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1. INTRODUCTION 

The central goal of this work is to put in an unified framework Dynamics, 

Identification and Control of multibody systems. A multibody system is a 

mechanical system constituted of interconnected rigid and deformable 

components which can undergo large translational and rotational displacements. 

The description of the motion of multibody systems is the leitmotif of Multibody 

Dynamics  1 . On the other hand, System Identification is the art of determining 

a mathematical model of a physical system by combining information obtained 

from experimental data with that derived from an a priori knowledge  2 . In 

addition, the System Identification methods can be successfully employed to 

refine a multibody model obtained from fundamental principles of Dynamics by 

using experimental data. In particular, applied System Identification methods 

allows to get modal parameters of a dynamical system using force and vibration 

measurements. On the other hand, the raison d’etre of Control Theory is to study 

how to design a control system which can influence the dynamic of a mechanical 

system in order to make it behave in a desirable manner  3 ,  4 . Consequently, 

it is intuitive to understand that these three seemingly unconnected subjects 

(Multibody Dynamics, System Identification, Control Theory) are actually 

strongly linked together. Therefore, the study of one of these subjects cannot be 

separated from the study of the other two. The structure of this works represents 

an attempt to encompass the essence of Multibody Dynamics, System 

Identification and Control Theory. In the first chapter (Multibody Dynamics) a 

synthesis of the most important principles and techniques to derive the equations 

of motion of multibody systems is presented. In this chapter a particular 

attention is devoted to the fundamental problem of constrained Dynamics   5 , 
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 6  and to the finite element formulation of flexible multibody Dynamics  7 . 

In the second chapter (System Identification) a synthesis of the most important 

methodologies to obtain modal parameters of a dynamical system using force 

and vibration measurements is presented. In this chapter a particular interest is 

addressed to the Egensystem Realization Algorithm with Data Correlation 

(ERA/DC) using Observer/Kalman Filter Identification Method (OKID)  8  and 

to the method to construct physical models from identified state-space 

representations (MKR)  9 ,  10 ,  11 . In the third chapter (Control Theory) a 

synthesis of the most important algorithm to design a feedback control system 

based on a state observer is presented. In this chapter a particular attention is 

devoted to the Linear Quadratic Gaussian control method (LQG)  12 . Finally, 

in the last chapter (Case Study: Active Control of a Three-story Building Model) 

a case-study is analysed. The case study examined is a three-story building 

model with a pendulum hinged on the third floor  13 ,  14 . The motivations of 

this choice can be summarized in two points. First, the three-story frame, in spite 

of its simplicity, is a mechanical system whose dynamical behaviour is  

qualitatively similar to complex flexible structures. Therefore, all methods able 

to derive the equations of motion of multibody systems, all algorithms capable to 

identify the modal parameters of structural systems, and all strategies adequate 

to perform active vibration control of mechanical systems can be identically 

used in order to obtain qualitatively similar results. Second, the three-story 

building model, by virtue of its simplicity, is a mechanical system which can be 

quite simply assembled in laboratory making relatively little effort in order to 

perform a quick and easy-to-test experimental analysis  15 . In particular, a 

lumped parameter model and a finite element model of the three-story frame 

have been developed. Subsequently, a data-driven model relative to the system 

under test has been developed exploiting System Identification techniques. In 

particular, the Eigensystem Realization Algorithm with Data Correlation using 

Observer/Kalman Filter Identification method (ERA/DC OKID)  8  and the 

Numerical Algorithm for Subspace Identification (N4SID)  16  have been used 

to determine two different state-space models of the structural system using 
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experimental input and output measurements. In addition, the algorithm to 

determine a physical model from the identified sate-space representation (MKR) 

 9 ,  10 ,  11  has been used to obtain two different second-order mechanical 

models of the three-story frame. Subsequently, the design of a Linear Quadratic 

Gaussian regulator (LQG)  12  has been performed using the previously 

identified physical model of the system under test. The effectiveness of this 

controller has been tested in the worst-case scenario in which the system is 

excited by an external force whose harmonic content is close to the first three 

system natural frequencies. Finally, a new control algorithm for nonlinear 

underactuated mechanical systems affected by uncertainties (EUK-EKF) is 

proposed. The control problem of nonlinear underactuated mechanical system 

forced with nonholonomic constraints is the main object of many recent 

researches  17 ,  18 ,  19 .  In analogy with the Linear Quadratic Gaussian 

regulation method (LQG)  12 , the proposed algorithm represents the extension 

of the Udwadia-Kalaba control method (UK)  5 ,  6 ,  20 ,  21  to 

underactuated mechanical systems disturbed by noise. This extension is 

performed combining the extended Udwadia-Kalaba control method (EUK), 

which is the extension of the Udwadia-Kalaba control method (UK)  5 ,  6 , 

 20 ,  21  to underactuated mechanical systems, with the well-known extended 

Kalman filter estimation method (EKF)  12 . Even in this case, the 

effectiveness of the combined algorithms (EUK-EKF) has been tested in the 

worst-case scenario in which the system is excited by an external force whose 

harmonic content is close to the first three system natural frequencies.  
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2. MULTIBODY DYNAMICS 

2.1. INTRODUCTION 

The motion of mechanical systems has been the central subject of some of 

the oldest research performed by the pioneers of Physics. From their work has 

developed over the centuries the vast field of knowledge commonly known as 

Mechanics, which is mainly composed of two parts: Kinematics and Dynamics. 

The word “kinematic” originates form the Greek word “κίνημα” which literally 

means “movement” whereas the word “dynamic” originates from the Greek 

word “δυναμις” which literally means “force”  1 . Indeed, Kinematics is the 

branch of Mechanics which studies the geometric description of motion without 

considering the causes that generate it. On the other hand, Dynamics is the 

branch of Mechanics which studies the causes of motion and how it takes place. 

In Dynamics the concept of force is introduced as the cause of the motion of 

bodies and the principal purpose of Dynamics is to formulate a mathematical 

model of a mechanical system starting from the basic principles of Physics in 

order to quantitatively describe the relationship between causes and effects, 

namely between forces and motion. The mathematical model of motion consists 

in appropriate differential equations whose solution resolves the central problem 

of Dynamics: predict the movement of a general mechanical system knowing its 

initial conditions and the forces acting on it. In general, note that the knowledge 

of only the position coordinates at a given instant of time is not sufficient to 

determine the mechanical state of a material system, which makes it impossible 

to predict the configuration of the system in the immediate future. On the 

contrary, if both the position and velocity coordinates are known in a given 

instant of time, then the mechanical configuration of the system is entirely 
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determined and, in principle, it is possible to predict its future motion. Physically 

this means that the knowledge of the state variables in a fixed moment of time 

uniquely defines the value of the acceleration in same instant of time. The 

equations that mathematically link the position, velocity and acceleration 

coordinates to the forces which physically produce motion are called equations 

of motion. From a mathematical viewpoint, these equations are typically second 

order ordinary differential equations not necessarily linear. The integration of the 

equations of motion allows to theoretically determine the behavior of a 

mechanical system in terms of its motion as a function of time. In this chapter a 

synthesis of  the most important principles and techniques to derive the 

equations of motion of multibody systems is presented. 
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2.2. ELEMENTS OF ANALYTICAL DYNAMICS 

2.2.1.    INTRODUCTION 

The central problem of Dynamics consists in determining the motion of a 

mechanical system knowing the initial conditions and the forces acting on the 

system itself. To solve the central problem of Dynamics it is first necessary to 

derive the equations of motion of the system under examination. In the following 

sections some basic elements of analytical Dynamics are introduced. The 

starting point is Newton’s second law of Dynamics, which represents the most 

fundamental law of Mechanics  2 . Then from Newton’s second law 

D’alembert principle is derived, which paves the way to lagrangian Dynamics, 

and next the Lagrange equations are deduced from D’Alembert principle  3 , 

 4 . Afterwards, another fundamental principle of Mechanics is introduced, 

namely Hamilton principle of least action, and some basic elements of Calculus 

of Variation are briefly mentioned  5 . Subsequently, some modern techniques 

to derive the equations of motion of mechanical systems are concisely explained, 

such as Gibbs-Appel equations and Kane equations  6 . Finally, a fundamental 

principle of Mechanics perfectly equivalent to D’Alembert principle is 

introduced, namely Gausss principle of least constraint  7 .    

2.2.2.    NEWTON SECOND LAW 

Consider a particle of mass m  whose position is represented by the 
3
 

vector ( )tr  function of time t . From simple geometrical considerations, it is 

straightforward to deduce that the velocity vector ( )tv  of the particle is equal to 

the first time derivative of the position vector ( )tr  whereas the acceleration 

vector ( )ta  is equal to the second time derivative of the same vector ( )tr . 

According to Newton second law of Mechanics, the resultant force ( )tF  acting 

on the particle is equal to the time rate of change of the linear momentum vector 

( )tp  of the particle: 
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 ( ) ( )t tF p  (2.1) 

Where the linear momentum vector ( )tp  of the particle is defined as: 

 
( ) ( )

( )

t m t

m t

 



p v

r
 (2.2) 

This equation can also be restated in the form of dynamic equilibrium: 

 ( ) ( )t t F p 0  (2.3) 

Where the second term on the left hand side can be interpreted as the 

resultant of the inertia forces acting on the particle. If the mass m  of the particle 

is constant, then the second law of Dynamics can be rewritten as follow s: 

 

( ) ( )

( )

( )

( )

t t

m t

m t

m t

 

 

 



F p

v

a

r

 (2.4) 

Now consider a set S  of pn  particles of constant mass 
im  for 

1,2, , pi n . For each particle of the set Newton second law holds: 

 ( ) ( )i it tF p  (2.5) 

If mutual distance between the particles of the set is forced to remain 

constant, then the set is named rigid system. However, the particles of the set can 

also be linked together or to the ground in a different way. In any case, the effect 

of the constraints on the particles rebounds on Newton law creating some 

constraints forces whose resultant is ( )i

c tF . Hence, the resultant force ( )i tF  

acting on the particles of the set can be decomposed into the sum of the resultant 
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of the external active forces ( )i

e tF  and the resultant of the constraint forces 

( )i

c tF . Therefore, Newton second law become: 

 ( ) ( ) ( )i i i i

e ct t m t F F r  (2.6) 

Even in this case the second law of Dynamics can be seen as a dynamic 

equilibrium: 

 ( ) ( ) ( )i i i i

e ct t m t  F F r 0  (2.7) 

Where the last term on the left hand side is equal to the resultant of the 

inertia forces acting on the particle. 

2.2.3.    D’ALEMBERT PRINCIPLE 

Consider the dynamic equilibrium equations of a set of particles. In order to 

formulate D’Alembert  principle, the virtual operator   must be introduced first. 

At this stage, the virtual operator   can be treated identically to the differential 

operator d  except that the former does not operate on the time variable t , that is 

considered fixed. According to this definition, an arbitrary virtual displacement 

( )i tr  of the particle i  can be introduced and multiplied for the dynamic 

equilibrium equations: 

  ( ) ( ) ( ) ( ) 0 , ( )
T

i i i i i i

e ct t m t t t    F F r r r  (2.8) 

 This is a scalar equation written in terms of virtual work of the resultant 

forces acting on a generic particle of the system. If this equation holds for every 

arbitrary virtual displacements ( )i tr , then it is perfectly equivalent to the 

second law of Dynamics, that is a vector equation. Now a summation on every 

particle of the system can be performed to get: 
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  

     

1

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 , ( )

p

p p p

n
T

i i i i i

e c

i

n n n

i T i i T i i i T i

e c

i i i

e c i

i

t t m t t

t t t t m t t

W t W t W t

t



  

  





  

  

    

   

 



  

F F r r

F r F r r r

r

 (2.9) 

In the last equality the total virtual work of the external forces, constraint 

forces and inertia forces can be identified: 

  
1

( ) ( ) ( )
pn

i T i

e e

i

W t t t 


 F r  (2.10) 

  
1

( ) ( ) ( )
pn

i T i

c c

i

W t t t 


 F r  (2.11) 

  
1

( ) ( ) ( )
pn

i i T i

i

i

W t m t t 


  r r  (2.12) 

These virtual works are incremental expressions rather than differential of 

functions. The typical assumption of Classical Mechanics is that the constraints 

do no work and therefore they are called workless constraints: 

 ( ) 0cW t   (2.13) 

Using this assumption the D’Alembert principle can be obtained: 

 ( ) ( ) 0 , ( )i

e iW t W t t     r  (2.14) 
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This equation claims that for any virtual displacements of the system 

particles compatible with the constraints, the sum of the total virtual works 

performed by external forces and inertia forces is equal to zero. 

2.2.4.    LAGRANGIAN DYNAMICS 

Consider a system of 
pn  particles subjected to a set of 

cn  workless 

constraints. It is clear that not all the particle coordinates are independent 

because of the presence of the constraints. Indeed, the actual number of 

independent coordinates is: 

 3 p cn n n   (2.15) 

The independent coordinates are customary called degrees of freedom of 

the system. From a geometrical viewpoint, a coordinate transformation can be 

introduced in order to express the position vectors ( )i tr  of the system particles 

in terms of a set of n  generalized independent coordinates ( )tq  that can also 

lack of an obvious physical meaning. These coordinates are named lagrangian 

coordinates whereas the position coordinates are sometimes called physical 

coordinates to distinguish them from generalized coordinates. Hence, there is a 

mathematical vector function which represents the relation between system 

physical coordinates and lagrangian coordinates: 

 ( ) ( ( ))i it tr r q  (2.16) 

Using this relation the virtual displacement of the generic physical 

coordinate vector can be expressed in terms of the virtual change of lagrangian 

coordinates as follows: 
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( ) ( ( ))

( )
( )

( )

( ) ( )

i i

i

i

t t

t
t

t

t t

 





 


 




r r q

r
q

q

J q

 (2.17) 

Where ( )i tJ  is a 3 n  jacobian transformation matrix. Thanks to this 

relation it is possible to express the virtual works of both external and inertial 

forces in term of the generalized force vectors called lagrangian components: 

 

 

 

 

1

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

p

p

p

n

i T i

e e

i

n

i T i

e

i

n

i T i

e

i

T

e

W t t t

t t t

t t t

t t

 













 

 

 
   
 









F r

F J q

F J q

Q q

 (2.18) 

 

 

 

 

1

1

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

p

p

p

n

i i T i

i

i

n

i i T i

i

n

i i T i

i

T

i

W t m t t

m t t t

m t t t

t t

 













  

  

 
    
 









r r

r J q

r J q

Q q

 (2.19) 

Where the 
n

 lagrangian components vectors of external and inertial 

forces are respectively defined as: 
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  
1

( ) ( ) ( )
pn

i T i

e e

i

t t t


Q J F  (2.20) 

   
1

( ) ( ) ( )
pn

i T i i

i

i

t t m t


 Q J r  (2.21) 

Finally, the D’Alembert principle can be restated by using lagrangian 

coordinates in the following way: 

  ( ) ( ) ( ) 0 , ( )
T

e it t t t   Q Q q q  (2.22) 

Observing that the generalized coordinates are assumed to be independent 

coordinates, the D’Alembert principle in lagrangian coordinates is the following: 

 ( ) ( )e it t Q Q 0  (2.23) 

This set of equations represents the system equations of motion expressed 

in terms of lagrangian coordinates. 

2.2.5.    LAGRANGE EQUATIONS 

Lagrange equations are a mathematical device able to derive system 

equations of motion. One method to get Lagrange equations is to start from 

D’Alembert principle in lagrangian coordinates: this method consist in 

expressing the lagrangian component of inertia forces by using a physical 

quantity called kinetic energy ( )iT t . Kinetic energy is a form of mechanical 

energy possessed by a body only because of its motion and, in the case of a 

particle, it is defined as: 

 
1

( ) ( ) ( )
2

i i i T iT t m t t r r  (2.24) 
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Thereby, the kinetic energy of a material system ( )T t  is simply the sum of 

the single kinetic energy of each particle: 
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 (2.25) 

 On the other hand, an useful observation is to note that jacobian matrix can 

also be computed from the time derivative of physical coordinates and 

lagrangian coordinates: 
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According to these observations, the lagrangian component of inertia forces 

can be computed in the following manner: 
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 (2.27) 

Consequently, Lagrange equations are: 
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Q

q q
 (2.28) 

Lagrange equations can also be written in slightly different forms. In fact, 

first note that external forces acting on the system particles can be separated in 

external conservative forces and external non-conservative forces: 

 
, ,( ) ( ) ( )i i i

e e c e nct t t F F F  (2.29) 

As a result, the total virtual work of external forces can be divided in two 

parts: 

 
, ,( ) ( ) ( )e e c e ncW t W t W t     (2.30) 

Similarly to the previous case, the virtual work of external non-conservative 

forces can be calculated in terms of the lagrangian component: 
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Where: 

  , ,

1

( ) ( ) ( )
pn

i T i

e nc e nc
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t t t


Q J F  (2.32) 
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On the other hand, the total virtual works of  conservative forces can be 

expressed in terms of system potential energy ( )U t . Potential energy is a form 

of mechanical energy possessed by a body only because of its position in a 

conservative force field. In the case of a set of particles, the virtual work of 

conservative forces can be rewritten as:  
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Where: 
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U t U t
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  (2.34) 

In addition, the virtual change in potential energy can be restated using the 

lagrangian component of conservative forces in the following way: 
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Where: 
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Finally, Lagrange equations can be rewritten as: 
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Now a new physical quantity can be introduced, namely the system 

lagrangian ( )L t . The lagrangian is defined as the difference between the kinetic 

energy and the potential energy of the system: 

 ( ) ( ) ( )L t T t U t   (2.38) 

Using this definition, and noting that the potential energy is not a function 

of the derivative of generalized coordinates, it is easy to prove that Lagrange 

equations can be expressed as: 
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q q
 (2.39) 

A great advantage in using Lagrange equations is working with scalar 

physical quantities, such as kinetic energy ( )T t  and potential energy ( )U t , to 

develop the equations of motion instead of working with vector quantities, like 

forces and accelerations, that are necessary to apply Newton second law. 

2.2.6.    HAMILTON PRINCIPLE 

One of the most basic principle of Classical Mechanics is Hamilton 

principle. This principle, also known as Hamilton principle of least action, is 

based on the techniques of the Calculus of variations and can be used as a valid 

mathematical tool to derive the equations of motion of mechanical systems.  

Consider a system of particles S  whose configuration at time t  is univocally 

identified by the generalized independent coordinate vector ( )tq . Assume that 

the system is evolving during a time span included between two specific instants 

0t  and ft  from the configuration state vector 
0( )tq  to the configuration state 

vector ( )ftq . Hamilton principle asserts that between all the possible paths, 
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compatible with constraints, that the configuration vector ( )tq  can follow in its 

evolution during the time span between the instants 
0t  and 

ft , the one which 

actually materializes is that that minimize the time definite integral of the system 

lagrangian ( )L t , also named the action, that is: 

 
0

( )
ft

t
L t dt  (2.40) 

The solution of this minimization problem can be found considering a 

perturbation, namely a virtual change, ( )tq  of the true path followed by the 

configuration vector ( )tq  in its time evolution and assuming that the true path 

and the perturbed path always coincide at the time instants 
0t  and 

ft . That is to 

say: 

 
0( ) ( )ft t  q q 0  (2.41) 

According to this method it is possible to find a stationary value of the so 

called action functional: 

 
0

( ) 0
ft

t
L t dt   (2.42) 

At this stage, by using the definition of the lagrangian function and the 

formula of integration by parts, the perturbation of the action functional become: 
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 (2.43) 

Observing that all the lagrangian coordinates are independent, each quantity 

in the time integral can be independently taken equal to zero: 
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 (2.44) 

These differential equations are the well-known Euler-Lagrange equations. 

The solution of this set of differential equations corresponds to the minimum of 

the action integral.  Hamilton principle can be modified in order to include the 

effect of non-conservative external forces on motion. This modified principle is 

named extended Hamilton principle and can be mathematically stated through 

the following stationary problem: 



28 MULTIBODY DYNAMICS  

 
0 0
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f ft t

e nc
t t

L t dt W t dt     (2.45) 

Where 
, ( )e ncW t  is the virtual work of the external non-conservative 

forces. As expected, it is straightforward to prove that the final result are 

Lagrange equations of motion: 
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It is worth saying that both D’Alembert principle and Hamilton principle 

are powerful physical-mathematical tool to derive the equations of motion of all 

kind of mechanical systems but conceptually the latter can be logically deduced 

from the former. 

2.2.7.    GIBBS-APPELL EQUATIONS 

Gibbs-Appell equations represent another useful and effective mathematical 

technique to obtain the equations of motion of mechanical systems. These 

equations are based on the so-called Gibbs-Appell function ( )iG t  that, for a 

single particle, can be defined as follows:  
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i i i T iG t m t t r r  (2.47) 

Consequently, the Gibbs-Appell function of the whole system ( )G t  can be 

easily computed as the sum of the single particle Gibbs-Appell function. Indeed: 

 
1

1

( ) ( )

1
( ) ( )

2

p

p

n

i

i

n

i i T i

i

G t G t

m t t





 

 
  

 



 r r

 (2.48) 
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 A possible strategy to obtain Gibbs-Appell equations is to leverage 

D’Alembert principle written in lagrangian coordinates. To do that, a useful 

observation is to note that jacobian transformation matrix can also be computed 

from the second time derivative of physical coordinates and lagrangian 

coordinates: 

 

( )
( )

( )

( )

( )

i
i

i

t
t

t

t

t


 






r
J

q

r

q

 (2.49) 

According to these observations, the lagrangian component of inertia forces 

can be computed in the following manner: 
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 (2.50) 

Consequently, Gibbs-Appell equations can be expressed as: 
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Similar to Lagrange equations, Gibbs-Appell equations allow one to get the 

equations of motion of a mechanical system by using a scalar function, namely 
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the system Gibbs-Appell function ( )G t , instead of working with vector 

quantities.  

2.2.8.    KANE EQUATIONS 

Kane equations are sophisticated mathematical tool which permits to obtain 

the equations of motion of mechanical systems. The simplest way to derive Kane 

equations is to deduce them from D’Alembert principle expressed in lagrangian 

coordinates. First, for a single particle, Kane function can be defined as: 

 ( ) ( ) ( )i i T i it t m tK J r  (2.52) 

As a consequence, Kane function of the whole system ( )tK  is simply the 

sum of every single particle function. Indeed: 
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By using this definition, the lagrangian component of inertia forces can be 

rewritten as follows: 
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Therefore, Kane equations can be written as: 

 ( ) ( )et tK Q  (2.55) 
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It is straightforward to understand that, according to the preceding 

definitions, to write down Kane equations it is necessary to compute explicitly 

the jacobian transformation matrix. 

2.2.9.    GAUSS PRINCIPLE 

Gauss principle, also known as the principle of least constraint,  is a 

fundamental principle of Classical Mechanics perfectly equivalent to 

D’Alembert principle. This principle states that among all the accelerations that 

a mechanical system can have which are compatible with constraints, the ones 

that actually materialize are those that present the minimum deviation from the 

free accelerations in a least-square sense. Consider a material system S . If the 

particles of the system have no constraint in their evolution in time, the free 

acceleration of a generic particle can be computed as: 
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Let ( )i tr  be the actual acceleration of a system particle due to the presence 

of some constraint forces. The Gauss function ( )iZ t  of the material point is 

define as: 
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Obviously, the Gauss function of the whole system ( )Z t  is merely the sum 

of the single Gausss function of each particle of the set. Indeed: 
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 One way to obtain Gauss principle is to leverage on D’Alembert principle 

in lagrangian coordinates: 
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 (2.59) 

Setting the last expression equal to zero, Gauss principle is obtained: 

 
( )

( )

T

Z t

t

 
 

 
0

q
 (2.60) 

In analogy with Lagrange equations and Gibbs-Appell equations, Gauss 

principle is a mighty mathematical methods that allows one to get the equations 

of motion of a mechanical system by using the scalar physical quantity ( )Z t  

called Gauss function. As can be intuitively understood, there is a strong 

physical-mathematical link between Gauss principle, Gibbs-Appell equations 

and Lagrange equations. 
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2.3. THE FUNDAMENTAL PROBLEM OF 
CONSTRAINED DYNAMICS 

2.3.1.    INTRODUCTION 

The central problem of constrained Dynamics consists in determining the 

motion of a constraint mechanical system knowing the initial conditions and the 

forces acting on the system itself. Unlike the case of unconstrained Dynamics, in 

this case the constraint forces are further unknowns. In the following sections the 

central problem of constrained motion is addressed and solved according to the 

formulation proposed by Udwadia and Kalaba  8 . 

2.3.2.    HOLONOMIC AND NONHOLOMIC 

CONSTRAINTS 

The equations of motion of mechanical system can be analytically deduced 

from the basic principles of Dynamics. Indeed, Lagrange equations of motion 

are: 
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Q

q q
 (2.61) 

These equations have been developed assuming that all the n  generalized 

coordinates ( )tq  are independent from each other, namely by using an 

embedding technique. This method identifies the configuration of the system 

through a minimal set of coordinates and, using the hypothesis of workless 

constrains, produces a set of differential equations which does not exhibit the 

generalized constraint forces. If an augmented formulation is used instead, then a 

larger configuration ( )tq  vector is used which, for instance in the case of a 

material system, can be made of the pn  physical coordinates of the particles. It 

is intuitive to understand that the generalized constraint forces will influence the 

equations of motion: 
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 Where ( )c tQ  is a n  vector of the generalized constraint forces 

(hereafter, for simplicity, the dimension of the set of redundant coordinates will 

be indicated as n ). This vector is a ulterior unknown of the central problem of 

constraint Dynamics. Indeed, it is possible to express the generalized constraint 

forces by using the constraint equations and leveraging on Lagrange multipliers 

technique  5 . Constraint equations are a set of algebraic equations that links 

together the generalized coordinates vector. Basically, constraints can be 

classified in two type: holonomic constraints and nonholonomic  constraints. 

According to the traditional acceptation, holonomic constraints are characterized 

by a set of algebraic equations which can be integrated and reduced to the 

following form: 

 ( ( ), )t t f q 0  (2.63) 

Where ( )tf  is a fm
 vector function of only the generalized coordinates 

vector ( )tq . Holonomic constraints are also referred to as kinematic constraints. 

On the other hand, nonholonomic constraints are characterized by a set of 

nonintegrable algebraic equations which involve also the time derivatives of 

lagrangian coordinates. For the sake of simplicity, nonholonomic constrains can 

be distinguished in velocity nonholonomic constraints and acceleration 

nonholonomic constraints. The equations of velocity nonholonomic constraints 

involves the first time derivative of the configuration vector and can be defined 

as: 

 ( ( ), ( ), )t t t g q q 0  (2.64) 

Where ( )tg  is a gm
 nonintegrable vector function of generalized position 

vector ( )tq  and generalized velocity vector ( )tq . Moreover, the equations of 
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acceleration nonholonomic constraints involves the first and the second time 

derivative of the configuration vector and can be defined as:  

 ( ( ), ( ), ( ), )t t t t h q q q 0  (2.65) 

Where ( )th  is a hm  nonintegrable vector function of generalized position 

vector ( )tq , generalized velocity vector ( )tq  and generalized acceleration 

vector ( )tq . On the whole, the total number of constraint equations 
cn  is: 

 
c f g hn m m m    (2.66) 

Where 
fm , 

gm  and 
hm  are respectively the number of holonomic 

constraint equations, velocity nonholonomic constraint equations and 

acceleration nonholonomic constraint equations. It can be proved  9 ,  10  that 

the generalized constraints forces can be expressed in terms of the constraint 

equations by the Lagrange multiplies method as follows: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

T T T

c

f g h

t t t
t t t t

t t t

       
       

       

f g h
Q λ λ λ

q q q
 (2.67) 

Where ( )f tλ , ( )g tλ  and ( )h tλ  are fm
, gm

and hm
 vectors, 

respectively, named Lagrange multipliers and correspond to the holonomic and 

nonholonomic constraint equations. Using this result,  generalized constraints 

forces can be adjoined to Lagrange equations:  

 

,

( ) ( )
( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

T T

e nc

T T T

f g h

d L t L t
t

dt t t

t t t
t t t

t t t

    
     

    

       
       

       

Q
q q

f g h
λ λ λ

q q q

 (2.68) 
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This is a set of n  differential equations but the unknowns are the n  

generalized coordinates ( )tq  plus the 
cn  Lagrange multipliers ( )tλ . The 

problem can be mathematically closed only including the 
cn  algebraic constraint 

equations and solving the whole resulting system: 

 

,

( ) ( )
( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ( ), )

( ( ), ( ), )

( ( ), ( ), ( ), )

T T

e nc

T T T

f g h

d L t L t
t

dt t t

t t t
t t t

t t t

t t

t t t

t t t t

     
      

     


                      



 




Q
q q

f g h
λ λ λ

q q q

f q 0

g q q 0

h q q q 0

 (2.69) 

These equations represent the general equations of motion of a discrete 

constrained mechanical system.  

2.3.3.    EQUATIONS OF MOTION OF CONSTRAINED 
MECHANICAL SYSTEMS 

Assuming that the acceleration constraint vector ( )th  is a linear function of 

generalized accelerations ( )tq , it is possible to obtain an explicit solution of the 

problem of constrained Dynamics in the sense that the generalized constrained 

acceleration ( )tq  and the Lagrange multipliers ( )tλ  can be computed explicitly. 

Before doing that, it is necessary to express the equations of motion and the 

constraint equations in a different form. It can be simply proved  11  that the 

equations of motion of a discrete constrained mechanical systems can always be 

rewritten in this form: 

 ( ( )) ( ) ( ( ), ( ), ) ( ( ), ( ), )ct t t t t t t t M q q Q q q Q q q  (2.70) 



MULTIBODY DYNAMICS 37  

Where ( )tM  is a n n  generalized mass matrix and ( )tQ  is a n  

generalized force vector. On the other hand, it is necessary to take the second 

time derivative of the holonomic constraint equations. The time derivative of the 

kinematic constraint equations yields: 

 

( ) ( ( ), )

( ( ), ) ( ( ), )
( )

( )

( ) ( ) ( )t

d
t t t

dt

t t t t
t

t t

t t t

 

 
  

 

  



q

f f q

f q f q
q

q

f q f

0

 (2.71) 

Taking the second time derivative of the holonomic constraint equations 

yields: 

 

2

( ) ( ) ( ) ( )

( ( ), ) ( ( ), )
( )

( )

( ( ), ) ( ( ), ) ( ( ), )
( ) ( )

( ) ( )

( ( ), ) ( ( ),
( ) ( )

( ) ( )

t

d
t t t t

dt

d t t t t
t

dt t t

d t t t t d t t
t t

dt t t dt t

t t t
t t

t t

  

  
   

  

    
      

    

    
   

   

qf f q f

f q f q
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q

f q f q f q
q q

q q

f q f q
q q

q q
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2 2

2

2 2

2

,

) ( ( ), )
( ) ( )

( ) ( )

( ( ), ) ( ( ), )
( )

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) 2 ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 2 ( ) ( )t
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t t

t t t

t t t t
t
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t t t t
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t t t t t t t




  

 
  

  

     
     
      

  q q qq

f q
q q

q q

f q f q
q

q

f f f f
q q q q

q q q q

f q q f q f q , ( )t t t 



f

0

 (2.72) 
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This vector equation can be rearranged as: 

 ( ) ( ) ( )ft t tqf q Q  (2.73) 

Where ( )f tQ  is a n  vector function defined as follows: 

 

 

2 2

2

, ,

( ) ( ( ), ( ), )

( ) ( ) ( )
( ) ( ) 2 ( )

( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( )

f f

t t t

t t t t

t t t
t t t

t t t t t

t t t t t t

 

    
     

     

   q qq

Q Q q q

f f f
q q q

q q q

f q q f q f

 (2.74) 

This vector equation represents the second time derivative of the holonomic 

constraint equations acting on the system  12 . The time derivative of 

nonholonomic constraint equations is: 

( ) ( ( ), ( ), )

( ( ), ( ), ) ( ( ), ( ), ) ( ( ), ( ), )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )t

d
t t t t

dt

t t t t t t t t t
t t

t t t

t t t t t

 

  
   

  

   



q q

g g q q

g q q g q q g q q
q q

q q

g q g q g

0

 (2.75) 

This vector equations can be rearranged as follows: 

 ( ) ( ) ( )gt t tqg q Q  (2.76) 

Where ( )g tQ  is a 
n

 vector function defined as: 
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( ) ( ( ), ( ), )

( ( ), ( ), ) ( ( ), ( ), )
( )

( )

( ) ( ) ( )

g g

t

t t t t

t t t t t t
t

t t

t t t

 

 
   

 

  q

Q Q q q

g q q g q q
q

q

g q g

 (2.77) 

Assume that the generalized acceleration involved in the nonholonomic 

constraint equations is a linear function:  

 ( ( ), ( ), ) ( ) ( ( ), ( ), )ht t t t t t tD q q q Q q q  (2.78) 

Where ( )tD  is a hm n
 matrix function and ( )h tQ  is a hm

 vector 

function. Since all the constraint equations are now linear in the generalized 

coordinates vector ( )tq , it can be simply proved  8  that they can be all 

rearranged in an unique compact form as follows: 

 ( ( ), ( ), ) ( ) ( ( ), ( ), )t t t t t t tA q q q b q q  (2.79) 

Where ( )tA  is a cn n
 matrix function defined as: 

 

( )

( )

( )
( )

( )

( )

t

t

t
t

t

t

 
 
 
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  
 
 
 
 

f

q

g
A

q

D

 (2.80) 

And ( )tb  is a cn
 vector function defined as: 
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( )

( ) ( )

( )

f

g

h

t

t t

t

 
 


 
  

Q

b Q

Q

 (2.81) 

According to this mathematical reformulation, the fundamental problem of 

constrained Dynamics can be restated as follows: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

Tt t t t t

t t t

  




M q Q A λ

A q b
 (2.82) 

Where the generalized constrained vector ( )c tQ  has been expressed as a 

function of the constraint equations through Lagrange multipliers rule.  

2.3.4.    FUNDAMENTAL EQUATIONS OF CONSTRAINED 

DYNAMICS 

The fundamental equations of constrained Dynamics were originally 

developed in the field of analytical Dynamics by Udwadia and Kalaba  8 . 

Indeed, the constrained acceleration vector and the Lagrange multipliers vector 

can be obtained explicitly solving the fundamental problem of constrained 

Dynamics. To do that, some algebraic manipulation of the equations of motion 

of constrained mechanical systems must be performed. The basic observation is 

that these equations are linear in the generalized acceleration vector  12  and 

therefore a matrix notation can be used to get: 

 
( ) ( )( ) ( )

( ) ( )( )

T t tt t

t tt

     
     

    

q QM A

λ bA O
 (2.83) 

Now one method to solve this matrix equation for ( )tq  and ( )tλ  is using 

the matrix inversion lemma exploiting the block structure of the generalized 

mass and constraints matrix  13  to get: 
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1
1

1 2 1

2

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

T t t t t t tt t

t t tt


    

   
   

M B H B B HM A

H B HA O
 (2.84) 

Where 
1( )tB , 

2 ( )tB  and ( )tH  are, respectively, cn n , cn n  and c cn n  

matrices define as: 

 1

1( ) ( ) ( )Tt t t B M A  (2.85) 

 1

2( ) ( ) ( )t t tB A M  (2.86) 
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1

1
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( ) ( )
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






 

  



H B A

A B

A M A

 (2.87) 

By using this block matrix inversion lemma an explicit solution for the 

generalized acceleration vector and Lagrange multipliers vector can be found: 

 
 1

1 2 1

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t t t t t t t t t

t t t t t t

   


  

q M B H B Q B H b

λ H B Q H b
 (2.88) 

Manipulating mathematically this solution a deep physical insights can be 

found  8 . As a results, the fundamental equations of constrained Dynamics are 

deduced: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

t t t t

t t t

t t t

  


 
 

q a B λ

a F e

λ H e

 (2.89) 

Where ( )tB  is a cn n
 matrix defined as: 
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1( ) ( ) ( )Tt t tB M A  (2.90) 

Here ( )ta  is a n  vector defined as: 

 
1( ) ( ) ( )t t ta M Q  (2.91) 

 And ( )c ta  is a n  vector defined as: 

 ( ) ( ) ( )c t t ta F e  (2.92) 

Where ( )tF  is a cn n
 matrix defined as: 

 
 

1
1 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )T T

t t t

t t t t t


 

 



F B H

M A A M A
 (2.93) 

And ( )te  is a cn
 vector defined as: 

 ( ) ( ) ( ) ( )t t t t e b A a  (2.94) 

These vectors and matrices have a profound physical interpretation  8 , 

 14 : the vector ( )ta  is the free system acceleration vector, that is to say the 

generalized acceleration the system would have if there were no constraints.  The 

vector ( )te  is the vector error that measures how much the free accelerations 

vectors ( )ta  violates the actual constraints acting on the system. Moreover, the 

matrix ( )tF  is a feedback matrix which, once multiplied by the acceleration 

error ( )te , allows to express the system actual constrained acceleration ( )tq  as 

the sum of the free acceleration ( )ta  and a feedback term ( ) ( )t tF e  which 

represents the acceleration ( )c ta  induced to the system by the action of the 

constraints. Finally, the matrix ( )tH  is a proportional matrix that, once 
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multiplied for the acceleration error ( )te , allows to calculate explicitly the 

Lagrange multipliers ( )tλ . It is noteworthy to point out that the fact that the 

Lagrange multipliers ( )tλ  have been computed explicitly allows to compute 

directly the generalized constrained vector ( )c tQ  too  8 ,  14 . Indeed: 

 
( ) ( ) ( )

( ) ( ) ( )

c T

T

t t t

t t t

 



Q A λ

A H e
 (2.95) 

The consequences of this results are twofold. The first one is the logic fact 

that through this formula it is actually possible to predict the generalized 

constraint forces acting on a mechanical system as a function of the system state 

 8 . The second consequences is not so obvious: by using this formula the 

inverse Dynamics problem can be solved in a simple and elegant way  14 . 

Indeed, if the constrained equations do not correspond to actual physical 

constrains acting on the system, they can be assumed to be virtual constraints 

which must be satisfied by the system. In this way the vector of generalized 

constrained forces become a vector of generalized control actions that are 

necessary to force the system state to follow a specified path.  In addition, it is 

intuitive to understand that the constraint equations cannot always be satisfied in 

the sense that not any kind of constraint equations can be effectively followed by 

the system state. Indeed, it can be proved that  15  only the constraint equations 

which make the following matrix of full rank can be actually implemented: 

 
( )

( )
( )

c

t
t

t

 
  
 

M
M

A
 (2.96) 

This matrix can be interpreted as a generalized controllabity matrix relative 

to nonlinear mechanical system. It noteworthy to point out that when the 

constraint matrix ( )tA  has not full rank, but at the same time the generalized 

controllability matrix ( )c tM  has full rank, it can be proved  8 ,  14  that the 



44 MULTIBODY DYNAMICS  

solution of the fundamental problem of constrained Dynamics can be found 

simply replacing the matrix inverse operation with the Moore-Penrose 

pseudoinverse in the computation of the matrix ( )tH . Indeed: 

  1( ) ( ) ( ) ( )Tt t t t


H A M A  (2.97) 

This means that even in presence of contradictory constraint equations, that 

is when the constraint matrix ( )tA  has not full rank, the constrained 

acceleration of the mechanical system exists and it is unique. Clearly, in this 

case the evolution of the constrained system satisfies the constraint equations 

only in a least-squares sense. In addition, it can be proved  8  that in this case 

the Lagrange multipliers are not unique but are defined ut to an arbitrary m  

vector function: 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , ( ) mt t t t t t t t t     λ A A H e I A A h h (2.98) 

Where ( )th  is an arbitrary vector function. On the other hand, it 

noteworthy to point out that when the mass matrix ( )tM  has not full rank, but 

at the same time the generalized controllability matrix ( )c tM  has full rank, it 

can be proved  15 ,  16  that the solution of the fundamental problem of 

constrained Dynamics can be found simply replacing in every computation 

respectively the mass matrix ( )tM  and the lagrangian component of 

generalized forces ( )tQ  with the following quantities: 

 ( ) ( ) ( ) ( )A t t t t M M A A  (2.99) 

 ( ) ( ) ( ) ( )b t t t t Q Q A b  (2.100) 
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  This means that even in presence of a singular mass matrix the constrained 

acceleration of the mechanical system exists, it is unique and it can be computed 

explicitly. 
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2.4. VIBRATION OF DISCRETE AND 
CONTINUOUS SYSTEMS 

2.4.1.    INTRODUCTION 

Mechanical system can be modelled in different forms. Basically, two 

fundamental category can be distinguished: discrete mechanical systems and 

continuous mechanical systems. From a mathematical viewpoint, the former are 

systems whose equations of motion can be represented by ordinary differential 

equations (ODE) whereas the latter are systems whose equations of motion can 

be modelled as partial differential equations (PDE). From a physical point of 

view, discrete systems are mechanical systems which can be modelled as 

lumped mass systems, that is to say this type of systems can be represented by 

an equivalent system which consists of some bulky elements that can be 

considered rigid with specified inertia properties whereas the other elements can 

be assumed elastic elements with negligible inertia effects. Therefore, the 

motion of discrete system can be described by a set of n  coupled ordinary 

differential equations, one for each degree of freedom  13 ,  17 ,  18 ,  19 , 

 20 . On the other hand, continuous systems are systems that consist of 

structural components which have distributed mass and elasticity and therefore 

their motion can be adequately represented only by partial differential equations 

which involve variables that depend on time as well as spatial coordinates  13 , 

 17 ,  18 ,  19 ,  20 . Indeed, continuous systems have an infinite number of 

degrees of freedom. The following sections concern the vibration of discrete and 

continuous mechanical systems, namely systems whose equations of motion are 

linear. In particular, by using the Euler-Lagrange equations the general equations 

of motion relative to discrete multiple degrees of freedom system and relative to 

monodimensional continuous systems are both derived.    
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2.4.2.    EQUATIONS OF MOTION OF MULTIPLE 
DEGREES OF FREEDOM SYSTEMS  

Consider a discrete linear mechanical system composed of n  particles 

connected by a set of linear elastic elements such as springs. Let ( )tx  be a n  

vector representing the displacements of the system particles. The kinetic energy 

( )T t  and the potential energy ( )U t  of the system can be written in matrix 

notation as: 

 
1

( ) ( ) ( )
2

TT t t t x Mx  (2.101) 

 
1

( ) ( ) ( )
2

TU t t t x Kx  (2.102) 

 Where M  and K  are n n  matrices representing respectively the system 

mass and stiffness matrices. The equations of motion of this multiple degrees of 

freedom mechanical system can be found by Lagrange equations: 

 ,

( ) ( ) ( )
( )

( ) ( ) ( )

T T T

e nc

d T t T t U t
t

dt t t t

       
       

       
Q

q q q
 (2.103) 

Now assume that part of the virtual work done by nonconservative forces 

can be derived from the so-called Rayleigh’s dissipation function ( )V t : 

 
1

( ) ( ) ( )
2

TV t t t x Rx  (2.104) 

Where R  is a 
n n

 damping matrix. Systems whose damping can be 

modelled through a quadratic Rayleigh’s dissipation function are often referred 

to as linear viscously damped systems. Assume that the remaining part of 
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nonconservative virtual work is performed by an generalized external force 

vector denoted with ( )tF . Lagrange equations yield:  

 ( ) ( ) ( ) ( )t t t t  Mx Rx Kx F  (2.105) 

These are the general equations of motion of a linear multiple degrees of 

freedom mechanical system  21 .   

2.4.3.    FREE VIBRATION OF MULTIPLE DEGREES OF 
FREEDOM SYSTEMS 

In the case of free vibration of undamped linear discrete systems, the 

equations of motion reduce to: 

 ( ) ( )t t Mx Kx 0  (2.106) 

The solution of these differential equations can be found supposing that the 

displacement vector assumes the following form  13 ,  17 ,  18 ,  19 ,  20 :    

 ( ) ctt e


x φ  (2.107) 

Where φ  is an 
n

 unknown vector and 
c  is an unknown scalar. The 

assumed solution must satisfy the equations of motion and therefore, to impose 

it, the supposed solution can be put into the equation of motion in order to get: 

  2

c  M K φ 0  (2.108) 

This is an eigenvalue problem that can be restated in the standard form as: 

 
1 2

c
  M Kφ φ  (2.109) 

The results of this problem is a set of 2n  complex conjugate eigenvalues: 
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,2 1 ,

,2 1 ,

, 1,2, ,
c j n j

c j n j

j n
 

 







 




i

i
 (2.110) 

These eigenvalues 
,c j  correspond to a set of n  natural frequencies 

,n j  

and to a set of n  eigenvectors 
jφ  which represent the system mode shapes, 

namely the system principal modes of vibration. Indeed, the general solution of 

the undamped free vibration of a multiple degrees of freedom system can be 

written as a linear combination of the normal modes as follows: 

 

 

 

,2 1 ,2 1

,2 1 ,2 1

2 1 2 1 2 1 2 1

1

2 1 2 1 2 1 2 1

1

( ) c j c j

n j n j

n
t t

j j j j

j

n
t t

j j j j

j

t C e C e

C e C e

 

 


 

 

 

   



 

   



  

 




i i

x φ φ

φ φ

 (2.111) 

Where the constants 
jC  can be determined by using the initial conditions.   

2.4.4.    FORCED VIBRATION OF MULTIPLE DEGREES 

OF FREEDOM SYSTEMS 

In the case of forced vibration of undamped linear discrete systems, the 

equations of motion reduce to: 

 ( ) ( ) ( )t t t Mx Kx F  (2.112) 

Define the 
n n

 modal matrix Φ  as a matrix whose columns are the 

system eigenvectors: 

  1 2 1n nΦ φ φ φ φ  (2.113) 

 Consider the following coordinate transformation  13 ,  17 ,  18 ,  19 , 

 20 : 
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 ( ) ( )t tx Φq  (2.114) 

Where the transformation matrix is precisely the system modal matrix Φ . 

This transformation is referred as modal transformation and the coordinate 

vector ( )tq  is a n  vector of modal coordinates. The equations of motion of an 

undamped forced system can be transformed in modal coordinates to get: 

 ( ) ( ) ( )t t t MΦq KΦq F  (2.115)  

Premultiplying this equation by T
Φ  yields:    

 ( ) ( ) ( )T T Tt t t Φ MΦq Φ KΦq Φ F  (2.116) 

At this stage, an important property of normal modes can be used: the 

orthogonality of  mode shapes  13 ,  17 ,  18 ,  19 ,  20 . This mathematical 

property can be stated as: 

 

, ,

,

0 ,

,

T

j h j h m h

m j

m

j h

m j h

 


 



φ Mφ

 (2.117) 

 

, ,

,

0 ,

,

T

j h j h m h

m j

k

j h

k j h

 


 



φ Kφ

 (2.118) 

According to this property, the products of mass and stiffness matrices with 

modal matrix result to be 
n n

 diagonal matrices: 

 
,1 ,2 , 1 ,( , , , , )

T

m

m m m n m ndiag m m m m

 



M Φ MΦ
 (2.119) 
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,1 ,2 , 1 ,( , , , , )

T

m

m m m n m ndiag k k k k

 



K Φ KΦ
 (2.120) 

Where 
,m jm  and 

,m jk  are respectively the modal mass and the modal 

stiffness of the system. Since the modal matrices 
mM  and 

mK  are diagonal 

matrices, the equations of motion expressed in modal coordinates are decoupled. 

Indeed: 

 ( ) ( ) ( )m mt t t M q K q Q  (2.121) 

  Where the modal force vector ( )tQ  is a n  vector defined as: 

 ( ) ( )Tt tQ Φ F  (2.122) 

  It is easy to prove  13 ,  17 ,  18 ,  19 ,  20  that if the system is 

proportionally damped, that is to say if the damping matrix R  can be expressed 

as a linear combination of the mass and stiffness matrices: 

   R M K  (2.123) 

Then the modal decoupling of the equations of motion can still be 

performed to get: 

 ( ) ( ) ( ) ( )m m mt t t t  M q R q K q Q  (2.124) 

Where 
mR  is a 

n n
 modal damping matrix and it is computed as a linear 

combination of the modal mass and stiffness matrices: 

 m m m  R M K  (2.125) 
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The equations of motion expressed in modal coordinates can be written in 

scalar form as: 

 
, , , ,( ) ( ) ( ) ( ) , 1,2, ,m j j m j j m j j m jm q t r q t k q t Q t j n     (2.126) 

Where 
,m jr  is the system modal damping. These ordinary differential 

equations are decoupled: each equation behaves like a damped harmonic 

oscillator which vibrates according to one of each system natural frequency. 

Therefore, each equation can be independently solved by using Duhamel 

principle  13 ,  17 ,  18 ,  19 ,  20 : 

 
, , , ,

, ,
0

( ) (0) ( ) (0) ( )

( ) ( ) , 1,2, ,

j m j j m j m j j m j

t

m j m j

q t k q g t m q h t

Q h t d j n  

 

  
 (2.127) 

  Where the functions 
, ( )m jg t  and 

, ( )m jh t  are defined as: 

, ,

, , ,

, ,

1
( ) cos( ) sin( ) , 1,2, ,j n jt j n j

m j d j d j

m j d j

g t e t t j n
k

   
 




 

    
 

 (2.128) 

 , ,

,

, ,

sin( )1
( ) , 1,2, ,j n jt d j

m j

m j d j

t
h t e j n

m

  




   (2.129) 

Where ,n j  and ,d j  are respectively the damped and undamped natural 

frequencies of the system whereas j  are the system damping ratios. The 

functions , ( )m jg t  and , ( )m jh t  have a remarkable physical interpretation: they 

are respectively the system response to a step down function and to an impulse 

function.    
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2.4.5.    MODAL TRUNCATION METHOD 

The modal truncation method simplify the equations of motion of a multiple 

degrees of freedom system considering only the significant mode shapes . 

Consider a multiple degrees of freedom system: 

 ( ) ( ) ( ) ( )t t t t  Mx Rx Kx F  (2.130) 

Assume that the system is proportionally damped: 

   R M K  (2.131) 

If the generalized eternal forces ( )tF  are periodic functions, they can be 

expressed with a set of oscillating functions by using a Fourier series  13 , 

 17 ,  18 ,  19 ,  20 : 

  0

1

1
( ) cos( ) sin( )

2
k k

k

t kt kt




  F a a b  (2.132) 

Where 
0a , 

ka  and 
kb  are 

n
 constant vectors which can be computed as 

follows: 

 0

1
( )t dt



 
 a F  (2.133) 

 
1

( )cos( ) , 1,2,k t kt dt k


 
 a F  (2.134) 

 
1

( )sin( ) , 1,2,k t kt dt k


 
 b F  (2.135) 
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This Fourier series can be approximated with a finite summation in order to 

retain only the terms which are close to the system natural frequencies. In this 

way, the external force vector ( )tF  can be written as a sum of few sinusoidal 

functions. As a consequence, only 
tn  modes of vibration of the system appear to 

be significant instead of the whole set. Therefore, an elimination of insignificant 

mode shapes can be performed by using a coordinate reduction technique  13 , 

 17 ,  18 ,  19 ,  20 : 

 ( ) ( )t tt tx Φ q  (2.136) 

Where 
tΦ  is a tn n

 truncated eigenvector matrix and ( )t tq  is a tn
 

truncated modal vector made of only the relevant mode shapes and modal 

coordinates. Consequently,  the system equations of motion can be approximated 

with truncated modal coordinates to yield: 

 ( ) ( ) ( ) ( )t t t t t t tt t t t  M q R q K q Q  (2.137) 

Where 
tM , 

tR  and 
tK  are t tn n

 diagonal matrices and ( )t tQ  is a tn
 

vector defined as follows: 

 
,1 ,2 , 1 ,( , , , , )

t t

T

t t t

m m m n m ndiag m m m m

 



M Φ MΦ
 (2.138) 

 
,1 ,2 , 1 ,( , , , , )

t t

T

t t t

m m m n m ndiag k k k k

 



K Φ KΦ
 (2.139) 

 ( ) ( )T

t tt tQ Φ F  (2.140) 

These equations represent a set of tn  decoupled ordinary differential 

equations.  
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2.4.6.    EQUATIONS OF MOTION OF 

MONODIMENSIONAL DISTRIBUTED PARAMETER 
SYSTEMS 

Hamilton principle can be used to derive Lagrange equations of continuous 

systems with monodimensional distributed parameters  19 . The general form 

of Hamilton principle is: 

 
0 0

,( ) ( ) 0
f ft t

e nc
t t

L t dt W t dt     (2.141) 

Where ( )L t  is the system lagrangian and 
, ( )e ncW t  is the virtual work of 

external nonconservative forces. In the case of a continuous system with 

monodimensional distributed parameters, the kinetic energy and potential energy 

can be expressed as: 

 
0

( ) ( , )
l

T t T x t dx   (2.142) 

 
0

( ) ( , )
l

U t U x t dx   (2.143) 

Where ( , )T x t  and  ( , )U x t  are the kinetic energy and potential energy 

density functions. These functions assume a different form according to the type 

of monodimensional continuous system in analysis, such as rods or beams for 

instance. In any case, the extended Hamilton principle yields: 
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This formula can be further transformed integrating by parts: 
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 (2.145) 

Finally, this formula can be rewritten as follows: 
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 (2.146) 

The integrating term in the last equality can be set equal to zero because the 

virtual change of the configuration variable ( , )q x t  is arbitrary. Indeed: 
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These equations are Lagrange equations for one-dimensional continuous 

systems  22 . It is meaningful to point out that these equations represent the 

complete set of systems differential equations of motion with all admissible 

boundary conditions. Consider now the transversal vibrations of beams  22 . In 

this case, the kinetic and potential energy density functions are: 
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1 ( , )

( , )
2

v x t
T x t A

t


 
  

 
 (2.148) 
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( , )

2
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v x t
U x t EI

x

 
  

 
 (2.149) 

Where ( , )v x t  is the transversal displacement function of the beam,   is 

the mass density, A  is the cross-sectional area, E  is Young elasticity modulus 

and 
zI  is the area moment of inertia of the beam. As a consequence,in the case 

of transversal vibrations of beams, Lagrange equations for one-dimensional 

continuous systems yields: 
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 (2.150) 

Where ( , )f x t  is a distributed external force per unit length. This is the 

partial differential equation for the transversal vibration of beams assuming 

simple ends boundary conditions, such as free ends, fixed ends or simply 

supported ends. 

2.4.7.    FREE VIBRATION OF BEAMS 

Consider now the free vibration of beams. In this case, the equation of 

reduces to: 

 

2 4
2

2 4
( , ) ( , ) 0

v v
x t c x t

t x

 
 

 
 (2.151) 

Where the constant c  is defined as: 

 zEI
c

A
  (2.152) 

This is the Euler-Lagrange dynamic equation for Euler-Bernoulli beams 

 23 . This equation can be easily solved through the method of separation of 

variable  13 ,  17 ,  18 ,  19 ,  20 . According to this method, the solution 

( , )v x t  is assumed to be the product of two different functions, one ( )x  which 
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depends only on the space independent variable x  and the other one ( )q t  which 

depends only on time variable t . Indeed: 

 ( , ) ( ) ( )v x t x q t  (2.153) 

Substituting this equation in the equation of motion leads to: 

 
2( ) ( ) ( ) ( ) 0IVx q t c x q t    (2.154) 

This equation can be rearranged in order to separate it in two parts: the 

former is a function only of time, the latter is a function only of space. This 

implies that: 

 2 2( ) ( )

( ) ( )

IV

n

q t x
c

q t x





     (2.155) 

Where 
n  is a nonnegative constant to be determined. The last equation 

leads to two distinct ordinary differential equations in time and space: 

 
2( ) ( ) 0nq t q t   (2.156) 

 
4( ) ( ) 0IV x x     (2.157) 

Where   is a constant defined as: 

 n

c


   (2.158) 

The first equation is the classic differential equation of the harmonic 

oscillator whereas the second equation is an ordinary homogeneous linear 

differential equations with constant coefficients. These equations can be easily 

solved to yield: 
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 ( ) sin( ) cos( )n nq t A t B t    (2.159) 

 ( ) sin( ) cos( ) sinh( ) cosh( )x C x D x C x D x         (2.160) 

The constants A  and B  are indeterminate constants which can be found 

through initial conditions whereas the indeterminate constants C , D , C  and 

D  must be found by using boundary conditions. In any case, boundary 

conditions yields to an algebraic homogeneous systems of this type: 

 ( )n A b 0  (2.161) 

Where the matrix ( )nA  is a function of the unknown constant 
n  and the 

vector b  is made of the unknown constants C , D , C  and D .  To avoid trivial 

solutions, the determinant of the matrix ( )nA  must be set equal to zero: 

 det( ( )) 0n A  (2.162) 

This equation is called frequency equation because its roots are the system 

eigenvalues or natural frequencies 
,n j , which are infinite: 

 , , 1,2,3,...n j j   (2.163) 

Substituting each natural frequencies in the algebraic equations for the 

unknown constants C , D , C  and D  leads to a corresponding set of mode 

shapes:  

 ( ) , 1,2,3,...j x j   (2.164) 
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As a consequence, the solution of the free vibration of beams is an infinite 

linear combination space-dependent eigenfunction ( )j x  and time-dependent 

modal coordinates ( )jq t  which can be expressed as follows: 
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



 (2.165) 

Where the unknown constants 
jA  and 

jB  can be determined using the set 

of initial conditions. 

2.4.8.    FORCED VIBRATIONS OF BEAMS 

Consider the case of forced bending response of beams to an applied 

distributed force ( , )f x t . The equation of motion is: 

 

2 4

2 4
( , ) ( , ) ( , )z

v v
A x t EI x t f x t

t x


 
 

 
 (2.166) 

This equation can be solved leveraging on the property of orthogonality of 

the eigenfunctions  13 ,  17 ,  18 ,  19 ,  20 . This mathematical property 

can be stated as: 
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 (2.167) 
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Where the hypothesis of simple end boundary conditions is assumed. 

Indeed, consider the space integral of the equation of motion multiplied for a 

virtual change of displacement function ( , )v x t : 
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l l
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 (2.169) 

According to the orthogonality eigenfunctions property, this equation leads 

to: 

 
, , ,( ) ( ) ( ) , 1,2,3,m j j m j j m jm q t k q t Q t j    (2.170) 

 Where 
,m jm  and 

,m jk  are respectively the modal mass and the modal 

stiffness of the system and the set of generalized lagrangian components , ( )m jQ t  

relative to the external force function ( , )f x t  are defined as: 

 ,
0

( ) ( , ) ( ) , 1,2,3,
l

m j jQ t f x t x dx j   (2.171) 

Consequently, a set of infinite decoupled equations each of which behaves 

like an harmonic oscillator has been obtained. Similarly to the case of discrete 

systems, the solution of this set of differential equations can be easily found by 

Duhamel integral: 
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 (2.172) 

Where the functions 
, ( )m jg t  and 

, ( )m jh t  are defined as: 

 , ,

,

1
( ) cos( ) , 1,2,3,m j n j

m j

g t t j
k

   (2.173) 

 
,

,

, ,

sin( )1
( ) , 1,2,3,

n j

m j

m j n j

t
h t j

m




   (2.174) 

These functions represent the modal responses of undamped beams 

respectively to a step down function and to an impulse function. It is worth to 

note that the equations of motion relative to viscously damped beams can be 

easily obtained from these equations by induction  24 . 

2.4.9.    ASSUMED MODES METHOD  

The assumed modes method can be seen as the continuous counterpart of 

modal truncation method. According to this method, the shape of deformation of 

the continuous systems is approximated using a set of assumed shape functions  

 13 ,  17 ,  18 ,  19 ,  20 . In analogy to the case of multiple degrees of 

freedom systems, consider a continuous beam whose only the first 
tn  mode 

shapes are significant. The displacement function ( , )v x t  can be approximated 

according to this assumption: 

 ( , ) ( ) ( )T

t tv x t x tφ q  (2.175) 

Where ( )t xφ  is a vector containing the first tn  mode shapes and ( )t tq  is a 

vector containing the first tn  modal coordinates. Indeed: 
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By using this assumption, the kinetic energy and the potential energy of 

beams can be written as: 
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Where tM  and 
tK  are t tn n

 diagonal matrices corresponding to system 

modal mass and modal stiffness. These matrices are defined as follows:  
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The effect of eternal force function ( , )f x t  can be accounted for by using 

the virtual work to yield: 

 
0

( ) ( , ) ( )
l

t tt f x t x dx Q φ  (2.182) 

Where ( )t tQ  is a tn
 vector of the lagrangian component of eternal force 

function. Consequently, the equations of motion can be approximated through 

assumed modes method in order to yield: 

 ( ) ( ) ( )t t t t tt t t M q K q Q  (2.183) 

These equations are a set of decoupled ordinary differential equations and 

they are very similar to those relative to discrete systems obtained using the 

modal truncation method. Indeed, these equations represent an equivalent finite-

dimensional model for the infinite degrees of freedom continuous systems.   
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2.5. KINEMATICS AND DYNAMICS OF RIGID 
MULTIBODY SYSTEMS 

2.5.1.    INTRODUCTION 

The purpose of the following sections is to develop methods for the 

kinematic and dynamic analysis of multibody systems which consist of 

interconnected rigid components  25 ,  26 . On the other hand, the analysis of 

flexible multibody systems has been postponed to the subsequent chapters. The 

approach followed here was originally developed by Shabana  11 ,  12 ,  13 . 

Basic to any study of multibody systems is the understanding of the motion of 

the different bodies and components that form the system, namely the subsystem 

kinematics. When dealing with rigid body system, the kinematics of the body is 

completely described by the kinematics of a frame coordinate system which is 

rigidly connected to a point of the body. This frame of reference is  formed of 

three orthogonal axes and it is referred to as floating reference. Therefore, the 

local position of a particle on the body can be described in terms of fixed 

components along the axes of this moving coordinates system. Besides, Chasles 

theorems states that the displacement of a rigid frame can be described by a 

translation and a rotation about an instantaneous axes of rotation. Hence,  it is 

fundamental to understand the mathematical description of rotation in space. 

Once that an adequate kinematic description of the system configuration has 

been obtained, the equations of motion that model the dynamics of rigid body 

systems can be derived by using Lagrange equations. Indeed, an effective 

systematic technique can be developed to derive the mass matrix and the 

quadratic velocity vector of multibody systems. To do that, it necessary to 

compute a set of inertia shape integrals which represent the total mass, the 

moment of mass and the inertia matrix of the rigid bodies  11 ,  12 ,  13 .   

2.5.2.    REFERENCE FRAMES KINEMATICS 

Consider a set of bn  rigid bodies connected with different type of 

mechanical joints. The spatial configuration of this multibody system can be 
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described setting one inertial frame of reference and a floating frame of 

reference for each rigid body. Let ( , )i iP tr  be the position vector of a generic 

particle iP  on the body i .  This vector can be expressed as the sum of global 

position vector ( )i tR  of the origin iO  of the body reference and the position 

vector ( )i iPu  of  point iP  with respect to iO . Indeed: 

 ( , ) ( ) ( )i i i i iP t t P r R u  (2.184) 

Where ( , )i iP tr , ( )i tR  and ( )i iPu  are 3  vectors whose components are 

referred to the global frame of reference. The components of the position vector 

( )i iPu  can be referred to the body frame of reference using the rotation matrix 

( )i tA : 

 ( ) ( ) ( )i i i i iP t Pu A u  (2.185) 

  Where ( )i iPu  is a 3  vector whose components represents the position 

of point iP  referred to the body floating frame of reference and ( )i tA  is a 3 3  

rotation matrix. Hence, the position of a particle 
iP  on the body i  can be 

expressed as: 

 ( , ) ( ) ( ) ( )i i i i i iP t t t P r R A u  (2.186) 

 This vector equation represents a fundamental formula for multibody 

system analysis. The rotation matrix ( )i tA  can be computed by Rodriguez 

formula: 
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In this formula ( )i t  is the instantaneous rotation angle and ( )i tv  is a 

3 3  skew symmetric matrix obtained from the 3  unit vector ( )i tv  

corresponding to the direction of the instantaneous rotation axis. Indeed: 

 

3 2

3 1

2 1

0 ( ) ( )

( ) ( ) 0 ( )

( ) ( ) 0

i i

i i i

i i

v t v t

t v t v t

v t v t

 
 

  
  

v  (2.188) 

 It is straightforward to note that the rotation matrix ( )i tA  is an orthogonal 

matrix, that is the inverse of rotation matrix is equal to its transposed. Indeed: 
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 (2.189) 

 Instead of using the rotation angle ( )i t  and the direction vector ( )i tv ,  

the rotation matrix ( )i tA  can be also expressed in other forms according to the 

set of rotation parameters used. Consider the set of Euler’s parameters which are 

defined as: 
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 (2.190) 
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These parameters can be grouped in a 4  vector ( )i tθ . Indeed: 
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Euler’s parameters are not all independent coordinates, as can be noted 

from their definition. Indeed, Euler’s parameters satisfy the following equation: 

 ( ) ( ) 1 0i T it t  θ θ  (2.192) 

 By using Euler’s parameters the rotation matrix ( )i tA  can be rewritten as: 

 ( ) ( ) ( )i i i Tt t tA E E  (2.193) 

Where the matrices ( )i tE  and ( )i tE  are 3 4  matrices which can be 

computed through Euler’s parameters vector ( )i tθ :  

 

1 0 3 2

2 3 0 1

3 2 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i

i i i i i

i i i i

t t t t

t t t t t

t t t t

   

   

   

  
 

   
   

E  (2.194) 

 

1 0 3 2

2 3 0 1

3 2 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i

i i i i i

i i i i

t t t t

t t t t t

t t t t

   

   

   

  
 

   
   

E  (2.195) 

 These matrices are also useful to compute the angular velocity vector 

referred to the global coordinate system ( )i tω  and the angular velocity vector 
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referred to the local coordinate system ( )i tω  by using the time derivative of the 

Euler’s parameters vector ( )i tθ . Indeed: 

 ( ) ( ) ( )i i it t tω G θ  (2.196) 

 ( ) ( ) ( )i i it t tω G θ  (2.197) 

Where the matrices ( )i tG  and ( )i tG  are 3 4  matrices which can be 

easily computed through the matrices ( )i tE  and ( )i tE :  

 ( ) 2 ( )i it tG E  (2.198) 

 ( ) 2 ( )i it tG E  (2.199) 

On the other hand, it can be proved that the time derivative of rotation 

matrix ( )i tA  can be computed by using the rotation matrix itself and a skew 

matrix corresponding to the angular velocity vector referred to global or local 

coordinate systems: 

 
( ) ( ) ( )

( ) ( )

i i i

i i

t t t

t t

 



A ω A

A ω
 (2.200) 

At this stage, consider as generalized coordinate vector a 
7

 vector ( )i tq  

for each body which is formed by the position of  the origin of the body ( )i tR  

and the Euler’s parameters ( )i tθ  representing the rotation of the body:  

 
( )

( )
( )

i

i

i

t
t

t

 
  
 

R
q

θ
 (2.201) 
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By using all previous definition the time derivative of the position of a 

generic particle on the body i  can be computed as: 

 

( , ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )

( , ) ( )

i i i i i i

i i i i i

i i i i i

i i i i i i

i

i i i i

i

i i i

P t t t P

t t t P

t t P t

t t P t t

t
t P t

t

P t t

  

  

  

  

 
     

 



r R A u

R A ω u

R A u ω

R A u G θ

R
I A u G

θ

L q

 (2.202) 

Where ( , )i iP tL  is a 3 7  matrix defined as: 

 
( , ) ( , ) ( , )

( ) ( ) ( )

i i i i i i

R

i i i i

P t P t P t

t P t


   

   

L L L

I A u G
 (2.203) 

This matrix is a function of the reference coordinate vector ( )i tq  and 

depends on the particle 
iP  under consideration. It is remarkable to note that the 

virtual change of the position vector ( , )i iP tr  can be computed in the same way 

by using the matrix ( , )i iP tL : 

 ( , ) ( , ) ( )i i i i iP t P t t r L q  (2.204) 

Indeed, this matrix is a jacobian transformation matrix which 

mathematically describe the relation between the physical coordinates vector 

( , )i iP tr  and the lagrangian coordinates vector ( )i tq . 
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2.5.3.    MASS MATRIX OF RIGID BODIES 

Once that the kinematic description of motion has been obtained, the mass 

matrix of the generic rigid body i  can be computed using the definition of 

kinetic energy ( )iT t . Indeed: 

 

1
( ) ( , ) ( , )

2

1
( ) ( , ) ( , ) ( )

2

1
( ) ( ) ( )

2

i

i

i i i T i i i i

i T i i T i i i i i

i T i i

T t P t P t dV

t P t P t dV t

t t t









 

 







r r

q L L q

q M q

 (2.205) 

  Where 
i  and i  are respectively the mass density and the volume of 

body i  and ( )i tM  is a 7 7  matrix representing the body i  mass matrix. The 

body mass matrix can be computed as: 

 

, ,

, ,

( ) ( , ) ( , )

( , )
( , ) ( , )

( , )

( ) ( )

( ) ( )

i

i

i i i T i i i i

i T i

i i i i i iR

Ri T i

i i

R R R

i i

R

t P t P t dV

P t
P t P t dV

P t

t t

t t







  









 

 
     

 

 
  
 





M L L

L
L L

L

m m

m m

 (2.206) 

Where 
, ( )i

R R tm , 
, ( )i

R tm  and 
, ( )i t m  are respectively 

3 3
, 

3 4
 and 

4 4
 symmetric matrices which can be computed explicitly. Indeed, the mass 

submatrix , ( )i

R R tm  can be computed as: 
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, ( ) ( , ) ( , )
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i

i i i T i i i i

R R R R

i i
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t P t P t dV
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m
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





 
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





m L L

I

I

 (2.207) 

Where im  is the total mass of body i . The mass submatrix 
, ( )i

R tm  can be 

computed in this way: 

 

,

,

( ) ( , ) ( , )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

i

i

i
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













 

  

  

  









m L L

A u G

A u G

A U G

m

 (2.208) 

Where the 3 3  matrix 
i

U  is a skew symmetric matrix defined as: 

  
 

( )

( )

i

i

i i i i i

i i i i

i

P dV

Skew P dV

Skew









 

 







U u

u

U

 (2.209) 

Where the 
3
 vector 

i
U  can be computed by the following integral: 

 ( )
i

i i i iP dV


 U u  (2.210) 

 From this definition is straightforward to note that if the origin of the local 

frame of reference coincides with the centre of mass of body i , then the mass 
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submatrix 
, ( )i

R tm  is equal to zero. Finally, the mass submatrix 
, ( )i t m  can be 

computed as: 

 

,,

,

,

( ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

i j

i

i
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 






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 
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 









m L L

G u A A u G

G u u G

G I G

 (2.211) 

Where the orthogonality property of rotation matrix ( )i tA  has been used. 

The 3 3  matrix 
,

i

 I  is the inertia matrix of body i  which is defined as: 

  

     

     

     
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, , ,1,1 1,2 1,3

, , ,2,1 2,2 2,3

, , ,3,1 3,2 3,3
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 

  
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 
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

I u u

u u I u u

I I I

I I I

I I I

 (2.212) 

The components of inertia matrix 
,

i

 I  can be computed as: 

 
      

 

2 2
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




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

I
 (2.213) 
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 (2.214) 
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 (2.215) 
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 (2.216) 
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 (2.217) 
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 (2.218) 

Where the  , ,

i

j k I  elements with j k  are called mass moment of inertia 

and the  , ,

i

j k I  elements with j k  are called mass products of inertia. Once 

that all mass submatrix , ( )i

R R tm , , ( )i

R tm  and , ( )i t m   of the mass matrix 

( )i tM  of the rigid body i  has been computed, the kinetic energy ( )iT t  of the 

same body can be written as follows: 
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i i i
R R Ri T i T
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 
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q M q

m m R
R θ

m m θ

R m R R m θ θ m θ

 (2.219) 

The kinetic energy ( )iT t  of rigid body i  results to be a function of the 

system configuration ( )i tq  and of its time derivative ( )i tq . It is worth noting 

that to derive the expression of the kinetic energy of the rigid body i  a set of 

shape integrals corresponding to the total mass 
im , the moment of mass and the 

inertia matrix  , ,

i

j k I  of the same body must be previously computed.  

2.5.4.    DYNAMIC EQUATIONS OF RIGID MULTIBODY 

SYSTEMS 

Up to this point, all configuration coordinates ( )i tq  of rigid body i  has 

been considered as independent coordinates. Obviously, this is not the general 

case of a rigid multibody system which is typically formed of a set of rigid 

bodies mutually interconnected. Therefore, if it is required to use this 

nonminimal set of configuration coordinate ( )i tq  to derive system equations of 

motion, then the actions of the constraints must be considered in the dynamic 

equations.  Indeed, consider that the generic body i  of the set is forced to satisfy 

the following constraint equations written in the standard form: 

 ( ) ( ) ( )i i it t tA q b  (2.220) 

Where ( )i tA  is a 
7i

cn 
 constraint matrix and ( )i tb  is a 

i
cn

 constraint 

vector. (Note that the constraint matrix ( )i tA  relative to body i  has been 
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denoted with the same symbol of the rotation matrix ( )i tA  of body i ). These 

equations are a set of algebraic constraint equations written in the standard form 

and encompass all kind of constraints acting on the system, such as mechanical 

joints as well as specific constraints which derive from the definition of Euler’s 

parameters. Consequently, Lagrange equations assume the following form: 

 
( ) ( )

( ) ( )
( ) ( )

T T
i i

i i

e ci i

d T t T t
t t

dt t t

    
     

    
Q Q

q q
 (2.221) 

Where the 7  vector ( )i

e tQ  is the vector of generalized external forces 

and ( )i

c tQ  is a 7  vector representing the generalized constraint forces. The 

term on the left hand side of Lagrange equations is equal to the negative of 

lagrangian components of inertia forces ( )i

i tQ  of body i  and it can be explicitly 

computed by using the previous expression of kinetic energy ( )iT t  based on the 

expression of mass matrix ( )i tM . Indeed: 

  
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 (2.222) 

Where the vector ( )i

v tQ  is a 
7

 vector defined as: 
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( )

( ) ( ) ( )
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i i i

v i

T t
t t t

t

 
  
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Q M q

q
 (2.223) 

The vector ( )i

v tQ  is called quadratic velocity vector and it contains the 

gyroscopic and Coriolis force components. Since the kinetic energy ( )iT t  and 

the mass matrix ( )i tM  of the generic rigid body i  has been computed 

explicitly, the quadratic velocity vector ( )i

v tQ  can be computed in a direct way. 

Indeed, the time derivative of mass matrix can be rewritten as: 
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, ,
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t
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

  
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 

m m
M

m m
 (2.224) 

   Where the time derivative of the mass submatrices 
, ( )i

R R tm , 
, ( )i

R tm  and 

, ( )i t m  can be computed as follows: 

 
 , ( )i i

R R

d
t m

dt
 



m I

O

 (2.225) 

 
, ( )i

R t m O  (2.226) 
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   
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 

m G I G

G I G G I G

 (2.227) 

Where the origin of the local frame of reference is assumed to coincide with 

the body centre of mass. Furthermore, the first term that form the quadratic 

velocity vector ( )i

v tQ  can be expressed as: 
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Where from the previous expression it can be deduced that: 
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Where the following two identities has been used: 

 ( ) ( )i it t G θ 0  (2.231) 

 ( ) ( ) ( ) ( )i i i it t t t G θ G θ  (2.232) 

On the other hand, the second term which form the quadratic velocity 

vector ( )i

v tQ  can be computed as: 
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( )

( )( )

( ) ( )

( )

T
i

T ii

i T
i

i

T t

tT t

t T t

t

  
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    

       
    

R

q

θ

 (2.233) 

Where from the previous expression it can be deduced that: 

 

 

 

 

,

,

,

,

( ) 1
( ) ( ) ( )

( ) ( ) 2

( ) ( ) ( )
( )

1
( ) ( ) ( )
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   
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   


 
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  
  
  

  
  
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  
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  

R m R
R R

R m θ
R

θ m θ
R

R I R
R

θ G I G θ
R

 0

 (2.234) 
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1
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i T i T i i i

i

i T i T i i

t t t t t
t

t t t t

 

 

  
  
  



θ G I G θ
θ

θ G I G

 (2.235) 

Consequently, the quadratic velocity vector ( )i

v tQ  for rigid body i  can be 

explicitly computed as: 

 

 

 

,

,
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( ) ( ) ( )
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i
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 

 

  
                
    

 
  
  

 
  

  

M q R
Q

M q

θ

0

G I G θ

0

G I G θ

 (2.236) 

Finally, the equations of motion of rigid body i  can be expressed as: 
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 ( ) ( ) ( ) ( ) ( )i i i i i

v e ct t t t t  M q Q Q Q  (2.237) 

These dynamic equations can be easily assembled to derive the equations of 

motion of the whole rigid multibody system to yield: 

 ( ) ( ) ( ) ( ) ( )v e ct t t t t  M q Q Q Q  (2.238) 

Where the configuration vector ( )tq  represents the total 
7 bn

 vector of the 

rigid system generalized coordinates and is defined as: 

 

1

2

( )

( )
( )

( )bn

t

t
t

t

 
 
 
 
 
 

q

q
q

q

 (2.239) 

The matrix ( )tM  is the global 
7 7b bn n

 mass matrix of the multibody 

system and it can be easily assembled as: 

 

1

2

( )

( )
( )

( )bn

t

t
t

t

 
 
 
 
 
 

M O O

O M O
M

O O M

 (2.240) 

The 
7 bn

 vectors ( )v tQ , ( )e tQ  and ( )c tQ  are lagrangian component 

vectors which represent respectively the generalized gyroscopic and Coriolis 

forces, the generalized external forces and the generalized constraint forces. 

These vectors can be simply assembled as: 
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 (2.241) 

 

1

2

( )

( )
( )

( )b

e

e

e

n

e

t

t
t

t

 
 
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 
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Q

Q
Q
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 (2.242) 
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2
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( )
( )

( )b

c

c

c

n

c

t

t
t

t

 
 
 
 
 
  

Q

Q
Q

Q

 (2.243) 

 On the other hand, the algebraic constraint equations can be assembled in a 

similar manner to yield: 

 ( ) ( ) ( )t t tA q b  (2.244) 

Where ( )tA  is a 
7c bn n

 matrix representing the total constrain matrix and 

it can be directly computed as: 

 

1

2

( )

( )
( )

( )bn

t

t
t

t

 
 
 
 
 
 

A O O

O A O
A

O O A

 (2.245) 

The vector ( )tb  is a cn
 vector corresponding to the global constraint 

vector and it can be assembled as follows: 
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1
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t
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 
 
 

b

b
b

b

 (2.246) 

Finally, the set of equation of motion and constraint equations which 

describe the dynamic of a general rigid multibody system is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

v e ct t t t t

t t t

  




M q Q Q Q

A q b
 (2.247) 

These equation can be explicitly solved to get the generalized acceleration 

vector ( )tq  and the generalized constraint vector ( )c tQ  in order to obtain the 

fundamental equations of constrained Dynamics.  
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2.6. THE FINITE ELEMENT METHOD 

2.6.1.    INTRODUCTION 

The finite element method is a powerful numerical method that is 

commonly used to describe the motion of complex structural systems  27 , 

 28 . Indeed, when a mechanical system is composed of continuous 

components with complex geometry, it is difficult, or even impossible, to 

correctly model them by using the analytical techniques which leads to partial 

differential equations (PDE). Therefore, in this case the finite element method 

can be used to transform the structural system equations of motion from partial 

differential equations (PDE) to ordinary differential equations (ODE). This can 

be done discretizing the structure into relatively small regions called elements 

which are rigidly interconnected at selected nodal points. The deformation 

within each element can then be described by approximating functions, such as 

polynomials. The coefficients of these polynomials are defined in terms of 

physical coordinates called nodal coordinates which describe the displacements 

and slopes of selected nodal points on element. Afterwards, the displacement of 

the element can be expressed using the separation of variables as the product of 

space-dependent shape functions and time-dependent nodal coordinates. Using 

the assumed displacement field, the kinetic and strain energy of each element 

can be developed and the finite-element mass and stiffness matrices of the whole 

structure can be computed to yield the system equations of motion.  The 

following sections concern the formulation of mass and stiffness matrices of 

continuous systems using the finite element method and assuming that the 

system does not undergo large deformation or rigid body motion, namely when 

the reference motion is not allowed. The approach followed here was originally 

developed by Shabana  11 ,  12 ,  13 . Similarly to the preceding case of rigid 

body systems, it can be showed that the mass and stiffness matrices of structural 

systems can be derived by finite element method once that a set of shape 

integrals has been computed. The general case of multibody systems which 

contain rigid and structural components that exhibit large reference motion will 

be described in the next chapter  11 ,  12 ,  13 . 
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2.6.2.    ASSUMED DISPLACEMET FIELD  

Consider a structural system composed of 
bn  flexible bodies mutually 

interconnected and linked to the ground. Assume that each body i  of the system 

is discretized in i

en  elements. For the generic element j  of body i , the element 

displacement field can be decomposed by the product of a space-dependent 

global shape function and a time-dependent nodal vector , ( )i j

f tq  in oerder to 

yield: 

 , , , , ,( , ) ( ) ( )i j i j i j i j i j

f g fP t P tu S q  (2.248) 

Where 
, ,( , )i j i j

f P tu  is a 3  vector function representing the element 

displacement field, 
, ,( )i j i j

g PS  is a 
,

3
i j
fn

 matrix function representing the 

global shape function and 
, ( )i j

f tq  is a 
,i j
fn

 vector function corresponding to the 

vector of nodal coordinates. The element displacement vector, the global shape 

function and the element vector of nodal coordinates are all defined in the global 

reference system. The global shape function 
, ,( )i j i j

g PS  can be computed by 

using the local shape function 
, ,( )i j i jPS  as: 

 
, , , , , ,( ) ( )i j i j i j i j i j i j

g P PS C S C  (2.249) 

Where 
,i jC  and 

,i jC  are respectively 
,

3
i j
fn

 and 
, ,i j i j
f fn n

 rotation 

matrices. For instance, the local shape function of a bidimensional beam element 

subjected to longitudinal and transversal vibration is: 

 

, ,

, , 1

, ,

2

( )
( )

( )

i j i j

i j i j

i j i j

P
P

P

 
  
 

S
S

S
 (2.250) 

Where 
, ,

1 ( )i j i jPS  and 
, ,

2 ( )i j i jPS  are the following vector functions: 
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 
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 (2.252) 

Where 
,i j  is a dimensionless spatial coordinate defined as: 

 

,
,

,

i j
i j

i j

x

L
   (2.253) 

In the case of the two-dimensional beam element, the rotation matrices 
,i jC  

and 
,i jC  are defined as: 

 

, ,

, , ,

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

i j i j

i j i j i j

 

 

 
 

  
 
 

C  (2.254) 

 

,

,

,

i j T

i j

i j T

 
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 

C O
C

O C
 (2.255) 

Where 
,i j  is the rotation angle between the local reference frame of 

element j  of body i  and the inertial reference system. Once that the 

representation of the displacement field has been obtained, the connectivity 

conditions between the elements of each body must be applied. The connectivity 
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conditions require that when two elements are rigidly connected at a nodal point, 

the coordinate of this point must be the same for the two elements. Therefore, a 

new nodal coordinate vector 
, ( )i

f v tq  can be defined for each body to represent 

the total body nodal coordinates. Hence, the coordinate vector of each element 

, ( )i j

f tq  can be expressed using the body coordinate vector 
, ( )i

f v tq  by a Boolean 

matrix to yield: 

 , ,

,( ) ( )i j i j i

f c f vt tq B q  (2.256) 

Where 
, ( )i

f v tq  is a ,
i
f vn

 vector and ,i j

cB  is a 
,

,
i j i

f vfn n
 Boolean matrix. 

The Boolean matrix ,i j

cB  is used to represent the internal kinematic constraints 

of each element j  of body i . On the other hand, another Boolean matrix i

eB  

can be used for each body i  of the system to represent the external kinematic 

constraint acting on the system. Indeed, the vector of total nodal coordinate 

, ( )i

f v tq  can be expressed as a function of the vector of free coordinate ( )i

f tq  of 

body i  by using the Boolean matrix of external constraints 
i

eB  to yield: 

 
, ( ) ( )i i i

f v e ft tq B q  (2.257) 

Where ( )i

f tq  is a 
i
fn
 vector and 

i

eB  is a ,
i i
f v fn n

 Boolean matrix. 

According to the preceding definitions, the displacement vector of element j  of 

body i  can be rewritten as follows: 

 

, , , , ,

, , ,

,

, , ,

, ,

( , ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

i j i j i j i j i j

f g f
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g c e f

i j i j i i

e f

P t P t

P t

P t

P t

 
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 



u S q

S B q

S B B q

N B q

 (2.258) 
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Where 
, ,( )i j i jPN  is a ,3 i

f vn
 matrix sometimes referred to as compact 

shape function which  is defined as: 

 , , , , ,( ) ( )i j i j i j i j i j

g cP PN S B  (2.259) 

Using this expression it is possible to compute the displacement vector of 

the element j  of body i  by the vector of the free nodal coordinate of the whole 

body. Thus, the time derivative of the displacement field can be computed by the 

time derivative of free nodal coordinates: 

 
, , , ,( , ) ( ) ( )i j i j i j i j i i

f e fP t P tu N B q  (2.260) 

From this formula it is straightforward to deduce the relation between the 

virtual change of the displacement field and the virtual change of the free nodal 

coordinate vector to yield: 

 
, , , ,( , ) ( ) ( )i j i j i j i j i i

f e fP t P t u N B q  (2.261) 

Indeed, the matrix 
, ,( )i j i j i

ePN B  corresponds to the jacobian transformation 

matrix which mathematically describe the relation between the physical position 

coordinates and the lagrangian configuration coordinates.  

2.6.3.    MASS MATRIX OF STRUCTURAL ELEMENTS 

The formulation of the mass matrix corresponding to the element j  of 

body i  can be performed by using the definition of kinetic energy 
, ( )i jT t  of the 

same element. Indeed: 
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 (2.262) 

Where 
,i j  and 

,i j  are respectively the mass density and the volume of 

element j  of the body i  and the local shape function has been expressed as: 
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Consequently, the final expression of the mass matrix ,

,

i j

f fM  of the element 

j  of body i  is: 

 , ,

, ,

i j i T i j i

f f e f f eM B J B  (2.264) 

This matrix is a 
i i
f fn n

 symmetric matrix whereas 
,

,

i j

f fJ  is a , ,
i i
f v f vn n

 

symmetric matrix defined as: 

 
, , , , , ,

, ,

i j i j T i j T i j i j i j

f f c f f cJ B C S C B  (2.265) 

Where 
,

,

i j

f fS  is a 
, ,i j i j
f fn n

 symmetric matrix defined as follows: 

 
, , , ,

, 1,1 2,2 3,3

i j i j i j i j

f f   S S S S  (2.266) 

Where the 
, ,i j i j
f fn n

 symmetric matrices 
,

1,1

i j
S , 

,

2 ,2

i jS  and 
,

3,3

i j
S  come from the 

integration of the local shape function and are defined as: 

 
,

, , , , , , ,

1,1 1 1( ) ( )
i j

i j i j i j T i j i j i j i jP P dV


 S S S  (2.267) 

 
,

, , , , , , ,

2,2 2 2( ) ( )
i j

i j i j i j T i j i j i j i jP P dV


 S S S  (2.268) 

 
,

, , , , , , ,

3,3 3 3( ) ( )
i j

i j i j i j T i j i j i j i jP P dV


 S S S  (2.269) 
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These matrices represent the inertia shape integrals required to compute 

explicitly the mass matrix ,

,

i j

f fM  of the flexible element j  of the body i  of the 

system.  

2.6.4.    STIFFNESS MATRIX OF STRUCTURAL 
ELEMENTS 

The formulation of the stiffness matrix of the element j  of the body i  of 

the system can be achieved by the definition of the elastic strain energy 
, ( )i jU t  

of the same element. To do that, it is preliminary required to obtain an 

expression of element stress field and deformation field based on configuration 

coordinates. Assuming Voigt notation, the deformation field can be computed in 

a matrix form by using the linear strain-displacement equations to yield: 

 

, , , , ,

, , ,

( , ) ( , )

( ) ( )

i j i j i j i j i j

f

i j i j i j i i

e f

P t P t

P t

 



ε D u

D N B q
 (2.270) 

Where 
, ,( , )i j i jP tε  is a 6  vector representing the deformation field of 

element j  of body i  and 
,i jD  is a differential matrix operator which are 

defined as: 

 

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,
, ,

, ,

, ,

( , )

( , )

( , )
( , )

( , )

( , )

( , )

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

x x
i j i j

y y

i j i j

z zi j i j
i j i j

x y

i j i j

y z

i j i j

z x

P t

P t

P t
P t

P t

P t

P t













 
 
 
 
 
 
 
 
 
  

ε  (2.271) 
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,

,

,
,

, ,

, ,

, ,

0 0

0 0

0 0

0

0

0

i j

i j

i j
i j

i j i j

i j i j

i j i j

x

y

z

y x

z y

z x

 
 
 

 
 
 

 
 

  
  

  
 

  
  
 

  
   

D  (2.272) 

The action of the differential matrix operator ,i jD  on the element compact 

shape function 
, ,( )i j i jPN  can be developed to yield:  
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 

, , , , , , , , ,

, ,

1

, , , , , , , ,

1 2 3 2

, ,

3

, , , , , , , , , , , ,

1 1 2 2 3 3

,

( ) ( )

( )

( )

( )

( ) ( ) ( )

0 0

i j i j i j i j i j i j i j i j i j

c

i j i j

i j i j i j i j i j i j i j i j

c

i j i j

i j i j i j i j i j i j i j i j i j i j i j i j

c

i j

P P

P

P

P

P P P

x

  

  

 

 
 

    
 
 

   







D N D C S C B

S

D C C C S C B

S

D C S C S C S C B

,

, , , , , , , , ,

1,1 1 1,2 2 1,3 3,
, , , , , , , ,

2,1 1 2,2 2 2,3 3

, ,

, ,

, ,

0 0

( ) ( ) ( )0 0

( ) ( ) (

0

0

0

i j

i j i j i j i j i j i j i j i j i j

i j
i j i j i j i j i j i j i j i j i

i j i j

i j i j

i j i j

y

C P C P C P
z

C P C P C P

y x

z y

z x

 
 
 

 
 
 

   
 

  
  

  
 

  
  
 

  
   

S S S

S S S , , ,

, , , , , , , , ,

3,1 1 3,2 2 3,3 3

, , , , , , , , ,

1,1 1, 1,2 2, 1,3 3,

, , , , , , , ,

2,1 1, 2,2 2, 2,3 3,

)

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

j i j i j

c

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

x x x

i j i j i j i j i j i j i j i j

y y y

C P C P C P

C P C P C P

C P C P C P

 
 

 
   

 

 



C B

S S S

S S S

S S S
,

, , , , , , , , ,

3,1 1, 3,2 2, 3,3 3,

, , , , , , , , ,

1,1 1, 1,2 2, 1,3 3,

, , , , , , , , ,

2,1 1, 2,2 2, 2,3 3,

,

2,1

)

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i j

i j i j i j i j i j i j i j i j i j

z z z

i j i j i j i j i j i j i j i j i j

y y y

i j i j i j i j i j i j i j i j i j

x x x

i j

C P C P C P

C P C P C P

C P C P C P

C

 

  

  

S S S

S S S

S S S

S
, , , , , , , ,

1, 2,2 2, 2,3 3,

, , , , , , , , ,

3,1 1, 3,2 2, 3,3 3,

, , , , , , , , ,

1,1 1, 1,2 2, 1,3 3,

, , ,

3,1 1,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(

i j i j i j i j i j i j i j i j

z z z

i j i j i j i j i j i j i j i j i j

y y y

i j i j i j i j i j i j i j i j i j

z z z

i j i j i

x

P C P C P

C P C P C P

C P C P C P

C P

  

  

  



S S

S S S

S S S

S

, ,

, , , , , ,

3,2 2, 3,3 3,) ( ) ( )

i j i j

c

j i j i j i j i j i j i j

x xC P C P

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

C B

S S

 (2.273) 
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 This expression can be rewritten in a more compact form to yield: 

, , , , , , , , ,

1,1 1, 1,2 2, 1,3 3,

, , , , , , , , ,

2,1 1, 2,2 2, 2,3 3,

, , , , , , , , ,

3,1 1, 3,2 2, 3,3 3,

, ,

1,1 1,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i j i j i j i j i j i j i j i j i j

x x x

i j i j i j i j i j i j i j i j i j

y y y

i j i j i j i j i j i j i j i j i j

z z z

i j i j

y

C P C P C P

C P C P C P

C P C P C P

C

 

 

 

S S S

S S S

S S S

S
, , , , , , ,

1,2 2, 1,3 3,

, , , , , , , , ,

2,1 1, 2,2 2, 2,3 3,

, , , , , , , , ,

2,1 1, 2,2 2, 2,3 3,

, , ,

3,1 1, 3,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

i j i j i j i j i j i j i j

y y

i j i j i j i j i j i j i j i j i j

x x x

i j i j i j i j i j i j i j i j i j

z z z

i j i j i j

y

P C P C P

C P C P C P

C P C P C P

C P C

  

  

  

 

S S

S S S

S S S

S

,

, , , , , ,

2 2, 3,3 3,

, , , , , , , , ,

1,1 1, 1,2 2, 1,3 3,

, , , , , , , , ,

3,1 1, 3,2 2, 3,3 3,

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i j

i j i j i j i j i j i j

y y

i j i j i j i j i j i j i j i j i j

z z z

i j i j i j i j i j i j i j i j i j

x x x

P C P

C P C P C P

C P C P C P

 
 
 
 
 
 
 
 
 
 
 
 
   
 
    

C

S S

S S S

S S S

,

, , ,

1,1 1,2 1,3

, , ,

2,1 2,2 2,3, ,

1,

, , , ,

2,, , , , ,

2,1 2,2 2,3 1,1 1,2, ,

3,

, , ,

3,1 3,2 3,3

0 0 0

0 0 0
( )

0 0 0 0 0 0
( )

( )
0 0 0

i j

c

i j i j i j

i j i j i j

i j i j

x

i j i j i j i j

x ci j i j i j i j i j

i j i j

x

i j i j i j

C C C

C C C
P

P
C C C C C C

P

C C C



 
 
   
   

    
   

  
 
  

B

S

S C B

S

, ,

1,

, , , ,

2,,

1,3 , ,

3,, , ,

3,1 3,2 3,3

, , ,

3,1 3,2 3,3

, , ,

2,1 2,2 2,3

, , ,

1,1 1,2 1,3

( )

( )

( )

0 0 0

0 0 0

0 0 0

0 0 0

i j i j

y

i j i j i j i j

y ci j

i j i j

yi j i j i j

i j i j i j

i j i j i j

i j i j i j

P

P

P
C C C

C C C

C C C

C C C

 
 
   
   

   
   

  
 
 

 
 
 
 

  
 
 
 
  

S

S C B

S

 

, ,

1,

, , , ,

2,

, ,

3,

, , , , , , , , , , ,

( )

( )

( )

( ) ( ) ( )

i j i j

z

i j i j i j i j

z c

i j i j

z

i j i j i j i j i j i j i j i j i j i j i j

x x y y z z c

P

P

P

P P P

 
 

 
 
 

  

S

S C B

S

C S C S C S C B

 (2.274) 
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Where the rotation matrix ,i jC  has been expressed as follows: 

 
, , , ,

1 2 3

i j i j i j i j

  
   C C C C  (2.275) 

Therefore, the final expression of the action of the matrix differential 

operator on the compact shape function is: 

 , , , , , , , , , , , , , ,( ) ( ) ( ) ( )i j i j i j i j i j i j i j i j i j i j i j i j i j i j

x x y y z z cP P P P  D N C S C S C S C B

 (2.276) 

Where ,i j

xC , 
,i j

yC  and ,i j

zC  are 6 3  matrices whose components are the 

components of the rotation matrix 
,i jC  which are defined as: 

 

, , ,

1,1 1,2 1,3

,

, , ,

2,1 2,2 2,3

, , ,

3,1 3,2 3,3

0 0 0

0 0 0

0 0 0

i j i j i j

i j

x i j i j i j

i j i j i j

C C C

C C C

C C C

 
 
 
 

  
 
 
 
  

C  (2.277) 

 

, , ,

2,1 2,2 2,3

,

, , ,

1,1 1,2 1,3

, , ,

3,1 3,2 3,3

0 0 0

0 0 0

0 0 0

i j i j i j

i j

y i j i j i j

i j i j i j

C C C

C C C

C C C

 
 
 
 

  
 
 
 
 

C  (2.278) 
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, , ,

3,1 3,2 3,3,

, , ,

2,1 2,2 2,3

, , ,

1,1 1,2 1,3

0 0 0

0 0 0

0 0 0

i j i j i j

i j

z

i j i j i j

i j i j i j

C C C

C C C

C C C

 
 
 
 

  
 
 
 
  

C  (2.279) 

For instance, in the case of a two-dimensional system, these matrices 

assumes the following form: 

 

, ,

,

, ,

cos( ) sin( ) 0

0 0 0

0 0 0

sin( ) cos( ) 0

0 0 0

0 0 1

i j i j

i j

x i j i j

 

 

 
 
 
 

  
 
 
 
  

C  (2.280) 

 

, ,

,

, ,

0 0 0

sin( ) cos( ) 0

0 0 0

cos( ) sin( ) 0

0 0 1

0 0 0

i j i j

i j

y i j i j

 

 

 
 
 
 

  
 

 
 
 

C  (2.281) 
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 ,

, ,

, ,

0 0 0

0 0 0

0 0 1

0 0 0

sin( ) cos( ) 0

cos( ) sin( ) 0

i j

z

i j i j

i j i j

 

 

 
 
 
 

  
 
 
 

 

C  (2.282) 

Besides, the matrices , ,( )i j i j

x PS , , ,( )i j i j

y PS  and , ,( )i j i j

z PS  are simply the 

space derivative of the shape function 
, ,( )i j i jPS . Indeed: 

 

, ,
, ,

,

, ,

1,

, ,

2,

, ,

3,

( )
( )

( )

( )

( )

i j i j
i j i j

x i j

i j i j

x

i j i j

x

i j i j

x

P
P

x

P

P

P


 



 
 

  
 
 

S
S

S

S

S

 (2.283) 

 

, ,
, ,

,

, ,

1,

, ,

2,

, ,

3,

( )
( )

( )

( )

( )

i j i j
i j i j

y i j

i j i j

y

i j i j

y

i j i j

y

P
P

y

P

P

P


 



 
 

  
 
 

S
S

S

S

S

 (2.284) 

 

, ,
, ,

,

, ,

1,

, ,

2,

, ,

3,

( )
( )

( )

( )

( )

i j i j
i j i j

z i j

i j i j

z

i j i j

z

i j i j

z

P
P

z

P

P

P


 



 
 

  
 
 

S
S

S

S

S

 (2.285) 
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On the other hand, the stress field can be computed by the constitutive 

equations of the linear elastic material according to Voigt notation in order to 

yield: 

 

, , , , ,

, , , ,

( , ) ( , )

( ) ( )

i j i j i j i j i j

i j i j i j i j i i

e f

P t P t

P t

 



σ E ε

E D N B q
 (2.286) 

Where 
, ,( , )i j i jP tσ  is a 6  vector representing the stress field of element 

j  of body i  and ,i jE  is the 6 6  matrix of elastic coefficients. According to 

Voigt notation, the stress field can be written as follows: 

 

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,
, ,

, ,

, ,

( , )

( , )

( , )
( , )

( , )

( , )

( , )

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

x x
i j i j

y y

i j i j

z zi j i j
i j i j

x y

i j i j

y z

i j i j

z x

P t

P t

P t
P t

P t

P t

P t













 
 
 
 
 
 
 
 
 
  

σ  (2.287) 

 For instance, in the case of homogeneous isotropic linear elastic material 

the matrix of elastic coefficients 
,i jE  become: 
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  

, , ,

, , ,

, , ,

,
,

,

, ,

,

,

1 0 0 0

1 0 0 0

1 0 0 0

1 2
0 0 0 0 0

21 1 2
1 2

0 0 0 0 0
2

1 2
0 0 0 0 0

2

i j i j i j

i j i j i j

i j i j i j

i j
i j

i j

i j i j

i j

i j

E

  

  

  



 




 
 

 
 
 

 
  

   
 

 
 

 
  

E

 (2.288) 

Where ,i jE  and 
,i j  are respectively the Young elasticity modulus and 

Poisson ratio of elastic element j  of body i . At this stage, the stiffness matrix 

of element j  of body i  can be computed by using the definition of the strain 

energy 
, ( )i jU t : 

 

 

 

,

,

,

, , , , , ,

, , , , , , , ,

, , , , , , , ,

,

,

1
( ) ( , ) ( , )

2

1
( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

1
( )

2

i j

i j

i j

i j i j T i j i j i j i j

T
i T i T i j i j i j i j i j i j i j i i i j

f e e f

T
i T i T i j i j i j i j i j i j i j i j i i

f e e f

i T i T i

f e f f

U t P t P t dV

t P P t dV

t P P dV t

t







 

 

 









σ ε

q B D N E D N B q

q B D N E D N B q

q B V

,

,

( )

1
( ) ( )

2

j i i

e f

i T i j i

f f f f

t

t t





B q

q K q

 (2.289) 

Therefore, the final expression of the stiffness matrix 
,

,

i j

f fK  of the element 

j  of body i  is: 
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 , ,

, ,

i j i T i j i

f f e f f eK B V B  (2.290) 

This matrix is a 
i i
f fn n

 symmetric matrix whereas ,

,

i j

f fV  is a , ,
i i
f v f vn n

 

symmetric matrix defined as: 
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 ,

,

,

, , , , , , , , ,

,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

,

( ) ( )

( ) ( )

( ) ( )

i j

i j

i j

T
i j i j i j i j i j i j i j i j i j

f f

i j T i j T i j T i j i j T i j i j i j i j i j i j i j

c x x x x c

i j T i j T i j T i j i j T i j i j i j i j i j i j i j

c x x y y c

i j T

c

P P dV

P P dV

P P dV







 

 

 









V D N E D N

B C S C E C S C B

B C S C E C S C B

B C
,

,

,

, , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

( ) ( )

( ) ( )

( ) ( )

i j

i j

i j

i j T i j T i j i j T i j i j i j i j i j i j i j

x x z z c

i j T i j T i j T i j i j T i j i j i j i j i j i j i j

c y y x x c

i j T i j T i j T i j i j T i j i j i j i j i j i j i

c y y y y c

P P dV

P P dV

P P dV









 









S C E C S C B

B C S C E C S C B

B C S C E C S C B

,

,

,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , ,

( ) ( )

( ) ( )

( ) ( )

i j

i j

i

j

i j T i j T i j T i j i j T i j i j i j i j i j i j i j

c y y z z c

i j T i j T i j T i j i j T i j i j i j i j i j i j i j

c z z x x c

i j T i j T i j T i j i j T i j i j i j i j i j

c z z y y

P P dV

P P dV

P P dV









 

 







B C S C E C S C B

B C S C E C S C B

B C S C E C S

,

, ,

, , , , , , , , , , , ,

, , , , , , , , , , , , , , ,

1,1 1,2 1,3

, , , , , ,

2,1

( ) ( )

j

i j

i j i j

c

i j T i j T i j T i j i j T i j i j i j i j i j i j i j

c z z z z c

i j T i j T i j i j i j i j T i j T i j i j i j i j T i j T i j i j i j

c c c c c c

i j T i j T i j i j i j i

c c c

P P dV




 

   

 





C B

B C S C E C S C B

B C S C B B C S C B B C S C B

B C S C B B

 

, , , , , , , , ,

2,2 2,3

, , , , , , , , , , , , , , ,

3,1 3,2 3,3

, , , , , , , , , ,

1,1 2,2 3,3 1,2

j T i j T i j i j i j i j T i j T i j i j i j

c c c

i j T i j T i j i j i j i j T i j T i j i j i j i j T i j T i j i j i j

c c c c c c

i j T i j T i j i j i j i j i j i j T i j T i j

c c c

 

   

   

C S C B B C S C B

B C S C B B C S C B B C S C B

B C S S S C B B C S 

   

, , ,

2,1

, , , , , , , , , , , ,

1,3 3,1 2,3 3,2

, , , , , , , , , ,

, ,1

, , , , , , , , ,

,2 ,3

i j i j i j

c

i j T i j T i j i j i j i j i j T i j T i j i j i j i j

c c c c

i j T i j T i j i j i j i j T i j T i j i j i j

c f f c c f c

i j T i j T i j i j i j i j T i j T i j i j

c f c c f

 

    

  

 

S C B

B C S S C B B C S S C B

B C S C B B C S C B

B C S C B B C S C B ,

, , , ,

, ,1 ,2 ,3

i j

c

i j i j i j i j

f f f f f



   J J J J

 (2.291) 

Where 
,

,

i j

f fJ , 
,

,1

i j

fJ ,
,

,2

i j

fJ  and 
,

,3

i j

fJ  are , ,
i i
f v f vn n

 symmetric matrices defined 

as follows: 
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, , , , , ,

, ,

i j i j T i j T i j i j i j

f f c f f cJ B C S C B  (2.292) 

 
, , , , , ,

,1 ,1

i j i j T i j T i j i j i j

f c f cJ B C S C B  (2.293) 

 
, , , , , ,

,2 ,2

i j i j T i j T i j i j i j

f c f cJ B C S C B  (2.294) 

 
, , , , , ,

,3 ,3

i j i j T i j T i j i j i j

f c f cJ B C S C B  (2.295) 

Where 
,

,

i j

f fS , 
,

,1

i j

fS , 
,

,2

i j

fS  and 
,

,3

i j

fS are 
, ,i j i j
f fn n

 symmetric matrices defined 

as: 

 
, , , ,

, 1,1 2,2 3,3

i j i j i j i j

f f   S S S S  (2.296) 

 
, , ,

,1 2,3 3,2

i j i j i j

f  S S S  (2.297) 

 
, , ,

,2 3,1 1,3

i j i j i j

f  S S S  (2.298) 

 
, , ,

,3 1,2 2,1

i j i j i j

f  S S S  (2.299) 

Where 
,

1,1

i jS , 
,

1,2

i jS , 
,

1,3

i jS , 
,

2 ,1

i jS , 
,

2 ,2

i jS , 
,

2 ,3

i jS , 
,

3,1

i jS , 
,

3,2

i jS  and 
,

3,3

i jS  are 
, ,i j i j
f fn n

 

matrices defined as: 

 
,

, , , , , , , , ,

1,1 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

x x x xP P dV


 S S C E C S  (2.300) 

 
,

, , , , , , , , ,

1,2 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

x x y yP P dV


 S S C E C S  (2.301) 

 
,

, , , , , , , , ,

1,3 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

x x z zP P dV


 S S C E C S  (2.302) 
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,

, , , , , , , , ,

2,1 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

y y x xP P dV


 S S C E C S  (2.303) 

 
,

, , , , , , , , ,

2,2 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

y y y yP P dV


 S S C E C S  (2.304) 

 
,

, , , , , , , , ,

2,3 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

y y z zP P dV


 S S C E C S  (2.305) 

 
,

, , , , , , , , ,

3,1 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

z z x xP P dV


 S S C E C S  (2.306) 

 
,

, , , , , , , , ,

3,2 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

z z y yP P dV


 S S C E C S  (2.307) 

 
,

, , , , , , , , ,

3,3 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

z z z zP P dV


 S S C E C S  (2.308) 

These matrices are the elastic shape integrals required to compute explicitly 

the mass matrix 
,

,

i j

f fK  of the flexible element j  of the body i  of the system.  

2.6.5.    DYNAMIC EQUATIONS OF STRUCTURAL 
SYSTEMS 

To derive the equations of motion of the structural system, it is necessary 

first to compute the mass and stiffness matrices of the whole bodies from the 

same matrices corresponding to the structural elements. This can be easily done 

by summing the kinetic energy 
, ( )i jT t  and the strain energy 

, ( )i jU t  of each 

element. Indeed, from the definition of the kinetic energy ( )iT t  of the body i  

the mass matrix can be obtained: 
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,

1

,

,

1

,

,

1

,

( ) ( )

1
( ) ( )

2

1
( ) ( )

2

1
( ) ( )

2

i
e

i
e

i
e

n
i i j

j

n
i T i j i

f f f f

j

n
i T i j i

f f f f

j

i T i i

f f f f

T t T t

t t

t t

t t







 

 

 
   

 









q M q

q M q

q M q

 (2.309) 

Where the 
i i
f fn n

 matrix 
,

i

f fM  represents the mass matrix of the body i  

and it is defined as: 

 
 

,

, ,

1

,

,

1

,

,

1

,

i
e

i
e

i
e

n
i i j

f f f f

j

n
i T i j i

e f f e

j

n
i T i j i

e f f e

j

i T i i

e f f e







 

 

 
   

 









M M

B J B

B J B

B J B

 (2.310) 

Where 
,

i

f fJ  is a 
i i
f fn n

 symmetric matrix and it can be computed as 

follows: 

 

 

,

, ,

1

, , , , ,

,

1

i
e

i
e

n
i i j

f f f f

j

n
i j T i j T i j i j i j

c f f c

j





 







J J

B C S C B

 (2.311) 



108 MULTIBODY DYNAMICS  

On the other hand, from the definition of the strain energy ( )iU t  of the 

body i  the stiffness matrix can be obtained: 

 

,

1

,

,

1

,

,

1

,

( ) ( )

1
( ) ( )

2

1
( ) ( )

2

1
( ) ( )

2

i
e

i
e

i
e

n
i i j

j

n
i T i j i

f f f f

j

n
i T i j i

f f f f

j

i T i i

f f f f

U t U t

t t

t t

t t







 

 
  

 

 
   

 









q K q

q K q

q K q

 (2.312) 

Where the 
i i
f fn n

 matrix 
,

i

f fK  represents the stiffness matrix of the body 

i  and it is defined as: 

 
 

,

, ,

1

,

,

1

,

,

1

,

i
e

i
e

i
e

n
i i j

f f f f

j

n
i T i j i

e f f e

j

n
i T i j i

e f f e

j

i T i i

e f f e







 

 

 
   

 









K K

B V B

B V B

B V B

 (2.313) 

Where ,

i

f fV  is a 
i i
f fn n

 symmetric matrix and it can be computed as 

follows: 
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  

,

, ,

1

, , , ,

, ,1 ,2 ,3

1

, ,1 ,2 ,3

i
e

i
e

n
i i j

f f f f

j

n
i j i j i j i j

f f f f f

j

i i i i

f f f f f





 

    

   





V V

J J J J

J J J J

 (2.314) 

Where 
,

i

f fJ , 
,1

i

fJ , 
,2

i

fJ  and 
,3

i

fJ  are , ,
i i
f v f vn n

 symmetric matrices defined 

as: 

 

 

,

, ,

1

, , , , ,

,

1

i
e

i
e

n
i i j

f f f f

j

n
i j T i j T i j i j i j

c f f c

j





 







J J

B C S C B

 (2.315) 

 

 

,

,1 ,1

1

, , , , ,

,1

1

i
e

i
e

n
i i j

f f

j

n
i j T i j T i j i j i j

c f c

j





 







J J

B C S C B

 (2.316) 

 

 

,

,2 ,2

1

, , , , ,

,2

1

i
e

i
e

n
i i j

f f

j

n
i j T i j T i j i j i j

c f c

j





 







J J

B C S C B

 (2.317) 

 

 

,

,3 ,3

1

, , , , ,

,3

1

i
e

i
e

n
i i j

f f

j

n
i j T i j T i j i j i j

c f c

j





 







J J

B C S C B

 (2.318) 
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Once that the mass matrix 
,

i

f fM  and the stiffness matrix 
,

i

f fK  of body i  

has been computed, the system equations of motion can be derived by using 

Lagrange equations: 

 ,

( ) ( ) ( )
( )

( ) ( ) ( )

T T T
i i i

i

e nci i i

f f f

d T t T t U t
t

dt t t t

       
                   

Q
q q q

 (2.319) 

Note that it is assumed that the bodies of the set in analysis does not exhibit 

large deformation and rigid body motion. Consequently, it is also supposed that 

every body of the system is not linked or constrained in some way to each other. 

Therefore, the Lagrange equations can be applied without considering the effect 

of some generalized constraint action to yield: 

 
, , ,( ) ( ) ( )i i i i i

f f f f f f e nct t t M q K q Q  (2.320) 

Where  
, ( )i

e nc tQ  is a 
i
fn
 vector representing the generalized external 

nonconservative forces applied on the system which dynamically couple the 

bodies of the set. Finally, these dynamic equations can be easily assembled to 

derive the equations of motion of the whole structural system to yield: 

 , , ,( ) ( ) ( )f f f f f f e nct t t M q K q Q  (2.321) 

Where the configuration vector ( )f tq  represents the total fn
 vector of 

the structural system generalized coordinates and is defined as: 

 

1

2

( )

( )
( )

( )f

f

f

f

n

f

t

t
t

t

 
 
 


 
 
  

q

q
q

q

 (2.322) 
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The matrices 
,f fM  and 

,f fK  are respectively the global f fn n
 mass and 

stiffness matrices of the structural system which can be easily assembled as: 

 

1

,

2

,

,

,
f

f f

f f

f f

n

f f

 
 
 


 
 
  

M O O

O M O
M

O O M

 (2.323) 

 

1

,

2

,

,

,
f

f f

f f

f f

n

f f

 
 
 


 
 
  

K O O

O K O
K

O O K

 (2.324) 

The fn
 vector 

, ( )e nc tQ  is the lagrangian component vectors which 

represent the generalized external nonconservative forces acting on the whole 

structural system and it can be simply assembled as: 

 

1

,

2

,

,

,

( )

( )
( )

( )f

e nc

e nc

e nc

n

e nc

t

t
t

t

 
 
 


 
 
  

Q

Q
Q

Q

 (2.325) 

Finally, consider the proportional damping hypothesis: 

 , , ,f f f f f f  R M K  (2.326) 

Where ,f fR  is a f fn n
 matrix representing the system damping matrix. 

The equations of motion of the structural system slightly modifies to yield: 
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, , , ,( ) ( ) ( ) ( )f f f f f f f f f e nct t t t  M q R q K q Q  (2.327) 

These equations can be easily solved to numerically find the damped 

vibration of a structural system with complex geometry. 
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2.7. FINITE ELEMENT FORMULATION OF 
FLEXIBLE MULTIBODY DYNAMICS 

2.7.1.    INTRODUCTION 

In the following sections the general case of the motion of a multibody 

system composed of rigid and deformable elements is analysed  29 . The 

approach followed here was originally developed by Shabana  11 ,  12 ,  13 . 

To describe the system kinematics the floating frame of reference formulation is 

used. This formulation allows to combine the systematic method for the 

derivation of the equations of motion of rigid multibody systems with the classic 

finite element methods to deduce the equations of motion of flexible multibody 

systems. In the floating frame of reference formulation the configuration of each 

body of the system is described by using two sets of coordinates: references 

coordinates and elastic coordinates. The former define the location and 

orientation of a given body reference in respect to a fixed inertial frame whereas 

the latter describe the elastic deformation of  system elements in respect to the 

corresponding body reference. Therefore, the position of an arbitrary point on 

the deformable body is represented by using a couple set of reference and elastic 

coordinates. As a legacy of classic finite element methods, the floating frame of 

reference formulation considers as nodal coordinates the infinitesimal rotations 

of nodes and consequently it can be used in the assumption of large reference 

frame and small elastic deformation with respect to the flexible body reference. 

Using the concept of the intermediate element coordinate system, a nonlinear 

formulation that leads to exact modelling of the rigid body motion for elements 

whose coordinates are defined in terms of infinitesimal rotations can be 

developed. The intermediate element coordinate system is defined as a reference 

system whose origin is rigidly attached to the origin of the body coordinate 

system, its orientation is fixed with respect to the body coordinate system and it 

is initially oriented with its axes parallel to the axes of the element coordinate 

system. The floating frame of reference formulation yields to an inertial 

coupling between the reference motion and the elastic deformation which 

reverberates in a coupled nonlinear formulation of the mass matrix. Similarly to 

the case of rigid multibody systems, to derive the system mass matrix it is 
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necessary to compute preliminary a set of inertia shape integrals  11 ,  12 , 

 13 . In addition, the quadratic velocity vector which contains the gyroscopic 

and Coriolis force components appears in the equations of motion of flexible 

multibody systems because the mass matrix and the kinetic energy of the bodies 

result to be functions of the configuration vector. On the other hand, the stiffness 

matrix results to be a constant matrix whose derivation is identical to that of 

classic finite element methods. Therefore, a set of elastic shape integrals is 

necessary to compute explicitly the stiffness matrix  11 ,  12 ,  13 . Finally, 

mechanical joints in the flexible multibody system are formulated by using a set 

of nonlinear algebraic constraint equations which can be adjoined to the system 

differential equations of motion by using Lagrange multiplayers rule. 

2.7.2.    FLOATING FRAME OF REFERENCE 
FORMULATION 

Consider a flexible multibody system composed of 
bn  bodies each one 

discretized in 
i

en  elements. According to the floating frame of reference 

formulation, the configuration of the generic body i  of the system is represented 

by a set of reference coordinates and a set of elastic coordinates. Indeed: 

 
( )

( )
( )

i

ri

i

f

t
t

t

 
  
  

q
q

q
 (2.328) 

Where ( )i tq  is a 
in  vector which describes the configuration of body i , 

( )i

r tq  is a 
7

 vector representing the reference coordinates corresponding to 

the body i  and ( )i

f tq  is a 
i
fn
 vector representing the elastic coordinates 

corresponding to the body i . Indeed, by using Euler’s parameters to represent 

the orientation of the body frame of reference i , the reference coordinates vector 

( )i

r tq  is defined as: 
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( )

( )
( )

i

i

r i

t
t

t

 
  
 

R
q

θ
 (2.329) 

  Where ( )i tR  is a 3  vector corresponding to the origin position of the 

body reference system i  in respect to the inertial frame of reference and ( )i tθ  is 

a 4  vector which contains the Euler’s parameters that describe the orientation 

of the body reference i  in respect to the inertial frame of reference. The first 

step to describe the system kinematics is to express the position of an arbitrary 

material point of the system as a function of the generalized configuration vector 

( )i tq .  Thus, consider for the generic element j  of flexible body i  the position 

vector of the material point ,i jP  in respect to the body frame of reference. The 

position vector of this point can be vectorially decomposed by the sum of the 

position vector of the point ,i jP  referred to the undeformed state of the body and 

the elastic displacement vector of point ,i jP  measured from the undeformed 

configuration. This yields to: 

 
, , , , , ,( , ) ( ) ( , )i j i j i j i j i j i j

o fP t P P t u u u  (2.330) 

Where 
, ,( , )i j i jP tu  is a 

3
 vector representing the position of point 

,i jP  in 

respect to the body frame of reference, 
, ,( )i j i j

o Pu  is a 
3
 vector corresponding 

to the position of point 
,i jP  in the undeformed configuration and 

, ,( , )i j i j

f P tu  is 

a 
3
 vector representing the elastic displacement of point 

,i jP . According the 

classic finite elements methods, the elastic displacement field 
, ,( , )i j i j

f P tu  can 

be decomposed by the product of a space-dependent global shape function and a 

time-dependent nodal vector to yield: 
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, , , , ,

, , ,

,

, , ,

, ,

( , ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

i j i j i j i j i j

f g f

i j i j i j i

g c f v

i j i j i j i i

g c e f

i j i j i i

e f

P t P t

P t

P t

P t

 

 

 



u S q

S B q

S B B q

N B q

 (2.331) 

Where , ,( )i j i j

g PS  is a 
,

3
i j
fn

 matrix representing the global shape function, 

, ( )i j

f tq  is a 
,i j
fn

 vector function corresponding to the vector of nodal 

coordinates, ,i j

cB  is a 
,

,
i j i

f vfn n
 Boolean matrix representing the internal 

kinematic constraints of each element j  of body i , 
, ( )i

f v tq  is a ,
i
f vn

 nodal 

coordinate vector, i

eB  is a ,
i i
f v fn n

 Boolean matrix corresponding to the external 

kinematic constraints of each body i , and 
, ,( )i j i jPN  is a ,3 i

f vn
 matrix 

representing the compact shape function. On the other hand, the position vector 

of point ,i jP  respect to the undeformed configuration can also be expressed by 

using the compact shape function as follows: 

 

, , , , ,

, ,

( ) ( )

( )

i j i j i j i j i j i

o g c o

i j i j i

o

P P

P

 



u S B q

N q
 (2.332) 

Where 
i

oq  is a ,
i
f vn

 vector containing the value of the nodal coordinates of 

body i  in the undeformed state. Therefore the position of point 
,i jP  referred to 

the body reference can be expressed as follows: 

 

 

, , , , , ,

, , , ,

, ,

, ,

( , ) ( ) ( , )

( ) ( ) ( )

( ) ( )

( ) ( )

i j i j i j i j i j i j

o f

i j i j i i j i j i i

o e f

i j i j i i i

o e f

i j i j i

n

P t P P t

P P t

P t

P t

  

  

  



u u u

N q N B q

N q B q

N q

 (2.333) 
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Where ( )i

n tq  is a ,
i
f vn

 vector of nodal coordinates defined as: 

 ( ) ( )i i i i

n o e ft t q q B q  (2.334) 

Afterwards, the position of the material point ,i jP  can be referred to the 

inertial frame of reference to yield: 

 

 

, , , ,

, ,

, ,

( , ) ( ) ( ) ( , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i j i j i i i j i j

i i i j i j i

n

i i i j i j i i i

o e f

P t t t P t

t t P t

t t P t

  

  

  

r R A u

R A N q

R A N q B q

 (2.335) 

  Where 
, ,( , )i j i jP tr  is a 3  vector representing the position of point ,i jP  

referred to the inertial frame of reference and ( )i tA  is a 3 3  rotation matrix 

which defines the orientation of the body reference i  respect to the inertial 

frame of reference. The time derivative of position vector 
, ,( , )i j i jP tr  can be 

computed by using the time derivative of the configuration vector ( )i tq  as: 

 

, , , , , ,

, , , ,

, ,

, ,

( , ) ( ) ( ) ( , ) ( ) ( , )

( ) ( ) ( ) ( , ) ( ) ( ) ( )
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( ) ( ) ( )
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i j i j i i i j i j i i j i j

i i i i j i j i i j i j i

n

i i i j i j i
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( )

( ) ( , ) ( ) ( ) ( ) ( )
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i j i j i

P t t t t P t
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t P t t t P t

t

P t t
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 
 

     
 
 



G θ A N B q

R

I A u G A N B θ

q

L q

 (2.336) 
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Where 
, ,( , )i j i jP tL  is a 3 in  matrix defined as follows: 

 

, , , , , , , ,

, , , ,

( , ) ( , ) ( , ) ( , )

( ) ( , ) ( ) ( ) ( )

f

i j i j i j i j i j i j i j i j

R q

i i j i j i i i j i j i

e

P t P t P t P t

t P t t t P


  
 

   

L L L L

I A u G A N B

 (2.337) 

 This matrix is a function of the reference coordinate vector ( )i tq  and 

depends on the particle ,i jP  under consideration. It is remarkable to note that the 

virtual change of the position vector 
, ,( , )i j i jP tr  can be computed in the same 

way by using the matrix 
, ,( , )i j i jP tL : 

 
, , , ,( , ) ( , ) ( )i j i j i j i j iP t P t t r L q  (2.338) 

Indeed, this matrix is a jacobian transformation matrix which 

mathematically describe the relation between the physical coordinates vector 
, ,( , )i j i jP tr  and the lagrangian coordinates vector ( )i tq . 

2.7.3.    MASS MATRIX OF SYSTEM ELEMENTS  

Once that the kinematic description of motion has been obtained, the mass 

matrix of the generic element j  of rigid body i  can be computed using the 

definition of kinetic energy 
, ( )i jT t . Indeed: 
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, , , , , , ,

, , , , , ,

,

1
( ) ( , ) ( , )
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1
( ) ( , ) ( , ) ( )
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

r r

q L L q

q M q

 (2.339) 
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Where 
,i j  and ,i j  are respectively the mass density and the volume of 

element j  body i  and 
, ( )i j tM  is a 

i in n  matrix representing the mass matrix 

of the same element. The mass matrix of system elements can be computed as: 

,
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, , , , , , ,

, ,

, , , , , , , , , ,
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, , ,
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 (2.340) 

Where 
,

, ( )i j

R R tm , 
,

, ( )i j

R tm , 
,

, ( )
f

i j

R q tm , 
,

, ( )i j t m , 
,

, ( )
f

i j

q tm  and 
,

, ( )
f f

i j

q q tm  are 

respectively 3 3 , 3 4 , 
3 i

fn
, 4 4 , 

4 i
fn
 and 

i i
f fn n

 symmetric matrices 

which can be computed explicitly. Indeed, the mass submatrix 
,

, ( )i j

R R tm  can be 

computed as: 
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, , , , , , ,

,

, ,

,

( ) ( , ) ( , )
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

m L L

I

I

 (2.341) 

Where 
,i jm  is the total mass of element j  of body i . The mass submatrix 

,

, ( )i j

R tm  can be computed in the following way: 
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Where 
, ( )i j tU  is a 3 3  skew symmetric matrix defined as: 
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 (2.343) 

Where 
,i jN  is a 

,
,3

i j
f vn

 matrix defined as: 

 
, , , , ,i j i j i j i j i j

cN C S C B  (2.344) 

Where 
,i j

S  is a 
,

3
i j
fn

 matrix that can be computed as follows: 
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The mass submatrix ,

, ( )
f
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R q tm  is defined as: 
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The mass submatrix 
,

, ( )i j t m  can be computed in the following way: 
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Where the orthogonality property of rotation matrix ( )i tA  has been used. 

The 
3 3

 matrix 
,

, ( )i j t I  is the inertia matrix of element j  of body i  which is 

defined as: 
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 (2.348) 

It is worth to point out that in this case of flexible multibody systems the 

inertia matrix 
,

, ( )i j t I  results to be a function of system configuration vector and 

consequently it changes in time. Indeed, the components of this matrix can be 

computed as: 
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Where 
,

1,1

i j
J , 

,

1,2

i j
J , 

,

1,3

i j
J , 

,

2 ,1

i j
J , 

,

2,2

i jJ , 
,

2 ,3

i jJ , 
,

3,1

i j
J , 

,

3,2

i jJ  and 
,

3,3

i j
J  are , ,

i i
f v f vn n

 

symmetric matrices defined as: 

  , , , , , , ,

1,1 2,2 3,3

i j i j T i j T i j i j i j i j

c c J B C S S C B  (2.355) 

 

, , , , , ,

1,2 1,2

,

2,1

i j i j T i j T i j i j i j

c c

i j T

  



J B C S C B

J
 (2.356) 



128 MULTIBODY DYNAMICS  

 

, , , , , ,

1,3 1,3

,

3,1

i j i j T i j T i j i j i j

c c

i j T

  



J B C S C B

J
 (2.357) 

  , , , , , , ,

2,2 3,3 1,1

i j i j T i j T i j i j i j i j

c c J B C S S C B  (2.358) 

 

, , , , , ,

2,3 2,3

,

3,2

i j i j T i j T i j i j i j

c c

i j T

  



J B C S C B

J
 (2.359) 

  , , , , , , ,

3,3 1,1 2,2

i j i j T i j T i j i j i j i j

c c J B C S S C B  (2.360) 

Where 
,

1,1

i j
S , 

,

1,2

i j
S , 

,

1,3

i j
S , 

,

2 ,1

i j
S , 

,

2 ,2

i jS , 
,

2 ,3

i jS , 
,

3,1

i j
S , 

,

3,2

i jS  and 
,

3,3

i j
S  are 

, ,i j i j
f fn n

 

symmetric matrices defined as: 

 
,

, , , , , , ,

1,1 1 1( ) ( )
i j

i j i j i jT i j i j i j i jP P dV


 S S S  (2.361) 

 
,

, , , , , , ,

1,2 1 2

,

2,1

( ) ( )
i j

i j i j i jT i j i j i j i j

i j T

P P dV


 



S S S

S
 (2.362) 

 
,

, , , , , , ,

1,3 1 3

,

3,1

( ) ( )
i j

i j i j i jT i j i j i j i j

i j T

P P dV


 



S S S

S
 (2.363) 

 
,

, , , , , , ,

2,2 2 2( ) ( )
i j

i j i j i jT i j i j i j i jP P dV


 S S S  (2.364) 

 
,

, , , , , , ,

2,3 2 3

,

3,2

( ) ( )
i j

i j i j i jT i j i j i j i j

i j T

P P dV


 



S S S

S
 (2.365) 



MULTIBODY DYNAMICS 129  

 
,

, , , , , , ,

3,3 3 3( ) ( )
i j

i j i j i jT i j i j i j i jP P dV


 S S S  (2.366) 

The mass submatrix ,

, ( )
f

i j

q tm  can be computed as: 

,

,

,

, , , , , , ,

,

, , , , , ,

, , , , , ,

, , , , ,

( ) ( , ) ( , )

( ) ( , ) ( ) ( ) ( )

( ) ( , ) ( )

( ) ( , ) ( )

i jf f

i j

i j

i j i j i j T i j i j i j i j

q q

i j i T i j T i j i T i i j i j i i j

e

i T i j i j T i j i j i j i j i

e

i T i j i j i j i j i j

t P t P t dV

t P t t t P dV

t P t P dV

t P t P

 













 

  

  









m L L

G u A A N B

G u N B

G u N
,

,

,

,

,

( ) ( )

( )

i j

f

i j i

e

i T i j i

e

i j T

q

dV

t t

t




 



 B

G H B

m

 (2.367) 
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, ( )i j tH  is a ,3 i

f vn
 matrix defined as: 
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 (2.368) 

This expression can be further simplified to yield: 
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Where the compact shape function has been written as follows: 
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The mass submatrix ,
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q q tm  can be computed as: 
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 (2.371) 

Where 
,

,

i j

f fJ  is a , ,
i i
f v f vn n

 symmetric matrix defined as: 

 
 , , , ,

, 1,1 2,2 3,3

, , , , ,

,

1

2

i j i j i j i j

f f

i j T i j T i j i j i j

c f f c

   



J J J J

B C S C B

 (2.372) 

Where 
,

,

i j

f fS  is a 
, ,i j i j
f fn n

 symmetric matrix defined as follows: 
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These are the mathematical expressions that allow to compute explicitly all 

mass submatrix ,

, ( )i j

R R tm , ,
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R tm , ,
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q tm  and 

,
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q q tm  relative to the mass matrix 
, ( )i j tM  of element j  of the flexible body 

i . It is worth noting that to compute all the mass submatrix it is necessary to 

evaluate previously the following sets of inertia shape integrals: 
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These sets of inertia shape integrals can be computed in advance and then 

they can be used to write the equations of motion of flexible multibody systems. 

2.7.4.    MASS MATRIX OF SYSTEM BODIES 

Once that all mass submatrices has been obtained, the mass matrix of the 

generic flexible body i  can be computed using the additive property of kinetic 

energy ( )iT t . Indeed: 
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Where ( )i tM  is a 
i in n  matrix representing the mass matrix of flexible 

body i  defined as: 
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 Where 
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R tm , , ( )
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R q tm , 
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are respectively 
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3 4

, 
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4 4
, 

4 i
fn
 and 

i i
f fn n

 symmetric 

matrices which can be computed explicitly. Indeed, the mass submatrix 
, ( )i

R R tm  

can be computed as: 
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 Where im  is the total mass of flexible body i . The mass submatrix 
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R tm  can be computed in the following way: 

 

 

,

, ,

1

,

1

,

1

,

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

i
e

i
e

i
e

n
i i j

R R

j

n
i i j i

j

n
i i j i

j

i i i

i T

R

t t

t t t

t t t

t t t

t

 









 

  

 
    

 

  









m m

A U G

A U G

A U G

m

 (2.380) 

Where ( )i tU  is a 
3 3

 skew symmetric matrix defined as: 
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 matrix defined as: 
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 (2.383) 

The mass submatrix , ( )i t m  is defined as: 
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Where 
, ( )i t I is a 3 3  representing the inertia matrix of flexible body i  

and it is defined as: 
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 (2.385) 

It is worth to point out that in this case of flexible multibody systems the 

inertia matrix 
, ( )i t I  results to be a function of system configuration vector and 

consequently it changes in time. Indeed, the components of this matrix can be 

computed as: 
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 (2.391) 

Where 
1,1

i
J , 

1,2

i
J , 

1,3

i
J , 

2,1

i
J , 

2,2

iJ , 
2,3

iJ , 
3,1

i
J , 

3,2

iJ  and 
3,3

i
J  are , ,

i i
f v f vn n

 

symmetric matrices defined as: 
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The mass submatrix 
, ( )

f

i

q tm  can be computed as: 
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Where ( )i tH  is a ,3 i
f vn

 matrix defined as: 
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 (2.399) 

The mass submatrix , ( )
f f

i

q q tm  can be computed as: 



144 MULTIBODY DYNAMICS  

 
 

,

, ,

1

,

,

1

,

,

1

,

( ) ( )

i
e

f f f f

i
e

i
e

n
i i j

q q q q

j

n
i T i j i

e f f e

j

n
i T i j i

e f f e

j

i T i i

e f f e

t t






 

 

 
   

 









m m

B J B

B J B

B J B

 (2.400) 

Where 
,

i

f fJ  is a , ,
i i
f v f vn n

 symmetric matrix defined as: 

 

 

 

  

,

, ,

1

, , ,

1,1 2,2 3,3

1

, , , , ,

,

1

, , , , , , ,

1,1 2,2 3,3

1

1

2

i
e

i
e

i
e

i
e

n
i i j

f f f f

j

n
i j i j i j

j

n
i j T i j T i j i j i j

c f f c

j

n
i j T i j T i j i j i j i j i j

c c

j









 

   

 

  









J J

J J J

B C S C B

B C S S S C B

 (2.401) 

These are the mathematical expressions that allow to compute explicitly all 

mass submatrix 
, ( )i

R R tm , 
, ( )i

R tm , , ( )
f

i

R q tm , 
, ( )i t m , , ( )

f

i

q tm  and 

, ( )
f f

i

q q tm  relative to the mass matrix ( )i tM  of the flexible body i . Indeed, the 

kinetic energy ( )iT t  corresponding to the flexible body i  can be expressed by 

using the mass submatrices to yield: 
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 (2.402) 

This expression can be used to compute the quadratic velocity vector.  

2.7.5.    STIFFNESS MATRIX OF SYSTEM ELEMENTS 

The formulation of the stiffness matrix of the element j  of the flexible 

body i  can be achieved by the definition of the elastic strain energy 
, ( )i jU t  of 

the same element. First, note that only the elastic coordinates ( )i

f tq  are 

involved in the computation of the strain energy 
, ( )i jU t . Indeed, the elastic 

coordinate vector ( )i

f tq  can be simply recovered from the configuration 

coordinate vector ( )i tq  by using a Boolean matrix as follows: 
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( ) ( )
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i i i i
f f f f
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i i
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      
 
 



R

q O O I θ

q

B q

 (2.403) 

Where 
i

fB  is a 
i i
fn n

 Boolean matrix defined as: 
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f f f f
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 
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B O O I  (2.404) 

Therefore, the elastic displacement field can be written as: 

 

, , , ,

, ,
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i j i j i i i

e f

P t P t
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

u N B q

N B B q
 (2.405) 

To compute the elastic strain energy 
, ( )i jU t  it is preliminary required to 

obtain an expression of element stress field and deformation field based on 

configuration coordinates.  Assuming Voigt notation, the deformation field can 

be computed in a matrix form by using the linear strain-displacement equations 

to yield: 

 

, , , , ,

, , ,

( , ) ( , )

( ) ( )

i j i j i j i j i j

f

i j i j i j i i i

e f

P t P t

P t

 



ε D u

D N B B q
 (2.406) 

Where 
, ,( , )i j i jP tε  is a 6  vector representing the deformation field of 

element j  of flexible body i  and 
,i jD  is a 

6 3
differential matrix operator. 

Similarly to the case of classic finite element formulation, the result of the 

differential matrix operator 
,i jD  on the element compact shape function 

, ,( )i j i jPN  can be explicitly developed to yield:  

 , , , , , , , , , , , , , ,( ) ( ) ( ) ( )i j i j i j i j i j i j i j i j i j i j i j i j i j i j

x x y y z z cP P P P  D N C S C S C S C B

 (2.407) 

Where ,i j

xC , 
,i j

yC  and ,i j

zC  are 
6 3

 matrices whose components are the 

components of the rotation matrix 
,i jC  and 

, ,( )i j i j

x PS , 
, ,( )i j i j

y PS  and 

, ,( )i j i j

z PS  are simply the space derivative of the shape function 
, ,( )i j i jPS . On 
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the other hand, the stress field can be computed through the constitutive 

equations of the homogeneous isotropic linear elastic material according to 

Voigt notation to yield: 
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 (2.408) 

Where 
, ,( , )i j i jP tσ  is a 6  vector representing the stress field of element 

j  of body i  and ,i jE  is the 6 6  matrix of elastic coefficients of the same 

element. At this stage, the stiffness matrix of element j  of body i  can be 

computed by using the definition of the strain energy 
, ( )i jU t . Indeed: 
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 (2.409) 

Therefore, the final expression of the stiffness matrix 
,i j

K  of the element 

j  of body i  is: 

 
, ,

,

i j i T i T i j i i

f e f f e fK B B V B B  (2.410) 

This matrix is a 
i i
f fn n

 matrix whereas 
,

,

i j

f fV  is a , ,
i i
f v f vn n

 matrix can be 

computed as: 
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Where 
,
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f fJ , 
,
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i j

fJ ,
,

,2

i j

fJ  and 
,

,3

i j

fJ  are , ,
i i
f v f vn n

 symmetric matrices defined 

as: 

 
, , , , , ,

, ,

i j i j T i j T i j i j i j

f f c f f cJ B C S C B  (2.412) 

 
, , , , , ,

,1 ,1

i j i j T i j T i j i j i j

f c f cJ B C S C B  (2.413) 

 
, , , , , ,

,2 ,2

i j i j T i j T i j i j i j

f c f cJ B C S C B  (2.414) 

 
, , , , , ,

,3 ,3

i j i j T i j T i j i j i j

f c f cJ B C S C B  (2.415) 

Where 
,

,

i j

f fS , 
,

,1

i j

fS , 
,

,2

i j

fS  and 
,

,3

i j

fS are 
, ,i j i j
f fn n

 symmetric matrices defined 

as follows: 

 
, , , ,

, 1,1 2,2 3,3

i j i j i j i j

f f   S S S S  (2.416) 

 
, , ,

,1 2,3 3,2

i j i j i j

f  S S S  (2.417) 

 
, , ,

,2 3,1 1,3

i j i j i j

f  S S S  (2.418) 

 
, , ,

,3 1,2 2,1

i j i j i j

f  S S S  (2.419) 

Where 
,

1,1

i jS , 
,

1,2

i jS , 
,

1,3

i jS , 
,

2 ,1

i jS , 
,

2 ,2

i jS , 
,

2 ,3

i jS , 
,

3,1

i jS , 
,

3,2

i jS  and 
,

3,3

i jS  are 
, ,i j i j
f fn n

 

matrices defined as: 
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,

, , , , , , , , ,

1,1 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

x x x xP P dV


 S S C E C S  (2.420) 

 
,

, , , , , , , , ,

1,2 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

x x y yP P dV


 S S C E C S  (2.421) 

 
,

, , , , , , , , ,

1,3 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

x x z zP P dV


 S S C E C S  (2.422) 

 
,

, , , , , , , , ,

2,1 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

y y x xP P dV


 S S C E C S  (2.423) 

 
,

, , , , , , , , ,

2,2 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

y y y yP P dV


 S S C E C S  (2.424) 

 
,

, , , , , , , , ,

2,3 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

y y z zP P dV


 S S C E C S  (2.425) 

 
,

, , , , , , , , ,

3,1 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

z z x xP P dV


 S S C E C S  (2.426) 

 
,

, , , , , , , , ,

3,2 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

z z y yP P dV


 S S C E C S  (2.427) 

 
,

, , , , , , , , ,

3,3 ( ) ( )
i j

i j i j T i j i j T i j i j i j i j i j

z z z zP P dV


 S S C E C S  (2.428) 

Where ,i j

xC , 
,i j

yC  and ,i j

zC  are 
6 3

 matrices whose components are the 

components of the rotation matrix 
,i jC  and 

, ,( )i j i j

x PS , 
, ,( )i j i j

y PS  and 

, ,( )i j i j

z PS  are simply the space derivative of the shape function 
, ,( )i j i jPS . 

These matrices are the elastic shape integrals required to compute explicitly the 

mass matrix 
,i j

K  of the flexible element j  of the body i  of the system. Indeed, 

the fourth set of integrals required to write the equations of motion of flexible 

multibody systems is the following set of elastic shape integrals: 
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,

,

(4) , ,

, ,

, , , , , , , ,

, , , ,
, , , ,

( ) ( )

( ) ( )

h ki j

i j

i j i j

h k h k

i j T i j i j T i j i j i j i j i j

h kx x

i j T i j i j i j
i j T i j i j i j

h kh k

P P dV

P P
dV

x x





 

 

    
    

    





I S

S C E C S

S S
C E C

 (2.429) 

These sets of elastic shape integrals can be computed in advance and then 

they can be used to write the equations of motion of flexible multibody systems.  

2.7.6.    STIFFNESS MATRIX OF SYSTEM BODIES 

The stiffness matrix of the generic flexible body i  can be computed using 

the additive property of stain energy ( )iU t . Indeed: 

 

,

1

,

1

,

1

( ) ( )

1
( ) ( )

2

1
( ) ( )

2

1
( ) ( )

2

i
e

i
e

i
e

n
i i j

j

n
i T i j i

j

n
i T i j i

j

i T i i

U t U t

t t

t t

t t







 

 
  

 

 
   

 









q K q

q K q

q K q

 (2.430) 

Where 
iK  is a 

i in n  matrix representing the stiffness matrix of flexible 

body i  defined as: 
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 

,

1

,

,

1

,

,

1

,

i
e

i
e

i
e

n
i i j

j

n
i T i T i j i i

f e f f e f

j

n
i T i T i j i i

f e f f e f

j

i T i T i i i

f e f f e f







 

 

 
   

 









K K

B B V B B

B B V B B

B B V B B

 (2.431) 

Where 
,

i

f fV  is a 
i i
f fn n

 symmetric matrix and it can be computed as 

follows: 

  

,

, ,

1

, , , ,

, ,1 ,2 ,3

1

, ,1 ,2 ,3

i
e

i
e

n
i i j

f f f f

j

n
i j i j i j i j

f f f f f

j

i i i i

f f f f f





 

    

   





V V

J J J J

J J J J

 (2.432) 

Where ,

i

f fJ , ,1

i

fJ , ,2

i

fJ  and ,3

i

fJ  are , ,
i i
f v f vn n

 symmetric matrices defined 

as: 

 

 

,

, ,

1

, , , , ,

,

1

i
e

i
e

n
i i j

f f f f

j

n
i j T i j T i j i j i j

c f f c

j





 







J J

B C S C B

 (2.433) 
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 

,

,1 ,1

1

, , , , ,

,1

1

i
e

i
e

n
i i j

f f

j

n
i j T i j T i j i j i j

c f c

j





 







J J

B C S C B

 (2.434) 

 

 

,

,2 ,2

1

, , , , ,

,2

1

i
e

i
e

n
i i j

f f

j

n
i j T i j T i j i j i j

c f c

j





 







J J

B C S C B

 (2.435) 

 

 

,

,3 ,3

1

, , , , ,

,3

1

i
e

i
e

n
i i j

f f

j

n
i j T i j T i j i j i j

c f c

j





 







J J

B C S C B

 (2.436) 

These are the mathematical expressions that allow to compute explicitly the 

stiffness matrix 
iK  of the flexible body i . Note that according the floating 

frame of reference formulation the stiffness matrix 
iK  of a generic flexible 

body i  is not a function of time. 

2.7.7.    QUADRATIC VELOCITY VECTOR 

The next step to derive the equations of motion of flexible multibody 

systems is to compute the quadratic velocity vector. This vector is defined as: 

 
( )

( ) ( ) ( )
( )

T
i

i i i

v i

T t
t t t

t

 
  

 
Q M q

q
 (2.437) 

 To compute the first term on the right hand side is necessary to evaluate the 

time derivative of mass matrix ( )i tM . This yields to: 
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, , ,

, , ,

, , ,

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

f

f

f f f f

i i i

R R R R q

i i i i

R q

i i i

q R q q q

t t t

t t t t

t t t



   



 
 
 
 
  

m m m

M m m m

m m m

 (2.438) 

The time derivative of mass submatrix 
, ( )i

R R tm  yields to: 

 
 , ( )i i

R R

d
t m

dt
 



m I

O

 (2.439) 

The time derivative of mass submatrix 
, ( )i

R tm  can be computed as: 

 , ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

i i i i

R

i i i i i i i i i

i i i i i i i i i i

i i i T i i i i i

d
t t t t

dt

t t t t t t t t t

t t t t t t t t t t

t t t t t t t t

   

    

    

   

m A U G

A U G A U G A U G

A ω U G A U G A U G

A G G U G A U G A

,

( ) ( ) ( )

( )

i i i

i T

R

t t t

t





U G

m

 (2.440) 

 Where the following matrix identity has been used: 

 

( ) ( ) ( )

2 ( ) ( )

1
( ) ( )

2

1
( ) ( )

2

i i T i

i i T

i i T

i i T

t t t

t t

t t

t t

 

 

  



ω A A

E E

G G

G G

 (2.441) 
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The time derivative of the matrix ( )i tU  can be computed as: 

 
   

 

( ) ( )

( )

i i i i i

o e f

i i i

e f

d
t Skew t

dt

Skew t

  



U N q B q

N B q

 (2.442) 

The time derivative of mass submatrix 
, ( )

f

i

R q tm  can be computed as: 

 

 ,

,

( ) ( )

( )

( ) ( )

1
( ) ( ) ( )

2

( )

f

f

i i i i

R q e

i i i

e

i i i i

e

i i i T i i

e

i T

q R

d
t t

dt

t

t t

t t t

t

 

 

 

 



m A N B

A N B

A ω N B

A G G N B

m

 (2.443) 

The time derivative of mass submatrix 
, ( )i t m  can be computed as: 

 
 , ,

, , ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

i i T i i

i T i i i T i i i T i i

d
t t t t

dt

t t t t t t t

   

     

 

  

m G I G

G I G G I G G I G

 (2.444) 

Where the time derivative of the inertia matrix , ( )i t I  can be computed as: 
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     

     

     

, , ,
1,1 1,2 1,3

, , , ,
2,1 2,2 2,3

, , ,
3,1 3,2 3,3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

i i i

i i i i

i i i

t t t

t t t t

t t t

     

       

     

 
 
 
 
 
 
  

I I I

I I I I

I I I

 (2.445) 

Indeed, the components of this matrix can be computed as: 

 

      
   

   

 

, 1,1
1,1

1,1 1,1

1,1 1,1

1,1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( )

T
i i i i i i i i

o e f o e f

T
i T i T i i i i i i i i i i

f e o e f o e f e f

T
i T i T i T i i i i i i i i i

f e o e f o e f e f

T
i i i i i

o e f e

d
t t t

dt

t t t t

t t t t

t

     

    

    

 

I q B q J q B q

q B J q B q q B q J B q

q B J q B q q B q J B q

q B q J B q

1,1

( )

2 ( ) ( )

i

f

i T i i i

n e f

t

t t



 q J B q

(2.446) 

      
   

 

 

, 1,2
1,2

1,2 1,2

1,2

1,2

,
2,1

( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( )

2 ( ) ( )

( )

T
i i i i i i i i

o e f o e f

T
i T i T i i i i i i i i i i

f e o e f o e f e f

T
i i i i i i

o e f e f

i T i i i

n e f

i

d
t t t

dt

t t t t

t t

t t

t

 

 

   

    

  

 



I q B q J q B q

q B J q B q q B q J B q

q B q J B q

q J B q

I

 (2.447) 
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     

   

 

 

, 1,3
1,3

1,3 1,3

1,3

1,3

,
3,1

( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( )

2 ( ) ( )

( )

T
i i i i i i i i

o e f o e f

T
i T i T i i i i i i i i i i

f e o e f o e f e f

T
i i i i i i

o e f e f

i T i i i

n e f

i

t t t

t t t t

t t

t t

t

 

 

   

    

  

 



I q B q J q B q

q B J q B q q B q J B q

q B q J B q

q J B q

I

(2.448) 

 

     

   

   

 

, 2,2
2,2

2,2 2,2

2,2 2,2

2,2

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) (

T
i i i i i i i i

o e f o e f

T
i T i T i i i i i i i i i i

f e o e f o e f e f

T
i T i T i T i i i i i i i i i

f e o e f o e f e f

T
i i i i i i

o e f e f

t t t

t t t t

t t t t

t

     

    

    

 

I q B q J q B q

q B J q B q q B q J B q

q B J q B q q B q J B q

q B q J B q

2,2

)

2 ( ) ( )i T i i i

n e f

t

t t



 q J B q

 (2.449) 

 

     

   

 

 

, 2,3
2,3

2,3 2,3

2,3

2,3

,
3,2

( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( )

2 ( ) ( )

( )

T
i i i i i i i i

o e f o e f

T
i T i T i i i i i i i i i i

f e o e f o e f e f

T
i i i i i i

o e f e f

i T i i i

n e f

i

t t t

t t t t

t t

t t

t

 

 

   

    

  

 



I q B q J q B q

q B J q B q q B q J B q

q B q J B q

q J B q

I

 (2.450) 
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      
   

   

 

, 3,3
3,3

3,3 3,3

3,3 3,3

3,3

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( )

T
i i i i i i i i

o e f o e f

T
i T i T i i i i i i i i i i

f e o e f o e f e f

T
i T i T i T i i i i i i i i i

f e o e f o e f e f

T
i i i i i

o e f e

d
t t t

dt

t t t t

t t t t

t

     

    

    

 

I q B q J q B q

q B J q B q q B q J B q

q B J q B q q B q J B q

q B q J B q

3,3

( )

2 ( ) ( )

i

f

i T i i i

n e f

t

t t



 q J B q

(2.451) 

The time derivative of the mass submatrix 
, ( )

f

i

q tm  can be computed as 

follows: 

 

 ,

,

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

f

f

i i T i i

q e

i T i i i T i i

e e

i T

q

d
t t t

dt

t t t t

t





 

  



m G H B

G H B G H B

m

 (2.452) 

Where the time derivative of the matrix ( )i tH  can be evaluated as: 
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   

   
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 (2.453) 

The time derivative of mass submatrix 
, ( )

f f

i

q q tm  yields to: 

 
 , ,( )

f f

i i T i i

q q e f f e

d
t

dt
 



m B J B

O

 (2.454) 

By using the time derivative of mass matrix ( )i tM  the first term of 

quadratic velocity vector ( )i

v tQ  can be evaluated as: 
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 (2.455) 

Where the matrix components  ( ) ( )i i

R
t tM q ,  ( ) ( )i it t


M q  and 

 ( ) ( )
f

i i

q
t tM q  are respectively 3 , 4  and 

i
fn

 vectors defined as: 
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 (2.457) 
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 (2.458) 

Where the following matrix identity has been used: 

 ( ) ( )i it t G θ 0  (2.459) 

On the other hand, the second term of quadratic velocity vector ( )i

v tQ  can 

be written as follows: 
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 (2.460) 
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164 MULTIBODY DYNAMICS  

 

 

 

, ,

, ,

,

( ) 1 1
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) 2

1
( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( )

( ) ( ) ( )
( ) ( )

f f

f

i
i T i i i T i i

R Ri i i

i T i i i T i i

f q q f Ri i

i T i i i

R q fi i

T t
t t t t t t

t t t

t t t t t t
t t

t t t
t t

 



     
     

     

  
   
  

 
 
 

R m R θ m θ
θ θ θ

q m q R m θ
θ θ

R m q θ
θ θ

 

   

 

  

,

,

,

( ) ( ) ( )

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 2 ( ) 2

1
( ) ( )

( ) 2

( ) ( ) ( ) ( ) ( )
( )

( )
( )

f

T i i

q f

i T i i i T i T i i i

i i

i T i T i i i

f e f f e fi

i T i i i i

i

i T

i

t t t

t m t t t t t t
t t

t t
t

t t t t t
t

t
t



 



    
     
    

  
  
  


  






m q

R I R θ G I G θ
θ θ

q B J B q
θ

R A U G θ
θ

R
θ

     

 

 

,

( ) ( ) ( ) ( ) ( ) ( )
( )

1
( ) ( ) ( ) ( ) ( )

( ) 2

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

i i i i i T i T i i i

e f e fi

i T i T i i i

i

i T i i i i

i

i T i i i i i T i T i

e fi i

t t t t t t
t

t t t t t
t

t t t t t
t

t t t t t t
t t

 


 


  
  
  


 


 
 
 

A N B q θ G H B q
θ

θ G I G θ
θ

R A U G θ
θ

R A N B q θ G H B
θ θ

 

,

,

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )i

i i

e f

i
i T i T i i i T i i i

i

i
i T i i i i T i i i i T i i i

e f e fi

i T i T i i i T i

t

t
t t t t t t t t

t

t
t t t t t t t t t

t

t t t t t t

 

 




  




   



 
θ

q

A
θ G I G R U G θ

θ

A
R A U G R N B q G H B q

θ

θ G I G R A ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i

i i i

i T i i i i T i i i i i T i i i

e f e f

t t t

t t t t t t t t t t



  
θ

U G θ

R A U G R A N B q G H B q

 (2.462) 
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Where the components of the matrix derivative  , ( )
i
f

i t  q
I , ( )i

f

i t
q

U  and 

( )i
f

i t
q

H  can be respectively evaluated as: 
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 (2.464) 
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 (2.465) 
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Where 
i

lc  is a 
i
fn
 constant vector defined as: 

 
,

( )i

fi

l i

f l

t

q






q
c  (2.467) 

A this stage, all the terms required to evaluate the quadratic velocity vector 

( )i

v tQ  has been explicitly computed. 
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2.7.8.    DYNAMIC EQUATIONS OF FLEXIBLE 
MULTIBODY SYSTEMS 

To derive the mass matrix ( )i tM , the stiffness matrix iK  and the quadratic 

velocity vector ( )i

v tQ  of flexible body i  all configuration coordinates ( )i tq  has 

been considered as independent coordinates. Obviously, this is not the general 

case of a flexible multibody system which is typically formed of a set of flexible 

bodies mutually interconnected. Therefore  the actions of the constraints must be 

considered in the dynamic equations as generalized constraint forces. Indeed, 

consider that the generic body i  of the system is forced to satisfy the following 

constraint equations written in the standard form: 

 ( ) ( ) ( )i i it t tA q b  (2.468) 

Where ( )i tA  is a 
i i
cn n  constraint matrix and ( )i tb  is a 

i
cn  constraint 

vector. (Note that the constraint matrix ( )i tA  relative to body i  has been 

denoted with the same symbol of the rotation matrix ( )i tA  of body i ). These 

equations are a set of algebraic constraint equations written in the standard form 

and encompass all kind of constraints acting on the system, such as mechanical 

joints as well as specific constraints which derive from the definition of Euler 

parameters. Consequently, Lagrange equations take the following form: 

 ,

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

T T T
i i i

i i

e nc ci i i

d T t T t U t
t t

dt t t t

       
        

       
Q Q

q q q
 (2.469) 

Where 
, ( )i

e nc tQ  is a 
in  vector representing the vector of generalized 

external nonconservative forces and ( )i

c tQ  is a 
in  vector representing the 

generalized constraint forces. The first two terms on the left hand side of 

Lagrange equations is equal to the negative of lagrangian components of inertia 

forces ( )i

i tQ  of body i  and it can be explicitly computed by using the 
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expression of kinetic energy ( )iT t  based on the expression of mass matrix 

( )i tM . Indeed: 

  

( ) ( )
( )

( ) ( )

1 ( )
( ) ( ) ( )

( ) 2 ( )
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 (2.470) 

Where ( )i

v tQ  is the 
in  quadratic velocity vector defined as: 

 
( )

( ) ( ) ( )
( )

T
i

i i i

v i

T t
t t t

t

 
  

 
Q M q

q
 (2.471) 

On the other hand, the last term on the left hand side of Lagrange equations 

is equal to the opposite of the lagrangian components of conservative elastic 

forces ( )i

k tQ  of body i  and therefore it can be explicitly computed by using the 

expression of potential energy ( )iU t  based on the expression of stiffness matrix 

iK . Indeed: 
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 (2.472) 

Consequently, the equations of motion of flexible body i  can be expressed 

as: 

 
,( ) ( ) ( ) ( ) ( ) ( )i i i i i i i

v e nc ct t t t t t   M q K q Q Q Q  (2.473) 

These dynamic equations can be easily assembled to derive the equations of 

motion of the whole flexible multibody system formed of 
bn  bodies to yield: 

 
,( ) ( ) ( ) ( ) ( ) ( )v e nc ct t t t t t   M q Kq Q Q Q  (2.474) 

Where the configuration vector ( )tq  represents the total 
n

 vector of the 

system lagrangian coordinates and is defined as follows: 
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 
 
 
 
 
 

q

q
q

q

 (2.475) 

The matrix ( )tM  is the global 
n n

 mass matrix of the flexible multibody 

system and it can be easily assembled as: 
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The matrix K  is the global n n  stiffness matrix of the flexible multibody 

system and it can be easily assembled as: 

 

1

1

bn

 
 
 
 
 
 

K O O

O K O
K

O O K

 (2.477) 

The n  vectors ( )v tQ , 
, ( )e nc tQ  and ( )c tQ  are lagrangian component 

vectors which represent respectively the generalized gyroscopic and Coriolis 

forces, the generalized external nonconservative forces and the generalized 

constraint forces. These vectors can be simply assembled as: 
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 (2.479) 
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 On the other hand, the algebraic constraint equations can be assembled in a 

similar manner to yield: 

 ( ) ( ) ( )t t tA q b  (2.481) 

Where ( )tA  is a cn n
 matrix representing the total constrain matrix and it 

can be directly computed as: 
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The vector ( )tb  is a cn
 vector representing to the global constraint vector 

and it can be directly assembled as: 

 

1

2

( )

( )
( )

( )bn

t

t
t

t

 
 
 
 
 
 

b

b
b

b

 (2.483) 

Finally, the set of equation of motion and constraint equations which 

describe the dynamic of a general flexible multibody system is: 



MULTIBODY DYNAMICS 173  

 
,( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

v e nc ct t t t t t

t t t

   




M q Kq Q Q Q

A q b
 (2.484) 

It is worth noting that, unlike the global mass matrix ( )tM , the global 

stiffness matrix K  results to be a constant matrix. These equation can be 

explicitly solved to get the generalized acceleration vector ( )tq  and the 

generalized constraint vector ( )c tQ  in order to obtain the fundamental 

equations of constrained Dynamics.  
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3. SYSTEM IDENTIFICATION 

3.1. INTRODUCTION 

System identification is the art of determining a mathematical model of a 

physical system by combining information obtained from experimental data with 

that derived from an a priori knowledge  1 . There are several types of system 

identification algorithms in relation to different goals one wants to pursue  2 . 

In mechanical engineering, applied system identification allows to get modal 

parameters of a dynamical system using force and vibration measurements   3 . 

These parameters are typically used to design optimal control laws whereas in 

the field of structural health monitoring they are used to detect and evaluate 

system damage  4 . A very powerful algorithm to perform system identification 

is Eigensystem Realization Algorithm with Data Correlation using 

Observer/Kalman Filter Identification Method (ERA/DC OKID). This method 

was originally developed by Juang  5 ,  6 . This numerical procedure is able to 

construct a state-space representation of a mechanical system starting from input 

and output measurements even in presence of process and measurement noise. 

Another important algorithm is the Numerical Algorithm for State Space 

Subspace System Identification (N4SID). This method was originally developed 

by Van Overschee and De Moor  7 . On the other hand, when all degrees of 

freedom are instrumented with a force and/or an acceleration transducer, an 

efficient numerical procedure can be implemented to construct a second-order 

models of the mechanical system starting from state-space representations 
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(MKR)  8 ,  9 ,  10 . Experimental investigations show that the Eigensystem 

Realization Algorithm with Data Correlation using Observer/Kalman Filter 

Identification Method (ERA/DC OKID), as well as Numerical Algorithm for 

State Space Subspace System Identification (N4SID), correctly determines 

system natural frequencies and damping ratios  11 . On the other hand, the 

method to construct second-order models from state-space representations 

(MKR) properly identifies mass and stiffness matrices but it fails in esteeming 

damping matrix because actual measurements are never noise-free  12 ,  13 . 

Nevertheless, if the real system is lightly damped, an efficient procedure can be 

developed to identifying in a direct way system damping matrix from state-space 

realization by assuming proportional damping hypothesis  12 ,  13 .  
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3.2. STATE SPACE REPRESENTATION  

Consider a linear mechanical system with multiple degrees of freedom. The 

system equations of motion are a set of 
2n  coupled second-order differential 

equations, where 
2n  is the number of system independent coordinates. These 

equations can be expressed in matrix notation as: 

 ( ) ( ) ( ) ( )t t t t  Mx Rx Kx F  (3.1) 

Where ( )tx  is a 2n  vector representing the system generalized 

displacement vector which describe the system dynamic, M , K  and R  are 

2 2n n  matrices representing respectively the system mass, stiffness and 

damping matrices and ( )tF  is a 2n
 vector of external applied forces. In 

practical application not all the degrees of freedom are excited by an external 

force and therefore the vector of forcing functions ( )tF  is typically expressed as 

a linear combination of an input vector. Indeed: 

 
2( ) ( )t tF B u  (3.2) 

Where ( )tu  is a 
r
 input vector and 

2B  is a 2n r
 matrix characterizing 

the location and the type of inputs. On the other hand, in control problem there is 

another set of equations describing the output quantities in terms of the variables 

which describe the system dynamics, namely the measurement equations. The 

measurement equations are a set of m  coupled algebraic equations, where m  is 

the number of the output variables of interest. The measurement equations 

express the vector of output measurements as a linear combination of the system 

generalized displacement, velocity and acceleration vectors. These equations can 

be written in matrix notation as: 

 ( ) ( ) ( ) ( )d v at t t t  y C x C x C x  (3.3) 
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Where ( )ty  is a m  vector containing the measured output quantities and 

dC , 
vC  and 

aC  are 2m n  matrices representing respectively the output 

influence matrices for displacement, velocity and acceleration. Note that in 

practical applications the number of output quantities of interest m  is typically 

lower than the numbers of system degrees of freedom 
2n  because it is 

impractical, or even impossible, to instrument each system degree of freedom 

with a sensor. The sets of equations of motion and measurement equations 

describe respectively the system dynamics and the measurement evolution in 

time by using 
2n  configuration variables such as physical coordinate vectors. On 

the other hand, these sets of equations can also be equivalently represented in 

different forms by using 
22n n  state variables defined as follows: 

 

1

2

( )
( )

( )

( )

( )

t
t

t

t

t

 
  
 

 
  
 

z
z

z

x

x

 (3.4) 

Where ( )tz  is a 
n

 state vector composed of system generalized 

displacement and velocity vectors. Indeed, assuming that the mass matrix M  is 

a non-singular invertible matrix, the equations of motion can be rewritten in 

terms of the state vector ( )tz  as follows: 

 
1 2

1 1 1

2 2 1 2

( ) ( )

( ) ( ) ( ) ( )

t t

t t t t  




   

z z

z M Rz M Kz M B u
 (3.5) 

Where an identity equation deriving from the definition of the state vector 

has been adjoined as first vector equation. Consequently, the original second-

order equations of motion can now be rewritten in first-order form as: 

 ( ) ( ) ( )c ct t t z A z B u  (3.6) 
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Where 
cA  is a n n  matrix representing the continuous-time system state 

matrix and 
cB  is a n r  matrix representing the continuous-time system state 

influence matrix. These matrices are respectively defined as: 

 
1 1c  

 
  
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O I
A

M K M R
 (3.7) 

 
1

2

c 

 
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 

O
B

M B
 (3.8) 

In addition, the output equations can be expressed in terms of the state 

vector ( )tz  as: 

 ( ) ( ) ( )t t ty Cz + Du  (3.9) 

Where C  is a m n  matrix representing the output influence matrix and D  

is a m r  matrix called direct transmission matrix. These matrices can be 

respectively computed as: 

 
1 1

d a v a

     C C C M K C C M R  (3.10) 

 
1

2a

D C M B  (3.11) 

The sets of equations of motion and measurement equations constitute a 

continuous-time state-space model of the dynamical system. The state-space 

model describes the relationship between the inputs and the outputs of a system 

between an intermediate variable named the state vector ( )tz . It is worth to 

point out that the state-space model is coordinate dependent. Indeed, let the state 

vector be transformed by a new set of coordinates: 

 ( ) ( )t tz Tz  (3.12) 
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Where T  is a n n  matrix representing an invertible coordinate 

transformation. According to this coordinate transformation, the state-space 

model become: 

 ( ) ( ) ( )c ct t t z A z B u  (3.13) 

 ( ) ( ) ( )t t ty Cz + Du  (3.14) 

Where 
cA , 

cB  and C  are respectively n n , n r  and m n  matrices 

representing the state matrix, the state influence matrix and the output influence 

matrix referred to the transformed state ( )tz . These matrices can be computed 

as: 

 1

c c

A TA T  (3.15) 

 
1

c c

B T B  (3.16) 

 C CT  (3.17) 

 This transformed state-space model is related to the original one by a 

similarity transformation in the sense that the transformation T  preserves the 

eigenvalues of the state space matrix 
cA . In addition, the transformed state-

space model describes the same input-output relationship as the original state 

space model. Note that the direct transmission matrix D  is coordinate 

independent. The state-space representations of system equations of motion can 

be reformulated in a symmetric form. The symmetric reformulation of system 

state-space model can be achieved in at least two ways. The first method 

considers the following formulation of system equations of motion in terms of 

the state vector ( )tz : 



SYSTEM IDENTIFICATION 181  

 
1 2 1 2

1 2

( ) ( ) ( ) ( )

( ) ( )

t t t t
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Rz Mz Kz B u

Mz Mz
 (3.18) 

 Where an identity equation has been adjoined as second matrix equation. 

Consequently, the second-order equations of motion can be rewritten in first-

order form as: 

 ( ) ( ) ( )c c ct t t V z S z N u  (3.19) 

Where 
cV  and 

cS  are n n  symmetric matrices and 
cN  is a n r  matrix 

respectively defined as: 
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2

c
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B
N

O
 (3.22) 

This is the first method to obtain a symmetric formulation of the system 

state-space model. The second method to derive a symmetric representation of 

the system state-space model is based on the following formulation of system 

equations of motion in terms of the state vector ( )tz :  

 
1 2

2 1 2 2

( ) ( )

( ) ( ) ( ) ( )

t t

t t t t

  

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Kz Kz
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 (3.23) 
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Where an identity equation has been adjoined as first matrix equation. 

Similarly to the previous case, the second-order equations of motion can be 

expressed in first-order form as follows: 

 ( ) ( ) ( )c c ct t t V z S z N u  (3.24) 

Where 
cV  and 

cS  are n n  symmetric matrices and 
cN  is a n r  matrix 

respectively defined as: 

 
c

 
  
 

K O
V

O M
 (3.25) 

 
c

 
  

  

O K
S

K R
 (3.26) 

 
2

c

 
  
 

O
N

B
 (3.27) 

Note that the symmetric formulations of the state-space representation of 

the system equations of motion are both ascribable to the standard one observing 

that the state transmission matrix 
cA  and the state influence matrix 

cB  can be 

expressed using the matrices 
cV , 

cS  and 
cN . Indeed: 

 
1

c c c

A V S  (3.28) 

 
1

c c c

B V N  (3.29) 

One of the major advantages of representing the equations of motion in a 

state-space formulation is that the now the equations assume the form of a 

system of first-order matrix differential equations and therefore they can be 

solved in a straightforward manner by using Duhamel principle to yield: 
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   0

0
0( ) ( )c c

tt t t

c
t

t e e d


 
 

  
A A

z z B u  (3.30) 

Where 
0z  is a n  vector containing the initial conditions. The output 

vector can be directly computed by using this expression of state vector to yield: 

 
   0

0
0( ) ( ) ( )c c

tt t t

c
t

t e e d t


 
 

  
A A

y C z C B u + Du  (3.31) 

The solution of system first-order differential equations of motion can be 

used to convert the continuous-time state-space model to a discrete-time 

representation for digital control considering the zero-order hold mechanism. A 

zero-order hold device takes a continuous signal and turns it in a stepwise one in 

which the signal is sampled and held for a certain interval of time.  In practice, 

when a control system is implemented by a computer, the inclusion of a sample 

and hold device is routine. If the sampling interval is t , the sampling 

frequency 
cf  is equal the inverse of the sampling interval t  and the Nyquist 

frequency 
Nf , that is the maximum frequency captured by the sampling process 

or, in other words, the frequency at which the aliasing phenomenon starts 

occurring, is equal to one half of the sampling frequency 
cf . Indeed: 

 
1

cf
t




 (3.32) 

 

1

2

1

2

N cf f

t

 




 (3.33) 

Consider the following discrete sampling interval: 

 0, , 2 , , , ( 1) ,t t t k t k t       (3.34) 
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 Assume that the input vector is held constant and equal to ( )k tu  over the 

time interval from 
0t k t   to ( 1)t k t    by a zero-order hold device: 

  ( ) ( ) , 1 , 1, 2, 3,t k t k t t k t k       u u  (3.35) 

The solution of the continuous-time state-space model can be rewritten by 

using zero-order hold assumption as: 

 
     1 1

0

( 1 ) ( ) ( )

( ) ( )

cc

c c

k t k tt

c
k t

t
t

c

k t e k t e k t d

e k t e d k t









    






      

   





AA

A A

z z B u

z B u

 (3.36) 

Where the following change of variable has been used: 

  1k t       (3.37) 

Using the simplified notation k  for the time argument k t , a discrete-time 

representation of system equations of motion can be obtained from the previous 

equations: 

 ( 1) ( ) ( )k k k  z Az Bu  (3.38) 

Where A  is a 
n n

 matrix representing the discrete-time system state 

matrix and B  is a 
n r

 matrix representing the discrete-time system state 

influence matrix. These matrices are respectively defined as: 

 c t
e




A
A  (3.39) 

 
0

c
t

ce d
 


  

A
B B  (3.40) 
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The discrete-time state matrix A  and the discrete-time state influence 

matrix B  can be explicitly computed from their continuous-time counterparts 

directly utilizing their definitions:    

 

2 2 3 3

1

0

1 1

2 6

1

!

1

!

c t

c c c

k k

c

k

k k

c

k

e

t t t

t
k

t
k











 

        

 
    

 

 
  

 





A
A

I A A A

I A

A

 (3.41) 

 

0

2 2 3 3

0

2 2 3 3 4

0

2 2 3 3 4

1

1

1 1

2 6

1 1 1

2 6 24

1 1 1

2 6 24

1

!

c
t

c

t

c c c c

t

c c c c

c c c c

k k

c c

k

e d

d

t t t t

t
k

 

   

   

 










 

 
         

 

 
         

 

 
          
 

  
   

  







A
B B

I A A A B

I A A A B

I A A A B

A B

 (3.42) 

If none of the eigenvalues of 
cA  are zero, then 

1A  exists and the 

expression for B  can be further simplified to yield: 

  1

c c

 B A A I B  (3.43) 

On the other hand, by using zero-order hold assumption the output 

equations can be sampled at each instant in an analogous fashion to yield: 
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 ( ) ( ) ( )k k ky Cz + Du  (3.44) 

     Note that output influence matrix C  and the direct transmission matrix 

D  do not change in the discrete-time representation. The sets of discretized 

equations of motion and discretized measurement equations constitute a discrete-

time state-space model of the dynamical system. Note that a similarity 

transformation of the discrete-time state space model produces similar effects as 

in the case of continuous-time state space model, namely the eigenvalues of the 

discrete state matrix are unchanged as well as the input-output relationship. 

Because experimental data are always discrete in practice, these sets of 

equations form the basis for applied system identification of linear, time-

invariant, dynamical systems. It is worth to notice that a continuous-time system 

can be represented by a discrete-time one which exactly describe its time 

evolution in the sampling instants. This model is very different from a 

discretized model which can be obtained by the numerical approximation of the 

time derivatives with a finite difference scheme.  Indeed, the discrete-time model 

has been obtained by actually integrating the state equations over each 

successive time interval and therefore the system response derived from the 

discrete-time model is correct in the sampling instants. On the other hand, unlike 

the discrete time model, a finite difference scheme is not able to represent 

exactly the system response at the sampling instants no matter how small the 

approximation error is.   
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3.3. MODAL ANALYSIS OF STATE SPACE 
MODEL 

Consider the continuous-time state-space representation of the equations of 

motion of a linear time-invariant dynamical system and assume that there are not 

external inputs. The equations of state are: 

 ( ) ( )ct tz A z  (3.45) 

The solution of these differential equations can be found supposing that the 

state vector assumes this form: 

 ( ) ctt e


z ψ  (3.46) 

Where ψ  is an n  unknown vector and 
c  is an unknown scalar. The 

assumed solution must satisfy the state equations and therefore to impose it the 

supposed solution can be put into the state equations in order to get: 

  c c A I ψ 0  (3.47) 

This is an eigenvalue problem for the state matrix 
cA  that can be restated 

in the standard form as follows: 

 
c cA ψ ψ  (3.48) 

The results of this problem is a set of n  complex conjugate eigenvalues: 

 

2

,2 1 , ,

2

,2 1 , ,

1
, 1,2, ,

1

c j j n j n j j

c j j n j n j j

j n
    

    







    


   

i

i

 (3.49) 
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These complex conjugate eigenvalues 
,c j  correspond to a set of n  natural 

frequencies 
,n j , a set of n  damping ratios 

j  and to a set of n  complex 

conjugate eigenvectors 
jψ  which represent the system mode shapes. The sets of 

eigenvalues and eigenvectors can be grouped in a matrix form as: 

 
,1 ,2 , 1 ,( , , , , )c c c c n c ndiag    Λ  (3.50) 

  1 2 1n nΨ ψ ψ ψ ψ  (3.51) 

Where 
cΛ  is a n n  diagonal matrix containing the system eigenvalues 

and Ψ  is a n n  matrix containing the system eigenvectors stacked by column. 

By using these definitions the eigenvalues problem of state matrix 
cA  can be 

restated in matrix form as: 

 
c cA Ψ ΨΛ  (3.52) 

  Assume that 
jφ  are the 

2n  eigenvectors of system equations of motion 

written in physical coordinates. This set of eigenvectors can be put in a matrix 

form as: 

 
2 21 1 n n

    W φ φ φ φ  (3.53) 

 Where W  is a 2n n
 eigenvector matrix. The state-space eigenvector 

matrix Ψ  can be expressed using the physical coordinate eigenvector matrix 

W  and the eigenvalues matrix 
cΛ  as: 

 
c

 
  
 

W
Ψ

WΛ
 (3.54) 
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Note that the matrix exponential cte
A  can be computed by using the spectral 

decomposition of the state matrix 
cA  as follows: 

 1c ct t
e e 

A Λ
Ψ Ψ  (3.55) 

On the other hand, consider the eigenvalue problem of the discrete-time 

system state matrix A :   

 AΨ ΨΛ  (3.56) 

Where Λ  is a n n  diagonal matrix containing the discrete-time system 

eigenvalues and Ψ  is a n n  matrix containing the system eigenvectors stacked 

by column. The discrete-time system eigenvalues are related to the continuous-

time system eigenvalues by the following matrix equation: 

 c t
e




Λ
Λ  (3.57) 

Where t  is the time interval of the digital sampling. Note that the 

continuous-time system eigenvectors and the discrete-time eigenvectors are 

represented by the same matrix Ψ  because they are identical. On the other hand, 

the converse transformation from discrete-time eigenvalues to continuous-time 

eigenvalues can be written as: 

 
1

ln( )c
t




Λ Λ  (3.58) 

 It is important to note that the transformation from the discrete-time model 

to the continuous-time model is not unique. Indeed, the imaginary part of a 

natural logarithm of a complex number can be adjusted by the addition of a 

multiple of 2  which allows the reconstructed continuous-time eigenvalues to 

take on different values. For instance, for the generic eigenvalue j : 
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,

, 2
,

c j

c j

t

j

t k

e

e k



 




 

 

  
i

 (3.59) 

 
,

ln( )2
,

j

c j

k
k

t t


    

 
i  (3.60) 

This correspond to the fact that any two frequencies which differs by a 

multiple of 
2

t




 are actually indistinguishable when observed at the sampling 

frequency 
1

cf
t




. Therefore, in practical applications to correctly interpret 

natural frequencies of physical system either the sampling interval t  must be 

sufficiently short or a filter must be added to prevent that frequencies beyond the 

Nyquist frequency are interpreted as real frequencies. Consider now the 

following modal transformation of coordinates for the discrete-time state-space 

model: 

 ( ) ( )k kz Ψp  (3.61) 

Where ( )kp  is a 
n

 discrete-time modal state vector. By using this 

coordinate transformation a modal model of system discrete-time state-space 

representation can be obtained as: 

 ( 1) ( ) ( )m mk k k  p A p B u  (3.62) 

 ( ) ( ) ( )mk k ky C p + Du  (3.63) 

 Where 
mA , 

mB  and mC  are respectively 
n n

, 
n r

 and 
m n

 matrices 

representing the modal state matrix, the modal state influence matrix and the 

modal output influence matrix. These matrices can be computed as: 
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m A Λ  (3.64) 

 1

m

B Ψ B  (3.65) 

 
m C CΨ  (3.66) 

Indeed, the discrete-time modal state matrix 
mA  is exactly equal to the 

discrete-time eigenvalue matrix Λ . The modal state matrix 
mA  contains the 

information of system natural frequencies and damping ratios whereas the modal 

state influence matrix 
mB  define the initial mode amplitudes and the modal 

output influence matrix 
mC  represent the mode shapes at the sensor points. All 

the modal parameters of a dynamic system can thus be identified by the triplet of 

matrices 
mA , 

mB  and 
mC . It is important to realize that system modal 

parameters are unique for a given state-space model and therefore the triplet of 

modal matrices 
mA , 

mB  and 
mC  are coordinate independent as well as the 

direct transmission term D .  
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3.4. MARKOV PARAMETERS 

Consider a discrete-time state-space model described by the following set 

of equations: 

 ( 1) ( ) ( )k k k z Az + Bu  (3.67) 

 ( ) ( ) ( )k k ky Cz + Du  (3.68) 

The computation of system response to a general input vector ( )ku  can be 

easily performed because the integration action is already built into the model. 

Indeed: 

  1

1

( ) (0) ( )
k

k j

j

k k j



  z A z A Bu  (3.69) 

  1

1

( ) (0) ( ) ( )
k

k j

j

k k j k



   y CA z C A Bu Du  (3.70) 

Where (0)z  is a 
n

 vector containing the initial state. Note that the 

response of the discrete-time model differs from the response of the continuous-

time model because in the discrete-time case the input functions are discretized 

with a zero-order hold device. Consider now a series of pulse functions applied 

at initial instant for each input: 
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   
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   
   
   

   
   
      
   
   
   

u u

u u

u u

 (3.71) 

When the substitution of this input series is performed in the system 

response assuming zero initial conditions, the results can be assembled into a 

sequence of pulse-response matrices: 

 
1

0 1 2, , , , k

k

   H O H B H AB H A B  (3.72) 

 
1

0 1 2, , , , k

k

   Y D Y CB Y CAB Y CA B  (3.73) 

Where 
kH  and 

kY  are respectively 
n r

 and 
m r

 matrices which are 

known as system Markov parameters. Note that these parameters are related by 

the following equations: 

 , 1, 2,k k k Y CH  (3.74) 

System Markov parameters can be obtained from experimental data and are 

typically used as the basis for system identification algorithms. Indeed, it 
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straightforward to realize that the discrete-time state-space model is embedded 

in the Markov parameters sequence. Since the Markov parameters sequence is 

simply the pulse response of the system, they must be unique for a given system. 

Therefore any coordinate transformation of the state vector yields the same 

system Markov parameters. Using the definitions of system Markov parameters, 

the system response to a general input vector assuming zero initial conditions 

can be rewritten as: 

  
0

( ) ( )
k

j

j

k k j


 z H u  (3.75) 

  
0

( ) ( )
k

j

j

k k j


 y Y u  (3.76) 

These equations shows that the contributions to the state ( )kz  and to the 

output ( )ky  at time step k  given by the input ( )ku  and by the input ( )k ju  

applied at the previous time steps are weighted by the Markov parameters. 

Therefore the pulse response sequence is also known as the weighting sequence 

and the input-output description is called weighting sequence description. The 

weighting sequence description uses the pulse response sequence to characterize 

the input-output relationship instead of using the state description. The 

advantage of this description is that the dimension of the matrix sequence 

needed is determined by the number of inputs r  and outputs m  only, regardless 

the order of system state n . On the other hand, the disadvantage of this 

formulation is that for lightly damped systems a large number of terms must be 

retained in the summation of the weighting sequence description to obtain a 

satisfactory approximation. To overcome this problem, the discrete-time state-

space model can be slightly modified introducing an observer which provide an 

estimate of system state from inputs and outputs measurements.  The discrete-

time state-space model with the introduction of the state estimator becomes:  

 ˆ ˆ ˆ( 1) ( ) ( ) ( ( ) ( ))k k k k k   z Az +Bu G y y  (3.77) 
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 ˆ ˆ( ) ( ) ( )k k ky Cz + Du  (3.78) 

Where ˆ( )kz  is an n  estimated state vector, ˆ ( )ky  is an m  estimated 

output vector and G  is an n m  observer matrix. These equations forms a 

discrete-time state-space observer model of a dynamical system. The discrete-

time state-space observer state equations can be rewritten in a compact form as 

follows: 

 ˆ ˆ( 1) ( ) ( )k k k z Az + Bv  (3.79) 

Where A  is a n n  discrete-time observer state matrix, B  is a ( )n r m   

discrete-time observer state influence matrix and ( )kv  is a r m   generalized 

input vector respectively defined as: 

  A A GC  (3.80) 

    B B GD G  (3.81) 

 
( )

( )
( )

k
k

k

 
  
 

u
v

y
 (3.82) 

Note that by using the previous definitions the discrete-time state-space 

observer model appears identical in form respect to discrete-time state-space 

model. However, the eigenvalues of observer state matrix A  are moved from 

the eigenvalues of the state matrix A  as a consequence of the introduction of 

the observer matrix G . Therefore, since the observer matrix G  can be arbitrary 

chosen, the observer state matrix A  can be made as asymptotically stable as 

desired. In practical applications the presence of process and measurement noise 

suggests to choose the Kalman filter as gain matrix G . Since the discrete-time 
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state-space observer model is analogous in form to the continuous-time state-

space model, a set of Markov parameters can be defined in a similar way: 

 1

0 1 2, , , , k

k

   H O H B H AB H A B  (3.83) 

 1

0 1 2, , , , k

k

   Y D Y CB Y CAB Y CA B  (3.84) 

Where 
kH  and 

kY  are respectively ( )n r m   and ( )m r m   matrices which 

are known as observer Markov parameters. Similarly to system Markov 

parameters, observer Markov parameters are related by the following equations: 

 , 1, 2,k k k Y CH  (3.85) 

Developing the definitions of observer Markov parameters, these matrices 

can be expressed in a slightly different form as: 

 
(1) (2)

k k k
   H H H  (3.86) 

 
(1) (2)

k k k
   Y Y Y  (3.87) 

Where 
(1)

kH , 
( 2)

kH , 
(1)

kY  and 
(2)

kY  are respectively 
n r

, 
n m

, 
m r

 and 

m m
 matrices defined as: 

 
(1) 1( ) ( )k

k

  H A GC B GD  (3.88) 

 
(2) 1( )k

k

 H A GC G  (3.89) 

 
(1) 1( ) ( )k

k

  Y C A GC B GD  (3.90) 

 
(2) 1( )k

k

 Y C A GC G  (3.91) 
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    The observer Markov parameters can be obtained from experimental data 

and they can be used to as a basis to compute system Markov parameters. 

Therefore, the observer Markov parameters can be used rather than identifying 

the systems Markov parameters, which can exhibit very slow decay for lightly 

damped systems. Indeed, the primary purpose of introducing an observer matrix 

G  is as an artifice to compress the data and to improve the identification results 

at the same time. The matrix G  can thus be chosen in an optimal way in the 

sense that the number of computed parameters is the minimum number needed 

to describe the system input-output relationship. This means that in the case of 

lightly damped structures, the system can be described by a relatively small 

number of observer Markov parameters instead of an otherwise large number of 

system Markov parameters. Consider now the response of discrete-time state-

space observer model to a generalized input vector ( )kv . This response can be 

easily computed assuming zero initial conditions as follows: 

  1

1

ˆ( ) ( )
k

j

j

k k j



 z A Bv  (3.92) 

  1

1

ˆ ( ) ( ) ( )
k

j

j

k k j k



  y C A Bv Du  (3.93) 

Using the definitions of observer Markov parameters, the observer system 

response to a general input vector can be rewritten as:   

  
0

ˆ( ) ( )
k

j

j

k k j


 z H v  (3.94) 

  
0

ˆ ( ) ( )
k

j

j

k k j


 y Y v  (3.95) 
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The estimated output vector ˆ ( )ky  can be rewritten by using the matrix 

partition of observer Markov parameters 
kY  and the definition of the 

generalized input vector ( )kv  as: 

    (2) (1)

1 1

ˆ ( ) ( ) ( ) ( )
k k

j j

j j

k k j k j k
 

     y Y y Y u Du  (3.96) 

The observer state matrix A  can be made sufficiently stable with a proper 

choice of the observer matrix G  and consequently p
A  can be neglected, where 

p  is a relatively small integer. Therefore, for a time step k  greater than p , the 

estimated output ˆ ( )ky  closely approaches the measured output ( )ky  because 

the estimation error is related to the power of observer state matrix A  which   

approaches zero. Indeed, for a sufficiently large k : 

    (2) (1)

1 1

( ) ( ) ( ) ( )
p p

j j

j j

k k j k j k
 

     y Y y Y u Du  (3.97) 

This matrix equation is called the linear difference model for multiple input 

and multiple output linear time-invariant dynamical systems alias 

Autoregressive model with Exogeneous input or ARX model. The ARX model 

represents the input-output description of discrete-time state-space observer 

systems similar to the weighting sequence description of discrete-time state-

space systems. Note that this description is based on the assumption of zero 

initial conditions or that the system is in the condition of a steady state. The 

coefficients of the finite difference model can be experimentally computed from 

input and output data together with the observer matrix. Indeed, define the 

following sequence of Markov parameters: 

 
0 0 0 1

1 2, , , k

k

  H G H AG H A G  (3.98) 

 
0 0 0 1

1 2, , , k

k

  Y CG Y CAG Y CA G  (3.99) 
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Where 0

kH  and 0

kY  are respectively n m  and m m  matrices which are 

known as observer gain Markov parameters. Similarly to system Markov 

parameters and to observer Markov parameters, observer gain Markov 

parameters are related by the following equations: 

 0 0 , 1, 2,k k k Y CH  (3.100) 

In addition, the ARX model can be expressed in a compact form grouping 

together the observer Markov parameters: 

 

 

 

1

0

( ) ( ) ( )

( )

p

j

j

p

j

j

k k j k

k j





   

 





y Y v Du

Y v

 (3.101) 

The coefficients of the finite difference model can be computed from input 

and output data. 
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3.5. OBSERVER/KALMAN FILTER 
IDENTIFICATION METHOD (OKID) 

The Observer/Kalman Filter Identification Method is an identification 

algorithm which allows to compute Markov parameters from a given set of 

experimental input and output data. Consider a set of input and output data 

record of length l . The ARX representation of input and output data can be 

formulated for each time step and grouped in a matrix form to yield: 

 
p pY L V  (3.102) 

Where Y , 
pL  and 

pV  are respectively m l , ( ( ) )m r r m p    and 

( ( ) )r r m p l    matrices defined as: 

  (0) (1) (2) ( 1)l Y y y y y  (3.103) 

 0 1 2p p
   L Y Y Y Y  (3.104) 

 

(0) (1) ( ) ( 1)

(0) ( 1) ( 2)

(0) ( 1)

p

p l

p l

l p

 
 

 
 
 
 

  

u u u u

0 v v v
V

0 0 v v

 (3.105) 

The block matrix 
pL  contains the sequence of first p  observer Markov 

parameters which are necessary for the ARX input/output description of the 

system. These parameters can be recovered from experimental input and output 

data by least-squares method yielding: 

 p p

L YV  (3.106) 
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Where 
p

V  is a ( ( ) )m r r m p    matrix which represents the Moore-Penrose 

pseudoinverse of matrix 
pV . Once that observer Markov parameters has been 

computed from input/output data, the system Markov parameters and the 

observer gain Markov parameters can be experimentally computed in the 

following way: 

 

0 0

(1) (2)

1

(2)

1

, 1, 2, ,

, 1, 2,

k

k k j k j

j

p

k j k j

j

k p

k p p












 


  


     






D Y Y

Y Y Y Y

Y Y Y

 (3.107) 

 

0 (2)

1 1

1
0 (2) (2) 0

1

0 (2) 0

1

, 2,3, ,

, 1, 2,

k

k k j k j

j

p

k j k j

j

k p

k p p














 


  


     






Y CG Y

Y Y Y Y

Y Y Y

 (3.108) 

The previous two sets of equations show that from time step 1p   the 

system Markov parameter and the observer gain Markov parameters become a 

linear combination of the past Markov parameters. Consequently, there are only 

p  independent system Markov parameters and observer gain Markov 

parameters. It can be proved  5  that the number of observer Markov 

parameters p  must be chosen such that mp n , where m  is the number of 

outputs and n  is the order of system. The number p  determine thus the 

maximum number of independent system Markov parameters and therefore the 

product mp  represents the upper bound on the order of the identified system 
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model. On the other hand, consider the case in which a system discrete-time 

state-space model is available from a theoretical investigation or from an 

experimental identification. In this case, the identified observer matrix G  can be 

computed by the recovered sequence of observer gain Markov parameters 0

kY  

and exploiting the knowledge of system state matrix A  and output influence 

matrix C . Indeed, consider the following matrix equation derived from the 

definition of observer gain Markov parameters: 

 0

p pP G Y  (3.109) 

Where 
pP  and 0

pY  are respectively mp n  and mp m  matrices defined as: 

 

1

p

p

 
 
 
 
 
 

C

CA
P

CA

 (3.110) 

 

0

1

0

20

0

p

p

 
 
 
 
 
  

Y

Y
Y

Y

 (3.111) 

Therefore, the observer gain matrix G  can be computed by using least-

squares method as: 

 
0

p p

G P Y  (3.112) 

Where p

P  is a 
( ( ) )m r r m p  

 matrix which represents the Moore-Penrose 

pseudoinverse of matrix pP .  Finally, it can be proved that if the data length l  is 

sufficiently long and if the order of the observer p  is sufficiently large, then the 
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identified observer matrix G  computed from the combined Markov parameters 

coincides with the steady-state Kalman filter gain K  which produces the same 

input and output map. Indeed: 

  G K  (3.113) 

   In practical applications the identified filter matrix G  is not a steady-state 

Kalman filter gain because of the presence of disturbances, nonlinearities, non-

whiteness of the process and measurement noises, etcetera. In this case, the 

identified filter is simply an observer that is computed from input and output 

data which minimizes the filter residual in a least-squares sense. 
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3.6. EIGENSYSTEM REALIZATION 
ALGORITHM WITH DATA CORRELATIONS 
(ERA/DC) USING OBSERVER/KALMAN FILTER 
IDENTIFICATION METHOD (OKID) 

Eigensystem Realization Algorithm (ERA) is a numerical method which is 

able to derive a state-space realization of a dynamical system starting from 

system Markov parameters  5 ,  6 . A realization is a triplet of state-space 

matrices A , B  and C  representing the state-space model of a dynamical 

system which can be extracted from a given set of system Markov parameters. 

Any dynamical system has an infinite number of realization which reproduces 

the same input-output mapping. Minimum realization means a model with the 

smallest state-space dimensions among all realizable systems that have identical 

input-output relationship and all minimum realizations have the same set of 

modal parameters. The basic development of the state-space realization methods 

is attributed to Ho and Kalman, who introduced the principles of minimum 

realization theory for first  14 . The Ho-Kalman method uses the generalized 

Hankel matrix to derive a state-space representation of a linear dynamical 

system starting from noise-free data. This method has been modified and 

substantially extended by Juang to develop the Eigensystem Realization 

Algorithm (ERA) and subsequently the Eigensystem Realization Algorithm with 

Data Correlation (ERA/DC) in order to identify a state-space model from system 

Markov parameters obtained from noisy measurement data 5 ,  6 . Afterwards, 

Juang developed a method named Eigensystem Realization Algorithm with Data 

Correlation (ERA/DC) using Observer/Kalman Filter Identification Method 

(OKID) which is able to compute simultaneously a state-space realization and an 

observer gain matrix of a dynamical system starting directly from noisy input-

output data  5 ,  6 . The Eigensystem Realization Algorithm (ERA) begins by 

forming the generalized Hankel matrix composed of system Markov parameters, 

which is defined as: 
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1 1

1 2

1 2

( 1)

k k k

k k k

k k k

k





   

  

  

     

 
 
  
 
 
  

Y Y Y

Y Y Y
H

Y Y Y

 (3.114) 

Where ( 1)k H  is a m r   block data matrix and  ,   are two integer 

assumed larger than system order n . Usually, for a data record of length l ,   is 

set equal to p  and   is set equal to l p . Using the definition of system 

Markov parameters 
kY  the generalized Hankel matrix ( 1)k H  can be 

decomposed as: 

 
1( 1) kk  

 H P A Q  (3.115) 

Where 
P  and Q  are respectively m n   and n r  matrices 

representing the observability matrix and the controllability matrix defined as: 

 
2

1





 
 
 
 
 
 
  

C

CA

P CA

CA

 (3.116) 

 
2 1



   Q B AB A B A B  (3.117) 

In general, a linear time-invariant dynamical system of order n  is 

observable if and only if its observability matrix P  has rank n . An observable 

system is a dynamical system whose state at a generic time step   can be 

reconstructed knowing the input and output sequences over the finite time 

interval 0 k   . On the other hand, a linear time-invariant dynamical system 
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of order n  is controllable if and only if its controllability matrix 
Q  has rank 

n . A controllable system is a dynamical system whose state at a generic time 

step   can be reached from any initial state by some control input acting on the 

system over the finite time interval 0 k   .  If the system is controllable and 

observable, then the block matrices 
P  and 

Q  are both of rank n . For 1k   

and for 2k   the generalized Hankel matrix ( 1)k H  becomes: 

 

1 2

2 3 1

1 1

(0)





   



  

 
 
 
 
 
  

Y Y Y

Y Y Y
H

Y Y Y

 (3.118) 

 

2 3 1

3 4 2

1 2

(1)





   





  

 
 
 
 
 
  

Y Y Y

Y Y Y
H

Y Y Y

 (3.119) 

Note that 
0 Y D  is not included in (0)H . These matrices can be 

respectively decomposed as follows: 

 (0)  H P Q  (3.120) 

 (1)  H P AQ  (3.121) 

If the system is controllable and observable, the Hankel matrix (0)H  is 

rank n  and the maximum order of the identified system is equal to m . The  

next step of Eigensystem Realization Algorithm (ERA) is the factorization of the 

Hankel matrix (0)H  by using the Singular Value Decomposition method 

(SVD)  15  to yield: 
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 (0) TH RΣS  (3.122) 

Where Σ  is a m r   diagonal matrix containing the singular values of 

matrix (0)H  whereas R  and S  are respectively m m   and r r   

orthonormal matrices containing the left singular vectors and the right singular 

vectors of matrix (0)H . These matrices can be respectively partitioned as 

follows: 

 
n 

  
 

Σ O
Σ

O O
 (3.123) 

  n m n R R R  (3.124) 

 n r n 
   S S S  (3.125) 

Where 
nΣ , 

nR , 
m n R , 

nS  and 
r n S  are respectively n n , m n  , 

( )m m n   , 
r n 

 and 
( )r r n  

 matrices. The matrix 
nΣ  is a diagonal matrix 

containing the significant singular values of the system. Indeed: 

 
1 2( , , , )n ndiag   Σ  (3.126) 

Because of measurement noise, nonlinearity and round-off errors, the 

Hankel matrix (0)H  is typically of full rank which generally is not equal to the 

true order of the system under test. Therefore, in order to do not reproduce 

exactly the noise sequence of data, or rather to get a realization which 

reproduces a smoothed version of input-output data and that closely represents 

the underlying linear dynamics of the system, the Hankel matrix (0)H  can be 

approximated as: 

 (0) T

n n nH R Σ S  (3.127) 
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One interpretation of this factorization is that the observability matrix 
P  is 

related to the left singular vector matrix 
nR  and the controllability matrix 

Q  is 

related to the right singular vector matrix 
nS . Indeed, it can be proved  5 ,  6  

that the identified observability and controllability matrices can be computed as: 

 1/2ˆ
n n P R Σ  (3.128) 

 1/2ˆ T

n n Q Σ S  (3.129) 

This choice of observability and controllability matrices ˆ
P  and ˆ

Q  

appear to be balanced in the sense the observability and controllability 

grammians are equal and diagonal. Indeed: 

 ˆ ˆT

n  P P Σ  (3.130) 

 ˆ ˆ T

n  Q Q Σ  (3.131) 

The fact that the observability and controllability grammians are equal and 

diagonal implies that the identified state-space model is as observable as it is 

controllable. This means that the identified state-space model is an internally 

balanced realization in the sense that the signal transfer from the input to the 

state and from the state to the output are similar and balanced.  Once that the 

observability matrix ˆ
P  and the controllability matrix ˆ Q  have been identified, 

the output influence matrix Ĉ  and the state influence matrix B̂  can be 

respectively identified from the first m  rows of the observability matrix ˆP  and 

from the first r  columns of the controllability matrix ˆ Q . Indeed: 
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1/2

ˆ ˆT

m

T

m n n

 



 



C E P

E R Σ
 (3.132) 

 
1/2

ˆˆ
r

T

n n r

 



 



B Q E

Σ S E
 (3.133) 

Where 
mE  and 

mE  are respectively m m   and r r   Boolean matrices 

defined as: 

 , , ,

T

m m m m m m m    E I O O  (3.134) 

 , , ,

T

r r r r r r r    E I O O  (3.135) 

On the other hand, using the factorization of Hankel matrix (1)H  and the 

identified observability and controllability matrices ˆ
P  and ˆ

Q , it can be 

proved  5 ,  6  that the identified state matrix Â  can be computed as: 

 1/2 1/2ˆ (1)T

n n n n

 A Σ R H S Σ  (3.136) 

 In brief, the Eigensystem Realization Algorithm (ERA) leads to the 

following identified state-space model: 

 

1/2 1/2

1/2

1/2

0 0

ˆ (1)

ˆ

ˆ

ˆ

T

n n n n

T

n n r

T

m n n





  








 

A Σ R H S Σ

B Σ S E

C E R Σ

D Y Y

 (3.137) 
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It is worth noting that the identified state-space model is not unique in the 

sense that it is coordinate dependent. Nevertheless, the state-space realization 

obtained by Eigensystem Realization Algorithm (ERA) is a minimum order, 

controllable and observable realization whose modal parameters are identical to 

the modal parameters of the true system. Now consider the Eigensystem 

Realization Algorithm with Data Correlations (ERA/DC). This method utilizes a 

set of correlation matrices derived from Hankel matrices. Indeed, define the 

following correlation matrix: 

 

     
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2 3 1 2 3 1
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 (3.138) 

Where ( )HH kΔ  is a 
m m 

 square matrix obtained from the correlation 

between the Hankel matrix evaluated at the generic time step k  and the Hankel 

matrix at the initial time step. Indeed, the correlation matrix ( )HH kΔ  consists of 

auto-correlations and cross-correlation of system Markov parameters at lag time 

of values from k  to k  . Therefore, if the noises in system Markov 

parameters are not correlated, then the correlation matrix ( )HH kΔ  contain less 

noise than the Hankel matrix ( )kH . The block data correlation matrix ( )HH kΔ  
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can be factorized by using the factorization of Hankel matrices (0)H  and ( )kH  

in terms of the observability and controllability matrices 
P  and 

Q  as follows: 

 

( ) ( ) (0)T

HH

k T T

k

c

k k

   



 

 



Δ H H

P A Q Q P

P A Q

 (3.139) 

Where 
cQ  is a n m  matrix representing a mixed controllability-

observability matrix defined as: 

 
T T

c   Q Q Q P  (3.140) 

The next step of the Eigensystem Realization Algorithm with Data 

Correlations (ERA/DC) is the definition of the block correlation Hankel matrix 

( )kH  whose block elements are the data correlation matrices ( )HH kΔ  shifted 

in time with multiple of time lag  . Indeed: 

( ) ( ) ( )
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  
 
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 
 
 

     

Δ Δ Δ

Δ Δ Δ
H

Δ Δ Δ

 (3.141) 

Where ( )kH  is a 
( 1) ( 1)m m     

 matrix. The integers   and   define 

how many correlation lags are included in the analysis. Exploiting the 

factorization of correlation matrix ( )HH kΔ , the block correlation Hankel matrix 

( )kH  can be decomposed as: 

 ( ) kk   H P A Q  (3.142) 
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Where 
P  and 

Q  are respectively ( 1) m n    and ( 1)n m    matrices 

representing the block correlation observability matrix and the block correlation 

mixed controllability-observability matrix. These matrices are defined in terms 

of the observability matrix 
P  and mixed controllability-observability matrix 

cQ  as: 

 2









 





 
 
 
 
 
 
  

P

P A

P P A

P A

 (3.143) 

 
2

c c c c

  


   Q Q A Q A Q A Q  (3.144) 

For 0k   and for 1k   the block correlation Hankel matrix ( )kH  

becomes:   

 

(0) ( ) ( )

( ) (2 ) (( 1) )
(0)

( ) (( 1) ) (( ) )

HH HH HH

HH HH HH

HH HH HH

  

   

      



 
 


 
 
 

  

Δ Δ Δ

Δ Δ Δ
H

Δ Δ Δ

 (3.145) 

(1) (1 ) (1 )

(1 ) (1 2 ) (1 ( 1) )
(1)

(1 ) (1 ( 1) ) (1 ( ) )

HH HH HH

HH HH HH

HH HH HH

  

   

      



  
 

   
 
 
 

     

Δ Δ Δ

Δ Δ Δ
H

Δ Δ Δ

 (3.146) 



SYSTEM IDENTIFICATION 213  

These matrices can be respectively decomposed in terms of the block 

correlation observability matrix 
P  and of the block correlation mixed 

controllability-observability matrix 
Q  as follows: 

 (0)   H P Q  (3.147) 

 (1)   H P AQ  (3.148) 

Similarly to the Eigensystem Realization Algorithm (ERA), the  next step is 

the factorization of the block correlation Hankel matrix (0)H  by using the 

Singular Value Decomposition method (SVD)  15  to yield: 

 (0) T

   H R Σ S  (3.149) 

Where 
Σ  is a ( 1) ( 1)m m       diagonal matrix containing the singular 

values of matrix (0)H  whereas 
R  and 

S  are respectively 
( 1) ( 1)m m     

 

and 
( 1) ( 1)m m     

 orthonormal matrices containing the left singular vectors 

and the right singular vectors of matrix (0)H . These matrices can be 

respectively partitioned as follows: 

 
,n



 
  
 

Σ O
Σ

O O
 (3.150) 

 , ,( 1)n m n     
   R R R  (3.151) 

 , ,( 1)n m n     
   S S S  (3.152) 

Where ,nΣ , ,nR , ,( 1) m n   R , ,nS  and ,( 1) m n   S  are respectively 

n n
, 

( 1) m n  
, 

( 1) (( 1) )m m n      
, 

( 1) m n  
 and 

( 1) (( 1) )m m n      
 



214 SYSTEM IDENTIFICATION  

matrices. The matrix 
,nΣ  is a diagonal matrix containing the significant 

singular values of the system. Indeed: 

 
, ,1 ,2 ,( , , , )n ndiag      Σ  (3.153) 

Even in this case, because of measurement noise the block correlation 

Hankel matrix (0)H  is typically of full rank which generally is not equal to 

the true order of the system. Therefore to get a realization which closely 

represents the underlying linear dynamics of the system, the block correlation 

Hankel matrix (0)H  can be approximated as: 

 
, , ,(0) T

n n n   H R Σ S  (3.154) 

Similarly to the previous method, one interpretation of this factorization is 

that the block correlation observability matrix P  is related to the left singular 

vector matrix 
,nR  and the block correlation controllability-observability matrix 

Q  is related to the right singular vector matrix 
,nS . Indeed, it can be proved 

 5 ,  6  that these matrices can be computed as: 

 
1/2

, ,
ˆ

n n  P R Σ  (3.155) 

 
1/2

, ,
ˆ T

n n  Q Σ S  (3.156) 

Once that the block correlation observability matrix ˆ
P  and the block 

correlation mixed controllability-observability matrix ˆ Q  have been identified, 

the observability matrix ˆ
P  and the mixed controllability-observability matrix 

ˆ
cQ  can be identified from the first m  rows of the block correlation 
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observability matrix ˆ
P  and from the first m  columns of the block correlation 

mixed controllability-observability matrix ˆ
Q . Indeed: 

 
( 1)

1/2

( 1) , ,

ˆ ˆT

m

T

m n n

   

 



  

 



P E P

E R Σ
 (3.157) 

 
( 1)

1/2

, , ( 1)

ˆ ˆ
c m

T

n n m

  

 



  

 



Q Q E

Σ S E
 (3.158) 

Where 
( 1) m E  is a ( 1) m m     Boolean matrix defined as: 

 ( 1) , , ,

T

m m m m m m m       
   E I O O  (3.159) 

In addition, once that observability matrix ˆ
P  has been identified, the 

controllability matrix ˆ
Q  can be computed from the factorization of Hankel 

matrix (0)H  using least-squares method. Indeed: 

 

 1/2

( 1) , ,

ˆ ˆ (0)

(0)T

m n n

 

 





  

 



Q P H

E R Σ H
 (3.160) 

Analogously to Eigensystem Realization Algorithm (ERA), the output 

influence matrix Ĉ  and the state influence matrix B̂  can be identified 

respectively from the first m  rows of the observability matrix ˆP  and from the 

first r  columns of the controllability matrix ˆ Q . Indeed: 
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1/2

( 1) , ,

ˆ ˆT

m

T T

m m n n

 

    

 



C E P

E E R Σ
 (3.161) 

 

 1/2

( 1) , ,

ˆˆ

(0)

r

T

m n n r

 

  



  

 



B Q E

E R Σ H E
 (3.162) 

On the other hand, using the factorization of block correlation Hankel 

matrix (1)H  and the identified observability and controllability matrices ˆ
P  

and ˆ
Q , it can be proved  5 ,  6  that the identified state matrix Â  can be 

computed as: 

 1/2 1/2

, , , ,
ˆ (1)T

n n n n

 

    A Σ R H S Σ  (3.163) 

In brief, the Eigensystem Realization Algorithm with Data Correlations 

(ERA/DC) leads to the following identified state-space model: 

 
 

1/2 1/2

, , , ,

1/2

( 1) , ,

1/2

( 1) , ,

0 0

ˆ (1)

ˆ (0)

ˆ

ˆ

T

n n n n

T

m n n r

T T

m m n n

  

  

 

    



  

  

 

 

 


 

A Σ R H S Σ

B E R Σ H E

C E E R Σ

D Y Y

 (3.164) 

Finally, consider the Eigensystem Realization Algorithm with Data 

Correlation (ERA/DC) using Observer/Kalman Filter Identification Method 

(OKID). Basically, this method is an extension of the two previous algorithms. 

Indeed, this algorithm utilizes simultaneously the combined set of system and 

observer gain Markov parameters kY  and 
0

kY , which are obtained directly from 

input-output measurements by using Observer/Kalman Filter Identification 

Method (OKID), to identify at the same time a state-space model and an 
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observer matrix of the system under test. As starting point, define the matrix of 

combined system and observer gain Markov parameters as follows: 

 
0

k k k
   Γ Y Y  (3.165) 

Where 
kΓ  is a ( )m r m   block matrix containing the combined system and 

observer gain Markov parameters. This matrix can be used to construct a 

generalized block Hankel matrix defined as: 

 

1 1

1 2

1 2

( 1)

k k k

k k k

k k k

k





   

  

  

     

 
 
  
 
 
  

Γ Γ Γ

Γ Γ Γ
H

Γ Γ Γ

 (3.166) 

  Where ( 1)k H  is a ( )m r m    block data matrix containing the set of 

combined Markov parameters and  ,   are two integer assumed larger than 

system order n . Analogously to Eigensystem Realization Algorithm (ERA), for 

a data record of length l ,   is set equal to p  and   is set equal to l p . The 

combined Hankel matrix ( 1)k H  can be factorized as: 

 
1( 1) kk  

 H P A Q  (3.167) 

Where P  and Q  are respectively 
m n 

 and 
( )r m 

 matrices 

representing the observability matrix and the combined controllability matrix. 

Indeed, the matrix Q  is defined as follows:    

 
2 1



   Q B AB A B A B  (3.168) 
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Where B  is a ( )n r m   matrix representing the combined state influence 

matrix B  and the observer matrix G . Indeed, this matrix is define as follows: 

  B B G  (3.169) 

In addition, for 1k   and for 2k   the combined Hankel matrix ( 1)k H  

becomes: 

 

1 2

2 3 1

1 1

(0)





   



  

 
 
 
 
 
  

Γ Γ Γ

Γ Γ Γ
H

Γ Γ Γ

 (3.170) 

 

2 3 1

3 4 2

1 2

(1)





   





  

 
 
 
 
 
  

Γ Γ Γ

Γ Γ Γ
H

Γ Γ Γ

 (3.171) 

These matrices can be factorized by using the observability matrix and the 

combined controllability matrix as: 

 (0)  H P Q  (3.172) 

 (1)  H P AQ  (3.173) 

Now consider a correlation matrix constructed using the combined Hankel 

matrices to yield: 



SYSTEM IDENTIFICATION 219  

 

     

 

1 2 1 2

2 3 1 2 3 1

1 1 1 1

1 1

1 1 1

1 1 1

1

( ) ( ) (0)T

HH

T

k k k

k k k

k k k

T T T

k j j k j j k j j

j j j

T

k j j k j j

j

k k

 

 

       

  





  

    

        

     

  

    



 

   
   
    
   
   
      



  



Δ H H

Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ Γ Γ

Γ Γ Γ Γ   

     

1 1

1 1

1 1 1 1 1

1 1 1

T T

k j j

j j

T T T

k j j k j j k j j

j j j

 



  

   

   

 

           

  

 
 
 
 
 
 
 
 
 
 
 

 

  

Γ Γ

Γ Γ Γ Γ Γ Γ

 (3.174) 

 Where ( )HH kΔ  is a m m   square matrix obtained from the correlation 

between the combined Hankel matrix evaluated at the generic time step k  and 

the combined Hankel matrix at the initial time step. The block data correlation 

matrix ( )HH kΔ  can be factorized by using the factorization of Hankel matrices 

(0)H  and ( )kH  in terms of the observability matrix P  and of the combined 

controllability matrix Q  as follows: 

 

( ) ( ) (0)T

HH

k T T

k

c

k k

   



 

 



Δ H H

P A Q Q P

P A Q

 (3.175) 

Where 
cQ  is a 

n m
 matrix representing a mixed controllability-

observability matrix obtained from combined Markov parameters and it is 

defined as: 
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 T T

c   Q Q Q P  (3.176) 

Similarly to Eigensystem Realization Algorithm with Data Correlations 

(ERA/DC), the next step is the definition of the block correlation Hankel matrix 

( )kH  obtained from combined system and observer gain Markov parameters 

whose block elements are the data correlation matrices ( )HH kΔ  shifted in time 

with multiple of time lag  . Indeed: 

( ) ( ) ( )

( ) ( 2 ) ( ( 1) )
( )

( ) ( ( 1) ) ( ( ) )

HH HH HH

HH HH HH

HH HH HH

k k k

k k k
k

k k k

  

   

      



  
 

    
 
 

     

Δ Δ Δ

Δ Δ Δ
H

Δ Δ Δ

 (3.177) 

Where ( )kH  is a ( 1) ( 1)m m       matrix. The integers   and   define 

how many correlation lags are included in the analysis. Using the factorization 

of correlation matrix ( )HH kΔ  the block correlation Hankel matrix ( )kH  

obtained from combined Markov parameter can be decomposed as: 

 ( ) kk   H P A Q  (3.178) 

Where P  and 
Q  are respectively 

( 1) m n  
 and 

( 1)n m  
 matrices 

representing the block correlation observability matrix and the block correlation 

mixed controllability-observability matrix obtained from combined Markov 

parameters. The matrix Q  is defined in terms of mixed controllability-

observability matrix 
cQ  obtained from combined Markov parameters as 

follows: 

 
2

c c c c

  


   Q Q A Q A Q A Q  (3.179) 
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For 0k   and for 1k   the block correlation Hankel matrix ( )kH  

obtained from combined Markov parameters becomes:   

 

(0) ( ) ( )

( ) (2 ) (( 1) )
(0)

( ) (( 1) ) (( ) )

HH HH HH

HH HH HH

HH HH HH

  

   

      



 
 

 
 
 

  

Δ Δ Δ

Δ Δ Δ
H

Δ Δ Δ

 (3.180) 

(1) (1 ) (1 )

(1 ) (1 2 ) (1 ( 1) )
(1)

(1 ) (1 ( 1) ) (1 ( ) )

HH HH HH

HH HH HH

HH HH HH

  

   

      



  
 

    
 
 

     

Δ Δ Δ

Δ Δ Δ
H

Δ Δ Δ

 (3.181) 

These matrices can be respectively decomposed using the block correlation 

observability matrix P  and the block correlation mixed controllability-

observability matrix obtained from combined Markov parameters 
Q  as 

follows: 

 (0)   H P Q  (3.182) 

 (1)   H P AQ  (3.183) 

Similarly to the Eigensystem Realization Algorithm with Data Correlations 

(ERA/DC), the  next step is the factorization of the block correlation Hankel 

matrix (0)H  obtained from combined Markov parameters by using the 

Singular Value Decomposition method (SVD)  15  to yield: 

 (0) T

   H R Σ S  (3.184) 
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Where 
Σ  is a ( 1) ( 1)m m       diagonal matrix containing the singular 

values of matrix (0)H  whereas 
R  and 

S  are respectively ( 1) ( 1)m m       

and ( 1) ( 1)m m       orthonormal matrices containing the left singular vectors 

and the right singular vectors of matrix (0)H . These matrices can be 

respectively partitioned as follows: 

 
,n



 
  
 

Σ O
Σ

O O
 (3.185) 

 , ,( 1)n m n     
   R R R  (3.186) 

 , ,( 1)n m n     
   S S S  (3.187) 

Where 
,nΣ , 

,nR , 
,( 1) m n   R , 

,nS  and 
,( 1) m n   S  are respectively 

n n , ( 1) m n   , ( 1) (( 1) )m m n       , ( 1) m n    and ( 1) (( 1) )m m n        

matrices. The matrix 
,nΣ  is a diagonal matrix containing the significant 

singular values of the system. Indeed: 

 
, ,1 ,2 ,( , , , )n ndiag      Σ  (3.188) 

  Even in this case, the block correlation Hankel matrix (0)H  obtained 

from combined Markov parameters is typically of full rank which generally is 

not equal to the true order of the system. Therefore this matrix can be 

approximated as: 

 , , ,(0) T

n n n   H R Σ S  (3.189) 

Similarly to Eigensystem Realization Algorithm with Data Correlations 

(ERA/DC), the block correlation observability matrix P  can be related to the 
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left singular vector matrix 
,nR  and the block correlation controllability-

observability matrix 
Q  obtained from combined Markov parameters can be 

related to the right singular vector matrix 
,nS . Indeed, it can be proved  5 , 

 6  that these matrices can be computed as: 

 1/2

, ,
ˆ

n n  P R Σ  (3.190) 

 1/2

, ,

ˆ T

n n  Q Σ S  (3.191) 

Once that the block correlation observability matrix ˆ
P  and the block 

correlation mixed controllability-observability matrix 
ˆ
Q  obtained from 

combined Markov parameters have been identified, the observability matrix ˆ
P  

and the mixed controllability-observability matrix 
ˆ

cQ  obtained from combined 

Markov parameters can be identified from the first m  rows of the block 

correlation observability matrix ˆP  and from the first m  columns of the block 

correlation mixed controllability-observability matrix 
ˆ
Q  obtained from 

combined Markov parameters. Indeed: 

 
( 1)

1/2

( 1) , ,

ˆ ˆT

m

T

m n n

   

 



  

 



P E P

E R Σ
 (3.192) 

 
( 1)

1/2

, , ( 1)

ˆ ˆ
c m

T

n n m

  

 



  

 



Q Q E

Σ S E
 (3.193) 



224 SYSTEM IDENTIFICATION  

In addition, once that observability matrix ˆ
P  has been identified, the 

combined controllability matrix 
ˆ
Q  can be computed from the factorization of 

generalized Hankel matrix (0)H  obtained from combined Markov parameters 

using least-squares method. Indeed: 

 

 1/2

( 1) , ,

ˆ ˆ (0)

(0)T

m n n

 

 





  

 



Q P H

E R Σ H

 (3.194) 

Analogously to Eigensystem Realization Algorithm with Data Correlations 

(ERA/DC), the output influence matrix Ĉ  and the combined state influence 

matrix 
ˆ
B  can be identified from the first m  rows of the observability matrix 

ˆ
P  and from the first r m  columns of the combined controllability matrix 

ˆ
Q . Indeed: 

 
1/2

( 1) , ,

ˆ ˆT

m

T T

m m n n

 

    

 



C E P

E E R Σ
 (3.195) 

 

 

( )

1/2

( 1) , , ( )

ˆˆ

(0)

r m

T

m n n r m

 

  





   

 



B Q E

E R Σ H E

 (3.196) 

Where ( )r m E  is a 
( ) ( )r m r m   

 Boolean matrix defined as: 

 ( ) , , ,

T

r m r m r m r m r m r m r m       
   E I O O  (3.197) 
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Moreover, the state influence matrix B̂  and the observer matrix Ĝ  can be 

obtained respectively as the first r  columns and as the last m  columns of the 

combined state influence matrix 
ˆ
B . Indeed:  

 

 1/2

( 1) , , ( )

ˆˆ

(0)

r

T

m n n r m r  



   

 



B BE

E R Σ H E E
 (3.198) 

 

 1/2

( 1) , , ( )

ˆˆ

(0)

m

T

m n n r m m  



   

 



G BF

E R Σ H E F
 (3.199) 

Were 
rE  and 

mF  are respectively ( )r m r   and ( )r m m   Boolean matrices 

defined as: 

 
,

,

r r

r

m r

 
  
 

I
E

O
 (3.200) 

 
,

,

r m

m

m m

 
  
 

O
F

I
 (3.201) 

On the other hand, using the factorization of block correlation Hankel 

matrix (1)H  obtained from combined Markov parameters and by using the 

identified observability matrix ˆ
P  and the identified combined controllability 

matrices 
ˆ
Q , it can be proved  5 ,  6  that the identified state matrix Â  can 

be computed as: 

 
1/2 1/2

, , , ,
ˆ (1)T

n n n n

 

    A Σ R H S Σ  (3.202) 
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Consequently, the Eigensystem Realization Algorithm with Data 

Correlations (ERA/DC) using Observer/Kalman Filter Identification Method 

(OKID) can be summarized as follows: 

 

 

 

1/2 1/2
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1/2

( 1) , , ( )

1/2

( 1) , , ( )

1/2

( 1) , ,

0 0

ˆ (1)

ˆ (0)
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T
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T

m n n r m m

T T
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    



   


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  
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 

A Σ R H S Σ

B E R Σ H E E

G E R Σ H E F

C E E R Σ

D Y Y

 (3.203) 

At this stage, regardless of the method which has been used, the system 

modal parameters can be extracted from the identified state-space realization Â , 

B̂  and Ĉ . Indeed, the spectral decomposition of identified state matrix Â  

yields: 

 ˆ ˆ ˆ ˆAΨ ΨΛ  (3.204) 

Where Λ̂  is a 
n n

 diagonal matrix containing the identified system 

eigenvalues and Ψ̂  is a 
n n

 matrix containing the identified eigenvectors 

stacked by column. The identified modal state matrix ˆ
mA , the identified modal 

state influence matrix ˆ
mB  and the identified modal output influence matrix ˆ

mC  

can be computed using the spectral decomposition of the identified state matrix 

Â  as follows: 

 ˆ ˆ
m A Λ  (3.205) 

 
1ˆˆ ˆ

m

B Ψ B  (3.206) 
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 ˆ ˆ ˆ
m C CΨ  (3.207) 

The identified modal state matrix ˆ
mA  contains the information of system 

natural frequencies and damping ratios whereas the identified modal state 

influence matrix ˆ
mB  define the identified initial mode amplitudes and the 

identified modal output influence matrix ˆ
mC  represent the identified mode 

shapes at the sensor points. Therefore, all the identified modal parameters of a 

dynamic system are represented by the triplet of matrices ˆ
mA , ˆ

mB  and ˆ
mC . In 

conclusion, supposing that all the identified modes are underdamped, in many 

practical applications the hypothesis of proportional damping can be assumed as 

satisfied, especially in the case of structural systems in which damping is small 

and no a priori information about its nature are available. The proportional 

damping assumption implies that the modal damping ratios 
j  are related to the 

natural frequencies 
,n j  according to the following equations: 

 
,

2

,

, 1,2, ,
2 2

n j

j

n j

j n





    (3.208) 

Where   and   are the proportional damping coefficients. This 

coefficient can be estimated in a simple and effective way leveraging on the 

identified natural frequencies ,
ˆ

n j  and on the identified damping ratios ˆ
j  

 12 ,  13 . Indeed, reformulating the previous equations in according to a 

matrix notation yields: 

 Ax b  (3.209) 

Where A  is a 2 2n 
 rectangular matrix assembled using the identified 

natural frequencies ,
ˆ

n j  whereas x  is a 
2

 vector containing the unknown 
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proportional coefficients ̂ , ̂  and b  is a 2n  vector containing the identified 

damping ratios ˆ
j . These elements are respectively defined as: 

 

2

2
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,1

,2

,2

,

,

ˆ1

ˆ2 2

ˆ1

ˆ2 2

ˆ1
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n
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n
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 
  

A  (3.210) 

 
ˆ

ˆ





 
  
 

x  (3.211) 

 

2

1

2

ˆ

ˆ

ˆ
n







 
 
 

  
 
 
 

b  (3.212) 

Therefore, the proportional damping coefficients ̂ , ̂  can be 

approximately computed by using the least-squares method to yield: 

 
x A b  (3.213) 

Where 
A  is a 22 n

 matrix which represents the Moore-Penrose 

pseudoinverse of matrix A . This method represent an useful mathematical tool 

to deal with realistic experimental data. 
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3.7. METHOD FOR CONSTRUCTING PHYSICAL 
MODELS FROM IDENTIFIED STATE SPACE 
REPRESENTATIONS (MKR)  

In this section it is showed a method to derive a second-order physical 

model of a mechanical system starting from an identified first-order state-space 

representation of the same system (MKR)  8 ,  9 ,  10 . This method 

represents a solution for the general problem known as linear inverse vibration 

problem  8 ,  9 ,  10 . Indeed, it is well-known that a physical model of a 

linear mechanical system is completely described by the triplet of mass matrix 

M , stiffness matrix K  and damping matrix R . This second-order physical 

model can be easily converted into a first-order state-space model represented by 

the triplet of state matrix 
cA , state influence matrix 

cB  and output influence 

matrix C . This problem is sometimes referred as the forward problem. On the 

other hand, the inverse problem is more complex. Indeed, there are several 

algorithms which allows to experimentally determine from input and output 

measurements a first-order state-space model represented by the triplet of the 

identified state matrix ˆ
cA , the identified state influence matrix ˆ

cB  and the 

identified output influence matrix Ĉ . The transformation of the identified state-

space model into a triplet of identified mass matrix M̂ , identified stiffness 

matrix K̂  and identified damping matrix R̂  is not trivial and it can performed 

using different methods according to the state-space coordinates chosen to 

represent the system and according to the location of sensors and actuators on 

each system degree of freedom. Using the method showed here (MKR) the basic 

requirement is that all system degrees of freedom must be instrumented with a 

sensor or an actuator, with at least one co-located sensor-actuator pair. In 

addition, the state-space representation of the system is formulated in a 

symmetric fashion to yield: 

 ( ) ( ) ( )c c ct t t V z S z N u  (3.214) 
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Where 
cV  and 

cS  are n n  symmetric matrices and 
cN  is a n r  matrix 

respectively defined as: 

 
c

 
  
 

R M
V

M O
 (3.215) 

 
c

 
  
 

K O
S

O M
 (3.216) 

 
2

c

 
  
 

B
N

O
 (3.217) 

The peculiarity of this formulation is that the associated eigenvalue problem 

results to be symmetric and it can be written in a matrix form as: 

 
c c cS Ψ VΨΛ  (3.218) 

  Where 
cΛ  is a n n  diagonal matrix containing the system eigenvalues 

and Ψ  is a 
n n

 matrix containing the system eigenvectors stacked by column. 

In particular, even in this case the eigenvector matrix Ψ  can be partitioned as: 

 
c

 
  
 

W
Ψ

WΛ
 (3.219) 

 Where W  is a 2n n
 eigenvector matrix representing the physical 

coordinate eigenvector matrix. Assume that all modes of the underlying 

dynamical systems are underdamped and therefore the eigenvalues are supposed 

to appear in complex conjugate pairs. Since the eigenvectors scaling is arbitrary, 

assume that the eigenvector matrix Ψ  is scaled such that: 

 
T

c Ψ VΨ I  (3.220) 
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 T

c cΨ S Ψ Λ  (3.221) 

This assumption can be explicitly restated as follows: 

 

T

c c

    
    

    

W WR M
I
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 (3.222) 

 

T

c

c c

    
    

    

W WK O
Λ

WΛ WΛO M
 (3.223) 

This assumption is a key-step whose consequences are twofold. The first 

immediate consequence is that the modal state-space model assumes the 

following particular form: 

 
, ,( ) ( ) ( )c m c mt t t p A p B u  (3.224) 

 ( ) ( ) ( )mt t ty C p + Du  (3.225) 

Where 
,c mA , 

,c mB  and 
mC  are respectively 

n n
, 

n r
 and 

m n
 

matrices representing the modal state matrix, the modal state influence matrix 

and the modal output influence matrix. It can be easily proved that these 

matrices can be computed as: 

 ,c m cA Λ  (3.226) 

 , 2

T

c m B W B  (3.227) 

 
b

m s cC C WΛ  (3.228) 
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Where 
sC  is a m n  matrix and b  is a scalar which characterize the type 

of sensing. Indeed, for displacement sensing one has 
s dC C  and 0b  , for 

velocity sensing one has 
s vC C  and 1b   whereas for acceleration sensing 

one has 
s aC C  and 2b  . Moreover, note that the modal state influence 

matrix 
,c mB  is computed by using the transpose of the eigenvector matrix W  

instead of using the inverse of the eigenvector matrix Ψ . The second 

consequence of the selected eigenvector scaling is that the triplet of mass matrix 

M , stiffness matrix K  and damping matrix R  can be directly computed from 

the eigenvalue matrix 
cΛ  and from the eigenvector matrix W .  Indeed, it can 

be proved  8 ,  9 ,  10  that these matrices can be computed as: 

  
1

T

c



M WΛ W  (3.229) 

  
1

1 T

c


 K WΛ W  (3.230) 

 
2 T

c R MWΛ W M  (3.231) 

   Therefore, the problem that arises at this point is how to extract the 

eigenvector matrix W  from an identified state-space representation. Since the 

system modal parameters must be the same regardless the type of state-space 

formulation used, the problem is to find a transformation T  which convert the 

identified modal parameters, characterized by the triplet of matrices ˆ
cΛ , 

1ˆ ˆ
c


Ψ B  

and ˆ ˆCΨ , into the symmetric representation modal parameters, characterized by 

the triplet of matrices 
cΛ , 

2

T
W B  and 

b

s cC WΛ . This problem can be 

mathematically stated as: 

 
1 ˆ

c c

 T Λ T Λ  (3.232) 
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 1 1

2
ˆ ˆ T

c

  T Ψ B W B  (3.233) 

 ˆ ˆ b

s cCΨT C WΛ  (3.234) 

Since the eigenvalues are equal in both the representation, it is 

straightforward to understand that the transformation matrix T  is a diagonal 

matrix composed of complex conjugate elements. Moreover, the transformation 

matrix T  has two effects: it transforms the eigenvectors from those of an 

asymmetric eigenvalue problem into those of a symmetric problem and it 

properly scales such eigenvectors. The basic observation necessary to compute 

the transformation matrix T  is that for a co-located sensor-actuator pair the 

following matrix equation holds:   

  2( ,:) (:, )
T

T

s i iC W W B  (3.235) 

Where ( ,:)s iC  indicates the row i  of matrix 
sC  and 

2 (:, )iB  indicates the 

column i  of matrix 
2B . Note that the previous matrix equation holds because 

the matrices 
sC  and 

2B  are simply Boolean matrices. Indeed, it can be proved 

 8 ,  9 ,  10  that leveraging on this observation the matrix transformation T  

can be computed by using the identified realization and the identified modal 

parameters as follows: 

  2 1ˆ ˆ ˆ ˆ ˆ( ,:) (:, )
T

E b E

c ci i C ΨΛ T Ψ B  (3.236) 

Where ˆ E

cB  and ˆ E
C  are 

n n
 matrices denoting respectively the expanded 

version of identified state influence matrix ˆ
cB  and output influence matrix Ĉ  

which include rows and columns of zeros in order to match the dimension n . 

Once that the transformation matrix T  has been computed, the rows of the 

eigenvector matrix Ŵ  can be identified from each degree of freedom which is 
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instrumented with a sensor or with an actuator. Indeed, it can be proved  8 , 

 9 ,  10  that: 

  1 1ˆˆ ˆ( ,:) (:, )
T

E

cj j W T Ψ B  (3.237) 

 ˆ ˆˆ ( ,:) ( ,:)E b

ck k W C ΨΛ T  (3.238) 

Where j  is a generic degree of freedom instrumented with an actuator and 

k  is a generic degree of freedom instrumented with a sensor. Finally, using the 

identified eigenvector matrix Ŵ  a second-order model of the mechanical 

system can be identified as:  

  
1

ˆˆ ˆ ˆ T

c



M WΛ W  (3.239) 

  
1

1ˆˆ ˆ ˆ T

c


 K WΛ W  (3.240) 

 2ˆˆ ˆ ˆ ˆ ˆT

c R MWΛ W M  (3.241) 

Where M̂ , K̂  and R̂  are matrices denoting respectively the identified 

mass, stiffness and damping matrices. These matrices can be used to design a 

controller directly from the system second-order mechanical model. In 

particular, for lightly damped system it can be proved  12 ,  13  experimentally 

that a better estimation of damping matrix R̂  can be obtained from identified 

mass and stiffness matrices M̂  and K̂  by using an identified set of proportional 

damping coefficients as follows: 

 ˆˆ ˆ ˆ̂  R M K  (3.242) 
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Where the coefficients ̂  and ̂  can be computed from identified natural 

frequencies and damping ratios via least-squares method  12 ,  13 .   
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4. CONTROL THEORY 

4.1. INTRODUCTION 

The raison d’etre of a control system is to influence the dynamic of a 

mechanical system  in order to make it behave in a desirable manner  1 ,  2 . 

Indeed, the two typical objectives of a control system are regulation and 

tracking. In a regulation problem, the system is controlled so that its output is 

maintained at a certain set point  3 ,  4 . In tracking problem, the system is 

controlled so that its output follows a particular desired trajectory  5 ,  6 . A 

special case of the regulation problem is the stabilization problem in which a 

control system is designed to bring the system to rest from any nonzero initial 

conditions and therefore the desirable set point is zero. For a flexible structure 

that may be subjected to unwanted vibrations, this is usually the most important 

goal of a control system  7 ,  8 . Stabilization is the focus of the following 

sections where a special class of control system is considered, namely the state-

feedback controller in which the control input is a function of the system state.  

In particular, the Linear Quadratic Regulator algorithm (LQR)  9 ,  10  is 

derived for both continuous-time and discrete-time systems. In addition, if the 

state of the system cannot be measured directly, then a state observer is needed 

to estimate the system state from the measurements. In particular, the Kalman 

Filter algorithm (KF)  11 ,  12  is derived for both continuous-time and 

discrete-time systems. Finally, the system state is used in a state-feedback 
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controller according to the Linear Quadratic Gaussian control method (LQG) 

 13 ,  14 .  
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4.2. REGULATION PROBLEM  

Consider a linear-dynamic time-invariant mechanical system. From a 

physical point of view, the regulation problem consists in finding a control 

action such that the system does not deviate from a given set point, which can be 

supposed to be in the origin of the configuration space without loss of generality 

 9 ,  10 . From a mathematical viewpoint, this problem can be formulated for 

the continuous-time state-space representation of the mechanical system as well 

as for its discrete-time state space representation. As starting point, consider the 

system continuous-time state-space formulation:  

 
0

( ) ( ) ( )

(0)

c ct t t 




z A z B u

z z
 (4.1) 

Where 
0z  is the vector of initial conditions. Assume that there are enough 

sensors to completely measure the state vector ( )tz . Therefore, the output 

equations is simply: 

 ( ) ( )t ty z  (4.2) 

 One method to solve the regulation problem is to construct the control 

vector ( )tu  as a linear combination of the state vector ( )tz . Indeed: 

 ( ) ( )ct tu F z  (4.3) 

Where 
cF  is a 

m n
 matrix which represent the controller gain matrix. 

Consequently, the regulation problem reduces to properly compute the feedback 

matrix 
cF  in order to control the system. The question which spontaneously 

arises is if the introduction of the controller destabilizes the system or not. To 

answer this question, substitute the feedback control in the state equation: 
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 (4.4) 

Where 
,F cA  is a n n  matrix which represents the closed-loop state 

matrix. This matrix is defined as: 

 
,F c c c c A A B F  (4.5) 

In order to obtain an asymptotically stable system the feedback matrix 
cF  

must be chosen such that the eigenvalues of the closed-loop state matrix 
,F cA  

have negative real parts. Therefore, a physically intuitive method to find the 

controller gain matrix 
cF  is to force the eigenvalues of the closed-loop state 

matrix 
,F cA  to assume a prescribed set of values. The basic requirement to place 

the closed-loop poles of matrix 
,F cA  in a specific location of the complex plane 

is that the system must be controllable. A linear time-invariant dynamical system 

of order n  is controllable if and only if its controllability matrix ,F cQ  has rank 

n . The controllability matrix ,F cQ  is a 
n nr

 matrix defined as: 

 
2 1

,

n

F c c c c c c c c

   Q B A B A B A B  (4.6) 

 Consider now the eigenvalue problem of the closed-loop state matrix 

,F cA : 

 , , , ,F c F c F c F cA ψ ψ  (4.7) 
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Where 
,F c  is a generic eigenvalue of matrix 

,F cA  and 
,F cψ  is a n  

vector representing the eigenvector of the closed-loop state matrix 
,F cA  

corresponding to the eigenvalue 
,F c . The basic assumption of this method is 

that the system is nondefective, namely that exist a full set of eigenvectors 

corresponding to the eigenvalues to be assigned  3 . The eigenvalue problem of 

matrix 
,F cA  can be explicitly expressed as: 

   , , ,c c c F c F c F c A B F ψ ψ  (4.8) 

This eigenvalue problem can be restated as follows: 

 

, ,

, ,

, ,

F c F c

c F c c F c

c F c c F c


   

       
   



ψ ψ
A I B Γ

F ψ F ψ

0

 (4.9) 

Where 
,F cΓ  is a ( )n n r   matrix defined as: 

 , ,F c c F c c   Γ A I B  (4.10) 

Therefore, the matrix ,F cΓ  can be actually computed once that the 

eigenvalue ,F c  has been assigned for the system represented by the state matrix 

cA  and the state influence matrix 
cB . This matrix can be factorized by using 

the Singular Value Decomposition method (SVD)  15  to yield: 

 , , , ,F c F c F c F c

Γ U Σ V  (4.11) 
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 Where 
,F cΣ  is a ( )n n r   diagonal matrix containing the complex 

conjugate singular values of matrix 
,F cΓ  whereas 

,F cU  and 
,F cV  are 

respectively n n  and ( ) ( )r n r n    orthonormal matrices containing the left 

singular vectors and the right singular vectors of matrix 
,F cΓ . These matrices 

can be respectively partitioned as follows: 

 
,

,

F c

F c

 
  
 

S O
Σ

O O
 (4.12) 

 , , ,

S O

F c F c F c
   U U U  (4.13) 

 , , ,

S O

F c F c F c
   V V V  (4.14) 

Where 
,F cS , 

,

S

F cU , 
,

O

F cU , 
,

S

F cV  and 
,

O

F cV  are respectively , ,F c F cq q
, 

,F cn q
, 

  ,F cn n r q  
, 

  ,F cn r q 
 and 

    ,F cn r n r q   
 matrices. The matrix 

,F cS  is a diagonal matrix containing the significant singular values of the matrix 

,F cΓ . Indeed: 

 ,1 2

, , , ,( , , , )F cq

F c F c F c F cdiag   S  (4.15) 

Consequently, multiplying the matrix ,F cΓ  times ,F cV  yields: 

 
, , , , , ,

, ,

F c F c F c F c F c F c

F c F c

 



Γ V U Σ V V

U Σ
 (4.16) 

This equation can be explicitly restated as: 
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,

, , , ,

, ,

F cS O

F c F c F c F c

F c F c

 
     

 

   

S O
Γ V V U

O O

U S O

 (4.17) 

The second matrix equality yields: 

 
, ,

O

F c F c Γ V O  (4.18) 

Therefore the matrix 
,

O

F cV  represents a set of orthogonal basis vectors 

spanning the null space of the matrix 
,F cΓ  so that: 

 
, , , , ,

O

F c F c F c F c F c 



Γ V c Γ φ

0
 (4.19) 

Where 
,F cc  is an 

  ,F cn r q 
 arbitrary nonzero vector and 

,F cφ  is a n r  

vector defined as: 

 
, , ,

O

F c F c F cφ V c  (4.20) 

This vector can be partitioned as follows: 

 
,

,

,

F c

F c

F c

 
  
 

φ
φ

φ
 (4.21) 

Where ,F cφ  and ,F cφ  are respectively 
n

 and 
r
 vectors. Observing the 

matrix reformulation of the eigenvalue problem of matrix ,F cA , the following 

matrix equations can be deduced: 

 , ,F c F cψ φ  (4.22) 
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, ,c F c F cF ψ φ  (4.23) 

Note that from the first matrix equation is straightforward to deduce that the 

vector 
,F cφ  coincides with the eigenvector of the closed-loop state matrix 

,F cA  

corresponding to the assigned eigenvalue 
,F c . Consequently: 

 
, ,c F c F cFφ φ  (4.24) 

This procedure can be repeated for each prescribed eigenvalue 
,

h

F c  to yield 

the following generic matrix equations: 

 
, , , 1,2, ,h h

c F c F c h n Fφ φ  (4.25) 

 Where 
,

h

F cφ  and 
,

h

F cφ  are respectively n  and r  generic vectors 

corresponding to the assigned eigenvalue 
,

h

F c . These equations can be restated 

in a compact matrix form as follows: 

 , ,c F c F cFΦ Φ  (4.26) 

Where 
,F cΦ  and ,F cΦ  are respectively 

n n
 and 

r n
 matrices defined 

as: 

 

1 2 1

, , , , ,

1 1 1 1

, , , ,

n n

F c F c F c F c F c

n n

F c F c F c F c



   

   

   

Φ φ φ φ φ

φ φ φ φ
 (4.27) 

 

1 2 1

, , , , ,

1 1 1 1

, , , ,

n n

F c F c F c F c F c

n n

F c F c F c F c



   

   

   

Φ φ φ φ φ

φ φ φ φ
 (4.28) 
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Note that complex conjugate eigenvalue pairs 1

,

h

F c   and 
,

h

F c  corresponds to 

complex conjugate vector pairs 1

,

h

F c


φ , 

,

h

F cφ  and 1

,

h

F c


φ , 

,

h

F cφ . Finally, the 

feedback matrix 
cF  can be computed as: 

 
1

, ,c F c F c

F Φ Φ  (4.29) 

 This method to compute the controller gain matrix is sometimes referred as 

null-space technique for poles placement  3 . This method can be extended to 

system discrete-time state-space representation in a straightforward manner 

replacing the continuous-time state matrix 
cA  and the continuous-time state 

influence matrix 
cB  respectively with the discrete-time state matrix A  and the 

discrete-time state influence matrix B  to yield a discrete-time feedback matrix 

F  instead of the continuous-time controller gain 
cF . Another important method 

to solve the regulation problem for both continuous-time and discrete-time linear 

state-space systems comes from the optimal control theory and is the Linear 

Quadratic Regulator algorithm (LQR)  9 ,  10 .  Indeed, consider a 

continuous-time state-space system:  

 
0

( ) ( ) ( )

(0)

c ct t t 




z A z B u

z z
 (4.30) 

Where 
0z  is a 

n
 vector corresponding to the initial conditions. This 

method is able to compute the feedback matrix in such a way to minimize a 

quadratic cost index. The cost index is a performance index which accounts for 

the actuator power available and at the same time with the deviation of the state 

from the reference configuration. In the continuous-time case and without 

considering constraints on the terminal state, for a finite-horizon of time 

0 t T   the quadratic cost index can be defined as: 
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, , ,

0

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

T
T T T

c c T c z c uJ T T t t t t dt  z Q z z Q z u Q u  (4.31) 

Where 
,c TQ  and 

,c zQ  are n n  matrices which represent the terminal cost 

matrix and the weight of the state vector whereas 
,c uQ  is a r r  matrix 

representing the weight of the input vector. Note that the matrix 
,c TQ  is a 

positive semidefinite matrix which penalizes the deviation of the final state from 

the desired set point whereas the matrices 
,c zQ  and 

,c uQ  are respectively a 

positive semidefinite matrix and a positive definite matrix which penalize 

respectively the instantaneous deviation of the state form the reference 

configuration and the instantaneous control effort.  Note that since an initial 

values problem is considered, the state vector at the final time T  is unknown 

and therefore the terminal cost in the performance index 
cJ  is expressed in 

terms of unknown quantities. On the other hand, the terminal cost can be 

expressed in terms of the initial conditions as: 

, , , ,

, 0 , 0
0

, 0 , 0
0

1 1 1 1
( ) ( ) ( ) ( ) (0) (0) (0) (0)

2 2 2 2

1 1
( ) ( )

2 2

1
( ) ( )

2

T T T T

c T c T c T c T

T
T T

c T c T

T
T T

c T c T

T T T T

d
t t dt

dt

t t dt

   

 
   

 

 





z Q z z Q z z Q z z Q z

z Q z z Q z

z Q z z Q z

 (4.32) 

Consequently, the performance index can be reformulated as: 
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, , ,
0

, 0 , 0 , ,
0 0

0 , 0 , , ,
0

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

T
T T T

c c T c z c u

T T
T T T T

c T c T c z c u

T
T T T T

c T c T c z c u

J T T t t t t dt

t t dt t t t t dt

t t t t t t dt

   

    

   



 



z Q z z Q z u Q u

z Q z z Q z z Q z u Q u

z Q z z Q z z Q z u Q u

 (4.33) 

 In order to find the control input ( )tu  as a linear function of the state ( )tz , 

the cost index 
cJ  must be minimized but simultaneously the system state 

equation must be satisfied. Therefore, the state equation represents a constraint 

equation for the minimization problem. One way to solve this problem is the 

method of Lagrange multipliers which consists in adjoining the state equation to 

the performance index and subsequently minimize this adjoint cost index 
cJ   

using variational calculus technique  9 ,  10 . Indeed: 

 

 

0

0 , 0 , , ,
0

0

( ) ( ) ( ) ( )

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2

( ) ( ) ( ) ( )

T
T

c c c c

T
T T T T

c T c T c z c u

T
T

c c

J J t t t t dt

t t t t t t dt

t t t t dt

     

    

  







λ A z B u z

z Q z z Q z z Q z u Q u

λ A z B u z

 (4.34) 

Where ( )tλ  is a 
n

 vector containing the Lagrange multipliers. Since the 

optimal control input minimizes the adjoint performance index 
cJ 

, it is 

necessary to compute the first variation of this functional and set it equal to zero. 

Indeed, taking the first variation of the augmented cost function 
cJ 

 yields: 
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1 1
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2 2
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T
T T T T

c c T c T c z c u

T
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T T T

c T c z c u
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J t t t t t t dt
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  
     

 
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 (4.35) 

Observing that the variation of the state vector ( )tz , the variation of the 

co-state vector ( )tλ  and the variation of the input vector ( )tu  are all 

independent, each quantity in the time integral can be independently taken equal 

to zero: 

 

,

,

,

(0)

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

c T

T

c z c

T

c u c

c c

T T

t t t

t t

t t t

 


 


  
  


  

z 0

Q z λ 0

λ Q z A λ 0

Q u B λ 0

A z B u z 0

 (4.36) 

Note that the variation of the initial state is set equal to zero because it is 

assumed to be known whereas a condition which links the state vector to the 

adjoint vector at the final state T  arises from the minimization procedure. 

Therefore, the minimization of the adjoint cost index 
cJ 

 yields a set of two 

differential equations and one algebraic equation: 

 
0

( ) ( ) ( )

(0)

c ct t t 




z A z B u

z z
 (4.37) 

 
,

,

( ) ( ) ( )

( ) ( )

T

c z c

c T

t t t

T T

   




λ Q z A λ

λ Q z
 (4.38) 

 
1

,( ) ( )T

c u ct t u Q B λ  (4.39) 

Where the first differential equation is the state equation with its the initial 

conditions, the second differential equation is the adjoint equation with its 

boundary conditions and the last algebraic equation is the stationarity equation. 

There is a method originated from the optimal control theory to obtain these sets 
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of equations directly defining a so-called Hamiltonian function which depends 

on the state vector ( )tz , the co-state vector ( )tλ  and the control vector ( )tu  

 9 ,  10 . Indeed: 

 

 

, ,

1 1
( ( ), ( ), ( )) ( ) ( ) ( ) ( )

2 2

( ) ( ) ( )

T T

c c z c u

T

c c

H t t t t t t t

t t t

  

 

z u λ z Q z u Q u

λ A z B u

 (4.40) 

 The state equation, the co-state equation and the stationarity equation can 

be obtained from the Hamiltonian function as follows: 

 

0

( ( ), ( ), ( ))
( )

( )

(0)

T

cH t t t
t

t

  
  

  




z u λ
z

λ

z z

 (4.41) 

 

,

( ( ), ( ), ( ))
( )

( )

( ) ( )

T

c

c T

H t t t
t

t

T T

  
   

  




z u λ
λ

z

λ Q z

 (4.42) 

 
( ( ), ( ), ( ))

( )

T

cH t t t

t

 
 

 

z u λ
0

u
 (4.43) 

It is noteworthy to realize that the adjoint equation is a linear differential 

equation coupled with the state equation which has a boundary condition at the 

final instant of time T .  On the other hand, the stationarity equation relates the 

optimal control vector with the vector of Lagrange multipliers which derives 

from the adjoint equation. Moreover, the state equation depends on the optimal 

input vector. Consequently, the whole problem is coupled and it is sometimes 

referred as two-point boundary value problem  9 ,  10 . This problem can be 

numerically solved by using iterative minimization techniques combined with 
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methods to integrate ordinary differential equations. This method derives from 

Computational Fluid Dynamics and it is referred to as adjoint method  16 , 

 17 ,  18 ,  19 ,  20 . In practice, the serious drawback of this solution 

procedure is that the optimal input vector is computed as an explicit function of 

time instead of a linear function of the state vector making the solution found 

extremely sensitive to some external disturbances and unfeasible for real-time 

application. Nevertheless, this algorithm represents and useful method to 

perform motion planning  21 . On the other hand, the classical method to solve 

this problem consist in reducing it to the solution of  a continuous-time 

differential Riccati equation which allows to express the same optimal control as 

a linear function of the state  9 ,  10 . Indeed, observing that at the final time 

T  the adjoint vector is a linear function of the state vector, assume that this 

relation holds for each instant of time: 

 
,

( ) ( ) ( )

( ) c T

t t t

T






λ S z

S Q
 (4.44) 

Where ( )tS  is a 
n n

 symmetric matrix to be computed. Note that this 

solution method is referred as Sweep Method  13 . Therefore, the input vector 

can be computed as follows: 

 

1

,

1

,

( ) ( )

( ) ( )

( ) ( )

T

c u c

T

c u c

c

t t

t t

t t





  

  



u Q B λ

Q B S z

F z

 (4.45) 

Where the continuous-time feedback matrix ( )c tF  is a 
r n

 matrix 

function of time defined as: 

 
1

,( ) ( )T

c c u ct t F Q B S  (4.46) 
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Taking the time derivative of the adjoint vector yields: 
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 (4.47) 

Where the state equation has been used. On the other hand, from the adjoint 

equation the time derivative of the adjoint vector can be computed as: 
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,

,

( ) ( ) ( )
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T
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T

c c z

T

c c z
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   
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λ A λ Q z

A S z Q z
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 (4.48) 

Equating the two previous equations yields: 

  1

, ,( ) ( ) ( ) ( ) ( ) ( )T T

c c c u c c c zt t t t t t    S S A S B Q B S A S Q z 0  (4.49) 

Setting the terms between the brackets equal to zero gives: 

 

1

, ,

,

( ) ( ) ( ) ( ) ( )

( )

T T

c c c c u c c z

c T

t t t t t

T

     




S S A A S S B Q B S Q O

S Q
 (4.50) 

 This is a first-order matrix differential equation named continuous-time 

differential Riccati equation. The solution of this differential equation can be 

found numerically with the standard methods and it provides the evolution in 

time of the symmetric matrix ( )tS  necessary to compute the optimal control 

input. It can be proved  9 ,  10  that this equation reaches quickly an 
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asymptotic solution 
S  which can be used to compute a steady-state 

continuous-time feedback matrix 
,c F  as: 

 1

, ,

T

c c u c



  F Q B S  (4.51) 

In practice the steady-state feedback matrix is preferred especially for real-

time applications. This is equivalent to minimize an infinite-horizon continuous-

time quadratic cost index defined as: 

 , , ,
0

1
( ) ( ) ( ) ( )

2

T T

c c z c uJ t t t t dt


   z Q z u Q u  (4.52) 

Consequently, the control input can be computed as a linear combination of 

the state as follows: 

 
,( ) ( )ct tu F z  (4.53) 

Consider now a discrete-time state-state space system: 

 
0

( 1) ( ) ( )

(0)

k k k  




z Az Bu

z z
 (4.54)  

Where 
0z  is a 

n
 vector representing the initial conditions. The Linear 

Quadratic Regulator method (LQR) can be applied even in this case with some 

slight modifications  9 ,  10 . Indeed, assuming no constraints on the terminal 

state, consider a discrete-time quadratic cost index J  defined as: 

  
1

0

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

N
T T T

T z u

k

J N N k k k k




  z Q z z Q z u Q u  (4.55) 
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Where 
TQ  and 

zQ  are n n  matrices which represent the terminal cost 

matrix and the weight of the state vector whereas 
uQ  is a r r  matrix 

representing the weight of the input vector. Note that the matrix 
TQ  is a positive 

semidefinite matrix which penalizes the deviation of the final state from the 

desired set point whereas the matrices 
zQ  and 

uQ  are respectively a positive 

semidefinite matrix and a positive definite matrix which penalize respectively 

the instantaneous deviation of the state form the reference configuration and the 

instantaneous control effort. Even in this case, in order to find the control input 

( )ku  as a linear function of the state ( )kz , the cost index J  must be minimized 

but simultaneously the system state equation must be satisfied. Therefore, the 

state equation represents a constraint equation for the minimization problem. 

One method to solve this problem is the Lagrange multipliers technique which 

consists in adjoining the state equation to the performance index and 

subsequently minimize this adjoint cost index J 
 using variational calculus 

methodology  9 ,  10 . Indeed:  
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
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λ Az Bu z

 (4.56) 

Where ( )kλ  is a 
n

 vector containing the Lagrange multipliers. Since the 

optimal control input minimizes the adjoint performance index J 
, it is 

necessary to compute the first variation of this functional and set it equal to zero. 

Indeed, taking the first variation of the augmented cost function J 
 yields: 
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 (4.57) 
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Observing that the variation of the state vector ( )kz , the variation of the 

co-state vector ( )kλ  and the variation of the input vector ( )ku  are all 

independent, each quantity in the time integral can be independently taken equal 

to zero yielding to the following equations: 
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z 0
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Q z A λ λ 0
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Az Bu z 0

 (4.58) 

Even in this dual case, the variation of the initial state is set equal to zero 

because it is assumed to be known whereas a condition which links the state 

vector to the adjoint vector at the final state N  arises from the minimization 

procedure. Therefore, the minimization of the adjoint cost index J 
 yields a set 

of two difference equations and one algebraic equation: 

 
0

( 1) ( ) ( )

(0)

k k k  




z Az Bu

z z
 (4.59) 
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z

T

k k k
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   




λ Q z A λ

λ Q z
 (4.60) 

 
1( ) ( 1)T

uk k  u Q B λ  (4.61) 

Where the first difference equation is the state equation with its the initial 

conditions whereas the second difference equation is the adjoint equation with 

its boundary conditions and the last algebraic equation is the stationarity 

equation which relates the optimal control vector with the vector of Lagrange 

multipliers. There is a method originated from the optimal control theory to 

obtain these sets of equations directly defining a so-called Hamiltonian function 
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which depends on the state vector ( )kz , the co-state vector ( )kλ  and the 

control vector ( )ku   9 ,  10 : 
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 (4.62) 

 The state equation, the co-state equation and the stationarity equation can 

be obtained from the Hamiltonian function as follows: 
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 (4.63) 
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 

z u λ
0

u
 (4.65) 

Note that even in this case the whole problem is coupled and it is 

sometimes referred as two-point boundary value problem  9 ,  10 . The 

classical method to solve this problem consist in reducing it to the solution of  a 

discrete-time difference Riccati equation which allows to express the optimal 

control vector as a linear function of the state  9 ,  10 . Indeed, observing that 

at the final time N  the adjoint vector is a linear function of the state vector, 

assume that this relation holds for each instant of time: 
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λ S z

S Q
 (4.66) 

Where ( )kS  is a n n  symmetric matrix to be computed. Note that this 

solution method is referred as Sweep Method  13 . Consequently, the input 

vector can be computed as follows: 
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 (4.67) 

Rearranging the common factors yields: 
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 (4.68) 

Where the discrete-time feedback matrix ( )kF  is a 
r n

 matrix function of 

time defined as: 
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1

( ) ( 1) ( 1)T T

uk k k


    F Q B S B B S A  (4.69) 

On the other hand, substituting the assumed functional form for the adjoint 

vector in the adjoint difference equation yields: 
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 (4.70) 
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 Rearranging the common factors leads to: 

  ( ) ( 1) ( 1) ( ) ( )T T
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Setting the terms between the brackets equal to zero gives: 

 
( ) ( 1) ( ) ( 1)

( )

T T

z

T

k k k k

N

     




S A S BF A S A Q

S Q
 (4.72) 

This is a first-order matrix difference equation named discrete-time 

difference Riccati equation. The solution of this difference equation can be 

found with a marching backward in time. Substituting the definition of the 

discrete-time feedback matrix yields a more explicit form of this matrix 

equation:
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 (4.73) 

Where ( 1)k S  is 
n n

 a symmetric matrix defined as: 
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  
1

1 1( 1) ( 1) T

uk k


     S S BQ B  (4.74) 

Consequently, the unknown matrix ( )kS  can be computed by the following 

set of matrix difference equation: 
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 (4.75) 

By using the definition of matrix ( 1)k S  the discrete-time feedback 

matrix ( )kF  can be expressed as: 
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 (4.76) 

It can be proved  9 ,  10  that the discrete-time difference Riccati equation 

reaches quickly an asymptotic solution 
S  which can be used to compute a 

steady-state discrete-time feedback matrix 
F  as: 
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 (4.77) 

This is equivalent to minimize an infinite-horizon discrete-time quadratic 

cost index defined as: 
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T T

z u

k

J k k k k






  z Q z u Q u  (4.78) 

Consequently, the control input can be computed as a linear combination of 

the state as follows: 
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 ( ) ( )k ku F z  (4.79) 

In practice, this simple form of the control input is widely used for real-time 

applications. 
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4.3. STATE ESTIMATION PROBLEM 

Consider a linear-dynamic time-invariant mechanical system: 

 
0

( ) ( ) ( )

(0)

c ct t t 

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z A z B u

z z
 (4.80) 

In practical application, it is common that there are not enough sensors to 

completely measure the state vector ( )tz  and even the system initial state 
0z  is 

unknown. Therefore, the output equations is: 

 ( ) ( ) ( )t t t y Cz Du  (4.81) 

 The state estimation problem consists in finding an estimation of the 

evolution of system state ˆ( )tz  using the available input and output 

measurements represented by the vectors ( )tu  and ( )ty   9 ,  10 . Clearly, 

since the estimated state ˆ( )tz  is a function of time, to compute it a differential 

equation is required. The mathematical device that allows to compute an 

estimation of the state from input and output measurements is known as an 

observer  11 ,  12 . The simplest state estimator device is represented by a 

linear differential equation similar to the state equation which have an additional 

driving input proportional to the difference from the actual measurement vector 

( )ty  and the reconstructed output vector ˆ ( )ty  in order to ensure that the 

estimated state does not deviate too much from the actual state. Indeed:  

  ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )c c ct t t t t   z A z B u G y y  (4.82) 

 ˆ ˆ( ) ( ) ( )t t t y Cz Du  (4.83) 

Where cG  is a 
n m

 matrix which represent the observer gain matrix. 

Consequently, the state estimation problem reduces to properly compute the 



CONTROL THEORY 263  

observer matrix 
cG  in order to obtain a satisfying estimation of system state. 

Using the definition of the estimated measurement vector ˆ ( )ty , the observer 

equation can be expressed in a compact form as: 

    ˆ ˆ( ) ( ) ( ) ( )c c c c ct t t t    z A G C z B G D u G y  (4.84) 

This equation shows that the evolution of the estimated state vector ˆ( )tz  is 

driven from both the  input vector ( )tu  and the output vector ( )ty . The question 

which spontaneously arises is if the estimated state computed by the observer 

converges to the actual state or not. To answer this question, define the state 

estimation error as: 

 ˆ( ) ( ) ( )t t t e z z  (4.85) 

The evolution in time of the state estimation error can be obtained from the 

following differential equation: 
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c c c c c c

c

c c c c

c c

c c

G c

t t t

t t t t t

t t t t t t

t t

t t

t t

t

t

  

       

      

  

    

   

  



e z z

A z B u A G C z B G D u G y

A z B u A z G Cz B u G Du

G Cz Du

A G C z A G C z

A G C z z

A G C e

A e

 (4.86) 

Where ,G cA  is a 
n n

 matrix which represents the closed-loop state 

estimation error matrix. This matrix is defined as:  



264 CONTROL THEORY  

 
,G c c c A A G C  (4.87) 

In order to obtain a state estimation error which converges to zero the 

observer matrix 
cG  must be constructed such that the eigenvalues of the closed-

loop state estimation error matrix 
,G cA  have negative real parts. Therefore, 

similarly to the regulation problem, a physically intuitive method to find the 

controller gain matrix 
cG  is to force the eigenvalues of the closed-loop state 

estimation error matrix 
,G cA  to assume a prescribed set of values  3 . The basic 

requirement to place the closed-loop poles of matrix 
,G cA  in a specific location 

of the complex plane is that the system must be observable. A linear time-

invariant dynamical system of order n  is observable if and only if its 

observability matrix 
,G cQ  has rank n . The observability matrix 

,G cQ  is a 

nm n  matrix defined as: 

 
2

,

1

c

G c c

n

c



 
 
 
 
 
 
  

C

CA

Q CA

CA

 (4.88) 

 Consider now the left eigenvalue problem of the closed-loop state 

estimation error matrix ,G cA : 

 , , , ,

T

G c G c G c G cA ψ ψ  (4.89) 

Where ,G c  is a generic eigenvalue of matrix ,G cA  and ,G cψ  is a 
n

 

vector representing the left eigenvector of the closed-loop state estimation error 

matrix ,G cA  corresponding to the eigenvalue ,G c . The formulation of the left 
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eigenvalue problem of matrix 
,G cA  obviously leads to the same right 

eigenvalues but is necessary in order to use the null space technique in a form 

similar to the case of the pole placement of closed-loop state matrix 
,F cA   3 . 

The left eigenvalue problem of matrix 
,G cA  can be explicitly expressed as: 

   , , ,

T

c c G c G c G c A G C ψ ψ  (4.90) 

This eigenvalue problem can be restated as follows: 

 

, ,

, ,

, ,

G c G cT T

c G c T G c T

c G c c G c


   

       
   



ψ ψ
A I C Γ

G ψ G ψ

0

 (4.91) 

Where 
,G cΓ  is a ( )n n m   matrix defined as: 

 , ,

T T

G c c G c   Γ A I C  (4.92) 

Therefore, even in this case the matrix 
,G cΓ  can be actually computed once 

that the eigenvalue ,G c  has been assigned for the system represented by the 

state matrix 
cA  and the output influence matrix C . This matrix can be 

factorized by using the Singular Value Decomposition method (SVD)  15  to 

yield: 

 , , , ,G c G c G c G c

Γ U Σ V  (4.93) 

 Where ,G cΣ  is a 
( )n n m 

 diagonal matrix containing the complex 

conjugate singular values of matrix ,G cΓ  whereas ,G cU  and ,G cV  are 

respectively 
n n

 and 
( ) ( )m n m n  

 orthonormal matrices containing the left 
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singular vectors and the right singular vectors of matrix 
,G cΓ . These matrices 

can be respectively partitioned as follows: 

 
,

,

G c

G c

 
  
 

S O
Σ

O O
 (4.94) 

 , , ,

S O

G c G c G c
   U U U  (4.95) 

 , , ,

S O

G c G c G c
   V V V  (4.96) 

Where 
,G cS , 

,

S

G cU , 
,

O

G cU , 
,

S

G cV  and 
,

O

G cV  are respectively , ,G c G cq q
, 

,G cn q
, 

  ,G cn n m q  
, 

  ,G cn m q 
 and 

    ,G cn m n m q   
 matrices. The matrix 

,G cS  is a diagonal matrix containing the significant singular values of the matrix 

,G cΓ . Indeed: 

 ,1 2

, , , ,( , , , )G cq

G c G c G c G cdiag   S  (4.97) 

Consequently, multiplying the matrix 
,G cΓ  times 

,G cV  yields: 

 
, , , , , ,

, ,

G c G c G c G c G c G c

G c G c

 



Γ V U Σ V V

U Σ
 (4.98) 

This equation can be explicitly restated as: 

 

,

, , , ,

, ,

G cS O

G c G c G c G c

G c G c

 
     

 

   

S O
Γ V V U

O O

U S O

 (4.99) 
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The second matrix equality yields: 

 
, ,

O

G c G c Γ V O  (4.100) 

Therefore the matrix 
,

O

G cV  represents a set of orthogonal basis vectors 

spanning the null space of the matrix 
,G cΓ  so that: 

 
, , , , ,

O

G c G c G c G c G c 



Γ V c Γ φ

0
 (4.101) 

Where 
,G cc  is an 

  ,G cn m q 
 arbitrary nonzero vector and 

,G cφ  is a n m  

vector defined as: 

 
, , ,

O

G c G c G cφ V c  (4.102) 

This vector can be partitioned as follows: 

 
,

,

,

G c

G c

G c

 
  
 

φ
φ

φ
 (4.103) 

Where ,G cφ  and 
,G cφ  are respectively 

n
 and 

m
 vectors. Observing the 

matrix reformulation of the left eigenvalue problem of matrix ,G cA , the 

following matrix equations can be deduced: 

 , ,G c G cψ φ  (4.104) 

 , ,

T

c G c G cG ψ φ  (4.105) 
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Note that from the first matrix equation is straightforward to deduce that the 

vector 
,G cφ  coincides with the left eigenvector of the closed-loop state 

estimation error matrix 
,G cA  corresponding to the assigned eigenvalue 

,G c . 

Consequently: 

 
, ,

T

c G c G cG φ φ  (4.106) 

This procedure can be repeated for each prescribed eigenvalue 
,

h

G c  to yield 

the following generic matrix equations: 

 
, , , 1,2, ,T h h

c G c G c h n G φ φ  (4.107) 

 Where 
,

h

G cφ  and 
,

h

G cφ  are respectively n  and m  generic vectors 

corresponding to the assigned eigenvalue 
,

h

G c . These equations can be restated 

in a compact matrix form as follows: 

 , ,

T

c G c G cG Φ Φ  (4.108) 

Where 
,G cΦ  and ,G cΦ  are respectively 

n n
 and 

m n
 matrices defined 

as: 

 

1 2 1

, , , , ,

1 1 1 1

, , , ,

n n

G c G c G c G c G c

n n

G c G c G c G c



   

   

   

Φ φ φ φ φ

φ φ φ φ
 (4.109) 

 

1 2 1

, , , , ,

1 1 1 1

, , , ,

n n

G c G c G c G c G c

n n

G c G c G c G c



   

   

   

Φ φ φ φ φ

φ φ φ φ
 (4.110) 
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Note that complex conjugate eigenvalue pairs 1

,

h

G c   and 
,

h

G c  corresponds to 

complex conjugate vector pairs 1

,

h

G c


φ , 

,

h

G cφ  and 1

,

h

G c


φ , 

,

h

G cφ . Finally, the observer 

matrix 
cG  can be computed as: 

 
 1

, ,

, ,

T

c G c G c

T T

G c G c





 



G Φ Φ

Φ Φ

 (4.111) 

 This method to compute the observer gain matrix is sometimes referred as 

null-space technique for poles placement  3 . Since the output influence matrix 

C  is the same for both discrete-time and continuous-time state-space 

representations, this method can be extended to system discrete-time state-space 

representation in a straightforward manner replacing the continuous-time state 

matrix 
cA  with the discrete-time state matrix A  to yield a discrete-time 

observer matrix G  instead of the continuous-time observer gain 
cG . Now 

consider the more realistic case in which the system analytical model exhibits 

some inaccuracies and the output measurements are corrupted by noise. In this 

situation, an important method to solve the state estimation problem for both 

continuous-time and discrete-time linear state-space systems comes from the 

optimal estimation theory and is the Kalman Filter algorithm (KF)  11 ,  12 . 

Similarly to the pole placement technique, the basic requirement to apply the 

Kalman Filter algorithm (KF) is that the system must be observable.  Indeed, 

consider a continuous-time state-space system affected by disturbances: 

 ( ) ( ) ( ) ( )c ct t t t  z A z B u w  (4.112) 

 ( ) ( ) ( ) ( )t t t t  y Cz Du v  (4.113) 

Where ( )tw  is a 
n

 vector representing the process noise and ( )tv  is a 

m
 vector representing the measurement noise. The random disturbances ( )tw  
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and ( )tv  are not measurable and are assumed zero mean Gaussian white noises 

whose stochastic characteristics are: 

 [ ( )] , 0E t t  w 0  (4.114) 

 [ ( )] , 0E t t  v 0  (4.115) 

 
,[ ( ) ( )] ( ) , , 0T

c wE t t t      w w R  (4.116) 

 
,[ ( ) ( )] ( ) , , 0T

c vE t t t      v v R  (4.117) 

Where 
,c wR  is a n n  symmetric positive definite matrix defining the 

process noise covariance matrix and 
,c vR  is a m m  symmetric positive definite 

matrix defining the measurement noise covariance matrix. In addition, the 

process noise and the measurement noise are assumed mutually uncorrelated:  

 [ ( ) ( )] , , 0TE t t   w v O  (4.118) 

On the other hand, even the initial state 
0z  is assumed unknown and it is 

modelled as a Gaussian distributed random vector whose stochastic 

characteristics are: 

 
0 0[ ]E z z  (4.119)   

   0 0 0 0 ,0[ ]
T

cE   z z z z R  (4.120) 

Where 
0z  is a 

n
 vector representing the expected value of initial state 

and ,0cR  is a 
n n

 symmetric positive definite matrix representing the 

covariance matrix of the initial state. The initial state vector is modelled as a 

random process uncorrelated to the stochastic disturbances: 
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0[ ( )] , 0TE t t  z w O  (4.121) 

 
0[ ( )] , 0TE t t  z v O  (4.122) 

The Continuous Kalman Filter algorithm (CKF) is capable to derive a 

continuous-time observer matrix which minimizes a quadratic performance 

index. The cost index is a quadratic functional which depends on process noise, 

measurement noise and on the error of the initial state estimation  11 ,  12 . In 

the continuous-time case, for a finite-horizon of time 0 t T   the quadratic 

cost index can be defined as: 

 

   1

0 0 ,0 0 0

1 1

, ,
0

1

2

1
( ) ( ) ( ) ( )

2

T

c c

T
T T

c w c v

J

t t t t dt



 

   

 

z z R z z

w R w v R v

 (4.123) 

Where the weighting matrices used in the cost function for the process 

noise and the measurement noise are the inverse of their respective covariance 

matrices whereas the weighting matrix used for the estimation error of the initial 

state is the inverse of the covariance matrix of the initial state. Note that the 

performance index can be seen as an energy index of the disturbances or as an 

error index  12 . This cost index can be reformulated replacing the 

measurement noise by using the output equation to yield: 
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   

   

   

1

0 0 ,0 0 0

1 1

, ,
0

1

0 0 ,0 0 0

1 1

, ,
0

1

2

1
( ) ( ) ( ) ( )

2

1

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

T

c c

T
T T

c w c v

T

c

T TT

c w c v

J

t t t t dt

t t t t t t t t dt



 



 

   

  

   

     





z z R z z

w R w v R v

z z R z z

w R w y Cz Du R y Cz Du

 (4.124) 

In order to find the Kalman state estimator, the cost index 
cJ  must be 

minimized and simultaneously the state equation must be satisfied. Therefore, 

the state equation represents a constraint equation for the minimization problem. 

To solve this problem the method of Lagrange multipliers can be used  11 , 

 12 . This method consists in adjoining the state equation to the performance 

index and subsequently minimize this adjoint cost index 
cJ 

 using variational 

calculus technique. Indeed: 

 

   

   

 

0

1

0 0 ,0 0 0

1 1

, ,
0

0

( ) ( ) ( ) ( ) ( )

1

2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( ) ( ) ( ) ( )

T
T

c c c c

T

c

T TT

c w c v

T
T

c c

J J t t t t t dt

t t t t t t t t dt

t t t t t dt





 

     

   

      

   







λ z A z B u w

z z R z z

w R w y Cz Du R y Cz Du

λ z A z B u w

 (4.125) 

Where ( )tλ  is a 
n

 vector containing the Lagrange multipliers. Since the 

optimal estimator minimizes the adjoint performance index 
cJ 

, it is necessary to 

compute the first variation of this functional and set it equal to zero. Indeed, 

taking the first variation of the augmented cost function 
cJ 

 yields: 
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 
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   
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



z B u w λ λ z

λ A z λ B u λ w

 (4.126) 

This formula can be further simplified yielding to: 
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(4.127) 

This expression can be further simplified to yield: 
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 (4.128) 

Observing that the variation of the state vector ( )tz , the variation of the 

co-state vector ( )tλ  and the variation of the process noise vector ( )tw  are 
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all independent, each quantity in the time integral can be independently taken 

equal to zero: 
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 (4.129) 

Therefore, the minimization of the adjoint cost index 
cJ   yields a set of two 

differential equations and one algebraic equation: 
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 (4.130) 

 
 

 

1

,

1

,0 0 0

( ) ( ) ( ) ( ) ( )

(0)

T T

c v c

c

t t t t t



     


 

λ C R y Cz Du A λ

λ R z z
 (4.131) 

 
,( ) ( )c wt tw R λ  (4.132) 

Where the first differential equation is the state equation, the second 

differential equation is the adjoint equation and the last algebraic equation is the 

stationarity equation. There is a method derived from the optimal estimation 

theory to obtain these sets of equations directly defining the Hamiltonian 

function which depends on the state vector ( )tz , the co-state vector ( )tλ  and 

the process noise vector ( )tw   11 ,  12 . Indeed:  
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 (4.133) 

 The state equation, the co-state equation and the stationarity equation can 

be obtained from the Hamiltonian function as follows: 
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z w λ
0

w
 (4.136) 

The classical method to solve this problem consist in reducing it to the 

solution of  a continuous-time differential Riccati equation which can be used to 

compute an observer matrix  11 ,  12 . Indeed, since the initial state vector 
0z  

is a random Gaussian process with mean vector 
0z  and covariance matrix ,0cR , 

the system state vector ( )tz  turns out to be a Gaussian stochastic process which 

can be expressed as the sum of a mean value function ˆ( )tz  and a zero mean 

Gaussian stochastic process whose covariance matrix ( )tP  must be determined. 

Indeed: 
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 (4.137) 

Where ˆ( )tz  is a n  vector representing the mean value function of the 

state vector Gaussian stochastic process and ( )tP  is a n n  symmetric matrix 

representing the covariance matrix of a zero mean Gaussian stochastic process . 

Since the mean state vector ˆ( )tz  and the covariance matrix ( )tP  are unknown 

function of time, to compute them two matrix differential equations are required. 

Taking the time derivative of the state vector and using the adjoint equation 

yields to: 
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 (4.138) 

On the other hand, using the state equation the time derivative of the state 

vector can be computed as follows: 
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Equating the two previous equations yields: 
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Setting the terms between the brackets and the remaining terms 

independently equal to zero gives: 
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 ˆ ˆ( ) ( ) ( )t t t y Cz Du  (4.142) 
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Where ˆ ( )ty  is a 
m

 vector defining the estimated output measurement 

vector and ( )c tK  is a 
n m

 matrix representing a continuous-time Kalman gain 

matrix which is defined as:  

 
1

,( ) ( ) T

c c vt t K P C R  (4.144) 

The continuous-time Kalman gain ( )c tK  can be computed once that the 

covariance matrix ( )tP  has been determined from the first-order matrix 

differential equation which is a continuous-time differential Riccati equation. 
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Indeed, the Kalman gain matrix ( )c tK  works like a continuous-time observer in 

the differential equation that describe the evolution of the mean state vector 

ˆ( )tz  which can be assumed as an estimation of the state vector ( )tz . Moreover, 

it can be proved  11 ,  12  that the continuous-time differential Riccati 

equation reaches quickly an asymptotic solution 
P  which can be used to 

compute a steady-state continuous-time Kalman gain matrix 
,c K  as: 

 1

, ,

T

c c v



 K P C R  (4.145) 

In practice the steady-state Kalman estimator is preferred especially for 

real-time applications. This is equivalent to minimize an infinite-horizon 

continuous-time quadratic cost index defined as: 

 
1 1
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T T

c c w c vJ t t t t dt

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   w R w v R v  (4.146) 

Consider now a discrete-time state-space system affected by disturbances: 

 ( 1) ( ) ( ) ( )k k k k   z Az Bu w  (4.147) 

 ( ) ( ) ( ) ( )k k k k  y Cz Du v  (4.148) 

Where ( )kw  is a 
n

 vector representing the process noise and ( )kv  is a 

m
 vector representing the measurement noise. Similarly to the continuous-time 

case, the random disturbances ( )kw  and ( )kv  are not measurable and are 

assumed zero mean Gaussian white noises whose stochastic characteristics can 

be expressed as: 

 [ ( )] , 0E k k  w 0  (4.149) 

 [ ( )] , 0E k k  v 0  (4.150) 



CONTROL THEORY 281  
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,[ ( ) ( )] , , 0T

v h kE h k h k  v v R  (4.152) 

Where 
wR  is a n n  symmetric positive definite matrix defining the 

process noise covariance matrix and 
vR  is a m m  symmetric positive definite 

matrix defining the measurement noise covariance matrix. The process noise and 

the measurement noise are assumed mutually uncorrelated:  

 [ ( ) ( )] , , 0TE h k h k  w v O  (4.153) 

On the other hand, even the initial state 
0z  is assumed unknown and it is 

modelled as a Gaussian distributed random vector whose stochastic 

characteristics can be expressed as: 

 
0 0[ ]E z z  (4.154)   

   0 0 0 0 0[ ]
T

E   z z z z R  (4.155) 

Where 
0z  is a 

n
 vector representing the expected value of initial state 

and 
0R  is a 

n n
 symmetric positive definite matrix representing the 

covariance matrix of the initial state. The initial state vector is modelled as a 

random process uncorrelated to the stochastic disturbances: 

 
0[ ( )] , 0TE k k  z w O  (4.156) 

 
0[ ( )] , 0TE k k  z v O  (4.157) 

The Discrete Kalman Filter algorithm (DKF) is capable to derive a discrete-

time observer matrix which minimizes a quadratic performance index  11 , 
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 12 . The cost index is a quadratic functional which depends on process noise, 

measurement noise and on the estimation error of the initial state  12 . In the 

discrete-time case, for a finite-horizon of time 0 t T   the quadratic cost index 

can be defined as: 
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Where the weighting matrices used in the cost function for the process 

noise and the measurement noise are the inverse of their respective covariance 

matrices whereas the weighting matrix used for the estimation error of the initial 

state is the inverse of the covariance matrix of the initial state. Note that the 

performance index can be seen as an energy index of the disturbances or as an 

error index. This cost index can be reformulated replacing the measurement 

noise by using the output equation to yield: 
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 (4.159) 

In order to find the Kalman state estimator, the cost index J  must be 

minimized and simultaneously the system state equation must be satisfied. 
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Therefore, the state equation represents a constraint equation for the 

minimization problem. To solve this problem the method of Lagrange 

multipliers can be used  11 ,  12 . This method consists in adjoining the state 

equation to the performance index and subsequently minimize this adjoint cost 

index J   using variational calculus technique. Indeed: 
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 (4.160) 

Where ( )kλ  is a n  vector containing the Lagrange multipliers. Since the 

optimal estimator minimizes the adjoint performance index J 
, it is necessary to 

compute the first variation of this functional and set it equal to zero. Indeed, 

taking the first variation of the augmented cost function J 
 yields: 
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 (4.161) 

This expression can be further simplified yielding to: 
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This formula can be simplified to yield: 
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 (4.163) 

Observing that the variation of the state vector ( )kz , the variation of the 

co-state vector ( )kλ  and the variation of the process noise vector ( )kw  are 

all independent, each quantity in the time integral can be independently taken 

equal to zero: 
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Therefore, the minimization of the adjoint cost index J   yields a set of two 

differential equations and one algebraic equation: 
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 ( ) ( 1)wk k w R λ  (4.167) 

Where the first difference equation is the state equation, the second 

difference equation is the adjoint equation and the last algebraic equation is the 

stationarity equation. Even in this case, there is a method deriving from optimal 

estimation theory to obtain these set of equations directly defining the 

Hamiltonian function which depends on the state vector ( )kz , the co-state 

vector ( )kλ  and the process noise vector ( )kw   11 ,  12 . Indeed: 
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 The state equation, the co-state equation and the stationarity equation can 

be obtained from the Hamiltonian function as follows: 
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The classical method to solve this problem consist in reducing it to the 

solution of  a discrete-time differential Riccati equation which can be used to 

compute an observer matrix. Indeed, since the initial state vector 
0z  is a random 

Gaussian process with mean vector 
0z  and covariance matrix 

0R , the system 

state vector ( )kz  turns out to be a Gaussian stochastic process which can be 

expressed as the sum of a mean value function ˆ( )kz  and a zero mean Gaussian 

stochastic process whose covariance matrix ( )kP  must be determined. Indeed: 

 0

0

ˆ( ) ( ) ( ) ( )

ˆ(0)

(0)

k k k k 



 

z z P λ

z z

P R

 (4.172) 

Where ˆ( )kz  is a 
n

 vector representing the mean value function of the 

state vector Gaussian stochastic process and ( )kP  is a 
n n

 symmetric matrix 

representing the covariance matrix of a zero mean Gaussian stochastic process. 

Since the mean state vector ˆ( )kz  and the covariance matrix ( )kP  are unknown 

function of time, to compute them are necessary two matrix difference 

equations. To derive a discrete-time differential Riccati equation to compute the 

covariance matrix ( )kP , substitute the formulation of the state vector ( )kz  in 

the adjoint equation: 
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Rearranging the common factors yields: 
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 (4.174) 

Consequently, the product ( ) ( )k kP λ  can be computed as: 
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 (4.175) 

Where ( )kP  is a 
n n

 symmetric matrix defined as: 

  
1

1 1( ) ( ) T

vk k


   P P C R C  (4.176) 

On the other hand, the state equation can be reformulated by using the 

previous equation to yield: 
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The state vector can be also expressed as the sum of the following terms: 

 ˆ( 1) ( 1) ( 1) ( 1)k k k k     z z P λ  (4.178) 

Equating the last two equations yields: 
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Setting the terms between the brackets and the remaining terms 

independently equal to zero gives: 
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 ˆ ˆ( ) ( ) ( )k k k y Cz Du  (4.181) 
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Where ˆ ( )ky  is a m  vector defining the estimated output measurement 

vector and ( )kK  is a n m  matrix representing a discrete-time Kalman gain 

matrix which is defined as:  
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The discrete-time Kalman gain ( )kK  can be computed once that the 

covariance matrix ( )kP  has been determined from the first-order matrix 

difference equation which is a discrete-time difference Riccati equation. Indeed, 

the Kalman gain matrix ( )kK  works like a discrete-time observer in the 

difference equation that describe the evolution of the mean state vector ˆ( )kz  

which can be assumed as an estimation of the state vector ( )kz . Moreover, it 

can be proved  11 ,  12  that the discrete-time difference Riccati equation 

reaches quickly an asymptotic solution 
P  which can be used to compute a 

steady-state discrete-time Kalman gain matrix 
K  as follows: 
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This is equivalent to minimize an infinite-horizon discrete-time quadratic 

cost index defined as: 
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In practice the steady-state Kalman estimator is preferred especially for 

real-time applications. 
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4.4. LINEAR QUADRATIC GAUSSIAN 
CONTROLLER (LQG) 

Consider the regulation problem for a linear dynamical system disturbed by 

white Gaussian noise in the presence of incomplete state measurements. This 

problem can be solved using the Linear Quadratic Gaussian controller algorithm 

(LQG) for both continuous-time and discrete-time state-space systems  9 , 

 10 . This method combines the two logical structures of the optimal 

deterministic state regulator with the optimal stochastic state estimator  11 , 

 12 . Indeed, it can be proved that a Linear Quadratic Regulator (LQR) and a 

Kalman Filter (KF) can be designed independently and then combined together 

to derive a Linear Quadratic Gaussinan controller (LQG)  13 ,  14 . This 

important result is known as separation theorem or certainty-equivalence 

principle. Hence, consider a continuous-time state-space system affected by 

disturbances: 

 ( ) ( ) ( ) ( )c ct t t t  z A z B u w  (4.186) 

 ( ) ( ) ( ) ( )t t t t  y Cz Du v  (4.187) 

Where ( )tw  is a 
n

 vector representing the process noise and ( )tv  is a 

m
 vector representing the measurement noise. The random disturbances ( )tw  

and ( )tv  are not measurable and are assumed zero mean Gaussian white noises 

whose stochastic characteristics are: 

 [ ( )] , 0E t t  w 0  (4.188) 

 [ ( )] , 0E t t  v 0  (4.189) 

 ,[ ( ) ( )] ( ) , , 0T

c wE t t t      w w R  (4.190) 
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,[ ( ) ( )] ( ) , , 0T

c vE t t t      v v R  (4.191) 

Where 
,c wR  is a n n  symmetric positive definite matrix defining the 

process noise covariance matrix and 
,c vR  is a m m  symmetric positive definite 

matrix defining the measurement noise covariance matrix. In addition, the 

process noise and the measurement noise are assumed mutually uncorrelated:  

 [ ( ) ( )] , , 0TE t t   w v O  (4.192) 

On the other hand, even the initial state 
0z  is assumed unknown and it is 

modelled as a Gaussian distributed random vector whose stochastic 

characteristics are: 

 
0 0[ ]E z z  (4.193)   

   0 0 0 0 ,0[ ]
T

cE   z z z z R  (4.194) 

Where 
0z  is a 

n
 vector representing the expected value of initial state 

and ,0cR  is a 
n n

 symmetric positive definite matrix representing the 

covariance matrix of the initial state. The initial state vector is modelled as a 

random process uncorrelated to the stochastic disturbances: 

 
0[ ( )] , 0TE t t  z w O  (4.195) 

 
0[ ( )] , 0TE t t  z v O  (4.196) 

For the continuous-time representation, the Linear Quadratic Gaussian 

regulator method (LQG) is able to compute a feedback matrix in such a way to 

minimize a quadratic cost index  13 ,  14 . In the continuous-time case and 
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without considering constraints on the terminal state, for a finite-horizon of time 

0 t T   the quadratic cost index can be defined as: 

 
, , ,

0

1 1
[ ( ) ( ) ( ) ( ) ( ) ( ) ]
2 2

T
T T T

c c T c z c uJ E T T t t t t dt  z Q z z Q z u Q u

 (4.197) 

Where 
,c TQ  and 

,c zQ  are n n  matrices which represent the terminal cost 

matrix and the weight of the state vector whereas 
,c uQ  is a r r  matrix 

representing the weight of the input vector. Note that the matrix 
,c TQ  is a 

positive semidefinite matrix which penalizes the deviation of the final state from 

the desired set point whereas the matrices 
,c zQ  and 

,c uQ  are respectively a 

positive semidefinite matrix and a positive definite matrix which penalize 

respectively the instantaneous deviation of the state form the reference 

configuration and the instantaneous control effort. Therefore, performing the 

minimization procedure the control input can be expressed as: 

 ˆ( ) ( ) ( )ct t tu F z  (4.198) 

Where ( )c tF  is a 
r n

 feedback matrix function which derive from the 

computation of a deterministic state regulator and ˆ( )tz  is an 
n

 observed 

vector which derive from the computation of a stochastic state estimator  13 , 

 14 . Indeed, the feedback matrix ( )c tF  can be computed minimizing the 

following deterministic continuous-time cost function: 

 , , ,
0

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

T
T T T

c c T c z c uJ T T t t t t dt  z Q z z Q z u Q u  (4.199) 

The minimization of the cost function yields to the following continuous-

time differential Riccati equation: 
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1

, ,

,

( ) ( ) ( ) ( ) ( )

( )

T T

c c c c u c c z

c T

t t t t t

T

     




S S A A S S B Q B S Q O

S Q
 (4.200) 

Where ( )tS  is a n n  symmetric matrix function which is necessary to 

compute the continuous-time feedback matrix function ( )c tF  as: 

 1

,( ) ( )T

c c u ct t F Q B S  (4.201) 

  It can be proved  9 ,  10  that this continuous-time differential Riccati 

equation reaches quickly an asymptotic solution 
S  which can be used to 

compute a steady-state continuous-time feedback matrix 
,c F  as: 

 
1

, ,

T

c c u c



  F Q B S  (4.202) 

On the other hand, the estimated state ˆ( )tz  can be computed from the 

following observer equations: 

 
 

0

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ(0)

c c ct t t t t t    




z A z B u K y y

z z
 (4.203) 

 ˆ ˆ( ) ( ) ( )t t t y Cz Du  (4.204) 

Where the Kalman filter ( )c tK  can be computed minimizing the following 

stochastic continuous-time error function: 

 

   1

0 0 ,0 0 0

1 1

, ,
0

1

2

1
( ) ( ) ( ) ( )

2

T

c c

T
T T

c w c v

J

t t t t dt



 

   

 

z z R z z

w R w v R v

 (4.205) 
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The minimization of the error function yields to the following continuous-

time differential Riccati equation: 

 

1

, ,

,0

( ) ( ) ( ) ( ) ( )

(0)

T T

c c c v c w

c

t t t t t     




P A P P A P C R CP R O

P R
 (4.206) 

Where ( )tP  is a n n  symmetric matrix function which is necessary to 

compute the continuous-time Kalman matrix function ( )c tK  as: 

 1

,( ) ( ) T

c c vt t K P C R  (4.207) 

It can be proved  11 ,  12  that this continuous-time differential Riccati 

equation reaches quickly an asymptotic solution 
P  which can be used to 

compute a steady-state continuous-time Kalman gain matrix 
,c K  as: 

 
1

, ,

T

c c v



 K P C R  (4.208) 

Consequently, the overall model of the controlled system combined with 

the state observer can be expressed as follows: 

 ( ) ( ) ( )ct t tz A z  (4.209) 

Where ( )tz  is a 
2n

 vector representing the global state vector and ( )c tA  

is a 
2 2n n

 matrix representing the global state matrix which are respectively 

defined as: 

 
( )

( )
ˆ( )

t
t

t

 
  
 

z
z

z
 (4.210) 
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( )

( )
( ) ( ) ( )
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c
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t
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t t t

 
  
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A B F
A

K C A K C B F
 (4.211) 

The separation theorem or certainty-equivalence principle states that the 

eigenvalue set of the global state matrix ( )c tA  is the union of the eigenvalue set 

of the closed-loop control state matrix ( )c c c tA B F  and the eigenvalue set of 

the closed-loop observer state matrix ( )c c tA K C   13 ,  14 . Therefore, the 

state controller and the state observer can be designed independently making 

stable the closed-loop control state matrix ( )c c c tA B F  and the closed-loop 

observer state matrix ( )c c tA K C  and consequently the global state matrix 

( )c tA  is stable. This result can be developed in a straightforward manner 

considering a slightly different global state vector defined as  3 : 

 
( )

( )
( )

t
t

t

 
  
 

z
z

e
 (4.212) 

Where ( )te  is the error between the system state vector ( )tz  and the 

estimated state vector ˆ( )tz . Indeed, in terms of this global state vector ( )tz  the 

global state matrix ( )c tA  becomes: 

 
( ) ( )

( )
( )

c c c c c

c

c c

t t
t

t

  
  

 

A B F B F
A

O A K C
 (4.213) 

Indeed, the eigenvalues of the block triangular state matrix ( )c tA  are union 

of the eigenvalues of its diagonal block matrices ( )c c c tA B F  and 

( )c c tA K C . On the other hand, Consider now a discrete-time state-space 

system affected by disturbances: 
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 ( 1) ( ) ( ) ( )k k k k   z Az Bu w  (4.214) 

 ( ) ( ) ( ) ( )k k k k  y Cz Du v  (4.215) 

Where ( )kw  is a n  vector representing the process noise and ( )kv  is a 

m  vector representing the measurement noise. Similarly to the continuous-time 

case, the random disturbances ( )kw  and ( )kv  are not measurable and are 

assumed zero mean Gaussian white noises whose stochastic characteristics can 

be expressed as: 

 [ ( )] , 0E k k  w 0  (4.216) 

 [ ( )] , 0E k k  v 0  (4.217) 

 
,[ ( ) ( )] , , 0T

w h kE h k h k  w w R  (4.218) 

 
,[ ( ) ( )] , , 0T

v h kE h k h k  v v R  (4.219) 

Where 
wR  is a 

n n
 symmetric positive definite matrix defining the 

process noise covariance matrix and 
vR  is a 

m m
 symmetric positive definite 

matrix defining the measurement noise covariance matrix. The process noise and 

the measurement noise are assumed mutually uncorrelated:  

 [ ( ) ( )] , , 0TE h k h k  w v O  (4.220) 

On the other hand, even the initial state 
0z  is assumed unknown and it is 

modelled as a Gaussian distributed random vector whose stochastic 

characteristics can be expressed as: 

 0 0[ ]E z z  (4.221)   
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   0 0 0 0 0[ ]
T

E   z z z z R  (4.222) 

Where 
0z  is a n  vector representing the expected value of initial state 

and 
0R  is a n n  symmetric positive definite matrix representing the 

covariance matrix of the initial state. The initial state vector is modelled as a 

random process uncorrelated to the stochastic disturbances: 

 
0[ ( )] , 0TE k k  z w O  (4.223) 

 
0[ ( )] , 0TE k k  z v O  (4.224) 

For the continuous-time representation, the Linear Quadratic Gaussian 

regulator method (LQG) is able to compute a feedback matrix in such a way to 

minimize a quadratic cost index  13 ,  14 . In the discrete-time case and 

without considering constraints on the terminal state, for a finite-horizon of time 

0 t T   the quadratic cost index can be defined as: 

  
1

0

1 1
[ ( ) ( ) ( ) ( ) ( ) ( ) ]
2 2

N
T T T

T z u

k

J E N N k k k k




  z Q z z Q z u Q u

 (4.225) 

Where 
TQ  and 

zQ  are 
n n

 matrices which represent the terminal cost 

matrix and the weight of the state vector whereas 
uQ  is a 

r r
 matrix 

representing the weight of the input vector. Note that the matrix 
TQ  is a positive 

semidefinite matrix which penalizes the deviation of the final state from the 

desired set point whereas the matrices 
zQ  and 

uQ  are respectively a positive 

semidefinite matrix and a positive definite matrix which penalize respectively 

the instantaneous deviation of the state form the reference configuration and the 

instantaneous control effort. Therefore, performing the minimization procedure 

the control input can be expressed as: 
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 ˆ( ) ( ) ( )k k ku F z  (4.226) 

Where ( )kF  is a r n  feedback matrix function which derive from the 

computation of a deterministic state regulator and ˆ( )kz  is an n  observed 

vector which derive from the computation of a stochastic state estimator. Indeed, 

the feedback matrix ( )kF  can be computed minimizing the following 

deterministic discrete-time cost function: 

  
1
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1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

N
T T T

T z u

k

J N N k k k k

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  z Q z z Q z u Q u  (4.227) 

The minimization of the cost function yields to the following discete-time 

difference Riccati equation: 
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Where ( )kS  is a n n  symmetric matrix function which is necessary to 

compute the discrete-time feedback matrix function ( )kF  as: 
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 (4.229) 

  It can be proved  9 ,  10  that this discrete-time difference Riccati 

equation reaches quickly an asymptotic solution 
S  which can be used to 

compute a steady-state discrete-time feedback matrix 
F  as: 
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 (4.230) 
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On the other hand, the estimated state ˆ( )kz  can be computed from the 

following observer equations: 

 
 

0

ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )

ˆ(0)

k k k k k k     

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z Az Bu K y y

z z
 (4.231) 

 ˆ ˆ( ) ( ) ( )k k k y Cz Du  (4.232) 

Where the Kalman filter ( )kK  can be computed minimizing the following 

stochastic discrete-time error function: 
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 (4.233) 

The minimization of the error function yields to the following discrete-time 

difference Riccati equation: 
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 (4.234) 

Where ( )kP  is a 
n n

 symmetric matrix function which is necessary to 

compute the discrete-time Kalman matrix function ( )kK  as: 
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It can be proved  11 ,  12  that this discrete-time difference Riccati 

equation reaches quickly an asymptotic solution 
P  which can be used to 

compute a steady-state discrete-time Kalman gain matrix 
K  as: 

 

 

1

1
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v

T T

v
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 (4.236) 

Consequently, the overall model of the controlled system combined with 

the state observer can be expressed as follows: 

 ( 1) ( ) ( )k k k z A z  (4.237) 

Where ( )kz  is a 2n  vector representing the global state vector and ( )kA  

is a 2 2n n  matrix representing the global state matrix which are respectively 

defined as: 
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 (4.239) 

The separation theorem or certainty-equivalence principle states that the 

eigenvalue set of the global state matrix ( )kA  is the union of the eigenvalue set 

of the closed-loop control state matrix ( )kA BF  and the eigenvalue set of the 

closed-loop observer state matrix ( )kA K C   13 ,  14 . Therefore, the state 

controller and the state observer can be designed independently making stable 

the closed-loop control state matrix ( )kA BF  and the closed-loop observer 

state matrix ( )kA K C  and consequently the global state matrix ( )kA  is 
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stable. This result can be developed in a straightforward manner considering a 

slightly different global state vector defined as  3 : 

 
( )
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( )

k
k

k
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  
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z
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e
 (4.240) 

Where ( )ke  is the error between the system state vector ( )kz  and the 

estimated state vector ˆ( )kz . Indeed, in terms of this global state vector ( )kz  the 

global state matrix ( )kA  becomes: 
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 (4.241) 

Indeed, the eigenvalues of the block triangular state matrix ( )kA  are union 

of the eigenvalues of its diagonal block matrices ( )kA BF  and ( )kA K C .   
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5. CASE STUDY: ACTIVE CONTROL OF A 
THREE-STORY BUILDING MODEL   

5.1. INTRODUCTION 

In this chapter the analysis of a case study is presented. The case study 

examined is a three-story building model with a pendulum hinged on the third 

floor. The motivations of this choice can be summarized in two points. First, the 

three-story frame, in spite of its simplicity, is a mechanical system whose 

dynamical behaviour is qualitatively similar to complex flexible structures. 

Therefore, all methods able to derive the equations of motion of multibody 

systems   1 ,  2 ,  3 , all algorithms capable to identify the modal parameters 

of structural systems  4 ,  5 ,  6 ,  7 ,  8 ,  9 ,  10 ,  11 ,  12 ,  13  and 

all strategies adequate to perform active vibration control of mechanical systems 

 14 ,  15 ,  16 ,  17 ,  18 ,  19 ,  20 ,  21  can be identically used in order 

to obtain qualitatively similar results. Second, the three-story building model, by 

virtue of its simplicity, is a mechanical system which can be quite simply 

assembled in laboratory making relatively little effort in order to perform a quick 

and easy-to-test experimental analysis  22 ,  23 . The following sections 

contain an accurate description of the three-story frame, of the control system 

and of all the tools which compose the test rig  24 ,  25 . Then, the 

developments of a lumped parameter model and of a finite element model of the 

three-story frame are presented. Indeed, the system equations of motion has been 

derived using the finite element formulation of flexible multibody Dynamics  
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 1 . Subsequently, the development of a data-driven model relative to the 

system under test is described in the experimental identification section  5 . In 

particular, the Eigensystem Realization Algorithm with Data Correlation using 

Observer/Kalman Filter Identification method (ERA/DC OKID)  4  and the 

Numerical Algorithm for Subspace Identification (N4SID)  6  have been used 

to determine two different state-space models of the structural system using 

experimental input and output measurements. In addition, the algorithm to 

determine a physical model from the identified sate-space representation (MKR) 

 7 ,  8 ,  9  has been used to obtain two different second-order mechanical 

models of the three-story frame. Subsequently, the design of a Linear Quadratic 

Gaussian regulator (LQG)  14 ,  15  has been performed using the previously 

identified physical model of the system under test. The effectiveness of this 

controller has been tested in the worst-case scenario in which the system is 

excited by an external force whose harmonic content is close to the first three 

system natural frequencies. Finally, a new control algorithm for nonlinear 

underactuated mechanical systems affected by uncertainties (EUK-EKF) is 

proposed. The control problem of nonlinear underactuated mechanical system 

forced with nonholonomic constraints is the main object of many recent 

researches  26 ,  27 ,  28 . In analogy with the Linear Quadratic Gaussian 

regulation method (LQG), the proposed algorithm represents the extension of the 

Udwadia-Kalaba control method (UK)  29  to underactuated mechanical 

systems disturbed by noise. This extension is performed combining the extended 

Udwadia-Kalaba control method (EUK)  30 ,  31  which is the extension of 

the Udwadia-Kalaba control method (UK)  29  to underactuated mechanical 

systems, with the well-known extended Kalman filter estimation method (EKF) 

 15 . Even in this case, the effectiveness of the combined algorithms (EUK-

EKF) has been tested in the worst-case scenario in which the system is excited 

by an external force whose harmonic content is close to the first three system 

natural frequencies. 
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5.2. TEST RIG DESCRIPTION 

The experimental apparatus is a flexible structure composed of six vertical 

harmonic steel beams and three aluminium Bosch profiles, which serves as 

horizontal connecting rods.  

    

The frequency range of interest encompasses all the frequencies below 

 15 Hz . In the frequency range of interest, the steel beams behave like flexible 
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elements whereas the aluminium rods behave like rigid elements. Since the 

structure is developed in a plane, its transversal stiffness and its torsional 

stiffness are much larger than the structure stiffness along the plane. Therefore, 

in the frequency range of interest, the structure behaves like a plane system. The 

structural elements are assembled to form a three-story frame which represents a 

simplified model for a three-story building. The flexible frame is excited in 

correspondence of the first floor by a Bruel & Kjaer shaker. The shaker is 

suspended through a steel cable which is fixed on an external support structure. 

The shaker is connected with the three-story frame by a stinger and a PCB load 

cell is interposed between the structure and the stinger in order to measure the 

force transferred to the frame by the shaker. The shaker is fed by a Bruel & 

Kjaer power amplifiers which is controlled by a Textronics arbitrary function 

generator. On the other hand, on each floor of the structure there is a Bruel & 

Kjaer piezoelectric transducer which sense the structure acceleration.  In 

addition, on the third floor there is the control system. 

    

 The control actuator is realized by a simple pendulum which can oscillate 

along the plane of the structure. The pendulum is driven by a Kollmorgen AKM 

brushless motor, equipped with an encoder, which provides the control torque. 
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The control torque follows a feedback control law which has been implemented 

using a National Instruments PAC system, namely the CompactRIO system. The 

interface between the motor servodrive and the PAC system is achieved by a 

drive interface module lodged in the chassis of the CompactRIO system, which 

enables an efficient integration of the two systems. Indeed, the CompactRIO 

system can read the output signals of the transducers by using the input module 

and, at the same time, it can accomplish the feedback control for the motor 

torque by using the drive interface module.  

 

On the other hand, in order to perform the experimental modal analysis of 

the structure, the structure has been excited by a Bruel & Kjaer impact hammer 

instrumented with a load cell connected to a Bruel & Kjaer spectrum analyzer 

whereas, at the same time, the acceleration signals of the system response were 

recorded by using the spectrum analyzer. Consider now the following data. 
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 The length of the structural elements are equal respectively to 

 2

1 23 10L m  ,  2

2 28 10L m   and  2

3 23 10L m   whereas the half-

length of the pendulum is equal to  2

4 8.25 10L m  .  The dimensions of the 

cross sections relative to the structural elements are  2

1 2 3 3.5 10b b b m     
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and  3

1 2 3 1 10h h h m    . The areas of the cross sections are equal to 

5 2

1 2 3 1 1 3.5 10A A A b h m         . The second moments of area 

corresponding to each beam cross section can be computed as 

3
12 41 1

1 2 3 2.917 10
12

b h
J J J m         . The system structural components 

are made of harmonic steel. The mass densities of the harmonic steel elements 

are equal to  
1 2 3 3

7860
kg

m
  

 
    

 
 whereas the elastic moduli are equal 

to 
9

1 2 3 2
207 10

N
E E E

m

 
     

 
. The masses of the floors are respectively 

equal to  1 1.281m kg ,  2 0.814m kg  and  3 1.380m kg  whereas the 

mass of the pendulum is equal to  4 0.083m kg . The mass moment of inertia 

relative to the centre of mass of the pendulum is equal to 

4 2

,4 108.32zzI kg m      . The structural damping is assumed proportional 

with coefficients  0.9751 s   and 
42.8815 10

1

s
  

 


  
 

 whereas the 

pendulum angular damping is assumed equal to 
3

4 2. 1432 0
N m s

r
rad

   
   

 
. 

These data will be used in the following sections to derive different types of 

models and different types of controller for the three-story frame.  
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5.3. LUMPED PARAMETER MODEL 

Consider the following schematization of the test rig: 

 

                                        

According to the lumped parameter description, the system is modelled as a 

set of three rigid bodies representing the floors of the building connected by 

three linear springs corresponding to the system structural elements. In addition, 

a pendulum hinged on the third floor is considered. Therefore, the number of 

system degrees of freedom is 
2 4n   and the vector of system lagrangian 

coordinates is selected as follows: 

 

1

2

3

( )

( )
( )

( )

( )

x t

x t
t

x t

t

 
 
 
 
 
 

q  (5.1) 
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Where 
1( )x t , 

2 ( )x t  and 
3( )x t  are the horizontal displacements of the three 

floors whereas ( )t  is the pendulum angle. The position vectors relative to each 

floor centre of mass can be expressed in terms of system configuration 

coordinates as: 

 

1

1

1

( )

( )

0

x t

t L

 
 


 
  

R  (5.2) 

 

2

2

1 2

( )

( )

0

x t

t L L

 
 

 
 
  

R  (5.3) 

 

3

3

1 2 3

( )

( )

0

x t

t L L L

 
 

  
 
  

R  (5.4) 

Where 
1L , 

2L  and 
3L  are the dimensions of the structural elements. On the 

other hand, the position vector of the pendulum centre of mass can be expressed 

in terms of lagrangian coordinates as follows: 

 

3 4

4

1 2 3 4

( ) cos( ( ))

( ) sin( ( ))

0

x t L t

t L L L L t





 
 

   
 
  

R  (5.5) 

Where 
4L  is equal to half length of the pendulum. Indeed, the position 

vector of a generic point 
4P  on the pendulum can be computed as: 

 
4 4 4 4 4 4( , ) ( ) ( ) ( )P t t t P r R A u  (5.6) 
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Where 
4 ( )tA  is a rotation matrix defined as: 

 
4

cos( ( )) sin( ( )) 0

( ) sin( ( )) cos( ( )) 0

0 0 1

t t

t t t

 

 

 
 


 
  

A  (5.7) 

And 
4 4( )Pu  is the position of the point 4P  referred to the pendulum frame 

of reference defined as: 

 

4

4 4( ) 0

0

x

P

 
 

  
 
 

u  (5.8) 

Consequently, the time derivative of each centre of mass position vector can 

be computed as: 
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 (5.9) 
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 (5.10) 
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 (5.12) 
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 Where the jacobian transformation matrices 1 ( )R tJ , 2 ( )R tJ , 3 ( )R tJ  and 

4 ( )R tJ  are respectively defined as follows: 

 
1

1 0 0 0

( ) 0 0 0 0

0 0 0 0

R t

 
 


 
  

J  (5.13) 

 
2
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R t

 
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
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J  (5.14) 

 
3
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R t

 
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
 
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J  (5.15) 
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
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
 
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J  (5.16) 

On the other hand, the angular velocity of the pendulum can be expressed in 

terms of the independent coordinates as follows: 
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ω

J q

 (5.17) 

Where the jacobian transformation matrix 4 ( )tJ  is defined as: 

 
4

0 0 0 0

( ) 0 0 0 0

0 0 0 1

t

 
 


 
  

J  (5.18) 

Using these expressions, the kinetic energy relative to each system element 

can be computed as: 
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 (5.22) 

Where 
1m , 

2m , 
3m  and 

4m  are respectively the masses of each floor and 

the pendulum mass whereas ,4zzI  is the mass moment of inertia relative to the 

centre of mass of the pendulum. The mass matrices 
1( )tM , 

2 ( )tM , 
3( )tM  and 

4 ( )tM  can be respectively computed as: 



CASE STUDY: ACTIVE CONTROL OF A THREE-STORY 

BUILDING MODEL 319  

 

1 1 1

1

1

1

( ) ( ) ( )

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

T

R R

T

t m t t

m

m

 

   
   

 
   
      

 
 
 
 
 
 

M J J

 (5.23) 

 

2 2 2

2

2

2

( ) ( ) ( )

0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0 0

T

R R

T

t m t t

m

m

 

   
   

 
   
      

 
 
 
 
 
 

M J J

 (5.24) 
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 (5.26) 

Hence, the kinetic energy corresponding to the whole system can be 

computed as: 
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 (5.27) 

Therefore, the mass matrix of the whole system can be obtained summing 

each element mass matrix yielding: 
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Once that the mass matrix and the kinetic energy of the whole system have 

been determined, the two terms which form the quadratic velocity vector can be 

computed as: 
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Consequently, the quadratic velocity vector can be computed as follows: 
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On the other hand, suppose that the elastic springs have zero length in the 

undeformed state. The deformation vectors of each spring can be expressed as 

follows: 
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

l

J q

 (5.34) 

Where the jacobian transformation matrices 1( )l tJ , 2 ( )l tJ  and 3( )l tJ  can be 

respectively expressed as: 

 
1

1 0 0 0

( ) 0 0 0 0

0 0 0 0

l t

 
 


 
  

J  (5.35) 

 
2

1 1 0 0

( ) 0 0 0 0

0 0 0 0

l t

 
 


 
  

J  (5.36) 

 
3

0 1 1 0

( ) 0 0 0 0

0 0 0 0

l t

 
 


 
  

J  (5.37) 

Consequently, the strain potential energy relative to each spring of the 

system can be computed as: 
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 (5.38) 

 

2 2 2
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 (5.39) 

 

3 3 3
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3

1
( ) ( ) ( )
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

l l

q J J q

q K q

 (5.40) 

Where 
1k , 

2k  and 
3k  are the elastic constants relative to each spring. These 

constants can be computed modelling the structural elements as fixed end 

beams:  

 1 1
1 3

1

24
E J

k
L

  (5.41) 

 2 2
2 3

2

24
E J

k
L

  (5.42) 
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 3 3
3 3

3

24
E J

k
L

  (5.43) 

Where 
1E , 

2E  and 
3E  are respectively the Young elastic moduli relative to 

each beam whereas 
1J , 

2J  and 
3J  are the second moments of area 

corresponding to each beam cross section. The spring stiffness matrices 
1( )tK , 

2 ( )tK  and 
3( )tK  can be respectively computed as: 
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 
 
 
 
 
 

K J J

 (5.44) 
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 
   
      

 
 

 
 
 
 

K J J

 (5.45) 
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K J J

 (5.46) 

Hence, the strain potential energy corresponding to the whole system can be 

computed as: 
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

q K q q K q q K q

q K K K q

q K q

 (5.47) 

Therefore, the spring stiffness matrix of the whole system can be obtained 

summing each spring stiffness matrix to yield: 

 

1 2 3

1 2 2

2 2 3 3

3 3

( ) ( ) ( ) ( )

0 0

0

0 0

0 0 0 0

l l l lt t t t

k k k
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  
 
  

 
 
 
 

K K K K

 (5.48) 
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Moreover, the pendulum potential energy relative to gravitational force can 

be simply computed as: 

  

 

4 4

3 4

4 1 2 3 4

4 1 2 3 4

( ) ( )

( ) cos( ( ))

0 0 sin( ( ))
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T

gU t m t

x t L t
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  

 
 

      
 
  

   

g R

 (5.49) 

Consequently, the total potential energy of the system can be computed 

summing the strain potential energy of the springs and the gravitational potential 

energy of the pendulum yielding to: 

 
 4 1 2 3 4

( ) ( ) ( )

1
( ) ( ) ( ) sin( ( ))

2

l g

T

l

U t U t U t

t t t m g L L L L t

  

    q K q
 (5.50) 

 Therefore, the lagrangian component of the conservative external forces 

acting on the system can be determined as follows: 
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 (5.51) 

In addition, the effect of the nonconservative external force acting on the 

first floors can be accounted for computing its virtual work. Indeed: 

 

, 1
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,
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F R

F J q

Q q

 (5.52) 

Thence, the lagrangian component of the nonconservative external forces 

can be determined as: 
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 (5.53) 

Consequently, the total lagrangian component of all forces acting on the 

system can be determined as follows: 
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 (5.54) 

On the other hand, the electric motor exerts a control torque on the 

pendulum whose virtual work is: 
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C J q
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 (5.55) 

Hence, the lagrangian component of the control torque can be determined 

as: 
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 (5.56) 

Finally, the system equations of motion can be expressed in matrix notation 

using Lagrange equations as: 
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 (5.57) 

The compact form of these equations is the following: 

 ( ) ( ) ( ) ( )ct t t t M q Q Q  (5.58) 

This set of motion equations represents the system lumped parameter 

model. Linearizing the lumped parameter model of the system around the stable 

equilibrium position where 0

3

2
   yields: 
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 (5.59) 

Where the following change of variables has been performed: 

 
0( ) ( )

3
( )

2

t t

t

  

 

  

 
 (5.60) 

The compact form of these equations is the following: 

 2, 2,( ) ( ) ( ) ( )e e c ct t t t  Mx Kx B u B u  (5.61) 

Where ( )tx  is the vector containing the independent coordinates, M  is the 

linearized mass matrix and K  is the linearized stiffness matrix whereas 2,eB  

and 2,cB  are the Boolean matrices characterizing the location of the external 

uncontrolled and controlled inputs ( )e tu  and ( )c tu  acting on the system which 

correspond to the external uncontrolled force ( )F t  and to the controlled torque 

( )C t . These quantities are defined as:   
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 
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0

0

1

c

 
 
 
 
 
 

B  (5.66) 

This set of motion equations represents the system linearized lumped 

parameter model. Finally, using the data reported in the test rig description, the 

system modal parameters can be determined yielding the system natural 

frequencies ,n jf  and mode shapes j

j je
iΘ

φ ρ  for 21,2, , 4j n  . Indeed: 
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 (5.70) 

The system mode shapes can be represented graphically as follows: 
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These graphics represent the system mode shapes obtained from the 

linearized lumped parameter model.  
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5.4. FINITE ELEMENT MODEL 

Consider the following schematization of the test rig: 

                           

According to the finite element discretization, the system is modelled as a 

set of three rigid bodies representing the floors of the building connected by six 

fixed end beams representing the system structural elements. For the sake of 

simplicity, each beam is foremost discretized in three elements of equal lengths. 

Subsequently, a more complex finite element model composed of an arbitrary 

number of elements can be derived from this preliminary model in a systematic 

fashion. In addition, a pendulum hinged on the third floor is considered. The 

preliminary finite element model consider a set of 6bN   elastic bodies which 

are all discretized in 3i

eN   elements for 1,2, , bi N . The elastic 

deformation of each element is modelled assuming a beam shape function 
, ,( )i j i jPS  for 1,2, , bi N  and 1,2, , i

ej N . Indeed: 
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 (5.71) 

Where , ,

1 ( )i j i jPS  and , ,

2 ( )i j i jPS  are: 
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T

i j i j

i j i j i j i j

i j i j

i j i j i j

P

L

L

 

  

 

 



 
 

 
 
  
 
 
 

 
  
 

S

 (5.73) 

Where 
,i j  is a dimensionless spatial coordinate defined as: 

 

,
,

,

i j
i j

i j

x

L
   (5.74) 

Where 
,i jL  is the length relative to the element j  of body i . Therefore, the 

element displacement field 
, ,( , )i j i j

f P tu  is represented using a set of 
, 6i j

en   

nodal coordinates for 1,2, , bi N  and 1,2, , i

ej N . Indeed: 

 
, , , , ,( , ) ( ) ( )i j i j i j i j i j

f g gP t P tu S q  (5.75) 
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Where , ,( )i j i j

g PS  is a matrix function representing the global shape 

function. The global shape function , ,( )i j i j

g PS  can be computed by using the 

local shape function 
, ,( )i j i jPS  as: 

 , , , , , ,( ) ( )i j i j i j i j i j i j

g P PS C S C  (5.76) 

Where ,i jC  and ,i jC  are rotation matrices relative to the local element 

frame of reference which can be computed as: 

 

, ,

, , ,

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

0 1 0

1 0 0

0 0 1

i j i j

i j i j i j

 

 

 
 

  
 
 

 
 


 
  

C

 (5.77) 

 

,

3,3,

,

3,3

i j T

i j

i j T

 
  
 

C O
C

O C
 (5.78) 

Where 
,

2

i j 
   for 1,2, , bi N  and 1,2, , i

ej N  is the rotation 

angle between the local reference frame of element j  of body i  and the inertial 

reference system. In addition, 
, ( )i j

g tq  for 1,2, , bi N  and 1,2, , i

ej N   is 

a 
,

6
i j
en
  vector function expressed in the inertial reference frame 

corresponding to the vector of nodal coordinates. This vector is defined as:  
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,

,1

,

,1

,

,1,

,

,2

,

,2

,

,2

( )

( )

( )
( )

( )

( )

( )

i j

g

i j

g

i j

gi j

g i j

g

i j

g

i j

g

u t

v t

t
t

u t

v t

t





 
 
 
 

  
 
 
 
  

q  (5.79) 

 The total number of nodal coordinates relative to each elastic body is 

,

1

18

i
eN

i i j

b e

j

n n


   for 1, 2, , bi N  and 1,2, , i

ej N . Since the internal 

constraints of each elastic body are 6i

i cn   for 1,2, , bi N , the global 

number of body nodal coordinates is 18 6 12i i i

g b icn n n      for 

1,2, , bi N . These nodal coordinates can be groped in a 
12

i
gn
  vector 

( )i

g tq  for 1,2, , bi N  corresponding to each beam as follows: 

 

,1

,1

,1

,2

,2

,2

,3

,3

,3

( )

( )

( )

( )

( ) ( )

( )

( )

( )

( )

i

g

i

g

i

g

i

g

i i

g g

i

g

i

g

i

g

i

g

u t

v t

t

u t

t v t

t

u t

v t

t







 
 
 
 
 
 
 
 
 
 
 
 
 
 

q  (5.80) 

The vector of element coordinates 
, ( )i j

g tq  for 1,2, , bi N  and 

1,2, , i

ej N  can be expressed in terms of the vector of body coordinates 
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( )i

g tq  for each body 1,2, , bi N  by using a set of 
,

6 12
i j i
e gn n    Boolean 

matrices ,i j

cB  for 1,2, , bi N  and 1,2, , i

ej N  relative to internal 

constraints. These matrices are defined as:    

 ,1

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

i

c

 
 
 
 

  
 
 
 
 

B  (5.81) 

 
,2

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

i

c

 
 
 
 

  
 
 
 
 

B  (5.82) 

 
,3

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

i

c

 
 
 
 

  
 
 
 
 

B  (5.83) 

Indeed: 

 
, ,( ) ( )i j i j i

g c gt tq B q  (5.84) 
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On the other hand, the first two bodies have a number of external 

constraints equal to 1 2 7ec ecn n   whereas the external constraints of the last 

four bodies are 3 4 5 6 6ec ec ec ecn n n n    . Hence, the free nodal coordinates 

relative to the first two beams are equal to 1 1 1 212 7 5f g ec fn n n n       

whereas the free nodal coordinates relative to the last four beams are 

3 3 3 4 5 612 6 6f g ec f f fn n n n n n        . These free nodal coordinates can be 

grouped in a set of 
i
fn
 vector functions ( )i

f tq  for 1,2, , bi N   defined as: 

 

1

,1

1

,1

1 1

,2

1

,2

1

,3

( )

( )

( ) ( )

( )

( )

f

f

f f

f

f

u t

t

t u t

t

u t





 
 
 
 
 
 
 
 

q  (5.85) 

 

2

,1

2

,1

2 2

,2

2

,2

2

,3

( )

( )

( ) ( )

( )

( )

f

f

f f

f

f

u t

t

t u t

t

u t





 
 
 
 
 
 
 
 

q  (5.86) 

 

3

,1

3

,2

3

,13

3

,3

3

,2

3

,4

( )

( )

( )
( )

( )

( )

( )

f

f

f

f

f

f

f

u t

u t

t
t

u t

t

u t





 
 
 
 

  
 
 
 
  

q  (5.87) 



344 CASE STUDY: ACTIVE CONTROL OF A THREE-STORY 
BUILDING MODEL  

 

4

,1

4

,2

4

,14

4

,3

4

,2

4

,4

( )

( )

( )
( )

( )

( )

( )

f

f

f

f

f

f

f

u t

u t

t
t

u t

t

u t





 
 
 
 

  
 
 
 
  

q  (5.88) 

 

5

,1

5

,2

5

,15

5

,3

5

,2

5

,4

( )

( )

( )
( )

( )

( )

( )

f

f

f

f

f

f

f

u t

u t

t
t

u t

t

u t





 
 
 
 

  
 
 
 
  

q  (5.89) 

 

6

,1

6

,2

6

,16

6

,3

6

,2

6

,4

( )

( )

( )
( )

( )

( )

( )

f

f

f

f

f

f

f

u t

u t

t
t

u t

t

u t





 
 
 
 

  
 
 
 
  

q  (5.90) 

The global vector of body coordinates ( )i

g tq  for 1,2, , bi N  can be 

expressed in terms of the vector of body free coordinates ( )i

f tq  for 

1,2, , bi N  by using a set of 
i i
g fn n

 Boolean matrices 
i

eB  for 1,2, , bi N  

relative to the external constraints. These matrices are defined as:    
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1 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

e e

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  

B B  (5.91) 

 
3 4 5 6

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

e e e e

 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
  

B B B B  (5.92) 

Indeed: 

 ( ) ( )i i i

g e ft tq B q  (5.93) 
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Finally, subtracting the number of mutual constraints between the bodies 

7cn   from the global number of bodies degrees of freedom 
1

34
bN

i

g f

i

n n


   

the system elastic degrees of freedom 34 7 27f g cn n n      can be 

computed. These elastic degrees of freedom can be grouped in a 27fn
  

vector function ( )f tq  defined as:     
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8
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( )

( )

( )
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( )

( )

( )

( )

( )

( )
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( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

f

u t

u t

u t

u t

t

u t

t

u t

t

u t

t

u t

t

t u t
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u t
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u t

t

u t
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u t

t

u t
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u t
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























 
 
 
 





































 

q







































 (5.94) 
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The vector of body free coordinates ( )i

f tq  for 1,2, , bi N  can be 

expressed in terms of the total vector of free coordinates ( )f tq  by using a set of 

i
f fn n

 Boolean matrices i

fB  for 1,2, , bi N  relative to the mutual 

constraints. These matrices are defined as:  

 
4 4,2 4,4 4,201

2 4 201
f T T T

 
  
 

0 O I O
B

0 0 0
 (5.95) 

 
4 4,6 4,4 4,162

6 4 161
f T T T

 
  
 

0 O I O
B

0 0 0
 (5.96) 

 

9 4 12

3

4 4 4,9 4,4 4,12

9 4 12

1 0

0 1

T T T

f

T T T

 
 

  
 
 

0 0 0

B 0 0 O I O

0 0 0

 (5.97) 

 

13 4 8

4

4 4 4,13 4,4 4,8

13 4 8

1 0

0 1

T T T

f

T T T

 
 

  
 
 

0 0 0

B 0 0 O I O

0 0 0

 (5.98) 

 

16 4 4

5

4 4 4 4,16 4,4 4,4

16 4 4

0 1 0

0 0 1

T T T

f

T T T

 
 

  
 
 

0 0 0

B 0 0 0 O I O

0 0 0

 (5.99) 

 

20 4

6

4 4 4 4,20 4,4

20 4

0 1 0

0 0 1

T T

f

T T

 
 

  
 
 

0 0

B 0 0 0 O I

0 0

 (5.100) 

Indeed: 
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 ( ) ( )i i

f f ft tq B q  (5.101) 

Consequently, the displacement vector of the generic point ,i jP  on element 

j  of body i  can be expressed as follows: 

 

, , , , ,

, , ,

, , ,

, , ,

, ,

( , ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

i j i j i j i j i j

f g g

i j i j i j i

g c g

i j i j i j i i

g c e f

i j i j i j i i

g c e f f

i j i j i i

e f f

P t P t

P t

P t

P t

P t

 

 

 

 



u S q

S B q

S B B q

S B B B q

N B B q

 (5.102) 

Using the expression of the kinetic energy of the element j  of body i  the 

corresponding mass matrix can be computed as: 

 
, ,

, ,

i j i T i T i j i i

f f f e f f e fM B B J B B  (5.103) 

Where 
,

,

i j

f fJ  is a symmetric matrix defined as: 

 
, , , , , ,

, ,

i j i j T i j T i j i j i j

f f c f f cJ B C S C B  (5.104) 

Where 
,

,

i j

f fS  is a symmetric matrix defined as follows: 

 
, , ,

, 1,1 2,2

i j i j i j

f f  S S S  (5.105) 

 Where the symmetric matrices 
,

1,1

i j
S  and 

,

2,2

i jS  come from the integration of 

the shape function and are defined as: 

 
,

, , , , , , ,

1,1 1 1( ) ( )
i j

i j i j i j T i j i j i j i jP P dV


 S S S  (5.106) 
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,

, , , , , , ,

2,2 2 2( ) ( )
i j

i j i j i j T i j i j i j i jP P dV


 S S S  (5.107) 

Where 
,i j  is the mass density relative to the element j  of body i . The 

spatial integration can be performed using the beam shape function yielding to 

the following matrix: 

 

, ,

, , 2 , , 2

, ,

,

, ,

, , 2 , , 2

1 1
0 0 0 0

3 6

13 11 9 13
0 0

35 210 70 420

11 13
0 0

210 105 420 140

1 1
0 0 0 0

6 3

9 13 13 11
0 0

70 420 35 210

13 11
0 0

420 140 210 105

i j i j

i j i j i j i j

i j i j

f f

i j i j

i j i j i j i j

L L

L L L L

m

L L

L L L L

 
 
 
 


 
 
 
 

  
 
 
 
 
 
 
   
 

S  (5.108) 

Where 
, , , ,i j i j i j i jm A L  is the mass relative to the element j  of body i  

and 
,i jA  is the cross section area of the element j  of body i . On the other 

hand, using the expression of the elastic strain energy of the element j  of body 

i  the corresponding stiffness matrix can be computed as: 

 
, ,

, ,

i j i T i T i j i i

f f f e f f e fK B B J B B  (5.109) 

Where 
,

,

i j

f fJ  is a symmetric matrix defined as: 

 
, , , , , ,

, ,

i j i j T i j T i j i j i j

f f c f f cJ B C S C B  (5.110) 
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Where 
,

,

i j

f fS  is a symmetric matrix which in the case of beam structural 

element can be computed as follows: 

 

,

, , , , , , , , , , , , , ,

, 1, 1, 2, 2,( ) ( ) ( ) ( )
i j

i j i j i j i j T i j i j i j i j i j i j T i j i j i j i j

f f x x xx xxE A P P E J P P dV


 S S S S S

 (5.111) 

Where ,i jE  is the Young elastic modulus relative to the element j  of body 

i  whereas ,i jJ  is the second moments of area corresponding to the cross section 

relative to element j  of body i . The spatial integration can be performed using 

the beam shape function yielding to the following matrix: 

 

, ,

, ,

, 2 , , 2 ,

, , , ,
,

, , , ,

, ,

, 2 , , 2 ,

, ,
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6 6
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i j i j

i j i j

i j i j i j i j

i j i j i j i j
i j

f f i j i j i j

i j i j

i j i j i j i j

i j i j

A A

J J

L L L L

E J L L

L A A

J J

L L L L

L L

 
 

 
 


 
 
 
 

  
 
 
 
   
 
 

 
 

S

 (5.112) 

Once that the mass matrix and the stiffness matrix relative to the element j  

of body i  have been computed, the respective matrices corresponding to the 

whole structural system can be obtained by a summation over all elements of all 

bodies. Indeed: 
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,

, ,

1 1

i
b eN N

i j

f f f f

i j 

M M  (5.113) 

 
,

, ,

1 1

i
b eN N

i j

f f f f

i j 

K K  (5.114) 

To complete the derivation of the system structural model the effect of the 

mass relative to each floor must be considered. First note that the displacement 

relative to each floor can be recovered from the global vector of free elastic 

coordinates ( )f tq  using an appropriate set of Boolean matrices. Indeed: 

 
11( ) ( )m fu t tB q  (5.115) 

 
22( ) ( )m fu t tB q  (5.116) 

 
33( ) ( )m fu t tB q  (5.117) 

Where 
1mB , 

2mB  and 
3mB  are 27fn

  Boolean row vectors defined as: 

 
1 261 T

m
   B 0  (5.118) 

 
2 250 1 T

m
   B 0  (5.119) 

 
3 240 0 1 T

m
   B 0  (5.120) 

In is straightforward to deduce from the kinetic energy definition that the 

expressions of the mass matrices relative to each floor are the following:  

 
1 1 11

T

m m mmM B B  (5.121) 
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2 2 22

T

m m mmM B B  (5.122) 

 
3 3 33

T

m m mmM B B  (5.123) 

Where 
1m , 

2m  and 
3m  are the floors masses. Consider now the modelling 

of the pendulum. The pendulum angle ( )t  is an additional degree of freedom 

of the whole system. Indeed, the total number of system degrees of freedom is 

1 27 1 28fn n     . Consequently, the overall vector of lagrangian 

coordinates becomes: 

 
( )

( )
( )f

t
t

t

 
  
 

q
q

 (5.124) 

Where ( )tq  is a 28n   vector. The pendulum angle ( )t  and the 

vector of elastic nodal coordinates ( )f tq  can be recovered from the global 

vector of lagrangian coordinates ( )tq  as follows: 

 ( ) ( )t t B q  (5.125) 

 ( ) ( )
ff qt tq B q  (5.126) 

Where B  and 
fqB  are two Boolean matrices respectively of dimensions 

28n   and 
27 28fn n   which are defined as: 

 271 T


   B 0  (5.127) 

 27 27,27fq
   B 0 I  (5.128) 
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Consequently, the mass and stiffness matrices relative to the structural 

system referred to the vector of the overall lagrangian coordinates ( )tq  

becomes: 

 
, ,f f

q T

f f q f f qM B M B  (5.129) 

 
, ,f f

q T

f f q f f qK B K B  (5.130) 

In addition, the mass matrices relative to the floors referred to the vector of 

system degrees of freedom ( )tq  becomes:  

 
1 1

1 11

f f

f f

q T

m q m q

T T

q m m qm

 



M B M B

B B B B
 (5.131) 

 
2 2

2 22

f f

f f

q T

m q m q

T T

q m m qm

 



M B M B

B B B B
 (5.132) 

 
3 3

3 33

f f

f f

q T

m q m q

T T

q m m qm

 



M B M B

B B B B
 (5.133) 

The position vector relative to pendulum centre of mass can be expressed as 

a function of system lagrangian coordinates to yield: 

 

3 4

4

1 1 2 2 3 3 4

( ) cos( ( ))

( ) sin( ( ))

0

u t L t

t L H L H L H L t





 
 

      
 
  

R  (5.134) 

Where 
1L , 

2L  and 
3L  are the length of the system structural elements, 

4L  

is equal to half length of the pendulum whereas 1H , 2H  and 3H  are the 
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dimensions of the floors. The time derivative of the pendulum centre of mass 

position vector can be computed as: 

 
3

3 4

4

4

4

4

3

4

4

4

4

( ) sin( ( )) ( )
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0
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0 0

sin( ( )) 1

cos( ( )) 0 ( )
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fm q
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






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4

4
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0 0
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t

t t

 
 


 
  



B q

J q

 (5.135) 

Where 
4B  is a 

2 2 28n   Boolean matrix defined as: 

 
3

4

fm q

 
  
  

B
B

B B
 (5.136) 

The jacobian transformation matrix 
4 ( )R tJ  is defined as follows: 

 

4

4 4

4

sin( ( )) 1

( ) cos( ( )) 0

0 0

R

L t

t L t





 
 


 
  

J B  (5.137) 
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On the other hand, the angular velocity of the pendulum can be expressed in 

terms of the independent coordinates as follows: 

 
3

4

3

4

4

0

( ) 0

( )

0 0
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0 0
( )
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0 0 ( )
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
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

ω

B
q

B B

B q

J q

 (5.138) 

Where the jacobian transformation matrix 
4 ( )tJ  is defined as: 

 
4 4

0 0

( ) 0 0

1 0

t

 
 


 
  

J B  (5.139) 

Consequently, the mass matrix relative to the pendulum can be easily 

derived from the pendulum kinetic energy as follows: 
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 (5.140) 

 The mass matrix relative to the whole system can be derived again from the 

expression of the kinetic energy thus obtaining the summation of all the 

components mass matrices. Indeed: 
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
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q M q q M q

q M M M M M q

q M q

(5.141) 

Where the global mass matrix ( )tM  is defined as: 
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1 2 3

4

,( ) ( )q q q q

f f m m mt t    M M M M M M  (5.142) 

 Once that the mass matrix and the kinetic energy of the whole system have 

been obtained, the two terms which form the quadratic velocity vector can be 

computed as: 
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 (5.143) 
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 (5.144) 

Consequently, the system quadratic velocity vector can be computed as 

follows: 
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Moreover, the pendulum potential energy relative to gravitational force can 

be simply computed as: 

 
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 (5.146) 

Consequently, the total potential energy of the system can be computed 

summing the strain potential energy of the beams and the gravitational potential 

energy of the pendulum yielding to: 
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 (5.147) 

 Therefore, the lagrangian component of the conservative external forces 

acting on the system can be determined as follows: 
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In addition, the effect of the non-conservative external force acting on the 

first floors can be accounted for computing its virtual work. Indeed: 
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 (5.149) 

Thence, the lagrangian component of the non-conservative external forces 

can be determined as: 
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 (5.150) 

Consequently, the total lagrangian component of all forces acting on the 

system can be determined as follows: 
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On the other hand, the electric motor exerts a control torque on the 

pendulum whose virtual work is: 
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 (5.152) 

Hence, the lagrangian component of the control torque can be determined 

as: 
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 (5.153) 

Finally, the system equations of motion can be expressed in matrix notation 

using Lagrange equations as: 
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1 2 3

1 3

2

4 44 4 ,4 4 4

,

4 4 4

2

, 4 4 4 4

sin( ( ))
( )

sin( ( ))

( ) cos( ( )) ( ) cos( ( )) ( )

( )

f f

q q q q T zz

f f m m m

q T T T T T

f f q m q m

T

m L I m L t
t

m L t m

t m gL t F t m L t t

C t









  

   
         

     



M M M M B B q

K q B B B B B

B

 (5.154) 

The compact form of these equations is the following: 

 ( ) ( ) ( ) ( )ct t t t M q Q Q  (5.155) 

This set of motion equations represents the system flexible multibody 

model obtained using the finite element method. Linearizing the flexible 

multibody model of the system around the stable equilibrium position where 

0

3

2
   yields: 

 

 

1 2 3

1

2

4 44 4 ,4 4 4

,

4 4 4

, 4 4

( )

( ) ( ) ( )
f

q q q q T zz

f f m m m

q T T T T

f f q m

m L I m L
t

m L m

m gL t F t C t  

  
       

  

   

M M M M B B x

K B B x B B B

 (5.156) 

Where the following change of variables has been performed: 

 
0( ) ( )

3
( )

2

t t

t

  

 

  

 
 (5.157) 

The compact form of these equations is the following: 

 2, 2,( ) ( ) ( ) ( )e e c ct t t t  Mx Kx B u B u  (5.158) 
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Where ( )tx  is the vector containing the independent coordinates, M  is the 

linearized mass matrix and K  is the linearized stiffness matrix whereas 
2,eB  

and 
2,cB  are the Boolean matrices characterizing the location of the external 

uncontrolled and controlled inputs ( )e tu  and ( )c tu  acting on the system which 

correspond to the external uncontrolled force ( )F t  and to the controlled torque 

( )C t . These quantities are defined as:   

 
( )

( )
( )f

t
t

t

 
  
 

x
q

 (5.159) 

 
1 2 3

2

4 44 4 ,4 4 4

,

4 4 4

q q q q T zz

f f m m m

m L I m L

m L m

 
      

 
M M M M M B B

 (5.160) 

 
, 4 4

q T

f f m gL   K K B B  (5.161) 

 
12, f

T T

e q mB B B  (5.162) 

 
2,

T

c B B  (5.163) 

This set of motion equations represents the system linearized flexible 

multibody model obtained using the finite element method. Finally, using the 

data reported in the test rig description and considering a discretization of 

40eN   for all the elastic bodies, the system modal parameters can be 

determined yielding the system natural frequencies ,n jf  and mode shapes 

j

j je
iΘ

φ ρ  for 2,1,2, , 4tj n  . Indeed, the first four modal parameters are 

the following: 
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 ,1 1 1

1

2.823
1.097 , , (0,0,0,0)

3.667

2481.958

nf diag

 
 
   
 
 
 

ρ Θ  (5.164) 

 ,2 2 2

1

2.602
1.945 , , (3.142,0,0,0)

3.145

26.991

nf diag

 
 
   
 
 
 

ρ Θ (5.165) 

 ,3 3 3

1

0.204
5.727 , , (0,0,0, 3.142)

0.413

2.147

nf diag

 
 
    
 
 
 

ρ Θ (5.166) 

,4 4 4

1

3.034
8.678 , , ( 3.142,0, 3.142,0)

1.286

6.473

nf diag

 
 
     
 
 
 

ρ Θ

 (5.167) 

The first three mode shapes relative only to the structural components of the 

system can be represented graphically as follows: 



366 CASE STUDY: ACTIVE CONTROL OF A THREE-STORY 
BUILDING MODEL  

 

 



CASE STUDY: ACTIVE CONTROL OF A THREE-STORY 

BUILDING MODEL 367  

 

These graphics represent the system mode shapes derived from the 

linearized flexible multibody model obtained using the finite element method. 
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5.5. EXPERIMENTAL IDENTIFICATION 

An experimental model of the three-story building system has been 

obtained experimentally by the numerical technique named Eigensystem 

Realization Algorithm with Data Correlations (ERA/DC) using 

Observer/Kalman Filter Method (OKID). The test campaign included 4cN   

test configurations and 10tN   experiments has been performed in each test 

configuration. In all the test configurations the accelerations of the floors has 

been recorded as output data by using three piezoelectric accelerometers placed 

on each floor. Therefore, the test configurations differ for the type and for the 

location of the input signal transferred to the system. In the first three test 

configurations an impulsive input has been delivered to the system floors by 

using an impact hammer instrumented with a load cell whereas in the last test 

configuration the impulsive input has been provided by a shaker instrumented 

with a load cell. Hence, in the first test configuration the input is located on the 

first floor, in the second test configuration the input is located on the second 

floor and in the third test configuration the input is located on the third floor 

whereas in the fourth test configuration the input is located on the first floor. In 

all test configuration the sampling frequency used is  32sf Hz  which 

corresponds to a sampling time equal to  331.25 10t s   . Note that the 

Nyquist frequency corresponding to the sampling frequency used is equal to 

 16Nf Hz . The record length used for the measurements is composed of 

2048l   points and consequently the time span during which the input and 

output measurements has been recorded is equal to  64sT s . Since the results 

of all the four test configurations are comparable, here are presented only the 

results of the first configuration. The input measurement of this test 

configuration is the force signal transferred on the first floor and it can be 

graphically represented as follows: 
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On the other hand, the output measurements are the accelerations of the 

system floors corresponding to the force transferred to the system. These 

acceleration signals can be represented graphically as follows: 
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Note that the input and output measurements were filtered in both time 

domain and frequency domain. In the frequency domain, a low-pass filter with a 

cut-off frequency of  12.5cf Hz  has been used whereas in the time domain 

the inconsistent parts of the input and output measurements were deleted. The 

auto spectral density relative to the input signal can be computed by using the 

Fast Fourier Transform algorithm (FFT) to yield: 
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  Similarly, the auto spectral density relative to the output signals can be 

computed yielding to the following plots: 
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 It is worth noting that the first three system natural frequencies are already 

recognizable from these plots. Once that the auto and cross spectral densities 

have both been computed for the input and output measurements, the system 

frequency response function can be derived. The magnitude of the frequency 

response function referred to each input-output combination can be represented 

as follows: 
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On the other hand, the angles relative to the frequency response function 

can be represented as: 
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Using this set of input and output data, the Eigensystem Realization 

Algorithm with Data Correlations (ERA/DC) using Observer/Kalman Filter 

Method (OKID) has been applied. Indeed, the system Markov parameters and 

the observer gain Markov parameters have been computed from the identified 

observer Markov parameters and the Hankel matrix composed of the combined 

Markov parameters was constructed. The singular values of the system Hankel 

matrix are showed graphically in the following plot: 
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 Examining the singular values of the Hankel matrix it is possible to 

determine the order of the identified system model. Indeed, it is clear from the 

plot that there are only six singular values whose magnitude is not negligible and 

therefore the order of the identified state-space model is equal to ˆ 6n  . In fact, 

the singular values successive to the sixth does not correspond to actual system 

modes but represents noise modes induced by external disturbances which 

affected the measurements. The discrete-time state-space realization resulting 

from the identified Markov parameters is represented by the following set of 

matrices: 
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0.4374 0.8852 -0.0220 -0.0415 -0.0017 -0.0002

-0.9029 0.4310 -0.0875 0.0191 -0.0040 0.0010

0.0500 -0.0111 -0.1490 0.9742 -0.0041 -0.0021ˆ
0.0621 -0.0617 -0.9841 -0.1538 -0.0067 0.0009

-0.0146 -0.0241 -0.0015 -0.0312 0.9230 0.35

A

30

-0.0148 -0.0340 0.0100 -0.0425 -0.3777 0.9070

 
 
 
 
 
 
 
 
 

 (5.168) 

 

-0.0946

-0.0203

-0.1133
ˆ

0.0030

-0.0885

-0.1079

 
 
 
 

  
 
 
 
 

B  (5.169) 

 

-26.355 7.736 -5.170 -1.132 -0.677 0.162

ˆ -4.217 2.626 14.217 1.220 -1.340 0.307

11.219 -4.228 -5.732 -0.055 -1.549 0.470

 
 


 
  

C  (5.170) 

 

-2.574

ˆ -0.208

0.003

 
 


 
  

D  (5.171) 

 

0.0103 0.0189 0.0016

-0.0234 0.0041 0.0039

-0.0156 -0.0257 -0.0001ˆ
0.0018 0.0141 -0.0059

0.0581 0.1584 0.0272

0.0165 0.0006 -0.0855

 
 
 
 

  
 
 
 
 

G  (5.172) 
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Where Â  is the identified state matrix, B̂  is the identified state influence 

matrix, Ĉ  is the identified output influence matrix, D̂  is the identified direct 

transmission matrix and Ĝ  is the identified observer matrix. The system 

discrete-time state-space realization can be transformed into its continuous-time 

counterpart by using the zero-order hold assumption. Consequently, the system 

modal parameters can be determined yielding the identified natural frequencies 

,
ˆ
n jf , damping ratios ˆ

j  and mode shapes 
ˆ

ˆ ˆj

j je
iΘ

φ ρ  for 
2
ˆ1,2, , 3j n  . 

Indeed:  

 

   ,1 1

1 1

ˆ ˆ1.934 , 0.0395 \

1

ˆˆ 2.503 , (0, -0.0186, -0.1053)

2.851

nf Hz

diag

 

 
 

 
 
  

ρ Θ
 (5.173) 

 

   ,2 2

2 2

ˆ ˆ5.690 , 0.0030 \

1

ˆˆ 0.1492 , (0, -0.0365, -3.170)

0.4221

nf Hz

diag

 

 
 

 
 
  

ρ Θ
 (5.174) 

 

   ,3 3

3 3

ˆ ˆ8.793 , 0.0042 \

1

ˆˆ 3.443 , (0, -3.144, -0.0296)

1.476

nf Hz

diag

 

 
 

 
 
  

ρ Θ
 (5.175) 

The identified mode shapes can be represented graphically as follows: 
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Note that the identified modal damping is small and the identified mode 

shapes are all roughly in phase or approximately completely out of phase. 

Consequently, the system can be assumed proportionally damped and the 

proportional damping coefficients ̂  and ̂  can be approximately determined 

from the identified natural frequencies and damping ratios by a least-squares 

approach yielding to the following results:   

  41 ˆˆ 0.9751 , =-2.8815 10 s
s

   
  

 
 (5.176) 

On the other hand, a physical model can be constructed from the identified 

sate-space representation by using the algorithm showed in the previous chapters 

(MKR). The result of the implementation of this method with the identified data 

is the set of physical coordinates mass matrix M̂ , stiffness matrix K̂  and 

damping matrix R̂ . Indeed: 
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0.3871 -0.0156 0.0011

ˆ -0.0156 0.2621 -0.0323

0.0011 -0.0323 0.3790

 
 


 
  

M  (5.177) 

 

534.061 -221.931 25.696

ˆ -221.931 614.564 -432.792

25.696 -432.792 422.005

 
 


 
  

K  (5.178) 

 

9.960 -4.823 1.018

ˆ -4.823 12.480 -8.366

1.018 -8.366 7.017

 
 


 
  

R  (5.179) 

While the experimental results of the identification method for mass matrix 

M̂  and for the identified stiffness matrix K̂  are physically acceptable, the 

result for the identified damping matrix R̂  appears to be incongruous. On the 

other hand, a better result for the identified damping matrix R̂  can be obtained 

from the identified mass matrix M̂  and from the identified stiffness matrix K̂  

using the identified proportional damping coefficients ̂  and ̂ . Indeed:      

 

ˆ ˆ ˆ

0.22356 0.0487 -0.0063

0.0487 0.0785 0.0932

-0.0063 0.0932 0.2480

   

 
 


 
  

R M K

 (5.180) 

This model represents a second-order physical model of the system derived 

from a set of experimental data. Consequently, this experimental model is the 

most suitable model to design a real-time controller. Finally, using the same set 

of input and output data, the Numerical Algorithm for State Space Subspace 

System Identification (N4SID), which is implemented in MATLAB, has been 
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applied. Similarly, the singular values of the system Hankel matrix are showed 

graphically in the following plot: 

 

Examining the singular values of the Hankel matrix it is possible to 

determine the order of the identified system model. Indeed, it is clear from the 

plot that there are only six singular values whose magnitude is not negligible and 

therefore the order of the identified state-space model is equal to ˆ 6n  . In fact, 

the singular values successive to the sixth does not correspond to actual system 

modes but represents noise modes induced by external disturbances which 

affected the measurements. The discrete-time state-space realization resulting 

from the identified Markov parameters is represented by the following set of 

matrices: 
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    0.4184    0.8019    0.3995    0.1444    0.0153   -0.0073

   -0.6853    0.2661    0.3680   -0.5466   -0.0164    0.0120

   -0.5789    0.1414    0.0405    0.7964    0.0423   -0.0117ˆ
   -0.1367    0.5

A
145   -0.8260   -0.1599    0.0415    0.0040

    0.0117   -0.0324    0.0257   -0.0387    0.9263   -0.3689

   -0.0001   -0.0059    0.0485   -0.0300    0.3585    0.8969

 
 
 
 
 
 
 
 
 

 (5.181) 

 

    0.0176

    0.0521

   -0.0265
ˆ

   -0.0352

    0.0867

   -0.0552

 
 
 
 

  
 
 
 
 

B  (5.182) 

   56.6682   39.7860    6.4378   -6.8943    0.7703   -0.1882

ˆ    12.0417   -4.2486   17.2738   20.3517    1.5212   -0.4419

  -26.3375  -11.1040  -11.0976   -8.1824    3.1637   -0.1651

 
 


 
  

C

 (5.183) 

 

     0

ˆ      0

     0

 
 


 
  

D  (5.184) 
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    0.0020    0.0005    0.0012

   -0.0002   -0.0011    0.0001

   -0.0018    0.0034   -0.0008ˆ
    0.0019   -0.0033    0.0020

    0.0202    0.0218    0.0345

    0.0115   -0.0188    0.0153

 
 
 
 

  
 
 

 

G



 (5.185) 

Where Â  is the identified state matrix, B̂  is the identified state influence 

matrix, Ĉ  is the identified output influence matrix, D̂  is the identified direct 

transmission matrix and Ĝ  is the identified observer matrix. The system 

discrete-time state-space realization can be transformed into its continuous-time 

counterpart by using the zero-order hold assumption. Consequently, the system 

modal parameters can be determined yielding the identified natural frequencies 

,
ˆ
n jf , damping ratios ˆ

j  and mode shapes 
ˆ

ˆ ˆj

j je
iΘ

φ ρ  for 
2
ˆ1,2, , 3j n  . 

Indeed:  

 

   ,1 1

1 1

ˆ ˆ1.936 , 0.0464 \

1

ˆˆ 2.519 , (0,0.1167,0.0777)

2.820

nf Hz

diag

 

 
 

 
 
  

ρ Θ
 (5.186) 

 

   ,2 2

2 2

ˆ ˆ5.697 , 0.0028 \

1

ˆˆ 0.1461 , (0, -0.0392, -3.1710)

0.4241

nf Hz

diag

 

 
 

 
 
  

ρ Θ
 (5.187) 
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   ,3 3

3 3

ˆ ˆ8.793 , 0.0042 \

1

ˆˆ 3.436 , (0,3.1396, -0.0291)

1.472

nf Hz

diag

 

 
 

 
 
  

ρ Θ
 (5.188) 

The identified mode shapes can be represented graphically as follows: 
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Note that the identified modal damping is small and the identified mode 

shapes are all roughly in phase or approximately completely out of phase. 

Consequently, the system can be assumed proportionally damped and the 

proportional damping coefficients ̂  and ̂  can be approximately determined 

from the identified natural frequencies and damping ratios by a least-squares 

approach yielding to the following results:   

  41 ˆˆ 1.1494 , =-3.6937 10 s
s

   
  

 
 (5.189) 

On the other hand, a physical model can be constructed from the identified 

sate-space representation by using the algorithm showed in the previous chapters 

(MKR). The result of the implementation of this method with the identified data 

is the set of physical coordinates mass matrix M̂ , stiffness matrix K̂  and 

damping matrix R̂ . Indeed: 

 

    0.4089   -0.0132    0.0191

ˆ    -0.0132    0.3110   -0.0004

    0.0191   -0.0004    0.4664

 
 


 
  

M  (5.190) 

 

  569.1692 -266.3515   33.1538

ˆ  -266.3515  693.3727 -458.0419

   33.1538 -458.0419  442.9695

 
 


 
  

K  (5.191) 

 

   13.3370   -6.0425    2.1404

ˆ    -6.0425   18.6675   -8.5170

    2.1404   -8.5170   13.2783

 
 


 
  

R  (5.192) 

While the experimental results of the identification method for mass matrix 

M̂  and for the identified stiffness matrix K̂  are physically acceptable, the 
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result for the identified damping matrix R̂  appears to be incongruous. On the 

other hand, a better result for the identified damping matrix R̂  can be obtained 

from the identified mass matrix M̂  and from the identified stiffness matrix K̂  

using the identified proportional damping coefficients ̂  and ̂ . Indeed:      

 

ˆ ˆ ˆ

    0.2597    0.0832    0.0098

    0.0832    0.1013    0.1687

    0.0098    0.1687    0.3724

   

 
 


 
  

R M K

 (5.193) 

This model represents a second-order physical model of the system derived 

from a set of experimental data. It is worth to emphasize that the experimental 

results obtained using the Eigensystem Realization Algorithm with Data 

Correlations (ERA\DC) using Observer/Kalman Filter Method (OKID) are 

comparable with the experimental results obtained from the same data set using 

the Numerical Algorithm for Subspace Identification (N4SID) implemented in 

MATLAB.   
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5.6. LINEAR QUADRATIC GUAUSSIAN 
REGULATOR (LQG) DESIGN 

Once that an identified model of the mechanical system has been obtained, 

a Linear Quadratic Gaussian regulator (LQG) can be designed. The purpose of 

the regulator is to mitigate the structural vibrations of the system due to an 

external excitation on the first floor by a control torque acting on a pendulum 

hinged on the third floor. Thus, the model used to design the Linear Quadratic 

Gaussian regulator (LQG)  is a combination of the identified structural model 

and of the lumped parameter model. Indeed, the vector of the lagrangian 

coordinates used in the model is formed by the set of the displacement of the 

floors and the pendulum angle: 

 

1

2

3

( )

( )
( )

( )

( )

x t

x t
t

x t

t

 
 
 
 
 
 

x  (5.194) 

  The floors displacements and the pendulum angle can be recovered from 

the vector of lagrangian coordinates ( )tx  by using the following Boolean 

matrices: 

 

1 0 0 0

0 1 0 0

0 0 1 0

x

 
 


 
  

B  (5.195) 

  0 0 0 1 B  (5.196) 

In particular, the displacement of the third floor can be recovered from the 

vector of lagrangian coordinates by using the following Boolean matrix: 

  
3

0 0 1 0x B  (5.197) 
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 Similarly to the case of the lumped parameter model, the effect of the 

pendulum on the global mass matrix of the system can be accounted for by using 

the following Boolean matrix: 

 
34 x x



 
  
  

B B
B

B
 (5.198) 

The mathematical model of the system can be expressed as: 

 
2, 2,( ) ( ) ( ) ( ) ( )e e c ct t t t t   Mx Rx Kx B u B u  (5.199) 

 Where the system mass matrix M , stiffness matrix K  and damping 

matrix R  can be expressed as follows: 

 4 4 4ˆT T

x x M B MB B M B  (5.200) 

 4 4 4ˆT T

x x K B KB B K B  (5.201) 

 4 4 4ˆT T

x x R B RB B R B  (5.202) 

Where M̂ , K̂ , and R̂  are respectively the identified mass matrix, stiffness 

matrix and damping matrix whereas the matrices 
4M , 

4
K  and 

4R  are 

respectively the pendulum mass matrix, stiffness matrix and damping matrix 

which are defined as: 

 
4 4 44
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M  (5.203) 

 
4

4 4m gLK  (5.204) 

 
4

4rR  (5.205) 
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Where 
4m  is the pendulum mass, 

,4zzI  is the mass moment of inertia 

relative to the centre of mass of the pendulum, 
4L  is equal to half the length of 

the pendulum and 
4r  is the pendulum angular damping. On the other hand, the 

matrices 
2,eB  and 

2,cB  define the locations of the inputs. In particular, on the 

first floor there is an external force and on the pendulum there is the control 

torque: 

 2,

1

0

0

0

e

 
 
 
 
 
 

B  (5.206) 

 2,

0

0

0

1

c

 
 
 
 
 
 

B  (5.207) 

Considering a worst-case scenario, the external force is assumed as a 

superposition of three harmonic force whose excitation frequencies are close to 

the first three system natural frequencies. Indeed: 

 0,1 1 0,2 2 0,3 3( ) sin(2 ) sin(2 ) sin(2 )F t F f F f F f      (5.208) 

Where the force amplitudes are assumed to be  0,1 0,2 0,3 0.1F F F N    

and the force excitation frequencies are assumed equal to  1 1.9f Hz , 

 2 5.7f Hz  and  3 8.8f Hz . Note that the excitation force ( )F t  acting on 

the first floor can be measured using a load cell and therefore can be used in the 

control algorithm. On the other hand, it has been assumed that only the 

acceleration of each floor and the pendulum angle can be measured. Therefore, 

the system output equations are the following: 
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 ( ) ( ) ( ) ( )d v at t t t  y C x C x C x  (5.209) 

Where the sensing matrices 
dC , 

vC  and 
aC  can be computed as follows: 

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

d

 
 
 
 
 
 

C  (5.210) 

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

v

 
 
 
 
 
 

C  (5.211) 

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

a

 
 
 
 
 
 

C  (5.212) 

 Once that the system model in physical coordinates has been obtained, a 

discrete-time state-space model can be easily derived using a sampling time 

equal to  331.25 10t s    and the zero order hold assumption. Indeed: 

 ( 1) ( ) ( ) ( )e e c ck k k k   z Az B u B u  (5.213) 

 ( ) ( ) ( ) ( )e e c ck k k k  y Cz D u D u  (5.214) 

In order to take in account the effects of the uncertainty relative to the 

system model and relative to the data acquisition system, a process noise vector 

and a measurement noise vector are considered: 
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 ( 1) ( ) ( ) ( ) ( )e e c ck k k k k    z Az B u B u w  (5.215) 

 ( ) ( ) ( ) ( ) ( )e e c ck k k k k   y Cz D u D u v  (5.216) 

For the simulation purposes, consider a time span equal to  50sT s . In 

addition, consider the following initial conditions: 
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 

 (5.217) 

The initial state 
0z  is modelled as Gaussian distributed random vector 

whose mean value 
0z  and covariance matrix 

0R  are assumed as:  
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Z  (5.218) 

 
0 0 0 z z Z  (5.219) 
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              

R

 (5.220) 

The random disturbances ( )kw  and ( )kv  are assumed zero mean 

Gaussian white noises whose covariance matrices are assumed equal to:  

3 3 3 3

0

3 3 3 3
2 2 2 2

(10 ,10 ,10 ,10 ,

10 ,10 ,10 ,10 )

m m m raddiag
s s s s

m m m rad
s s s s
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   

       
       

       
              

W

(5.221) 

  3 3 3 3
2 2 20 (10 ,10 ,10 ,10 )m m mdiag rad

s s s
        
          

V  (5.222) 

 
2

0w R W  (5.223) 

 
2

0v R V  (5.224) 

Where 
0W  is the amplitude vector relative to the process noise, 

0V  is the 

amplitude vector relative to the measurement noise, 
wR  is the process noise 

covariance matrix and 
vR  is the measurement noise covariance matrix. 

Assuming these stochastic characteristics relative to the process noise, the 

measurement noise and to the initial state a discrete-time infinite-horizon 

Kalman filter gain has been computed to yield: 
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   -0.0008   -0.0008   -0.0014    0.0023

   -0.0013   -0.0019   -0.0038    0.0069

   -0.0013   -0.0022   -0.0043    0.0084

   -0.0000   -0.0003   -0.0037    0.6372

    0.0246    0.0018   -0.0001    0.0
 K
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    0.0029    0.0210    0.0057    0.1229
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 
 
 
  

 (5.225) 

Indeed, an estimation of the system state ˆ( )kz  can be obtained from the 

following difference equations: 

  ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )e e c ck k k k k k     z Az B u B u K y y  (5.226) 

The estimation equations are initialized setting the esteem of the initial state 

ˆ(0)z  equal to the expected value of the real initial state 
0z . In addition, the 

estimated output vector ˆ ( )ky  can be computed from the following output 

equations: 

 ˆ ˆ( ) ( ) ( ) ( )e e c ck k k k  y Cz D u D u  (5.227) 

On the other hand, the control action is computed as an optimal feedback 

control minimizing a discrete-time infinite-horizon quadratic performance index 

defined as: 

  
0

1
( ) ( ) ( ) ( )

2

T T

z u

k

J k k k k






  z Q z u Q u  (5.228) 

The weight matrices relative to the state vector 
zQ  and to the input vector 

uQ  has been chosen as follows: 
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 (5.229) 

 4

2 2

1
10u

N m

  
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Q  (5.230) 

Consequently, an infinite-horizon optimal feedback gain has been computed 

as: 
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F  (5.231) 

Indeed, the control action ( )c ku  can be expressed using the feedback 

matrix 
F  and the estimated state ˆ( )kz  as follows: 

 ˆ( ) ( )c k ku F z  (5.232) 

 The external input force acting on the first floor is the following: 
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The controller has been designed to start after that half the time span has 

elapsed. The time evolution of the system displacement and of the estimated 

displacement relative to each floor are the following: 
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The time evolution of the system angular displacement and of the estimated 

angular displacement relative to the pendulum are the following: 
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Since the pendulum serves as an actuator, when the controller starts 

working the amplitude of the pendulum angular displacement increases. On the 

other hand, the time evolution of the system velocity and of the estimated 

velocity relative to each floor are the following: 
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CASE STUDY: ACTIVE CONTROL OF A THREE-STORY 

BUILDING MODEL 405  

 

The time evolution of the system angular velocity and of the estimated 

angular velocity relative to the pendulum are the following: 
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Since the pendulum serves as an actuator, when the controller starts 

working the amplitude of the pendulum angular velocity increases. Finally, the 

time evolution of the control torque is the following: 



CASE STUDY: ACTIVE CONTROL OF A THREE-STORY 

BUILDING MODEL 407  

 

The time evolution of the estimation error relative to the system 

displacement corresponding to each floor is the following: 
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The time evolution of the estimation error relative to the pendulum angular 

displacement is the following:  
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The time evolution of the estimation error relative to the system velocity 

corresponding to each floor is the following: 
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The time evolution of the estimation error relative to the pendulum angular 

velocity is the following:  
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Note that the estimation error is bounded in a relatively small range for both 

system generalized displacement and velocity. It is worth to emphasize that the 

control action is confined in an acceptable working range. Finally, the 

percentage decrease of the maximum amplitude of the system response at the 

steady state due to the action of the controller is the following: 
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 (5.233) 

It is clear that the Linear Quadratic Gaussian controller (LQG)  drastically 

reduces the amplitude of displacement and velocity relative to each system floor 
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even in the worst-case scenario of an external excitation which is close to the 

first three system natural frequencies.  
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5.7. EXTENDED UDWADIA-KALABA 
CONTROLLER (EUK) DESIGN AND EXTENDED 
KALMAN FILTER (EKF) DESIGN 

A new control algorithm for nonlinear underactuated mechanical systems 

affected by uncertainties (EUK-EKF) has been developed. This algorithm is 

based on the combination of the extended Udwadia-Kalaba control method 

(EUK) and the extended Kalman filter estimation method (EKF). The extended 

Udwadia-Kalaba control method (EUK) is the extension of the Udwadia-Kalaba 

control algorithm (UK) to underactuated mechanical systems whereas the 

extended Kalman filter estimation method (EUK) is the well-known extension of 

Kalman filter estimation algorithm (KF) to nonlinear mechanical systems. The 

basic idea of the Udwadia-Kalaba control method (UK) consists in setting a 

virtual set of constraint equations, which represent the desired behaviour for the 

system, and subsequently use the fundamental equations of constrained 

Dynamics to derive the corresponding constraints action which satisfy the 

constraint equations. The constraints action is then used as a feedback control 

law. This control strategy can be extended to underactuated mechanical system 

adding an extra set of constraint equations. This set of constraint equations 

express the requirement that some of system degrees of freedom must be 

unactuated, namely there must be no actuators on some specified system degrees 

of freedom. The key idea to translate the underactuation requirement into a set of 

analytical constraint equations is simply to use the unconstrained system 

equations of motion as an additional set of constraint equations. Indeed, consider 

the nonlinear lumped parameter model of the three-story building system: 

 ( ) ( ) ( )t t tM q Q  (5.234) 

Where ( )tq  is the vector of system lagrangian coordinates, ( )tM  is the 

system mass matrix and ( )tQ  is the vector lagrangian components relative to 

the external forces acting on the system. Considering the presence of an 

additional viscous damping on each degree of freedom, these quantities can be 

expressed as: 
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 (5.237) 

Now consider the following virtual equation of constraint: 

 
3( )x t c  (5.238) 

This virtual equation of constraint express the requirement of maintaining 

the displacement of the third floor constantly equal to a constant c , that is to 

block the movement of the third floor even in presence of an external exciting 

force ( )F t  acting on the first floor. Deriving twice this equation respect to time, 

it can be expressed in the standard form which is suitable to use the fundamental 

equations of constrained Dynamics: 

 3( ) 0x t   (5.239) 

 3( ) 0x t   (5.240) 
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The additional requirement is that the system is underactuated, namely there 

is only a control torque acting on the pendulum. The underactuation requirement 

can be accomplished using the system equations of motion relative to the floors 

degrees of freedom as an additional set of constraint equations: 

   

 

 

 

1 1 1 2 1 2 2 1 2 1

2 2

2 2 2 1 2 3 2 3 3 2 1

2 3 2 3 3

2

3 4 3 4 4 4 4 3 2

3 3 3 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) sin( ( )) ( ) cos( ( )) ( ) ( )

( ) (

m x t k k x t k x t x t

x t F t

m x t k x t k k x t k x t x t

x t x t

m m x t m L t t m L t t k x t

k x t x t

 





  

   



      

 

     

  

    

  3 3) ( )x t










 

 (5.241) 

As a consequence, grouping together the preceding equations, the standard 

from of the equations of constrains can be written as follows: 

 ( ) ( ) ( )t t tA q b  (5.242) 

Where the constraint matrix ( )tA  and the constraint vector ( )tb  are 

respectively defined as: 
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At this stage it turns to be crucial to check the rank of the generalized 

controllability matrix which is defined as follows: 
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Since the generalized controllability matrix ( )c tM  has full rank, the 

solution of the fundamental problem of constrained Dynamics exists and it is 

unique. In particular, since the constraint matrix ( )tA  is a square matrix which 

has full rank, it can be simply proved that the constraint action which satisfy the 

preceding prescribed constraint equations can be computed as: 
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This lagrangian component of constraints action represents a control vector 

field which forces the system to satisfy the constraint equations. In particular, 

only the last component of this vector is different from zero as prescribed by the 
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underactuation constraints. Indeed, it represents a nonlinear feedback control law 

for the control torque acting on the pendulum which is able to maintain the 

position of the third floor into a fixed value. For the simulation purposes, 

consider a time span equal to  0.7sT s  and a sampling time equal to 

 41 10t s   . Considering a worst-case scenario, the external force is 

assumed as a superposition of three harmonic force whose excitation frequencies 

are close to the first three system natural frequencies. In addition, consider the 

following initial conditions: 
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 (5.247) 

The external input force acting on the first floor is the following: 
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 The controller has been designed to start after that half the time span has 

elapsed and when the velocity of the third floor is relatively small in order to 

evidence the difference of the system response to the external input with and 

without the controller. Note that to satisfy the constraint equations the controller 

must start when, in theory, the velocity of the third floor is zero. The time 

evolution of the displacement relative to each system floor are the following: 
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The time evolution of the angular displacement relative to the pendulum is 

the following: 
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On the other hand, the time evolution of the velocity relative to each floor 

are the following: 
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The time evolution of the angular velocity of the pendulum is the following: 
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Finally, the time evolution of the control torque is the following: 
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These plots show that when the controller start working the third floor stops 

vibrating and its position is hold constant in time. On the other hand, to realize 

the control action the pendulum must suddenly accelerate and the control torque 

rapidly increases. The simulation shows the effectiveness of the controller 

designed using the extended Udwadia-Kalaba control method (EUK). 

Nevertheless, from the simulation can be deduced that the choice of placing the 

actuator on the pendulum is not the best one. Indeed, when the pendulum 

approaches the horizontal position the force transferred from the actuator to the 

structure tends to zero and therefore the control system degenerates into a 

singular configuration. In order to avoid this singular configuration for the 

control system, the location of the actuator must be changed directly from the 

pendulum to the third floor. Consequently, the underactuation requirement must 

encompass the first two floors and the pendulum: 
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Therefore, the constraint matrix ( )tA  and the constraint vector ( )tb  must 

be redefined respectively as follows: 
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Even in this case the generalized controllability matrix ( )c tM  has full rank. 

Now using the fundamental equations of constrained Dynamics it can be simply 

proved that the constraint action which satisfy the preceding prescribed 

constraint equations is the following: 
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Similarly to the preceding case, the lagrangian component of constraints 

action represents a control vector field which forces the system to satisfy the 

constraint equations. In particular, only the third component of this vector is 

different from zero as prescribed by the underactuation constraints. Indeed, it 

represents a nonlinear feedback control law for the control force acting on the 

third floor which is able to maintain this floor into a fixed position. For the 

simulation purposes, consider a time span equal to  50sT s  and a sampling 

time equal to  41 10t s   . Considering a worst-case scenario, the external 

force is assumed as a superposition of three harmonic force whose excitation 

frequencies are close to the first three system natural frequencies. In addition, 

consider the following initial conditions: 
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The external input force acting on the first floor is the following: 
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 The controller has been designed to start after that half the time span has 

elapsed and when the velocity of the third floor is relatively small in order to 

evidence the difference of the system response to the external input with and 

without the controller. Note that to satisfy the constraint equations the controller 

must start when, in theory, the velocity of the third floor is zero. The time 

evolution of the displacement relative to each system floor are the following: 
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The time evolution of the angular displacement relative to the pendulum is 

the following: 
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On the other hand, the time evolution of the velocity relative to each floor 

are the following: 
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The time evolution of the angular velocity relative to the pendulum is the 

following: 
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Finally, the time evolution of the control force is the following: 
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These plots show that when the controller start working the third floor stops 

vibrating and its position is hold constant in time. In addition, even the 

displacement and the velocity relative to the other degrees of freedom are 

drastically reduced by the indirect action of the controller. It is worth to 

emphasize that in this configuration the control action is confined in an 

acceptable working range. Finally, consider the more realistic case in which the 

system state cannot be measured completely. In this case, the extended Kalman 

filter method (EKF) can be used to estimate the system state from the available 

measurements and subsequently the estimated state can be used to evaluate the 

feedback control law designed using the extended Udwadia-Kalaba control 

method (EUK). This strategy yields to a robust control algorithm which, in 

analogy with the Linear Quadratic Gaussian control method (LQG), represents 

the natural extension of the extended Udwadia-Kalaba control technique (EUK) 

to nonlinear underactuated mechanical systems affected by uncertainties. 

According to this algorithm (EUK-EKF), the system state equation can be 

written as follows: 
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Where ( )tz  is the system state vector, ˆ( )tz  is the estimated state vector, 

( )tf  is the system state vector function, ( )e tu  is the vector of external input 

acting on the system, ( )c tf  is the controller vector function and ( )tw  is the 

process noise vector. The system state is defined as: 
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The state function ( )tf  is a nonlinear vector function defined as follows: 
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Where ( )ta  is the generalized acceleration vector relative to the 

unconstrained system which can be computed according to the fundamental 

equations of constrained Dynamics. The controller function ( )c tf  is a nonlinear 

vector function defined as: 
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 Where ( )c ta  is the generalized acceleration vector corresponding to the 

action of the constraints which can be computed according to the fundamental 

equations of constrained Dynamics. Note that in the state equation the controller 

vector function ( )c tf  is computed using the estimated state ˆ( )tz . In addition to 

the state equation there is the measurement equation which is a nonlinear 

algebraic equation defined as: 
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 ˆ( ) ( ( ), ( ), ) ( ( ), ) ( )e a ct t t t t t t  y h z u C a z v  (5.257) 

Where ( )tv  is the measurements noise vector and ( )th  is a nonlinear 

measurement vector function defined in analogy to the linear systems: 

 ( ) ( ) ( ) ( ( ), ( ), )d v at t t t t t  h C q C q C a q q  (5.258) 

Where 
dC , 

vC  and 
aC  identifies the output influence matrix referred 

respectively to system generalized displacement, velocity and acceleration.  

Indeed, the measurement vector function ( )th  is a linear combination of system 

generalized displacement ( )tq , velocity ( )tq  and free acceleration vector ( )ta . 

Note that in the measurement equation the generalized acceleration vector due to 

constraints action ( )c ta  is computed using the estimated state ˆ( )tz . On the 

other hand, the evolution of the estimated state ˆ( )tz  can be computed from the 

following estimation equation: 
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Where ( )c tK  is the Kalman gain matrix and ˆ ( )ty  is the measurement 

vector corresponding to the estimated state ˆ( )tz . Indeed, the measurement 

vector ˆ ( )ty  corresponding to the estimated state ˆ( )tz  can be computed from the 

following nonlinear algebraic measurement equation: 

 ˆ ˆ ˆ( ) ( ( ), ( ), ) ( ( ), )e a ct t t t t t y h z u C a z  (5.260) 

  The random disturbances ( )tw  and ( )tv  are not measurable and are 

assumed zero mean Gaussian white noise whose stochastic characteristics are 

the following: 
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 [ ( )] , 0E t t  v 0  (5.262) 

 
,[ ( ) ( )] ( ) , , 0T

c wE t t t      w w R  (5.263) 

 
,[ ( ) ( )] ( ) , , 0T
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Where 
,c wR  is the symmetric positive definite matrix defining the process 

noise covariance matrix and 
,c vR  is the symmetric positive definite matrix 

defining the measurement noise covariance matrix. In addition, the process noise 

and the measurement noise are assumed mutually uncorrelated:  

 [ ( ) ( )] , , 0TE t t   w v O  (5.265) 

On the other hand, even the initial state 
0z  is assumed unknown and it is 

modelled as a Gaussian distributed random vector whose stochastic 

characteristics are: 
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Where 
0z  is the vector representing the expected value of initial state and 

,0cR  is the symmetric positive definite matrix representing the covariance 

matrix of the initial state. The initial state vector is modelled as a random 

process uncorrelated to the stochastic disturbances: 

 
0[ ( )] , 0TE t t  z w O  (5.268) 
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0[ ( )] , 0TE t t  z v O  (5.269) 

In virtue of these assumptions on the stochastic part of the model, a 

continuous-time Kalman filter can be developed linearizing the system model 

around the estimated state ˆ( )tz . Consequently, the following linearized state 

matrix and output influence matrix can be defined: 
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Therefore, the Kalman gain matrix ( )c tK  can be computed as: 
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Where the covariance matrix ( )tP  can be determined from the following 

continuous-time Riccati matrix differential equation: 
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 It is worth noting that the state equation, the estimation equation and the 

filter equation are coupled and therefore they must be solved at the same time in 

order to find the evolution of the controlled system. Consider now the three-

story building system with the control actuator located on the third floor. Using 

the fundamental equations of the constrained Dynamics, since the system mass 

matrix ( )tM  is a square matrix which has full rank, the system free acceleration 

vector ( )ta  can be symbolically computed as: 
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In addition, since the constraint matrix ( )tA  is a square matrix which has 

full rank, it can be proved that the acceleration vector induced by the constraints 

action ( )c ta  can be simply computed as follows: 
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For the simulation purposes, consider a time span equal to  50sT s  and 

a sampling time equal to  41 10t s   . Considering a worst-case scenario, 

the external force is assumed as a superposition of three harmonic force whose 

excitation frequencies are close to the first three system natural frequencies. In 

addition, consider the following initial conditions: 
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Moreover, the initial state is assumed as a stochastic process with the 

following characteristics: 
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 The measured output vector contains the acceleration relative to each floor 

and the angular position of the pendulum. Consequently, the output influence 

matrices referred respectively to system generalized displacement, velocity and 

acceleration are assumed as follows: 
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The process noise and the measurement noise are assumed zero mean 

Gaussian white noise whose stochastic characteristics are the following: 
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2

, 0c v R V  (5.286) 

Where 
0W  is the amplitude vector relative to the process noise, 

0V  is the 

amplitude vector relative to the measurement noise, 
wR  is the process noise 

covariance matrix and 
vR  is the measurement noise covariance matrix. The 

external input force acting on the first floor is the following: 
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Even in this case, the controller has been designed to start after that half the 

time span has elapsed and when the velocity of the third floor is relatively small 

in order to evidence the difference of the system response to the external input 

with and without the controller. Note that to satisfy the constraint equations the 

controller must start when, in theory, the velocity of the third floor is zero. The 

time evolution of the system displacement and of the estimated displacement 

relative to each floor are the following: 
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The time evolution of the system angular displacement and of the estimated 

angular displacement relative to the pendulum are the following: 
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On the other hand, the time evolution of the system velocity and of the 

estimated velocity relative to each floor are the following: 
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The time evolution of the system angular velocity and of the estimated 

angular velocity relative to the pendulum are the following: 
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Finally, the time evolution of the control force is the following: 
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The time evolution of the estimation error relative to the system 

displacement corresponding to each floor is the following: 
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The time evolution of the estimation error relative to the pendulum angular 

displacement is the following:  
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The time evolution of the estimation error relative to the system velocity 

corresponding to each floor is the following: 
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The time evolution of the estimation error relative to the pendulum angular 

velocity is the following:  
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Note that the estimation rapidly converges in a relatively small range for 

both system generalized displacement and velocity. Indeed, these plots show that 

when the controller start working the third floor stops vibrating and its position 

is hold approximately constant in time. In this case, the small deviation from the 

reference configuration of the displacement relative to the third floor is due to 

the presence of process and measurement noise. In addition, the displacement 

and the velocity relative to the other degrees of freedom are drastically reduced 

by the indirect action of the controller. It is worth to emphasize that even in this 

case the control action is confined in an acceptable working range. Finally, the 

percentage decrease of the maximum amplitude of the system response at the 

steady state due to the action of the controller is the following: 
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 (5.287) 

It is clear that the controller drastically reduces the amplitude of 

displacement and velocity relative to each system floor even in the worst-case 

scenario. Indeed, the extended Udwadia-Kalaba control method (EUK) 

combined with the extended Kalman filter estimation method (EKF), compared 

to the Linear Quadratic Gaussian control and estimation method (LQG), presents 

remarkable performances. On the other hand, the main drawback of this 

algorithm is that the numerical integration must be performed using a smaller 

sampling time to get accurate results. Consequently, the performances 

improvement require a greater computation time.   
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6. CONCLUSIONS 

This thesis represents an effort to demonstrate that Multibody Dynamics , 

System Identification and Control Theory are actually strongly linked matters. 

Consequently, the study of one of these subjects cannot be separated from the 

study of the other two. The structure of this works is an attempt to encompass 

the essence of Multibody Dynamics, System Identification and Control Theory. 

In the first chapter a synthesis of the most important principles and techniques to 

derive the equations of motion of multibody systems is presented. In the second 

chapter a synthesis of the most important methodologies to obtain modal 

parameters of a dynamical system using force and vibration measurements is 

presented. In the third chapter a synthesis of the most important algorithm to 

design a feedback control system based on an observer is presented. The case 

study examined is a three-story building model with a pendulum hinged on the 

third floor  1 ,  2 . In particular, a lumped parameter model and a finite 

element model of the three-story frame have been developed. Subsequently, a 

data-driven model relative to the system under test has been developed. Indeed, 

the Eigensystem Realization Algorithm with Data Correlation using 

Observer/Kalman Filter Identification method (ERA/DC OKID)  3  and the 

Numerical Algorithm for Subspace Identification (N4SID)  4  have been used 

to determine two different state-space models of the structural system using 

experimental input and output measurements. Moreover, the algorithm to 

determine a physical model from the identified sate-space representation (MKR) 

 5 ,  6 ,  7  has been used to obtain two different second-order mechanical 

models of the three-story frame. Subsequently, the design of a Linear Quadratic 
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Gaussian regulator (LQG)  8  has been performed using the previously 

identified physical model of the system under test. The effectiveness of this 

controller has been tested in the worst-case scenario in which the system is 

excited by an external force whose harmonic content is close to the first three 

system natural frequencies. From the simulation results it is clear that the Linear 

Quadratic Gaussian controller (LQG)  8  drastically reduces the amplitude of 

displacement and velocity relative to each system floor even in this worst-case 

scenario. Finally, a new control algorithm for nonlinear underactuated 

mechanical systems affected by uncertainties (EUK-EKF) is proposed. In 

analogy with the Linear Quadratic Gaussian regulation method (LQG)  8 , this 

algorithm represents the extension of the Udwadia-Kalaba control method (UK) 

 9 ,  10  to underactuated mechanical systems disturbed by noise. This 

extension is performed combining the extended Udwadia-Kalaba control method 

(EUK), which is the extension of the Udwadia-Kalaba control method (UK)  9 , 

 10  to underactuated mechanical systems, with the well-known extended 

Kalman filter estimation method (EKF)  8 . Even in this case, the effectiveness 

of the combined algorithms (EUK-EKF) has been tested in the worst-case 

scenario in which the system is excited by an external force whose harmonic 

content is close to the first three system natural frequencies.  From the simulation 

results it is clear that the controller drastically reduces the amplitude of 

displacement and velocity relative to each system floor even in the worst-case 

scenario. Indeed, the extended Udwadia-Kalaba control method (EUK) 

combined with the extended Kalman filter estimation method (EKF), compared 

to the Linear Quadratic Gaussian control and estimation method (LQG)  8 , 

presents remarkable performances. On the other hand, the main drawback of this 

algorithm is that the numerical integration must be performed using a smaller 

sampling time to get accurate results. Consequently, the performances 

improvement require a greater computation time. 



REFERENCES 463  

REFERENCES 

 

BIBLIOGRAPHY CHAPTER 01  

 1  T. M. Wasfy, A. K. Noor - Computational Strategies for Flexible 

Multibody Systems - Applied Mechanics Reviews - November 

2003 - Volume 56,  Issue 6. 

 2  L. Ljung - Perspectives on System Identification - Annual 

Reviews in Control - April 2010 - Volume 34, Number 1.  

 3  G. Diana, F. Fossati, F. Resta - Elementi di Controllo di Sistemi 

Meccanici - Spiegel.  

 4  G. Diana, F. Resta - Controllo di Sistemi Meccanici - Polipress.  

 5  F. E. Udwadia, R. E. Kalaba - Analytical Dynamics A New 

Approach - Cambridge University Press. 

 6  D. De Falco - Dinamica Analitica Un Nuovo Approccio - 

EdiSES. 



464 REFERENCES  

 7  A. A. Shabana - Dynamics of Multibody Systems (Third 

Edition) - Cambridge University Press. 

 8  J. N. Juang - Applied System Identification - Prentice Hall. 

 9  M. De Angelis, H. Lus, R. Betti, R. W. Longman - Extracting 

Physical Parameters of Mechanical Models From Identified 

State-Space Representations - Journal of Applied Mechanics - 

September 2002 - Volume 69, Issue 5. 

 10  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part I: Theoretical Discussions - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.        

 11  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part II: Numerical Investigations - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.  

 12  A. E. Bryson, Y. C. Ho - Applied Optimal Control: 

Optimization, Estimation and Control - Taylor & Francis.  

 13  D. Guida, F. Nilvetti, C. M. Pappalardo - Mass, Stiffness and 

Damping Identification of a Two-Story Building Model -  

Programme and Proceedings of the 3rd ECCOMAS Thematic 

Conference on Computational Methods in Structural Dynamics 

and Earthquake Engineering (COMPDYN 2011) - Corfu, 

Greece, 25-28 May 2011. 



REFERENCES 465  

 14  D. Guida, F. Nilvetti, C. M. Pappalardo - Experimental 

Investigation On a New Hybrid Mass Damper - Programme and 

Proceedings of the 8th International Conference on Structural 

Dynamics (EURODYN 2011) - Leuven, Belgium, 4-6 July 

2011. 

 15  W. D’Ambrogio, A. Sestieri - A Unified Approach to 

Substructuring and Structural Modification Problems - Shock 

and Vibration - August 2004 - Volume 11. 

 16  P. Van Overschee, B. De Moor - Subspace Identification for 

Linear Systems: Theory, Implementation, Applications - Kluwer 

Academic Publishers. 

 17   B. Roy, H. H. Asada - Design of a Reconfigurable Robot Arm 

for Assembly Operations inside an Aircraft Wing-Box - 

Proceeding of the 2005 IEEE International Conference on 

Robotics and Automation  - April 2005. 

 18  B. Roy, H. H. Asada - Closed Loop Control of a Gravity-

assisted Underactuated Snake Robot with Application to Aircraft 

Wing-Box Assembly - Robotics: Science and Systems III - June 

2007 - Vol. 25, Issue 5. 

 19  B. Roy, H. H. Asada - Non-linear Feedback Control of a 

Gravity-assisted Underactuated Manipulator with Application to 

Aircraft Assembly - IEEE Transactions on Robotics - October 

2009 - Vol. 25, Issue 5. 



466 REFERENCES  

 20  F. E. Udwadia - Equations of Motion for Constrained Multibody 

Systems and their Control - Journal of Optimization Theory and 

Applications - December 2005 - Volume 127, Number 3. 

 21  E. Pennestrì, P. P. Valentinia, D. De Falco - An Application of 

the Udwadia–Kalaba Dynamic Formulation to Flexible 

Multibody Systems - February 2010 - Volume 347, Issue 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 467  

 

BIBLIOGRAPHY CHAPTER 02  

 1  D. Halliday, R. Resnik, K. S. Krane - Physics, Volume 2 (Fifth 

Edition) - John Wiley & Sons. 

 2  R. P. Feynman, R. B. Leighton, M. Sands - The Feynman 

Lectures on Physics, Volume 1 - Addison-Wesley. 

 3  H. Goldstein - Classical Mechanics (Second Edition) - Addison-

Wesley.    

 4  L. D. Landau, E. M. Lifshitz - Mechanics - Course of 

Theoretical Physics, Volume 1 (Third Edition) - Butterworth-

Heinemann.    

 5  L. Meirovitch - Methods of Analytical Dynamics - Dover Civil 

and Mechanical Engineering. 

 6  T. R. Kane, D. A. Levinson - Dynamics: Theory and 

Applications - Mcgraw Hill. 

 7  C. Lanczos - The Variational Principles of Mechanics (Fourth 

Edition) - Dover Books on Physics. 

 8  F. E. Udwadia, R. E. Kalaba - Analytical Dynamics A New 

Approach - Cambridge University Press. 



468 REFERENCES  

 9  M. R. Flannery - The elusive D’Alembert-Lagrange Dynamics 

of Nonholonomic Systems - American Journal of Physics - 

September 2011 - Volume 79, Issue 9. 

 10  M. R. Flannery - D’Alembert-Lagrange Analytical Dynamics for 

Nonholonomic Systems - Journal of Mathematical Physics - 

March 2011 - Volume 52, Issue 3. 

 11  A. A. Shabana - Computational Dynamics (Third edition) - John 

Wiley & Sons. 

 12  A. A. Shabana - Dynamics of Multibody Systems (Third 

Edition) - Cambridge University Press. 

 13  A. A. Shabana - Vibration of Discrete and Continuous Systems 

(Second Edition) - Springer.  

 14  F. E. Udwadia - Equations of Motion for Constrained Multibody 

Systems and their Control - Journal of Optimization Theory and 

Applications - December 2005 - Volume 127, Number 3. 

 15  F. E. Udwadia, P. Phohomsiri - Explicit Equations of Motion for 

Constrained Mechanical Systems with Singular Mass Matrices 

and Applications to Multi-Body Dynamics - Royal Society of 

London Proceedings Series A - February 2006 - Volume 462, 

Issue 2071. 

 16  F. E. Udwadia, A. D. Shutte - Equations of Motion for General 

Constrained Systems in Lagrangian Mechanics - Acta 

Mechanica - February 2010 -  Volume 213, Numbers 1-2.   



REFERENCES 469  

 17  G. Diana, F. Cheli - Dinamica e Vibrazioni dei Sistemi 

Meccanici - UTET Libreria (Torino). 

 18  G. Genta - Vibration Dynamics and Control - Springer.  

 19  L. Meirovitch - Fundamental of Vibrations - Waveland Press. 

 20  D. J. Inman - Engineering Vibration (Third Edition) - Pearson 

Prentice Hall. 

 21  E. Viola - Fondamenti di Dinamica e Vibrazione delle Strutture, 

Volume 1: Sistemi Discreti - Pitagora.  

 22  M. Geradin, D. Rixen - Mechanical Vibrations: Theory and 

Applications to Structural Dynamics - John Wiley & Sons. 

 23  E. Viola - Fondamenti di Dinamica e Vibrazione delle Strutture, 

Volume 1: Sistemi Continui - Pitagora. 

 24  R. W. Clough, J. Penzien - Dynamics of Structures - Dynamics 

of Structures (Third Edition) - Computers & Structures. 

 25  F. Cheli, E. Pennestrì - Cinematica e Dinamica dei Sistemi 

Multibody - Casa Editrice Ambrosiana. 

 26  B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo - Robotics: 

Modelling, Planning and Control - Springer.  



470 REFERENCES  

 27  O. C. Zienkiewicz, R. L. Taylor, J.Z. Zhu - The Finite Element 

Method: Its Basis and Fundamentals (Sixth Edition) - Elsevier 

Butterworth Heinemann.  

 28  O. C. Zienkiewicz, R. L. Taylor, J.Z. Zhu - The Finite Element 

Method for Solid and Structural Mechanics (Sixth Edition) - 

Elsevier Butterworth Heinemann. 

 29  A. A. Shabana - Computational Continuum Mechanics (Second 

Edition) - Cambridge University Press.   

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 471  

BIBLIOGRAPHY CHAPTER 03 

 1  L. Ljung - System Identification: Theory for the User (Second 

Edition) - Prentice Hall. 

 2  L. Ljung - Perspectives on System Identification - Annual 

Reviews in Control - April 2010 - Volume 34, Number 1.  

 3  D. J. Ewins - Modal Testing: Theory, Practice and Application 

(Second Edition) - Research Studies Press. 

 4  W. Gawronski - Advanced Structural Dynamics and Active 

Control of Structures - Springer. 

 5  J. N. Juang - Applied System Identification - Prentice Hall. 

 6  J. N. Juang, M. Q. Phan - Identification and Control of 

Mechanical Systems - Cambridge University Press. 

 7  P. Van Overschee, B. De Moor - Subspace Identification for 

Linear Systems: Theory, Implementation, Applications - Kluwer 

Academic Publishers. 

 8  M. De Angelis, H. Lus, R. Betti, R. W. Longman - Extracting 

Physical Parameters of Mechanical Models From Identified 

State-Space Representations - Journal of Applied Mechanics - 

September 2002 - Volume 69, Issue 5. 

 9  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part I: Theoretical Discussions - 



472 REFERENCES  

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.        

 10  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part II: Numerical Investigations - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.  

 11  P. Van Overschee, B. De Moor, M. Abdelghani, M. Verhaegen -   

Comparison Study of Subspace Identification Methods Applied 

to Flexible Structures - Mechanical Systems and Signal 

Processing -  1998 - Volume 12, Issue 5. 

 12  D. Guida, F. Nilvetti, C. M. Pappalardo - Mass, Stiffness and 

Damping Identification of a Two-Story Building Model -  

Programme and Proceedings of the 3rd ECCOMAS Thematic 

Conference on Computational Methods in Structural Dynamics 

and Earthquake Engineering (COMPDYN 2011) - Corfu, 

Greece, 25-28 May 2011. 

 13  D. Guida, F. Nilvetti, C. M. Pappalardo - Experimental 

Investigation On a New Hybrid Mass Damper - Programme and 

Proceedings of the 8th International Conference on Structural 

Dynamics (EURODYN 2011) - Leuven, Belgium, 4-6 July 

2011. 

 14  B. L. Ho,  R. E. Kalman - Effective construction of linear state-

variable models from input/output functions - Regelungstechnik 

- 1966 -  Volume 14, Number 12. 



REFERENCES 473  

 15  G. Strang  - Linear Algebra and its Applications (Fourth Edition) 

- Thomson. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



474 REFERENCES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 475  

BIBLIOGRAPHY CHAPTER 04 

 1  G. Diana, F. Fossati, F. Resta - Elementi di Controllo di Sistemi 

Meccanici - Spiegel.  

 2  G. Diana, F. Resta - Controllo di Sistemi Meccanici - Polipress.  

 3  J. N. Juang, M. Q. Phan - Identification and Control of 

Mechanical Systems - Cambridge University Press. 

 4  D. J. Inman - Vibration with Control - John Wiley & Sons. 

 5  H. H. Asada, J. J. E. Slotine - Robot Analysis and Control - John 

Wiley & Sons.  

 6  B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo - Robotics: 

Modelling, Planning and Control - Springer.  

 7  T. Onsay, A. Akay - Vibration Reduction of a Flexible Arm by 

Time-optimal Open-loop Control - Journal of Sound and 

Vibration - June 1991 - Volume 147, Issue 2. 

 8  A. Carcaterra, A. Akay, C. Bernardini - Trapping of Vibration 

Energy into a Set of Resonators: Theory and Application to 

Aerospace Structures - Mechanical Systems and Signal 

Processing - August 2011 - Volume 26 

 9  M. Tibaldi - Progetto di Sistemi di Controllo - Pitagora. 



476 REFERENCES  

 10  F. L. Lewis, D. Vrabie, V. L. Syrmos - Optimal Control (Third 

Edition) - John Wiley & Sons.  

 11  R. G. Brown, P. Y. C. Hwang - Introduction to Random Signals 

and Applied Kalman Filtering (Fourth Edition) - John Wiley & 

Sons. 

 12  W. X. Zhong - Duality System in Applied Mechanics and 

Optimal Control - Kluwer Academic Publishers. 

 13  A. E. Bryson, Y. C. Ho - Applied Optimal Control: 

Optimization, Estimation and Control - Taylor & Francis.  

 14  J. L. Crassidis, J. L. Junkins - Optimal Estimation of Dynamic 

Systems (Second Edition) - CRC Press. 

 15  G. Strang  - Linear Algebra and its Applications (Fourth Edition) 

- Thomson. 

 16  T. R. Bewley - Numerical Renaissance: simulation, 

optimization, & control - To be Published. 

 17  J. O. Pralits, P. Luchini - Riccati-less Optimal Control of Bluff-

body Wakes - Proceeding of Seventh IUTAM Symposium on 

Laminar-Turbulent Transition - Stockholm, 23-26 June 2009. 

 18  M. T. Bement, T. R. Bewley - Excitation Design for Damage 

Detection Using Iterative Adjoint Based Optimization, Part I: 

Method Development - April 2009 - Mechanical Systems and 

Signal Processing. 



REFERENCES 477  

 19  M. T. Bement, T. R. Bewley - Excitation Design for Damage 

Detection Using Iterative Adjoint Based Optimization, Part II: 

Experimental Demonstration - April 2009 - Mechanical Systems 

and Signal Processing. 

 20  T. R. Bewley, P. Luchini, J. O. Pralits - Methods for the solution 

of very large flow-control problems that bypass open-loop 

model reduction - November 2010 - Bulletin of the American 

Physical Society - Volume 55-16.  

 21  D. Szeto - Dual Pendula Swing Up and Stabilization via Smooth 

Nonlinear Trajectory Planning and Feedback Control - Thesis, 

University of California, San Diego. 

 

 

 

 

 

 

 

 

 

 



478 REFERENCES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 479  

BIBLIOGRAPHY CHAPTER 05 

 1  A. A. Shabana - Dynamics of Multibody Systems (Third 

Edition) - Cambridge University Press. 

 2  L. Meirovitch - Methods of Analytical Dynamics - Dover Civil 

and Mechanical Engineering. 

 3  F. E. Udwadia, R. E. Kalaba - Analytical Dynamics A New 

Approach - Cambridge University Press. 

 4  J. N. Juang - Applied System Identification - Prentice Hall. 

 5  J. N. Juang, M. Q. Phan - Identification and Control of 

Mechanical Systems - Cambridge University Press. 

 6  P. Van Overschee, B. De Moor - Subspace Identification for 

Linear Systems: Theory, Implementation, Applications - Kluwer 

Academic Publishers. 

 7  M. De Angelis, H. Lus, R. Betti, R. W. Longman - Extracting 

Physical Parameters of Mechanical Models From Identified 

State-Space Representations - Journal of Applied Mechanics - 

September 2002 - Volume 69, Issue 5. 

 8  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part I: Theoretical Discussions - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.        



480 REFERENCES  

 9  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part II: Numerical Investigations - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.  

 10  D. Guida, C. M. Pappalardo - Journal Bearing Parameter 

Identification - Proceedings of the 11th WSEAS International 

Conference on Automatic Control Modelling and Simulation 

(ACMOS '09) - Istanbul, Turkey, 30 May - 1 June 2009. 

 11  D. Guida, C. M. Pappalardo - Sommerfeld and Mass Parameter 

Identification of Lubricated Journal Bearing - Applied and 

Theoretical Mechanics - October 2009 - Volume 4, Issue 4. 

 12  D. Guida, F. Nilvetti, C. M. Pappalardo - On Parameter 

Identification of Linear Mechanical Systems - Proceeding of the 

3rd International Conference on Applied Mathematics, 

Simulation, Modelling (ASM'09) - Vouliagmeni Beach, Athens, 

Greece, 29-31 December 2009. 

 13  D. Guida, F. Nilvetti, C. M. Pappalardo - Parameter 

Identification of a Two Degrees of Freedom Mechanical System 

- International Journal of Mechanics - 2009 - Volume 3, Issue 2. 

 14  W. X. Zhong - Duality System in Applied Mechanics and 

Optimal Control - Kluwer Academic Publishers. 

 15  A. E. Bryson, Y. C. Ho - Applied Optimal Control: 

Optimization, Estimation and Control - Taylor & Francis.  



REFERENCES 481  

 16  D. Guida, F. Nilvetti, C. M. Pappalardo - Friction Induced 

Vibrations of a Two Degrees of Freedom System - Proceedings 

of the 10th WSEAS International Conference on Robotics, 

Control and Manufacturing Technology (ROCOM '10) - 

Hangzhou, China, 11-13 April 2010. 

 17  D. Guida, F. Nilvetti, C. M. Pappalardo - Dry Friction Influence 

on Cart Pendulum Dynamics - International Journal of 

Mechanics - 2009 - Volume 3, Issue 2. 

 18  D. Guida, F. Nilvetti, C. M. Pappalardo - Dry Friction Influence 

on Inverted Pendulum Control - Proceedings of the 3rd 

International Conference on Applied Mathematics, Simulation, 

Modelling (ASM'09) - Vouliagmeni Beach, Athens, Greece, 29-

31 December 2009. 

 19  D. Guida, F. Nilvetti, C. M. Pappalardo - Instability Induced by 

Dry Friction - 2009 - International Journal of Mechanics - 

Volume 3, Issue 3. 

 20  D. Guida, F. Nilvetti, C. M. Pappalardo - Dry Friction of 

Bearings on Dynamics and Control of an Inverted Pendulum - 

Proceeding of the 18th International Scientific Conference on 

Achievements in Mechanical and Materials Engineering 

(AMME`2010) - Gliwice - Wieliczka - Zakopane, Poland, 13-16 

June 2010. 

 21  D. Guida, F. Nilvetti, C. M. Pappalardo - Dry Friction of 

Bearings on Dynamics and Control of an Inverted Pendulum - 

Journal of Achievements in Materials and Manufacturing 

Engineering - January 2010 - Volume 38,  Issue 1. 



482 REFERENCES  

 22  D. Guida, F. Nilvetti, C. M. Pappalardo - Parameter 

Identification of a Full-Car Model for Active Suspension Design 

- Proceedings of the 18th International Scientific Conference on 

Achievements in Mechanical and Materials Engineering 

(AMME`2010) - Gliwice - Wieliczka - Zakopane, Poland, 13-16 

June 2010. 

 23  D. Guida, F. Nilvetti, C. M. Pappalardo - Parameter 

Identification of a Full-Car Model for Active Suspension Design 

- Journal of Achievements in Materials and Manufacturing 

Engineering - June 2010 - Volume 40,  Issue 2.  

 24  D. Guida, F. Nilvetti, C. M. Pappalardo - Mass, Stiffness and 

Damping Identification of a Two-Story Building Model -  

Programme and Proceedings of the 3rd ECCOMAS Thematic 

Conference on Computational Methods in Structural Dynamics 

and Earthquake Engineering (COMPDYN 2011) - Corfu, 

Greece, 25-28 May 2011. 

 25  D. Guida, F. Nilvetti, C. M. Pappalardo - Experimental 

Investigation On a New Hybrid Mass Damper - Programme and 

Proceedings of the 8th International Conference on Structural 

Dynamics (EURODYN 2011) - Leuven, Belgium, 4-6 July 

2011. 

 26   B. Roy, H. H. Asada - Design of a Reconfigurable Robot Arm 

for Assembly Operations inside an Aircraft Wing-Box - 

Proceeding of the 2005 IEEE International Conference on 

Robotics and Automation  - April 2005. 

 27  B. Roy, H. H. Asada - Closed Loop Control of a Gravity-

assisted Underactuated Snake Robot with Application to Aircraft 



REFERENCES 483  

Wing-Box Assembly - Robotics: Science and Systems III - June 

2007 - Vol. 25, Issue 5. 

 28  B. Roy, H. H. Asada - Non-linear Feedback Control of a 

Gravity-assisted Underactuated Manipulator with Application to 

Aircraft Assembly - IEEE Transactions on Robotics - October 

2009 - Vol. 25, Issue 5. 

 29  F. E. Udwadia - Equations of Motion for Constrained Multibody 

Systems and their Control - Journal of Optimization Theory and 

Applications - December 2005 - Volume 127, Number 3. 

 30  M. R. Flannery - The elusive D’Alembert-Lagrange Dynamics 

of Nonholonomic Systems - American Journal of Physics - 

September 2011 - Volume 79, Issue 9. 

 31  M. R. Flannery - D’Alembert-Lagrange Analytical Dynamics for 

Nonholonomic Systems - Journal of Mathematical Physics - 

March 2011 - Volume 52, Issue 3. 

 

 

 

 

 

 

 



484 REFERENCES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



REFERENCES 485  

BIBLIOGRAPHY CHAPTER 06 

 1  D. Guida, F. Nilvetti, C. M. Pappalardo - Mass, Stiffness and 

Damping Identification of a Two-Story Building Model -  

Programme and Proceedings of the 3rd ECCOMAS Thematic 

Conference on Computational Methods in Structural Dynamics 

and Earthquake Engineering (COMPDYN 2011) - Corfu, 

Greece, 25-28 May 2011. 

 2  D. Guida, F. Nilvetti, C. M. Pappalardo - Experimental 

Investigation On a New Hybrid Mass Damper - Programme and 

Proceedings of the 8th International Conference on Structural 

Dynamics (EURODYN 2011) - Leuven, Belgium, 4-6 July 

2011. 

 3  J. N. Juang - Applied System Identification - Prentice Hall. 

 4  P. Van Overschee, B. De Moor - Subspace Identification for 

Linear Systems: Theory, Implementation, Applications - Kluwer 

Academic Publishers. 

 5  M. De Angelis, H. Lus, R. Betti, R. W. Longman - Extracting 

Physical Parameters of Mechanical Models From Identified 

State-Space Representations - Journal of Applied Mechanics - 

September 2002 - Volume 69, Issue 5. 

 6  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part I: Theoretical Discussions - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.        



486 REFERENCES  

 7  H. Lus, M. De Angelis, R. Betti, R. W. Longman - Constructing 

Second-Order Models of Mechanical Systems from Identified 

State Space Realizations. Part II: Numerical Investigations - 

Journal of Engineering Mechanics - May 2003 - Volume 129, 

Issue 5.  

 8  A. E. Bryson, Y. C. Ho - Applied Optimal Control: 

Optimization, Estimation and Control - Taylor & Francis.  

 9  F. E. Udwadia, R. E. Kalaba - Analytical Dynamics A New 

Approach - Cambridge University Press. 

 10  F. E. Udwadia - Equations of Motion for Constrained Multibody 

Systems and their Control - Journal of Optimization Theory and 

Applications - December 2005 - Volume 127, Number 3. 

 

 


	Frontespizio_Tesi_Dottorato_Carmine_M_Pappalardo
	Ringraziamenti
	Contents
	01_Introduction
	02_Dynamics
	03_Identification
	04_Control
	05_Case_Study
	06_Conclusions
	References

