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Abstract

Transition Metal Oxides (TMOs) show a wealth of intriguing properties

which are governed by the interplay of charge, spin, and orbital degrees of

freedom. Moreover, the comprehension of the features of strongly correlated

TMOs with signi�cant Spin Orbit Coupling (SOC) represents a challenging

work and the interplay between large SOC and lattice geometry is undoubt-

edly a relevant ingredient in the exploration of such features. The most

dramatic example of that occurs in iridates, where SOC deeply impacts the

magnetic state, changing the character of the multiplet state within the t2g

manifold in the case of an octahedral arrangement of the ions. Corresponding

e�ects in eg manifold have rarely been considered, due to the conventional

wisdom that eg subshells ensure a perfectly quenched orbital momentum.

In the �rst part of the thesis, we study the in�uence of SOC on the magnetic

state of a d1 TM ion located in a tetrahedral environment, proving that its

e�ect can be strongly enhanced in the case of distorted geometry. Under this

condition, our theoretical research reveals that SOC can induce a substantial

anisotropic unquenched orbital angular momentum and can a�ect the hier-

archy of the lowest energy levels involved in the magnetic superexchange.

Since particular geometries can give rise to novel SOC e�ects, the structure
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of the insulating compound KOsO4, whose Os7+ ions are characterized by

an e1 con�guration, seems to be particularly relevant for our study. KOsO4

crystallizes in a scheelite-like structure, consisting in isolated and quite dis-

torted tetrahedra; the isolated tetrahedra imply a reduction of the hopping

connectivity and, as a consequence, the e�ects of the local energy scales are

emphasized. Furthermore, the Os ions are covalently bonded to the oxygens

in a tetrahedral con�guration, which is distorted. The competition between

strong electronic correlations, SOC and tetrahedral deformations has been

analyzed through a study based on an exact diagonalization approach, which

allows to completely characterize the local magnetic moment and the nature

of the static spin/orbital correlations over �nite clusters. Our study reveals

that an entangled spin-orbital state emerges, marked by a strong anisotropy.

Moreover, results show a link between the bond direction and the sign of the

superexchange coupling per spin component, which reminds a Kitaev-like

coupling.

The choice of a speci�c geometry may enhance the in�uence of SOC on the

magnetic state of a system. However, there are also other strategies in order

to emphasize the e�ects of the SOC; one of them is to lower the connectivity,

thus enhancing the interplay between the local energy scales, which include

SOC. In the second part of the thesis, we consider a trilayered structure com-

posed by TM ions stacked in the z direction, where the hopping connectivity

is highly damped. The tight-binding Hamiltonian model which describes the

trilayer shows both time-reversal and inversion symmetries, which ensure the

Kramer's degeneracy of its eigenstates, and a layer-interchange symmetry,

related to the particular structure of the system. We analyze the evolution
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and eventually the closing of the energy gaps of the trilayer, opening the

possibility to �nd novel topological nodal semimetals, which are protected

by the layer-interchange symmetry. We simulate di�erent local environment

by modifying the value of the parameters of the model, verifying that transi-

tions between di�erent topological con�gurations occur in the limit of weak

and strong SOC regime.
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Chapter 1

Introduction

1.1 Electronic correlations and spin-orbit cou-

pling in transition metal oxides

In the last years, Transition Metal Oxides (TMOs) have been one of the main

topics of the solid state research since they represent a paradigmatic example

of complex materials: the subtle interplay between charge, spin and orbital

lattice degrees of freedom which characterizes these compounds is the rea-

son why many of the usual theoretical simpli�cations are not applicable [1].

Most of TMOs are characterized by partially �lled d orbitals and by multiple

valence states; furthermore, they manifest a rich variety of phase transitions

and an extreme sensitivity to intrinsic or external perturbations, all linked to

an amazing "tunability" of ground state properties. TMOs show also unusual

features related to the details of the structure of the atoms or ions and many

di�erent structures can be realized with them, such as layered ones. Last,

1



1.1 Electronic correlations and spin-orbit coupling in transition metal oxides2

but not least, TMOs are at the center of an intense investigation because

of their possible applications in electronic and sensing devices[2]: the rich

variety of highly diversi�ed ground states and the complex interplay between

the di�erent degrees of freedom open the way to the possibility of tuning the

device response as function of the external perturbation in unexpected ways.

TMOs possess puzzling properties which are still matter of study to the

present day: unconventional superconductivity with high critical tempera-

ture (high-Tc) [3] is one of them and it still remains to be understood; other

remarkable phenomena include colossal magnetoresistance [4], the occurrence

of exciting magnetic and non-magnetic phases such as the spin-orbital liquids,

which are strongly correlated states of matter that emerge from quantum

frustration between spin and orbital degrees of freedom [5], and also phase

transitions which include, for example, the metal insulator transition [6]. All

the above mentioned phenomena are a direct consequence of strong electronic

correlations which characterize the TMOs; these are due to the large on-site

Coulomb and exchange interactions among the TM valence electrons. The

hallmark of the strong correlation is the presence of unusual insulating prop-

erties (referred as "Mott physics") which cannot be understood in terms of

the standard band-theory of solids. Many 3d TMOs show in fact an insulat-

ing behavior even though the valence shells are partially �lled. The large U

leads to the formation of magnetic moments at each of the TM lattice sites

and the interactions between these moments, which can be ferromagnetic

(FM) or antiferromagnetic (AFM), give rise to fascinating magnetic orbital

phases either with or without long-range order [7].

Beside 3d TMOs, relevant attention has been focused on the 4d and 5d com-
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pounds, which are characterized by more extended orbitals than 3d's and, as

a consequence, a reduced on-site Coulomb interaction strength. The most

relevant feature of these elements is that they are characterized by a stronger

intrinsic spin-orbit coupling than 3d's. Spin-orbit coupling (SOC) is a rela-

tivistic e�ect which couples the spin and the orbital momentum of electrons

and it has been shown that it stabilizes new exotic states of matter. The

most striking example of this new physics is constituted by the topological

insulators: these systems are insulating in the bulk, but have interesting

metallic "edge states" on their surface [8] originating from the combined ef-

fect of strong spin-orbit interaction and the electronic band structure. SOC

is usually considered as a small perturbation in the discussion of electrons

in solids, however in heavy elements it needs not to be weak, since it in-

creases proportionally to Z4, where Z is the atomic number. In Fig. 1.1,

there is a schematic representation of the energy scales of the major inter-

actions of TMOs. In 3d TMOs, which have been the traditional playground

for the study of correlated electron physics, SOC is much smaller than the

Coulomb interaction U and can be considered as a perturbation; on the right

part of the Figure 1.1 it is evident that, considering 5d TMOs, the energy

scales of U, SOC and crystal �eld D are comparable. Upon descending the

periodic table from 3d to 4d to the 5d series, there are several competing

trends since U and SOC meets on the same energy scale and several intrigu-

ing phenomena arises. The research is currently open and the experimental

evidences and theoretical perspectives allow to describe a picture which is

summed up in terms of correlation strength U and SOC λ, scaled to the

typical kinetic energy scale t, in the phase diagram of Fig. 1.2 [9]. Con-
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Figure 1.1: Schematic representation of the competing energy scales in
TMOs; in 3d TMOs (left), the Coulomb interaction U is dominating on the
other microscopic mechanisms, while in 5d compounds (right) these energy
scales are comparable.

ventional oxide materials composed by 3d TM reside on the left-hand side

of the diagram, where SOC is weak and a metal-insulator transition associ-

ated with the paradigmatic Mott physics may occur when U is comparable

to the bandwidth. Upon increasing λ, a metallic or semiconducting state at

small U may be converted to a semimetal or a topological insulator. When

both U and λ are present, several arguments [10, 11] suggest that they tend

to cooperate rather than compete in generating insulating states. Further-

more, U opens up possibilities for new types of topological phases For sizable

SOC, topological Mott insulating phases emerge whose full characterization

is still matter of investigation and debate [12, 13]. In general,in the limit of

strong λ we can distinguish two speci�c regimes; the �rst is characterized by

weak or intermediate correlations, where electrons remain delocalized enough
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Figure 1.2: Generic phase diagram for TMOs; the x axis represents the SOC
parameter λ while the y axis is constituted by electronic correlations U, both
expressed in unit of kinetic energy t. The �gure has been taken from Ref. [9]

and band topology continues to play an important role. In this region, new

types of topological phases emerge: they include Weyl semimetals or axion

insulators, which can arise in the presence of spontaneous magnetic order.

The pyroclore iridates, for example, belong to this regime: these compounds

comprise a large family for which experiments have revealed thermal phase

transitions and evolution from metallic to insulating states and many key

theoretical ideas have been introduced, including topological Mott insulators

[8, 14], Weyl semimetals [15] and axion insulators [16].

The second regime is constituted by the strong Mott limit, where U
t
is

large and electron band topology no longer plays a role, because the electronic
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states are not extended. One can observe that insulating states may be

obtained in the intermediate regime from the combined in�uence of SOC

and correlations: these may be considered spin-orbit assisted Mott insulators

[17], where the term "Mott" denotes any state which is insulating by virtue

of electronic correlations. In this context, SOC still o�ers new physics by

fully or partially lifting the orbital degeneracy of partially �lled d shells by

entangling the orbital and spin degrees of freedom. This provides a distinct

mechanism to avoid the Jahn Teller e�ect and classical orbital ordering. The

orbital degeneracy may be fully lifted by SOC, as it happens in iridates in

the strong Mott and strong SOC limit, or partially lifted, which is the case of

many d1 or d2 ions. An example of the former is constituted by honeycomb

iridates [18, 19], while double perovskites [20, 21] is an example of the latter;

in either cases, strong SOC results in strong anisotropic exchange interactions

and, for the case of partial degeneracy lifting, these have an highly non-trivial

multipolar nature. These unusual interactions can promote large quantum

�uctuations and lead to novel quantum ground states which are not possible

without SOC: quantum spin liquid and quadrupolar (spin orbital coupled)

ordered phases have been suggested to occur in this regime [22, 23]. 4d

and 5d TM belong to this region, which is not only di�cult to access from

a theoretical and computational point of view but also for materials science

perspectives to synthetize compounds exhibiting microscopic conditions with

both large U and λ.
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1.2 Motivation of the Thesis

It is clear that heavy TMOs, which are characterized by signi�cant SOC, are

a challenging problem, since the correlations e�ects are often of intermediate

or large strength, making them competitive with those of SOC. Particular

attention has been focused on 5d TMOs, since the overlapping energy scales

and competing interactions o�er wide-ranging opportunities for the discovery

of new physics and also new device paradigms.

At single ion level, SOC may greatly simplify the multiplet description by

fully lifting the orbital degeneracy. The most dramatic example of the rele-

vance of such SOC e�ect in 5d TMOs occurs in iridates: considering a TMO6

octahedron, for example, the 5d states are split into t2g and eg orbital states

by the crystal �eld energy and, in general, this energy is su�ciently large

to yield a t2g ground state. SOC is responsible to change the character of

the multiplet state within the t2g manifold as it has been intensively stud-

ied for TMOs containing Ir4+ : in these compounds, strong SOC split the

t2g band into an e�ective total angular momentum Jeff = 1
2
doublet and

Jeff = 3
2
quartet, as it is shown in Fig.1.3 [17]. Since Ir4+ ions provide �ve

Figure 1.3: Splitting of the 5d levels due to CF and SOC

5d electrons to bonding states, four of them �ll Jeff = 3
2
band and one re-
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maining electron �lls the Jeff = 1
2
band,reducing the system to an e�ective

Kramers doublet with Jeff = 1
2
. In addition, a relevant consideration is that

even a small U opens a Mott gap: this explains why these compounds can

be insulating [8]. When an ion having this con�guration is embedded in a

lattice, SOC can give rise to di�erent kind of magnetic interactions which

depend on the geometry; indeed, the local angular momentum L is very

sensitive to the lattice degree of freedom, then complex magnetic behaviors

can arise when the combined e�ect of strong SOC, electronic correlations

and hopping connectivity is considered. A relevant example is de�nitively

given by the hexagonal iridates such as Na2IrO3 and Li2IrO3, characterized

by a layered structure consisting of an honeycomb lattice of Ir4+ ions. In

the ideal limit, the edge sharing of neighboring IrO6 octahedra, and also the

structure of the entangled Jeff = 1
2
orbitals, lead to a cancellation of the

usually dominant antiferromagnetic oxygen-mediated exchange interactions

[24]. A sub-dominant term is generated by the Hund's coupling, which takes

the form of highly anisotropic exchange and is described by the following

Hamiltonian:

H = −K
∑

α=x,y,z

∑
<ij>∈α

Sαi S
α
j (1.1)

where Si are the e�ective spin-
1
2
operators and α labels both spin components

and the three orientations of links on the honeycomb lattice. Hamiltonian

(1.1) is known as Kitaev model. In such model, e�ective spin-1
2
operators are

coupled to their three nearest neighbours by ferromagnetic Ising interaction,

with bond-dependent easy axes parallel to the x,y and z axes. The orthogonal

anisotropy of the three nearest neighbour bonds creates a con�ict between
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these bonds, giving rise to strong magnetic frustration of competing exchange

interactions that cannot be simultaneously satis�ed, generating a large de-

generacy of the system ground state. The model has raised a considerable

interest since it can be exactly solved by mapping the spins into Majorana

fermions [25]. The ground state associated to (1.1) is a quantum spin liquid,

in which interacting spins remain quantum disordered without spontaneous

symmetry breaking. Then, the model describes a state with no magnetic

order and elementary excitations which are charge-neutral "spin" carrying

Majorana fermions that are their own antiparticles. It is amazing that the

Kitaev exchange form of (1.1), which is very unnatural for conventional mag-

netic systems, arises organically from the geometry and entanglement in the

strong SOC limit.

The above considerations tell us that the interplay between large SOC and

the lattice geometry is a crucial ingredient in determining the magnetic state

of heavy TMOs. Then, we can explore the SOC e�ects by considering sev-

eral orbital con�gurations which support this idea. The most common orbital

con�guration is depicted in Fig. 1.3 and it is relative to an octahedral struc-

ture, where the crystal �eld separates the d orbitals into two sets of manifolds

with an energy di�erence ∆O; here, the t2g orbitals are lower in energy and

SOC acts on them at the �rst order,leading to a splitting of these levels.

Corresponding e�ects in an eg manifold have rarely been considered due to

the conventional wisdom that the orbital angular momentum is quenched

in these states. This means that, at the �rst order, SOC does not act on

eg states and that some in�uence of it may appear only at higher orders.

In particular, SOC modi�es the ground state only via virtual processes in-
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volving the t2g subspace and acting across the crystal �eld splitting ∆O, thus

determining magnetic anistropy [26]. However, particular cases which lead to

conclusions in contrast to this conventional scenario can be treated. In tetra-

hedral complexes, the d orbitals again split into two orbital subspaces with

an energy di�erence ∆t, where the hierarchy of eg and t2g orbitals is reversed

with respect to the octahedral case. Considering 5d TM encaged in TMO4

tetrahedra, the crystal �eld splitting then naturally favors the occupancy of

the lower e manifold, with a crystal �eld energy which is relatively small in

size and lower than the octahedral case; this evidence is expected since the

ligand ions in tetrahedral symmetry are not oriented directly towards the

d orbitals. Under these conditions, SOC corrections can be ampli�ed and

can lead to interesting e�ects. To support this idea, in the �rst part of the

thesis we analyze the e�ects of a large SOC on the magnetic state of a d1 TM

ion located in a tetrahedral environment. We verify that, while in the ideal

tetrahedral geometry SOC acts only as a perturbation on the atomic energy

levels set by the crystal �eld splitting, its e�ect can be strongly enhanced

in the case of a distorted geometry. We consider the speci�c case where the

tetrahedron is compressed along the z direction and the results of our study

show that large SOC not only induces a substantial anisotropic unquenched

orbital angular momentum, but its interplay with crystal �eld parameters

signi�cantly a�ects also the hierarchy of the lowest energy levels which are

involved in the magnetic superexchange.

In order to analyze the emergence of this unquenched orbital angular momen-

tum component in the eg subspace and to examine what kind of interactions

are generated when particular geometries are considered, our analysis natu-
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rally focused on the KOsO4, which represents an ideal candidate in many re-

spects. KOsO4 is a Mott insulator which crystallizes in a tetragonal scheelite-

like structure consisting in isolated and quite compressed OsO4 tetrahedra.

The geometric structure of the compound seems to be particularly relevant

for our purpose. On one side, the isolated tetrahedra imply a reduction of

the connectivity and, as a consequence, the e�ects of the local energy scales

(Coulomb correlations, SOC and crystal �eld energy) are emphasized. Fur-

thermore, in the scheelite structure the Os ions reside on lattice sites which

constitute a substantially elongated diamond sublattice, where each Os atom

is covalently bonded to the oxygens in a tetrahedral con�guration. The par-

ticular 3D arrangement perfectly allows for dominant hopping connectivity

between the lowest e and the highest t2 sector; this provides another im-

portant route to magnify the SOC correction that now come into play at

leading order in the superexchange processes involving t2 orbitals. There-

fore, the prospect of an anisotropic exchange in the KOsO4 is concrete, due

to its peculiar lattice geometry. In our study, we analyze the competition be-

tween strong electron correlations, SOC and tetrahedral deformations in the

e1 con�guration of the Os7+ ions and prove that, due to the peculiar hopping

connectivity and the character of the structural deformation, an entangled

spin/orbital state emerges, marked by magnetic anisotropy. Moreover, we

demonstrate that SOC plays an active role in setting the boundary between

nearest neighbour antiferromagnetic and anisotropic ferromagnetic exchange,

which have a speci�c Ising-like character that depends on the orientation of

each given bond. This result pre�gures a link between the bond direction and

the sign (FM-AFM) of the superexchange coupling per spin component, that



1.2 Motivation of the Thesis 12

reminds a Kitaev-type coupling, where competing components are active at

the same time.

Another strategy in order to magnify the e�ect of SOC is to achieve

microscopic conditions which can lower the kinetic energy, thus enhancing

the λ
t
ratio. This can be reached, for example, considering disconnected

structures, which can be conveniently realized in systems where the TMOx

units are rather isolated, allowing for extremely low kinetic connection be-

tween the heavy TM. The second part of the thesis deals with this idea:

we consider a trilayered structure that reminds compounds associated to

the Ruddlesden-Popper series An+1BnX3n+1 (A=rare earth element, B=TM,

X=oxygen), where the building block is made of TM ions, which form a

three-site chain along the z direction. The term "disconnected" has to be

intended in this context to indicate that the in-plane itineracy is supposed to

be highly damped, promoting the interplay between the local energy scales,

which are dominant. In the considered structure, we neglect the Coulomb

interaction at the �rst order and limit ourselves to explore the competition

between SOC, intra-cell delocalization and lattice deformations, in determin-

ing the electronic structure. Such study is very timely and relevant in many

respects. First of all, it is connected with the concept of topological band

theory and the existence of symmetry-protected topological phases. In the

past few years, it has been realized that not only internal symmetries such

as time reversal, but also crystal symmetries, for example crystal re�ection

or rotation, can lead to the protection of topological states [27, 28, 29]. Ad-

ditional symmetries can generate richer topological structures, as it has been
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recently shown for semimetals [30]. The trilayer- model Hamiltonian upon

examination is indeed a manifestation of combined internal (time-reversal)

as well as crystal lattice symmetries. Speci�cally, the combination of time-

reversal and spatial inversion symmetries is known to be the prerequisite

ensuring the Kramer's degeneracy for every eigenstate at any wavevector k.

In addition, our trilayer problem has an additional characteristic symmetry,

namely the "layer-interchange" symmetry, which leaves the Hamiltonian un-

changed upon interchanging the outer layer �avours. As we will demonstrate,

this allows to label the eigenstates with a layer-parity index F = ±1.

In the second instance, the limit of an almost isolated trilayer allows to in-

vestigate in a well controlled manner the evolution and eventually the closing

of the energy gaps in a weakly dispersing electronic structure, by using the

SOC as the driving tuning parameter which is able to lift the degeneracy of

the spin/orbital entangled states.This kind of analysis opens the way to the

search for novel topological nodal semimetals, which are realized in presence

of large SOC and protected by layer interchange symmetry. In our search, we

make a systematic analysis in weak and strong SOC regime in order to ana-

lyze the evolution of the nodal lines, simulating di�erent local environments

spanning from the ideal undistorted octahedra to the compressed/elongated

octahedra, by modifying the on-site CF parameters, and we characterize the

transitions between di�erent topological electronic con�gurations.
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1.3 Overview of the Thesis

The principal aim of this thesis is to bring out the e�ect of SOC by facing two

speci�c problems which o�er novel and unconventional perspectives towards

possible emerging phases driven by large SOC in TMOs. The �rst part of the

thesis is focused upon the in�uence of SOC on the magnetic states of corre-

lated TMs in tetrahedral compounds, and aims at demonstrating that SOC

may play a non trivial role in correlated TMOs with nominal e1
g con�guration,

contrary to the conventional wisdom that the orbital angular momentum is

quenched in the eg subspace. One of the most important �ndings relates to

the possibility to achieve frustrated ferromagnetic nearest neighbor exchange

when the interplay between SOC, structural deformations and peculiar lat-

tice geometry occur, as in KOsO4.

In the second part, we explore the possibility to emphasize SOC e�ects in

uncorrelated systems which consists of a trilayer building block, made by

three t2g ions oriented along the z direction, which is assumed to be almost

disconnected within the xy plane. One of the major result concerns the char-

acterization of the symmetry protected nodal lines which arise from the band

crossing between energy states which belongs to di�erent layer interchange

symmetry sectors. Those transitions are explored as a function of the driving

microscopic parameters represented by SOC and crystal �eld amplitudes.

In Chapter 2, after a brief review of the crystal �eld theory and the deriva-

tion of the SOC relative to d orbitals, we analyze a model Hamiltonian which

is suitable to describe 5d TMOs containing TMO4 tetrahedra, where the crys-

tal �eld splitting leads to partially �lled eg orbitals. The �rst stage of this
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analysis is based on single ion calculations for the ideal tetrahedral symme-

try, and subsequently for the distorted tetrahedron, which is a fundamental

prerequisite to unveil the e�ects of SOC and the formation of anisotropic

local orbital momentum.

The case of KOsO4 is analyzed in Chapter 3, carrying out a study where

we use ab-initio calculations derived microscopic parameters as an input for

our exact diagonalization study on a two-site cluster of a model Hamiltonian

which contains on-site intra-orbital and inter-orbital Coulomb repulsion, the

Hund's coupling, the on-site energy, the nearest neighbor intra- and inter-

orbital hopping and the SOC.

In Chapter 4, we consider a pioneering exploration of a representative ma-

terial platform allowing for low-connectivity between orbitals of the heavy

TM; this purpose is reached by considering a trilayered structure consisting

of a building block made by three TM ions connected along the z direction.

We present a tight-binding Hamiltonian, which includes the in-plane hop-

ping, the intra-cell hopping,the on-site energy and the SOC, while electronic

correlations are neglected at the �rst order. We evaluate the evolution of the

transitions which characterize band crossings between di�erent layer- parity

sectors as function of SOC, crystal �eld and intra-cell hopping parameters.



Chapter 2

E�ects of Spin Orbit Coupling in

a TM oxides with tetrahedral

arrangement

The �rst part of the chapter provides the theoretical background about SOC

and crystal �eld theory. SOC is introduced as a relativistic e�ect in a semi-

classical framework in order to justify the Z4 dependence upon the atomic

number. Next,we discuss crystal �eld e�ects using group theory arguments.

Both the derivations privilege qualitative topics, while for a more complete

and rigorous discussion we refer to Appendix A and to the references indi-

cated in the text. In the second part of the chapter, general remarks about

SOC in TM ions are given. In TMOs, especially those composed by 4d and

5d TM ions, the interplay between these two energy scales may be relevant.

In particular, we analyze the e�ects of a large SOC on the magnetic state of

a d1 TM ion located in a tetrahedral environment and we demonstrate that,

16
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while in the ideal tetrahedral symmetry SOC acts only as a perturbation on

the atomic energy levels set by crystal �eld splitting, its e�ects are strongly

enhanced in the case of distorted geometries. We consider the speci�c case

in which the tetrahedron is compressed along the z direction and show that,

increasing the degree of �attening, a large SOC can induce an anisotropic un-

quenched orbital momentum and can a�ect the hierarchy of the lowest energy

levels involved in the magnetic superexchange.

2.1 Semiclassical derivation of Spin Orbit Cou-

pling

Spin orbit coupling (SOC) is a relativistic interaction of a particle's spin with

its orbital angular momentum. It manifests itself in lifting the degeneracy

of one-electron energy levels in atoms, molecules, and solids. In addition to

the rigorous analytical derivation proposed in Appendix A, we present here

a quantitative description of SOC for an electron bound to an hydrogen-like

atom, in a framework of classical electrodynamics. The magnetic moment of

an electron with spin s is given by:

µ = −g
~
µBs (2.1)

where g ∼ 2 is the g factor of the electron and µB = e~
2m0c

(m the mass

of the electron and e its charge) is the Bohr magneton. In the electron's rest

frame, the nucleus with charge Ze moves around the electron. According to

Lorentz transformation of the electric �eld E, which is due to the nucleus
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and through which the electron travels, the latter "sees" a magnetic �eld B.

Indicating with v the velocity of the electron around the nucleus, one has

that:

B = −1

c
v ∧ E =

1

m0c
(E ∧ p) (2.2)

Where p = m0v is the electron momentum and the anticommutativity of the

cross product is used. The electric �eld E can be expressed in terms of the

electrostatic potential V:

E = −r

r

dV

dr
(2.3)

In Eq. (2.3), we have used the central �eld approximation, assuming that the

potential is spherically symmetric. This approximation is exact for hydrogen

like systems as the one we are considering. The energy of the electron in the

the magnetic �eld B due to its magnetic moment then can be written as:

hSOC = −µ ·B =
e

m2
0c

2
s · (−r

r

dV

dr
∧ p) (2.4)

Considering a Coulomb potential, V = Ze
r
, and remembering from clas-

sical mechanics that r ∧ p = l, where l is the electron angular momentum,

spin orbit energy is de�nitively given by:

hSOC =
Ze2

m2
0c

2

1

r3
l · s = ζl · s (2.5)

The result (2.5) is coherent with the one of the analytical derivation

proposed in the Appendix A, except for the fact that it is twice larger than

(A.47). A factor 2 at the denominator of (2.5) has to be added in order to

make consistent the two derivations. This correction,called Thomas factor,
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is due to the fact that, two years before the advent of Dirac theory, L.H.

Thomas argued that a more careful treatment of SOC in the framework of

classical electrodynamics would take into account the energy associated with

the precession of the electron spin; this would result in reduction of the energy

(2.5) by a factor of two, in agreement with (A.47) [31].

2.1.1 Atomic energy correction of SOC

In order to calculate explicitly the value of the energy associated to the SOC,

it is useful to remind that for an electronic state with quantum numbers n

and l one has[32]:

<
1

r3
>=

Z3

a3
0n

3l(l + 1
2
)(l + 1)

(2.6)

Where a0 is the Bohr radius. In addition, in presence of SOC, it can be shown

that s and l are no longer separately conserved, but their coupling produces

the total angular momentum j = l + s. It follows that l · s = 1
2
(j2 − l2 − s2).

Hence, the value of l · s is given by:

< l · s >=
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] (2.7)

Using Eq. (2.6) and Eq. (2.7), from Eq. (2.5) we calculate the value of the

energy of the SOC, which results:

ESOC =
Z4e

4m2c2

j(j + 1)− l(l + 1)− s(s+ 1)

l(l + 1
2
)(l + 1)a3

0n
3

(2.8)

Eq. (2.8) show that spin orbit correction scales as Z4, where Z is the atomic

number of the involved nucleus.
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For a many-electron atom, the contribution to the Hamiltonian of the SOC

can be obtained by summing (2.5) over all electrons in this way:

HSOC =
∑
i

ζili · si (2.9)

There are two schemes which can be taken in consideration to describe

many-electron states. The �rst of them is called jj coupling scheme and it

is used especially for 4f and 5f elements; in this scheme, the total angular

momentum ji = li + si associated to a single electron is calculated, then

the total angular momentum J =
∑

i ji is given by the sum over all the

total angular momentum of any single electron. The other scheme, called

LS or Russel Saunders scheme and used for TM ions, is based �rstly on the

individuation of S =
∑

i si and L =
∑

i li, which are respectively the spin

and orbital angular momentum of the system. After determining S and L,

SOC is included. According to LS scheme, the full SOC is written as:

HSOC = λL · S (2.10)

The constant λ is composed by all the partial SOC constant ζi; for one shell,

all the ζi are equal each other, then the coupling constant can be written as

[33]:

λ = ± ζ

2S
(2.11)

the sign + is used for less than half �lled shells, the sign - for more than

half �lled shells. Since from the relativistic derivation we know that ζ is a
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positive quantity, we have that λ > 0 for less than half �lled shells, λ < 0 for

more than half �lled shells.

The interaction (2.10) gives us di�erent energies for terms with di�erent

J = L+S, which is the total angular momentum obtained by the sum of the

spin and orbital angular momentum of the system. According to (2.10) and

to the rules of quantum mechanics, in a state with given J the contribution

to the energy due to SOC is:

〈L · S〉 =
J(J + 1)− L(L+ 1)− S(S + 1)

2
(2.12)

The SOC has hence the e�ect to split the atomic energy levels into multi-

plets, each of which is associated to a well-de�ned value of the total angular

momentum J. As a result, a level with given values of L and S is split into

a number of levels with di�erent values of J. This splitting is called �ne

structure of the level.

The ground state of this structure can be determined according to the Hund's

rules, whose statements are the following:

• electrons �ll levels so as to make the largest possible total spin S,

according to the Pauli principle;

• among all the possible con�guration in which the spin is maximized,

the ground state is the state which has the maximum possible value of

the orbital angular momentum L;

• in light of the previous results, for less than half �lled shells λ > 0 and

the ground state is the one with the smallest possible value of J, while
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for more than half �lled shells λ < 0 and the lowest level is the one

with the maximum value of J.

2.2 Crystal �eld theory

In this section, a brief description of the crystal �eld theory is given, without

the claim to be rigorous. For a more detailed description of the representa-

tion theory of point groups, refer to [34, 35].

Transition Metals (TMs) are de�ned as elements whose atoms have partially

�lled d shells. When a TM is isolated, the corresponding d orbitals are �ve-

fold degenerate. Conversely, when a TM is placed in a solid, its spherical

symmetry O3 is replaced by the symmetry de�ned by the crystal structure.

A typical structure found in many compounds with TMs is the perovskite

ABO3 reported in Fig. 2.1, where a transition metal ion B is centered inside

a regular oxygen O octahedron hosted by a cubic lattice of A which are con-

stituted, for example, by rare-earth ions. The symmetries associated to this

kind of structure can be described by the Oh point group [34, 35]. Symmetry

operators are reduced to a �nite number h = 48, including the identity Ê

and the following rotation operators, whose relative rotation axes are indi-

cated in Fig. 2.1: 8×Ĉ3, which represent the rotation by 120◦ about a 3-fold

axis,3×Ĉ2, which are rotation by 180◦ about a 4-fold axis,6×Ĉ4, which are

rotation by 180◦ about a 2-fold axis and 6×Ĉ ′2, which represent a rotation by

90◦ about a 4-fold axis. Each of them can be further coupled to an inversion

operator î. These symmetry operators can be represented by matrices of dif-

ferent dimensions. A matrix representation is called reducible if every matrix
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Figure 2.1: A cubic perovskite cell ABO3 and its rotational symmetry axes

in the representation can be written in the same block form through the same

similarity transformation; if this cannot be done, the representation is said

to be irreducible. There is an in�nite number of equivalent representations

of a group, and thus a large arbitrariness in the form of the representation.

However, the trace of a matrix, called character, is invariant under a simi-

larity transformation; it is therefore useful to classify matrix representations

through their characters. Furthermore, a reducible representation can be de-

composed in irreducible ones using the orthogonality relations of characters.

One can show that, if χ(gi) are the characters of the reducible representation,

they must be given by a linear combination of the characters of irreducible

representation:

χ(gi) =
∑
j

ajχj(gi) (2.13)
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where the aj coe�cients are determined from orthogonality relations [36].

Hence, the reducible representation Γ can be written as:

Γ = a1Γ1 ⊕ a2Γ2 ⊕ ... =
⊕
j

ajΓj (2.14)

The characters of all possible irreducible representations for the Oh point

group are tabulated in Table 2.1 [34], where A, E, and T denote one-, two-,

and three-dimensional representations. For operators coupled with inversion

î , the values can remain unaltered or change sign for even (denoted by sub-

script g, which stands for the German word gerade) or odd (u, ungerade)

representations, respectively. Regarding the perovskite structure of Fig. 2.1,

Table 2.1: Characters for the Oh point group

Oh E 8C3 3C2 6C4 6C
′
2

A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 1 -1
T2 3 0 -1 -1 1

for an electron of the TM ion B, the symmetry of the Hamiltonian are de-

termined by the potential relative to the site B and the neighboring ligands

O, which can be assumed to be point charges. Considering a d electron, its

wave function is Ψ ∝ eimϕ, where m is the magnetic quantum number |m| ≤ l

and l=2 is the angular momentum. A rotation of an angle Φ of this wave

function around an arbitrary axis can be represented by a diagonal matrix
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Γl(Φ)= diag(eilΦ,ei(l−1)Φ,...,e−ilΦ), whose character can be easily calculated:

χ(Φ) = TrΓl(Φ) =
l∑

m=−l

e−imφ =
sin[(l + 1

2
)Φ]

sin
(

Φ
2

) (2.15)

This result is valid for any direction of the rotation axis and for any d-

dimensional basis set obtained by making linear combination of the spherical

harmonics Yl
m(θ, φ) functions, because the trace of a matrix is invariant under

basis transformation. The character for each symmetry operation in Oh is

then given by:

E 8C3 3C2 6C4 6C
′
2

χΓ2 = 5 -1 1 -1 1

The number n of its irreducible components can be calculated by ni=
∑

R χi·

χΓ2 , where χi is the character of the irreducible representations given in Ta-

ble 2.1.

Recalling Eq. (2.14), the symmetry representation for a d electron with oc-

tahedral coordination (Oh symmetry) is then :

Γ2 = E ⊕ T2 (2.16)

Eq. (2.16) implies that the original �ve-fold degeneracy is removed in the Oh

point group and the d orbitals are split into two levels eg and t2g, with two-

and three-fold degeneracy respectively. The subscript g is added because d

orbital are even under inversion.

A conventionally used set of real basis functions for d electrons is shown in

Fig. 2.2. Their expressions in terms of spherical harmonics are given in Eq.
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(2.17), using the notation |l,m〉, with l = 2 is the angular momentum and

m, which is the projection of l along the z axis, assumes values from -l to l:

dxy =
1

i
√

2
(|2, 2〉 − |2,−2〉)

dxz = − 1√
2

(|2, 1〉 − |2,−1〉)

dyz = − 1

i
√

2
(|2, 1〉+ |2,−1〉)

dz2 = |2, 0〉

dx2−y2 =
1√
2

(|2, 2〉+ |2,−2〉)

(2.17)

The �rst three wavefunctions belong to the t2g subspace, while the last two

are part of the eg subspace.

Figure 2.2: Angular distribution of the d orbitals
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The lifting of degeneracy is evident looking at the shape of the orbitals:

the eg orbitals point directly to the neighboring negatively-charged ligand

oxygens, therefore experience stronger Coulomb repulsion compared to the

t2g ones and are thus energetically less stable. The resulting energy di�erence

is called Crystal Field (CF) splitting ∆CF . The hierarchy of the two orbital

subspaces is inverted when TM ion is placed, for example, in a tetrahedral

arrangement. An octahedron and a tetrahedron are related geometrically:

octahedral coordination results when ligands are placed in the centers of

cube faces, while tetrahedral coordination results when ligands are placed on

alternate corners of a cube. The regular tetrahedron belongs to the point

group Td and symmetry operations are reduced to a �nite number h=24;

these include the identity Ê, 8×Ĉ3,3×Ĉ2 as in the case of the octahedron,

6×Ŝ4=6×Ĉ4σ̂h, where σh is a symmetry operator that indicates a re�ection

in a plane of symmetry perpendicular to the main symmetry axis, and �nally

6×σ̂d, where σd is a re�ection in a plane which contains the symmetry axis.

The symmetry operations for a Td point group are thus very closely related to

those of the Oh one, the most important di�erence is that the Td point group

does not possess a symmetry center and thus has no inversion operation [34].

In the case of a tetrahedral coordination then, the d orbitals are split into two

levels as in an octahedral con�guration, but the e doublet lies lower than the

t2 triplet, which can qualitatively be understood by observing that now the

t2 electrons experience a stronger Coulomb repulsion than e electrons and

are higher in energy. Note that the subscript g is removed since there is not

inversion in Td. Concerning these two particular con�gurations, the splitting

which separates the two orbital subspaces in a tetrahedral arrangement ∆t is
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smaller than the splitting ∆o which characterizes an octahedral coordination

with the same ligands. In the simplest cases, the relation between the two

CF splittings is given by [33] :

∆t =
4

9
∆o (2.18)

The two arrangements are schematically shown in Fig.2.3:

Figure 2.3: (a) Schematical representation of a TM ion in an octahedral
(white) and tetrahedral (grey) environment and (b) the relative crystal �eld
splittings

Distortions of the structure can further reduce the symmetry and this

can lead to additional CF splitting. The most common distortion of the

octahedral cristalline �eld is the tetragonal distortion, which causes further

splitting in the orbital subspaces schematically shown in Fig. 2.4.
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Figure 2.4: Tetragonal (a) elongation and (c) compression of a TMO6 octa-
hedral structure and corresponding (b) (d) splitting of d levels

2.3 Spin orbit coupling in TM oxides

2.3.1 T-P equivalence

The matrix elements of orbital angular momentum l = 2 for a single electron

in the �ve fold degenerate d -orbitals respect to the basis { dyz, dxz, dxy, dz2 , dx2−y2 }

are [37]:

ldx =



0 0 0 −
√

3i −i

0 0 i 0 0

0 −i 0 0 0
√

3i 0 0 0 0

i 0 0 0 0


(2.19)
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ldy =



0 0 −i 0 0

0 0 0
√

3i −i

i 0 0 0 0

0 −
√

3i 0 0 0

0 i 0 0 0


(2.20)

ldz =



0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0


(2.21)

As we can see in the (2.19),(2.20) and (2.21), the orbital momentum is

quenched in the eg subspace

〈eg| l |eg〉 = 0 (2.22)

This implies that SOC has no e�ect at �rst order on eg orbitals. Looking at

the analogous matrices in the basis of the p orbitals:

lpx =


0 0 0

0 0 −i

0 i 0

 (2.23)

lpy =


0 0 i

0 0 0

−i 0 0

 (2.24)



2.3 Spin orbit coupling in TM oxides 31

lpz =


0 −i 0

i 0 0

0 0 0

 (2.25)

and comparing them with the matrix elements of l in the t2g subspace

(2.19),(2.20) and (2.21), it is evident that we can map these states with

l = 2 onto the p-states with l = 1 in this way:

l(t2g) = −l(p) (2.26)

This relation is called T −P equivalence. According to it, the orbital angular

momentum in t2g states is partially quenched from l = 2 to l = 1. This

equivalence can be conveniently used when there is a large splitting within

the d orbitals due to the crystal �eld, neglecting the o�-diagonal terms of

(2.19),(2.20) and (2.21) [38]. Using (2.26), we can express the spin orbit

interaction on t2g levels mapping the t2g orbital states through an e�ective

orbital angular momentum l̃ = 1:

HSOC = λ̃̃l · S (2.27)

where λ̃ = −λ [39]. According to this equality, the second Hund's rule for

the t2g subshell in this mapping is reversed: the ground state for less-than-

half �lled shells is the state with maximum total angular momentum J̃ , while

for more-than-half �lled shells the ground state is the state with smaller J̃ .

The e�ect of the spin orbit coupling on these levels at the �rst order is to

produce a splitting of them.For example, considering the con�guration t12g,
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where l̃ = 1 and S = 1
2
, the total degeneracy is (2l̃+ 1)(2S+ 1) = 6. This six

levels are split by spin orbit coupling in a quartet with J̃ = l̃+S = 3
2
, which

is the ground state according to Hund's rule, and a doublet J̃ = l̃ − S = 1
2
.

If we considered the "complementary" con�guration t52g, with one hole in

the subspace, the situation would not change but the doublet would be the

ground state. This is what seems to occur in 5d5 iridates, that are the most

dramatic example in which a quite strong SOC changes the character of

the multiplet state, thus reducing the magnetic state of Ir4+ to an e�ective

Kramers doublet with e�ective total angular momentum j = 1/2, as we have

mentioned in the Introduction.

2.4 SOC matrix in d orbitals

In order to calculate SOC matrix elements for a S=1
2
electron in the t2g

subspace,we rewrite HSOC in terms of x, y and z components of the spin and

the angular momentum:

HSOC = λL · S = λ(LxSx + LySy + LzSz) (2.28)

Indeed, we can construct the matrix element using the following relations for

spin and angular momentum operators:

Lx =
1

2
(L+ + L−) Ly =

1

2i
(L+ − L−) (2.29)

Sx =
1

2
(S+ + S−) Sy =

1

2i
(S+ − S−) (2.30)
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L+ and L− are raising and lowering operators for the angular momentum

respectively and their action on a generic state with quantum numbers k, l,m

is:

L±ψk,l,m(r) =
√
l(l + 1)−m(m± 1)ψk,l,m±1(r) (2.31)

The S+ and S− operators act on the spin in the following way:

S+ |↑〉 = 0 (2.32)

S+ |↓〉 = |↑〉 (2.33)

S− |↑〉 = |↓〉 (2.34)

S− |↓〉 = 0 (2.35)

Adding to these relations the others that are related to the z component of

angular momentum and spin:

Lzψk,l,m(r) = mψk,l,m(r) (2.36)

Sz |↑〉 =
1

2
|↑〉 Sz |↓〉 = −1

2
|↓〉 (2.37)

we can calculate element by element the SOC matrix.We assume ~ = 1 for

all the dissertation. Taking in consideration Eq. (2.29), we can rewrite the

Hamiltonian in this way:

HSOC = λ[
1

2
(L+S− + L−S+) + LzSz] (2.38)

If we apply this operator to the representation of the d orbitals (2.17), the

HSOC matrix which we obtain in the t2g subspace and in the
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{ dyz ↑, dyz ↓, dxz ↑, dxz ↓, dxy ↑, dxy ↓ } basis is:

H
t2g
SOC =

λ

2



0 0 i 0 0 −1

0 0 0 −i 1 0

−i 0 0 0 0 i

0 i 0 0 i 0

0 1 0 −i 0 0

−1 0 −i 0 0 0


(2.39)

We can construct with the same procedure also the matrix which couples the

t2g and the eg states:

H
eg−t2g
SOC =

λ

2



0 −
√

3i 0 −i

−
√

3i 0 −i 0

0
√

3 0 −1

−
√

3 0 1 0

0 0 2i 0

0 0 0 −2i


(2.40)

Here , columns of the matrix are written in the order { dz2 ↑, dz2 ↓, dx2−y2 ↑, dx2−y2 ↓ }

basis, while the order of the basis of the t2g orbitals remains unchanged.

2.4.1 General remarks about the e�ect of spin orbit cou-

pling on d orbitals

SOC turns out to be a fundamental ingredient in determining the multiplet

structure of t2g TM compounds. The study of the e�ects of SOC on these
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kind of compound has been carried on for a long time, as we have mentioned

in the Introduction, and currently we know that it is very di�erent, depend-

ing on the class of TM that we consider.

In 3d TMOs, the Coulomb interaction is about U ∼ 5 eV, the SOC energy

λ ∼ 20 meV [40]. The 3d states are not �ve-fold degenerate in a crystal and,

very often, TM ions are surrounded by six oxygen ions, making an octahedral

structure; here, the energy splitting within the t2g and eg subspaces assumes

typically an intermediate value of the previous energetic scales. Since SOC

is smaller that the other energy scales, the electronic state is fully described

by a spin-only Hamiltonian and the Hund's rule determines the ground state

value of L and S. In this picture, SOC is treated as a small perturbation,

which primarily can give rise to magnetic anisotropy [41]. Since the SOC

magnitude grows as Z4 (see Eq. (2.8)), for 4d and 5d TM oxides it can play a

major role. 4d TMs are systems with less correlated wide bands, because of

the weaker electronic correlations compared to the 3d case. For the 4d TMOs

like ruthenates, where λ ∼ 0.1-0.2 eV, the situation is controversial:on one

hand, in band-structure calculations [42, 43] and in spin-sensitive photoemis-

sion [44] the e�ect of SOC is clearly observed; on the other hand, Dynamical

Mean Field Theory approach [45, 46] reveal that ruthenates are Hund's met-

als and their magnetic behavior can be successfully described without taking

in consideration SOC. 4d TM ions naturally bridge two di�erent regimes of

the strongly correlated 3d compounds and 5d compounds.

In 5d TM compounds, the situation is well-de�ned:5d orbitals are expected

to be more extended and the Coulomb interaction value is further reduced

compared to the 3d and 4d cases.Moreover, the typical value of SOC is λ ∼
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0.5 eV [47], so its e�ect cannot be neglected at all. 5d TMOs may possess

an unquenched orbital momentum which is rigidly tied to the spin direction

by the large intra-atomic SOC. In particular, in the case of a metal ion in an

octahedral environment (TMO6), an increasing experimental evidence indi-

cates that it is necessary to take into account a quite large SOC to achieve

the correct magnetic state within the t2g manifold. As we have already dis-

cussed previously, the most dramatic example occurs in 5d iridates, where a

quite strong SOC changes the character of the multiplet:after splitting of the

energy levels due to CF, SOC further splits the t2g orbitals with spin degener-

acy, thus reducing the magnetic state of Ir4+ to an e�ective Kramers doublet

with e�ective total angular momentum Jeff = 1
2
. Conversely, the SOC in 5d3

osmium-based compounds can be treated perturbatively, although it is any-

how necessary to account for the SOC-induced anisotropy, which is essential

in the selection of the the magnetic ground state [48, 49, 50, 51].

Systems with active eg degrees of freedom o�er a completely di�erent play-

ground. As we have seen in the previous section,the orbital momentum is

fully quenched within these orbitals , hence SOC modi�es the ground state

only via virtual processes involving the t2g orbitals and, therefore, acting

across the CF splitting. However, this e�ect may be considerably enhanced

in 5d metal oxides containing TMO4 tetrahedra, since the CF splitting nat-

urally favors the occupancy of the lower eg manifold. In addition, the CF

energy, although being the largest energy scale, is relatively small in size, as

stated by (2.18).
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2.5 Interplay between SOC and distortions in

a tetrahedral environment

2.5.1 Ideal tetrahedral symmetry

In order to understand the role that SOC plays on magnetism in TMO4 tetra-

hedra, it is a good starting point to consider an ionic d1 con�guration having

spin S = 1
2
, where both the Coulomb interaction and the Hund's coupling

within the d subspace are neglected. A schematic representation of the ideal

Figure 2.5: Tetrahedral arrangement, where the TM ion is located at the
origin of the coordinate system and the angle formed by the edges of the
ideal tetrahedron is 109.5◦

tetrahedral geometry is reported in Fig. 2.5, with a TM ion surrounded by

a cage of four O ligands. We �rstly consider the equilibrium position of the

tetrahedron, which means that the angle between the edges of it is equal

to 109.5◦. The energies of the d orbitals are a�ected by the arrangement of

the four negative charges leading to the CF splitting of the d levels into two
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di�erent subspaces. The top three are the dxy,dxz and dyz orbitals, which

constitute the t2 sector, while the bottom two are the dx2−y2 and dz2 which

span the e manifold (Fig. 2.6(a)).

The Hamiltonian is composed only by the two interaction terms which char-

acterizes our simpli�ed scheme, which are the CF and SOC:

H = HCF +HSOC =
∑
α

εαnα + λL · S (2.41)

where α labels the d orbitals, εyz = εxz = εxy ≡ εt2 and εx2−y2 = εz2 ≡ εe

stand for the on-site energies of the t2 and the e in the ideal tetrahedron,

respectively, and λ is the positive SOC parameter. Furthermore, S is the spin

one-half operator while L is the angular momentum operator for a single elec-

tron in one of the �ve-fold degenerate d-orbitals, whose component are given

in (2.19),(2.20) and (2.21) in matrix representation. We have calculated in

(2.39) and (2.40) the contribution of SOC to the Hamiltonian, then we have

all the ingredients to construct the matrix representation of the Hamiltonian

(2.41) in the basis (dyz,↑, dyz,↓, dxz,↑, dxz,↓, dxy,↑, dxy,↓, dz2,↑, dz2,↓, dx2−y2,↑, dx2−y2,↓):
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

∆t 0 iλ
2

0 0 −λ
2

0 −
√

3iλ
2

0 − iλ
2

0 ∆t 0 − iλ
2

λ
2

0 −
√

3iλ
2

0 − iλ
2

0

− iλ
2

0 ∆t 0 0 iλ
2

0
√

3λ
2

0 −λ
2

0 iλ
2

0 ∆t
iλ
2

0 −
√

3λ
2

0 λ
2

0

0 λ
2

0 − iλ
2

∆t 0 0 0 iλ 0

−λ
2

0 − iλ
2

0 0 ∆t 0 0 0 −iλ

0
√

3iλ
2

0 −
√

3λ
2

0 0 0 0 0 0
√

3iλ
2

0
√

3λ
2

0 0 0 0 0 0 0

0 iλ
2

0 λ
2

−iλ 0 0 0 0 0

iλ
2

0 −λ
2

0 0 iλ 0 0 0 0



(2.42)

where ∆t = εt2 − εe is a positive constant measuring the energy gap between

the e and the t2 orbitals. As it is evident from (2.42), the e�ect of SOC is

to produce an entanglement between spin and orbital degrees of freedom in

the electronic wavefunction;however, in the case of a tetrahedral d1 con�gu-

ration, the e manifold is constituted only by vanishing matrix elements. This

implies that SOC can have an e�ect on the e orbitals only at second order in

a perturbative expansion in λ
∆t
. The conditions of the speci�c case which we

are considering (strong SOC and modest CF) allow us to imagine that these

second order corrections may be relevant.

In order to bring out an e�ect of SOC on e orbitals, one can treat the SOC

term perturbatively, adding it as a perturbation to the Hamiltonian com-

posed by the CF energy terms. Considering the e subspace as the ground

state of the system, then εe=0 and εt2 = ∆t, we divide each terms of Eq.
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(2.41) by ∆t :

1

∆t

H = H̃ =
∑
α

nα +
λ

∆t

L · S (2.43)

note that here α = xy, xz and yz in light of the previous assumption. Now,

de�ning:

δ =
λ

∆t

< 1 (2.44)

we perform a perturbative calculation on H̃ in the parameter δ, projecting

H̃ in the e subspace through the Lowdin procedure (see Appendix B). The

result of the projection is that SOC produces an energy gain that grows

increasing δ:

∆ESOC =
3

2
∆tδ

2 + [δ3] (2.45)

This means that the e-t2 SOC matrix elements in (2.42) contribute with

an energy correction to the dominant energy scale that is proportional to

the ratio λ2

∆t
and that is the same for each of the e orbitals. As a result, the

energies of the e levels have been modi�ed by SOC correction, but they are

still degenerate. It is evident that there is an internal symmetry that SOC

is not able to remove. Conversely, the same procedure carried out in the t2

subspace con�rms that SOC splits the t2 orbitals,which are characterized by

an unquenched projection of L. The evolution of the energy levels obtained

by diagonalizing the matrix of Eq.(2.42) is schematically shown in Fig. 2.6(b):

as one can see, the SOC a�ects neither the degree of degeneracy nor the

hierarchy of the lower four-fold degenerate levels. We point out that, as a

consequence of the spin-orbital mixing provided by the SOC, a non-vanishing
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orbital angular momentum arises, which is fully isotropic. Therefore, the

Figure 2.6: (a) Shift of the eg orbitals with respect to the t2 ones by ∆t. (b)
Evolution of the energy levels in presence of SOC

e�ect of SOC on e orbital in the ideal tetrahedron symmetry is simply an

alteration of their energy, because they remain fully degenerate.

2.5.2 Tetrahedral distortions

Distortions of the tetrahedral structure may have a role, because they can

lead to a symmetry lowering and also magnetocristalline anisotropy. Al-

though these are second-order e�ect, they are not completely negligible. It is

a good starting point to consider the interplay between SOC and the tetra-

hedral distortions and how they a�ect the spin-entangled ground state. In

doing that, we will assume that the tetrahedron is �rstly deformed as to

remove the orbital degeneracy and then achieves a new lower energy ground

state. Then, we proceed starting from the limit of zero spin orbit coupling

to investigate how the energy levels are a�ected when we turn on the spin

orbit interaction.
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As reported in detail in Appendix C, a generic tetrahedron has nine normal

modes, classi�ed according to the symmetry of the tetrahedron.We consider

a local deformation related to a speci�c static normal mode, that can be

obtained by varying the O-TM-O angle without a�ecting the TM-O length,

which is left as a free parameter. It is possible to visualize these deformations

as a squashed or a squeezed tetrahedron along the z direction, depending on

the variation of the angle θ between the edges of the tetrahedron respect to

the ideal angle (see Fig. 2.7). These distortions, which are attributable to

the static Jahn Teller e�ect, induce a partial lifting of the orbital degeneracy

even in the absence of SOC. In particular, we expect that the con�guration

in which the tetrahedron is squashed, which means that the variation of the

angle is δθ > 0, supports energetically the orbitals which have an apical

component instead of planar one, while for a squeezed tetrahedron, in which

δθ < 0, it is the contrary. To get an estimate of the modi�ed on-site ener-

gies Eα, we calculate the potential energy that the d1 electron, treated as a

point charge located at the origin, experiences because of four negative point

charges located at the O sites. It is well-know that the potential acting on a

TM ion from the surrounding ligand ions is given by:

V (r) =
∑
i

Zie
2

|r−Ri|
(2.46)

where r is the position vector of the TM ion, Ri and Zie are respectively the

position vector of the i-th ligand ion and its charge. This potential is called

CF potential. We calculate its value for a distorted tetrahedral structure,

using then the position vectors assumed by ligands after the distortion. For
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this reason, we have written the potential and the position vectors in spherical

coordinates and we have used the expression of the Laplace expansion for the

inverse distance between vectors r and Ri [36]:

1

|r−Ri|
=
∞∑
l=0

4π

2l + 1

l∑
m=−l

(−1)m
rl<
rl+1
>

Y −ml (θ, ϕ)Y m
l (θ′, ϕ′) (2.47)

where r has coordinates (r, θ, ϕ) and Ri has (r′, θ′, ϕ′), with homogeneous

polynomials of degree l in (x, y, z); r< and r> are respectively the smaller and

larger of r and Ri and the function Y m
l represents a normalized spherical

harmonic function. In this way, we obtain an expression for the potential

in the distorted structure we are dealing with. In order to calculate the CF

energy levels arising from our distorted tetrahedral structure, we have to

evaluate the following integral for each orbitals:

Eα =

∫
Ψ∗(r, θ, ϕ)VΨ(r, θ, ϕ)r2 sin θdrdθdϕ (2.48)

where Ψ(r, θ, ϕ) are the wavefunctions of the d orbitals (2.17) written

here in spherical coordinates. By evaluating the averages of the potential

over the d orbitals, we obtain the dependence on the deviation angle of the

on-site energies, which are reported in Fig.2.7; note that the energies of the

levels are rescaled at the ground state energy and renormalized to the value

of ∆t.

From Fig. 2.7, it is evident that tetrahedral distortions have opened a gap

in the e and t2 subspace. For positive deformations, reported on the right
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Figure 2.7: Energy levels arising for squeezed (left) and squashed (right)
tetrahedra along the z direction as a function of the deviation δθ from the
ideal position constituted by an angle of θ = 109.5◦. EG is the ground state
energy.

of Fig. 2.7, the ground state of the system is constituted by the dz2 orbital,

while for negative deformations which are on the left of Fig. 2.7, the lower

energy level is the dx2−y2 orbital, as we expected. The gap which emerges in

the e and t2 subspaces is not of the same amount in the two regions and it

is not symmetrical, as one can see evidently in Fig. 2.8.

Figure 2.8: Evolution of the energy gap in the e and t2 subspaces as a function
of deviation δθ from the ideal position.

We have then demonstrated that, in the case of both squashed and
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squeezed tetrahedra, the degeneracy in the e subspace is lifted. When the

tetrahedron is squashed, the dz2 orbital is shifted lower with respect to the

dx2−y2 one by an amount ∆e, while when the tetrahedron is squeezed the op-

posite ordering occours. In the t2 sector, an energy gap ∆t2 separates the dxy

orbital from the manifold of degenerate dyz and dxz ones. The relative ratio

∆t2/∆e is always greater than 1 in both regions and raises up to several units

when the deformation angle increases. Hereafter, we use the ratio ∆t2/∆e to

parametrize the degree of distortion instead of the angular deviation δθ.

The competition between the SOC and the tetrahedral distortions is ana-

lyzed in the following, for the particular case of squashed tetrahedra. We use

a typical value of ∆e/∆t = 0.2 and follow the evolution of the lowest energy

eigenvalues as functions of λ/∆t and ∆t2/∆e. This evolution is reported in

Fig. 2.9.

Figure 2.9: Lower energy levels emerging by the interplay between SOC and
CF splitting as a function of the ratio between the gaps opened by distortions
in the e and t2 subspaces.
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We observe that the original gap ∆e due to distortions is ampli�ed by the

SOC and grows both with the ratio ∆t2/∆e and with λ/∆t and it increases by

an amount ∼ 1.3∆e for a squashed tetrahedron and by ∼ 1.4∆e for a squeezed

one, as is more evident in Fig. 2.10, where the energy di�erence among the

e orbitals in presence of distortions as a function of the ratio between the

"intra" CF splittings for di�erent value of the ratio λ
∆t

is reported.

Figure 2.10: Evaluation of the energy di�erence ∆E among the two lowest
eigenvalues of Fig.2.9 for various values of the ratio λ

∆t

We deduce that, in the presence of tetrahedral distortions, SOC can play

a relevant role in setting the energy gap among the lowest energy levels that

are involved in the exchange processes. The hierarchy of the lowest energy

levels that are involved in the magnetic exchange is strongly a�ected by

SOC and, due to the symmetry breaking in the orbital space, the emerging

angular momentum is highly anisotropic due to the preferential action of the

Lx and Ly components over the CF-selected dz2 ground state, as reported in

Fig. 2.11.
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Figure 2.11: Evolution of the local angular momentum components in pres-
ence of SOC and deformation

2.6 Summary and conclusion

In this chapter, a brief overview of the CF theory in d orbitals and general

remarks about the e�ect of SOC in TM oxides was provided. In particular,

we have analyzed the e�ects of a large SOC on the magnetic state of a d1

TM ion located in a tetrahedral environment. Our results show that in the

ideal tetrahedral symmetry SOC acts only as a perturbation on the atomic

energy levels, set by the CF splitting. Instead, its e�ects are strongly en-

hanced in the case of distorted geometries. We have considered the speci�c

case in which the tetrahedron is compressed along the z direction and we

have shown that moderate values of the ratio λ
∆t

can be considered as source

of unquenched angular momentum in d1 systems with tetrahedral coordina-

tion. The interplay between SOC and CF parameters may enhance the gap

within the set of lowest energy levels in the presence of tetrahedral distor-

tions and leads to magnetic anisotropy.This mechanism is expected to play a

relevant role in the magnetic exchange processes of heavy TM oxides in the
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d1 con�guration.



Chapter 3

KOsO4 as a case of study

In Chapter 2, we have seen that there is the possibility to strongly enhance at

the ionic level the quantum e�ects of SOC on the e manifold in 5d TMOs ox-

ides containing TMO4 tetrahedra. We have shown that in a d1 con�guration

SOC produces an additional symmetry lowering in presence of a distorted

tetrahedral structure. This can lead to an unquenched orbital angular mo-

mentum and can a�ect the hierarchy of the lowest energy levels.

In this chapter, we consider the speci�c case of the KOsO4 compound to in-

vestigate the competition between strong electron correlations, SOC and tetra-

hedral deformations in the nominally e1 con�guration of the Os7+ ions. In

this study, we refer to ab-initio calculations based on �rst-principles Density

Functional Theory (DFT) which are reported in Ref. [52]. We characterize

the nature of the spin/orbital exchange by performing exact diagonalization

(ED) calculations on a two-site cluster and using DFT results as input mi-

croscopic parameters of the Hamiltonian. The results show that the SOC

is assisting the formation of an AFM ground state but, at the same time,

49
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is responsible for the appearance of a non-vanishing orbital momentum and

of a magnetic in-plane and out-of-plane anisotropy. Hence, an entangled

spin/orbital state, marked by anisotropic exchange, emerges in a suitable

realistic region of interaction parameters. We also show that, due to the pe-

culiar interplay between SOC, Hund's coupling and hopping connectivity, the

system is on the verge of developing short range ferromagnetic correlations

(FM) marked by strong directionality.

3.1 Ab initio study of KOsO4

In this section, we summarize some results, which have been obtained via ab

initio downfolding approach, concerning the on-site energy levels and hop-

ping parameters of KOsO4. These �rst-principles density functional theory

(DFT) calculations have been performed by using the VASP [53] package. As

explained in Ref. [52], the core and the valence electrons were treated with

the Projector Augmented Wave (PAW) method [54] and a cuto� of 400 eV

for the plane wave basis. All the calculation are performed using a 12×12×6

k-point Monkhorst-Pack grid [55]. For the treatment of exchange-correlation,

the Local Spin Density Approximation (LSDA) and the Perdew-Zunger[56]

parametrization of the Ceperly-Alder[57] data has been considered. In all

cases, the tetrahedron method with Blöchl corrections[58] was used for the

Brillouin zone integrations. The internal degrees of freedom are optimized

by minimizing the total energy to be less than 10−5 eV. After obtaining the

Bloch wave functions in density functional theory, the maximally localized

Wannier functions (MLWF) [59, 60] are constructed using the WANNIER90
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code[61]. To extract the character of the electronic bands at low energies, the

Slater-Koster interpolation scheme was used. Such an approach is applied

to determine the real space Hamiltonian matrix elements in the maximally

localized Wannier function basis.

As a second step, to catch the insulating phase, the Hubbard U e�ects on the

Os sites were included within the GGA+U [62] approach using the rotational

invariant scheme proposed in [63].

3.1.1 Crystal structure

Both susceptibility and speci�c heat measurements indicate that KOsO4

compound is a Mott insulator [64]. It has been often synthesized from a

mixture of KO2 and Os metal as a precursor for preparation of the supercon-

ductor KOs2O6 [65], but further investigations of its physical properties are

lacking to date. KOsO4 crystallizes in a tetragonal scheelite-like structure

(space group: I 41/a, No. 88) [66] schematically reported in Fig. 3.1, with

lattice parameters a = 5.562Å and c = 12.664Å. The scheelite structure

consists of isolated tetrahedra OsO4, which are quite well separated. In this

compound, the Os atoms sit at the 4a sites (0, 1
4
, 1

8
), while the O atoms lie

on the 16f sites (0.1320, 0.0160, 0.2028). Moreover, the tetrahedra are quite

distorted, namely the O-Os-O bond angles are 114◦ or 107◦ while the ideal

angle for a regular tetrahedron is 109.5◦ [64]. The S = 1/2 spins reside on

the sites of an elongated diamond sublattice.
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Figure 3.1: Schematical structure of KOso4, consisting in isolated tetrahedra
which are quite distorted

3.1.2 Electronic parameters for the paramagnetic phase

We report here the calculation in the paramagnetic (PM) phase at U=0 to

have the bare electronic structure. We specify that the (x, y) plane is rotated

by an angle θ = 73.3◦ with respect to the (a, b) plane of the crystal unit cell

and that the on-site energy of the dz2 orbital is assumed as zero. Ab-initio

calculations show that the energy of the dx2−y2 orbital with respect to the

ground state z2 is 99 meV, the energies of dxz and dyz orbitals are equal

to 1446 meV, while the energy of the dxy orbital is 1837 meV, as reported

in Table 3.1. It is evident that the dz2 sector is separated in energy from

the dx2−y2 orbital by and energy gap of ∼ 100 meV; the degeneracy in the

e manifold is lifted by the deformation of the OsO4 tetrahedra, namely the

compression along the z axis. This distortion is related to the Jahn Teller
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Table 3.1: On-site energy of the Os atoms in the PM case. The on-site energy
of the 3z2-r2-like WF is set to zero. εα0 is the energy on site for the orbital α.
The unit is meV.

xy x2-y2 xz yz 3z2-r2

xy 1837 0 0 0 0
x2-y2 0 99 0 0 0
xz 0 0 1446 0 0
yz 0 0 0 1446 0

3z2-r2 0 0 0 0 0

e�ect.

Hopping parameters along the xz direction are reported in Table 3.2, while

the hopping parameters along the yz direction are reported in Table 3.3 . We

indicate them with tµ,ν1,2 , which stands for the hopping integral between the

orbital µ at the site 1 and the orbital ν at the neighboring site 2. Hopping

amplitudes along di�erent bonds are all equal in magnitude, but can have

opposite sign, that changes according to the symmetries and the rotation by

90◦ degrees that exchanges x and y (see Table 3.2 and 3.3). We also remark

that ab-initio calculations in [52] show that the hopping is mostly between

nearest neighbors, the largest second neighbour being the dx2−y2/dx2−y2 along

x or y, which is estimated around 30 meV. The distance Os-Os for the second-

neighbour is 5.562Å, enough to neglect all other hopping terms.

Ab-initio calculation in the magnetic phase, where the FM and the AFM

behavior is simulated, have been done [52] and the energy di�erence ∆E =

EFM − EAFM between these two magnetic phases per Os atom is also re-

ported. Results are shown in Fig. 3.4. The energy di�erence turns out to

increase as a function of the Coulomb repulsion U and to decrease as we
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Table 3.2: Hopping integrals between the nearest-neighbor Os atoms in the
PM case. Hopping integrals tα,β1,2 from the site 1 with orbital α to neighboring
site 2 with orbital β along the xz direction. The center Os site has coordinates
(0.500, 0.250, 0.375). The Os site NN1 has coordinates (0.000, 0.250, 0.125).
The energy unit is meV.

xy x2-y2 xz yz 3z2-r2

xy 65 83 -40 55 -138
x2-y2 83 35 -123 27 3
xz -40 -123 4 -28 29
yz 55 27 -28 50 -37

3z2-r2 -138 3 29 -37 55

Figure 3.2: Representation of the nearest-neighbor Os atoms of Table 3.2

Table 3.3: Hopping integrals between the Os atoms for the nearest-neighbor
in the PM case. Hopping integrals tα,β1,2 from the site 1 with orbital α to
neighboring site 2 with orbital β along the yz direction. The center Os
site has coordinates (0.500, 0.250, 0.375). The Os site NN4 has coordinates
(0.500,-0.250,0.625). The unit is meV.

xy x2-y2 xz yz 3z2-r2

xy 65 83 -55 -40 138
x2-y2 83 35 -27 -123 -3
xz -55 -27 50 28 -37
yz -40 -123 28 4 -29

3z2-r2 138 -3 -37 -29 55
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Figure 3.3: Representation of the nearest-neighbor Os atoms of Table 3.3

increase the Hund's parameter JH . In the range of suitable JH for the Os

atoms, and for the characteristic value of U=2 eV implemented in this calcu-

lation, the system is always an antiferromagnet with low Néel temperature

but, according to these calculations, ∆E varies from 12-13 to 8-10 meV, for

JH varying from 0 to 500 meV: this reduction of ∆E suggests that the system

the system may evolve towards a FM state.

Figure 3.4: Energy di�erence per formula unit as function of JH with SOC
(green line) and without SOC (red line). The magnetic energy scale is com-
parable with the spin orbit energy scale in a wide range of the parameters U
and JH .
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3.2 Hamiltonian model and Exact Diagonaliza-

tion

DFT calculations presented in the previous section revealed that KOsO4 has

two lower e bands that are split by the tetrahedral deformation and con-

nected via e�ective hopping amplitudes, which are weak among homologous

channels. In such limit, the emergence of an AFM ground state is understood

in terms of a superexchange picture favoring AFM correlations among the z2

bands on the bipartite lattice of the Os ions. As we have seen in the previous

chapter [67], the atomic SOC, in presence of a squashed tetrahedral deforma-

tion, acts as a source of additional symmetry lowering for SOC-induced lower

bands. This interplay is expected to assist the formation of a stronger AFM

phase, due to the ampli�ed energy gap among the lowest energy e�ective z2

and x2 − y2 bands.

However, this tendency can be counteracted by the non-trivial interplay be-

tween SOC, CF energy and non-vanishing hopping amplitudes, which are

dominated by the o�-diagonal sector connecting the e and t2 sectors.

The Hamiltonian model we have chosen in order to investigate this interplay

is a multi-band Hubbard model with the addition of a SOC term
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H =U
∑
i,µ

niµ↑niµ↓ +
∑
i,µ<ν

(U ′µν −
1

2
Jµν)niµniν +

∑
i,µ

εµniµ

− 2
∑
i,µ<ν

JµνSiµ · Siν +
∑
i,µ>ν

Jµν(d
†
iµ↑d

†
iµ↓diν↓diν↑ + d†iν↑d

†
iν↓diµ↓diµ↑)

−
∑
i 6=j,µ

tµ(d†iµdjµ + h.c.)−
∑

i 6=j,µ6=ν

t̃µν(d
†
iµdjν + h.c.) + λL · S

(3.1)

where i and j stand for the site indices, µ and ν denote the orbitals and

diµ is the annihilation operator for an electron located at the site i in the

orbital µ. U parametrizes the on-site intra-orbital Coulomb repulsion, U ′µν

the on-site inter-orbital Coulomb repulsion between orbitals µ and ν, Jµν the

Hund's coupling between electrons located in di�erent orbitals at the same

site, εµ the on-site energy for an electron occupying the orbital µ. Finally, tµ

is the nearest-neighbor orbital-conserving hopping integral for the orbital µ,

t̃µν is the nearest-neighbor hopping integral between orbitals µ and ν. The

last term in (3.1) represents the spin-orbit interaction with coupling constant

λ, L and S being the total orbital angular momentum and spin operators,

respectively. The exact relation, dictated by the full symmetry in the d

orbital space:

U = U ′µν + 2Jµν (3.2)

has been considered. Furthermore, the cartesian components of the or-

bital angular momentum L of a d-electron, already written in matrix form
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in Chapter 2, are expressed by:

Lx =
√

3id†yzdz2 + i(d†yzdx2−y2 − d†xzdxy) + h.c. , (3.3)

Ly = −
√

3id†xzdz2 + i(d†yzcxy + d†xzdx2−y2) + h.c. , (3.4)

Lz = −i(d†yzdxz + 2d†xydx2−y2) + h.c. . (3.5)

We perform an exact diagonalization (ED) study of the following Hamilto-

nian on two sites (i, j = 1, 2) for a Os d1 con�guration on each site, analyzing

the evolution of the relevant correlation functions and the magnetic (spin and

orbital) order parameters as functions of SOC λ to characterize the magnetic

exchange regimes and the occurrence of magnetic anisotropy.

We use the DFT results of previous section as microscopic parameters of the

Hamiltonian: hopping integrals along the xz direction of Table 3.2 are tµ and

t̃µν and on-site energies of Table 3.1 are εµ. Concerning the others, according

to Ref. [68], we can express U , Uµν and Jµν in terms of Racah parameters

A, B and C. The value of the intra-orbital Coulomb repulsion U is identical

for all the orbitals and it is given by:

U = A+ 4B + 3C (3.6)

We have chosen U = 2 eV, which is a reasonable value for 5d transition

metal oxides [69, 70]. On the other hand, the inter-orbital Coulomb repulsion

Uµν and the Hund's coupling Jµν are anisotropic, so their value depends on
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the involved orbitals. The value of the Hund's coupling for each pair of

orbitals is given in Table 3.4 in terms of the Racah parameters, while we

have used Eq. (3.2) for the inter-orbital Coulomb repulsion.

Table 3.4: Interorbital exchange parameters Jµν as functions of Racah pa-
rameters B and C

xy yz xz x2-y2 3z2-r2

xy 0 3B+C 3B+C C 4B+C
yz 3B+C 0 3B+C 3B+C B+C
xz 3B+C 3B+C 0 3B+C 3B+C

x2-y2 C 3B+C 3B+C 0 4B+C
3z2-r2 4B+C B+C B+C 4B+C 0

We choose to parametrize the orbital dependent Jµν in terms of the pa-

rameter JH , which is referred to the Hund's coupling among t2 orbitals. For

our ED calculations, both theoretical [71] and experimental results [72] in-

dicate that JH = 0.3 eV is a realistic value for 5d TM ions. In addition, we

have considered a typical value of the ratio C/B relative to transition metal

ions [73]; these two elements allow us to determine the Hund's coupling

(Table 3.4) and the inter-orbital Coulomb repulsion (Eq. (3.2)) for each pair

of orbitals[68], then we can evaluate the following quantities (local electronic

density and charge correlations, spin and orbital moment, spin and orbital

correlations) as functions of SOC diagonalizing the Hamiltonian of Eq. (3.1).
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Figure 3.5: Local density charge (left) and charge correlations (right) as
function of SOC

3.3 ED results

3.3.1 ED results for local electronic density and charge

correlations

In Fig. 3.5, we report the local electronic density 〈nµ〉 (left panel) and

charge correlations 〈nz2nµ〉 (right panel) as function of SOC. Charge is pre-

dominantly in the z2 orbital, this is the reason why we choose to reproduce

the correlations of this orbitals with the others. Local density is smoothly

reduced from the integer value < nz2 >=1, in the absence of SOC, to a not-

integer value, which is around 0.9 at λ = 300 meV, by the small unquenched

local angular momentum. Weak correlations with xz and yz orbitals emerge

at λ ∼ 150 meV and these become a little stronger increasing λ.

3.3.2 ED results for spin and orbital moment

In Fig. 3.6, we report the squared spin components per site
〈
S2
γ

〉
(left panel)

and squared orbital components per site
〈
L2
γ

〉
(right panel) as functions of
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Figure 3.6: Squared spin components per site
〈
S2
γ

〉
(left) and squared orbital

components per site
〈
L2
γ

〉
(right) as functions of the SOC λ, with JH = 0.3

eV

λ for JH = 0.3 eV. The system has a fully isotropic spin without SOC:

all components are equal and their value is slightly smaller than 0.25 due to

quantum �uctuations. This outcome is expected due to the unlifted Kramers

degeneracy at each Os site. As regards instead the angular momentum, the

quantum number L = 2 imposes a sum rule to the squares of its components

(they sum up to 6), the x and y components assume very close values (they

just feel the di�erences between the homologous hopping integrals) and the

z component is completely quenched, due to the favorable occupation of the

dz2 orbitals.

3.3.3 ED results for spin and orbital correlations

In Fig. 3.7, we report the spin correlations 〈S1γS2γ〉 (left panel) and the

orbital correlations 〈L1γL2γ〉 (right panel) between homologous components

at the two sites as functions of λ for JH=0.3 eV. The spin correlations are

isotropic and antiferromagnetic for λ = 0: in these conditions, the system
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Figure 3.7: Spin correlations 〈S1γS2γ〉 (left) and orbital correlations 〈L1γL2γ〉
(right) between homologous components at the two sites as functions of the
SOC λ with JH = 0.3 eV

reproduces the conventional S = 1
2
Heisenberg antiferromagnet. On increas-

ing λ, a strong anisotropy is induced. In the physical realistic regime of

200 meV< λ<300 meV, spin correlations are slightly canted along the z di-

rection. This feature is indicative of the SOC-induced anisotropic behavior

of the AFM in-plane/out-of-plane spin-correlations, which develops together

with weak AF orbital correlations among the modest activated orbital angu-

lar momentum.

It is also important to point out that, increasing λ, ferromagnetic (FM) spin

correlations appear in the y and z components and the in-plane symmetry

is completely broken with the x component of the spin correlations staying

antiferromagnetic.
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Figure 3.8: Spin correlations 〈S1γS2γ〉 (left) and orbital correlations 〈L1γL2γ〉
(right) between homologous components at the two sites as functions of the
SOC λ with JH = 0.3 eV and with txy,z2 = 0 eV

3.4 The role of the hopping parameters and the

Hund's exchange

In order to analyze the microscopic mechanism that triggers the proximity to

FM correlations, we perform an analysis in the space of the hopping param-

eters and singled out the dominant role played by the biggest among the e-t2

parameters in Table 3.2, namely txy,z2 = −138 meV, in setting FM correla-

tions. If the txy,z2 is assumed to be vanishing, the quantum phase transition

is suppressed and one gets canted AFM correlations, as we can see in Fig.

3.8, where we report spin (left) and orbital (right) correlations as a function

of SOC assuming txy,z2 = 0 meV.

On the contrary, in the presence of substantial SOC and Hund's coupling,

this parameter greatly enhances the FM exchange gain associated with the

virtual transitions d1
i d

1
j −→ d0

i d
2
j −→ d1

i d
1
j from and towards the majority

orbital dz2 through the t2 orbital intermediate state, where the orbital an-

gular momentum is unquenched and the SOC and Hund's energy gain are
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Figure 3.9: Spin correlations 〈S1γS2γ〉 (left) and orbital correlations 〈L1γL2γ〉
(right) between homologous components at the two sites as functions of the
SOC λ with JH = 0.3 eV along the yz direction

maximized. The bonding direction also contributes to the �nal result: if we

change the hopping direction, which means that we use the hopping parame-

ters along the yz direction reported in Table 3.3 instead of those of Table 3.2,

the x and y components of all the physical quantities get reversed. In order

to give an evidence of that, we report in Fig. 3.9 the ED results for spin and

orbital correlations as function of SOC substituting in the Hamiltonian the

hopping parameters along the yz direction; if we compare this �gure with

Fig. 3.7, it is evident that this change does not alter neither the qualitative

picture nor the quantitative behavior of the physical quantities, if not for the

fact that x and y components have exchanged their trend. Such spin cor-

relations are very peculiar and pre�gure a link between the bond direction

and the sign (FM-AFM) of the exchange coupling per spin component that

reminds a Kitaev-type of coupling where all components are active at the

same time.

We have also analyzed the evolution of the characteristic value of λ setting

the quantum transition from the AFM to the anisotropic FM phase, which
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Figure 3.10: Spin correlations 〈S1γS2γ〉 (left) and orbital correlations
〈L1γL2γ〉 (right) between homologous components at the two sites as func-
tions of the SOC λ with JH=0.4 eV

turns out to be rescaled to lower values by increasing the Hund's coupling, as

shown in Fig. 3.10: here, we choose the value JH = 0.4 eV and the transition

occurs at smaller value of SOC (λ ∼ 180 meV) than the previous case.

This means that the Hund's exchange endorses the e�ect of the SOC: on

increasing the value of JH , the anisotropy occurs at smaller value of λ and it

is de�nitely more pronounced.

Such feature reveals an interesting competition among the di�erent quan-

tum con�gurations contributing to the ground state in systems where those

energy scales are actually comparable.

3.5 Summary and conclusions

We have analyzed the consequences of a substantial SOC with respect to the

appearance of a non-vanishing orbital momentum and a magnetic anisotropy

in the KOsO4. Ab-initio calculations con�rm that this compound is an inter-

esting case of study, since the CF splitting is modest respect to the typical
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value of the SOC fo 5d TM ions. Distortions are an essential ingredient, be-

cause SOC has a relevant e�ect on the lowest e energy levels only if they are

not degenerate [67]. We have used the DFT results as microscopic parame-

ters for the Hubbard Hamiltonian which describes the system. Then, we have

performed an exact diagonalization of this Hamiltonian, analyzing the evo-

lution of relevant static correlators and magnetic order parameters in order

to characterize the magnetic exchange regimes and the occurence of mag-

netocrystalline anisotropy. It turns up that an entangled spin/orbital state

emerges, characterized by an AFM phase with a non-vanishing orbital an-

gular momentum and anisotropy among the in-plane and out-of-plane AFM

correlations. In addition, we have demonstrated that SOC plays an active role

in setting the boundary between AFM and anisotropic partially-FM corre-

lations, which emerges bond-direction dependent. We demonstrate that this

proximity, in a system like KOsO4, is driven by the interplay between sub-

stantial SOC and Hund's exchange, and by the hopping connectivity across

e-t2 orbitals. To this end, the actual values of the Hamiltonian parameters

are crucial. In particular, the Hund's exchange ampli�es the e�ect of the

SOC: on increasing the value of JH , anisotropy occurs at smaller value of λ.



Chapter 4

Symmetry-protected nodal

semimetal in layered systems

In this chapter, we consider an ideal trilayer structure that reminds Ruddlesden-

Popper-type compounds, consisting of an almost isolated building block of

three heavy TM ions stacked along the z direction. The unit cell is char-

acterized by a low connectivity, which allows to emphasize the local energy

scales and particularly the e�ect of the intrinsic SOC. The study is inspired

by the possibility to realize structures which are almost disconnected. This

requirement can be realized by considering, for example, systems in which the

TM-anionic blocks have not a direct corner or edge sharing con�guration.

SrxLa(11−x)Ir4O24 (SLIO) compounds are good candidate for this purpose:

the structure and the magnetic properties of such new iridate compounds

have been very recently reported [74], where the d-electrons count of Ir can

be tuned continuously from 5d5 (Ir4+) to 5d4 (Ir5+). The IrO6 octahedra

in SLIO are rather isolated from each other and from other TM elements,

67
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thus minimizing itinerancy. Another path to low kinetic energy is provided by

double-perovskite platforms. In general, a double-perovskite material presents

two di�erent atoms alternating at the center of the octahedra. Therefore, in

the case of a 5dn atom and one with d0 electronic con�guration, the con-

nectivity is reduced, enhancing the electronic correlation. The Hamiltonian

model we address possesses several symmetries: besides the time-reversal and

the spatial inversion symmetries, which determine the Kramer's degeneracy

of the energy levels, the peculiar structure of the trilayer allows an additional

symmetry, namely a layer-interchange symmetry. As a consequence, non-

trivial topological aspects emerge. By analyzing the evolution of the energy

bands, as a function of the microscopic parameters of the model, we verify

that symmetry-protected nodal lines arise from the crossing between bands

belonging to di�erent layer-interchange symmetry sectors. This analysis may

be considered as the starting point for the search of novel topological nodal

semimetals, protected by layer-interchange symmetry. We also investigate

how the topology of these nodal line changes in the momentum space, by sim-

ulating di�erent crystal �eld local environments and in the limit of weak and

strong SOC regime. We identify several kinds of transitions between di�erent

topological con�gurations,characterized by a modi�cation of the shape of the

nodal lines .

4.1 Symmetry in topological semimetals

The understanding of topological states of matter has grown enormously in

recent years [75]. Topological phases represent new kinds of orders which are
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beyond the Landau-Ginzburg paradigm which characterizes di�erent states

of matter by the symmetry that they break. There is no local order pa-

rameter for topological states of matter, and they distinguish from other

phases by the nontrivial topology in their quantum wave functions, which is

usually measured in terms of a quantized topological invariant [76]. One of

the most striking consequences is the existence of protected gapless surface

states, which are insensitive to small perturbations unless passing through a

quantum phase transition which destroys the nontrivial topology.

Symmetry also plays an important role for the topology of a quantum state,

but not in the way it is intended in symmetry breaking theory. Namely, there

exist symmetry protected topological (SPT) phases whose nontrivial topol-

ogy relies on the presence of symmetries [77, 78, 79]. The most well-known

case is represented by topological insulators induced by strong spin-orbit

coupling, which represent a classic example of topological band insulators

[8]. In these systems strong spin-orbit interactions open up a bulk band gap

and give rise to an odd number of band inversions, thereby altering the wave

function topology. The nontrivial wave function topology manifests itself at

the boundary as an odd number of helical edge states or Dirac cone surface

states, which are protected by time-reversal symmetry [80] .

In making a distinction between spin-orbit-induced topological insulators and

ordinary insulators, time-reversal symmetry is crucial. However, SPT quan-

tum states can also arise from spatial symmetries, i.e., symmetries that act

non locally in position space, such as rotation, re�ection, or other space-group

symmetries [81].This aspect is particularly relevant when one wants to inves-

tigate the topology of non fully gapped nodal systems, such as semimetals
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and nodal super-conductors, where the bulk gap closes at certain points in

the Brillouin zone (BZ). Nodal systems can exhibit nontrivial band topology.

For example, topological semimetals are de�ned as systems where the con-

duction and the valence bands cross each other in the Brillouin zone, and the

crossing is non-accidental, i.e., cannot be removed by perturbations on the

Hamiltonian without breaking any of its symmetries. In those systems, sym-

metry enforces multiple bands to come together and to become degenerate

at a point or along a line in momentum space. In the former case, they are

classi�ed as Weyl semimetals [82, 83] and Dirac semimetals [84], that have

been intensively studied in theory as well as in experiment. In the latter case,

the curve where the bands cross is called a nodal line [85], which may either

take the form of an extended line running across the BZ, whose ends meet at

the BZ boundary [86], or wind into a closed loop inside the BZ [87], or even

form a chain consisting of several connected loops (nodal chain) [88]. Topo-

logical semimetals with such line band crossings are called topological nodal

line semimetals (TNLSM). The stability of these lines is preserved by the

symmetries, especially in systems which present SOC [89]; indeed, TNLSM

can be protected by non-spatial symmetries (i.e., time-reversal or particle-

hole symmetry) as well as spatial lattice symmetries, or a combination of the

two [86]. A schematic illustration of di�erent topological semimetals is given

in Fig. 4.1, taken from Ref. [90]. We specify that the previous description

is not exhaustive. Several proposal of topological semimetals have shown

other possibilities for band degeneracies, stemming from topology. In these

cases, a band gap closes at generic k points and this closing originates not

from symmetry, but from topological reason [91]. However, in our case of
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Figure 4.1: Schematic illustration of Dirac node, Weyl node and Nodal line/
ring in momentum space. (a) Schematic of a Dirac semimetal where the
bands are linearly dispersed around the Dirac point.(b) Weyl semimetal, in
which the Weyl points with opposite chirality are connected by the charac-
teristic Fermi arc. (c) Nodal line semimetals where valence and conduction
bands cross along special lines in momentum space forming either a ring-
shaped line or 1D line, shown by the green circle/line. [90]

interest symmetries represent a crucial element in order to identify the band

crossings. TNLMS may be classi�ed by the behavior of the nodal lines on a

symmetry-related plane in the BZ. More generally, di�erent con�gurations of

nodal lines are associated with the topology of Fermi surface, and the tran-

sitions between them can be understood as Lifshitz transitions. Originally

I.M. Lifshitz [92] introduced the topological transitions in metals, at which

the connectedness of the Fermi surface changes. Very recently, they have

been applied to TNLSM where a plethora of transitions may be found [93],

describing the sudden change of the topology of the Fermi surface between

a variety of topologically non equivalent con�gurations. A schematic illus-
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tration of a Lifshitz transition is given in Fig. 4.2, taken from Ref. [93].

Figure 4.2: An example of a series of Lifshitz transitions with formation and
evolution of the �at bands near the saddle point of a 2D spectrum [93]

In this thesis work, we consider a speci�c problem based on a noninter-

acting Hamiltonian in presence of intrinsic spin-orbit coupling, describing a

trilayer structure, that reminds Ruddlesden-Popper-type compounds, which

consists of an almost isolated building block of three heavy TM ions stacked

along the z direction. The unit cell is characterized by a low connectivity,

which allows to emphasize the local energy scales and particularly the ef-

fect of the intrinsic SOC and CF splitting, which cooperate in lifting the

orbital degeneracy. Besides the time-reversal and the inversion symmetries,

which determine the Kramer's degeneracy of the energy levels, the pecu-

liar structure of the trilayer is responsible for another symmetry, de�ned as

layer-interchange symmetry, which allows to attribute an additional quan-

tum number to the energy levels. In the presence of such symmetries, it is
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expected that crossing between bands that have di�erent quantum numbers

may occur, which are symmetry protected. On the contrary, in case of no

additional symmetry is present, bands with the same quantum numbers hy-

bridize with each other and maintain a gap in-between, through a mechanism

known as the band repulsion . In our study, we analyze the quantum phase

transitions at which the topology of the energy spectrum changes as a func-

tion of the microscopic parameters. In our case, this is easily realized through

the tuning of the microscopic tight-binding parameters and the dominating

local energy scales set by the CF and SOC. In the speci�c, we explore the

locus of band-crossing momenta over the BZ, without �xing the �lling. We

show that symmetry preserving topological transitions are possible, through

which independent nodal lines can be connected, disconnected, or linked.

Here, the term "topological" is referred to the emerging nodal structure of

the analyzed system, as we will explain in detail. Our work constitutes

an heuristic approach for the search of novel topological nodal semimetals,

protected by layer-interchange symmetry. In addition, the exploration from

weak up to strong SOC regime may help to scan di�erent topological phases,

where nodal lines are either fully gapped or gapped into several nodal points.

We specify that the following study constitutes a preliminar analysis of the

model, in which ideas for further investigations can be found.

4.2 Trilayered structure and Hamiltonian model

The Ruddlesden-Popper series is a class of layered perovskite structure con-

sisting of two-dimensional perovskite slabs interleaved with cations. The
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general formula of the series is An+1BnX3n+1, where A and B are cations and

A is generally constituted by a rare earth element while B is a transition

metal, X is the anion, usually the oxygen; n is the number of the layers of

octahedra in the perovskite-like stack. In Fig. 4.3, we report an example of

this kind of structure: the �rst image on the left shows a single layer, where

n=1; in the center, there in an example of bilayer, where n=2, and the last

image on the right represents the trilayer, where n=3.

Figure 4.3: Illustration of the Ruddlesden-Popper series, with n equal to 1
(single layer,left), 2 (bilayer,center) and 3 (trilayer,right).

The trilayered system we consider for our study recalls this typical struc-

ture: it is constituted by a building block made by TM ions, which are stacked

in the z direction and, along this direction, they have a bulk structure in or-

der to avoid boundary e�ects between the vacuum and the substrate.

Since the trilayered structure is repeated periodically along the z direction,

we focus our attention on the unit cell, constituted by three layers. Here-

after, we label the outer layers by indices 2 and 3, the inner layer by index
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1. In the ideal cubic structure, the perovskite is characterized by a cation,

which is the TM ion, surrounded by an octahedron of anions. We know from

Chapter 2 that the �ve-fold degenerate d levels of a TM ion are split by

the CF energy into an upper doublet eg and a lower triplet t2g. When the

system is less than half-�lled, one can consider only the t2g orbitals in the

study of the energy levels, because their occupation is naturally preferred:

this is the reason why the eg orbitals are "out of picture" of our model. If the

cubic symmetry is preserved, this corresponds to three degenerate t2g orbital

states for each layer of the unit cell, resulting in 2×9 states, once the spin

up and down degeneracy is taken into account. The model we address has

the typical structure of a single particle tight binding Hamiltonian and it is

constituted by the following contributions:

Hk = Htp +Hto +H∆I
+H∆O

+HSOC (4.1)

The �rst term in (4.1) represents the hopping in the (x,y) plane; assuming

that it is limited to nearest-neighbors only, it is equal to:

Htp =
∑
k

[−4txy(cos kx + cos ky)− 4txz cos kx − 4tyz cos ky]c
†
kck (4.2)

The next term of (4.1) is constituted by the intra-cell hopping, which

only involves hopping between the γz orbitals (xz,yz) of di�erent layers. It
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can be written as follows:

Hto = to
∑

α=γz,σ

c†ασcασ + h.c. (4.3)

The other contributions are related to the on-site energies, which are

tuned to simulate CF splitting in the trilayered structure and can be ex-

pressed as:

H∆I
=
∑
α,σ

εαnα1σ H∆O
=
∑
α,σ

εαnα2σ +
∑
α,σ

εαnα3σ (4.4)

where α labels the xy and γz orbitals, σ is the spin index and the indices

1,2,3 are related to the inner and the outer layers respectively.

Recalling the T-P equivalence explained in Chapter 2, The SOC Hamil-

tonian can be written as:

HSOC = λ̃l · S (4.5)

where S=1
2
and l̃=1 is the e�ective orbital angular momentum.

By assuming that the eighteen basis state are ordered in the following

way: |xy1↑, xz1↑, yz1↑, xy2↑, xz2↑, yz2↑, xy3↑, xz3↑, yz3↑, xy1↓, xz1↓, yz1↓, xy2↓,

xz2↓, yz2↓, xy3↓, xz3↓, yz3↓ >, we can write separately the contributions to the

matrix representation of the terms constituting the Hamiltonian (4.1) . The

in-plane hopping matrix can be written in blocks:
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Htp =



P 0 0 0 . . . 0

0 P 0 0 . . . 0

0 0 P 0 . . . 0

0 . . . 0 P 0 0

0 . . . 0 0 P 0

0 . . . 0 0 0 P


(4.6)

Where P is a 3×3 matrix equal to:

P =


−4txy(cos kx + cos ky) 0 0

0 −4txz cos kx 0

0 0 −4tyz cos ky

 (4.7)

Hereafter, we assume txy=txz=tyz=tp.

The intra-cell hopping cannot be written in blocks, because it connects states

belonging to di�erent layers. The typical structure of its matrix representa-



4.2 Trilayered structure and Hamiltonian model 78

tion in a �xed spin sector is:

Hσ
to =



0 0 0 0 0 0 0 0 0

0 0 0 0 to 0 0 to 0

0 0 0 0 0 to 0 0 to

0 0 0 0 0 0 0 0 0

0 to 0 0 0 0 0 0 0

0 0 to 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 to 0 0 0 0 0 0 0

0 0 to 0 0 0 0 0 0



(4.8)

where Htoij 6= 0 if i and j correspond to two analogous γz orbitals of di�erent

layers.

The CF contribution(4.4) assumes the form:

H∆I
+H∆O

=



D1 0 0 0 . . . 0

0 D2 0 0 . . . 0

0 0 D3 0 . . . 0

0 . . . 0 D1 0 0

0 . . . 0 0 D2 0

0 . . . 0 0 0 D3


(4.9)
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Where

D1 =


∆I 0 0

0 0 0

0 0 0

 D2 =


∆O2 0 0

0 0 0

0 0 0

 D3 =


∆O3 0 0

0 0 0

0 0 0

 (4.10)

In this expressions, ∆O2 and ∆O3 are two positive constants measuring the

energy gap between the xy and γz orbitals of the outer layers, ∆I is the

corresponding quantity relative to the inner layer. We are then assuming

that there is a compression/elongation of the octahedra along the z axis and

that it is di�erent in principle for the outer and the inner layer. Moreover,

in writing (4.9), we assumed that the energy of the t2g orbitals is measured

with respect to the γz orbitals, then ∆I is identi�ed with the energy of the

xy orbital of the inner layer, while ∆O2 and ∆O3 represent the xy orbital

energies of the outer layers.

The SOC term (4.5) mixes the spin and orbital angular momenta and its

matrix form was already given for a single ion in Eq. (2.39) of Chapter 2.

4.2.1 Symmetry properties of the model

The peculiar structure of the trilayer and the adopted model Hamiltonian

may have an in�uence on the energy spectrum through the symmetry prop-

erties which characterize it. Time reversal and inversion symmetry hold in

the chosen model.

Time reversal operator is given by the antiunitary operator

τ = eiΦσy (4.11)
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where σy is the Pauli matrix and Φ is an arbitrary phase which depends on

the chosen basis. The choice of Φ has no physical consequence and does not

change the value of any physical observables. For spin 1
2
electrons, τ has the

property τ 2=-1.

The inversion P is a unitary operator which �ips the sign of the spatial

coordinates:

PΨ(r) = ei
Φ
2 Ψ(−r) (4.12)

The operator P maps k → −k and satis�es P2=1. Since the Hamiltonian

(4.1) has both inversion symmetry P and time-reversal τ , we get a global

antiunitary symmetry τ⊗P, which leads to an important constraint, known

as Kramer's theorem, which asserts that all eigenstates of the Hamiltonian

are at least twofold degenerate for every value of k.

In the case of equivalent outer layers ∆O2 = ∆O3, the Hamiltonian shows

an additional symmetry, which we call layer-interchange symmetry F .Such

symmetry is associated to a transformation which consists in the "exchange"

of the homologous orbital states belonging to the outer layers, by conserving

the spin. Since F 2=1, the eigenstates of the Hamiltonian may be classi�ed

in two subspaces satisfying:

F |Ψ〉 = − |Ψ〉 , F |Ψ〉 = |Ψ〉 (4.13)

respectively. The states for which F=-1 are called non- bonding states, while

the states for which F=1 are the bonding and antibonding states. This

observation implies that we can classify each state with an extra quantum

number, de�ned as the layer parity f of such state, which assumes values ±1.
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In summary, by diagonalizing the Hamiltonian (4.1) we obtain nine energy

bands which are doubly degenerate as stated by the Kramer's theorem. If

the outer layers are equivalent, according to the layer- interchange symmetry,

we can classify these nine bands by layer parity f, associating to each of them

f = ±1 depending on the eigenvalue of the layer-interchange operator.

4.3 Preliminary analysis in the unit cell

Hereafter, we assume ∆O2=∆O3, then the layer-interchange symmetry is

valid. Therefore, the classi�cation of the states by parity (bonding, anti-

bonding, non-bonding) is used. In the following, we explore the transition

across di�erent topological phases that may arise by changing the microscopic

parameters and which are protected by the layer-interchange symmetry.

4.3.1 Lifting of the orbital degeneracy driven by inner

and outer CF

In this section, we perform a preliminary characterization of the local energy

levels of a single unit cell in terms of the layer- interchange symmetry. We

point out that, in the ideal cubic structure, the bonding, non bonding and

antibonding sectors are still degenerate, due to the threefold t2g subspace.

The introduction of the CF splitting and SOC terms may reduce the orbital

degeneracy, by opening a gap among states belonging to the same layer- in-

terchange symmetry sectors. In the next sections, we will demonstrate how

those gap openings may manifest in the band structure across the BZ, once
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the in-plane itinerancy is restored in a perturbative way.

We start the analysis by considering an ideal undistorted geometry in ab-

sence of SOC. The diagonalization of the Hamiltonian (4.1) for tp=0 gives

as output only three di�erent eigenvalues, which build up three degenerate

blocks schematically shown on the left side of Fig. 4.4 .

X 4

𝜆 ≪ 𝑡𝑜 𝜆 ≫ 𝑡𝑜

X 4

X 10

X 12

X 6

X 10

𝛾𝑧𝐵

𝛾𝑧𝐴

𝛾𝑧𝑁𝐵

𝑜𝑢𝑡𝑒𝑟 𝑥𝑦

𝑖𝑛𝑛𝑒𝑟 𝑥𝑦

 𝑱𝒆𝒇𝒇 =  𝟏 𝟐

 𝑱𝒆𝒇𝒇 =  𝟑 𝟐

Figure 4.4: Schematic evolution of the energy levels of the unit cell Hamilto-
nian as functions of orthogonal hopping to and SOC λ without CF distortions.
When λ�to, three degenerate energy levels emerge, while in the limit of λ�to,
the system evolves into two blocks, constituted by two multiplets consisting
of six and twelve levels respectively. The values of the e�ective total angular
momentum J̃eff , which are referred to each layer, are also indicated.

The lower block is constituted by the bonding γz states γzB, while the

upper block is composed by the antibonding γz states γzA (each of them with

spin up and down); in the central block, there are non-bonding γz states γzNB

and the six xy local energy states.

Adding the crystal �eld contributions ∆O and ∆I , we may simulate di�erent
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local environments and partially lift the orbital degeneracy. In particular, we

can obtain di�erent distorted geometries, where the octahedra are elongated

or compressed along the z axis, depending on the sign attributed to ∆O and

∆I . Since we choose to measure the one-site orbital energy with respect to

the γz orbitals, positive (negative) values of ∆O and ∆I will raise (lower) the

energy of the outer and inner xy orbitals with respect to the γzNB. In Figure

4.5 and 4.6, we report the schematics of all the possible con�gurations that

can be obtained by considering di�erent choices of the CF terms ∆O and ∆I .

∆𝑂> ∆𝐼 ∆𝑂< ∆𝐼

∆𝑂> ∆𝐼 ∆𝑂< ∆𝐼

(a)

(b)

𝛾𝑧𝐵

𝛾𝑧𝐴

𝛾𝑧𝑁𝐵

𝑜𝑢𝑡𝑒𝑟 𝑥𝑦

𝑖𝑛𝑛𝑒𝑟 𝑥𝑦

Figure 4.5: Schematic representation of the orbital con�gurations obtained
by diagonalizing the Hamiltonian (4.1) at tp=0 with ∆O and ∆I concordant
and positive (a) or negative (b).
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∆𝑂< 0, ∆𝐼> 0 ∆𝑂> 0, ∆𝐼< 0

(a) (b)

𝛾𝑧𝐵

𝛾𝑧𝐴

𝛾𝑧𝑁𝐵

𝑜𝑢𝑡𝑒𝑟 𝑥𝑦

𝑖𝑛𝑛𝑒𝑟 𝑥𝑦

Figure 4.6: Schematic representation of the orbital con�gurations obtained
by diagonalizing the Hamiltonian (4.1) at tp=0 with ∆O<0 and ∆I>0 (a) or
∆O>0 and ∆I<0 (b).

4.3.2 Lifting of the orbital degeneracy driven by Spin

Orbit Coupling

In the next step of our analysis, we consider the e�ect of the SOC on the

evolution of the energy levels of the Hamiltonian describing the unit cell. In

particular, we discuss two representative cases, where ∆I and ∆O are assumed

to be unequal and discordant as depicted in Fig. 4.6 (a) and (b). We choose

to express all the parameters of the model in units of to. Fig. 4.7 and 4.8

show the evolution of the energy levels as function of λ for the speci�c cases

of ∆I

to
=-0.2, ∆O

to
=0.5 and ∆I

to
=0.2, ∆O

to
=-0.5. Each level is marked with a color

which is representative of its layer parity value f. As one can see, by adding

the SOC, the orbital degeneracy which characterizes the local energy states at
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λ=0 is fully removed. However, the splitting and the hierarchy of the energy

levels are very speci�c for a given choice of the inner and outer CF, meaning

that the interplay between those two parameters is highly nontrivial.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

4

λ

to

E to

Figure 4.7: Evolution of the energy levels as function of λ. Blue energy levels
are characterized by f=1, while orange ones have f=-1. All the parameters
are expressed in unit of to. Here,

∆I

to
=-0.2 and ∆O

to
=0.5

We also observe that for such choice of the CF parameters, levels from

the 3rd to the 8th in ascending order meet at degeneracy points, when λ is

increased. Levels with opposite parity become degenerate at some value of λ,

thus determining the subsequent exchange of f in the sequence of the parity

of levels. We distinguish two regions: for small values of λ, Fig. 4.7 shows

a crossing between levels 3 and 4, while in Fig. 4.8 crossing between levels

6 and 7 arises; for moderate/large value of SOC, crossing is obtained for 4,5

and 7,8 levels in both cases. The detected crossings between energy levels in

this analysis will be the starting point of the next exploration, which includes

the introduction of the in-plane hopping.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 4.8: Evolution of the energy levels as function of λ. Blue energy levels
are characterized by f=1, while orange ones have f=-1. All the parameters
are expressed in unit of to. Here,

∆I

to
=0.2 and ∆o

to
=-0.5.

4.4 Nodal lines of the trilayer structure

4.4.1 Topology of the band structure

When tp 6=0, electrons can move in the xy plane and this give us the possibil-

ity to explore the electronic band structure of the trilayer, searching for cross-

ing points between two bands with opposite layer parity. Crossing points be-

tween bands which belong to di�erent layer-interchange symmetry sectors are

relevant, because they may be symptomatic of a symmetry-protected topo-

logical phase of the system. We perform preliminary calculations obtaining

band structure plots, which show the eigenvalues En(k) of the Hamiltonian

(4.1) for di�erent values of k=(kx,ky) along straight lines connecting high

symmetry points. For the trilayered structure, the high symmetry points of

the Brioullin zone associated to the lattice are represented by the Γ point,
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which has coordinates (0,0), the X point, which has coordinates (π,0), and

the M point, which has coordinates (π,π). They are schematically reported

in Fig. 4.9. The appearance of a crossing point between two bands with

Figure 4.9: Part of the Brioullin zone of the square lattice which characterizes
the trilayer. Γ point has coordinate (0,0), the X point has coordinate (π,0),
the M point has coordinate (π,π).

opposite f means that, along the chosen direction, an inversion of the layer

parity associated to the mentioned bands has happened.

Hereafter, we �x the value of the in-plane hopping tp in unit of to to
tp
to
=0.1.

The relative small value of tp makes the trilayered structure almost "dis-

connected", in the sense that the connectivity of the system is highly low-

ered. However, the kinetic energy gain is such that gap closings, which are

symmetry-protected, may occur at some k.

We have performed a careful exploration of all the band crossings that may

occur in various regimes of the microscopic parameters. By way of exam-

ple, we reproduce band structure plots along the ΓX ,XM and ΓM direc-
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tions,respectively, in Fig. 4.10 and 4.11 for a representative case in which

∆I

to
=-0.2 , ∆O

to
=0.5 and λ

to
=0.2.

𝑿𝚪 𝑿 𝑴

Figure 4.10: Band structure plot along ΓX (left) and XM (right) direction
with tp

to
=0.1, ∆I

to
=-0.2 , ∆O

to
=0.5 and λ

to
=0.2. Blue energy bands are charac-

terized by f=1, while orange ones have f=-1.

𝚪 𝑴

Figure 4.11: Band structure plot along ΓM direction with tp
to
=0.1, ∆I

to
=-0.2

, ∆O

to
=0.5 and λ

to
=0.2. Blue energy bands are characterized by f=1, while

orange ones have f=-1.

4.4.2 Phase diagrams

For each pair of bands which manifest crossing points in the band structure

plots that were explored as explained in the previous section, we have ex-
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amined the corresponding evolution by varying ∆I and λ and by keeping

�xed the value of ∆O and tp. We attribute to each band crossing an inte-

ger, namely an invariant I , which is de�ned as the total number of band

inversions of the pair of bands we are interested in. This invariant is equal

to zero when two bands have no crossings or cross an even number of times,

while it is equal to 1 if there is an odd number of crossings.In topological

semimetals, one can associate with each band crossing a topological invari-

ant, whose form depends on the symmetry group that protects the nodal

structure [94].This invariant gives a quantitative description of the topology

of the system. In this context, we do not refer to this speci�c kind of topo-

logical invariant, namely it is not constituted by I , but our analysis may

be considered as a preliminary study in order to calculate it. We report in

speci�c phase diagrams the contour maps describing the regions of the pa-

rameter space, characterized in terms of the invariant I for each of the high

symmetry paths: we denote by IΓX the invariant evaluated along the ΓX

direction,IXM the invariant evaluated along the XM direction and IΓM its

value along the ΓM direction.

Fig. 4.12, 4.13 and 4.14 represent the phase diagrams relative to band 4

and band 5 along ΓX, XM and ΓM directions, respectively, for the speci�c

case of ∆O

to
=0.5 and tp

to
=0.1. Looking at the phase diagrams, we can recognize

the alternation of two sections: in one of them, the invariant is equal to zero,

in the other the invariant is equal to 1.

The value of the �xed parameters has a crucial role: if we change the value

of ∆O

to
=-0.5, the phase diagrams which we obtain for the same pair of bands

(band 4 and 5) look very di�erent. They are reported in Fig. 4.15 and 4.16.
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Figure 4.12: Phase diagram of band 4 and 5 along ΓX direction, as indicated
by the red line in the �gure on the right, for ∆O

to
=0.5 and tp

to
=0.1. The blue

zone corresponds to the value 0 of the invariant, while the light blue zone is
relative to the value 1 of the invariant.

4.4.3 Analysis of the transitions

By varying the λ and ∆I parameters in the previous phase diagrams, one

describes the quantum phase transitions between phases characterized by a

di�erent topology of the energy spectrum. The local topology of each nodal

structure involving a particular pair of crossing bands has been character-

ized by means of the invariant I evaluated along every high- symmetry path

(IΓX ,IXM ,IΓM). In this section, we will look at several kinds of symme-

try preserving transitions through which the nodal lines may evolve, when

moving across di�erent regions of the phase diagrams. We will consider both

weak and strong SOC limit.

We start by considering the phase diagrams of Fig.4.12,4.13 and 4.14. For

λ
to
=0.2, we vary ∆I in the interval 0.34≤ ∆I

to
≤0.35. Along this evolution,
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Figure 4.13: Phase diagram of band 4 and 5 along XM direction, as indicated
by the red line in the �gure on the right, for ∆O

to
=0.5 and tp

to
=0.1. The blue

zone corresponds to the value 0 of the invariant, while the light blue zone is
relative to the value 1 of the invariant.

we can distinguish three distinct kinds of transition: IΓX goes from 0 to

1, IXM goes from 1 to 0 while IΓM remains equal to 1. We encode such

transition as 011→ 101, where each of the three numbers represent the value

of the invariant along the ΓX, XM and ΓM direction, respectively. One can

follow the evolution of the nodal points associated to each band crossing in

the chosen region of parameters. Results of this analysis are shown in Fig.

4.17.

In the �rst panel on the left, ∆I

to
=0.34 and the nodal line intercepts the

XM and the ΓM direction, which means that band 4 and 5 have a crossing

point and thus an inversion along those directions. This is coherent with the

mapping 011 which we extract from the phase diagrams of Fig. 4.12,4.13

and 4.14. In the second panel, ∆I

to
=0.343 and the topology of the line has

changed: the nodal line collapses in the ΓX direction. This means that, along
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Figure 4.14: Phase diagram of band 4 and 5 along ΓM direction, as indicated
by the red line in the �gure on the right, for ∆O

to
=0.5 and tp

to
=0.1. The blue

zone corresponds to the value 0 of the invariant, while the light blue zone is
relative to the value 1 of the invariant.

Γ X, band 4 and 5 have two subsequent intersections, that is the reason why

the total number of inversion, namely IΓX , is equal to 0. The pocket around

the X point, which is appearing in this range of parameters, disappears when

the value of ∆I

to
is increased. In the last panel on the right, ∆I

to
=0.35 and there

is only one pocket around the Γ point. This reproduces correctly the �nal

values of the invariant 101, where the bands have no more intersections along

XM direction. In summary, when moving across such kind of transition, a

nodal line ( �rst panel on the left of Fig. 4.17) separates in two distinct

(central panels of Fig. 4.17) nodal lines by collapsing on the kx axis. During

that transition, the invariant IΓX is initially conserved, until one nodal line

disappears and IΓX →1. The transition is de�ned as topological because it

is characterized by a modi�cation of the shape of the nodal line.

A similar transition can be obtained in the limit of strong SOC for the same
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Figure 4.15: Phase diagrams of band 4 and 5 along the ΓX (left) and XM
(right) direction for ∆O

to
=-0.5 and tp

to
=0.1.The blue zone corresponds to the

value 0 of the invariant, while the light blue zone is relative to the value 1 of
the invariant.

pair of bands. We consider the phase diagrams of Fig. 4.12,4.13 and 4.14

and, by �xing the value of λ to λ
to
=0.8, we �nd a modi�cation of the shape

of the nodal lines for 0.05≤ ∆I

t0
≤0.1 which is mapped as 011→110. In that

transition, shown in Fig. 4.18, a starting pocket around the M point collapses

along the ΓX direction and subsequently disappears by closing itself around

the Γ point, while another pocket around the X point is formed.

However, the evolution of the nodal lines is not always the same: if we

refer to the phase diagrams 4.15 and 4.16, for example, we can �x the value

of ∆I

to
=0.1 and draw a "vertical" line in the phase diagrams; by increasing λ,

it is evident that the value of the invariant IΓX goes from 0 to 1, while IΓM

goes from 1 to 0 on the ΓM phase diagram for 0.7≤ λ
to
≤0.95 and the value

of the invariant IXM remains equal to 1. This corresponds to a transition of

the kind 011 → 101. In this case, the evolution of nodal lines is obtained by

increasing the value of λ and it is shown in Fig. 4.19. In the �rst panel on
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Figure 4.16: Phase diagram of band 4 and 5 along the ΓM direction for ∆O

to
=-

0.5 and tp
to
=0.1.The blue zone corresponds to the value 0 of the invariant,

while the light blue zone is relative to the value 1 of the invariant.

the left, λ
to
=0.7 and the nodal line is initially constituted by a pocket around

the M point, recovering the invariant sequence 011. Increasing the value of

λ, this pocket moves along the diagonal direction, changing its concavity. In

the second panel, λ
to
=0.8, in the third panel λ

to
=0.86 and the topology of the

nodal line has changed; in the last panel on the right, λ
to
=0.95 and the pocket

has formed around the Γ point. There is not a zero along the XM direction,

while a zero along the ΓX direction appears, so that we �nd the �nal invariant

mapping 101. In summary, in this second kind of transition the nodal line is

not separated along a speci�c direction but it moves continuously in the BZ

.

In light of all the results which we have obtained, we individuate several

distinctive evolutions of the nodal lines which we brie�y describes in the

following list:
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Figure 4.17: Topological transition in the momentum space relative to band
4 and 5 with tp

to
=0.1,∆O

to
=0.5 . The �gure show a density plot of the logarithm

of the di�erence between the energies of band 4 and 5 increasing the value of
∆I for

λ
to
=0.2; in the �rst picture on the left, ∆I

to
=0.34, in the second picture

∆I

to
=0.343, in the third picture ∆I

to
=0.344, in the last picture ∆I

to
=0.35

Figure 4.18: Topological transition in the momentum space relative to band
4 and 5 with tp

to
=0.1,∆O

to
=0.5 . The �gure show a density plot of the logarithm

of the di�erence between the energies of band 4 and 5 increasing the value of
∆I for

λ
to
=0.8; in the �rst picture on the left, ∆I

to
=0.05, in the second picture

∆I

to
=0.0588, in the third picture ∆I

to
=0.06, in the last picture ∆I

to
=0.1

• type A: a nodal line is located around an high symmetry point (panel

(a) of Fig. 4.20). By varying the value of one of the two parameters

reported on the phase diagram, another pocket which is located around

another high symmetry point emerges (panel (b) of Fig. 4.20) . Those

pockets came closer until they merge (panel (c) of Fig. 4.20). During

this evolution, the value of the I is zero due to a double band inversion

along the direction of the BZ that connects those points. The resulting

nodal line subsequently moves far from that direction and approaches
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Figure 4.19: Topological transition in the momentum space relative to band 4
and 5 with tp

to
=0.1,∆O

to
=-0.5 . The �gure show a density plot of the logarithm

of the di�erence between the energies of band 4 and 5 increasing the value
of λ for ∆I

to
=0.1; in the �rst picture on the left, λ

to
=0.7, in the second picture

λ
to
=0.8, in the third picture λ

to
=0.86, in the last picture λ

to
=0.95

Figure 4.20: Schematic evolution of type A transition

the remaining point (panel (d) of Fig. 4.20).

• type B: we start from a pocket around an high symmetry point (panel

(a) of Fig. 4.21). By varying the value of one of the two parameters

the nodal line goes far from the original point and passes through the

adjacent corners (panel (b) of Fig. 4.21); �nally, it evolves around the

point which is at the opposite site (panel (c) of Fig. 4.21).In doing

that, it changes its concavity up to reverse it.

The transitions described above are respectively of type A and B. In

our accurate exploration, we have found di�erent transitions and analyzed

them as a function of the driving microscopic parameters . Our results are



4.4 Nodal lines of the trilayer structure 97

Figure 4.21: Schematic evolution of type B transition

summarized in Table 4.1.The �rst column of the table includes all pairs of

bands which manifests the transition, then we specify the invariant value

relative to the transition and the type of transition, according to the previous

list; then, the following columns are occupied by the values of the parameters

at which the transition occurs. The topological aspects of these transitions

Table 4.1: Topological transitions

Bands Crossing Type ∆O

t0
λ
t0

∆I

to

b3b4 011→101 type B 0.5 0.2 -0.48≤ ∆I

to
≤-0.2

b4b5 011→101 type A 0.5 0.2 0.34≤ ∆I

to
≤0.35

b4b5 011→110 type A 0.5 0.8 0.05≤ ∆I

to
≤0.1

b7b8 011→101 type A 0.5 0.65≤ λ
to
≤0.77 0.2

b4b5 011→101 type B -0.5 0.7≤ λ
to
≤0.95 0.1

b5b6 011→101 type B -0.5 0.1 -0.42≤ ∆I

t0
≤-0.37

b6b7 011→101 type B -0.5 0.2 0.2≤ ∆I

t0
≤0.49

b7b8 110→101 type A -0.5 0.95≤ λ
to
≤1 0

are intended to be referred to the nodal structure of the system, which evolves

in the BZ by changing the values of the microscopic parameters. In the case

in which other symmetries, such as the chiral symmetry, force the system to
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be locked at the Fermi level, the topological transition of the nodal structure

may be considered as Lifshitz one.

4.5 Summary and conclusions

We have analyzed emerging topological phases in a "disconnected" trilayered

structure, which recall the Ruddlesden-Popper series. The associated Hamil-

tonian obeys time-reversal, inversion symmetries and also a layer interchange

symmetry in the case of equivalent outer layers due to the characteristic struc-

ture of the trilayer. A preliminary analysis in the unit cell reveals that inner

and outer CF in presence of SOC lift the orbital degeneracy in a non-trivial

way. Introducing the in-plane hopping tp, which is treated as a subdominant

energy scale with respect to CF and SOC, one gets the energy band structure

where crossing points between bands with opposite parity emerge. We have

associated a local invariant I to each pair of crossing bands, which gives the

total number of crossings between them in correspondence of �xed values

of the microscopic parameters of the model. We have analyzed and charac-

terized the evolution of emerging symmetry-protected nodal lines and have

observed that a modi�cation of the shape of the nodal lines occurs whenever

I changes its value. Of course, the appearance of that transitions is strongly

in�uenced by the interplay between CF, SOC and hopping parameters.



Chapter 5

Conclusions

The main purpose of this thesis is to analyze the e�ects of a substantial SOC

in TMOs by following two di�erent paths. In the �rst part of the thesis,we

have focused the attention on the study of heavy TMOs with a strong SOC;

in particular,we have analyzed the e�ects of SOC on the magnetic state of

a d1 TM ion with tetrahedral con�guration, in which the occupancy of the

lower e manifold is naturally favored. We have analyzed the e�ect of the

interplay between SOC and CF splitting demonstrating that, while in the

ideal undistorted tetrahedral symmetry SOC acts only as a perturbation on

the lowest energy levels set by the CF splitting, its e�ect can be strongly

enhanced in the case of a distorted geometry. We have considered a con�g-

uration where the tetrahedron is squashed along the z axis and proved that

the interplay between SOC and CF parameters is responsible of a signi�cant

growth of the gap within the set of the lowest energy levels involved in the

magnetic exchange and also of the manifestation of magnetic anisotropy.

We have considered the speci�c case of the KOsO4 compound to investigate

99



100

the competition between strong electron correlations, SOC and tetrahedral

deformations in the nominally e1 con�guration of the Os7+ ions. Ab-initio

calculations show that KOsO4 is characterized by a modest tetrahedral CF

splitting within the e and t2 orbitals which is comparable to the typical value

of the SOC in 5d TM ions; in addition, due to the structural deformations,

SOC has a relevant e�ect on the lowest e levels. We have addressed a speci�c

Hubbard Hamiltonian and have performed an ED study on dimers which lie

along di�erent directions in the unit cell. We have demonstrated that SOC

plays an active role in setting the boundary between AFM/ferro-orbital and

anisotropic partially-FM correlations, which emerge to be bond-direction de-

pendent. This proximity is driven by the interplay between substantial SOC,

Hund's exchange and also by the hopping connectivity across e-t2 orbitals.

The peculiar and SOC-assisted magnetic superexchange brings the system

towards a Kitaev-like physics, where the interplay between the SOC and the

bonding geometry is a crucial element.

In the second part of the thesis, we have analyzed a disconnected trilayered

structure composed by TM ion blocks stacked along the z direction, in which

the in-plane itinerancy has been supposed to be highly damped and, then,

the competition between the local energy scale is dominant.We have ana-

lyzed in detail the symmetries of the tight-binding Hamiltonian associated

to the trilayer, which include the time-reversal and the layer- interchange

ones, and we have demonstrated that, in presence of these speci�c symme-

tries, the SOC may have a role in determining the topology of the electronic

structure. We have analyzed the evolution and eventually the closing of the

energy gaps in a weakly dispersive electronic structure by using SOC as driv-
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ing parameter in lifting the degeneracy of the spin/orbital entangled states.

The result of this exploration has been the discovery of symmetry-protected

nodal lines, which arise from the crossing between bands belonging to di�er-

ent layer-interchange symmetry sectors. In the limit of weak and strong SOC,

we have identi�ed several kinds of transitions between di�erent topological

con�gurations, which resemble Lifshitz-like behavior for nodal lines.



Appendix A

Spin Orbit Coupling

In this Appendix, we give an analytical derivation of SOC whose starting

point is the relativistic Dirac equation. General remarks about the e�ect of

SOC in solids are given in the subsequent section, including qualitative de-

scription of the Dresselhaus, Rashba e�ect, Dzyaloshinskii-Moriya interaction

and magnetocrystalline anisotropy.

A.1 Analytical derivation of Spin Orbit Cou-

pling

The analitical derivation of SOC follows from the study of the Dirac equa-

tion, which simbolizes the perfect union between the quantum mechanic the-

ory and the special relativity theory [95].Let us start from the Hamiltonian

function for a free particle, which is the non-relativistic equation for its en-

ergy:

H =
p2

2m
(A.1)

102
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The quantum expression of p and H are given by the operators

p = −i~5 H = i~
∂

∂t
(A.2)

Substituting these expressions in(A.1), we obtain the well-known non-

relativistic Schrödinger equation:

i~ψ̇ = − ~2

2m
52 ψ (A.3)

Eq. (A.3) written here is not relativistically invariant; therefore, we would

transform it in a new equation which is consistent with relativistic theory. In

the special relativity theory, a generic point is speci�ed by four coordinates,

one for time and the other three for the space, so we write it as (x0, x1, x2, x3),

where x0 = ct stands for the time coordinate. In this context, distance is

de�ned as:

s2 = x2
0 − x2

1 − x2
2 − x2

3 (A.4)

Transformations which leave (A.4) invariant are called Lorentz transforma-

tions; these type of transformations are peculiar also because they leave

Maxwell's equations for the electromagnetic �eld unchanged in form under

the assumption to consider the scalar potential A0 = Φ and the vector po-

tential Ā = (Ax, Ay, Az) as the four coordinates of a four-vector , which is

then given by (A0, Ax, Ay, Az).

Special relativity theory states that not only the electromagnetic equation

but also the correct mechanical equations have to be invariant in form un-



A.1 Analytical derivation of Spin Orbit Coupling 104

der Lorentz transformations; in order to satisfy this statement, �rst of all

we have to generalize the expression for the mechanical momentum (A.2),

because it has only three components and, in addition, it involves the di�er-

entiation with respect to a coordinate t rather than with respect to a scalar.

These two apparent di�culties can be overcome adding the time component

p0 being c−1 times the energy E of the system, so we have the four-vector

(E
c
, px, py, pz) whose relativistic expression is given by:

pµ = m0c
dxµ
ds

µ = 0, 1, 2, 3 (A.5)

wherem0 is the mass of the particle measured in a frame of reference in which

it is at rest. The explicit expression of each component of this four-vector is:

p0 = Ec−1 = c−1i~
∂

∂t
= i~

∂

∂x0

(A.6)

p1 = −i~ ∂

∂x1

(A.7)

p2 = −i~ ∂

∂x2

(A.8)

p3 = −i~ ∂

∂x3

(A.9)

The de�nition (A.5) is consistent with the original one (A.3) .

Now, we rewrite the Schrödinger equation (A.3) with the relativistic formal-

ism that we have introduced in the last passages. It is natural assume that

the energy of the particle is the Hamiltonian and, in order to obtain an equa-

tion for this, we have to consider the scalar connected with pµ using (A.4)
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and (A.5):

p2
0− p2

1− p2
2− p2

3 = m2
0c

2[(
dx0

ds
)2− (

dx1

ds
)2− (

dx2

ds
)2− (

dx3

ds
)2] = m2

0c
2 (A.10)

Allowing (A.10) to operate on a function Ψ according to (A.6),(A.7),(A.8)

and (A.9), we obtain the relativistic equation for a free particle

(p2
0 − p2

1 − p2
2 − p2

3 −m2
0c

2)Ψ = 0 (A.11)

which is called Klein Gordon equation and represents the �rst relativistic gen-

eralization of the Schrödinger equation [95].However, this equation presents

several problems:�rst of all, it does not describe correctly the spectrum of the

hydorgen atom; then, it is mathematically puzzling, because it is a second

order di�erential equation in t, so we require the initial value of Ψ and Ψ̇ to

solve it, while the Schroedinger equation requires only the initial value of Ψ.

In order to obtain a result which satis�es this last require, Dirac proposed to

factorize (A.11) in two linear factors in this way:

(p2
0 − p2

1 − p2
2 − p2

3 −m2
0c

2) =

(p0 − α1p1 − α2p2 − α3p3 − βm0c)(p0 + α1p1 + α2p2 + α3p3 + βm0c)

(A.12)

If the αi and β coe�cients commute with the pµ and satisfy the following
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relations:

α2
1 = α2

2 = α2
3 = β2 = 1 (A.13)

{αi, αj} = 0 i = 1, 2, 3 (A.14)

{αi, β} = 0 i = 1, 2, 3 (A.15)

then, any solution of the linear equation

(p0 + α1p1 + α2p2 + α3p3 + βm0c)|Ψ〉 = 0 (A.16)

is a solution of (A.11).

It is evident from (A.13),(A.14) and (A.15) that the αi and β coe�cients

cannot be numbers; they are matrices. The �rst reasonable choice of these

matrices is constituted by the Pauli matrices σx,σy,σz and the identity matrix

1, because any 2×2 matrix can be expressed as a linear combination of them

with complex coe�cients.

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 1 =

1 0

0 1


(A.17)

These matrices satisfy (A.13) and (A.14) but, if we put β = 1, the relation

(A.15) leads to have αi = 0, that is not possible. Then, one considers this
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second set of quantities:

α1 = ρxσx (A.18)

α2 = ρxσy (A.19)

α3 = ρxσz (A.20)

β = ρz (A.21)

where ρx and ρz are given by:

ρx =

0 1

1 0

 ρz =

1 0

0 −1

 (A.22)

With this new set of matrices, the relations (A.13),(A.14) and (A.15) are

satis�ed and, with σ = (σx, σy, σz) and p = (p1, p2, p3), Dirac equation

(A.16) can be written as:

(p0 + ρxσ · p + ρzm0c)|Ψ〉 = 0 (A.23)

which is clearly:

(p0

1 0

0 1

+ σ · p

0 1

1 0

+m0c

1 0

0 −1

)|Ψ〉 = 0 (A.24)

From (A.24), we deduce that |Ψ〉 has to be a vector:

|Ψ〉 =

Ψ1

Ψ2

 (A.25)
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and then, following Eq. (A.24), we obtain these two simultaneous equa-

tions:

(p0 +m0c)Ψ1 + σ · pΨ2 = 0

(p0 −m0c)Ψ2 + σ · pΨ1 = 0

(A.26)

These equations can be improved by the fact that the electron has a charge

−e and may be in an electromagnetic �eld, whose potential is given by the

four-vector (A0, Ax, Ay, Az). We introduce this information by replacing pµ

with pµ + ( e
c
)Aµ in equations (A.26), which becomes [95]:

(p0 +m0c+
e

c
A0)Ψ1 + σ · (p +

e

c
A)Ψ2 = 0

(p0 −m0c+
e

c
A0)Ψ2 + σ · (p +

e

c
A)Ψ1 = 0

(A.27)

These equations represent Dirac equations written in a form which is most

useful for our purpose.

Let's multiply each equations (A.27) by c and replace cp0 with the eigenvalues

W of the energy. We also take in consideration that

W = E +m0c
2 (A.28)

where E is the energy of the system omitting the rest mass. Equations (A.27)

become:

(E + 2m0c
2 + eA0)Ψ1 + cσ · (p +

e

c
A)Ψ2 = 0

(E + eA0)Ψ2 + cσ · (p +
e

c
A)Ψ1 = 0

(A.29)

Introducing the quantity [95]



A.1 Analytical derivation of Spin Orbit Coupling 109

f =
2m0c

2

2m0c2 + E + eA0

(A.30)

we can derive from the �rst of Eq. (A.29) the expression of Ψ1:

Ψ1 = − f

2m0c
σ · (p +

e

c
A)Ψ2 (A.31)

and, substituting (A.31) in the second of Eq. (A.29) , we obtain an

equation for Ψ2 and E:

(
1

2m0

σ · (p +
e

c
A)fσ · (p +

e

c
A)− eA0 − E)Ψ2 = 0 (A.32)

Looking at Eq. (A.30), it is evident that f is a very small quantity, so we

can expand it to the �rst order:

f = 1− E + eA0

2m0c2
,

∂f

∂xi
= − e

2m0c2

∂A0

∂xi
(A.33)

where xi is a spatial coordinate. If we stopped at the lowest order, taking

only the �rst term f = 1 of (A.33), from (A.32) we would obtain a non-

relativistic equation which is not interesting for our purpose. Then, we retain

the �rst-order term arising from f , setting A = 0 and considering A0 as a

function of r alone, therefore implementing the spherical symmetry of the

electrostatic �eld. Under this hypothesis, Eq. (A.32) becomes:

{ 1

2m
(σ · p)f(σ · p)− eA0 − E}Ψ2 = 0 (A.34)

Using the rule for di�erentiating a product ,we can transform the term



A.1 Analytical derivation of Spin Orbit Coupling 110

inside (A.34) in this way:

(σ · p)f(σ · p) = (σ · p)2f − (σ · p)σ · (pf) = X1 −X2 (A.35)

Now, we expand separately each term of this last equation,using the for-

mula:

(σ ·B)(σ ·C) = B ·C + iσ ·B ∧C (A.36)

where B and C are any vectors which commute with σ. If B = C, then

(A.36) is modi�ed into:

(σ ·B)(σ ·B) = (σ ·B)2 = B2 + iσ ·B ∧B (A.37)

Taking X1 form (A.35), using (A.37) with B = p and substituting the ex-

pression of f from (A.33), we have:

X1 = (σ · p)2f = p2f = p2(1− E + eA0

2m0c2
) (A.38)

We are searching for a Ψ2 which satis�es (A.32); this means that, at zero

order,namely when f = 1, and under our hypothesis for which A = 0, Ψ2

satis�es:

(
1

2m
p2 − eA0 − E)Ψ2 = 0 (A.39)

From (A.39), we have

1

2m
p2 = eA0 + E (A.40)

and �nally, substituting this expression in (A.38), we obtain:
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X1 = p2(1− p2

4m2
0c

2
) = p2 − p4

4m2
0c

2
(A.41)

Now, we use (A.36) in order to expand the expression ofX2; taking B = p

and C = pf , we have:

X2 = (σ · p)σ · (pf) = p · (pf) + iσ · p ∧ (pf) (A.42)

Substituting in (A.42) the explicit expression (A.2) of p:

X2 = (−i~)2∇ · (∇f) + i(−i~)2σ · ∇ ∧ (∇f)

= −~2∇2f − ~2(∇f) · ∇+ i(−i~)2σ · [−(∇f) ∧∇+∇∧ (∇f)]

= −~2(∇f) · ∇ − ~σ · (∇f) ∧ p

(A.43)

where in the last equality we have considered that A0 satis�es Laplace's

equation, then ∇2A0 = 0, and that the curl of the gradient of f is equal to

zero. Recalling (A.33) and the fact that A0 is a function of r alone, we can

easily calculate

∇f =
r

r

df

dr
(A.44)

With this element, X2 is �nally equal to:

X2 = −~2

r

df

dr
r · ∇ − ~

r

df

dr
σ · r ∧ p

= −~2 df

dr

∂

∂r
− ~
r

df

dr
σ · l

(A.45)

In addition, we know that df
dr

= − e
2m0c2

dA0

dr
. Collecting all the results and

substituting them in Eq. (A.34), we �nally have:
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{ 1

2m
p2− 1

8m3
0c

2
p4−eA0−

e~
4m2

0c
2r

dA0

dr
σ·l− e~2

4m2
0c

2

dA0

dr

∂

∂r
}Ψ2 = EΨ2 (A.46)

This is the Schödinger equation written with relativistic corrections; in

particular, the fourth term of the term on the left of Eq. (A.46) is the spin-

orbit coupling energy. Considering that s = ~
2
σ and solving the equation

for a Coulomb �eld, namely A0 = Ze
r
, we have that this contribution to the

Hamiltonian is:

hSOC =
Ze2

2m2
0c

2r3
l · s (A.47)

A.2 Spin Obit Coupling in solids

A.2.1 Non-magnetic solids

When an electron moves in a solid, the situation is deeply di�erent respect

to the atomic case; in a solid, the valence electrons arrange to optimize the

chemical bonding and the splitting of the energetic levels is determined by

the crystal �eld. As a consequence, at the Γ- point, where the crystal mo-

mentum is zero, the e�ect of SOC is quite similar to the atomic case, but

away from the Γ- point new e�ects arise, which strongly depend on the sym-

metry of the crystal.

In a system without internal or external magnetic �eld, time reversal sym-

metry holds, which means that the properties of the system do not change

inverting the direction of time. When the transformation t→ -t is imple-

mented, a particle moving with momentum k is exchanged with a particle
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moving with momentum -k ; in addition, time reversal also inverts the spin

of electrons. All these considerations can be summed up in the following re-

lation between energies of a right-moving spin up particle and a left-moving

spin down one:

ε(k, ↑) = ε(−k, ↓) (A.48)

In a crystal with inversion symmetry, the following relation additionally

holds, both for spin up and spin down electrons:

ε(k) = ε(−k) (A.49)

This means that band structure is symmetric around the center of Brioullin

zone k=0, that in this point all bands are degenerate and that they are dou-

bly degenerate in their evolution. In a crystal without inversion symmetry,

obviously:

ε(k, ↑) 6= ε(k, ↓) (A.50)

The degeneracy of the bands can be lifted as a consequence of SOC ; in

these systems, a lack of inversion symmetry, which implies V(r) 6= V(-r),will

result in a non-vanishing potential gradient or electric �eld E(r). Dresselhaus

was the �rst to emphasize [96] that SOC may have important consequences

for one electron energy levels in bulk semiconductors ; he observed that in a

zinc blende structure, occurring in semiconductors like GaAs (Fig. A.1, on

the left), we can have a spin splitting of electron and hole states at nonzero
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wave vectors k even if B=0; this is called Dresselhaus e�ect. For the lowest

conduction band, the corresponding Dresselhaus Hamiltonian is given by [97]:

HD = αD[σxpx(p
2
y − p2

z) + σypy(p
2
z − p2

x) + σz(p
2
x − p2

y)] (A.51)

where σx,σy and σz are the Pauli matrices and px,py and pz are the mo-

mentum components in the crystallographic directions [100], [010] and [001]

respectively. The Dresselhaus constant αD is small if lighter elements are

present in the semiconductor (for GaAs, it is 27.6 eV/Å3) while it is larger

for heavier elements (it is 760.1 eV/Å3 for InSb) [98]. Hamiltonian (A.51)

produces a spin splitting which is proportional to k3. This corrections is not

always in third-order in k: in crystal with wurzite structure such as ZnO

(Fig. A.1, on the right), for example, the splitting due to (A.51) is linear in

k. This result was achieved by Rashba in 1959 [99, 100].

Figure A.1: Crystal structure of GaAs (zinc blende, left) and ZnO (wurzite,
right).
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In Fig. A.1, crystal zinc blende structure of GaAs and wurzite structure

of ZnO are shown: both structures have no cener of inversion and this leads

to spin orbit splitting for each of them, which is third-order in k for the

former (Dresselhaus e�ect), and �rst order for the latter (Rashba e�ect).

Termination of the crystal by a surface breaks the 3D inversion symmetry.

Performing a Taylor expansion of the potential V(r), in lowest order its

inversion asymmetry is characterized by an electric �eld E(r); when electrons

with an e�ective mass m∗ move with velocity v = dε
dp

= 1
m∗

k in an external

electric �eld E de�ned in a global frame of reference, then the relativistic

Lorentz transformation give rise to magnetic �eld B=1
c
(v ∧E)=( 1

m∗c
(k∧E)

in local frame of the moving electron. The interaction of the spin with this

magnetic �eld leads to the Rashba Hamiltonian [98, 101, 102]:

HR = αRσ · (p ∧ E) (A.52)

The splitting is a combined e�ect of atomic spin-orbit coupling and asym-

metry of the potential in the direction perpendicular to the two-dimensional

plane. Remarkably, this e�ect can drive a wide variety of novel physical

phenomena even when it is a small correction to the band structure of the

two-dimensional metallic state.

A.2.2 Magnetic solids

The case of a bulk or a surface of magnetic metal is di�erent; in this context,

the exchange interaction is the dominant energetic scale and all spins align

accordingly. However, if the exchange coupling is weak and SOC is strong,
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non-trivial e�ects can arise. Dzyaloshinskii-Moriya (DM) interaction is one

of them; its name derives from the fact that in 1960 Dzyaloshinskii con-

structed a model to describe weak ferromagnetism [103] and he introduced

an asymmetrical term that brings also the name of Moriya because he found

that the mechanism behind the interaction is partly based on SOC [104]. DM

interaction is due to a lack of inversion symmetry of the compound and a

strong SOC; without going into detail, we can consider the example of MnSi

(manganese silicide), which is a compound in which inversion symmetry is

broken into the unit cell. In addition, the compound has a strong SOC. Here,

inversion symmetry can be broken in di�erent directions, leading to di�erent

DM interaction: this means that the magnetization of the compound will

be di�erent in each case. Focusing the attention on only two spins, DM

interaction assumes the following form:

HDM = −D12 · (S1 ∧ S2) (A.53)

where S1 and S2 are the atomic spins. The resulting DM interaction emerging

from the interplay between two atomic spin with neighboring atoms having a

large SOC in a thin �lm and pointing outwards from the plane of the atoms

is shown in Fig. A.2.

It is evident that resulting magnetic structure depends on the direction

of the D vector, which in turn depends on the way in which the symmetry

in the compound is broken. Furthermore, an interaction of the type (A.53)

will favor spin-spiral structure, which can be found on surfaces [105], or in

domain walls [106] of thin magnetic �lms: DM interaction gives these spiral-
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Figure A.2: Schematic representation of the DM interaction of two spins

ing magnetic structures a unique sense of rotation.

Another relevant e�ect which can arise in magnetic solids is the so-called mag-

netic anisotropy, that is the directional dependence of a material's magnetic

properties.In particular, one kind of magnetic anisotropy is the magnetocrys-

talline anisotropy, which derives from the fact that the atomic structure of

a crystal introduces preferential directions for the magnetization, which are

usually related to the principal axes of its crystal lattice; this principally char-

acterizes a ferromagnetic material when it takes more energy to magnetize in

a direction rather than in another. SOC is the principal responsible of that,

since it is basically the orbital motion of the electrons which couples with

crystal �eld to determine the �rst order contribution to magnetocrystalline

anisotropy [107]. One observable e�ect of magnetocrystalline anysotropy

is the magnetostriction, which takes place when a ferromagnetic material

change its shape or dimensions under the application of a magnetic �eld.



Appendix B

Löwdin tecnique

Lowdin tecnique is generally employed to map a starting eigenvalue problem

in another one of lower dimensionality. This method, that we propose in the

present appendix, was shown by P. Löwdin [108], who discussed the solution

of an eigenvalue problem considering the case in which a set of approximated

eigenfunctions is given; the connotative idea of the method is that, dividing

this set into two classes, it is possible to obtain a formula in which the solution

of the initial problem is expressed in terms of only one class of eigenfunctions,

considering the other one as a perturbation.

The classical eigenvalues problem can be expressed as:

HΨ = εΨ (B.1)

In the classical perturbation theory, the Hamiltonian H is generally equal

to H0+V, where V is a potential that can be expressed as a power series in

a perturbation parameter. Using the Löwdin method, on the other hand,

118
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it is not necessary that the Hamiltonian has such a speci�c form, the only

assumption under which it is possible to use the procedure is that a set

of orthonormalized functions Ψ
(0)
n (with n=1,2...,N), which are approximate

eigenfunctions of H, is known. It follows that the best eigenfunctions of H

can be written as a linear combinations of them:

Ψ =
N∑
n=1

Ψ(0)
n cn (B.2)

The element of the Hamiltonian H in the chosen basis are:

Hmn =

∫
Ψ∗(0)
n HΨ(0)

n dτ (B.3)

Then, coe�cients cn in Eq. (B.2) can be expressed using the variational

principle, which states that the integral

E =

∫
Ψ∗HΨdτ∫
Ψ∗Ψdτ

(B.4)

that can be also expressed in a discrete form, substituting Eq. (B.2) in it

and using Eq. (B.3):

E =

∑
mn c

∗
mHmncn∑

mn c
∗
mδmncn

(B.5)

gives an approximate value of ε in Eq. (B.1) and that the best approxi-

mation is the one in correspondence of which δE=0. Assuming that, in the

current case, E is a ratio of two quantities E=W
V
, where W=

∑
mn c

∗
mHmncn



120

and V=
∑

mn c
∗
mδmncn as established in Eq. (B.5), then:

δE =
δW − EδV

V
(B.6)

Substituting in Eq. (B.6) the explicit expression of W and V, we obtain

a system of linear equations for the coe�cients cn, which is:

N∑
n=1

(Hmn − Eδmn)cn = 0, m = 1, 2, .., N (B.7)

Let us now turn on the crucial point of the Löwdin method: we divide

the eigenfunctions Ψ
(0)
n into two classes, indicated by (A) and (B). We are

interested in the class (A) and want to treat the class (B) as a perturbation:

in this way, we reduce the dimensionality of the problem (B.1), making it

easier to solve. Under this assumption, the system (B.7) can be written as:

(E −Hmn)cm =
A∑
n

H
′

mncn +
B∑
n

H
′

mncn (B.8)

where

H
′

mn = Hmn(1− δmn) (B.9)

Eq. (B.8) is also equal to:

cm =
A∑
n

h
′

mncn +
B∑
n

h
′

mncn (B.10)

where the term hmn is given by:

hmn =
Hmn

(E −Hmn)
(B.11)
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The next step of the method provides for using the formula (B.10) to

rewrite c coe�cients in the sum over (B), substituting (B.10) in itself, starting

thus a process of iteration, which reproduces the Neumann series expansion.

In this way, we formally eliminate the states in the class (B); the result of

this process, in accordance with the notation of the original paper [108], is:

cm =
A∑
n

(h
′

mn +
B∑
α

h
′

mαh
′

αn +
B∑
αβ

h
′

mαh− αβ
′
h
′

βn + ...)cn (B.12)

De�ning the following quantity:

UA
mn = Hmn +

B∑
α

H
′
mαH

′
αn

E −Hαα

+
B∑
αβ

H
′
mαH

′

αβH
′

βn

(E −Hαα)(E −Hββ)
(B.13)

and recalling also the relation (B.9), we obtain that Eq. (B.10) can be

de�nitively written as:

cm =
A∑
n

UA
mn −Hmnδmn
E −Hmm

cn (B.14)

Eq. (B.14) shows that any coe�cients appearing in the starting expression

(B.2) can be expressed as a �nite linear combination of coe�cients cn which

belongs to the subspace (A). As a �nal result, we have that when m ∈ (A)

Eq. (B.7) becomes equal to:

A∑
n

(UA
mn − Eδmn)cn = 0 (B.15)
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while when m ∈ (B) it is equal to:

cm =
A∑
n

UA
mn

E −Hmm

cn (B.16)

Looking at these last equations, it is evident that Eq. (B.15) is identical

to Eq. (B.7) in form, di�ering from that for the fact that it is limited only to

the subspace (A): using the Löwdin method, we have reduced an eigenvalue

problem belonging initially to two classes (A) and (B) only to the class (A),

replacing the matrix elements Hmn by the elements UA
mn; the in�uence of

the class (B) is taken into account by expansion of UA
mn explicitly written in

(B.13).

The initial problem is then dimensionally reduced, since it has been restricted

only to the (A) subspace. However, the fact that the matrix U depends on its

eigenvalues E is a non-trivial problem in resolving Eq. (B.15). The obstacle

can be overcome linearizing the UA
mn terms in (B.15), namely inserting in

(B.13) the Taylor expansion of E about E
(0
n . The e�ective Hamiltonian is

then written as [109]:

UA
mn = HAA

mn +
B∑
α

HAB
mαH

BA
αn

E −HBB
αα

= HAA
mn +HAA(1)

mn (B.17)

With this last passage, the simpli�cation of the initial problem is then

evident.



Appendix C

Normal modes of a tetrahedron

C.1 Vibrations in one dimension

A normal mode of a system is an oscillation in which all parts of the system

move sinusoidally with the same frequency and a �xed phase relation. The

simplest case to study the normal modes is the one dimensional one, where

there is only one degree of freedom. In order to implement vibrations of

a one-dimensional system, this one has to be perturbed, namely it has to

been moved from its stable equilibrium position. The latter corresponds to

a position of the system in which the potential energy V(q), where q is a

generalized coordinate, assumes a minimum value. Calling q̃ the equilibrium

value of the generalized coordinate, for small deviations from the equilibrium

position it is su�cient to consider only the �rst non- vanishing terms in the

expansion of the di�erence V(q)-V(q̃) in powers of q− q̃. The expansion gives

back:

V (q)− V (q̃) ' 1

2
k(q − q̃)2 (C.1)
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Putting V(q̃)=0 and using the new variable x, de�ned as the deviation of

q from its equilibrium position value:

q − q̃ = x (C.2)

we have:

V (x) =
1

2
kx2 (C.3)

where k= U
′′
(q̃).

The kinetic energy of a system with one degree of freedom,in the same ap-

proximation used for the potential energy, has the form:

T =
1

2
a(q)q̇2 =

1

2
a(q)ẋ2 (C.4)

here a(q)=a(q̃) and we can for brevity indicate it with m. Then:

T =
1

2
mẋ2 (C.5)

The Lagrangian of the system is given by:

L = T − V =
1

2
mẋ2 − 1

2
kx2 (C.6)

From Eq. (C.6), it is immediate to extract the equation of motion by the

Euler- Lagrange equation:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (C.7)

That is:
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ẍ+ ω2x = 0 (C.8)

with ω =
√

k
m
. Eq. (C.8) is a well-known linear di�erential equation

which describes an harmonic motion. The general solution is given by a

linear superposition of its two independent solutions:

x(t) = c1 cosωt+ c2 sinωt (C.9)

which can be also written as:

x(t) = A cos(ωt+ Φ) (C.10)

where A is the amplitude of oscillations and is equal to A=
√
c2

1 + c2
2, Φ is

the phase of oscillations with tan Φ = − c2
c1
and ω is called angular frequency

of oscillation.

A more general form of the solution (C.10) is given by considering it as a

real part of a complex expression:

x(t) = Re[Beiωt] (C.11)

Putting B=AeiΦ, and using Euler's formula, the expression (C.10) and

(C.11) are equivalent, but the advantage of using the last one is that expo-

nential factors are mathematically simpler than trigonometrical ones, since

they are unchanged in form by di�ferentiation.

All these passages show us that the system executes harmonic oscillations

near a position of stable equilibrium with frequency ω.
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C.2 Vibrations of molecules

The arguments reported in the previous section can be easily extended to

a molecular environment, in which there are N nuclei and, then, we have

3N degrees of freedom, which is the number of coordinates we need in order

to describe their motion. However, if one is interested in describing the

vibrational motion of the system, it is convenient to remove the translational

and rotational degrees of freedom. The former can be eliminated by equating

to zero the total momentum of the molecule; as a result, the coordinates of

the center of mass of the system remain constant during the oscillation. The

latter can be removed by equating to zero the angular momentum of the

system. Since the translation and the rotation of a system are respectively

described by three coordinates, after this operation the system has 3N-6

degrees of freedom. If the system is linear, only two coordinates are required

to describe rotations, then there are 3N-5 degrees of freedom at all.

The analytical method required to obtain the normal modes of a molecule is

analogous of the one stated in one dimension. We assume to have a set of

generalized coordinates:

(q1, q2, q3, . . . , qn)

where n is the number of degrees of freedom of the system. The kinetic

energy is a quadratic function of the velocities, while the potential energy is

assumed to be a function of the generalized coordinates alone:

V = V (q1, q2, q3, . . . , qn) (C.12)
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The potential energy (C.12) has a minimum for q = q̃, in correspondence

of which the system assume a static position that is the equilibrium con�gu-

ration; this set of coordinates (q̃1, . . . , q̃n) satis�es the n non linear equations

∂V

∂qσ

∣∣
q=q̄

= 0 (C.13)

Once one has found the equilibrium position, he expands around it, in-

troducing a new set of coordinates (x1, . . . , xσ) in this way:

qσ = q̃σ + xσ (C.14)

As it is evident from Eq. (C.14), xσ are the displacements relative to equi-

librium. Expanding the potential energy V as a function of xσ, we obtain a

positive de�nite quadratic form:

V =
1

2

∑
σσ′

Vσσ′xσxσ′ (C.15)

Here, as in the one dimensional case, V(q̃)=0. In addition, Vσσ′= Vσ′σ, since

they multiply the same quantities in the sum [110] and are equal to:

Vσσ′ =
∂2V

∂qσ∂qσ′

∣∣
q=q̄

(C.16)

The kinetic energy written in terms of the new coordinates is:

T =
n∑

σ,σ′=1

1

2
Tσσ′(x1, . . . , qn)ẋσ ˙xσ′ (C.17)

Coe�cients Tσσ′ are de�ned as:
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Tσσ′ =
∂2T

∂q̇σ∂q̇σ′

∣∣
q=q̄

(C.18)

As it is evident that from (C.18), these coe�cients are regarded to be

symmetric. The Lagrangian of the system is then:

L =
n∑

σ,σ′=1

1

2
Tσσ′(x1, . . . , xn)ẋσ ˙xσ′ −

1

2
Vσσ′xσxσ′ (C.19)

Using the Euler- Lagrange equations:

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 (C.20)

the equation of motion of the system are:

∑
σ′

Tσσ′ẍσ′ +
∑
σ′

Vσσ′xσ′ = 0 (C.21)

where σ = 1, . . . , n. We search for function x(t) with the form expressed in

(C.11), that in this case is:

xσ′(t) = Cσ′e
−iωt (C.22)

Substituting Eq. (C.22) in Eq. (C.21), we obtain a set of linear homoge-

neous algebraic equations which have to be satis�ed by Cσ′ :

∑
σ

(−ω2Tσσ′ + Vσσ′)Cσ′ = 0 (C.23)
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Non trivial solutions of the system can be achieved with the passage

det(−ω2Tσσ′ + Vσσ′) = 0 (C.24)

Since T and V are of rank n, the above determinant yields an nth order poly-

nomial in ω2 , whose n roots are the squared eigenvalues (ω1, . . . , ωn), namely

the frequencies of the system. Once these frequencies are known, substituting

their value in (C.23) also the corresponding coe�cients Cσ′ are found. If all

the frequencies ωα are di�erent, the coe�cients Cσ′ are proportional to the

minors of the determinant (C.24), with ω = ωα [110]. If we denote by ∆σ′α

the minors, the general solution of (C.21) is the real part of a superposition

of all the particular solutions of the form xσ′= ∆σ′α Cα e−iωαt:

xσ′ = Re[
n∑

α=1

∆σ′αCαe
−iωαt] =

∑
α

∆σ′αθα (C.25)

Where

θα = Re[Cαe
−iωαt] (C.26)

The general solution of Eq. (C.21) is then a superposition of n simple

periodic oscillations with de�nite frequencies ωα. At this point, it is evident

that one can choose a set of generalized coordinate in a way in which each of

them execute only one simple oscillation. We can express θ1 . . . θn in terms of

the coordinates x1 . . . xn; in this way,the coordinate θα are de�ned to satisfy

the equations:
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θ̈α + ω2
αθα = 0 α = 1, . . . , n (C.27)

Using these coordinates, which are called normal coordinates, the equations

of motion are given by a set of n independent equations, which are equation

of simple harmonic oscillators. Corresponding eigenvectors are immediately

calculated with the standard procedure.

The vibration energy must be invariant with respect to symmetry transfor-

mation of the system [111]; this means that, under any transformation be-

longing to the point symmetry group of the molecule, the normal coordinates

are transformed into linear combination of themselves. These considerations

allow us to have the possibility to classify the eigenvibrations of a molecule

according to its irreducible representation of its symmetry group.

C.3 Tetrahedral con�guration

In this section, we apply the procedure shown in previous sections to a tetra-

hedral molecule, shown in Fig. C.1.

A tetrahedron is a polyhedron composed of four triangular faces, six

straight edges, and four vertex corners. A regular tetrahedron is one in

which all four faces are equilateral triangles, where all faces are the same

size and shape and all edges have the same length. We want to study vi-

brations of a tetrahedron, with one mass in each vertex. The system is in a

(x,y,z) Cartesian coordinate system. In order to study the normal modes, we

imagine that in that tetrahedron there are springs which connect each pair
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Figure C.1: Schematic picture of an ideal tetrahedron
,

of masses.

Suppose that all the spings are unstretched and of length a at the equilib-

rium.In addition, suppose that the equilibrium position of the tetrahedron is

the particular con�guration shown in the Figure C.2, where the coordinates

of the four vertices are:

P1 = (
a

2
,
a

2
tan θ, 0) P2 = (

−a
2
,
a

2
tan θ, 0)

P3 = (0,
−a
2

tan θ,
a

2
) P4 = (0,

−a
2

tan θ,
−a
2

)

P5 = (0, 0, 0)

(C.28)

We are assuming that the tetrahedron is centered in the origin of our

Cartesian axes and that at the beginning there are no deformations; in this

way the angle formed by the edges of the tetrahedron is equal to the ideal one

and is 109.5◦. As a direct result, the angle formed by the edge of the tetra-

hedron and the Cartesian axes is equal to θ = 35.26◦ for evident geometrical

reason.
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Figure C.2: Equilibrium position of tetrahedron
,

In that description, we imagine that each point is connected to the other

four with a springs. The initial length of these springs is the same for all

the springs, because in a tetrahedron each point is equidistant from the

others.Then, we perturb the system, imaging to "stretch" it , for example,

to the right. If we indicate with xi,yi and zi with i = 1, . . . , 5 the deviations

from the equilibrium position, looking at Fig. C.2 we have that the vertexes

of the tetrahedron have these new coordinates:

P1 = (
a

2
+ x1,

a

2
tan θ + y1, z1) P2 = (

−a
2

+ x2,
a

2
tan θ + y2, z2)

P3 = (x3,
−a
2

tan θ + y3,
a

2
+ z3) P4 = (x4,

−a
2

tan θ + y4,
−a
2

+ z4)

P5 = (x5, y5, z5)

(C.29)

We have to construct the T and V matrices. Let dij be the distance
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between the points Pi and Pj:

d2
ij = (xj − xi)2 + (yj − yi)2 + (zj − zi)2 (C.30)

For each pair of points, we have:

d2
12 = (−a+ x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (C.31)

d2
13 = (

−a
2

+ x3 − x1)2 + (−a tan θ + y3 − y1)2 + (
a

2
+ z3 − z1)2 (C.32)

d2
14 = (

−a
2

+ x4 − x1)2 + (−a tan θ + y4 − y1)2 + (
−a
2

+ z4 − z1)2 (C.33)

d2
15 = (x5 −

a

2
− x1)2 + (y5 −

a

2
tan θ − y1)2 + (z5 − z1)2 (C.34)

d2
23 = (

a

2
+ x3 − x2)2 + (−a tan θ + y3 − y2)2 + (

a

2
+ z3 − z2)2 (C.35)

d2
24 = (

a

2
+ x4 − x2)2 + (−a tan θ + y4 − y2)2 + (

−a
2

+ z4 − z2)2 (C.36)

d2
25 = (x5 +

a

2
− x2)2 + (y5 −

a

2
tan θ − y2)2 + (z5 − z2)2 (C.37)

d2
34 = (x4 − x3)2 + (y4 − y3)2 + (−a+ z4 − z3)2 (C.38)

d2
35 = (x5 − x3)2 + (y5 +

a

2
tan θ − y3)2 + (z5 −

a

2
− z3)2 (C.39)

d2
45 = (x5 − x4)2 + (y5 +

a

2
tan θ − y4)2 + (

a

2
− z4)2 (C.40)

The potential energy of the system is given by:



C.3 Tetrahedral con�guration 134

V =
1

2
k[(d12 − a)2 + (d13 − a)2 + (d14 − a)2 + (d15 − a)2 (C.41)

+(d23 − a)2 + (d24 − a)2 + (d25 − a)2 + (d34 − a)2

+(d35 − a)2 + (d45 − a)2]

In order to �nd the explicit expression of T and V, we neglect higher

order terms, because oscillations are small. Therefore, we have to expand all

the distances in the potential energy (C.41) to linear order.

We de�ne ∆xij = xi − xj , ∆yij = yi − yj, ∆zij = zi − zj , i, j = 1, . . . , 5

and i 6= j . Expansion is made for ∆xij = 0 , ∆yij = 0 and ∆zij = 0 because,

in our convention, xi, yi and zi are deviation from the equilibrium position.

We obtain at the �rst order:

d12 = a+ x1 − x2 (C.42)

d13 =
a(1 + 2 tan2 θ)− (x3 − x1)− 2 tan θ(y3 − y1)− (z1 − z3)√

2(1 + 2 tan2 θ)
(C.43)

d14 =
a(1 + 2 tan2 θ)− (x4 − x1)− 2 tan θ(y4 − y1)− (z4 − z1)√

2(1 + 2 tan2 θ)
(C.44)

d15 =
a(1 + tan2 θ)− 2(x5 − x1)− 2 tan θ(y5 − y1)

2
√

(1 + tan2 θ)
(C.45)

d23 =
a(1 + 2 tan2 θ)− (x2 − x3)− 2 tan θ(y3 − y2)− (z2 − z3)√

2(1 + 2 tan2 θ)
(C.46)

d24 =
a(1 + 2 tan2 θ)− (x2 − x4)− 2 tan θ(y4 − y2)− (z4 − z2)√

2(1 + 2 tan2 θ)
(C.47)
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d25 =
a(1 + tan2 θ)− 2(x2 − x5)− 2 tan θ(y5 − y2)

2
√

(1 + tan2 θ)
(C.48)

d34 = a+ z3 − z4 (C.49)

d35 =
a(1 + tan2 θ)− 2 tan θ(y3 − y5)− 2(z5 − z3)

2
√

(1 + tan2 θ)
(C.50)

d45 =
a(1 + tan2 θ)− 2 tan θ(y4 − y5)− 2(z4 − z5)

2
√

(1 + tan2 θ)
(C.51)

Substituting the expansions in the (C.41), we obtain the potential energy

at the �rst order.

Now, we have to construct the V matrix. De�ning a set of generalized

coordinates:

(q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15) =

= (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, x5, y5, z5)

We construct the V matrix (C.16):

Vσσ′ =
∂2V

∂qσ∂qσ′
(C.52)

On the other side, the matrix T is trivial; in fact, from the (C.17) we have

that:

T =
1

2
m

5∑
i=1

(ẋ2
i + ẏ2

i + ż2
i ) (C.53)

This implies that

Tij =
∂2T

∂ẋi∂ẋj
= mδij (C.54)
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T is a multiple of the unit matrix and then the Eq. (C.23) will be

V ~Ψσ = mω2~Ψσ (C.55)

We proceed with the Eq. (C.41), substituting in V all the expansions,

and then calculating the derivatives that we need in order to construct the

matrix elements (C.52) .

We obtain a 15 x 15 matrix, which are valid for a generic angle θ, whose

eigenvalues are:

(0, 0, 0, 0, 0, 0, 5,
2

1 + tan2 θ
,

4 tan2 θ

1 + 2 tan2 θ
,

3 + 7 tan2 θ −
√

9 + 2 tan2 θ + 9 tan2 θ

2(1 + tan2 θ)
,
3 + 7 tan2 θ +

√
9 + 2 tan2 θ + 9 tan2 θ

2(1 + tan2 θ)
,

5 + 3 tan2 θ −
√

5 + 10 tan2 θ + 9 tan4 θ

2(1 + tan2 θ)
,
5 + 3 tan2 θ −

√
5 + 10 tan2 θ + 9 tan4 θ

2(1 + tan2 θ)
,

5 + 3 tan2 θ +
√

5 + 10 tan2 θ + 9 tan4 θ)

2(1 + tan2 θ)
,
5 + 3 tan2 θ +

√
5 + 10 tan2 θ + 9 tan4 θ

2(1 + tan2 θ)
)

(C.56)

In this passage, we assume k = 1,m = 1 and a = 1. Eq. (C.56) represents

the frequencies of vibration of a tetrahedral molecule. Substituting the value

θ = 35, 26◦ in (C.56) and looking to a more careful treatment of the theory

of the normal modes of a tetrahedron in Ref. [112], we can draw up the

following classi�cation:

• the eigenvalue 0 which is six times degenerate and corresponds to ro-

tations and translations;

• the eigenvalue 5, which has no degeneration and corresponds to the
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breathing mode ν1;

• the eigenvalue 0.9989822118044377, which is doubly degenerate and

corresponds to the breathing mode ν2;

• the eigenvalue 1.0010177881955622, which is three times degenerate

and corresponds to the stretching mode ν3;

• the eigenvalues 3.333656411606072, which is three times degenerate and

corresponds to the bending mode ν4.

Excluding the �rst point, which is relative to translation and rotations, we

have nine normal modes, that is coherent with theory, recalling that N=5 and

that the number of the degrees of freedom 3N-5 coincide with the number of

normal modes. The normal modes are shown in Figure C.3.

Figure C.3: Normal modes of a tetrahedron. Picture taken from Ref.[112]
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