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SOMMARIO 

Uno dei rischi naturali cui è esposto sin dal passato il territorio nazionale, 
ed anche la regione Campania, è quello legato alle piene alluvionali. Uno 
dei problemi centrali nella valutazione di tale rischio è la definizione delle 
portate massime di piena con assegnato periodo di ritorno. Attualmente 
in Campania, per la valutazione  di tale parametro,  si fa riferimento alla 
metodologia  VAPI-Campania (1995). Il VAPI- Campania si basa su un 
modello geomorfo-climatico, valido a scala regionale, che, ai fini della 
valutazione delle piogge critiche, ha individuato sette aree omogenee dal 
punto di vista pluviometrico utile per il calcolo dell’intensità di pioggia 
con durata pari al tempo di ritardo del bacino, mentre, ai fini della 
trasformazione afflussi-deflussi,  ha previsto la suddivisione del territorio 
regionale in tre classi di permeabilità. In occasione del XXX° Convegno 
Nazionale di Idraulica e Costruzioni Idrauliche (IDRA2006), il gruppo di 
lavoro dell’Università di Salerno, coordinato dai Proff. F. Rossi e P. 
Villani, presentò una relazione di studio che illustrava le premesse per 
una rivisitazione di carattere metodologico e procedurale del VAPI. In 
particolare, la relazione focalizzò l’attenzione su due problematiche 
fondamentali: i) la presenza ed il ruolo delle barriere orografiche ai fini di 
valutare l’intensità, la durata e la persistenza delle precipitazioni estreme e  
ii) l’individuazione degli idro-geomorfotipi, ai fini della più adeguata 
trasformazione  afflussi-deflussi alla scala di bacino e  sottobacino. 
L’obiettivo generale della ricerca illustrata nella presente tesi riguarda, 
quindi, l’approfondimento del contributo che l’idro-geomorfologia può 
offrire per la risoluzione delle due tematiche specifiche sopra citate. La 
prima tematica di ricerca affrontata  riguarda la messa a punto di una 
procedura per la automatica individuazione ed oggettiva delimitazione 
delle barriere orografiche. In particolare, a partire da una preesistente 
delimitazione delle barriere orografiche della Campania, basata su  
giudizio esperto geomorfologico, implementata nel modello semplificato 
di amplificazione orografica di Rossi et al. (2005), la ricerca perviene   ad 
una procedura fondata sui concetti base della orometria gerarchica 
(hierarchical mountain geomorphometry): prominenza e parent 
relationship, per individuare le montagne in modo orografico nella scal 
spazio-temporale. Inoltre, la procedura consente di individuare 
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geomorfologicamente le montagne e le sue componenti principali quali 
fondovalle, versante e crinale utilizzando attributi quali pendenza, rilievo 
relativo ed esposizione rispetto alla direzione principale delle 
perturbazioni. La procedure, inoltre, individua i rilievi orografici secondo 
una procedura gerarchico-multiscalare al fine di utilizzarle alle diverse 
scale spazio-temporali di analisi idrologica o metereologica. La seconda 
tematica riguarda la definizione degli idro-geomorfotipi significativi alle 
diverse scale di analisi idrologiche. La procedura adottata sviluppa la 
proposta di Guida et al. (2007), che identifica in ambiente GIS grid-
based gli idro-geomorfotipi solo sull’areale piroclastico campano e la 
integra per identificare i diversi meccanismi di deflusso, ed uno schema 
decisionale di utile all’individuazione dei meccanismi dominanti di 
formazione del ruscellamento. Detta  procedura prototipale, è stata 
oggettivata ed automatizzata con l’individuazione su DEM, in ambiente 
GIS object based, delle nove forme elementari del paesaggio di Troch et 
al.(2002) alle quali associa la risposta idrologica in termini di deflusso 
superficiale, sub-superficiale ed immagazzinamento di acqua nel 
sottosuolo. Tale procedura ha consentito di produrre la carta degli idro-
geomorfotipi su cui vengono identificate e delimitate le aree del territorio 
con meccanismi dominanti di trasformazione afflusso-deflusso: eccesso 
di infiltrazione o hortoniano, eccesso di saturazione e sub-superficiale e 
di contributo ritardato da deflusso profondo. Ai fini dalla calibrazione e 
validazione della procedura, sono state effettuate  analisi idro-
geomorfologiche su alcuni bacini campione  opportunamente 
strumentati, anche utilizzando i dati idro-pluviometrici  forniti, dietro 
richiesta ufficiale, dal Centro Funzionale Regionale del Settore di 
Protezione Civile della Regione Campania. Le analisi effettuate hanno 
consentito di proporre, in linea con recenti indicazioni bibliografiche un 
nuovo indice idrologico, denominato Runoff Index (RI), che potrebbe 
consentire una migliore valutazione del coefficiente di deflusso nei bacini 
non strumentati. Inoltre, i risultati delle elaborazioni effettuate su altri 
bacini strumentati, con analoghe caratteristiche di quelli campione, ha 
consentito l’ estensione della procedura alla regione Campania. Infine, 
viene discussa l’implementazione, in software di larga diffusione tecnico-
scientifica, delle procedure sopra sinteticamente illustrate nella 
modellazione idrologica distribuita. 
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ABSTRACT 

Italy and, in particular, the Campania region, has been exposed to 
Hydraulic Risk since long ago. In hydraulic risk analysis the definition of 
maximum flood discharge with a specific return time (T) is crucial and, 
to this aim, the VAPI- Campania procedure (1995) was adopted in the 
Campania region. The VAPI method is based on a geo-morphoclimatic 
model, identifying 7 climatic homogenous areas with respect to the 
rainfall probability density function and 3 classes of permeability for the 
rainfall-runoff transformation model. At the XXX National Congress on 
the Hydraulic and Hydraulic Engineering (IDRA 2006), the hydrological 
working group of Salerno University (Rossi and Villani (2006)), pointed 
out guidelines for up-dating the VAPI-Campania and, in particular the 
role of: orographic barriers in the evaluation of intensity and persistence 
of the extreme rainfalls; and the individuation of hydro-geomorphotypes 
for the rainfall-runoff modeling at the catchments and sub-catchments 
scales. In this framework, the present thesis gives a contribution to a 
hydro-geomorphological approach to achieve the two guidelines 
mentioned above. This research focuses first on the automatic 
individuation and objective delimitation of the orographic barriers in 
order to upgrade the heuristic delimitation (expert judgment) used in the 
simplified model of orographically induced rainfall of Rossi et al. (2005). 
The proposed procedure is based on the basic concepts of the hierarchic 
orometry (hierarchical mountain geomorphometry), prominence and 
parent relationships, to delineate the 'orographic mountain' in various 
spatial scale (hierarchical- multiscale approach). Also, the procedure 
defines the 'morphologic mountains' and its components (ridge, plain 
and hillslope) using slope, altitude, relief ratio and exposition with 
respect to the dominant perturbation fronts and its moving direction. 
The second topic of research deals with the individuation of the hydro-
geomorphotypes. To this aim, the prototypal work of Guida et al. (2007), 
was taken into account as a guideline in the identification of the hydro-
geomorphotypes and the decisional scheme of Scherrer and Naef (2003), 
here modify, allowed the identification of the three dominant runoff 
mechanisms on the Campania region. In particular, the prototypal 
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procedure of Guida has been here objectified and automatized,  defining 
the 9 elementary landscape forms (Troch et al., 2002), characterized in 
terms of sub-surface flow and soil moisture storage, under an object-
based GIS environment. The procedure here presented allowed 
identification on the hydro-geomorphological map, and of the runoff 
mechanisms: Hortonian overland flow for excess of saturation, sub-
surface flow, and deep percolation.  
In order to test the procedure some hydro-geomorphological analysis 
have been carried out based on data from two instrumented 
experimental catchments and on rainfall data from the Regional 
Functional Center of the Campania Civil Protection Sector. The results 
allowed to calculate the hydrologic index named Runoff Index, which 
improves the evaluation of the runoff coefficient (Cf) for un-gauged 
basins. Other analyses were performed on further 4 catchments with 
similar hydrologic and geologic behavior in order to extended the 
procedure to the whole Campania region. Also, conceptual discussions 
on the implementation of the Runoff Index in the rainfall-runoff 
transformation operated with a largely used hydrologic software, HEC-
HMS, was made, in order to evaluate the feasibility  of the procedure 
proposed in the present research and improve the RI in hydraulic risk 
evaluation at a regional scale. 
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It is evident that Italy has a long history on natural catastrophes as 
inundation or flooding, which occurs every year causing significant 
economic damage and social distress. Several are the causes of the 
natural disasters and, in particular, for the hydrological ones high 
intensity rainfall, steep slopes, easily eroded rocks and inappropriate land 
management. Since past, researchers have performed hydrological and  
hydraulic studies to assess flooding hazard, mitigate flood risks and 
support the land management. Thus, in the following paragraphs, will be 
revised the hydrologic catchment modeling ranging from the Rational 
method to the recent distributed models. 

1.2 BACKGROUND AND APPROACHES 

The central problem in the definition of the flood risk assessment is the 
evaluation of the peak flood discharge following trainfall extreme events. 
The  estimation of this parameter is crucial to both small and large-scale, 
respectively, and is performed by combining watershed hydrological and 
channel hydraulic models in the delimitation of the flooding areas and 
definition of the design parameters useful for the mitigation of hydraulic 
risk. Then, watershed models and, more precisely, the rainfall-runoff 
transformation procedures are fundamental to assess the water resources 
and manage the hydrogeological risks (Singh, et al., 2002).   
The scientific literature concerning the hydrological modeling it is very 
wide and results hard to synthetize a systematic review of the several  
models existing. Only some hydrologists have attempted this review, 
among others:  Clarke (1973) discussed on the several hydrological 
model identification and parameter estimation. Todini (1988, 2007) 
reviewed the historical development of mathematical method used in the 
rainfall-runoff modeling;  El- Kady (1989) reviewed the hydrologic 
models pointing on the surface-groundwater linkage. Goodrich and 
Woolhiser (1991) reviewed advances in catchment hydrology in the 
United States,  Horneberger and Boyer (1995) emphasized the 
importance of the spatial and temporal variability of the hydrological 
responses and the need to explicitly consider the linkage among the 
hydrology and the other disciplines, comparing modeling concepts and 
challenges. More recently, Singh and Woolhiser (2002) reviewed the 72 
catchment hydrological models more widely used.  
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Considering the large number of existing watershed models in the 
literatures, only the fundamental ones will be cited in the present 
chapter. 
The basic classification of the existing hydrological models distinguishes 
them in lumped or distributed models. Beven (2000) defined the first 
one as a model describing the catchment hydrological response referred 
to a single structural and functional component. This last can be 
represented by means an unique hydrologic variable representing the 
average descriptor values over the catchment area. Differently, in the 
distributed modeling the catchment is discretized into a grid squares and 
to everyone is associated the specific state variables representing the local 
average. With respect to the most general formulation of the hydrologic 
models involving partial differential equations in 3D space and time, if   
the spatial variation of the hydrologic parameter  is ignored, the model is 
namely “lumped”, otherwise if the outputs are function of the space and 
the time, it is said to be “distributed” (Singh & Woolhiser, 2002). 
The origin of the mathematical hydrological modeling date back to the 
Rational formula, a method proposed by Mulvani (1850) that relate the 
concept of time of concentration to the maximum runoff value. In 1921,  
Ross (1921) introduced a distributed hydrological model and his idea was 
to split the catchment in areas on the basis of the travel time to the 
catchment outlet. The problem of Ross time-area concept was deciding 
which area of the catchment would contribute to the different zones 
(Beven, 2000). This problem was avoided by Shermann (1932) with the 
introduction of concept of  Unit Hydrograph (UH) of a watershed,  
defined as the direct runoff hydrograph resulting from a unit volume of 
excess rainfall of constant intensity and uniformly distributed over the 
drainage area (Ramírez, 2000). The UH introduced by Sherman was 
successively interpreted as the Instantaneous Unit Hydrograph, or IUH, 
defined as the hydrograph of direct surface runoff caused by one inch of 
precipitation excess being released instantaneously and uniformly over a 
catchment basin (Phillippee, et al., 1969).  
In the  more recent time Chow et al. (1998) categorized the Syntetic Unit 
Hydrograph in three procedures:  
1) the first one is done by Nash (1957) and Dooge (1959) based on the 
models of watershed storage;  
2) the second one was based on a dimensionless unit hydrograph, e. g. 
Soil Conservation Service, (1972);  
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3) the third one was relating to the hydrograph characteristics, as the 
time to peak, or to the watershed characteristics, as the GIUH, 
introduced by Rodríguez-Iturbe and Valdés (1979). 
The practical limitation in the all above watershed hydrologic models is 
the scarcity of data and parameters which do not permit a fully 
distributed characterization of the watershed.   
In the 1980s a great deal of attention was done to the new data collection 
as the remote sensing, satellites and radar which provides data regarding 
spatial distribution of meteorological inputs, soil and land-use parameter, 
inventories of water bodies, etc. (Singh, et al., 2002). Another advances, 
concerning the physical characteristics of a watershed, such as soil, land 
use and topography which vary spatially, consisted in essential materials 
and new tools such as the digital terrain (DTM or DEM) or GIS. The 
first one represents the 3D nature of the landscape and it automatically 
extracts topographic variables, such as basin geometry, stream networks, 
slope, aspect, relief, etc. (Singh, et al., 2002).  
Singh and Fiorentino (1996) expressed the effectiveness of the GIS 
Database for processing large quantities of data. Leavesley and Stannard 
(1990) used the environmental Gis employed automated methods to 
derive parameter for delineating the Hydrological Response Units 
(HRUs). Hydrologic models with the spatial structure are being 
increasingly based on detailed DEM or DTM (Moore, et al., 1988 a,b) 
and many existing models used data structures in grid or cell networks as 
their basic structure , such as SHE (Abbott, et al., 1986a, b) , 
TOPMODEL (Beven and Kirkby, 1979), ANSWERS (Beasley, et al., 
1980) and AGNPS (Young, et al., 1989). There are well known general 
watershed models used elsewhere, from the HEC-HMS , NWS and 
MMS models in the United States to the RORB and WBN models in 
Australia, or TOPMODELS and SHE models in Europe.  
More recently, Rigon et al. (2011) developped a theoretical framework to 
investigate peakflow dipendence on geomorphic properties of the river 
basin, demostrating its no dependence on channel velocity but on 
geomorphic properties. 
Nowadays  data structures are being increasingly based on the Object- 
Oriented (OO). It is a way to organize the system as a collection of 
discrete objects (Simonovic, et al., 1997) which could be concrete (such 
as a river reach) or conceptual, such as a policy decision (Elshorbagy, et 
al., 2006). There are a few applications of OOD in hydrological 
simulation in the past decade (Wang, et al., 2005a; Band, et al., 2000). 
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(Contract  21 giugno 1999, n. 1776),  as a hydrological model developed  
to organizing the ongoing  knowledge  relating to formation processes of 
the flood discharges  following short and intense rainfall events 
previously  gained within the VAPI project (National Project for 
Assessment of Floods in Italy). 
The two-component extreme value distribution TCEV (Rossi et al., 
1984)  was adopted in the VAPI procedure to studying the extreme 
precipitation pattern. The TCEV represents the distribution of the 
maximum value, in a given time interval, of a random variable distributed 
according to the mixture of two exponentials: 
- the low component (low intensity and high frequency); 
- the high component (high intensity and low frequency). 
 
If X is the random variable and XT is the value of the variable X at a 
specific  return period flow T:  
 
XT = KT m(X)                                                                         Equation 1.1 

 
Where: m(X) = mean value of the random variable X; KT = probability 
factor of growth, increasing with the return period. 
Adopting the TCEV distribution, the following relation was done 
between the KT and T:                                            
 T = ଵଵିୣ୶୮(ିஃభୣషౡಏିஃభஃ∗ୣషౡಏ ಐ∗൘                                                        Equation 1.2                                                                           

 

Where:  1 is a scale parameter;  2/1 e *=2/1are the 
shape parameters of the distribution;  depend on 1, * e * (Rossi e 
Villani, 1994). 
In the practical application it possible to adopting the following simple 
formulation:                                
 

 K = (∗ஃಝஃ∗ + ஃಝஃభ ) ∗ ΛT                                              Equation 1.3                       
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For the parameters of the TCEV distribution estimated for the 
Campania region, the equation 1.3, becomes:  
 

KT=-0.0373+0.517 Ln(T )                                                            Equation 1.4 

 
 
In the table 1.1 area reported the KT values calculated for some return 
period T. 
 

Table 1.1: Value of the KT coefficient estimated for the Campania region for 
some return period T 

T (year) 2 5 10 20 25 40 50 100 200
K

T
 0.87 1.16 1.38 1.64 1.72 1.92 2.03 2.36 2.71 

 

For the evaluation of the annul mean of the peak discharge m(X) it is 
possible to use four method: two of that compared the m(X) to the area 
of the watershed, on the contrary in the rational and the geomopho- 
climatic approaches the m(X) is calculated considering the precipitation 
and the geomorphologic features of the basins.    
In the following will describe the geomorpho-climatic approach, only, to 
calculate the mean annual peak discharge m(X): 
 m(x) = େ×୯×ఽ(୲౨)×୫ሾ୍(୲౨)ሿ×ଷ. 									                                             Equation 1.5                                

 
        Where A is the area of the basin (km2), m [I(tr)]  is annual average 
of the maximum rainfall intensity on a fixed term  (mm), Cf is the runoff 
coefficient, Ka is the areal reduction factor and tr is the delay time of the 
basin (h), q is the attenuation coefficient of peak discharge.  
The annual average of the maximum rainfall intensity on a fixed term d, 
is calculated with the following formulation for the Campania: 
 mሾI(d)ሿ = ୫(୍బ)(ଵା ౚౚౙ)ಊ                                                                               Equation 1.6                     

 
where d e dc are in hour, m[Io] e m[I(d)] are in  mm/hour and  
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= C – D * Z                                                                                      Equation 1.7 

 
The parameters of equations 1.6 and 1.7 are constants for each 
pluviometric homogenous areas. For the Campania region six  
pluviometric homogenous areas were identified (table 1.2).  
 
Table 1.2: Statistical parameters for each climatologically homogenous areas of 
the Campania region. 

 
The areal reduction factor KA, can be calculated in the following way: 

 )exp())exp(1(1)( 3
21

c
A dcAcdK 

                          
Equation 1.8 

 

 
where: A is the  area of the basin, in km2; c1 = 0.0021;c2 = 0.53; c3 = 
0.25. 
In the VAPI Campania, is proposed to splitting the basins in three 
classes of permeability to evaluating the the runoff coefficient and the 
delay time:  

- Permeable areas without forest (A1) 
- Impermeable areas (A2) 
- Permeable areas with forest (A3) 

The coefficient at the basis of the runoff coefficient is to assign the 
coefficient to each homogenous areas in terms of permeability and then 
provided to the balanced average of that: 
 

A
AC

A
AC

A
ACC ffff

3
3

2
2

1
1 

                                                        
Equation 1.9 

Homogenous areas m(ho) 

(mm/hour) 

dc 
(hour) 

C D * 105 

1 77.1 0.3661 0.7995 8.6077
2 83.8 0.3312 0.7031 7.7381
3 116.7 0.0976 0.7360 8.7300
4 78.6 0.3846 0.8100 24.874
5 231.8 0.0508 0.8351 10.800
6 87.9 0.2205 0.7265 8.8476
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dove: 
Cf1 = runoff coefficient for the permeable area without forest = 0.42; 
Cf2 = runoff coefficient for the impermeable area = 0.56; 
Cf3 = runoff coefficient for the permeable with forest= 0.00. 
 
 
The delay time is calculated with the following formula:  
 

2

222

1

111

6,3
25,1

6,3
25,1

1

c
A

AC
AC

c
A

AC
AC

tr
f

f

f

f   

 
Where: c1 is the mean flood wave celerity of channel network for the 
permeable areas without forest = 0.23 m/s; c2 is the mean flood wave 
celerity of channel network for the impermeable areas = 1.87 m/s. 
 
The attenuation coefficient of the peak discharge is calculated 
considering the law of pluviometric probability and the response time of 
the river. This formulation has taken into account the mistake made 
adopting a duration time of the precipitation equal to the delay time of 
the basin.  
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Where:  
 

- β = (C - D·z) e dc are the parameters of the law of the 
pluviometric probabilities; 

- k1 is a numeric coefficient equal to 1.44·10-4 if the area A is 
expressed in km2 and the delay time tr in hour. 
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1.3 OBJECTIVES OF THE THESIS 

After ten years from the publication of the VAPI method, Rossi and 
Villani (2006) have presented at the National Conference of Hydraulics 
and Hydraulics engineering in Rome (IDRA 2006) the research 
guidelines for the VAPI procedure up-dating. 
More precisely, the aim of the research group is to updated the 
methodology in the evaluation of the maximum annual precipitation and 
the runoff coefficient (Cf),  at basins scale. In particular they have 
pointed the attention on three themes: 
 

1. the estimation of  the precipitation pattern with a new  
probability distribution function;  
2. the effects of the orographic barrier on the precipitation 
pattern on the windward and leeward side of the mountains; 
3. the identification of the hydro-geomophotypes to performed 
the hydrologic analysis at catchment and sub-catchment scales, 
taking into account in more detail the hydrologic response of the 
basin and the geo-morphological factors for a re-calibration of 
the runoff coefficient (Cf). 
 

About the second theme, in the 2005, the same research group of 
Salerno University presented at the European Geosciences Union 
(EGU) a simplified model to estimate the rainfall amplification and 
attenuation factors, respectively on windward and leeward side of the 
mountains, by analyzing the historical dataset on the annual maximum 
intensity. This study was carried out considering the orographic barrier 
map performed on heuristic basis (Rossi et al. 2005).   
About the third theme, in the XXX Conference on Hydraulics and 
Hydraulic Constructions (IDRA2006), Rossi and Villani (2006) highlight 
the need to introduce the hydro-geomophotype concept in the 
hydrologic updating of the VAPI procedure  and provided a preliminary 
method to identify them in the pyroclastic-cover on carbonate bedrock 
landscapes  in the Campania Region. 
Starting from these premises, the aims of the present research were to 
provide the requested hydro-geomorphological contributions to the 
second and third themes of the up-to-dating VAPI procedure.  
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Therefore, the present research is based on two main topics: the 
orographic barrier, in order to improve extreme precipitations 
orographically-induced and  the hydro-geomorphotypes, to support 
rainfall-runoff transformation models. 
Regarding to the orographic barrier topic, the research proposal is 
oriented to their objective individuation and  delimitation,  hierarchical 
characterization and multi-scale mapping. The individuation and 
delimitation of the orographic barriers will carried-out by an automated 
GIS-based procedure. The objective identification of the orography will 
be used by the researchers for the analysis in the anomaly of the 
precipitation pattern at a regional and local scales.. 
The second topic is the definition of the basic hydro-geomorphological 
units which are  relevant for the analysis at a different scales of the 
hydrologic analysis. The objective of the studies is the identification of  
units with a specific hydrological and morphological  characteristics 
which go beyond the basin subdivision in the  three classical VAPI 
permeability classes (see par. 2.1.1). The implementation of the terrain 
morphologies could be relevant to evaluate the sub-surface response of 
basins, i.e., to highlight  the fast and delayed response of a basins to the 
rainfall inputs.  
The procedures proposed and exposed in the following paragraphs will 
be validated on a dataset on discharge and precipitation data collected at 
the a basin outlet which are the historical ones for the study of the VAPI 
procedure. The discharge data were collected by a monitoring system of 
the hydro-geomorphological working group of the Salerno University 
and the rainfall dataset were provided by the courtesy of the Campania 
Region Civil Protection.  

1.4 STRUCTURE OF THE THESIS  

The structure of the thesis has been organized to facilitate the 
understanding of the background approaches, procedures, materials, 
analysis and results on the topics. 
In the chapter 2, methods and procedure adopted will be described. In 
particular in the first part will be explained the interdisciplinary nature of 
the research which is the current tendency of the international scientific 
researches. Then, will be described the multiscalar procedure and the 
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hierarchical approach used to identify, with the GIS tools, the spatial 
extent of the Hydro-geomorphotypes and the  orographic barriers, both 
often hierarchically organized. The description of the study area will be 
made in the chapter 3 and in the chapter 4, materials utilized will  show. 
In the  following chapters 5 and 6 will described the procedures adopted 
for the identification, respectively,  of orographic barriers and hydro-
geomorphotypes, as well as the thematic maps derived from them.  
Finally, in the chapter 7, the discussion to the case study will be 
performed. In this chapter  will be show, with a rainfall-runoff model 
applied in HEC-HMS software, the linkage  between the orographic 
barriers, inducing the variation of the rainfall  intensity, and hydro-
geomorphotypes, utilized to evaluate the sub-surface response of basins. 
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2 METHODS 

2.1 INTERDISCIPLINARITY 

The research here presented uses an interdisciplinary science, the hydro-
geomorphology,  that focuses on the interaction and linkage of 
hydrologic processes with landforms and the interrelation of geomorphic 
processes with surface and subsurface water,  in various temporal and 
spatial dimensions.  
The interdisciplinarity is an useful working method of two or more 
academic fields in order to pursuing common research tasks. So, its 
development has led to the training of experts of two or more disciplines 
at the same time, with a greater understanding of complex phenomena 
whose study does not requires the simply sum of its disciplinary parts 
(Klein and Newell, 1998). The current tendency of the scientific 
community is oriented to a such approaches, as the hydro-ecology, 
hydro-meteorology, hydro-geomorphology and so on.   
The research here presented is oriented to the above introduced hydro-
geomorphology based on the concepts of other scientific areas, the 
geology, geomorphology, land cover, slope, lithology, hydrology  and 
climatology, (e.g. Sidle and Onda 2004; Bisson and Lehr 2004; Babar 
2005). 
The morphology of terrestrial surface is a major structural determinant 
of many surface hydrological processes, as well as of many coupled 
quantitative processes and interfaces with the groundwater, the 
cryosphere and the atmosphere dynamics.  Conversely, hydrology is a 
major driving force of geomorphological dynamics, under climatic 
forcing and in relation to both tectonics and geography, the topography 
is modified in a long times. This refers to various issues, from palaeo-
hydrology to landslide hazard assessment, and even to hydrological 
interpretations of planetary morphologies.  
Several focal areas it is possible to study with hydrogemorphology 
science as runoff processes influenced by lithology and geomorphology, 
surface and mass erosion processes and linkage to stream, modeling 
hydrological factors affecting landslides initiation and environment, 



Chapter 2

 

42 

 

impact 
effects o
Onda 20
Some in
between
emergin
(Loague
Marques
In figur
Teixeira
integrate
 
 

 
Figure 2
evaluatio

 
 

2 

of distribut
of global cli
004). 
nteresting w
n geomorph
ng scientific 
e et al., 200
s et al., 2006
re 2.1 is sho
a et al. (2008
ed approach

2.1: Interdisc
on of the grou

ted land-use
imate chang

works stress
hology and
domains, su
06; Hancoc
6, 2007), urb
own, as exam
8) for evalu

h hydro-geom

ciplinary pro
undwater reso

e practices 
ge, land-use 

sed the imp
d groundw
uch as hydro
ck et al. 20
ban hydroge
mple, the p

uating the gr
morphology

ocedural sch
ources, modif

on soil and
planning an

portance of
water appro
o-ecology or
009), hydrop
ology ( Alon

procedural s
roundwater 
y and GIS m

heme adopte
fied from  Te

d water res
nd so on (Si

f the relatio
aches with
r hydro-geoe
pedology (E
nso et al. 20
cheme adop
resources, w

mapping.  

ed for a GI
ixeira et al. (2

sources, 
dle and 

onships 
h other 
ecology  

Espinha 
06). 
pted by 
with an 

IS-based 
2008) 



2. Methods 
 

43 
 

Since the 60ths of the past century,  the professor Tsukamoto (1961) 
developped the variable source-area concept in streamflow generation 
model. Sccessively, the professor Kazuo Okunishi in 1989 articulated 
many of the processes-based concepts in hydro-geomorphology 
approaches (Okunishi, 1991, 1994).  
In Europe, a large contribute to the hydro-geomorphology has been 
done by Kirkby and Chorley (1967) and Anderson and Burth (1978) and 
in North America by  Hack and Goodlett (1960), Hewlett and Hibbert, 
(1967) and Dunne and Black (1970). In 1972, Scheidegger (1972) 
defined, in a review paper, the hydro-geomorphology as the study of 
landforms as caused by the action of water, discussing examples of the 
mechanical interaction of surface water, groundwater and seas with 
landscapes and ocean bottom.  
The definitive scientific definition of  “hydro-geomorphology” was 
provided by Sidle R. C. and Onda Y. (2004), in a special issue of 
Hydrological Processes Journal, representing a collection of 
contributions on “Interaction between geomorphic changes and hydrological 
circulation”, as proceedings of the Fifth International Conference on 
Geomorphology (ICG-5), held in Tokyo, Japan, from 23 to 28 August 
2004.  
 

2.2 HIERARCHICY AND MULTISCALARITY  

As above cited, the present research deals with two topics: the 
identification and delimitation of the orographic barriers and hydro-
geomorphotypes. To this goal the hierarchical multiscale approach was 
adopted. Following the recent research study of Dramis et al.(2011), the 
problem of the multiscale geomorphological mapping may be 
approached adopting the principles of allometry (Bull, 1975) that is the  
space-time relationships of landforms and the Hierarchical theory, that 
allows the definition of nested object of size orders and taxonomical 
complexity (Dikau, 1990).  
In particular, the hierarchical procedure is based on the general 
Hierarchy Theory widely applied in ecology (O’Neill, 1988) (O’Neill et al. 
1986; Klijn 1988) as well as in the Land System evaluations (Speight, 
1988). In the geomorphological mapping this approach is used for the 
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3 TARGET AND TRAINING STUDY AREAS 

3.1 INTRODUCTION 

Following the above illustrated hierarchical, multiscale and training-target 
approaches, the  above study areas of the research were chosen: 
 

- Campania region as target area of the research, at a regional scale, 
limited to the drainage basins flowing toward the Tyrrhenian Sea, 
from the Volturno to Bussento river basins. The data source for 
this level was the GNDCI-VAPI Campania Report (Rossi and 
Villani, 1994); 

- The Bussento basin river as a methodological training area, at 
basin scale, located in the National Park of the Cilento and Vallo 
Diano; 

- The Upper Bussento sub-basin river, as  experimental training 
area, at catchment scale, chosen for the availability of hydro-
geomorphological and hydrological dataset. 

These last were choice because the drainage basins are hydro-
geomorphologically complexes, but representative for many drainage 
basin of the Campania region, comprising the karst features. 

3.2 REGIONAL  TARGET AREA: CAMPANIA REGION  

 

3.2.1 Physiography and Climate   

 The physiography of the Campania region landscape is very complex, 
depending on geology, morpho-structural setting and morpho-genesis.  
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carbonates (D’Argenio et al., 1975; Mostardini and Merlini, 1986). These 
units form the main mountainous massifs of Campania region located 
both inland and coastal areas; they constitute the bedrock of major karst 
massifs in the Matese M.nts, Camposauro-Taburno M.nts, Avella-
Partenio M.nts, Sorrento Peninsula, Picentini M.nts, as well as in the 
Cilento.  The Lagonegro Units are made up of cherty limestones at the 
base and marly clayey at the top, likely deposited in a deep marine basin 
(D’Argenio et al., 1975; Mostardini and Merlini, 1986), outcropping 
exclusively along the axis of Apennine Chain. The Apulia Units represent 
the remnants of Apulia Foreland, in progressive lowering under the 
Foretrough and Chain by deep normal and listric faults. In 
disconformity, there are the Neogenic Sinorogenic Units, represented by 
several terrigenous formations and units referred to Miocene-Pliocene 
age, lying on previous units and in the Bradanic Forethrough. They are 
mostly in turbidite facies, from wild-flysch to submarine fan sedimentary 
characters (Patacca et al., 1992). For instance, Cilento Group (Amore et 
al., 1988; Cammarosano et al., 2000) is one of these units, which is the 
most widespread unit in the homonymous area and along the 
corresponding coast; a minor unit outcrops in Sorrento Peninsula. 
Surrounding the Somma-Vesuvius volcanic complex and Phlaegrean 
Phields, near Naples city and Ischia and Procida volcanic islands, large 
surfaces are covered by volcanic formations and volcano-clastic deposits, 
Pleistocene in age (De Vivo et al., 2001). They are known as the peri-
Tyrrhenian volcanism due to the deepest crossing normal faults of the 
Campania Plain Graben (Florio et al., 1999).  The Quaternary Post-
orogenic Units include all the continental, transition and marine clastic 
sediments, deposited after the final emersion of Apennine Chain, from 
Late Pliocene to Early Pleistocene and Holocene. They are represented 
by aeolian, fluvial, piedmont, lacustrine and travertine deposits along the 
river valleys and coastal plains. Such units can show intercalation of the 
products of Vesuvian and Phlaegrean volcanic activity, previously 
considered.  The present day structural setting results in a duplex, NE-
vergent , multiple thrusting deep structure (Patacca et al., 1992) of the 
above mentioned units built-up from Middle Miocene to Middle 
Pleistocene age. Since then, only trans-tensive and relative, vertical uplift 
occurs, resulting in graben-horst structures, along faults in Apennine 
(NW-SE) and anti-Apennine (NE-SW) directions (D’Argenio et al., 
1973).  The above geological and tectonic setting, induces a prevalent 
morpho-structural control of the Campania landscape, with steep 
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3.2.3 Hydrography, Hydrology and Hydrogeology 

 
The hydrography of the Campania region is influenced, at regional scale, 
by the morpho-structural setting ( grabens, fault and overthrust systems) 
and by relief and lithology at basin scale.  In the karst carbonate 
landscape (Matese, Taburno, Avella and Alburno–Cervati) the drainage is 
coarse and poor developed due to highly permeability of the bedrock 
and blind valleys. The drainage, located in marly-clayey landscapes, have 
dendritic pattern with prevalent surficial runoff (figure 3.6). 
 

 
 

Figure 3.6: Hydrography Map of the Campania region 
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The main river and drainage network is the Volturno river basin, about 
170 km long, occupying the 40% of the regional area, with two sub-
basin: the Upper Volturno and the Calore Irpino.  The second drainage 
system of Campania is the Sele river, 65 Km  long and another ones are:   
Sarno, Tusciano, Alento, Bussento, Mingardo, Picentino, Lambro and 
Regi Lagni channel.    
Hydrologically, the Campania region is drained by 37 drainage basins and 
sectors (figure 3.7 and table 3.2). 
 

 
 

Figure 3.7: Drainage basins and sector in the Campania region. 
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Table 3.2: List of the drainage basins and sectors in the Campania region. 

 
 
 
 

Code Basin or Sector Name Area  
(Km2) 

Perimeter
 (m)

1 Agnena-Savone 506 138
2 Alento 408 141
3 Bussento 342 143
4 Calaggio 152 95
5 Campi Flegrei 170 78
6 Cervaro 196 91
7 Fiumara d'Atella 313 104
8 Forino 22 28
9 Fortore 288 100
10 Irno 44 39
11 Spigno - Magorno - Cessuta Lakes 42 38
12 Laceno Lake 23 30
13 Lambro 76 64
14 Mingardo 223 117
15 Naples and Sebeto 72 72
16 Ofanto 790 208
17 Picentino to Tusciano Basins 39 42
18 Agropoli to Alento  Basins 123 99
19 Bussento to Mezzanotte  Basins 85 69
20 Mingardo to Bussento  Basins 88 65
21 Sarno to Punta Campanella  Basins 110 98
22 Alento to Lambro  Basins 92 85
23 Irno to Picentino  Basins 52 49
24 Punta Campanella to Irno  Basins 153 139
25 Picentino 145 79
26 Regi Lagni 1231 256
27 Sarno 395 146
28 Sele 3357 452
29 Solofrone 93 58
30 Testene and minor creek  from Solofrone to 

Agropoli 66 54 
31 Vesuvian creek from T. del Greco to Sarno 140 74
32 Vesuvian creek

from Sebeto to Torre del Greco 61 39 
33 Lambro to Mingardo  Basins 0,154 2
34 Solofrone to Testene  Basins 3,1 10
35 Minor creek from Garigliano to Torre S.Limato 97,3 70
36 Tusciano 200 107
37 Volturno 5582 810
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Figure 3.9: Basin Authorities in the Campania region. 

 

3.3 METHODOLOGICAL TRAINING AREA AT BASIN LEVEL: 
BUSSENTO RIVER BASIN    

3.3.1  Location  

The Bussento river drainage basin is one of the major and complex  
drainage river system of the SE of the Campania region (Southern Italy), 
located in  the Cilento and Vallo di Diano National Park, recently 
designed in the European and Global Geopark Network (figure 3.10).   
 

Liri Garigliano Volturno

Interregionale Sele

Campania Sinistra Sele

Puglia

Campania Nord - Occidentale

Campania Sarno

Trigno Saccione Biferno

Basilicata

Campania DestraSele



Chapter 3

 

62 

 

 

Figure 3.

3.3.2 

The obj
conditio
well kno
deeply k
lowland
systems,
induced
 

3 

.10: Location 

Basin Hy

jective “com
oning induce
own to geom
karst feature
s with blind
, and karst-i

d  depression

of the Bussen

ydrogeomo

mplex” is du
ed by the ka
morphologis
s, like summ
d valleys, st
induced gro
ns (figure 3.1

nto river basi

rphologica

ue to the h
arst landform
sts and hydr
mit karst high
treams  disa
oundwater aq
11). 

in. 

al setting 

highly hydro
ms and proc
rogeologists 

ghlands with 
appearing in
quifers and 

o-geomorpho
cesses. In fa
for its  wid
dolines and

nto sinkhole
gravitationa

 

ological 
act, it is 
dely and 
d poljes, 
es, cave 
al karst-



 

Figure 
areas.  
Legend:  
debris; cg
Sandston
shale;M) 
Fault; 2) 
river; 7) G
spring; 12
blue: End
Kars Syst

 
Theref
hydro-
withou
hydrolo

3.11: Hydro-

Hydrogeologica
gs) Sandy conglo

ne; CMAg) Marl
Silty marl “fogl
Hypotisized fau
Gaining river); 8
2) Coastal and s
dorheic Upper B
em; light brown

fore, the Bu
geomorpho

ut consider
ogical and h

-geomorpholo

al Complex: s)S
omerate; Ol) cla
rl and Conglom
liarina”; Cm) M

ult; 3) Overthrust
8)Karst  summit
submarine sprin
Bussento basins

n: Western Busse

ussento rive
ological syst
ring break 
hydrogeolog

ogical map o

and and gravelly
ayey Olistostrom

merate; CGAr) C
arly limestone; C

t; 4) Permeability
t; 9) Probable g

ng. Sub-basins: l
s; pink, Eastern
ento; blue, Lower

er basin can
tem, which

down, sig
gical basin, v

3. Trainin

of Bussento r

y sand; gsl) Fluv
e; Ar) Sandstone

Conglomerate an
C) Limestone; D
y limit; 5) Groun

groundflow direc
light blue: Uppe

n Bussento; gree
r Bussento. 

n be consid
h cannot b
gnificant co
variously int

ng and target s

river and sur

vial sandy grave
e and marls; MA
nd Sandstone;  
D) Dolostone. Sy
ndwater exchang
ction;10) Sinkhol
er Bussento; gre
en: Middle Buss

dered a “pro
be fully un
omponents 
teracting in t

study areas 
 

63 

 
rrounding 

el;  dt) Slope 
Ar) Marl and 

Am) marly 
ymbology:1) 

ge; 6) Losing 
le; 11) Main 
een on light 
sento River-

ototypal” 
derstood 

of the 
the same 



Chapter 3 

 

64 

 

areas. In this sense, the whole basin can be sub-divided in the following 
sub-basins (colored areas in the  figure 3.11): 
 

- Upper Bussento Sub-basin, in light blue in the figure 3.11, 
with two inter-connected endorheic basins (Vallivona and Sanza) 
and Karst Highlands, in light green transparent on light blue in 
the fig. 3.11, 

- Eastern Bussento Sub-basin, with terminal outlet to Capello 
Spring Oasis, near Casaletto Spartano village and small endorheic 
basins (Affunnaturo) and large Karst Highlands; 

- Middle Bussento Sub-basin, heavily conditioned by the 
Middle Bussento Karst System, illustrated in the following 
paragraph; 

- Western Bussento Sub-basin, in light brown on figure 3.11, 
greatly corresponding to the Sciarapotamo creek basin, 
conditioned by summit conglomerate aquifers and marly-clayey 
succession in lower sector; 

- Lower Bussento Sub-basin, the blue area, on figure 3.11, 
includes the catchments from the Bulgheria and Roccagloriosa 
carbonate secondary aquifer and alluvial and coastal clastic valley 
fillings;  

- Bussento-Policastro gulf system, a complex and still unknow 
groundwater system with interconnections aquifer and huge 
Submarine Groundwater Discharges. 

3.3.3 Climate and Geomorphic setting 

The study area is characterized by a typical Mediterranean climatic 
regime, tending to the temperate one from the coast to the mountain 
reliefs. The 50-years (1921-1977) mean annual rainfall and mean annual 
temperature for historical meteorological stations of Morigerati, Caselle 
in Pittari, Casaletto Spartano and Sanza, located within the Bussento 
River watershed, are shown in table 3.3.  
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3.3.4 Hydrography and Karst-conditioning Hydrology 

The main stream of the Bussento river originates from the upland 
springs of M.nt Cervati (1.888 m asl), one of the highest mountain ridge 
in the Southern Apennines, flowing downstream, partly in wide alluvial 
valleys (i.e., Sanza valley) and, partly,  in steep gorges and canyons, where 
a number of springs delivering fresh water from karst aquifers into the 
streambed and banks,  increasing progressively the river discharge. The 
upper right area is characterized by marly-arenaceous rocks outcrops 
(Marchese Hills), while the left upper area is characterized by limestone 
sequences (M.nt Rotondo and Serra Forcella highlands). More 
downstream, near Caselle in Pittari village, the Bussento river and 
adjacent neighbours minor creeks flow, respectivelys into “La Rupe “ 
(Bussento Upper Cave), Orsivacca and Bacuta-Caravo  sinkholes, 
channelling the entire fluvial surface streamflow drained from the upper 
Bussento basin into the a hypo-karst cave system and re-emerging about 
four kilometers downstream, in the neighbourhood of the Morigerati 
town, from the resurgence, called “Bussento Lower Cave”. Downstream 
the resurgence,  the Bussento river joints with Bussentino creek, 
originating from the eastern sectors of the drainage basin and, flows 
along deep canyons and deep gorges, carved into the meso-cainozoic 
litho-stratigraphic limestone sequences, prevalently  constitute of  
limestone and marly limestone, referred to Alburno-Cervati Unit 
(D’Argenio et al., 1973).  In the western and southern sectors of the 
basin (Sciarapotamo creek sub-basin), marly-clayey successions of the 
Liguride and “affinità Sicilide” Units  (Cammarosano et al., 2000) 
dominate the hilly landscape, whereas they underlie the arenaceous-
conglomerate sequences  at the Mount Centaurino M.nt (Bonardi et 
al.,1988).  Downstream the confluence with Sciarapotamo creek, the 
Bussento river flows, as a meander stream, in a terraced floodplain and, 
finally in the Policastro coastal plain.   
Surface and groundwater circulation in the basin results very complex. 
Groundwater inflows from outside of the hydrological watershed and 
groundwater outflows towards surrounding drainage systems,  
frequently, occur. This  complexity is due to the occurrence of soils and 
rocks with highly different hydraulic permeabilities and to the highly 
hydrogeological conditioning induced by the karst features. Bussento 
river regime is also affected by a very complex hydropower and drinking 
water system, which retains and diverts the river discharge within dams, 



Chapter 3

 

68 

 

an artifi
Bussent
 

Figure 3.
Legend:  
marly sha
Location 
Abandone
flowpath 
river; 6) A
sinkhole; 
of present
spring. 

 
This kar
M.te Pan
Pittari (S
bridge), 

3 

icial lake an
to river Kars

.13: Detailed 
Hydrogeologi

ale; Ar) Sandsto
of fluvial segm

ed subterranea
of the Palaeo-

Abandoned res
8) Explored (g
t-day Bussento

rst system d
nnello-Zepp
SA)  and the
up to the 

nd weirs. Th
st System (M

hydro-geomo
ical complexes
one and marls;
ment of interes
an flowpath of 
-Bussento rive
surgence of the
grey circle) an
o river; 9) Activ

evelops with
parra M.ts, b
e final fluvia
Bussento hy

his drainage 
MBKS) (figu

orphological m
s: gsl) Fluvial 
Cm) Marly lim

st; 2) Location
the Palaeo-Bu
r;  5) Abandon
e Palaeo-Busse
d no-explored 
ve resurgence 

hin the carb
between  the
al reach of th
ydropower 

sector   re
ure 3.13).  

map of the M
sandy gravel; 

mestone; c) Lim
n of the fluvial
ssento River ; 
ned sinkhole o
ento river ; 7) 

d (withe circle)
of the Bussen

bonate ridge 
e four sinkho
he gorge SE
central,  ju

efers to the 

 
MBKS.  

 dt) Slope deb
mestone. Symb
l reaches of in
4) Abandonne
of the Palaeo-B
Upper Bussen
subterranean 

nto river; 10) M

of  the S. M
oles east  Ca

E Sicilì villag
st downstre

Middle 

bris; Am) 
bology: 1) 
nterest; 3) 
d surface 
Bussento 

nto active 
flowpath 

Main karst 

Michele-
aselle in 
ge (Sicilì 
eam the 



3. Training and target study areas 
 

69 
 

confluence with  Sciarapotamo creek. The Figure 3.13 reports the 
Hydro-geomorphological map of the area, with the hydrogeological 
complexes and  main springs, the hypothesized palaeo- and present-day 
sink-cave-resurgence  system, and  the river segments and reference 
reaches of interest. The Middle Bussento segment and  Oasis WWF 
reach are located in the Morigerati gorge, a typical epigenetic valley 
(Lambiase and Ruggiero 1980, D’Elia et al., 1987), along which 
groundwater influxes from both epikarts spring, conduit spring (Old Mill 
Spring) and cave  spring (Bussento Resurgence) supply a perennial 
streamflow in a step-and-pool river type (Montgomery and Buffington, 
1998).  
The Middle-lower segment and the Sicilì bridge reach are located 
downstream the previous from the end of the Morigerati gorge to 
Sciarapotamo creek confluence, along which three reach can be 
recognized from downvalley: the downstream, in correspondence of the 
Bussento Hydropower Central, results a typical riffle-pool river 
(Montgomery and Buffington, 1998), as a entrenched meander  in fluvial  
and strath terraces, the second upstream reach, Bottelli House reach, 
results a riffle-pool river along low order alluvial terraces and finally the 
third, the above cited Sicilì Bridge reach, a plane bed river slightly 
entrenched in alluvial terrace. 
The hydro-geomorphological setting, above briefly illustrated, induces a 
very complex surface- groundwater interaction and exchanges.  
Therefore, groundwater inflows from outside of the hydrological 
watershed and groundwater outflows towards surrounding drainage 
systems,  frequently occur, influencing the basin water budget and 
streamflow regime.  The Bussento river regime is also affected by a very 
complex hydropower plant system, which retains and diverts the river 
discharge in the Sabetta reservoir and the Casaletto weirs, respectively,  
from the upper Bussento river  and the Bussentino creek reaches 
segment to the Lower Bussento fluvial segment.                        
In order to provide a physical scheme of the complex recharge, storage 
and  routing system of the Middle Bussento karst area,  a preliminary, 
conceptual model has been built-up, accounting for an interconnected 
sequence of geologic substrates, structural discontinuities, type and rate 
in permeability distribution, recharge areas and discharge points, that 
collectively provide a physical scheme of the recharge system, the storage 
system and the routing system.  With reference Guida et al. (2005), the 
conceptual hydro-geomorphological  model of the  MBKS contains 
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control”, sensu Ford andWilliams, 1989), differentiated in the 
groundwater-river interactions within the aquifer-river domain. This last 
comprises the complex interactions between the streambed-springs 
system, which generally results in a downstream river discharge 
increasing, occurring generally in typical bedrock streams, flowing in 
gorge and canyons carved in enlarged fractured limestone sequences.  
Following the routing karst system, the springs inflowing into streamlow 
can be characterized in:  i) upper epikarst springs, ii) intermediate cave 
resurgence springs, iii) lower conduit springs and iv) basal fracture 
springs. Figure 3.14 highlights, also, the hypothesized deep losses toward 
the Submarine Groundwater Discharges (SGD), emerging in the 
Policastro gulf.   Each of the mentioned components corresponds, in the 
modelling conceptualization of the scheme, to a linear storage, releasing 
streamflow as a function of  water storage and characteristic delay time. 
The characteristic time indicates that there is a delay between the 
recharge to the system and the output from the system itself, and this 
delay is greater for deeper aquifers. The number of storages, each 
representing, thus, a different process, contributes to the total 
streamflow through a recharge coefficient, that is a measure of the 
magnitude of the single storage. The application of a conceptual model, 
such as the one briefly described, requires the calibration of the model 
parameters, and in particular of the characteristic delay time and of the 
recharge coefficient of each single storage. In the complex catchments, 
such as the Bussento River System, characterized by a large impact of 
karstic phenomena, raw streamflow data are not sufficient to the 
quantification of the contribute and magnitude of the single storage, 
runoff production and flood routing, therefore, are not sufficient to 
calibrate the model. 
To overcoming this issue, field activities and  interdisciplinary researches 
were started by the Salerno University Hydro-workgroup to (see chapter 
4): i) Integrate Hydro-geomorphological Minitoring System; ii) improve 
the Semi-distributed hydrological model and iii) implement natural 
radioactive tracer techniques. 
Such researches were carried out both at basin and sub-basin scale, as 
will illustrated in the following chapter. 
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3.4.2 Hydro-geomorphological setting 

The mainstream originates from south-western upland valley of the 
Mount Cervati (Vallivona and Mezzana valleys), where many, low 
discharge springs from shallow aquifer in debris cover on marly-clayey 
bedrock originate ephemeral creek flowing into the Vallivona 
Affunnaturo sinkhole. From the Varco la Peta spring-resurgence, the    
Inferno creek flows southward, carving  steep gorges in form of a typical 
bedrock stream, with cascade and rapids, where further springs 
(Montemezzano spring), along the streambed, increasing progressively 
the river discharge, as well as along the piedmont (Sanza Fistole spring 
groups). The true Bussento river begins downstream the junction of the 
above cited Inferno creek and the Persico creek. This last flows at the 
bottom of an asymmetric valley, characterized at the left side by the 
above cited steep, carbonate southern mountain front of M.nt Cervati 
and at the right by the gentle northern terrigenous mountain slope of the 
M.nt Centaurino (1551 m asl). The middle right  side of the basin is 
characterize by marly-arenaceous rocks outcrop (M.nt Marchese hilly 
ridge), while the left  middle side is characterized by limestone sequences 
(M.nt Rotondo and Serra Forcella), figure 3.16. 
The geological constraints and the permeability variability in type and 
rate induce a very complex hydrogeological behaviour to coupled 
aquifer-river system (figure 3.17). 
In the northern sector of the basin, is located one of the main karst 
aquifer of the Southern Apennine: Cervati Aquifer (AQ_CRV). The 
hydrogeological boundaries of this aquifer are: at the northern side, a set 
of compressive tectonic lines (reverse faults, overthrusts), at the S and 
SW, is confined by the impermeable “bends” of the marly-clayey 
aquicludes, connected to carbonate aquifer by normal faults or 
stratigraphical limits. Inside aquifer, shear zones due to compressive and 
extensional tectonics originate intermediate aquitard, controlling a 
“segmentation” of multilayered aquifers, with karst spring at various 
elevations (see hydrogeological section below the figure 3.17 and table 
3.7). 
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Table 3.7: Main karst springs from Cervati Aquifer. 

 

3.4.3 Hydrography and Hydrology 

A Drainage Network Analysis was carried out on the Upper Bussento 
river basin, starting from the Horton-Schumm ordering (figure 3.18). 
 
 
 
 

Spring 
name 

Sub-aquifer 
name 

Elevation 
(m a.s.l.) 

Mean 
Annual 

Discharge  
(l/s) 

Ground 
Water 

Direction

Rio Freddo M.nt Arsano 470 750 E 
Fontanelle 
Soprane 

M.nt Arsano 470 800 N-E 

Fontanelle 
Sottane M.nt Arsano 460 400 N-E 

Varco la Peta Vallivona 1200 450 S 

Montemezzano Inferno creek 900 100 S 
Sanza Fistole 

Group 
Basal Southern 

Cervati 470  S 

Faraone Fistole 
Group Pedale Raia 450 400 W 

Calore Group Neviera 1150 100 N 
Sant'Elena 

Group Rotondo 420 400 N-W 

Laurino  Group Scanno Tesoro 330-400 600 N-W 
Capodifiume 

Group Chianiello-Vesole 30-35 2900 N-W 

Paestum-Cafasso 
Group Chianiello-Vesole 1-10 750 N-W 

Acqua Solfurea 
Group Chianiello-Vesole 5 250 N-W 
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Figure 3.25: Main Catchment  Form Analysis 

 
 
The figure 3.26 and table 3.10 show the Secondary Catchment Map and 
their geometric parameters and geomorphic ratios respectively (figure 
3.27). 
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Figure 3.27: Secondary Catchment Analysis 
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4 THE INTEGRATE MONITORING 
SYSTEM 

4.1 HISTORICAL HYDROLOGICAL MONITORING SYSTEM 

The VAPI procedure is based on statistical analysis on the pluviometric 
and hydrometric datasets collected at national, regional and basins scales. 
So, the first, structured and systematic hydro-meteorological database of 
the Campania region and Bussento river basin was performed within the 
development of the VAPI procedure.  
The source datasets were the hydrological data recorded by the rain 
gauges and streamflow stations managed by the SIMI (Servizio 
Idrografico e Mareografico Italiano), compartment of Naples. In 
particular,  at the third level of regionalization of the VAPI (Rossi and 
Villani, 1995) concerning the analysis on the annual mean of the daily 
and hourly rainfalls, were utilized 231 rain gauges stations with more 
than 10 years of observations; at the second level, 129 rain gauges with   
more than 30 years of observations and, finally, at the first, 112 rain 
gauges with more than 40 years of observations. Figure 4.1 shows the 
location of  the Historical Hydro-meteorological Monitoring System in 
Campania region and surroundings. 
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In the extreme flood analysis concerning the annual maximum discharge 
data were used:  at the first level of regionalization, 28 hydrometric 
stations, with more than 5 years of observations; at the second level, 36 
hydrometric stations, (21 of these falling between the Volturno and the 
Bussento river basins); at the third level, 22 measurement stations with 
more than 5 years of observations.  Table 4.2 reports the fundamental 
land use (% in forest), morphologic (Mean elevation and Slope), and  
hydrologic (%Imp.= percent of area with impervious soils and bedrock; 
m[IA(g)]: Maximum Hourly Rainfall expected and m[Q]= Peak Hourly 
Discharge) features at “Bussento at Caselle in Pittari” hydrometrograph, 
now re-named BS17 “Tredici Fistole” station. 
 
Table 4.2: Fundamental land use, morphologic, and  hydrologic features of the 
Bussento at Caselle in Pittari hydro-metrograph station. 

Station 
N. 

years 
Area 

(Km2) 

Mean 
elevation 
(m.asl) 

Mean 
slope 

(%) 

% 
Imp.

% 
forest

m[IA(g)] 
(mm/hour)

m[Q] 

(m3/s)

Bussento 17 113 850 15.96 30 55 4.32 56

 
Figures 4.3-4.19 shown daily hydrographs from Caselle in Pittari 
Hydrometrograph Station Monitoring DataSet  from  1952 to the 1968, 
plotted in the hydrological year (t=0 is for first of October). Table 4.3 is 
reports annual maximum discharge, maximum dailly discharge and mean 
value at the Bussento Caselle in Pittari river station.    
 

 
Figure 4.3: Annual hydrograph plotting discharge measurements, detected in 
the  1952 to the historical Caselle in Pittari Hydrometrograph 
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Figure 4.4: Annual hydrograph plotting discharge measurements, detected in 
the  1953 to the historical Caselle in Pittari Hydrometrograph 

 
 

 
Figure 4.5: Annual hydrograph plotting discharge measurements, detected in 
the  1954 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.6: Annual hydrograph plotting discharge measurements, detected in 
the  1955 to the historical Caselle in Pittari Hydrometrograph 
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Figure 4.7: Annual hydrograph plotting discharge measurements, detected in 
the  1956 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.8: Annual hydrograph plotting discharge measurements, detected in 
the  1957 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.9: Annual hydrograph plotting discharge measurements, detected in 
the  1958 to the historical Caselle in Pittari Hydrometrograph 
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Figure 4.10: Annual hydrograph plotting discharge measurements, detected in 
the  1959 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.11: Annual hydrograph plotting discharge measurements, detected in 
the  1960 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.12: Annual hydrograph plotting discharge measurements, detected in 
the  1961 to the historical Caselle in Pittari Hydrometrograph 
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Figure 4.13: Annual hydrograph plotting discharge measurements, detected in 
the  1962 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.14: Annual hydrograph plotting discharge measurements, detected in 
the  1963 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.15: Annual hydrograph plotting discharge measurements, detected in 
the  1964 to the historical Caselle in Pittari Hydrometrograph 
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Figure 4.16: Annual hydrograph plotting discharge measurements, detected in 
the  1965 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.17: Annual hydrograph plotting discharge measuremets, detected in the  
1966 to the historical Caselle in Pittari Hydrometrograph 

 

 
Figure 4.18: Annual hydrograph plotting discharge measurements, detected in 
the  1967 to the historical Caselle in Pittari Hydrometrograph 
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Figure 4.19: Annual hydrograph plotting discharge measurements, detected in 
the  1968 to the historical Caselle in Pittari Hydrometrograph 

 

Table 4.3: Full, maximum daily and mean value discharge at the Bussento 
Caselle in Pittari river station. 
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1968

N.  Years Qfull(m3/s) Qdaily(m3/s) Qmean,f(m3/s) Qmean,d(m3/s) 

1 1952 61.7 26.2 55.7 32.1 

2 1953 36.5 26.2     

3 1954 36.8 32.1     

4 1955 41 33.6     

5 1956 65.4 34.5     

6 1957 33.5 20.7     

7 1958 38.6 25.1     

8 1959 33.6 27.4     

9 1960 41.4 29.2     

10 1961 47 25.3     

11 1962 39 24.5     

12 1963 82.6 55     

13 1964 82 35.4     

14 1965 90.3 18.3     

15 1966 71.8 45.1     

16 1967 58 27     

17 1968 88.5 60.7     
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Monitoring stations on land were integrated with the coastal and off-
share station in the Policastro gulf to detect radon concentration 
surrounding sub- marine springs (i. e. vuddu submarine springs). 
The table 4.4 lists a short dataset of radon measurements from stream on 
spring stations.  
 
 
Table 4.4: 2007-2008 instream Radon-222 Measurement campains and results 
(Guida et al. 2008) 
STATION NAME CODE 09/07 12/07 01/08 02/08 03/08 04/08 05/08 

 Bussento Mouth BS00 1,95 2,75 1,9 1,5 0,4 1,6 1,3 

Bussento SS18 
Bridge 

BS01 1,8 1,1 2,1 1,4 0,8 0,98 2,3 

Railway Bridge BS02 1,6 2,1 0,34 1,95 1,3 1,7 2,8 

Sciarapotamo Bridge BS04 1,28 1,2 1,5 1,8 0,7 1,6 1,5 

Hydropower BS12 0,975 0,9 0,7 1,1 0,6 0,8 0,7 

Sicilì Bridge BS13 2,1 2,4 2,2 1,7 1,1 7,5 8,7 

Rio Casaletto 
Capello 

BS14 3,03 3,47 6,1 2,05 0,8 10,6 14,9 

 Oasi WWf Bridge BS15 4,56 5,8 6,1 0,9 0,6 1,55 1,7 

T. Ciciniello BS16 0,61 0,565 0,58 0,435 0,32 0,45 0,48 

 Sabetta Reservoir BS17 8,3 7,5 6 2,3 1,2 4,2 3,9 

  Acquevive Bridge BS18 8,4 2,2 0,95 1,7 1,3 4,6 7,7 

 Farnetani Bridge BS19 1,2 0,4 0,15 0,43 0,2 0,95 0,3 

L'Abate Bridge BS20 0,25 0,38 0,8 0,21 0,37 0,42 0,34 

 V.ne Inferno Bridge BS21 1,9 2,5 0,7 0,68 0,46 0,38 0,15 

 Varco del Carro 
Bridge 

BS22 1,02 1,3 0,9 0,5 0,39 0,85 0,7 

  Bussentino Bridge BS23 0,77 0,83 4,2 0,35 0,33 0,65 0,92 

  Bacuta Sinkhole  BS25 0,37 0,4 0,32 0,18 0,22 0,3 0,35 

 
 
In order to detect the surface-groundwater interactions, a more detailed 
monitoring system was build-up in the upper Bussento river basin 
(fig.4.26).  
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5) Monthly discharge measurements (2006-2007); 
 
At the same radon-222 river stations, during the hydrological year 2006- 
2007 were carried out, simultaneously, the discharge measurement 
campaigns (tables 4.6, 4.7). 
 

Table 4.6: 2006 discharge measurements in m3/s   

 
 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Previous
Code 

New 
Code 

Station Name ott-06 nov-06 dic-06 

B_AS01 BS21 Inferno Lower Bridge 47.20 119.19 145.35 

B_AS06 
BS21_ 

S01 
Lower Fistole Sanza 99.64 104.92 115.41 

 BS22 Varco Carro Bridge 37.70 68.14 97.93 

B06 BS19 Farnetani Bridge 293.08 342.7742 331.76 

B06 BS19 Farnetani Bridge 293.08 342.7742 331.76 

B_AS04 BS18 Acquevive Bridge 373.75 414.60 451.32 

 
BS18_ 
S0N 

Farnetani Spring Group 80.66 71.83 119.55 

B03* 
BS13_ 

US 
Upper Stream 
Sicilì Bridge 

838.77 975.51 1018.34

B03 BS13 Sicilì Bridge 969.99 1106.32 1150.55

 
BS13_ 
S0N 

Cillito Spring Group 131.22 130.82 132.21 

B03 BS13 Sicilì Bridge 969.99 1106.32 1150.55

B02 BS12 HydroPower 1093.43 1215.79 1377.81

  
Mid-Lower Bussento 

Cathments 
123.45 109.46 227.26 

B02 BS12 HydroPower 1093.43 1215.79 1377.81

B01 BS01 SS18 Bridge 1534.13 1630.92 1703.68

  W-L Catchments 440.70 415.14 325.88 

B_AS02 BS14US Capello Upstream 291.57 366.24 337.47 

B_AS03 BS14DS Capello Downstream 379.71 457.92 466.61 

 BS14_S01 Capello Spring 88.14 91.68 129.14 
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Table 4.7: 2007 spring and river discharge measurement data  

 

 
 

 

 

 

Previous 
Code gen-07 feb-07 mar-07 apr-07 mag-07 lug-07 set-07 nov-07 dic-07 

B_AS01 305.28 193.89 565.15 580.14 256.69 88.16 23.82 97.72 295.93 

B_AS06 68.99 114.16 176.35 156.31 76.81 101.64 67.64 102.83 86.61 

B06 588.30 434.68 1121.81 1116.61 610.65 172.50 102.71 325.91 604.21 

B06 588.30 434.68 1121.81 1116.61 610.65 172.50 102.71 325.91 604.2123

B_AS04 696.88 604.61 2180.19 2219.57 887.65 327.89 318.55 418.82 712.86 

B_AS04 696.88 604.61 2180.19 2219.57 887.65 327.89 318.55 418.82 712.86 

B03 1295.84 1268.16 1679.45 1759.21 1241.72 1088.48 978.84 1127.33 1450.89 

B03* 986.87 938.24 1351.87 1403.25 978.11 889.87 847.12 916.40 1136.69 

B03 1295.84 1268.16 1679.45 1759.21 1241.72 1088.48 978.84 1127.33 1450.89 

B03 1295.84 1268.16 1679.45 1759.21 1241.72 1088.48 978.84 1127.33 1450.89 

B02 1451.45 1389.31 1780.12 1835.42 1375.76 1076.71 1006.11 1381.11 1855.25 

B02 1451.45 1389.31 1780.12 1835.42 1375.76 1076.71 1006.11 1381.11 1855.25 

B01 1855.56 1782.29 2614.75 2739.56 2405.74 1450.84 1226.29 1675.01 2342.46 

B_AS02 357.67 293.24 610.02 770.10 351.36 282.26 282.04 381.38 365.92 

B_AS03 478.72 384.39 930.81 1050.67 426.84 367.90 344.15 487.84 451.87 
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Table 4.8: Bussento Monitoring stations 

Code Station Name Latitude Longitude Distance   (m)

BS00 Mouth 543605,3366 4435295,3874 0

BS01* SS18 Bridge 543365,5730 4435974,7175 740

BS02 FS Bridge 542247,8301 4438272,0435 3680

BS03 Vallonaro Creek 541834,8402 4440099,9059 6200

BS12 Hydro-power 543583,6737 4442368,8007 10246

BS04 SS517 Bridge 543412,8693 4442664,5218 10930

BS13* Sicilì Bridge 546446,5601 4442939,8484 14100

BS15 Capello Oasis 546915,6349 4444081,9437 15580

BS23 Ponte Morigerati 548065,3782 4443510,8961 15995

BS14 WWF  Oasis 553475,0352 4445318,3639 22717

BS24 Melette Bridge 557102,7175 4446756,1804 28734

BS25 Bacuta Sinkhole 548948,4602 4447695,8382 20500

BS17** Sabetta Reservoir 547207,9202 4449424,2903 20900

BS18 Acquevive Bridge 548000,0954 4451699,0969 23534

BS19 Ponte Farnetani 546973,6582 4452744,0284 25550

BS20 Ponte l'Abate 544406,0243 4453604,0162 28460

BS22 Varco  Carro Bridge 543049,7711 4454630,4533 30095

BS21 V.ne Inferno Bridge 543083,6774 4454695,1836 30300

BS16 Ciciniello Bridge 545934,8916 4449803,4248 22300
* Same location of the station having managed by the Campania Regional Civil Defence Sector 
** Same location of  the Bussento at Caselle managed by National Hydrographic Service  and Reference station for  
VAPI Bussento at Caselle.  

 

4.3 SUB-BASIN MONITORING SYSTEM 

 
On the base of above hydro-geomorphological setting and human use 
features, the CUGRI and the Environmental Hydro-geomorphological 
Workgroup of the Salerno University have build-up the Upper Bussento 
Hydro-geomorphological Monitoring System (UBS_HGMS), according 
to the National Park of the Cilento and Vallo Diano – Geopark and Left 
Sele River Regional Basin Authority (figure 4.30). 
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Table 4.10: Secontary  stations of the UBS_HGMS 

Station Code Station Name X Y 
Elevation 

(masl) 

BS17_SR Sabetta Reservoir 2567354 4449994,5 300 

BS17DS Tredici Fistole DS 2567515,3 4450081,4 318,9 

BS17US Tredici Fistole US 2567672,4 4450262,7 321,6 

BS17US_01 Tredici Fistole  US_01 2567645,3 4450866,2 332,65 

BS35 Vallone Surice 2567605,2 4450878,1 337,57 

BS17US_02 Tredici Fistole  US_02 2567724,5 4451048,7 336,03 

BS18_01 Acquevive Bridge US_01 2567917,4 4451496,4 346,6 

BS18_02 Acquevive Bridge US_02 2568012,2 4451637,9 352,53 

BS25 Vallone Paolo 2568191,6 4451773 364,09 

BS18_S03US Farnetani Springs US 2567945,8 4452231,8 360,72 

BS19DS_S01 Salice Spring DS 2567845,8 4452221,8 373,9 

BS34 Vallone Nocella 2 2566724 4452701 377,43 

BS33 Vallone Nocella 1 2566014,2 4453072,9 392,62 

BS32 Vallone Giardino 2564914,6 4453315,8 414,05 

BS30 Vallone Giumenta 2564318,8 4453225 429,11 

BS28 Vallone Secco 2564251,7 4453565,6 425,99 

BS31 Vallone Rosso 2564125,8 4453607,8 428,755 

BS21_01 Upper Fistole Bridge 2562959,6 4454838,7 481,05 

BS21_02 Upper Inferno Bridge 2562769 4455172,6 518,24 

BS21_S03_DS Montemezzano Spring DS 2562315,4 4455807,4 614,62 

BS21_S03_US Montemezzano Spring US 2562191,2 4455884,6 632,41 

BS21_S04DS Varco La Peta Spring DS 2560651,4 4456717,6 952,41 

BS21_S04US Varco La PetaSpring US 2560310,6 4456709,7 1172,49 

BS21_04 Vallivona Sinkhole 2559962,4 4456967,1 1126,69 

BS21_05 Ruscio Bridge 2559153,9 4458179,8 1264,09 

BS22_01 Panniere DS 2562425,6 4454383,4 486,98 

BS24 Vallone Panniere 2 2562190,9 4454397,5 507,14 

BS23 Vallone Panniere 1 2562088,3 4454353,6 517,38 

BS22_02 Caccialupi 2562007,9 4454381,8 509,83 

BS22_03 Crepabuoi 2561494,9 4454435,7 546,7 
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Table 4.12: The Creek-Bussento confluence stations of the UBS_HGMS 

Code Name 
X

(m) 
Y 

(m) 
Elevation

(m) 

BS17JBS35 Vallone Surice 2567645,38 4450886,1 332,78 

BS18JBS25 Vallone di Paolo 2568108,11 4451768,75 352,74 

BS19JBS34 vallone Nocella 2 2566730,38 4452716,22 375,73 

BS19JBS27 Vallone Diavoli 2566433,79 4452858,58 381,55 

BS19JBS33 Vallone Nocella 1 2566026,98 4453090,07 388,21 

BS19JBS32 Vallone Giardino 2564934,26 4453356,72 408,48 

BS19JBS30 Vallone Giumenta 2564586,28 4453400,73 416,53 

BS20JBS28 Vallone Secco 2564225,58 4453560,29 425,39 

BS20JBS31 Vallone Rosso 2564155,35 4453611,59 428,38 

BS21_S01IDS Fistole Sanza Basse 2563503,26 4454252,3 446,97 

BS21JBS22 Persico Inferno 2563063,91 4454417,08 461,79 

BS22JBS24 
Confluenza Vallone 

Panniere 2 2562222,8 4454420,79 499,18 

BS22JBS23 
Confluenza Vallone 

Panniere 1 2562076,84 4454380,06 508,52 

BS22JBS26 Confluenza Vallone Pezza 2561270,08 4454452,18 565,91 
 
 
Figure 4.35 and the table 4.12 shown and listed code, name, geographical 
coordinates, elevation of the  sinkhole stations, respectively, were visual 
observations and temporally measurements are make.  
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4.5.1 Radon-222 measurements 

As previously cited, in addition to the streamflow and physical 
measurements, were carried out measurements of Radon (222-Rn) 
activity concentration using RAD7 detector at the river and spring 
stations.  
Radon data will be used as isotope aid in hydrograph separation 
techniques (Longobardi et al., 2011). Figures 4.46-4.48 shown the time 
variability of Radon concentration in stream and spring of some river  
stations of the Bussento.  
 

Figure 4.46: Temporal Radon concentrations pattern at the BS17 and BS17_S0N 
spring stations 

 

 
Figure 4.47: Temporal Radon concentrations pattern at the BS18 and BS18_S0N 
spring stations 

 

 
Figure 4.48: Temporal Radon concentrations pattern at the BS19 and BS22 
stations 
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5 THE OROGRAPHIC BARRIERS  

5.1 INTRODUCTORY REMARKS 

This chapter illustrates the first main topic of the research: the procedure 
adopted for the objective identification and delimitation of mountains, as 
orographical features influencing meteorological and hydrological 
analysis. 
This topic is useful for the hydrologists for two main raisons: i) the 
orography or the mountains are the most important sources of 
freshwater (“water towers”) for the adjacent lowlands and plains (Viviroli 
et al. 2004, 2007, 2011); ii) the presence of a mountainous orography acts 
as a barrier for a normal movement of the wet air masses  influencing   
the distribution, intensity and persistence of the precipitations (Roe et al., 
2005). The above raisons gives a double, relevant importance to the 
orographical issues in hydro-geomorphology,  both on the rainfall and  
the runoff production. The present chapter deals with  the above last 
topic and it is organized as follows. The paragraph 5.2 introduces the 
need of an interdisciplinary approach between geomorphology and 
atmospheric sciences in orographic precipitations (Garlewsky et al. 2008) 
and points-out on the scientific background about importance of the 
orographic barrier in global, continental and local scales of atmospheric 
circulation (Roe, 2005).  The paragraph 5.3 discusses a short systematic 
review on the   methods and modeling of the orographic precipitation at 
international, national, academic and institutional level. The  paragraph 
5.4 introduces and synthesizes the researches carried out by the 
hydrological research group of the University of Salerno, directed by the 
profs. Fabio Rossi  and Paolo Villani about the role of the orographic 
barriers on extreme rainfall events and the importance of their objective 
identification and delimitation at multi-scale levels. 
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The paragraphs 5.5 to 5.8   illustrate the results of the original researches 
carried out by the writer, from GIS-based procedures and methods (5.5), 
to multiscale mapping and applications.    

5.2  INTERDISCIPLINARY APPROACHES AND SCIENTIFIC 

BACKGROUND 

In the recent years a growing attention arises about the link between 
geomorphology, atmospheric sciences and other disciplines, as hydrology 
and ecology (Galewsky et al. 2008 ). 
The workshop held in Boulder (Col. USA) in the October 2007, has 
focused the need of interaction especially between the orographic 
precipitations and regional and global dynamics. During the workshop, 
geomorphologists, atmosphere scientists and hydrologists give a great 
interest in the integrated studies concerning hydrological cycle, 
particularly in land/atmosphere interactions as wind dynamics, 
precipitation distributions and evaporation (Pielke, 2001). 
Of all the meteorological phenomena, the most relevant in humid 
regions are precipitations delivered by atmosphere to the landscape as 
intense rainfalls and storms. The physical basis of the storms events is 
sufficiently well understood, whilst the understanding of extreme events 
and ability to accurately and quantitatively  predict precipitation location 
and magnitude is still limited (Sun et al., 2007).  
Within the general statements of the geomorphology, hydrology and 
atmospheric science, the most important issues are the real-time 
monitoring technology and high-resolution atmospheric modeling in 
understanding main factors controlling both topographically-driven 
climate and geomorphic processes. 
The state-of-the-art in atmospheric researches, developed on body of 
theory based on the general principles of geophysical fluid-dynamics, 
provides good explanation for the basic pattern of the large-scale 
atmospheric circulation and allows to perform useful weather 
predictions. At the present, most of the climate models work less well at 
regional and basin scale and, especially in forecasting location, intensity 
and frequency of extreme events.  
Process models do not have a predictive capability, but have produced 
valuable insights into the processes mostly relevant to geomorphology, 
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i.e. precipitations in mountainous regions (Rotunno and Ferretti 2001, 
Miglietta and Rotunno, 2005), the development of mid-latitude and 
tropical cyclones (Thorncroft et al., 1993) and organized moist 
convection (Robe and Emanuel, 2001).  
One of main scientific goals of the above cited workshop was, letterally 
(Galewsky et al., 2008) : “ we need a global survey of geomorphic processes and 
morphology (landscape metrics, or geomorphometry) the examines its dependency on the 
probability distribution of climate” and weather.   
Another interdisciplinary research field suggested during the workshop 
was a new perspective on orographic precipitations such as the 
development of linear models, isotopic signatures of drying ratios. 
One of the exciting challenges that geomorphology researches offer to 
atmospheric sciences is the need to understand occurring weather 
systems across a wide range of spatial-time interacting scales, from 
seconds-parcel scale to hundreds of years-continental scale, and beyond 
(Holley, B. P. 1969).  
Meentemeyer (1989) pointed-out that in geographical related disciplines, 
as atmospheric science, geomorphology and hydrology,  scale has always 
been a major issue, debating about the appropriate and shared  scale of 
analysis for various processes (Nir, 1987). 
The above authors proposed a correspondence among time scales, scales 
of the atmospherical variables and more frequently used topographical 
variables (Basist, 1989) in orographic precipitation studies (Table 5.1). 
 
Table 5.1: Correspondences  between the time scale, atmospheric parameter and 
topographic variables (modified from Meentemeyer, 1989) 

 
 
 

Time Atmospheric variable Topographic variable
Minute Local convenction, dew point depression Slope % 
Hour Feedere cloud, potential instability, wind speed Orientation, Elevation
Day Synoptic events, Vorticity, Short-wave pattern Esposure 
Year Precipitable H2O, Upper level divergence, 

Baroclinic zones, SST and ENSO 
Elevation, Slope 
Orientation 
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5.3 OROGRAPHIC PRECIPITATIONS: MECHANISMS AND 

MODELLING   

The presence of  relief on the land surfaces assumes a central role for 
studying the dynamics of the earth science events. Significant 
interactions between climate and topography play a primary role in 
external geodynamics and landscape evolution (Bush et al., 2004).   
Mountain range creation  affects deeply the mesoscale weather and 
climate of a landscape. Landscape topography and its changes depend to 
a large extent on the complex interactions between hillslope and channel 
processes, controlled by regularly exceeding thresholds for runoff 
erosion during large and heavy storms (Horton,1945; Montgomery and 
Dietrich, 1989). 
Consequently, rainfall is one of the most important factors in hillslope  
evolution, coupling with fluvial network characteristics and dynamics, as 
erosion/flooding processes, primarily in active mountain belts (Bonnet 
and Crave, 2003; Coppus and Imeson, 2002; Tucker and Bras, 1998). 
Over long span of time, the influence of the orogenic belt creation on 
climatic change at continental scale is recognized. Many studies over the 
last 30 years focused on investigating the large-scale variability of the 
Asian monsoon climate with respect to the role of the Tibetan Plateau 
(e.g. Hahn and Manabe  1975,  Murakami 1987, 1983; Webster,  1987). 
The terrain variations (e.g. orography, surface characteristics) possessing 
mesoscale spatial dimensions can provide a direct forcing of the 
atmosphere and its processes, as external mesoscale forcing. The 
topographic relief is the best first-order  meso-scale rainfall predictor and 
the relief changing along  an orocline can alter rainfall distribution 
(Bookhagen and Strecker 2008).  Rainfall enhancement in intensity, 
frequency and distribution on windward mountain flanks is highly  
variable and results from complex atmospheric-orographic interactions 
(Barros and Lettenmaier, 1994, Roe  2005). 
Over short-term,    orographic barriers influence the annual, monthly 
and daily distribution,   intensity and   frequency of precipitations (Roe 
2005). In fact, on a smaller scale, on a mountain basins with prevailing 
wind, precipitation is enhanced on the windward side of mountains and 
much reduced on the lee side (Jiang 2003).  
Besides, precipitations, associated with orographic forcing, results an 
order of magnitude bigger than the other events, such as frontal 
precipitation (Smith and Bastard, 2004). Following Orlanvski (1975),  
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possible, too that the diverted airflow itself can leads precipitation in the 
convergence region in the lee of the range, where ascent occurs (fig. 
5.1d). Orographically induced clouds can take the form of cumulus or 
cumulonimbus when the air subjected to lifting is sufficiently moist and 
unstable (Figure 5.1 e): if the orography lifts air above its level of free 
convection (the level at which it becomes less dense than the 
surroundings) it will continue to rise.  Thermal forcing occurs when 
daytime heating produces an elevated heat source and a corresponding 
thermally direct circulation, with convergence and convection at the top 
of the mountain (Figure 5.1f): this is responsible of the afternoon 
thunderstorms in summer (Roe 2005). Another effect is the "seeder-
feeder" mechanism according to which precipitating hydrometeors that 
originate from a cloud layer aloft (the "seeder" cloud) grow at the 
expense of the water content of a cloud below (the "feeder" cloud) 
which, by itself, might not precipitate (Figure 5.1 g). Stratus and small 
cumulus clouds orographically formed over hills or mountains can be 
particularly effective feeder clouds. It is recognized however, that the 
complex interactions between cloud dynamics and microphysics, and 
orographic forcing are far from being completely understood.  
The shape of the mountain can also have a significant influence on the 
intensity and distribution of precipitation. In the case of a concave ridge, 
the forward-reaching ridge arms inhibit diffluence upstream of the ridge 
and intensify the high pressure perturbation that develops on the 
windward slope (Jiang 2006). Watson and Lane (2011) pointed out on 
how the terrain geometry (straight, convex or concave ridge) influences 
the orographic precipitation dynamics.  
Basics aspect of orographic precipitation have been recently reviewed by 
Roe (2005) and Smith (2006), highlighting influences of aspect and shape 
of the orographic barriers.  
Several studies has been focus on the interaction between the 
topography and the patterns of precipitation, in order to predict flash 
floods, landslides, avalanches (Roe 2005). All these  natural hazards, are 
mainly impacted by precipitation intensity in mountainous regions (e. g., 
Caracena et al. 1979, Caine 1980, Conway and Raymond 1993).  
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5.4 SALERNO UNIVERSITY MODEL OF THE 

OROGRAPHICALLY - INDUCED  EXTREME-RAINFALL 

EVENTS  

In Italy and, in particular, in Campania region, where flood induced by 
the local extreme rainfalls are of first order of frequency, the problem of 
the orographic precipitation is strongly felt. 
The hydrology research group of the University of Salerno, directed by 
the profs. Fabio Rossi  and Paolo Villani, since 1998 highlights the 
importance of the orographic barrier on the distribution, intensity and 
frequency of the extreme rainfalls. 
Rossi et al. (2005) presented at the European Geosciences Union (EGU) 
the first study on the orographic barrier in the Campania region where 
was build up the law on the variation  of the rainfall intensity and the 
morphometric features of the barrier.  
Successively, the research group of Rossi (2006) presented, at the 
National Conference of Hydraulics and Hydraulics Engineering in Rome 
(HYDRA 2006), the geostatistical study on the regional analysis of the 
annual mean precipitation detected in a rain-gauges set influenced by the 
orographic barrier of the Cilento sub-region (Longobardi et al., 2006). At 
the same conference the Prof. Rossi, in his oral presentation, point out 
on the  simplified meteo-morphological model  on the extreme event 
orographically induced presented at the EGU in the 2005 (Rossi et al., 
2005). The proposed model  was based on  simple regressions, linear on 
the windward side and power regression on the leeward side.  
On the upwind hillslope the linear model  is between the amplification 
factor Y of the precipitation, derived from the ratio between the intensity 
of the precipitation on a plain p1 (figure  5.2) and that at the beginning of 
the orographic barrier p2 (figure 5.2), and the mean slope of the hillslope 
(X): 
 
Y =1+a1·X                                                                           Equation 5.1 

 
Where a1 is constant value equal to 1.15. 
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5.5 GIS-BASED HIERARCHICAL, MULTISCALE 

OROGRAPHIC BARRIERS: CONCEPTS AND 

PROCEDURES 

As above discussed, the interactions between the orographic barriers and  
wet air masses flow have different effects on the timing scale, at a mega-, 
meso -  or micro- scale. So, in the present research, the choice was 
oriented to adopt a hierarchical-multiscale approach in order to allow the 
interdisciplinary researches among the geomorphology, the orography 
and hydrology. 
Following  specific references (Dramis et al. 2011, Orlavsky 1975), the 
table 5.3, proposes a comparative hierarchical scheme on the linkage 
between   geomorphologic, climatic, and orographic entities here 
introduced.   
 
Table 5.3: Space-temporal  hierarchy of atmosphere phenomena (modified from 
Orlanvsky, 1975), geomorphologic entities ( modified from Dramis et al., 2011) 
and the orographic taxonomy proposed in Cuomo et al. (2011) and adopted in 
the present study. 

 
The comparative table was a guidelines to attempt a reasonable 
definition of the orographic entities.  

Level 
Area 

(Km2) 
Scale 

Geo- morph. 
Entity 

Orography 
Climate 
Entity 

Meteo- 
phenomena 

I 106 1:156 Continent Orogen Macro-
scala α 

Global 
circulation,  
long wave 

II 105 1:106 Physiographic 
system 

Belt Macro-
scala β 

Baroclinic 
wave 

III 105 1:55 Physiographic 
domain 

Chain Meso- 
scala α 

Frontal 
systems, 
cyclones 

IV 104 1:2,55 
Physiographic 

region System 
Meso-
scala β 

Orographic 
effect 

V 103 1:1,05 
Physiographic 

provence Range 
Meso-
scala γ 

Storm 
systems 

VI 102 1: 54 Morphologic 
system 

Group Micro- 
scala α 

Storms 

VII 101 1:2,53 Morphologic 
complex 

Complex Micro- 
Scala β 

Tornadoes 

VIII 100 1:53 Morphologic 
unit Unit Micro- 

scala γ Storm cells 
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and the closed contour line that contains it  but does not contains other 
closed lines within, will named “summit contour”. The lower point 
dividing each mountain from another is commonly known as “saddle 
point”. Each saddle point is situated between two or more closed 
contours that are the lowest contour lines of each mountain. This lines, 
to which corresponds the height of the lower point introduced for the 
prominence calculation, will named “ key contour” and the related saddle, 
“key saddle”.   
The mountain-parent relationship (MPR) establishes a filiation relation  
between topographic points, lines and polygons, relevant in mountain 
orography. Several definitions of the concept exist. Bivouac.com (2004) 
defines it as “the parent of each peak is the higher peak whose base contour 
surrounds the given peak and no other peak” and, thus, such a peak is referred 
to as the topographic parent. Other systems in defining parent peaks 
exist: "line parent" and "source parent"; both are used more often than the 
topographic parent (Maizlish, 2003). According to the previous 
definitions, the island parentage or encirclement parentage method (Molenaar 
1996, 1998; van Smaalen 2003; Chaudhry and Mackaness, 2006) was 
adopted to aggregate hierarchically nested mountain orders.  
 

5.5.2 Hierarchical orography   

This paragraph deals with the description of the first procedure adopted 
for the delimitation of the orographic barrier. 
The first method used to build-up the orographic map is based on the 
use of orographic parameters, describing the mountain terrain “as a 
whole” (Ahnert, 1984): mountain prominence and order, and their 
relationships.   
Mountain prominence, as above defined, is a first-order derivative of 
elevation, representing the height above all surrounding terrains or the 
relative elevation of a summit (Press and Siever, 1982; Summerfield, 
1991). More precisely, it is the elevation difference between a peak and 
the saddle (key saddle)  connected to the lowest contour (key contour) that 
encircles it and does not have higher peaks (Chaudhry and Mackaness, 
2008).   
Mountain order, as proposed by Yamada (1999), is defined by the contour 
lines on a topographic map in which each mountain is represented as 
sets of closed contour lines. These sets include only a single closed 
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contour line for each elevation “unless a saddle (or pass) that divides the 
mountain has a height that exceeds the contour interval” (Yamada, 1999). 
Referring to the basic concepts of the differential geometry, for the 
geomorphometric descriptions of the landscapes, it is possible to define 
the saddle mathematically (Takahashi 2004). The Earth's surface can be 
described as a differentiable function in R2 and classes C2 in the form z = 
f (x, y) that associates to each point x, y of the earth's surface its 
elevation z. The study of this function is focused on to finding the so-
called "critical points", which correspond to the points of maximum, 
minimum and saddle, calculated by studying the Hessian matrix, whose 
components are the second derivatives of the function with respect to 
the variables x and y. All critical points have a common characteristic, 
i.e., have no local slope:  
 ୶ = ୷ = 0                                                                         Equation 5.3 

In particular, the saddle point is defined as that point of coordinates (xo, 
yo) with the determinant of the Hessian matrix H <0 and: 
 మ୶మ > 0, మ୷మ < 0	or	viceversa                                                     Equation 5.4 

 

Therefore, starting from the identification of morphological saddles, 
have been extracted the key contours and, by adopting the hierarchical-
multiscale criterion, as defined in Table 5.3, each has been identified at 
different scales. Thus, the closed contour lines, contained in the Key 
contour, form a set of concentric shapes. Starting from the summits, 
each set of contour lines defines a 1st order mountain above a connected 
saddle or pass;  two or more 1st order mountains produce a 2nd order 
mountain and so on. If the highest of the lower-order mountains are of 
level m, then the surrounding higher-order mountain, with a lower 
elevation than the mth order mountain, is identified as an m+1th-order 
mountain (figure 5.5 ).  
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On the contrary, if it happens in the area between the contour lines, the 
resulting polygon will have a complex geometry with a hole 
corresponding to the smallest polyline.  
The second routine provides the polygon generation/classification and 
working in four steps: the 1st step consists in a nested polygonization of 
those contour lines surrounding an orographic volume; the 2nd step 
works on the previous nested polygons to construct the polygon parent 
relationships.   
In other words, once the procedure has derived the polygon set, it 
identifies all the polygons that are not encircled by any other polygon, 
calling them base polygons and, starting from these, it derives the parent 
relationship.  
Adopting a bottom-up procedure, any specific base polygon is the parent 
of all the enclosed polygons; if out of all these there are two or more 
polygons at the same elevation, the procedure  marks them as linked 
polygons. At this point, the procedure considers  these polygons, as the 
parents of all the enclosed polygons, until there are again more than one 
polygon at the same elevation. 
 The 3rd step extracts the summit polygons from above nested polygons, 
identifying the polygon that doesn’t have any other polygon included. 
The 4th step localizes and extracts the summit or peak points within the 
summit polygons and creates the table of the  peak points, as the points  
with highest elevation within a summit polygon (within a first order 
mountain).  
The 3rd  routine manages  the same steps for those contour lines that 
don’t surround an orographic volume, identifying the hollow contour 
polygonization and depression polygons, to recognize  immit polygons 
and, finally, to localize and extract the immit or pit points within the 
immit polygons and creating the pit points table.  
Finally, the 5th routine derives the mountain orders from the polygon 
theme and calculates the  prominences. 
Meanwhile, this routine assigns the nest code only to those linked 
polygons owing rank of mountains that are the lowest linked polygons of 
each isolated order.  
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Table 5.4: Proposal of the orographic entity hierarchy related to mountain order 
(modified from Cuomo and Guida 2010) 
Mountain 

order 
Orographic 

entity Orographic and geological definition 

8 Orogen 
An extensive belt of rocks deformed by orogeny, associated 

in places with plutonic and metamorphic rocks 

7 Belt 
Typically  thousands of kilometers long and hundreds of 
kilometers across and parallel continental coastlines or 

margins 

6 Chain 

A set of mountain systems, grouped together for 
geographical, i.e. continuity/ mean relative relief and 

geological reasons, i.e. continental orogenetic style, timing 
and  uplift rates. 

At least two orographic system linked by a system key 
saddle 

5 System 
A group of mountain ranges tied together by common 

geological features. 
At least two orographic range linked by a range key saddle. 

4 Range 

A mountain range is a single, large land mass consisting of a 
succession of mountains or narrowly spaced mountain ridges,  
closely related in position, direction, formation, and age.  A 
component part of a mountain system or  a mountain chain. 
At least two orographic groups linked by a group key saddle 

3 Group 
At least two orographic complexes linked by a complex key 

saddle 

2 Complex At least two orographic units linked by a unit key saddle 

1 Unit Peak area inside  summit polygons without saddles 

 
In the figures 5.8 and 5.9 are reported the resulting orographic map 
where are shown  the groups, the complexes and units hierarchical  
useful for the multiscale studies.  
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Figure 5.
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.8: The map oof the Orograaphic Groups of the Camppania region.
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To this aim were studied the most relevant methods of  the specific 
literature. Some researchers believe that the areal extend and the height is 
not a suitable classification (Penck, 1896; Supan, 1911), others  that slope 
angles, rocky terrain and the presence of  the snow and ice are crucial for 
define the mountains (Barsch and Caine, 1984; Ives et al., 1997; 
Beniston, 2000). Finally, Barsch and Caine (1984) point out that the 
definition of the mountain may be adapted to the area under 
investigations. 
Following the criterion suggested in the literature, were adopted some 
morphometric parameters for the identification of the mountains, 
neglecting the landscape ecological criteria adopted by Troll (1975). 
A combination of three relevant geomorphometric parameters were 
used: elevation, slope and range (or relative relief). Their  values were 
classified each in three classes to distinguish plain , hillslope and 
mountain.  
The first parameter elevation, derived by the DEM, was re-classify in the 
three classes (Penck, 1894; Hammond 1964):  
 

i) 0-100 m for the coastal plains, flow flood plain and low 
coastal hillside;  
 

ii)  100-600 m, identifying the low hilly areas; 

 

iii) up to 600m for the high hilly  and mountains areas (figure 
5.10). 
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Figure 5.16: The three TPI maps, performed in the test-region, chosen for 
calculate the Fragmentation Index. On the upper  left 5 - 25 coupled, on the 
upper right there is the coupled 6-36 and on the bottom center the coupled  3-9 

 
Following the above procedure was calculated the FI (table 5.5):  
 
Table 5.5: Fragmentation Index values for a few Campania region catchments  

  
REGION 

(windows_6_36) 
REGION 

(windows_5_25) 
REGION 

(windows_3_9)

BUSSENTO 1.92E-06 1.20E-06 2.05E-06 

ALENTO 0.0169 0.0104 0.0176 

MINGARDO 4.05E-06 2.67E-06 4.34E-06 

TUSCIANO 0.0158 0.00873 0.01528 

 
It is evident that, for all the windows adopted, was obtained a good 
results. Only for the Tusciano river was obtained a less value with the 
windows 5_25 than the others two couples.  
Based on the above criteria, to draw-up the landform maps was 
definitely adopted a circular windows with a small size of 5 m2 and the 
large one of 25 m2.  
In the figure 5.17 is shown the landforms map performed with the above 
illustrated procedure. 
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5.7 OROGRAPHIC BARRIER CHARACTERIZATION 

 
The third objective of the orographic barrier topic was thei quantitative 
characterization (orographic signature). In the present paragraph will 
show the two method used for the classification of the orographic 
barrier, previously identified, delimitated and mapped.  
As specified in the paragraph 5.3, the shape of the barrier, plus its 
elevation and slope influence the flowing of the air masses causing 
different consequences on the rainfall pattern and intensity (Jiang, 2006; 
Wang and Lane, 2011).  
Considering the atmospheric dynamics, it seems to be important the 
classification of the mountains against their shape and to this aim were 
proposed the following two methods of characterizations: 
 

i) The first is based on topographic indexing; 

ii) The second is based on the Fractal dimension.  

 
The first orographic barrier classification here proposed is based on a set 
of compound topographic index.  
In order to classify the orographic groups, were considered relevant the 
following compound variables: 
 

 Prominence (P), that, is defined as height difference between the 
summit point and the key contour- saddle (Chaudhry and 
Mackaness, 2008).  
 

  
             P = HSUMMIT POINT  - HKEY CONTOUR  
 

 The Shape Complexity Index, SCI (Hengl et al., 2003), commonly 
used to describe polygons on DEM slices indicating how 
compact or oval an orographic DEM slice is. 
 SCI = 	  ܴߨ2
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Where p is the perimeter of the barrier and R is the radius of the 
circle with the same perimeter of the orographic barrier. 
There is a direct relation between the SCI and the classification 
of landforms (Olaya, 2009) 
 
 

 The Ruggedness, RUGN (Melton, 1965), originally developped 
to characterize the drainage basin, it is also useful to defining the 
stature of a relief. 
 

ܰܩܷܴ             = ோேீா√  

 
 
       Where A is the area of the orographic barrier, range is the 
       difference between the highest and lowest values in the area being 
        analyzed. 
 

 The Elevation-Relief Ratio, ERR (Pike and Wilson, 1971), 
matematically equivalent to the hypsometric integral: 
 

                                                                                                                                        

ܴܴܧ              = ಲೇೃಸିಾಿಾಲିಾಿ  

 
 
Where Zavrg is the mean elevation value of the mountain region, Zmin and 
Zmax are respectively the minimum and the maximum elevation in the 
same region. 
For the above mentioned compound  indexes, referred to each 
orographic groups, were performed a descriptive statistic in order to  
summarize all the value obtained calculating each parameter (table 5.6). 
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Table 5.6: Descriptive statistics parameters calculated for the orographic groups 
of the Campania region. 

P SCI RUGN ERR 

N 18.0 18.0 18.0 18.0 

Min 364.0 1.5 464.9 5.4 

Max 1288.0 5.2 1262.8 48.1 

Sum 14392.0 58.7 16041.3 321.8 

Mean 799.6 3.3 891.2 17.9 

Std. error 71.4 0.2 60.1 3.0 

Variance 91728.0 1.0 64945.3 161.7 

Stand. dev 302.9 1.0 254.8 12.7 

Median 729.0 3.1 915.5 12.9 

Skewness 0.4 0.3 -0.3 1.1 

Kurtosis -1.3 -0.6 -1.0 0.4 				 				
 

 

 

 

 

Figure 5.21: The SCI index frequency analysis 
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Figure 5.22: The P value frequency analysis 

 
 
 
 
 
 
 

 

 

Figure 5.23: The ERR index frequency analysis 
 
 
 
 
 
 
 
 
 

 

Figure 5.24: The RGN index frequency analysis 
 

For regional classification of  orographic barrier groups of Campania 
region, was used the simple multivariate procedure. The cluster analysis, 
is a multivariate procedure based on some measurement of distance 
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Analyzing the values of the distances was found that a first ranking of 
the groups is between high and low values of RUGN, while the distances 
calculated for the SCI ranged between a maximum of 2 and a minimum 
of about 1. In this case three intervals were chosen for the distinction in 
conical, tableland and ridges shapes respectively equal to 1-1.2, 1.3-1.6 
and 1.7-2. This is a proposed method that could be extended to the 
other elements of the orography, such as the units or the groups, 
introducing some others parameters or adopting a more sophisticated 
method of analysis. 
The second method for characterize the orographic groups is based on 
the fractal analysis. In the landscape issue, when are delineated some 
entities, such as rivers, islands, etc, may be interesting to characterize and 
quantify their spatial structure and their most fundamental properties. 
 Generally, object can lie either in Euclidean space, with an integer 
number of dimensions (0 for points, 1 for lines, 2 for surface, 3 for 
volumes) or in a fractal dimension, introducing a new way of 
characterizing the occupancy of the space by the objects ( between 0 and 
1 for clusters points, 1 and 2 for curves, 2 and 3 for surfaces and 3 and 4 
for volumes) (Fortin and Dale, 2005) 
The fractal dimension has attracted considerable attention from 
mathematicians because its fractional quality is in sharp contrast to the 
integer dimensions (zero, one, two and three) of Euclidean manmade 
shapes such as circles and squares ( Hagerhall et al., 2004). 
The development of fractal geometry was strongly linked to issues 
relating to the mathematical description of forms and shapes that are 
found in nature, such as rivers, mountain ranges and coastlines 
(Mandelbrot, 1983). 
In order to give an idea on the characterization of the orographic barrier 
by using the Fractal Dimension (D) was used the prominence maps, 
performed with a cell size of 5x5 m,  of the Stella and Chianiello Mounts, 
defined as orographic units in this study (fig. 5.9).  Using continuous data 
the literature suggests to computed D as the slope of a log variogram 
assuming that the variogram is isotropic, linear and without a sill (Fortin 
and Dale, 2005). 
 (ࢎ)ࢽ =  Equation 5.6                                                                                       ࡰିࢎ
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6 HYDRO-GEOMORPHOTYPES   

6.1  INTRODUCTION 

This chapter deals with the second main topic of the research: the “hydro-
geomorphotypes”.   
Conceptually, the problem is related, in general, to the hydrological 
regionalization and, in particular, to the definition of the “basic land 
unit” in hydrological response of basin, at the space-time scales of 
analysis. 
Strictly, the term “hydro-geomorphotypes” was firstly introduced by Rossi F. 
(1998) as “territorial units which are homogenous for land use, geology and 
geomorphology” as overall hydrological response in rainfall-runoff 
transformation, at regional sale and for planning purposes. 
Untill  the 2005, this term remains a neologism in the scientific  literature  
and its conceptual meaning is  not clearly stated, nor completely shared. 
As just introduced in the first chapter, VAPI procedure is still utilized in 
the Campania region organization to evaluating the peak discharge for 
the flood hazard. 
As shortly reported in cap.1, the rainfall-runoff model used in the Vapi 
was based on the hortonian infiltration excess mechanism, adapting a 
modified Rational Method at a regional scale with a classification of the 
regional territory in six hydrologic homogenous areas in respect to the 
rainfall distribution and in three permeability classes from regional 
geology bedrock. 
In order to up-to-date the  VAPI-Campania procedure (Rossi and 
Villani, 1995), a new research program with general aim to develop 
methods transferring hydrologic models and parameters in flood 
assessment, at sub-regional spatial scales was undertaken.   
Following this progressive up-to-dating, at the National Conference of 
Hydraulics and Hydraulics Engineering in Rome,   Rossi and  Villani 
(2006) presented the research guidelines for the above mentioned 
updating of the VAPI-Campania procedure.  
Among the other research proposals, one of that was oriented to the 
classification and zoning of the territory into “hydro-geomorphotypes” to 
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define the hydrological behavior of the catchment and small catchment 
with respect to their geology, pedology, geomorphometry and 
geomorphic functions.  
Therefore, the concern of this topic is the definition and regionalization 
of hydro-geomorphometric characteristics in term of landform-soil 
relationship and attributes with hydrologic relevance on different spatial 
scales.  
In the last decades, geomorphometric classification methods have 
supported the hydrologic modeling, at large to small scale. On a 
qualitative basis, it is well known that hydrologic processes are 
influenced by geomorphometric properties like local slope angle, total 
curvature  or drainage density (Gregory and Walling, 1973).  
There exist some approaches to quantifying these relations through 
drainage basin parameters (Moore et al., 1991) and model conceptions, 
like the Geomorphic Instantaneous Unit Hydrograph or GIUH (Blöschl 
and Sivapalan, 1995; Moore et al., 1991), as performing model of 
Instantabeous Unit Hydrograph (IUH).  
Since the meaning of “hydro-geomorphotype”, however, has never been 
precisely defined in terms of correct terminology, conceptual 
representation, structural constitution and functional behavior, the 
present chapter , as a part of this research project, give an original 
contribute to the topic. 
In the following paragraphs, is presented firstly a brief scientific 
background about the disciplinary context on subject, illustrating 
successively previous effort in introducing the concept and finally 
offering the results of present research in spatial identification, objective 
delimitation and physical-based characterization of the “hydro-
geomorphotypes” . 
Applications in real world basin system modeling are, ultimately 
performed. 		
6.2 GENERAL BACKGROUND  

The response of the rivers to the extreme precipitations on their basins is 
much more different: some produce flash floods of high magnitude 
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while others change only slowly their stream flow regimen (Schomocker-
Fackel et al., 2007).  
Among the many factors contributing to the hydrological behavior of a 
basin, a few of them, as the scale, topography,  soils and bedrock are 
considered the major hydrological control, factors influencing heavily  
the  main processes of runoff/sediment production after the rainfall:  
infiltration, filtration, catchment/aquifer storage capacity, sapping and 
channel initiation.  
The role of this factors is studied by  rainfall-runoff transformation 
model synthetically exposed in the Chapter 1. 
In gauged basins, the rainfall-runoff transformation models derive from 
the analysis of some of the above hydrologic factors using i. e. measured 
rainfall, temperature and discharge data. A lot of basin or catchment are 
un-gauged and characteristic factors calibration is not easily pursued. 
Infact, it is difficult to identify the parameters correctly and to prove that 
the model is a valid representation of the processes in a catchment 
(Beven, 2001; Grayson et al., 1992;  Naef 1981).  
The aim of the more recent researches is the implementation of many 
different aspects of runoff formation in a rainfall-runoff modeling, such 
as the direct runoff, fast and delayed sub-surface return flow and the 
groundwater contribution to the streamflow to the deep percolation.  
To integrate these academic researches into rainfall-runoff modeling, 
useful in planning and designer, a methodology is needed to define the 
spatial distribution of the runoff production processes in a catchment 
(Schomocker-Fackel et al., 2007) and the land surface units to which 
these processed are related. 
The classical example of a spatially differentiated method is the above 
mentioned SCS CN method, developed by the U.S. Soil Conservation 
Service for small un-gauged streams (Soil Conservation Service, 1972). It 
used the Runoff-Curve Number to taken into account of the soil type 
and land use properties.  
Another widely used indicator of topographically-induced hydrological 
behavior is the Topographical Wetness Index (Beven and Kirkby, 1979) 
characterizes the hydrological behavior based on upslope contributing 
area and local slope. 
For instance, Schmidt et al. (2000) studied the runoff processes with 
respect to geomorphometry and geology and introduced the concept of 
“geomorphometric-hydrological landforms”  (figure 6.1) 
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far a water particle needs to move to lose a certain amount of potential 
energy.  
The topography was also used to investigate the relationship of 
catchment transit times with numerous catchment characteristics such as 
flow path length, gradient and connectivity (McGuire et al., 2005; Jencso 
et al., 2009, 2010) or drainage density (Hrachowitz et al., 2009, 2010) 
using tracer techniques.  
Other tracer studies have directly linked topography and hydrological 
behavior (Uhlenbrook et al., 2004; Tetzlaff et al., 2007).  
A wide range of additional topographical indices have been suggested, 
describing, among other aspects, the shape, dimension  and stability of a 
catchment, such as the hypsometric integral (Ritter et al., 2002) and its 
correlation with catchment processes (Singh et al., 2008).  
Other studies correlated topographical indices with soil type and 
hydrological behavior (Park and van de Giesen, 2004; Lin and Zhou, 
2008; Pelletier and Rasmussen, 2009; Behrens et al., 2010; Detty and 
McGuire, 2010). 
In spite of the rich information content of topography, its general 
usefulness for hydrology is controversial. It has been argued that climate 
and geology exert stronger influence on the rainfall runoff behavior of a 
catchment than topography (Devito et al., 2005).  
Furthermore, it was shown that flow patterns may be dominated by 
bedrock,  rather than surface topography (McDonnell et al., 1996; 
Tromp-van Meerveld and McDonnell, 2003). According to McDonnell 
(2003) the “catchment hydrologist will need to develop hypotheses from non-linear 
theory that are testable on the basis of observations in nature. This will not come 
about via model intercomparison studies or DEM analysis”.  
These comments highlight the perception that DEM analysis alone may 
be of limited value for gaining deeper understanding about catchment 
processes and that this needs to be brought into a wider context, 
accounting for the subtle interplay of topography, geology, climate, 
ecology and hydrology. 
In spite of the catchment processes complexity and due to the frequent 
lack of data for bottom-up modeling approaches, relatively simple, 
lumped conceptual models can, due to the self-organizing catchment 
behavior, be efficient in identifying dominant flow generation processes 
and modeling runoff (cf. Sivapalan et al., 2003; Savenije, 2010). 
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However, even for these top-down models additional data, other than 
precipitation and stream flow, are desirable for enhancing physical 
significance of model parameters and evaluation(Nalbantis et al., 2011). 
Recently, Rennò et al. (2008) formalized the Height Above the Nearest 
Drainage (HAND) metric and employed it for landscape classification. 
This metric may be more adequate to identify hydrologically different 
landscape units than the traditionally used elevation above mean sea 
level. HAND calculates the elevation of each point in the catchment 
above the nearest stream it drains to, following the flow direction. 
In addition elevation data (Nobre et al., 2011), showing that HAND is a 
stronger topographical descriptor than height above sea level by 
analyzing long term piezometer data. 
Landscape classification based on HAND is potentially sensitive to 
different aspects, such as the definition of the threshold for channel 
initiation when deriving streams from a DEM, the seasonal fluctuations 
of the channel initiation, and the resolution of the DEM. Furthermore, it 
is unknown to what extent local landscape features can introduce a bias 
and how robust HAND is to the resolution of observed points (sample 
size) and the locations of the observed calibration 
points. Hence, the application of HAND is still subject to considerable 
uncertainties. In addition, it is not well understood how HAND relates 
to other landscape descriptors, such as the topographical wetness index. 
Based on hydrologically meaningful landscape analysis (Nobre et al., 
2011); Savenije (2010) suggested that as topographical features are 
frequently linked to distinct hydrological functioning, they can be used to 
construct a conceptual catchment model perceived of hydrological units 
within a catchment. 
The classification model suggested by Gharari et al. (2011), based on 
HAND was compared with the topographical wetness index and a clear 
relation between classified landscape and groundwater table based on 
binned values of the topographical wetness index values was found. 
Such landscape classification results could in future work be refined by 
using additional information i.e. distributed soil moisture or groundwater 
data, for establishing a yet stronger link between landscape classes and 
runoff processes. 
The resulting maps show a relatively realistic, high accuracy landscape 
classification presumably associated closely to the dominant runoff 
generation processes in the individual parts of the study catchment. Such 
results can in the future serve as basis for the development of conceptual 
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hydrological models by assigning different model structures to the 
individual landscape classes, thereby potentially improving model realism 
without the need for further parameters. 
Other different modern approaches exist based on the classifying the 
hydrology of soils such as the HOST (Hydrology Of Soil Types) where 
the soils were grouped according to whether a similar hydrological 
reaction. Other authors as McGlynn and McDonnel (2003), Sidle et al. 
(2000), Merz and Mosely (1998) and Uhlenbrook et al. (2004) which 
considered the definition of landscape as puzzle of geomorphological 
units with similar hydrological behavior to identify the hydrological 
classification. Successively, Peschke (1999) et al. and in  Scherrer and 
Naef (2003)determined the runoff processes on a plot scale using soil 
data, geology, topography and vegetation. More recently,  Schomocker-
Facker et al. (2007) follow the approach used by Scherrer and Naef 
(2003) at  catchment scale and tested it with hydrologic observations 
during flood events.  
Another approach for the identification and regionalization of runoff 
processes is based on a Gis-based and statistical approach and require 
three basic datasets in terms of permeability: simplified geological maps, 
digital elevation model and land use maps (Muller, et al. 2009) 
Topography, land use and geology have also been used to directly infer 
dominant runoff processes within a catchment (Flugel, 1995; Naef et al., 
2002; Schmocker-Fackel et al., 2007; Hellebrand and van den Bos, 2008; 
Muller et al., 2009; Gharari et al., 2011)). 
As results of the above up-to-date review, emerge the need to find an 
unified approach in the definition of hydrologic units that having 
physical consistency, in term of topography, structure and function. 
With respect to the significance of geomorphometric properties in 
hydrology, scaling effects have to be considered, meaning that (1) runoff-
morphometry relations, which tend to be invariant over certain spatial 
ranges and (2) spatial thresholds affecting changes in these relations have 
to be determined (Blöschl and Sivapalan, 1995; Wood, 1995). 
In general, local scale, hillslope scale and catchment scale are often used 
to distinguish different spatial scales in hydrology (figure 6.2). 
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6.3 SPECIFIC BACKGROUND: FROM THE  “HYDROTYPE” 

TO “HYDRO-GEOMORPHOTYPE” CONCEPT    

In hydrological scientific literature, the problem of the basic unit in 
catchment regionalization is a big issue not yet shared by hydrologist. 
Since the SCS-CN method, the most popular method for computing of 
surface runoff for rainfall event, involving the use of simple empirical 
formula and readily available tables and curves, emerge the need of 
basics units. It is only one method, which can incorporate the land-use 
for computation of runoff from rainfall. SCS-CN method provides a 
rapid means for estimating runoff change due to land-use change. The 
SCS-CN method continues to be most satisfactory when used for 
different types of hydrologic problems that were designed to solve 
evaluating the effects of land-use changes (ACI-ASCE, 1985). The GIS 
and SCS-CN method were combined to the model rainfall-runoff 
relations and the watershed parameters were estimated while 
computation of other parameters required significant user interaction 
(White, 1988;  Bhaskar et al, 1992). Purwanto and Donker (1991) 
proposed semi-distributed hydrologic modeling using SCS-CN method 
and assessed the effect of land-use change for hypothetical cases of 
reforestation and deforestation conditions. When hypothetical case of 
5% reforestation or deforestation conditions considered, the peak flow 
was reduced by 14 % for reforestation and increased by 12 % for 
deforestation case for hydrologic soil group C when compared to normal 
land-use (Beker and Braun, 1999).  
The advent of improved spatial data sources and tools to handle this 
type of information has enabled a number of authors to suggest various 
combinations of land-surface characteristics that can be used to defined 
areas of similar hydrological response.  
Kite and Kouwen (1992) describe a catchment disaggregation approach 
that involves subdivision at regional-scale catchment into a number of 
hydrotypes with similar land-use characteristics.  Comparison was made 
between using a lumped hydrological model and using a version of the 
same model applied successively to different land uses within sub-basins. 
A watershed in the Rocky Mountains of British Columbia was divided 
into three contributing sub-basins, and each of these was further 
subdivided by land cover classification using Landsat images. A 
hydrological model was applied separately to each land cover class in 
each sub-basin, and the resulting hydrographs were routed to the 
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subbasin outlet and then through lower subbasins. The final hydrographs 
were compared to those obtained using the model on the basin as a 
whole. It was found that using a semidistributed model gives goodness 
of fit statistics that are better than the lumped basin approach. The land 
class dependent parameter values found through optimization confirm 
the physical variations in storages and infiltration rates that would be 
expected in a mountain basin. The advantage of the semi-distributed 
model is that relating the parameter values to land cover characteristics 
provides a method of investigating land use changes and allows the 
model to be more easily transferred to other basins. 
Liang et al. (1994) also describe a catchment disaggregation approach 
based on distinct vegetative characteristics and Flügel (1995) 
incorporated additional complexity into the hydro-type delineation 
process by classifying areas containing unique combinations of slope, 
aspect, soil and land-use. High sensitivity was found for parameters 
describing the water-holding capacity of unsaturated storages, which 
were defined in terms of the rooting depth of vegetation. It was 
concluded that the incorporation of land-use in the hydro-type 
delineation process was essential in regionalizing heterogeneity in 
regional-scale catchments. 
Mitchell and DeWalle (1998) utilized elevation and land use information 
for predicting streamflow in a regional-scale catchment, where snowmelt 
was known to dominate. To account for climatic variation with elevation 
the catchment was first divided into four elevation zones. The elevation 
zones were then further divided into forested and nonforested areas. The 
results indicated that the accuracy of streamflow predictions was 
improved with the use of combined elevation and land-use zones 
compared to the standard elevation zones.  
Jain et al. (1998) also divided a catchment into a number of hydro-types 
according to elevation and land cover information. Rather than having 
unique combinations of land cover and elevation zones, each hydrotype 
contained a number of different land covers. The basic requirement of 
the hydrotype was that the distribution of land covers and elevations 
were known and that the hydrotype contributed runoff to a definable 
stream channel. 
Krysanova et al. (1998) applied a three-level disaggregation scheme to 
model streamflow and sediment transport within a mesoscale catchment. 
The disaggregation process involved subdividing the mesoscale 
catchment into regional-scale sub-catchments. Hydrotypes or elementary 
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units were then delineated within each sub-catchment based on land-use 
and soil types. 
Becker and Braun (1999) considered up to nine different areal 
disaggregation schemes based on land-use, land cover (vegetation), soil-
type and slope class for a small-scale river basin.  
A sensitivity study of predicted streamflow showed that four hydrotypes 
needed to be modelled separately: (i) sealed areas; (ii) shallow ground 
water areas; (iii) forested areas with deep ground water tables; and (iv) 
arable land with deep ground water tables.  
From the studies cited above it is evident that the hydrotype-
disaggregation method can overcome the critical effects of averaging 
associated with lumped land-surface representations, as well as being 
more realistic in terms of data requirements and computational time as 
compared to the distributed modeling approach.  
Numerous key questions, however, still remain unanswered.  
Firstly, it is not clear on which land-surface characteristics can best 
beused as adequate (dominant) parameters in the disaggregation process 
at particular scales.  
Secondly, concerns have been raised that by obtaining an integrated 
response from the aggregation of hydro-types, the question of scale has 
been sidestepped by ignoring the natural heterogeneity of parameters 
and processes within the individual hydrotypes (e.g. Band and Moore, 
1995; Bonta,1998). 
Recent developments in hydrological modelling of river basins are 
focused on prediction in un-gauged basins, which implies the need to 
improve relationships between model parameters and easily-obtainable 
information, such as satellite images, and to test the transferability of 
model parameters.  
A large-scale distributed hydrological model   has been used in several 
large river basins in Brazil. The model parameters are related to classes 
of physical characteristics, such as soil type, land use, geology and 
vegetation. The model uses two basin space units: square grids for flow 
direction along the basin and GRU—group response units—which are 
hydrological classes of the basin physical characteristics for water 
balance. Expected ranges of parameter values are associated with each of 
these classes during the model calibration. Results are presented of the 
model fitting in the Taquari-Antas River basin in Brazil (26000 km2 and 
11 flow gauges). The model was then applied to the Upper Uruguay 
River basin (52000 km2), having similar physical conditions, without any 
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further calibration, in order to test the transferability of the model 
(Collischonn et al., 2007). 
As the modelling scale increases to contain a sufficient sample of the 
small-scale variabilities in soil, vegetation and topographic characteristics 
for a region, it is no longer necessary to take account of the pattern of 
those characteristics, but only their statistical characterisation (Moore 
and Clarke, 1981; Entekhabi and Eagleson, 1989; Avissar, 1992).  
Such statistical characterisation can be approximated by continuous 
analytical functions, or probability density functions (PDFs). The PDF 
approach considers the frequency of occurrence of variables of certain 
ranges without regard to the location of a particular occurrence within 
the area. Such an approach thus allows for the fact that the underlying 
variability may still be important in controlling hydrological fluxes, but 
that the pattern is less important. 
The representative elementary area (REA) was an initial attempt by 
Wood et al. (1988) to determine the scale, at which small-scale 
organization in catchment characteristics is no longer important.  
Using a hypothetical study of the effects of variable topography, soils 
and rainfall and, at least for short rainfall correlation lengths, Wood et al. 
(1988) showed that the REA for runoff generation predicted by their 
particular model and catchment characteristics was of the order of 1 km2. 
Subsequent  research has shown that it may be, for some conditions, that 
there is no scale at which the variance in runoff response reaches a 
minimum, whereas in general it should be expected that if an REA scale 
exists, it might vary between environments and processes (Blöschl et al., 
1995). Even if it is difficult to define an REA scale unequivocally, Beven 
(1995) and others have suggested that it may still be possible to use an 
approach based on the distribution functions of variables (or parameters) 
to provide realistic predictions of discharge and evapo-transpiration 
fluxes within heterogeneous terrain.  
The quasi-distributed Variable Infiltration Capacity (VIC) hydrological 
model (Wood et al., 1992) was developed in an attempt to reproduce 
larger-scale hydrological response. The VIC model incorporates the 
saturation–overland flow mechanism with a continuous PDF to describe 
the relationship between soil moisture content and saturation, with 
relevant hydrological quantities determined by integration over this 
distribution. In essence, the distribution allows different parts of the 
catchment to have different significance in terms of runoff generation 
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potential. It also takes into account that the relationship between 
different catchment areas may change with wetting and drying. 
The advantage of the PDF modelling approach lies in its ability to 
reproduce catchment response with a smaller number of physically 
meaningful parameters than the more traditional distributed models.  
This reduction in parameters is in line with the principle of parsimony 
that requires the modeller to seek the simplest model parameterization 
consistent with available evidence (Jakeman and Hornberger, 1993).  
Another example was the quasi-distributed Variable Infiltration Capacity 
(VIC) hydrological model initially proposed by Wood et al. (1992) and 
subsequently modified by Kalma et al. (1995) and Sivapalan and Woods 
(1995).  
The VIC model adopts a statistical distribution of storage elements 
across the catchment to allow for the fact that small-scale variabilities of 
soil, vegetation and topography will cause different parts of the 
catchment to have different soil moisture storage.  
On the basin scale, the hydrograph is influenced by basin morphometry 
which can be expressed by representative attributes for catchment height 
distribution (relief indices), length and form of the basin (form indices) 
and parameters describing the drainage network (Cooke and 
Doornkamp, 1990; Gregory and Walling, 1973, Schmidt et al., 2000). 
Recent advances in the analysis of landform geomorphometry through 
the availability of high resolution Digital Elevation Models (DEMs) and 
diffusion of GIS software enhance further quantitative research efforts 
within this topic.  
The above illustrated literature rewiev deserve as start point to “Up-to-
dating VAPI Project”. Preliminary results of this researches are presented 
in Guida et al., (2007) in order to define multi-scale geo-morphometric 
landform types, reflecting similarities in their soil-landforms relationship 
and hydrologic behaviour, using a simple hydrologic-geomorphometric 
landform classification and a pre-defined model of terrain classification. 
In the EGU poster session (2007), the Authors show a proposal of  
defining and mapping Hydro-geomorphological Units at regional, basin and 
watershed scale from automated land-system recognition, referring to the 
GIS-based experiences carried out in Campania region.   
Geomorphometric classification scheme follows previous approaches 
(Weiss, 2001), using original algoritms proposed in Guida  et al.  (2007) 
and producing hydro-geomorphological units according to the basic runoff 
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generation models: i) hortonian overland flow, ii) saturated overland 
flow, iii) subsurface flow and iv) deep percolation. 
The Authors highlight that the hydrological behaviour in large basins is 
controlled by complex interactions between geomorphic, hydrological, 
hydro-geological, biological processes and land uses practices on 
hillslope, small catchments, watersheds and riparian zones and the 
studies related to this topics must be carried out within on shared 
interdisciplinary approaches. In fact, linkages between hydrologic 
behavior and geomorphic-soil attributes affect nonlinear or threshold 
responses of the hydrologic functions as runoff generation from open 
hillslope and colluvial hollows, expansion of preferential flow networks, 
redistribution of subsurface water storage in soils (Sidle et al.,2000) and 
groundwater contribution from bedrock.  
So, in this chapter we proposed a new approach for the identification 
and delimitation of hydro-geomorphotypes, starting from the above cited 
proposals (Rossi and Villani, 2006); Guida et al., 2007, following a 
modified procedure proposed by Schmocker (2007), at  plot and 
catchment scale, and integrating it by the hierarchical, multiscale 
implementation of the nested landform units.  
The proposed procedure was applied and tested at catchment scale in 
representative gauged basins of the Campania Region and successively 
extended at regional scale to un-gauged basins. One part of this research 
concerns the definition and regionalisation of geomorphometric 
characteristics and attributes with hydrologic relevance on different 
spatial scales. 
The resulting maps can be used to inferring hydro-geomorphotype in the 
up-to-dating VPI prodedure at catchment scale. 
The introduction of this unit could be usefully adopted to evaluate both 
surface and the sub-surface response of basins, i.e., to highlight  the fast 
and delayed response of a basins to the rainfall inputs.  

6.4 METHODOLOGICAL APPROACH 

The approach used for performed the hydro-geomorphologic types map 
was based on the hierarchical multiscale approach.  
As mentioned in the introductory paragraphs, the methodological 
approach developed in the present research, starts from the scientific 
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Geomorphometric map following the method of Troch to obtain the 
nine BGT and the BHGT.  
Combining the BHGT at catchment scale, were produced a wide range 
of Hydro-geomorphological Units (HGU), traditionally considered in 
hydrology and geomorphology, performing the Landforms map.  
In the procedure above described , the identification, delimitation and 
classification of the  HGU results by grid-based and object-based GIS 
techniques,  using the following recent studies of Summerel et al., (2005). 
In this paper, the authors demonstrate with models and examples the 
shared assumption that location and distribution of landform shape and 
size describe and categorize many features of a catchment, indicating, 
among others, soil types,  geological features, hydrological influences, 
and even shallow groundwater systems. The paper describes an objective 
method for delineating major landforms of a catchment on the basis of 
hydrological terrain analysis. It allows comparisons to be made within 
and between catchments. The method uses the UPNESS index from the 
Fuzzy Landscape Analysis Geographic Information System (FLAG) 
model (Roberts et al., 1997) that is derived from digital elevation data. 
UPNESS was developed as an index of surface and shallow subsurface 
water accumulation, fitting a five-parameter sigmoidal function to the 
cumulative distribution function (cdf) of the natural log (ln) of UPNESS. 
The point of inflection of the cdf of the UPNESS index is defined from 
the first derivative of the five-parameter sigmoidal function as the point 
of maximum concavity. The second and third points are defined by 
determining the maximum upward concavity and minimum downward 
concavity from the second derivative of a five-parameter sigmoidal 
function (referred to as break points). The inflection and break points 
from the UPNESS index are used to segment the cdf into three regions 
that represent four different landform elements. Landform categories 
based on these points represent ridge tops and upper slopes, 
midslopes, lower slope, and in-filled valley/alluvial deposits. The 
shape of the cdf curve indicates the dominance of major landforms 
within a catchment, providing an objective means for classifying this 
catchment characteristic. Examples are given showing how landform 
discrimination compares to geological maps. The landforms index 
presented in the above paper offers an useful technique to differentiate 
complex landforms in a landscape using terrain analysis, attempting to 
represent dominant hydrological soil formation processes.  
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This statement have been followed in this research, adopting 
simplification and adaptation to perform a multiscale application in 
supporting flood hazard assessment  in Campania region. 
The second approach used, as basic map, the regional geologic map 
reclassified  in three relative permeability classes, obtaining the 
Permeability Map. 
Combining the two approaches and relative database on the permeability 
and storage dataset, the Effective Hydro-geomorphological Units (EHGU) were 
obtained, according to the basic  runoff generation models: hortonian 
overland flow, saturated overland flow, subsurface flow and deep 
percolation. 
The procedure proposed was firstly tested on two experimental 
watershed of the Campania Region and successively extended to the 
Campania region. In the following paragraphs will describe in detail the 
proposed procedure and will show the obtained map.  

6.5 GIS-BASED,  AUTOMATIC RECOGNITION 

The procedure described above was firstly applied at a catchment scale 
in the Upper Bussento, because it was one of the experimental  basins of 
the VAPI project, for its  geological and geomorphological 
characteristics and for the particular hydrological behavior already 
described in the chapter 4. 
The Upper Bussento river drains with its water the mountain basins, 
that, as recently stated by several researches, are responsible of the 
discharge water in the lowland area (Viviroli & Weingartner 2004, 
Viviroli et al, 2011). For this raison, in this research, it was chosen as 
experimental basin for the reliability of the methodology.  
For the identification of the EHGU of the Upper Bussento river, were 
utilized the hydro-geological map at 1:25000 scale, provided by the Left 
Sele Basin Authority (AdB), and a DEM of the catchment obtained by 
the Technical Regional Map at 1:5000 scale with a cell size of 5x5m. The 
choice of cell size was dictated by the correspondence to the scale of 
analysis chosen.  
Following the procedure shown in the figure 6.11, the Hydro-geological 
Map (figure 6.12) was adopted to define bedrock permeability classes.  
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6.5.1 Testing of the procedure 

The proposed procedure was firstly applied to the Bussento river and 
then was extended to the Campania region. Before doing so the testing 
of the procedure  was made to verify the reliability of that.  
The procedure above described was applied to the Upper Bussento river 
basin located in the Southern of Campania Region and National Park of 
the Cilento and Vallo di Diano, where some catchments namely BS22 
and BS21 were monitored by hourly and monthly discharge surveys, 
radon concentration measures and physical-chemical analysis. These 
catchments were utilized to testing the reliability of the proposed 
procedure and were chosen for their particular and distinctive 
hydrogeologic characteristics and hydro-geomorphological features.  
In particular, the catchment BS21 (Inferno creek catchment) is 
characterized by dominant carbonate formations with a prevalently karst 
behavior. The catchment BS22 (Persico creek catchment) is composed in 
the right half-basin by terrigenous bedrock and in the right area by   karst 
carbonate bedrock. 
The geological and hydrogeological features of the catchments, 
descripted in the paragraph 3.4.2 and illustrated in the figure 3.17, 
suggest the possible hydro-geomorphological response of both.  
The catchment BS21 must have a very large groundwater reservoir and 
the delay time response might be slower than the catchment BS22.  
For the catchment BS22, must be expected lower response time and a 
lower storage capacity than the previous one. 
To compare the results, a preliminary analysis was made on the 
distribution of the areas with a dominant mechanisms of production of 
the runoff. For this analysis another catchment was considered, it was 
the BS30 or Giumenta creek catchment, characterized exclusively by 
terrigenous bedrock only, so it might expected a lower storage capacity 
than the BS22. In the figure 6.23 is reported the EHGU maps for the 
experimental sub-catchments. 
 
 
 
 
 
 
 



Chapter 6

 

202 

 

 

 
Figure 6
bottom r
EHGU m
EHGU m

 
 
The fig
mechani

 

6 

.23: Catchme
right, the BS
map of the 
map of the BS

gure 6.24 sh
isms of runo

ent case-stud
S21, BS22 an
BS30, and o

S21 and BS22 

hows the d
off producti

dies in the Up
nd BS30 catc
on the upper

catchments.

distribution 
ion in the th

pper Bussent
chments, on 
r right and l

of the are
hree catchme

to river basin
the bottom 
eft, respectiv

eas with do
ents. 

n: on the 
left, the 

vely, the 

ominant 



 

 

 

 

 

 

Figure 
product

 
As exp
with th
The tw
contrib
firstly a
and the
The se
catchm
dataset
outlet 
analysi
BS21 
month
intense
percola
On the
sub-sur
recessi
catchm
1968; T
catchm
contrib
Several
hydrog
al., 19
baseflo
respon

6.24: Distrib
tion in the ca

pected, the 
he deep per
wo terrigen
buting  to t
and the surf
e hydrogeolo
econd analy

ments BS21 
t monthly co
of the two
s on the ho
and BS22, 

hly discharge
e precipitati
ation compo
e annual hy
rface and t
on limb of

ments. The b
Tallaksen, 1

ments (Gon
bution to the
l method 

graph separa
75;  Szilagy

ow intersect
nse,  the filte

bution of the
atchments BS

catchment 
rcolation m

nous catchm
the runoff p
face mechan
ogic behavio
ysis was ca
 and BS22
ollected  fro
o catchmen
ourly dischar

described 
e data were
ions to det
onent in the
ydrograph w
the baseflow
f in order 
base flow s
1995) for hi
nzales et al.
e flood flow
are known

ation and ar
yi &Parlang
ts the reces
ering method, 

e areas relat
S21, BS22 and

BS21  has
mechanism th
ments have 
production 
nisms then, 
or. 
arried out 
2. Firstly, w
om October
nts and, suc
rge datasets
in the cha

e collected  
ect, essentia
 hydrograph

was perform
w compone
to obtainin

separation h
is importanc
., 2009), al

w. 
n in the h
e divided  in

ge, 1998), w
ssion and f
by which th

6. 

tive to the m
BS30. 

the higher 
han the oth

a major p
 with sub-s
congruent w

on the disc
were consid
r 2009 to De
ccessively, w
collected at

apter 4. Mo
at least a w

ally, the su
h.  

med the sepa
ents, analyzi
ng the stora
have been w
ce in the st
so to enha

hydrologic l
n  the graphi
which define
falling limb
he data proc

Hydro-geomo

mechanisms 

percentage 
her two catc
percentage 
surface mec
with  their  

charge data
dered the d
ecember 20
was carried 
t the outlet 
ore specific
week after 

ub-surface a

aration betw
ing the hyd
age capacity
widely studie
tream flow 
ance karst 

literature  
ical method (L

ne the point
bs of the q
cessing of th

orphotypes 
 

203 

of runoff 

of areas   
chments. 
of areas 
chanisms 
bedrock 

a of the 
discharge 
10 at the 
out the 

rivers of 
cally, the 
 the last  

and deep 

ween the 
drograph 
y of the 
ed (Hall, 
of many 
baseflow 

for the 
Linsley et 
ts where 

quickflow 
he entire 



Chapter 6

 

204 

 

stream h
method u
In the p
integrate
integrate
individu
flow.  U
semi-log
the gro
(Gonzal
baseflow
response
This ass
recessio
 
Q(t)  Q(

 
where Q
discharg
represen
So, the M
and BS2
the k pa
 

Figure 6
BS22; On

 
Appling
groundw
in the ta
 

6 

hydrograph 
using hydroc
present resea
ed with the
e DL/N70 

uate the poin
Using the g
garithmic sc
oundwater 
les et al., 2
w of rivers i
e of the gro
sumption le
n hydrograp

(to ) exp (-t/k) 

Q(t) is the 
ge at time 
nting a chara
Maillet form
22 and, follo
arameter and

.25: On the l
n the right: st

g the Maillet
water storag
able 6.2.  

derives a b
chemical or e
arch was use
e electrical c
instruments

nt of separat
graphical me
ale identifyi
was appro
2009). The 
is the Maille
undwater aq
eads to the 
ph: 

                     

baseflow a
to, and k i

acteristic sto
mula was app
owing the pr
d the ground

left: The ann
traight regres

t formula to
ge for the tw

baseflow hy
environmen
ed principall
conductivity
s at the BS2
tions betwee
ethod, the h
ng a straigh
ximated w
most used

et formula (M
quifer as a lin

following e

                      

at time t; Q
is the rece

orage delay in
plied to the 
rocedure ab
dwater stora

 
nual hydrogra
sion of the ba

o the recess
wo catchmen

ydrograph an
ntal isotopes
ly the simple
y informatio
22 and BS21
en the comp
hydrograph 
t line as gro

with linear 
d method f
Maillet , 190
near reservo
equation fo

                     

Q(to) is a r
ession const
n the waters
 annual bas

bove describ
age volume (

aph of the c
aseflow datas

sion curve w
nts and the r

nd the  trac
.  
e graphical m
ons measure
1 river statio
ponents of t

was plotte
oundwater fl

reservoir c
for describi
05) that mod
oir of param
or the groun

             Equa

reference b
tant for ba
shed. 	
e flow of th

bed, were cal
(figure 6.25)

atchments B
sets  

was  estima
results are re

cer based 

method 
ed with 
ons, for 
he total 

ed on a 
ow. So, 
concept 
ing the 
dels the 

meter K. 
ndwater 

ation 6.3 

aseflow 
aseflow, 

he BS21 
lculated 
. 

BS21 and 

ated the 
eported 



 

 
Table 6
aquifers

 

 

 

 
 
The re
researc
BS21 i
The se
reliabil
scale an
In the 
and B
April 2
 

Figure 
Octobe

 
The p
Elabor
surface

6.2: Storage c
s 

esults of the
ch. In fact,
s about five 

econd test w
lity of the m
nd, in partic
figure 6.26

S22 catchm
2011. 

6.26. Hydro
r 2010 to Apri

procedure a
ration of th
e componen

Catchment
Code 

BS21

BS22

coefficient an

e test on the
the volume
times highe

was made on
method on t
cular, in  resp
6 are shown
ments with 

ograph of th
il 2011. The b

adopted wa
he hourly d
nt into the f

t Stora

nd grandwate

e annual hyd
e of water 
er than the B
n some hou
the role of t
pect to the s

n the hydrog
hourly data

he catchment
blue line evide

s similar to
dataset was 
fast and del

age coefficien

k 

0,00002

0,0001

6. 

er volume of 

drograph en
storage in t

BS21 (table 6
rly data eve
the EHGU 
sub-surface 
graphs detec
asets from N

ts BS21 and 
ence the two 

o annual h
possible to

ay response

nt 

W

Hydro-geomo

in the BS21 

ncourage the
the reservoi
6.2). 

ents to verify
at the storm
component
cted from t
November 

d BS22 detec
event storms

hydrograph 
o separate 
e of the catc

Storage  

W (Mm3) 

58,30 

12,36 

orphotypes 
 

205 

and BS22 

e present 
ir of the 

fying  the 
m events 
t.    
the BS21 
2010 to 

cted from 
s analyzed 

analysis. 
the sub-
chments. 

 



Chapter 6

 

206 

 

In fact, 
semi-log
with a d
catchme
the surfa
All the 
describe
The valu
2  Nove
a blu cir
the 2 N
dry soil
raining p
influenc
rains tha
this two
In the f
station B
january 

Figure 6.
events of

6 

after select
garithmic sc
different slo
ents depend
face, fast  and
component

e each one a
ue of the K
ember 2010 
rcular line) m

November is
l, otherwise
period  with

ced the timi
at runs off 

o events. 
figure 6.27 a
BS21 and B
2011. 

.27: the hydro
f the 2 Novem

ting the sto
cale the disch
ope that is d
ding upon th
d delayed su
s were analy
s linear rese

K coefficient
and 29 Janu

measured at 
s typicall of 
 the event 
h wet soils. 
ing respons
(Scherrer e

are illustrate
BS22 for the

ograph measu
mber 2010 and

orm event, p
harge point 
decreasing w
he compone
ub-surface ru
yzed with th

ervoir charac
ts were calcu
uary 2011 (in
the station 
no anteced
of the 29 
The soil m

e of the ca
t al., 2007), 

ed the hydro
e events of 

ured at the ri
d 29 january 2

plotting the
were aligne

with the res
ents of the 
unoff  and d
he Maillet f
cterized by a
ulated for tw
ndicated in t
BS21 and B

dent raining 
January oc

moisture ant
atchments a
 for this re

ographs me
the 2 Nove

iver station B
2011. 

e hydrograp
ed along thr
sponse time
runoff anal

deep percola
formula in o
a K value.  
wo events o
the figure 6.
BS22 . The e

period and
ccurred dur
ecedent con

and the amo
ason were s

easured at th
ember 2010 

BS21 and BS22

ph on a 
ee lines 

e of the 
yzed as 
ation.  
order to 

occur in  
26 with 

event of 
d with a 
ing the 

nditions 
ount of 
selected 

he river 
and 29 

2 for the 



6. Hydro-geomorphotypes 
 

207 
 

 

For the two events was estimated the storage volume  in the aquifer as 
fast and delayed sub-surface flow using the Maillet formula. The table of 
the figure 6.27 summarize the estimated volumes for the two 
catchments.  It is evident, that the volume of the delayed sub-surface 
flow storaged in the BS22 aquifer is two times higher than the volume 
estimated for the BS21. This last, as  explained previously, has a 
dominant limestone bedrock with a 33% of areas that contribute to the 
runoff with the sub-surface flow (obtained from the BHGT map) 
respect to the BS22 for which the 44% of the catchment’s areas 
contribute to the runoff with the sub-surface process and the 14 % with 
the surface flow.  
The testing has provided good results on the reliability of the method 
here presented, so the procedure will be extended to the Campania 
region and, in particular, to their mountain catchments.  
The finality of the proposed method is to support the up-dating of the 
VAPI project hydro-geomorphological insights regarding differentiate   
infiltration models to be considered.  
It is well know that the VAPI was made considering only the hortonian 
mechanisms for excess of infiltration, but the literature is giving 
consideration to the base flow and the sub-surface flow as an important 
components of the total flood flow (Gonzales et al., 2009), especially if it 
was performing hydrologic analysis  at the temporal and spatial scale. 
In the VAPI procedure,  the runoff coefficient was utilized to define the 
volume of water that runs off with the hortonian excess infiltration 
mechanism during the flood events, so the coefficient was regionalized 
through the linear correlation with the percentage of the permeable areas 
of the basins. This last, representing the physiographic basin 
characteristic, was used as the independent variable of the models. 
As previously cited, at the conference IDRA 2006 the Proff. Rossi and 
Villani conferring on the up-dating of the VAPI. They introduced the 
new concept of the Hydro-geomorphotypes in order to consider, in the 
storm event analysis and  at the catchment scale, the sub-surface 
components besides the surface flow.  
So, in the present research it was performed the above method for the 
individuation and delimitation of the EHGT, which is an up-dating 
corresponding of the permeability class of the VAPI  and gives 
information on the components of the total discharge. 
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The elaborated map will be used to estimate a new parameter that will be 
stronger than the percentage of  permeability because it gives additional 
hydrological information. 
To this aim were proposed some indexes derived from the mapping 
spatial analysis of the EHGU modifying , in part, the method of 
Hellebrand et al. (2007) that regionalized  the winter storm flow 
coefficients through  a correlation with the permeability of the lithologies 
and the dominating runoff processes. 
The use of the new index, as an independent parameter in a regression 
model, may open possibilities for flood event predictions in un-gauged 
basins concerning their runoff coefficient.  
Firsly,  the runoff coefficient was calculated for all the sub-catchments of 
the Upper Bussento, using the VAPI formula: 
 C = Cଵ ቀభ ቁ + Cଶ ቀమ ቁ

                                                      
Equation 6.4 

 
Where: Cf1 = 0,42;  Cf2 = 0,56; A1 is the permeable area and A2 is the 
impermeable area. 
Then, were calculated some indexes as the ratio between the areas of a 
particular EHGU in a catchments and its total area. 
The results are collected in the table 6.3. 
 
Table 6.3: The coefficient of the sub-catchments of the upper Bussento and the 
runoff coefficients values: Adp=area in Km2 contributing to the deep 
percolation, Asb=area in Km2 contributing to the sub-surface flow, As=area in 
Km2 contributing to the hortonian overland flow, Ab=catchments area in Km2 , 
As+Asb= sum areas of the hortonian overland flow and sub-surface flow (km2), 
Asb_dp= area in km2 contributing, both with the sub-surface flow and the deep 
percolation . 

Sub 
catchment 

Ab 
(Km2) Adp/Ab Asb/Ab Asb_dp/Ab As/Ab As+Asb/Ab Cf 

BS17 96.052 0.301 0.382 0.157 0.093 0.475 0.22 

BS21 19.187 0.390 0.328 0.214 0.068 0.396 0.12 

BS22 14.730 0.305 0.445 0.110 0.141 0.586 0.21 

BS23 7.789 0.319 0.418 0.224 0.039 0.457 0.14 

BS25 10.902 0.394 0.336 0.218 0.052 0.389 0.12 

BS30 2.838 0.309 0.466 0.000 0.225 0.691 0.3 
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The correlation matrix was firstly performed to check the degree of 
dependence between each index and the coefficient of runoff, using the 
common Pearson correlation coefficient, which is sensitive only to a 
linear relationship between two variables ( table 6.4): 
 
࢘  = 	 ∑ ∑సට(ഥࢅିࢅ)(ഥࢄିࢄ) స(ഥࢄିࢄ) ට∑ స(ഥࢅିࢅ)                                                            Equation 6.5 

 

Table 6.4: Correlation matrix between the runoff coefficient and the 
geomorphometric parameter 

  Adp/Ab Asb/Ab Asb_dp/Ab As/Ab As+Asb/Ab Cf 

Adp/Ab 1.00           

Asb/Ab -0.84 1.00         

Asb_dp/Ab 0.59 -0.78 1.00       

As/Ab -0.52 0.73 -0.99 1.00     

As+Asb/Ab -0.71 0.92 -0.96 0.94 1.00   

Cf -0.75 0.79 -0.96 0.93 0.93 1.00 
 
As expected, the parameter calculated with the areas contributing to the 
runoff with the deep percolation (Adp) or as combination of deep 
percolation and sub-surface flow (Assb_dp) have a negative correlation 
with the coefficient of runoff. In addition, the best positive correlation 
was found between the parameter calculated with the areas contributing 
to the runoff with surface processes (As). Similar correlation was found 
for the runoff coefficient and the index  calculated considering the sum 
of the areas contributing runoff with the hortonian and sub-surface 
mechanisms  (As+Assb) and the runoff coefficient. 
So, in the figure 6.28 are reported all the linear correlations between the 
runoff coefficient and the two parameters SI=As/Ab (Surface Index), 
SSI=Asb/Ab (Sub-Surface Index) and the new RI=(As+Asb)/Ab 
(Runoff Index). 
 



Chapter 6

 

210 

 

Figure 6.

 
The new
(RI) ( fig
areas ch
and the 
ܫܴ  = ಹ	
Where: 
the area
catchme

6 

.28: Straight l

w coefficien
gure 6.28) an

haracterized 
total area of

ಹೀಷାೄೄಷ್ೌೞ        

AHOF is the
a related to
ent. 

line equation 

nt proposed 
nd was calcu
by the hort
f the catchm

                        

e area relate
o the Sub-

between the 

in this resea
ulated as the
onian overla

ment: 

                         

d to the ho
-surface flo

 

 

 
SSI and Cf, S

arch was na
e ratio betw
and flow an

                        

ortonian ove
ow; Abasin is

SI and Cf, RI

amed Runof
ween the sum
nd sub-surfa

               Equa

erland flow;
s the area 

and Cf 

ff Index 
m of the 
ace flow 

ation 6.6 

ASSF is 
of the 



 

This g
the run
coeffic
So, in
Campa
collecte
coeffic

6.6 E
R

In the
identifi
reliabil
The tes
maps p
To thi
Campa
The m
Campa
provid
 

Figure 
geologi

eomorphom
noff coeffic

cient should 
the follow

ania region 
ed on oth

cient with pr

EXTENSIO

REGION 

e previous
fication of th
lity of the pr
sting proced
produced in 
is aim, in th
ania region.

materials used
ania region 
ed by the CU

6.29: The DE
ic map of the 

metric param
cient, allowi
be calculate

wing paragr
and then 

her mountai
re-existing ex

ON OF TH

 sections
he hydro-ge
rocedure on
dure gives a 
updating th

he present 

d to applyin
with a 20 ×
UGRI (figu

EM with a c
Campania re

meter shows
ing to impr
e on an expe
raphs the 

the correl
in catchme
xperimental

HE PROCED

were desc
eomorphom
 the Upper B
good result

he VAPI.  
paragraph t

g the metho
× 20 and th
re 6.29). 

cell size 20× 
egion (on the

6. 

s a good lin
rove the co
erimental ba
procedure 
lation will 
ents to esti
l data. 

DURE TO 

cripted the 
metric types 

Bussento riv
s and it is en

the method

od are simila
he regional h

20 m (on th
right) 

Hydro-geomo

near correlat
orrelation th
asis. 
will extend
repeat on 
imating the

THE CAM

e method 
and the tes
ver basin.  
ncouraged to

d will exten

arly the DEM
hydro-geolo

he left) and th

orphotypes 
 

211 

tion with 
he runoff 

d to the 
datasets 

e runoff 

MPANIA 

for the 
t for the 

o use the 

d to the 

M of the 
ogic map 

 
he hydro-



Chapter 6

 

212 

 

 
In figur
region. 

Figure 6.

 
In the p
Runoff 
basins. T
Upper A
adopting

6 

re 6.30 is re

.30: EHGU m

paragraph  
Index with 
To this aim
Alento, Carm
g the same p

eported the 

map of the Ca

6.5 has bee
the runoff 
, the hydrol
mine, Menn
procedure as

EHGU reg

ampania regio

en proposed
coefficient  
logical datas
nonia, Noce
s the BS21 a

gional map

on 

d the linear 
to be used

set of moun
ellito and To
and BS22.  

, of the Ca

correlation
for the un-

ntain catchm
orna were a

ampania 

 

 of the 
-gauged 

ments of 
nalyzed 



 

The up
marly b
by con
In the 
cited ca

Figure 
Mennon

 
For ea
the cor

pper Alento
bedrock, wh

nglomerate-s
figure 6.31 

atchments.

6.31: The hy
nia, Nocellito

ch catchmen
rrelation wit

o and  Carm
hilst the Noc
sandstone co
 is reported

ydro-geomorp
o and Torna s

nts was calc
th the runof

mine catchm
cellito, Men
omplexes. 
d the Hydro

phometric m
sub-catchmen

culate the Ru
ff coefficient

6. 

ments have 
nonia and T

o-geomorph

map of the U
nts. 

unoff Index
t (figure 6.32

Hydro-geomo

mainly of 
Torna are do

hometric Ma

Upper Alento,

x (RI) to be 
2).  

orphotypes 
 

213 

a clayey-
ominated 

ap of the 

 
, Crmine, 

used for 



Chapter 6

 

214 

 

 

Figure 6
processe
Nocellito

 
As expe
conglom
upper B
dominat
In order
as for th
the RI,  
6.37) 
 

Figure 6
novembe

 
It is evid
the year
response
infiltrati
 
 
 

6 

6.32: Distribu
s calculated
o, Persico and

ected, the 
merate comp
Bussento, wh
ted by imper
r to make a 
he upper Bu
 were analyz

.33: The hyd
er 1991 to 8 m

dent that th
r at events
e typical o
ion mechani

ution of the
d for the U
d Inferno catc

lower valu
plexes as To
hilst  the hi
rmeable lith
correlation b
ussento catc
zed the hyd

drograph of th
march 1993 

he upper Ale
s of remark
of imperme
ism.  

e areas with 
Upper Alento
chments. 

e of RI is
orna, Nocell
igher one is

hologies (clay
between the
chments, an
drographs of

he upper Ale

ento aquifer
kable intens
able basin 

 a dominan
o, Mennonia

s for the c
lito and the 
s obtained f
y and marl).
e runoff coe
nd between 
f the catchm

ento catchme

r remains co
sity, showin

with a do

nt runoff pro
a, Carmine, 

catchments 
catchments

for the catc
 

efficient and 
the delay tim

ments (figure

nts detected 

onstant thro
ng an hydro
ominant ho

oduction 
Torna, 

with a 
s of the 
hments 

the RI, 
me and 
es 6.33- 

 
from 18 

oughout 
ological 

ortonian 



 

 
Figure 
october

  

The hy
upper A
 

Figure 
october

 

Figure 
october

 
 

 

6.34: The h
r 1975 to 26 se

ydrological b
Alento one. 

6.35: The h
r 1975 to 27 se

6.36: The hy
r 1975 to 27 se

hydrograph o
eptember 1976

behaviour o
 The analysi

hydrograph o
eptember 1976

hydrograph o
eptember 1976

of the Carmi
6 

of the Carmi
is of the RI,

of the Nocell
6 

f the Menno
6 

6. 

ine catchmen

ine catchme
too, show a

lito catchme

onia catchme

Hydro-geomo

nts detected

ents is simil
a  similar be

ents detected

ents detected

orphotypes 
 

215 

 

d from  1 

ar to the 
ehavior.     

 
d from  1 

 
d from  1 



Chapter 6

 

216 

 

Figure 6.
1975 to 27

 
The To
bedrock
compon
For eac
indepen

- T
- T

In the ta
time es
catchme
 
Table 6.5
catchmen

Catc

Uppe

Ca

Men

No

T

Infern

Persic	

6 

.37: The hydr
7 september 1

orna, Menno
k, are affecte
nent.  
ch catchme

ndent storm 
The event ru
The respons

able 6.5 are 
stimated fo
ents. 

5: Runoff coe
nts 

chments 

er Alento 

rmine 

nnonia 

ocellito 

Torna 

no Valley  

co Valley  

rograph of th
1976 

onia and N
ed by an ev

ents	 were 
events and 
unoff coeffi
se time for t

reported the
or the catc

efficient and 

RI Cf

0.93 0.3

0.91 0.28

0.85 0.26

0.63 0.26

0.67 0.2

0.53 0.15

0.66 0.24

he Torna catc

ocellito catc
vident season

individuate 
for each one
icient   
the delayed a

e mean coef
chments an

the delay tim

f 
tr (delay

(h)

3 16.3

8 18.8

6 30

6 25

2 21

5 66

4 66.8

chments dete

chmens, wi
nal increasin

and analy
e were estim

and the fast

fficient of ru
nd the me

me estimated 

ayed) tr (fa

 (h)

9 3.1

81 6.0

7

3

5

25.

80 21.1

ected from  1 

ith a conglo
ng of the b

yzed isolate
mated: 

t sub-surface

unoff and th
ean slope 

for the exper

ast) p

)  

3 0.39

7 0.41

0.31

0.38

0.65

5 0.18

11 0.18

 
october 

omerate 
aseflow 

ed and 

e flow 

he delay 
of the 

rimental 



 

The cr
observ
betwee
 
Table 6

  

RI 

Cf 

tr (dela

tr (fast)
 
In orde
this las
 
Table 6

  

RI 

Cf 

tr (dela

tr (fast)

RI*p 
 
It is n
delayed
6.38, 6
parame
 

Figure 

ross correlat
ve a good co
en  the tr ( fa

6.6: The cross

yed) 

) 

er to improv
st was multip

6.7: The cross

yed) 

) 

ow evident 
d response 
6.39 and 6.
eter with a g

6.38: RI-Cf  li

tion betwee
orrelation b
fast or delaye

s correlation m

RI 

1 

0.83 

-0.67 

-0.62 

ve the corre
ply for the m

s correlation m

RI 

1 

0.83 

-0.67 

-0.62 

0.62 

the good c
times of th
40 are repo

good correla

inear regressi

en attributes
etween RI a
ed) and RI.

matrix 

Cf tr

1 

-0.62 1

-0.68 0

elation betw
mean slope o

matrix 

Cf tr

1 

-0.62 1

-0.68 0

0.45 -0

correlation b
he sub-surfa
orted the re
ation. 

ion for the stu

6. 

s is given in
and Cf and 

r (delayed) t

 

.97 1

ween the dela
of the catchm

r (delayed) t

 

.97 1

0.91 -

between RI*
ace mechan
egression an

udied catchm

Hydro-geomo

n Table 6.6
a partial co

tr (fast) 

1 

ay times and
ments, p (ta

tr (fast) R

1 

-0.84 1 

*p and the 
nism. In the
nalysis betw

 	
 

 

 

 

 

 

 

ments.  

orphotypes 
 

217 

.  It can 
orrelation 

d the RI, 
able 6.7). 

RI*p 

fast and 
e figures 
ween the 



Chapter 6

 

218 

 

 

Figure 6.

 

Figure 6.

 

In order
the stati
used. 
 
Figure 6.

Regr

C

Tr (de

Tr (fas

 
The regr
p <<0.0

6 

.39: RI*P-fast

.40: RI*P-del

r to evaluate
istical techn

.41: The test A

ression 

Cf-RI 

el) - RI*P 

st) - RI*P 

ression betw
01. The p-va

t Tr linear reg

layed Tr linea

e the statistic
nique of one

ANOVA resu

F F

64.51 4

17.32 4

7.99 4

ween the Cf 
alue was of 

gression  for t

ar regression 

cally signific
e-way analys

ults 
Fcrit 

4.75 3.6

4.75 0

4.75 0

and RI prov
0.00132 for

the studied c

 for the studi

cance in the 
sis of varian

p-value

6105E-06

0.00132

0.01525

vided a sign
r the linear r

 
atchments. 

 
ed catchmen

regression a
nce (ANOV

ificant resul
regression b

ts. 

analysis,  
VA) was 

t with a 
between 



6. Hydro-geomorphotypes 
 

219 
 

Tr delayed and RI, and turned out to be higher than 0.01 for the 
correlation between Tr fast and RI.  
In conclusion, the regression analysis with a higher statistical significance 
was between the Cf and RI, with the following linear equation: 
ࢌ  = . ૠ	ࡵࡾ + .  +  Equation 6.7                                                                  ࢿ

 
 
The proposed linear model appeared to perform well in describing the 
runoff coefficient when RI served as independent parameters. Therefore, 
its applicability on the un-gauged basins will be suitable. In addition, the 
good correlation between the two parameter will attempt in the 
implementation in widely used hydrologic software for the Rainfall-
runoff transformation in order to considering a stronger and adequate 
hydro-geomorphologic features of the catchments. 
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7 DISCUSSIONS ON APPLICATIONS TO 
THE MOUNTAIN CATCHMENTS 

 

7.1  INTRODUCTION 

In the previous chapter was described, tested and extended to the 
Campania region the method for the identification and delimitation of 
the Effective Hydro-Geomorphological Units (EHGUs) map, useful to 
improve the VAPI procedure to catchment scale. A spatial analysis was 
used to estimate the basic parameter named Runoff Index (RI) to predict 
the runoff coefficient in the un-gauged catchments, considering both 
infiltration  and saturation excess overland flow models.  
Then, in order to use the EHGU map as support for the estimation of  
the hydrologic parameters, another procedure was build up in the 
calculation of the delay time of both the sub-surface fast and delayed 
runoff component, using as independent variable the product of the 
above cited RI and the mean slope of the catchments. 
The goal of this  chapter is to calibrate and validate the applicability of 
the parameters evaluated in the previous chapter, on the catchments with 
available stream flow data and on un-gauged catchments on a selected 
orographically induced rainfalls, by using a widespread hydrological 
distributed model. 
To this aim was utilized the software HEC-HMS of the U.S. Army 
Corps of Engineers' that is designed to simulate the precipitation-runoff 
processes of dendritic watershed systems. 
In the following, after a brief description of the HEC-HMS software will 
explain the approaches adopted for the simulations. Finally will describe 
their applications on two mountain catchments of the Campania region 
and the simulated results will show.   
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7.2 HEC-HMS SOFTWARE 

HEC-HMS has been developed for the U.S. Army Corps of Engineers 
to simulate the hydrologic response on the watershed  driven by the 
precipitation that falls on it.  The software was tested in several 
geographic zones with critical hydrologic events and verified in small and 
large basins or in the urban areas.  
To run the HEC-HMS hydrologic simulation is need to specify three 
datasets: 
1.     The Basin Model: containing the physiographic  representation of 
the watershed; 
2.     The Meteorologic Model: including  meteorological data of input 
on the rainfall and on the evapotranspiration   
3.      The Control Specifications: temporal information on the 
simulation  
The Basin Model is a component of the software that works in the Arc 
Map software to which it is linked. In the environmental GIS, with the 
tool named Arc Hydro, it is possible to calculate and  specify the 
components of the basin and to input  hydro-geomorphological 
parameters.  
In this phase, in fact, the river network is divided in segment and the 
basin is divided in catchments with the outlet at the end of each segment 
river. For each catchment it is possible to introduce springs and wells 
linked to the segments river and to the centroid of the catchments to 
form a network.  For each catchment of the watershed is possible to 
simulate the hydrologic response to the rainfall input data in accord to 
the land use and the morphologic and geologic characteristics of the 
watershed. 
The Meteorologic Model is the component used to input the rainfall 
pattern that may be based on the observed rainfall from a hystorical 
events, may be a frequency based hypothetical rainfall event, or may be 
an event that represents the upper limit of the precipitation possible to a 
given location. The rainfall pattern may be specific for each catchment of 
the watershed  and it is possible to specify the rainfall for the river, as the 
radar datasets.   
The Control Specification component storage all the input datasets, the 
temporal range to utilized for the calculation and the output simulation, 
too. All the results obtained from the hydrologic simulation may be 
represents in the graphic form or on tables.  
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The HEC-HMS computes the runoff volume calculating all the possible 
losses as interception, infiltration, evaporation and so on. The software 
consider that all land and water in a watershed can be categorized either: 

- Directly - connected impervious surface, or 
- Pervious surface 

 
Precipitation on the pervious surfaces is subject to losses which are 
calculates in the simulation with the following alternative models: 

- The initial and constant - rate loss model; 
- The deficit and constant - rate loss model; 
- The SCS curve number (CN) loss model 
- The Green and Ampt loss model 

 
Estimated the losses and subtracted these from the precipitation, must 
be calculate the base flow and separate this from the runoff. The next is 
to calculate the Syntetic Unit Hydrograph (US). The software proposed 
to use the following three method for the calculation of the UH, as 
suggested by Chow, Maidment and Mays in the 1988: 

- methods that relate the UH characteristics ( such as the UH peak 
and the peak time) to watershed characteristics. Snyder’s UH is 
similar to synthetic UH; 

- Those that based upon a dimensionless UH. The SCS UH is 
such a synthetic UH; 

- Those that are based upon a quasi-conceptual accounting for 
watershed storage. Clark’ s UH and the ModClark model do so. 

All these synthetic UH models are included in HEC-HMS. 
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7.2.1 Simulation method 

The simulations described in this chapter are made using the HEC-HMS 
software sintetically described above. As seen the software includes 
several methods for the estimation of the losses and the UH. 
For the specific study it was chosen to use the following methods for the 
simulations:  
 

 The Snyder’s method was used for the transformation of the 
rainfall into runoff; 

  The SCS Curve Number was used for estimate the losses;  

 The Lag method for the simulation of the channel flow. 

 
All this methods include synthetic parameters evaluable through physical 
formulas available in the literature. Moreover the losses for 
evapotranspiration can be neglected and the base flow was interpreted as 
a spring inflowing with a constant discharge. 
The Snyder’s UH is found on the calculation of two parameter: the 
standard lag tp, like the delay time of the flood wave and the peaking 
coefficient Cp that avoid in the evaluation of the features of the 
hydrograph. The standard lag is the difference in the time of the UH 
peak and the time associated to the centroid of the excess rainfall 
hyetograph. This may be evaluate with the following equantion: 
 

                                                        Equation 7.1 

 
Where: Spc is the mean slope of the main stream, L is the length along 
the main stream from the outlet to the divide, LC is the length along the 
main stream from the outlet to a point nearest to the centroid. 
The peaking coefficient Cp is depending by the Ct, that is a calibration 
parameter which depends  from the percentage of the permeable area I: 
 

                                                                                   Equation 7.2 

 

3.039.0 )()(7133.0 Cpcp LLSt 

46.089.0 tP CC 
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Where: 

                                                                                  Equation 7.3 

 
For evaluating the infiltration losses was adopted the Soil Conservation 
Service (SCS) Curve Number (CN) method. 
This model estimates the precipitation excess as a function of the 
cumulative precipitation, soil cover, land use and antecedent moisture, 
using the following equation:  
 

                                                                                Equation 7.4 

 
Where: Pe = accumulated precipitation excess at time t; P= accumulated 
rainfall depth at time t; Ia = the initial abstraction  (initial loss); and S = 
potential maximum retention, a measure of the ability of a watershed to 
abstract and retain storm precipitation.  Until the accumulated rainfall 
exceeds the initial abstraction, the precipitation excess, and hence the 
runoff, will be zero. Analysing the results of many experimental 
watersheds, the SCS developed an empirical relationship of Ia and S: 
 

                                                                                            Equation 7.5 

Therefore, the cumulative excess at time t is: 

                                                                              Equation 7.6 

Incremental excess for a time interval is computed as the difference 
between the accumulated excess at the end of and beginning of the 
period. The maximum retention , S, and watershed characteristics are 
related through an intermediate parameter, the curve number (CN) as: 
 

                                                                             Equation 7.7 
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CN value range from 100 (for water bodies) to approximately 30 for 
permeable soil with high infiltration rates. The CN for a watershed can 
be estimated as a function of the land use, soil type and antecedent 
watershed moisture using tables published by the SCS. 
The Lag Model is the simplest routing models of the HEC-HMS. With 
it, the outflow hydrograph is simply the inflow hydrograph, but with all 
ordinates translated by a specific duration. The flows are not attenuated, 
so the shape is not changed. If observed flow hydrograph are available, 
at two cross section along a river, the lag time can be estimated from 
these as the elapsed time between the time of the centroid of areas of the 
two hydrographs.  
The simulated hydrograph carried out in the HEC-HMS software is 
useful for check the usefulness of the EHGU map, of the Runoff Index 
(RI) and the relationships between the RI and the runoff coefficient or 
the delay time. To do this were choice two catchments: 
 

 The BS22, is a catchment of the Upper Bussento, just described 
in the chapters 3 and 4. It was choice for the availability of 
stream flow data and for its particular geology and hydro-
geological behavior described in the chapter 3. The river basin 
extension falls entirely in the Centaurino M.nt delimited as 
complex entities by the orographic procedure. 
 

 The Dragone river, that is the experimental basin in doctoral 
thesis of Spatuzzi (2012). It was choice for the presence of the 
pyroclastic soils covered the limestone bedrock and to simulating 
the storm event, defined by the hydrologists as flash floods, that 
occurred on September 2010 causing damage and loss of human 
life. The particular events was selected because orographically 
induced by the units entities individuate on the Lattari Mount. 

 
Three typologies of simulations have been performed, as resumed in the 
following: 
 

1. In the first simulation were adopted the critical parameter 
describing the synthetic UH of Snyder, above introduced 
(formula 7.1, 7.4, 7.7) 
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2. In the second simulation is provided the experimental estimation 
of the standard lag utilizing the flowstream data available on the 
monitored catchment, introduced in the chapter 6, the BS22. 

The experimental data allowed to estimating, after individuating 
the three components of the total runoff, the standard lag or 
delay time for the direct runoff, sub-surface flow and the deep 
percolation at the outlet of the catchment BS22.  
The software, with the “Basin model” component, splits the the 
BS22 in sub-catchments and for each one must be define the 
hydrologic parameters. To this aim, the delay time has estimated 
at the outlet of each sub-catchments adopting the following 
proportion equation:  
 

             t P_C : ABHGU_C = t p_ SC : ABHGU_SC                                                        Equation 7.8 

 
where: t P_C = delay time estimated for the catchment for a 
specific component (direct, sub-surface flow or deep 
percolation); ABHGT_C = area of BHGU in the watershed (C) 
corresponding to the component considered;  t p_ SC = delay time 
calculated for the sub_ catchment (sc) for a specific component; 
ABHGT_SC= area of BHGU calculated in the sub_ watershed and 
corresponding to the component considered. 
The software requires a only delay time for the outlet of the 
catchment or sub-catchment. In order to obtain the total delay 
time a weighted mean depending on the distributions of the 
EHGU, was used: 
 
 
 
 
 

                                                                                              Equation 7.9 

 
3. In the last simulation is introduced the runoff coefficient Cf for 

take into account the infiltration losses, in place of the SCS 
method. It was estimated for the gauged catchments of the upper 
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Bussento. To translating the value to the sub-catchments was use 
the same formulation used for the delay time, where the RI was 
introduced because of the significance linear model between the 
RI and Cf: 	Cి = 	C_େ ୖ୍ిୖ୍ి 																																																								Equation 7.10 

Where: Cf_SC = runoff coefficient calculated for the sub-
catchment (SC); Cf_C = runoff coefficient estimated for the 
catchment (C); RISC = runoff index calculate in the sub-
watershed; RIC = runoff index calculate in the watershed. 
 

For the Dragone river, that is an un-gauged watershed, was, instead, 
adopted the linear model found in the previous chapter between Cf and 
RI (equation 6.7). 
In the following paragraphs, will describe the obtained results applying 
the three procedure proposed.  
 

7.3 RAINFALL-RUNOFF SIMULATION  

7.3.1 Catchments BS22 

The present paragraph deals with the simulation runs on the catchment 
BS22 and the discussions on the obtained results. The description of the 
catchments is in the chapter 3. At the outlet of the catchment BS22 were 
collected hourly flow stream data in the period from the November 2010 
to April 2011, just shown in the chapter 4.  The dataset on the temporal 
precipitation pattern was available at the stations of Sanza e Rofrano 
(figure 7.1), provided by the curtesy of the Civil Protection of the 
Campania Region.  
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Table 7.1: Geomorphometric parameters calculated in the ArcMap fo the BS22 
sub-catchments. 

Sub-basin
Area 

Lenght
 main trunk 

Lenght 
c Slope 

-  [kmq] [km] [km] [%] 
w100 1.40 1.2 1.61 25 
w110 5.66 3.35 2.7 11 
w120 0.04 0.19 0.17 8 
w130 2.11 1.06 0.7 6 
w140 3.28 2.32 1.93 15 
w150 0.97 0.94 0.75 7 
w160 1.05 0.75 1.53 13 

BS22 
Total Area  14.51  

 
These parameters, calculated in the ArcMap, composed the not-graphical 
database of the sub-catchments.  
Next, importing the map of sub-catchments in the HEC-HMS all the 
morphometric parameter were introduced within and were selected the 
models to be used for the first simulation, as described in the paragraph 
7.2.1: the Snyder’s UH, the SCS Curve Number estimating the 
infiltration losses and the lag method for models the stream flow.  
So, in the table 7.2 are collected all the parameters calculate with the 
Snyder’s equations, where the percentage of permeable area was calculate 
from the simplified Permeability Map of the catchments (figure 7.5). 
 
Table 7.2: BS22 Hydrologic parameters calculated for the  Snyder formulation  

Sub_Catch L  Lc Slope tp I tot Ct Cp 

- [km] [km] [%] [ore] [%] - - 

w100 1.2 1.61 25 0.25 99 0.22 0.44 

w110 3.35 2.7 11 0.54 84 0.25 0.47 

w120 0.19 0.17 8 0.11 21 0.72 0.76 

w130 1.06 0.7 6 0.32 53 0.35 0.55 

w140 2.32 1.93 15 0.39 78 0.26 0.48 

w150 0.94 0.75 7 0.30 33 0.51 0.65 

w160 0.75 1.53 13 0.27 70 0.28 0.50 
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hydrograph method with the help of the electrical conductivity, too (par. 
4.5, fig. 4.53).  
The table 7.3 reports the delay times calculated for the direct runoff and 
for the slow and quick sub-surface flow, for the specific storm event of 
the 2 November 2010.  
 
Table 7.3: The delayed time estimated at the outlet catchment BS22 

 
 
 
 
 
 

The delay times were estimated at the outlet of the catchment BS22. 
These was transfer to the outlet of the sub-catchments considering the 
distributions of the hydro-geomorphotypes in each sub-catchments and 
applying the equation 7.8. 
The total delay time of the sub-catchment was done as a weighted mean 
time on the basis of the hydro-geomorphotypes correspondent to each 
delay time estimated for the component to the total discharge. The 
formula adopted was the equation 7.9. The table 7.4 contains the delay 
times and the total delay time of each sub-catchment.  
 
Table 7.4: The sub-catchments response time of the, weighted on the areas of 
hydro-geomorphometric type. 

 sub-
catchemnts 

Tr 
delayed 

Tr fast Tr direct TR

W100 W100 2.88 0.60 0.01 1.47

W110 W110 7.30 3.55 0.08 3.61

W120 W120 0.04 0.02 0.00 0.02

W130 W130 2.08 1.52 0.06 1.22

W140 W140 5.36 2.42 0.06 3.17

W150 W150 0.70 0.54 0.05 0.34

W160 W160 1.41 0.79 0.03 0.83
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The two hydrographs are not perfectly adherent in the recession limb. 
For the second procedure were estimated the delay times for the 
components of total flow at the outlet of the BS22 using the temporal 
flowstream pattern detected experimentally (table 7.6). 
 
Table 7.6: The delay times estimated at the outlet of the BS22 

 
 
 
 
 
 

 
In the table 7.7 are collected the total delay time calculated for each sub-
catchments with the formula 7.15.  
 
Table 7.7: The response time (h) calculated for the sub-catchments considering 
the distribution of the hydrogemorph types 

 
Sub-

catchments 
Tr delayed Tr fast Tr direct TR

W100 4.84 1.08 0.03 2.50

W110 12.27 6.43 0.26 6.29

W120 0.07 0.04 0.01 0.03

W130 3.51 2.74 0.19 2.16

W140 9.01 4.38 0.20 5.50

W150 1.18 0.98 0.16 0.62

W160 2.37 1.43 0.09 1.46

 
 
For the third simulation were estimated the runoff coefficient, reported 
in the table 7.8 for each sub-catchments, applying the formula 7.16. 
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In conclusion, the above simulations demonstrated the feasibility of the 
EHGU approach also for un-gauged basin, in the landscape of the 
Campania region not considered to testing the reliability of the 
procedure. 
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8 CONCLUSIONS 

This thesis presents the results of the research carried out on 'hydro-
geomorphological contribution to up-date the VAPI-Campania 
procedure' (Rossi and Villani, 1995) and synthesizes the contents of 
scientific papers published by the writer on national and  international 
journals and proceedings. In particular, this research demonstrates 
advances in the  methodological insights, procedural innovations and 
spatial modeling of  two main topics: orographic barriers and hydro-
geomorphotypes. The proposed hierarchical-multiscale approach and 
performed algorithms and GIS routines (grid- and object-based)  has 
demonstrated to be of strong support to the interdisciplinary hydro-
climatological analysis and modeling, at any spatial and temporal scales. 
  
The results obtained in the first topic consist of an innovative GIS-based 
procedure allowing the automatic individuation, objective delimitation 
and distinctive characterization  of the orographic barriers in order to 
overcome both the heuristic delimitation (expert judgment based) used 
in the simplified model on the orographically induced rainfalls of Rossi 
et al. (2005) and the extreme geometrical shape reduction adopted in the 
physically-based orographical barrier modeling. Also, the results will 
support ongoing geo-statistical analysis on the distribution, intensity, 
frequency and persistence anomalies in the distribution of the 
orographically-induced rainfalls. 
 
The results obtained on the second topic offer new insights in the 
automatic individuation of the hydro-geomorphotypes, that become a 
more suitable basic land unit in the VAPI-Campania rainfall-runoff 
transformation procedure. The adopted procedure integrates the 
prototypal work of Guida et al. (2007), performed exclusively on the 
pyroclastic-cover landscape of the Campania region and modifies the 
decisional scheme of Scherrer and Naef (2003), and identifies three 
dominant mechanisms in rainfall-runoff transformation. The procedure 
was designed for mountain regions, without considering the hydrologic 
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behavior and geomorphologic features of the floodplains and urban 
areas. 
 
In particular, the new insights into orographic mountains definition 
allowed to draw-up the hierarchical-multiscale orographic barrier map of 
the Campania region (Cuomo and Guida, 2010), suitable in 
interdisciplinary studies relating type and magnitude of meteorological 
events to the hierarchically correspondent orographical entity.  Recently, 
in Cuomo et al., 2011, the procedure  was just applied and extended to 
the Apennines chain, Sicily and Sardinia islands, producing a digital 
orographical map, useful in performing ongoing researches in oro-
hydrographic regionalization of Europe. Some characterization methods 
were proposed in order to classify the orography, at a given spatial scale, 
based on shape and ruggedness improving the analysis of the event 
storms types and their linkage to the orography shape. This last issue was 
recently addressed in the literature by Jiang (2006) and Watson and Lane 
(2011).    
 
The second topic of research has allowed to conceptualize the hydro-
geomorphotypes as basic hydrological units with effective behavior at 
the catchment and sub-catchment scale. Based on these findings, a GIS 
based procedure allows to drawn-up the hydro-geomorphotypes map of 
the Campania region. Spatial hydrological analysis on the experimental 
catchments have allowed to propose the Runoff Index (RI), as synthetic 
hydro-geomorphological parameter containing quantitative 
morphological and geological control in hydrologic response of a river 
basins. This index, tested on some mountain catchments with respect to 
their effective geology and hydrological behavior (using hourly discharge 
and rainfall data), provides several advantages in planning assessment, 
containing more detailed data on the different components of the total 
streamflow, at the catchments and sub-catchments scale. Also, the linear 
relation performed rather well to describe the runoff-producing 
processes, where the runoff coefficient is in a linear dependence with the 
RI, used as independent variable. Model performance, using the 
ANOVA test, indicates the statistical significance of the simplified 
model. Anyway, this model must be improved with additional 
hydrological analysis on others mountain catchments.  
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We modeled the integrated hydro-geomorphological approach and 
procedure on rainfall-runoff transformation using the well-know HEC-
HMS software, on two catchments for two storm events with different 
orographically-induced rainfall temporal pattern. The simulations 
showed the suitability and the implementation in digital hydrologic 
analysis of the RI and EHGU’s. Also, the rainfall-runoff transformation 
modeling demonstrated the accuracy of integrated hierarchical-multiscale 
taxonomy linking the orographic entities and precipitations. 
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