proof. Let e(z) = z(1 + z2)−1. One has e(A) is injective, e(A)−1 = (1 +
A2)A−1 and, by Proposition C.5, ef ∈ H∞0 (Sϕ) ⊂ E(Sϕ). Thus, f ∈MA(Sϕ) and

f(A) = (1 + A2)A−1(ef)(A).

Note that since ef ∈ H∞0 (Sϕ), then (ef)(A) =
(
z 7→ zf(z)

1+z2

)
(A) can be defined by

the Dunford Riesz integral (C.1.1). �

Now, we define what is boundedness of H∞-functional calculus

Definition C.12. Assume that A is injective. A admits bounded H∞-functional
calculus on Sϕ if, and only if, f(A) ∈ L(X) and there exists Cϕ > 0 such that

‖f(A)‖ ≤ Cϕ‖f‖ϕ,
for all f ∈ H∞(Sϕ). Where, ‖f‖ϕ = supz∈Sϕ |f(z)|.

Example 1: Elliptic systems. Let p ∈ (1,∞) and Ep the Lp-realization of
the elliptic differential operator E given by

(C.2.1) (Eu)(x) =
m∑

i,j=1

aij(x)Diju (x) +
m∑
i=1

Bj(x)∂ju (x) + C(x)u(x),

where u = (u1, . . . , um) : Rd → Rm is smooth enough. Assume the coefficients of
the differential operator E satisfy the following:

• For every i, j ∈ {1, . . . ,m}, aij = aji and there exists 0 < η1 < η2 such
that

η1|ξ|2 ≤
m∑

i,j=1

aij(x)ξiξj ≤ η2|ξ|2,

for all ξ ∈ Rm and x ∈ Rd.
• For every i, j ∈ {1, . . . ,m}, aij ∈ BUC(Rd).
• For every j ∈ {1, . . . ,m}, Bj, C ∈ L∞(Rd,Rm×m).

Proposition C.13. [21, Theorem 6.1]
Assume the above hypotheses are satisfied. Then, there exists s ∈ R such that
s− Ep admits a bounded H∞-functional calculus on Sπ−ε, for every ε > 0.

Remark C.14. The choice of the constant s in the above proposition is to obtain
injectivity of s− Ep. If E is written in divergence form and Bj = C = 0, for all
j ∈ {1, . . . ,m}, Then ε−Ep has H∞-bounded functional calculus for every ε > 0.
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Example 2: m-accretive operators in Hilbert spaces. Let X = H
be a Hilbert space and A : D(A) ⊂ H → H be a m-accretive operator, i.e.,
R(1 + A) = H and

〈Ax, x〉 ≥ 0, ∀x ∈ H.
According to [29, Proposition 2.1.1], A is sectorial of angle π

2
. Assume that A is

injective. One has the following

Proposition C.15. [29, Corollary 7.1.8]
A admits H∞-bounded functional calculus on Sπ

2
. Moreover,

(C.2.2) ‖f(A)‖ ≤ ‖f‖π
2
,

for every f ∈ H∞(Sπ
2
).

Remark C.16. For m-accretive operators on Hilbert spaces, it was firstly estab-
lished boundedness of imaginary powers by Prüss and Sohr, see [58, Example
2]. Later on, in [15, Theorem 2.4], the authors show the equivalence between
boundedness of H∞-calculus and of imaginary powers in Hilbert spaces. Which
yields the result of the above proposition.

C.3. Fractionnal powers

Here we give definition of Aα, α ∈ C, for injective A. To do so, we first define
real powers Aα, α ∈ R and imaginary powers Ais, s ∈ R and by properties of
functional calculus one Aα = AReαAi Imα. Since, for every s ∈ R, z 7→ zis is
bounded in sectors, the imaginary power Ais is given by Section C.2.

Assume that A is injective. Let us define Aα for α ∈ R.

Definition C.17. Let α ∈ R.

a) If α > 0, z 7→ zα belongs to MA(Sϕ). If n ∈ N is such that n > α, then

Aα := (1 + A)n
(
z 7→ zα

(1 + z)n

)
(A).

b) If α < 0, Aα is given by the composition rule Aα := (A−1)−α.

One has the following properties of exponents, see [29, Chapter 3],

Proposition C.18. Let α, β ∈ R. One has

(1) Aα+β = AαAβ.
(2) If βω < π. Then, Aαβ = (Aα)β.

Earlier definition of fractional powers was throughout the so-called Balakrish-
nan formula, see [9] or [29, Proposition 3.1.12],

(C.3.1) Aαx =
sin(απ)

π

∫ ∞
0

tα−1(t+ A)−1Axdt,
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for every α ∈ C such that 0 < Reα < 1.

Another way to express Aα is the Komatsu representation, see [39] or [29,
Proposition 3.2.2]. Once A is injective and −1 < Reα < 1, then

Aαx =
sin(απ)

π

(
1

α
x+

1

1 + α
A−1x+

∫ 1

0

t1+α(t+ A)−1A−1x dt+

∫ ∞
1

tα−1(t+ A)−1Axdt

)(C.3.2)

Finally, one has the following

Proposition C.19. [29, Corollary 3.3.6] Assume −A generates an exponentially
stable semigroup {T (t)}t≥0. Then

A−αx =
1

Γ(α)

∫ +∞

0

tα−1T (t)x dt,

for all x ∈ X and all Re (α) > 0.

C.3.1. Boundedness of imaginary powers. Imaginary powers in UMD
Banach spaces appear essentially in theorems dealing with maximal regularity of
a perturbed problems. Dore-*Venni theorem is an example, see [20], [50]. UMD
Banach spaces or also Banach spaces of HT class refer to Banach spaces with
bounded Hilbert Transform.

Definition C.20. [14] Let Y be a Banach space. Y is said to be of HT class if,
and only if,

(C.3.3) H : f → Hf(t) :=
1

π
lim
ε→0

∫
s≥ε

1

s
f(t− s)ds

extends to a bounded linear operator on Lp(R, Y ) for some, equivalently for all,
p ∈ (1,∞).

Assume that X is a Banach space of HT class.

Definition C.21. A admits bounded imaginary powers if, and only if, D(A) ∩
R(A) is dense in X and Ais ∈ L(X) for all s ∈ R.
By BIP(X) we denote the set of all injective sectorial operators on X which have
bounded imaginary powers.

One has the following property

Proposition C.22. [29, Corollary 3.5.7] The following are equivalent

• A ∈ BIP(X)
• The family {Ais}s∈R is a C0-group of linear bounded operators in X.

In this case, the generator of {Ais}s∈R is B = i log(A).
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Let A ∈ BIP(X). Then, there exists M ≥ 1 and θ ∈ R such that

‖Ais‖ ≤Meθ|s|, ∀s ∈ R.
Let

(C.3.4) θA = inf{θ ∈ R | ∃M ≥ 1 : ‖Ais‖ ≤Meθ|s|, ∀s ∈ R}.
θA is called the power angle of A.

Remark C.23. It it easy to see that the boundedness of imaginary power is a
consequence of boundedness of H∞ functional calculus. However, in [15], the
authors prove that in Hilbert spaces the two notions are equivalent.

Examples C.24. Every closed injective A which admits H∞-bounded functional
calculus has bounded imaginary powers, i.e., H∞(Sϕ) ⊂ BIP(X) and θA > ϕ.
Indeed, assume that A admits H∞-bounded functional calculus on Sϕ, for some
θ ∈ [0, π). One has, for every s ∈ R, z 7→ zis ∈ H∞(Sϕ) and |zis| ≤ esϕ, for all
z ∈ Sϕ. Thus

‖Ais‖ ≤M esϕ.

Consequentely,

• according to PropositionC.13, every elliptic system with bounded uni-
formly continuous second order coefficients and bounded lowest order co-
efficients has bounded imaginary powers in Lp-spaces for every 1 < p <∞
and the power angle is equal to 0.
• according to PropositionC.15, every accretive operator A on a Hilbert

space admits bounded imaginary powers with power angle θA ≤ π/2.

C.3.2. Two versions of Dore–Venni theorem. Now we give a very im-
portant result which yields the closedness\sectoriality of the sum of two sectorial
operators of bounded imaginary powers, the sum is defined on the natural domain:
intersection of the two domains.

Let X be a UMD Banach space, A : D(A) ⊂ X → X and B : D(B) ⊂
X → X two closed operators such that A,B ∈ BIP(X). Here we recall the
commutative Dore–Venni theorem.

Theorem C.25. [20, Theorem 2.1] Assume that

• (−∞, 0] ⊂ ρ(A) ∩ ρ(B) and there exists M > 0 such that

‖(t+ A)−1‖, ‖(t+B)−1‖ ≤ M

1 + t
, ∀t ≥ 0.

• There exist K ≥ 1 and 0 ≤ θA, θB < π with θA + θB < π such that

‖Ais‖ ≤ K exp(θA|s|), ‖Bis‖ ≤ K exp(θB|s|)
for all s ∈ R.



98 C. FUNCTIONAL CALCULUS FOR SECTORIAL OPERATORS

• For some\all λ ∈ ρ(A), µ ∈ ρ(B) one has (λ − A)−1(µ − B)−1 =
(µ−B)−1(λ− A)−1

Then, A + B defined on D(A + B) := D(A) ∩ D(B) is closed (in particular
sectorial).

The above theorem was generalized for the sum of two non commutative
operators by Monniaux and Prüss as follows.

Theorem C.26. [50] Assume the following hold

• There exist K ≥ 1 and 0 ≤ θA, θB < π with θA + θB < π such that

‖Ais‖ ≤ K exp(θA|s|), ‖Bis‖ ≤ K exp(θB|s|)
for all s ∈ R.
• There exists M ≥ 0 such that

|(λ+ A)−1| ≤ M

1 + |λ|
, ∀λ ∈ Sπ−θA ;

|(µ+B)−1| ≤ M

|µ|
, ∀µ ∈ Sπ−θB .

• There exist c ≥ 0 and 0 ≤ α < β ≤ 1 such that∣∣A(λ+ A)−1
(
A−1(µ+B)−1 − (µ+B)−1A−1

)∣∣ ≤ c

(1 + |λ|1−α)|µ|1−β
,

for all λ ∈ Sπ−θA and µ ∈ Sπ−θB .

Then, A + B with domain D(A) ∩D(B) is closed and there exists ν0 ≥ 0 such
that ν0 + A+B is sectorial (A+B is quasi-sectorial).



APPENDIX D

Matrix Multiplication Operator

This appendix is devoted to developing properties of the multiplication op-
erator by a matrix in Lp-spaces. Throughout, we consider the Banach space
E = Lp(Rd,Rm), where 1 ≤ p < ∞ and d,m ∈ N. Let M : Rd → Rm×m be
a measurable matrix–valued function. Assume that M satisfies the following
algebraic condition

(D.0.5) 〈M(x)ξ, ξ〉 ≤ β|ξ|2

for all x ∈ Rd, ξ ∈ Rm and some real number β. We define Mp ato be the
multiplication operator by M in Lp(Rd,Rm) with its maximal domain D(Mp) =
{f ∈ Lp(Rd,Rm) : Mf ∈ Lp(Rd,Rm)}. Note that Mf should be understood as a
matrix-vector multiplication: (Mf)i(x) =

∑m
j=1 Mij(x)fj(x), 1 ≤ i ≤ m.

D.1. Semigroup associated to Mp

We prove that Mp generates a strongly continuous semigroup in the following
proposition.

Proposition D.1. • Mp generates a strongly continuous semigroup in
Lp(Rd,Rm); its associated semigroup is the family of multiplication oper-
ators: {etM}t≥0. Moreover, one has

sup
x∈Rd
|etM(x)| ≤ eβt, ∀t ≥ 0.

• The half-plan {z ∈ C : Re(z) ≥ β} is contained in the resolvent set ρ(Mp)
and

‖(λ−Mp)
−1‖ = sup

x∈Rd
|(λ−M(x))−1| ≤ 1

Re(λ)− β
, ∀Re(λ) > β.

In particular, β −Mp is a sectorial operator.

Proof. • Let us show first that etM is uniformly bounded on x. Fix
x ∈ Rd and ξ ∈ Rm. Set φ(t) = |e−βtetM(x)ξ|2, for all t ≥ 0. One has

φ′(t) = 2〈(M − β)ξ, ξ〉 ≤ 0.
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Then, φ is deacrising. In particular, φ(t) ≤ φ(0) which yields |etM(x)| ≤
eβt, for all t ≥ 0.
It follows that∫

Rd
|etM(x)f(x)|pdx ≤

∫
Rd
epβt|f(x)|pdx ≤ epβt‖f‖pp,

for every f ∈ Lp(Rd,Rm). Let us define Up(t)f = etV f , for all f ∈
Lp(Rd,Rm). Thus, {Up(t)}t≥0 is a semigroup of linear bounded operator
on Lp(Rd,Rm) and

‖Up(t)‖ ≤ eβt.

To get the continuity of {Up(t)}t≥0, one has limt→0 e
tMf = f almost

everywhere, and

sup
t∈[0,1]

‖Up(t)f‖p ≤ sup
t∈[0,1]

sup
x∈Rd
|etM(x)|‖f‖p ≤ sup

t∈[0,1]

eβt‖f‖p <∞.

hence, we conclude by the dominated convergence theorem that {Up(t)}t≥0

is a C0-semigroup.
It remains to prove that (Mp, D(Mp)) is the generator of {Up(t)}t≥0. Let
us denote by (Bp, D(Bp)) the generator of {Up(t)}t≥0 and let f ∈ D(Bp).
One has Bpf = limt→0 1/t(etMf−f) and the limit is taken in Lp(Rd,Rm).
The pointwise limit yields Bpf = Mf ∈ Lp(Rd,Rm) and thus f ∈ D(Mp).
Conversely, if f ∈ D(Mp) then limt→0

1
t
(etMf − f) = V f pointwisely.

However, applying the main theorem

|etMf − f | ≤ sup
0≤s≤t

(|esM |)|Mf | ≤ et|β||Mf |

as Mf ∈ Lp(Rd,Rm), we conclude by dominated convergence theorem
that f ∈ D(Bp).
• It suffices to show that the resolvent operator (λ−Mp)

−1 is the multi-
plication by the matrix-valued function (λ−M)−1 and conclude by the
Hille–Yosida theorem. This follows by applying the Laplace transform of
s 7→ esV . Indeed,

(λ−M)−1 =

∫ +∞

0

e−λtetMdt, ∀Re(λ) > β.

�

What about analytic semigroup. One could ask if the semigroup {Up(t)}t≥0

generated by Mp is holomorphic. The answer is, in general, negative. Indeed, if
one considers the antisymetric matrix

M(x) = a(x)

(
0 1
−1 0

)
,
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where a : Rd → R is any unbounded real valued function: supx∈Rd |a(x)| = ∞.
Since M is antisymmetric, then 〈M(x)ξ, ξ〉 = 0 for all x ∈ Rd and ξ ∈ R2. Thus
(D.0.5) is satisfied. Moreover, one can easily get

etM(x) =

(
cos(a(x)t) sin(a(x)t)
−sin(a(x)t) cos(a(x)t)

)
,

therefore

M(x)etM(x) =

(
−a(x) sin(a(x)t) a(x) cos(a(x)t)
−a(x) cos(a(x)t) −a(x) sin(a(x)t)

)
.

Since a is not bounded, then MetM is not uniformly bounded on x and thus the
multiplication by MetM cannot be a bounded operator in Lp-spaces. We conclude
by [23, Chap II, Theorem 4.6] that {Up(t)} is not a holomorphic semigroup in
this case.
If M where symmetric, then M2 will be self–adjoint in L2(Rd,Rm) and thus {Up(t)}
will be holomorphic in Lp(Rd,Rm), for all 1 < p <∞. We, now give a sufficient
condition that yields the analyticity of {Up(t)} on Lp(Rd,Rm) for 1 < p <∞. The
condition of the below proposition is that the numerical ranges of the matrices
−M(x), x ∈ R is included in a sector of angle less than π

2
, independently on x.

This can be seen also as the sesquilinear form associated to the symmetric part of
−M dominates the antisymmetric one.

Without loss of generalities we assume that β in (D.0.5) is 0. Hence −Mp is
m-accretive in Lp(Rd,Rm), 1 < p <∞.

Proposition D.2. Assume that there exists a positive constant C such that

(D.1.1) Re 〈−M(x)ξ, ξ̄〉 ≥ C|Im 〈M(x)ξ, ξ̄〉|,

for all x ∈ Rd, ξ ∈ Rm. Then, for all 1 < p <∞, −Mp is sectorial of angle φ =
arctan( 1

C
) < π

2
. In particular {Up(t)} can be extended to a bounded holomorphic

semigroup.

Proof. Let u ∈ D(Mp), one has

Re 〈−Mpu, |u|p−2ū〉p = Re

∫
Rd
〈−M(x)u(x), ū(x)〉|u(x)|p−2dx

=

∫
Rd

Re (〈−M(x)u(x), ū(x)〉)|u(x)|p−2dx

≥ C

∫
Rd
|Im 〈M(x)u(x), ū(x)〉||u(x)|p−2dx

≥ C|Im 〈Vpu, |u|p−2ū〉p|.

Hence σ(−Mp) ⊂ Sφ and then σ(Mp) ⊂ Sπ−φ, where φ = arctan( 1
C

) which ends
the proof. �
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D.2. Functional calculus associated to −Mp

We assume that β = 0 in (D.0.5). The aim of this section is to show that
f(−Mp) is exactly the multiplication by the matrix f(−M) and show that −Mp

admits bounded H∞-functional calculus. In fact, in Proposition D.1, it has
been shown that the semigroup {etMp : t ≥ 0} associated to Mp is the operator
multiplication by etM and the resolvent R(λ,Mp) coincides with the multiplication
by (λ−M)−1. Now, we have the following.

Lemma D.3. Let f ∈ H∞0 (Sπ/2). Then, f(−Mp) is nothing but the multiplication
operator by the matrix f(−M). In particular,

(D.2.1) ‖f(−Mp)‖p = sup
x∈Rd
‖f(−M(x))‖

Proof. Let ϕ > π/2. According to (C.1.1), one has

f(−Mp)u =
1

2πi

∫
Γ+
ϕ

f(z)(z +Mp)
−1u dz, ∀u ∈ Lp(Rd,Rm).

Now, z ∈ Γϕ and ϕ > π/2 imply | arg(z)| < π/2. Thus, | arg(−z)| < π/2 and
Re (−z) ≥ 0. Thus, (z +Mp)

−1 = −R(−z,Mp), which implies that (z +Mp)
−1 is

the multiplication by −(−z −M−1
) = (z +M)−1. That is

((z +Mp)
−1u)(x) = (z +M(x))−1u(x),

for every x ∈ X and u ∈ Lp(Rd,Rm). Finally, since (C.1.1) hold true for the
matrix −M(x), for every x ∈ Rd as it is an accretive operator in Rm, one has
(f(−Mp)u)(x) = f(−M(x))u(x) and the claim is proved. �

Consequently, one obtains

Theorem D.4. M−Mp(Sπ/2) = ∪x∈RdM−M(x)(Sπ/2) and f(−Mp) coincides with
the mutliplication operator by the matrix f(−M(·)), for every f ∈M−Mp(Sπ/2).
In particular,

((−Mp)
isu)(x) = (−M(x))isu(x),

for every u ∈ Lp(Rd,Rm) and every x ∈ Rd.

Now we state the man and crucial result of this appendix

Theorem D.5. −Mp admits a bounded H∞ functional calculus on Sπ/2 and

(D.2.2) ‖f(−Mp)‖p ≤ ‖f‖Sπ/2 ,

for every f ∈ H∞(Sπ/2). In particular, −Mp ∈ BIP(Lp(Rd,Rm)) and

(D.2.3) ‖(−Mp)
is‖ ≤ e

π
2
|s|, ∀s ∈ R.
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Proof. Let f ∈ H∞(Sπ/2) and fix x ∈ Rd. The matrix −M(x) is actually an
m-accretive operator on Rm. Thus, according to Proposition C.15, −M(x) admits
H∞ functional calculus on Sπ/2 and

|f(−M(x))| ≤ ‖f‖Sπ/2 .
Therefore,

‖f(−Mp)‖ = sup
x∈Rd
|f(−M(x))| ≤ ‖f‖Sπ/2 <∞.

Hence, −Mp admits H∞–functional calculus on Sπ/2 and (D.2.2) holds true. �

D.3. Some inequalities for positive matrices

We assume that β = 0 in (D.0.5). That is

(D.3.1) 〈M(x)ξ, ξ〉 ≤ 0, ∀(x, ξ) ∈ Rd × Rm.

One has the following

Proposition D.6. Let M = (mij)1≤i,j≤m and x ∈ Rd and assume that (D.3.1)
holds. Then,
(D.3.2){
mii(x) ≤ 0, ∀i ∈ {1, . . . ,m}
|mij(x) +mji(x)| ≤ 2

√
mii(x)mjj(x) ≤ −(mii(x) +mjj(x)), ∀i 6= j ∈ {1, . . . ,m}.

In particular, if M(x) is a symmetric matrix then

|mij(x)| ≤
√
mii(x)mjj(x) ≤ −1

2
(mii(x) +mjj(x)).

Proof. Let i 6= j ∈ {1, . . . ,m} and consider ξ = ξiei + ξjej ∈ Rm, where ei
and ej are respectively the i-th and j-th component of the canonical basis of Rm,
and ξi, ξj ∈ R. According to (D.3.1), one has mii(x) = 〈M(x)ei, ei〉 ≤ 0 and

0 ≥ 〈M(x)ξ, ξ〉 = mii(x)ξ2
i + (mij(x) +mji(x))ξiξj +mjj(x)ξ2

j .

Now, if mii(x) = 0, then (mij(x) +mji(x)ξiξj +mjj(x)ξ2
j ≤ 0, for every ξi, ξj ∈ R,

which yields mij(x) + mji(x) = 0. Thus, (D.3.2) is satisfied. If mii(x) 6= 0, one
has

0 ≤ 1

mii(x)
〈M(x)ξ, ξ〉 =

(
ξi +

mij(x) +mji(x)

2mii(x)
ξj

)2

+ξ2
j

(
mjj(x)

mii(x)
− (mij(x) +mji(x))2

4m2
ii(x)

)
.

A suitable choice of ξi and ξj implies
mjj(x)

mii(x)
− (mij(x)+mji(x))2

4m2
ii(x)

≥ 0 and thus (D.3.2)

follows. �





List of symbols

• Rj: Euclidean j-dimensional space, j = d,m.

• Cj: Complex euclidean space of dimension j = d,m.

• 〈x, y〉: Inner euclidean product between the vectors x, y ∈ Cj , j = d,m.

• |x|: Euclidean norm of x ∈ Rj, j = d,m.

• B(r): Centred ball of Rd of radius r.

• suppu: Support of a given function u.

• Lp(Rd): Space of measurable u : Rd → R such that
∫
Rd |u(x)|p dx <∞.

• Lp(Rd,Rm): Space of measurable u : Rd → Rm such that |u| ∈ Lp(Rd).

• ‖ · ‖p: Norm of Lp(Rd,Rm).

• ‖u‖p =
(∫

Rd |u(x)|p dx
) 1
p =

(∫
Rd(
∑m

j=1 |uj(x)|2)p/2 dx
) 1
p

• W k,p(Rd): Sobolev space of order k over Lp(Rd).

• W k,p(Rd,Rm): Space of functions u : Rd → Rm with components uj in
W k,p(Rd).

• ‖ · ‖k,p: Norm of the Sobolev space W k,p(Rd,Rm).

• χE: Characteristic function of the set E, i.e.: χE(x) = 1 if x ∈ E and
χE(x) = 0 if x /∈ E.

• W k,p
loc (Rd): Space of functions f in Lploc(Rd) such that ∂αf ∈ Lploc(Rd), for

every α = (α1, . . . , αd) ∈ Nd with |α| ≤ k.

• Cb(Rd): Space of continuous bounded functions of Rd.

• Cα
b (Rd): Space of bounded α-Hölderian functions in Rd.
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• C1+α
b (Rd): Space of bounded functions u with bounded first-order deriva-

tives such that u and ∂iu are α-Hölderian functions in Rd, for all
i ∈ {1, . . . ,m}.

• C∞c (Rd): Space of infinitely many time derivable functions with compact
support in Rd.

• Sθ: Sector of angle θ ∈ (0, π).

• C+: Set of complex numbers with positive real part.

• C+
ω : Set of complex numbers with real part greater than ω.

• O(Sθ): Space of holomorphic function over Sθ.

• M(Sθ): Space of meromorphic function over Sθ.

• H∞(Sθ): Space of bounded holomorphic function over Sθ.

• H∞0 (Sθ): Dunford–Riesz class over Sθ.

• ρ(A): Resolvent set of A.

• σ(A): Spectrum of the operator A.

• R(λ,A): Resolvent operator of A at point λ.
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[33] R. Henri, D. Kreječiřik, Pseudospectra of the Schrödinger operator with a discontinuous
complex potential, https://arxiv.org/abs/1503.02478 (to appear in J. Spectr. Theory 2017).

[34] M. Hieber, L. Lorenzi, J. Prüss, R. Schnaubelt, A. Rhandi, Global properties of generalized
Ornstein-Uhlenbeck operators on Lp(RN ,RN ) with more than linearly growing coefficients,
J. Math. Anal. Appl., 350 (2009), pp. 100-121.

[35] M. Hieber, A. Rhandi, O. Sawada, The Navier-Stokes flow for globally Lipschitz continuous
initial data, Res. Inst. Math. Sci. (RIMS), (2007), pp. 159-165. Kyoto Conference on the
Navier-Stockes Equations and their Applications, RIMS Kkyroku Bessatsu, B1.

[36] M. Hieber, O. Sawada, The Navier-Stokes equations in Rn with linearly growing initial
data, Arch. Ration. Mech. Anal., 175 (2005), pp. 269-285.

[37] T. Kato, On some Schrödinger operators with a singular complex potential, Annali della
Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 5, no 1 (1978), pp.
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