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Introduction 

Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging 

(MRI) are techniques that have seen a remarkable success and a fast growth over 

the past decades.  

These techniques, extensively used as survey and investigation tools in 

several fields, give usually a relatively rapid response, have a good level of 

accuracy and does not present the harmful disadvantages of other diagnostic 

approaches based on ionizing radiations.  

In particular, MRI emerged as a medical imaging technique to obtain 

pictures of the anatomy and physiological processes of organs and body structures 

in both health and disease. Even if originally developed in the medical field, it is 

nowadays used in a large number of disciplines to study a wide variety of 

processes and materials. 

MRI technique involves a nice combination of superconductivity, cryogenics, 

quantum physics, digital and computer technology. 

Thanks to its non-invasivity and non-descrutivity, the MRI enhances its potential 

to perform inspections and studies of the internal structure of material samples 

without modifications caused by the measurements. 

In particular, in the field of food science, the understanding of global information 

about the food matrix and a better identification of the determinants characterizing   

food quality and safety represent a new challenge and MRI has proven to be a 

very promising answer. 

This technique can be used to acquire 2-dimensional (2D) and 3-dimensional (3D) 

high spatial resolution images of the internal structure of the material under study. 

The signal of each voxel depends on the physical properties of the sample such as 

proton density, relaxation times, temperature and diffusion. 



5 

 

Information extracted from the images can be exploited for spatially resolved 

measurements of concentration, structure, temperature, velocity, and diffusivity.  

MRI, as non-destructive technique, allows the study of intact samples such 

as fruits and vegetables. Due to the presence of a high water content in these 

products, MRI can be useful to obtain information about tissue properties and, 

thanks of its sensitivity, can trace water distribution and migration.  

MRI shows a great potential for the investigation of the structural changes 

induced by food processes and allows the characterization of vegetable and plant 

structure. The characteristic NMR relaxation times are used as parameters for the 

quantification of water content or for the extraction of information related to 

changes in microstructure.  

Nevertheless, the way to affirm the MRI as a recognized tool for the 

assessment of food properties, quality, processing and storage is still quite long 

and the implementation of simple and fast protocols, suitable to respond to food 

industry demands, is far to be reached. The idea behind this thesis is the 

investigation of new methodologies intended to carry out fast and accurate 

evaluation of moisture content in a food matrix through MRI. At the same time 

the development of appropriate protocols and analysis tools allowing a simple 

extraction of those information in a reproducible and reliable way.  

This thesis work is divided into six chapters.  

Chapter 1 and 2 offer a general introduction respectively to the NMR physics and 

to the imaging technique based on it. In particular, the processes behind the image 

formation and the used sequences are discussed. 

A general description of the instrument is presented in chapter 3. 

Chapter 4 provide a short overview of the most prominent applications of MRI 

and the state of the art in various fields of use.  

In chapter 5, we explain our advances in efforts to develop an objective, accurate 

and non-invasive tool for the detection and quantification of the moisture content 

in a specific food matrix. Two different approaches have been used, both based on 

data extracted by MR Imaging and a comparison of the two methods is presented. 

The goal is to exploit MRI as a real measurement instrument with a simple and 
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fast measurement protocol: to achieve this goal we need to identify quantitative 

MR parameters that provide the most relevant information with respect to the 

physical quantities we want to measure.  

The final chapter describes a preliminary MRI study of in vivo monitoring of 

plants behaviour and their growing inside the spectrometer. The determination of 

roots viability, water uptake and absorption of nutrients can be explored through 

MRI in a continuous way with very light interference on the plant development. 

The first results and the perspectives of this kind of studies are presented. 

The thesis ends with a general conclusion where are summarized the main 

results and the key perspectives for future work. 
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1. Principles of Nuclear Magnetic Resonance 

The Nuclear Magnetic Resonance (NMR) is a quantum mechanical 

phenomenon in nature, but at the macroscopic scale, it is possible to describe it 

quite accurately using semi-classical physics. This point of view allows having a 

practical and simpler approach to understand the NMR phenomenon. 

1.1 A mix description 

Electrons, protons and neutrons are particles inherently provided with spin, 

characterized by quantum behaviour. The angular momentum associated with the 

spin is: 

 

𝐿 =  ℏ √𝐼(𝐼 + 1)    ;    ℏ =
ℎ

2𝜋
 , 

(1) 

where I is the spin number and  ℎ = 6,63 10−34 𝐽𝑠2 is  the Plank constant .  

For nuclei possessing an odd mass number, I value is a half-integer, like the 

hydrogen (1H) which possess a spin of +1/2 (Table 1).  
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Table 1 Spin quantum numbers for some nuclei. 

The components measured along the axis are quantized. The quantum number 𝑚 

may have only (2I + 1) value and may be any one of a discrete set of integer or 

half-integer values in the range:  

 
𝑚𝐼 = 𝐼, 𝐼 − 1, … . . , −𝐼 , (2) 

that correspond to the basis states of the particles. 

Atomic nuclei have a magnetic dipole moment proportional to the angular 

momentum: 

 

𝜇 = 𝛾 �⃗⃗� =  𝛾 ℏ 𝐼 . 
(3) 

The constant of proportionality is the gyromagnetic ratio, γ, it is the ratio of 

the magnetic moment to the angular momentum and it depends on the considered 

nuclei, for the proton 𝛾
𝑃

= 268 𝑀𝐻𝑧/𝑇. The gyromagnetic ratio over 2π, gives 

most common value used in NMR:  𝛾𝑃 = 42,56 𝑀𝐻𝑧/𝑇. 

The component of the angular momentum and the corresponding magnetic 

moment along the z-axis are respectively given by: 

 𝐿𝑧 = ℏ 𝑚𝐼    ;       𝜇𝑧 =  𝛾 ℏ 𝑚𝐼 . (4) 

Applying an external magnetic field �⃗⃗� the interaction energy of a magnetic dipole 

𝜇 with the field is: 

 

𝐸 = −𝜇 ∙ �⃗⃗� . 
(5) 

https://en.wikipedia.org/wiki/Ratio
https://en.wikipedia.org/wiki/Magnetic_moment
https://en.wikipedia.org/wiki/Angular_momentum


9 

 

The consequence is the splitting of the energy levels that occurs because of the 

interaction of the magnetic moment ⃗⃗⃗ of the atom with the magnetic field �⃗⃗�, 

slightly shifting the energy of the atomic levels. 

Considering �⃗⃗� oriented on the z-axis,�⃗⃗�0 =  𝐵0�̂�, the (5) reduces to:              

       
𝐸𝐼 = −𝜇𝑧𝐵0 = −𝛾 ℏ 𝑚𝐼𝐵0  (6) 

Remembering that for the proton I=1/2, along the z-axis, m can only result in two 

values: 

 

𝑚𝐼 = 1
2⁄ , − 1

2⁄   (7) 

The only two possible energy states for the spin proton are: 

       

𝐸 = {
𝐸1 2⁄ = −

1

2
𝛾ℏ𝐵0

𝐸−1 2⁄ =
1

2
𝛾ℏ𝐵0 .

 (8) 

 

The splitting of energy levels due to an external magnetic field is the so-called 

Zeeman effect. In the absence of �⃗⃗�0, the two energy levels are degenerate. The two 

energy levels for the proton correspond to the two discrete values of I (Figure 1). 

 

 

 
Figure 1 The energy level diagram for a nucleus with spin quantum number I = ±1/2. 
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The proton can swap between the two states simply by gaining or losing a certain 

amount of energy in the form of a photon. The spin-up state has less energy than 

the spin-down state: 

 
𝐸1 2⁄ < 𝐸−1 2⁄  (9) 

The lower energy level occurs when the proton magnetic moment component and 

the external magnetic field are parallel while, a higher energy level is obtained if 

they are anti-parallel. The energy separation between the levels is always 𝛾ℏ𝐵0, 

for the proton difference in energy ∆E between these two levels is: 

 
∆𝐸 =  𝐸−1 2⁄ − 𝐸1 2⁄ =  𝛾ℏ𝐵0 = 2𝜇𝐵0 (10) 

From the quantic point of view, not only spin angular momentum, but also the 

transfer of energy, may assume only discrete unit, such a transition can be caused 

by a photon of light whose frequency, ν, is related to the energy gap, ∆𝐸, between 

the two levels according to: 

 
∆𝐸 = ℎ 𝜈 =  ℏ𝜔, (11) 

where ω is called resonance frequency ωR. 

 

 

 

 

  

 

 

 

 

 

Comparing the latter equation and the Zeeman equation (10) it is possible to find: 

 
𝜔𝑅 =

∆𝐸

ℏ
=  𝛾𝐵0 . 

(12) 

Figure 2 A line in the spectrum is associated with a transition between two energy levels. 
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The energy required to the transition from one energy state to the other, 

corresponds to an electromagnetic wave with an energy ∆𝐸 and a frequency 𝜔𝑅 

proportional to the magnetic field �⃗⃗�0. The increasing of the magnetic field get a 

greater resonance frequency.  

At the same time, considering the classical description, the proton spin will tend 

to precess around the magnetic field with a frequency traditionally called 

the Larmor frequency, ω⃗⃗⃗L.  

 

Figure 3 Precession of a nucleus. 

When the proton interacts with the external magnetic field, B⃗⃗⃗0 =  B0k̂, it 

experiences a torque given by: 

 

𝜏 = 𝜇 ∧ �⃗⃗�0 . 
(13) 

This torque acts to rotate the magnetic moment vector of a proton to align it with 

the external magnetic field. Using the cardinal equation of dynamics: 

 

𝜏 =
𝑑�⃗⃗�

𝑑𝑡
 , 

(14) 

and replacing (3) and (14), follow: 

 

  
𝑑𝜇

𝑑𝑡
= 𝛾𝜇 ∧ �⃗⃗�0 = (−𝛾�⃗⃗�0) ∧ 𝜇 . 

 

(15) 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/Nuclear/larmor.html#c1
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The Larmor frequency can be visualized classically in terms of the precession of 

the magnetic moment around the magnetic field: 

 

�⃗⃗⃗�𝐿 = −𝛾�⃗⃗�0. 
(16) 

The minus sign is there to make sure that ω⃗⃗⃗L defines a clockwise rotation about 

the z-axis. 

The resonance frequency and the Larmor frequency are the same:  

 
𝜔𝐿 = 𝜔𝑅 , 

(17) 

this is the principal result about the NMR phenomenon. 

The link between the classical and quantum mechanical is clear, the precessional 

frequency of the proton in a magnetic field is the same as the frequency of 

radiation required to cause transitions between two states. 

This is not a rigorous derivation from quantum mechanics but does show how 

directly the Larmor relation results from very basic concepts. The fact that 

Planck's constant disappears from the solution implies that a non-quantum 

explanation using classical physics is possible [1].  

Applying a transverse RF wave at the Larmor frequency (usually in the 10 to 103
 

MHz range) nuclear spins are excited. Successively they return to the lower 

energy state emitting an electromagnetic wave that can be detected.  

1.2 Net Magnetization and Boltzmann distribution 

In a macroscopic sample there is a larger number of spins, so it is necessary to use 

the methods of Statistical Physics and to introduce the macroscopic 

magnetization. Under the hypothesis of non interacting protons, all of them add up 

their magnetic moment to the net magnetization M⃗⃗⃗⃗.  

Instead of using the individual nuclear spins, it is possible to use M⃗⃗⃗⃗, which can be 

treated as a vector of the classical physics.   
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In the absence of the external magnetic field (B⃗⃗⃗0 = 0) there is no preference for 

‘spin up’ or ‘spin down’ states, the magnetic dipoles are oriented randomly and 

there is no net magnetization (M⃗⃗⃗⃗ = 0).  

For a population of spins with I = 1/2, only the two spin states are allowed:  

 μ⃗⃗ parallel to B⃗⃗⃗0 (m = +1/2) 

 μ⃗⃗ antiparallel to B⃗⃗⃗0 (m = -1/2) 

Applying an external magnetic field the magnetic moments of the nuclei can align 

either parallel to the field (lower energy) or antiparallel (higher energy). The two 

energy levels are respectively referred to “spin-up” (𝛼) and “spin-down” (β) 

states.   

 

Figure 4 Boltzmann distribution, the net magnetization M0 is proportional to the population difference 

(𝑁 𝛼 − 𝑁𝛽 ) and it is aligned exactly with the field. 

Under thermal equilibrium conditions, these two energy levels are populated 

according to the Boltzmann probability distribution that describes the number of 

nuclei in each spin state: 

 
𝑁𝛽

𝑁𝛼
= 𝑒∆𝐸 𝑘𝐵𝑇⁄ = 𝑒−𝜇𝐵0 𝑘𝐵𝑇⁄  (18) 

where 𝑁 α and 𝑁β  represent the number of spins one would expect to respectively 

measure in the spin-up and spin-down configurations, ΔE is the energy separation 

between the two states, kB = 1.381 x 10−23 J/°K is the Boltzmann constant 

and T is the absolute temperature in Kelvin degrees.   

At room temperature, the number of spins in the lower energy level, 𝑁α , slightly 

outnumbers the number in the upper level, 𝑁 β, only a small excess of spins can be 

expected to be found in the lower energy (spin-up) state when measurements 
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occurred. In presence of the main magnetic field �⃗⃗�0 =  𝐵0�̂�, the net magnetization 

M0 is proportional to the population difference (𝑁 α − 𝑁β ) and it is aligned 

exactly with the field (Figure 5), there is no net transverse component of M as the 

phase of the spins is randomly distributed.  

 

Figure 5 The applied magnetic field  causes an energy difference between aligned (𝛼) and unaligned (𝛽) 

nuclei producing the net magnetization �⃗⃗⃗�. 

In a magnetic resonance experiment, the energy difference ΔE, between 

the two energy levels, is proportional to the field strength. Increasing the field 

strength there is an increasing of the energy difference and hence also of the 

population difference. Since the intensity of the NMR signal is directly dependent 

on the population difference, the signal also increases.  

In principle to increase the spin polarization (population difference), there are two 

possibilities: either increase the external magnetic field or low the temperature. In 

practice, only the former way is exploited in NMR experiments. 

For the majority of MR-experiments and for this thesis work, the proton (1H) is 

the nucleus of interest, because of its high natural abundance (Table 2) under the 

form of H2O in the biological samples. However, other nuclei such 

as 19F, 13C, 23Na and 31P can also use with NMR. 
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Table 2 summarizes the NMR characteristics of the nuclei studied in vivo (Bernstein, et al., 2004 p. 960; de 

Graaf, 2007 p. 9). 

1.3 Excitation and Bloch equations  

In the case of independent spins, it is possible to describe their motion in terms of 

the precession of the spins magnetization vector. By equating the torque to the 

rate of change of angular momentum, follow: 

 

𝑑�⃗⃗⃗�

𝑑𝑡
= 𝛾�⃗⃗⃗� ∧ �⃗⃗�0 . 

 

(19) 

The solution to equation (19), when B0 is a magnetic field, corresponds to a 

precession of the magnetization, M⃗⃗⃗⃗0 =  M0k̂, at the Larmor frequency ω0 = 𝛾𝐵0. 

Remembering B⃗⃗⃗0 =  B0k̂: 

 
𝑑𝑀𝑥

𝑑𝑡
= 𝛾𝑀𝑦𝐵0 

 
𝑑𝑀𝑦

𝑑𝑡
= −𝛾𝑀𝑥𝐵0 

𝑑𝑀𝑧

𝑑𝑡
= 0 . 

(20) 

follow: 
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𝑀𝑥(𝑡) = 𝑀𝑥(0) 𝑐𝑜𝑠 𝜔0𝑡 + 𝑀𝑦(0) 𝑠𝑖𝑛 𝜔0𝑡   

 𝑀𝑥(𝑡) = −𝑀𝑥(0) 𝑠𝑖𝑛 𝜔0𝑡 + 𝑀𝑦(0) 𝑐𝑜𝑠 𝜔0𝑡   

𝑀𝑧(𝑡) = 𝑀𝑧(0). 

( 21) 

To carry out an NMR experiment is necessary to apply a short burst of resonant 

RF field in order to disturb the spin system from the equilibrium.   

Considering the circularly polarized component of a transverse time varying 

magnetic field �⃗⃗�1, oscillating at 𝜔0, in the same sense as the spin precession, it is 

possible to create a resonance phenomenon.  

 
�⃗⃗�1(𝑡) = 𝐵1 𝑐𝑜𝑠(𝜔0𝑡) 𝑖̂ − 𝐵1 𝑠𝑖𝑛(𝜔0𝑡) 𝑗̂ . 

(22) 

The Bloch equations become: 

 
𝑑𝑀𝑥

𝑑𝑡
= 𝛾[𝑀𝑦𝐵0 + 𝑀𝑧𝐵1 𝑠𝑖𝑛 𝜔0𝑡]  

𝑑𝑀𝑦

𝑑𝑡
= 𝛾[𝑀𝑧𝐵1 𝑐𝑜𝑠 𝜔0𝑡 − 𝑀𝑥𝐵0] 

𝑑𝑀𝑧

𝑑𝑡
= 𝛾[−𝑀𝑥𝐵1 𝑠𝑖𝑛 𝜔0𝑡 − 𝑀𝑦𝐵1]. 

 

(23) 

Under the initial condition �⃗⃗⃗�(𝑡) = 𝑀0k̂ the solutions are: 

 
𝑀𝑥(𝑡) = 𝑀0 𝑠𝑖𝑛 𝜔1𝑡 𝑠𝑖𝑛 𝜔0𝑡 

𝑀𝑦(𝑡) = 𝑀0 𝑠𝑖𝑛 𝜔1𝑡 𝑐𝑜𝑠 𝜔0𝑡 

𝑀𝑧(𝑡) = 𝑀0 𝑐𝑜𝑠 𝜔1𝑡 , 

(24) 

where ω1 = 𝛾𝐵1.  

These equations imply that applying a rotating magnetic field of frequency ω0, 

the magnetization simultaneously precess about the longitudinal polarizing 𝐵0 at 

ω0 and about 𝐵1 at ω1.  



17 

 

 In the laboratory frame, the motion looks like a spiral since it is also precessing 

about the z-axis (Figure 6). 

 

Figure 6 Laboratory frame:Evolution of the magnetitation in the presence of B0 and B1 (taken from [1] ). 

At this point, it is helpful to make a coordinate transformation to a rotating frame 

(x’,y’,z’) at the Larmor frequency about the z-axis, which is defined by the 

direction of 𝐵0. In this frame, the time dependence from the RF field B is rem 

oved and 𝐵1 appear stationary.   

The motion of the magnetization �⃗⃗⃗� in the new rotating frame at 𝜔 frequency can 

be described by: 

 

(
𝑑�⃗⃗⃗�

𝑑𝑡
)

𝑟𝑜𝑡

= (
𝑑�⃗⃗⃗�

𝑑𝑡
)

𝑓𝑖𝑥𝑒𝑑

− �⃗⃗⃗� ∧ �⃗⃗⃗� . (25) 

Comparing this equation with the (19) it is possible to model the motion of the 

magnetization in the rotating frame by the same equation as in the fixed frame: 

 

(
𝑑�⃗⃗⃗�

𝑑𝑡
)

𝑟𝑜𝑡

= 𝛾�⃗⃗⃗� ∧ (�⃗⃗�0 +
�⃗⃗⃗�

𝛾
) . (26) 

The term ω γ⁄  represents a fictitious magnetic field due to the rotation.  

The new expression define a new effective field B⃗⃗⃗e, experienced by the spins: 

 

�⃗⃗�𝑒 = (�⃗⃗�0 +
�⃗⃗⃗�

𝛾
)    (27) 

follow: 
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(
𝑑�⃗⃗⃗�

𝑑𝑡
)

𝑟𝑜𝑡

= 𝛾�⃗⃗⃗� ∧ �⃗⃗�𝑒 (28) 

So in the rotating frame, the magnetization precede about B⃗⃗⃗e as shown in the 

picture (Figure 7): 

 

Figure 7 Rotating frame: precession of the magnetization (taken from [1]). 

When the frame rotates at ω⃗⃗⃗ = −γB⃗⃗⃗0, the effective field becomes zero and �⃗⃗⃗� is a 

fixed vector in the rotating frame.  

In the real systems the spins interaction have to be take into account.  

1.4 Relaxation  

When the RF pulse, used to excite the spin system, is over the system tends to 

recover its original repose state, there must subsequently be a process to restore 

the equilibrium. This involves the exchange of energy between the spin system 

and respectively its surroundings and among themselves. Both relaxations occur 

at the same time.  

In the first case, the recovering of M0 to equilibrium means the restoration of the 

state of polarization where M0 is directed along the longitudinal magnetic field B0, 

this is the reason because of the process is alternatively named longitudinal 

relaxation. The phenomenological description of this process is defined in a new 

equation of motion for Mz: 
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𝑑𝑀𝑧

𝑑𝑡
=

−(𝑀𝑧 − 𝑀0)

𝑇1
   (29) 

where T1 is known as the spin-lattice or longitudinal relaxation time and the 

solution of the (29) is: 

    

𝑀𝑧(𝑡) = (0)𝑒−𝑡 𝑇1⁄ + 𝑀0 (1 − 𝑒−𝑡 𝑇1⁄ ). (30) 

The process is known as spin-lattice relaxation. 

In the second case the process that bring about the nuclear spins to thermal 

equilibrium among themselves is known as spin-spin relaxation and the time 

constant involves is called T2 spin-spin relaxation time or transverse relaxation 

time (see section 1.4.1). 

This phenomenon has a decreasing exponential behaviour described by the 

equations describing the evolution of Mx and My:  

 
𝑑𝑀𝑥,𝑦

𝑑𝑡
=

−𝑀𝑥,𝑦

𝑇2
          (33) 

where the solutions are: 

 

𝑀𝑥,𝑦(𝑡) = 𝑀𝑥,𝑦(0)𝑒−𝑡 𝑇2⁄ . (34) 

Transverse magnetization corresponds to a state of phase coherence between the 

nuclear spin states. This means that transverse relaxation is sensitive to interaction 

terms which cause the nuclear spins to dephase [1]. 

If the system was initially in equilibrium and RF pulse was a 90° pulse applied 

along x’-axis: 

 
𝑀𝑥(0) = 𝑀𝑧(0) = 0   ;    𝑀𝑦(0) = 𝑀0, (31) 

and 

 

𝑀𝑧(𝑡) = 𝑀0 (1 − 𝑒
−𝑡

𝑇1
⁄ ). 

(32) 

 Mx and My oscillate at the Larmor frequency while decaying with time constant 
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T2, while the z magnetization simply grows from zero back to M0. 

In the rotating frame the Bloch equations become: 

 
𝑑𝑀𝑥

𝑑𝑡
= 𝛾[𝑀𝑦𝐵0 + 𝑀𝑧𝐵1 𝑠𝑖𝑛 𝜔0𝑡] −

𝑀𝑥

𝑇2
    

  
𝑑𝑀𝑦

𝑑𝑡
= 𝛾[𝑀𝑧𝐵1 𝑐𝑜𝑠 𝜔0𝑡 − 𝑀𝑥𝐵0] −

𝑀𝑦

𝑇2
    

 𝑑𝑀𝑧

𝑑𝑡
= 𝛾[−𝑀𝑥𝐵1 𝑠𝑖𝑛 𝜔0𝑡 − 𝑀𝑦𝐵1] −

(𝑀𝑧 − 𝑀0)

𝑇1
 . 

(35) 

These set of differential equations describe the changes in the magnetization 

during excitation and relaxation and describe completely the main phenomena in 

NMR imaging using classical mechanics [1]. 

 

1.4.1 Spin-lattice and spin-spin relaxation 

Spin-lattice relaxation 

As mentioned before, the exchange of energy between the spin system and its 

surroundings is the so called spin-lattice relaxation. Since the magnetic field is 

applied to the sample until the thermal equilibrium is reached, the macroscopic 

magnetization experiments grow exponentially. 

As spins go from a high energy state back to a low energy state, RF energy is 

released back into the surrounding lattice. The rate at which equilibrium is 

restored is characterized by the longitudinal relaxation time, T1. The recovery of 

longitudinal magnetization follows an exponential curve (Figure 8).  

The recovery rate is characterized by time constant T1 that represents the time 

needed to recover the 63% of the longitudinal magnetization Mz.  

It depends on the structure and molecular composition, the material state, 

viscosity and magnetic interactions. It has a lower value in solid than in a liquid 

state. 
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Figure 8 Spin- lattice relaxation (taken from [2]). 

Spin-spin relaxation 

The spin-spin relaxation is in general a faster process than spin-lattice relaxation 

and it is characterized by the spin-spin or transverse relaxation time, T2. 

Transverse magnetization decay is described by an exponential curve 

characterized by the time constant T2 (Figure 9). Protons are influenced by non-

uniform, low magnetic fields produced by the near nuclei, which cause different 

speed precession. When the RF stops, the proton suffers a phase difference, Mxy 

decreases and tend to zero. After time T2, transverse magnetization has reduce its 

intensity of 37% of its original value. In the spin-spin interaction, the relaxation 

time T2 is independent of field strength.  

 

Figure 9 Spin- spin relaxation (taken from [2]). 
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Since the longitudinal magnetization cannot be restored, if the transverse 

magnetization does not disappear, T2 is always shorter than T1 (Figure 10). The 

relation between the two time constants is: 

 
𝑇2 ≤ 𝑇1.  (36) 

 

Figure 10  T1 and T2 relaxation occur simultaneously, the T2 decay is much quicker than the T1 recover 

(taken from [2]). 

In the hypothesis of interacting spins, the decay of the transverse magnetization is 

caused by the combination of two factors. It is necessary to take into account that 

in the Mxy decay the time constant T2 due to the molecular interactions is not the 

only contribution but also the inhomogeneity due to B0 variations are 

characterized by a time constant, T2
′. 

The combination of these two factor gives the effective time constant of Mxy 

decay called 𝑇2
∗ following the relation: 

 

 
1

𝑇2
∗ =  

1

𝑇2
+

1

𝑇2
′ . 

(37) 



23 

 

1.5 Signal detection 

The equilibrium is characterized by a state of polarization with M0 directed along 

the longitudinal magnetic field B0. M0 is a measurable magnetization of the order 

of microtesla (μT), but smaller than the main magnetic field (T) so its detection 

results really difficult. 

M0 becomes a significant signal, easier to record, simply tipping it in the 

transverse plane (x-y) and detecting the induced voltage using a receiver coil 

which measures the magnetic fields only in this plane. To rotate the magnetization 

a 90° RF pulse is applied, this pulse tips M0 vector from the longitudinal plane 

(parallel to B0) to the transverse plane (perpendicular to B0) where it can be 

detected. 

The semi-classical magnetization approach again gives a complete explanation of 

the process. The RF pulse creates a magnetic field within the transmit coil which 

is perpendicular to B0 and oscillating at the Larmor frequency (to respect the 

resonance conditions).  

In the rotating frame, this is the static field B1 aligned along x’ in the transverse 

plane (Figure 11 a). M0 moves away from the z-axis until the RF pulse is switched 

off (Figure 11 b). As seen in the previous section (Figure 6) the motion looks like 

a spiral since it is also precessing about the z-axis. 

 

Figure 11 (a) The RF pulse produces a fixed magnetic field B1 in the rotating frame. (b) M0 precess about B1 

until the RF is switched off (taken from [2]). 

The RF pulse brings the spins into phase coherence consequently, M0 induce a 

voltage in the receiver coil into the x-y plane, the coil is sensitive only to 
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magnetization perpendicular to B0.  In the laboratory frame, M0 is now precessing 

in the transverse plane (Figure 12 a), so the coil sees an oscillating magnetic field 

which induces a voltage varying at the Larmor frequency.  

Since the protons rapidly dephase with respect to each other the amplitude of the 

signal decays exponentially to zero in only a few milliseconds (Figure 12 b). The 

free precession of magnetization induces a decaying signal known as Free 

Induction Decay (FID) that is measured in the time domain and represent the 

primary NMR signal. 

 

Figure 12 (a) Precession on the flipped magnetization in the transverse plane. (b) FID- Signal induced in the 

receiver coil (taken from [2]). 

It is possible to represent this signal in the frequency domain through the Fourier 

transformations. 

 

Figure 13 The FT process takes the time domain function (the FID) and converts it into a frequency domain 

function (the spectrum). 

Once all these signals are collected, the application of a Fourier transform 

converts the spatial frequency distribution into a spatial distribution of the excited 

nuclei.  
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The FID is never directly measured in a MRI experiments, what happens is 

described in the next chapter where the MRI principles will be described in detail. 
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2. Imaging by Nuclear Magnetic Resonance 

The strength of the magnetic resonance imaging is to exploit linearly varying 

magnetic fields to enhance a spatial dependence. 

Over the static field B0, that points in the longitudinal direction and the transverse 

RF field B1 produced by coils tuned to the Larmor frequency, in MR imaging 

there are three additional fields that vary spatially, the so called gradients. 

The local frequency will vary with position by the linear relation between the 

Larmor frequency and the nuclear spin coordinates 𝑟 , following the relation: 

 

𝜔(𝑟) = 𝛾(𝐵0 + �⃗� ∙ 𝑟 ) , 
                                      (38) 

where G⃗⃗⃗ is defined in the usual manner as the grad of pulsed gradient field 

component parallel to �⃗⃗�0. This equation describes the frequency precession in 

presence of a gradient field. The first term comes from the static magnetic field  

but because of the presence of the gradient field, there is an additional term which 

adds another element to the Larmor equation that depends on the position. 

This simple relation between the Larmor frequency and the nuclear spin 

coordinates 𝑟 in the sample, lies the fundamental of the imaging principle; the 

resonance frequency of the magnetization will vary in proportion to the gradient 

field and this change in frequency can be used for spatial encoding. 
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2.1 Spatial encoding  

Spatial encoding consist on successively applying magnetic field gradients.  

The magnetization precessing close to the resonance frequency is affected by the 

RF field whereas the pulse does not affect magnetization at distant frequencies. 

The RF pulse includes a set of frequencies centered on the Larmor frequency; this 

range of frequencies constitutes the RF bandwidth, ∆𝑓, (expressed in Hertz). 

In absence of the gradient fields, all the spins experience the same field B0 and 

have the same frequency; the application of a gradient causes a protons frequency 

variation as a function of position along the direction of the gradient.  

When a gradient is added for example, on the x direction, the resonance frequency 

varies with position and the magnetic field produced adds to the main field B0. 

Along the x-direction, the MR signal shows higher or lower frequencies, which 

means that protons can resonate faster or slower depending on their precession 

position. In this way frequency measurements may be used to distinguish between 

MR signals at different positions in the space. 

 

Figure 14 All the spins experience the same field and have the same frequency. When the gradient is added 

moving along the x direction these protons resonate faster or slower depending upon their position. (Taken 

from [3]. 

The sets of gradients give MR its three dimensional capability. Firstly, a slice 

selection gradient (Gs) is used to select the volume of interest. Within this volume, 
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the position of each point will be encoded vertically and horizontally by 

respectively applying a phase encoding gradient (GΦ) and a frequency encoding 

gradient (Gf). Magnetic field gradients form the basis of MR signal localization.  

 

Slice selection  

Through the selection gradient Gs ,applied in the z-direction, a selective excitation 

of slice in the x-y plane is possible. The slice selection process is achieved by 

applying the RF pulse to tip the spins at the same time as the gradient.  

The resonance frequency of the spins during the application of the z gradient 

becomes:  

 
𝜔(𝑧) = 𝛾(𝐵0 + 𝐺𝑧𝑧 ). (39) 

The RF excitation pulse contains a narrow range of frequencies centered about the 

Larmor frequency; at isocentre of the gradient (z = 0) where the effect of the 

gradient is zero, the frequency is: 𝜔 = 𝛾𝐵0.  

Modulating the RF envelope with a predetermined shape, for example a SINC 

shaped envelope pulse, a selective RF pulse is generated (Figure 15). 

 

Figure 15 Slice selection gradient Gz (taken from [4]). 

The excitation will take place only if the required frequency is present within the 

RF pulse’s transmit bandwidth (or close to the isocentre) otherwise the resonance 

does not happen and no MR signal is produced.  



29 

 

For extreme points along the gradient axis, in fact, the frequency required for 

resonance will not be present within the RF pulse bandwidth so no signal will be 

produced from these points. Only one slice remains selected. The slice-selection 

gradient translate the desired band of frequencies into the desired band of 

locations, corresponding to the slice [4]. 

 

Figure 16 Selective excitation of an image slice by applying a shaped RF pulse and a field gradient at the 

same time. 

The amplitude of slice selection gradient Gz and RF pulse bandwidth determine 

the slice thickness. For a fixed RF bandwidth ∆𝑓, the increasing of the amplitude 

of the gradient correspond to a decreasing of the thickness of the slice.  

As shown in the Figure 17, the slope of each of the two lines represents the 

strength of a slice selection gradient (Gz,1 and Gz,2). For a given ∆𝑓 of the RF 

pulse, the stronger gradient produces a thinner slice. 
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Figure 17 Larmor frequency versus position along the gradient direction , z-axis (taken from [4]). 

 

By applying the selective gradient and changing the central frequency of the RF 

pulse it is possible to move the position of the slice. In this way it is possible to 

make multi-slices acquisitions.  

The slice-select gradient is applied simultaneously to the RF pulse and it will not 

be on during the readout. 

 

Phase encoding 

The idea behind phase encoding is to create a linear spatial variation of the phase 

of the magnetization (the phase is the angle made by the transverse magnetization 

vector with respect to some fixed axis in the transverse plane). The phase 

encoding gradient, GΦ, is applied on the y-direction. It modifies the spin 

resonance frequencies, inducing dephasing, which persists after the gradient is 

interrupted.  This means that all the protons precess in the same frequency but in 

different phases: this phase difference lasts until the signal is recorded. The 

protons in the same row, perpendicular to the gradient direction, will all have the 

same phase (Figure 18).  
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Figure 18 Phase encoding. The arrows represent transverse magnetization at the center of each pixel.  

At the end of the RF excitation pulse, the transverse magnetization has the same 

phase (direction) in each pixel (Figure 18 a). After a phase-encoding gradient is 

applied, the phase of the transverse magnetization varies at each location along the 

phase-encoded direction (Figure 18 b). 

In principle, during the gradient pulse spins at different y locations precess at 

different frequencies, the spins precession will speed up or slow down according 

to their position along the y-axis. This causes the spins to dephase to a 

progressively greater degree as long as the gradient is applied, the relative phase 

shift is linear with y. 

When the gradient is interrupted, all the spins come back to their original 

frequency, but keep their different phase angles, so they are phase encoded: in this 

way they can be localized on y-axis.  

All of them precess in the same frequency but in different phases. This phase 

difference lasts until the signal is recorded. The MR signal is sampled after the 

gradient is turned off, so during the sampling there is no spread of frequencies due 

to the gradient; all the spins are precessing at 𝜔0 = 𝛾𝐵0. 

The MR sequence consists of multiple repetitions of the excitation process 

followed by a different phase encode gradient until all possible spatial frequencies 

are interrogated, a RF pulse is required for every line of data. This is the reason 

because of in a pulse sequence diagrams the phase-encode steps are represented 

by a series of parallel lines (Figure 19).  
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Frequency encoding 

Frequency-encoding of spatial position is accomplished through the use of a third 

magnetic field gradient, GF. Applying the frequency encoding gradient, the 

Larmor frequency in the horizontal direction is modified becoming a function of 

the position and the x direction results encoded. It thus creates proton columns, 

which all have an identical Larmor frequency. The frequency encoding gradient is 

turn on during the readout, this is the reason because of such time it is known also 

as read gradient. 

Firstly the slice selection take place applying the RF pulse simultasionely with the 

slice-selective gradient. After that, the phase encoding is on for a short amount of 

time and then it is turned off. Finally the frequency encoding is turn on during the 

readout of the signal (Figure 19). 

 

Figure 19 NMR pulse sequence diagram. In a sequence diagram it is common to find a negative lobe to 

correct the phase dispersion of transverse magnetization that occurs concomitant with application of the 

main Gz gradient (taken from [2]).  

The signal is stored in a matrix known as k-space, trough the Fourier transform it 

the image in the real space is obtained. 
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2.1.1  Readout signal and k-space 

The readout MR signal is the combination of plenty RF waves characterized by 

different amplitudes, frequencies and phases, containing spatial information.  

The spatial encoded raw data are arranged into an array of numbers representing 

spatial frequencies in the MR image. This is a matrix of frequencies (kx,ky), the so 

called k-space.  

The k-space is commonly displayed like a rectangular grid where the 

axes, kx and ky, represent spatial frequencies respectively in the x and y directions 

rather than positions.  

Each k-space point contains spatial frequency and phase information 

about every pixel in the final image. Conversely, each pixel in the image 

maps every point in k-space. 

 

Figure 20 Representation of k-space. It is a grid of raw data of the form (kx,ky) obtained directly from the 

MR signal. 

The k-space grid is filled by frequency and phase encoded with magnetic gradient 

fields. During frequency encoding, gradient amplitude is constant and different 

data are acquired along kx at different times of echo sampling.  During the phase 

encoding, gradient amplitude is varied from line to the next and the gradient 
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duration time is constant. Each ky line represent the point that are collected for a 

given amplitude of the phase encoding gradient [5]. 

Data near the centre of k-space corresponds to low spatial frequencies, whereas 

data from the periphery relates to high-spatial frequencies, different parts of the k-

space influence the apparence of MR images: line around the centre determine the 

contrast of image while the outer lines of the raw data matrix provide information 

on image spatial resolution. 

The individual points (kx,ky) in k-space do not correspond one-to-one with 

individual pixels (x, y) in the image, but they may be converted to one another 

using the FT. To go from a k-space data to an image a 2D inverse FT is required. 

2.2 Image contrast 

Depending on what it is necessary to visualize in an MR image, it is needed to 

enhance a type of contrast. The Proton Density (PD), the spin-lattice relaxation 

time (T1) and the spin-spin relaxation time (T2) are intrinsic properties of the 

samples; in general, images have contrast that depends on one of these 

parameters. The contrast of MR image can be manipulated by varying several 

parameters among which the main ones the Repetition Time (TR) and the Echo 

Time (TE).  

 

 TR is the length of time between corresponding consecutive points on a 

repeating series of pulses and echoes. It determines how much longitudinal 

magnetization recovers between each pulse.  

 

 TE refers to the time between the application of the radiofrequency 

excitation pulse and the peak of the signal induced in the coil. TE controls 

the amount of T2 relaxation. 

 

The manipulation of these parameters permits to obtain images where contrast 

depends on the time constants T1 or T2 (that describe how long the magnetization 
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 takes to get back to equilibrium after an RF pulse) or on proton density (it is 

related to the number of hydrogen atoms in a particular volume).  

 

The TR dominates T1-weighted images, in these type of images, a short TE and a 

short TR are required. The intensity of the image pixels is proportional to the 

protons concentration and it depends on the spin-lattice relaxation time of the 

sample. In presence of a long T1, the magnetization will take longer to recover 

back to the equilibrium. This means that a short TR will make dark pixels 

compared to pixels associated with short T1, like fat, which appears brighter. 

Bright pixels on T1 are associated with short T1 values. Water is characterized by 

a long T1 giving a weak signal. 

 

In T2-weighted images, water give the highest signal intensities, producing a 

bright appearance, because of its long T2.  

The intensity of the image pixels is proportional to the protons concentration and 

it depends on the spin-spin relaxation time of the sample. 

The magnetization will take longer to decay and the signal will be grater, so it will 

appear brighter in the image than the signal from tissue with a short T2 (like fat). 

In these type of images, a short TE and a short TR are required. These images are 

dominated by TE. 

 

In PD weighted images high PDs give high signal intensities which in turn have 

bright pixels on the image. The signal contrast is derived from the density of spins 

in a given volume because the intensity of the image pixels is proportional to the 

protons concentration in a voxel. In these type of images, a short TE and a long 

TR are chosen to minimize both weightings.  

To sum up (Figure 21), sequences with: 

 

 Long TR and short TE return PD weighted images 

 Short TR and short TE return T1 weighted images  

 Long TR and long TE return T2 weighted images 
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Figure 21 Contrast dependence on TR and TE 

 

Maps 

It is possible to obtain maps, in which each pixel contains information not about 

the intensity of the signal, but about relaxation time either T1 or T2. These maps 

can be obtained by acquiring series of MR images with different levels of T1 or T2 

weighting and performing nonlinear regression on the signal (see section 5.5). 

In conclusion, starting from an image the extrapolation of the relaxation times and 

the consequently interpretation of them is a great approach to interpreting MRI 

images and to attributing physiological meaning to them. 

 

2.3 Sequences  

The basic concept of MRI is the magnetic field inhomogeneity that induce spins 

precess at differing Larmor frequencies according to their location in the sample. 

All MR images are produced using pulse sequences [4]. The architecture of a 

sequence consists of radiofrequency pulses and gradient pulses which have 

carefully controlled durations and timings. There are many different types of 

sequences, but they all have the timing values TR and TE, which can be modified.  
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Spin echo (SE) pulse sequence is one of the earliest developed and still widely 

used of all MRI pulse sequences, it is also known as a Hahn echo. The pulse 

sequence timing can be adjusted to give T1, PD or T2-weighted images. Dual echo 

and multi-echo sequences can be used to obtain both PD and T2-weighted images 

simultaneously.  

From this point (x,y,z) notation it is referred to the rotating frame. 

2.3.1 Spin echo  

The SE sequence consists of a 90° applied on the x-axis pulse after which the 

spins dephase naturally for a certain time. Then a 180° pulse is applied on the y- 

 axis causing the flips of all the spins of an angle of 180° [6]. 

Following the 90° pulse, spins in a region of relatively high magnetic field precess 

faster, while those in a region of relatively low magnetic field precess slower.  

After a certain time t, the phases of the spins across all these regions are 

sufficiently different to degrade the overall magnetization.  

The application of the 180° pulse has the effect of reflecting the spins in the 

direction of the applied pulse. The spins continue to precess, but their relative 

motion is now precisely reversed. This means that the 180° pulse does not change 

the precessional frequencies of the spins, but it does reverse their phase angles.  

After a time equal to the delay between the 90° and the 180° pulse, those regions 

which were precessing faster and accumulated more phase difference undo their 

phase accumulation at a faster rate.  

The result is that all the spins are back in phase and the total magnetization 

reaches a maximum, producing the echo.   

The 180° RF pulse is applied at time TE/2, TE being the time between the center 

of the first RF pulse and the peak of the spin echo. The sequence is repeated at 

each time interval TR (Figure 22). 

 

https://radiopaedia.org/articles/mri-pulse-sequences-1
https://radiopaedia.org/articles/t1-weighted-image
https://radiopaedia.org/articles/t2-weighted-image
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Figure 22 Spin echo diagram in the rotating frame (taken from Medical Radiation Resources). 

The phase-reversal implies that the echo height will only depend on T2 and not on 

the magnetic field inhomogeneities (no dependence from T2*) or on tissue 

susceptibilities. The spin echo signal is given by: 

 

𝑆𝑆𝐸 = 𝑆0𝑒𝑥 𝑝 (−
𝑇𝐸

𝑇2
) . (40) 

 

2.3.2 Sequences based on the spin echo 

The main sequences are based on the SE. A variation on the spin echo sequence is 

the so called inversion recovery (IR) which has an extra 180° RF before the 90° 

pulse. An IR pulse sequence is a spin echo pulse sequence preceded by a 180° RF 

pulse. This pre-pulse flips the longitudinal magnetization to its negative value. 

The time elapsed between the preparatory 180° pulse and the 90° readout pulse is 

termed time to inversion (TI) separated a timing parameter, specific of this 

sequence. 

IR is often used to make signal ‘suppression’, since, tissues regain Mz at different 

longitudinal relaxation rates determined by their T1 relaxation times. By selecting 

the TI carefully the signal from any particular tissue can be nulled. The spin echo 

https://radiopaedia.org/articles/spin-echo-sequences
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90° readout pulse is applied at the exact time when longitudinal magnetization 

reaches the null point for the signal that is necessary to suppress. 

If a 90° excitation and two 180° refocusing pulses are used it is the so called 

double spin-echo method [7].  

 

Figure 23 Double spin echo pulse sequence (taken from [2]). 

When after the 90° pulse  an echo train  by successive 180° is induced, a new 

sequence is obtained, the so called Carr–Purcell–Meiboom–Gill (CPMG).  

The initial 90° pulse is on the x-axis and the train of 180° pulses is on the y-axis 

and all the echoes are positive. On the CMPG is based the sequence widely used 

in this work the Multi Slices Multi Echo (MSME).  

http://www.mr-tip.com/serv1.php?type=db1&dbs=Radio%20Frequency%20Pulse
http://www.mr-tip.com/serv1.php?type=db1&dbs=Echo%20Train
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Figure 24 Pulse sequence of MSME (taken from Bruker manual). 

RARE (Rapid Acquisition with Refocused Echoes) sequence is based on multiple-

echo sequence filling more than one k-space trajectory in a single excitation this is 

the reason because of it is also named Fast Spin Echo (FSE) or Rapid Spin Echo 

(RSE). 

Multiple spin echoes are generated using the CPMG sequence with slice selective 

RF pulses. Each echo is separately phase-encoded, and the phase encoding is 

incremented within one echo train to accelerate the acquisition. It is possible to 

obtain two or more echo-images with different effective TEs. The sequence 

scheme is the same of the MSME (Figure 24). 

 

ZTE (Zero echo time) sequence is based on a non-selective excitation and a signal 

acquisition in the presence of a constant gradient, a particular features is zero echo 

time. ZTE is a radial acquisition method, performing center-out readouts. 

2.3.3 Gradient echo 

In the gradient echo sequence, the angle used to flip the magnetization in the x-y 

plane is smaller than 90°. The sequence used in this work is the Fast Low Angle 

SHot (FLASH). 
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Figure 25 Pulse sequence of FLASH (taken from Bruker manual). 

A negative gradient lobe is applied after the RF pulse causing a rapid dephasing of 

the transverse magnetization Mxy, faster than FID that is acquired in a spin-echo. 

To rephasing spins, immediately after the negative lobe a positive gradient is 

applied. Spins that were precessing at a low frequency due to their position in the 

gradient will now precess at a higher frequency because the gradient will now add 

to the main field, and vice versa. After a certain time spins will all come back into 

phase along the y-axis forming the gradient echo. 

A crucial point is that the positive gradient can compensates only the dephasing 

caused by the negative gradient lobe, it can’t refocus dephasing due to the main 

magnetic field inhomogeneities or spin-spin relaxation how happens in the spin 

echo sequences. 

If S0 indicate the initial height of the FID, the height of the echo is thus 

determined by the FID decay curve which depends on T2*: 

 

𝑆𝐺𝐸 = 𝑆0𝑒𝑥 𝑝 (
𝑇𝐸

𝑇2
∗ ) . (41) 

Remembering that T2* is a composite relaxation time which includes T2, 

inhomogeneities due to the main field and tissue susceptibility, and diffusion of 

the protons (see section 1.4.1). In this case images acquired using a gradient echo 

are T2* weighted. Of course playing with the flip angle and the TR, it is possible 
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acquire gradient echo images T1 weighted or PD weighted for more details look 

at [2]. 

2.4 Single Voxel Spectroscopy 

The single voxel spectroscopy (SVS) is one of the two method through which it is 

possible to perform the Magnetic Resonance Spectroscopy (MRS); the second 

method is the multi-voxel spectroscopy. 

In the SVS the signal comes from a volume limited to a single voxel, the volume 

of interest (VOI) is selected and a spectrum obtained from it, whereas in the 

multi-voxel MRS spectra are obtained from multiple voxels in a single slice of 

sample.  

In this work the MRI technique has been supplied by the SVS as it will be show in 

the chapters 5 and 6. 

The two sequence most widely used in MRS are the PRESS (Point-RESolved 

Spectroscopy) and the STEAM (STimulated Echo Acquisition Mode). PRESS 

sequence results really useful for the purposes of this thesis, the acquisition is 

fairly fast (1 to 3 minutes) and the spectrum is easily obtained, it is the 

dominant method for ¹H spectroscopy used for single and multi-voxel studies. 

The sequence is based on the double spin-echo; the RF pulses have flip angles of 

90°-180°-180° so the signal emitted by the voxel of interest is thus a spin echo. 

It works identically as in MR imaging but the signal is sampled without the read 

out gradient (see section 2.1: Frequency encoding) since the frequency differences 

are used to constitute the spectrum and not the position. The 90° pulse is followed 

by two 180° pulses so that the primary spin echo is refocused again by the third 

pulse. Each pulse has a slice-selective gradient on one of the three principle axes 

and the protons within the voxel are the only ones to experience all three RF 

pulses.  

So using a combination of magnetic field gradients and frequency-selective 180° 

pulses, a three-dimensional voxel of well-defined position and size is selected and 

its spectrum is then collected and analyzed.  
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Figure 26 Selection of a cube with a PRESS sequence. The three RF pulses within the sequence are marked 

and the selected regions after each pulse are shown for an cubic object [7]. 

All the sequences described in this section have been used for the aim of this 

work. These and many others are implemented in the software package of the 

Bruker spectrometer used for the experiments. This latest generation instrument 

make available various acquisition and processing tools and broad spectrum of 

applications. The experimental setup used to perform the analysis will be describe 

deeply in the next chapter. 
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3. Experimental Setup  

MRI technique has been performed with a Bruker NMR Spectrometer 300 

MHz/89 mm ASCENDTM . The spectrometer consists of the following subunits: 

• Operator console including the host computer, monitor and the keyboard 

• Console containing the electronic hardware 

• Magnet system including the shim system and the probe. 

 

Figure 27 Magnet, Operator Console, and Console at MNR Laboratory of Physics Department of Salerno. 
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Magnet 

The main component of the MR system is the magnet, which generates the 

magnetic field required to induce NMR transitions. 

The Bruker Ascend magnet design features advanced superconductor technology, 

enabling the design of smaller magnet coils, thus resulting in a significant 

reduction in physical size and magnetic stray fields [Bruker User Guide].  

The Exclusion Zone (the area inside the magnet's 5 Gauss field line) is completely 

confined inside the instrument, as shown below in Figure 28. 

 

Figure 28 Fringe field plot (taken from Bruker manual). 

At MNR Laboratory of Physics Department of Salerno, the spectrometer is 

equipped with a superconducting magnet that generates a field of 7 Tesla (300 

MHz). As known, superconducting magnets at temperatures approaching absolute 

zero, 0K, have zero electrical resistance. A superconducting wire held below its 

transition temperature will give the possibility to get a continuously circulating 
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current. To maintain a superconducting system the magnet core is cooled to very 

low temperature using nitrogen and helium. The spectrometer in our lab requires 

helium every 6 months and nitrogen every 15 days. 

The magnet core consists of a large coil of carrying wire in the shape of a 

solenoid. At the center of the coil, the static field is very intense, to allow the 

analysis of the sample placed inside the field. 

The superconductive magnet consists of several sections. Like a “thermos” the 

outer casing of the magnet is evacuated and inner surfaces are silvered. Next 

comes a bath of nitrogen which reduces the temperature to 77.35 K (195.8°C) and 

finally a tank of helium in which the superconducting coil is immersed in.  

This tank is thermally isolated against the nitrogen bath by a second evacuated 

section as shown in the picture below [Bruker User Guide]. 

 

 

Figure 29 Superconducting Magnet (taken from Bruker User Guide). 
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1 Bore insertion 6 Helium Tower 

2 Bore 7 Metal Plug 

3 Nitrogen Tower 8 Sample insertion 

4 Nitrogen Ports 9 Vacuum 

5 Helium Ports 10 Magnet 

 

The helium and nitrogen tanks are wrapped around the magnet bore (central 

column). A metal plug normally closes off the top of the bore. Samples to be 

analyzed are introduced into the magnet via the top of the bore. Probes, which 

hold the sample and carry signals to and from the samples are inserted from the 

bottom, like in the micro-imaging case. 

 

3.1 Probes  

The spectrometer is equipped with a MicWB40 Probe in combination with the 

Micro2.5 Gradient System. The MicWB40 probe has been developed for micro-

imaging of small objects (max. diam. 30 mm) in wide bore magnets (89 mm ID). 

The probe has an outer diameter of 40 mm and fits into the separate Micro2.5 

gradient system.   

 

Probe tuning and matching   

The sensitivity of any probe will vary with the frequency of the signal transmitted 

to it and there exists a frequency at which the probe is most sensitive. 

Furthermore, this frequency may be adjusted over a certain range using capacitors 

built into the probe circuitry. Tuning involves adjusting the probe circuitry so that 

the frequency at which it is most sensitive is the relevant transmission frequency. 

Each coil in the probe will be tuned (and matched) separately. If the probe has 

been changed or the transmission frequency altered significantly, it may be 

necessary to retune the probe. 
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Whenever a probe is tuned it should also be matched. Matching involves ensuring 

that the maximum amount of the power arriving at the probe base is transmitted 

up to the coil which lies towards the top of the probe. This ensures that the 

minimum amount of the power arriving at the probe base is reflected back 

towards the amplifiers (and consequently wasted). It is also possible using an 

automatic tool ATM (Automated Tuning Routine) [Bruker User Guide]. 

Four different probes can be interfaced with the spectrometer: 

 

1. Double Resonance Broadband Probe (BBI) – Liquid state 

2. Probe Cross Polarization  Magic  Angle Spinning (CPMAS) - Solid state 

3. Probe High Resolution Magic Angle Spinning (HRMAS) 

4. Micro-Imaging Probe for Wide Bore Magnets  

 

The latter is the one which has been used in this work (Figure 30, Figure 31). 

 

Figure 30 Exchangeable coil insert. 

 

Figure 31 Micro-imaging probe and coil. 
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3.2 Gradients 

Usually, three sets of gradient coils are used in all MR systems: the x, y and z 

gradients. The gradient fields are produced by three sets of gradient coils one for 

each direction, can be applied in any direction or orientation. Each coil set is 

driven by an independent power amplifier and creates a gradient field whose z-

component varies linearly along the x, y, and z-directions, respectively.  

These fields are normally applied only for a short time as pulses through large 

electrical currents applied repeatedly in a carefully controlled pulse sequence. 

During an image acquisition, when the current is pulsed through the gradient coils 

in the presence of the static magnetic field, the gradient pulse produce Lorentz 

force which causes vibrations of the coils against their supports. The characteristic 

‘knocking’ noise heard when an images is acquired is due to this reason. 

The three sets of gradient coils are included in the MR system: Gx, Gy and Gz 

create a linear variation in the longitudinal magnetic field strength as a function of 

spatial position as seen in the section regarding the spatial encoding (section 2.1). 

 

 

3.3 Nmr software 

TopSpin and ParaVison are two processing software provided by Bruker.  

TopSpin is used for NMR data analysis, acquisition and processing every time a 

spectrum is acquired.  

TopSpin is designed with a highly intuitive interface and provides easy access to 

vast experiment libraries including standard Bruker pulse sequences and user 

generated experiment libraries. [https://www.bruker.com/products/mr/nmr/nmr-

software/nmr-software/topspin/overview.html]. 

To perform MRI data acquisition and reconstruction has been designed a software 

package called ParaVision. It can be used to analyse, visualize and manage the 

data generated on Bruker systems. 
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A sub-package of ParaVision program is the Image Sequence Analysis (ISA) 

Tool, which provides a general and flexible framework for the visualization and 

statistical analysis of such sequences of images. It has been used as explained in 

the chapter 5 and 6. 

The Bruker NMR Spectrometer is only one of the wide range of product available 

as research tool; NMR and MRI technology is continuously developing. Much of 

the success of these techniques is due to its flexibility and its potential for probing 

the properties of complex materials.  

 

The use of NMR and MRI has spread from medical area to a large range of 

application: quality control in industrial, research in building materials, wood, 

paper and cultural heritage, geohydrology, plant physiology, well logging, 

cosmetic [8][9], paper industry [10], and food processing. 

Some of these applications will be shown in the next chapter. 
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4. MRI Application 

MRI born as a “safe” diagnostic protocol to obtain good resolution images of 

the patient and has gained in the last few years growing interest relying also on  

the absence of ionizing radiation.  

Nowadays is the most dominant imaging method employed in medical 

investigation. It provides the best soft-tissue contrast among the existing imaging 

modalities. 

The development of superconductive magnets to generate stronger magnetic fields 

and the new computing technologies have contributed to make MRI ever more 

performing. 

4.1 Medicine 

MRI plays an increasingly important role in clinical diagnosis; it helps to visualize 

the structures of the body that include water and fat molecules. MRI is a technique 

for taking very clear and detailed pictures of tissues and internal organs. Using 

different acquisition parameters (TE,TR), MRI allows acquiring high quality 

images with the possibility to enhance different types of tissues. Because of its 

high soft-tissue contrast and multiplanar imaging capability, MRI can reach 

excellent anatomic details. It is more sensitive than computed tomography (CT) 
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and allows differentiation among fat, muscle, tendon, bone and vascular structures 

based on characteristic signals. Due to these reasons, MRI has a major role in the 

evaluation of soft tissue tumours, for recognition, staging, and treatment planning 

of soft tissue and bone tumours [11]. This type of imaging allows also the 

detection of recurrent tumours in the presence of non-ferromagnetic metallic 

implants [12].   

The appealing properties of imaging by magnetic resonance bring to several 

application like integration of MRI with PET (Positron Emission Tomography) or 

in conjunction with radiation therapy treatment.  

In medical research, a current and increasingly in development application of high 

field MRI is the study of the brain. MRI currently is the most versatile and 

informative imaging modality for the central nervous system (CNS) [13], the 

investigation of the CNS from microstructure to physiology of the brain is under 

continuous investigation [14]. Several pathologies, like multiple sclerosis, brain 

tumours, aging-related changes and cerebrovascular diseases can be studied with 

high field (7-11 T) technologies [15][16]. 

One of the latest neuroimaging technique is the functional Magnetic Resonance 

Imaging (fMRI), used to visualize functional activity in the brain, investigate 

human brain function and cognition, measuring changes in blood flow in different 

parts of the brain comparing healthy and abnormal brain states. fMRI can detect 

small changes in the signals, associated with neuronal activity in the brain, which 

are used to produce magnetic resonance images. The haemoglobin contained in 

the blood exhibit different properties depending on whether or not it is bound to 

oxygen. When a specific activity is performed in the area of the brain responsible 

for that activity, the blood flow increases. This phenomenon is the so called Blood 

Oxygen Level Dependent (BOLD) effect. Setting specific parameters MRI can 

detect this increasing and BOLD can be used to create maps of brain activity. It is 

used to observe brain structures and to determine which parts of the brain are 

handling critical functions. One of the specific applications of fMRI is for 

example the investigations of abnormal functioning in psychological disorders. 
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fMRI may also be used to evaluate damage from a head injury or Alzheimer's 

disease. 

It is also possible to combine fMRI with complementary imaging modalities, one 

of these is the use of the Diffusion Tensor Imaging (DTI).  

Whereas with the fMRI it is possible to collect information about the 

synchronization of brain activation across different brain areas during rest or 

during a specific activity, DTI examines the diffusion of water in the brain to infer 

the integrity of white matter fibers. This technique allows to measures how water 

molecules diffuse through brain areas. A disease like stroke or tumor reduce this 

diffusion, so DTI allows to locate the anomalies. Using diffusion gradients the 

water diffusion in the brain is examined in several directions. The use of MRI in 

neuroscience research and in clinical neurological applications is more and more 

rapidly expanding [17]. 

4.2 Porous media 

It easy to find a wide range of specific application of the NMR  technique and of 

the imaging by magnetic resonace related to the study of porous media [18] [19]. 

Through the knowledge of the water distribution inside the porous structure, it is 

possible to identify the degradation processes and understand how to manage it. 

Relying on the ability of MRI technique to achieve very high resolution images its 

use has found an interesting application also in the field of the study and 

preservation of artifacts related to our cultural heritage [20][21][22][23]. 

MRI results to be a good procedure to investigate the porosity of different 

lapideous materials (i.e.: marble, granite) as well as monuments or walls of 

historical buildings. Injecting a water agent contrast liquid in a porous material, 

the mobile molecules are confined in the matrix of the stones filling the pores. 

NMR signal shows an intensity that gives quantitative measurements of the 

content of the liquid.  

An example is the study on the damage due to salt coming from seawater and 

from the environment. Salt crystallisation of porous media is widely recognized as 



54 

 

one of the primary causes of irreversible damage to many artifacts of historical or 

cultural interest such as wall paintings, sculptures, historic buildings, and other 

artwork. The presence of salt weathering in material such mortar and concrete 

characterized with small pores can cause cracks caused by the pressure which 

builds up during the formation of salt crystals. To prevent possible damage a 

deeper understanding of this mechanism would be very helpful.  

The investigation of the pore-size distributions and porosity of rocks has relevant 

importance for geophysics and especially for the reservoirs of water, gas or oil. 

Oil companies are showing an increasing interest in the single sided NMR used 

for in situ well logging [24]. It provides a valuable tool in the exploration of 

hydrocarbon wells and has become a significant commercial application of NMR. 

Recent advances in the technique of NMR well logging have greatly enhanced the 

versatility and robustness of this measurement. 

This technique, based on low field NMR, measures physical properties of the 

subsurface. Using NMR sensors that are lowered into boreholes, the 

measurements respond directly to the fluids in the subsurface and provide a 

unique tool for their characterization [25]. 

The analysis of NMR well logging data enables the quantification of the fluids 

occupying the pore space and the prediction of the fluid flow properties through 

the reservoir.  

MRI and 2D T1-T2 correlation experiments have been developed to measure 

porosity and pore size distributions on water-saturated drill cores [26], to 

characterise pores and water dynamics in natural soil [27]. 

 

4.3 Engineering applications 

MRI scanning is the only non-destructive technique for direct observation and 

quantitative measurement of internal crack structures in such detail, that’s why its 

development has led to several applications in material science [28][29]. 
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As seen MRI allows the direct observation of both static and dynamic phenomena 

of fluid transport in porous media, providing detailed information about the 

porous microstructure (porosity, pore-size distribution) of these materials. This is 

the reason because of in civil engineering MRI is used in a wide range of fields; to 

determine the pore size distribution of cement pastes [30] [31] [32], to measure 

water content in a range of porous media including rocks [33][34][35][36], soils 

[37][38] and construction materials like bricks, cements and concrete 

[39][40][41]. The physical characteristics of construction materials and their 

microstructure (e.g., clays, sands, and concretes) are significantly affected by the 

action of water. MRI can follow up how water permeation causes and accelerates 

deteriorations such as rebar corrosion and freezing and thawing [42]. 

MRI is nowadays a powerful tool for basic research in civil engineering field and 

into various aspect of process engineering  like the maps of temperature 

distribution in conventional or microwave heating, measurement fluid flow 

through complex geometries and measurement of solid–liquid separation using 

filters [43] or evaluation of chemical cleaning of biofouled reverse osmosis 

membrane using MRI [44]. 

4.4 Plants 

Using NMR spectroscopy and MRI techniques it is possible to examine several 

aspects of plant function and performance, dynamics of plant water relations and 

water transport. The study of plants has an additional level of complexity since 

they are living systems which critically depend on transport and signalling 

processes between and within tissues and organs [45]. 

A phenomenon that commonly occurs, is the reduction of water in plant's cells 

respect to the normal level, the so-called plant water stress. This phenomenon 

affects the water content and hydraulic conductivity, including transport within 

cells, over membranes, cell-to-cell, and long-distance xylem and phloem 

transport. The stress responses transport processes can be followed non-invasively 

with MRI in the intact plant [46] [47]. 
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As shown in chapter 6, a really interesting application of MRI on plants is the 3D 

analysis of root growth, root anatomy and water uptake. The precise 

measurements of root system architecture is an important requirement for plants 

studies. [48][49]. 

The combined use of MRI and of the diffusion tensor imaging technique (DTI) 

[50] allow the visualization of the root system architecture of plants and provide a 

3D map of water mobility inside soil and roots.  

Tractography generates channels that constitute pathways of facilitated water 

movement, representing the roots, calculated from water diffusion properties 

obtained from DTI experiments [51][52].  

Although physiologically controlled MRI plant studies can be performed in 

laboratories, mobile systems for outdoor measurements have been developed to 

investigate tree and plants in their natural environments [53] [54]. Natural 

phenomena such as plant diseases and damage by insects can be investigated in 

this way. 

4.5 Food 

In food science and industry processing, MRI represents a fundamental work tool 

to collect precious information such as moisture migration, fat content and 

determine adulteration or measure the solid-to-liquid ratio of fats and oil and 

microbial spoilage.  NMR and MRI have become a potential tool to explore and 

understand the structure and dynamics of various food constituents and able to 

give a relevant contribution to food analysis. In recent years MRI has started to be 

extensively used in the field of food research and food process development. 

It has been applied to investigate different kind of foods: fruit, vegetables, meat, 

dairy products, cereals [55].  

It is easy to observe the external qualities of food stuff such as size, shape, colour 

presence of damage, but a deeper analysis in the inspection of food is necessary if 

the aim is to determine the internal structure [56][57]. 

http://www.wordreference.com/enit/extensively
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Several techniques are available to point out the internal quality of food. Near 

Infrared Radiation (NIR) has been used on apples, citrus and mandarina [58][59] 

[60][61]; multispectral technique for the detection of deterioration of fresh 

spinach related to storage; hyperspectral imaging on maturity stage of banana at 

different temperatures [62]; X-rays on cucumber fruit [63] and obviously NMR 

and MRI. 

MRI has the potential to examine how moisture interacts in various food products 

and provides an understanding of the moisture uptake mechanism, moisture 

migration kinetics, and moisture interaction with various food matrices [64].  

The moisture distribution of one of the most consumed foods, pasta, has been 

intensively studied to probe the internal moisture distribution in the pasta texture 

[65], crucial for the consumers perception. MRI has been applied to monitor the 

water ingress and distribution in pasta and noodle samples at different cooking 

stages [66][67], and the deterioration that comes quickly after cooking and during 

distribution because of the homogenization of moisture distribution [68]. It is 

possible to study the mobility and distribution of water in foods with low and 

intermediate moisture content [69], the moisture migration mapping in real time 

for cereal-based food [70] and to study the moisture migration during engrossing 

and aging in soft-panned confections [71]. The results of the cited studies and a 

lot of published articles, has shown that MRI is a great technique to study and 

monitor the moisture migration in multicomponent food systems [72]. 

MRI has been used to study the internal browning in some fruits such as pears 

[73] and apples [74] and to evaluate the maturity and the variation of internal 

structure and physical and chemical characteristics of tomatoes [75][76].  

It revealed to be useful also to examine the growth and maturity of wine grapes 

and avocado [77][78] or to determine the presence of black heart in the 

pomegranate [79]. 

Over the years dedicated NMR systems, that are specially designed with smaller 

magnets and lower magnetic fields for the needs of food industry have been 

developed. Bruker has proposed NMR FoodScreener Solutions for the detection 

of adulteration and mislabelling of content or origin of honey, wine and juice. The 
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acquisition of the spectroscopic fingerprint, specific to each individual sample 

returns profiles that are compared to a large database of authentic food samples, 

using a multivariate statistical approach. Food profiling is an innovative and 

promising solution for the analysis of food using NMR spectroscopy. The 

availability of a portable system would increase the research and commercial 

applications of NMR and MRI in the food industry in the next future.  
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5. Application in food science  

As seen in the previous chapter the MRI, as a quantitative tool has 

significantly increased over the last twenty years [80]. 

Among the several advantages of MRI, the knowledge of mobility and 

distribution of water in a food matrix represent a powerful tool for characterizing 

food quality during processing and storage [81][82], since it can provide 

information about changes on a microscopic scale. 

The water relaxation time sensitivity to changes in the molecular dynamics is the 

starting point of MRI investigations into food processing operations.  

Since the majority processing operations induce changes in water content and 

molecular structure, it is desirable to develop strategies to study and to monitor 

the moisture migration in order to collect useful information to improve the 

processes on terms of production, storage, transportation and shelf life stability. 

The idea of the present study is to design appropriate MRI protocols and provide 

correct interpretations of the data collected through different techniques and 

approaches.  
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5.1 Moisture migration  

The advantage of using 1H imaging is that it is very sensitive to water protons that 

are the major components of all food matrices.  

Due to the presence of high water content, fruits and vegetables are suitable to be 

analysed by MRI. Studying the internal moisture content and distribution and their 

changes in food products during drying is essential. 

Through the study of water mobility, MRI allows a deeper understanding about 

the physical and chemical characteristics of food systems.  

Investigating the drying process through MRI analysis provide a real-time, non-

destructive, and non-interrupted testing and monitoring of the process.  

The moisture migration within the components of a food with varying water 

activity is indispensable to understand food microstructure and to preserve it from 

degradation [83]. 

Moisture migration is a complex mechanism that plays a significant role in food 

science and engineering. Keeping a check on the water changing, during drying 

processes, MRI provides plenty of information about microstructure, moisture 

distribution and mobility. 

The most common process used to remove water from fresh vegetables or fruits is 

the drying method. It is the process whereby moisture is vaporized from a material 

and is taken away from the surface (Figure 32). Commonly in food-drying 

operations to describe depriving a material of its water or the loss of water as a 

constituent the drying process it is said dehydration. 

The thermal process of removing water and evaporating moisture leads to a 

variation in the spatial distribution of water inside the samples. This involves 

several physical, chemical and biological changes such as shrinkage, cracking, 

etc. This is the reason why the dehydration process is a crucial technique in food 

industry.  
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Figure 32 Drying process (Taken form 10.1615/AtoZ.d.drying). 

In this work the drying process of pumpkin, a sample with high water 

content (> 90%), has been investigated at four different drying temperatures.  

In order to correlate relaxation time T2 to water content, T2 maps of the samples 

have been carried out. The aim of this experiment is to obtain quantitative 

moisture distribution maps that allow the study of the mass transport phenomena 

in foods during dehydration.  

 

 

5.2 Low field investigation on eggplants 

The NMR Laboratory at the Physics Department of the University of Salerno has 

started the use of NMR on food through imaging already few years ago.  

A first study has been done on eggplants (Solanum melongena L.) [84]. This study 

has been performed using a low field (0.5 T) NMR spectrometer (Resonance 

Instruments LDT mod. Maran DRX, 21.4 MHz). 

The eggplants study investigated the effect of hot air drying on the physical 

properties of cylindrical eggplant samples. Through MRI, the drying kinetics, the 

water profiles along longitudinal and transversal sample sections and the 

volumetric shrinkage have been determined. MRI showed the water migration 

occurring mainly in the transverse direction; the variation in the longitudinal 

direction being negligible, see Figure 33.  

http://dx.doi.org/10.1615/AtoZ.d.drying
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Figure 33 Two-dimensional spin echo images of eggplant at both investigated temperatures and selected 

drying times.  

In the same figure the signal contrast displayed in each image, is obtained from 

the sample protons density. 

 

Figure 34 Eggplant fresh sample (left) and dried sample after 240 min of dehydration at 50 °C (right). 

Figure 35 shows the signal intensity profiles along the longitudinal and the 

transverse cross sections, taken at the geometric centre of each sample. It has been 

observed that in the first drying steps, the profiles show a bigger distance one 

from each other at 60 °C with respect to the 50 °C drying process. In fact, at 50 °C 

the signal intensity profiles along both the longitudinal and transverse cross 

sections were very close to each other in the range from 0 to 60 min. In addition, 

the water removal at 60 °C was faster than at 50 °C, keeping as a benchmark the 

same water distribution profile in each drying step [83]. 
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Figure 35 Profiles of normalized signal along the transverse (a, c) and longitudinal cross section (b, d), 

taken at the geometric centre of each sample, for selected drying times at T = 50 °C (a, b) and 60 °C (c, d). 

slice The curves of mass water loss obtained by both the standard weighting 

method and MRI, show a good agreement. This can be seen in Figure 36 where 

the comparison between the values obtained by gravimetric and MR method is 

shown for each temperatures of the dehydration process. 
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This preliminary study shown that MRI technique offers the possibility to study 

water distribution in food during drying processes in a non-destructive way. In 

addition, a FEM (Finite Element Method) model has been developed in order to 

simulate the water concentration profile [85]. 

A significant improvement of this approach has been obtained taking advantage 

from the new Bruker spectrometer acquired by the lab, with which we have 

studied moisture content in other food matrices using high magnetic field. 

5.3 High field experiment on pumpkin 

Using the new Bruker NMR spectrometer (7T) equipped with a micro-imaging 

probe a new analysis has been performed. 

Pumpkin is one of the most important vegetables grown in the world because of 

its nutritional and healthful qualities. It is a good source of vital antioxidants and 

vitamins (carotene and vitamin-A, vitamin-C and vitamin-E) [86]. This fruit is 

rich in phenolics, flavonoids, polysaccharides, mineral salts and other substances 

beneficial to health. 

Fresh pumpkin should be stored at temperature between 10° C and 13 °C and 

relative air humidity should be between 50% and 70%. When stored at lower 

Figure 36 Moisture ratio (%) of samples during drying, obtained by gravimetric method and MRI at 

T=50°C (a) and T=60°C (b). 
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temperatures, unfavorable physiological processes occur causing chill damages. 

Furthermore, after peeling, pumpkin is susceptible to moisture loss, softening, 

color changes and microbial spoilage. The high level of water content in pumpkin 

makes it easily damageable. 

Therefore, it is desirable to use optimal methods of pumpkin preservation, 

appropriate for the specific final use of the fruit.  

Pumpkin is generally processed to obtain juice, pickles and dried products in 

many countries worldwide. As a dried product, it is available as snack food, dried 

premix, soup, etc. In order to reduce the water and microbiological activities and 

to minimize the physical and chemical changes during vegetable storage, the 

drying technique is commonly used [87] [88] [89]. 

In the following experience, MRI is applied to detect and monitor the progression 

of internal amount of water in pumpkin and to investigate the changes in moisture 

distribution vs time observed during drying of pumpkin samples. 

 

Materials and methods  

The analysis on the pumpkin samples have been performed on the cultivar 

Cucurbita Maxima. The samples have been cut from the fresh pumpkin, using a 

steel mould to make small parallelepiped of about (10 × 10 × 16) mm3.  

The dimensions of samples have been chosen on the basis of the test tube 

diameter (15 mm) and in order to obtain a well detectable signal also at high 

drying temperatures. 

For each experiment the samples from several peeled vegetables have been mixed 

randomly, in order to minimize the differences in the food matrix, which could 

invalidate the analysis, 

To express the water content, the concept of dry basis is used. The dry basis is a 

measure of the amount of water in a solid and it is expressed in terms of the 

weight of water as a percentage of the completely dry solid. 

When a sample loses moisture, the change in the dry basis moisture is somehow 

linearly related to the weight loss. For the fresh pumpkin the initial moisture 

content of samples was (13.29 ± 0.53) kg kg−1 dry basis corresponding to a water 
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percentage of 93% (13.29/14.29=0.93). The water activity, which is a parameter 

used to describe the energy status or escaping tendency of the water in a sample, 

is 0.96 (measured by a hygrometer). 

A bench-top temperature humidity chamber (Espec Corp. mod. SU-221), with an 

air velocity of 1.2 m/s, has been used to dry pumpkin samples at fixed 

temperatures.  

The drying experiments have been carried out at four different temperatures: 50°, 

60°, 65° and 70° C, to investigate the effects of temperature on moisture 

migration. The samples have been placed in the climate chamber and were 

weighted at fixed time intervals during the drying process until the weight does 

not significantly change anymore (changes in weight are less than 5% of the 

whole sample). 

All specimens have been weighted using a digital balance (Shimadzu mod. 

AW320). Each test has been conducted on five samples and the weight loss with 

standard deviation is registered. 

 

 

 

 

 

 

 

 

 

 

 

 

From gravimetric measurements, the Moisture Ratio values (MR) have been 

evaluated using the following formula: 

Figure 37 Digital balance (Shimadzu mod. AW320) and bench-top 

temperature humidity chamber (Espec Corm mod. SU-221). 
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𝑀𝑅 =
𝑀(𝑇) − 𝑀∞

𝑀0 − 𝑀∞
 (42) 

where M is the mass of the sample during drying while M0 and 𝑀∞ refer to its 

initial and equilibrium value, respectively. Because the values of 𝑀∞ is really 

small compared with 𝑀0 and 𝑀 the (42) can be written as follows:  

 

𝑀𝑅 =
𝑀(𝑇)

𝑀0
 . (43) 

During the drying, carried on at fixed temperatures, a selected sample has been 

used to make the MRI experiment. After weight measurements and MRI 

acquisitions, the samples were immediately placed in the oven to continue the 

drying process. The weight loss obtained by gravimetric measurements have been 

compared with relaxation data collected by magnetic resonance imaging and are 

shown in section 5.5.  

 

5.4 1H MR imaging on pumpkin 

Using the 1H MR imaging on biological samples, the proton signal comes 

predominantly from the water proton. It is possible to distinguish three water 

environments: inter-cellular, intra-cellular and cell wall water. Each environment 

corresponds to a different bound strength. Taking into account these differences, it 

is possible to talk about free water (FW), loosely bound water (LBW) and 

strongly bound water (SBW). Water mobility, defined as the ability of water 

molecules to rotate freely, is clearly related to the type of bound: it decreases as 

bound strength increases.  

The transverse relaxation time, T2, is influenced by the molecular mobility of the 

water. Higher values of T2 can be associated to a greater mobility of water; lower 

values instead reveal the presence of a more rigid structure. This explains the 

presence of different T2 components. This behaviour is described by mono-
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exponential or multi-exponential decay curve, indicating different water mobility. 

T2 value can be a powerful tool to get information on water dynamics. 

Generally, in inhomogeneous systems, each voxel contains various water 

compartments and the signal decay curve becomes multi-exponential, with several 

T2 relaxation times depending on water location. 

In homogenous systems, T2 relaxation process is mono-exponential with a well-

defined T2 relaxation time. NMR experiments have already highlighted a 

correlation between the T2 and the water content [90]. This means that T2 shows a 

behaviour roughly proportional with the level of samples hydration. Khan et al. 

[91] shows that in a pumpkin sample the major percentage of water appear loosely 

bound (LBW) and this kind of water is removed for the most part during drying 

process. Figure 38 shows the comparison of the prevalence of water binding in 

several different vegetables.  

 

Figure 38 Percentage of the different water environments in various vegetables (taken from [91]). 

Since in the mapping procedure a single T2 value is ascribed to each voxel, to 

establish the correlation between the T2 and the water content, it is necessary to 

convert this local information into a global one. This is necessary in order to have 

a value comparable with the gravimetric one. So all T2 values in map were 

collected in a unique global value, named S; for fresh samples, this sum was 

named S0. S is estimated at each drying step by adding together all the T2 values 
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coming from each voxel and normalizing it to the global T2 value of the fresh 

sample, defining a new value: 

 

𝑆𝑇2 =
𝑆

𝑆0
   (44) 

Using the value ST2, the T2 profile could be compared with moisture ratio values 

(MR) obtained by gravimetric measurements. 

 

MRI protocol 

NMR experiments were recorded using the Bruker spectrometer (described in 

details in chapter 4), operating at the frequency of 300 MHz (B0 = 7 T) equipped 

with a MicWB40 Probe in combination with the Micro2.5 Gradient System. 

In order to describe the water changes during drying process, T2 maps were 

obtained by 2D imaging of the pumpkin sections. The map has been obtained 

from a MSME sequence registered at the end of each drying cycle. The results are 

shown in the section 5.5. 

The acquisition time has been of about 1 hour for each sample. 

The MRI sampling parameters have been set as follow:  

 TR = 5*T1  

 TE as short as possible in order to have a T2 maps 

For quantitative measurements a better choice is to set a TR five times bigger than 

T1 in order to assure the complete longitudinal relaxation.  

To evaluate the best TR the MSMEVTR_8e_8r sequence (Multi-Slice Multi-Echo 

Method with variable Relaxation Delay) has been used on fresh samples.  

This sequence uses a saturation pattern (TR variated) to acquire T1 and a multi-

echo (TE variated) CPMG scheme to acquire T2. In the study, eight TR values 

(800÷15000 ms) and eight TE values (15÷270 ms) have been used. The ROI 

(Region Of Interest) has been chosen to cover the whole sample. Other image 

parameters were: FOV (Field Of View) =16 mm × 16 mm, slice thickness =1.0 

mm, matrix size=128×128. The spatial resolution was 0.063 mm. The time 
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constant T1 is carried out from the ISA analysis tool. The value obtained is about 

T1= (2600 ± 60) ms.  

The sequence used to produce the map is MSME with the following parameters: 

TR=5T1= 13*103 ms and TE from 5 ms to 100 ms, matrix size = (256 x 256). 

The FOV has been chosen to cover the whole sample: FOV =16 mm x 16 mm and 

slices of 1mm thickness are selected.  

The intensity of the T2 

 map has been calculated using the ISA tool package.  

T2 is calculated from the relation: 

 

𝑌 = 𝐴 + 𝐶 × 𝑒𝑥𝑝 (−
𝑡

𝑇2
) (45) 

where A is the absolute bias and C the signal intensity. 

This function uses an Echo Time list calculated from the protocol parameters to 

generate the t-axis. The fit is based on magnitude images of the reconstructed 

dataset. In order to generate a cut off of the noise level for the T2 calculation of the 

image, the All-ROI threshold is chosen at 15% with respect the default value of 

10%, automatically defined in the active viewport. 

This generates a cut off of the noise level for the T2 calculation of the image. 

The standard deviation of the whole fit is the last image in the sequence 

[ParaVision manual]. An example of the fit obtained is shown in Figure 39.  
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Figure 39 The envelope of the spin-echo peaks decays exponentially with T2 obtained with ISA Tool. 

 

5.5 Results  

Raw data obtained from the NMR measurements were processed either by the 

software provided by Bruker TopSpin and ParaVision respectively for 

spectroscopy and imaging and then processed also by analysis tool, Origin. 

In the pumpkin samples, the moisture content decreases during drying. In Figure 

40 we show the moisture ratio of samples (in percentage) during dehydration at 

different drying temperatures, obtained just through the gravimetric method using 

a digital balance.  
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Figure 40  Drying kinetics obtained by gravimetric procedure. 

As expected, it is evident that higher temperature reduces drying time. The 

residual moisture content at the end of process is similar for each test at 50°, 60°, 

65° and 70°C.  

Observing the plots that represent the moisture loss versus time (Figure 40) we 

can point out, with regard to the drying rate, two main regions. In the earliest 

stages of the process a rapid moisture loss occurs that leads to a fast drying rate. 

In the second region, instead, the moisture migration is slower and the drying rate 

decreases. 

It can be observed, in fact, that after an initial constant rate period, the drying 

process for pumpkin samples continues with a phase characterised by a falling 

rate region. The constant rate is the initial stage of drying when the moisture 

removal occurs at the surface by evaporation and the internal moisture transfer is 

sufficient enough to maintain the saturated surface. In the falling-rate stage, the 

surface of the sample is not saturated and the evaporation rate is greater than the 

transfer rate of water through the sample.  
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There are several reasons that can justify this behaviour. At a certain time, the 

partial pressure of water through the whole sample is below the saturation level.  

In order to be supplied to the inner part, heat has to be conducted through dry 

solid and porous regions, both of which have low thermal conductivity.  

As long as the moisture content in the sample decreases, the internal resistance to 

moisture transfer increases [92]. For these reasons the drying rate in this period is 

extremely slow. In this final stage, the diffusion is the dominant mechanism 

governing moisture transport inside the sample.  

This behaviour is in agreement with the results reported in literature for pumpkin 

and other vegetables [93] [94] [95].  

The goodness of our method in terms of T2 estimation of moisture content is 

evaluated by plotting the values obtained through gravimetric measurements 

together with the ST2 values extracted, at each drying step, by the T2 maps and 

described in details in section 5.4 (MRI protocol).  

The very good agreement (r2 > 0.995) between the curves of global weight loss 

obtained by standard gravimetric method (black squares) and MRI data obtained 

with the procedure described above (red squares) are shown in the following plots 

(from Figure 41 to Figure 44).  
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Figure 41  Moisture ratio (a.u.) of samples during drying, obtained by gravimetric method and MRI at T=50° 

C (r2=0,995). 
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Figure 42 Moisture ratio (a.u.) of samples during drying, obtained by gravimetric method and MRI at T=60° 

C (r2=0,997). 
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Figure 43  Moisture ratio (a.u.) of samples during drying, obtained by gravimetric method and MRI at T=65° 

C (r2=0,997). 
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Figure 44 Moisture ratio (a.u.) of samples during drying, obtained by gravimetric method and MRI at 

T=70°C (r2=0,999). 
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As we can see, looking at the 50° C temperature plots, the T2 estimation give 

measurable signals even after 100 minutes of drying. 

For the other temperatures (60°, 65° and 70°C), the T2 signal extracted by the 

maps becomes too small to be detected, already, after 70 minutes of drying.  

Referring to Figure 40, for MR values below 0.1, the water distributed inside the 

food matrix is hardly evaporated during the drying process. Indeed, the time 

required to remove the residual moisture content from 10% to 3% is almost 

equivalent to the time required to remove the first 90% of the total moisture 

content. 

As a matter of fact, when the water content in the sample become too small, 

usually strongly bound or immobilized inside the food matrix, also the T2 

measurements and the signals related become hard to be measured with our 

method.  Nevertheless, this concern actually the residual water, well below 10% 

with respect to the total moisture content of the fresh sample.  

For this reason, a comparison between the gravimetric measurements and the T2 

data has been done only in the range in which we have measurable T2 signals. 

The contrast in the MR images reflect the magnitude of T2 values reconstructed; 

longer T2 indicates a higher moisture content (bright area) whereas shorter T2 a 

low content of water (dark area). It is clear that in the pumpkin sample, where the 

water content is higher than 90%, the area is almost completely white.  
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Figure 45 Axial slices of fresh pumpkin sample at 70°C. 

 

Figure 46 Axial slices of pumpkin sample after 70 minutes at 70°C. 

During the drying processes, the most obvious effect of water evaporation is the 

loss of weight.  

As we can notice after 70 minutes at 70° C (Figure 46) the impact of the loss of 

water cause a visible shrinkage of the pumpkin sample which show a considerable 

reduction in size, as expected. This behaviour will be described in detail in the 

remainder of the chapter.  

In fact, another way to extract information from the T2 data is to plot the 

transverse profiles of normalized T2, taken slice-by-slice and step-by-step during 

drying, as shown in the following figures: 
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Figure 47 Transverse profiles of normalized T2 taken slice by slice for selected drying times at 50°C. 

 

Figure 48 Transverse profiles of normalized T2 taken slice by slice for selected drying times at 60°C. 
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Figure 49 Transverse profiles of normalized T2 taken slice by slice for selected drying times at 65°C. 

 

Figure 50 Transverse profiles of normalized T2 taken slice by slice for selected drying times at 70°C. 
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The moisture loss and the reduction in size of the samples are clearly observed. 

Integrating the area under each curve it is possible to compare the trend for each 

temperature, as shown in the Figure 51. 

 

Figure 51 Comparison at all temperatures between the values of normalized integral area under water peak. 

During the drying process, the samples reach half their weight in only two steps 

(2x10 min) for temperatures spanning from 60°C to 70°C, whereas it is needed an 

additional drying step (3x10 min) to obtain the same decrease at 50°C. 

The amplitudes of profiles and their shapes are clearly affected by both the drying 

time and the temperature. A more real vision of the drying process and its impact 

on the size and shape of the pumpkin sample can be seen in the series of 3D MR 

images taken at three different drying steps, shown in Figure 52. 
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Figure 52 3D images of fresh pumpkin sample and after 30 and 70 minutes at 60° C. 
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As expected, the shape of the sample changes dramatically during dehydration. 

Shrinkage of samples has been observed for all drying temperatures, it increases 

with the volume of water removed, since the more the water is removed the more 

contraction stresses are originated in the samples [96].  

Extracting wall plots from the data shown from Figure 47 to Figure 50, we obtain 

the plots illustrated from Figure 53 to Figure 56. 
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Figure 53 Representation of moisture content extracted by MR T2 data taken slice by slice for each drying 

step at 50°C. 

 

Figure 54 Representation of moisture content extracted by MR T2 data taken slice by slice for each drying 

step at 60°C 
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Figure 55 Representation of moisture content extracted by MR T2 data taken slice by slice for each drying 

step at 65°C 

 

Figure 56 Representation of moisture content extracted by MR T2 data taken slice by slice for each drying 

step at 70°C 
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These plots show in a clear and striking way the simultaneous loss of water and 

the reduction of the volume caused by the shrinkage of the sample during the 

drying process. 

Figure 57 shows pictures of the real sample, respectively the fresh one in the left 

picture and, in the right picture, after few drying steps.  

 

Figure 57  Shrinkage of pumpkin sample during drying process. 

According to L. Mayor et al [97], shrinkage is more accentuated at mid-length and 

mid-thickness of sample whereas, at the edges, shrinkage is less pronounced. This 

effect, clearly observed in the most dehydrated samples, it is also clearly visible in 

Figure 57. 

Eventually we have extracted, from each MR image collected during the study, 

the area of each slice.  

Knowing that the thickness of each slice is 1 mm, we can easily calculate the 

volume of the sample at each drying step. The volume data obtained in this way 

are compared with the gravimetric measurements and with the ST2 data obtained 

from MR T2 maps at each drying step. The comparison is shown from Figure 58 

to Figure 61, together with the data tables, where the agreement among the three 

physical quantities is remarkable for every drying temperature.  



88 

 

 

 

 

 

Figure 58 Volume shrinkage, weight loss and T2 trends during dehydration and data values at 50°C. 
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Figure 59 Volume shrinkage, weight loss and T2 trends during dehydration and data values at 60°C. 
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Figure 60 Volume shrinkage, weight loss and T2 trends during dehydration and data values at 65°C. 
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Figure 61 Volume shrinkage, weight loss and T2 trends during dehydration and data values at 70°C. 
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The volume shrinkage during the drying process shows the same trend of the 

weight loss and of the decreasing of the ST2 values.  

The wall plots illustrated from Figure 53 to Figure 56, may be then considered as 

a representation of the real behaviour of the samples, in terms of moisture content 

and shape changes due to the shrinkage, during the drying process and they are 

obtained using exclusively MR T2 data. 

One of the main aims of this study will be to extend this method to different 

food matrices and validate this approach, which reveal to be suitable to investigate 

water contents and dynamics in biological samples under different conditions. 

 

 

5.6 Spectra 

The spectrometer (300 MHz/89 mm) gives us also the possibility to complement 

the imaging procedure with a local spectroscopy of the sample, performed voxel 

by voxel (Single Voxel Spectroscopy, SVS).  

We have developed an alternative approach on the use of MRI technique to 

extract water content information, combining the imaging technique with 

spectroscopic data.  

A significant advantage of this method is the relatively fast acquisition time, more 

or less 1 minute, with respect to the T2 mapping that require more than 50 

minutes. Collecting information in a short time represent a crucial point towards 

the development of a real-time and fast protocol to monitoring the drying process. 

The analysis has been again performed on the pumpkin (Cucurbita Maxima). The 

ea is the same described in the section 5.4. The sequence that allows this kind of 

approach is the PRESS sequence, described in the section 2.3, which is used for 

the localized 1H-MRS. 

Before the measurement, the automatic shimming procedure, B0 MAP, is used to 

achieve optimal uniformity of the magnetic field across the voxel volume.  
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The shimming allows us to adjust the homogeneity of the static magnetic field B0 

by changing the currents through the shim system (a set of field gradient). 

The FID signals are Fourier-Transformed, and the phase and the baseline of the 

spectra are corrected using the Bruker software TopSpin. The PRESS sequence 

has been used used with the following parameters TR = 3500 ms, TE = 17 ms.  

Remembering that for the pumpkin the percentage of water is higher than 90%, 

the local spectroscopy returns mainly a significant peak corresponding roughly to 

the water contribution.  

The integrated intensity of a signal is a measure of signal strength and is 

determined by integrating the area under the signal peak.  

The Figure 62 below shows the spectrum of the pumpkin sample obtained as 

described above. It clearly appear the main contribution of the water peak at 4.7 

ppm. 

 

Figure 62 NMR spectrum of pumpkin sample.  

Since the signal intensity is proportional to the proton density, it is possible to 

compare the decreasing of the area under the signal peak with the loss of water.  

To evaluate this area, it is needed to take into account the receiver gain (RG) 

value. This parameter characterizes the amplification of the signal coming from 

the sample. RG is adjusted automatically and it change for each measurements. 

http://www-usr.rider.edu/~grushow/nmr/NMR_tutor/pages/record/record_b21.html
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An advantage of this approach is that the starting point is the image and the 

sample preparation in this case is easy, non-invasive and absolutely non-

destructive, so it does not have the drawbacks of the common spectroscopy. On 

the other hand, the resolution is lower and below the “water peak” there are 

certainly other contribution, which we consider anyway very small. After all, if 

we have in mind to evaluate the total water contribution this method appear to be 

very promising. The plots below show the moisture ratio of samples (in 

percentage) during drying, obtained by gravimetric method (black squares) and 

MRI spectroscopy values, extracted for each temperature (red squares). 

In the comparison, the agreement between data is very high with r2 value usually 

higher than or very close to 0.99. 
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Figure 63 Weight loss of samples during drying obtained by gravimetric method compared with the signal 

intensity obtained by local spectroscopy, at 50° C (r2=0,995). 
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Figure 64 Weight loss of samples during drying obtained by gravimetric method compared with the signal 

intensity obtained by local spectroscopy, at 60° C (r2=0,990). 
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Figure 65 Weight loss of samples during drying obtained by gravimetric method compared with the signal 

intensity obtained by local spectroscopy, at 65° C (r2=0,987). 
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Figure 66 Weight loss of samples during drying obtained by gravimetric method compared with the signal 

intensity obtained by local spectroscopy, at 70° C (r2=0,991). 
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As seen in the previous section (5.5), to allow a comparison within the same range 

of the MRI data, a selection on the gravimetric data has been done, excluding the 

gravimetric measurements characterized by very low water contents, which are 

unable to provide measurable T2 signals through NMR. 

It is evident that the NMR signal coming from the sample is measurable up to 110 

minutes at 50°C (the lower drying temperatures) and up to 70 minutes for 60°C 

and 65°C. For 70°C (the higher drying temperature) the T2 signal become too 

small after 80 minutes of drying process.  

We should expect that the time decreases as the temperature increases. Referring 

to the Figure 66, the points corresponding to 70°C show a measurable T2 signal at 

greater time with respect to the ones at 60°C and 65°C. This could be ascribed to 

the slicing procedure since the fresh sample used for the 70° C measurements has 

been moulded in a volume slightly bigger with respect to the other samples.  

To understand the effectiveness of this method, we have compared the 

weight loss trend with both the ST2 data shown in the previous paragraph and the 

spectra data. The comparison highlights, despite of the roughness of the spectra 

method and the necessary refinement and validation, a remarkable agreement 

(r2>0.99). 
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Figure 67 Comparison between the gravimetric weight loss trend and both the T2 and the spectra data at 

50°C.  
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Figure 68 Comparison between the gravimetric weight loss trend and both the T2 and the spectra data at 

60°C. 
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Figure 69 Comparison between the gravimetric weight loss trend and both the T2 and the spectra data at 

65°C. 
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Figure 70 Comparison between the gravimetric weight loss trend and both the T2 and the spectra data at 

70°C.  
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All the advantages of the MRI mentioned in this chapter can be really 

useful also for the study of living plants. Also plants are rich in water and through 

MRI it is possible to extract information within the images and use them to study 

the dynamics of water uptake in a plant and water transport in the stem [98], in 

particular as a function of changing environmental conditions.  

This topic will be treated in the next chapter. 
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6. MRI of plants  

By permitting non-invasive and in vivo monitoring of the whole plants, MRI 

has become a powerful tool in the studies on living plants. 

The potential for investigating root viability using NMR micro imaging is an 

increasingly technique widely used in the last two decade (section 4.4). 

Coming from the water protons, that are naturally present in plants, the MRI 

signal can be analysed under realistic environmental conditions. 

6.1 Roots water uptake 

The idea for the current experiment, for which we are still developing the 

technique, is to follow the growing of a plant from the initial state as seed to the 

complete development, observing each step of the growth through MRI.  

In particular, the aim is the monitoring of the process of absorption from the roots, 

focusing on the differences, which can be highlighted by the MRI, between the 

absorption process from a “safe” soil and a contaminated one. 

Nowadays, an emerging method that uses living plants to uptake, store and 

degrade contaminants is the phytoremediation [99] [100] [101]; it is a new 

evolving field of science and technology where the MRI can play a significant 

role. 

https://en.wikipedia.org/wiki/Plants
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Plants are used to extract, and/or detoxify pollutants. This technique is widely 

viewed as the ecologically responsible alternative to the environmentally 

destructive physical remediation methods currently practiced, such as physically 

removing contaminated soil from a site and burying it elsewhere, that are 

generally too costly and environmentally destructive to be widely applied (i.e.: 

thermal desorption, excavation and dredging). 

The interplay between root activity and soil function influences the plant growth 

and productivity and results difficult to be observes because of the natural position 

of the roots underground and the complexity of the root system architecture [102]. 

Another interesting aspect concerns the contamination by metals: plants can be 

used either to stabilize or remove metals from the soil and groundwater 

[103][104][105]. The combination of local NMR spectroscopy and 2-3 D imaging 

and their feature to be non-invasive and non-destructive give the possibility to 

have an overall view of the process. The possibility to reproduce the conditions 

closest to the real process can render unexpected insights to achieve a better 

understanding of contaminant absorption. 

MRI has just been successfully applied to investigate temporal and spatial water 

uptake and distribution in germinating lupine [106] and tobacco seeds [107], to 

define the water content changes due to root water uptake in ricinus roots [108], 

to monitor the water uptake of loblolly pine [109]. D. van Dusschoten at al. have 

done a quantitative 3D analysis of plant roots growing in soil [110], 

demonstrating that MRI can be used for non-invasive imaging of roots grown in 

relatively large (up to 8.6 L) soil-filled pots. 

The study of the interactions of plant and roots has also been analysed combining 

MRI technique with neutron imaging [111].  Dry or fully imbibed seeds of 

western white pine were studied using high-resolution MRI [112]. MRI has also 

been used to study the water uptake and distribution in soybean seeds during 

hydration [113], in bean embryos during ethylene induced precocious germination 

[114]. It has been shown that MRI can provide the water mobility detection [115] 

and is able to measure plant trait in the soil [116].  

https://en.wikipedia.org/wiki/Thermal_desorption


107 

 

Definitively, MR imaging is a versatile protocol to investigate, non-invasively, 

plants and roots performance. 

6.2 Experiment 

The method to be developed has to be simple, using reagents compatible with the 

environment and replicable in other laboratories. 

The study will concern the growing of a plant born respectively in a safe (agar1 + 

H2O) and infected soil, monitoring the development of the root system over the 

time by MRI. 

Maize seed (Zea Mays) have been chosen to conduct the experiment. The 

literature shows that Zea Mays is a good candidate for phytoremediation [117]; it 

results useful for the remediation of soil contaminated with atrazine, an herbicide. 

Residues of atrazine were reduced in faster rate in contaminated soil planted 

with Zea Mays than the unplanted soil.  

Other studies show how Zea Mays is a good choice for remediation of soil 

contaminated with petroleum [118] and heavy metals such as cadmium [119]. 

The contamination will be studied respectively through different processes of: 

 contamination of the soil at the time of sowing  

 contamination after a suitable time (i.e.: after one week) 

 contamination on an adult plant. 

To start the experiment the pentahydrate copper sulphate (CuSO4·5H2O - 2500 

ppm) has been chosen. The CuSO4 is the most common copper salt because of its 

stability; at room temperature, it looks like a blue crystal. It is soluble in water and 

it can be used as herbicide, fungicide and pesticide. Copper in CuSO4 binds to 

proteins and damages the cells causing them to leak and die. Copper can kill 

snails, disrupting the normal function of the skin cells and enzymes [120][121]. 

Additional test will be carried out with the Oxadixyl (C14H18N2O4) and 2,3,7,8-

Tetrachlorodibenzo-P-dioxin (C12H4Cll4O2). 

                                                 
1 Agar is commonly used to help feed microorganisms such as bacteria.  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/contaminated-soils
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/zea-mays
http://npic.orst.edu/pest/slugsnail.html
https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C14H18N2O4&sort=mw&sort_dir=asc
https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C12H4Cl4O2&sort=mw&sort_dir=asc
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The idea is also to improve the analysis to apply the protocol on samples of soil 

taken from an area comprises between the provinces of Napoli and Caserta, the 

so-called “Terra dei fuochi (Lands of Fires)”. Unfortunately, this area has suffered 

environmental degradation and contamination due to illegal dumping of toxic and 

hazardous waste. This area has been used as a gigantic landfill by criminal 

organizations where burn every toxic waste. This is the reason of its name. The 

obvious consequence  are the soil and air contamination [122]. 

 

MRI protocol 

 

NMR experiments were recorded using the Bruker 300 MHz/89 mm 

spectrometer. We have acquired T2 and T1 maps, Single voxel spectroscopy and 

3D images.  

Similarly to the process scheme followed for the pumpkin T2 map, to evaluate the 

best TR, the MSMEVTR_8e_8r sequence has been used on seeds. 

The time constant T1 through MSMEVTR is carried out from the ISA analysis 

tool. The value obtained is about T1= (406 ± 23) ms. As said, the better choice is 

to set a TR five time bigger than T1 in order to assure the complete longitudinal 

relaxation.  

The sequence used to produce the T2 map is again MSME with the following 

parameters: TR = 2100 ms and TE from 5 ms to 100 ms, matrix size = (256 x 

256). The FOV has been chosen to cover the whole sample according to the seed 

development. 

To obtain a T1 map, IR sequence has been used. This mapping consists in a series 

of IR sequences varying the TI (see section 2.3.2). The parameters used are the 

following: TR from 380 ms to 15000 ms (8 repetitions) and TE from 6.5 ms, 

matrix size = (256 x 256). Also in this case the FOV has been chosen to cover the 

whole  according to the seed development. 

The localized 1H-MRS has been done on the seeds using the PRESS sequence as 

just explained previously (section 2.4). This sequence uses one 90° pulse and two 

180° pulses to detect a spin echo from the localized volume.  
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Using T1 mapping with IR it is possible to achieve an exceptionally good image 

contrast. In T1 weighted image there is a strong dependence on the TR value. 

Choosing a short TR, the image contrast will depend on the differences in 

longitudinal magnetization recovery (T1), but if TR is too short, the T1 could be 

not measured correctly. Usually the TR must always be at least five times the 

longest T1 present to relax after the 90° pulse. 

T1 is strongly dependent on the magnetic field strength. Although it may be 

extrapolated to other field strengths based on theoretical predictions, such results 

will have significant uncertainties. 

The Bruker software calculates T1 through the ISA function:  

 

𝑌 = 𝐴 + 𝐶 × (1 − 𝑒𝑥𝑝 (−
𝑡

𝑇1
)) , (46) 

where A is the absolute bias and C the signal intensity.  

It process the data like explained in the section 5.5 for the T2-mapping. 

 

Figure 71 Envelope of the spin-echo peaks decays exponentially with T1 obtained with ISA Tool. 

Finally, we acquired 3D images in order to collect more information about the 

microstructure of roots (see next section). 
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6.3 First preliminary results 

Lentils 

To set the appropriate imaging parameters, trial measurements have been 

performed first on lentils. 

Two common lentils (A and B) were placed in the test tubes (diameter 1.5 cm) on 

hydrophilic cotton wet with water. One of these, sample A, was chosen to MRI 

analysis, inserted in the probe and left inside for five days.  

 

Figure 72 2D images of lentil A. 

In these initial conditions, the result was not very satisfying, because the poor 

quantity of water that easily evaporated from the cotton and the absence of light 

did not allow a good growth.  
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Figure 73  Lentil A after 5 days. 

 

 

Figure 74 3D image of lentil A. 

 

The second lentil (B), which had been left growing up in the lab, out of the 

spectrometer, has shown a better result as shown in Figure 75 and Figure 76. 
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Figure 75 2D image of lentil B after a week. 

 

 

Figure 76 3D image of lentil B after a week. 

 

After this preliminary study on lentils, to performed the method feasibility and set 

the convenient parameters, the seed chosen for the experiment has been the maize. 
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Maize  

Tanned maize (Zea mays) seeds have been undertaken to the same procedure used 

for lentils, but they have been previously kept soaked in water for 12 hours. 

At the beginning, the seed was put on the hydrophilic cotton and then, in order to 

improve the growing conditions, the hydrophilic cotton has been replaced with a 

solution of agar (1 g) mixed with water (99 g) to obtain a 1% solution.  

To sterilize the solution, it has been put for 20 minutes at 120°C in an autoclave 

(mod Asal 760). Five maize seeds were placed in five test tubes (diameter 1.5 cm- 

Figure 77). One of these has been inserted in the probe for MRI measurements 

and left there for several days. At the same time, the remaining seeds have been 

left growing outside. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 77 Maize seeds in the tube test filling with agar and water. 
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The first 2D images acquired are shown below (from Figure 78 to Figure 83):  

 

Figure 78 Axial T1 weighted image first day. 

 

Figure 79 Axial T1 weighted image 2th day. 

 

Figure 80 Axial T1 weighted image 3th day. 
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Figure 81 Axial T1 weighted image 4th day. 

 

Figure 82 Axial T1 weighted image 5th day. 

 

Figure 83 Axial T1 weighted image 6th day. 
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A series of 3D MRI images have also been acquired to monitor the development 

of a maize seed.   

  

 

 

 

 

 

 

 

 

 

 

 

 

The seed has continued to grow inside the probe inserted in the NMR. MR image 

(Figure 85) shows the architecture of the roots but the development of the plant 

has been complete as shown in Figure 86. 

 

1
st

 day 2
nd

 day 3
rd

 day 

4
th

 day 5
th

 day 6
th

 day 

Figure 84 Sequence of 3D images acquired during six days. 
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Figure 85 Maize seed developed. The root architecture is evident. 

 

 

Figure 86 Maize after tot days. 

 

 Using the voxel MR spectroscopy, it is possible to extract the Zea mays spectrum 

from the MRI image (Figure 87): 
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Figure 87 Spectrum of Zea Mays obtained from a 1H MRI. 

The image is acquired with the PRESS sequence. The noise is very probably due 

to the small voxel dimension but it looks like how expected, the next figure 

(Figure 88) shows the spectrum obtained with the 13C-CPMAS NMR on untreated 

Zea mays [123]. 

 

Figure 88  13C-CPMAS NMR Spectrum of untreated Zea Mays. 

 

Furthermore, in order to improve the experiment and reproduce as best as possible 

the natural environment condition for the seed grown, the system will be equipped 

with the following tools: 

- Luminosity sensor 

- Temperature sensor 
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- Humidity sensor 

- Bigger tube test (from 1.5 to 2.5 cm) 

- Video camera  

- 13C Imaging 

The idea is to realize a monitoring system for the environmental parameters to 

control the growing of the plant. The aim is to maintain the root system bathed in 

nutrient and whole plant in an environment of controlled humidity, temperature, 

and luminosity intensity [124]. 

An additional significant improvement will be the 13C imaging that will be 

performed after the installation of the new Bruker probe acquired in the lab. 

Several techniques available in MRI field will be used, such as diffusion and 

chemical shift imaging, to reinforce and validate the results obtained in this work. 
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Conclusion and future perspectives 

MRI is certainly among the most used technique exploited, in a large 

number of disciplines, as a diagnostic and assessment tool. Based on the findings 

of many researches carried out in the recent past, it is possible to affirm that MRI 

is a successful tool for the monitoring of the internal structures and features of 

biological samples.  

MRI images can provide detailed information, mixing spectroscopy and 

relaxometry. A difficulty to overcome is that, as seen, MRI is based on a 

significant number of parameters (PD, T1, T2, TR, TE) and, in this respect, each 

image involve the modification of many of them at the same time.  

It is extremely important to consider this feature for a good interpretation of 

images in order to obtain a consistent description of a process.  

In this thesis, we have proposed new ways to apply MRI extracted 

information in the field of food science. The availability, in our lab, of a new 

Bruker spectrometer, 7 Tesla – 300 MHz, has given us the possibility to develop 

new approaches using high magnetic field. 

The main idea is to obtain data, extracted from images, in order to turn MRI into a 

true quantitative tool by combining spatial and relaxation information.  The goal 

is to prove the validity of this approach and improve it, in order to validate MRI 

as a measurement instrument capable to quantify water content and dynamic, in 

biological samples under different conditions. We have initially started with a 

specific and simple food matrix to extend, in a near future, the tests to other fruits 

or vegetables, to prove that the method is reliable and gives reproducible results. 

The quantitative moisture distribution maps allow future development and 

verification of models for prediction of mass transport phenomena in food during 
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drying to extend the shelf-life of food materials: a major challenge for modern 

food industry. 

The combining of MRI with local spectroscopy allows the development of 

a new fast procedure to quantify the water content inside the sample under 

inspection. An advantage of this approach is that the starting point is simply the 

image and, with respect to the common spectroscopy, the preparation of the 

sample under study is really easy, non-invasive and absolutely non-destructive. 

There are several other possibilities for future improvements of our 

method. The protocol can be extended to work with new time sequences of 

images, such as the diffusion-weighted images (DWI).  

 The same approach could be also very promising in the field of the study 

of living intact plants. The common features with food is that their functionality is 

determined by complex multiple length scale architectures. However plants, being 

living systems, depend critically on transport and signalling processes between 

and within tissues and organs. The functional tomography of living plants through 

MRI can represent a great tool to understand the complex regulatory plant 

performance mechanisms. Part of the work of this thesis has been devoted to the 

developments of protocols allowing the study of living plants, starting from seed, 

grew inside the spectrometer and measured continuously during the growth with 

various procedures. In order to reproduce as best as possible the natural 

environmental conditions for the seed grown, we plan to improve the whole 

apparatus with sensors and tools, to implement a monitoring system for the 

environmental parameters and control the growing of the plants. 

Overall, this thesis demonstrated the benefits of MRI and its application, in 

particular, in food and plants research; this technique results versatile and able to 

quantify different physical and chemical parameters. 

Use and validate the MRI as quantitative tool is our major challenge and the 

results obtained in this thesis keep us confident about the achievement of this 

goal. This could hopefully open a way for new methods to perform MRI analysis.  
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NMR - Nuclear Magnetic Resonance 

MRI - Magnetic Resonance Imaging 

2D - 2-dimensional 

3D - 3-dimensional 

RF- Radio Frequency  

FID - Free Induction Decay 

PD - Proton Density 
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TR - Repetition time 
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SE – Spin Echo 
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MSME - Multi Slice Multi Echo 

RARE - Rapid Acquisition with Refocused Echoes  

FSE - Fast Spin Echo  

RSE - Rapid Spin Echo  

GE - Gradient Echo 

FLASH - Fast Low Angle Shot 

fMRI - functional Magnetic Resonance Imaging  

BOLD - Blood Oxygen Level Dependent  

DTI - Diffusion Tensor Imaging  

FEM - Finite Element Method 

MR - Moisture Ratio  

FW - Free Water 

LBW- Loosely Bound Water  
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SBW- Strongly Bound Water  

DWI – Diffusion Weighted Images 

 

ROI - Region Of Interest 

FOV - Field Of View 

MRS - Magnetic resonance spectroscopy  

MVS- Multi Voxel Spectroscopy  

VOI – Volume Of Interest 

ATM - Automated Tuning Routine 

BBI - Double Resonance Broadband Probe  

CPMAS - Probe Cross Polarization  Magic  Angle Spinning  

HRMAS - Probe High Resolution Magic Angle Spinning  

ISA - Image Sequence Analysis 

RG - Receiver Gain 
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