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i

The significant problems we
have cannot be solved at the
same level of thinking with
which we created them.

Albert Einstein
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Chapter 1

Introduction

The rapid growth of the financial markets and the continuous development

of new and more complex financial instruments, have remarkably

increased the importance of modelling and forecasting asset returns

volatility as accurately as possible. Volatility plays a key role in asset

pricing, risk management, asset allocation, portfolio optimization and

in several other financial applications. Since the introduction of the

autoregressive conditional heteroskedastic (ARCH) model by Engle (1982),

followed by the generalization to GARCH of Bollerslev (1986), a long

list of financial volatility models have been developed and extended to

explain various stylized facts about financial returns and volatility, such

as volatility clustering, leverage effects, leptokurtosis, and long memory.

The central element within the GARCH framework is the specification of

the conditional variance. However, the main problem in using this class

of models is that the volatility is latent and, therefore, it is not directly

observable. The standard GARCH model usually relies on daily stock

returns to estimate the latent conditional volatility, using all current and

past daily squared returns to provide expectations on future volatility.

More recently, the increasing availability of ultra high-frequency data for

a host of different financial instruments, has given rise to the question
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whether such data provides additional information when compared to the

commonly used daily data. This issue has led to a new branch in financial

econometrics literature, revealing that the high-frequency data are much

more informative about the price process not only on an intra-daily level,

but also on a daily level.

Andersen and Bollerslev (1998) show that daily latent volatility can be

more accurately measured by the daily aggregated squared intraday

returns, reducing the measurement error in quantifying the true latent

integrated volatility. Assuming that the underlying stochastic logarithmic

price is a continuous Brownian semi-martingale process, the integrated

variance, which is the quadratic returns variation, can be consistently

estimated by the realized variance. The daily realized variance, defined

as the sum of all available intraday high-frequency squared returns,

provides a natural ex-post return variability measure, since, under suitable

conditions, it is an unbiased and highly efficient estimator of return

volatility as discussed in Andersen et al. (2001) and Barndorff-Nielsen and

Shephard (2002). During the last fifteen years, exploiting the superior

information contained in intraday return data, several non-parametric

realized volatility estimators have been proposed, such as the Bipower

and Tripower Variation of Barndorff-Nielsen and Shephard (2004b), the

Subsampled RV of Zhang et al. (2005), the Realized Kernels of Barndorff-

Nielsen et al. (2008), the medRV and minRV of Andersen et al. (2012), among

others.

In this regard, following the theoretical results of Barndorff-Nielsen and

Shephard (2002), Meddahi (2002) and Andersen et al. (2003), several

papers have studied the properties of these estimators. Because of a

host of practical market microstructure frictions, the realized variance

suffers from bias problems related to the sampling frequency. The highest
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possible sampling frequency should be used for efficiency, but sampling

at ultra high-frequency tends to bias the estimate of the realized measures.

Aït-Sahalia et al. (2005), Zhang et al. (2005), Hansen and Lunde (2006),

Bandi and Russell (2006) and Bandi and Russell (2008), among others,

have discussed various solutions to account for the trade-off between

bias and variance, though in most empirical application the 5 minutes

realized variance is used. This choice is supported by empirical evidence

showing that in practical application it is often difficult to beat this simple

benchmark (Liu et al., 2015).

A second relevant research question, that is currently being actively

debated in the literature, is related to the benefits, in term of forecasting

accuracy of the daily volatility, that can derive from incorporating realized

variance estimators in volatility forecasting models. Engle (2002) introduce

the GARCH-X model including the realized variance as an exogenous

variable in the volatility dynamics equation. In this framework Engle

(2002) and Engle and Gallo (2006), have developed a Multiplicative

Error Model (MEM) by specifying a separate dynamic equation for the

realized measure, completing the GARCH-X model. Extensions of the

MEM model to the multivariate case have been proposed in Cipollini

et al. (2006, 2013), developing the vector MEM. Along the same track,

Shephard and Sheppard (2010) proposed the HEAVY model, extending

the GARCH-X model in such a way that a multi-step volatility forecast

is feasible. A similar model which accounts for realized measures is the

Realized GARCH model introduced by Hansen et al. (2012). This model is

conceptually closely related to the standard GARCH model, but includes

a measurement equation that relates the realized measures to latent

conditional volatility1. The Realized GARCH model not only outperforms

1The HEAVY and the Realized GARCH models can be represented as special cases of
the vector MEM. For a detailed discussion see Cipollini et al. (2013).
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the standard GARCH in forecasting volatility, but it also preserves many

of its attractive features. In particular, it preserves the ARMA structure

which characterises the conventional GARCH framework simplifying the

derivation of model properties. The research on this issue is currently

ongoing and there are still many open issues deserving solution and

investigation. First, the use of realized measures in volatility models

gives rise to an errors in variables problem and, hence, to attenuation

bias (Bollerslev et al., 2016). Parameter estimates should be corrected

for this bias. The models that have been so far proposed, with a few

exceptions (Hansen and Huang, 2016), require the choice of specific

volatility measures while it is reasonable to expect that using a variable

combination of different measures, according to market conditions, could

be beneficial for volatility forecasting.

Moving from the daily horizon to a finer time scale, the growing popularity

of high-frequency financial data, due to the technological progress in

trading systems, has increased the attention of traders and researchers

on the importance of intraday trading, optimal trade execution, order

placement and liquidity dynamics. Consequently, financial time series

analysis has focused on modelling volatility measure based on high-

frequency data, as well as on intra-daily volumes, number of trades and

durations. In this framework, being all positive-valued variables, the

autoregressive conditional mean models play a dominant role in the literature.

This class of models has been introduced by Engle and Russell (1998),

developing the Autoregressive Conditional Duration (ACD) to model

the dynamic behaviour of the time between trades, later generalized in

Multiplicative Error Model (MEM) by Engle (2002) and Engle and Gallo

(2006), as a general class of time series models for positive-valued random

variables which are decomposed into the product of their conditional mean

and a positive-valued i.i.d. error term with unit mean. Accordingly, more
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attention has been paid to variables different from volatility, such as intra-

daily trading volumes (see e.g. Manganelli (2005), Brownlees et al. (2011)

and Hautsch et al. (2013), among others).

Most high-frequency variables share the features of being positive-valued,

positively autocorrelated, strongly persistent and of following distinct

intraday seasonal patterns. The presence of long-range dependence

in financial variables is conventionally modelled by autoregressive

fractionally integrated moving average (ARFIMA) process as in Andersen

et al. (2003) or by using regression models mixing information at different

frequencies as the Heterogeneous AR (HAR) model of Corsi (2009) and

the MIDAS (Mixed Data Sampling) regression of Ghysels et al. (2006). On

the other hand, the intra-daily seasonalities are usually estimated using

Flexible Fourier Form mainly based on the work of Gallant (1981).

In order to capture the heavy dependence structure which characterise

financial variables such as volatility and volume, dynamic models with

slowly moving components are gaining importance in recent years. The

Spline-GARCH of Engle and Rangel (2008) represents the starting point

in capturing secular trends in financial volatility. Along this line, Engle

et al. (2013) introduce a new class of models called GARCH-MIDAS to

examine whether information contained in monthly, quarterly, or biannual

financial or macroeconomic variables can improve the prediction of the

returns conditional variance. Brownlees et al. (2011) propose a multi-

component model with a dynamic specification to capture salient features

of intra-daily volumes such as strong persistence, asymmetry and intra-

daily periodicities. A distinctive feature of their approach is the inclusion

of a daily trend component in the dynamics of the intra-daily volumes.

Technological progress together with the growing ascendancy of electronic
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trading systems allows to store market activity on ultra high-frequency

with very high precision. However, high-frequency financial transaction

are characterised by issues concerning both the structure of the market

and the statistical properties of data. The sequence and the structure of

the data strongly depend on trading rules, trading forms and institutional

settings. An important property of financial high-frequency data is the

irregular spacing in time. A further major feature of transaction data

is the discreteness of prices. Furthermore, high-frequency datasets are

characterised by the presence of different types and sources of errors,

such as simultaneous observations, decimal errors, transposition errors,

isolated bad ticks and multiple bad ticks in succession, where the tick is

the minimum price fluctuation. Therefore, since high-frequency datasets

might be affected by errors and false information, the data cleaning

has become an essential preliminary step to avoid misleading results in

subsequent statistical analysis. To address this problem, several methods

have been proposed to filter ultra high-frequency data (see e.g. Dacorogna

et al. (2001), Falkenberry (2002), Brownlees and Gallo (2006) and Barndorff-

Nielsen et al. (2009), among others).

1.1 Structure of the Thesis

Aim of this thesis is to propose and discuss novel model specifications

for predicting volatility (Chapters 2 and 3) and volumes (Chapter 4) at

horizons ranging from one day, for volatility, to a few minutes, for trading

volumes. In the following, the most important contributions and findings

of each chapter will be summarized in more detail.

The models we propose for forecasting daily volatility make use of

intra-daily information, in the form of realized measures, and try to

provide a solution to some open problems currently being debated in the
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literature. Chapter 2 proposes a flexible generalization of the standard

Realized GARCH model of Hansen et al. (2012) that allows to account for

the heteroskedasticity of the error term featuring the realized volatility

measure as well as to correct the attenuation bias effect in a dynamic and

a fully data driven fashion. Since volatility is latent, proxies are needed in

order to model its dynamics. The realized variance, under the assumption

that the return generating process is a continuous semimartingale, is

a consistent estimator for the integrated variance. However, it is well

known that, because of microstructure noise, the realized variance is

influenced by measurement error, where the impact of this error is

strictly related to the market activity. In this context seems to be natural

consider heteroskedasticity, therefore the variability of the measurement

error is assumed to vary over time as a function of an estimator of

the integrated quarticity of intra-daily returns. A further complication

that arises from the noisy estimates of the integrated variance is the so-

called errors-in-variables problem. This typically leads to the rise of

what is usually known as attenuation bias, with the realized measure

being less persistent than the latent integrated variance. In particular,

the magnitude of the measurement error is negatively correlated with

the persistence of the observed process. Therefore, correcting for the

attenuation bias can potentially lead to improved volatility forecasts.

In order to account for dynamic attenuation bias effects, we allow the

volatility persistence to depend on the time-varying variance of the

measurement noise, assigning more weight to the realized measure when

it is more accurately measured. Accordingly this parametrization provides

stronger persistence when the measurement error is relatively low, which

is in line with the findings in Bollerslev et al. (2016). The resulting

model is called the Time Varying Heteroskedastic Realized GARCH (TV-

HRGARCH). The proposed approach is also extended to consider potential

jump effects by adding the log-ratio between realized variance and a
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realized volatility measure robust to the jumps as an explanatory variable

in the measurement equation. This allows to separate the measurement

error due to microstructure noise and discretization from the impact of

jumps, since the jump correction is carried out only on days when jumps

are most likely to occur, while resorting to the use of more efficient

measures in jumps free periods. The empirical analysis on four stocks

traded on the Xetra Market in the German Stock Exchange shows that the

introduction of heteroskedasticity as well as of time-varying persistence

provides positive effects on the empirical fit and on the out-of sample

forecasting performance of the models. Similar results also apply to the

class of models that accounts for jumps in the measurement equation.

Chapter 3 presents a further extension of the Realized GARCH model

with the aim of improving the predictive ability of the model, by reducing

the bias related to the sampling frequency of the intraday returns. It is

well documented that the realized variance provide a consistent estimate

of the integrated variance when prices are observed continuously and

without measurement error. Consequently, the realized volatility should

be computed using intra-daily returns sampled at the highest possible

frequency. Unfortunately, market microstructure frictions introduce severe

bias on daily volatility estimation as the sampling frequency of the intra-

daily returns tend to increase. Thus, there is a trade-off between bias

and variance related to the choice of the sampling frequency at which the

realized variance is computed. This trade-off justifies the use of realized

volatility measures based on intraday returns sampled at a frequency

ranging from 5 to 30 minutes. In this field, the contribution of the chapter

is to introduce a dynamic model for forecasting daily volatility exploiting

information coming from intra-daily returns based on different sampling

frequencies, in order to achieve the optimal trade-off between bias and

efficiency. In particular, volatility dynamics are determined by a weighted
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average of the considered realized measures, where the weights are time-

varying and adaptively determined according to the estimated amount

of noise and jumps. The proposed model is called the Mixed Frequency

Adaptive Realized GARCH (MF-ARGARCH). As in Hansen and Huang

(2016) the model includes separate measurement equations for each of the

realized measures considered. However, a more parsimonious version

of the MF-ARGARCH model is even considered by collapsing the two

measurement equations into one single equation, resulting in the Single

equation MF-ARGARCH (SMF-ARGARCH) model. Our results point out

that mixing the 5 minutes realized variance with realized measures based

on lower frequency information is very beneficial in terms of goodness of

fit and of forecasting accuracy.

Chapter 4 moves the attention on the modelling and prediction of

high-frequency trading volumes. High-frequency trading has become

a widespread feature of equity markets in recent years and volume

plays an important role in several intraday trading strategies. The

volume-weighted average price (VWAP) strategy is used to minimize

the execution costs of large trades in financial markets. The VWAP

of a stock over a specified market period is simply computed as an

average of intra-daily transaction prices weighted by the corresponding

volume shares over the total daily volume. Since prices are practically

unpredictable, the performance of the strategies are mainly based on

accurate predictions of intra-daily trading volumes. In this field, as a

novel approach for modeling and forecasting intra-daily volumes, we

propose the Heterogeneous MIDAS Component Multiplicative Error

Model (H-MIDAS-CMEM), in order to account for the main stylized facts

characterising high-frequency trading volumes, such as clustering of the

trading activity, strong persistence and intraday seasonality. Following

the logic of the Component Multiplicative Error Model of Brownlees
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et al. (2011), these empirical features are explained by components

that move at different frequencies, since it is possible to distinguish

a lower frequency component that moves around the overall series, a

distinctive intra-daily dynamic non-periodic component and an intra-daily

periodic component which allows for intraday periodicities. The periodic

component is modelled employing a Fourier Flexible Form, while the

short-run component follows a unit mean reverting GARCH-type process.

The main innovation concerns the specification of the long-run component,

since it is modelled by using a flexible MIDAS polynomial structure

based on an additive cascade of linear filters adopting heterogeneous

components which can move on multiple frequencies, in order to account

for the strong persistent autocorrelation structure that is typical of the high-

frequency volumes. Furthermore, this cascade structure reproduces the

natural heterogeneity of the different categories of agents operating in the

market at different frequencies. To capture sudden changes from states

of low trading intensity to states characterised by a very high trading

intensity, the proposed modelling approach has been further extended

by introducing a time-varying intercept in the specification of the long-

run component. To assess the relative merits of the proposed approach,

the empirical analysis is carried out on three German stocks which are

characterised by different liquidity levels according to the number of non

trading intra-daily intervals. To control the proportion of zero observations

the Zero-Augmented Generalized F distribution of Hautsch et al. (2013) is

employed. We show that the H-MIDAS-CMEM model is able to capture

the salient empirical features of high-frequency volumes both for liquid

and illiquid stocks, outperforming several competitor in minimizing some

common loss functions.

Finally, Appendix A illustrates the procedure used for the cleaning of

the tick-by-tick dataset from which the time series used in the empirical
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sections of Chapters 2 to 4 have been extracted. High-frequency data

contain detailed information about financial market activity by considering

tick-by-tick transactions. However, it is well known that high-frequency

datasets are affected by bad observations due to problems arising from

human errors, which can be unintentionally such as typing errors or

intentionally for example producing dummy ticks for technical testing,

and from computer errors caused by technical failures. Furthermore,

the structure of the data strictly depends on the trading rules, trading

forms and procedures employed by institution to produce and collect

information. Further issues are related to the stochastic nature of financial

transactions, since tick-by-tick data are irregularly spaced in time and

changes in transaction price are discrete, because institutional settings

allow prices to be only multiples of a tick. These data problems must be

taken into account to avoid misleading results in subsequent statistical

analysis, therefore cleaning high-frequency data becomes a necessary

preliminary step. Our working dataset relies on transaction data of the

German stock market indices DAX, TecDAX and MDAX, covering the

period from January 2002 to December 2012. After highlighting the main

features of high-frequency data and showing different types and sources

of errors which produce bad ticks, we discuss on the most commonly used

filtering approaches and perform some preliminary dataset manipulations

before implementing the Brownlees and Gallo (2006) outliers detection

procedure. Finally, to get regularly spaced time series, interpolation

methods have been used to transform data from inhomogeneous to

homogeneous time series.
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Chapter 2

Time Varying Heteroskedastic

Realized GARCH models for

tracking measurement error

bias in volatility forecasting

2.1 Aim and motivation

In the econometric literature it is widely acknowledged that the use of

intra-daily information, in the form of realized volatility measures (Hansen

and Lunde, 2011), can be beneficial for forecasting financial volatility on a

daily scale. This is typically done by taking two different approaches.

First, dynamic models can be directly fitted to time series of realized

measures. Examples of application of this approach are given by

Heterogeneous AutoRegressive (HAR) (Corsi, 2009) and Multiplicative

Error Models (MEM) (Engle, 2002; Engle and Gallo, 2006)1. One drawback

of this approach is that the estimate is given by the expected level of the

realized measure rather than by the conditional variance of returns. As it

1A more detailed discussion of MEM and HAR models will be given in Chapter 4.
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will be made clear in the next section, realized measures are designed to

consistently estimate the integrated variance that, under general regularity

conditions, can be interpreted as an unbiased estimator of the conditional

variance of returns, but will not be equal to it. Two main sources of bias

can however arise as a consequence of microstructure noise and jumps.

In practical applications an additional major source of discrepancy is due

to the fact that realized measures are usually built not taking into account

the contribution of overnight volatility which is indeed a relevant part

of the actual conditional variance of interest for risk managers and other

professionals.

The second approach makes use of GARCH type models driven by realized

volatility measures. The main idea is to replace a noisy volatility proxy, the

squared daily returns, with a more efficient one given by an appropriately

chosen realized measures. Differently from the previous approach, in

this case both low frequency, daily returns, and high frequency, realized

measures, information is used for model building. Examples of models

falling within this class are given by the HEAVY model of Shephard

and Sheppard (2010) and the Realized GARCH model of Hansen et al.

(2012). These two models are closely related but, nevertheless, they are

characterised by some distinctive features. HEAVY models are designed

for the generation of multi-step ahead forecasts which is guaranteed by the

inclusion of a dynamic updating equation for the conditional expectation

of the chosen realized measure. On the other hand, Realized GARCH

models include a measurement equation which allows to gain, in a fully

data driven fashion, deeper insight on the statistical properties of the

realized measure for the empirical problem of interest.

A complication arising with both approaches is due to the fact that realized

measures are noisy estimates of the underlying integrated variance,



2.1. Aim and motivation 15

generating a classical errors-in-variables problem. This typically leads to

the rise of what is usually indicated as attenuation bias with the realized

measure being less persistent than the latent integrated variance. Although

it is evident that correcting for the attenuation bias can potentially lead to

improved volatility forecasts, this issue has not received much attention

in the literature. Recently, Bollerslev et al. (2016) have found that, in a

HAR model, allowing the volatility persistence to depend on the estimated

degree of measurement error allows to remarkably improve the model’s

predictive performance. Along the same track, Shephard and Xiu (2016)

find evidence that the magnitude of the response coefficients associated

with different realized volatility measures in a GARCH-X is related to

the quality of the measure itself. Finally, Hansen and Huang (2016)

observe that the response of the current conditional variance to past

unexpected volatility shocks is negatively correlated with the accuracy

of the associated realized volatility measure.

In this chapter, exploiting the flexibility of the Realized GARCH

framework, we develop a novel modelling approach that allows to correct

the attenuation bias effect in a natural and fully data driven way. To

this purpose, we extend the standard Realized GARCH in three different

directions. First, differently from Hansen et al. (2012) we allow the

variability of the measurement error to be time-varying as a function of

an estimator of the integrated quarticity of intra-daily returns. Second, we

allow the volatility dynamics to depend on the accuracy of the realized

measure. Namely, we allow the response coefficient of the lagged realized

volatility to depend on a measure of its accuracy, given by the estimated

variance of the volatility measurement error, such in a way that more

weight is given to lagged volatilities when they are more accurately

measured. Finally, we further extend the proposed modelling approach

to account for the effect of jumps. This is done by introducing in the
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measurement equation an additional component aimed at quantify the

bias due to the effect of jumps. This allows to separate the measurement

error due to microstructure noise and discretization from the impact of

jumps. It can be shown that the proposed model can be represented as

a time-varying parameter Realized GARCH, where the dynamics of the

conditional variance are driven by a jumps-free volatility measure. A

notable feature of the proposed model is that the jump correction occurs

only on days in which jumps are most likely to happen, while resorting to

the use of more efficient standard measures, such as realized variances and

kernels, in jumps free periods.

The chapter is organized as follows. In Section 2.2 we review the

basic theoretical framework behind the computation of realized volatility

measure, while in Section 2.3 we discuss the Realized GARCH model

of Hansen et al. (2012). Section 2.4 presents a time-varying parameter

heteroskedastic Realized GARCH model that allows to account for

attenuation bias effects. We first consider a jumps-free setting and later

move to discuss a modification of the proposed model aimed at explicitly

taking into account the impact of jumps. QML estimation of the proposed

models is discussed in Section 2.5, while Sections 2.6 to 2.8 are dedicated to

the empirical analysis. Section 2.6 presents the main features of the dataset

used for the analysis. Section 2.7 focuses on the in-sample performance of

the proposed models compared to the standard Realized GARCH model

taken as a benchmark, whereas the out-of-sample forecasting performance

is analysed in Section 2.8. Section 2.9 concludes.

2.2 Realized measures: a short review

In recent years, the availability of high-frequency financial market data has

enabled researchers to build reliable measures of the latent daily volatility
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based on the use of intra-daily returns. In the econometric and financial

literature, these measures are widely known as realized volatility measures.

In order to properly introduce the theoretical background supporting the

use of realized volatility measures, we need to focus on the dynamic

specification of the price process in continuous time. Formally, let the

logarithmic price pt of a financial asset, to be determined by the stochastic

differential process

dpt = µtdt+ σtdWt + dJt 0 ≤ t ≤ T (2.1)

where µt and σt are the drift and the instantaneous volatility processes,

respectively, while Wt is a standard Brownian motion, with σt assumed

to be independent of Wt and Jt is a finite activity jump process. Under

assumption of jump absence (dJt = 0) and a frictionless market the

logarithmic price pt follows a semi-martingale process.

In this case, it can be easily shown that the Quadratic Variation (QV ) of

log-returns rt = pt − pt−1 coincides with the Integrated Variance (IV )

given by

IVt =

∫ t

t−1
σ2
sds. (2.2)

In absence of jumps, microstructure noise and measurement error,

Barndorff-Nielsen and Shephard (2002) show that the IV can be

consistently estimated by the Realized Volatility (RV )

RVt =
M∑
i=1

r2
t,i (2.3)

where

rt,i = pt−1+i∆ − pt−1+(i−1)∆
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is the i-th ∆-period intraday return and M = 1/∆. It is worth noting that,

although IV and conditional variance of returns do not coincide, there

is a precise relationship between these two quantities. Under standard

integrability conditions (Andersen et al., 2001) it can be shown that

E(IVt|Ft−1) = var(rt|Ft−1),

whereFt−1 denotes the information set available up to time (t−1). In other

words, the optimal forecast of the IV can be interpreted as the conditional

variance of returns and, as a consequence, the difference between these

two quantities is given by a zero mean error.

Barndorff-Nielsen and Shephard (2002) show that the RV consistently

estimates the true latent volatility when ∆ −→ 0 but, in practice, due

to data limitations, the following hold

RVt = IVt + εt (2.4)

and

εt ∼ N(0, 2∆IQt) (2.5)

where IQt =
∫ t
t−1 σ

4
sds is the Integrated Quarticity (IQ) which in turn can

be consistently estimated as

RQt =
M

3

M∑
i=1

r4
t,i. (2.6)

On the other hand, if jumps are present, the QV will differ from the IV of

returns with the difference between the two quantities being given by the

cumulated squared jumps. Namely, let

dJt = ktdqt
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where kt = pt − pt− is the size of the jump in the logarithmic price pt and

qt is a counting process with possibly time-varying intensity λt such that

P (dqt = 1) = λtdt.

Then, under the assumptions in Andersen et al. (2007), we will have that

RVt →
p
QV = IV +

∑
t−1≤s≤t

k2(s).

Hence the RV estimator will be consistent for the QV , but not for the IV

of the process. An alternative is to use jump-robust estimators, such as the

Bipower and Tripower Variation (Barndorff-Nielsen and Shephard, 2004b),

minRV or medRV (Andersen et al., 2012), that will be consistent for IV

even in the presence of jumps. In the empirical applications carried out in

this work, among the different proposals arisen in the literature, we will

focus on the medRV estimator. The reasons for our choice are mainly of

a theoretical nature. Specifically, Andersen et al. (2012) show that in the

jump-free case “the medRV estimator has better theoretical efficiency properties

than the tripower variation measure and displays better finite-sample robustness

to both jumps and the occurrence of “zero” returns in the sample”. In addition,

it is worth remarking that, unlike the bipower variation measure, for the

medRV estimator an asymptotic limit theory in the presence of jumps is

available.

The medRV estimator proposed by Andersen et al. (2012) is given by

medRVt =
π

6− 4
√

3π

(
M

M − 2

)M−1∑
i=2

med (|rt,i−1|, |rt,i|, |rt,i+1|)2 . (2.7)

Nevertheless it is worth remarking that, in the jumps free case, the above

discussed jump robust estimators can be shown to be substantially less
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efficient than the simple RV estimator. Namely, the Bipower and Tripower

Variation, the medRV and minRV are found to be asymptotically normal

with their asymptotic variance proportional (up to different scale factors)

to the integrated quarticity (Andersen et al., 2012). Furthemore, in presence

of jumps, this will be not consistently estimated by the RQ estimator,

but some alternative jumps robust estimator will be needed. Among

the several proposals presented in the literature, for the same reasons

discussed for the jump-robust estimation of the IV , in the empirical section

of this work we will focus on the medRQ estimator proposed by Andersen

et al. (2012)

medRQt =
3πM

9π + 72− 52
√

3

(
M

M − 2

)M−1∑
i=2

med (|rt,i−1|, |rt,i|, |rt,i+1|)4 .

(2.8)

2.3 Realized GARCH models

The Realized GARCH (RGARCH) introduced by Hansen et al. (2012)

has extended the class of GARCH models by replacing, in the volatility

dynamics, the squared returns with a much more efficient proxy such

as a realized volatility measure. The resulting model specification could

be seen as a GARCH-X model where the realized measure is used as

explanatory variable. Furthermore, the Realized GARCH “completes”

the GARCH-X by adding a measurement equation to explicitly model

the relationship between the realized measure and the model-based

conditional variance of returns.

Namely, let {rt} be a time series of stock returns and {xt} be a time series of

realized measures of volatility. The standard RGARCH model, in its linear
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formulation, is then defined by the following equations

rt = µt +
√
ht zt (2.9)

ht = ω + β ht−1 + γ xt−1 (2.10)

xt = ξ + ϕht + τ(zt) + ut (2.11)

where ht = var(rt|Ft−1) is the conditional variance of returns and Ft−1

the historical information set available until time t − 1. As the analysis

focuses on conditional variance, without loss of generality and in order to

simplify the exposition, in the reminder it is assumed that the conditional

mean µt = E(rt|Ft−1) = 0. The innovations zt and ut are assumed to

be mutually independent with zt
iid∼ (0, 1) and ut

iid∼ (0, σ2
u). The three

equations are denoted as, in order of presentation, the return equation, the

volatility equation and the measurement equation, respectively.

The measurement equation is justified by the fact that any consistent

estimator of the integrated variance can be written as the sum of the

conditional variance plus a random innovation, where the latter is

captured by τ(zt) + ut. The function τ(zt) can accommodate for leverage

effects, because it captures the dependence between returns and future

volatility. A common choice (see e.g. Hansen et al. (2012)), that has been

found to be empirically satisfactory, is to use the specification

τ(zt) = τ1 zt + τ2(z2
t − 1).

Substituting the measurement equation into the volatility equation, it can

be easily shown that the model implies an AR(1) representation for ht

ht = (ω + ξγ) + (β + ϕγ)ht−1 + γ wt−1 (2.12)
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where wt = τ(zt) + ut and E(wt) = 0. The coefficient (β + ϕγ) reflects

the persistence of volatility, whereas γ summarizes the impact of the past

realized measure on future volatility.

The general conditions required to ensure that the volatility process ht
is stationary and the unconditional variance of rt is finite and positive are

given by

ω + ξγ > 0

0 < β + ϕγ < 1.
(2.13)

If the conditions in (2.13) are fulfilled, the unconditional variance of rt,

taking expectations of both sides in equation (2.12), can be easily shown to

be equal to (ω+ξγ)/[1−(β+ϕγ)]. Finally, as for standard GARCH models,

the positivity of ht (∀t) is achieved under the general condition that ω, γ

and β are all positive.

As an alternative to the above discussed linear Realized GARCH model,

Hansen et al. (2012) consider a log-linear specification whose volatility and

measurement equations, in their simplest form, are given by

log(ht) = ω + β log(ht−1) + γ log(xt−1) (2.14)

log(xt) = ξ + ϕ log(ht) + τ(zt) + ut (2.15)

where zt
iid∼ (0, 1) and ut

iid∼ (0, σ2
u). Compared to its linear counterpart, the

log-linear specification has two main advantages. First, it is by far more

flexible since no constraints on the parameters are required in order to

ensure the positivity of the conditional variance that holds by construction.

Second, the logarithmic transformation substantially reduces, but does not

eliminate, the heteroskedasticity of the measurement equation error term.
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Just as in the linear case, stationarity conditions for this model are easily

obtained through the derivation of an analogous first order Markovian for

log(ht). For these reasons, in the remainder of the paper we will exclusively

focus our attention on the log-linear specification of the Realized GARCH

model.

2.4 Time Varying Coefficient Heteroskedastic

Realized GARCH models with dynamic

attenuation bias

In this section we propose a generalization of the basic Realized GARCH

specification that allows to account for the natural heteroskedasticity of

the measurement error ut, as well as for dynamic attenuation bias. As

previously discussed, in a jump-free world any consistent estimator of the

IV can be written as the sum of the conditional variance plus a random

innovation. Since the variance of this innovation term is function of the IQ,

it seems natural to model the variance of the noise ut in equation (2.15) as

function of the RQ. Thus, we assume that the measurement noise variance

is time-varying, i.e. ut
iid∼ (0, σ2

u,t). In order to model the time varying

variance of the measurement noise we consider the specification

σ2
u,t = exp

{
δ0 + δ1log

(√
RQt

)}
(2.16)

where the exponential formulation allows to guarantee the positivity of

the estimated variance without imposing any constraint on the value of the

parameters δ0 and δ1. We denote the resulting model as Heteroskedastic

Realized GARCH (HRGARCH). It is easy to see that the homoskedastic

Realized GARCH is nested within the class for δ1 = 0 that can be tested by

means of a simple Wald statistic.
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In order to account for dynamic attenuation effects in the volatility

persistence, in the sense of Bollerslev et al. (2016), we further extend the

basic HRGARCH specification allowing for time-varying persistence in the

volatility equation. This is achieved by letting γ, the impact coefficient of

the lagged realized measure, to depend on the time-varying variance of

the measurement noise ut. In line with Bollerslev et al. (2016), we expect

the impact of past realized measures on current volatility to be down-

weighted in periods in which the efficiency of the realized measure is low.

The resulting model is called the Time Varying Heteroskedastic Realized

GARCH (TV-HRGARCH).

Focusing on a log-linear specification, the volatility updating equation of

the TV-HRGARCH is given by

log(ht) = ω + β log(ht−1) + γt log(xt−1) (2.17)

where

γt = γ0 + γ1 σ
2
u,t−1 (2.18)

and σ2
u,t which follows the specification in (2.16). Accordingly, as its fixed

coefficients counterpart, the TV-HRGARCH can be represented in terms of

a time-varying coefficients AR(1) model for log(ht)

log(ht) = (ω + ξγt) + (β + ϕγt)log(ht−1) + γtwt−1. (2.19)

So far we have focused on a simplified setting in which we rule out

the possibility of jumps. We now move to considering a variant of

the proposed modelling approach featuring a jumps component as an

additional source of bias in the measurement equation. This is achieved
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by adding the log-ratio between RV and a realized volatility measure

robust to the jumps as an explanatory variable. A variety of realized

volatility estimators have been developed for considering jumps along

asset price time series which provide jump robustness in estimating IV .

In our empirical application, as anticipated in Section 2.2, we employ the

medRV estimator proposed by Andersen et al. (2012).

Generally, let Ct = xt/x
J
t be the ratio between a realized measure xt (such

as the realized variance or the realized kernel) and a realized measure

robust to the jumps xJt . In the limit this ratio will converge in probability

to the ratio between QV and IV . So we interpret values of Ct higher

remarkably than 1 as providing increasing evidence of jumps occurring

at time t, while the discrepancy between the two measures is expected

to disappear in absence of jumps, leading to values of Ct ≈ 1. It is

worth noting that, due to sampling variability, it is however possible

to observe, in a limited number of cases, values of Ct < 1. This is

compatible with the fact that the observed Ct is given by the combination

of a latent signal C̄t ≥ 1 and a measurement error to which we can ascribe

observed values ofCt below the unity threshold. A simple way of avoiding

observations below unity would be to truncate the distribution of Ct at this

threshold, setting all the values below the truncation point equal to 1 (see

e.g. Andersen et al. (2007)). This solution would however not guarantee

consistent filtering of the measurement error (the truncation on the left

tail is somewhat arbitrary and the right tail would be untouched) with

the potential drawback of introducing an additional source of bias in the

analysis. So, being aware that this implies the rise of an error in variables

problem and a potential attenuation bias effect and taking into account the

limited empirical incidence of values of Ct < 1, we decide to work with

the uncensored values of Ct.
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So, after adding the bias correction variable Ct as a further explanatory

variable, the modified measurement equation is given by

log(xt) = ξ + ϕlog(ht) + ηlog(Ct) + τ(zt) + u∗t (2.20)

or equivalently

log(x∗t ) = ξ + ϕlog(ht) + τ(zt) + u∗t (2.21)

where log(x∗t ) = log(xt/C
η
t ).

The specification in equation (2.21) implies that when xt = xJt the realized

measure xt corresponds to x∗t , since Ct = 1 and no bias correction will be

applied. In this way, in the jumps free case, the dynamics of the predicted

volatility are still driven by the standard RV estimator, or some noise-

robust variant such as the Realized Kernel (RK), that in this situation are

known to be much more efficient than jump robust estimators. On the

other hand, assuming η > 0 (as systematically confirmed by our empirical

results), when xt is greater than xJt , in the spirit of Barndorff-Nielsen

and Shephard (2004b) and Andersen et al. (2007), it follows that there is

evidence of an upward bias due to the presence of jumps meaning that

the realized measure xt needs to be lowered in order to be consistent for

the latent IV . This result is reached thanks to the correction variable Ct,

which, in this case, takes values higher than one and consequently makes

x∗t lower than xt.

Considering the standard Realized GARCH and the AR(1) representation

for the conditional variance, it follows that

log(ht) = (ω + ξγ) + (β + ϕγ)log(ht−1) + γ w∗t−1 (2.22)



2.4. Time Varying Heteroskedastic Realized GARCH with dynamic attenuation bias 27

where

w∗t = τ(zt) + u∗t

and

u∗t = log(x∗t )− ξ − ϕlog(ht)− τ(zt). (2.23)

By substituting equation (2.23) in (2.22), the log-conditional variance can

be alternatively written as

log(ht) = ω + β log(ht−1) + γ log(xt−1)− γη log(Ct−1) (2.24)

or equivalently

log(ht) = ω + β log(ht−1) + γ log(x∗t−1). (2.25)

In this modified framework, it then turns out that the log-conditional

variance log(ht) is driven not only by past values of the realized measure

but also, with opposite sign, by past values of the associated bias. The

additional parameter η allows to adjust the contribution of Ct−1. From a

different point of view, equation (2.21) suggests that the volatility updating

equation can be rewritten in a form which is similar to that of the standard

RGARCH model with the substantial difference that the volatility changes

are not driven by the realized measure xt−1, but by its bias-corrected

version xt−1/C
η
t−1, where the amount of correction is determined by the

estimated scaling parameter η.

This specification, of course, can be easily extended to the HRGARCH and

TV-HRGARCH models with the additional modification that, in order to

account for the presence of jumps, the RQ estimator in the specification

of σ2
u,t must be replaced by some jump-robust estimator as it will be

more extensively discussed in the empirical section. In the reminder, in
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order to distinguish models incorporating the bias correction variable Ct
in the measurement equation, these will be denoted by addition of the

superscript ∗, namely: RGARCH∗, HRGARCH∗ and TV-HRGARCH∗.

2.5 Quasi Maximum Likelihood Estimation

The model parameters can be easily estimated by standard Quasi

Maximum Likelihood (QML) techniques. Let Yt indicate any additional

explanatory variable eventually included in the measurement equation.

Following Hansen et al. (2012), the quasi log-likelihood function,

conditionally on past information Ft−1 and Yt, is given by

L(r, x;θ) =
T∑
t=1

log f(rt, xt|Ft−1, Yt)

where θ = (θh,θx,θσ)
′

with θh, θx and θσ respectively being the vectors

of parameters appearing in the volatility equation (θh), in the level of the

measurement equation (θx) and in the noise variance specification (θσ).

An attractive feature of the Realized GARCH structure is that the

conditional density f(rt, xt|Ft−1, Yt) can be easily decomposed as

f(rt, xt|Ft−1) = f(rt|Ft−1)f(xt|rt;Ft−1, Yt).

Assuming a Gaussian specification for zt and ut, such as zt
iid∼ N(0, 1) and

ut
iid∼ N(0, σ2

u), the quasi log-likelihood function is given by

L(r, x; θ) = −1

2

T∑
t=1

log(2π) + log(ht) +
r2
t

ht︸ ︷︷ ︸
`(r)

+−1

2

T∑
t=1

log(2π) + log(σ2
u) +

u2
t

σ2
u︸ ︷︷ ︸

`(x|r)

.

(2.26)
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Since the standard GARCH models do not include an equation for

xt, the overall maximized log-likelihood values is not comparable to

that returned from the estimation of standard GARCH-type models.

Nevertheless, the partial log-likelihood value of the returns component,

`(r) =
∑T

t=1 log f(rt|Ft−1), can be still meaningfully compared to the

maximized log-likelihood value achieved for a standard GARCH type

model.

2.6 The Data

In order to assess the empirical performance of the proposed models we

have carried out an application to four stocks traded on the Xetra Market

in the German Stock Exchange. This section presents the salient features

of the data that have been used in the application. In particular we

have considered the following assets: Allianz (ALV), which is a financial

services company dealing mainly with insurance and asset management;

Bayerische Motoren Werke (BMW), that is a company engaged in vehicles,

motorcycle, and engine manufacturing; Deutsche Telekom (DTE), which

is a telecommunications company and RWE (RWE), which is a German

company that provides electric utilities, such as electricity, gas, water and

heating.

The original dataset included tick-by-tick data on transactions (trades only)

taking place over the period from 02/01/2002 to 27/12/2012. The raw

data have been cleaned using the procedure described in Brownlees and

Gallo (2006) and then converted to an equally spaced series of five-minutes

log-returns. These have been aggregated on a daily basis to compute a

time series of 2791 daily open-to-close log-returns, two different realized

volatility measures which are the realized variance and the realized kernel

and one realized volatility measure robust to the jumps, that is the medRV
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estimator. To this purpose only continuous trading transactions taking

place during the regular market opening hours 9:00 am - 5:30 pm have

been considered.

Table 2.1: Summary statistics

Min. 1Qu. Med. Mean 3Qu. Max. S.dev. Skew. Kurt.

rt

ALV -0.147 -0.010 0.000 -0.001 0.008 0.135 0.021 -0.066 8.402
BMW -0.135 -0.010 0.000 0.000 0.010 0.153 0.020 -0.039 7.497
DTE -0.117 -0.008 -0.001 -0.001 0.006 0.103 0.016 -0.027 9.621
RWE -0.108 -0.009 0.000 -0.001 0.008 0.097 0.016 0.065 7.415

RVt × 100

ALV 0.002 0.011 0.020 0.049 0.046 2.318 0.097 10.055 189.059
BMW 0.003 0.015 0.026 0.043 0.048 0.969 0.058 6.380 76.847
DTE 0.002 0.008 0.014 0.030 0.028 0.903 0.054 6.797 79.710
RWE 0.003 0.011 0.018 0.031 0.033 1.010 0.043 7.476 122.506

RKt × 100

ALV 0.002 0.011 0.021 0.049 0.047 1.730 0.089 7.012 94.289
BMW 0.004 0.016 0.028 0.045 0.050 0.842 0.056 5.289 50.367
DTE 0.003 0.010 0.015 0.032 0.030 0.835 0.051 5.347 49.067
RWE 0.003 0.012 0.019 0.033 0.035 1.009 0.045 6.703 96.421

medRVt × 100

ALV 0.002 0.010 0.019 0.045 0.043 1.606 0.083 7.241 99.614
BMW 0.003 0.014 0.025 0.041 0.046 0.773 0.052 4.999 44.906
DTE 0.004 0.010 0.015 0.030 0.028 0.720 0.048 5.218 44.839
RWE 0.002 0.011 0.018 0.031 0.032 0.876 0.042 5.991 75.030

CRVt = RVt
medRVt

ALV 0.760 1.000 1.100 1.134 1.219 2.655 0.195 1.536 7.596
BMW 0.738 0.996 1.093 1.126 1.213 3.131 0.191 1.867 11.612
DTE 0.724 0.947 1.031 1.062 1.144 2.536 0.172 1.649 9.152
RWE 0.742 1.003 1.092 1.127 1.213 2.751 0.187 1.635 8.842

CRKt = RKt
medRVt

ALV 0.747 0.989 1.090 1.123 1.208 2.654 0.193 1.567 7.835
BMW 0.736 0.984 1.080 1.114 1.196 3.126 0.190 1.889 11.761
DTE 0.718 0.936 1.019 1.048 1.131 2.489 0.169 1.665 9.254
RWE 0.742 0.988 1.076 1.111 1.195 2.747 0.185 1.684 9.111

Summary statistics of daily log-returns rt, daily Realized Variance RVt∗ (∗: ×100),
daily Realized Kernel RKt∗ (∗: ×100), daily medRVt∗ (∗: ×100), bias correction variable
CRV

t for RVt and bias correction variable CRK
t for RKt . Sample period: January 2002 –

December 2012. Min.: Minimum; 1Qu.: First Quartile; Med.: Median; Mean; 3Qu.: Third
Quartile; Max.: Maximum; S.dev.: Standard deviation; Skew.: Skewness; Kurt.: Kurtosis.

Table 2.1 reports some descriptive statistics for daily log-returns (rt),

realized variance (RVt), realized kernel (RKt) and medRVt, as well as for

the bias correction variables related to RVt and RKt, denoted by CRVt and
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CRKt , respectively. For ease of presentation the values of the summary

statistics of the realized variance and realized kernel series have been

rescaled by a factor of 100.

Table 2.2: Ct distribution for RV and RK

Distribution of CRV
t Distribution of CRK

t

ALV BMW DTE RWE ALV BMW DTE RWE

0% 0.760 0.738 0.724 0.742 0.747 0.736 0.718 0.741

5% 0.894 0.893 0.845 0.895 0.887 0.883 0.836 0.883

10% 0.930 0.930 0.882 0.931 0.923 0.919 0.869 0.919

15% 0.958 0.957 0.908 0.957 0.947 0.945 0.896 0.946

20% 0.978 0.974 0.928 0.982 0.970 0.965 0.918 0.969

25% 1.000 0.996 0.947 1.003 0.989 0.984 0.936 0.988

30% 1.020 1.014 0.965 1.020 1.010 1.005 0.952 1.006

35% 1.040 1.033 0.982 1.038 1.028 1.023 0.969 1.024

40% 1.060 1.054 0.997 1.055 1.050 1.043 0.986 1.041

45% 1.083 1.074 1.015 1.074 1.072 1.061 1.003 1.061

50% 1.100 1.093 1.031 1.092 1.090 1.080 1.019 1.076

55% 1.119 1.114 1.049 1.114 1.109 1.102 1.035 1.097

60% 1.143 1.137 1.073 1.134 1.132 1.124 1.058 1.119

65% 1.168 1.159 1.093 1.158 1.156 1.146 1.079 1.141

70% 1.194 1.181 1.117 1.183 1.181 1.171 1.102 1.166

75% 1.219 1.213 1.144 1.213 1.208 1.196 1.131 1.195

80% 1.260 1.247 1.177 1.246 1.247 1.234 1.160 1.229

85% 1.306 1.296 1.216 1.295 1.293 1.282 1.199 1.281

90% 1.375 1.354 1.273 1.359 1.362 1.342 1.251 1.343

95% 1.492 1.475 1.363 1.477 1.472 1.463 1.347 1.453

100% 2.655 3.131 2.536 2.751 2.654 3.126 2.489 2.747

The daily returns range from -0.147 to 0.153, with a standard deviation

typically around 0.020 and a slight skewness, which is negative for ALV,

BMW and DTE, and positive for RWE. Furthermore, the high values of the

kurtosis imply that the empirical distribution of the daily returns exhibits

remarkably heavier tails than the normal distribution. The analysis of the

rescaled daily RVt reveals an average volatility between 0.030 and 0.049
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and a standard deviation ranging from 0.043 to 0.097. Finally, as expected,

all the RVt series present a very strong positive skewness. Similar

considerations also hold forRKt, even if it shows lower values of skewness

and kurtosis than RVt. The medRV shows an average volatility which is

in line with RVt and RKt, but it highlights smaller standard deviation

values. Since it is a jump-robust estimator, several peaks in volatility are

reduced, taking on lower maximum values than RVt and RKt. The bias

correction variables CRVt and CRKt show an average value slightly higher

than one and a positive skewness for each analysed stock. The minimum

value is between 0.724 and 0.760 for CRVt and between 0.718 and 0.747 for

CRKt , whereas the maximum value ranges from 2.536 to 3.131 and from

2.489 and 3.126 for CRVt and CRKt , respectively. Furthermore, looking into

more detail at the distribution of Ct (Table 2.2) it is interesting to see that

in three cases out of 4 only approximately the 5% of observations is below

0.90 (for DTE this values decreases to approximately 0.85) suggesting that

the incidence of the measurement error in the observed Ct series is rather

limited.

Figure 2.1: Time series of daily log-returns

Daily log-returns for the stocks ALV (top-left), BMW (top-right), DTE (bottom-left) and
RWE (bottom-right) for the sample period 02/01/2002 – 27/12/2012.
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Figure 2.2: Daily Realized Variance

Daily Realized Variance computed using a sampling frequency of 5 minutes. ALV (top-left),
BMW (top-right), DTE (bottom-left) and RWE (bottom-right). Sample period 02/01/2002 –
27/12/2012.

Figure 2.1 displays the daily returns for the four analysed stocks. A visual

inspection of the plots reveals three periods of high volatility that are

common to the four stocks. The first high volatility period dates back to the

confidence crisis following the burst of the dot com bubble in 2002, where

volatility was high through much of the latter part of 2002 and it did not go

down until March of 2003. Following, the period between 2003 and 2007

was marked by a protracted unusually low volatility, interrupted by the

beginning of the financial crisis in mid 2007 (mainly related to the bursting
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of the United States housing bubble), peaking in September 2008 with the

collapse of Lehman Brothers. The crisis in Europe then progressed from

the banking system to a sovereign debt crisis, with the highest turmoil level

in the late 2011, because of the critical situation of the Greek, Italian and

Spanish economies and the resulting political and monetary instability of

the Euro area. These are even more evident looking at Figure 2.2 reporting

the time plots of the daily 5-minutes Realized Variance series. To be noted

that DTE, operating in the telecommunications sector, shows the highest

value of RV during the first crisis linked to the dot-com burst, while the

same goes for ALV looking at the financial crisis of 2008, since it offers

financial services. The most recent crisis, shows similar values across the

assets with picks around 0.003 for ALV and RWE and picks close to 0.005

for BMW and DTE.

Figure 2.3: Time series of daily bias correction
variable CRVt

Daily bias correction variable Ct = RVt/medRVt for the stocks ALV (top-left), BMW (top-
right), DTE (bottom-left) and RWE (bottom-right) for the sample period 02/01/2002 –
27/12/2012.

Finally, Figure 2.3 shows the bias correction variable Ct given by the ratio

betweenRVt andmedRVt. This variable fluctuates approximately around a
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base level 1 with an evident positive skewness due to the the upward peaks

(jumps) while downward variations due to measurement noise appear to

be much less pronounced and negligible.

2.7 In-sample estimation

In this section we focus on the in-sample performance of the proposed

models. The empirical analysis is carried out considering the full available

sample and focusing on the log-linear specification. For ease of exposition,

we separately present in sections 2.7.1 and 2.7.2 the estimation results

obtained for the jump free models (RGARCH, HRGARCH and TV-

HRGARCH) and for the modified models in which the impact of jumps

is considered in the measurement equation (RGARCH∗, HRGARCH∗ and

TV-HRGARCH∗). This choice is also due to the fact that the two categories

of models are not directly comparable in terms of log-likelihood, because

of the different specification of the ut and u∗t .

2.7.1 Estimation results for RGARCH, HRGARCH and TV-
HRGARCH

In this section we report the in-sample estimation results for the

HRGARCH and TV-HRGARCH models. As a benchmark for comparison

we also consider the standard RGARCH model. The top panel in

Table 2.3 reports parameter estimates and robust standard errors for the

RGARCH, HRGARCH and TV-HRGARCH, while the second panel shows

the corresponding values of the log-likelihood L(r, x) and partial log-

likelihood `(r), together with Bayesian Information Criterion (BIC), for

the four analysed stocks.
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The use of the log-linear specification ensures that the positivity of the

conditional variance is always fulfilled even when the intercept ω is

negative. However ω is in most cases not significant, except when the

TV-HRGARCH specification is used. For this class of models the value

of ω is considerably greater than the usual intercept of the standard

Realized GARCH model. For each stock the parameter β is always slightly

higher for HRGARCH than RGARCH and TV-HRGARCH, whereas the

parameter ϕ takes values closer to one both for the standard RGARCH

and for the RGARCH models which account for heteroskedasticity in the

variance of the noise ut. These results are in line with the findings in

Hansen et al. (2012), since ϕ ' 1 suggesting that the log-transformed

realized measure xt, is roughly proportional to the conditional variance.

The parameters of the leverage function τ(z) are always significant, with

τ1 which takes on negative values, while τ2 is positive.

The empirical results also highlight that the parameter δ1 is always positive

and significant at the usual 0.05 level. This means that, as expected, RQt
positively affects the dynamics of the variance of the error term ut in the

measurement equation. Furthermore, this implies that σ2
u,t tends to take

on higher values in periods of turmoil and lower values when volatility

tends to stay low. For the standard RGARCH the constant variance σ2
u

is quite stable across assets, assuming a value between 0.142 and 0.185.

The coefficient γ, which summarizes the impact of the realized measure

on future volatility, ranges from 0.286 to 0.401 for RGARCH, while for

HRGARCH these values are slightly lower as ranging from 0.280 to 0.381

for BMW and ALV, respectively. For the TV-HRGARCH this effect is

explained, in an adaptive fashion, by the time varying γt, which is function

of the past noise variance σ2
u,t−1. Since γ1 is always positive and log(xt)

(as well as log(ht)) is negative, when the lagged variance of the error
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term of the realized measure σ2
u,t−1 is high the impact of the lagged log-

transformed realized measure log(xt−1) on log(ht) will be negative and

lower than that would have been implied by the same value of log(xt−1) in

correspondence of a lower value of σ2
u,t−1. Said differently, the impact

of xt−1 on ht will be downscaled towards zero when σ2
u,t−1 increases.

Equivalently, variations in ht (∇ht = ht−ht−1) will be negatively correlated

with the values of γt and σ2
u,t−1. These results are in line with the recent

findings of Bollerslev et al. (2016).

In terms of goodness of fit, from the second panel of Table 2.3 it clearly

emerges that the TV-HRGARCH features the lowest value of the BIC

for the four examined stocks. Looking at the value of L(r, x), the TV-

HRGARCH model gives an improvement of 59.844 for ALV, of 80.660

for BMW, of 145.655 for DTE and of 65.062 for RWE, than the standard

RGARCH2. This improvement is less pronounced if the comparison is

done between RGARCH and HRGARCH. Nevertheless, it is easy to check,

by means a simple likelihood ratio test, that both HRGARCH and TV-

HRGARCH give rise to a significant likelihood improvement over the

benchmark RGARCH. Moving to the analysis of the partial returns log-

likelihood component `(r), the differences across the analysed models are

less striking, even if, in comparison with the benchmark, both HRGARCH

and TV-HRGARCH show slightly greater values of `(r).

As a robustness check, all the models have been re-estimated using the

5-minutes Realized Kernel as a volatility proxy. The results (Table 2.4) are

very similar to those obtained using the 5-minutes Realized Variance.

2Differently from Hansen et al. (2012) we obtain positive values for the log-likelihood.
This is mainly due to the fact that they use percentage log-returns, which approximately
fall in the range (-30, 30). It follows that the conditional variances are often above 1,
returning positive log-variances that multiplied by -1 in the log-likelihood, explaining the
large negative log-likelihoods that they typically get.
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Figure 2.4: Constant versus time-varying variance of the
noise ut of the HRGARCH fitted using the 5 minute RV

The Figure shows the constant variance σ2
u (red-line) estimated with RGARCH together

with the time-varying variance σ2
u,t (black-line) estimated with HRGARCH. Both models

have been fitted taking the 5-minutes RV as volatility proxy. Sample period 02 January
2002 - 27 December 2012.

Figure 2.5: Time-varying coefficient γt given by the TV-
HRGARCH model

The Figure shows the time-varying coefficient γt = γ0 + γ1σ
2
u,t−1 for the sample period 02

January 2002 - 27 December 2012.
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Figure 2.4 compares the constant variance σ2
u estimated by RGARCH with

the time varying variance σ2
u,t given by the HRGARCH model estimated

using the 5 minute RV 3. For the four analysed stocks the trend of σ2
u,t

follows the dynamics of the realized measure, being higher in period

of storm and lower in periods of calm, while the constant variance σ2
u

estimated within the RGARCH (red line in the plot) is approximately equal

to the average level of the time-varying variance of the measurement noise.

Figure 2.5 displays the time plot of the γt coefficient for the four considered

stocks. It is evident that when the variance of the measurement error is

high, γt is high leading to a less substantial increase of ht compared to days

in which, coeteris paribus, σ2
u,t is low and the realized measure provides

a stronger more reliable signal. Furthermore, it is worth noting that the

value of the γt coefficient tends to be higher than the value of the time

invariant γ estimated within the RGARCH and HRGARCH models.

2.7.2 Estimation results for RGARCH∗, HRGARCH∗ and TV-
HRGARCH∗

The estimation results for RGARCH∗, HRGARCH∗ and TV-HRGARCH∗

are reported in Table 2.5. Since in this modified framework we are not

excluding the presence of jumps, it is required to replace in equation (2.16)

RQt with a jump-robust estimator of the IQ. In particular, for the same

reasons leading use to choose medRVt as volatility robust estimator, our

choice falls on medRQt.

For all the models the estimates of the ω parameter are in line with the

results discussed in the previous section, being not significant in most

cases. The values of the parameter β range between 0.579 and 0.720

and therefore are lower than the usual values encountered in a standard
3We do not report results for models using the RK as a volatility proxy since these are

virtually identical to those reported here for the 5 minute RV .
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GARCH(1,1) model, taking on greater values for HRGARCH∗ than

RGARCH∗ and TV-HRGARCH∗, as in Table 2.3. The use of the realized

measure x∗t makes the coefficient ϕ slightly higher for the stocks ALV,

BMW and RWE, but slightly lower for DTE according to the HRGARCH∗

and the TV-HRGARCH∗models, while for the RGARCH∗ this parameter is

lowered with the exception of RWE. The leverage function, as in Table 2.3,

shows negative values for τ1 and positive values for τ2. The coefficient η

related to the bias correction variable is always positive and statistically

significant and its values ranges from 0.278 to 0.542 for RGARCH∗, from

0.243 to 0.560 for HRGARCH∗ and from 0.309 to 0.563 for TV-HRGARCH∗.

Given that 0 < η < 1, the impact of the rescaled realized measure

log(xt/C
η
t ) is determined along the same lines as for log(xt). Therefore, the

amount of smoothing is not arbitrarily chosen, but data driven through the

estimated parameter η.

A very interesting result is that for RGARCH∗ the variance σ2
u∗ of the

measurement noise u∗t is reduced than what found for the standard

Realized GARCH model for each analysed asset, providing evidence of

an improved goodness of fit in the modified measurement equation. For

HRGARCH∗ and TV-HRGARCH∗ the parameter δ1 is always statistically

significant and positive, giving empirical confirmation to the intuition that

the variance of the measurement error is time varying and in accordance

with the asymptotic theory suggesting that this is positively related to the

integrated quarticity. The impact of the past realized measure on future

volatility is increased by the introduction of the bias correction variable

Ct, as the coefficient γ always takes on higher values confirming the idea

that accounting for jumps further reduces the attenuation bias effect on

γ. Also, within the same framework, for the TV-HRGARCH∗ model the

coefficient γ1 is positive (even if lower than the ones showed for the TV-

HRGARCH), confirming that more weight is given to the realized measure
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when it is more accurately measured. Thus, this class of models provides

stronger persistence when the measurement error is relatively low. Very

similar results are obtained when using the 5-minutes Realized Kernel as

a volatility proxy (Table 2.6). The main difference is that, in this case,

for DTE the parameter γ1, which drives the dynamics of the time-varying

persistence, is statistically not significant, returning, in this way, to the

HRGARCH∗ model which also shows the lowest BIC.

Table 2.7: In-sample partial log-likelihood comparison
using 5-min RV

ALV BMW DTE RWE
RGARCH 7605.335 7466.828 8234.436 7986.446
HRGARCH 7606.093 7468.052 8236.882 7988.292
TV-HRGARCH 7608.968 7466.639 8236.071 7990.691
RGARCH∗ 7606.606 7467.651 8235.128 7989.563
HRGARCH∗ 7606.523 7468.990 8237.538 7988.720
TV-HRGARCH∗ 7610.151 7467.012 8238.099 7988.765

Table 2.8: In-sample partial log-likelihood comparison
using 5-min RK

ALV BMW DTE RWE
RGARCH 7604.307 7467.287 8233.687 7986.291
HRGARCH 7605.255 7467.758 8236.207 7988.366
TV-HRGARCH 7607.555 7466.359 8235.456 7990.536
RGARCH∗ 7606.038 7468.509 8236.628 7989.168
HRGARCH∗ 7605.978 7468.878 8237.538 7988.760
TV-HRGARCH∗ 7609.572 7466.875 8237.725 7988.868

The second panel of Table 2.5 shows that, even in this framework, the

model with time-varying persistence provides the lowest BIC values,
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except for the stock DTE where the HRGARCH∗ is preferred. Under

this respect, we remind that, because of the different specification of the

error term, the two sets of models, including or less the bias correction

variable Ct in the measurement equation, cannot be compared in terms

of the overall log-likelihood, but only in terms partial log-likelihood.

In this regard, the results in Table 2.7 show that the introduction of

heteroskedasticity, as well as of time-varying persistence, has positive

effects. However, the best results are achieved by the models that

allow for bias effects in the measurement equation, namely HRGARCH∗

and TV-HRGARCH∗, and only in the case of RWE the TV-HRGARCH

prevails. Therefore, in general, with the exception of TV-HRGARCH for

the RWE assets, RGARCH∗, HRGARCH∗ and TV-HRGARCH∗ outperform

their counterparts in terms of partial returns log-likelihood. Again, for

completeness we also report in Table 2.8 estimation results obtained using

the Realized Kernel as a volatility proxy that, as in the previous case, are

virtually identical to those based on 5-minutes Realized Variance.

2.8 Out-of-sample Analysis

In this section the out-of-sample predictive ability of the models estimated

in sections 2.7.1 and 2.7.2 has been assessed by means of a rolling window

forecasting exercise using a window of 1500 days. The out-of sample

period goes from 02 January 2008 to the end of the sample and includes

1270 daily observations covering the credit crisis and the turbulence period

running from November 2011 to the beginning of 2012.

As in Hansen et al. (2012), the predictive log-likelihood has been used as

a first criterion for assessing the predictive accuracy of the fitted models.
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The one-day ahead predictive log-likelihood is given by

ˆ̀(r, x)t+1 = −1

2

[
log(2π) + log(ĥt+1) +

r2
t+1

ĥt+1

]
− 1

2

[
log(2π) + log(σ̂2

u) +
u2
t+1

σ̂2
u

]
.

(2.27)

Therefore, the forecast ĥt+1 is plugged into the one-step-ahead log-density,

getting the one-step-ahead predictive density estimate. Consequently, the

aggregated predictive log-likelihood is computed by summing the density

estimates for each day in the forecast period.

Table 2.9: Predictive log-likelihood and predictive partial
log-likelihood using 5-minutes RV .

ALV BMW DTE RWE

RGARCH 2568.420 2430.166 3111.784 2887.809
3334.337 3131.385 3698.522 3562.323

HRGARCH 2583.630 2451.359 3189.043 2925.647
3334.156 3132.354 3698.924 3561.528

TV-HRGARCH 2602.690 2466.983 3192.937 2932.639
3336.313 3130.976 3699.402 3565.076

RGARCH∗ 2583.520 2439.665 3150.693 2907.078
3334.529 3131.750 3698.896 3562.610

HRGARCH∗ 2599.042 2457.695 3227.635 2938.611
3334.508 3132.582 3699.068 3561.881

TV-HRGARCH∗ 2607.499 2468.806 3228.019 2940.683
3335.925 3130.976 3699.246 3564.577

The table reports the predictive log-likelihood and the predictive partial log-likelihood
in smaller font underneath. In bold the preferred model according to predictive log-
likelihood. In blue the best model in terms of predictive partial log-likelihood. Out-of-
sample period 02 January 2008 – 27 December 2012.

Table 2.9 shows the values of the predictive log-likelihood and of the

predictive partial log-likelihood, corresponding to the different models

considered in our analysis. In terms of predictive log-likelihood the
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out-of-sample performance of the models is to be evaluated separately

for RGARCH, HRGARCH and TV-HRGARCH and for RGARCH∗,

HRGARCH∗ and TV-HRGARCH∗, because of the different specification

of the error term in the measurement equation. Both in the first and

in the second class of models the ones that allow for heteroskedasticity

and time-varying persistence are the preferred models as they feature the

greatest value of the predictive log-likelihood. This result also holds for

the predictive partial log-likelihood, except for the stock BMW where the

HRGARCH∗ is the favourite model. Note that the predictive partial log-

likelihood, as its in-sample counterpart, allows to compare the predictive

ability of the whole set of models considered.

Table 2.10: Average values of QLIKE loss using 5-min RV
as volatility proxy (top) and MCS p-values (bottom). For
each stock: bold: minimum loss; red: model ∈ 75% MCS;

blue: model ∈ 90% MCS

QLIKE
ALV BMW DTE RWE

RGARCH -6.964 -6.666 -7.342 -7.254
HRGARCH -6.963 -6.665 -7.344 -7.253
TV-HRGARCH -6.967 -6.669 -7.346 -7.258
RGARCH∗ -6.964 -6.667 -7.343 -7.254
HRGARCH∗ -6.964 -6.666 -7.344 -7.254
TV-HRGARCH∗ -6.966 -6.669 -7.345 -7.257

MCS p-values
ALV BMW DTE RWE

RGARCH 0.086 0.080 0.070 0.022
HRGARCH 0.086 0.044 0.186 0.022
TV-HRGARCH 1.000 1.000 1.000 1.000
RGARCH∗ 0.086 0.393 0.098 0.026
HRGARCH∗ 0.086 0.072 0.186 0.022
TV-HRGARCH∗ 0.209 0.593 0.728 0.103
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As a further criterion for assessing and comparing the forecasting accuracy

of the fitted models, we have considered the QLIKE loss function. Our

choice is motivated by the consideration that, compared to other robust

alternatives, such as the Mean Squared Error (MSE), this loss function has

revealed to be more powerful in rejecting poorly performing predictors

(see Liu et al. (2015)). The QLIKE loss has been computed according to the

formula

QLIKE =
1

T

T∑
t=1

log(ĥt) +
RVt

ĥt
(2.28)

where the 5-minutes realized variance has been chosen as volatility proxy.

The significance of differences in the QLIKE values across different models

is tested by means of the Model Confidence Set (MCS) approach of Hansen

et al. (2011).

Looking at average values of the QLIKE loss function for each considered

model, reported in the top panel of Table 2.10, it turns out that for all the

assets the lowest value is obtained for the TV-HRGARCH model (together

with the TV-HRGARCH∗ for the stock BMW). The bottom panel of the

table displays the p-values given by the MCS employing the test statistic

Tmax, discussed in Hansen et al. (2011). In order to estimate the optimal

block-bootstrap length we use the method described in Patton et al. (2009),

with results based on 3000 bootstrap resamples.

Assessing the significance of differences across different models, it turns

out that the TV-HRGARCH is the only model always entering into the

MCS at both confidence levels considered (0.75 and 0.90) and for ALV and

RWE no other model is entering in the MCS at the 0.75 level. The standard

RGARCH never comes into the set of superior models and the HRGARCH

falls into the MCS only for the asset DTE at a confidence level of 0.90, but

it is excluded as we move to the more restrictive 0.75 level.
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Within the class of models which allow for upward and downward bias

effects in the measurement equation, the RGARCH∗ is included in the set

of superior models at the level of 0.75 for the stock BMW, whereas the

HRGARCH∗ comes into the 90% MCS only for DTE. On the other hand,

the TV-HRGARCH∗ shows better predictive ability, since it comes into the

set of superior models at a 0.90 confidence level for ALV and RWE and

at a 0.75 level for BMW and DTE. Overall, it is interesting to see, for both

predictive partial likelihood and QLIKE loss, that the models including

jump-correction register the best performance in the case of the BMW stock

which is the asset characterised by the most extreme jumps (see Table 2.1).

Table 2.11: Predictive log-likelihood and predictive partial
log-likelihood using 5-minutes RK.

ALV BMW DTE RWE

RGARCH 2564.496 2426.601 3108.492 2882.355
3333.812 3130.976 3698.528 3562.848

HRGARCH 2580.540 2448.082 3186.439 2919.863
3333.797 3132.242 3698.978 3562.009

TV-HRGARCH 2598.487 2462.938 3189.973 2925.268
3335.651 3130.853 3699.536 3565.264

RGARCH∗ 2581.083 2438.195 3148.365 2904.114
3334.374 3131.644 3699.064 3562.773

HRGARCH∗ 2597.039 2455.614 3225.735 2935.192
3334.295 3132.529 3699.092 3562.243

TV-HRGARCH∗ 2604.231 2465.788 3225.906 2936.449
3335.374 3130.951 3699.247 3564.387

The table reports the predictive log-likelihood and the predictive partial log-likelihood in
smaller font underneath using five-minutes RK as realized measure. In bold the preferred
model according to predictive log-likelihood. In blue the best model in terms of predictive
partial log-likelihood. Out-of-sample period 02 January 2008 – 27 December 2012.
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As a robustness check we have repeated the out-of-sample forecast

evaluation using the 5-minutes Realized Kernel. The results, reported in

Table 2.11 and in Table 2.12 are practically identical to those obtained using

the 5-minute realized variance, confirming the robustness of our findings.

Table 2.12: Average values of QLIKE loss using 5-min RK
as volatility proxy (top) and MCS p-values (bottom). For
each stock: bold: minimum loss; red: model ∈ 75% MCS;

blue: model ∈ 90% MCS

QLIKE
ALV BMW DTE RWE

RGARCH -6.972 -6.675 -7.359 -7.272
HRGARCH -6.972 -6.674 -7.361 -7.270
TV-HRGARCH -6.975 -6.678 -7.363 -7.274
RGARCH∗ -6.973 -6.676 -7.360 -7.271
HRGARCH∗ -6.973 -6.675 -7.362 -7.271
TV-HRGARCH∗ -6.974 -6.678 -7.363 -7.274

MCS p-values
ALV BMW DTE RWE

RGARCH 0.096 0.048 0.052 0.036
HRGARCH 0.096 0.029 0.196 0.020
TV-HRGARCH 1.000 1.000 1.000 1.000
RGARCH∗ 0.096 0.262 0.077 0.036
HRGARCH∗ 0.096 0.078 0.196 0.030
TV-HRGARCH∗ 0.123 0.438 0.734 0.126

2.9 Conclusion

The empirical results show that the introduction of heteroskedasticity in

modelling volatility has a remarkable effect on the estimated parameters
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and on the out-of sample forecasting performance of the model. In

particular, the model that allows for heteroskedasticity and time-varying

persistence, shows the lowest values of the QLIKE loss function, entering

in the MCS always with the highest p-value at the considered confidence

levels. Furthermore, this specification maximize the predictive log-

likelihood and the predictive partial log-likelihood values.

The class of models that accounts for jumps in the measurement equation

has the advantage to remarkably improve the partial log-likelihood related

to the returns in fitting models and also in terms of predictive ability they

show an improvement over the standard Realized GARCH approach.



53

Chapter 3

Mixed Frequency Realized

GARCH models

3.1 Aim and motivation

High frequency financial data are becoming increasingly available and

this has inspired researchers in developing new and more complex

econometric models making use of this information. The introduction

of ex-post volatility estimators to measure the quadratic variation of

asset prices is a prominent example in this direction. Furthermore, it is

widely accepted that incorporating intra-daily data in dynamic models

for predicting volatility allows to generate more accurate forecasts. The

estimation of volatility based on high-frequency data is not, however,

devoid of problems. These are mainly related to inhomogeneity of the

intraday returns series across the trading day, diurnal patterns and other

market microstructure frictions which largely influence the modelling of

realized volatility measures.

In absence of microstructure noise and measurement error Andersen

et al. (2003) showed, using a seminal result in semimartingale process

theory, that the Realized Variance (RV ), using all data available, yields a
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consistent estimate of volatility. This finding suggests that the RV should

be computed by using tick-by-tick data or intra-daily returns sampled at

the highest possible frequency. However, because of a host of practical

market microstructure frictions, the RV suffers from a bias problem as

the sampling frequency of the intraday returns tends to increase. Thus,

as discussed in Aït-Sahalia et al. (2005), Zhang et al. (2005), Hansen and

Lunde (2006), Bandi and Russell (2006) and Bandi and Russell (2008),

among others, there is a trade-off between bias and variance related to the

choice of the working sampling frequency. This trade-off is the reason why

realized volatility measures are often based on intraday returns sampled

at a frequency ranging from 5 to 30 minutes.

A graphical tool that helps to identify the optimal compromise between

bias and variance, is the volatility signature plot, which shows the sample

average of the RV over a long time span as a function of the sampling

frequency. In this field, several empirical applications on the use of realized

volatility have pointed out that the sampling frequencies tend to stabilize

within the 5 – 30 minutes range providing empirical justification to the

common practice of using volatility estimates based on a 5 minutes grid

(Liu et al., 2015). Nevertheless, a 5 minutes aggregation interval is in most

settings sufficient to approximately cancel out the effects of microstructure

biases, but it is usually not wide enough to filter out the impact of jumps.

Effective solutions require the use of a jump-robust estimator, such as the

medRV estimator (used in Chapter 2) or, alternatively, a lower aggregation

frequency for computing realized variance estimates. Both solutions

require a substantial efficiency loss in days where jumps are negligible

or not present at all.

The above discussion makes clear and evident the duality between

variability, maximized at high sampling frequencies, and bias due
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microstructure noise and jumps, vanishing at low frequencies. In empirical

analysis researchers are usually called to identify the sampling frequency

that allows to attain the optimal bias-variance trade-off for the data at

hand. An alternative approach would be to use an adaptive frequency

varying according to market conditions. Ideally, one would tend to use the

highest possible frequency in noise and jumps free periods, while reverting

to a lower frequency when these are more likely to take place.

This chapter enhances the theoretical discussion and the empirical analysis

performed in Chapter 2, proposing a dynamic model for forecasting daily

volatility based on the optimal combination, in an adaptive fashion, of

realized variances computed at different frequencies in order to achieve

the optimal trade-off between bias and efficiency. Namely, in our approach

future volatility forecasts are driven by the variation of a weighted average

of the involved realized measures, where the weight is time-varying on

the daily scale depending on the estimated amount of noise and jumps.

The weight dynamics are driven by an appropriately chosen state variable

whose level is expected to be related to the impact of microstructure noise

and jumps on the higher frequency measure.

Again, as in Chapter 2, the proposed model is developed building on

the Realized GARCH framework of Hansen et al. (2012). Although

in this work we focus on models including two realized variances

based on different discretization grids, the proposed approach could

be easily generalized to incorporate a higher number of frequencies.

The proposed model is called the Mixed Frequency Adaptive Realized

GARCH (abbreviated MF-ARGARCH). The model includes separate

measurement equations for each of the realized measures considered. For

the sake of parsimony, we also develop a variant of the MF-ARGARCH

characterised by a single measurement equation, called the Single equation
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MF-ARGARCH (abbreviated SMF-ARGARCH) model, in which the

dependent variable is a time varying weighted average of the raw realized

measures.

The chapter is structured as follows. Section 3.2 introduces the novel

MF-ARGARCH modelling approach while details about QML estimation

of model parameters are provided in Section 3.3. Sections 3.4 to 3.6 are

dedicated to the empirical applications. Section 3.4 describes the data

used for the analysis, while the in-sample estimation and out-of-sample

forecasting exercise are illustrated in Section 3.5 and 3.6, respectively. The

results of the out-of-sample forecasting comparison provide evidence that

mixed frequency models allow to improve over the predictive performance

of the standard single frequency Realized GARCH model. In particular, the

best results are obtained when the 5 minutes realized variance is combined

with a lower frequency estimator with a sampling interval ranging from

10 to 30 minutes. Section 3.7 concludes.

3.2 Mixed Frequency Realized GARCH models

This section presents an extension of the standard Realized GARCH model

that allows to exploit information coming from realized volatility measures

based on different sampling frequencies in order to achieve the optimal

trade-off between bias and variability and thus to improve the predictive

ability of the model.

The proposed model evolves over the standard RGARCH specification

under two different aspects. First, volatility dynamics are given by a

weighted average of the raw measures considered, where the weights

are time-varying and adaptively determined. Second, as in Hansen and

Huang (2016), the model includes a different measurement equation for
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each of the realized measures considered. Due to its inherent features,

the resulting model specification is called the Mixed Frequency Adaptive

Realized GARCH (MF-ARGARCH) model.

In particular, the MF-ARGARCH is defined by the following equations

log(ht) = ω + β log(ht−1) + γ log(x̃t−1) (3.1)

log(x̃t) = αt log
(
x

(H)
t

)
+ (1− αt) log

(
x

(L)
t

)
(3.2)

log
(
x

(j)
t

)
= ξj + ϕj log(ht) + τj(zt) + ũj,t j = H,L (3.3)

where x(H)
t and x

(L)
t denote realized measures computed at a high and a

low frequency, respectively.

Therefore, log(x̃t) is a weighted average of two (log-transformed) realized

measures based on different sampling frequencies, where the weight αt is

of the form

αt = α0 + α1Rt−1 and Rt =

√√√√RQ
(L)
t

RQ
(H)
t

. (3.4)

So, αt is given by a linear function of the ratio between the Realized

Quarticity (RQ) measures computed at time (t − 1) over the two chosen

frequencies, with

RQ
(j)
t =

M

3

M∑
i=1

r4
t,i, j = H,L

where rt,i are the intra-daily returns and M the sampling frequency.
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After some simple algebra, by replacing the measurement equation in the

GARCH equation, the log-conditional variance can be specified as

log(ht) = µ̄+ π̄log(ht−1) + w̄t−1 (3.5)

where

µ̄ = ω + γ(αt ξH + (1− αt) ξL)

π̄ = β + γ(αt ϕH + (1− αt)ϕL)

w̄t = γ(αt w̃H,t + (1− αt) w̃L,t)

and

w̃j,t = ũj,t + τj(zt), j = H,L

ũj,t = log
(
x̃

(j)
t

)
− ξj − ϕj log(ht)− τj(zt), j = H,L

where αt is of the form in (3.4).

The ratio Rt plays the role of a state variable whose level is related to the

level of bias due to noise and jumps. Although, in principle other choices

could have been considered, we decided to use the ratio of RQs for their

ability to amplify the impact of these biases.

As discussed in Barndorff-Nielsen and Shephard (2004a) and Bandi and

Russell (2008), among others, the RQ highlights the sensitivity of fourth

moment returns to outliers and market microstructure noise. They found

that these effects tend to be reduced as the returns sampling frequency

shrinks. Being the ratio between RQ computed at different frequencies,

Rt has the function of correcting for the upward and downward bias

eventually affecting the high frequency realized measures. As the
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frequencies in the numerator and in the denominator of Rt decrease, the

expected ratio tends to unity. Otherwise, its level can substantially deviate

from this value due to noise and outliers. Overall, in the ideal situation in

which the two frequencies are well separated, since RQ(H)
t will be more

sensitive to jumps and microstructure noise than RQ
(L)
t , we expect that

values of Rt < 1 will be prevalently due to both jumps and microstructure

noise, while, values ofRt > 1 will be more likely ascribed to microstructure

noise. In both cases, the observed value of Rt will be also affected by an

observation error due to sampling variability. On the other hand, when

the numerator and denominator frequencies are very close, we expect

that variations in the observed Rt will be spurious being dominated by

sampling variability. In this case, in the limit situation in which Rt = 1, ∀t,
an identification issue arises in the estimation of α0 and α1.

When α1 is not statistically significant the bias correction is not applied

and the log-transformed realized measure log(x̃t) is given by the constant

weights convex combination

log(x̃t) = α0 log
(
x

(H)
t

)
+ (1− α0) log

(
x

(L)
t

)
. (3.6)

Therefore, α0 and (1−α0) determine, respectively, the importance assigned

to x
(H)
t and x

(L)
t for the overall realized measure x̃t. For α1 = 0 and α0

equal to either 0 or 1 the standard Realized GARCH model is obtained as

a special case.

A more parsimonious version of the MF-ARGARCH model can be

obtained by collapsing the two measurement equations into one single

equation in which the dependent variable is given by the weighted average

log(x̃t). An appealing feature of this solution is that it allows to directly
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obtain insight on the statistical properties of the model based on the

realized measure x̃t, through the parameters of the dedicated measurement

equation. The resulting specification is called the Single equation MF-

ARGARCH (abbreviated SMF-ARGARCH) model and it is defined by the

following equations

log(ht) = ω + β log(ht−1) + γ log(x̃t−1) (3.7)

log(x̃t) = αt log
(
x

(H)
t

)
+ (1− αt) log

(
x

(L)
t

)
(3.8)

log(x̃t) = ξ + ϕ log(ht) + τ(zt) + ũt. (3.9)

Similarly to the standard RGARCH model, the SMF-ARGARCH can be

rewritten as a Markovian process by replacing the measurement equation

in the volatility equation

log(ht) = (ω + ξγ) + (β + ϕγ)log(ht−1) + γw̃t−1 (3.10)

where

w̃t = τ(zt) + ũt

ũt = log(x̃t)− ξ − ϕ log(ht)− τ(zt)

and log(x̃t) which follows the specification in (3.8).

As previously discussed, the main appeal of both the MF-ARGARCH

and the Single equation MF-ARGARCH is that these models are able to

incorporate information from different realized volatility measures based

on intra-daily returns observed at different frequencies, allowing to reach

a time-varying optimal bias-variance trade-off between the two measures.

This feature has two main implications. First, in an ex ante perspective,
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we expect the Mixed Frequency models to be able to generate improved

volatility forecasts since, at each time point, the forecast is based on an

adaptively optimized volatility measure. Second, ex post, the estimated

model can be used to generate optimized volatility measures to be used

for more accurate volatility estimation. In this work we mainly focus on

the first point, while leaving the second one for future research.

3.3 Quasi-Maximum Likelihood estimation procedure

In this section we discuss the quasi-maximum likelihood estimation of

the Mixed Frequency Realized GARCH models presented in the previous

section. For the sake of simplicity, we start considering the SMF-

ARGARCH model. In this case the likelihood derivation closely follows

that of the standard Realized GARCH model.

The log-likelihood function of the SMF-ARGARCH model has the

following structure

L(r, x̃;θ) =

T∑
t=1

log f(rt, x̃t|Ft−1)

where θ = (θh,θx̃)
′

with θh and θx̃ the vectors of parameters

characterising the volatility equation (θh) and the measurement equation

(θx̃), respectively.

By standard probability theory results, this can be rewritten by factorizing

the joint conditional density f(rt, x̃t|Ft−1) as

f(rt, x̃t|Ft−1) = f(rt|Ft−1)f(x̃t|rt;Ft−1).
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Finally, the quasi log-likelihood function of the SMF-ARGARCH model,

where a Gaussian specification is assumed for zt and ũt, such that zt
iid∼

N(0, 1) and ut
iid∼ N(0, σ2

ũ), is given by

L(r, x̃;θ) = −1

2

T∑
t=1

log(2π) + log(ht) +
r2
t

ht︸ ︷︷ ︸
`(r)

+−1

2

T∑
t=1

log(2π) + log(σ2
ũ) +

ũ2
t

σ2
ũ︸ ︷︷ ︸

`(x̃|r)

.

(3.11)

For the double measurement equation model, the MF-ARGARCH,

some modifications arise. Due to the presence of two measurement

equations and, hence, two measurement errors, in this case it is indeed

necessary to consider an additional term in the conditional density

f(rt, x
(H)
t , x

(L)
t |Ft−1), namely

f(rt, x
(H)
t , x

(L)
t |Ft−1) = f(rt|Ft−1)f(x

(H)
t |rt;Ft−1)f(x

(L)
t |rt;Ft−1).

As a consequence, the quasi log-likelihood function is given by

L(r, x(H), x(L);θ) =−1

2

T∑
t=1

log(2π) + log(ht) +
r2
t

ht︸ ︷︷ ︸
`(r)

+

−1

2

T∑
t=1

log(2π) + log
(
σ2
ũH,t

)
+
ũ2
H,t

σ2
ũH,t︸ ︷︷ ︸

`(r|x(H))

+

−1

2

T∑
t=1

log(2π) + log
(
σ2
ũL,t

)
+

ũ2
L,t

σ2
ũL,t︸ ︷︷ ︸

`(r|x(L))

. (3.12)

It is worth noting that the different specification of the error terms for the

RGARCH, MF-ARGARCH and SMF-ARGARCH, makes the models not
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directly comparable on the basis of the overall maximized log-likelihood

values, but they are comparable only by the partial log-likelihood values of

the returns component `(r). Under this respect, the factorizations in (3.11)

and (3.12) are particularly useful in what they can be used to compare the

simple GARCH and RGARCH models to the more sophisticated Mixed

Frequency Realized GARCH models by the partial log-likelihood value of

the returns component, `(r) =
∑T

t=1 log f(rt|Ft−1).

3.4 Data description

In order to assess the relative merits and drawbacks of the proposed

modelling approach in comparison with the standard RGARCH model

we perform an empirical application on a set of 4 different German stocks.

Namely, the variables we consider in our application are daily open-to-

close returns and daily realized variances and quarticities based on 30

seconds, 1, 5, 10, 15 and 30 minutes frequencies, while the sample period

spans a total of 2791 trading days ranging from 02/01/2002 to 27/12/2012.

Since the analysis focuses on the same stocks used for the empirical

application performed in Chapter 2, Allianz (ALV), Bayerische Motoren

Werke (BMW), Deutsche Telekom (DTE) and RWE (RWE), in order to avoid

tedious repetitions, we refer the reader to consult The Data section (2.6) of

the previous chapter to get more information on data characteristics.

In this section we focus on the features of the ratio Rt =

√
RQ

(L)
t /RQ

(H)
t .

This has been computed matching the usual 5 minutes frequency, kept

fixed, with other frequencies ranging from 30 seconds to 30 minutes. In the

following, we refer to m = minutes and s = seconds to denote the sampling

frequency of the realized volatility measures and of the realized quarticity

measures used in our analysis.
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Table 3.1: Summary statistics of the ratio
√
RQ

(L)
t /RQ

(H)
t

Min. 1Qu. Med. Mean 3Qu. Max. S.dev Skew. Kurt.

Rt =

√
RQ

(5m)
t

RQ
(30s)
t

ALV 0.027 0.496 0.624 0.713 0.789 2.941 0.687 2.235 7.395
BMW 0.080 0.469 0.607 0.698 0.778 2.474 0.687 2.078 5.899
DTE 0.070 0.339 0.438 0.523 0.566 2.265 0.540 2.254 7.198
RWE 0.039 0.455 0.574 0.664 0.723 2.772 0.656 2.278 7.610

Rt =

√
RQ

(5m)
t

RQ
(1m)
t

ALV 0.035 0.593 0.736 0.807 0.894 2.684 0.687 1.750 4.899
BMW 0.090 0.575 0.722 0.795 0.888 2.384 0.687 1.697 4.391
DTE 0.099 0.478 0.586 0.660 0.720 1.982 0.595 1.902 5.019
RWE 0.112 0.564 0.693 0.770 0.851 2.414 0.669 1.688 4.236

Rt =

√
RQ

(10m)
t

RQ
(5m)
t

ALV 0.071 0.740 0.894 0.947 1.067 1.858 0.708 1.128 2.287
BMW 0.144 0.733 0.892 0.946 1.066 1.881 0.712 1.123 2.297
DTE 0.209 0.699 0.850 0.905 1.019 1.922 0.686 1.226 2.528
RWE 0.230 0.727 0.876 0.937 1.055 1.920 0.714 1.220 2.496

Rt =

√
RQ

(15m)
t

RQ
(5m)
t

ALV 0.020 0.636 0.828 0.922 1.040 2.585 0.817 1.545 3.551
BMW 0.082 0.630 0.823 0.923 1.052 2.540 0.818 1.470 3.277
DTE 0.026 0.604 0.762 0.853 0.960 2.284 0.750 1.532 3.452
RWE 0.133 0.619 0.804 0.893 1.002 2.429 0.784 1.484 3.340

Rt =

√
RQ

(30m)
t

RQ
(5m)
t

ALV 0.015 0.517 0.718 0.888 0.996 3.004 0.937 1.802 4.349
BMW 0.086 0.508 0.719 0.911 1.018 4.274 1.006 2.165 6.970
DTE 0.032 0.469 0.657 0.803 0.894 3.850 0.864 2.227 7.732
RWE 0.043 0.481 0.684 0.856 0.948 3.187 0.921 1.901 4.932

Summary statistics of the ratio
√
RQ

(L)
t /RQ

(H)
t , where RQ(H)

t and RQ
(L)
t are realized

quarticities based on a high and a low sampling frequency, respectively. Sample period:
January 2002 – December 2012. Min.: Minimum; 1Qu.: First Quartile; Med.: Median; Mean;
3Qu.: Third Quartile; Max.: Maximum; S.dev.: Standard deviation; Skew.: Skewness; Kurt.:
Kurtosis.

The summary statistics reported in Table 3.1 highlight some empirical

regularities. In particular, the highest maximum value of Rt is always

given by the ratio between 30 minutes RQ and 5 minutes RQ, while the

lowest value is related to RQ(10m)
t /RQ

(5m)
t , for each examined stocks. This

is reasonable since the RQ(30m)
t is smoother than the RQ(10m)

t and thus the

differences with the RQ(5m)
t are more pronounced. In other words, the 30

minutes RQ is less sensitive to the shocks than the 5 and 10 minutes RQ.
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A further evidence is that Rt takes on the smallest average values for

RQ
(5m)
t / RQ

(30s)
t and the biggest ones for RQ(10m)

t /RQ
(5m)
t , ranging from

0.713 to 0.947 for ALV, from 0.698 to 0.946 for BMW, from 0.523 to 0.905

for DTE and from 0.664 to 0.937 for RWE. The RQ based on a 30 seconds

frequency is more heavily affected by jumps than the 5 minutes RQ and

consequently the ratio Rt tends to be closer to zero when the bias triggered

by jumps is heavier. On the other hand, the value of the ratio tends to move

toward unity when jumps and microstructure biases are not present or the

two measures involved in the ratio are computed at very close frequencies.

The standard deviation of the ratio Rt, for all the analysed assets, tends

to increase passing from RQ
(5m)
t /RQ

(30s)
t to RQ

(30m)
t / RQ

(5m)
t , since the

higher the difference in frequency the higher the variability.

The distribution of Rt in Table 3.2 points out that for RQ(5m)
t /RQ

(30s)
t

approximately the 5% of observations is greater than 1.1, while this value

rises to 1.2 for RQ(5m)
t /RQ

(1m)
t . In the other cases, Rt is below 1.2 in a

number of cases falling within the range 85-90%. These results seem to

suggest that the bias due to jumps widely prevails over the opposite bias

effects.

3.5 Empirical analysis

In this section the two variants of the Mixed Frequency Realized GARCH

models are fitted to the observed data, considering the full sample period

02 January 2002 – 27 December 2012. As a benchmark we also consider a

standard RGARCH model taking the 5 minutes RV as volatility measure.

This choice is due to two main reasons. First, as already mentioned, the

5 minutes frequency is a standard rule of the thumb among practitioners

and applied researchers. Second, it has been provided empirical evidence

that in most settings it ensures better performance in terms of fitting and
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forecasting than realized measures computed at different frequencies (see

e.g. Liu et al. (2015)). Along the same line, the 5 minutes RV is also

taken as basis frequency in the fitted (S)MF-ARGARCH models, but in this

case it is “melted” with realized measures which are computed at higher

frequencies such as 30 seconds and 1 minute, or at lower frequencies such

as 10, 15 and 30 minutes.

The estimation results for RGARCH and SMF-ARGARCH models are

presented together in section 3.5.1, while the results for MF-ARGARCH

models are reported in section 3.5.2. It is worth reminding that, since each

model is using different couples of realized variances, the MF-ARGARCH

and SMF-ARGARCH models are not comparable on the basis of the

maximized full log-likelihood value, even within the same category of

models.

3.5.1 Estimation results for the Single equation Mixed Frequency
Adaptive Realized GARCH models

The in-sample estimation results for the standard RGARCH and the SMF-

ARGARCH models are reported in Table 3.3, showing the parameter

estimates and robust standard errors in small font under the parameter

values, as well as the returns partial log-likelihood `(r), the full log-

likelihood L(r, x) and Bayesian Information Criterion (BIC), for the four

analysed stocks.

The superscript (5m, jk), where j = 1, 10, 15, 30 and k = m, s with m =

minutes and s = seconds, related to the SMF-ARGARCH model, denotes

the sampling frequency of the realized measures which are combined in

the measurement equation for log(x̃t). It follows that the coefficient αt,

which is a linear function of the ratio
√
RQ

(L)
t /RQ

(H)
t , is always referred to
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the realized variance computed at a 5 minutes frequency, whereas (1− αt)
provides the weight of the realized measure taking a higher or a lower

frequency within the the SMF-ARGARCH(5m,jk) model.

The log-linear specification has the advantage of giving more flexibility

to the models, since the positivity of the conditional variance is,

by construction, always fulfilled without imposing constraints on the

parameters. As a result the intercept ω takes on even negative values,

though in most cases it is not significant for all the examined assets.

The parameter γ, that explains the impact of the past realized measure

on future volatility, presents quite different values among the proposed

models, since it ranges from 0.385 to 0.476 for ALV, from 0.286 to 0.406

for BMW, from 0.313 to 0.450 for DTE and from 0.315 to 0.375 for RWE.

Interestingly, the upper limit always corresponds to models given by

the combination of the 5 minutes RV with realized measures computed

at higher frequencies. In particular, for ALV, BMW and DTE the upper

bound is provided by the SMF-ARGARCH(5m,30s), while for RWE it comes

out from the SMF-ARGARCH(5m,1m). The values of the parameter β of

the RGARCH and SMF-ARGARCH models are lower than those usually

estimated in a GARCH(1,1) model, with an average of 0.632.

Looking at the parameters that characterise the measurement equation, ξ

mainly takes negative values, but as for the intercept of the log-conditional

variance it is often not significant at the usual 5% level. The parameters of

the leverage function τ(z) are always significant, where τ1 is negative and

τ2 is positive. The coefficient ϕ is close to 1 for all the proposed models.

This suggests that the log-transformed realized measure (modelled by

the measurement equation) is approximately unbiased for the conditional

variance, confirming the findings in Hansen et al. (2012).
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Figure 3.1: Time-varying coefficient αt of
SMF-ARGARCH models

The figure shows the dynamics of the coefficient αt = α0 + α1Rt−1 which is
function of the different frequencies of the realized quarticities involved in the

ratio Rt =

√
RQ

(L)
t /RQ

(H)
t .
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However, for the SMF-ARGARCH models, ϕ takes smaller values than

the ones of the standard RGARCH according to the stocks ALV, BMW and

DTE. Exceptions are made for SMF-ARGARCH(5m,30m), for DTE, while

for the stock RWE the different specifications of the SMF-ARGARCH

always provide higher values of ϕ than RGARCH. Furthermore, the

SMF-ARGARCH(5m,30s) and the SMF-ARGARCH(5m,1m) always show the

greatest discrepancy from 1 of the ϕ coefficient. On the other hand, the

variance of the measurement error ũt of these models takes on the lowest

values for each asset, confirming that the higher the frequency, the lower

the error variability, but of course a greater bias occurs. Finally the SMF-

ARGARCH models yield values of σ2
ũ slightly lower or at most equal to

those given by the RGARCH.

Regarding the coefficients of the weighting function αt, which is always

linked to the 5 minutes realized measure, it can be noted that α0 is

significant for each specification of the SMF-ARGARCH model, except

for SMF-ARGARCH(5m,30s) and SMF-ARGARCH(5m,1m) for the stock

RWE, assuming negative values when the 5 minutes realized measure is

associated with higher frequency realized measures and positive values

when it is combined with realized measures computed according to a

lower sampling frequency. The parameter α1, which is related to the

dynamics of the ratio Rt that allows to adjust bias effects, is significant

just in a few cases and in particular for the SMF-ARGARCH(5m,30s), for the

stocks ALV and BMW, and for the SMF-ARGARCH where the 5 minuteRV

is combined with the realized measures based on 30 seconds, 1 minute, 15

and 30 minutes, for the stock DTE, while it is never significant for RWE.

Graphically, the magnitude of the weight αt is displayed in Figure 3.1,

where it can be easily seen that when α1 is not statistically significant the

variation range of αt is very small consistently with a constant weights



72 Chapter 3. Mixed Frequency Realized GARCH models

model. However, in cases in which the coefficient α1 is significant the

sign of the estimated parameter is such that, when Rt < 1, namely when

RQ
(H)
t > RQ

(L)
t , the weighting function αt is designed to balance the

realized measures in x̃t, shrinking the level of x(H)
t (which is up-weighted)

and raising the one of x(L)
t (which is down-weighted). On the other hand,

when Rt > 1, that is RQ(H)
t < RQ

(L)
t , the impact of x(L)

t (which is up-

weighted) is lowered, whereas that of x(H)
t (which is down-weighted) is

increased. Accordingly, the combination of the realized measures sampled

at different frequencies by means of the weighting function αt yields an

optimized measure x̃t in terms of trade-off between bias and variability.

In terms of goodness of fit the estimated models can only be compared

in terms of partial log-likelihood and, namely, of the returns component

reported in the `(r) column of Table 3.3. The results show that, while

SMF-ARGARCH models combining the 5 minutes frequency with a lower

frequency (10m, 15m, 30m) lead to a partial log-likelihood improvement

with respect to the basic Realized GARCH, this is not case when the basis

5 minutes frequency is combined with realized measures based on higher

frequency returns (30 seconds and 1 minute).

3.5.2 Estimation results for the Mixed Frequency Adaptive
Realized GARCH models

Table 3.4 shows the parameter estimates, with the associated robust

standard errors in small font underneath, for the MF-ARGARCH models.

Unlike the results in Table 3.3, the intercept ω of the GARCH-equation

takes mainly positive values and it is significant in half of the cases. The

parameter γ, that relates the realized measure to the future conditional

variance of returns, lies in the range between 0.326 and 0.476 for ALV,

between 0.276 and 0.383 for BMW, between 0.312 and 0.448 for DTE
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Figure 3.2: Time-varying coefficient αt of
MF-ARGARCH models

The figure shows the dynamics of the coefficient αt = α0 + α1Rt−1 which is
function of the different frequencies of the realized quarticities employed in the

ratio Rt =

√
RQ

(L)
t /RQ

(H)
t .
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and between 0.314 and 0.417 for RWE. These ranges always include the

value of γ given by the standard RGARCH model. Furthermore, as in

the previous analysis, the upper bound of the range for γ is reached by

models mixing the 5 minutes RV with realized measures computed at the

higher frequencies of 30 seconds and 1 minute, except for the stock RWE

where it corresponds to the MF-ARGARCH(5m,15m). Also, as for the SMF-

ARGARCH model, the parameter β is much smaller than the customary

values encountered in a typical GARCH(1,1) model estimated on daily

returns, since it takes an average value of 0.662.

The intercepts of the measurement equations for x
(H)
t and x

(L)
t , ξH

and ξL respectively, take on negative values (almost always significant)

except for the MF-ARGARCH(5m,1m) even if, in this case, ξH is not

statistically significant. The parameters τ1 and τ2 of the leverage function

τ(z) take negative and positive values respectively, both for the high

frequency measure and for the low frequency measure, confirming the

results displayed in Table 3.3. The coefficient ϕH is always lower than

its counterpart ϕL for the stocks ALV, BMW and DTE, while for the

asset RWE this holds only for the MF-ARGARCH(5m,30s) and the MF-

ARGARCH(5m,1m). Furthermore, ϕH and ϕL are smaller than the ϕ

coefficient given by the standard RGARCH model for all the examined

cases.

The variance of the measurement noise of the high frequency realized

measure σ2
ũH

is, as expected, always smaller than the variance related to

the realized measure based on a lower frequency σ2
ũL

. This result is in line

with what is shown in Table 3.3, since the variability of the error decreases

as the sampling frequency increases, even if the bias goes up. On the other

hand, when the sampling frequency decreases the realized measure is less

variable, but less biased. Furthermore, the variance of the measurement



76 Chapter 3. Mixed Frequency Realized GARCH models

noise associated to the 5 minutes RV provided by the MF-ARGARCH

models is perfectly in line with the values of σ2
u of the standard RGARCH

model for all the analysed stocks.

It is particularly interesting to see that, unlike the SMF-ARGARCH models

in Table 3.3, the parameter α1, which drives the impact of the upward

and downward bias in the weighting function αt, is significant for several

specifications of the MF-ARGARCH model. This is probably due to the

greater flexibility of the MF-ARGARCH model that, incorporating two

different measurement equations, allows to separately characterise the

bias and variability properties of the realized measures involved in the

model. The coefficient α0 mainly takes positive values, except for the MF-

ARGARCH(5m,10m) for BMW, even though it is not statistically significant.

Similarly, the estimated α0 is not significant at the 5% level for MF-

ARGARCH(5m,10m) and MF-ARGARCH(5m,15m) models fitted to the asset

ALV. Figure 3.2 depicts the dynamics of the time-varying coefficient αt for

the MF-ARGARCH models. The variation range showed in each plot is

larger than those displayed in Figure 3.1 for the SMF-ARGARCH models.

Similarly to what observed for the SMF-ARGARCH model, the analysis

of the returns partial log-likelihood reveals that the combination of the

5 minutes RV with a realized measure based on a lower frequency, in

general, provides a better performance than models combining the basis 5

minutes frequency with realized measures based on 30 seconds or 1 minute

returns.

An overall comparison of the analysed models in terms of partial log-

likelihood is reported in Table 3.5, where the values in boldface refer

to the preferred models. The results show that the values of the `(r)

are always maximized by the SMF-ARGARCH and the MF-ARGARCH
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models. In particular, the best performance for the stock ALV is achieved

by the SMF-ARGARCH(5m,10m), while for BMW it is given by the MF-

ARGARCH(5m,15m). For DTE and RWE the single equation model prevails

through the combinations (5m, 15m) and (5m, 30m), respectively.

Table 3.5: In-sample partial log-likelihood comparison

ALV BMW DTE RWE
RGARCH 7605.335 7466.828 8234.436 7986.446
SMF-ARGARCH(5m,30s) 7589.607 7454.505 8156.010 7970.711
SMF-ARGARCH(5m,1m) 7593.173 7461.441 8215.869 7973.697
SMF-ARGARCH(5m,10m) 7606.465 7468.550 8235.996 7990.092
SMF-ARGARCH(5m,15m) 7606.384 7467.428 8236.939 7988.912
SMF-ARGARCH(5m,30m) 7606.367 7467.200 8231.196 7990.151
MF-ARGARCH(5m,30s) 7603.889 7464.138 8228.113 7949.103
MF-ARGARCH(5m,1m) 7601.811 7456.337 8233.133 7971.570
MF-ARGARCH(5m,10m) 7605.230 7464.908 8236.338 7981.403
MF-ARGARCH(5m,15m) 7600.141 7470.578 8234.955 7978.065
MF-ARGARCH(5m,30m) 7605.056 7457.208 8234.256 7957.930

In bold the preferred model. Sample period 02 January 2002 - 27 December 2012.

3.6 Out-of-sample forecasting

The out-of-sample predictive ability of the fitted models has been assessed

by means of a rolling window forecasting exercise using a window of

1500 days, where the model parameters are recursively re-estimated every

22 days. The forecasting exercise covers the 2008 credit crisis and the

turmoil period related to the instability of the Euro area in the late 2011,

ranging from 15 November 2007 to 27 December 2012 for a total of 1298

days. The forecast accuracy has been evaluated by the predictive partial

log-likelihood and by the QLIKE loss function, while the significance of

differences in forecasting performance across different models has been
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tested by the Model Confidence Set (MCS) approach of Hansen et al. (2011)

considering the confidence levels of 75% and 90%.

3.6.1 Forecast evaluation

Following Hansen et al. (2012), for each model the out-of-sample

performance of the proposed models has been first assessed by computing

the predictive log-likelihood over the out-of-sample forecasting period

ˆ̀(r, x)t+1 = −1

2

[
log(2π) + log(ĥt+1) +

r2
t+1

ĥt+1

]
− 1

2

[
log(2π) + log(σ̂2

u) +
u2
t+1

σ̂2
u

]
(3.13)

where ˆ̀(r, x)t+1 is the one-day ahead predictive log-likelihood and ĥt+1

denotes the forecast conditional variance. These log-density estimates are

computed for each day in the forecast period and consequently summed

to get the overall predictive log-likelihood for each model. However, it is

worth reminding once more that, because of the different specification

of the error term in the measurement equation, the RGARCH, SMF-

ARGARCH and MF-ARGARCH are not comparable in terms of overall

log-likelihood, while it makes sense to compare the models looking at the

returns partial log-likelihood.

In this regard, Table 3.6 reports the values of the predictive partial log-

likelihood of the returns component for the different models considered in

our analysis. It clearly emerges that the MF-ARGARCH model always

outperforms the competitors, since it gives the greatest value of the

predictive partial log-likelihood for all the examined stocks. In particular,

for ALV the best performer is the MF-ARGARCH(5m,30m), whereas for

BMW and DTE the MF-ARGARCH(5m,15m) outperforms the other models.

Finally, for RWE the partial predictive log-likelihood is maximized by the

MF-ARGARCH(5m,10m).
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Table 3.6: Predictive partial log-likelihood

ALV BMW DTE RWE
RGARCH 3410.194 3207.235 3791.972 3642.903
SMF-ARGARCH(5m,30s) 3398.878 3191.235 3769.119 3635.468
SMF-ARGARCH(5m,1m) 3402.977 3200.283 3778.495 3632.168
SMF-ARGARCH(5m,10m) 3408.670 3208.552 3789.531 3642.539
SMF-ARGARCH(5m,15m) 3411.735 3208.200 3788.943 3644.480
SMF-ARGARCH(5m,30m) 3412.000 3208.497 3787.941 3640.509
MF-ARGARCH(5m,30s) 3405.494 3202.308 3786.371 3644.076
MF-ARGARCH(5m,1m) 3411.271 3201.788 3790.531 3647.868
MF-ARGARCH(5m,10m) 3409.017 3208.683 3794.819 3648.373
MF-ARGARCH(5m,15m) 3411.641 3212.213 3796.071 3648.090
MF-ARGARCH(5m,30m) 3413.778 3210.893 3794.701 3648.176

In bold the best model in terms of predictive partial log-likelihood of the returns
component. Out-of-sample period 15 November 2007 - 27 December 2012.

In order to assess the predictive ability of the models, we also consider

the QLIKE loss function, which is defined as

QLIKE =
1

T

T∑
t=1

log(ĥt) +
RVt

ĥt
. (3.14)

Among the class of robust loss functions for volatility forecast evaluation,

the QLIKE loss function has been found to be powerful in rejecting poorly

performing predictors (see e.g. Patton (2011) and Liu et al. (2015) among

others). The top panel of Table 3.7 shows that the QLIKE loss function,

using the 5 minutes realized variance as volatility proxy, is minimized

by the MF-ARGARCH models mixing the 5 minutes RV with realized

measures based on lower frequencies such as 10, 15 and 30 minutes.

In order to test the significance of differences in the QLIKE values across

different models the MCS approach of Hansen et al. (2011) is used. The
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bottom panel of Table 3.7 reports the MCS p-values corresponding the

Tmax statistic, based on 3000 bootstrap resamples. The optimal block-

length used for the implementation of the bootstrap algorithm has been

estimated following the procedure proposed in Patton et al. (2009).

Table 3.7: Average values of QLIKE loss using 5-min RV
as volatility proxy (top) and MCS p-values (bottom). For
each stock: bold: minimum loss; red: model ∈ 75% MCS;

blue: model ∈ 90% MCS

QLIKE
ALV BMW DTE RWE

RGARCH -6.973 -6.675 -7.347 -7.259
SMF-ARGARCH(5m,30s) -6.954 -6.643 -7.269 -7.248
SMF-ARGARCH(5m,1m) -6.961 -6.662 -7.310 -7.238
SMF-ARGARCH(5m,10m) -6.972 -6.676 -7.346 -7.261
SMF-ARGARCH(5m,15m) -6.975 -6.676 -7.348 -7.264
SMF-ARGARCH(5m,30m) -6.975 -6.675 -7.352 -7.258
MF-ARGARCH(5m,30s) -6.967 -6.670 -7.331 -7.268
MF-ARGARCH(5m,1m) -6.976 -6.670 -7.343 -7.273
MF-ARGARCH(5m,10m) -6.976 -6.684 -7.366 -7.281
MF-ARGARCH(5m,15m) -6.978 -6.685 -7.360 -7.279
MF-ARGARCH(5m,30m) -6.978 -6.685 -7.366 -7.271

MCS p-values
ALV BMW DTE RWE

RGARCH 0.469 0.004 0.065 0.124
SMF-ARGARCH(5m,30s) 0.039 0.000 0.000 0.036
SMF-ARGARCH(5m,1m) 0.106 0.000 0.001 0.048
SMF-ARGARCH(5m,10m) 0.458 0.012 0.054 0.116
SMF-ARGARCH(5m,15m) 0.516 0.004 0.074 0.124
SMF-ARGARCH(5m,30m) 0.516 0.005 0.141 0.116
MF-ARGARCH(5m,30s) 0.178 0.000 0.004 0.124
MF-ARGARCH(5m,1m) 0.633 0.002 0.020 0.131
MF-ARGARCH(5m,10m) 0.516 0.551 0.908 1.000
MF-ARGARCH(5m,15m) 0.775 0.551 0.242 0.374
MF-ARGARCH(5m,30m) 1.000 1.000 1.000 0.131
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The results point out that the MF-ARGARCH(5m,10m) is the only model

which always falls into the MCS at the confidence level of 75%, followed

by the MF-ARGARCH models based on the frequency combinations

(5m, 15m) and (5m, 30m) entering the 75% MCS in all cases except one in

which they are still included in the more conservative 90% set. In addition,

for the BMW the only three models entering the set of superior models

are of the MF-ARGARCH type, thus confirming the good predictive

power of this class of models. Differently, the MF-ARGARCH models

combining the 5 minutes realized volatility with higher frequencies are

overall characterised by a lower predictive accuracy since they are only

included in the 90% MCS for RWE and in 75% MCS for ALV. However,

the analysis of this asset highlights a fairly similar predictive ability within

of the whole set of models considered, failing to indicate a clear winner,

even if the class of the MF-ARGARCH model (except for the (5m, 30s)

specification) shows the highest p-values.

On the other hand, the predictive performance of models including a

single measurement equation, the SMF-ARGARCH, has not been found

to be equally satisfactory. It can be noted that the SMF-ARGARCH(5m,30s)

never enters the set of the superior models and the SMF-ARGARCH(5m,1m)

enters just once at the 90% level for the stock ALV. The other specifications

within this class of models fall into the MCS at the confidence level of 0.75

for ALV and at the confidence level of 0.90 for RWE, while for the asset

DTE, only the SMF-ARGARCH(5m,30m) comes into the 90% MCS.

Finally, the standard RGARCH enters in the set of superior models just for

the stock ALV (for which almost all models show a very similar forecast

accuracy) at 75% level and for RWE at 90% level while, in the case of BMW

and DTE, it is clearly outperformed by its mixed frequency counterparts.
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3.7 Conclusion

In this paper we propose a flexible generalization of the Realized GARCH

model of Hansen et al. (2012) where the conditional variance dynamics are

driven by a weighted average of realized variances computed using intra-

daily information observed at different frequencies. The coefficients of the

weighted average are time varying and adaptively estimated in order to

guarantee, in a fully data driven fashion, an optimal bias-variance trade-

off. The proposed models can be used to generate improved conditional

variance forecasts and, in an ex-post framework, to compute an optimized

volatility measure that follows in the spirit the two time scales estimator of

Zhang et al. (2005). Investigation of the properties of this measure and an

empirical comparison with other commonly used realized measures is left

for investigation in future research activity.

The in-sample empirical analysis shows that the SMF-ARGARCH and the

MF-ARGARCH models, incorporating information from multiple realized

volatility measures computed at different frequencies, lead to substantial

improvements over the standard Realized GARCH model, in terms of a

goodness of fit, measured according to the returns partial log-likelihood.

The best results are achieved by models mixing the 5 minutes RV with

realized measures based on lower frequency information.

An out-of-sample forecasting comparison shows that, compared to the

standard Realized GARCH model, the mixed-frequency models can allow

for substantial improvements in terms of forecasting accuracy as measured

by the partial predictive log-likelihood and the QLIKE loss functions.
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Chapter 4

Heterogeneous Component

MEM models for forecasting

trading volumes

4.1 Recent developments in the analysis of high

frequency financial time series

Thanks to the rapid growth of information technology, in recent years

high frequency data analysis has been continuously gaining importance.

The availability of financial data recorded at very high frequencies

has inspired the development of new types of econometric models to

capture the specific properties of these observations. The most important

characteristics of high-frequency data are strong serial dependencies,

irregular spacing in time, price discreteness and intraday seasonal

patterns. To model the dynamic behaviour of irregularly spaced

transaction data, Engle and Russell (1998) proposed the Autoregressive

Conditional Duration (ACD) model, later generalized in Multiplicative

Error Model (MEM), by Engle (2002), as a general class of time series

models for positive-valued random variables which are decomposed into

the product of their conditional mean and a positive-valued i.i.d. error
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term with unit mean. Discussions and extensions on the properties of this

model class can be found in Chou (2005), Manganelli (2005), Cipollini et al.

(2006), Lanne (2006), Brunetti and Lildholdt (2007) and Brownlees et al.

(2011), among others.

The continuous development of new and more complex financial

instruments, has considerably increased the necessity to understand the

theoretical and empirical behaviour of non-negative valued processes,

such as number of trades and volumes, high-low range, absolute returns,

financial durations and volatility measures derived from ultra high-

frequency data. It is well established that all these variables share

the feature of clustering and high-persistence. The recurrent feature of

long-range dependence is conventionally modelled as an autoregressive

fractionally integrated moving average (ARFIMA) process as in Andersen

et al. (2003), or using regression models mixing information at different

frequencies such as the Heterogeneous AR (HAR) model of Corsi (2009).

This has been extended by Andersen et al. (2007) inserting a volatility jump

component for capturing the abrupt changes that characterise the realized

volatility and by Ghysels et al. (2006) in a MIDAS framework.

The HAR model, inspired by the Heterogeneous Market Hypothesis

of Müller et al. (1993) and the asymmetric propagation of information

between long and short horizons, is formulated as a multicomponent

volatility model with an additive hierarchical structure by specifying

daily volatility as the sum of volatility components over different time

horizons. Deo et al. (2006) discuss the specification and estimation of

stochastic volatility models with long memory. McAleer and Medeiros

(2008) extend the HAR-RV by proposing a flexible multiple regime smooth

transition model to capture non-linearities and long-range dependence in

the time series dynamics. Scharth and Medeiros (2009) in order to describe
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the dynamics of realized volatilities of several DJIA stocks consider a

regression tree model, incorporating past cumulated daily returns to

account for regime switches. Raggi and Bordignon (2012) propose a single

model which combines, both non-linearity effects, through a Markov

switching process, and high persistence, through fractionally integrated

dynamics. Groß-KlußMann and Hautsch (2013) introduce a long memory

autoregressive conditional Poisson model to forecast bid-ask spreads,

capturing salient features such as strong autocorrelation and discreteness

of observations. Recently, Gallo and Otranto (2015) have employed

a regime switching model with Markovian dynamics and a smooth

transition non-linearity approach, within the class of Multiplicative Error

Models, to capture the slow-moving long-run average level in realized

volatility series.

Another class of models has recently received increasing attention from

researchers and practitioners. This includes component models featuring

two or more components moving at different frequencies. These models

are able to parsimoniously characterise the rich dependence structure of

financial variables such as volatility and volume, including their highly

persistent dependences structures. It is worth noting that the HAR model

itself can be represented as a component model aggregating volatility

components moving at different frequencies.

Starting from the Spline-GARCH of Engle and Rangel (2008), where

returns volatility is specified to be the product of a slow-moving

component, represented by an exponential spline, and a short-run

component which follows an unit GARCH process, several contributions

have extended this idea. Brownlees and Gallo (2010) propose a dynamic

model using a long-run component, based on some linear basis expansion

of time, bounded with a penalized maximum likelihood estimation
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strategy. Engle et al. (2013) introduce a new class of models called

GARCH-MIDAS, since it is structured as a mean reverting unit daily

GARCH process and a MIDAS polynomial filter which applies to monthly,

quarterly, or biannual financial or macroeconomic variables. Amado

and Teräsvirta (2013) decompose the variance into a conditional and

an unconditional component such that the latter evolves smoothly over

time through a linear combination of logistic transition functions with

time as the transition variable. Moving to the analysis of intra-daily

data, Engle and Sokalska (2012) develop the Multiplicative Component

GARCH, decomposing the volatility of high-frequency asset returns into

product of three components, namely the conditional variance is a product

of daily, diurnal, and stochastic intraday components. Brownlees et al.

(2011) propose a component model with a dynamic specification to

capture salient features of intra-daily volumes such as high-persistence,

asymmetry and intra-daily periodicity.

4.2 A new model for forecasting high-frequency

trading volumes

This paper proposes and investigates a dynamic component model for

high-frequency trading volumes. These are typically characterised by

two prominent features: a slowly moving long-run level and a highly

persistent autocorrelation structure that has often been found to be

long memory. So, as a novel approach for modelling and forecasting

intra-daily volumes, we propose the Heterogeneous MIDAS Component

Multiplicative Error Model (H-MIDAS-CMEM), which is an extension of

the class of Multiplicative Error Models for non-negative time series by

Engle (2002) and Engle and Gallo (2006) and dynamic models with slowly

moving components in the spirit of Engle et al. (2013) and Corsi (2009).
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The empirical characteristics of intra-daily volumes led us to adopt a

model that is based on components that move at different frequencies,

since it is possible to distinguish a lower frequency component that moves

around the overall series, an intra-daily periodic component which has a

regular U-shape pattern and a distinctive intra-daily dynamic non-periodic

component. These components are differently modelled, since the periodic

component is treated employing a Fourier Flexible Form, the short-run

component follows a unit mean reverting GARCH-type process and the

long-run component is based on a MIDAS polynomial structure through

an additive cascade of linear filters adopting heterogeneous components

which can take on multiple frequencies, even different from the usual ones

applied in the HAR framework. From an economic point of view, this

cascade structure reproduces the natural heterogeneity of the different

categories of agents operating in the market at different frequencies.

This results in a variety of sources separately affecting the variation of

the average volume at different speeds. On a statistical ground, the

cascade structure has the advantage of increasing model’s flexibility since it

allows to separately parametrize the dynamic contribution of each of these

sources. Namely, we consider a linear combination of MIDAS filters of

volumes aggregated over different time intervals ranging from one hour to

one day. Doing so we also allow to account for the apparent long memory

behaviour of high-frequency volumes.

This parametrization is flexible enough to reproduce smooth changes in

the long level of volumes. Nevertheless, it fails to fully capture another

empirical regularity of high-frequency trading volumes which is the

sudden change from states of low trading intensity to states characterised

by a very high average trading intensity. To this purpose we introduce

in the trend specification a time-varying intercept modelled as a weighted

average of two different values associated to low and high trading intensity
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states, respectively. The weights of the combination can be interpreted

as related to the probability of staying in each of these states. They are

assumed to be time-varying as a logistic function of past observed state

variables.

4.3 Relations with the existing literature

Relatively to the link with previous research in this field, the H-MIDAS-

CMEM extend the logic of the Component Multiplicative Error Model

proposed by Brownlees et al. (2011), by considering a more flexible

parametrization of the long-run component. This work is also related to

the literature on algorithmic trading (see Madhavan (2002), Białkowski

et al. (2008) and Brownlees et al. (2011) among others), which is an

area of increasing importance in financial exchanges. Volumes are

a crucial ingredient for the volume-weighted average price (VWAP)

trading strategy, which is one of the most common benchmarks used

by institutional investors for judging the execution quality of individual

stocks. The VWAP of a stock over a particular time horizon (usually one

day) is simply given by the total traded value divided by the total traded

volume during that period, i.e. the price of each transaction is weighted

by the corresponding traded volume. The aim of using a VWAP trading

target is to minimize the price impact of a given order by slicing it into

smaller transaction sizes, reducing, in this way, the difference between

expected price of a trade and its actual traded price. Investors, spreading

the timing of transactions throughout the day, seek to achieve an average

execution price as close as possible to the VWAP in order to lower market

impact costs. Therefore, in this context, the key for a good strategy relies on

accurate predictions of intra-daily volumes, since prices are substantially

unpredictable.
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4.4 Empirical analysis

In order to assess the relative merits of the proposed approach we

present the results of an empirical analysis. This is carried out on high-

frequency trading volume data from January 2003 to December 2007 for

three stocks traded on the Xetra Market in the German Stock Exchange,

which are characterised by different liquidity levels according to the

number of non trading intra-daily intervals. We filter the raw data

using the procedure proposed in Brownlees and Gallo (2006), deleting

transactions that occurred outside regular trading hours from 9:00 am

to 5:30 pm. The data are aggregated by computing cumulated trading

volumes over 10-minutes intervals, resulting in 51 observations per day.

Estimation is performed by the method of maximum likelihood under

the assumption that the innovation are distributed according to a Zero-

Augmented Generalized F distribution by Hautsch et al. (2013). The

reason for this choice is twofold. First, it delivers a flexible probabilistic

model for the conditional distribution of volumes. Second, it allows to

control for the relevant proportion of zeros present in our data. We show

that the H-MIDAS-CMEM model captures the salient empirical features

of high-frequency volumes such as strong serial dependencies, clusters

of trading activity and intra-daily periodic patterns. The evaluation of

forecasting performance, provided by the Model Confidence Set (MCS)

procedure proposed by Hansen et al. (2011), shows that the H-MIDAS-

CMEM outperforms several competing models in minimizing the Slicing

Loss function developed by Brownlees et al. (2011) and the usual Mean

Squared Prediction Error, since it is the only model always included in the

set of superior models at different confidence levels.

The remainder of this chapter is organized as follows. Section 4.5 describes

the H-MIDAS-CMEM model. In Section 4.6 we present the estimation
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procedure. Section 4.7 describes the data characteristics (4.7.1) and reports

in-sample estimation results and diagnostics (4.7.2). Section 4.8 compares

the predictive performance of competing models employing the MCS

procedure and different loss functions. Section 4.9 concludes.

4.5 Model formulation

Let {xt,i} be a time series of intra-daily trading volumes. We denote days

by t ∈ {1, . . . , T}, where each day is divided into I equally spaced intervals

indexed by i ∈ {1, . . . , I}, then the total number of observations is given

by N = T × I .

The empirical regularities of high persistence and clustering of trading

activity about intra-daily volumes lead us to build a Multiplicative

Error Model consisting of multiple components that move at different

frequencies. Extending the logic of the Component Multiplicative Error

Model (CMEM) by Brownlees et al. (2011) and MIDAS regression, we

propose the H-MIDAS-CMEM which is formulated as

xt,i = τt gt,i φi εt,i. (4.1)

The multiplicative innovation term εt,i is assumed to be i.i.d., non-negative

and to have unit mean and constant variance σ2, that is

εt,i|Ft,i−1 ∼ D+(1, σ2) (4.2)

where Ft,i−1 is the sigma-field generated by the available information until

interval i − 1 of day t. Then, the expectation of xt,i, given the information

set Ft,i−1, is the product of:
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φi is an intra-daily periodic component parametrized by a Fourier Flexible

Form, which reproduces the approximately U-shaped intra-daily seasonal

pattern typically characterising trading activity;

gt,i is an intra-daily dynamic non-periodic component, based on a unit

mean reverting GARCH-type process, that reproduces autocorrelated and

persistent movements around the current long-run level;

τt is a lower frequency component given by the sum of MIDAS filters defined

at different frequencies. This component is designed to track the dynamics

of the long-run level of trading volumes. A time-varying intercept allows

to reproduce sudden switches from very low to high trading intensity

periods.

4.5.1 Intra-daily periodic component

Intra-daily volumes usually exhibit a U-shaped daily seasonal pattern, i.e.

the trading activity is higher at the beginning and at the end of the day than

around lunch time. To account for the periodic intraday factor we divide

volumes xt,i by a seasonal component φi that is specified via a Fourier

Flexible Form as proposed by Gallant (1981)

φi =

Q∑
q=0

a0,q ι
q +

P∑
p=1

[ac,p cos(2πp ι) + as,p sin(2πp ι)] (4.3)

where ι = i/I ∈ (0, 1] is a normalized intraday time trend.

Andersen et al. (2000) suggest that the Fourier terms in (4.3) do not add

any significant information forQ > 2 and P > 6, so the model precision by

using Q = 2 and P = 6 is enough to capture the behaviour of the intra-day
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periodicities1.

Assuming a multiplicative impact of intra-day periodicity effects,

diurnally adjusted trading volumes are computed as

yt,i =
xt,i
φi
. (4.4)

4.5.2 Intra-daily dynamic non-periodic component

The intra-daily non-periodic component, unlike the seasonal component,

takes a distinctive and non-regular dynamic. In order to make the

model identifiable the intra-daily dynamic component follows a unit mean

reverting GARCH-type process, namely gt,i has unconditional expectation

equal to 1.

The short-run component, in its simplest form, is formulated as

gt,i = ω∗ + α1
yt,i−1

τt
+ α0I(yt,i−1 = 0) + β1gt,i−1, (4.5)

where ω∗ = (1 − α1 − (1 − π)α0 − β1), π is the probability that yt,i > 0

and I(•) denotes an indicator function which is equal to 1 if the argument

is true and to 0 otherwise. The dummy variable in equation (4.5) allows us

to better capture the liquidity dynamics, since we have the following two

different processes:


∀ yt,i−1 > 0, gt,i = ω∗ + α1

yt,i−1

τt
+ β1gt,i−1

∀ yt,i−1 = 0, gt,i = ω∗ + α0 + β1gt,i−1 = ω∗0 + β1gt,i−1 where ω∗0 = ω∗ + α0.

1This result is confirmed by computing the Bayesian Information Criterion (BIC), not
reported in the paper, for the estimation lags.
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The additional intercept α0 aims at making the specifications of the non-

periodic short-run component more flexible since it allows to differently

characterise the dynamics of the trading volumes depending on the

presence of trading activity at time t − 1. It is immediate to see that the

hypothesis of homogeneous dynamics corresponding to α0 = 0 can be

easily tested by means a simple Wald statistic. A similar formulation is

adopted by Hautsch et al. (2013). Consequently, the task of the indicator

function I(yt,i−1 = 0) is to adjust the intra-daily dynamic non-periodic

component intensity when volume switches from trading to non-trading

intervals.

4.5.3 The low frequency component

The low frequency component is modelled as a linear combination of

MIDAS filters of past volumes aggregated at different frequencies. A

relevant issue is related to the identification of the frequency of the

information to be used by the filters, that notoriously acts a smoothing

parameter. The simplest choice would be to use information observed at a

daily scale. Then, considering volumes aggregated at daily frequency, the

trend component τt is given by

log τt = md + θd

Kd∑
k=1

ϕk(ω1,d, ω2,d)Y Dt−k (4.6)

where Y Dt =
∑I

i=1 yt,i, denotes the daily cumulative volume, whereas the

subscript d means that the parameters refer to a daily frequency. The long-

run component is considered in terms of logarithmic specification since it

does not require parameter constraints to ensure the positivity of τt.
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A common choice for determining ϕk(ω) is the Beta weighting scheme

ϕk(ω) =
(k/K)ω1−1(1− k/K)ω2−1∑K
j=1(j/K)ω1−1(1− j/K)ω2−1

(4.7)

where the weights in equation (4.7) sum up to 1. As discussed in

Ghysels et al. (2007), this Beta-specification is very flexible, being able to

accommodate increasing, decreasing or hump-shaped weighting schemes.

The Beta lag structure in (4.7) includes two parameters, but in our empirical

applications ω1 is always setted equal to 1 such that the weights are

monotonically decreasing over the lags. As in Engle and Rangel (2008),

the number of lags K is properly chosen by information criteria to avoid

overfitting problems.

An alternative specification is to use higher frequency volumes aggregated

over intervals of length equal to 1/H days

log τt/H = mh + θh

Kd∑
k=1

H∑
j=1

ϕ[j+(k−1)H](ω1,h, ω2,h)Y H
(H−j+1)
t−k (4.8)

where t/H ∈ {1, . . . ,H × T} denotes the hourly frequency, with H the

number of intervals in which the day is divided, while the subscript

h refers to the parameters corresponding to the hourly frequency. The

variable Y H(j)
t corresponds to the (j)-th hourly cumulative volume of the

day t, where

Y H
(j)
t =

I j
H∑

i=I
(j−1)

H
+1

yt,i j = 1, . . . ,H. (4.9)

Accordingly, for example, by settingH = 3 we have a long-run component
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that changes every 2:50 hours, while for H = 17 the trend moves with a 30

minutes frequency.

A more general formulation of the long-run component encompassing the

previous two is then given by

log τt = m+ θd

Kd∑
k=1

ϕk(ω1,d, ω2,d)Y Dt−k

+ θh

Kd∑
k=1

H∑
j=1

ϕ[j+(k−1)H](ω1,h, ω2,h)Y H
(H−j+1)
t−k .

(4.10)

This multiple frequencies specification appear to be preferable to the

previous single-frequency models in (4.6) and (4.8) for three different

reasons. First, the modeller is not bound to choose a specific frequency

for trend estimation, but can determine the optimal blend of low and

high frequency information in a fully data driven fashion. Second, it is

compatible with the heterogeneous market assumption of Müller et al.

(1993), enforcing the idea that market agents can be divided in a different

groups characterised by different interest and strategies. Third, as pointed

out in Corsi (2009), an additive cascade of linear filters moving at different

frequencies allows to reproduce very persistent dynamics such as those

typically observed for high-frequency trading volumes. These have indeed

been frequently found to be observationally equivalent to long-memory

processes.

Remark:

A further generalization of the proposed approach could be to augment

the model in (4.10) with volumes cumulated over intervals of length

greater than one day. For example, the trend component might follow
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a specification that moves on a monthly basis, namely

log τt×M = m+ θm

Km∑
k=1

ϕk(ω1,m, ω2,m)YM(t×M)−k

+ θw

Km∑
k=1

W∑
j=1

ϕ[j+(k−1)W ](ω1,w, ω2,w)YW
(W−j+1)
(t×M)−k

+ θd

Km∑
k=1

WD∑
j=1

ϕ[j+(k−1)(WD)](ω1,d, ω2,d)Y D
((WD)−j+1)
(t×M)−k

(4.11)

where t ×M denotes the monthly frequency and YMt×M is the monthly

volume, while YW
(j)
t×M and Y D

(j)
t×M are the (j)-th weekly and daily

volume of the month t × M respectively. This specification involves a

multiple weighting scheme, since the weight ω2,· is not the same for each

component, as it can be noted from the different subscript. Furthermore,

Km denotes the number of MIDAS lags based on the monthly frequency,

whereas the index W represents the number of weeks in a month and D

the number of trading days in a week. Therefore, the long-run component

can potentially include multiple heterogeneous components, employing

variables with a lower or a higher frequency than the ones used in equation

(4.11).

The clustering of the trading activity involves a continuous variation of the

average volume level, since periods in which the stocks are very traded are

alternated with periods in which the stocks are less traded. This is even

more evident when there is a sequence of zero observations which precedes

or follows high trading periods. In other words, the dynamics of trading

volumes are typically characterised by sudden transitions from states of

very low trading activity to state of intense trading. In order to account for

this switching-state behaviour we further extend the proposed modelling

approach introducing a time-varying intercept in the specification of the
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long-run component. This is specified as a convex combination of two

different unknown parameters m1 and m2, that is

mt = λtm1 + (1− λt)m2. (4.12)

The combination weights are time-varying, since they change as a function

of observable state-variables. The weight function λt follows a logistic

specification of the type

λt =
1

1 + exp(γ(δ − st−1))
, (γ, δ) > 0 (4.13)

where γ and δ are unknown coefficients and st−1 is an appropriately

chosen state-variable. The γ parameter determines the transition speed

from one state to the other one, since the higher γ, the faster the switching.

The constraint γ > 0 allows us to associate the parameter m1 with high

volume levels. In fact, when st−1 goes to infinity, the weight λt tends to

1, excluding the second component m2, since the corresponding weight

(1 − λt) tends to zero. Similarly, when st−1 goes to zero, λt tends to its

minimum value (1 + exp(γδ))−1.

A suitable choice for the state-variable is the daily average of intra-daily

volumes ȳt. Assuming that E(gt,i|Ft−1) is equal to its unconditional

expectation (E(gt,i|Ft−1) = 1), it represents an unbiased proxy of the daily

component τt. Since ȳt is always different from zero, as we exclude non-

trading days, we introduce the further restriction δ > 0, given that δ can be

interpreted as the threshold around which the level of the volume switches

from one regime to the other one.
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4.6 Inference

Multiplicative Error Models are usually estimated by QMLE, assuming

that the density of the innovation term follows a Gamma distribution or

one of its generalizations or special cases. However, in the case of non-

liquid assets these distributions cannot account for a point mass at zero, as

the corresponding log-likelihood functions exclude zero realizations, with

the exception of the Exponential distribution that is obtained as particular

case of the Gamma.

The specification of an Exponential distribution for εt,i is a natural

choice in a MEM context, as the Exponential distribution can be seen as

the counterpart of the Normal distribution for positive-valued random

variables. Under the assumption of correct specification of the conditional

mean function, the maximization of the Exponential quasi log-likelihood

function leads to consistent and asymptotically normal estimates of the

conditional mean parameters that can be interpreted as QML estimates.

This result can be formalized from Engle and Russell (1998) and Engle

(2002) exploiting the results of Lee and Hansen (1994) for GARCH models.

Engle and Gallo (2006) show that the consistency of the Exponential QML-

estimator can be alternatively achieved by choosing a Gamma distribution,

since the first order conditions for the conditional mean parameters are the

same for the two estimators. Consequently, the estimator of the conditional

mean parameters obtained employing the Gamma distribution is identical

to the one reached from the exponential QMLE.

Assuming a Gamma(a,b) distribution for the innovation term εt,i, it follows

that

f(εt,i|Ft,i−1) =
1

Γ(a) ba
εa−1
t,i exp

(
−εt,i

b

)
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where a, b > 0. However, to ensure that εt,i has unit mean the restriction

b = 1
a holds

f(εt,i|Ft,i−1) =
1

Γ(a)
aa εa−1

t,i exp (−a εt,i) .

Therefore, by the properties of the Gamma distribution we have

f(yt,i|Ft,i−1) =
1

Γ(a)
aa ya−1

t,i µ−at,i exp

(
−a yt,i

µt,i

)
, where µt,i = τt gt,i.

Accordingly, the process yt,i have conditional expectation E[yt,i|Ft,i−1] =

µt,i and conditional variance var[yt,i|Ft,i−1] = µ2
t,i/a.

However, if the data are affected by exact zero values, some problems

arise. The Gamma distribution cannot be defined for a < 1 when zero

observations occur and, on the other hand, the first condition order for a

is not fulfilled for a ≥ 1 for exact zero values2. Therefore, the Maximum

Likelihood estimation of a is not feasible in the case in which the data

are characterised by zero outcomes. To avoid this problem Engle (2002)

assume that εt,i|Ft,i−1 ∼ Exponential(1), which is equivalent to the

Gamma density by setting a = 1.

The continuous nature of the Exponential distribution implies that the

proportion of zeros must be trivial to avoid misspecification at the lower

boundary of the support. In presence of zero observations the Generalized

Method of Moments (GMM) can be a valid alternative estimation strategy,

as discussed in Brownlees et al. (2011), since it does not need the adoption

of a specific density function for the innovation term. Exponential-QML

and GMM provide consistent estimates of conditional mean parameters,

but these become quite inefficient in the presence of a high proportion of

zeros, in both cases. To address this problem Hautsch et al. (2013) propose

2See Cipollini et al. (2006) for further details.
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an alternative estimation strategy based on the introduction of what they

call a Zero-Augmented Generalized F (ZAF) distribution. Their results

provide evidence that in the presence of a non-trivial proportion of zero

outcomes MLE by the ZAF distribution allows to overcome the potential

inconsistency of the standard QMLE and, in any case, to obtain substantial

efficiency gains over the latter.

As proposed in Hautsch et al. (2013), a ZAF distribution is applied to a

non-negative random variable Z with a high proportion of zero outcomes,

assigning a discrete probability mass at the exact zero value as follows

π = P (Z > 0), (1− π) = P (Z = 0). (4.14)

Suppose that when Z > 0, Z follows a Generalized F distribution with

density function

g(z; ζ) =
azab−1[c+ (z/ν)a](−c−b) cc

νab B(b, c)
(4.15)

where ζ = (a, b, c, ν), a > 0, b > 0, c > 0 and ν > 0. B(·, ·) is the Beta

function with B(b, c) = [Γ(b)Γ(c)]/Γ(b+ c). The Generalized F distribution

is based on a scale parameter ν and three shape parameters a, b and c, thus

it is very flexible, nesting different error distributions, such as Weibull for

b = 1 and c → ∞, Generalized Gamma for c → ∞ and Log-Logistic for

b = 1 and c = 1.

Then the ZAF distribution is semi-continuous with the density function

fZ(z) = (1− π)η(z) + πg(z)I(z>0) (4.16)

where 0 ≤ π ≤ 1, η(z) is a point probability mass at z = 0 and I(z>0)

denotes an indicator function taking the value 1 for z > 0 and 0 else. Can
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be easily noted that the ZAF density reduces to the Generalized F for π = 1.

The moments of the ZAF distribution are given by

E[Zr] = πE[Zr|Z > 0] + (1− π)E[Zr|Z = 0]

= πνrcr/a
Γ(b+ r/a)Γ(c− r/a)

Γ(b)Γ(c)
, b < ac.

(4.17)

The MEM structure in (4.1) implies that ν = (πξ)−1 to ensure that the unit

mean assumption for εt is fulfilled and

ξ = c1/a [Γ(b+ 1/a)Γ(c− 1/a)] [Γ(b)Γ(c)]−1 . (4.18)

Considering seasonally adjusted volume yt,i, the log-likelihood function

based on the density in (4.16) is given by

L(y;ψ, π) =nz log(1− π) + nnz log π +
∑

i∈Jnnz

{
log a+ (ab− 1) log

(
yt,i
τt gt,i

)
+ c log c

−(c+ b) log

[
c+

(
πξyt,i
τt gt,i

)a]
− log(τt gt,i)− log B(b, c) + ab log(πξ)

}
(4.19)

where Jnnz denotes the set of all observations different from zero, while nz
and nnz denote the number of zero and non-zero observations respectively.

4.7 Empirical application

4.7.1 Data description

High-frequency trading volume data used in our analysis refer to the

stocks Deutsche Telekom (DTE), GEA Group (G1A) and Salzgitter (SZG)

traded on the Xetra Market in the German Stock Exchange. The raw

data have been filtered employing the procedure proposed by Brownlees
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and Gallo (2006), only considering regular trading hours from 9:00 am to

5:30 pm. Tick-by-tick data are aggregated computing intra-daily volumes

over 10-minutes intervals, which means 51 observations per day. The

empirical analysis covers the period between January 2003 and December

2007 which includes 1269 trading days, corresponding to 64719 intra-daily

observations for each stock.

In order to capture some potential trading behaviour, the data have been

seasonally adjusted using the Fourier Flexible Form described in equation

(4.3). Figure 4.1 depicts the overall volume time series (left panel) and the

seasonally adjusted trading volumes (right panel) of the three analysed

assets in our empirical application for the period that goes from January

2003 to December 2007, whereas Figure 4.2 shows the intraday seasonal

pattern estimated via the Fourier Flexible Form defined in equation (4.3).

For DTE and SZG the trading intensity is higher near the open and just

prior to the close, since time between trades, or durations, tend to be

shortest near the open and the close of the trading day than the middle

of the day, as documented in Engle and Russell (1998). The stock G1A,

unlike the others, exhibits a lower trading intensity not only around lunch

time, but also in the first part of the trading day.

Descriptive statistics of seasonally adjusted 10-minutes trading volumes

and of original 10-minutes trading volumes, whose values are reported

in parentheses, of the three analysed stocks are shown in Table 4.1. An

important feature of the data is the different number of zeros induced

by non-trading intervals, i.e. the summary statistics point out that the

proportion of zero observations are ranging from 0.03% to 15.78%, for DTE

and SZG respectively. Being a relatively calm market period, the share of

zeros is largely related to the regular trading activity which characterises

each stock, rather than to turbulence caused by external shocks.
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Figure 4.1: Original trading volume and seasonally
adjusted trading volume for the three analysed stocks

Left panel: original trading volumes for the period January 2003 – December 2007 of the
stocks DTE, G1A and SZG. Right panel: seasonally adjusted trading volumes by using the
Fourier Flexible Form specified in equation (4.3).
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Figure 4.2: Intraday seasonal pattern

Intra-daily periodic component for the trading hour 9:00 am - 5:30 pm, estimated
employing the Fourier Flexible Form specified in equation (4.3), for the stocks DTE, G1A
and SZG.

Figure 4.3: Autocorrelation Function of seasonally
adjusted volumes

Autocorrelation Function of seasonally adjusted 10-minutes trading volumes. The charts
are sorted from the most liquid to the less liquid stock.
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Table 4.1: Summary statistics for trading volumes

Ticker Zero% Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev. ρ̂(1) ρ̂(51)

DTE 0.031 0.000 0.505 0.792 1.000 1.229 20.310 0.829 0.592 0.159
(0.000) (159200) (275300) (358900) (458200) (5940000) (310842.40) (0.662) (0.318)

G1A 7.046 0.000 0.180 0.544 1.000 1.274 39.300 1.443 0.547 0.226
(0.000) (2000) (6113) (11680) (14770) (598200) (16960.19) (0.573) (0.280)

SZG 15.779 0.000 0.124 0.586 1.000 1.320 34.320 1.420 0.554 0.243
(0.000) (488) (2162) (3917) (5110) (150700) (5686.33) (0.585) (0.288)

Summary statistics of seasonally adjusted 10 minutes trading volumes and of original
trading volumes, where the latter are reported in parentheses. Sample period: January 2003
– December 2007. Zero%: Percentage of zero observations; Min.: Minimum; 1st Qu.: First
Quartile; Median; Mean; 3rd Qu.: Third Quartile; Max.: Maximum; Std. Dev.: Standard
Deviation; ρ̂(1): Autocorrelation at the lag 1; ρ̂(51): Autocorrelation at the lag 51 (1 day).

A further feature of high-frequency volumes is the strong serial

dependence. As shown in Figure 4.3, the autocorrelation function of

the three series appears to be very persistent. Also the decay pattern at

high lags seems to be much lower than what implied by the assumption

of exponential decay. Interestingly, the autocorrelations of the most

liquid stocks decay more rapidly than the autocorrelations of the less

liquid stocks, that is the latter are apparently more persistent. This

higher persistence is probably driven by the presence of long sequence

of zero values in the time series of volumes observed for less liquid

stocks. The magnitude of the autocorrelations for the different series is

slightly reduced dividing the original volumes by the intraday seasonal

component, as documented in the last two columns of Table 4.1, reporting

the value of the autocorrelation at the lag 1 and lag 51 (1 day) of seasonally

adjusted and of original trading volumes.
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Looking at Figure 4.1 we observe that high-frequency volumes, as most

financial time series, are characterised by the presence of clusters trading

activity, i.e. large (small) change in volumes following on large (small)

change in volumes. A quantitative manifestation of this stylized fact is

that the autocorrelation between xt,i and xt,i−j is greater than zero for j

which ranges from a few minutes to several weeks. This suggests that the

mean level around which the high-frequency volumes fluctuate is likely to

be not constant, but smoothly time-varying.

4.7.2 In sample estimation results and model diagnostics

In this section we compare several models to analyse the liquidity

dynamics of the stocks DTE, G1A and SZG. In particular, we investigate

the features of intra-daily volumes presenting estimation results and

diagnostics about the full sample, comparing the H-MIDAS-CMEM model

against a number of alternative specifications. For each model we chose

the best specification selecting the number of lags involved in the trend

filter and in the short-run component by BIC and changing the starting

parameters recursively in order to maximize the log-likelihood value. To

achieve the optimal long-run frequency for trend estimation, we tested a lot

of specifications by using filters corresponding to different time-horizons.

The number of filters has been selected excluding the component for which

the slope parameter θ was not significant and then the best trend structure

was chosen according to BIC.

The examined models follow the GARCH-type process specified in (4.5)

for the intra-daily dynamic component, while the long-run component is

defined according to five specifications. Of these three make use of MIDAS

filters and are given by the MIDAS-MEM in (4.6), the H-MIDAS-CMEM in

(4.10) and a variant of the latter characterised by a time-varying intercept
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(H-MIDAS-CMEM-TVI). The remaining two trend models are given by the

CMEM of Brownlees et al. (2011), with

τt = m+ α1,d ȳt−1 + β1,d τt−1

and by the HAR-MEM, with

τt = m+ β1,d ȳt−1 + β1,w ȳt−1:t−5 + β1,m ȳt−1:t−22

where ȳt = I−1
∑I

i=1 yt,i, ȳt−1:t−5 =
∑5

j=1 ȳt−j and ȳt−1:t−22 =
∑22

j=1 ȳt−j

are the daily, weekly and monthly average volumes, respectively.

Table 4.2 reports parameter estimates for the five models analysed,

distinguishing the parameters of the intra-daily component, of the trend

component and of the ZAF distribution, where all the parameters are

statistically significant at 5%.

The panel of the intra-daily component parameters shows that the

coefficient α1 takes always the lowest value for the H-MIDAS-CMEM

and in particular for the H-MIDAS-CMEM-TVI, whereas it presents more

similar values among other models. The parameter α0 is negative for the

most liquid stock DTE, and positive for the stocks G1A and SZG, which

are less liquid. In particular α0 gets the minimum value for DTE and the

maximum value for G1A and SZG, with reference to H-MIDAS-CMEM-

TVI. For each stock the intra-daily dynamic non-periodic component is

specified employing two GARCH lags related to the coefficient β1 and β2,

except for the stock SZG which needs only one lag for the H-MIDAS-

CMEM-TVI. Interestingly, the H-MIDAS-CMEM and its time-varying

specification provide the lowest values in terms of persistence, which is

given by %g =
∑p

i=1 αi+
∑q

j=1 βj , and the highest values of the intercept ω∗.
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This also holds for the HAR-MEM when it is compared to MEM, CMEM

and MIDAS-MEM.

The second panel of Table 4.2 displays the estimated values of the trend

parameters. Regarding the models with a long-run component which

follow a MIDAS specification, the number of optimal lags K is equal to

300 days for all stocks analysed3. The MIDAS-MEM model with daily

filter shows some regularity, since the slope parameter θd is always positive

and takes approximately the same intensity for the different stocks. Also

the weight ωd seems to be very similar among the assets. The models

that imply a Heterogeneous-MIDAS specification of the trend component

exhibit, for each analysed asset, slope parameters θd and θh with opposite

sign. In the H-MIDAS-CMEM the weights ωd and ωh present values not so

far from each other, while in its time-varying specification there is a greater

discrepancy, with respect to individual stocks. Regarding the coefficient

of the time-varying intercept, γ rises as the liquidity decreases. Then,

the higher the number of zeros, the higher the speed of transition from

a trading to a non-trading state.

Finally, the panel of distribution parameters points out that the coefficient

π is very close to 1 (or equal to 1 by rounding to three decimal places)

for DTE, which means that the ZAF distribution seems to be reduced

to the Generalized F. If we consider the empirical frequency π̂ =

N−1
∑N

i=1 1I(yt,i>0) as an estimate for the probability that yt,i > 0, it is equal

to 0.9997 for the most liquid stock, to 0.9295 and to 0.8422 for G1A and SGZ

respectively. Therefore, the estimated parameter π of the ZAF distribution,

is very close to the empirical frequency of non-zero outcomes4.

3The parameters ω1 of the Beta weighting scheme is always setted equal to 1 in order to
have a monotonically decreasing weights.

4For further details about the possibility of using the empirical frequency π̂ rather than
to estimate the parameter π of the ZAF distribution see Hautsch et al. (2013).
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Table 4.3: In-sample diagnostics for the fitted models
Residuals ε̂t,i Squared Residuals ε̂2t,i

Ticker Model ρ̂(1) Q1 ρ̂(51) Q51 ρ̂(1) Q1 ρ̂(51) Q51 L(y) BIC

DTE

MEM -0.003 0.550 0.025 327.342 0.002 0.123 0.000 0.431 -31198.14 62482.74
(0.458) (0.000) (0.726) (1.000)

CMEM 0.005 1.078 0.020 233.619 0.002 0.289 0.000 0.800 -30977.80 62074.49
(0.299) (0.000) (0.591) (1.000)

HAR-MEM 0.009 3.643 0.019 227.216 0.004 0.752 0.000 1.827 -30911.36 61952.41
(0.056) (0.000) (0.386) (1.000)

MIDAS-MEM 0.005 1.291 0.019 220.691 0.001 0.067 0.000 0.189 -31122.52 62363.93
(0.256) (0.000) (0.796) (1.000)

H-MIDAS-CMEM -0.008 3.421 0.024 168.488 0.002 0.240 0.000 1.328 -30456.97 61054.44
(0.064) (0.000) (0.624) (1.000)

H-MIDAS-CMEM-TVI 0.003 0.324 0.020 136.020 0.001 0.014 0.000 0.074 -30292.07 60757.08
(0.569) (0.000) (0.905) (1.000)

G1A

MEM 0.008 2.811 0.007 254.768 0.000 0.000 -0.001 404.931 -60351.41 120789.30
(0.094) (0.000) (0.984) (0.000)

CMEM 0.001 0.021 0.002 185.817 0.000 0.000 -0.002 334.736 -60159.79 120438.50
(0.885) (0.000) (0.987) (0.000)

HAR-MEM 0.006 1.650 0.001 173.427 0.001 0.028 -0.002 394.680 -60135.86 120401.40
(0.199) (0.000) (0.867) (0.000)

MIDAS-MEM 0.006 1.908 0.003 193.863 0.001 0.021 -0.001 457.766 -60161.05 120441.00
(0.167) (0.000) (0.885) (0.000)

H-MIDAS-CMEM 0.001 0.024 0.009 136.363 -0.003 0.503 0.000 297.982 -59632.03 119404.60
(0.877) (0.000) (0.478) (0.000)

H-MIDAS-CMEM-TVI 0.005 1.084 0.008 95.844 -0.005 1.406 0.001 109.699 -59478.36 119129.60
(0.298) (0.000) (0.236) (0.000)

SZG

MEM 0.004 0.976 0.018 515.965 0.002 0.131 0.004 68.463 -76550.46 153187.40
(0.323) (0.000) (0.718) (0.052)

CMEM 0.008 3.338 0.013 431.739 0.005 1.447 0.004 93.349 -76348.06 152815.00
(0.068) (0.000) (0.229) (0.000)

HAR-MEM 0.007 2.434 0.011 396.676 0.005 1.380 0.004 96.885 -76356.64 152843.00
(0.119) (0.000) (0.240) (0.000)

MIDAS-MEM 0.007 2.614 0.014 390.341 0.005 1.196 0.005 108.711 -76376.39 152871.70
(0.106) (0.000) (0.274) (0.000)

H-MIDAS-CMEM -0.004 0.708 0.016 319.100 -0.008 3.014 0.009 111.967 -76035.26 152211.00
(0.400) (0.000) (0.083) (0.000)

H-MIDAS-CMEM-TVI 0.006 1.589 0.020 189.382 -0.010 5.034 0.010 105.176 -75255.22 150672.60
(0.208) (0.000) (0.025) (0.000)

In sample diagnostics for the models analysed. ρ̂(l): Autocorrelation at the l-th lag; Ql:
Ljung-Box statistics at the l-th lag with the corresponding p-values in parenthesis; L(y):
Log-likelihood value; BIC: Bayesian Information Criterion.

Diagnostics on estimated residuals in Table 4.3 show that ρ̂(1) is statistically

equal to zero for every model examined, while the white noise hypothesis

is rejected at lag 51, though Ljung-Box statistics at lag 1-day (Q51) reveal

that H-MIDAS-CMEM models, both with fixed and time-varying intercept,

exhibit the lowest serial autocorrelation for the three analysed stocks (as

measured by the value of theQ51 statistic). However, considering the huge

number of intra-daily observations (N = 64719) it is very likely that the
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white noise hypothesis is violated, since the confidence bands of residuals

ACF are bounded approximately by ±0.009. Focusing on the squared

residuals ε̂2
t,i there are no problems arising at lags 1 and 1-day for DTE,

whereas for the less liquid stocks G1A and SGZ the white noise hypothesis

is rejected, except for the standard MEM in the analysis of SZG. However,

the use of the standard MEM shows the highest Q51 for ε̂t,i in all observed

cases.

From a comparison of the values in Table 4.3 it clearly emerges that the

log-likelihood values recorded for the H-MIDAS-CMEM and H-MIDAS-

CMEM-TVI are much larger than those of competing models. In particular,

the BIC values show that there is a big improvement coming from the

inclusion of a time-varying intercept in the H-MIDAS-CMEM, confirming

the hypothesis that having an intercept which easily adapts to changes in

the average volume level is very realistic. Component models different

from H-MIDAS-CMEM exhibit results very close to each other, while the

standard MEM seems to be the weakest competitor looking at the BIC

values, thereby enhancing the empirical evidence that the overall volume

series clusters around a lower frequency component and thus suggesting

the use of component models.

In order to investigate the different behaviour of the long-run component

provided by component models used in our empirical application,

Figure 4.4 shows the comparison among the trend estimated by CMEM

(red dashed line), HAR-MEM (black dashed line), MIDAS-MEM (yellow

dashed line), H-MIDAS-CMEM (cyan dashed line) and H-MIDAS-CMEM-

TVI (blue dashed line), for the three analysed stocks, whose observed

volumes are drawn in grey. The long-run component given by CMEM,

HAR-MEM and MIDAS-MEM display very similar dynamics to each
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Figure 4.4: Long-run component comparison

Comparison of long-run component estimated using CMEM (red), HAR-MEM (black),
MIDAS-MEM (yellow), H-MIDAS-CMEM (cyan) and H-MIDAS-CMEM-TVI (blue).
Observed intra-daily volumes are drawn in grey.
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other, but they are smoother than the trend estimated using the H-MIDAS-

CMEM and the H-MIDAS-CMEM-TVI, especially in periods characterised

by high trading intensity. In particular, the long-run component of the

H-MIDAS-CMEM takes values much higher than the competing models

when volumes shows high peaks.

4.8 Forecasting

To evaluate the predictive ability of the H-MIDAS-CMEM models we

consider a forecasting exercise for the period January-December 2007,

which includes 251 days. In order to capture the salient features of the

data, the model parameters are recursively estimated every day starting

from January 2006 with a 1-year rolling window. Therefore at each step

we predict 51 intra-daily volumes before re-estimating the models, for a

total of 251 days and 12801 intra-daily observations. The out-of-sample

performance of the models examined is evaluated by computing some

widely used forecasting loss functions. The significance of differences in

forecasting performance is assessed by the Model Confidence Set (MCS)

approach.

4.8.1 Out-of-sample evaluation

To compare the out-of-sample predictive performances we use the

following loss functions:

LMSE =

T∑
t=1

I∑
i=1

(yt,i − ŷt,i)2

LSlicing =−
T∑
t=1

I∑
i=1

(wt,i log ŵt,i)
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where LMSE is the Mean Squared prediction Error (MSE) of the volumes,

while LSlicing is the Slicing Loss function developed by Brownlees et al.

(2011) to evaluate VWAP trading strategies. The slicing weights ŵt,i are

computed under the static and dynamic VWAP replication strategies, with

weights wt,i = yt,i/
∑I

i=1 yt,i which represents the i-th intra-daily volume

proportion of day t. In the static VWAP replication strategy the weight ŵt,i
of the day t is given by the i-th one-step ahead intra-daily volume forecast

relative to the sum of all the predicted intra-daily volumes for the same

day. The dynamic strategy, instead, employs the static weights to upload

the predicted volume proportions through new intra-daily information5.

Table 4.4: Out-of-sample loss functions comparison

DTE G1A SGZ

LMSE LSLstc LSLdyn LMSE LSLstc LSLdyn LMSE LSLstc LSLdyn

MEM 0.481 3.920 2.767 1.997 3.921 2.765 0.869 3.921 2.764

CMEM 0.477 3.918 2.766 1.966 3.916 2.762 0.858 3.918 2.762

HAR-MEM 0.476 3.918 2.766 1.963 3.916 2.762 0.857 3.918 2.762

MIDAS-MEM 0.477 3.918 2.766 1.977 3.917 2.762 0.858 3.918 2.762

H-MIDAS-CMEM 0.465 3.915 2.764 1.958 3.909 2.757 0.850 3.912 2.758

H-MIDAS-CMEM-TVI 0.455 3.914 2.763 1.850 3.907 2.756 0.799 3.911 2.757

Loss functions values for Mean Squared Error (LMSE) and Slicing Loss with weights
computed under the static (LSL

stc) and dynamic (LSL
dyn) VWAP replication strategy. In bold

the best model.

The loss functions for single model shown in Table 4.4 point out that

the H-MIDAS-CMEM with fixed and mainly with time-varying intercept

returns the lowest values for both the Mean Squared prediction Error

(LMSE) and the Slicing Loss using weights computed under the static

(LSLstc ) and dynamic (LSLdyn) VWAP replication strategy. A lower value of

5See Brownlees et al. (2011) for further details.
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LMSE provides evidence of a greater ability to capture the continuous

variation from calms to storms periods, since intra-daily volume series are

highly volatile, whereas minimizing the Slicing Loss function increases the

chances to achieve the VWAP target for a given trading strategy.

4.8.2 Model comparison

The availability of several competing models to address the same problem

raises the question of selecting the ones that more effectively reach the

goal set. In most cases it is not trivial to establish which is the model that

outperforms the others, since, as observed by Hansen and Lunde (2005)

and Hansen et al. (2011), they might be statistically equivalent or because

there could not be enough information in the data that allows us to select,

doubtless, the best models. Starting from Diebold and Mariano (1995),

who provide a test for the null hypothesis that two prediction models

have equal accuracy, a lot of testing procedures have been developed to

check whether a particular benchmark is significantly outperformed by

any of the alternatives used in the forecasting comparison, see e.g. the

Reality Check for data snooping of White (2000), the Stepwise Multiple

Testing procedure of Romano and Wolf (2005), the Superior Predictive

Ability test of Hansen (2005) and the Conditional Predictive Ability test

of Giacomini and White (2006). A further generalisation is proposed

by Hansen et al. (2011) in the form of the Model Confidence Set (MCS)

procedure, which unlike the tests mentioned above does not require an a

priori benchmark, providing greater flexibility in applications without an

obvious benchmark.

Then, to evaluate the predictive power of H-MIDAS-CMEM models, we

employ the MCS procedure of Hansen et al. (2011), which relies on a

sequence of statistic tests to construct a set of superior models in terms
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of predictive ability at certain confidence level (1 − α). In particular,

given an arbitrary loss function, the MCS procedure sequentially tests the

null hypothesis that all models have equal predictive ability and if it is

accepted, the procedure stops and the set of superior models is created,

otherwise, the equal predictive ability is tested again after the elimination

of worst model.

Table 4.5 reports MCS p-values employing the Tmax statistic, discussed

in Hansen et al. (2011), at a confidence level (1 − α) of 0.75 and 0.956.

We use the block-bootstrap, estimating the optimal block length by the

method described in Patton et al. (2009), with results based on 3000

bootstrap resamples. The highlighted values confirm the strength of the

H-MIDAS-CMEM, since the model with time-varying intercept is always

included in the MCS with p-value equal to 1 referring to the set of loss

functions employed to measure the predictive ability of the models. For

what concerns the H-MIDAS-CMEM with fixed intercept, it falls in the

set of the superior models at both confidence levels considered for the

static and dynamic Slicing Loss (except for the stock G1A for the static

Slicing Loss at the 0.75 level), whereas looking at the Mean Squared

Prediction Error this holds only for the less liquid stocks G1A and SZG

at a confidence level of 95%, even if it provides p-values always higher

then the competitors. Furthermore, the specifications different from the

H-MIDAS-CMEM models never fall into the MCS according to the loss

functions and the confidence levels considered.

6We report p-values only for Tmax because the results corresponding to the TRange

statistic are practically equivalent.
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4.9 Conclusions

This paper introduces the Heterogeneous MIDAS Component MEM model

(H-MIDAS-CMEM) as a novel approach to fit and forecast high-frequency

volumes. Extending the logic of the CMEM developed in Brownlees et al.

(2011) by the use of an Heterogeneous-MIDAS component specified as

an additive cascade of linear filters which take on different frequencies,

we are able to better capture the main empirical properties of intra-daily

trading volumes, such as memory persistence and clustering of the trading

activity. An important role is also played by the dummy variable included

in the intra-daily dynamic non-periodic component, since it makes the

model more flexible and adaptive to variations in liquidity dynamics when

the volume series switches from trading to non trading intervals and vice

versa.

From the analysis of three stocks (characterised by different levels of

liquidity) traded in the German Stock Exchange it arises that the H-

MIDAS-CMEM provides a very good fit both for liquid and illiquid stocks,

estimating the model parameters by the ZAF distribution of Hautsch et al.

(2013) in order to account for zero outcomes. The out-of-sample analysis

confirms the strength of the H-MIDAS-CMEM, since it outperforms the

competitors as it is clear from the MCS procedure proposed by Hansen

et al. (2011). In fact, the H-MIDAS-CMEM is the only model always

included in the set of superior models (at different confidence levels),

minimizing the Slicing Loss with weights computed under the static and

dynamic VWAP replication strategy and providing the highest p-values

even for the MSE loss function. In addition, the inclusion of a time-varying

intercept in the long-run component greatly improves in sample results

and the predictive power of the model, making it the dominant one.



4.9. Conclusions 119

The model introduced in this paper is motivated by the empirical

properties of high-frequency volumes, but our study also contributes

to the literature dedicated to the analysis of other financial variables

which share the same features, such as durations, bid-ask spread and

volatility measures by employing a suitable distribution. A natural

extension is to construct multivariate specification which can jointly

model financial and/or economic variables as usually it occurs in a

MIDAS framework, but, in addition, using filters that move at different

frequencies. Furthermore, it is possible to differently model the function

which drives the trend of the time-varying intercept or use a more flexible

form for the seasonality component.
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Appendix A

Filtering ultra high-frequency

stock prices: an application to

German stock market data

A.1 Introduction

Thanks to the rapid growth of information technology, in recent years

it has become increasingly easy to store, transfer and process huge

volumes of ultra high-frequency data. Demand for high-frequency data is

growing at the same time, both for decision making and research purpose.

Traders analyse tick-by-tick data to take decisions and implement trading

strategies, whereas researchers use transaction data to observe market

microstructure, test hypothesis and develop new econometric models. The

tick is the minimum upward or downward movement in price of a security,

but it also represents the information set of each transaction. The tick is

usually recorded with information on the time stamp of a trade, the price at

which a trade is executed and the volume in number of shares. The time

stamp denotes the date and the time of a specific market activity.
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The growing dominance of electronic trading systems together with the

rapid technological progress, allows to record market activity on ultra

high-frequency with high precision. However, high-frequency data show

several issues arising not only from the structure of the market, but also

from the statistical properties of the data. The structure of the data

is strongly related to the trading rules, trading forms and procedures

which the institutions employ to produce and collect information. For

example, might be some differences between electronic and hybrid

markets. Furthermore, regulatory changes and technological advances

could make the data structurally different into the sample period. The

stochastic nature of financial transactions highlights an important property

of high-frequency data which is the irregular spacing in time. A further

major feature of transaction data is the discreteness of prices. Institutional

settings allow prices to be only multiples of a tick, consequently transaction

prices take on discrete values. Furthermore, high-frequency datasets

are characterised by a myriad of types and sources of errors, such as

simultaneous observations, decimal errors, transposition errors, isolated

and multiple bad ticks in succession. These errors are mainly linked to

the trading intensity, since the higher the velocity in trading, the higher

the probability of reporting incorrect information about transaction data

(Brownlees and Gallo, 2006). As a consequence, there could be potential

errors affecting high-frequency datasets, so before carrying out further

analysis it is crucial to clean data from “bad ticks”.

The remainder of this paper is structured as follows. Section A.2 describes

the structure of the working dataset. Section A.3 highlights the main

features of high-frequency data and shows different types and sources of

errors which produce bad ticks. Section A.4 discusses different approaches

for cleaning data. In section A.5 preliminary dataset manipulations are

performed, whereas in section A.6 the Brownlees and Gallo (2006) outliers
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detection procedure is implemented. In section A.7 interpolation methods

are used to construct homogeneous time series. Section A.8 concludes.

A.2 Dataset structure

The analysed high-frequency dataset relies on transaction data of the

German stock market indices DAX, TecDAX and MDAX covering the

period from January 2002 to December 2012. The DAX consists of the 30

major German companies in terms of market capitalization. The TecDAX

index tracks the performance of the 30 largest German companies from the

technology sector. In terms of market capitalization the companies within

the TecDAX rank below those included in the DAX. Finally, the MDAX

includes the 50 largest companies from classic sectors ranking immediately

below the companies included in the DAX index. The overall structure of

our dataset is showed in Table A.1.

Table A.1: Dataset structure

Column Content Format
1 ISIN Character
2 Date YYYYMMDD
3 Time HH:MM:SS
4 Price Numeric
5 Price flag Character
6 Volume Numeric

The International Securities Identification Number (ISIN) uniquely

identifies a security. The ISIN code is a 12-character alpha-numerical code

that does not contain information characterising financial instruments, but
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serves to uniformly identify an asset. The Price flag1 describes different

price categories, such as opening price, closing price and continuous

trading price, which is the price that we take into account in our

analysis. In continuous trading the price is determined by an order-driven

mechanism which allows the trading of highly liquid securities.

Figure A.1: Xetra Continuous Trading and Auctions
schedule

Figure A.1 shows the Xetra continuous trading and auctions schedule.

In continuous trading, the orders are executed immediately as soon

as corresponding orders are available. Auctions are conducted at the

beginning and at the end of the trading day with an intraday auction

around lunch time2.

1Price Flags: B = Quote of the issuer; DA = End-of-day auction; E = Opening price;
EA = Opening auction; IA = Intraday auction; L = Closing price from the day before; V =
Continuous trading; VA = Auction after volatility circuit breaker; S = Closing price; SA =
Closing auction; XB = Xetra best.

2More information are available on www.xetra.com

http://www.xetra.com/xetra-en/
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A.3 Properties and issues of transaction data

High-frequency financial data show features which are generally not

observable in data measured at a lower intensity. One of the most

important characteristics of transaction data is the irregular spacing in

time. Since market transactions occur irregularly, tick-by-tick data are,

consequently, irregularly spaced in time, giving rise to inhomogeneous

time series. Furthermore, this leads to significant differences in tick

frequency among securities. A further prominent feature is that high-

frequency data are, by nature, discrete. Trading rules allow prices to be

only multiples of a tick, where the minimum tick size varies from asset to

asset and also across exchanges. Therefore prices fall into a set of discrete

values. High-frequency data often show strong periodic patterns in tick

frequency. A prominent example in this field is the well known U-shaped

pattern in asset return volatility and trading volume, since the trading

intensity is higher near the open and just prior to the close of the trading

day than the middle of the day.

The considerable advances in computer science make the huge volume

of high-frequency data easier to manage. Nevertheless, the amount of

erroneous observations grows with the increasing of the volume and

sampling frequency of the data. Simultaneous observations, decimal

errors, transposition errors, isolated bad ticks and multiple bad ticks

in succession, provide strong evidence of errors affecting ultra high-

frequency datasets. Therefore, there are different types and sources of

errors that produce bad ticks3. These “wrong” ticks could greatly affect

the outcome of the analysis if they are not properly treated.

3See Dacorogna et al. (2001) and Falkenberry (2002) for an exhaustive overview about
data error types.
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Generally, errors can be classified into three different groups:

1. Human errors

• unintentional errors, caused by the huge volume of observations

and by the fast frequency of the transactions, such as decimal

errors, typing errors or transposition errors. These errors are

detected both in fully automated and in partially automated

trading systems;

• intentional errors, such as dummy ticks to test network

connection.

2. System errors

• technical errors caused by computer system, software and

network connection failures.

3. Market bad data

• errors given by processes inherent to trading. For example trade

cancelled, replaced or corrected;

• issues related to the simultaneous trading of the same asset on

multiple markets.

Therefore, raw data need to be filtered in order to remove implausible ticks

with market activity.

A.4 Data filtering approaches

Recently, several approaches have been proposed for filtering high-

frequency data, but generally the cleaning procedures can be classified in

Search and Delete, when bad ticks are identified and deleted, and in Search

and Replace, whenever outliers are detected and replaced.
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The latter, as discussed in Falkenberry (2002), uses a threshold and a

moving average (which is function of the tick frequency) to determine if a

certain observation is an outlier. Practically, when the absolute difference

between price and moving filter exceed the user-defined threshold the tick

is deemed bad. Ticks that are considered bad are replaced with the value

of the moving filter, but without changing the information about volume.

Therefore, this approach has the advantage of maintaining the volume of

a trade even if the associated price has not actually been recorded.

Barndorff-Nielsen et al. (2009) proposed a Search and Delete outliers

detection procedure both for trades and quotes, in order to investigate

the performance of the Realised Kernel volatility estimator, applied

simultaneously to trade and quote data. Since this cleaning procedure

requires the use of bid-ask spread in different steps and our dataset does

not provide information about bid and ask prices, we prefer to apply the

filtering procedure introduced by Brownlees and Gallo (2006). It is an

heuristic procedure easy to implement for removing “false” ticks which

are relevant for the user, without changing the real-time properties of the

raw data.

A.5 Preliminary filtering procedure

The filtering procedure has been carried out by using the statistical

software R, because it provides a wide range of packages to manage, clean

and match ultra high-frequency data and because it is a programming

language easily extensible through functions written by the users. In order

to get a more homogeneous dataset, some preliminary manipulations

have been performed before applying the outliers detection procedure of

Brownlees and Gallo (2006).
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Table A.2: Dataset structure before preliminary
filtering procedure

ISIN Date Time Price Price Flag Volume
DE0007236101 20020731 12:59:25 53.32 V 2000
DE0007236101 20020731 12:59:45 53.25 V 400
DE0007236101 20020731 13:02:31 53.35 IA 10147
DE0007236101 20020731 13:02:35 53.35 V 200
DE0007236101 20020731 13:02:56 NA . NA

Table A.3: Dataset structure after preliminary
filtering procedure

Stock Time stamp Price Volume
2002-07-31 12:59:25 53.32 2000

Siemens 2002-07-31 12:59:45 53.25 400
2002-07-31 13:02:35 53.35 200

In particular, the time-date format of the data has been changed using

the timeDate package, then data have been converted in .xts format to

exploit the different tools for high-frequency data analysis given by the

highfrequency package. In the next step zero or not available (NA) prices

have been removed, selecting only continuous trading prices (V) within

the regular trading hour 9:00 am - 5:30 pm. Finally, the ISIN code has

been replaced with the corresponding company’s name. Furthermore,

the last trading day of each year is systematically excluded from the

dataset, since different trading times apply. These preliminary steps allow

to better manage the dataset in order to detect and remove wrong ticks

and to construct homogeneous time series. Table A.2 and Table A.3

show, respectively, an example of the dataset structure before and after

the preliminary filtering procedure.
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A further type of error that usually affects high-frequency datasets is

related to the so called simultaneous observations. The simultaneous

observations problem occurs when several transactions are reported at

the same time, but executed at different price levels. This phenomenon can

be explained by the possibility that securities can be traded on different

exchanges or because the execution of a market order, in some cases, could

produce more than one transaction report. This issue can also be related to

approximation errors, reporting non simultaneous prices as simultaneous.

Since most of the time series analysis methods require one observation per

time stamp, to overcome the problem of simultaneous prices, observations

with the same time stamp are merged and the corresponding values are

aggregated by taking the median price. The discrete nature of the tick-by-

tick data together with the high probability of detecting outliers, explain

the choice of taking the median price. An example of the simultaneous

observations is displayed in Table A.4.

Table A.4: Simultaneous prices

Stock Time stamp Price
2008-01-02 09:09:39 23.34

DEUTSCHE POST AG 2008-01-02 09:09:39 23.35
2008-01-02 09:09:39 23.39

A.6 Outliers detection procedure

It is not trivial to manage a huge dataset, since it is impossible to make

assumptions on the dynamic properties of the data. Trading activity

differs greatly across securities and this represents a significant problem
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in developing a filter which is able to remove bad ticks. Therefore, the

filtering process can not be based on complex parametric models, but it

must follow empirical procedures simple to implement without changing

the dynamic properties of the raw data.

Brownlees and Gallo (2006) proposed the following procedure to detect

outliers

(|pi − p̄i(k)|< 3si(k) + γ) =

{
True =⇒ observation i is kept

False =⇒ observation i is removed

where {pi}Ni=1 is an ordered tick-by-tick price series, p̄i(k) is the δ-trimmed

sample mean of a neighborhood of k observations around i, si(k) is the

sample standard deviation of a neighborhood of k observations around i

and γ is a granularity parameter.

As in Falkenberry (2002), the filtering algorithm is based on a threshold,

though, in this case it is not fixed, but it takes different values according to

the neighborhood of the k observations around the i-th tick. The parameter

γ avoids that zero variances are produced by sequences of k equal prices.

The parameter δ should be chosen on the basis of the outliers frequency,

that is the higher the frequency, the higher the percentage of trimming. The

value of k should be fixed according to the level of the trading intensity.

Therefore, if the trading activity is not so high, k should be reasonably

small, in order to avoid that the window of observations includes too

distant prices. The neighborhood of observations is always picked such

that a given tick is compared with the prices of the same trading day. To

get the optimal parameters, the cleaning algorithm was run several times

for a grid of different values of k and γ, keeping fixed δ at 10%.
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Figure A.2: Sensitivity analysis for k

The figure shows the sensitivity analysis for the parameter k, considering the transaction
price series of the day 08 October 2008 for the stock BMW within the trading hour 12:00-
14:30. The green points represent the clean price series, while the red points are the bad
ticks. Top panel: clean time series with k = 40 and γ = 0.02. Center panel: clean time
series with k = 60 and γ = 0.02. Bottom panel: clean time series with k = 80 and γ = 0.02.
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Figure A.3: Sensitivity analysis for γ

The figure shows the sensitivity analysis for the parameter γ, considering the transaction
price series of the day 14 January 2003 for the stock CON. The green points represent the
clean price series, while the red points are the bad ticks. Top panel: clean time series with
k = 30 and γ = 0.02. Center panel: clean time series with k = 30 and γ = 0.04. Bottom
panel: clean time series with k = 30 and γ = 0.06.
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A graphical representation of the sensitivity analysis of the parameters

k and γ is showed in Figure A.2 and Figure A.3, respectively. In order

to consider multiple scenarios, we focus on the transaction price series

of the stocks Bayerische Motoren Werke (BMW) and Continental (CON),

since they show a different trading intensity level. In particular, BMW

(which is a German luxury vehicle, motorcycle, and engine manufacturing

company) is a very liquid stock, as it shows a high trading intensity, while

CON (which is a leading German automotive manufacturing company

specialising in tyres, brake systems and automotive safety) is a less liquid

stock, since it has a low trading intensity.

Figure A.2 provides an example of the sensitivity of the parameter k,

showing the transaction price series of the day 08 October 2008 for the asset

BMW within the trading hour 12:00-14:30. The analysis is addressed by

changing the values of k and by keeping the values of γ fixed at 0.02. It can

be noted that the number of bad ticks detected by the filtering algorithm

rises with the increasing of k. In particular, for k = 40 the outliers detection

procedure captures only two bad ticks, for k = 60 the outliers become

four, while by setting k = 80 the algorithm removes seven anomalous

observations.

Figure A.3 displays the sensitivity analysis for the parameter γ, plotting

the price series of the stock CON of the day 14 January 2003 by considering

three different scenarios. The sensitivity is assessed by allowing for

different values of γ and setting k = 30. In this case, the higher the γ,

the lower the number of anomalous prices highlighted by the cleaning

algorithm. It clearly emerges that, when γ = 0.02 the number of outliers

is equal to two, choosing γ = 0.04 the filtering algorithm detects only one

bad tick, whereas for γ = 0.06 there are no false ticks.
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As discussed in Falkenberry (2002), the main problem in developing

cleaning algorithms is the handling of marginal errors, since it involves

a trade off between overscrubbing and underscrubbing of tick data. If data

are filtered too loosely we still have unusable dirty data and, on the other

hand, if data are filtered too tightly we might lose relevant information,

changing the statistical properties of the raw data. Furthermore, the quality

of the data might have a different relevance among users according to

their interests and market strategies. What is considered a bad tick for a

tick-based trader may be considered negligible for a trader using lower

frequency strategy, such as hourly or daily. Therefore, marginal errors are

function of the time unit (tick-by-tick, 1-minute, 60-minute, etc.) used by

the traders to achieve their targets. In describing the issues associated with

maintaining and cleaning a high-frequency financial database, Falkenberry

(2002) states that

“the primary objective in developing a set of tick filters is to manage the

overscrub/underscrub trade off in such a fashion as to produce a time series

that removes false outliers in the trader’s base unit of analysis that can support

historical backtesting without removing real-time properties of the data”.

Following these considerations, we found empirical evidence that the

optimal overscrub/ underscrub trade off that complies with our research

interests is achieved by setting γ = 0.02 and by using k = 30 for illiquid

assets, k = 40 for liquid assets and k = 60 for stocks showing a very high

trading intensity.

A.7 Data aggregation

Tick-by-tick data are, by nature, irregularly spaced in time. Furthermore,

transactions on multiple assets rarely occur at the same time, since the
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trading activity varies considerably across assets. As high-frequency

models are typically based on homogeneous time series, it is necessary

to ensure that each trading session has the same number of observations.

Several data aggregation procedures have been proposed to get regularly

spaced time series. Interpolation methods allow to transform raw

data from inhomogeneous to homogeneous time series. Interpolation

is a method for constructing artificial data points using the available

information about existing data. To transform data in equally spaced

time series Dacorogna et al. (2001) proposed some interpolation methods,

where the most commonly used in empirical applications are the linear

interpolation and the previous-tick interpolation.

Let {(xi, ti)}Ni=1 be an irregular time series where ti and xi denote,

respectively, the time and value of the i-th observation and let {(x∗j , t∗j )}N
∗

j=1

be the lower frequency time series that we wish to build according to a

suitable aggregation function.

Using the previous-tick interpolation it follows that

x∗j = xp,

where tp = max{ti|ti < t∗j}.

On the other hand, employing the linear interpolation we get

x∗j =

(
1−

t∗j − tp
tn − tp

)
xp +

(
t∗j − tp
tn − tp

)
xn,

where x∗j = xn and tn = min{ti|ti > t∗j}.
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The differences between the two interpolation methods, showed in

Figure A.4, are quite negligible when ultra high-frequency data are used

(Dacorogna et al., 2001).

Using the linear interpolation, irregularly spaced price series have been

aggregated into equally spaced time grids, thus forming homogeneous

time series. Figure A.5 and Figure A.6 show examples of equally-

spaced time series of stock prices and log-returns computed at different

frequencies. In particular, for the most liquid stock BMW, Figure A.5

displays intra-daily prices and log-returns aggregated at the frequencies

of 30 seconds and 1 minute of the day 08 October 2008, whereas for the

stock CON, which shows a lower trading activity, Figure A.6 depicts time

series of intra-daily 5 minutes and 10 minutes transaction prices and log-

returns of the day 14 January 2003.

Figure A.4: Different interpolation methods
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Figure A.5: BMW intra-daily 30 seconds and 1 minute
stock prices and log-returns

Time series plots of intra-daily 30 seconds and 1 minute transaction prices and log-returns
for the stock BMW of the day 08 October 2008.

Figure A.6: CON intra-daily 5 minutes and 10
minutes stock prices and log-returns

Time series plots of intra-daily 5 minutes and 10 minutes transaction prices and log-returns
for the stock CON of the day 14 January 2003.
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A.8 Conclusion

The availability of low-cost financial transaction data has given rise to

new challenges in econometrics and empirical finance. In this paper

we have pointed out the main features and discussed on relevant issues

concerning high-frequency data. High frequency analysis is playing

an important role in market microstructure theory, option pricing, risk

management and decision making process, therefore filtering tick-by-tick

data accurately becomes a key requirement in these fields. The cleaning

procedure by Brownlees and Gallo (2006) proves a very useful tool in

detecting and removing bad ticks. To achieve satisfactory results, the

outlier detection procedure must be performed for each stock in order

to remove observations which are not plausible with the market activity.

However, the assessment on the data quality is highly related to the

interests and aims of the users.
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