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Abstract 
 
This dissertation presents continuum and discrete approaches to the statics of 
masonry vaults.  

The thrust surface concept is introduced within Heyman’s safe theorem and extends 
the funicular curve to the 3D case. A variational formulation of the truss network of 
masonry vaults is presented and allows to search a ‘safe’ thrust surface within a 
design domain. Such a model is based on a scalar potential φ of the stress carried by 
the thrust surface S (Airy’s stress function) and polyhedral approximations to φ, by 
a predictor-corrector strategy based on the convex hull technique (no-tension 
model).  

In the same way, a static load multiplier for curved structures is iteratively obtained 
and validated, by increasing the live loads over several steps and verifying, for each 
interaction, the existence of a corresponding statically admissible state of 
equilibrium via lumped stress method. Using this approach, we can observe potential 
cracks, where the stress state is unidirectional.  

A tensegrity model of reinforced vaults is also proposed and allows to perform a 
design minimal mass reinforcements of masonry vaults under static and seismic 
loads. 

Several case studies of unreinforced and reinforced masonry vaults are presented and 
discussed.
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Part I. Introduction 

The masonry is one of the oldest building materials. It can be defined as a composite 
material, not homogeneous, made up of interlocked or not worked blocks between 
them, dry or through bedding mortar. The nature of blocks is varied (natural stone, 
brick, adobe) in the historical heritage. The variability depends on the local factors 
such as traditional construction methods related to the geographical area, to the 
culture of the population, from the availability of the type of constituent elements.  

Figure 1: Masonry bridge “Pietra dell’Oglio”, 2nd century BC until, Monte Verde (AV). 

Romans only began to achieve significant originality in architecture around the 
Imperial period (Figure 1), using different assembly techniques of this material and 
creating structures still existing and in good health.  

Giuffrè [1] underlines two kinds of masonry techniques, the popular and the educated 
one. The first is built by the inhabitants themselves builders and it represented by 
vernacular architecture. It is very common built in the territory. On the other hand, 
the second one is built by professional workers according to strict geometric rules 
build the second. 
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Vitruvius [2] considers to the Greek builders the creators of the “opus quadratum”, 
characterized by the use of machined and squared stone elements. The blocks, 
organized on horizontal rows with vertical joints, are positioned respecting to the 
“isodoma” or “pseudo-isodoma” order, in rows of the same height and of variable 
height, respectively. A connection between blocks is created by the two types 
assembled masonry.  They give to the masonry a monolithism obtained by the 
assembly of the constituent elements, i.e. diatonos and orthostats (Figure 2). 

 

a) b) c) 
 

Figure 2:  Masonry walls: (a) wall with orthostats; (b) wall with diatonos;(c) wall with the 
alternation of orthostats and diatonos on the same row. 

Although masonry structures have lasted for hundreds of years and being one of the 
earliest types of structures undergo scientific structural analysis, they are often 
considered difficult to analyze or to assess in a precise way. This approach is partially 
due to the usual uncertainties in assessing built structures: the presence of unknown 
or uncertain material properties, the difficulty of obtaining correct measurements, 
and the difficulty of evaluating the conditions of these structures without the 
possibility to control the interior of the structure. 

Based on these considerations, the purpose of this thesis is to offer useful approaches 
to the analysis, conservation and restoration of these structures with a particular 
focus on vaults.  

1.1   State of the art  

Among the structural elements in masonry buildings, arches and vaults are very 
widespread in European historical centers. Their preservation represents the 
preservation of the cultural heritage, as well as the architectural one. A lot of 
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attention has been paid to the accurate design and stability of masonry arches and 
vaults.  

Particularly, under a geometrical point of view (Figure 3), the study of these 
characteristics was already felt from the Roman to the Renaissance age, but the 
presence of horizontal thrusts was already perceived in the 1st–century B.C. [3]. 

 
 

a) b) 

Figure 3: (a) Geometrical design rule still used during 18th-century; (b) Configuration of 
the thrust line by Barlow (1846). 

Main developments and reviews in the study of historical masonry arches and vaults 
can be summarized as follows: 

 Robert Hooke [4] and David Gregory [5]. The mathematical formulation of 
the catenary curve.  They employed the analogy between a hanging chain 
and an arch, the latter introducing the simile of a necklace made by smooth 
spheres that, overturned, could stand up by blocking the ends. 

 Giovanni Poleni [6] applied this formulation to examine the dome of Saint 
Peter’s Basilica in Rome. 

 Philippe de la Hire [7]. The concept of collapse.  A collapse mechanism is 
identified through a division of an arch into three rigid blocks, moving 
without friction. 

 Claude Couplet [8] analyzed the concept of collapse mechanism due to 
mutual rotations between adjacent portions, considering qualitatively the 
friction effects. 

 Charles Coulomb [9]. The equilibrium approach. Four possibile collapse 
mechanisms are identified, considering in each case a limit load that could 
guarantee the equilibrium condition of the arch. 

 Louis-Claude Boistard [10] tested numerous 5-meter scaled models, 
establishing the four-hinge mechanism collapse of an arch.   

 František Josef Gerstner [3]. The thrust line. A thrust line of a vault is 
defined as a function of shape and load.   
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 Louis Navier [3] applied the theory of elasticity to the arch, including in the 
analysis the strength of materials.  

 Henry Moseley [11] defined the thrust line as tangent to the intrados at the 
haunches and tangent to the extrados at the middle section, in the condition 
of the minimum horizontal force.  

 Eugene Mery [3] considered instead, a different condition of the thrust line, 
by means as contained in the central third of each section. 

 Heyman [10][12]. The limit analysis based on the Heyman’s hypothesis. The 
collapse of a masonry arch occurs when a certain number of potential hinges 
is created. This condition occurs in the case of the thrust line is not contained 
in the extrados and intrados of the arch in a number of points sufficient to 
produce the condition of lability (Figure 4).  

 
Figure 4:  Collapse mechanism formed by the creation of plastic hinges. 

Based on these considerations, the so-called modern vault theory by Heyman 
consists of a limit analysis approach to the statics of masonry arches and 
vaults based on the following assumptions:  

 masonry has no tensile strength; 
 masonry has infinite compressive strength; 
 sliding between masonry parts does not occur (no-tension model). 

The first condition occurs since the mortar, which links the joints, could be 
deteriorated. The second assumption is the consequence of the first, due to 
the fact that the compressive rift is not likely to succeed, because the tensile 
stresses are lower than the compressive strength. The last hypothesis is 
justified because frictions in the joints avoid the sliding of the stones. 
The equilibrium condition is satisfied when it is possible to draw infinite 
thrust lines contained in the thickness of an arch. The maximum and the 
minimum value of the thrust line indicates the limit conditions. If the arch 
thickness is incrementally reduced, the limit values of the thrust line reach 
the value of the thickness. This condition produce the incipient collapse of 
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the structures. The ratio between the actual thickness and the limit value can 
be considered the geometrical factor of safety. 

 Focacci [14] defines a limit analysis of a semicircular arch with fixed 
supports and shows that a masonry arch needs the formations of four hinges 
to produce a kinematic mechanism (Figure 5). 

 
Figure 5: Scheme of limit analysis of an arch with fixed support by Focacci [122]. 

These examples testify the growing interest in this study. The preservation and repair 
of historic masonry structures has created a need for accurate and efficient analysis. 
Over the time, different models have been implemented to reconstruct the behavior 
of these structures. The behavior of masonry depends on the assembly, construction 
modalities of the elements and not only on the mechanical properties of stones and 
mortars. A research focus of fundamental interest is to provide reliable forecasts 
about the behaviour of these structures [15]. 

 The masonry structures represents an aggregate of two basic components: the 
blocks, in stone or brick, and the mortar. 

The generic composite element of this structure can be analyzed by two different 
methods: homogenization techniques, having a homogeneous model equivalent to 
the real material, or a heterogeneous model, which use different mechanical 
behaviours or mechanical parameters for the two components and adequate 
boundary conditions. In the first case, the homogenization give the possibility to 
describe the macroscopic behavior of the volume element through anisotropic 
constitutive bonds. 

In many situations of technical interest (masonry with regular "weaving"), an 
orthotropic macroscopic bond is sufficient for practical purposes. 
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Some of the most relevant constitutive models available in the literature are 
presented for the masonries, both homogeneous and heterogeneous. 

1.1.1 Heterogeneous – Discrete models 

A masonry structure can be analyzed by discretizing the mortar blocks and joints 
separately. In this case, for each phase an appropriate constitutive law is introduced, 
which must also consider the interaction of each individual component with the 
whole of the masonry structure. 

Two distinct approaches can be followed in the finite element modeling: in the first, 
the joints between the blocks are discretized using finite elements of appropriate 
dimensions, while, in the second, the "joints" elements are replaced by particular 
contact constraints between the blocks (boundary conditions). 

The first approach requires a considerable computational burden for the analysis of 
real structures and in fact is almost exclusively used for the analysis of the stress 
state of small masonry elements. 

In the second approach, however, the use of interface laws allows to use only "brick" 
elements, equipped with appropriate constitutive laws. 

Obviously, each block must always be modeled using at least one finite element. 
Therefore, the dimensions of the numerical problem grow very rapidly with the 
increase of the complexity of the structure in all heterogeneous models. 

- Page [17]. The masonry is discretized in blocks with elastic-linear and isotropic 
behavior linked by "linkage elements" (or "links") of punctual type. The "links" have 
a fragile tensile behavior and a bilinear elastoplastic behavior in compression. This 
model can be used for walls subject to shearing but is not able to describe, for 
example, collapse due to crushing. 

- Lourenço et al. [18][19]. Model with interface laws derived from the Mohr-
Coulomb criterion. Admissible compressive and tensile stresses in the blocks are 
described by introducing two suitable limit surfaces: the closing surface and the “cut-
off" surface. Both the Mohr criterion and the "cut-off" surface vary according to a 
hardening law, while the closing surface does not evolve with the deformation state. 
Sliding and opening mechanisms are located inside mortar joints, while the 
compression collapse involves the whole masonry structure. 

- Lofti and Shing [20]. Model with interface law characterized by a hyperbolic elastic 
limit function (generalization of the Mohr-Coulomb criterion). Unlike the model of 
Lourenço, Lofti and Shing use the yield surface of the interface bond, which has a 
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continuous gradient at each point. The limit compression of the blocks is governed 
by the Von Mises criterion, while the tensile failure is described by the Rankine "cut-
off" surface. The Lofti and Shing model can simulate both the creep and the 
compression compaction of the joints, through a non-associated plastic flow law. 
The elastic limit function of the interface evolves according to a "softening" model. 

- Gambarotta and Lagomarsino [21]. The behavior of the mortar is modeled using 
methods of damage mechanics. The damage to the joints is measured by an internal 
variable associated to a rate of release of the deformation energy, which includes 
inelastic terms of sliding and dilatation. Blocks damage evolves when the rate of 
energy equals the specific fracture energy (or toughness) of the joints, that depends 
in turn on the damage variable. 

1.1.2 Homogeneous – Continuum models 
The homogeneous models are based on the introduction of a homogeneous 
equivalent continuous element to represent the composite masonry. The 
characteristics of this element can be defined by introducing an appropriate 
constitutive bond capable of representing the macroscopic behavior of the masonry, 
starting from the mechanical properties of the components (blocks and mortar), 
through homogenization techniques (Figure 6). 

a) b) c) 
 

Figure 6: Modelling strategies for masonry structures: a) detailed micro-modelling; b) 
simplified micro-modelling; c) macro-modelling [19]. 

- No tensile rigid or elastic model. This is the first constitutive model formulated for 
the masonry, used since ancient times, for the design and the verification of these 
structures.  
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This approach is used in arches and vaults for the graphic construction of the 
funicular polygon [22] of a plane system of forces and in the limit analysis of plain 
or spatial masonry structures. 

One of its first application in the rigid no-tension model, can be found in the famous 
work by J. Heyman "The Stone Skeleton" (1966) [12], which presents several 
examples of limit analysis of masonry structures of different types. A. Signorini 
(1925), who considers it as a prototype of a unilateral constitutive law, can trace the 
first mathematical arrangement of this model back to some pioneering studies. 

The study of its mathematical properties has been the object of attention by numerous 
authors, coming mainly from the Italian school [23][30].  

This model is a simple model, in which provides the material reacts rigidly or 
elastically in compression and is not able to withstand any tensile stress. It is able to 
describe with a continuous theory the phenomena of cracking typical of the masonry 
structures. Effects of friction between the blocks are ignored.  The rigid model 
reproduces the behavior of historical or degraded masonry, in which the mortar is 
equipped with reduced tensile and shear properties. 

Main characteristics of this model are described as follow.  

Ganju [31]; Chen [32]; Shing [33]. Isotropic macro-models derived from 
experimental results, based on generalizations of the constitutive models commonly 
adopted for cement conglomerate. These models are useful for reinforced masonry 
with concrete inclusions, which do not take into account the mechanical anisotropy 
of ordinary masonry, due to the presence of mortar. 

- Samarashinghe and Hendry [34][35].Elasto-fragile anisotropic macroscopic 
models respect to a limit domain of the stresses in the field of tension-compression 
coupled stresses (a limit resistance for pure compression is not introduced). Local 
stiffness and resistance are set to zero, when the stress state reaches the limit surface. 

- Page et al. [36]. Anisotropic elasto-fragile model in the field of coupled tension-
compression stresses and elasto-plastic model in the field of pure compressive 
stresses. By introducing this model into a finite element code, the two non-linearities 
plasticity and breakage, are treated separately. One is constant while the other 
evolves. The limit surface of the material refers to the plane of the voltage 
components relative to the directions of the joints. Each component of the plastic 
deformation is linked only to the homonymous stress component, through a 
polynomial law. 
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- Contro and Sacchi [37]. Generalization of the Page model with the introduction of 
a zero tensile strength and a plasticity with a plastic hardening compression behavior. 
A limit domain is enclosed by six flat faces in the field of biaxial compression 
stresses, considering different orientations of the principal efforts with respect to the 
joints. 

 - Pietruszczak and Niu [38]. Continuous model obtained through a double 
homogenization procedure, to take into account the stratifications both horizontally 
(mortar) and vertically (butt joints). Mortar is treated as elementes of material 
weakness, while butt joints are treated as inclusions characterized by lower 
mechanical properties compared to blocks. The collapse of homogenised material 
can occur both by crushing the blocks and by opening and / or sliding the horizontal 
joints. In the first case, an elasto-fragile behavior of the butt-joint-block system is 
introduced, while in the second case the collapse is described by an elastic-plastic 
behavior. This anisotropic model is particularly suitable for the study of masonry 
collapse under biaxial stress conditions. 

-  Papa and Nappi [39]. Unilateral evolutionary damage models with three internal 
variables that separately describe the damage produced by tensile stresses, 
compressive stresses and shear stresses. The damage model applied to each 
component of the mansory is a fragile type and is capable of reproducing the 
recovery of stiffness that is observed experimentally when compressive stresses 
overlap with pre-existing tensile stresses ("unilateral effect"). This approach is also 
capable of describing shear damage effects of the same order of magnitude as 
damage effects due to normal stresses. The stiffness matrix of the composite material 
is obtained by numerical homogenization techniques (of the representative volume 
element type), starting from the damage models of the base materials. 

- Gambarotta and Lagomarsino [40]. Continuous pattern obtained by 
homogenization of a stratified medium. Laws for damaging of the blocks and mortar 
are described according to two suitable internal variables. One describes the damage 
to the mortar, while the other describes the damage by crushing the blocks. The 
evolution of damage is explained by considering the solution of a linear 
complementarity problem. This model allows to evaluate the energy dissipated by 
the material under cyclic loads, which represents a very important parameter for the 
evaluation of the seismic vulnerability of masonry buildings.  

-   Luciano and Sacco [41]. Damage model obtained by homogenization techniques 
of the "unit cell" type. The recurring element (cell) is made up of an entire block, 
four portions of adjacent blocks (of a quarter size of an entire block), two whole 
joints horizontally and vertically and two vertical half-joints. The law of damage 
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provides that the fractures can develop only along the horizontal and vertical joints, 
characterized by an elastic fragile constitutive law and the blocks are instead 
indefinitely elastic elements. It is admitted that the thickness of the joints is very 
small and that the collapse of a joint, is total. Eight distinct damage states of the unit 
cell are defined, each corresponding to a different "crack pattern" in the joints. It is 
admitted, in particular, that a joint affected by collapse can no longer be restored. 
The homogenization theory is used to determine, numerically, the elastic modules of 
the intact and cracked masonry. A model of damage evolution is also proposed. This 
is a very valid modeling for ancient or degraded walls, in which the tensile strength 
of the mortar is much lower than the resistance (tensile and compressive) of the 
blocks and therefore the fractures develop mainly along the joints. 

- Callerio and Papa [42]. Evolutionary elastoplastic damage models for the 
simulation of wall behavior under cyclic loads. The masonry is described as a 
continuous orthotropic in a flat state of tension. Its behavior is elastic until the stress 
state is internal to an elastic domain limited by eight flat surfaces in the space of the 
Cartesian stress components (referred to the directions of the joints). The limit 
surface provides a reduced resistance of the material to the states of pure traction and 
traction-compression. When the state of tension reaches the border of the elastic 
domain, inelastic deformations are activated on the basis of an associated plastic 
flow law. At the end of each "step" in which the load law is subdivided, incremental 
inelastic deformations are decomposed into a properly plastic part and into a part of 
damage, to which a reduction of the elastic stiffness of the material is associated. 

- Luciano and Sacco [43]. Damage models for walls reinforced with composite 
materials ("Fiber Reinforced Plastics" or FRP) obtained by homogenization 
techniques. 

- Milani and Tralli [44]. Micromechanical model for unreinforced walls able to treat 
both the elastic behavior of the base materials (bricks and mortar) and the case of 
elastic-plastic behavior. The homogenization technique adopted is based on an 
approach to tensions, which uses appropriate generalizations of the principle of 
minimum complementary energy. The model corresponds well to the experimental 
results of Page (1981) and manageable from the numerical point of view. 

1.1.3 Masonry vaults  

The vaulted masonry structures are presented as constructive elements of absolute 
specificity and with characteristics that differentiate them from other recurring types 
used in the past to adapt to environments.   



Part I. Introduction 

21 
 

 
a) b) 

 

 
c) d) 

 

 
e) f) 

 

 
g) h) 

 

Figure 7: Main types of simple and complex vaults: a) barrel vault; b) barrel vault with 
lunettes; c) trough vault; d) mirror vault; e) cloister vault; f) groin vault; g) ribbed vault; 

h) fan vault [48] . 

In general, the vault is defined as a curved surface having resistance characteristics, 
whose bearing capacity and structural efficiency depends on its conformation. A 
vault is geometrically generated by the translation (or rotation) of a curve (or of a 
line), said directrix, with respect to a line (or a curve) called generatrix. 

Many classifications about the shape of these structures are available in various 
literature. Vaults are classified mainly into two groups: simple vaults (like barrel, 
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sail and cup vaults), derived from a single translation of the generatrix on directrix 
and composed vaults (like groin, cloister) defined by the composition of simple 
vaults. Figure 7 shows main examples of vaults. 

Many of these structures may be found in the architecture of historic buildings and 
have had an evolution in complex geometries and shape, over the years. In particular, 
many examples of unusual vaults are present in Western architectural tradition. 

 
Figure 8:  King’s College Chapel [124]. 

Figure 8 shows King’s College Chapel. The fan shapes are created as a result of piers 
rising up in expanding cone-like shapes with elaborate ornamentation. The visual 
complexity is more a function of the sculptural treatment than the sternotomy. It’s 
one of the great last great triumphs of Gothic.  

Examples of recent vaults and domes are instead attributed to Antoni Gaudi (Figure 
9), Heinz Isler and many other architects, who take care not only of the form but also 
of a targeted research of new materials more suitable to make these structures 
innovative.   

Some aspects of the structural behavior of masonry vaults have not yet been 
sufficiently investigated by scientific literature and, given their complexity, can 
hardly be solved through classic schemes and models. 
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Figure 9:  Crypt of the chapel of the Colonia Guell [125]. 

The present work aims to fill these gaps and to study in-depth some important aspects 
concerning the structural analysis of vaults. 

Masonry vaults are often schematized as a series of non-interacting side-by-side 
arches. This schematization, acceptable for simple vaults, deviates from reality in 
the case of complex vaults, in which, due to their particular geometric conformation, 
can create non-negligible three-dimensional effects. 

Despite the variety of examples of vaulted structures, a more detailed description 
will be applied to complex vaults. In particular the groin and pavilion vault are 
described in this part. The numerical examples, proposed in this thesis, will be 
mainly applied to this kind of vaults. 

1.1.3.1 Groin vault 

Numerous studies [45][46] have investigated the structural role of cross vaults, 
through the analysis of exemplary cases. However, these studies showed the 
enormous difficulties linked to the evaluation of the effectiveness of the structural 
elements that constitute the vaults in the medieval period, which vary according to 
the historical period, the characteristics of the materials and the construction 
techniques used.  
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What is certain is that the cross vault, rationally composed of ogive supporting 
arches, which intersect diagonally, and by perimeter arches, two transverse to the 
nave and two perpendicular, distribute the weight not on the entire perimeter wall, 
but on determinate points of the supports and due to this it was possible to replace 
the walls with windows or thin dividers. 

 
Figure 10:  Groin vaults of the Valencia Cathedral. 

Romans developed the groin vault, some achieving significant widths although the 
barrel vault had been more widely used in earlier civilizations. King Attalos 
I of Pergamon constructed the first groin vault in Europe in about 223 BC in Delphi. 
Church architecture in the Middle Ages, was influenced by the application of groin 
vaults to vast halls. Figure 10 shows groin vaults of the Valencia Cathedral, 
dedicated to the Assumption of Mary (13th century). The groin vault was widely 
used for its ability to create strength, without massive buttress formations; in 
addition, it gave the church architects a solution for the dim light inherent in the 
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barrel vault design, because the barrel vault could not contain windows because it 
had to be strong.  

The Gothic architects attempted to counteract the thrusts with counter-thrusters (like 
the flying buttresses) or by verticalizing the thrust by means of vertical weights 
(pinnacles), therefore they created a dynamic connection, which, although in a much 
more obvious way, takes up the system of thrusts and counter-thrust which the 
Byzantines had already used. 

Medieval architects developed the static system, based essentially on the concept of 
ensuring the main aisles were as stable the principal nave, while Gothic cathedrals 
used ribbed cross vaults with pointed arches to empty the masonry. 

From the end of the eleventh century, the diagonal arches were used in the 
construction of cross vaults because they were simpler to build and more stable as 
the transverse and diagonal arches become supporting structures, emphasized by ribs 
and members.  The key of the cross vaults is released, because the bowing keys of 
the diagonal ribs are at a higher level than the arches and this also means that the 
vault is generated in this way. 

 
Figure 11: Hauptbahnhof Station in Berlin [126]. 

20th-century structural engineers have adopted the static stress forces of the groin 
vault design and confirmed the Romans expertise in efficient design to accomplish 
a wide span of construction, the multiple goals of minimum materials use, ability to 
gain lateral illumination, and therefore avoiding lateral stresses. Europe’s largest 
train station, Hauptbahnhof in Berlin (Figure 11), which has an entrance building 
with a glass-spanned groin vault design is an excellent modern example of 
architecture. 

1.1.3.2 Cloister vault 

The masonry cloister vault, although used extensively starting from the sixteenth 
century as a cover for most typical buildings, have never been studied in depth, 
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probably because of the obvious difficulties encountered in applying simplified 
theories to this complex type of vault. 

It may be thought of as being formed by two barrel vaults that cross at right angles 
to each other: the area within the vault is the intersection of the space within the two 
barrel vaults, and the solid material around the vault is the joining together of the 
solid material surrounding the two barrel vaults. We can see that it differs from a 
groin vault - formed from two barrel vaults but in the opposite way: in a groin vault, 
the empty area is the union of the spaces of two barrel vaults, and the solid material 
is the intersection. 

The pavilion vault, like all type of vaults, exerts thrusts to the support that often, 
especially in the case of large vaults, are too high and result in the removal of the 
perimeter walls. In addition to this type of problem, they often present significant 
lesions along the diagonals. 

Scientific literature, up to now, has not been able to produce valid models that permit 
the simulation of the structural behavior of pavilion vaults. This is due to a lack of 
knowledge of the complex static mechanisms that are generated within them and the 
lack of a theory able to grasp the real state of stress before and after cracking. 

Cloister vaults, in fact, in spite of their widespread use, have not been an area of 
study in scientific literature. Although, there have been interesting contributions in 
some studies [47][48].  

Seeing the importance of studies regarding the pavilion vault and their application 
and use, this work concentrates on the methods of calculation on the discrete and 
continuum approaches on the statics of this vault. From this, we can easily find the 
applicable calculations required for the principle static mechanism of the pavilion 
vault, leading to eventual consolidation. 

The Romans used pavilion vaults as early as the 1st century B.C. 

The Tabularium (78 B.C.) and the temple of Hercules in Tivoli (80-85 B.C.) contain 
the first examples. Further vaults may be seen in the Domus Aurea (64-68 A.D.), in 
the Domus Augustana (81-92 AD), in the Villa Adriana in Tivoli (117 A.D.), in the 
baths of Antoninus in Carthage (145-160 A.D.) and in those of Diocletian (298-306 
A.D). 

Cloister vaults, widely used for the covering of polygonal rooms, continued to be 
used in chapels of religious buildings and in baptisteries. 

The intersection between the transept and the central nave, once a pavilion on an 
octagonal plan, became widely spread. We can find such examples in the Church of 
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Sant'Ambrogio in Milan (Figure 12) and in that of San Michele Maggiore in Pavia 
(Figure 13). 

Cloister vaults and all its variations began to be used in residential architecture from 
the 16th century onwards, to cover the halls of the palaces, mainly due to their ability 
to completely transfer the load onto the surrounding walls. 

Palladio was the first to illustrate, through a very concise description and a series of 
figures, the six ways to construct vaults, the type of which was chosen depending on 
the room that was to be covered.  He proposes the barrel vaults with heads of 
pavilion, called a basin, should have the arrow equal to one third of the width of the 
room.  

Later, Scamozzi proposed his designs for the six types of vaults, but furthermore he 
proposed an innovation, which was the concept of a pavilion vault to cover a room. 
He also realized that the cloister vault is easier to realize thanks to its geometric 
configuration. 

Guarino Guarini subsequently, proposed that pavilion vaults are realized starting 
from a half-cylinder cut diagonally. Guarini also said that the plinth on which 
pavilion vaults rest can be of a variety of forms from square to octagonal. 

 
Figure 12: Plan of the Palatine Chapel of 

Aachen [127]. 
Figure 13: The cloister vault in the 

Basilica of S.Michele Maggiore [128] . 

Architectural manuals began to report real practical information on the geometry and 
construction of the pavilion vault and its main types, starting from the nineteenth 
century.  The pavilion vault is set on a square plan and is created by the union of four 
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cylindrical spindles that make up the intrados surface (Figure 14), so Alberto 
Castigliano defined the cloister vault in the practical manual of Engineers. 

 
Figure 14: Design of cloister vault by Alberto Castigliano [129]. 

1.2 Problem statement  

The funicular curve method dealing with masonry arches has been applied to 3D 
problems over recent years, by using either continuous or discontinuous approaches. 
Continuous approaches typically are based on stress-function formulations of the 
equilibrium problem [49][51] or maximum modulus eccentricities surfaces [52][53], 
while discontinuous approaches describe the no-tension stress field through spatial 
force networks generated via 3D funicular constructions [54][56]. 

The present study deals with different approaches to the statics of masonry vaults by 
researching a ‘safe’ thrust surface in different load conditions.  

In particular, we focus on discrete approaches to find the optimal thrust surface and 
the corresponding state of stress.  

Starting from the formulation in terms of the function of Airy stresses of the 
boundary value problem, an approximation has been proposed with polyhedral test 
functions (piecewise linear) on a triangulation called primary mesh. 

This approximation, of a non-conforming type, generates concentrated tensions 
along the interfaces of the primary mesh (Concentrated Tension Method or "Lumped 
Stress Method"), which can be considered as the axial stresses borne by the rods of 
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a reticular structure [57][58]. 

The discrete problem depends on the nodal values of the Airy function and is solved 
by minimizing an appropriate functional energy that depends on both the shape of 
the surface and the stress state, expressed through the aforementioned function. 

From the physical point of view, the functional represents the complementary energy 
of the reticular structure that approximates the continuous medium. It is an 
unconventional type of energy, which couples the contributions of the convergent 
stress in the same node. 

The method is particularly effective in the case of problems characterized by 
singularities of the stress field (concentrated forces, edge effects, cracks, transition 
from 1D elements to 2D elements, etc.). Moreover, it can easily be generalized in 
flat problems with constraints on the state of tension (holonomic plasticity, non-
tensile strength, etc.). 

In previous works, the convergence of the method in the case of planes of loading 
problems has been mathematically proved, using typical arguments of the mixed 
methods to the finite elements. In particular, its convergence speed has been 
demonstrated, under appropriate assumptions of regularity and uniformity of the 
primary and secondary meshes. 

Furthermore, its numerical implementation was demonstrated, with reference to the 
more general case of flat problems with mixed type boundary conditions; several 
numerical results were obtained and comparisons were established with solutions in 
closed form and numerical solutions to finite elements. The results confirmed the 
theoretical predictions and highlighted the computational agility and accuracy of the 
"Lumped Stress Method" (LSM). 

In this work we propose to apply this method to the study of masonry vaults, taking 
into account the peculiarities they present, which differ from any plane problems due 
to the three-dimensional nature of the vaults.  It is subject to internal tension that 
allow the structure to remain in equilibrium if subjected to actions of compression, 
and due to the nature of the load, which does not belong to a plane. 

The theory with regard to this problem will be presented in chapter 3; we will write 
the equations considering a generic three-dimensional shell assuming that its 
behavior is membrane and then, analogous to the case of plane problems. We will 
refer to the surface projected on a horizontal plane, on which we will evaluate the 
projected tensions. Then we will pass to the variational formulation, obtaining a 
functional energy to be minimized that will depend both on the geometric form of 
the vault and on its stress state.  
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Within the present study several numerical simulations on vaulted structures have 
been developed by using this mechanical model. In particular, the case study, 
presented in the continuum approach, has been analyzed via LSM methodology for 
researching a safe thrust surface in equilibrium with applied loads. In addition, a 
static load multiplier is iteratively obtained, by increasing the live loads over several 
steps and verifying, for each interaction, the existence of a corresponding statically 
admissible state of equilibrium via lumped stress method. 

The curvature will also be expressed as nodal values, obtained by appropriately 
mediating the slope jumps between the various triangles that converge in the node in 
question. 

Such a lumped stress approach provides statically admissible force network in 
accordance with no-tension constraints. 

Usually, relaxation methods are used to transform an ill-conditioned minimization 
problem into a well-conditioned one, introducing an appropriate "relaxation" of the 
functional to be minimized [57],[58]. 

The concentrated stress method, on the other hand, operates in reverse: the original 
function to be minimized (complementary energy of the flat body) is strictly convex 
on the space of the admissible functions. The introduction of a family of relaxed 
functionalities, dependent on the dimension h called primary and dual mesh, allows 
an extension of this space, introducing the possibility of modeling the stress field 
through concentrated stress. 

In this perspective, the convergence of the method could be proved using arguments 
typical of the theory of convergence, that is showing that the succession of the least 
of the relaxed functional converges to the solution of the original problem, in a weak 
sense, for 0h  . 

As already noted, another approach was followed, demonstrating the convergence of 
LSM in the theory of mixed methods to finite elements. 

In fact, mixed methods are often used to approximate a certain problem to partial 
derivatives by means of two or more sub-problems of a lower order (primary 
problem and secondary problem), so that the space of the admissible functions is 
extended. 

Glowinski [118] first demonstrated the convergence of mixed methods. 
Subsequently, Ciarlet and Raviart [119] determined the convergence speed of these 
methods when interpolating polynomials of degree are used for both the primary and 
secondary problems, while Scholtz [120] deduced a similar result for piecewise 
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linear polynomials. 

The peculiar aspect of the stress and concentrated deformation methods lies in the 
approximation used for the constraint that links the primary and secondary sub-
problems (internal constraint). It allows you to decouple these two problems, 
ultimately reaching a minimum two-field problem (Airy function and tension field) 
without constraints.  

The second discrete approach follows the same schematization of the first as regards 
the modeling of the masonry as a lattice of rods.  Where it is not possible to find a 
solution in the case of unreinforced masonry by LSM procedure, we can use a 
tensegrity approach to design a non-invasive reinforcement with a linear 
programming technique, which defines a cloud of points through the use of modern 
instruments such as laser-scanners or drones. 

In fact, using the LSM procedure, when the stress state in unidirectional, we have 
fractures of the masonry surface, which can be repaired by the selective and non-
invasive insertion of fiber-reinforced elements. 

Recently a study [59] has presented a tensegrity approach to the ‘minimal-mass’ 
FRP-/FRCM reinforcement of masonry domes and vaults. This method uses 
tensegrity concepts to create an optimal resisting mechanism of the reinforced 
structure, under given loading conditions, in compliance with the ‘Italian Guide for 
the Design and Construction of Externally Bonded FRP Systems for Strengthening 
Existing Structures’ [60]. Such an approach permits the designer to describe the 
response of the reinforced structure using simplified schemes, by assuming that 
tensile stresses are directly taken by the FRP reinforcements, and the stress level may 
be determined by adopting a distribution of stresses that satisfies the equilibrium 
conditions but not necessarily the strain compatibility. This method regards the 
reinforced structure as a tensegrity network of masonry rods, working in 
compression while the tension elements correspond to the FRP-/FRCM- 
reinforcements, theoretically are acting as elastic-perfectly-plastic members. It 
optimizes each node of a discrete model thus connecting the structure with all the 
neighbors lying inside a sphere of prescribed radius, in order to define a background 
structure with a minimal mass. Timber or steel beams/ties can naturally replace the 
FRP/FRCM reinforcements. The present study generalizes the approach presented 
in [61][62]to the case of 2D and 3D discrete models of masonry structures with 
arbitrary shape. This extension permits us to explore the potential of the tensegrity 
modeling of reinforced masonry structures in the design of non-invasive 
reinforcement patterns of systems formed by masonry walls, vaults and domes. We 
seek to formulate a design that looks for an optimal and lightweight pattern of 
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reinforcing elements giving rise to a minimal load bearing mechanism of the 
examined structure, under given loads and yielding constraints. Thanks to the safe 
theorem of the limit analysis of elastoplastic bodies, this mechanism ensures that the 
reinforced structure is safe under the examined loading conditions, while assuming 
elastic-perfectly-plastic response of all members. A 3D point cloud defines the 
geometry of the structure to be reinforced, obtainable via in-situ laser-scanning, 
together with the material densities and yielding strengths of masonry and 
reinforcing elements. 

The present thesis is aimed at deepening the fundamental understanding of 
continuum and discrete approaches to the static of masonry vaults, and its application 
to the design, modeling, restoration and preservation in engineering fields where 
current knowledge of such systems is only partial. Attention is focused on the 
modelling of these structures in no-tension constraints, under multiple loading 
conditions.  

The structural behavior of masonry vaults are investigated. This work aims to 
develop computational procedures, which allows defining the 3D structural behavior 
of complex masonry vaults. 

These models allow determining the optimal thrust surface and the corresponding 
state of stress for generic vaults, taking into account also the 3D interactions between 
arches that can develop in these structures. These effects, which are negligible for 
some types of vaults, such as for example the barrel vaults, instead become relevant 
for complex vaults, such as the pavilion vaults, in which, due to their geometry. In 
fact, the complex mechanisms developed in their web don’t allow to reduce the vault 
to a series of adjacent arches, without transversal connection. 

The main purpose of the present work is to precisely investigate the structural 
behavior of masonry curved structures focusing on groin vaults and especially on 
cloister vaults and on trying to provide a more exhaustive discussion on the 
mechanisms and actions that are generated within them.  

1.3 Outline of dissertation 

Part I of the thesis is dedicated to the introduction of the research activities developed 
during the author’s PhD studies, and to illustrate the major goals of such research. 

Part II provides theories about the continuum approach of masonry vaults with the 
definition of the thrust surface in the no-tension membrane regime. The equilibrium 
problem of masonry vaults takes into account the characteristics of the masonry 
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material: heterogeneity, good compressive strength, almost no resistance to tension, 
and a high friction coefficient. We begin by investigating the R-adaptive finite 
element techniques to explain how the accuracy and the efficiency of finite element 
solutions can improve results in numerical examples, regarding a case study of a 
cloister vault. In addition, a validation of this approach is presented.  

Part III defines discrete approaches: the lumped stress method and the tensegrity 
modeling of reinforced vaults.  

These approaches can be seen as two complementary approaches. The first evaluates 
the static of unreinforced masonry elements and the evaluation of concentrated 
forces acting under static actions mainly related to their own weight and to the 
uniformly distributed or concentrated load. The second approach however, proposes 
a possible resolution technique of the first one. In fact, the tensegrity approach, also 
applicable under dynamic load conditions, exploits the introduction of FRP or 
FRCM composite elements in the areas of the thrust surface in which uniaxial 
stresses are present and which could result in fractures. 

Numerical examples are described in part IV. We began by investigating the shape 
optimization of the same cloister vault, analyzed via the R-adaptive finite element 
techniques, in the case of unreinforced case and using the Lumped stress Method. 
The proposed method allows for modelling masonry structures as no-tension 
elements and gives, in the case of curved masonry members, the optimized surface 
through a predictor-corrector procedure and the stress function describing the 
membrane stress. The given approach offers a useful tool for predicting the crack 
pattern of unreinforced masonry structures and the associated fields of stress. 

An extension of this approach is shown by researching the collapse load multiplier 
for a masonry arch and a pavilion vault, analyzed via NURBS surfaces by previous 
authors. This study is appropriately validated in this thesis. Such a compressive truss 
network is researched in the region comprised within the intrados and the extrados 
of the vault via an iterative procedure. 

In addition, we analyze reinforced vaults under static and seismic loads of numerical 
examples by the tensegrity approach. Case studies dealing with the FRP-/FRCM-
reinforcement of cloister and groin vaults are considered. 

We end by summarizing the major points of the present study, and suggesting future 
directions of research for the design and testing of physical models of masonry 
vaults, that can be useful for engineering applications. 
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Part II.  Continuum Approaches 

The modeling, as a continuous body, is carried out through homogenization 
techniques, in which there is no longer any distinction between the elements that 
constitute the wall texture and the mortar joints. In this case, it comes as a definition 
of a single finite element or unit cell, which has the task of simulating the global 
behavior of the "masonry" material. The homogenization of mechanical properties 
has been in the last decades of interest to several authors and has led to the definition 
of multiple procedures of homogenization, now available in literature, which follows 
different approaches (Figure 15). 

 
Figure 15: Procedures of homogenization 

Based on this consideration, understanding the equilibrium of structures in masonry 
is thus of primary concern. Huerta very clearly states the importance of equilibrium 
methods for the analysis of masonry structures, framed in an extensive historical 
overview [63]. Limit analysis provides a useful guide [64][65] to determine the 
stability and the assessment of the safety of masonry structures. Thrust surface is 
defined in 3D space by using graphical methods, starting from the concept of the 
thrust line in 2D problems. In particular, R-adaptive finite element models are 
recently proposed in literature. Several numerical examples of unreinforced and 
reinforced vaults under different load conditions are reported in this chapter. We 
present the response of these curved structures by using a R-adaptive finite element 
model based on a Breeder Genetic Algorithm (BGA).  
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2.1 The Thrust Surface 

In this part of my thesis, I will attempt to define a finite element approach to the 
search for a ‘safe’ thrust surface of masonry vaults or domes.  
There always exists a possible equilibrium solution on any surface of thrust within 
the arch. The solution is not the only one. In an arch of sufficient thickness, there are 
infinite possible inverted catenaries or lines of thrust. The equations of equilibrium 
are not sufficient to obtain the inner forces, because the arch is a statically 
indeterminate (hyperstatic) structure. 
To determinate the position of the line of thrust we can refer to many studies. The 
use of graphic statics is a useful method for exploring the infinite possible 
equilibrium solutions, may be applied to the analysis of ancient structures in 
unreinforced masonry and for project to construct new funicular structures. A great 
drawback however is the limit of two-dimensional problems. By introducing the 
concept of thrust surface, we can relate the geometry of the 3D-dimensional 
equilibrium networks to their internal forces.  

2.1.1 From the thrust line to the thrust surface 

Here we discuss the free-body equilibrium of an arch. A stress distribution will exist 
in each joint (which we imagine more or less plane) and the stresses will be 
compressive forces, a "thrust" and the "center of thrust" is the point of application. 
It will be contained within the plane of joint. Hence, the two thrusts in the joints keep 
the keystone even. The other stones behave in the same way until we arrive at the 
springing of the arch. There the abutment must resist a certain thrust. The abutment 
must have adequate dimensions to resist the "thrust of the arch". There are two main 
problems concerning masonry architecture: to design arches that will not collapse 
and buttresses which resist the load. Efficient use of the buttresses is fundamental 
because it could provoke the collapse of the whole structure. 
The locus of the center of thrust forms a line, the "line of thrust." The geometry of 
the arch dictates the form of this line, therefore also its loads and the family of plane 
joints considered (the concept was first formulated by Moseley [65]and followed by 
a detailed mathematical treatment in Milankowitch [66]. 
Naturally, the line of thrust must be contained within the masonry arch to respect the 
main characteristics of the masonry material. It is possible to imagine one voussoir 
acting in tension with the other two voussoirs only via the centers of thrust. By 
inverting the arch, what was a force of compression becomes a tension force: the 
voussoirs now hang like a chain, as reported by  Robison [67]. By use of the form of 
an inverted catenary, Hooke [4] already tried to solve the problem of the figure and 
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thrust of the arches (Figure 16). Hooke’s affirmation: "none but the catenary is the 
figure of a true or legitimate arch or fornix. And when an arch of any other figure is 
supported, it is because in its thickness some catenary is included", was confirmed 
by Gregory [5] some twenty years later. Fig.18 shows the equilibrium of the arch 
with an inner force configuration represented by the inverted catenary by the Italian 
Giovanni Poleni, 

 
a) b) 

 
Figure 16: a) Poleni’s drawing of Hooke’s analogy between an arch and a hanging chain; 

b) Poleni’s analysis of the St. Peter’s in Rome [112]. 

We can use thrust line analysis to explain and discuss the stability of two-
dimensional (2D) structures, but it may not only be applied to them. By applying this 
concept to 3D surface we may define a thrust surface in equilibrium with applied 
loads. The force applied on a surface in a direction perpendicular or normal to 
the surface is also called thrust. This analysis has also been used to carry out pseudo-
three-dimensional (3D) approaches [68][69], which often give rather limited results. 
By the use of either continuous or discontinuous approaches, many extensions of the 
funicular curve approach of 3D problems regarding vaults and domes have been 
recently suggested. The use of stress-function formulations of the equilibrium 
problem [49][51] or maximum modulus eccentricities surfaces are being applied to 
continuous approaches[52][53] while the no-tension stress field through spatial force 
networks generated via 3D funicular constructions [54] are described by 
discontinuous approaches such as the Thrust Network Analysis (TNA) [70][71] or 
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the Lumped Stress Method (LSM) [72][73]. When we consider continuous and 
discontinuous approaches based on stress-functions or the TNA, we are confined to 
parallel loading [52] while maximum modulus eccentricities surfaces call for fixed 
finite element models under certain boundary criteria [53].  In this section, the thrust 
surface is modelled by the R-adaptive finite element model with use of stress-
function formulations of the equilibrium problem to minimize the tensile stresses. 

2.2 Equilibrium problem of masonry vaults 

The main cause of collapse of ancient masonry structures is foundation settlements, 
earthquakes, or long-term deformations [74] and not a lack of compressive strength. 
An optimal structural shape is vital for the equilibrium and stability of structures in 
unreinforced masonry.  
For structures to stand with negligible tensile stresses, the implementation of an 
automated three-dimensional type of graphical equilibrium analysis provides a 
critical review of the various analytical methods for masonry arches and vaults. 
The use of an equilibrium approach for ancient masonry structures is emphasized by 
Huerta [75][76], who also advises the application of compressive thrust line analysis 
to evaluate the range of probable equilibrium conditions within the wider scope of 
limit analysis. 
This section is constrained to equilibrium analysis to masonry vaults. An important 
review of equilibrium methods for the analysis of masonry structures was produced 
by Kurrer [77].  
The analysis of complex vaults with reference to the arch theory is permitted by the 
equilibrium approach. We may imagine the vault divided in a series of arches which 
permits us to look for a line of thrust inside every arch each. By achieving this, we 
find a possible equilibrium solution in compression and according to the “Safe 
Theorem”, the structure is sound. 
Poncelet’s theory [78] suggested applying the elastic theory to masonry arches in 
order to obtain a unique solution (the theory for circular arches made of wood or iron 
was developed by Bresse, [79]). In spite of this, engineers were reluctant to include 
masonry (as we have seen, essentially heterogeneous, anisotropic, irregular) with an 
elastic material (uniform, isotropic, etc.). In fact, until ca. 1880, engineers realized 
arches, made of wood or wrought iron (elastic), while masonry (rigid). Already in 
the 1860’s several elastic analysis of masonry arches were undertaken (for example 
by the Spanish engineer and architect Saavedra). Some masonry bridges had 
Castigliano’s [80] theory of elastic systems applied to them.  The contribution of 
Winkler  was fundamental in the application of the elastic equilibrium approach to 
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masonry arch analysis. He studied all the contemporary theories, and comes to the 
conclusion that elastic analysis was the best choice [81]. He proposed that the 
"Störungen" (perturbations) can alter the position of the line of thrust. The roots of 
these perturbations were: possible deformation of the centering during construction, 
temperature fluctuations, yield of the buttresses under the thrust. Cracks in the arch 
will be the results of such perturbations, therefore affecting the position of the line 
of thrust, which could be very different from the calculated (elastically). Winkler, 
then, suggested a method of controlling the position of the line of thrust by the use 
of internal hinges during the building phase. Thanks to Winkler elastic analysis 
appears to be more logical. Three principal points are to be considered [82]: 

 stating the equilibrium equations;   
 elastic equations are formulated, which compare how the internal forces 

correspond to deformations of the structure (for example, the bending 
moment is proportional to the curvature);  

 the compatibility of deformation is assumed (affirmations about the way the 
elements are connected and about the boundary conditions: for example, 
that the abutments of the arch are flush).  

By solving the resulting set of equations a unique, elastic, solution is obtained. Using 
some admissible values stresses are calculated and compared with some obtained by 
dividing the exerted forces of the material obtained in laboratory tests. 
It is important to bear in mind the resultant system of equations are very sensitive to 
small fluctuations in the boundary conditions.  
We now move on to a masonry arch over a centering. After decentering the arch 
starts to push against the abutments, which are not rigid and they will give a little. 
The span naturally increases and the arch must fit into this enlargement of the span. 
There is one way in which the arch can do this. A fissure opens at the keystone 
(downwards) and two other fissures open at the abutments (upwards). 
The arch has three cracks and a unique line of thrust is possible. Possibly the 
movement is not even: perhaps the right abutment could yield horizontally, as well 
as vertically. Each movement creates cracking, and these fissures open and close to 
allow the arch to resist the forces, it is subject to. The cracking creates the position 
of the line of thrust. The internal forces change completely due to variations of the 
formations of the fissures and consequently the thrust line moves abruptly from one 
position to another. Both large and small fissures produce the same effects regarding 
the movement of the thrust line. These types of perturbations are impossible to 
predict, as is the actual line of thrust. We know the line of thrust has to be contained 
in the thickness of the arch. The minimum thrust and the maximum thrust are the 
two extreme positions of the thrust line, which corresponds to, as it is evident in the 
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Figure 17. The cracks behave like hinges and this concept of "hinge" is fundamental 
to the behavior of masonry structure. Deformations result from the division of the 
structure in to several parts which, linked via the hinges, allow a certain amount of 
movements. Cracks are not always dangerous, but collapse of the structure may 
result from displacements of the abutments.  

 
a) b) 

Figure 17: a) Arch in equilibrium condition; b) arch in in incipient collapse with 
displacements of the abutments. 

2.2.1 Limit analysis of masonry arches  

Heyman [12] stated explicitly three of the basic assumptions necessary to understand 
the limit analysis of masonry arches: 

 Stone has no tensile strength: this is almost exactly true in this kind of 
structures, made up of voussoir laid either dry or with very weak mortar: 
although stone itself may have some tensile strength, the joints will not, 
therefore no tensile forces can be transmitted from one voussoir to another.  

 Sliding failure cannot occur: in fact, friction between voussoirs is high 
enough to suppose that they cannot slide on one another. Besides, shear 
forces are low.  

 The compression strength, can be supposed to be infinite: as we can see from 
the analysis of existing bridges, stresses are low enough not to allow 
crushing of the material. This observation is equivalent to the assumption 
that stone has an infinite compressive strength. 

Based on these assumptions, an important point is the definition of a thrust line for 
a masonry arch. It can be define within the arch if this arch will have at least one 
possibility to remain “in one piece”. This does not suggest that the arch will always 
stand nor does it demonstrate that the arch will collapse, as there is always the chance 
that slight movement will cause cracks leading to collapse.  
In this context, working with the assumption that it was enough to design the 
structure with a certain degree of safety, Rankine [83] said that an arch would be 
safe if it is possible to draw a line of thrust within its middle-third. Therefore, it was 
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enough to design the structure, following this approach to obtain a certain degree of 
safety. Many bridges and buildings designed in such a way remained sound for 
decades or centuries. 
The theory of limit analysis and the demonstration of the fundamental theorems 
brought the solution to the problem in the XXth with Gvozdev [84] that refer this 
study to Heyman’s approach. In particular, the Safe Theorem affirms that: “If a line 
of thrust can be found which is in equilibrium with the external loads and which lies 
wholly within the masonry, then the structure is safe”. In the case of the masonry 
arch, any line of thrust compatible with the applied loads will satisfy the equilibrium 
conditions. Therefore, it is possible to draw a line of thrust (equilibrium) within the 
arch (no-tension material) which proves absolutely that the arch is stable and that 
collapse will happen. The Safe Theorem has been successfully applied in a vast 
number of engineering problems in practice. Therefore, finding the actual line of 
thrust can be solved by the Safe Theorem of Limit Analysis.  

2.2.2 The Safe Theorem 

We can refer to Heyman’s Safe Theorem as it is the theoretical basis for several ways 
of calculating methods in the analysis of masonry vaults. 
Assuming that a few conditions on the material behaviour are satisfied, we can use 
the theorem to calculate the existence of an internal force system which equilibrates 
the external loads and guarantees that the masonry structure is in a stable equilibrium 
state. The assumptions here are that the stone blocks have infinite compressional 
resistance, and the contacts between them resist only compression and friction, 
Heyman also assumed that the blocks are rigid.  In this way the same equal geometry 
of the structure is valid for any type of force system which the structure can 
equilibrate. 
Using these calculations, Heyman thus stated the Safe Theorem for masonry arches: 
‘‘The structure is safe if a line of thrust can be found which is in equilibrium with 
the external loads and which lies completely within the masonry”. 
The Safe Theorem has been successfully applied in a great number of engineering 
problems, with particular to arches and vaults. 
 It was widely accepted that Plastic Limit Analysis can be used to check if the 
structure stands in the given geometry under its own weight  in the stability analysis 
of arches and vaults.  

2.2.3 Collapse mechanisms 

The collapse of arches should be studied if we are to understand completely masonry 
arch behaviour. But, we must ask ourselves how is it possible that a structure built 
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with extremely strong material can collapse. A catastrophic deformation can cause 
collapse, possibly with no movement of the abutments. When the line of thrust 
reaches the limit of the masonry a "hinge" forms, which permits rotation (Figure 18). 
An arch is statically determined by the three hinges, which form the arch and keep 
the structure stable. An extra hinge converts the arch into a four-bar mechanism 
leading to collapse. Increasing the load will form four hinges and cause collapse 
without destroying the material. This can occur in an unstable arch with the addition 
of extra load, which sufficiently deforms the line of thrust. This process is clarified 
by the hanging chain analogy.  
The standard capacity of masonry is measured by the ultimate limit state. That said, 
the ultimate limit state of a wall is univocally defined by the kinematic mechanism 
of collapse, expressed by the form, and by the associated load, the said load of the 
mechanism. The mechanism load must therefore exceed the extreme load: this is the 
required verification of masonry structures. The statement concerns any masonry - 
vestments, columns, vaults - as long as they are  in natural conditions; while it does 
not apply to masonry reinforced by resistant external contributions traction, where 
the ultimate load may not be a mechanism.  
Kooharian defines the concept of collapse with the “unsafe theorem”. In fact a state 
of collapse can be found if a kinematically admissible condition exists. The 
kinematically admissible condition is characterized by the state in which the work 
done by the external loads is greater or equal than to the work of internal forces.  

Figure 18: Main kinematic schemes. 

2.3 R-adaptive finite element model  

In this part, we report a hint of the finite element modeling used in continuous 
approaches. Specifically, this type of continuous approach typically make use of 
stress-function formulations of the equilibrium problem that minimize the tensile 
stress in the masonry elements. 

To assess the quality of the finite element solution, we must apply the mesh-adaptive 
method. Using this method, the computational cost of large-scaled structures may be 
reduced . The mesh-adaptive method may be classified into h-, p-, and r-adaptive 
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method. Unlike the first two which increase the cost of the solution, the r-adaptive 
method technique does not increase the computational cost of obtaining a solution 
since it introduces no new additional nodes and does not increase the degree of the 
element basis functions. A stable number of mesh points in a constant connectivity 
structure is redistributed so that the fine-scale features of interest are best resolved 
in this approach. A powerful solution for doing this is to move the points so that the 
point density is controlled by equidistributing an appropriate scalar or matrix monitor 
function.  

Genetic/evolutionary algorithms are particularly useful in structural optimization 
problems according to a number of studies. In particular, the funicular shapes of 
curved structures which provide minimal compliance configurations are revealed by 
such optimization strategies [85]. In the 1960s and optimization through 
evolutionary algorithms was first developed and now refers to a family of 
probabilistic search methods inspired by the principle of natural selection 
[86][87]the solution space is multidimensional, multimodal, discontinuous, and 
noisy [88]. We deal with a r-adaptive finite element approach to the search for a 
‘safe’ thrust surface of a masonry dome, which is either unreinforced, or reinforced 
through externally bonded Fiber Reinforced Polymer (FRP) and/or Fabric 
Reinforced Cementitious Mortar (FRCM) systems over a portion of the boundary by 
a Breeder Genetic Algorithm (BGA). This is a specific type of evolutionary 
optimization algorithm, that uses a both stochastic and a deterministic selection 
scheme, in that the fittest “individuals” (solutions) are selected from a current 
generation and enter the “gene pool” to be recombined and mutated as the basis to 
form the new generation, a fitter population, and arrive at an optimal solution 
[89][90]. It is assumed that the dome resists the external loads through a thrust 
surface contained in a given search domain, which exhibits zero or almost-zero 
tensile stresses over the unreinforced portion of masonry. An elastic finite element 
model is permitted to move within the search domain, utilizing a BGA to manipulate 
the coordinates of the mesh nodes within the prescribed bounds, and minimizing the 
maximum tensile stress suffered by the unreinforced masonry (fitness function).  

The proposed method is able to deals with arbitrary loading conditions, structural 
inhomogeneity (e.g., no uniform material properties), and geometries.  The modeling 
of FRP/FRCM reinforcements is carried out following Baratta and Corbi [50][51] 
by permitting the thrust surface to move outside the physical area of the structure 
corresponding to the reinforced regions. A benchmark example allows us to 
emphasize the technical potential of the proposed method, which allows to design 
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optimal positioning of FRP/FRCM reinforcements, and the resulting benefits with 
reference to crack damage prevention and the load bearing capacity of the structure. 

2.3.1 Numerical model 

The proposed numerical procedure is formulated within Heyman’s safe theorem, by 
assuming the structural response of a masonry vault through a compressive 
membrane state across a material surface S (thrust surface), contained in vault 
volume. 
The hypotheses of the modelling are: 
-  no tensile strength of masonry; 
-  infinite compressive strength of masonry; 
-  sliding failure does not occur. 

The last assumption requires values of friction between blocks of the order of 0.5–
0.6.At least a thrust surface can be found if the equilibrium of vault under external 
loads exists. The thrust surface is searched through the refinement adaptive FEM 
described below, driven by a minimization procedure of tensile stresses by means of 
a BGA. Such an adaptive FEM allows to approximate the no-tension model of 
masonry, starting from a FEM model of vault developed within the linear elasticity 
via shell elements with dominant membrane behaviour (Figure 19). Let denote the i-
th coordinate of the j-th node, xi,j; the lower bound of xi,j (corresponding to the 
intrados of the vault for unreinforced masonry), xi,jmin; the upper bound of xi,j 
(corresponding to the extrados of the vault for unreinforced masonry), xi,jmax; 
control variables ranging in the interval [0,1], ξi,j. 

 
Figure 19: FEM modelling [113]. 
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Let denote the i-th coordinate of the j-th node, xi,j; the lower bound of xi,j 
(corresponding to the intrados of the vault for unreinforced masonry), xi,jmin; the 
upper bound of xi,j (correspond-ing to the extrados of the vault for unreinforced 
masonry), xi,jmax; control variables ranging in the interval [0,1], ξi,j. 

We search a safe thrust surface of vaults by moving FEM nodes within a design 
domain, expressed as follows: 

,࢞ = ,࢞ + ࢞ࢇ,࢞൫,ࣈ  −  ൯,࢞

by minimizing the fitness function corresponding to the average value of the 
principal tensile stresses in unreinforced masonry.  

More specifically, if we assume n and N (=3 n if all the 3 nodal coordinates 
governing the r-adaptation strategy) are the total number of the FEM nodes and 
control variables ξi,j, respectively, we can introduce the m-th “individual” 
corresponding to the t-th generation: 

࢚࢞ = ,,࢞) … …  .(,࢞,
 

 
Figure 20: BGA’s flow chart [113]. 



Continuum Approaches 

45 
 

The BGA find the safe thrust surface by performing the following steps (Figure 20): 

1. an initial population of λ individuals is generated; 

2. the μ best individuals are selected within the current population of λ elements; 

3. the best individual is retained for the next generation; 

4. the remaining λ-1 individuals of the next generation are created by means of 

the Extended Intermediate Recombination (EIR)[90] and mutation the μ best 

individuals of the current generation; 

5. Steps 2 through 4 are repeated until the value of fitness function is less than 

a fixed value of tensile stress. 

The proposed procedure allows us to approximate the elastic no-tension constitutive 
model of unreinforced masonry within a linear elastic FEM analysis. 

2.3.2 Validation 

The procedure was validated by considering the masonry vault studied by D'Ayala 
and Tomasoni [91] with span of 6 m, rise of 3 m and thickness of 0.12 m, subject 
only to self-weight. The mechanical properties of the material are indicated in Table 
1 (γ1 = specific weight of masonry, Em = Young modulus of masonry).  

Table 1 – Main mechanical properties of the materials 

 ଵߛ
(kN/m3) 

Em 
(MPa) 

18.14 5000.00 

The comparison between the mechanical response obtained by the proposed 
procedure and the predictive behaviour of D’Ayala and Tomasoni [91] is performed 
in terms of thrust surface and natural arches formation. 

Let consider an eighth of the vault, by accounting the symmetry of the vault 
geometry and the loads, and let divide it in four slices (Figure 21,a). 

D’Ayala and Tomasoni shown the cloister vault is characterised by the formation of 
two plastic hinges at the 3rd and 4th slices of the vault.  The first one is located at the 
vault intrados for an angle of 70 with respect to the vertical direction, while the 
second one is located at the vault extrados for an angle of 30° with respect to the 
vertical direction. 
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a) 

b) 

Figure 21: (a) Slices definition and (b) natural arches in the limit analysis solution [48]. 

The authors also highlighted the natural arches configuration of the vault in the limit 
analysis solution (Figure 21,b). The thrust surface obtained by the proposed 
procedure allows predicting the hinges formation above mentioned (Figure 22, 
Figure 23) procedure is also capable to describe the natural arches mechanism, 
accounting the distribution of the minimum principal internal forces (Figure 24). We 
denote ‘RTS’ the Reference Thrust Surface corresponding to the midsurface of the 
cloister and ‘MTTS’ the Minimum Tension Thrust Surface obtained via the proposed 
numerical procedure. 

 
Figure 22: Thrust surface section at centroid of the 3rd slice [113]. 
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The maximum and minimum principal stresses associated to RTS are: σmax = 4.29 x 
10-1 MPa, σmin = - 4.12 x 10-2 MPa, respectively, and the average value of tensile 
principal stresses are equal to: σave = 3.76 x 10-8 MPa.  

The MTTS gives the maximum principal stress (σmax = 9.00 x 10-2 MPa) and the 
average value of the tensile principal stresses (σave = 1.14 x 10-8 MPa) considerably 
smaller than that obtained by the RTS. On the contrary, the minimum principal 
compressive stress of the MTTS (σmin = -3.73 x 10-2 MPa) exhibits a negligible 
variation if compared to that given by the RTS (Figure 24). 

 
Figure 23: Thrust surface section at centroid of the 4rd slice [113]. 

RTS: maximum principal internal forces 
[N/m]  

RTS: minimum principal internal forces 
[N/m]  
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MTTS: maximum principal internal forces 
[N/m]  

MTTS: minimum principal internal forces 
[N/m]  

Figure 24: Views of the unreinforced vault subject to its self-weigh [113]. 

2.3.3 Case study 

We analyze a tuff masonry cloister vault subject to static and dynamic loads.  

The cloister vault, as well known, is generated by the intersection more barrel vaults 
set on opposite sides of a base polygon. The stress state in this kind of vault is more 
complex than that exhibited by groin and barrel vaults.  

The examined vault is characterized by the constant thickness of 0.25 m and its 
geometry is depicted in Figure 25.  

 
Figure 25: Plan and section of the cloister vault [113]. 

The masonry framework is modelled, within the numerical procedure, by means of 
the SAP90 FEM code. The mesh consists of 441 nodes and 800 triangular shell 
elements with dominant membrane thickness (Figure 26). 

We assumed the physical and mechanical properties of the materials, reported in 
Table 2 (ߛଶ = specific weight of filling material). The basis of the cloister vaults is 
restrained by fixed hinge supports.  
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Figure 26: 3D, front and top views of the finite element modelling [113]. 

Table 2 – Physical and mechanical properties of the materials 

 ଵߛ
(kN/m3) 

 ଶߛ
(kN/m3) 

Em 
(MPa) 

15.00 10.00 1500.00 

We consider three static case studies:  

 cloister vault subject to its self-weight - SF;  
 cloister vault subject to the dead and live loads - DL;  
 cloister vault subject to the dead and half side live loads - DHL.  

We also examine the vault under the load combination obtained by vertical and 
seismic loads.  

The seismic action is modelled according to static approach suggested in European 
Standard EN 1998-1 [92]. In particular, horizontal forces in the X direction are set 
0,50 of vertical forces (corresponding to the action of dead and live loads). 

Finally, we propose a strengthening intervention with FRCM composites of the vault 
and we study the mechanical behaviour of the reinforced vault. 

Within numerical simulations, the fitness function is applied to unreinforced 
masonry; the relocating of FEM nodes of the unstrengthen masonry is allowed along 
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the Z-axis of the Cartesian frame within the vault volume; the relocating of FEM 
nodes of reinforced masonry is allowed along the Z-axis beyond the physical domain 
of the structure for the FRCM regions, on the opposite side of the reinforcements. 
Plots of maximum and minimum principal internal forces are given in the following, 
referred to the RTS and the MTTS. 

2.3.4 Unreinforced vault 

2.3.4.1 Self-weight - SF 

Firstly, we apply the numerical model to the vault subject to its self-weight. Starting 
from the FEM analysis on the RTS and the MTTS, the maximum and minimum 
internal forces acting on midsurface of shell elements are obtained (Figure 27). 
In terms of local stresses, the maximum and minimum principal stresses on the RTS 
are equal to σmax = 3.04 x 10-2 MPa and σmin = - 4.40 x 10-2 MPa, respectively, 
and the average value of the tensile principal stresses is equal to σave = 3.73 x 10-9 
MPa. 
In terms of local stresses, the maximum and minimum principal stresses on the RTS 
are equal to σmax = 3.04 x 10-2 MPa and σmin = - 4.40 x 10-2 MPa, respectively, and 
the average value of the tensile principal stresses is equal to σave = 3.73 x 10-9 MPa.  

Figure 27: Plan and section of the cloister vault 

RTS: maximum principal internal forces 
[N/m]  

RTS: minimum principal internal forces 
[N/m]  
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MTTS: maximum principal internal forces 
[N/m]  

MTTS: minimum principal internal forces 
[N/m]  

Figure 28: Top views of the unreinforced vault subject to its self-weight [113]. 

The results obtained by considering the MTTS highlight the maximum principal 
stress (σmax = 8.24 x 10-4 MPa) and the average value of the tensile principal stresses 
(σave = 5.35 x 10-10 MPa) are significantly smaller than that obtained by the RTS, and 
the minimum principal compressive stress given by the MTTS (σmin = - 4.08 x 10-2 
MPa) is almost unchanged compared to that given by the RTS (Figure 28). 

2.3.4.2 Dead and live loading - DL 

Let us examine the vault subject to the following static design load combination, 
LCSt: 

࢚ࡿࡸ = ࡳ + ൫ࡳ, + +,൯ࡳ    ࡽ

where: 

 ܩଵ is the dead load due to the self-weight of the vault; 
 ܩଶ,ଵ is the dead load due to the weight of the filling material; 
 ܩଶ,ଶ is the dead load due to the permanent overload and it is assumed equal 

to 3.00 kN/m2; 
 ܳ is the live load ad it is fixed equal to 4.00 kN/m2. 

The FEM analysis referred to the RTS and the MTTS  of Figure 29 gives the 
maximum and minimum internal forces acting on midsurface of shell elements.  

The corresponding maximum and minimum principal stresses on the RTS are equal 
to σmax = 1.03 x 10-1 MPa and σmin = -1.40 x 10-1 MPa, respectively, and the average 
value of the tensile principal stresses is equal to σave = 1.26 x 10-8 MPa.  
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The MTTS allows to point out the maximum principal stress (σmax = 7.20 x 10-3 MPa) 
and the average value of the tensile principal stresses (σave = 3.01 x 10-9 MPa) are 
significantly smaller than that obtained by the RTS, and the minimum principal 
compressive stress given by the MTTS (σmin = -1.42 x 10-1 MPa) remains almost 
unchanged in magnitude compared to that given by the RTS (Figure 30). 

  
Figure 29: Top views of the unreinforced vault subject to dead and live loads 

RTS: maximum principal internal forces 
[N/m]  

RTS: minimum principal internal forces 
[N/m]  

MTTS: maximum principal internal forces 
[N/m]  

MTTS: minimum principal internal forces 
[N/m]  

Figure 30: Top views of the unreinforced vault subject to dead and live loads [113]. 

2.3.4.3 Dead and half side live loading - DHL 

The vault is analyzed under the LCSt combination of the previous case, by assuming 
half side live loads (Figure 31). The MTTS is obtained starting from the RTS (Figure 
14) and the corresponding membrane stress maps are depicted in Figure 32.  
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Figure 31: Plan of the live loads (the live loads are applied on the grey surface [113]. 

The RTS gives the maximum and minimum principal stresses of 8.08 x 10-2 MPa 
and -1.18 x 10-1 MPa, respectively. The corresponding average value of the tensile 
principal stresses of 1.03 x 10-8 MPa is also obtained.  

The results show the maximum principal stress (σmax = 6,04 x 10-3 MPa) and the 
average value of the tensile principal stresses (σave = 2.75 x 10-9 MPa) of MTTS, 
which are significantly smaller than that obtained by the RTS. The minimum 
principal compressive stress given by the MTTS (σmin = -1.18 x 10-1 MPa) is almost 
unchanged compared to that given by the RTS (Figure 33). 

 

Figure 32: RTS and MTTS configurations 

RTS: maximum principal internal forces 
[N/m]  

RTS: minimum principal internal forces 
[N/m]  
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MTTS: maximum principal internal forces 
[N/m]  

MTTS: minimum principal internal forces 
[N/m]  

Figure 33: Top views of the unreinforced vault subject to dead and half side live loads 
[113]. 

2.3.5 Reinforced vault 

2.3.5.1 Seismic loading and strengthening with FRCM strips 

Let us examine the vault subject to the following dynamic design load combination, 
LCDyn: 

࢟ࡰࡸ = ࡱ + ࡳ + ൫ࡳ, + +,൯ࡳ  ࡽ,࣒

where: 
 ܧ is a the load due to the seismic excitation along the X-axis of the 

Cartesian frame; 
 ܩଵ is the dead load due to the self-weight of the vault; 
 ܩଶ,ଵ is the dead load due to the weight of the weight of filling material; 
 ܩଶ,ଶ is the dead load due to the permanent overload and it is assumed equal 

to 3,00 kN/m2; 
 ߰ଶ,ଵ is the combination coefficient and it is assumed equal to 0,80; 
 ܳ is the live load ad it is fixed equal to 4,00 kN/m2. 

The effects of the seismic excitations are modeled by means of horizontal forces 
according to a conventional static approach to seismic actions on the buildings 
(European Standard EN 1998-1) [93]. The seismic actions are set 50% of the vertical 
forces.  

The RTS and the obtained MTTS are reported in Figure 34 and the corresponding 
maps of the maximum and minimum internal forces are shown in Figure 35. The 
maximum principal stresses on the RTS and the MTTS are equal to  σmax = 3.50 x 
10-1 MPa and σmax = 1.50 x 10-1 MPa, respectively; the minimum principal stresses 
on the RTS and the MTTS are equal to σmin = - 4.28 x 10-1 MPa and σmin = - 5.28 x 
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10-1 MPa, respectively; and the average values of tensile principal stresses are equal 
to σave = 4.00 x 10-8 MPa and σave = 2.65 x 10-8 MPa, respectively.  

It is worth noting that, also in this simulation, a relevant reduction of the maximum 
tensile principal stresses (56 %) can be obtained by considering the MTTS as an 
alternative configuration to the RTS. 

The FEM analysis on the MTTS has highlight, close to the vault basis, the principal 
tensile stresses are comparable to the tensile strength of tuff masonry (1.00 x 10-1 
MPa) and the corresponding principal directions are roughly horizontal. 

Therefore, a selective strengthening intervention with composite materials is 
proposed.  

More specifically, commercial unidirectional FRCM strips is considered, whose 
mechanical properties are given in Table 3.  

We assume to place the reinforcement at the extrados, close to the vault basis subject 
to principal tensile stresses comparable to the masonry tensile strength, and the fibre 
orientation parallel to the vault basis.  

 

Figure 34: RTS and MTTS configurations loads 

RTS: maximum principal internal forces 
[N/m]  

RTS: minimum principal internal forces 
[N/m]  



Part III: Discrete approaches 
 

56 
 

MTTS: maximum principal internal forces 
[N/m]  

MTTS: minimum principal internal forces 
[N/m]  

Figure 35: Top views of the unreinforced vault subject to seismic loads [113]. 

The FEM analysis on the MTTS of the reinforced vault (Figure 36), gives the 
maximum and minimum internal forces acting on midsurface of shell elements 
(Figure 20). The corresponding maximum tensile stresses in unreinforced masonry 
are less than the tensile strength of tufa masonry. 

 
Figure 36: 3D views of the reinforced vault (the FRCM strips are applied on the blue 

surface)[113]. 

Table 3 – Mechanical properties of FRCM 

Carbon fiber 
Tensile strenght 

(MPa) 
Young modulus 

(GPa) 
Density 
(g/cm3) 

Ultimate strain 
(%) 

4800 240 1.82 13.30 
Cementitious Matrix 

Compressive strenght  
(MPa) 

Flexural strenght 
(MPa) 

Young modulus 
(MPa) 

≥ 20.0 (after 28 d) ≥ 3.5 (after 28 d) ≥ 7000 (after 28 d) 
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Figure 19– MTTS configuration. 

Figure 37: Top views of the reinforced vault subject to seismic loads of ‘MTTS’ 
configurations [113]. 

  

MTTS: maximum principal internal forces 
[N/m]  

MTTS: minimum principal internal forces 
[N/m]  
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Part III. Discrete Approaches 

In this Part of the thesis we investigate computational approaches that describe 
particle interactions in discrete systems.  Two approaches are presented as useful 
tools for the evaluation of the stability of vaulted masonry structures. Specifically, 
they aim to highlight an optimal form and mass strategy, by defining a lattice model 
and respecting the limit analysis theorem.  
In the first case, we deal with the description of the Lumped Stress Method (LSM), 
which is applied to unreinforced masonry structures, under static loads, given by 
self-weight and distributed or concentrated loads. On the other hand, we use the 
tensegrity approach to present a topological optimization of the reinforcement of 
masonry vaults and domes established by meshes of Fiber Reinforced Polymers 
(FRP) and/or Fabric Reinforced Cementitious Matrix (FRCM), in the case of static 
and dynamic loads.  
From the conceptual point of view, we will see how the two approaches are used as 
complementary. 

3.1 The lumped stress method 

The first phase of the research activity carried out for the present thesis work has 
been oriented towards the formulation of mechanical models and numerical 
algorithms for the study of the static behavior of vaults and masonry domes. 
A "no-tension" mechanical model has been proposed which assumes the formation 
inside a vaulted wall structure of a resistant surface S (thrust surface) can be 
subdivided, in more general cases, into a portion subjected to biaxial compression, 
in a portion subjected to uniaxial compression and in a completely discharged 
portion. 
According to the "no-tension" model, the first one does not experience any 
fracturing; the second can fracture along the compression isostatic, while the third 
can fracture along arbitrary directions. 
The problem of membranous balance has been referred as a potential of the efforts 
projected on the base (or platform) of the vault, according to a Pucher approach. 
The use of a particular method of variational approximation of the equilibrium 
problem (of the "non-conforming" type), has led to represent the regime of 
membrane stresses through a spatial lattice of concentrated efforts. 
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By virtue of the "isostaticity" of the membranous problem, to every shape of the 
surface S corresponds one and only one lattice of stress concentrated in equilibrium 
with the external loads. However, for a generic form of S, balanced efforts do not, in 
general, satisfy the constitutive constraint of non-tensile strength. 
The problem is then reduced to the iterative search for a surface S to which purely 
compressive stresses correspond and which is contained entirely within the thickness 
of the solid. 

3.1.1 Membrane problem in Pucher approach 

The Lumped stress method has basically, adopted the Pucher approach. Such an 
approach is particular suitable for the formulation of the membrane equilibrium 
problem.  
Convenient systems of coordinates for the formulation of the deformation problem 
are the Cartesian one for shells of translation and the cylindrical one for shells of 
revolution. This same choice of coordinates is stated in Pucher's formulation of the 
membrane stress problem and accounts for the general applicability of this method. 
In many formal aspects, the present calculation of membrane deformations is an 
extension of the Pucher method and we therefore begin with a brief review of the 
latter.  

 
Figure 38: A shell arbitrary configuration whose middle surface is given as z(x,y) in the 

cartesian system of coordinates (left); magnified view is shown ot a differential element of 
the shell, this element being bounded by arcs of coordinate lines (right) [114]. 
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Figure 38 (left) shows a shell of arbitrary configuration whose middle surface is 
given as z (x, y) in the Cartesian system of coordinates. A few coordinate lines x 
constant and y constant are indicated on it. In Figure 38 (right) a magnified view is 
shown as element of the shell, this element being bounded by arcs of coordinate 
lines. It is loaded by the external forces px, py, pz, per unit area of the shell and held 
in equilibrium by the skew system of membrane forces Nx, Ny, and Nxy per unit 
length of coordinate line. 

The equality of the shear resultants, Nxy Nyx readily follows. In the Pucher method 
we write the equilibrium equations for the shell element in terms of the horizontal 
components of the membrane forces per unit length of horizontal line element dx or 
dy, denoted as Nx, Ny, Nxy, and shown in fig. 2. Likewise, the external loads are 
expressed per unit horizontal area of dxdy and denoted as px, py, pz. This set of 
forces will be referred to as the projected forces of the shell element. It is readily 
seen that the equilibrium equations for the shell element in the x and y directions in 
terms of the projected forces turn out to be identical to the equilibrium conditions of 
plane stress or plane strain, namely: 

డே௫
డ௫

+ డே௫௬
డ௫

=  (1)                  ;ݔ − 

ݕ߲ܰ
ݕ߲ +

ݕݔ߲ܰ
ݔ߲ =  (2)     ;ݕ− 

The equilibrium equation in the z-direction is: 
డே௫
డ௫

௫ݖ + ௫ܰݖ௫௫ + డே௬
డ௬

௬ݖ + ௫ܰݖ௬௬ + డே௫௬
డ௫

௬ݖ + డே௫௬
డ௬

௫ݖ + 2 ௫ܰ௬ݖ௫௬ =  (3)  ;ݖ− 

by way of further comparison with the plane stress problem, takes the place of the 
compatibility equation there. As in the plane theory of elasticity, we introduce the 
Airy stress function ߮ according to definitions, which satisfies the equilibrium 
equations (1) and (2) automatically. Equation (3) is left to be satisfied by the stress 
function and takes the form: 

(߮)ܮ = ߮௫௬ݖ௫௫ − 2߮௫௬ݖ௫௬ + ߮௫௫ݖ௬௬=−௭ +  ;௬݀௫௬⟅௬௬ݖ+௫݀௫⟅௫௫ݖ+௬ݖ௬+௫ݖ௭

where L will be called the Pucher operator. 

3.1.2 Variational approach to the equilibrium on masonry valuts 

Let us consider a double-curved solid with an elastic behaviour and let us assume 
that it resists external loads by exhibiting a no tension membrane regime. We can 
see this surface, as the thrust surface S of a masonry vault. It is contained in a design 
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domain, and its shape function f = f(x1, x2). The membrane behaviour is modelled by 
means of a discrete network of compressive forces, which allows us to approximate 
the no-tension model of masonry by the Pucher’s approach defined above (Figure 
39). 

Let Ω denote the horizontal projection of the thrust surface  and let {x1, x2, x3} be 
Cartesian coordinates with unit base vectors {e1, e2, e3}, such that x3 is perpendicular 

to Ω. The covariant base vectors can be easily obtained by regarding x1 and x2 as 
curvilinear coordinates over S (Monge’s coordinates), as follows: 
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Figure 39: Thrust Surface – S [115]. 

The equilibrium equations of S are conveniently formulated with reference to the 
non-orthogonal basis {e1, e2, a3}: 
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Here, q(i)(i = 1, 2, 3) denote the external forces per unit area of Ω acting on S, while 
Pαβ = JNαβ (α, β = 1, 2) denote the projections of the membrane stress resultants Nαβ  
onto Ω. The Pαβ stresses can be derived from the Airy potential (or stress function) 
φ, assuming pure vertical loading (q(1) = q(2) = 0): 
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The equation (9) can be rewritten by substituting equations (10)-(11)-(12), as 
follows: 

0
2






 q

xx
a , in Ω   (13) 

Where: 

2
2

2

11 x
fa




 ,   (14) 



Discrete Approaches 

63 
 

,2
1

2

22 x
fa




     (15) 

,
21

2

12 xx
fa





 
   (16) 

.)3(qq   (17) 

Once the surface tractions along the boundary of S are prescribed, the equation (13) 
can be solved by considering the boundary condition  su )(s , in which  s 
is a curvilinear coordinate measured along the arc-length of ∂Ω, and μ(s) (Dirichlet 
problem) is the moment of all support forces about a vertical axis through the point 
s. 

The stress function φ is obtained via the following variational formulation: 

.0:,0 







 

 sudqd
xx

a   (18) 

The equation (18) has to be satisfied for each δφ vanishing on ∂Ω. 

It is well-known that the no-tension constraint for the masonry implies that φ in 
addition must be concave [28]. 

The Airy stress function φ is evaluated by using the constrained LSM approach 
below presented. 

3.1.3 Numerical approximation 

The LSM presented in Fraternali [94] and Fraternali et al. [72][73] approximates the 
Airy stress function φ through piece-wise linear functions φˆ defined over either the 
shape function, in the case of curved structures, or the plain body, in the case of 
walls. 

The method has been originally developed for curved surfaces, starting from a 
partially non-conforming scheme [95] formulated under the assumption of C0 
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approximations to both f and φ, (i.e., polyhedral test functions fˆ and φˆ defined on 
a triangulation Ωh of Ω) (Figure 40). 

  
 

  
a) b) 

Figure 40: Polyhedral approximations to (a) f and (b) φ [115]. 

Such an approximation scheme leads to the following discrete version of equation 
(18): 
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Where: 

 
j

ih  is the length of the edge of Ωh connecting nodes i and j;  
 N ˆ,...,ˆ 1  are the nodal values of  ̂ ; 

 j
iÂ  is the jump of the derivative 

n
f

ˆ along the normal to the edge i-j;  

 iQ  is the resultant vertical force in correspondence with node i.  

The quantity j
iÂ represents a second derivative in the distributional sense of the 

polyhedral function f̂ . Similarly, the jump ∂φˆ/ ∂n through i-j represents a second 

generalized derivative of the tensions function ̂ , that is, on the basis of a singularity 

of the tension field 
P̂ associated to ̂ . 

 f̂  ̂
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By virtue of this consideration, the various quantities j
i

j
i nP ]]/ˆ[[ˆ   can in fact be 

regarded as the axial stresses borne by a flat reticular structure h , having the same 

geometry as the "skeleton" of the mesh h . 
Applying the generalized Gauss formula, from equation (19) we deduce the 
following system of linear algebraic equations: 
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PR   , (20) 

In equation (20), the quantity Pij represents the jump of the normal derivative ∂φˆ/ 
∂n across the edge i–j of Ωh; Uijk are coefficients depending only on the geometry 
of the mesh; the summations are extended to all the nodes connected to the node i; 
and N is the total number of nodes forming Ωh. 

Quantities j
iP


 are the axial forces carried by the bars of a planar truss structure 
having the same geometry of the skeleton of Ωh.  
One can regard the quantities j

iij
j

i hffP /)(


   as the axial forces carried by the 

spatial truss Sh, which is obtained from Ωh through the mapping x3 = fˆ (x1, x2). 
Equation (9) represent the nodal equilibrium equations of Sh in the vertical direction, 
associating a unique polyhedral stress function φˆ to a given polyhedral shape 
function fˆ, and vice-versa. A concave polyhedral stress function φˆ gives rise to all 
compressive forces in the bars of Sh and Ωh. It is worth noting that the modelling of 
a continuous membrane through a pin-jointed bar network actually corresponds to a 
non-conforming (or external) variational approximation of the membrane 
equilibrium problem.   

 
 

Figure 41: Polyhedral approximation of the Airy stress function and current lumped stress 
[115]. 
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Let introduce the ‘relaxed’ version of the complementary energy of the body (Figure 
41):  

1 1
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In equations (21)–(22), N is the total number of nodes of h ; nS  indicates the 

number of nearest neighbors of the generic node n; s
n  is the length of the edge  

n – s ; s
nk̂  and s

nĥ are the tangent and normal unit vectors to such an edge, 

respectively;  is the jump of s
nĥˆ  across n – s (i.e., the normal 

derivative of φˆ through this edge). 
It is not difficult to show that: 

 (23) 

The quantities s
nP represents the axial forces carried by the bars of an ideal truss hB

which has the same geometry of the skeleton of h'  . Similarly, the quantity nR
can be regarded as the total force acting at node n of such a truss. Due to the 
assumption of zero body forces, Rn will be non-zero only at the boundary (support 
reaction). The discrete functional (21) defines a non-conventional complementary 

energy of the truss hB , which is defined per dual elements n̂ , and not per 
elements (as in an ordinary truss). 

Let φ0 denote the minimizer of the ‘exact’ complementary energy of the body, and 

ĥ the minimizer of equation (21). It is not difficult to show that ĥ  strongly 
converges to φ0 as h tends to 0, under suitable smoothness assumptions on φ0 and 
the primal and dual meshes. 
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The smoothness of meshes can be satisfied by modelling h  as a structured core 

and by assuming that  h  is made up of polygons connecting the middle points of 

the edges of h  with the barycenter of the primal triangles (‘barycentric’ dual 

mesh). A Γ-convergence proof of the LSM for the bi-harmonic problem of isotropic 
elasticity is given in Davini [96], considering families of triangulations that are 
regular in the sense of Ciarlet [95]. 

 

3.1.3 Constrained LSM approach to the analysis of curved 
structures 

Lumped stress approach is used to predict the mechanical behaviour of vaulted 

structures by means of a shape optimization procedure, which assumes that the 

vertical load q and the boundary values of fˆ and φˆ are prescribed on ∂Ωh. The 

search for the corresponding thrust surface consists of seeking a couple (fˆ, φˆ) such 

that the discrete equilibrium equation are satisfied, under geometry constraints of the 

form: 

),...,1(  ˆˆˆ Nifff ub
ii

lb
i  , (24) 

and the concavity constraint on φˆ. Limitations (24) require that the thrust surface is 

contained in a given 3D domain D, coinciding either with the region comprised 

between the extrados and the intrados of an existing vault, or with a suitable design 

space. A constrained lumped stress approach (CTNA) can be formulated as follows, 

assuming that initial guess 
0f̂  of f̂  is available: 

1. Compute φˆ0 from the linear system   ijkijk QfU 00 ˆˆ  ; 

2. Compute the ‘concave hull’ '̂  of 0̂ ; 
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3. Raise the vertices of 0̂ to the upper portion of ∂C (concave surface), 

obtaining a new estimate φˆ′ and a new mesh topology. 

4. Compute a new shape function fˆ ′ from the linear system   ikjijk QfU 'ˆ̂  

5. If f ‘satisfies the geometry constraints (24) stop with 'ˆˆ ff   and 'ˆˆ  

otherwise 'f̂ correct to verify (24), set 
'0 ˆˆ ff  set and go back to 1. 

Overall, the CTNA admits the quantities, ),...,1(  ˆ,ˆ, NiffQ ub
i

lb
ii   and the nodal 

values of f̂ and φˆ on ∂Ωh as input. It produces the quantities iif ̂ ,ˆ
 at the inner nodes 

of Ωh as output, according to the elastic no-tension model of masonry [28],[15]. It is 

worth noting that the concave-hull construction of step 2 provides topological 

adaption of the current force network, while steps 3, 4 and 5 perform geometrical 

adaption (see the results of the next section). The CNTA allows one to obtain a 

statically admissible, purely compressive lumped stress network, and ensures the 

satisfaction of the master ‘safe’ theorem of no-tension materials [12] [15], if the 

geometrical constraints (24) are verified (Figure 42). Once the solution ( f̂ , ̂ )of the 

CNTA is known, one can predict the portions of Sh and Ωh exposed to fracture, 

localized in regions where the material is subject either to zero stress, or uniaxial 

compressive stress (Figure 43). The continuum limit φ of the polyhedral stress 

function φˆ will exhibit either a flat (zero stress) or single-curvature (uniaxial stress) 

profile in correspondence with such regions. Cracks will run at the extrados if the 

thrust surface lies towards the intrados, and vice-versa. 
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0  '  

  

Figure 42: Thrust surface (left) and stress function (right) of an unreinforced groin vault 
under vertical loading [115]. 

 

 

Figure 43: Final meshing (left) and force network (right) of a groin vault under vertical 
loading [115].  

3.2    Tensegrity modeling of Reinforced vaults 

In this part, we describe a discrete element model of a masonry structure, which has 
been strengthened through the application of reinforcing elements designed to work 
in tension. The reinforced masonry structure is outlined as a tensegrity network of 
masonry rods, in the main working in compression, and tension elements 
corresponding to fiber-reinforced composite reinforcements, always assuming they 

0f̂
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behave as elastic-perfectly-plastic members. We optimize a background structure 
linking each node of the discrete model of the structure with all adjacent nodes lying 
inside a sphere of prescribed radius, determining a minimal mass resisting structure 
under the given loading conditions and prescribed yielding constraints.  

3.2.1 Tensegrity system 

By connecting compressive members (bars or struts) through pre-stretched tensile 
elements (cables or strings) tensegrity structures which are pre-stress truss structures, 
are obtained. 

 

 
a) b) c) 

Figure 44: a) Not a tensegrity configuration b) tensegrity configuration c) tensegrity system  

In nature, tensegrity concepts appear in every cell, in the molecular structure of 
spider fiber and in tendons for control of locomotion in animals and humans. 
Engineers have only now developed efficient analytical methods to exploit tensegrity 
concepts for engineering applications.  

Minimal mass solutions for engineering objectives has resulted in designing 
tensegrity for five fundamental problems in engineering mechanics (Figure 44).  

Minimal mass for tensile structures, (subject to stiffness constraints) was inspired by 
the molecular structure of spider fiber, and may be found in many new design. There 
has been a huge growth in interest in the subject of form-finding of tensegrity 
structures, thanks to the special ability of such structures to serve as controllable 
systems (geometry, size, topology and pre-stress control), and also because it has 
been recognized that the tensegrity architecture provides minimum mass structures 
for a variety of loading conditions, including structures subject to cantilevered 
bending load; compressive load; tensile load (under given stiffness constraints); 
torsion load; and simply supported boundary conditions (e.g. a bridge), without 
yielding and buckling [97]-[99].  
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The possibility to integrate control functions within the design of the structure is 
another additional advantage of tensegrity structures over more conventional control 
systems. The natural cooperation in controlled tensegrity systems is obtained by the 
change of the configurational equilibrium of the structure, as opposed to traditional 
control systems. In which the control is in opposition to the equilibrium of the 
structure. Importantly it is possible to look at a tensegrity structure as a multiscale 
sensor/actuator, which features highly nonlinear dynamical behavior (geometrical 
and/or mechanical nonlinearities), and can be controlled in real time [100]. Of 
particular notes is the use of fractal geometry as a form-finding method for tensegrity 
structures, which is described in depth in [97][99]. Such an optimization strategy 
exploits the use of fractal geometry to design tensegrity structures, through a finite 
or infinite number of self-similar subdivisions of basic modules. According to given 
mechanical performance criteria, it generates admirable tensegrity fractals and seeks 
the optimal values of suitable complexity parameters. The self-similar tensegrity 
design presented in [97]-[99]  is primarily focused on the generation of minimum 
mass structures, which are of great technical relevance when dealing, e.g., with 
tensegrity masonry structures [101].The ‘fractal’ approach to tensegrity form-
finding leads us to an effective implementation of the tensegrity paradigm in 
parametric architectural design [102]. 

3.2.2 Tensegrity model of reinforced masonry vaults 

Let us consider a masonry vault or dome with mean surface described by a set of nn 
nodes in the 3D Euclidean space. In a given Cartesian frame {O,x,y,z}, the 
components (xk,yk,zk) of the position vectors nk of all such nodes (k =1; . . . ; nn) can 
be arranged into the following 3 × nn node matrix: 

ܰ = อ
ଵݔ … ݔ
ଵݕ … ݕ
ଵݖ … ݖ

อ 

We now introduce a background structure, which is obtained by connecting each 
node nk with all the neighbors nj such that it results | nk - nj | ≤ rk (interacting 
neighbors). Here, | nk - nj | is the Euclidean distance between nk and nj, and rk is a 
given connection radius. Figure 45 shows the particular case in which the interacting 
neighbors of a selected node coincide with its nearest neighbors. 

We connect nk to each interacting neighbor nj through two elements working in 
parallel: a compressive masonry strut (or bar) bi = nk - nj, and a tensile FRP/FRCM 
element (or string) si = nk - nj. The minimal mass optimization of the background 
structure will choose which one such members (bar or string) is eventually present 
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between nodes nk and nj in the optimized configuration (i.e., which one of the above 
members eventually carries a nonzero axial force in the minimal mass configuration 
[103]. For future use, we let nb and ns denote the total number of bars and the total 
number of strings composing the background structure, respectively (with nb = ns in 
the non-optimal configuration), and we set nx = nb + ns . 

We assume that the background structure is subject to a number m of different 
loading conditions, and, with reference to the j-th condition, we let ߣ

()denote the 

compressive force per unit length (force density) acting in the i-th bar, and let ߛ௦
() 

denote the tensile force per unit length acting in the i-th string, both defined to be 
positive quantities. The static equilibrium equations of the nodes in correspondence 
of the current load condition can be written as follows: 

 (25) () ݓ = () ݔܣ

where A is the 3nn × nx static matrix of the structure, depending on the geometry and 
the connectivity of bars and strings [103]; w(j) is external load vector, which stacks 
the 3nn  Cartesian components of the external forces acting on all nodes in the current 
loading condition; and x(j)  is the vector with nx entries that collects the force densities 
in bars and strings in correspondence of the same loading condition, that is: 

x(j)  = [ߣଵ
()… ߣ್

()| ߛଵ
()…ߛೞ

()]T (26) 

 
Figure 45: Background structure associated with a node set extracted from a dome (left) 

and interacting neighbors of a selected node (right). 

Let ߪ and ߪ௦  respectively denote the compressive strength of the generic bar and 
the tensile strength of the generic string forming the background structure, which we 
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hereafter assume behaving as perfectly plastic members. Yielding constraints in bars 
and strings require that, for each loading condition, it result: 

ߣ
() bi ≤ ߪܣ,  ߛ

() si ≤ ߪ௦ ௦ܣ  
(27) 

where Abi and Asi respectively denote the cross-section areas of the generic bar and 
string. The masses of the generic bar and string of the background structure are 
computed as follows:  

݉ =  ܾܣߩ  ; ݉௦ = ௦ߩ  ݏ ௦ܣ  (28) 

where ߩ  and ߩ௦  denote the mass densities of such members, respectively. 

3.2.3 Optimal minimal mass design of masonry reinforcement 

We seek for an optimized resisting mechanism of the examined structure through the 
following linear program [103]: 
 
minimize         m= dT y 
      x(j) y 

 

subject to 

⎩
⎨

⎧ () ݔܣ = () ݓ

() ݔܥ ≤   ݕܦ
() ݔ ≥ ݕ,0 ≥ 0 

 

 

(29) 

Where: 
y = [ܣ…ܣ ್

௦ܣ…௦ଵܣ | ೞ
] T 

dT=[ ߷bi ... ߷ ್
್ܾ| ߷௦ si …߷௦ ೞ

 [ೞݏ

C = [݀݅ܽ݃ (ܾଵ, … , ್ܾ) 0
0 ଵݏ) ݃ܽ݅݀ , … , (ೞݏ

] 

D = [݀݅ܽ݃ ߪ … (್ߪ, 0
0 ௦ߪ ݃ܽ݅݀ … (௦ೞߪ,

] 
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Problem (29) returns an optimal topology of the background structure, which 
consists of the set of all members (bars and strings) exhibiting nonzero force density 
ߣ)

()or ߛ
() ) in at least one of the examined loading conditions. The optimal 

configuration exhibits minimal mass among all the possible configurations of the 
background structure, under the equilibrium constraints (25) and the yielding 
constrains (27). It is worth noting that the mass of the background structure should 
not be confused with the self-weight of the masonry dome or vault under 
examination, which we agree to include in the external load vector w(i). The quantity 
subject to minimization in problem (29) should instead be regarded as the mass of 
an internal resisting mechanism of the structure. As we already observed, the latter 
is formed by a collection of masonry struts (bars), and a network of FRP/FRCM 
reinforcements loaded in tension (strings), which are able to carry axial forces that 
equilibrate the examined external loads without violations of the local yielding 
constraints. 
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Part IV   Numerical examples  

The present section introduces several numerical applications of discrete approaches, 
illustrated in part III. Numerical examples concerning unreinforced vaults, subject 
to static loads, are analyzed with the LSM approach, while reinforced masonry 
complex vaults (groin and cloister), subject to static and dynamic load conditions are 
analyzed by the tensegrity approach. 

4.1 Unreinforced curved structures  

The proposed constrained LSM method has been applied to the same cloister vault 
examined in part II, by the r-adptive finite element model. We use the same geometry 
and mechanical properties to find a possible equilibrium configuration with the 
applied loads. In addition, this section proposes also the research of a lower bound 
of the collapse multiplier and the corresponding thrust surface, by using a validation 
with  NURBS (Non Rational Uniform B-Splines)-based approach presented in [104] 
for the case of simple arch and a cloister vault.  

4.1.1 Cloister vault under different static load conditions  

In this section, we present the numerical application, via LSM methodology for 
researching a safe thrust surface in equilibrium with applied loads. The example tests 
a tufa masonry cloister vault, examined in three different static load conditions. We 
note the analysis as follows: 

 SF (self-weight);  
 DL (dead and live loads);  

 DHL (dead and half side live loads). 

The FEM modelling repurposed again via LSM. The vault is divided in 441 nodes 
and 800 triangular shell. The dual mesh of the modelling is shown in Figure 46. The 
initial geometry is defined by the procedure for the three load conditions. The 
algorithm creates a 3D-triangulation of the thrust surface, and its projection into the 
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horizontal plane. The 3D view of the stress function and the map of the associated 
lumped stressed is shown in Figure 47. 

The convex hull is generated and the new projection onto the original triangulation, 
through the linear interpolation returns the final solution. 

 
Figure 46: LSM dual mesh 

  
a) b) 

   
c) d) 

Figure 47: a) Airy stress function; b) Map of the associated lumped stress; c) Projection of 
phi function; d) Map of the final t associated lumped stress. 
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Figure 48 shows the final solution of the three load cases. SF and DL cases have 
shown a statically admissible state of equilibrium in the final solution and the thrust 
surface is contained between intrados and extrados of the framework.  

On the contrary, no statically admissible state of equilibrium can be found for DHL. 
The thrust surface is partially outside from the equilibrium domain. More properly, 
a minor percentage of nodes (37) is spread on the area external to intrados. 

This solution highlights an asymmetric load condition and may not guarantee the 
static equilibrium condition. In particular, R-adaptive model solution gives a thrust 
surface contained between intrados and extrados of the vault due to accounted small 
tensile stresses that LSM does not consider. 

 

 

SF 

 

 

DL 
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DHL 
 

Figure 48: Optimized final solution: map of the associated lumped stress (left); thrust 
surface (right);   

4.1.2 Limit analysis in curved structures  

In this section, two case studies of masonry curved structures are presented: the arch 
tested by Chiozzi in [104] and the square cloister vault tested by Foraboschi in [105]. 
The geometry of the extrados, middle-surface and extrados of the structural members 
has been modelled by means of NURBS surfaces. 
The limit analysis has been performed via an incremental approach based on the 
LSM above described. The live loads have been increased for each step until a 
statically admissible state of equilibrium is found, in order to evaluate the static load 
multiplier. 

 

Figure 49: Geometry and loading condition of the arch [105]. 

The first example deals with a masonry arch characterized by: an internal radius (Ri) 
of 2.90 m; an outer radius (Re) of 3.15 m; a thickness (s) of 0.25 meters; a width (b) 
of 1 m; a height (hr) of 3.2 m; a self-weight (gm) of 18 kN/m3; a filling (gr) of 16 
kN/m3; half side incremental live loads (G) (Figure 49). 
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Without loss of generality, we denote a triangulation of the thrust surface of the arch 
by Sh, h being the mesh size; a suitable extension of Sh beyond its boundary by Sh’; 
and the projection of Sh' onto the platform by  Ωh', (Figure 50). The base of the arch 
is restrained by fixed hinge supports. 

 

 
 

Figure 50: 3D-Triangulation of the thrust surface ܵᇱ  of ܵ (left) and its projection onto the 
horizontal plane ߗᇱ  of ߗ (right) beyond the physical boundary of the arch [116]. 

The LSM results for G =3.20 kN/m2, are reported in Figures 54, 55 and 56. 
 

 

 
Figure 51: Initial guess for the arch (G =3.20 kN/m2): 3D view of the stress function ࣐ෝଵ 
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(left) and map of the associated lumped stresses ࡼଵ =  .[116] (right) (ෝଵ࣐)ࡼ

 

Figure 52: Final solution for the arch (G =3.20 kN/m2): projection of ࣐ෝଶ,  3D view of ࢌଷ 
(left) and map of the associated lumped stresses  ࡼଷ =  .[116](right) (ෝଷ࣐)ࡼ

  

 
 

Figure 53: Final solution for the arch (G =3.20 kN/m2): trust surface [116]. 
Tensile stresses are given in the masonry by considering initial guess thrust surface 
of the LSM (Figure 51). 

A statically admissible state of equilibrium is observed in final solution, due to no 
tensile lumped stresses is observed (Figure 52) and the thrust surface is contained 
between intrados and extrados (Figure 53). 

On the contrary, no statically admissible state of equilibrium may be found in the 
next step of iterative procedure, which assumes G =3.40 kN/m2, being the thrust 
surface not contained between intrados and extrados of the arch (Figure 54). 
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Figure 54: Final solution for the arch (G =3.40 kN/m2): thrust surface (red regions=area 
external to extrados; blue regions= area external to intrados) [116]. 

The proposed iterative procedure has allowed to predict a static load multiplier equal 
to 3.20 kN/m2. This multiplier corresponds to about 70% of kinematic load multiplier 
given in [104].  

We analyze the second case study of a masonry cloister vault. The stress state in this 
kind of vault is more complex than that exhibited by other vaults. Like the previous 
example, the base of the cloister vault is restrained by fixed hinge supports. The 
examined vault is characterized by: a constant thickness of 0.11 m; a side of the vault 
of 2 m; a height of 1 m; a self-weight (gm) of 20 kN/m3; an incremental live load (P) 
(Figure 55). 

 
Figure 55: Geometry and loading condition of the cloister vault [116]. 
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Figure 56: 3D-Triangulation of the thrust surface ܵᇱ  of ܵ (left) and its projection onto the 
horizontal plane ߗᇱ  of ߗ (right) beyond the physical boundary of the vault [116]. 

The 3D-triangulation of the thrust surface used in LSM analyses is depicted in Figure 
56. 
The LSM results for P =19 kN are given in Figures 60, 61 and 62. 
 

Figure 57: Initial guess for the cloister vault (P =19 kN): 3D view of the stress function ࣐ෝଵ 
(left) and map of the associated lumped stresses ࡼଵ =  .[116](right) (ෝଵ࣐)ࡼ
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Figure 58: Final solution for the cloister vault (P =19 kN): projection of ࣐ෝଶ,  3D view of 
ଷࡼ  ଷ (left) and map of the associated lumped stressesࢌ =  .[116](right) (ෝଷ࣐)ࡼ

 

Figure 59: Final solution for the cloister vault (P =19 kN): thrust surface [116]. 

Tensile stresses are given in the masonry by considering initial guess thrust surface 
of the LSM (Figure 57). 

A statically admissible stress field is obtained in final solution, due to no tensile 
lumped stresses is observed (Figure 58) and the thrust surface is contained between 
intrados and extrados (Figure 59). 

No further statically admissible state of equilibrium may be found by increasing the 
dead load. 

The final solution corresponding to P =20 kN highlights a thrust surface not 
contained between intrados and extrados of the vault and, then, the structure is not 
safe (Figure 60). 

The obtained results are justified by the different approximations of the two models. 
In particular, NURBS limit analysis consider cohesive forces and the presence of a 
small tensile stresses that LSM does not take into account. 
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Figure 60: Final solution for the cloister vault (P =20 kN ): thrust surface (red 
regions=area external to extrados; blue regions= area external to intrados) [116]. 

4.2 Reinforced Vaults under static and seismic loads 

We focus on two kinds of reinforced complex vaults: a groin vault and a cloister 
vault. We start optimize a background structure connecting each node of the discrete 
model of the starting structure with all the neighbors lying inside a sphere of 
prescribed radius, in order to determine a minimal mass resisting structure under 
many different loading conditions and in  prescribed yielding constraints. 

4.2.1 Groin vault 

The background structure of the examined groin vault features 237 nodes and 1840 
connections (Figure 61a). The minimal mass reinforcement s of such a vault consists 
of FRP/FRCM strips with thickness 0:17 mm on the web panels (width of the 
meridian strips near the crown under vertical loading: 340 mm; total width of the 
square reinforcing patch covering the crown under combo seismic loading: 3000 
mm), and 200 mm 3:24 mm FRCM strips by the side of the groins at the corners 
(Figure 61b). The latter can also be replaced with pultruded FRP pro les with circular 
cross-section, 11:18 mm radius and 620:5 MPa tensile strength [106]. We observe 
that the above reinforcements prevent `hinging' cracks departing from the crown and 
meridian cracks, in the case of vertical loading (Figure 61c). and combined meridian 
cracks, cracks parallel to the groins, and the so-called `Sabouret' cracks parallel to 
wall ribs, under vertical and seismic loading (Figure 61d). The masonry strut 
network of the groin vault consists of four main arches at the intersection of the webs 
(ribs), which are completed by secondary meridian arches and diagonal struts over 
the webs. 



Part IV   Numerical examples 

85 
 

 
a) 

 
b) 

c) 

d) 
Figure 61: Optimal reinforcement design of a groin vault with FRP/FRCM strips of 

thickness 0,17 mm on the web panels, and 200 mm x 3.24 mm FRCM strips or 11,18 mm 
radius pultruded FRP profiles at the corners (reinforcements marked in cyan). (a): 

Background structure. (b): Vertical loading. (c): Seismic loading in the +x-direction. (d): 
Combined vertical loading and seismic loading in two perpendicular directions [59]. 

 



Part IV: Numerical examples 
 

86 
 

4.2.2 Cloister vault   

Based on the analysis of the groin vault, we examine a cloister vault made of 
‘Neapolitan’ tufa brick masonry, which is largely diffused in the area of Naples, with 
15.0 kN/m3 self-weight, and 13 MPa compressive strength. We assume a tensile 
strength  equal to 376.13 MPa, which corresponds to an average value of the bond 
strengths of the FRP and FRCM reinforcements of masonry structures analyzed in 
[107][108] respectively.  
Fig. 2 shows the minimal mass FRP/FRCM reinforcements that we obtained for the 
present example (t f = 0:17 mm). The geometry of the examined vault are illustrated 
in above figure, together with the corresponding background structure, which 
features 441 nodes and 4508 connections (Figure 62a). Parallel FRP/FRCM strips 
with 0 mainly form the optimal reinforcement of such a vault under vertical loading: 
17 mm thickness and 82 mm maximum width near the crown (Figure 62b). 

The above reinforcements are integrated with diagonal FRP/FRCM strips with about 
140 mm maximum width near the intersections of the four vault segments, under 
combined vertical and seismic loading (Figure 62c). The analyzed seismic loading 
consists of horizontal forces with magnitude equal to 0.35 of the magnitude of 
vertical forces in all nodes, which mimic the effects of a seismic excitation of the 
examined structure, through a conventional, static approach [109]. The compressed 
network include couples of diagonal arches near the corners, parallel-line arches, and 
diagonal struts over the vault segments (Figure 62d). 

 

 
a) 
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b) 

 
c) 

d) 

Figure 62: Optimal reinforcement configuration of a cloister vault with FRP/FRCM strips 
of thickness 0,17 mm (marked in cyan), under different loading conditions. The widths of 

the FRP/FRCM reinforcements are magnified by a factor 2 for visual clarity. (a): 
Background structure. (b): Vertical loading. (c): Seismic loading in the +x-direction. (d): 

Combined vertical loading and seismic loading in two perpendicular directions [117]. 
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Part V   Concluding remarks and future work 

A theoretical and numerical study on continuum and discrete approaches to the static 
of masonry vaults has been conducted. 

Attention has been focused on the modelling of masonry structures in no-tension 
constraints, under different load conditions. Computational procedures, which 
allows defining the 3D structural behavior of complex masonry vaults, have been 
investigated.  

The proposed approaches have allowed defining the optimal thrust surface and the 
corresponding state of stress for complex vaults. The goal of this thesis has been to 
investigate the structural behavior of masonry curved structures focusing on groin 
vaults and especially on cloister vaults and providing an exhaustive discussion on 
the mechanisms and actions that are generated within them. 

Firstly, a lumped stresses network method (LSM) to the equilibrium problem of 
masonry members has been presented. By modelling of the membrane state of stress 
carried by masonry structures through a polyhedral stress function, an adaptive, 
predictor-corrector technique has been formulated to generate statically admissible 
force networks for vaulted geometry. Such a discrete approach provides statically 
admissible force network according with no-tension constraints. In particular, we 
have researched a statically admissible state of the equilibrium for a cloister vault, 
in the three different static load cases: 

 SF and DL cases have shown a statically admissible state of equilibrium in 
the final solution and the thrust surface is contained between intrados and 
extrados of the framework. On the contrary, no statically admissible state of 
equilibrium has been found for DHL. The thrust surface is partially outside 
from the equilibrium domain. More properly, a minor percentage of the 
surface  (37 nodes ) is spread on the area external to intrados. This solution 
highlights an asymmetric load condition may not guarantee the total static 
equilibrium condition. 
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Secondly, a lower bound of the collapse multiplier of curved masonry structures has 
been presented in two case studies of masonry curved structures: the arch tested by 
Chiozzi in [104]  and the square cloister vault tested by Foraboschi in [105]. 
Specifically: 

 a static load multiplier corresponding to about 70% of kinematic load 
multiplier given in the previous study has been found; this result can be 
accepted because different approximations in the two models are assumed. 
In particular NURBS limit analysis consider cohesive forces and the 
presence of a small tensile stresses that LSM does not consider; 
 

 the generalization of the masonry model proposed in the present work to 
substructures, mixed structures, and strengthened masonry is addressed to 
future work;  
 

 we address extensions of the study proposed in this work to the modeling 
and the design of masonry structures with innovative materials and 
technique. 

Moreover, we have presented an extension of the tensegrity approach formulated in 
Ref. [59] for the minimal mass reinforcement of masonry vaults that do not react in 
tension.  

The reinforcements analyzed in the present study consist of linear elements, such as, 
e.g., FRP-/FRCM-reinforcements. The adopted optimization approach allows us to 
design non-invasive reinforcement patterns, which can be able to preserve a 
sufficient crack-adaption capacity of the structure, under the respect of the 
equilibrium equations and material yield limits. The given numerical results have 
highlighted:  

 the proposed strengthening approach matches the safe theorem of the limit 
analysis of elastic-plastic bodies, and is in line with the recommendations of 
modern standards for the design and construction of strengthening 
techniques for existing structures [111]; 
 

 future directions of the present study will be aimed at analyzing the minimal 
mass reinforcement of a variety of case-studies dealing with masonry 
structures of arbitrary geometry and complexity. Additional future research 
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lines include the generalization of the proposed design approach to 
tensegrity materials and structures and a wide campaign of experimental 
validations of the design procedure, through laboratory testing of real-scale 
and reduced-scale models under static and dynamic loading.  
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