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Chapter 1

Introduction

1.1 Overview and motivation

A drastic change in the vision of future industries is taking place
nowadays with the strategic initiative of Industry 4.0 [1]: from
traditional mass production based on assembly lines (low variety
of high-volume products) to mass customization based on product
personalization (high variety of low-volume products). The con-
cept of smart factories is the driving factor of Industry 4.0 which
envisages factories as integrated systems where robots, sensors,
devices and people are “intelligent” entities constantly intercon-
nected along the whole value chain, cooperating with each other
and sharing real-time data in order to rapidly adapt to new or
personalized requests and predict failures. However, although de-
vices and machines are equipped with artificial intelligence, the
human reasoning and adaptation skills are still far superior to it.
It inevitably follows that the role of human operators is crucial in
this transformation in order to fulfill the need for flexibility of the
production environments. Rather than being replaced by devices,
they play the central role of “strategic decision-makers and flexible
problem solvers” [1] in smart factories, leading to a human-centric
concept of industry [2].

In this scenario, removing the barriers between humans and
robots, enabling their collaboration, as represented in Figure 1.1
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(image from [3]), is one of the fundamental steps to realize the re-
quired agile production. More in detail, these two entities exhibit

Figure 1.1: Industrial transformation taking place according to the principles
of Industry 4.0: from caged (on the left) to collaborative (on the right) robots.

complementary skills whose fusion can potentially lead to increase
the production efficiency, quality and flexibility [4, 5]: on the one
hand, humans have higher abilities for environment interpretation
and decision-making process, are characterized by greater manip-
ulation skills and are more flexible in the sense of simplicity to
be re-tasked; on the other hand, robots are faster, stronger, more
precise and better suited to repetitive and/or heavy tasks than hu-
mans. In addition, the physical abilities as well as the robustness
to faults of the robotic component are significantly enhanced when
multiple cooperative robots are introduced into industrial setups
instead of individual robots, enabling the execution of tasks that
would otherwise not be possible.

It is evident that the advantages arising from the combination
of human and robotic skills are not limited to industrial settings
but they have a dramatic impact also in numerous other scenarios
where robots can be used to assist people and to reduce their stress
and fatigue, as for example, in service robotics [6] and search-and-
rescue scenarios [7]. A wide range of applications can thus benefit
from Human-Robot Collaboration (HRC), only some of which are:

• transport of loads, where one or more robots exert most of
the required effort and the human “guides” them, i.e., im-
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a) b) c)

Figure 1.2: Examples of HRC: cooperative transport of loads (a), assembly
(b) and welding (c).

poses the object trajectory, through unstructured environ-
ments, as depicted in Figure 1.2.a (image from [8]);

• assembly, where the robots exploit their built-in high accu-
racy for the assembly of components and the human exploits
his/her major flexibility for the insertion of these compo-
nents in more variable and complex objects, as represented
in Figure 1.2.b (image from [9]);

• packing and palletizing, where the robots are in charge of the
“logistic task”, i.e., of collecting and carrying loads, while
the human is in charge of the last refining and packing op-
erations;

• welding, where the human operator executes the positioning
task and the robot the welding one, as shown in the Fig-
ure 1.2.c (image by Novarc Technologies1), thus allowing to
perform welding on different objects while preserving robot
accuracy;

• any complex and unstructured task where the presence of
human teammates allows to deal with such complexity and
non-structurality by guiding or correcting the robots’ behav-
ior.

Note that also in the case the collaboration only includes the co-
existence of human and robots in the same workspace while per-

1https://www.novarctech.com/

https://www.novarctech.com/


6 1. Introduction

forming independent tasks, immediate advantages follow in terms
of productivity, since there is no more need to turn off robots when
humans enter their workspace (i.e., they can still accomplish the
predefined tasks as long as it is compatible with the human safety
requirements), reconfigurability of the work-cell and reduction of
costs for protective barriers and footprint area; the latter has a
drastic impact especially in the case of mobile robots for which
current solutions are restricted to predefined paths (e.g., tracks
on the floor) and humans are not allowed to enter the naviga-
tion zone. Furthermore, note that HRC is also encouraged by
recent standards that provide for regularization in industrial set-
tings. Examples are ISO 10218-1 [10], ISO 10218-2 [11] and the
technical specification document ISO/TS 15066 [12]. The latter
specifies the guidelines for four types of human-robot collabora-
tion, that are:

1. Safety-rated monitored stop, i.e., robots are required to stop
when humans enter the working area;

2. Hand guiding, i.e., robots can only move through direct hu-
man input;

3. Speed and separation monitoring, i.e., robots are required to
keep a minimum safety distance from operators;

4. Power and force limiting, i.e., robots are required to guaran-
tee limited power and interaction force in the case of physical
collaboration with the human.

Finally, a further form of human-robot teamwork emerges when
humans, rather than working side-by-side in the same work space
of the robots, provide examples to the latter for the accomplish-
ment of a given task and the robotic system learns from these
examples. This form of collaboration is typically referred to as
learning from demonstration [13]. The strength of this collabora-
tion lies in the fact that it enables to bypass the explicit planning
of the robots motion according to the system state, by imitating
the human behavior. This feature is particularly relevant when the
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system state cannot be easily determined analytically, such as for
the manipulation of deformable objects [14], causing the planning
to achieve desired configurations to be extremely challenging.

Motivated by the above scenarios, the present thesis aims to
investigate human multi-robot interaction from multiple perspec-
tives. Indeed, even if, as highlighted so far, there are innumerable
advantages in the use of multiple collaborative robots and stan-
dards exist that regularize their use also in industrial settings,
the actual integration of such robots into real systems is far from
trivial and several aspects need to be taken into account.

In particular, for an effective collaboration, it is first and fore-
most necessary to devise methodologies that guarantee the safety
of the person at all times, despite his/her highly dynamic and un-
predictable behavior and regardless of the robotic task. According
to [15], human safety is hereby referred to the physical safety, i.e.,
no unwanted contact between humans and robots and no human
injury must occur. To this aim, as an example, strategies for hu-
man avoidance or for limitation of exchange forces might need to
be designed depending on the scenario. Note that the requirement
for human safety also implies the necessity of robots’ reliability,
i.e., in order not to compromise the safety of the person, not only
strategies to ensure it must be defined, but their correct execution
also needs to be guaranteed despite possible faults of the robotic
system. It follows that robot control must exhibit properties of (i)
convergence to desired and safe states (when no faults occur) as
well as (ii) robustness to faults which need to be detected, isolated
and accommodated.

Next, it is necessary to define proper control algorithms which
respond to the task-dependent desired human-robot collaboration,
e.g., it may be desired that the human operator is physically as-
sisted by robots or that he/she can intervene in any moment to
correct their behavior.

Finally, in the case of human demonstrations, it is necessary to
endow the robots with the ability to generalize from the provided
examples in order to successfully accomplish the desired task.

The objective of the thesis is to cover all the aforementioned
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aspects starting from the reliability of the multi-robot system and
the human safety in shared environments up to scenarios of physi-
cal interaction and learning from demonstrations. In the following,
possible scenarios of human-robot interaction are defined and it is
detailed which of them the thesis work contributes to.

1.1.1 Human-robot interaction scenarios

Human
robot

interaction

Close collab.
(Online int.)

Coexistence
Physical

interaction

Pure
workspace
sharing

Coordination
Physical
shared
control

Physical
human
guidance

Remote
interaction

Human
demonstr.

(Offline int.)

Teleoperation
(Online int.)

Remote
shared
control

Remote
human
guidance

Figure 1.3: Overview of possible HRI scenarios. The blocks addressed in the
thesis are highlighted in green.

Figure 1.3 summarizes a possible taxonomy for Human Robot
Interaction (HRI) scenarios and highlights in green the ones ad-
dressed in the thesis. At the first level, the interaction is di-
vided into close collaboration and remote interaction depending
on whether humans and robots work close to each other or not,
respectively. Moving down through the branch of close collabo-
ration, it is assumed that the interaction always takes place on-
line, i.e., humans and robots operate simultaneously, as the human
presence would otherwise become invisible to robots, and a sub-
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division is made that regards the presence of physical contact, i.e.,
of an exchange of forces, between robots and human operators.
More specifically, coexistence refers to the case of operation in the
same environment but without exchange of forces while physical
interaction refers to the case in which such exchange occurs, thus
implying the need to control it in order to prevent harm to the
person. Note that this exchange of forces can occur directly or
through the manipulation of a common object.

In the case of coexistence two possible scenarios are then
prospected that depend on how much the tasks of robots and
humans are intertwined: pure workspace sharing when they carry
out independent tasks and only share the same workspace and co-
ordination when they closely collaborate to pursue the task, dis-
tributing, for example, the operations necessary for the processing
of interest. For pure workspace sharing scenarios, the HRI strate-
gies translate into avoidance strategies which allow the robots to
replan their motion in real-time in order to prevent unsafe con-
tacts with the personnel, e.g., [16, 17]. For coordination scenarios,
the HRI strategies translate into task allocation and scheduling
strategies in which the humans play the role of partially control-
lable and non deterministic agents, e.g., [18]. Note that a low-level
safety layer also needs to be always included in order to prevent
robots from causing harm to humans during coordination.

In the case of physical interaction, a sub-division is made on the
level of robots’ autonomy. In detail, in a physical human guidance
scenario a leader-follower paradigm is adopted in which the human
acts as leader and the robot only plays a follower role aimed at
minimizing the leader effort. Therefore, the respective control
strategies aim to impose a highly compliant behavior to the robots
which enables the human to drive them. On the contrary, the
physical shared control scenario [19] finds inspiration from human-
human interaction scenarios where the two entities act as peers.
In the shared control, the robot autonomy is thus preserved to a
certain extent and a more equal distribution of roles is defined for
the robotic and human counterparts.

Stepping back to the remote interaction scenario, a distinction
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is made on whether the interaction is online or not: in the online
case, a teleoperation scenario [20] is traditionally envisaged where
humans use ad-hoc interfaces to remotely and actively control the
robotic component, also referred to as teleoperator, and/or in-
tervene during its activity; in the offline case, the human plays
instead the role of provider of demonstrations to achieve a de-
sired task. Starting from these examples, the robots then need
to learn how to autonomously carry out the task. Focusing on
the teleoperation, a multitude of control devices and architectures
exist, as reported in the survey [21], which may involve or not the
force feedback to the human operator. However, regardless of the
technological details, it is possible to classify the teleoperation ap-
proaches into two main macro-categories depending on the level
of robots’ autonomy: remote human guidance and shared control.
In particular, in the former case, the human operator fully deter-
mines the robots behavior, e.g., speed or position, by providing the
inputs to their actuators (through the specific interface). Only a
low-level control loop is then generally present on the teleoperator
side to track the human reference. In contrast, in the latter case,
the robotic component always preserves a level of autonomy [22]
in order, for example, to avoid obstacles in the environment and
to generally carry out part of the desired task.

Despite the high practical relevance of teleoperation and coor-
dination scenarios, the thesis will not dwell on them but will focus,
as emphasized in green in Figure 1.3, on pure workspace sharing
as well as physical interaction and offline human demonstrations
scenarios. Note that although other possible taxonomies exist in
literature, as for example [23, 24], the one in Figure 1.3 has been
proposed to the aim of outlining the scenarios of interest in the
thesis, ignoring any details not relevant for it.

1.1.2 Open questions

The remarkable potentialities of HRI, briefly outlined in Sec-
tion 1.1, have obviously led to a strong interest of the scientific
community in recent years towards this topic. However, further
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progress still needs to be made before we can achieve a concrete
and systematic integration of these technologies in concrete en-
vironments. Moreover, the current state-of-the-art is lacking in
analyzing cases of human multi -robot interaction although this
can be necessary for achieving tasks requiring high physical capa-
bilities or have demanding time or robustness requirements.

The thesis thus aims to provide progress steps towards the
answer to the following questions:

1. How to combine the collaboration with the human and the
coordination among different robots? How do these aspects
influence and limit each other?

In both physical and non-physical collaboration scenarios,
the control strategy should address human-robot interaction
aspects, e.g., human safety or physical assistance to the oper-
ator, but also manage the cooperation of the different robots
fulfilling possible constraints that they may introduce, such
as closed kinematic chain constraints in the case of cooper-
ative manipulation tasks.

2. How to distinguish if a contact is intentional or accidental
regardless of the robotic task in case the human is allowed to
work in proximity of the robots?

When physical interaction is allowed, accidental contact may
also occur beyond intentional contact. The robots must
therefore be able to detect and recognize it whatever the
task being performed, which may also require exchange of
forces with the environment.

3. How to ensure a reliable low-level control system which can
be distributed over different robots?

In order to ensure human safety, the robotic system must
first of all be reliable meaning that it must be able to de-
tect any possible fault. Guaranteeing this property becomes
more challenging in the case of distributed architecture, i.e.,
in case there is no central control unit that monitors the
state of all robots and coordinates them.
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4. How to carry out complex manipulation tasks and produce
understandable visual plans from visual demonstrations?

In the case of complex manipulation tasks, traditional plan-
ning, requiring analytical modeling of the system, can be
very challenging. The ability to learn from visual examples,
provided by the person, allows to overcome this issue but
requires defining methodologies to correctly reproduce the
demonstrations and generalize from them.

Note that questions 2 and 4 do not specifically focus on multi-
robot systems and, indeed, the respective solutions in the following
address single robot scenarios. However, such solutions lay the
foundations for tackling the same problems in multi-robot settings
and can be generalized to the latter.

The remainder of the thesis is structured as follows. First,
preliminaries for multi-robot control along with methodologies for
the system reliability in terms of robustness to faults will be intro-
duced in Chapter 2, addressing question 3, then scenarios of coex-
istence with pure workspace sharing will be addressed in Chapter 3
by focusing on safety issues and addressing question 1 for the non-
physical collaboration case, next both shared control and human
guidance scenarios during physical collaboration (question 1) will
be covered in Chapter 4, where also the problem of distinguishing
whether a contact is intentional or not will be considered (ques-
tion 2), finally the problem of performing visual planning from
demonstrations (question 4) will be tackled in Chapter 5 while
conclusions and future work will be discussed in Chapter 6.



Chapter 2

Multi-robot systems and
their robustness

This chapter aims to introduce the fundamentals for the control
of multi-robot systems as well as to present a methodology for
ensuring their robustness to faults. Indeed, in order to deploy a
robotic system in the vicinity of human operator, it is necessary to
guarantee that it is inherently safe and that, in case of faults, they
are promptly detected and no damage to the personnel is made.

A robot is herein assumed to be a manipulator, i.e., a mechan-
ical structure composed of rigid links interconnected by rotational
or prismatic joints, that can be mounted on a mobile base. The
robots are assumed to be cooperative, i.e., they all participate in
the pursuit of a common task.

Two main architectures, as exemplified in Figure 2.1, can be
possibly adopted for controlling the multi-robot system [25] which
differ on the distribution of the decision making process: (i) cen-
tralized (on the left in the figure) and (ii) distributed (on the
right). In the former case, a central control unit (depicted as a
grey box) exists which communicates with all the robots (depicted
as blue circles) of the system and establishes the actions to un-
dertake in order to carry out the desired task, in the latter case
the decision-making process is distributed among the robots and
each robot autonomously defines its actions in order to accomplish
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the common task, only relying on local information retrieved from
on-board sensors, e.g., encoders or vision systems, or explicitly
exchanged with neighbouring robots.

Centralized Distributed

Figure 2.1: Example of centralized architecture (left), where a central control
unit depicted as a grey box is present and communicates with all robots, and
distributed architecture (right), where no need of central unit exists.

Centralized approaches are typically highly effective in terms
of performance since they rely on a global knowledge of the sys-
tem but the need of a central unit and/or communication among
all robots of the system might be undesirable when robots, which
can also be mobile, are employed in unstructured environments.
Indeed, in this case, physical limitations and scalability issues may
arise in having all the robots communicate with a single control
unit. In addition, reliability problems may occur if the opera-
tional status of the central unit is compromised. For these rea-
sons, in the last decade, many efforts have been devoted to the
design of distributed solutions which can significantly improve the
overall system in terms of flexibility, scalability and robustness to
faults [25, 26] with respect to centralized ones. However, the lack
of global information generally leads to reduced performance and
more complex control design when these solutions are adopted.
Therefore, the research community, and the present thesis, aim
to devise distributed solutions that achieve the same performance
as the centralized counterpart [27] while preserving their major
flexibility and robustness.

In addition, note that, even if one of the main advantages of
distributed robotic systems is identified in the increased robustness
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to failures of teammates, such a robustness is only potential and,
on the contrary, if a failure is not properly handled, it can jeop-
ardize the entire mission and the human safety. Thus, the thesis
also aims to investigate distributed Fault Detection and Isolation
(FDI) strategies which enable robustness to faults.

In the following, the notation adopted in the thesis is first re-
ported. Then, the modeling of a single robot, from the kinematics
and dynamics point of views, and the modeling of the information
exchange between different robots are defined. Subsequently, a
general formulation for the definition of cooperative tasks is intro-
duced and finally a possible FDI strategy, introduced in [28] and
[29], is presented.

2.1 Table of symbols

The main variables and notation adopted in the thesis are briefly
reported in Table 2.1.

2.2 Robot modeling

The representation of the generic i th robot given by a manipulator
which can be mounted on a mobile base is reported in Figure 2.2.
Its overall model consists of a kinematic model and a dynamic
model.

As far as the kinematic model is concerned, it defines the re-
lationship between the joint configuration and the position and
orientation of robot end effector, i.e., it expresses the relationship
between the joint space and the operational space or Cartesian

space. Let qi ∈ R
ni be the joint position and xi =

[
pTi , φ

T
i

]T ∈ R
p

be the end effector configuration of the i th manipulator express-
ing position pi and orientation φi of the attached frame Σr,i with
respect to the world frame Σw. The robot kinematics is expressed
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Variable Description
γ,Γ Scalar variables are denoted by lowercase or upper-

case letters and in italic
γ Vectors are denoted by lowercase letters and bold-

face
Γ Matrices are denoted by uppercase letters and bold-

face
vi Generic variable v relative to the i th robot
v Stacked vector collecting the variables vi for all the

robots v =
[
vT1 vT2 . . . vT

N

]T

i(̂·) Estimation of a global variable made by robot i,
e.g., ix̂ is the estimation made by robot i of the
stacked vector x

(̂·) Estimation of a local variable, e.g., ˆ(xi) would be
the estimation made by robot i of xi

N Number of robots
qi∈Rni Joint configuration of the i th robot
xi∈Rp End effector configuration of the i th robot
πi ∈ R

nπi Dynamic parameters of the i th robot
σ∈Rm Cooperative task function
G(E,V) Communication graph with set of nodes V and set

of edges E
0m(1m) Column vector in R

m with all zero (one) elements
On×m Matrix in R

n×m of all elements equal to 0
Om (Im) Null (identity) matrix in R

m×m

‖ · ‖ 2-norm of (·)

Table 2.1: Table of symbols
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Σw

Σr,i

Figure 2.2: Representation of the generic i th robot given by a manipulator
which can be mounted on a mobile base. The respective end effector reference
frame Σr,i and the world frame Σw are reported.

by
xi = ki(qi) (2.1)

where ki : R
ni → Rp is the direct kinematics function of the i th

robot. When the number of Degrees Of Freedom (DOFs) ni is
greater than the number of variables to be controlled, generally
coincident with the operational space dimension p, the manipu-
lator is defined redundant and the additional DOFs can be used
to meet secondary objectives [30]. By differentiating (2.1), the
differential kinematics is obtained

ẋi = J i(qi)q̇i (2.2)

where J i(qi) ∈ R
p×ni is the manipulator Jacobian matrix for which

the following assumption is made.

Assumption 2.1. The matrix J i, ∀i, has always full rank along
the robot trajectory, i.e., the robots are away from kinematic sin-
gularities.

This is a common assumption when operating in the robots
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task space and can be mitigated by resorting to well-known tech-
niques such as damped least squares methods [31]. By differenti-
ating (2.2), the second order kinematic relationship is finally ob-
tained

ẍi = J i(qi)q̈i + J̇ i(qi, q̇i)q̇i. (2.3)

For the purpose of the overall description of the work-cell, the
variable n =

∑N
i=1 ni and the following collective vectors are in-

troduced

x =
[
xT
1 , x

T
2 , . . . , xT

N

]T ∈ R
Np

q =
[
qT1 , q

T
2 , . . . , qTN

]T ∈ R
n

J(q) = diag{J1(q1), . . . ,JN(qN)} ∈ R
Np×n

(2.4)

for which it holds

ẋ = J(q)q̇, ẍ = J(q)q̈ + J̇(q, q̇)q̇. (2.5)

Regarding the robot dynamic model, i.e., the motion equations
based on forces and torques on robot, the Euler-Lagrange formu-
lation is leveraged. The joint space dynamics is thus defined as

M i(qi)q̈i +Ci(qi, q̇i)q̇i + F iq̇i + gi(qi) = τ i − J i(qi)
Thi (2.6)

where τ i ∈ R
ni is the joint torque vector, M i(qi) ∈ R

ni×ni is the
symmetric positive definite inertia matrix, C i(qi, q̇i) ∈ R

ni×ni is
the centrifugal and Coriolis terms matrix, F i ∈ R

ni×ni is the ma-
trix modeling viscous friction, gi(qi) ∈ R

ni is the vector of gravity
terms and hi ∈ R

p is the vector of interaction wrenches between
the robot end effector and the environment. By introducing the
auxiliary variable ni ∈ R

ni

ni(qi, q̇i) = C i(qi, q̇i)q̇i + F iq̇i + gi(qi) (2.7)

eq. (2.6) can be rewritten as

M i(qi)q̈i + ni(qi, q̇i) = τ i − J i(qi)
Thi. (2.8)
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Moreover, the model in (2.6) can be expressed in linear form with
respect to the constant vector of the dynamic parameters of the
robot denoted by πi ∈ R

nπi , i.e., the following property holds [30].

Property 2.1. Model in (2.6) can be reformulated as

M i(qi)q̈i +C i(qi, q̇i)q̇i + F iq̇i+gi(qi) = Y i(qi, q̇i, q̈i)πi (2.9)

with Y i ∈ R
p×nπi the known regressor matrix.

By leveraging the results in [32], the joint torque vector can
be selected as τ i = J i(qi)

Tui and, based on (2.6), the following
dynamics in the operational space can be derived

M̄ i(xi)ẍi + C̄i(xi, ẋi)ẋi + η̄i(xi, ẋi) = ui − hi (2.10)

where it holds

M̄ i=(J iM
−1
i J

T
i )

−1, η̄i =F̄ i(xi)ẋi + ḡ(xi)

F̄ i=M̄ iJ iM
−1
i F i, ḡi =M̄ iJ iM

−1
i gi

whereas C̄ i is the Coriolis and centrifugal matrix for which it is
supposed that Christoffel symbols of the first kind associated with
the matrix M̄ i are adopted [33]. In view of Assumption 2.1, the
following properties hold [33, 34].

Property 2.2. Matrix M̄ i is symmetric and positive definite.

Property 2.3. Matrix ˙̄M i − 2C̄i is skew-symmetric, i.e.,

vT ( ˙̄M i − 2C̄ i)v = 0, ∀v ∈ R
p.

Property 2.4. Model in (2.6) can be expressed as

M̄ iẍi + C̄ iẋi + η̄i = Ȳ (xi, ẋi, ẍi)πi (2.11)

with Ȳ (xi, ẋi, ẍi) = M̄ iJ iM
−1
i Y (qi, q̇i, q̈i).

Note that generally the exact dynamic model is unknown and
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only an estimate of the model in (2.10) is available:

ˆ̄M iẍi +
ˆ̄Ciẋi + ˆ̄ηi = Ȳ i(xi, ẋi, ẍi)π̂i

= ui − hi − Ȳ i(xi, ẋi, ẍi)π̃i

(2.12)

where π̃i = πi − π̂i and the symbol ·̂ denotes the estimate of the
corresponding quantity.

2.3 Information exchange modeling

As stated at the beginning of the chapter, it is of interest to devise
distributed solutions for multi-robot control. As common [35],
the information exchange between robots is described through a
connectivity graph G(E,V) characterized by the set V of nodes
representing the robots, and the set E = V× V of edges connecting
the nodes and representing the communication links, i.e., robot i
can send information to robot j when it holds (i, j) ∈ E. Some
notions about graph theory are thus recalled here.

The graph topology can be described via the (N ×N) adja-
cency matrix A

A = {aij} : aii = 0, aij =

{
1 if (j, i) ∈ E

0 otherwise

whose element aij is equal to 1 if the j th node can send informa-
tion to i th node, i.e., (j, i) ∈ E, and 0 otherwise; such matrix is
symmetric in case of undirected graphs, i.e., in case all the com-
munication links among the robots are bi-directional.
The i th robot receives information only from its neighbors Ni =
{j ∈ V : (j, i) ∈ E}. The cardinality of Ni is the in-degree of node
i, i.e., di = |Ni| =

∑N
j=1 aij . Moreover, the cardinality of the set of

nodes receiving information from node i represents the out-degree
of node i, i.e., Di =

∑N

k=1 aki.

The communication topology can be also characterized by the
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(N ×N) Laplacian matrix [35, 36] defined as

L = {lij} : lii =
N∑

j=1,j 6=i

aij , lij = −aij , i 6= j.

The Laplacian matrix is often preferred in the field of multi-agent
systems due to the following property.

Property 2.5. All eigenvalues of L have real part equal to or
greater than zero. Moreover, L exhibits at least a zero eigenvalue
with corresponding right eigenvector the N × 1 vector of all ones
1N . Hence, rank(L) ≤ N − 1, with rank(L) = N − 1 if and only
if the graph is strongly connected, i.e., if any two distinct nodes
of the graph can be connected via a directed path, and L1N = 0N ,
where 0N is the (N × 1) null vector.

The following assumption about the communication graph is
made in the thesis.

Assumption 2.2. The graph topology is assumed fixed, i.e., there
are no communication links that can appear or disappear over the
time.

2.4 Cooperative task formulation

The cooperative task is specified by means of a task function σ =
σ(x) ∈ R

m which depends on the collective vector x as follows

σ = Jσx, σ̇ = Jσẋ, σ̈ = Jσẍ (2.13)

with Jσ ∈ R
m×Np the constant task Jacobian matrix which, as

discussed in [37], can be used to formalize a variety of multi-robot
tasks of general interest.

As a possible and flexible choice, the task can be expressed by
means of a proper set of absolute-relative variables. In particular,
the absolute variables define the position and orientation of the
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centroid of the end effector configurations, i.e.,

σ1 =
1

N

N∑

i=1

xi = Jσ1
x (2.14)

with Jσ1
= 1

N
1T
N ⊗ Ip ∈ R

p×Np.
Regarding the relative motion, it can be described as below

σ2 = [(xN − xN−1)
T . . . (x2 − x1)

T ]T = Jσ2
x (2.15)

with

Jσ2
=








−Ip Ip Op . . . Op

Op −Ip Ip . . . Op

...
. . .

...
Op . . . Op −Ip Ip







∈ R

(N−1)p×Np (2.16)

Thus, a possible choice for the task function in (2.13) is

σ =

[
σ1

σ2

]

=

[
Jσ1

Jσ2

]

x = Jσx (2.17)

with Jσ ∈ R
Np×Np and m = Np.

Moreover, according to the taxonomy presented in [37], it is
generally possible to identify the following entities (or a subset of
them) in a generic multi-robot work-cell:

• positioners, that are the elements in charge of moving the
workpieces and placing and/or holding them in specific con-
figurations;

• workers, that are the elements responsible for executing the
work on the workpieces;

• watchers, that are elements equipped with sensors allowing
to monitor the work-cell.

In particular, workers are generally robotic manipulators, while
positioners could be specialized devices, such as conveyors, or
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robotic manipulators as well. Concerning the watchers, they are
generally robots equipped with external sensors, such as vision
devices, and their motion is planned according to the cooperative
task as well as to the motion of workers and positioners.

2.5 Robustness to faults

A failure to detect faults in a robotic system can lead to the latter
behaving improperly and unexpectedly, endangering the safety of
people in the same workspace and the surrounding environment
in general. It follows that, for the robotic system to be reliable,
it must be equipped with the ability to recognize and respond to
faults in a timely manner. More specifically, in the case of single-
robot systems, the property of robustness to failures requires that
the robot itself must be able to identify any faults of on board
sensors or actuators. In the case of multi-robot systems, this iden-
tification capability must be extended to the entire team, i.e., it
must be possible to recognize any faulty robot in the system. This
allows, on the one hand, not to compromise cooperative tasks that
require the participation of multiple robots in order to be com-
pleted and, on the other hand, to potentially exploit the intrinsic
redundancy of multi-robot systems in such a way to accomplish the
assigned tasks also in the case of failure of one or more units. How-
ever, it is clear that the fault detection strategy strictly depends
on the architecture of the multi-robot system: in the centralized
case, the central unit knows the state of each robot in the sys-
tem (i.e., has access to the global state of the system) and on the
basis of the latter it can identify possible malfunctions, while in
the more challenging distributed case, each robot only knows its
own state and that of neighboring robots and must, on the basis of
this local knowledge, establish possible failures in the overall team.
Note that each robot needs to be able to detect and identify any
possible fault in the team even if no direct communication exists
with the malfunctioning robot.

The properties of reliability and robustness to faults are thus
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of primary importance for a robotic system and have driven the
interest of the scientific community towards these issues for years.

Starting from solutions for single units systems and then for
multi-robot systems with centralized architectures [38, 39, 40], the
research is now mainly focused on the case of distributed archi-
tectures where each robot is required to recognize a fault of a
teammate exclusively on the basis of local information. In this re-
gard, observer-based approaches are traditionally adopted which
involve the definition of residual signals, obtained by comparing
measured and estimated quantities, that are then monitored to
recognize and isolate faults. According to this approach, a FDI
strategy for non linear uncertain systems is designed in [41] which
also relies on adaptive thresholds to detect faults, while large scale
systems composed of non linear agents are analyzed in [42], where
a decomposition into smaller overlapping subsystems is proposed.
As a different approach, a bank of unknown input observers is
adopted in [43] with second-order linear time-invariant systems,
where the existence of these observers is provided for two classes
of distributed control laws. Heterogeneous linear agents with pos-
sible simultaneous faults are then considered in [44] but the de-
signed strategy only allows each robot to detect its own fault or
the one of a direct neighbor. Analogously, the same limitation is
present in [45, 46].

Although much effort has been devoted to distributed FDI
schemes, few contributions deal with multi-manipulator systems
which are characterized by non-linear continuous-time dynamics.
In this regard, the work in [47] leverages H∞ theory and focuses on
multi Euler-Lagrange systems involved in a synchronized set-point
regulation problem. A leader tracking task with possible commu-
nication link and actuator faults is instead discussed in [48] where
a fault-tolerant distributed control protocol is proposed which does
not rely on a FDI scheme. Finally, a distributed formation con-
trol problem with multiple Euler-Lagrange systems is addressed
in [49] where a fault diagnosis strategy is devised which requires
each robot to broadcast an alarm signal in the case of fault.

Motivated by the above reasons and differently from the ex-
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isting solutions, in this thesis a general distributed framework for
multiple mobile-manipulator systems, presented in [28, 29], is in-
vestigated in order to allow each robot to detect and isolate pos-
sible faults of any other robot in the team without the need of
direct communication with it. The solution builds on the schemes
presented in [50] and [51], where the first focuses on continuous-
time single integrator dynamic systems, whereas the latter deals
with discrete-time linear systems.

Consider a fault affecting the joint actuators of the i th robot,
f i ∈ R

ni, and thus, in the presence of the fault, (2.8) becomes

M i(qi)q̈i + ni(qi, q̇i) + di(qi, q̇i) = τ i − JT
i (qi)hi + f i (2.18)

where di ∈ R
ni is an additional vector collecting the modeling

uncertainties and disturbances (e.g., low-velocity friction, motor
electromagnetic disturbances, noise).

Based on (2.18) and (2.10), the equation of motion of the end
effector in the Cartesian space can be derived, i.e.,

M̄ i(qi)ẍi + n̄i(xi, ẋi) + d̄i(xi, ẋi) = ui − hi + J
T
M,if i (2.19)

with

n̄i = J
T
M,ini(qi, q̇i)− M̄ iJ̇ i(q)q̇i, d̄i = J

T
M,idi(qi, q̇i),

JM,i a dynamically consistent generalized inverse of J i given by

JM,i =M
−1
i (qi)J

T
i (qi)M̄ i.

The following assumption is made in the following.

Assumption 2.3. For each robot, the vector of modeling uncer-
tainties and disturbances in the operational space, d̄i, is norm-
bounded by a positive scalar d̄, i.e., it holds ‖d̄i‖ ≤ d̄ ∀i =
1, . . . , N .

Remark 2.1. It is worth noticing that the fault f i does not af-
fect the end effector dynamics if it belongs to the null space of the
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matrix JT
M,i. Thus, such faults cannot be detected with the above

formulation since they affect the internal dynamics of a given ma-
nipulator and cannot be visible to the other ones through the ob-
servation of the dynamics at the end effector.

By considering the extended state vector zi =
[
xT
i ẋT

i

]T ∈
R

2p, the end effector equation of motion (2.19) can be written in
matrix form as follows

żi=Azi +Bi(zi)(ui − hi + J
T
M,if i − n̄i(zi)− d̄i(zi)) (2.20)

with

A =

[
Op Ip
Op Op

]

Bi(zi) =

[
Op

M̄−1
i (zi)

]

.

Formally, the following is the problem that is aimed to be
solved for guaranteeing robustness to faults.

Problem 2.1. Consider a team of N mobile manipulators for
which a cooperative task is assigned. Assume a central control
unit is not present and robot i has a fault at a certain time tf ,
i.e., ‖f i(tf )‖ > 0. The objective is to enable each robot in the
team i) to detect that a fault has occurred and ii) to identify which
robot is in fault.

2.5.1 Observer-controller scheme

Assume that the robots in the work-cell are in charge of achieving
a global task depending on the overall state of the cell

z =
[
zT1 zT2 . . . zTN

]T ∈ R
2pN .

The observer-controller scheme proposed for the solution of Prob-
lem 2.1 considers that each robot firstly estimates the overall state
of the cell through an observer that is based on the information
exchange with the neighboring robots; then, the state estimate is
used to calculate the input that allows to achieve a global tasks as
in a centralized configuration. The overall distributed control ar-
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chitecture of the i th robot, combining both the observer-controller
and the fault detection schemes, is reported in Figure 2.3.

Local observer
(eq. (2.28))

Global control
input (eq.(2.23))

Local control
law (eq.(2.21))

Fault detection
(eq. (2.39))

Manipulator

Network

vi τ i

xi, ẋi

iv̂ j v̂, j ∈ Ni

iẑ iθ̂

ir

Fault signal

Figure 2.3: Distributed control architecture of the i th robot.

It is considered that a local fault signal is generated by robot i
in case a fault is detected in such a way that it can be exploited to
determine the local control input, e.g., the robot may stop when
a fault of a teammate is detected.

For each robot, assume that the following control law is
adopted

ui = M̄ i(zi) (θi(z) + n̄i(zi) + hi) (2.21)

where θi is an auxiliary input depending on the overall state z
which is not available in a distributed setting. In case of a cen-
tralized system, in which a central unit, capable of computing the
control input for each robot, is present, the collective auxiliary
input

θ =
[
θT1 θT2 . . . θTN

]
∈ R

Np

for achieving a global task would assume the following form

θ =Kz + θf (2.22)

where K ∈ R
Np×2Np is a constant gain matrix and θf ∈ R

Np

represents a feed-forward term [52].
In the absence of the central unit, the computation of the con-

trol law (2.22) requires that the i th robot estimates the overall
cell state in order to use such an estimate, denoted as iẑ, in lieu
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of z (see e.g., [53]). More specifically, based on the estimate iẑ,
the i th robot computes an estimate iθ̂g of the collective control
input (2.22), i.e.,

iθ̂g =K
iẑ + θf . (2.23)

Moreover, in the decentralized solution, a local stabilizing term
must be added in order to ensure the convergence of the state
estimation to the actual value. Therefore, the effective auxiliary
control input is obtained by considering the following selection
matrix

Γi = {Op · · · Ip
︸︷︷︸

i th node

· · · Op} ∈ R
p×Np (2.24)

such that

θi = θg,i + θs,i = Γi
iθ̂g +Kszi (2.25)

where Ks ∈ R
p×2p is a constant gain matrix. Based on (2.21)

and (2.25), (2.20) can be rearranged as

żi =Azi +C(θg,i + θs,i) +Bi(−d̄i(zi) +J
T
M,if i)

=Fzi +Cθg,i +Bi(−d̄i(zi) +J
T
M,if i) (2.26)

with C =
[
Op Ip

]T
and F = A + CKs, which leads to the

following dynamics of the collective state

ż = (IN⊗F )z+(IN⊗C)θg+B̄(fM−d̄) = F̄ z+C̄θg+B̄(φM−d̄)
(2.27)

where the symbol ⊗ denotes the Kronecker product and

θg =






θg,1
...

θg,N




 , B̄ =






B1(z1)
...

BN(zN)




 , fM =






JT
M,1f 1
...

JT
M,NfN




 , d̄ =






d̄1
...
d̄N




.

2.5.1.1 Collective state estimation

In order to estimate the collective state, z, each robot runs an
observer requiring only local information provided by robot sensors
and information received from neighbor robots. The same observer
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system is also exploited for the FDI strategy, without increasing
the information exchange burden.

The observer of robot i has the following dynamics

i ˙̂z=ko

(
∑

j∈Ni

(
j v̂ − iv̂

)
+Πi

(
v − iv̂

)

)

+C̄ iθ̂g+F̄
iẑ (2.28)

where iẑ is the estimate of the collective state made by robot i
and Πi ∈ R

2Np×2Np is a selection matrix defined as

Πi = diag{O2p, · · · , I2p
︸︷︷︸

i th robot

, · · · O2p} (2.29)

which selects the components of v and iv̂ referred to robot i. The
variable v is an auxiliary state defined as

v = z −
∫ t

t0

(
F̄ z + C̄θg

)
dσ (2.30)

where t0 is the initial time instant. Its estimate iv̂ in (2.28) is then
obtained as

iv̂ = iẑ −
∫ t

t0

(

F̄ iẑ + C̄ iθ̂g

)

dσ (2.31)

which depends only on local information available to robot i. It
is worth noticing that each observer is updated using only the
estimates jv̂ received from direct neighbors, which is, thus, the
only information exchanged among neighbors.

The collective estimation dynamics is

˙̂z⋆ = −koL⋆v̂⋆ + koΠ
⋆ṽ⋆ + IN ⊗ C̄θ̂⋆g + IN ⊗ F̄ ẑ⋆ (2.32)

where

L⋆ = L⊗ I2Np, Π
⋆ = diag{Π1, . . . ,ΠN} ∈ R

2Np2×2Np2,

ẑ⋆ =
[
1ẑT . . . N ẑT

]T
, v̂⋆ =

[
1v̂T . . . N v̂T

]T ∈ R
2Np2 ,
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θ̂⋆g =
[
1θ̂Tg . . . N θ̂Tg

]T

∈ R
Np2 , ṽ⋆ = 1N ⊗ v − v̂⋆.

Based on the properties of the Lagrangian matrix and by using
the same arguments adopted in [50], the following lemma can be
proven.

Lemma 2.1. In the presence of a strongly connected directed com-
munication graph and in the absence of faults and model uncer-
tainties (i.e., ‖fM‖ = 0 and ‖d̄‖ = 0), the term ṽ⋆ is globally
exponentially convergent to zero, given the observer (2.28) and for
any ko > 0.

Proof. The proof is provided in the Appendix A.1. �

In the presence of bounded uncertainties d̄ and on the basis on
the results in [54], it can be easily proven that the system (2.32)
is globally uniformly ultimately bounded (see [50]).

Based on Lemma 2.1, under the same assumptions, the fol-
lowing theorem states the convergence properties of the collective
state estimation error z̃⋆ = 1N ⊗ z − ẑ⋆.
Theorem 2.2. Consider a strongly connected directed commu-
nication graph and the absence of faults and model uncertainties
(i.e., ‖fM‖ = 0 and ‖d̄‖ = 0). There exists a nonsingular permu-
tation matrix P ∈ R

N2×N2

such that

(P ⊗ Ip)(INp2 −Π⋆
u) =

[
0Np×Np2

S

]

where S ∈ R
Np(N−1)×Np2 is a full row rank matrix and

Π⋆
u ∈RNp2×Np2 is defined as Π⋆

u = 1N ⊗
[
Πu1

. . . ΠuN

]
, with

Πul
∈ R

Np×Np a matrix that nullifies all the elements of a Np-
dimensional vector but the l th block of dimension p. Given the
observer (2.28) for any ko > 0 and by selecting Ks and K in
(2.25) in such a way that F = A+CKs is a Hurwitz matrix and
the subsystem {IN(N−1) ⊗ F , (IN(N−1) ⊗ C)S} is stabilized, the
term z̃⋆ is convergent to zero.

Proof. The proof is provided in the Appendix A.2. �

Finally, by resorting to the same arguments used for ṽ⋆, in the
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presence of bounded uncertainties d̄, it can be proven that the
system z̃⋆ is globally uniformly ultimately bounded [54].

2.5.2 Fault diagnosis and isolation scheme

In order to detect and isolate the presence of a faulty robot, the
collective state observer devised in Section 2.5.1.1 is exploited for
defining a set of residual vectors which allow to monitor the health
condition of each robot. In detail, the following residual vector [50]
for the i th robot is considered

ir =
∑

j∈Ni

(
j v̂ − iv̂

)
+Πi(v − v̂i) (2.33)

that can be rearranged as a stacked vector ir =
[
irT1 . . . irTN

]T ∈
R

2Np, where each component irk ∈ R
2p represents the residual

computed by robot i relative to robot k, and that allows the robot i
to monitor the healthy state of robot k. By introducing the col-
lective residual vector r⋆ ∈R2Np2

r⋆ =
[
1rT . . . NrT

]T ∈R2Np2 (2.34)

eq. (2.33) leads to
r⋆ = L̃⋆ṽ⋆. (2.35)

It is possible to select the vector collecting all the residuals relative

to the k th robot, i.e., r⋆k =
[
1r⋆k

T , . . . , Nr⋆k
T
]T ∈ R

2Np as

r⋆k=diag {Γk,Γk, . . . ,Γk} r⋆=Γ⋆
kL̃

⋆ṽ⋆=L̃⋆
k ṽ

⋆
k (2.36)

where L̃⋆
k = L ⊗ I2p + Πk and the vector ṽ⋆k

[
1ṽTk , . . . ,

N ṽT
k

]T ∈
R

2Np collects the estimation errors iṽk of the observers.
Note that, in case of strongly connected communication graph,

the matrix −L̃⋆ is Hurwitz [55], thus the following property holds
true:

Property 2.6. The matrix −L̃⋆
k is Hurwitz, thus the dynamics

in (A.19) is asymptotically stable and there exist two positive con-
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stants κ, λ > 0 such that [56]

∥
∥
∥
∥
e−ko

˜L
⋆

kt

∥
∥
∥
∥
≤ κe−λt, ∀t. (2.37)

The following theorems can be proved regarding the residual
vectors in case of absence or presence of faults.

Theorem 2.3. In the absence of faults, the residual irk, i.e.,
the residual computed by robot i and relative to robot k, is norm-
bounded by the following time-varying threshold iµk(t)

iµk(t) = (
√

2pdi +
iδk)

(

‖ṽ⋆k(0)‖κe−λt +
κ
√
N d̄

λ εm(M̄ k)
(1− e−λt)

)

.

(2.38)
where iδk = 1 if i = k and iδk = 0 otherwise, εm(M̄ k) is the
minimum eigenvalue of M̄ k.

Proof. The proof is provided in the Appendix A.3.

�

Consider a fault fk affecting the k th robot. The following
theorem can be stated.

Theorem 2.4. A fault occurring on the k th robot at time tf > t0,
affects only the residuals components irk (∀i = 1, 2, . . . , N) and
not the residual components irj (∀i, j = 1, 2, . . . , N and j 6= k).

Proof. The proof is provided in the Appendix sec:proof-thm-
res-fault.

�

On the basis of Theorems 2.3 and 2.4, the following strategy can
be implemented. When the following condition is verified, a fault
on robot k is detected by robot i

{
∃ t > tf : ‖irk(t)‖ > iµk(t)
∀l∈(1, 2, . . . , N), l 6=k, ∀t>t0, ‖irl(t)‖ ≤ iµl(t).

(2.39)
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Note that, in the presence of nonzero initial observer estimation
errors and model uncertainty, the residuals are different from zero
even in the absence of faults. For this reason, in order to avoid
the occurrence of false alarms, and by virtue of Theorem 2.3, the
decision about the occurrence of a fault is made only when a resid-
ual exceeds the adaptive thresholds computed in (2.38). Further-
more, it is worth remarking that Theorem 2.4 ensures that only
the residual irk is affected by the fault f k while the other residuals
computed by robot i are insensitive to it. The condition (2.39) en-
sures that all the robots of the cell can detect a fault even if there
is no direct communication with the faulty robot. Algorithm 1
summarizes the steps of the fault detection and isolation strategy.

Algorithm 1 FDI strategy

Protocol: All robots repeat indefinitely the following operations,

here reported for robot i:

1: Gather the neighbors auxiliary variables jv̂, j ∈ Ni

2: Execute local observer according to eq. (2.28)

3: Update local auxiliary variable iv according to eq. (2.31)

4: Compute the residual vector ir according to eq. (2.33)

5: Compute the time-varying thresholds iµk(t), ∀k ∈ V according

to eq. (2.38)

6: if ‖irk(t)‖ > iµk(t) for any k ∈ V then

7: Activate procedure for handling fault on robot k

8: end if

2.5.3 Simulation results

The FDI strategy has been validated both in simulation [28] and
in real-world [29], as shown in the following section. Simulations
are performed with Matlab1 environment and CoppeliaSim2 sim-

1http://www.mathworks.com
2http://www.coppeliarobotics.com

http://www.mathworks.com
http://www.coppeliarobotics.com
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ulator. A video is available at the following link3. A team of four
worker Kinova Movo mobile robots (N = 4) deployed in a factory
is considered as represented in Figure 2.4. Each robot is equipped
with a 7 DOFs Kinova ultra lightweight Gen2 Jaco arm, an om-
nidirectional base (3 DOFs) and variable height torso (1 DOF);
thus, it holds ni = 11, i = 1, 2, 3, 4.

Figure 2.4: Simulation scenario composed of 4 mobile robots performing a
cooperative transportation task.

A cooperative object transportation task between two conveyor
belts is performed. The absolute-relative formulation for the task
function σ in Section 2.4 is exploited and a desired trajectory σd(t)
(σ̇d(t),σ̈d(t)) is assigned. By resorting to a second-order closed
loop inverse kinematics law, the central control law in (2.22) for
the cooperative task space trajectory tracking is given by

θ = J−1
σ [σ̈d +Kd(σ̇d − σ̇(ẋ)) +Kp(σd − σ(x))] (2.40)

withKd,Kp ∈ R
Np×Np positive definite gain matrices, for which it

is straightforward to show that the tracking error σd − σ asymp-
totically converges to the origin. In accordance to the devised
strategy, by replacing x and ẋ in (2.40) with the respective esti-
mates, each robot i can compute the estimated global input iθ̂g

as in (2.23) and, in turn, can derive the local auxiliary input θ̂i as
in (2.25).

For the simulation case study, the following gains are selected:
Kd = 20I24 and Kp = 100I24 in (2.40) and ko = 30 in (2.28).

3https://www.youtube.com/watch?v=pW2nu8RqNO8

https://www.youtube.com/watch?v=pW2nu8RqNO8
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Moreover, an initial error ‖iẑ(0)‖ > 0 is considered ∀i = 1, .., 4
and a model uncertainty and disturbance signal d̄i in (2.19) with
bounded norm d̄ = 0.12 is simulated ∀i = 1, .., 4. Finally, with
regard to the communication graph, the following edge set is as-
sumed E = {(1, 2), (2, 3), (3, 4), (4, 1)}, thus resulting in a di-
rected strongly connected graph.
The task is divided in the following steps: (i) starting from the
initial configuration (Figure 2.5.a) the mobile robot team reaches
the left conveyor belt where the object to transport is placed; (ii)
the object is grasped (Figure 2.5.b) and moved towards the right
conveyor belt where it is released (Figure 2.5.c). Finally, while the
team is still approaching the picking conveyor belt, a fault occurs
to robot 1 at time t = 14 s (Figure 2.5.d). A damage of the mobile
base is simulated which leads to the stop of the respective 3 joints
in 1 s. Furthermore, when a robot detects the fault of any other
robot in the team, the policy of stopping its motion is adopted so
as to minimize possible damages that would occur in case of tight
connection.

a) b)

c) d)

Figure 2.5: Simulation snapshots. In detail, a) the starting configuration, b)
the grasping phase, c) the deposit phase and d) the fault occurrence.

Figures 2.6 and 2.7 summarize the numerical results. In par-
ticular, Figure 2.6 shows the norm of the task tracking error
(σ̃ = σd − σ(x)), of its derivative ( ˙̃σ = σ̇d − σ̇(x)) and, fi-
nally, of the state estimation error (z̃⋆), and it shows that the
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errors grow in correspondence of the fault occurrence at t = 14 s.
Figure 2.7 reports the norm of the residuals computed by the dif-
ferent robots and relative to the faulty robot 1 (‖ir1‖, ∀ i in solid
lines) together with the respective adaptive thresholds (‖iµ1‖, ∀ i
in dashed lines) and computed according to (2.38); without loss of
generality, it has been considered ‖ỹ⋆

k(0)‖ = 0. The figure makes
evident that all the robots are able to detect the fault, i.e. the
condition ‖ir1‖ ≥ iµ1 is verified ∀i after the fault occurrence, even
if there is no direct communication with the faulty robot.
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Figure 2.6: Simulation case study. Evolution of the norm of the task error
||σ̃|| (top), the norm of its derivative || ˙̃σ|| (middle), and the norm of the state
estimation error ||z̃⋆|| (bottom).

2.5.4 Experimental validation

This section presents the experimental results on a real multi-
manipulator setup. A video of the experiment is available at the
link4. As represented in Figure 2.8, a heterogeneous team of three
robots (N = 3) is considered which is composed of: 1) a fixed-base

4https://www.youtube.com/watch?v=1ZdyH6B9tNE
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Figure 2.7: Simulation case study. Evolution of the norm of residual compo-
nents relative to robot 1 (faulty robot) computed by the 4 robots (solid line)
compared with the respective adaptive threshold (dashed line).

7 DOFs Kinova ultra lightweight Gen2 Jaco arm, for which it holds
n1 = 7; 2) a Kinova Movo mobile robot equipped with a Kinova
Gen2 Jaco arm as in the simulations, for which it holds n2 = 11; 3)
a Kinova Movo mobile robot consisting of an omnidirectional base
(3 DOFs), a variable height torso (1 DOF) and a 2-link robot arm
(2 DOFs), for which it holds n3 = 6. The Kinova Movo robots

R1

R2 R3

Figure 2.8: Experimetal setup composed of three heterogeneous robots.

are also equipped with RGB-D sensors, in particular Microsoft
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Kinect v2, which allow to possibly monitor the scene; this sensor
is considered as end effector of the latter robot. By resorting to the
taxonomy in Section 2.4, the aformentioned robots will be referred
to as worker, positioner and watcher, respectively.

Concerning the hardware specifications, Movo mobile robots
are provided with two dedicated Intel NUC Kits NUC5i7RYH
with Intel Core i7-5557U processor and 16 GB RAM, whereas the
worker is controlled by a standard PC with Intel Core i7-5500U
processor and 8 GB RAM; moreover, wi-fi modules TP-Link TL-
WN821N are used for each robot which enable the intra-robot
communication through a local network set on a TP-Link TD-
W8960N router. Finally, the software architecture relies on ROS
middleware and ArUco markers [57] have been introduced to ini-
tially localize mobile robots in the environment.

A cooperative service task is considered where the worker is in
charge of pouring the contents of a bottle into a glass, while the
positioner is in charge of holding that glass; finally, the watcher
may be exploited to provide a different point of view for scene
monitoring. As in the simulation case study, the desired trajec-
tory σd(t) (σ̇d(t),σ̈d(t)) is defined in terms of absolute-relative
coordinates and the control law in (2.40) is considered.

The following set of gains is used: Kp = I18 and Kd = 2I18
in (2.40) and ko = 5 in (2.28). Concerning the communication
graph, the directed strongly connected graph composed of the fol-
lowing set of edges E = {(1, 2), (2, 3), (3, 1)} has been adopted.
Starting from the initial configuration shown in Figure 2.9.a, the
desired task consists of the following steps:

1. the positioner and the watcher move closer to the fixed-base
manipulator;

2. the positioner hangs out the glass as in Figure 2.9.b;

3. the fixed-base manipulator pours the contents of the bottle
into the glass as in Figure 2.9.c;

4. the mobile base manipulator delivers the glass while the
fixed-base manipulator returns in a configuration with the
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bottle vertical.

a) b)

c) d)

Figure 2.9: Snapshots of the experiment. In detail, a) represents the starting
configuration, b) shows the positioner hanging out the glass, c) is the pouring
phase and d) represents the fault occurrence.

A fault occurs on the fixed-base manipulator (with index i = 1)
during last phase. In particular, the following fault term is intro-
duced at time t ≈ 35 s

f1 = J
†
M,1ψ with ψ =

[
0 0 1 0 0 0

]T
m/s2 (2.41)

which induces a downwards motion of the manipulator’s end ef-
fector as shown in Figure 2.9.d.

As for the simulation case study, it is considered that, when a
fault is detected, a shutdown procedure is activated.

Figure 2.10 reports the norm of the residuals computed by all
the robots and associated with the faulty robot 1 (solid lines),
i.e., ‖ir1‖, ∀ i, compared with the respective adaptive thresh-
olds (dashed lines), i.e., ‖iµ1‖ ∀ i, which are computed according

to (2.38) by considering ¯̄d = 0.1 and, without loss of generality,
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‖ṽ⋆k(0)‖ = 0. Hence, the figure shows that all the robots are able
to detect the occurrence of the fault without the need for direct
communication with the faulty robot, that is all the robots verify
the condition ‖ir1‖ ≥ iµ1 ∀i after the fault occurrence. In addi-
tion, the norms of the residuals associated with the healthy robot 2
(solid lines) are reported in Figure 2.11. The respective adaptive
thresholds are also reported (dashed lines) which are shown to
always be greater than the residual signals; this verifies that the
fault of one robot does not affect residuals of the other teammates.
Analogous norms are obtained for the residuals of robot 3 which
are not reported here for the sake of brevity.
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Figure 2.10: Evolution of the norm of residual components relative to robot 1
(faulty robot) computed by the 3 robots (solid lines) compared with the re-
spective adaptive thresholds (dashed lines).
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Figure 2.11: Evolution of the norm of residual components relative to robot 2
(healthy robot) computed by the 3 robots (solid lines) compared with the
respective adaptive thresholds (dashed lines).
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Chapter 3

Human multi-robot
workspace sharing

Human
robot

interaction

Close collab.
(Online int.)

Coexistence
Physical
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Pure
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sharing
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Physical
shared
control

Physical
human
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Remote
interaction

Human
demonstr.

(Offline int.)

Teleoperation
(Online int.)

Remote
shared
control

Remote
human
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Figure 3.1: Taxonomy for HRI scenarios where the scenario considered in this
chapter is highlighted in green.

In this chapter, a human multi-robot coexistence scenario is
considered in which pure workspace sharing occurs, highlighted in
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green in the taxonomy Figure 3.1. In this scenario, depicted in
Figure 3.2, humans and robots work side-by-side on independent
tasks. As discussed in the Introduction, this implies the need to
guarantee the primary requirement of human safety at all times
and, thus, to devise real-time replanning strategies that allow to
dynamically adapt the robots’ behavior depending on the human
one to prevent unsafe contacts. Indeed, since in this scenario inde-
pendent tasks are carried out by humans and robots, the human
safety requirement translates into that of human avoidance.

Σw

Figure 3.2: Representation of the system in a human multi-robot workspace
sharing setup. The system is composed of multiple collaborative robots and
human operator. The world reference frame Σw is reported.

Obviously, depending on the constraints of the specific work
context, different strategies, based on various methodologies and
rationales, can be developed to ensure human avoidance. In par-
ticular, in the case the robots are not strictly required to follow
a planned path to carry out their task, gradient-based techniques
can be adopted to adjust the trajectory and drive the manipulators
away from the human operators reducing the probability of colli-
sion. In contrast, when the robots’ task requires the motion along
a specific path to be accomplished, the replanning strategy should
avoid altering the path to ensure human safety, unless strictly
necessary. In this case, in order not to violate the path preser-
vation constraint, trajectory scaling approaches can be leveraged
that only modulate the robots’ velocity along the planned path
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without modifying the latter. Note that this requirement of path
preserving is rather common in industrial settings where it is gen-
erally recommended to follow the desired path without deviating
from it in order to accomplish the robotic tasks, such as in welding
or assembly tasks.

In addition, when multiple manipulators are involved in the
system and work in presence of human operators, the robotic
strategy also needs to handle any possible constraint that the
multi-robot system itself introduces. For example, in the case
of cooperative manipulation tasks, the robots cannot move inde-
pendently from each other when performing actions for human
avoidance, but their motions are coupled and kinematically con-
strained. This coordination is even more challenging when a dis-
tributed architecture is required that allows, as discussed in the
Chapter 2, to improve flexibility and reconfigurability of the work
environment at the expense of higher control complexity, due to
the lack of global knowledge of the system.

The focus of this Chapter is thus to present a general archi-
tecture, incrementally built in [58], [59] and [16], for performing
cooperative tasks with multiple robots working in environments
shared with human operators. In detail, a cumulative safety index
is defined which takes into account the relative motion considering
both position and velocity between the human operator and each
point of each manipulator in the team. Then, a control strategy
based on trajectory scaling is presented to modulate the velocity of
the cooperative task preventing the safety index from falling below
a time-varying minimum threshold; however, in the case velocity
modulation is not sufficient to guarantee the minimum safety in-
dex, an emergency procedure is envisaged which relaxes the robots
cooperative task. The proposed strategy is finally extended to the
decentralized case according to a leader-follower paradigm and is
validated both in a simulation and a real-world setup.

The rest of the Chapter is structured as follows: the main
methodologies for safe workspace sharing in the state-of-the-art
are summarized in Section 3.1, the safety index formulation is de-
vised in Section 3.2 and, building on this, a solution for multi-robot
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trajectory scaling, also characterized by a distributed implemen-
tation, is presented in Section 3.3, finally, simulation and experi-
mental results to validate the proposed approach are reported in
Sections 3.4 and 3.5, respectively.

3.1 Literature review

In case the robotic task does not require to strictly follow a planned
path to be realized, evasive actions that move the manipulators in
the opposite direction from the human operators can be generally
adopted. In this regard, a first possible approach consists in defin-
ing a measure which quantifies the level of human danger and then
in carrying out appropriate evasive actions to minimize it. This
idea is, for example, pursued in [60] where the concept of Danger
Field is introduced. More specifically, first, an index is defined
which assesses the level of human danger with respect to a point-
mass robot on the basis of both relative human-robot distance
and point-mass robot velocity; then, this index is integrated along
the overall structure of the manipulator and is adopted to define
joint space velocity commands used to generate internal motions
(in the case of redundant robots) and to give a reactive evasive
behavior to the robot. In this context, on the basis of the con-
cept of danger field introduced in [61] for a point-mass robot, the
study in [62] considers the different factors that affect the impact
force during a potential collision as a measure of danger: human-
point distance, human-robot relative velocity and robot inertia.
Then, this index is evaluated for each critical point which is the
closest point to the operator for each link, and is exploited in the
definition of a virtual force according to the impedance paradigm
which drives the robot away from the operator. The work in [63]
focuses, instead, on the way the perception of the environment is
performed; indeed, a method based on depth data is defined to
fast compute the distances between the manipulator and possible
obstacles in the workspace. Information regarding these distances
and obstacles velocities are then exploited to generate repulsive ve-
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locity commands in the Cartesian space according to the artificial
potential field theory [64].

Concerning the case of tasks with path preservation con-
straints, the study in [17] proposes a scaling procedure where only
velocity reduction along the nominal path is allowed. In detail, a
constrained optimization problem is solved to minimize the slow-
ing down of the trajectory, while guaranteeing a condition on the
minimum distance between each point of the robot and the hu-
man operator. However, the proposed solution does not account
for the human-robot relative motion, but only considers the robot
velocity in the direction of the human operator; more specifically,
only the maximum value of the human operator velocity can be in-
cluded in a clearance parameter but no measure of his/her actual
velocity in the direction of the robot is explicitly considered. The
work in [65] proposes a trajectory scaling method which relies on
the separation distance between the operator and the robot with-
out considering where their motion is directed: if the separation
distance is above a safe value, no velocity reduction is applied, if
it is less than a dangerous value, zero velocity is imposed or, oth-
erwise, a velocity reduction factor inversely proportional to the
distance is considered. The study in [66] presents an approach
based on dynamical systems which combines a velocity reduction
action with a path reshaping one; more specifically, the former is
based on the human-robot distance and is higher as the distance
decreases, while the latter is such as to reduce the velocity in the
plane normal to the human surface and to project the motion into
the one tangent to the surface, thus avoiding the surface collision.
A trajectory scaling approach for Dynamical Movement Primitives
(DMPs), successfully applied in many learning from demonstra-
tion contexts, is then provided in [67] where velocity constraints
are taken into account.
In addition, in order for the robot to proactively react to the hu-
man behavior, a prediction of his/her intentional motion [68] can
be involved in the avoidance strategy as proposed in [69] where
the human workspace occupancy is predicted and exploited by a
trajectory planner to minimize the penetration cost in it. Finally,
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a hybrid solution that addresses both workspace sharing and phys-
ical interaction can be found in [70], where a reactive controller is
proposed that responds to both virtual and real contact forces.

Note that, although great effort has been dedicated by the
research community to the topic of human-robot safe workspace
sharing, none of the mentioned contributions deal with multiple
manipulator systems working in presence of human operators for
which, as stated above, additional constraints need to be taken into
account. In the following sections, a formulation and a solution
for the latter scenario is provided.

3.2 Assessment of human safety

In order to devise a strategy for enabling safe human multi-robot
workspace sharing, an index is first introduced to asses the human
safety with respect to the team of robots. More specifically, as
shown below, it is built in an incremental way starting from indi-
vidual points on the robotic structures and gradually extending it
to consider all the robots in the team and all the points associated
with human operators. Given the overall human safety index, it is
therefore possible to formulate the problem of safe coexistence as a
problem of maintaining the safety index above a certain minimum
threshold.
The definition of a safety index for a single robot point and a single
human point is first considered. By drawing on the idea of danger
field in [60], the following scalar index is defined that quantifies
the level of human safety with respect to a generic point P of a
robot structure and a point Po of the human operator

f(p, ṗ,po, ṗo) = α1(d) + α2(d, ḋ) (3.1)

where p (ṗ) ∈ R
3 denotes the position (velocity) of the robot

point P , po (ṗo) ∈ R
3 represents the position (velocity) of the hu-

man point Po and d the distance between these two points, (i.e.,
d = ‖p− po‖).

Functions α1 and α2 are generic scalar functions which meet
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the following properties.

Property 1. α1(d) is a continuous monotonically increasing Lips-
chitz function with respect to d and with Lipschitz constant
kL;

Property 2. α2(d, ḋ) is a continuous monotonically increasing
function with respect to ḋ and such that:

(a) lim
ḋ→+∞

α2(d, ḋ) = k, ∀d with k ∈ R
+;

(b) ∂α2(d,ḋ)

∂ḋ
6= 0 ∀d and ∀ḋ 6=∞.

In detail, Property 1 basically states that the level of human safety
increases with the distance d, whereas Property 2 states that func-
tion α2 is such that the safety index increases with ḋ with a slope
that, if required, might be modulated by the distance d. Moreover,
Property 2(a) implies that there exists an asymptotic bound k for
ḋ→ +∞ so as to prevent the safety index to reach a too high value
for high values of ḋ with arbitrarily small values of the distance d;
this feature makes the distance d the highest priority parameter
affecting the level of safety. Finally, Property 2(b) states that, in
practical conditions of ḋ 6=∞, function f is sensitive to variation
of ḋ, i.e. by changing ḋ the value of f can be modified. Multi-
ple relevant points associated with the human operator are now
considered, for example the end points of the links composing the
human skeleton [71]. By following the idea presented in [60], the
cumulative safety index associated with the generic manipulator i
is obtained by integrating the function in (3.1) along the robot
structure and, then, by evaluating it for each human point. To
this aim, the measure of the human safety with respect to the
l th link of the i th robot is computed by integrating f along the
volume Vl of link l, that is

Fi,l =

∫

Vl

f(p, ṗ,po, ṗo) dV. (3.2)

However, in order to make the computation of (3.2) affordable in
practical applications, each link is simplified as a segment starting



50 3. Human multi-robot workspace sharing

at p0i,l and ending at p1i,l such that (3.2) becomes







Fi,l =

∫ 1

0

f(psi,l, ṗ
s
i,l,po, ṗo)ds

psi,l = p
0
i,l+ (p1i,l − p0i,l)s

ṗsi,l = ṗ
0
i,l+ (ṗ1i,l − ṗ0i,l)s

(3.3)

where s ∈ [0, 1] is the segment parameter. At this point, let no

denote the total number of human points and po,j the position
of the j th one. The safety index associated with the j th human
point with respect to the i th manipulator can be easily defined
from (3.3) as

F̄i,j =

ni∑

l=1

Fi,l(p
0
i,l,p

1
i,l, ṗ

0
i,l, ṗ

1
i,l,po,j, ṗo,j) (3.4)

being ni the number of links of the i th robot. By considering
all the human points, the cumulative safety index associated with
robot i can be derived

F̄i =
1

no

no∑

j=1

F̄i,j(qi, q̇i,po,j, ṗo,j) (3.5)

which is finally extended to the team of robots as follows

F̄ =

N∑

i=1

F̄i,
˙̄F =

N∑

i=1

˙̄Fi. (3.6)

In the following, the cumulative safety index F̄ will be also referred
to as cumulative safety field.

Remark 3.1. Note that the approach is not limited to the single
operator case, but the multi-human case is straightforward to tackle
by considering that the no points in (3.5) might belong to different
human operators.

The main problem addressed for the safe human multi-robot
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workspace sharing is the following.

Problem 3.1. Consider a multi-robot system composed of N mo-
bile manipulators performing a cooperative task expressed by means
of a task function σ(x) defined as in (2.13) and for which a desired
trajectory σn(t) is assigned. Moreover, assume that a time-varying
minimum function F̄min(t) for the safety index F̄ (t) in (3.6) is as-
signed. The objective is to properly scale the task trajectory σn(t)
in order to generate a reference trajectory σr(t) which ensures the
safety condition

F̄ (t) ≥ F̄min(t), ∀t (3.7)

to be always satisfied.

The problem formulation requires the definition of the time-
varying threshold F̄min(t). As proved in Appendix B, a possible
choice is to ensure a minimum safety distance between the human
operator and any robot of the team, i.e., such that the condition
F̄ ≥ F̄min also guarantees that the distance d∗ ≥ dmin being d∗

defined as
d∗ = min

∀i, l, s, j
‖psi,l − po,j‖ (3.8)

and dmin a positive constant (see Appendix B for further details).
In addition, a further possibility consists in experimentally cali-
brating the threshold by appropriately measuring the experienced
minimum safety level; to this aim, as instance, the human stress
may be evaluated from the analysis of the heart rate variability,
i.e., the variation over time of the interval between consecutive
heart beats, or any other combination of biometric parameters [72].

3.3 Trajectory scaling approach

In this section, a solution for Problem 3.1 is devised. The pro-
posed approach is schematically summarized in Figure 3.3 and
the basic idea is that, as long as the safety index F̄ (t) is greater
than the allowed minimum value F̄min(t), the nominal trajectory is
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tracked, whereas if the minimum value is reached, a scaling proce-
dure is applied in order to modulate the trajectory velocity with-
out deviating from the nominal path. Then, if the safety condition
is restored (F̄ (t) > F̄min(t)), the nominal trajectory is recovered
whereas, if this modulation is not sufficient to guarantee the safety
condition in (3.7), any emergency procedure is activated, as it will
be shown in Sections 3.4 and 3.5.

Nominal trajectory
tracking (F̄ (t) > F̄min(t))

Scaled trajectory
tracking

Emergency procedure

Trajectory scaling
(F̄ (t) = F̄min(t))

Recovery of the
nominal trajectory

Constraint violation
(F̄ (t) < F̄min(t))

Recovery of the
nominal trajectory

Figure 3.3: Overview of the strategy adopted for the human multi-robot avoid-
ance; transition conditions are detailed in Section 3.3.2.

More in detail, let σn(t) (σ̇n(t), σ̈n(t)) be the nominal tra-
jectory corresponding to the task variables in (2.13), the scaling
procedure is based on the introduction of a monotonically increas-
ing scalar function of time c(t)

c : [t0, tf ] ∈ R→ [t0, tf ] ∈ R (3.9)

being t0 and tf the starting and final time instants of the nominal
trajectory, respectively, and on the definition of a reference tra-
jectory obtained as the parametrization of the nominal one σn(t)
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with respect to the time parameter c(t), that is







σr(t) = σn(c(t))

σ̇r(t) =
∂σn(c(t))

∂c
ċ(t)

σ̈r(t) =
∂2σn(c(t))

∂c2
ċ2(t) +

∂σn(c(t))

∂c
c̈(t).

(3.10)

Note that the reference trajectory is then the one actually tracked
by the robots. The result of this approach is that the path of the
nominal task trajectory is preserved while its time dependence can
be modified; this means that, by modulating the scaling parame-
ter c(t), the nominal trajectory σn(t) may be online scaled along
the nominal path depending on the relative motion of the human
operator and the team of robots, namely on the safety index F̄ (t).
Furthermore, by virtue of the definition in (3.9) and since c(t) is
monotonically increasing, the following conditions on the scaling
parameters must always be met

ċ(t) ≥ 0 (3.11)

c(t) ≤ tf (3.12)

where (3.11) implies that no reverse motion is allowed along the
path, while (3.12) means that, in the case of non-periodic trajec-
tories, the ending point must not be overcome.
Note that the presented solution assumes that either robots are
able to detect and locate the human operator or an external vision
system, as in the experimental setup in Section 3.5, makes this in-
formation available to robots, resorting to approaches like [73] for
example.

The rest of this section is structured as follows. First, the
low level input of each robot to track the cooperative reference
trajectory σr(t) is introduced and, then, a centralized solution
to Problem 3.1, based on the strategy in Figure 3.3, is proposed
which is finally extended to the decentralized framework.
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3.3.1 Robot low-level control

The focus is here on defining the robot low-level control to track
a cooperative reference trajectory σr(t) obtained as in (3.10). Let
qr,i(t) ∈ R

ni (q̇r,i(t), q̈r,i(t)) be the reference joint position (veloc-
ity, acceleration) of robot i, the following assumption is made in
the rest of the chapter.

Assumption 3.1. Each robot is equipped with an inner motion
control loop which guarantees tracking of a reference joint trajec-
tory, i.e., qr,i ≈ qi (q̇r,i ≈ q̇i, q̈r,i ≈ q̈i).

This assumption is realistic when dealing with commercial
platforms and makes the devised solution suitable also for off-the-
shelf robotic platforms for which the input τ i in (2.6) is typically
not directly accessible and only joint or end effector references are
allowed.

Based on the second order kinematic equation in (2.3), the
following virtual model is considered

ẍi = J i(qi)yi + J̇(qi, q̇i)q̇i (3.13)

where yi = q̈i is the input of the assumed virtual model to be
designed so as to track the cooperative reference trajectory σr(t).
As in (2.40), the input yi is designed by adopting a standard closed
loop inverse kinematic law [74] as follows

yi = J
†
i

[

ΓiJ
†
σ

(
σ̈r+kσ,d ˙̃σ +kσ,pσ̃

)
− J̇ iq̇i

]

+ q̈n,i (3.14)

where σ̃(t) = (σr(t) − σ(x(t))) ∈ R
m is the task tracking error,

q̈n,i ∈ R
ni is an arbitrary vector of joint accelerations such that

J i(qi)q̈n,i = 0p which might be exploited to locally increase the
safety field, kσ,d, kσ,p are positive gains and Γi ∈ R

p×Np is a se-
lection matrix defined as in (2.24). By recalling the kinematic
equation (2.3) and the task formulation (2.13), it easily follows
that

Jσ(Jy + J̇ q̇) = Jσẍ = σ̈ = σ̈r+kσ,d ˙̃σ + kσ,pσ̃
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with y =
[
yT
1 , . . . ,y

T
N

]T ∈ R
n, which finally leads to the following

exponentially stable linear second order dynamics

¨̃σ +kσ,d ˙̃σ + kσ,pσ̃ = 0m.

3.3.2 Centralized solution

In this section, a centralized solution to Problem 3.1 is provided
which is based on the strategy in Figure 3.3. The team of robots
is thus coordinated by a central unit having access to all the in-
formation of the system and the objective is to determine how the
scaling procedure is performed in this case, i.e., how to compute
the scaling parameter c(t). For this purpose, by considering the
virtual input yi in (3.14), the time derivative of the safety field
associated with robot i in (3.5) can be shown to be linear with
respect to the scaling parameter c̈(t) and this property will be,
then, exploited to implement the scaling procedure. In detail, the
following lemma holds true.

Lemma 3.1. The derivative of the cumulative safety func-
tion (3.5) associated with the i th robot is linear with respect to
the scaling parameter c̈(t), i.e., it holds

˙̄Fi(t) = µ1,i(t) c̈(t) + µ2,i(t) (3.15)

where µ1,i(t), µ2,i(t) are scalar functions whose expressions are
provided in the proof.

Proof. In order to prove the result, the time derivative of (3.1) is
first considered and the linear dependence of ḟ(t) with respect to
the scaling parameter c̈(t) is shown. Then, the result is extended

to ˙̄Fi. Based on (3.3), ḟ can be computed as follows

ḟ =

(

∂α1(d
s
i,l)

∂dsi,l
+
∂α2(d

s
i,l, ḋ

s
i,l)

∂dsi,l

)

ḋsi,l +
∂α2(d

s
i,l, ḋ

s
i,l)

∂ḋsi,l
d̈si,l (3.16)

being dsi,l = ‖psi,l − po‖, i.e., the distance between the point psi,l
and the human operator po. By differentiating the distance term,
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one obtains

ḋsi,l =
(psi,l − po)T (ṗsi,l − ṗo)

dsi,l
(3.17)

with dsi,l 6= 0. Therefore, by further differentiating (3.17) and by
introducing the following coefficients







β1 =
psi,l − po
dsi,l

dsi,l 6= 0

β2 =−βT
1 p̈o+

‖ṗsi,l−ṗo‖2
dsi,l

−
[βT

1 (ṗ
s
i,l−ṗo)]2
dsi,l

dsi,l 6= 0

d̈si,l can be expressed as

d̈si,l = β
T
1 p̈

s
i,l + β2 (3.18)

which is linear in the acceleration vector p̈si,l. Now, the relation
between the linear acceleration of the point psi,l and the joints
variables of the same robot i is considered, that is

p̈si,l = J
s
i,l(qi)q̈i + J̇

s
i,l(qi, q̇i)q̇i (3.19)

where Js
i,l ∈ R

3×ni is the positional Jacobian matrix associated
with psi,l. By taking into account the virtual input in (3.14), (3.19)
can be rewritten as

p̈si,l =J
s
i,lJ

†
i

[

ΓiJ
†
σ

(
σ̈r+kσ,d ˙̃σ +kσ,pσ̃

)
− J̇ iq̇i

]

+ J s
i,lq̈n,i + J̇

s
i,lq̇i

(3.20)
which, in view of the reference trajectory in (3.10), leads to

p̈si,l = γ1c̈+ γ2 (3.21)

that is linear with respect to c̈ and where the coefficients γ1,γ2 ∈
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R
3 are defined as follows






γ1 = J
s
i,lJ

†
iΓiJ

†
σ

∂σr

∂c

γ2 = J
s
i,l

[

J
†
iΓiJ

†
σ

(
∂2σr

∂c2
ċ2 +kσ,d ˙̃σ + kσ,pσ̃

)

−J †
i J̇ iq̇i

]

+ Js
i,lq̈n,i + J̇

s
i,lq̇i.

By replacing (3.18) and (3.21) in (3.16), the derivative of the point
safety index ḟ can be reformulated as

ḟ = λ1c̈+ λ2 (3.22)

where the expressions of λ1 ∈ R and λ2 ∈ R are







λ1 = (βT
1 γ1)

∂α2

∂ḋsi,l

λ2 = (βT
1 γ2 + β2)

∂α2

∂ḋsi,l
+

(

∂α1

∂dsi,l
+
∂α2

∂dsi,l

)

ḋsi,l.

Therefore, in view of the integration defined in Section 3.2, by
extending the point safety index to the entire structure of the i th
manipulator and by considering all the human relevant points, it
finally holds

˙̄Fi = µ1,i c̈ + µ2,i

with µ1,i ∈ R and µ2,i ∈ R defined as







µ1,i =
1

no

no∑

j=1

ni∑

l=1

∫ 1

0

λ1(p
s
i,l, ṗ

s
i,l,po,j, ṗo,j , qi, q̇i, c) ds

µ2,i =
1

no

no∑

j=1

ni∑

l=1

∫ 1

0

λ2(p
s
i,l, ṗ

s
i,l,po,j, ṗo,j , p̈o,j, qi, q̇i, q̈n,i, c, ċ) ds.

(3.23)
where the dependencies of λ1 and λ2 on their parameters are now
made explicit for the sake of completeness. This completes the
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proof. �

By virtue of Lemma 3.1, it follows that the time derivative of
the cumulative safety index in (3.6), associated with the entire
team, is linear with respect to c̈(t), i.e., it holds

˙̄F (t) = µ1(t) c̈(t) + µ2(t) (3.24)

with µ1(t) =
∑N

i=1 µ1,i(t) and µ2 =
∑N

i=1 µ2,i(t).

The scaling procedure proposed to solve Problem 3.1 can be
now presented. Assume that the initial safety index meets the

safety condition in (3.7), i.e., F̄ (t0) > F̄min(t0), and let ˙̄Fmin(t) be
the time derivative of the minimum safety index. The idea behind
the scaling procedure is that, once the safety index reaches the
minimum value F̄min(t), the parameter c(t) is computed so as to
guarantee that the condition F̄ (t) = F̄min(t) holds. By consider-
ing the time derivative of the safety index, this implies that the

condition ˙̄F (t) ≥ ˙̄Fmin(t) has to be fulfilled when F̄ (t) = F̄min(t).
Thus, by leveraging the linear expression of F̄ (t) with respect to
c̈(t) in (3.24), the lower (c̈min(t)) and upper (c̈max(t)) bounds on
the scaling parameter c̈(t) to meet the safety condition condition
can be derived as follows

c̈max(t) =

{
˙̄Fmin(t)−µ2(t)

µ1(t)
, µ1(t) < 0 ∧ F̄ (t) = F̄min(t)

+∞, otherwise
(3.25)

and

c̈min(t) =

{
˙̄Fmin(t)−µ2(t)

µ1(t)
, µ1(t) > 0 ∧ F̄ (t) = F̄min(t)

−∞, otherwise.
(3.26)

The computed bounds are exploited to compute the scaling pa-
rameters at each time instant. More specifically, two update laws
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are proposed, that are

{

c̈(t) = kc,d (1− ċ(t))
c̈(t) = sat (c̈(t), c̈min(t), c̈max(t))

(3.27)

and {

c̈(t) = kc,d (1− ċ(t)) + kc,p (t− c(t))
c̈(t) = sat (c̈(t), c̈min(t), c̈max(t))

(3.28)

where kc,p and kc,d are positive gains that regulate the velocity of
the trajectory recovery after the scaling phase and once the safety
index is above the minimum threshold F̄min, sat(x, x, x) is any C1

saturation function saturating x in the range [x, x]. The initial
conditions are set to c(t0) = t0, ċ(t0) = 1 and c̈(t0) = 0.
The rationale behind (3.27) is that the first equation continuously
brings ċ(t) and c̈(t) to 1 and 0 respectively, while the second equa-
tion limits c̈(t) in the range [c̈min, c̈max]. Thus, in nominal condi-
tions and after a scaling phase, when no scaling is needed anymore
to meet human safety requirements (and so infinite bounds on c̈
are obtained in (3.25) and (3.26), i.e., c̈min = −∞, c̈max = +∞),
the scaling parameters tend to

ċ(t) = 1, c̈(t) = 0

which means that scaling parameter c(t) evolves with the same
variation as the time t and the nominal velocity is recovered with
a rate depending on kc,d, i.e., σ̇r(t) = σ̇n(c(t)). On the con-
trary, (3.28) implies that in nominal conditions the scaling pa-
rameters tend to

c(t) = t, ċ(t) = 1, c̈(t) = 0

which means that both the nominal velocity and the nominal po-
sition are recovered with a rate depending on kc,p and kc,d, i.e.,
σr(t) = σn(c(t)) = σn(t) and σ̇r(t) = σ̇n(c(t)) = σ̇n(t).
In conclusion, depending on whether or not the cooperative task
requires both the nominal velocity and position to be restored af-
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ter the scaling phase, the update law in (3.28) or (3.27) is selected,
respectively.

Note that, as already stated at the beginning of the section,
the scaling procedure does not generally ensure that the safety
condition in (3.7) is always met since no scaling is allowed when
it leads to violation of constraints in (3.11)-(3.12). As a conse-
quence, an emergency procedure needs to be foreseen until the
safety condition is restored as shown in Figure 3.3.

Finally, it is worth noticing that the scaling procedure might
also be extended to take into account kinematic velocity, accel-
eration and jerk constraints. Indeed, as in [75] and [76], such
constraints can be formulated in terms of acceleration constraints
which are linear with respect to the scaling parameter c̈(t). Thus,
additional bounds for c̈(t) can be derived as in the above and com-
bined with (3.25) and (3.26) so as to deal with both kinematic and
safety constraints where, clearly, the former have higher priority
due to mechanical limits.

3.3.3 Decentralized extension

Centralized approaches as the one presented above are effective in
terms of performance but, as shown in Figure 2.1, they require
a central control unit and/or complete communication among all
robots. However, as discussed in Chapter 2, limitations in phys-
ical realization and scalability of the system may arise from this
requirement. For this reason, a decentralized extension of the de-
vised methodology is developed in this section and the following
problem, extending Problem 3.1, is formulated to the purpose.

Problem 3.2. Consider a multi-robot system composed of N mo-
bile manipulators performing a cooperative task expressed by means
of a task function σ(x) defined as (2.13) and for which a desired
trajectory σn(t) is assigned. Assume also that a central unit is not
present and that each robot has access only to information com-
ing from on-board sensors and from the set Ni of neighbors robots.
Moreover, assume that a time-varying minimum function F̄min(t)
for the safety index F̄ (t) in (3.6) is assigned. The objective is
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to properly scale the task trajectory σn(t) in order to generate a
reference trajectory σr(t) which ensures the safety condition

F̄ (t) ≥ F̄min(t), ∀t (3.29)

is always satisfied and so as to obtain results as close as possible
to those of the centralized case.

In order to solve the above problem, the approach presented
in Section 3.3.2 is extended to a distributed setting by integrating
proper decentralized observers to counteract the lack of global in-
formation. A leader-follower paradigm is adopted where a leader
robot performs the scaling procedure by computing the scaling
parameters c(t), ċ(t), c̈(t), while followers estimate them to deter-
mine the reference trajectory σr(t). The distributed extension is
detailed in the following.

The following assumptions are made in the chapter.

Assumption 3.2. The human position, velocity and acceleration,
namely the vectors po(t), ṗo(t), p̈o(t), are known by each robot at
each time. For this purpose, either each robot may be equipped with
an adequate sensor system or appropriate distributed observers can
be introduced to track this information which may be known only
to some of the robot in the team [77].

Assumption 3.3. The communication graph G (introduced in
Section 2.3) is undirected, i.e., all communication links are bidi-
rectional.

Assumption 3.4. The nominal cooperative task trajectory σn(t)
(σ̇n(t), σ̈n(t)) is known by each robot.

This assumption is not restrictive given the considered frame-
work; however, it can be easily overcome at the expense of trans-
ferring more data between the robots, i.e., in the case the nominal
trajectory is known only by a non-empty subset of robots, the re-
maining ones can estimate this trajectory by means of an observer
of dimension 2m, as proposed for example in [78].
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At this point, observe that, as already detailed in Section 3.3.2,
in order for a leader robot to perform the scaling procedure and
compute the scaling parameter c(t), it is required to estimate both
the cumulative safety index in (3.6) and the coefficients of its
derivative in (3.24). Moreover, by looking at the virtual input
of the i th robot in (3.14), it also follows that each robot requires
the knowledge of the reference task trajectory σr(t) (and of σ̇r(t)
and σ̈r(t)) as well as of the collective state of the multi-robot
system x and its derivative ẋ in order to compute σ(x) and its
derivative, respectively, according to (2.13). Thus, by appropri-
ately estimating these quantities, the input yi in (3.14) is adapted
to the decentralized framework as follows

yi =J
†
iΓiJ

†
σ

(
i ¨̂σr + kσ,d

(
i ˙̂σr − i ˙̂σ

)

+ kσ,p
(
iσ̂r − iσ̂

))

− J †
i J̇ iq̇i + q̈n,i

(3.30)

where iσ̂r,
i ˙̂σr,

i ¨̂σr are now the estimates of σr and of its first and
second derivatives made by robot i, which by virtue of (3.10), are
computed as







iσ̂r(t) = σn(
iĉ(t))

i ˙̂σr(t) =
∂σn(

iĉ(t))

∂ iĉ
i ˙̂c(t)

i ¨̂σr(t) =
∂2σn(

iĉ(t))

∂ iĉ2
i ˙̂c2(t) +

∂σn(
iĉ(t))

∂ iĉ
i¨̂c(t)

(3.31)

being iĉ, i ˙̂c, i¨̂c the estimates made by robot i of the scaling pa-
rameters c, ċ, c̈ computed by the leader robot, and iσ̂, i ˙̂σ are the
estimates of the task function σ, σ̇ in (2.13) computed as

iσ̂ = Jσ
ix̂, i ˙̂σ = Jσ

i ˙̂x (3.32)

being ix̂ and i ˙̂x the estimates made by robot i of the collective
vectors x and ẋ, respectively.
Summarizing, once the leader robot has computed the scaling pa-
rameter c(t) and its first two derivatives, it is necessary for the
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solution to Problem 3.2 to work, that they are estimated by fol-
lower robots in order to determine the reference trajectory accord-
ing to (3.31) and that x and ẋ are estimated by all robots so as
to compute (3.32) and, finally, the virtual input in (3.30). In the
following, the distributed estimators of all required quantities are
detailed.

Distributed estimation of F̄ , µ1, µ2, ∇F̄

The problem of estimating and tracking the cumulative safety in-
dex F̄ (t) in (3.6) and the coefficients µ1(t) and µ2(t) in (3.24) is
first considered. Note that the latter are required to perform the
scaling procedure by the leader robot. To this aim, the following
stacked vector is introduced

ηi(t) =
[
F̄i(t) µ1,i(t) µ2,i(t) ∇F̄ T

i (t)
]T ∈ R

6

with i = 1, 2, . . . , N , and the cumulative variable
η(t) =

∑N
i=1 ηi(t), where ∇F̄i(t) ∈ R

3 represents the cumu-
lative gradient of the safety index F̄i with respect to the positions
of the human points defined as ∇F̄i(t) =

1
no

∑no

j=1∇po,j F̄i(t). In

addition, the cumulative gradient of the safety index F̄ is defined
as ∇F̄ =

∑N

i=1∇F̄i(t), which is introduced in order to make it
possible its exploitation in the case of redundant robots as shown
in Section 3.4. The objective is to define a distributed algorithm
such that each robot tracks in finite time η(t), i.e., such that
there exists a time Tη for which it holds

‖iη̂(t)− η(t)‖ = 0, ∀t ≥ Tη, ∀ i (3.33)

being iη̂(t) ∈ R
3 the estimate of η(t) made by the i th robot. By

leveraging the approach in [79] working for undirected graphs, this
problem can be solved by having each robot running the following
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update law







i ˙̂ν(t) = kη
∑

j∈Ni

sign
(
jξ̂(t)− iξ̂(t)

)

iξ̂(t) = iν̂(t) + ηi(t)

(3.34)

where iν̂(t) ∈ R
3 is an internal state, kη is a positive constant

and sign(·) is the component-wise signum function. By defining
iη̂(t) = N iξ̂(t), it can be proved [79] that iη̂(t) converges to η(t)
in finite time and, then, (3.33) holds true. Therefore, the update
law in (3.34) allows the leader to track η(t) and consequently to
execute the scaling procedure in (3.27) or (3.28).

Note that the observer in (3.34) requires the same quantity η(t)
to be estimated by the follower robots despite it being not strictly
necessary. However, this quantity can be exploited to let each
agent (not only the leader one) monitor the safety field, and/or,
as stated before, to properly handle the possible kinematic redun-
dancy in order to increase the cumulative safety index. Finally,
the related computational load is totally affordable for the system
at hand being η(t) ∈ R

6.

Distributed estimation of c(t), ċ(t) and c̈(t) by the follower
robots

At this point, as explained before, the problem of allowing follower
robots to track the scaling parameters determined by the leader is
consider. Let ς(t) denote the stacked vector of the scaling param-
eters, that is

ς(t) =
[

ĉ(t) ˙̂c(t) ¨̂c(t)
]T ∈ R

3

and iς̂(t) denote the respective estimation made by the follower
robot i. The objective is to define a distributed leader tracking
algorithm such that there exists a time Tc for which it holds

‖iς̂(t)− ς(t)‖ = 0, ∀t ≥ Tc, ∀ i. (3.35)
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To this aim, the solution in [80] is exploited and the following
distributed observer is adopted by the follower robots







i ˙̂ς(t) =Aς
iς̂(t)− kς,1BςB

T
ς P

−1
ς

iρ̂(t)− kς,2 sign
(
P−1

ς
iρ̂(t)

)

iρ̂(t) =
∑

j∈Ni, j 6=l

(
iς̂(t)− j ς̂(t)

)
+ bi

(
iς̂(t)− ς(t)

)

(3.36)
where l is the index associated with the leader robot, i belongs to
the set of the follower robots, bi is 1 if the leader belongs to Ni

(l ∈ Ni) and is 0 otherwise, iρ̂ ∈ R
3 is an auxiliary vector, kς,1

and kς,2 are positive gains, Aς ∈ R
3×3 and Bς ∈ R

3 are matrices
selected as

Aς =





0 1 0
0 0 1
0 0 0



 , Bς =
[
0 0 1

]T

and P ς ∈ R
3×3 is a positive definite matrix. It is worth reminding

that, since the communication graph is undirected and connected,
there always exists a path from the leader to any follower. By
following the same reasoning as in [80], it can be proved that
the distributed observer in (3.36) fulfills the convergence condi-
tion in (3.35) under the connectedness condition of the undirected
communication graph and a proper selection of the gains kς,1 and
kς,2. Thus, by exploiting the components of iς̂(t), the i th robot

can compute iσ̂r(t),
i ˙̂σr(t) and

i ¨̂σr(t) according to (3.31).

Distributed estimation of x and ẋ

Finally, the finite-time observer that allows each robot to estimate
the overall multi-robot state needed for (3.32) is introduced. For
this purpose, let χ ∈ R

2Np denote the stacked vector of the collec-
tive end effector configurations and velocities, i.e.,

χ =
[
xT
1 ẋT

1 . . . xT
N ẋT

N

]T
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and Sp ∈ R
Np×2Np and Sv ∈ R

Np×2Np the selection matrices of the
positional and velocity components in χ, respectively, that is

Sp = IN ⊗
[
Ip Op

]
, Sv = IN ⊗

[
Op Ip

]

such that

Spχ =
[
xT
1 . . . xT

N

]T
, Svχ =

[
ẋT
1 . . . ẋT

N

]T
.

The aim is to design a distributed observer which allows each robot
to track in finite-time the collective state χ, i.e., such that there
exists a finite time Tχ for which it holds

‖iχ̂(t)− χ(t)‖ = 0, ∀t ≥ Tχ (3.37)

being iχ̂ ∈ R
2Np the estimation of χmade by robot i. By resorting

to the approach in [81], the following update law is selected







i ˙̂χ = Aχ
iχ̂+ kχ,1Gχ

iζ̂ + kχ,2 sign
(

Gχ
iζ̂
)

+Bχ
iûχ

iζ̂=Πi(χ− iχ̂) +
∑

j∈Ni

(
jχ̂− iχ̂

) (3.38)

where iζ̂ ∈ R
2Np is an internal state, kχ,1 and kχ,2 are positive

gains,Gχ ∈ R
2Np×2Np is a positive definite matrix,Aχ ∈ R

2Np×2Np

and Bχ ∈ R
2Np×Np are selected as follows

Aχ = IN ⊗
[
Op Ip
Op Op

]

, Bχ = IN ⊗
[
Op

Ip

]

iûχ ∈ R
Np is the observer input defined as

iûχ = J †
σ

(
i ¨̂σr+kσ,d

(
i ˙̂σr − i ˙̂σ

)

+kσ,p
(
iσ̂r − iσ̂

))

(3.39)
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where, by taking into account (3.32), it holds

{
iσ̂ = JσSv

iχ̂

i ˙̂σ = JσSv
i ˙̂χ.

(3.40)

It is worth remarking that, despite the presence of the collective
vector χ, the observer system in (3.38) exclusively depends on lo-
cal information; indeed, the matrixΠi selects only the components
of χ related to the i th robot, i.e.,

Πiχ =
[

0T
2p · · · xT

i ẋT
i

︸ ︷︷ ︸

i th robot

· · · 0T
2p

]T

.

By leveraging the approach in [81] it can be shown that the update
law in (3.38) ensures that (3.37) holds provided that the gains kχ,1
and kχ,2 satisfy the conditions detailed in [81].

The reader is referred to [79], [80] and [81] for further details
concerning the respective observers.
In conclusion, the main components of the devised decentralized
solution for each robot i are reported in Figure 3.4, where dif-
ferent block colors are adopted for leader (in blue) and follower
(in block) if different actions are performed from them. It makes
evident that the information flow of the i th follower robot differs
from that of the leader in the definition of the reference trajec-
tory. More specifically, no execution of the avoidance strategy is
performed but the scaling parameters ς(t) are estimated through
the observer system in (3.36) and are then used in (3.32) to com-
pute the reference trajectory.

3.4 Simulation results

In this section, numerical simulations are provided to corroborate
the devised approach. In detail, first the cooperative multi-robot
task and the safety index generically introduced in (2.13) and (3.1),
respectively, are defined and, then, two case studies are discussed
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Local safety
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Figure 3.4: Decentralized solution. Control scheme associated with robot i.
When different actions are performed by leader and followers, the respective
blocks are denoted with blue and green colors, while the other ones are in
common.

which concern the centralized and decentralized solutions to Prob-
lems 3.1 and 3.2, respectively. A website1 is provided to collect
simulation and experimental results.

3.4.1 Simulation setup

A setup composed of N = 3 Comau Smart SiX manipulators (6
DOFs) mounted on mobile bases (2 DOFs) is considered (see Fig-
ure 3.5) for a cooperative load transportation task performed in
presence of human operators. Therefore, it holds ni = 8 and p = 6
in (2.1). As in Section 2.5.3, Matlab environment and CoppeliaSim
simulator are used for the simulation setup.
The cooperative task function σ(x) is expressed in terms of the
absolute-relative formulation defined in Section 2.4. In the case of
cooperative load transportation task, the absolute variables are
suitable for describing the position and the orientation of the
grasped object, while the relative variables for specifying how the
end effectors are placed around the object in order to grasp it.
Furthermore, in order to perform the proposed human multi-robot
avoidance strategy, the following expressions of functions α1 and

1https://m-lippi.github.io/safe-hmri/

https://m-lippi.github.io/safe-hmri/
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R1

R2

R3

BS1

BS2

PS1

PS2

DS

Σw

Figure 3.5: Simulation setup composed of 3 cooperative robots (Ri,
i = 1, 2, 3), stations for picking (PSi, i = 1, 2) and depositing (DS) loads and
base stations for human operators (BSi, i = 1, 2); the relevant points con-
sidered for the human operator and the world reference frame Σw are also
reported.

α2 that comply with Properties 1 and 2 in (3.1) are adopted

{

α1(d) = k1d

α2(ḋ) = k2 tanh(ḋ)
(3.41)

with k1, k2 ∈ R
+, leading the safety index f to the form

f(p, ṗ,po, ṗo) = k1d+ k2 tanh(ḋ). (3.42)

The rationale behind the choice in (3.41) is to consider a term
which linearly grows with the distance and a term that is increas-
ing with the distance derivative but contributes positively to the
safety index if the distance is growing, i.e., ḋ > 0, and negatively if
the distance is decreasing, i.e., ḋ < 0. Concerning the human rele-
vant points, the following points, as highlighted in Figure 3.5 and
as common in human skeleton tracking approaches [71], are con-
sidered: head, neck, torso, left and right shoulder, elbow, hand,
hip, knee and foot, which leads to no = 15. The safety index
in (3.42) is, then, extended to each human point and to the whole
structure of each manipulator, resulting in the computation of F̄i

according to (3.3), (3.4) and (3.5). The computation time to ob-
tain F̄i is discussed in Section 3.4.5.
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Now, by considering that robots are redundant (as it holds ni > p,
i = 1, 2, 3), the devised strategy might also envisage the exploita-
tion of this redundancy to maximize the level of human safety.
For this purpose, the joint acceleration vector q̈n,i in (3.14) of
each robot is designed as follows

q̈n,i = kn,1(Ini
− J †

iJ i)(q̇0,i − q̇i) (3.43)

being kn,1 a positive constant and q̇0,i ∈ R
ni the vector of joint ve-

locities for achieving arbitrary secondary tasks. A possible choice
of q̇0,i leverages the procedure defined in [60] that maps the cumu-
lative gradient ∇F̄ into desired velocity of the robot links extreme
points and, then, converts them into joint velocities as

q̇0,i = −kn,2
(

ni∑

l=1

J1
i,l

T ∇F̄ + J0
i,1

T ∇F̄
)

(3.44)

with kn,2 a positive constant. With regards to the trajectory scal-
ing procedure, the update law in (3.27) is selected which allows to
recover the nominal velocity when scaling is no longer necessary,
i.e., it is considered that this task does not require to restore the
position after the scaling phase. Concerning the emergency pro-
cedure envisaged in Section 3.3.2 and highlighted in the scheme
in Figure 3.3, a monitored stop procedure is considered. More
specifically, let ts be the time when the emergency procedure is
activated, such a procedure is based on bringing and keeping the
scaling parameters to the following values: c(t) = c(ts), ċ(t) = 0
and c̈(t) = 0, implying that a zero velocity reference trajectory is
imposed when this procedure is active. Moreover, zero null space
velocities are set in order to prevent internal motions (q̇0,i = 0ni

).
In the considered scenario, the motion of the human operator is
characterized by two phases: in the first phase, the human moves
from the configuration in Figure 3.6.a to the base station BS1 as in
Figure 3.6.b while, in the second phase, he crosses the work-cell to
reach the second base station BS2 as shown in Figure 3.6.c. At the
same time, the robot team cooperatively performs two load trans-
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portation tasks: the first one from the top-left conveyor belt PS1

to the right one DS (see Figure 3.6.a) and the second one from
the bottom-left conveyor belt PS2 to DS (see Figure 3.6.c). In
particular during the first transportation, the human operator is
stationary at first base station (Figure 3.6.b), whereas during the
second transportation the human operator is on the path of the
robot team (Figure 3.6.c). A video of the simulation is available

in the respective section of the website1.

a) b) c)

Figure 3.6: Snapshots of the key phases of the simulation: the initial config-
uration of the work-cell is in Figure (a); the first and the second multi-robot
cooperative transport motions are in Figures (b) and (c), respectively.

3.4.2 First case study: centralized solution

Results relative to the centralized architecture described in Sec-
tion 3.3.2 are here reported. Gains are selected as kσ,d = 20,
kσ,p = 100, kc,d = 4.5, kn,1 = 1, kn,2 = 2 in (3.14), (3.27), (3.43)

and (3.44), respectively. Moreover, F̄min = 105 ( ˙̄Fmin = 0) is as-
sumed in Problem 3.1, which is defined by requiring d∗ ≥ 0.1 m
in (3.8) and by following the computations in the Appendix B for
the robots and the safety index at hand.
The combined motion of the human operator and the robots out-
lined above leads the avoidance strategy to mainly modify the
nominal cooperative trajectory in two phases:

1. a scaling phase, indicated with Sc in Figures 3.7, 3.8 and 3.9,
which occurs during the first cooperative transport, when
the robots pass next to the base station where the human
is standing. In this case, the trajectory is slowed down in
order to comply with the minimum safety index;



72 3. Human multi-robot workspace sharing

2. an emergency phase, indicated with Em in the figures, which
occurs during the second cooperative transport, when the
person crosses the nominal path of the robots. In this case,
the velocity modulation is not sufficient to ensure the min-
imum safety index, thus a monitored stop of the robots is
performed as detailed in Section 3.4.1.

The occurrence of these phases depend on how the scaling pa-
rameter c(t) and its derivatives vary over time in response to the
human multi-robot coexistence. In detail, as shown in Figure 3.7,
where the evolution of the scaling parameters (blue lines) with
respect to their nominal values (green lines) is reported, the scal-
ing phase Sc is characterized by a decrease of the coefficient ċ(t)
from its nominal value (namely, 1), thus implying a slowing down
of the nominal trajectory; then, in accordance to the update law
in (3.27), the nominal velocity is always restored after a scaling
phase (ċ(t) = ṫ = 1). Note that no nominal position is restored as
it is assumed, as an example, that the latter is not necessary for
the task at hand and the velocity recovery is sufficient. During the
emergency phase Em, no representation of these parameters is pro-
vided in Figure 3.7 as the task of the robots is completely aborted
(ċ(t) reaches the origin); however, it can be noticed that the emer-
gency phase starts since the scaling procedure leads to violate the
constraint on the reverse motion along the path, that is ċ(t) < 0.
Then, when the safety conditions are restored (F̄ > F̄min) due to
the increasing of the distance of the operator from the robots, the
nominal cooperative trajectory is restored as well.

Such phases are also evident in Figure 3.8, where the evolution
over time of the cumulative safety index F̄ (blue line) with respect
to the minimum value F̄min (red line) is shown. In detail, the scal-
ing phase starts when the safety index reaches the minimum value
and is mainly characterized by the saturation of this index to this
minimum value. Concerning the emergency phase, it determines
the interruption of the robots task and their consequent stop; this
means that, once the robots are stationary, the safety index can
fall below the minimum only if the person continues to approach
the robots. It is worth remarking that this situation has been
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Figure 3.7: First case study. Evolution of the scaling parameters c(t), ċ(t),
c̈(t) (in blue) compared with their nominal values (in green); scaling and
emergency phases are highlighted with Sc and Em, respectively. No plots are
provided during the latter phase since the task is interrupted.

stressed in the simulation for the sake of completeness but that
the values of F̄ below F̄min are only related to the human motion
towards the inactive robots, situation that does not endanger the
human operator.
Finally, Figure 3.9 shows the reference task trajectory σr(t) (in
blue), which is cooperatively tracked by the robots, compared with
the nominal one σn(t) (in green); more specifically, the positional
components of the absolute task variables σ1 are shown, which
highlight how the devised strategy modifies the nominal behav-
ior. In particular, the scaling phase determines the slowing down
of the trajectory and, after this, in accordance to the update law
in (3.27), no recovery of the introduced shift between the nominal
and reference positional trajectories is performed and the latter
evolves with the same variation as t; concerning the emergency
phase, the monitored stop procedure generates a constant trajec-
tory that is equal to the one at the stopping time t ≈ 51 s.
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Figure 3.8: First case study. Evolution of the cumulative safety index (in blue)
with respect to its minimum allowed value (in red); scaling and emergency
phases are marked with Sc and Em, respectively.
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Figure 3.9: First case study. Evolution of the nominal (n, in green) and
reference (r, in blue) trajectories; in detail, the positional components of the
team centroid σ1 are shown (namely, σ1,x, σ1,y, σ1,z); scaling and emergency
phases are marked with Sc and Em, respectively. When the emergency pro-
cedure is active (Em), the nominal trajectory is not shown since its tracking
is interrupted.
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3.4.3 Second case study: decentralized solu-
tion

In this section, it is shown how the same results obtained above
might be obtained within a decentralized solution as described in
Section 3.3.3 which proves the feasibility of the devised decentral-
ized strategy. To this aim, the same setup as the one described
in Section 3.4.1 is considered and the corresponding results are
compared with those presented in Section 3.4.2. Therefore, the
minimum safety index F̄min and the gains involved in the virtual
inputs as well as in the scaling update law are selected as in Sec-
tion 3.4.2. Concerning the gains of the estimators in (3.34), (3.36)
and (3.38), they are selected as kη = 10, kς,1 = 20, kς,2 = 10,
kχ,1 = 5, kχ,2 = 5,

P ς =





0.09 −0.05 0.01
−0.05 0.08 −0.08
0.01 −0.08 0.31



 , Gχ = 2 I2Np.

Furthermore, in order for each robot to exploit its redundancy for
increasing the safety index F̄ (t), the observer system in (3.34) is
exploited. More in detail, the last three components of iη̂ repre-
sent the estimation of the cumulative gradient of the safety index,
namely ∇F̄ , required to compute the null space joint acceleration
vector q̈n,i according to (3.43) and (3.44).
With regard to the communication graph, bi-directional links be-
tween robot 1 and 2 and between robot 2 and 3 are assumed. Fi-
nally, without loss of generality, the robot 1 is set as team leader
(l = 1).
Simulation results are summarized in Figure 3.10 which compares
the evolution of the safety index F̄ obtained through the decen-
tralized architecture (in blue and denoted by F̄d) with the one
obtained with the centralized approach (in green and denoted by
F̄c); the minimum allowed value F̄min = 105 is also shown (in
red). Hence, it is evident that the two plots are almost equal and,
therefore, the same considerations as before regarding the avoid-
ance strategy hold. Note that, even in the case the distributed
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solution is adopted in a real-world scenario, the employment of
finite-time observers guarantees that only during the initial tran-
sient phases (i.e., before the estimation errors reach the origin),
an erroneous solution may be obtained which may not fulfill the
human safety condition. The convergence time mainly depends
on initial estimation error (if the estimation error is zero at the
initial time instant, then it is zero at all times), and it decreases
by increasing the respective gains that are kη, kς,1, kς,2, kχ,1, kς,2 in
(3.34), (3.36), and (3.38), and increases with the number of robots
and the diameter of the communication network. Since the num-
ber of mobile manipulators is always limited in applications that
make sense in practical industrial scenarios, the network topology
is never an issue, while control gains can be made arbitrary large
compatibly with a digital implementation. In addition, in order to
be as conservative as possible, the leader agent could initialize the
estimation of F̄ at a value which is equal or close to the threshold
F̄min in order to start with or be close to a scaling phase; while
the estimation of the scaling coefficient c is never an issue since
it is initialized by all robots at the same right value (i.e., t0) and
then, the estimation error is always zero. As a further conservative
solution, a waiting time with duration equal to the maximum con-
vergence time can be introduced at the start-up of the system to
guarantee that all the quantities are properly tracked afterwards.
The maximum convergence time can be computed assuming that
the robots initial workspace is limited in a certain region, as realis-
tic in industrial settings with collaborative robots. Moreover, the
dependence of the settling time from the initial conditions might
be further released if fixed-time observers are considered, which
might be object of future work.

3.4.4 Comparison with other approaches

In this section, the proposed approach is validated against other
possible approaches to the same problem tackled in this chap-
ter. By leveraging and extending the fluency metrics in [15], the
following metrics are considered to quantitatively and compactly
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Figure 3.10: Second case study. Evolution of the cumulative safety index F̄d

(in blue) in the decentralized case with respect to its minimum allowed value
F̄min (in red) and the cumulative safety index obtained with the centralized
strategy F̄c (in green). A zoom of the evolution of these indexes in the interval
[41, 42]s is provided. Scaling and emergency phases are indicated with Sc and
Em, respectively.

compare the proposed method with baseline solutions:

(M1) Total execution time, that is the time to complete the entire
nominal path;

(M2) Robots idle time, that is the amount of time in which the
robots task is interrupted;

(M3) Time of concurrent motion, that is the amount of time in
which both robots and human are moving simultaneously
normalized with respect to the human motion duration;

(M4) Path constraint satisfaction, that is the amount of time in
which the nominal path is followed;

(M5) Average safety index.

In particular, metric (M4) reflects the constraint to preserve as
much as possible the nominal path, while metric (M5) condenses
information about the human-robots relative motion. In addition,
the robots are considered to be in idle state when either the path
is abandoned or no motion is made along it.
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Table 3.1: Comparison with baselines (best results in bold)

Method (M1) [s] (M2) [%] (M3) [%] (M4) [%] (M5)
ES baseline 88.1 50 28.3 100 169
EA baseline 90.8 52.3 35.3 47.7 180.7
Proposed 66.8 4.6 100 100 127.4

Two baseline solutions are thus introduced against which the pro-
posed method is compared. First, the Emergency Stop (ES)
baseline is considered which performs a monitored stop of the
robots along the nominal path when the safety index F̄ in (3.6)
reaches the minimum safety F̄min and recovers the task when
F̄ > F̄min +∆F̄ , with ∆F̄ > 0. Second, the Evasive Action (EA)
baseline is analyzed which resorts to the approach in [59, Section
4.2] and consists in relaxing the constraint on the nominal path
maintenance. To this aim, the absolute position of the object is
modified according to an impedance-based dynamics whose vir-
tual force depends on the gradient ∇F̄ (t) of the cumulative safety
index and on its value F̄ (t). This allows to respect the kinematic
constraint introduced by the tight connection which requires the
relative variables σ2 to be constant, while allowing possible vari-
ation of the absolute ones σ1. The reader can refer to [59] for
further details which are here omitted for the sake of brevity.

Table 3.1 summarizes the comparison between the proposed
method and the two baselines (∆F̄ = 10 is set for ES) in terms
of metrics (M1)-(M5) in the same simulation scenario of Sec-
tion 3.4.1. In particular, it shows that the proposed approach
outperforms the baselines with respect to all metrics except the
average safety index (M5). This is motivated by the fact that the
proposed approach does not require to abort the task when the
safety index reaches the minimum value, but rather tries to con-
tinue the task by modulating the velocity along the path while
ensuring the safety index does not fall below F̄min. In contrast,
the EA baseline achieves best average safety index as it allows
to modify the path to increase human safety differently from the
other methods. Concerning the other metrics, the strategy not to
interrupt the task allows to significantly reduce the total execution
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Table 3.2: Real-time computation analysis

# points Computation time[s] Integration error
50 2.27 · 10−5 ± 6.95 · 10−9 4.2 · 10−4 ± 4.12 · 10−5

100 3.01 · 10−5 ± 1.36 · 10−8 2.05 · 10−4 ± 2.01 · 10−5

500 8.84 · 10−5 ± 6.65 · 10−8 3.23 · 10−5 ± 3.17 · 10−6

1000 1.61 · 10−4 ± 1.33 · 10−7 1.08 · 10−5 ± 1.06 · 10−6

1500 2.34 · 10−4 ± 1.99 · 10−7 3.59 · 10−6 ± 3.53 · 10−7

time (M1) and the robots idle time (M2) as well as to maximize
the human-robots concurrent motion time (M3) (100%) compared
to the baselines. A small percentage of inactivity is recorded in
the proposed method simulation as the emergency stop procedure
is activated when the human crosses the robots nominal path. Fi-
nally, the proposed method as well as the ES baseline ensure by
construction that the path constraint (M4) is satisfied.

3.4.5 Computational issues

As discussed in [60], a trade-off exists between accuracy and speed
of computation of the cumulative safety index F̄ , especially when
non-integrable functions α1 and α2 are used in (3.1). Therefore,
real-time computation issues are investigated in this section, and
the analysis is carried out on a PC with standard hardware con-
sisting of Intel Core i7-2.4GHz processor and 8GB RAM. The
case of single Comau SmartSiX and single representative point for
the human is considered. Forward Euler integration is adopted
for computing the safety index and each link is discretized with
a number of points ranging in the set P = {2, 3, . . . , 2000}. For
each discretization parameter in P, 5 · 105 computations of the
safety index, randomly varying human and robot configurations,
are performed to compute mean values and standard deviations.
Table 3.2 summarizes results on how the number of points for
numerical integration affects the computation time as well as the
relative integration errors by assuming as baseline the safety value
obtained with max{P} points, i.e., 2000 points (by considering
more points, the value of the field does not significantly change).
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More specifically, although the computation times increase with
the number of points, they are shown to be fully compatible with
real-time execution on standard PCs also considering a high num-
ber of points. This is in view of the fact that typical robot sample
time is greater than or equal to 10−3 s (as reported for example in
Section 3.5). Concerning the relative errors, by choosing about 350
points in set P, a mean value lower than 0.005% (with standard
deviation lower than 5.3 · 10−6) is measured with a computational
time less than 10−4 s. By virtue of these results, it follows that the
computational load is totally affordable still preserving high accu-
racy in the computation. Numerical integration with 400 points
(having mean computation time 6.8 · 10−5 s) was considered for
real-time experiments in the following.

Finally, note that, when the distributed architecture is
adopted, each robot only computes its own contribution F̄i lead-
ing to an inherently parallel and distributed computation, i.e., the
computational burden for F̄ does not increase with the number of
robots.

3.5 Experiments

Figure 3.11: Experimental case study. Picture of the work-cell composed
of two Comau SmartSiX robots (red robots) and one UR10 robot (ceiling
mounted and gray robot) equipped with a Kinect sensor at its end effector.
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The proposed solution has been validated on the setup shown
in Figure 3.11. The work-cell is composed of two (N = 2) Comau
Smart SiX robots (6 DOFs) mounted on a common sliding track (1
DOF), that have the role of workers, and one UR10 from Universal
Robots (6 DOFs) equipped with a RGB-D Microsoft Kinect sensor
for scene analysis, that has the role of watcher. Due to the limited
dimension of the work-cell (see Figure 3.11), the redundant de-
grees of freedom introduced by the sliding track are not exploited
in the experiment (i.e., n1 = n2 = 6 for both the Comau robots).
Concerning the control of the Comau robots, the open architecture
of the respective controllers, namely the C4G controllers, is used.
This architecture allows to integrate a standard PC featuring a
Linux real-time operating system with the robot control unit. In
the considered work-cell, the two workers are connected via Eth-
ernet to the same PC and exchange data at a rate of 2ms; the
PC is then in charge of acquiring the data from robot controllers
(e.g., joint positions, velocity and currents), executing the human
multi-robot avoidance strategy and finally setting the joint refer-
ences back to the C4G controllers. It is worth highlighting that,
since only two robots are present (so the hypothesis of connected
communication graph would also make the graph complete), the
centralized approach in Section 3.3.2 has been considered. Con-
cerning the UR10, it is controlled by a different PC, equipped with
ROS middleware and standard Linux operating system, which is
in charge of controlling the robot motion at a rate of 8ms and
performing image analysis computations to monitor the work-cell
with respect to the human presence. More specifically, the human
skeleton is tracked by using the OpenNI tracker package 2 which al-
lows to retrieve the configurations of the human head, neck, torso,
left and right shoulder, elbow, hand, hip, knee and foot. With-
out loss of generality, only one point associated with the human
operator is considered (no = 1) and it is selected to coincide with
that of the right hand; this choice allows to better understand the
robots behavior in the video experiment. The watcher robot is
then moved in such a way as to continuously inspect the robots

2http://wiki.ros.org/openni_tracker

http://wiki.ros.org/openni_tracker
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working area and, once an operator is detected, in such a way as
to maintain a favorable distance and viewing angle from him/her.
The human hand position is, then, transferred to the PC control-
ling the Comau robots in order to execute the avoidance strategy.
Finally, human velocity and acceleration are obtained by filtering
the position data and by applying finite difference. In this regard,
different solutions, also possibly relying on Inertial Measurement
Unit systems [82], may be included, but are not examined hereby
being out of the scope. Finally, both PCs have the characteristics
listed in Section 3.4.5. The experiment consists in performing a
cooperative transportation of a box by the workers, as shown in
Figure 3.12, while a human operator can move in their proximity.

Figure 3.12: Experimental case study. Representation of the cooperative
transportation task by the Comau robots. A human operator (on the right)
moves nearby and his right hand is selected as representative point.

The same absolute-relative formulation as for the simulation case
study is here adopted to define the workers’ task and the nominal
trajectory is designed so as to perform a periodic circular motion
with radius 0.15 m in the vertical plane normal to the sliding track.
A video of the experiment is available in the respective section of
the website1.
Concerning the human multi-robot avoidance strategy defined in
Section 3.3.2, details about the safety index, the scaling update
law and the emergency procedure are now provided. As regards
the trajectory scaling, differently from the simulation case stud-
ies, the update law in (3.28) is adopted which implies that both
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position and velocity are recovered after a scaling phase. Finally,
concerning the emergency procedure in Figure 3.3, the approach
of the EA baseline in Section 3.4.4 is adopted.
Parameters in (3.14) and (3.28) are selected as follows kσ,d = 20,
kσ,p = 100, kc,d = 1, kc,p = 1, whereas a constant minimum value
F̄min = 24 is considered in Problem 3.1, which is tuned on the ba-
sis of the experimented human level of safety.
Figures 3.13-3.15 report the experimental results. According to
the scheme in Figure 3.3, depending on the relative motion of the
cooperative robots and the human operator, scaling phases, in-
dicated with Sc, or emergency phases during which the task is
aborted, denoted by Em, occur.
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ċ

c̈

t

ṫ
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Figure 3.13: Experimental case study. Evolution of the scaling parameters
(in blue) with respect to the nominal ones (in green); scaling and emergency
phases are highlighted with Sc and Em, respectively. When the emergency
procedure is active (Em), no plots are provided since the task is aborted.

Figure 3.13 shows how the scaling parameters c(t), ċ(t), c̈(t) (in
blue) vary over time in relation to the nominal values t, ṫ = 1, ẗ = 0
(in green), respectively. In detail, when the first scaling phase Sc

starts at time t ≈ 27 s, a slowing down of the trajectory occurs
(ċ(t) < 1) and a value close to zero is reached at time t ≈ 28 s;
then, both the nominal velocity and position are restored at time
t ≈ 37 s, i.e., it holds c(t) = t and ċ(t) = 1; after this, the velocity



84 3. Human multi-robot workspace sharing

starts again to be reduced until time t ≈ 41 s when the constraint
on reverse motion is violated, i.e., ċ(t) reaches a negative value,
causing the activation of the emergency procedure. When the lat-
ter is active, no evolution of the scaling parameters is provided
since the robots task is aborted; then, since it ends with zero ve-
locity (and position equals to that at the aborting time t ≈ 41 s),
the nominal values of the scaling parameters are recovered. A
scaling phase also occurs between t ≈ 57 s and t ≈ 76 s, where the
trajectory is first decelerated, then accelerated and finally again
decelerated along the nominal path. In particular, at time t ≈ 75 s
the coefficient ċ(t) reaches a negative value and the task is aborted
via a proper emergency procedure. It is worth noticing that, as
expected from the update law in (3.28) and differently from simu-
lation results, the scaling procedure always restores both position
and velocity to their nominal values.
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Figure 3.14: Experimental case study. Evolution of the cumulative safety
index (in blue) with respect to its minimum allowed value (in red). At time
t ≈ 16 s the human operator enters the work-cell; scaling and emergency
phases are marked with Sc and Em, respectively.

Starting from the time the human enters the work-cell (at
t ≈ 16 s), the evolution of the cumulative safety index F̄ (t) (in
blue) with respect to its minimum value F̄min (in red) is reported in
Figure 3.14. Analogously to the simulative results in Section 3.4,
when the scaling procedure is active, the safety index is mostly
saturated at the minimum value; whereas when the emergency
procedure is active, an increase of the safety index is registered at
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its beginning due to the relaxation of the constraint on the nom-
inal path maintenance. The threshold is, then, overcome at time
t ≈ 42 s when the robots stop since they reach the boundary of
the cooperative workspace and the human operator keeps moving
towards them; however, as already stressed in the description of
the simulation results, this situation does not endanger the opera-
tor because of robots zero velocity. Finally, Figure 3.15 shows the
reference trajectory (in blue), obtained as output of the avoidance
strategy reported in Figure 3.3, with respect to the nominal one
(in green). In particular, the positional part of the absolute task
variable σ1 (the orientation part and σ2 are constant over time)
is reported which makes evident the action of the avoidance strat-
egy: during the scaling phase the reference trajectory is mainly
slowed down with respect to the nominal one, whereas during the
emergency phase, starting from the position at time t ≈ 41 s, it
is modified according to an impedance based dynamics and then,
when the safety index allows it, the same position of time t ≈ 41 s
is restored.
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Figure 3.15: Experimental case study. Evolution of the nominal (n, in green)
and reference (r, in blue) trajectories of the team centroid position (namely
σ1,x, σ1,y, σ1,z); scaling and emergency phases are marked with Sc and Em,
respectively. When the emergency procedure is active (Em), the nominal
trajectory is not shown since its tracking is interrupted.
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Chapter 4

Human multi-robot
physical collaboration

Human
robot

interaction
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(Online int.)
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Physical
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shared
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Physical
human
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Remote
interaction

Human
demonstr.

(Offline int.)

Teleoperation
(Online int.)

Remote
shared
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Remote
human
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Figure 4.1: Taxonomy for HRI scenarios where the ones considered in this
chapter are highlighted in green.

This chapter investigates the scenario of physical collaboration
between robots and human operators where intentional exchange
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of wrenches between them is required to cooperatively carry out
assigned tasks. As highlighted in green in the taxonomy in Fig-
ure 4.1, two main types of physical interaction are addressed which
differ on the human-robot reciprocal role: (i) shared control and
(ii) human guidance, also referred to as human assistance. More
specifically, in the former scenario the robot autonomy is preserved
to a certain extent and, as it happens in the case of human-human
interaction, equal roles are attributed to both robotic and human
counterparts. In contrast, the latter scenario foresees that the
robot is aimed at assisting the human operator regardless of its
tasks, i.e., it relies on a leader-follower paradigm in which the hu-
man acts as leader, and the robot only plays a follower role aimed
at minimizing the leader effort. As discussed in [19] and [83], the
type of interaction to be realized in a given application depends
on the nature of the application itself and whether it requires the
robot to be fully driven by the person or not.

Σw

Σh ≡ Σo ≡ Σr,i

i = 1, 2

Figure 4.2: Representation of the system in a human multi-robot physical
interaction setup. The system is composed of multiple robots co-manipulating
a rigid object with a human operator. The reference frames Σw, Σh, Σo and
Σr,i are reported.

Moreover, as highlighted throughout the previous chapters,
also in this case the collaboration can benefit from the presence of
multiple robots, which improve the overall system performance in
terms of payload and robustness with respect to the single robot
case. Therefore, a scenario of physical human multi-manipulator
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interaction is considered where the human and the robots co-
manipulate the same object, as depicted in Figure 4.2. In this
context, the following additional issues need to be addressed with
respect to the case of single robot single human interaction:

1. since the human does not directly interact with one of the
robots but with the co-manipulated object, the human in-
teraction wrench needs to be estimated for pursuing any in-
teraction strategy. The problem is particularly challenging
when no force sensors are adopted to measure the human
wrench and in absence of a central control unit;

2. internal wrenches are required to be regulated during co-
operative manipulation in order not to damage the object
and/or the manipulators. In this regard, the computations
of internal and the human-robot wrenches are coupled;

3. at low level, specific actions need to be included to synchro-
nize the tracking errors, counteract model uncertainties and
reduce internal wrenches in transient phase.

Despite its potentiality, few studies are available in literature in
regard to this scenario which this thesis aims to investigate.

Furthermore, when physical human-robot interaction is al-
lowed, a further aspect needs to be taken into account. In par-
ticular, both intentional and accidental contacts between human
and robot might occur due to the complexity of tasks and environ-
ment, the uncertainty of human behavior, and the typical lack of
awareness of each other actions. The two cases obviously require
the robot to adopt different reaction strategies: compliant behav-
iors in the case of intentional contact, as described in the following
sections of the chapter, and avoidance actions in the case of acci-
dental contact, as discussed in Chapter 3. Therefore, in order to
undertake a suitable reaction, it is necessary to endow the robot
with the ability of detecting the occurrence of a contact and, then,
of recognizing its type [84].

This chapter first reports the main relevant related work
for physical interaction (Section 4.1) and presents the system
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modeling in case of co-manipulation of the same object (Sec-
tion 4.2). Then, strategies for human multi-robot shared control
(Section 4.3) and assistance (Section 4.4) addressing the issues 1-
3 are presented. Finally, the problem of detecting and classifying
contacts (Section 4.5) is tackled.

4.1 Literature review

4.1.1 Human-robot physical interaction

Whatever the specific interaction (shared control or human assis-
tance), the primary requirement in a physical interaction scenario
is to carry out a careful control of the interaction forces so as not
to cause damage to the human operator. In this regard, admit-
tance or impedance controllers [85] have laid the foundations as
they confer a compliant behavior to the robot, which is generally
rigid from a mechanical point of view. This is achieved by impos-
ing a mass-spring-damper dynamics to the robot end effector or,
in general, to its structure without the need of integrating ad-hoc
mechanical components such as in [86]. Starting from these con-
trollers, several strategies have been then developed in order to im-
prove the interaction to a certain extent. As a common approach,
variable admittance controllers have been proposed in literature
in which admittance parameters, i.e., mass-spring-damper coeffi-
cients, are dynamically adapted on the basis of some aspects of the
interaction. Stability issues arising in the case the human opera-
tor stiffens his/her arm are addressed, for instance, in [87, 88, 89].
More specifically, an instability index is proposed in [87] in which
the high-frequency oscillations of the human force are interpreted
as a measure of an unstable behavior of the coupled system and is
exploited for varying the damping and inertia parameters. Differ-
ently, energy tanks theory is leveraged in [88] to guarantee passiv-
ity of the overall system at all times, whereas an online estimate
of the human stiffness is proposed in [89] to adapt the admittance
damping accordingly.
Furthermore, depending on the interaction to be accomplished,
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specific strategies can be included. For example, the estimation
of human intentions in assistance tasks can be exploited to enable
the robot not only to passively comply to the interaction forces
but also to proactively participate to the motion. In this case,
the robot reference trajectory is adjusted on the basis of the esti-
mate of the human intended motion in order to minimize his/her
effort. This approach is pursued in [90] where Neural Networks
(NNs) are adopted for estimating the human desired trajectory,
which is then used as reference trajectory in the spring term of
an admittance controller. Alternatively, authors of [91] build on
the assumption that human point-to-point motion obey to a min-
imum jerk trajectory and online estimate the parameters of the
latter. Human prediction uncertainty is then explicitly taken into
account in [92], where human behavior is modeled as a Gaussian
Process and a risk-sensitive optimal control problem is formalized.
Finally, the approach presented in [93] generates the admittance
parameters as the output of a neural network trained to minimize
the interaction forces. Differently from the above methods and
as detailed in Section 4.4, the human assistance problem is for-
mally stated and solved in the following and a multi-robot setup
is considered.

Concerning the shared control paradigm, it arises in teleop-
eration scenarios [83] where the human operator typically pro-
vides control inputs via haptic interface, while the robotic system
preserves autonomous behaviors, as instance, for collision avoid-
ance [94]. More recently, this paradigm has also been successfully
explored in the context of physical human-robot interaction. A
solution based on game theory is presented in [95] where human
and robot are assumed to optimize the same cost function. In
the proposed approach, the human and robot roles are continu-
ously adapted on the basis of the human exerted force: the higher
the force, the higher the influence of the human intended mo-
tion. The work in [96] proposes to achieve the same behavior by
deforming the robot trajectory in dependence of the exerted hu-
man forces and formulates a constrained optimization problem to
the purpose. A heuristic agreement index is designed in [97] so
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that, if the forces of robot and human agree, the robot acts as
leader, otherwise as follower. Finally, a solution based on data-
driven stochastic modeling is devised in [92] where a risk sensitive
optimization problem is defined to tackle the uncertainty in the
human behavior model. Note that all the aforementioned works
but [97] refer to the interaction with a single robot and heuristics
are generally employed. As detailed in the following, the solution
devised in Section 4.3 aims to overcome the limitations of existing
approaches by defining a framework for multi-robot systems based
on a novel Linear Quadratic Tracking problem taking into account
human and robot intentions.

4.1.2 Contact detection and classification

For the purpose of detecting and recognizing the nature of hu-
man contact, the dynamical model of the robot and joint torque
sensors, as in [98], or motor currents as in [99] are generally ex-
ploited. Other approaches, like the one in [100], leverage the dif-
ferent frequency characteristics of accidental and intentional con-
tacts to achieve classification in the frequency domain. Additional
solutions might also leverage proper artificial skins for robots as
in [101, 102].

Classical approaches, like the ones cited above, requires thresh-
olds to be manually tuned in order to take into account sensor noise
and different type of contacts, which results in poor flexibility and
robustness of the overall system. For this reason, data-driven ap-
proaches have been devised in recent years for contact detection
and classification, due to their flexibility and capability of handling
the non-linearity and variety of the human-robot contact. In [103]
and [104], NNs are used to detect sole accidental collisions on the
basis of data coming from joint torque sensors. The same objec-
tive is achieved in [105] by using a deep learning approach which
requires the tuning of a moving time window. The study in [106]
uses Convolutional Neural Networks (CNNs) to detect also inten-
tional contacts on the basis of joint velocity and external torque
data in a moving time window, but the approach limited to the
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upper and lower parts of the robot. A hybrid solution for classifi-
cation is instead presented in [107] where a thresholding method is
considered to detect contact, while Support-Vector Machines are
adopted to recognize the type of interaction. Methods based on
thresholding and neural networks are compared in [108] to detect
and localize the contact and a frequency-based neural network is
defined to distinguish contact with hard or soft environment. Fi-
nally, a control low combining tracking performance and compliant
behavior is presented in [109] where possible external impacts are
explicitly taken into account. However, no distinction is made on
the type of contact, whether intentional or not.

Note that the above approaches consider that the only source
of interaction of the robot with the environment is given by the hu-
man operator, thus ignoring the case in which the robot does not
work in free space but needs to interact with the environment to
perform its task. Moreover, no possible constraints on the robot
motion are taken into account. The solution proposed in Sec-
tion 4.5 tries to overcome these limitations by defining a general
framework capable of dealing with robotic tasks that involve in-
teraction with the environment as well as with robotic constraints
that can be task-dependent.

4.2 Physical interaction system mod-

eling

This section provides the model of the human arm end-point as
well as of the co-manipulated object. Consider a system composed
of N serial-chain mobile manipulators which tightly grasp a rigid
object and a human operator that co-manipulates the same object
as in Figure 4.2. In the following, the term human interaction is
referred to the case in which the human operator exerts, through
his/her hand, forces on the object that is tightly co-manipulated
by the multi-robot system. In this way, the human is able to
modify the object motion according to his/her desired motion. In
the figure, the following reference frames are defined:
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• Σw is the world reference frame;

• Σo is the object reference frame;

• Σr,i is the reference frame attached to the end effector of the
i th robot;

• Σh is the reference frame attached to the human arm end
point.

Without loss of generality, the following assumption is consid-
ered in the rest of the chapter.

Assumption 4.1. Robot kinematics and dynamics in the oper-
ational space are referred to the human arm end point frame Σh

(i.e., Σr,i ≡ Σh, ∀ i). Analogously, the object dynamics is referred
to the same frame Σh (i.e., Σo ≡ Σh).

The above assumption is not unrealistic in many practical sce-
narios since the geometry of the object is known or can be esti-
mated beforehand.

4.2.1 Human arm end point modeling

The model assumed for the human arm end point, which will be
referred to as human model, is

−Dhṗh +Kh(ph,d − ph) = fh (4.1)

where fh ∈ R
m is the vector of forces exerted by the human,

ph ∈ R
m is the human arm end point position, which will be re-

ferred to as human position, with respect to Σw, ph,d ∈ R
m is

the human desired position and Dh ∈ R
m×m and Kh ∈ R

m×m

are the matrices that regulate the human damping and stiffness
actions, respectively. As stated, for example in [110] and [111],
these matrices are generally time-varying and their variation de-
pends on the activation of the human arm muscles. The model
in (4.1) is commonly assumed as representative for the human
arm end point, e.g. in [89, 90, 112], and its validation can be
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found, for instance, in [110, 113] with the inertial term shown to
be negligible compared to damping and stiffness. Moreover, by
following the assumptions in [89, 112, 114], the decoupling of the
impedance parameters in the different directions is assumed, i.e.,
Dh = diag(dh) and Kh = diag(kh) with dh ∈ R

m and kh ∈ R
m.

Then, the model in (4.1) can be rewritten as

Y h(ph, ṗh)πh = fh (4.2)

with
Y h = [−diag(ṗh) −diag(ph) Im] ∈ R

m×3m

πh = [dT
h kT

h pTh,dKh]
T ∈ R

3m.
(4.3)

It is worth remarking that the human parameters in πh are un-
known and might be time-varying.
Finally, the human wrench vector is defined as hh = Ghfh ∈ R

p

with Gh = [Im Om]
T ∈ R

p×m.

4.2.2 Object modeling

Considering the scenario in Figure 4.2, the dynamics of the rigid
object can be derived as follows

M oẍo +Co(xo, ẋo)ẋo + go =
∑N

i=1
Gihi + hh (4.4)

where xo =
[
pTo φT

o

]T ∈ R
p represents the configuration in terms

of position po and orientation φo of the object reference frame Σo

with respect to Σw,M o ∈ R
p×p is the inertia matrix, C ∈ R

p×p is
the matrix of centrifugal and Coriolis terms, go ∈ R

p is the vector
of the gravity terms, Gi ∈ R

p×p is the grasping matrix associated
with the i th robot for which, in light of Assumption 4.1, it holds
Gi = Ip, ∀i.
By denoting with h the stacked vector of the interaction wrenches
and with G the collective grasping matrix, i.e.,

h = [hT
1 . . . hT

N ]
T ∈ R

Np, G = [G1 . . . GN ] ∈ R
p×Np
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the interaction wrenches can be divided into external he ∈ R
Np

and internal hint ∈ R
Np components [78], i.e., those that con-

tribute and do not contribute, respectively, to the object motion
for which it holds

h = he + hint = G
†Gh+ (INp −G†G)h. (4.5)

Finally, the following assumption is considered in the chapter.

Assumption 4.2. The kinematic and dynamic parameters of the
manipulated object model are known.

This hypothesis can be easily overcome by resorting to ad-hoc
techniques that allow to distributively estimate these parameters
by properly interacting with the object like in [115, 116].

4.3 Shared-control scenario

The first human multi-robot physical interaction scenario that is
analyzed is the one of shared control, in which, as shown in Fig-
ure 4.2, humans and robots physically interact through the co-
manipulation of a rigid object and peer roles are preserved between
these entities. This interaction, as previously discussed, resembles
the one that occur in human-human physical interactions. In order
to realize this shared control, this section presents a framework,
based on [117], which resorts to an optimization formulation and
leverages the human model to online estimate its parameters.

More specifically, based on the above modeling, the following
problem is formally addressed.

Problem 4.1. Consider a multi-robot system composed of N ma-
nipulators rigidly grasping an object which a human operator is in-
teracting with. Assume that a central unit is not available and that
a robots’ desired trajectory xr,d ∈ R

p (with derivative ẋr,d ∈ R
p)

is assigned to the object as well as a desired internal wrench
hd
int ∈ R

Np is given. The objective is to design the robot con-
trol input ui (i = 1, 2, . . . , N) in (2.10) such that the manipulated
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object behaves according to the following dynamics

M vẍv = uv (4.6)

where M v ∈ R
p×p is the virtual inertia matrix,

xv =
[
pTv φT

v

]T ∈ R
p is the configuration of the virtual ob-

ject and uv ∈ R
p represents the virtual input to be defined so as

to optimize the following cost function

J =
1

2

∫ +∞

t0

(

(x̄v−x̄r,d)
TQr,d(x̄v−x̄r,d)

︸ ︷︷ ︸

i

+uT
vRvuv
︸ ︷︷ ︸

ii

+(x̄v−x̄h,d)
TQh,d(x̄v−x̄h,d)

︸ ︷︷ ︸

iii

+ fT
hRhfh
︸ ︷︷ ︸

iv

)

dt
(4.7)

where x̄v =
[
xT
v ẋT

v

]T ∈ R
2p is the aggregate vector of state,

x̄r,d=
[
xT
r,d ẋT

r,d

]T ∈ R
2p and x̄h,d =

[
pTh,d 0T

2p−m

]T∈ R
2p are the

aggregate vectors of the robots and human desired trajectory, re-
spectively, Rh ∈ R

m×m and Rv ∈ R
p×p are symmetric positive def-

inite matrices, Qr,d ∈ R
2p×2p is a symmetric positive semi-definite

matrix, Qh,d ∈ R
2p×2p is defined as

Qh,d = S
TW h,dS, S =

[
Im Om×2p−m

Om×2p−m Im

]

(4.8)

being W h,d ∈ R
2m×2m a symmetric positive semi-definite weight-

ing matrix.
In addition, internal wrench regulation is required, i.e.,
hint → hd

int.

The rationale behind (4.7) is to continuously combine the
robots desired trajectory for the object (i) with the human de-
sired one (iii) and, similarly, to x the effort of the robots (ii)
and of the human (iv) on the basis of the respective weighting
matrices. This means that by increasing Qh,d and Rh with re-
spect to Qr,d the human intention overtakes the robots one (and
vice-versa) according to an optimal formulation. In addition, the
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proposed approach is also suitable for an assistance task, whose
aim is to minimize the human effort, by setting Qr,d = O2p.

In the above formulation, the human intention in terms of ob-
ject orientation is not taken into account which means that robots
have full control on it. Like in [118], this is motivated by the fact
that the human is in charge of modifying the object motion while
robots autonomously and precisely control the orientation.

In what follows, first a centralized solution to the Problem 4.1
is provided in Section 4.3.1; then, building on this, a distributed
solution to the same problem is presented in Section 4.3.2.

4.3.1 Linear Quadratic Tracking approach

A two-layer architecture depicted in Figure 4.3 is devised in the
case of centralized solution. In detail, the high-level is in charge
of defining the object reference trajectory xv as solution of the
optimal problem in (4.7), on the basis of human intentions, and
the low-level of defining the local control inputs ui in (2.10) to
actually track the trajectory while achieving wrench regulation.

Human-obj.
interact. fh

1. Hum. model
estimation π̂h

2. Virtual
input uv

3. Obj. ref.
trajectory xv

4. Control
lawui

High-level Low-level

Figure 4.3: Two-layer architecture for human multi-robot shared control.

Concerning the high-level, the formulation in (4.6) requires the
virtual input uv to be designed (block 2) so as to optimize (4.7).
By replacing the human model (4.1) in the cost function (4.7), the
latter can be rewritten as

J=
1

2

∫ +∞

t0

(

(x̄v − x̄r,d)
TQr,d(x̄v − x̄r,d) + u

T
vRvuv

+ (x̄v − x̄h,d)
T Q̄h(x̄v − x̄h,d)

)

dt

(4.9)
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with Q̄h = STW̄ h,dS and

W̄ h,d =W h,d +

[
KT

hRhKh KT
hRhDh

DT
hRhKh DT

hRhDh

]

. (4.10)

It is worth noticing that, according to (4.10), the weight associ-
ated with the human desired motion dynamically adapts on the
basis of the human impedance parametersKh and Dh, e.g., when
the human stiffens the arm (i.e., Kh increases) the corresponding
quantities in Q̄h automatically increase as well. This allows for a
dynamic roles adaptation between human and robots. However, as
shown in the simulation results in Section 4.5.4, the mutual roles
also depend on the value of the weight matrix Qr,d, i.e., the higher
it is, the more the tracking error of the robots is being minimized
and they assume a leading role. A similar reasoning also applies
in regard to the magnitude of the robot tracking error itself, i.e.,
assuming all other parameters are equal, the higher it is, the more
the resulting motion will follow the robots desired trajectory.
The formulation in (4.9)-(4.10) shows the dependence of the ob-
jective function on the unknown human parameters Kh,Dh,ph,d,
that is on πh in (4.3). Therefore, an online estimation of these
parameters is needed by exploiting the knowledge of human force
and motion, i.e., fh, ph, ṗh (block 1 in Figure 4.3), and is then
used to find uv which minimizes (4.9). Afterwards, the virtual ob-
ject trajectory xv is computed according to the dynamics in (4.6)
(block 3) and is adopted by the robots as actual reference tra-
jectory for the object. In particular, a standard control law for
trajectory tracking with internal force regulation as in [119] can
be leveraged at this point for the low-level centralized solution
(block 4) and details are here omitted since a distributed solution
to this problem is presented in next sections.

The presented method introduces the following contributions
with respect to the state of the art:

• a novel shared control strategy in the framework of optimal
control is presented. The role of the robots is dynamically
adapted depending on the estimation of the human arm pa-



100 4. Human multi-robot physical collaboration

rameters and takes into account the uncertainty of the latter;

• the case of multi-manipulator systems is tackled for the first
time. This case poses additionally issues with respect to the
single manipulator case, due to the necessity to handle inter-
nal wrenches in addition to external one in order to no affect
the human-object interaction dynamics. Moreover, a sensor-
less solution is adopted in which both the interaction with
the human and internal wrenches are estimated by resorting
to a momentum based approach;

• the solution presented is completely decentralized since the
local control strategy only relies on information locally avail-
able.

Finally, note that the approach can be applied to any cooperative
manipulation task which involves the specification of an object
trajectory. This includes, by resorting to the list of applications
identified in the survey in [5], applications such as handling, as-
sembly and welding in any of which the human operator may wish
to intervene during the robots’ activity to correct the task or to
participate in it and, to this end, the proposed shared control
strategy can be applied. In the following, the individual blocks in
Figure 4.3 are detailed.

Human parameters estimation

A Recursive Least Square method with forgetting factor is pro-
posed to estimate the human arm parameter πh. Consider that
the measurements are acquired at each kT , with k ∈ IN the dis-
crete time index and T ∈ R the sampling time, and denote with
(·)k the corresponding quantity at time kT . The estimation error
eh,k ∈ R

m is defined as

eh,k = fh,k − Y h,kπ̂h,k−1 (4.11)

where Y h,k is the human regressor defined in (4.2) and π̂h,k ∈ R
3m

is the estimate of the unknown human parameters.
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Note that the computation of (4.11) requires the knowledge
of fh which, in the centralized case, can be retrieved from the
collective wrench h and the knowledge of the object dynamics
in (4.4) as in [98].

By leveraging [120], the parameters estimate is updated as

π̂h,k = π̂h,k−1 +Lkeh,k (4.12)

where the matrices Lk ∈ R
3m×m and P k ∈ R

3m×3m are

Lk = P k−1Y
T
h,k(λIm + Y h,kP k−1Y

T
h,k)

−1

P k =
1

λ
(I3m −LkY h,k)P k−1

(4.13)

being λ ∈ (0, 1] the forgetting factor which regulates the amount
of data to be forgotten at each estimate update: the lower the for-
getting factor, the lower the weight associated with past inputs.
This implies that the lower the forgetting factor, the more the es-
timation is able to track changes in the parameters but the more
the misadjustment and the possible instability [120]. Implemen-
tation details of (4.12) and (4.13) are not addressed here but a
detailed discussion can be found in [121].
However, in order for the estimate π̂h in (4.12) to converge to
the real values πh, the estimator input variables, i.e., ph and ṗh,
have to satisfy the persistence of excitation condition for which
the approximation proposed in [122] is here considered, that is the
following condition should be verified

‖P k−1Y h,k‖ > α, ∀k with α ∈ R
+. (4.14)

Moreover, by leveraging the results in [112], a finite-time interval
with predetermined duration ∆, during which the input signals
are excited, allows the parameters to be estimated with a cer-
tain tolerance. For further details, the reader is referred to [112]
and [122]. Note that, as also pointed out in [123], the condi-
tion of persistent excitation may generally not be met by human
motion. To mitigate this issue, ad-hoc motions of very short du-
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ration [112], unnoticeable to the human, can be induced by the
robotic component on the co-manipulated object. Moreover, even
if the persistent excitation condition is not achieved, the proposed
solution does not harm the human operator since, as described
below, it discards the human estimates if they are not sufficiently
reliable and a safe by construction interaction is enforced.
Based on the above considerations, a confidence index Ic is devised
to establish the reliability of the human parameters estimate. The
basic idea is that the latter is assumed reliable if there exists a
time interval for which the system is “sufficiently” excited and as
long as the estimation error is below a certain threshold, which
leads to the following index

Ic(π̂h,k)=







1, if ‖eh,k‖<ē ∧ ∃ k1, k2∈ IN:T |k2 − k1|≥∆

∧ ∀ k ∈ [k1, k2] eq. (4.14) holds

0, otherwise

(4.15)

with ē ∈ R a positive constant representing the maximum allowed
estimation error. Finally, it is worth remarking that any other
technique than RLS, as the approach in [124], might be used in
block 1 of Figure 4.3.

Virtual input uv

The confidence index Ic specifies whether the human parameter
estimation is reliable or not (as in the initial transient phase).
Therefore, the latter case needs to be explicitly handled in order
to avoid undesired interaction behavior.

In detail, the virtual input is chosen on the basis of the value
of the confidence index, as reported in the Finite State Machine
(FSM) in Figure 4.4: as long as the estimation is not reliable (Ic =
0), an admittance model is used which simply makes the object
compliant towards the human force; then, when the estimation is
assessed as reliable (Ic = 1), it is used to solve a Linear Quadratic
Tracking (LQT) problem.

Admittance model
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Admittance
model

LQT
solution

Ic = 1

Ic = 0

Figure 4.4: FSM for virtual input definition.

When Ic(π̂h,k) = 0, the estimate π̂h,k is discarded and full control
of the system is given to the human operator (instead of minimiz-
ing (4.9)) by setting uv in (4.6) as

uv = −Dvẋv + γ(hh)

which leads to the following virtual model

M vẍv +Dvẋv = γ(hh) (4.16)

whereDv ∈ R
p×p represents a damping matrix and γ(·) : Rp → R

p

is a function of the human wrench possibly chosen as a deadzone
function with threshold th ∈ R

+, that is

γ(hh) =







Kγ

(
hh − th

hh

‖hh‖
)

if ‖hh‖ > th

0p if ‖hh‖ ≤ th

(4.17)

with Kγ ∈ R
p×p a positive definite matrix. Dynamics in (4.16)

allows the human to move the object with the robots executing
no autonomous tasks.

LQT solution
When Ic(π̂h,k) = 1, the human estimate is exploited to minimize
the cost in (4.9). To this aim, the following lemma holds true.

Lemma 4.1. Consider a time-invariant linear system

ẋ = Ax+Bu (4.18)

with x ∈ R
n and u ∈ R

m the state and the input of the system,
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and A ∈ R
n×n and B ∈ R

n×m the dynamic and input matrices,
respectively. Consider the following infinite-horizon cost function

J=
1

2

∫ ∞

t0

(

(x− r1)TQ1(x− r1)+(x− r2)TQ2(x− r2)+uTRu
)

dt

(4.19)
with r1 ∈ R

n and r2 ∈ R
n reference signals, Q1 ∈ R

n×n and
Q2 ∈ R

n×n symmetric semi-definite positive matrices and
R ∈ R

m×m a symmetric definite positive matrix. If the pair
(A, B) is reachable and the pair (A, [Q1 Q2]

T ) is observable,
then the optimal control input minimizing (4.19) is

u = −Kx+R−1BTv (4.20)

where K ∈ R
m×n is a gain matrix defined as

K = R−1BTT (4.21)

with T ∈ R
n×n solution of the following equation

TA+ATT − TBR−1BTT +Q1 +Q2 = On

and v ∈ R
n is an auxiliary signal that evolves according to

− v̇ = (A−BK)Tv +Q1r1 +Q2r2. (4.22)

Proof. The result follows by considering an aggregate
weighting matrix Q̄ = [Q1 Q2]

T ∈ R
2n×n with the aggregate ref-

erence signal r̄ = [rT1 r
T
2 ]

T ∈ R
2n and by extending the reasoning

presented in [125] for the LQT problem. �

By recalling (4.6), the state vector x̄v evolves according to

˙̄xv =

[
Op Ip
Op Op

]

x̄v +

[
Op

M−1
v

]

uv. (4.23)

By noticing that (4.9) and (4.23) are in the form of (4.19)
and (4.18), respectively, and that reachability and observability
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conditions are fulfilled, Lemma 4.1 applies. The optimal virtual
input uv for (4.9) can be thus defined according to (4.20), by
considering the estimated human parameters π̂h in place of the
respective values in the cost function (4.9).

Finally, recall that, given the virtual input uv, the object
reference trajectory xv is computed according to eq. (4.6)
(block 3).

4.3.2 Distributed extension

Based on the centralized solution in Section 4.3.1, the distributed
control framework to solve Problem 4.1 is now presented. The
basic idea is to provide a decentralized implementation of the cen-
tralized architecture in Figure 4.3 by estimating the needed global
information, and without changing the human-object interaction
behavior regulated by (4.9). As shown in the following, since each
robot has only access to the local wrench hi and the human op-
erator interacts with the object co-manipulated by all the robots,
the main global quantities to be estimated are (i) the measure of
the force fh exerted by the human operator and (ii) the contribu-
tion of each robot to the internal wrenches hint in (4.5). Moreover,
concerning the human-robot interaction strategy, a leader-follower
approach is proposed in which the leader, based on the estimation
of fh, executes the high-level strategy of the architecture in Fig-
ure 4.3 and computes the optimal object reference trajectory xv,
ẋv, as in the centralized counterpart, while the followers estimate
this trajectory via decentralized observers. These quantities feed a
low-level adaptive control law which allows each robot to track the
reference trajectory while regulating the internal wrenches. The
resulting architecture is shown in Figure 4.5 and details are in the
following.
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Wrench estim.
f̂h and ĥint,i

Human-obj.
interact. fh

Ref. traj.
estimation ix̂v

Human model
estimation π̂h

Optim. inputuv

and ref. traj. xv Distr. control
law ui

LeaderLeader

Follower

Figure 4.5: Distributed architecture implemented by robot i for shared con-
trol. The dashed box denotes that, depending on the role of the robot, dif-
ferent blocks are executed: blue blocks on the top in the case of leader, green
blocks on the bottom in the case of follower.

Distributed human and internal wrench estimation

Let hint,i be the i th sub-vector of hint (i.e., the contribution of the
i th robot to the internal wrenches hint). The objective is to define
a local observer in order for the i th robot to estimate hint,i as well
as the human force fh (or equivalently hh). In view of (4.5) and
by considering the selection matrix Γi introduced in (2.24)

Γi =
[
Op . . . Ip

︸︷︷︸

robot i

. . . Op

]
∈ R

p×Np

the vector hint,i can be computed as

hint,i = Γihint = hi−ΓiG
†Gh = hi−ΓiG

†(Gihi+
∑

j 6=i

Gjhj)

= (Ip − ΓiG
†Gi)hi

︸ ︷︷ ︸

known

−ΓiG
†
∑N

j=1,j 6=i
Gjhj

︸ ︷︷ ︸

unknown

(4.24)

which is composed of a first local known term and a second un-
known term depending on the wrenches exerted by the other
robots. Thus, by considering the i th robot, the object model
in (4.4) can be reformulated as

M oẍo = Gihi +

N∑

j=1,j 6=i

Gjhj + hh −Coẋo − go. (4.25)
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Based on the approach in [98], the following residual vector θi(t) ∈
R

p is introduced

θi(t) =Kθ

∫ t

t0

(α−Gihi − θi)dτ +Kθm(t) (4.26)

with Kθ ∈ R
p×p a constant diagonal positive definite matrix,

m(t) = M oẋo the generalized momentum of the object and

α=go −
1

2
ẋT
o

∂M o

∂xo

ẋo. From [98], it follows

θ̇i(t) = −Kθθi(t) +Kθ

(∑N

j=1,j 6=i
Gjhj + hh

)

(4.27)

which represents a low-pass filter whose bandwidth depends on
the gain matrix Kθ ∈ R

p×p and which leads to

θi(t) ≈
N∑

j=1,j 6=i

Gjhj(t) + hh(t), ∀t. (4.28)

Thus, by replacing (4.28) in (4.24), it holds

hint,i = Γi(INp −G†G)h≈ (Ip − ΓiG
†Gi)hi − ΓiG

†(θi − hh)
(4.29)

Remark 4.1. By virtue of (4.28), the approximation error made
in (4.29) about the computation of hint,i is

hint,i −
(
(Ip − ΓiG

†Gi)hi − ΓiG
†(θi − hh)

)
=ΓiG

†
(
θi − hh

−
∑

j 6=i

Gjhj

)

(4.30)
that is negligible only when the filter input (namely,

∑

j 6=iGjhj +
hh) has a bandwidth much smaller than the cut-off frequency of
the filter. Therefore, as made in [98] and citing works, a practical
choice is to set Kθ as high as possible subject to the potential
digital implementation of the filter itself.

Equation (4.29) makes evident that hint,i can not be computed
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without the knowledge of hh which is unknown as well. In this
regard, the following auxiliary signal ξi ∈ R

p is defined

ξi = (Ip − ΓiG
†Gi)hi − ΓiG

†θi (4.31)

which, in light of (4.29) and by computing the term ΓiG
†, can be

rewritten as

ξi ≈ hint,i − ΓiG
†hh = hint,i −

1

N
hh. (4.32)

Note that neither hint,i nor hh are known in (4.32), but an ap-
proximation of hint,i − 1

N
hh is provided by the right-hand side of

(4.31), i.e., by the auxiliary variable ξi. By resorting to the fol-
lowing lemma, the i th robot can compute the estimate iĥh ∈ R

p

of the human wrench hh as well as the estimate ĥint,i of its con-
tribution to the internal wrench.

Lemma 4.2. Let each robot run the following observer







żi = γ
∑

j∈Ni

sign(jĥh − iĥh)

iĥh = zi −Nξi
ĥint,i = ξi +

1

N
iĥh

(4.33)

where γ ∈ R is a positive constant, zi ∈ R
p is an auxiliary state,

and sign(·) is the component-wise signum function. Then,

• iĥh approaches hh in finite time Th, ∀i = 1, ..., N . Equiv-
alently, by defining the estimation error ih̃h = hh − iĥh, it
approaches the origin in finite time Th.

• ĥint,i approaches hint,i in finite time Th, ∀i = 1, ..., N . Equiv-

alently, by defining the estimation error h̃int,i = hint,i−ĥint,i,
it approaches the origin approaches the origin in finite time.

Proof. By leveraging the same reasoning as in [79], it
can be proved that the estimate iĥh converges to the average of
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−Nξi in finite-time Th. Thus, by virtue of (4.32) and by recall-
ing that, by construction, it holds

∑N
i=1 hint,i = 0p, it follows

iĥh → − 1
N

∑N

i=1 ξi ≈ hh or, equivalently, ih̃h → 0p. Therefore,
based on (4.32) and (4.33), the i th robot can also estimate its
contribution to the internal wrenches hint,i as follows

ĥint,i = ξi +
1

N
iĥh. (4.34)

Since ih̃h → 0, from (4.32) it also holds

ĥint,i → ξi +
1

N
hh = hint,i. (4.35)

This completes the proof. �

Finally, as consequence of the lemma above, the wrench contribu-
tion of robot i to the object motion can be estimated as

hi−ĥint,i=hi − ξi−
1

N
iĥh=ΓiG

†Gihi+ΓiG
†θi −

1

N
iĥh (4.36)

which converges to the actual value as well.

Generation and estimation of the object trajectory xv

Depending on the role of the i th robot, different approaches are
pursued.

Leader robot: The leader robot is in charge of estimating the hu-
man model according to (4.12) based on the estimate made as
in (4.33) and defining the virtual input uv (Section 4.3.1), from
which the object reference trajectory is then derived as in (4.23).

Follower robot: In order for the followers to estimate the
reference trajectory, the solution in [80] is exploited. Let
χv be the stacked vector of the desired trajectory, that is

χv =
[
xv

T ẋv
T ẍv

T
]T ∈ R

3p and iχ̂v the respective estimate made
by the follower robot i. The following distributed observer is
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adopted by the followers







i ˙̂χv =Aχ
iχ̂v−µv,1BχBχ

TP χ
−1 iν̂v− µv,2sign

(
P−1

χ
iν̂v

)

iν̂v =
∑

j∈Ni, j 6=l

(
iχ̂v − jχ̂v

)
+ bi

(
iχ̂v − χv

) (4.37)

where l is the index associated with the leader robot, i belongs to
the set of the follower robots, bi is 1 if the leader belongs to Ni

and 0 otherwise, µv,1, µv,2 ∈ R are positive gains, Aχ ∈ R
3p×3p and

Bχ ∈ R
3p are matrices selected as

Aχ =





Op Ip Op

Op Op Ip
Op Op Op



 , Bχ =
[
Op Op Ip

]T

and P χ ∈ R
3p×3p is a positive definite matrix. By following the

same reasoning as in [80], it can be proved that, under a proper
selection of gains, the observer in (4.37) guarantees the finite-time
leader tracking, i.e., it holds in finite-time Tχ

‖iχ̂v(t)− χv(t)‖ = 0 ∀i 6= l, t ≥ Tχ. (4.38)

Distributed low-level control

The control input ui in (2.10) to cooperatively track the ob-
ject reference trajectory and control the internal stresses, in the
hypothesis of uncertain dynamics (2.12), is here devised. Let
eint,i denote the internal wrench error vector of robot i, i.e.,
eint,i = h

d
int,i − hint,i ∈ R

p, being hd
int,i = Γih

d
int, and let ∆uf,i ∈

R
p denote the following integral error

∆uf,i(t) = kf

∫ t

t0

eint,i dτ (4.39)
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with kf ∈ R a positive scalar regulating the internal wrench con-
trol, and the error vector ex,i ∈ R

p

ex,i(t) = (ix̂v − xi) + kc

∫ t

t0

∑

j∈Ni

(xj − xi)dτ (4.40)

with kc ∈ R a positive constant, which is composed of a first term
for the tracking of the object trajectory and a second synchroniza-
tion term aimed at limiting the internal forces during the transient
phases or due to unmodeled dynamics. Finally, the following aux-
iliary variables are introduced







ζi =
i ˙̂xv + kc

∑

j∈Ni

(xj − xi) + kpex,i ∈ R
p

ζ̃i = ζi − ẋi = ėx,i + kpex,i ∈ R
p

ρi = ζi +∆uf,i ∈ R
p

si = ζ̃i +∆uf,i ∈ R
p

(4.41)

with kp ∈ R a positive constant and ∆̂uf,i the estimate of ∆uf,i(t)
made by robot i as

∆̂uf,i(t) =kf

∫ t

t0

êint,i dτ (4.42)

where êint,i = hd
int,i − ĥint,i which takes into account that the

internal wrench hint,i is not known but only locally estimated as
in (4.35). By extending the approach in [78], the following control
law is proposed

ui =
ˆ̄M iρ̇i +

ˆ̄Ciρi + ˆ̄ηi +Kssi +∆ui

= Ȳ i(xi, ẋi,ρi, ρ̇i)π̂i +Kssi +∆ui

(4.43)
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being Ks∈Rp×p a positive definite matrix and ∆ui ∈ R
p selected

as

∆ui =κi(t)si + h
d
int,i + ∆̂uf,i + ΓiG

†Gihi + ΓiG
†θi −

1

N
iĥh

=κi(t)si
︸ ︷︷ ︸

a

+hd
int,i + ∆̂uf,i
︸ ︷︷ ︸

b

+ΓiG
†(Gihi + θi)−

1

N
hh+

1

N
ih̃h

︸ ︷︷ ︸

c

(4.44)
with κi(t) ∈ R a positive time-varying gain, and where

• a) is a robust term to guarantee convergence of internal
forces in the transient phase and despite model uncertainties;

• b) is a force feed-forward and integral error contribution;

• c) represents, based on (4.36), the compensation of the con-
tribution to the external generalized forces made by robot i
on the object.

Moreover, the dynamic parameters of robot i are updated as

˙̂πi =K
−1
π Ȳ

T

i (xi, ẋi,ρi, ρ̇i)
Tsi (4.45)

with Kπ ∈ R
nπi

×nπi a positive definite matrix.
The analysis of control law ui is provided in the theorem.

Theorem 4.3. Consider N robots with dynamics in (2.10) for
which an estimate is known as in (2.12). Consider the observer
in (4.37), the control law in (4.43) and the parameters update law
in (4.45). Then, it asymptotically holds xi → xv and eint,i → 0p

∀i = 1, ..., N .

Proof. The proof is provided in Appendix C.1. �

4.3.3 Simulation validation

In this section, results are provided to validate the proposed ap-
proach. As in Section 3.4.1, Matlab environment is adopted to
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Table 4.1: Simulation parameters for physical shared control.

Parameter Value Parameter Value

M v diag{2I3kg, I3kgm2} ē 0.5
Dv diag{10I3Ns/m, 8I3Nms} T 0.001s
Kγ 0.3I6 ∆ 0.2s
th 1 Kθ 800I6
Rh 0.5I3 γ 300
Rv 0.1I6 µv,1 30
Qr,d 10 diag{250I3, I3, 250I3, I3} kf 0.5
W h,d I6 µv,2 25
λ 0.998 kc 1
P 0 10000I9 kp 1
α 0.1 Ks 1

corroborate the theoretical findings in which both modelling and
control are implemented. Moreover, CoppeliaSim simulator is
adopted to visualize the robots and human motion as in Figure 4.6;
the respective environment is provided at the link1. In detail, the
setup shown in the figure is composed of N = 3 Comau Smart
SiX manipulators (6 DOFs) mounted on mobile bases (2 DOFs)
and they rigidly grasp a cylindrical object. Robots are redundant
and it holds p = 6 for the robots’ operational space dimension and
m = 3 for the human model in eq. (4.1). moreover, the reduced
regressor matrix Y i ∈ R

6×56 (nπi
= 56) in (2.10) is considered and

a uniformly distributed 5% uncertainty is assumed concerning the
robots’ dynamic parameters πi, i = 1, 2, 3. For the sake of the
implementation on a real setup, an initial estimation of the robot
dynamic model might be obtained by resorting to one of the ap-
proaches mentioned in [126]. Furthermore, it is also required the
robots agree on a common reference frame in which the object tra-
jectory and the estimation of global variables are specified and/or
computed. However, this requirement is common to almost all
distributed algorithms and, in the case of mobile manipulators,

1http://webuser.unicas.it/lai/robotica/papers/JINTVREPscene.

ttt

http://webuser.unicas.it/lai/robotica/papers/JINTVREPscene.ttt
http://webuser.unicas.it/lai/robotica/papers/JINTVREPscene.ttt
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R1

R2R3

Σw

Figure 4.6: Simulation setup composed of 3 cooperative robots (Ri, i = 1, 2, 3)
rigidly grasping an object with which a human operator physically interacts;
the leader robot (R1) is highlighted with blue color and the world reference
frame Σw is reported.

implies the robots to be able to localize in a common frame; this
can be obtained, for example, by using passive markers to be de-
tected by on-board vision sensors. The latter can also be used to
estimate the point in which the object is grasped by the human
operator if such an information is not known beforehand.
Concerning the communication graph, bi-directional communica-
tion links are considered between robots 1 and 2 and between
robots 2 and 3, while robot 1, without loss of generality, is set
as leader. Finally, the manipulated object is represented by a
cylinder with mass mo = 5 kg, radius ro = 1 m and height
ho = 0.05 m. In order to simulate the overall system dynam-
ics, the Udwadia-Kalaba equation of motion for constrained sys-
tems is adopted which, as done in [127], allows to compute the
constraint wrenches h arising from the robots rigid grasping con-
straint. In addition, uncertainty on both the manipulated object
model and initial human parameters is introduced. In particular,
for each robot, a uniformly distributed 3% of error is generated
regarding the object dynamic model, while, concerning the ini-
tial human parameters, an uncertainty with normal distribution
N(0, 0.3πh,i) ∀i ∈ {1, ..., 9}, with πh,i the i th element of vector πh

in (4.2), is introduced.
The objective of the simulation is to achieve the shared control of
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the object motion where, as shown in Figure 4.7, the robots task is
to perform a circular trajectory in xy-plane with radius rc = 1.5 m,
center c = [0 0 0.94]Tm and period Tc = 3.8 s, while keeping
the orientation constant, whereas the human desired configuration
coincides with the circumference center, i.e., ph,d ≡ c. Note that,
as assumed for example in [128], a constant human desired motion
is typically considered for human reaching motions. The human
operator force is modeled according to eq. (4.1) where stiffness
Kh and dampingDh matrices are increased during the simulation
time (as discussed below and shown in Figure 4.8 with solid lines)
in order to dynamically modify the object trajectory and make
the human leading the motion. Finally, zero internal wrenches are
required, i.e., the stacked vector of the desired internal wrenches
hd

int = [hd
int,1

T hd
int,2

T hd
int,3

T ]T ∈ R
18 is hd

int = 018.
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Figure 4.7: Representation in 2D (left) and 3D (right) of the robots’ desired
position (solid lines on the left and blue line on the right) and the human
desired one (dashed lines on the left and red star on the right).

A summary video of the simulation results is available at
the link2, while simulation parameters are reported in Table 4.1.
Among them and concerning the human parameters estimation
discussed in Section 4.3.1, the initial covariance matrix P 0 is set
to a high value to denote a high uncertainty on the initial human
parameters, while the values of T and ∆ are selected as in [112].
In addition, the values of the weighting matrix Qr,d are defined

2https://youtu.be/eQwBT74F1Po

https://youtu.be/eQwBT74F1Po
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so as to make the contribution associated with the robots desired
trajectory comparable with respect to the one associated to the
human operator. Finally, the rationale behind the gain matrix
Kθ is, as also stressed in Remark 4.1, to set it to a higher value
than the low-level control law gains in order to estimate the re-
spective quantity sufficiently fast. The same reasoning applies for
the choice of the gain γ.
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Figure 4.8: Evolution of the human parameters dh, kh and ph,d (from the
top, solid lines), respectively, along x, y and z directions and the respective
estimates (dashed lines); the time instant tc ≈ 0.22 s in which the confidence
index Ic in (4.15) becomes 1 is highlighted by the black vertical line.

Simulation results are reported in Figures 4.8-4.11. More
specifically, Figure 4.8 shows the evolution of the human parame-
ters (solid lines) along x, y and z directions as well as the respec-
tive estimates (dashed lines) computed by the leader robot. In
particular, the human stiffness Kh (middle plot) increases along
x and y during the time intervals [2, 8] s and [12, 18] s in order to
increase the leading action of the human. Similarly, an increase
of the human damping (top plot) is simulated during the same in-
tervals as a stabilizing and slowing down action. In addition, the
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time instant tc ≈ 0.22s in which the estimate is assessed reliable
according to the confidence index in (4.15) is highlighted (vertical
black line).
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Figure 4.9: Evolution of the position of the virtual model (blue solid lines)
along x, y and z directions compared with the ideal one obtained with the
real human parameters πh (red dashed lines); for the sake of completeness,
human (yellow dotted lines) and robot (purple dotted lines) desired positions
and time instant when it holds Ic = 1 (black line) are also shown.

Figure 4.9 reports the position components pv of the desired
object trajectory (solid bold lines) resulting from the devised strat-
egy (orientation variables are constant). In particular, as long as
the estimate is assessed as not reliable (t < tc), the desired object
motion is generated according to the admittance model in (4.16)
and is driven towards the desired position of the human; then,
starting from time tc, the optimal policy in (4.9) for the shared
control is adopted which leads to perform a circular trajectory with
time-varying radius (< rc) and time-varying period (< Tc). In de-
tail, the trajectory dynamically adapts according to the human
behavior: the higher the human stiffness, the more the motion
amplitudes reduce, being the human desired position coincident
with the center of the trajectory, i.e., ph,d = [0 0 0.94]T m, as also



118 4. Human multi-robot physical collaboration

reported in the figure (yellow dotted lines); moreover, the higher
the human damping, the slower the resulting motion is. For the
sake of comparison, the robots desired position pr,d is also shown in
the figure (purple dotted lines). In addition, in order to show the
effect of human arm parameter estimation on the overall behav-
ior of the system, the object trajectory obtained in the ideal case
of zero human parameter estimation error, i.e., with πh = π̂h,
is reported (dashed line, denoted with p∗v) and is shown to be
equivalent to the one derived with the estimated parameters in
Figure 4.8.

Figure 4.10 (top plot) shows the error ‖lĥh − hh‖ between
the real human wrench hh and the one estimated according to
Lemma 4.2. The figure shows that the estimated wrench con-
verges to the real one and in finite time according to the theory.
Therefore, each agent is adopting a consistent estimate for com-
puting the local control strategy. In the same way, the bottom
plot shows that the internal wrench hint converges to the desired
value hd

int since the error ‖hint−hd
int‖ converges to the origin and

required in Problem 1. A zoom of the evolution of both quantities
up to 0.05 s is provided in the plots.

The purpose of Figure 4.11 is to show the performance of the
two-layer architecture presented in Figure 4.3. As explained in
previous sections, the high-level is in charge of defining the ob-
ject reference trajectory xv which is the solution of the optimal
problem defined in (4.7). This trajectory represents the desired
trajectory of the object xo to be tracked by the robots. Therefore,
Figure 4.3 shows that the position ‖xv − xo‖ (top) and velocity
‖ẋv − ẋo‖ (bottom) tracking errors converge to the origin, which
means that the real object trajectory converges to the desired one.

Finally, the effects of some main parameters of the framework
have been analyzed. More specifically, the influence of the weight
matrices Qr,d and Rv in the cost function (4.7) as well as the
inertia matrixM v of the virtual model (4.6) has been considered.

No plot of the internal wrench is provided in the following anal-
ysis since it is not affected by the considered matrices and for the
sake of space.
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Concerning the weight matrices Qr,d, it regulates how much rel-
evance is given to tracking the robots trajectory and its ef-
fect has been investigated in regard to the resulting shared mo-
tion and human force. In particular, by expressing Qr,d as
Qr,d = diag{Qr,pI3, Qr,oI3, Qr,pI3, Qr,oI3}, Figures 4.12 and 4.13
report the object motion and human force, respectively, obtained
by varying Qr,p in the set {10, 500, 2500, 10000}. For the sake
of comparison, the human desired motion (dotted orange line)
and the robots desired one (dotted gray line) are also shown in
Figure 4.12. The figures make evident that, as the weight Qr,p

decreases, the resulting object trajectory approaches the human
desired configuration ph,d, and, accordingly, the human effort de-
creases since the person lead the control. On the contrary, the
higher the value, the more the resulting trajectory gets closer to
the robots desired circular motion, thus leading to a major human
effort. It follows that the role of human and robots in the shared
control is driven both by the tuning of the static weighting ma-
trices in the cost function, such as Qr,d, and, dynamically, by the
time-varying parameters of the human arm. No analysis of the
weight matrices Qh,d and Rh has been reported since their effect
is dual to the one of Qr,d, i.e., the higher norm the more the hu-
man desired trajectory is pursued with respect to the robot one
and the human force minimized.

As far as the weight Rv is concerned, it regulates how much
relevance is given to the minimization of the robots effort ui. Fig-
ures 4.14 and 4.15 report the norm of the overall robot efforts
and the resulting object motion, respectively, when varying Rv.
More specifically, by denoting with u = [uT

1 u
T
2 · · ·uT

N ]
T ∈ R

Np

the stacked vector of the robots inputs, Figure 4.14 shows how
by increasing the weight Rv, the robots control effort, i.e., ‖u‖,
reduces. This is achieved, as reported in Figures 4.15, by slowing
down the trajectory and by decreasing the amplitude of the oscil-
lations. It thus follows that the higher Rv the more the control
effort is reduced at the expense of lower tracking performance of
the desired robot trajectory. As for the previous parameters, the
human desired motion (dotted orange line) and the robots desired
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one (dotted gray line) are also shown in Figure 4.15 for the sake
of completeness. Note that the same trajectory is recorded for all
parameters for t < tc since the weight matrices are only used in
the cost function and do not affect the admittance controller in
eq. (4.16) that is used when the human estimation is not reliable.

Regarding the inertia matrix, let us formulate it as
M v = diag{Mv,pI3,Mv,oI3}. The following set of values ma-
trix has been tested for analyzing its influence: Mv,p =
{2, 5, 10, 50, 500}. Figures 4.16 and 4.17 report the resulting ob-
ject motion and the norm of the overall robots’ effort, respectively,
when varying Mv,p. In particular, the latter influences the band-
width of the virtual dynamics implying that the higher Mv,p the
slower the system’s response will be. This behavior is evident from
the figures where a more dampened motion (see Figure 4.16), with
reduced acceleration, is obtained as Mv,p grows. This also implies
that a lower robots control effort is required when increasingMv,p.
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Figure 4.12: Evolution of the object motion (bold lines) along x, y and z

directions by varying the robots weight Qr,p ∈ {10, 500, 2500, 10000} in the
cost function. The human desired motion (dotted orange line) and the robots
desired one (dotted gray line) are also shown.
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Figure 4.15: Evolution of the object motion along x, y and z directions by
varying the robots effort weight Rv ∈ {0.1, 1, 10, 100, 1000, 10000} in the cost
function. The human desired motion (dotted orange line) and the robots
desired one (dotted gray line) are also shown.
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Figure 4.16: Evolution of the object motion along x, y and z directions by
varying the virtual inertia Mv,p. The human desired motion (dotted orange
line) and the robots desired one (dotted gray line) are also shown.
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4.4 Human assistance scenario

As pointed out in Chapter 1 and in the introductory part of this
chapter, the human-robot physical interaction can also be aimed
at fully assisting the human operator, instead of collaboratively
sharing control as in the previous section. For this reason, a hu-
man multi-robot assistance scenario is considered in this section
in which multiple robots co-manipulate a rigid object and its mo-
tion is guided by a human operator. The basic idea is thus that
the latter provides a reference trajectory for the object while the
former are responsible for producing the actual effort to trans-
port it. In the following, based on the work presented in [129],
a distributed framework is proposed to the purpose, which for-
mulates a human wrench regulation problem with unknown and
time-varying parameters.

More specifically, the main problem addressed in this section
is formally stated as follows.

Problem 4.2. Consider a system composed of N robots rigidly
grasping an object which a human operator is interacting with.
Assume that a central control unit is not available and a desired
human wrench hh,d ∈ R

p as well as a desired internal wrench
hint
d ∈ R

µp are assigned. The objective is to cooperatively enforce
the following virtual dynamics to the object

M vẍv +Dvẋv +Kv(xv − xr) = eh (4.46)

where M v, Dv, Kv ∈ R
p×p are the virtual inertia, damping and

stiffness diagonal matrices, respectively, xv =
[
pTv φT

v

]T ∈ R
p

(ẋv, ẍv) is the configuration (velocity, acceleration) of the vir-
tual object, eh = hh − hh,d ∈ R

p is the wrench regulation error and
xr ∈ R

p is an additional trajectory which must be designed so as
to achieve human wrench regulation, i.e., eh → 0p. Finally, regu-
lation of internal wrenches is required, i.e., hint → hint

d .

The basic idea is, thus, to cooperatively impose a compliant
behavior to the object through an admittance model and, at the
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same time, to regulate this model in order to achieve a desired
human wrench. In particular, a reasonable choice for the latter is
a zero wrench, i.e., hh,d = 0p, which allows to minimize the human
effort. Therefore, two sub-issues are required to be solved: i) the
definition of the trajectory xr, referred to as regulation trajectory,
allowing the human wrench regulation and ii) the definition of a
distributed framework to make the object behave according to the
virtual dynamics in (4.46) while regulating the internal wrenches
hint to hint

d .
In the rest of the section, the damping term in the human

model in eq. (4.1) is neglected. As stressed in [89], this is motivated
by the fact that the stiffness range is typically greater than those
associated with inertia and damping terms and the stiffness term
is dominant with low velocities. Therefore, the following time-
varying spring model is assumed for the human arm end-point

Kh(t) (xh,d(t)− xh(t)) = hh(t) (4.47)

with m = p in (4.1). Note that both human parameters Kh and
xh,d are assumed to be unknown and can generally be time-varying
with unknown derivatives. Moreover, as discussed in Section 4.2.1,
Kh is a diagonal matrix which is expressed as Kh = diag(kh).
Based for example on the measures in [110], it is reasonable to
assume the human parameters and their derivatives to be bounded
with unknown bounds, thus leading to the following assumption.

Assumption 4.3. The human stiffness and desired configuration
are bounded in the sense that for each component kih of the diagonal
of Kh it holds kh ≤ kih ≤ kh and for each component xih,d of xh,d it

holds xh,d ≤ xih,d ≤ xh,d with i = 1, .., p and kh, kh, xh,d, xh,d ∈ R

unknown positive constants; in the same way, the first and second
time derivatives ofKh and xh,d are bounded with unknown bounds.

4.4.1 Human wrench regulation approach

The modular distributed architecture realized for the shared con-
trol scenario in Section 4.3.2 is here leveraged to solve Problem 4.2,
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by properly modifying the components dealing with the trajectory
definition (by the leader) according to the problem at hand. The
resulting architecture, based on the leader-follower paradigm, is
reported in Figure 4.18. More specifically, each robot runs the dis-
tributed observer in eq. (4.33) to estimate the human wrench and
compute its contribution to the internal wrench as in eq. (4.34).
Then, the leader robot computes the regulation trajectory xr and,
based on this, the object reference trajectory xv according to
eq. (4.46), while the followers estimate the latter. Finally, each
robot runs its local control law in eq. (4.43) which allows to track
the object reference trajectory as well as to regulate the internal
wrench.

In the following, the proposed method to compute the regu-
lation trajectory xr that achieves wrench regulation is detailed.
Differently from the works reported in Section 4.1, the proposed
approach provides a formal analysis, instead of heuristics, to de-
rive the control action for regulating the human wrench. Fur-
thermore, as for the human multi-robot shared control strategy in
Section 4.3, a multi-robot scenario, even with distributed archi-
tecture, is considered for the first time.

Wrench estim.
ĥh and ĥint,i

Human-obj.
interact. hh

Ref. traj.
estimation ix̂v

Regulation
traj. xr

Reference
traj. xv Distr. control

law ui

LeaderLeader

Follower

Figure 4.18: Distributed architecture implemented by robot i for human as-
sistance. The dashed box denotes that, depending on the role of the robot,
different blocks are executed: blue blocks on the top in the case of leader,
green blocks on the bottom in the case of follower.

Regulation trajectory definition

By resorting to force tracking theory in impedance control as
in [130], the aim is here, as stated above, to design the regula-
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tion trajectory xr in (4.46) such that a desired human wrench is
achieved. By virtue of the human model in (4.47), the following
lemma holds.

Lemma 4.4. The virtual dynamics in (4.46) can be reformulated
in terms of the wrench error eh as follows

ëh + Ω̄1ėh + Ω̄2eh=−Ω1(t)ėh −Ω2(t)eh + ω3(t) + ω̄3

−M−1
v Khuh

(4.48)

where Ω̄1, Ω̄2 ∈ R
p×p and ω̄3 ∈ R

p are known constant matrices,
Ω1,Ω2 ∈ R

p×p and ω3 ∈ R
p are unknown time-varying matrices

and uh =Kvxr ∈ R
p represents the virtual input to be designed.

Proof. The proof is in the Appendix C.2 which also provides
the expressions of Ω̄1 Ω̄2, ω̄3 and Ω1Ω2, ω3. �

Let ξ =
[
eTh ėTh

]T ∈ R
2p be the aggregate wrench regulation error

vector whose dynamics, based on (4.48), is given by

ξ̇ =Hξ +D(η −M−1
v Khuh) (4.49)

with

H =

[
Op Ip
−Ω̄2 −Ω̄1

]

∈ R
2p×2p, D =

[
Op

Ip

]

∈ R
2p×p

η = −Ω1(t)ėh −Ω2(t)eh + ω3(t) + ω̄3 ∈ R
p.

(4.50)

In addition, let z ∈ R
p be an auxiliary variable defined as z =

DTQξ where Q ∈ R
2p×2p is a a symmetric positive definite matrix

such that the following equality holds

HTQ+QH = −P (4.51)

with P a symmetric positive definite matrix.
The following input uh, related through Kv to xr in (4.46), is
proposed to achieve human force regulation

uh(t) =M v

(
α(t)‖ėh(t)‖+ β(t)‖eh(t)‖+ γ(t)

)
sign(z(t)) (4.52)
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where sign(·) is the component-wise signum function and
α, β, γ ∈ R are time-varying gains updated as follows

α̇ = ‖ėh‖‖z‖, β̇ = ‖eh‖‖z‖, γ̇ = ‖z‖. (4.53)

The following lemma holds true.

Lemma 4.5. Consider the dynamics in (4.49) and the virtual
input in (4.52) with time-varying gains in (4.53) and assumeKh is
diagonal and conditions in Assumption 4.3 are verified. Then, the
wrench regulation error eh asymptotically converges to the origin
and the time-varying gains converge to some finite steady state
values.

Proof. In order to prove the lemma, the following Lyapunov
function candidate is analyzed

V=
1

2
ξTQξ +

1

2σα
(α− ᾱ)2+ 1

2σβ
(β − β̄)2+ 1

2σγ
(γ − γ̄)2 (4.54)

with σα, σβ , σγ , ᾱ, β̄, γ̄ ∈ R positive constants and Q defined ac-
cording to (4.51). In view of the dynamics in (4.49), the time
derivative of V is

V̇ =− 1

2
ξTPξ + zT (η −M−1

v Khuh) +
1

σα
(α− ᾱ)α̇

+
1

σβ
(β − β̄)β̇ +

1

σγ
(γ − γ̄)γ̇.

(4.55)

By considering the input law in (4.52) with gains update law
in (4.53) and by recalling thatKh andM v are diagonal matrices,
(4.55) can be rewritten as

V̇ = −1
2
ξTPξ+zT

(
η−Kh(α‖ėh‖+ β‖eh‖+ γ) sign(z)

)

+
1

σα
(α−ᾱ)‖ėh‖‖z‖+

1

σβ
(β−β̄)‖eh‖‖z‖+

1

σγ
(γ−γ̄)‖z‖

(4.56)

where, as in the above, ‖·‖ represents the 2-norm of (·). Note that,
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as stated in Section 4.2.1, the diagonality of the stiffness matrix is
commonly assumed and validated in the literature [89, 112, 114].
By virtue of the diagonality of Kh and by denoting with zi the
i th component of z, the term zTKh sign(z) can be rewritten as

zTKh sign(z) =

p
∑

i=1

kih|zi|

≥ kh

p
∑

i=1

|zi|

= kh‖z‖1

(4.57)

where the last inequality follows from the lower bound on the
human stiffness in Assumption 4.3 and ‖z‖1 is the 1-norm of z,
for which it holds ‖z‖1 ≥ ‖z‖. Equation (4.56) thus becomes

V̇ ≤ −1
2
ξTPξ + ‖z‖

(
‖η‖ − kh(α‖ėh‖+ β‖eh‖+ γ)

)

+
1

σα
(α−ᾱ)‖ėh‖‖z‖+

1

σβ
(β−β̄)‖eh‖‖z‖+

1

σγ
(γ−γ̄)‖z‖.

(4.58)

At this point, in light of Assumption 4.3, the boundedness of
the time-varying matrices Ωi i = 1, 2 and the vector ω3 is ver-
ified, i.e., it holds ‖Ωi(t)‖ ≤ Ωi ∀t, i = 1, 2 and ‖ωi(t)‖ ≤ Ω3 ∀t
with Ωi ∈ R, i = 1, 2, 3 positive constants, which implies that the
following holds true

‖η‖ ≤ Ω1‖ėh‖+ Ω2‖eh‖+ Ω3 + ‖ω̄3‖. (4.59)
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Equation (4.58) can be thus rewritten as

V̇ ≤ −1
2
ξTPξ + ‖z‖

(
Ω1‖ėh‖+ Ω2‖eh‖+ Ω3 + ‖ω̄3‖

− kh(α‖ėh‖+ β‖eh‖+ γ)
)
+

1

σα
(α−ᾱ)‖ėh‖‖z‖

+
1

σβ
(β−β̄)‖eh‖‖z‖+

1

σγ
(γ−γ̄)‖z‖

= −1
2
ξTPξ+‖z‖‖ėh‖

(

Ω1−
ᾱ

σα

)

+‖z‖‖ėh‖α
( 1

σα
− kh

)

+ ‖z‖‖eh‖
(

Ω2 −
β̄

σβ

)

+ ‖z‖‖eh‖β
( 1

σβ
− kh

)

+ ‖z‖
(

Ω3 + ‖ω̄3‖ −
γ̄

σγ

)

+ ‖z‖γ
( 1

σγ
− kh

)

.

(4.60)

Therefore, by selecting σi > kh i = α, β, γ and ᾱ, β̄, γ̄ sufficiently
high such that ᾱ ≥ σαΩ1, β̄ ≥ σβΩ2 and γ̄ ≥ σγ(Ω3 + ‖ω̄3‖), one
obtains

V̇ ≤ −1
2
ξTPξ

from which it follows that V̇ is negative semi-definite and, then,
that V is bounded as well as ξ, α, β and γ. By applying La-Salle
Yoshizawa corollary [131], it follows

ξTPξ → 0

thus implying ξ → 02p. Finally, by noticing from (4.53) that the
gains are monotonically increasing, their boundedness also implies
the convergence to some steady state values. This completes the
proof. �

Formally, due to the discontinuous input in (4.52), the solution
to (4.48) should be intended in the Filippov’s sense and a non-
smooth analysis should be carried out to prove the lemma. This
formalism is here omitted but the same results would follow.
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4.4.2 Simulation results

In this section, the proposed solution to Problem 4.2 is validated
through simulation results. The considered setup is depicted in
Figure 4.19. According to the multiple arms formulation in [129],
three dual-arm Kinova Movo mobile robots (N = 3, p = 6) are
considered that cooperatively grasp a rigid object for an assisted
transportation task.

R1

R2

R3

Σw

Σh ≡ Σi,j

Figure 4.19: Simulation setup composed of 3 cooperative robots (Ri,
i = 1, 2, 3) and a human operator; Σw is the world reference frame, Σh is
the human reference frame and Σi,j is the reference frame of the j th arm
belonging to the i th robot with i = 1, 2, 3 and j = 1, 2.

With regards to the robots’ model, the reduced regressor ma-
trix Ȳ i ∈ R

6×126 (nπi
= 126) in (2.10) has been considered and

a 3% uncertainty has been assumed for the dynamic parameters
πi, i = 1, 2, 3. Bi-directional communication links have been sup-
posed between robots 1 and 2 and between robots 2 and 3. Finally,
robot 1 has been selected as the leader robot. With regard to the
human arm end-point model, a time-varying human desired con-
figuration xh,d has been considered, which is shown in Figure 4.20,
with constant stiffness matrixKh = 10Ip. More in detail, the po-
sitional components of xh,d are such that a continuous transition

from ph,d =
[
−3.1 0.7 0.8

]T
m to ph,d =

[
−3.1 1.2 0.8

]T
m

occurs in the time interval [7.5 8.5] s, thus simulating the human
intention to accomplish different reaching motions; whereas the
orientation components are kept constant and equal to the initial
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configuration. Concerning the object model, a cylindrical object
with mass mo = 5 kg, radius ro = 2.6 m, height ho = 0.05 m,

starting position po(0) =
[
−2.6 0 0.8

]T
m and with orientation

as in the Figure 4.19 has been considered.
The aim of the simulation is to cooperatively transport
the load while minimizing the human effort, i.e., hh,d =
0p in (4.46), and the internal stresses, i.e., hint

d =
0µp. The following set of parameters has been used:
M v=diag{5I3kg, I3kgm2}, Dv=diag{6I3Ns/m, 3I3Nms} and,
finally, Kv = diag{10I3N/m, 3I3Nm} in (4.46), α(0) = β(0) =
γ(0) = 5 in (4.52), Kθ = 800Ip, κv,1 = 30, κv,2 = 25, kf = 0.5,
kc = 1, Ks = 10I12 and Kπ = 0.1I126 in (4.27), (4.37), (4.43)
and (4.45), respectively.
Numerical results are presented in Figures 4.20-4.23 and in the
attached video3. In particular, Figure 4.20 reports the evolution
of both the human desired position and the virtual model po-
sition (4.46), which is then used as reference trajectory for the
low-level control.
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Figure 4.20: Evolution of the position of the virtual model pv compared to
the human desired position ph,d; the notation pac denotes the component of
pc along the axis a.

In addition, the human wrench regulation error is reported in Fig-
ure 4.21 and is shown to be convergent to the origin; an increase

3http://webuser.unicas.it/lai/robotica/video/pHMRI_SMC2019.mp4

http://webuser.unicas.it/lai/robotica/video/pHMRI_SMC2019.mp4
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is recorded in correspondence of the change in human desired tra-
jectory at t ≈ 8 s which is then recovered.

0

0 2 4

5

6 8 10 12 14 16

−5

[N
]

fx
h

f
y
h

f z
h

t[s]

Figure 4.21: Evolution of the human force fh where fa
h represents the human

force along the direction a.

The time-varying gains α(t), β(t), γ(t), updated as in (4.53), are
shown in Figure 4.22. In detail, the figure makes evident that the
gains monotonically increase with the wrench regulation error and,
then, assess to steady state values. At time t ≈ 8 s, gains adapt
to the change in human desired trajectory.

0 2 4
5

5.2

5.4

5.6

5.8

6

6 8 10 12 14 16

α
β
γ

t[s]

Figure 4.22: Evolution of the adaptive gains α, β, γ according to (4.53).

Finally, concerning the low-level control, Figure 4.23 shows the
virtual dynamics tracking error defined as x̃o = xv − xo and the
internal forces error, that is h̃int =

[

h̃int
1 h̃int

2 h̃int
3

]
∈ R

32; more
specifically, they are both convergent to the origin.
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Figure 4.23: Evolution of the virtual dynamics tracking error (top) and the
internal forces regulation error (bottom).

4.5 Contact classification: accidental

or intentional

The strategies presented above allow to properly handle the ex-
change of forces between the human operator and the robots on
the basis of the desired interaction, either shared control or hu-
man assistance. To this aim, the assumption is made that this
exchange of forces only occurs voluntarily. However, in realistic
human-robot physical interaction scenarios, it cannot be guaran-
teed that the interaction is always intentional but, as shown in
Figure 4.24, the problem arises that also accidental contacts might
occur. This implies the need to integrate strategies to detect and
classify the human contact despite the robot task, i.e., contact de-
tection and classification must be performed even when the robot
task requires explicit contact with the environment. Based on this,
proper reaction strategies can be then carried out: in case of in-
tentional contact, one of the approaches previously presented in
this chapter may be leveraged, while, in case of accidental contact,
an avoidance strategy should be performed.

In light of the above, an approach is presented in the follow-
ing which, based on the works in [132] and [133], allows to detect
human contact despite the robotic task, recognize its nature and
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react accordingly. The respective components as well as the ex-
perimental validation are provided in the section. Note that a
preliminary scenario with single manipulator is considered in this
chapter. The extension to multi-robot setups will be subject of
future work. In these setups, the main challenges that need to
be addressed are: i) in the case the robots are tightly connected
by co-manipulating the same object, the human wrench needs to
be identified despite possible internal wrenches, ii) the reaction
strategy needs to also take into account the robots’ cooperative
task, i.e., if the robots are closely cooperating and the human op-
erator interacts only with one of them, the reaction behaviors of
the individual robots cannot be independent.

Detect and Recognize React

Intentional

Accidental

Figure 4.24: Framework example: the human contact is detected and classified
(on the left) and the system reacts according to its nature (on the right), i.e.,
intentional (top row) or accidental (bottom row).

4.5.1 Preliminaries for contact classification

Robot model

Let q be the joint vector of the single robot involved in the system.
The human operator directly exerts forces on the robot and no co-
manipulated object exists (differently from Sections 4.3 and 4.4).



138 4. Human multi-robot physical collaboration

The model in eq. (2.6) is reformulated to explicitly express the
torques induced by the interaction with the environment and the
ones induced by the interaction with the human operator:

M(q)q̈ + c(q, q̇) + g(q)=τ+ τ T + τ h (4.61)

where τ T = J(q)ThT is the torque vector induced by the interac-
tion hT ∈ R

6 with the environment to carry out a given task T,
while τ h = JP (q)

Thh is the torque vector induced by the human
wrench hh ∈ R

6 exerted at a generic point P along the robot
structure, with JP (q) ∈ R

6×n the robot Jacobian matrix at this
point.

As in Assumption 3.1, the robot is assumed to be able to track
a joint space reference trajectory through an inner motion control
loop. By virtue of this, the robot model can be simplified to

q̈ = y (4.62)

where y ∈ R
n is a virtual control input to be designed. Finally,

the well-known second order kinematic relationship in eq. (3.13) is
generalized at a generic point P on the robot structure as follows

ẍP = JP (q)q̈ + J̇P (q, q̇)q̇ = JP (q)y + J̇P (q, q̇)q̇ (4.63)

where xP =
[
pTP ϕ

T
P

]T ∈ R
6 is the configuration of a frame cen-

tered in P with position pP and orientation ϕP . In the following,
and as in the previous sections, the subscript P is omitted when
the kinematics is referred to the robot end effector.

Human torque and wrench estimation

In order to detect and recognize the type of contact, the estimation
of the human torque and wrench is needed. To this aim, the same
momentum-based observer introduced in eq. (4.26) is adopted,
which leads to the following residual vector θ(t)

θ(t) ≈ (τ T(t) + τ h(t)). (4.64)
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Assume that an estimate τ̂ T of τ T is available (details in Sec-
tion 4.5.2) and that, in the case of human interaction, the contact
point P along the robot structure is estimated (details in Sec-
tion 4.5.2). From (4.64), an estimate τ̂ h of τ h is obtained as

τ̂ h(t) = θ(t)− τ̂ T(t) (4.65)

based on which the components of hh(t) not belonging to the null
space of JT

P can be retrieved [134] as

ĥh(t) =
(

JP (q(t))T
)†

τ̂ h(t). (4.66)

Problem formulation and solution overview

Formally, the following problem is addressed.

Problem 4.3. Consider the robot dynamics in (4.62) and a task
represented by a desired end effector trajectory xd(t) (ẋd(t), ẍd(t))
which can possibly involve interaction hT with the environment.
Assume that a human operator can intentionally or accidentally
physically interact with any point of the robot structure, i.e.,
‖τ h‖ > 0. The aim is to design a strategy enabling the robot
to detect and classify possible contacts with the human and to un-
dertake proper reaction behaviors, while complying with possible
robot constraints.

Contact
Detection

Contact Type
Recognition

Robot behavior

Nominal task
interaction approx.

Detection NN

Contact point
localization

Recognition NN

Avoidance
behavior

Admittance control
behavior

Task execution
behavior

Figure 4.25: Overview of the proposed approach to detect human contact (in
blue), recognize its type (in green) and react accordingly (in red).
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As shown in Figure 4.25, a modular architecture composed of
three blocks is proposed to solve the problem above. In detail, a
detection module is in charge of assessing whether or not a con-
tact with a human operator is taking place by considering that the
robot might be interacting with the environment. Next, a recogni-
tion module establishes the nature of the human interaction when
contact is detected. To this aim, the contact point along the robot
structure is localized, and the estimated wrench exerted by the hu-
man is evaluated according to (4.66) to evaluate whether or not the
contact is intentional. Finally, a behavior module determines the
robot virtual input y in (4.62). In detail, the robot is endowed with
three basic behaviors, namely task execution, admittance control
and avoidance behaviors, that are selected considering the type of
contact (if any) and the current task.

Differently from the existing approaches mentioned in Sec-
tion 4.1, the proposed solution introduces the following novel con-
tributions: (i) the human-robot contact is detected and classified
even in the case the robot is in contact with the environment; this
is achieved without adopting additional sensors and by resorting
to Gaussian Mixture Models (GMMs) for modeling the contact re-
quired by the robot task; (ii) a comprehensive control strategy is
devised to handle both type of contacts while taking into account
the contact point along the robot structure, the current task and
the robot constraints.

4.5.2 Contact detection and recognition

This section details the components related to the detection and
recognition modules of the proposed solution.

Nominal task interaction approximation

In order to assess whether or not a contact with a human operator
is occurring, an approximation τ̂ T (blue block of Figure 4.25) of
the expected external torque τ T, arising from the interaction with
the environment for task T, is defined. Indeed, based on this
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estimation and on the estimated overall external torque in (4.64),
the estimated torques induced by the human interaction τ̂ h can
be derived.

Gaussian Mixture Models [135] are considered to approximate
the nominal wrench profile. In this way, a rough definition of
the expected nominal profile can be derived on the basis of few
demonstrations of the nominal interaction with the environment,
as shown in the experiments in Section 4.5.4.

Let ζT,t = [t hT,n(t)
T ]T ∈ R

7 be the extended vector of the
nominal wrench of task T at time t. This can be probabilistically
modeled as a mixture of KT Gaussian distributions as follows

p(ζT,t) =
∑KT

k=1
πT,k N(ζT,t|µT,k,ΣT,k) (4.67)

where N(ζT,t|µT,k,ΣT,k) is the Gaussian distribution with mean
µT,k ∈ R

7 and covariance ΣT,k ∈ R
7×7 and πT,k is the k th mixture

coefficient such that πT,k ∈ [0, 1] and
∑KT

k=1 πT,k = 1.

The Expectation-Maximization (EM) algorithm [136] is then
leveraged to estimate the GMM parameters µT,k, ΣT,k and πT,k
∀k ∈ {1, . . . , KT} based on demonstrations of ζT,t ∀t. To gather
the latter, the task T is executed few times in the absence of
human wrench, and the residual vector θ(t) in (4.26) is recorded;
the latter coincides with the estimate of τ T(t) when τ h = 0n,
being 0n the null vector of n elements. Each datapoint hT,n(t) in
the demonstrations of ζT,t is then obtained as

hT,n(t) =
(
J (q(t)) T

)†
θ(t). (4.68)

With no loss of generality, it is considered that the expected phys-
ical interaction with the environment occurs at the end effector of
the robot since its task is assigned in the Cartesian space. The
choice of approximating the expected wrench hT,n instead of the
expected external torque τ T enables the proposed methodology to
be independent from the joint space configuration while executing
the task.

Finally, Gaussian Mixture Regression, as done for instance



142 4. Human multi-robot physical collaboration

in [137], is used to get the probabilistic model of hT,n(t) at each

time t, with mean ĥT,n(t) = E(hT,n(t)). The estimate τ̂ T(t) in

eq. (4.65) is then achieved, i.e., τ̂ T(t) = J(q(t))
T ĥT,n(t).

Detection and recognition classifiers

As mentioned above, the estimated torques τ̂ T are exploited to
compute the human torques τ̂ h. Based on the latter, two Recur-
rent Neural Networks (RNNs) are trained to determine the pres-
ence of a human contact and its type. In detail, the first network,
referred to as detection NN, outputs the information on whether
or not human contact is occurring, while the second network, re-
ferred to as recognition NN, outputs the information on whether
the contact is intentional or accidental. In light of the binary clas-
sification problems, the two networks are trained to minimize the
log loss. The same architecture is devised for both the networks
and it comprises: (i) a recurrent Long Short Term Memory layer,
that enables to learn long-term dependencies between data sam-
ples in the time series, (ii) a fully connect layer, (iii) a logistic
activation layer that outputs the prediction.

The training dataset of the detection NN consists of labeled
time series representing the norm of the estimated human torque,
i.e., ‖τ̂ h(t)‖ in eq. (4.65), while estimated human wrenches are
considered for the recognition NN, i.e., the dataset consists of the
datapoints ‖ĥh(t)‖ in eq. (4.66). The use of norm values allows to
take into account the intensity and variation of the human inter-
action ignoring the directions in which the interaction occurs. The
datasets were collected by voluntarily and accidentally interacting
with different points along the robot structure during free space
motion (i.e., with ‖τ T‖ = 0) and recording the labeled respec-
tive quantities. Note that the datasets only contain data acquired
with no environment interaction; however, the proposed approach
is able to tackle the case of ‖τ T‖ > 0 thanks to the GMMmodeling
and without wrist force/torque sensors. In this way, an arbitrary
number of tasks can be performed that require interaction with
the environment without the need of re-training the networks and
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adapting their datasets. Finally, note that the generalization ca-
pabilities of the networks allows to tackle, without manually tuned
thresholds, noisy measures, model uncertainties in (4.61) and task
interaction estimation inaccuracies which generally leads to not ac-
curate human torque estimation, i.e., it generally holds ||τ̂ h|| > 0
even if no human-robot contact is happening.

Contact point localization

In case of human contact, a procedure is needed to localize the
contact point P on the robot structure. This information is then
necessary to estimate the human wrench in (4.66) used by the
recognition classifier and the behavior module. Different tech-
niques can be used to the purpose relying on proper perception
devices such as IMU sensors [138] or vision systems. The latter
case is considered in this thesis and in the experiments reported
in Section 4.5.4. In particular, as in Section 3.2, the human can
be represented as a set of relevant points po,j whose position over
time is provided by a vision-based human skeleton tracking algo-
rithm. Based on the points po,j and by approximating each robot
link l as a segment with starting point pl,0 and ending pl,1 (as in
Section 3.2), the contact point P can be defined as

P = ||pl∗,0 + r∗(pl∗,1 − pl∗,0)− po,j∗|| (4.69)

where l∗,r∗ and j∗ are obtained as solution of the following opti-
mization problem

(l∗, r∗, j∗) = argmin
l,r,j

||pl,0 + r(pl,1 − pl,0)− po,j||.

s.t. r ∈
[
0, 1
] (4.70)

which implies that the contact point is defined by considering the
point on the robot structure (identified by the link l∗ and the
curvilinear abscissa r∗) which is closest to any of the human points
po,j, ∀j.
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4.5.3 Robot behaviors

Three basic robot behaviors (red block of Figure 4.25) are envis-
aged which are activated depending on the type (if any) of interac-
tion. In the following, the individual behaviors are first introduced
and, then, their activation activation rationale as well as the han-
dling of possible robot and task constraints are presented.
The following behaviors are identified.

1) Task execution behavior

The task execution behavior allows the robot to perform its desired
task which, as stated in Problem 4.3, is given by the desired tra-
jectory at the effector xd(t). The closed loop inverse kinematic law
is leveraged to define the respective virtual input y in eq. (4.62):

yn = q̈Tn + q̈N , q̈Tn=J
†
(

ẍd+Kd
˙̃x+Kpx̃− J̇ q̇

)

(4.71)

where x̃(t) = xd(t) − x(t) ∈ R
6 is the task tracking error, Kd ∈

R
6×6, Kp ∈ R

6×6 are positive definite matrices, and q̈N ∈ R
n is

an arbitrary vector of joint accelerations which can be used for
secondary tasks.

When this behavior is active, the human operator is also al-
lowed to reconfigure the internal structure of the robot without
altering the robot end effector task. In particular, it is considered
that, in order to express this intention, the human intentionally
interacts with the point P of the robot structure (not coinciding
with the end effector) that he/she wants to reconfigure. To this
aim, the following joint accelerations q̈N [139] in eq. (4.71) are
defined:

q̈N =
(
JP (In − J̄ †J̄)

)†
(

M−1
d

(

−DdẋP + ĥh

)

− J̇P q̇− JP q̈Tn

)

where M d,Dd ∈ R
6×6 are positive definite matrix gains, and J̄

coincides with the positional Jacobian matrix at the end effector,
if the task orientation can be relaxed, and with the full Jacobian
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matrix J (in case of redundant robots), otherwise. The formula-
tion in (4.72) makes the robot compliant at the contact point P ,
enabling the internal reconfiguration by the human, while preserv-
ing the respective components of the desired task.

2) Admittance control behavior

This behavior allows the human to voluntary modify the robot
task, i.e., when the human intentionally interacts with the robot
end effector, it is assumed that he/she wants to intervene in the
robot task and correct its execution. To this aim, a simple admit-
tance controller is realized which allows the human to guide the
robot motion according to a mass-damper model. In particular,
the following formulation for the input y in eq. (4.62) is used:

ya = q̈Ta + q̈N , q̈Ta=J
†
(

M−1
d

(

−Ddẋ+ ĥh

)

−J̇ q̇
)

(4.72)

where, as above, q̈N ∈ R
n is an arbitrary vector of joint accel-

erations, while M d,Dd ∈ R
6×6 are the positive definite desired

inertia and damping, respectively. Note that also the methods
presented in Sections 4.3 and 4.4 can be adopted for this behav-
ior. By replacing (4.72) in (4.63), the closed loop model, analogous
to (4.16), is derived:

M d ẍ+Dd ẋ = ĥh. (4.73)

3) Avoidance behavior

An avoidance behavior is activated when an accidental collision
occurs. To this aim, the concept of safety field F (t) introduced in
Section 3.2 is considered to assess the level of human safety with
respect to the robot in a comprehensive manner, i.e., the entire
human body and robot structure are taken into account. The
objective of the avoidance behavior is to recover a safety condition
F ≥ Fd after the occurrence of the accidental contact, with Fd a
positive threshold to be tuned. For this purpose, an evasive action
is realized, since the velocity modulation is not suitable after the
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collision occurrence. More specifically, the following virtual input
yo is defined

yo = q̈To + q̈N , q̈To = J
†
F

(

kd∆̇F + kp∆F−J̇F q̇
)

(4.74)

where JF ∈ R
1×n is the safety field Jacobian matrix such that

Ḟ = (∂F/∂q)q̇ = JF q̇, ∆F = min(0, Fd − F ), kp, kd are positive
gains, and q̈N ∈ R

n is an additional acceleration vector. The
rationale behind (4.74) is that, as long as F < Fd, the robot is
driven away from the human operator in order to increase his/her
safety and restore the minimum index Fd. Then, when F ≥ Fd,
no action is carried out anymore to increase the human safety. In
detail, by replacing (4.74) in (4.62), the safety field dynamics is

∆̈F + kd∆̇F + kp∆F = 0 (4.75)

implying the asymptotic convergence of ∆F to the origin.

The activation of the appropriate behavior on the basis of the
human-robot interaction state is regulated by the Finite State Ma-
chine (FSM) in Figure 4.26. More specifically, the robot task is
carried out according to (4.71)-(4.72) as long as no human inter-
action is detected, or if a force is voluntarily applied along the
robot structure to internally reconfigure it. Then, in the case an
intentional contact is recognized at the end effector, the admit-
tance behavior in (4.72) is selected which enables the human to
adjust the robot task. The robot persists in this state until the
human exerts wrenches at the contact point. Finally, if an acciden-
tal contact is recognized, the robot selects the avoidance behavior
to increase the human safety field F . The robot persists in this
state as long as a safety condition is not restored, i.e., as long as
F < Fmin, with Fmin > Fd a scalar threshold.

In order to handle possible constraints, depending on the task
itself and on the nature of the interaction (see Section 4.5.4 for
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Task exec.
(eqs. (4.71)-

(4.72))

Avoidance
(eq. (4.74))

Accidental contact

F ≥ Fmin

Admittance
(eq. (4.72))

Intentional contact at
end effector

No contact

Figure 4.26: FSM for robot’s behaviors activation.

examples), the system in (4.62) is rewritten in the form

ξ̇q = f (ξq) + g(ξq)(y) =

[
On In
On On

]

ξq +

[
On

In

]

y (4.76)

with ξq = [qT q̇T ]T ∈ R
2n, and Om (Im) the m×m null (identity)

matrix. The i th constraint is expressed as

φi(ξx(ξq)) ≥ 0 (4.77)

where ξx = [xT
P ẋT

P ]
T ∈ R

12 and φi(·) is a continuous scalar func-
tion. In order to have these constraints satisfied, the Control Bar-
rier Function (CBF) approach [140] is adopted. According to the
latter, the following sets are defined

C = {ξx ∈ R
12 : φi(ξx) ≥ 0}

∂C = {ξx ∈ R
12 : φi(ξx) = 0}

Int(C) = {ξx ∈ R
12 : φi(ξx) > 0}

(4.78)

which implies that the state ξx is required to belong to the set C
in order to satisfy constraints. By following the steps in [140], it
can be proved that the control input y⋆ which achieves the task
function belonging to the set C can be computed as the solution
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of the following Quadratic Program problem

y⋆ = argmin
y

1

2

(
y − y(·)

)T
Q
(
y − y(·)

)

s.t. Lfφi + Lgφiy ≥ −γ(φi(ξ)), ∀i
(4.79)

where y(·) is the desired input computed according to eqs. (4.71),
(4.72) or (4.74) in dependence of the FSM state, Q ∈ R

n×n is a
positive definite matrix, γ(·) is an extended K∞ class function and
Lfφi, Lgφi are the Lie derivatives of φi with respect to f and g,
respectively. Here, the input y(·) is obtained in accordance to the
current state of the system in the FSM (Figure 4.26), i.e., accord-
ing to (4.71)-(4.72) in the task execution state, to (4.72) in the
admittance behavior state and to (4.74) in the human avoidance
state. The constraints φi are defined according to the specific task
to execute and setup, as shown in the following section, and the
respective Lie derivatives are computed. The resulting y∗ is then
provided as input to the virtual model in (4.62).

4.5.4 Experimental validation

The experimental validation of the approach is now provided. The
entire experiment execution can be also visualized in the video at
the provided link4.

System architecture and robot tasks

The system setup, illustrated in Figure 4.27, is composed of a
Kinova Jaco2 robotic arm with 7 DOFs (n = 7), previously used
to validate the FDI strategy in Section 2.5, and a Microsoft Kinect
One RGB-D sensor.

A scheme of the overall system architecture is shown in
Fig. 4.28. In detail, all the algorithms related to the contact
classification and to the Jaco2 control run on Matlab 2020 and
exchange information with Robot Operating System (ROS). The

4https://youtu.be/cf4ecX-_gHY

https://youtu.be/cf4ecX-_gHY
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Σw

Figure 4.27: Experimental setup composed of a Kinova Jaco2 and a Microsoft
Kinect One RGB-D sensor. The world frame Σw is also shown in blue.

latter is also used by the localization component which uses the
RGB-D sensor for identifying the world frame Σw using mark-
ers and ArUco libraries [141] and for tracking the human skele-
ton through a proper algorithm5. In detail, the following relevant
points are considered for the human: torso, left and right hand,
elbow, shoulder.

A domestic collaborative scenario is considered where the fol-
lowing tasks can be performed:

1. Object pick and place
The robot can manipulate bottles and mugs in the scene.
However, to prevent the liquid from spilling out of the ob-
jects, the following orientation constraints are considered:

φl
o,i = ϕi − (ϕd,i −∆ϕi) ≥ 0

φu
o,i = (ϕd,i +∆ϕi)− ϕi ≥ 0

, i = 1, 2, 3 (4.80)

which are in the same form as in (4.77), being ϕd ∈ R
3

a desired orientation, ∆ϕi a positive tolerance and (·)i the
5https://github.com/mcgi5sr2/kinect2_tracker

https://github.com/mcgi5sr2/kinect2_tracker


150 4. Human multi-robot physical collaboration

Figure 4.28: Experimental system architecture. A Microsoft Kinect One is
used to detect a marker to define the common frame and track the human
skeleton movements. The information is sent to ROS, which also communicate
with the classification and control algorithms running on Matlab 2020. The
latter generates desired joint velocities for the robot Kinova Jaco2.

i th component of the respective vector. The above con-
straints have a relative degree equal to 2 which are handled
as in [142].

2. Pouring task
This task foresees the robot holding a mug and the human
filling it. The nominal wrench profile due to the filling is
approximated with KT = 5 Gaussians and by using 5 ran-
domly selected demonstrations. The GMM parameters for
the EM algorithm are initialized by resorting to a K-means
clustering algorithm. In order to validate the GMM approx-
imation, 40 additional test samples ĥh(t) have been con-
sidered, and the average approximation error of the quan-
tity ‖ĥh(t)− ĥT,n(t)‖, ∀t has been computed. The latter
resulted equal to 0.5, confirming the effectiveness of the ap-
proximation. Also in this case, the end effector orientation
is constrained as in (4.80).

3. Table cleaning
The robot executes a periodical motion on the table surface
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Training user
Detection NN Recognition NN

nc wc ic ac
nc 4697 373 92.6% ic 3979 135 96.7%
wc 139 2930 95.5% ac 555 1826 76.7%

97.1% 88.7% 93.7% 87.8% 93.1% 89.3%

Novel users
nc wc ic ac

nc 6120 456 93.1% ic 21041 2647 88.8%
wc 2836 19745 87.4% ac 3669 7016 65.7%

68.3% 97.7% 88.7% 81.2% 72.6% 81.6%

Table 4.2: Confusion matrices of the RNNs with data acquired by the user
involved in the training dataset (top part) and with different users not involved
in the training dataset (bottom part).

holding a cylindrical sponge (see Figure 4.24), in such a way
to perform a cleaning task. The force exerted on the table is
approximated through GMMs by using 5 randomly selected
demonstrations with, as before, KT = 5 and K-means algo-
rithm for initialization. The average approximation error is
also evaluated, which in this case is equal to 1 considering
100 additional test samples.

Further constraints in the CBF framework are introduced in
all the tasks to limit the robot workspace and avoid collisions with
the table, i.e., φt = pz − ht ≥ 0 in (4.77) being ht the height of
the table. Note that the human is always allowed to physically
interact with the robot end effector, changing its configuration, or
with the robot structure, changing its internal joint configuration
(without affecting the end effector position). In this way, the user
can help the robot to accomplish the task or to avoid possible
collisions with obstacles not detected by the vision system.
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Classification results

Classification results of the two RNNs (with 100 hidden units)
are provided in the following. In particular, the detection NN
determines if a datapoint in the time series belongs to the class no
contact (nc) or with contact (wc), while the recognition network
establishes if, in the case of contact, a datapoint belong to the
class intentional contact (ic) or accidental contact (ac).

The training dataset of the detection (recognition) NN consists
of 43487 (15647) time samples, representing 869.7 s (312.9 s) with
time step T = 0.02 s, equally distributed in their respective two
classes. Concerning the test set, the accuracy was evaluated both
with the user that was involved in the collection of the training
dataset, referred to as training user, and with other four users
not involved in the training process, referred to as novel users.
Table 4.2 reports the confusion matrices of the classifiers for the
training user (top part) and the novel users (bottom part). It can
be observed that all the RNNs achieve good overall accuracy which
is, for the training user, ≈ 94% for the detection NN and≈ 90% for
the recognition NN. The lower accuracy of the latter is explained
by the intrinsic greater complexity of the problem of recognizing
the type of contact rather than identifying any possible contact.
Remarkably, the results also confirm the generalization capabili-
ties of the chosen NNs which allow classification also with novel
users. In detail, an overall accuracy equal to ≈ 90% and ≈ 82% is
obtained for the detection and recognition classifications, respec-
tively, implying a decrease of performance of only ≈ 4% and ≈ 8%,
compared to the training user. Note that the results in Table 4.2
are obtained with a sample-by-sample evaluation; however, a cer-
tain delay for detecting and classifying a contact always occurs as
the networks obviously need some samples before being able to
correctly classify. This explains the classification inaccuracies in
Table 4.2 but, as demonstrated in the following case studies, it
does not undermine the human-robot collaboration.

Concerning possible misclassifications, in the case they occur
in the recognition network, two possibilities exist: i) an intentional
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contact is recognized as accidental, and ii) an accidental contact is
recognized as intentional. The former does not compromise human
safety as it only leads the robot to move unnecessarily away from
the person. The latter instead may be critical. However, the ad-
mittance behavior leads the robot to become compliant towards
the human force, thus reducing anyhow possible human injuries
compared to the rigid case. In the case of misclassification in the
detection network, which barely occurs, no particular issues ex-
ist when a false positive is detected (i.e., the network detects a
contact that is not actually taking place) but critical safety issue
may arise when a false negative (i.e., the network does not de-
tect a contact) occurs. However, if the force magnitude increases
due to continuous contact with the person, it is very likely that
this contact, albeit with a certain delay, is then recognized by the
network, allowing robot to react appropriately.

Case studies and experimental results

Two case studies are analyzed for the experimental validation
which involve different tasks and human interactions. In both case
studies, the following parameters has been used: Kθ = 50I7 in
eq. (4.26),Kd = 5I6,Kp = 6I6 in (4.71),M d = 5I6,Dd = 100I6
in (4.72) and (4.72), kd = 5, kp = 6 in (4.74), Q = I7 in (4.79).
Moreover, according to the computations in Appendix B, it is set
Fd = 10 in (4.74) to ensure a minimum distance ≈ 0.4 m between
every point of the robot and the human operator, and Fmin = 11
in the FSM.

Case study 1
In this case study, the robot executes three different tasks, while
the human interacts with it. At the beginning, the robot takes
the cylindrical sponge and starts a cleaning task, during which
the human intentionally interacts with its end effector to change
its configuration. Once the cleaning task is completed, the robot
starts a bottle pick and place operation. During this task execu-
tion, the human voluntarily interacts along the robot structure to
modify the joint configuration while preserving the end effector
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position. Finally, a pick operation of a mug and a pouring task
are performed. During each task, the respective constraints and
possible expected environment interaction are taken into account.

Figure 4.29 summarizes the results of this case study. In de-
tail, proceeding from the top to the bottom, it reports the robot
end effector trajectory x, the nominal interaction wrench ĥT, the
norm of estimated human torque ‖τ̂ h‖ and the classification out-
put of the RNNs (in blue) compared to the Ground Truth (GT,
in green). Initially, the robot autonomously performs the clean-
ing task (highlighted with red boxes in the plots) and executes
the desired periodic motion (first plot) which generates interac-
tion wrenches with the table. The use of the nominal wrench
profile (second plot) modeled via GMM allows to estimate the
human torque (third plot) and to properly recognize that, in the
initial phase, only interaction with the environment is occurring
while no human contact is present (last plot). Once the human
intentionally interacts with the end effector at t ≈ 21 s, it is rec-
ognized by the RNNs (with a delay < 1 s) and the admittance
behavior is activated. This makes the robot end effector compli-
ant towards the human wrench and its trajectory is modified as
shown in the first plot. At the end of the interaction, the execution
of the desired tasks is restored and the pick and place operations
are carried out (highlighted with green boxes) from t ≈ 27 s to
t ≈ 100 s. In this phase, an intentional contact on link 4 of the
robot is recognized via the localization component at t ≈ 70 s,
which leads the robot to change its joint configuration according
to (4.71) and (4.72) while preserving its end effector position, as
shown in the top plot. Orientation variables are also limited ac-
cording to (4.80) with ϕd = [−1.4, 1.6, −2.9]T and ∆ϕi = 0.2 ∀i.
Finally, the pouring task (blue box in the plots) is executed start-
ing from t ≈ 100 s during which the respective GMM model is
exploited and no contact with the human is detected.

Case study 2
This case study aims to prove the effectiveness of the solution also
with accidental contacts. It is structured as follows: the human
first intentionally interacts with the robot end effector during a
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Figure 4.29: Case study 1. From the top: end effector trajectory, nominal task
interaction wrench, norm of the estimated human torques and classification
results compared to ground truth. Cleaning, pick and place and pouring
phases are denoted in red, green and blue.
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pick and place task, and then an accidental collision happens.
Figure 4.30 shows, from the top, the robot end effector trajec-

tory x, the norm of the estimated human torques ‖τ̂ h‖ and the
classification results (in blue), compared to ground truth values
(in green). Based on the estimated human wrench (second plot)
and on the localization component, an intentional contact at the
end effector is recognized by the RNNs (third plot) at t ≈ 9 s;
then, the admittance behavior is activated, leading to a modifi-
cation of the robot trajectory. The robot task execution is then
restored when the interaction terminates and an accidental con-
tact is detected on link 7 at t ≈ 33 s. This activates the avoidance
behavior which drives the robot away from the human operator in
order to increase the safety (see also video at the link 4).
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Figure 4.30: Case study 2. From the top: end effector trajectory, estimated
human torques and classification results compared to ground truth.

The experiments thus validate the approach which allows an
effective human-robot collaboration where both intentional and
accidental contacts can happen.
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Planning through human
demonstrations
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Figure 5.1: Taxonomy for HRI scenarios where the one considered in this
chapter is highlighted in green.

After having addressed the themes of human-robot workspace
sharing in Chapter 3 and physical interaction in Chapter 4, this
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chapter represents the final step towards the maximum benefit of
human-robot collaboration, that is learning from human skills. In
particular, as highlighted in green in the taxonomy in Figure 5.1,
it is here considered that the human operator provides examples
to the robot about how to perform a given task, rather than col-
laborating side-by-side with it. These examples are provided in
the form of high-dimensional raw observations, such as images or
video sequences. This is especially useful in complex scenarios
where explicit analytical modeling of states is challenging, causing
difficulties in planning and control processes. This is the case, for
example, of tasks which involve manipulation of highly deformable
objects, which is currently an active research field [143]. A first
strategy to mitigate this representation problem to a certain ex-
tent is to use sampling-based planning algorithms [144], which ran-
domly sample the state space and avoid representing it explicitly.
However, these approaches become intractable [145] when dealing
with higher-dimensional spaces and more complex systems.

For this reason, data-driven low-dimensional latent space rep-
resentations for planning are receiving increasing attention as they
allow to implicitly represent complex state spaces enabling an
automatic extraction of lower-dimensional state representations
[146]. Some of the most common approaches to learning com-
pact representations in an unsupervised fashion are latent vari-
able models such as Variational Autoencoders (VAEs) [147, 148] or
encoder-decoder based Generative Adversarial Networks (GANs)
[149, 150]. These models can learn low-dimensional state repre-
sentations directly from images instead of a separate perception
module. In this way, images can be used as input for planning al-
gorithms to generate “visual action plans” [151, 152] as depicted
in Figure 5.2.

Latent state representations, however, are not guaranteed to
capture the global structure and dynamics of the system, i.e., to
encode all the possible system states and respective feasible tran-
sitions. Furthermore, not all points in the latent space necessarily
correspond to physically valid states of the system, which makes it
hard to plan by naively interpolating between start and goal states
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pick release

Start GoalGenerated visual action plan

Figure 5.2: Examples of visual action plans for a stacking (top) and a folding
(bottom) task.

as shown in the chapter. In addition, the transitions between the
generated states might not be valid.

For this reason, a method is presented in the following, based
on the works [153] and [154], which builds a graph-based struc-
ture in the latent space to plan a manipulation sequence given a
start and goal image. This graph is derived on the basis of weak
supervision that the human provides: a small number of actions
between observation pairs is recorded, and the observations are
marked as “same” or “different”, depending on whether or not an
action is needed to bring the system from one state to the suc-
cessor one. The approach is validated on a T-shirt folding task
requiring manipulation of deformable objects. Note that the same
approach can also be used to generate plans that involve the hu-
man as an executive agent. In this case, the human role would
be two-fold: on the hand he/she would provide examples to the
system, on the other hand he/she would also be involved in the
execution of the plan. This scenario is subject of on-going work.
Finally, in regard to the manipulation of deformable objects, the
lack of standardized procedures to evaluate and compare different
methodologies was noticed and a benchmark was proposed to the
purpose in [155]. The latter is reported in Appendix D for the
sake of completeness.

The remainder of the chapter is organized as follows. First,
the related work is presented in Section 5.1. Next, the problem
of visual action planning is formally stated in Section 5.2 and an
overview of its solution is provided, whose respective three mod-
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ules are detailed in Sections 5.3,5.4 and 5.4. Finally, the effective-
ness of the method is shown with two versions of a simulated box
stacking task in Section 5.5 and with a real-world folding task in
Section 5.6.

5.1 Related work

In task planning, it is common to assume that the state represen-
tation is given to the planner as input, and the shape and the poses
of objects are known. As an example, robot and grasping knowl-
edge is exploited in [156] to accomplish sequential manipulation
tasks, while all possible distributions over the robot state space,
namely the belief space, are employed in [157] to tackle partially
observable control problems. In addition, sampling-based plan-
ning approaches, such as Rapidly exploring Random Tree (RRT)
or Rapidly exploring Dense Tree (RDT) [144], can be adopted to
probe the state space when an explicit representation of it is dif-
ficult to achieve. However, all the above mentioned approaches
are generally prone to fail when high-dimensional states, such
as images, are involved in the system [158]. For this reason, as
mentioned above, the research community is investigating data-
driven low-dimensional latent space representations for planning
purposes. However, despite the dimensionality reduction, the sys-
tem’s global structure and dynamics may be not properly repre-
sented in the latent space. One way to address these shortcomings
is to restrict the exploration of the latent space via imitation learn-
ing, as presented in [159], where a latent space Universal Planning
Network (UPN) that embeds differentiable planning policies is pro-
posed and the process is learned in an end-to-end fashion from
imitation learning. The authors then perform gradient descent to
find optimal trajectories.

A more common solution to mitigate these challenges is to col-
lect a very large amount of training data that densely covers the
state space and allows to infer dynamically valid transitions be-
tween states. Following this approach the authors in [151] propose
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a framework for global search in the latent space based on three
components: i) a latent state representation, ii) a network that
approximates the latent space dynamics, and iii) a collision check-
ing network. Motion planning is then performed directly in the
latent space by an RRT-based algorithm. Similarly, a Deep Plan-
ning Network is proposed in [160] to perform continuous control
tasks where a transition model, an observation model and a re-
ward model in the latent space are learned and are then exploited
to maximize an expected reward function. Following the trend
of self-supervised learning, the manipulation of a deformable rope
from an initial start state to a desired goal state is investigated
in [161]. In particular, it builds upon [152], where 500 hours worth
of data collection are used to learn the rope inverse dynamics and
then produce an understendable visual foresight plan for the in-
termediate steps to deform the rope using a Context Conditional
Causal InfoGAN (C3IGAN). In the proposed framework, neither
full imitation nor large amount of data are required for planning
but rather a weak supervision is exploited which is given by pairs
of images and demonstrated actions connecting them, and then
learn feasible transitions between states from this partial data.

5.2 Problem statement and overview

The goal of visual action planning, also referred to as “visual plan-
ning and acting” in [161], can be formulated as follows: given start
and goal images, generate a path as a sequence of images repre-
senting intermediate states and compute dynamically valid actions
between them.

Let I be the space of all possible observations of the system’s
states represented as images with fixed resolution and let U be the
set of possible control inputs or actions. Formally, the following
problem is addressed.

Problem 5.1. Consider that the images Istart, Igoal ∈ I captur-
ing the start and goal states of the system, respectively, are as-
signed. The objective is to define a visual action plan consisting
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Figure 5.3: Illustrative representation of the latent space Z. In the middle,
possible transitions (arrows) between covered regions (sketched with circles)
are shown. On the left, details of the covered regions with different shapes
and representative points are provided. On the right, observations from a box
stacking tasks are shown. In detail, the ones obtained from covered regions
(marked in pink and blue) contain meaningful states of the task, while the
ones generated from not covered regions (marked in red) show fading boxes
that do not represent possible states of the system.

of a visual plan represented as a sequence of images PI = {Istart =
I0, I1..., IN = Igoal} and an action plan represented as a sequence
of actions Pu = {u0, u1, ..., uN−1} where un ∈ U generates a tran-
sition between consecutive states contained in the observations In
and In+1 for each n ∈ {0, ..., N − 1}.

To retrieve the underlying states represented in the observa-
tions as well as to reduce the complexity of the problem, I is
mapped into a lower-dimensional latent space Z such that each
observation In ∈ I is encoded as a point zn ∈ Z extracting the
state of the system captured in the image In. Such map is defined
latent mapping and is denoted by ξ : I→ Z. In order to generate
visual plans, it is additionally assumed the existence of a mapping
ω : Z→ I called observation generator.

Let TI = {I1, ..., IM} ⊂ I be a finite set of input observations
inducing a set of covered states Tz = {z1, ..., zM} ⊂ Z, i.e., Tz =
ξ(TI). In order to identify a set of unique covered states, the
following assumption on Tz is made.

Assumption 5.1. Let z ∈ Tz be a covered state. Then, there
exists εz > 0 such that any other state z′ in the εz−neighborhood
Nεz(z) of z can be considered as the same underlying state.

This allows both generating a valid visual action plan and tak-
ing into account the uncertainty induced by imprecisions in action
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execution. Let
Zsys =

⋃

z∈Tz

Nεz(z) ⊂ Z (5.1)

be the union of εz-neighborhoods of the covered states z ∈ Tz .
Using Zsys, a visual plan can be computed in the latent space
using a latent plan Pz = {zstart = z0, z1, ..., zN = zgoal}, where
zn ∈ Zsys, which is then decoded with the observation generator
ω into a sequence of images.

To obtain a valid visual plan, the structure of the space Zsys

is studied which is general not path-connected. As shown in Fig-
ure 5.3 on the right, linear interpolation between two states z1 and
z2 in Zsys may result in a path containing points from Z − Zsys

that do not correspond to covered states of the system and are
therefore not guaranteed to be meaningful. To formalize this, the
following equivalence relation in Zsys is defined

z ∼ z′ ⇐⇒ z and z′ are path-connected in Zsys, (5.2)

which induces a partition of the space Zsys into m equivalence
classes [z1], . . . , [zm]. Each equivalence class [zi] represents a path-
connected component of Zsys

Zi
sys =

⋃

z∈[zi]

Nεz(z) ⊂ Zsys (5.3)

called covered region. To connect the covered regions, the following
set of transitions between them is defined:

Definition 5.1. A transition function f i,j
z : Zi

sys × U → Zj
sys

maps any point z ∈ Zi
sys to an equivalence class representative

zjsys ∈ Zj
sys, where i, j ∈ {1, 2, ..., m} and i 6= j.

Equivalence relation (5.2) and Assumption 5.1 imply that two
distinct observations I1 and I2 which are mapped into the same
covered region Zi

sys contain the same underlying state of the sys-
tem, and can be represented by the same equivalence class repre-
sentative zisys. Given a set of covered regions Zi

sys in Zsys and a
set of transition functions connecting them, the global transitions
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of Zsys can be approximated as shown in Figure 5.3 on the left.
To this end, a Latent Space Roadmap is defined (see Figure 5.3 in
the middle):

Definition 5.2. A Latent Space Roadmap is a directed graph
LSR = (VLSR,ELSR) where each vertex vi ∈ VLSR ⊂ Zsys for i ∈
{1, 2, ..., m} is an equivalence class representative of the covered
region Zi

sys ⊂ Zsys, and an edge ei,j = (vi, vj) ∈ ELSR represents a
transition function f i,j

z between the corresponding covered regions
Zi
sys and Zj

sys for i 6= j. Moreover, weakly connected components
of an LSR are called graph-connected components.

In the following, the structure of the training dataset as well as
an overview of the approach to solve Problem 5.1 are presented.

5.2.1 Training dataset and system overview

The proposed framework considers a training dataset TI consist-
ing of tuples of the form (I1, I2, ρ) where I1 ⊂ I is an image rep-
resenting a system state, I2 ⊂ I is an image of a successor state,
and ρ is a variable representing the action that took place be-
tween the two observations. Here, an action is considered to be
a single transformation that produces any consecutive state rep-
resented in I2 different from the start state in I1, i.e., ρ cannot
be a composition of several transformations. On the contrary, no
action is performed if images I1 and I2 are observations of the
same state, i.e., if ξ(I1) ∼ ξ(I2) with respect to the equivalence
relation (5.2). The variable ρ = (a, u) consists of a binary vari-
able a ∈ {0, 1} indicating whether or not an action occurred as
well as a variable u containing the task-dependent action-specific
information which can be used to infer the transition functions
f i,j
z . A tuple (I1, I2, ρ = (1, u)) is called action pair and a tuple
(I1, I2, ρ = (0, u)) is called no-action pair. For instance, Figure 5.4
shows an example of an action pair (top row) and a no-action pair
(bottom row) for the folding task. When the specifics of an action
u are not needed, they are omitted from the tuple notation and
simply write (I1, I2, a). By abuse of notation, an observation I
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contained in any of the training tuples is sometimes referred to
as I ∈ TI . Finally, the encoded training dataset is denoted by
Tz and consists of latent tuples (z1, z2, ρ) obtained from the input
tuples (I1, I2, ρ) ∈ TI by encoding the inputs I1 and I2 into the
latent space Zsys with the latent mapping ξ. The obtained states
z1, z2 ∈ Zsys are called covered states. Note that the dataset TI is
not required to contain all possible action pairs of the system but
only a subset of them that sufficiently cover the dynamics, making
the proposed approach data efficient as shown in Section 5.5.

a)

b)
ρ = (0, ())

ρ =
(
1, (# pick, • place)

)

Figure 5.4: Example of action (a) and no-action (b) pairs for the folding task.

Figure 5.5: Overview of the method. Start and goal images (on the left)
are mapped to the latent space Z by the latent mapping ξ. A latent plan
is then found with the Latent Space Roadmap (cyan circles and arrows) and
is decoded to a visual plan using the observation generator ω. The Action
Proposal Module (red) generates the respective action plan. The final result
is a visual action plan (green) from start to goal state.

The proposed framework consists of three components, shown
in Figure 5.5. First, a Mapping Module (MM) is used to both
extract a low-dimensional representation of a state contained in a
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given observation, through the mapping ξ : I → Z, and to gener-
ate an observation from a given latent state, through the mapping
ω : Z → I. Note that ideally the mapping ξ should perfectly
extract the underlying state of the system, i.e., different observa-
tions containing the same state should be mapped into exact same
latent point. However, ξ is generally only an approximation of the
unknown true latent embedding, implying that different observa-
tions containing the same state could be mapped to different latent
points. Therefore, a Latent Space Roadmap (LSR) is built in the
low dimensional latent space to perform planning. In particular,
it is a graph-based structure identifying the latent points belong-
ing to the same underlying state and approximating the system
dynamics. This enables finding the latent plans Pz between the
extracted states zstart = ξ(Istart) and zgoal = ξ(Igoal). For the sake
of interpretability, latent plans Pz are decoded into visual plans
PI by the observation generator ω. The visual plan is finally com-
plemented with the action plan produced by the Action Proposal
Module (APM). It takes a pair (zi, zi+1) of consecutive states from
the latent plan Pz found by the LSR as inputs, and proposes an
action ui to achieve the desired transition f i,i+1

z (zi, ui) = zi+1. Ap-
plying APM to all consecutive pairs of states in Pz results in an
action plan Pu.

Remark 5.1. The proposed method is able to generate a sequence
of actions {u0, . . . , uN−1} to reach a goal state in IN from a given
start state represented by I0, even though the tuples in the input
dataset TI only contain single actions u.

5.3 Mapping module

The mappings ξ : I → Z and ω : Z → I as well as the low-
dimensional space Z can be realized using any encoder-decoder
based algorithms, for example VAEs, AEs or GANs combined with
an encoder network. The primary goal of MM is to find the best
possible approximation ξ such that the structure of the extracted
states in the latent space Z resembles the one corresponding to the
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unknown underlying system. The secondary goal of MM is to learn
an observation generator ω which enables visual interpretability of
the latent plans. The action information in the binary variable a
contained in the training tuples (I1, I2, a) is leveraged to improve
the quality of the latent space structure. To this aim, a contrastive
loss term [162], called action term, is introduced which can be
easily added to the loss function of any algorithm used to model
the MM:

Laction(I1, I2)=

{

max(0, dm − ||z1 − z2||p) if a = 1

||z1 − z2||p if a = 0
(5.4)

where z1, z2 ⊂ Zsys are the latent encodings of the input obser-
vations I1, I2 ⊂ TI , respectively, dm is a hyperparameter, and the
subscript p ∈ {1, 2,∞} denotes the metric Lp. The action term
Laction naturally imposes the formulation of the covered regions
Zi
sys in the latent space: it encodes identical states contained in

the no-action pairs close by and it encourages different states to be
encoded in separate parts of the latent space via the hyperparam-
eter dm. As experimentally shown in Section 5.5.1, the choice of
dm has a substantial impact on the latent space structure. In this
framework, it is dynamically increased during the training of the
MM until the separation of action and no-action pairs is achieved.
In detail, starting from 0 at the beginning of the training, dm is
increased by ∆dm every k epochs as long as the maximum distance
between no-action pairs is larger then the minimum distance be-
tween action pairs. The effect of dynamically increasing dm is
shown in Figure 5.6 where it is visualized the distance ||z1 − z2||1
between the latent encodings of every action training pair (in blue)
and no-action training pair (in green) obtained at various epochs
during training on a box stacking task. It can be clearly seen that
the parameter dm is increased as long as there is an intersection
between action and no-action pairs.

A VAE [147, 148] is used such that its latent space represents
the space Z, while the encoder and decoder networks realize the
mappings ξ and ω, respectively. Let I ⊂ TI be an input im-
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age, and let z denote the unobserved latent variable with prior
distribution p(z). The VAE model consists of encoder and de-
coder neural networks that are jointly optimized to represent the
parameters of the approximate posterior distribution q(z|I) and
the likelihood function p(I|z), respectively. In particular, VAE is
trained to minimize

Lvae(I)=Ez∼q(z|I)[log p(I|z)] + β ·DKL (q(z|I)||p(z)) (5.5)

with respect to the parameters of the encoder and decoder neural
networks. The first term influences the quality of the reconstructed
samples, while the second term, called KL divergence term, reg-
ulates the structure of the latent space. The trade-off between
better reconstructions or a more structured latent space is con-
trolled by the parameter β [163, 164]. The action term (5.4) is
easily added to the VAE training objective (5.5) as follows:

L(I1, I2) =
1

2
(Lvae(I1) + Lvae(I2)) + γ · Laction(I1, I2) (5.6)

where I1, I2 ⊂ TI and the parameter γ controls the influence of
the distances among the latent encodings on the structure of the
latent space. Note that the same procedure applies for integrating
the action term into any other framework for modeling the MM.

0
0

0
0

0
0

0.50.5 11 1.51.5 22 4 6

505050

100100100

150150150

Epoch 1 Epoch 5 Epoch 50

Action pair distanceNo-action pair distance

Figure 5.6: An example showing histograms of distances ||z1 − z2||1 for the
latent action (in blue) and no-action pairs (in green) obtained at epochs 1, 5
and 50 during the training of VAE on the hard box stacking task (more details
in Section 5.5). The figure shows the separation of the action and no-action
distances induced by dynamically increasing the minimum distance dm in the
action term (5.4).
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5.4 Latent space roadmap

The LSR, defined in Definition 5.2, is a graph built in the la-
tent space Z obtained from the MM. The basic idea is that each
node in the roadmap is associated with a covered region Zi

sys and
two nodes are connected by an edge if there exists an action pair
(I1, I2, ρ = (1, u1)) in the training dataset TI such that the transi-
tion f 1,2

z (z1, u1) = z2 is achieved in Zsys.
The LSR building procedure is summarized in Algorithm 2

and discussed in the following. It relies on a clustering algorithm
that builds the LSR using the encoded training data Tz and a
specified metric Lp as inputs. The additional input parameter τ is
inherited from the clustering algorithm and is then automatically
determined, as explained in the following.

LSR building

Algorithm 2 consists of three phases. In Phase 1 (lines 1.1−1.5), a
reference graph G = (V,E), induced by Tz, is built. It is visualized
in the left part of Figure 5.7. Its set of vertices V is the set of all
the latent states in Tz, while edges exists only among the latent
action pairs. It serves as a look-up graph to preserve the edges
that later induce the transition functions f i,j

z .
In Phase 2, the covered regions Zi

sys ⊂ Zsys are identified.
This is achieved by first clustering the training samples and then
retrieving the covered regions from these clusters. To this aim, ag-
glomerative clustering [165] on the encoded dataset Tz (line 2.1)
is performed. Agglomerative clustering is a hierarchical clustering
scheme that starts from single nodes of the dataset and merges the
closest nodes, according to a dissimilarity measure, step-by-step
until only one node remains. It results in a stepwise dendrogram
M , depicted in the middle part of Figure 5.7, which is a tree
structure visualizing the arrangement of data points in clusters
with respect to the level of dissimilarity between them. The un-
weighted average distance between points in each cluster, a method
also referred to as UPGMA [166], is used to measure inter-cluster
dissimilarity.
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Algorithm 2 LSR building

Require: Dataset Tz, metric Lp, clustering threshold τ
Phase 1
1: init graph G = (V,E) := ({}, {})
2: for each (z1, z2, a) ∈ Tz do

3: V← create nodes z1, z2

4: if a = 1 then

5: E← create edge (z1, z2)

6: end if

7: end for

Phase 2
1: M ← Average-Agglomerative-Clustering(Tz , Lp) [165]

2: W← get-Disjoint–Clusters(M, τ)

3: Zsys ← {}
4: for each Wi ∈W do

5: εi ← get-Cluster-Epsilon(Wi)

6: Zi
sys := ∪w∈WiNεi(w)

7: Zsys := Zsys ∪ {Zi
sys}

8: end for

Phase 3
1: init graph LSR = (VLSR,ELSR) := ({}, {})
2: for each Zi

sys ∈ Zsys do

3: wi := 1
|Wi|

∑

w∈Wi w

4: zisys := argminz∈Zi
sys
||z − wi||p

5: VLSR ← create node zisys
6: end for
7: for each edge e = (v1, v2) ∈ E do

8: find Zi
sys,Z

j
sys containing v1, v2, respectively

9: ELSR ← create edge (zisys, z
j
sys)

10: end for
return LSR
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Next, the dissimilarity value τ , referred to as clustering thresh-
old, induces the set of disjoint clusters W, also called flat or parti-
tional clusters [167, 168], from the stepwise dendrogram M [165]
(line 2.2). Points in each cluster Wi are then assigned a uniform ǫi

(line 2.5), i.e., the neighborhood size from Assumption 5.1 of each
point z ∈Wi is ǫz = ǫi. The definition of the ǫi value is discussed
at the end of this phase. The union of the ǫi-neighborhoods of the
points in Wi then forms the covered region Zi

sys (line 2.6). Illus-
trative examples of covered regions obtained from different values
of τ are visualized on the right side of Figure 5.7 using various col-
ors. The optimization of τ is discussed in the rest of the section.
The result of this phase is the set of the identified covered regions
Zsys = {Zi

sys} (line 2.7).
The value ǫi is approximated as follows

ǫi = µi + σi (5.7)

where µi and σi are the mean and the standard deviation of the
distances ‖zij − zik‖p among all the training pairs (zij , z

i
k) ∈ Tz

belonging to the i th cluster. The approximation in (5.7) allows to
take into account the cluster density such that denser clusters get
lower ǫi. The approximation (5.7) is validated in Sections 5.5 and
5.6 where the covered regions identified by the LSR are analyzed.

In Phase 3, the LSR = (VLSR,ELSR) is built. First, the mean
value wi of all the points in each cluster Wi is computed (line 3.3).
As the mean itself might not be contained in the corresponding
path-connected component, the equivalence class representative
zisys ∈ Zi

sys that is the closest is found (line 3.4). The found repre-
sentative then defines a node vi ∈ VLSR representing the covered
region Zi

sys (line 3.5). Lastly, the set of edges E in the reference
graph built in Phase 1 is used to infer the transitions f i,j

z between
the covered regions identified in Phase 2. An edge is created in
the LSR if there exists an edge in E between two vertices in V

that were allocated to different covered regions (lines 3.6 − 3.8).
The right side of Figure 5.7 shows the final LSRs, obtained with
different values of the clustering threshold τ .
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Note that, as in the case of the VAE (Section 5.3), no action-
specific information u is used in Algorithm 2 but solely the binary
variable a indicating the occurrence of an action.

Figure 5.7: Illustrative example visualizing the LSR building steps and the
effect of the clustering threshold τ . On the left is the reference graph built in
Phase 1 of Algorithm 2. Middle part visualizes a dendrogramM obtained from
the clustering algorithm in Phase 2. On the right, three examples of LSRs
are shown together with the covered regions (marked with various colors)
corresponding to different thresholds τ (with τ1 < τ2 < τ3) chosen from M .

Optimization of LSR clustering threshold τ

As illustrated in Figure 5.7, the number of vertices and edges in
LSRτi changes with the choice of the clustering threshold τi in
Phase 2 of Algorithm 2. Moreover, the resulting LSRs can have
different number of graph-connected components. For example,
LSRτ1 in Figure 5.7 has 2 graph-connected components, while
LSRτ2 and LSRτ3 have only a single one. Ideally, one wants to
obtain a graph that exhibits both good connectivity which best
approximates the true underlying dynamics of the system, and
has a limited number of graph-connected component. Intuitively,
high number of edges increases the possibility to find latent paths
from start to goal state. At the same time, this possibility is
decreased when the graph is fragmented into several isolated com-
ponents, which is why the maximum number of graph-connected
components is also limited.

While the clusters themselves cannot be analyzed, the infor-
mation captured by the LSR that correlates with the performance
of the task can be evaluated, i.e., a graph can be assessed by the
number of edges and graph-connected components it exhibits as
discussed above. This induces an objective which is used to op-



5.4. Latent space roadmap 173

timize the value of the clustering threshold τ . This is formulated
as

ψ(τ, cmax) =

{

|ELSRτ
| if cLSRτ

≤ cmax,

−∞ otherwise,
(5.8)

where |ELSRτ
| is the cardinality of the set ELSRτ

, cLSRτ
represents

the number of graph-connected components of the graph LSRτ

induced by τ , and the hyperparameter cmax represents the upper
bound on the number of graph-connected components. The opti-
mal τ in a given interval [τmin, τmax] can be found by any scalar
optimization method. Brent’s optimization method [169] is used
which maximizes the objective (5.8)

max
τmin≤τ≤τmax

ψ(τ, cmax). (5.9)

This optimization procedure is summarized in Algorithm 3. It
takes as an input the encoded training data Tz, the metric Lp,
the search interval where the clustering parameter τ is to be op-
timized, and the upper bound cmax to compute the optimization
objective in (5.8). After initialization of the parameter τ (line
1), for example, by considering the average value of its range, the
Brent’s optimization loop is performed (lines 2-5). Firstly, the
LSR with the current τ is built according to Algorithm 2 (line
3). Secondly, the optimization objective (5.8) is computed on the
obtained LSRτ (line 4). Thirdly, the parameter τ as well as the
bounds τmin and τmax are updated according to [169] (line 5). The
optimization loop is performed until the convergence is reached,
i.e., until |τmax − τmin| is small enough according to [169]. Lastly,
the optimal τ ∗ (line 6) is selected for the final LSRτ∗ .

Note that even though Algorithm 3 still needs the selection
of the hyperparameter cmax, it is shown in Section 5.5.2 that the
parameter is rather robust to the choice of this parameter.

Visual plan generation

In order to find a plan from start to goal observation, these two
are encoded by ξ into the VAE’s latent space Z and their closest
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Algorithm 3 LSR input optimization

Require: Dataset Tz, metric Lp, search interval [τmin, τmax], cmax

1: τ ← init(τmin, τmax)

2: while |τmax − τmin| not small enough do

3: LSRτ ← LSR-building(Tz , Lp, τ) [Algorithm 2]

4: ψ ← Evaluate(LSRτ ) [Eq. (5.8)]

5: τ, τmin, τmax ← Brent-update(ψ) [169]

6: end while

7: τ∗ ← τ

return LSRτ∗

nodes in the LSR are found. Next, all shortest paths [170] in
the LSR between the identified nodes are retrieved. Finally, the
equivalence class representatives of the nodes comprising each of
the found shortest path compose the respective latent plan Pz,
which is then decoded into the visual plan PI using ω.

Action proposal module

The final component of the framework is the Action Proposal Mod-
ule (APM) which is used to complement a latent plan, produced
by the LSR, with an action plan that can be executed by a suit-
able framework. The action plan Pu corresponding to a latent
plan Pz produced by the LSR is generated sequentially: given two
distinct consecutive latent states (zi, zi+1) from Pz, APM predicts
an action ui that achieves the transition f

i,i+1(zi, ui) = zi+1. Such
functionality can be realized by any method that is suitable to
model the action specifics of the task at hand.
The action specifics are modeled with a neural network called Ac-
tion Proposal Network (APN). A diamond-shaped multi layer per-
ceptron is designed to the purpose and trained in a supervised
fashion on the latent action pairs. In detail, the training dataset
Tz for the APN is derived from TI but preprocessed with the VAE
encoder (representing the latent mapping ξ). Each training action
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pair (I1, I2, ρ = (1, u)) ∈ TI is encoded into Z and the parameters
µi, σi of the approximate posterior distributions q(z|Ii) = N(µi, σi)
are obtained, for i = 1, 2. Novel points zs1 ∼ q(z|I1) and
zs2 ∼ q(z|I2) are then sampled for s ∈ {0, 1, . . . , S}. This re-
sults in S + 1 tuples (µ1, µ2, ρ) and (zs1, z

s
2, ρ), 0 ≤ s ≤ S, where

ρ = (1, u) was omitted from the notation for simplicity. The set
of all such low-dimensional tuples then forms the APN training
dataset Tz. It is worth remarking the two-fold benefit of this pre-
processing step: not only does it reduce the dimensionality of the
APN training data but also enables enlarging it with novel points
by factor S + 1. Note that the latter procedure is not possible
with non-probabilistic realizations of ξ.

5.5 Box stacking simulations

The proposed method is validated on two different versions of a
simulated box stacking task shown in Figure 5.8. The setup in
the top row is referred to as normal stacking task, denoted by ns,
while the one in the bottom row is referred to as hard stacking task,
denoted by hs. In particular, in the latter the task of retrieving
the underlying state of the system had been made harder with
respect to the former. This was achieved by using more similar box
textures, which makes it harder to separate the underlying states,
as well as different lighting conditions, which make observations
containing the same underlying states look more dissimilar.
Both setups were developed with the Unity engine [171] and are
composed of four boxes with different textures that can be stacked
in a 3 × 3 grid (dotted lines in Figure 5.8). A grid cell can be
occupied by only one box at a time which can be moved according
to the stacking rules : i) it can be picked only if there is no other
box on top of it, and ii) it can be released only on the ground or
on top of another box inside the 3 × 3 grid. The action-specific
information u, shown in Figure 5.8, is a pair u = (p, r) of pick p and
release r coordinates in the grid modeled by the row and column
indices, i.e., p = (pr, pc) with pr, pc ∈ {0, 1, 2}, and equivalently for
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r = (rr, rc). In both versions of the dataset, the position of each
box in a grid cell was generated by introducing ∼ 17% noise along
x and y axes, which was applied when generating both action and
no-action pairs. The resulting images have dimension 256×256×3.

a) b)

Figure 5.8: Example of actions u = (p, r) in the normal (a - left) and hard (b
- right) box stacking tasks. The blue circle shows the picking location p, and
the green one the release position r.

The designed tasks contain exactly 288 different grid config-
urations, i.e., the specification of which box, if any, is contained
in each cell. These 288 grid configurations represent the underly-
ing states in this task. Note that the exact number of underlying
states is in general not known.
Given a pair of states and the ground truth stacking rules, it is pos-
sible to analytically determine whether or not an action is allowed
between them. In addition, the grid configuration associated with
an image (i.e., its underlying state) in the produced visual plan
PI can be determined using classifiers1. These were trained on the
decoded images and achieved accuracy greater than 99.5% on a
holdout dataset composed of 750 samples for both versions of the
stacking task. This allows to automatically evaluate the structure
of the latent space Zsys, the quality of visual plans PI generated
by the LSR and MM, and the quality of action plans Pu predicted
by the APN. In particular, the simulations aim to investigate:

1. MM the impact of the action term (5.4) in the augmented
loss function (5.6) on the structure of the latent space and
the influence of the respective parameters (latent space di-
mension, minimum distance, etc.) on the LSR performance

1https://github.com/visual-action-planning/lsr-code

https://github.com/visual-action-planning/lsr-code
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2. LSR the performance of the LSR and the influence of the ac-
tion term (5.4) and the maximum number of components on
it as well as the quality of the covered regions approximation
provided by the LSR.

3. APM the performance of the APN model.

Implementation details

For VAEs, each model is annotated by VAEld -task-d where ld de-
notes the dimension of the latent space, task denotes the version
of the task and is either ns or hs for the normal and hard stacking
tasks, respectively, and d indicates whether or not the model was
trained with the action loss term (5.4). Here, it is used d = b
to denote a baseline VAE trained with the original VAE objec-
tive (5.5), and d = Lp to denote an action VAE trained with the
loss function (5.6) including the action term (5.4) using metric Lp

for p ∈ {1, 2,∞}. All VAE models use a ResNet architecture [172]
for the encoder and decoder networks. They are trained for 500
epochs on a training dataset TI , composed of 2500 tuples (65% ac-
tion pairs and 35% no-action pairs). Note that the dataset size is
much smaller compared to the number of all possible combinations
of system states, given by (n+1)n/2 for a system with n different
states. This results in 41616 possible combinations as n = 288
in the stacking task, while only 2500/41616 pairs are considered,
which corresponds to 6% of all possible state pairs. For each com-
bination of parameters ld, task, and d, five VAEs were trained
by initializing different random seeds. Same seeds were also used
to create training and validations splits of the training dataset.
The weight β from (5.5) and (5.6) was gradually increased from

0 to 2 over 400 epochs following a scheduling procedure1, while γ
was fixed to 100. In this way, the models were encouraged to first
learn to reconstruct the input images and then to gradually struc-
ture the latent space. The minimum distance dm was dynamically
increased every fifth epoch starting from 0 using ∆dm = 0.1 as
described in Section 5.3.
For LSR, the notation LSR -Lp is used to denote a graph built
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using the metric Lp in Algorithm 2. The parameters τmin and τmax

in the LSR optimization (5.9) were set to 0 and 3, respectively.
Unless otherwise specified, ld = 12 and used L1 metric are fixed
for both tasks. Moreover, the number of graph-components cmax

in the optimization of the clustering threshold (5.8) was set to 1
for ns and 20 for hs. These choices are explained in detail in the
following sections. Given an LSR, its performance is evaluated
by measuring the quality of the visual plans found between 1000
randomly selected start and goal observations from an unseen test
dataset containing 2500 images. In the evaluation of the planning
performance, the following quantities are considered: i) percent-
age of cases when all shortest paths from start to goal observations
are correct, denoted as % All, ii) percentage of cases when at least
one of the proposed paths is correct, denoted as % Any, and iii)
percentage of correct single transitions in the paths, denoted as
% Trans. The % Any score in ii) is referred to as partial scoring,
while the combination of scores i)-iii) as full scoring. Moreover,
mean and standard deviation values are reported over the 5 dif-
ferent random seeds used to train the VAEs.
For APNs, the notation APNld -task-d, analogous to the VAEs, is
used. The APN models are trained for 500 epochs on the training
dataset Tz obtained following the procedure described in Sec 5.4
using S = 1. The validation split, corresponding to 15% of Tz, is
used to extract the best performing models that were used in the
evaluation. Similarly as for LSR, mean and standard deviation
values are reported. These are obtained considering the 5 differ-
ent random seeds used in the VAE training.
The complete implementation details for all the models and re-
spective hyperparameters can be found in the configuration files
in the code repository1.

5.5.1 MM analysis

In this section, the positive effect of the action term (5.4) on the
structure of the latent space is demonstrated thus answering the
questions listed in point 1). In detail, first, the influence of the
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dynamic minimum distance dm on the LSR performance is in-
vestigated. Then, the structure of the latent space is studied by
analyzing the distance between the encodings of the 288 states.
Lastly, the influence of the latent dimension on the LSR perfor-
mance is examined.

Influence of dynamic dm

A key parameter in the action term (5.4) is the minimum distance
dm encouraged among the action pairs. The approach proposed in
Section 5.3 is validated using the hard box stacking task. In de-
tail, the dynamical increase of dm (see Figure 5.6), which reaches
dm = 2.3 at the end of the training, is compared with (i) the
choice in [153] which uses dm fixed to the average action distance
among all the training action pairs measured in the corresponding
baseline VAE resulting in dm = 11.6, and (ii) the case where dm
is fixed to a constant value dm = 100 significantly higher than the
one obtained in (i).
The performance of the LSR, evaluated using full scoring, with re-
spect to the choice of dm is summarized in Table 5.1. The results
show that the dynamic selection of dm significantly outperforms
the other methods for all the scores. This approach not only elim-
inates the need for training the baseline VAEs as in [153] but also
reaches a value of dm that obtains a better separation of covered
regions Zi

sys without compromising the optimization of the recon-
struction and KL terms.

dm % All % Any % Trans.
Dynamic (Prop.) - 90.9 ± 3.5 92.1 ± 2.9 95.8 ± 1.3
Baseline [153] 11.6 48.7± 40.7 50.7± 41.5 72.8± 26.0
High 100 0.0 0.0 14.6± 2.0

Table 5.1: Comparison of the LSR performance when using different methods
for selecting dm. Top row is the proposed approach where dm is determined
dynamically, middle row is the approach used in [153] where dm is calculated
from the latent action pairs in the baseline VAE, while in the bottom row dm
is set a high value. Results are obtained using VAE12 -hs-L1 and LSR -L1.
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Separation of the states

The effect of the action loss (5.4) on the structure of the latent
space is investigated by analyzing the separation of the latent
points z ∈ Tz corresponding to different underlying states of the
system. Recall that images in TI containing the same state will
look different because of the introduced positioning noise in both
tasks, and different lightning conditions in the case of hs.

Let z̄s be the centroid for state s defined as the mean point of
the training latent samples {zs,i}i ⊂ Tz associated with the state s.
Let dintra(zs,i, z̄s) be the intra-state distance defined as the distance
between the latent sample i associated with the state s, namely
zs,i, and the respective centroid z̄s. Similarly, let dinter(z̄s, z̄p) de-
note the inter-state distance between the centroids z̄s and z̄p of
states s and p, respectively. In the following analysis, the models
VAE12 -ns-L1 and VAE12 -ns-L1 are considered for the normal and
hard stacking tasks, respectively.

Figure 5.9 reports the mean values (bold points) and the stan-
dard deviations (thin lines) of the inter- (in blue) and intra-state
(in orange) distances for each state s ∈ {1, ..., 288} in the normal
stacking task when using the baseline model VAE12 -ns-b (top) and
the action model VAE12 -ns-L1 (bottom). In case of the baseline
VAE, similar intra-state and inter-state distances are obtained.
This implies that samples of different states are encoded close to-
gether in the latent space which can raise ambiguities when plan-
ning. On the contrary, when using VAE12 -ns-L1, the inter- and
intra-state distances approach the values 5 and 0, respectively.
These values are imposed with the action term (5.4) as the mini-
mum distance dm reaches 2.6. Therefore, even when there exists
no direct link between two samples of different states, and thus
the action term for the pair is never activated, the VAE is able to
encode them such that the desired distances in the latent space
are respected.

Similar conclusions also hold in the hard stacking task for
which the inter- (in blue) and intra-state (in orange) distances are
depicted in Figure 5.10. Top row again shows the distances calcu-
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Figure 5.9: Mean values (bold points) and standard deviations (thin lines)
of inter- (blue) and intra- (orange) state distances for each state calculated
using a VAE trained with (bottom) and without (top) action term. Results
are evaluated using VAE12-ns-L1 model on the normal stacking task.

lated with the baseline model VAE12 -hs-b, while the ones shown
in the bottom are obtained with the action model VAE12 -hs-L1.
Note that lower inter-state distance is obtained than in case of ns
because the minimum distance dm reaches only 2.3 in hs.

Finally, the difference between the minimum inter-state dis-
tance and the maximum intra-state distance is analyzed for each
state. The higher the value the better separation of states in the la-
tent space since samples of the same state are in this case closer to
each other than samples of different states. When the latent states
are obtained using the baseline VAE12 -ns-b, a non-negative dis-
tance is obtained for 0/288 states with an average value of ≈ −1.2.
This implies that only weak separation occurs in the latent space
for samples of different states. On the other hand, when calculated
on points encoded with VAE12 -ns-L1, the difference becomes non-
negative for 284/288 states and its mean value increases to ≈ 0.55,
thus achieving almost perfect separation. In the hard stacking
task, it is similarly obtained that VAE12 -hs-b reaches an average
difference of −5.86 (being non-negative for 0/288 states), while
the action model VAE12 -hs-L1 reduces the average difference to
−0.04 (being non-negative for 121/288 states). These results val-
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Figure 5.10: Mean values (bold points) and standard deviations (thin lines)
of inter- (blue) and intra- (orange) state distances for each state calculated
using a VAE trained with (bottom) and without (top) action term. Results
are evaluated using VAE12-hs-L1 model on the hard stacking task.

idate that the action term (5.4) and the dynamic setting of dm
contribute to a better structured latent space Zsys as well as con-
firm the higher level of complexity of the hard task compared to
the normal one.

Latent space dimension

The choice of the latent space dimension is not a trivial task, since
it should be as low as possible while still encoding all the relevant
features. Table 5.2 reports the partial scoring of the LSR on both
normal and hard stacking tasks using VAE models with various
latent dimensions. The results demonstrate an evident drop in
the performance when the latent dimension is too small, such as
ld = 4. As ld increases, gradual improvements in the performance
are observed and a satisfactory level is achieved using ld ≥ 6 for
ns, and ld ≥ 12 for hs. Therefore, hs requires more dimensions
in order to capture all the relevant and necessary features. This
result not only demonstrates the complexity of each task version
but also justifies the choice ld = 12 in the rest of experiments.
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ld ns [%] hs [%]
4 7.9± 2.2 8.8± 7.9
6 99.96± 0.08 56.2± 23.1
8 99.96± 0.08 62.7± 18.7
12 100.0± 0.0 92.1± 2.9
16 100.0± 0.0 95.9± 1.4
32 97.5± 4.33 96.4± 0.4
64 99.8± 0.5 95.3± 0.9

Table 5.2: Comparison of the LSR performance when using different latent
dimensions for the normal (left) and hard (right) box stacking tasks.

5.5.2 LSR analysis

In this section, the LSR performance is analyzed in dependence
on whether or not the action term is included in the VAE loss
function. Secondly, the influence of the upper bound on the num-
ber of connected components cmax (used in (5.8)) is investigated.
Finally, the covered regions determined by the LSR are studied.

LSR performance

The baseline models VAE12-b and the action VAE12-L1, trained
with the action term (5.4) using metric L1, are considered. Ta-
ble 5.3 reports the LSR full scoring on the normal (top part) and
hard (bottom part) box stacking tasks. The results show deteri-
orated LSR performance when using baselines VAE12-b compared
to the action VAEs regardless the version of the task. This indi-
cates that VAEs-b are not able to separate states in Zsys. It can be
again concluded that the action term (5.4) needs to be included
in the VAE loss function (5.6) in order to obtain distinct covered
regions Zi

sys. In addition, the results confirm the different level
of difficulty of the two tasks as indicated by the drop in the LSR
performance on hs compared to ns using the action VAE-L1. In
summary, this experiment validates the effectiveness of the LSR
for performing normal and hard box stacking as well as confirms
the need to integrate the action term in the VAE loss function.
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Task Model % All % Any % Trans.

ns
VAE-b+ LSR-L1 2.5± 0.5 4.1± 1.0 59.7± 4.9
VAE-L1+ LSR-L1 100.0 ± 0 100.0 ± 0 100.0 ± 0

hs
VAE-b+ LSR-L1 0.2± 0.1 0.2± 0.1 38.0± 2.0
VAE-L1+ LSR-L1 90.9 ± 3.5 92.1 ± 2.9 95.8 ± 1.3

Table 5.3: The LSR performance for the normal (top part) and hard (bottom
part) box stacking tasks using the action VAE-L1 trained with the loss func-
tion (5.6) including the action loss (5.4), and baseline VAE-b train with the
original objective given in 5.5 (best results in bold).

Influence of the maximum number of connected compo-
nents

The optimization method described in Algorithm. 3 requires set-
ting the upper bound on the number of graph-connected compo-
nents cmax of the LSR. Table 5.4 shows how different upper bounds
influence the LSR performance on both normal and hard stacking
tasks. The LSR is evaluated on partial scoring using VAE12 -ns-L1

and VAE12 -hs-L1.

cmax ns [%] hs [%]
1 100.0 ± 0.0 65.3± 24.6
5 99.5± 0.4 88.6± 5.4
10 99.0± 0.3 91.5± 3.8
20 97.5± 0.5 92.1 ± 2.9
50 91.3± 1.1 88.2± 2.0
100 80.0± 1.4 77.9± 2.1

Table 5.4: Performance of the LSR on normal ns and hard stacking task hs
for different cmax. Best results shown in bold.

The results are shown to be rather robust with respect to the
cmax value. For both task versions, the performance drops for a
very high cmax, such as cmax = 100, while in the hard stacking task
an additional drop for a very low cmax, such as cmax = 1, is ob-
served. This behavior can be explained by the fact that the lower
the cmax the more the system is sensitive to outliers, while the
higher the cmax the greater the possibility that the obtained graph
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is disconnected which potentially compromises its planning capa-
bilities. For example, in the hard stacking task, outliers arise from
different lightning conditions. In contrast, no outliers exists in the
normal stacking task, which is why a single connected component
is sufficient for the LSR to perform perfectly. For all further eval-
uation, cmax = 1 and cmax = 20 are set for the normal and hard
box stacking tasks, respectively. This experiment validates the
robustness of the approach with respect to the parameter cmax as
well as justifies the choices cmax = 1 and cmax = 20 for ns and hs,
respectively, in the rest of experiments.

Covered regions using LSR

In order to show that the LSR captures the structure of the system,
it is used to determine if various novel observations are recognized
as covered or not. First, it is checked if observations correspond-
ing to true underlying states of the system, that have not been
seen during training, are properly recognized as covered. Then, it
is checked if observations taken from standard datasets, such as
CIFAR10 [173] and 3D Shapes [174], are marked as uncovered
since they correspond to out-of-distribution observations. The
covered regions Zi

sys are computed using the epsilon approximation
in (5.7).

Table 5.5 reports the results of the classification of covered
states for both normal (top block) and hard (bottom block) box
stacking tasks produced using VAE12 -ns-L1 and VAE12 -hs-L1,
respectively. In detail, 5000 novel observations are considered that
correspond to covered states of the normal and hard box stacking
tasks, and the percentage of those classified as covered is reported.
The higher this percentage the better the classification. The table
shows that the LSR almost perfectly recognizes all the covered
states for the normal task with the average recognition equal to
99.5%, while for the hard stacking task, it properly recognizes
on average 4694/5000 samples (93.9%). Regarding the out-of-
distribution observations, 5000 images are sampled from each of
the 3D Shapes and CIFAR-10 datasets, and the percentage of
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those recognized as covered is evaluated. In this case, the lower
the percentage the better the classification. As shown in Table 5.5,
almost all the samples in both datasets are correctly recognized as
not covered with all the models. In particular, the classification
with CIFAR-10 only fails with an average percentage lower than
0.03%, while perfect recognition is obtained with 3D Shapes.

It can be thus concluded that LSR successfully captures the
global structure of the system as it correctly classifies the obser-
vations representing the possible states of the system as covered,
and out-of-distribution observations as not covered.

Boxes [%] CIFAR-10 [%] 3D Sh. [%]
ns 99.5± 0.3 0.008± 0.011 0± 0
hs 93.9± 0.7 0.028± 0.044 0± 0

Table 5.5: Classification of covered states for the normal and hard box stacking
models when considering as inputs novel boxes images (left column) as well as
images from CIFAR-10 and 3D Shapes datasets (middle and right columns).

5.5.3 APM analysis

The accuracy of action predictions obtained by APN-L1 is evalu-
ated on an unseen test set consisting of 1611 and 1590 action pairs
for the normal and hard stacking task, respectively. In particuar,
it is assessed in terms of percentage of the correct proposals for
picking and releasing, as well as percentage of pairs where both
pick and release proposals are correct. For both task versions, all
the models achieve 99% or higher accuracy evaluated on 5 differ-
ent random seeds determining the training and validation sets1.
This is because the box stacking task results in an 18-class clas-
sification problem for action prediction which is simple enough to
be learned from any of the VAEs.
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5.6 Folding experiments

In this section, the proposed approach is validated on a real world
experiment involving manipulation of deformable objects, namely
folding of a T-shirt. As opposed to the box stacking task, the
true underlying states are in this case unknown and it is therefore
not possible to define an automatic verification of the correctness
of a given visual action plan. The folding task setup, depicted
in Figure 5.11, is composed of a Rethink Robotics Baxter robot
equipped with a Primesense RGB-D camera mounted on its torso.
The execution videos of all the performed experiments and respec-
tive visual action plans can be found on the project website2. For
this task, a dataset TI containing 1283 training tuples was col-
lected. Each tuple consists of two images of size 256 × 256 × 3,
and action specific information u = (p, r, h) where p = (pr, pc) are
the picking coordinates, r = (rr, rc) the releasing coordinates and
h picking height. An example of an action and a no-action pair is
shown in Figure 5.4. The values pr, pc, rr, rc ∈ {0, . . . , 255} corre-
spond to image coordinates, while h ∈ {0, 1} is either the height of
the table or a value measured from the RGB-D camera to pick up
only the top layer of the shirt. Note that the latter is a challenging
task in its own [175] and leads to decreased performance when it
is necessary to perform it, as shown in the following. The dataset
TI was collected by a human operator manually selecting pick and
release points on images showing a given T-shirt configuration,
and recording the corresponding action and following configura-
tion. No-action pairs, representing ≈ 37% of training tuples in TI ,
were generated by slightly perturbing the cloth appearance.

Finally, a re-planning step after each action completion is in-
troduced as shown in Figure 5.12. This accounts for potential
execution uncertainties, such as inaccuracies in grasping or in the
positioning phases of pick-and-place operations, which lead to ob-
servations different from the ones planned in PI . Note that after
each action execution, the current observation of the cloth is con-
sidered as a new start observation, and a new visual action plan

2https://visual-action-planning.github.io/lsr-v2/

https://visual-action-planning.github.io/lsr-v2/
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Figure 5.11: Experimental setup composed of a Baxter Robot and an RGB-D
camera.

is produced until the goal observation is reached or the task is
terminated. Such re-planning setup is used for all folding experi-
ments. As the goal configuration does not allude to how the sleeves
should be folded, the LSR suggests multiple latent plans. A sub-
set of the corresponding visual action plans is shown on the left
of Figure 5.12. If multiple plans are generated, a human operator
selects one to execute. After the first execution, the ambiguity
arising from the sleeve folding is removed. The re-planning there-
fore generates a single plan, shown in the right, that leads from
start to goal state.

Figure 5.12: Execution of the folding task with re-planning. On the left, a
set of initial visual action plans reaching the goal state is proposed. After the
first execution, only one viable visual action plan remains.
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Implementation details

Similarly to Section 5.5, the notation VAEld -f -d is used to denote
a VAE with ld-dimensional latent space, where f stands for the
folding task and d indicates whether or not the model was trained
with the action loss (5.4). In particular, the case d = b denotes
baseline VAEs which are trained with the original training objec-
tive (5.5), while d = Lp denotes action VAEs trained with the
objective (5.6) containing the action term (5.4) using metric Lp

for p ∈ {1, 2,∞}. The VAEs are modeled with the same ResNet
architecture and same hyperparameters β, γ and dm as in the
box stacking task introduced in Section 5.5 but increase the latent
space dimension to ld = 16. For the LSR, the same notation as in
Section 5.5.2 is adopted, where LSR -Lp denotes a graph obtained
by using metric Lp in Algorithm 2. The upper bound cmax on the
maximum number of graph-connected components in (5.8) is to 5,
and the search interval boundaries τmin and τmax in Algorithm 3
are set to 0 and 3.5, respectively. The performance of the APMs
and the evaluation of the system is based on the VAE16 -f -L1 re-
alization of the MM. The experiments are thus performed using
APN16 -f -L1 which is trained on latent action pairs Tz extracted
by the latent mapping ξ of VAE16 -f -L1. Five models are trained
for 500 epochs using different random seeds as in case of VAEs.
Finally, 15% of the training dataset is used as a validation split
used to extract the best performing model for the evaluation.

Covered regions using LSR

As in the box stacking tasks, the covered regions identified by the
LSR are analyzed. To this aim, the model VAE16 -f -L1 is used and
the following inputs are considered: 224 novel observations, that
correspond to possible states of the system and that are not used
during training, and 5000 images from each of the 3D Shapes and
CIFAR-10 datasets, which represent out-of-distribution samples
that are not resembling the training data. The LSR achieves good
recognition performance even in the folding task. More specifi-
cally, on average 213/224 samples representing the true underlying
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states of the system are correctly recognized as covered, resulting
in 95± 2.4% accuracy averaged over the 5 different random seeds.
For 3D Shapes dataset, 0/5000 samples are recognized as covered,
while only 20/5000 samples from the CIFAR-10 dataset are on av-
erage wrongly recognized as covered. This analysis thus confirms
the effectiveness of the LSR in capturing the covered regions of
the latent space. It also shows the greater complexity of learning
the latent mapping on real world observations, representing states
of deformable objects, than on the simulated observations.

System performance

The proposed method is here experimentally validated and com-
pared with the preliminary framework [153] on which it builds, as
well as it is additionally employed on a more challenging fold that
involves picking a layer of the cloth on top of another layer. In
particular, the following quantities are evaluated: (i) the system
success rate, i.e., a folding is considered successful if the system is
able to actually fold the T-shirt into the desired goal configura-
tion, (ii) the percentage of successful transitions of the system, i.e.,
a transition is considered successful if the respective folding step
is executed correctly, (iii-iv) the quality of the generated visual
plans PI and action plans Pu, i.e., a visual (action) plan successful
if all the intermediate states (actions) are correct. This evaluation
is done by a human for a given fold on the very first generated
visual action plan.

Concerning the comparison with [153], five type of folds are
carried out and each fold is repeated five times using framework
S-OUR, consisting of VAE16 -f -L1, LSR -L1 and APN16 -f -L1, and
is compared with work [153] obtained using S-L1, S-L2 and S-L∞.
The results are shown in Table 5.6, while all execution videos,
including the respective visual action plans, are available on the
website2. It can be noticed that S-PROP outperforms the sys-
tems from [153] with a notable 96% system performance, only
missing a single folding step which results in a transition perfor-
mance of 99%. As for S-L1 [153], S-PROP also achieves optimal
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Method Syst. Trans. PI Pu
Fold 1 to 5 - comparison to [153]

S-PROP 96% 99% 100% 100%
S-L1 [153] 80% 90% 100% 100%
S-L2 [153] 40% 77% 60% 60%
S-L∞ [153] 24% 44% 56% 36%

Fold layer
S-PROP 50% 83% 100% 100%

Table 5.6: Results (best in bold) for executing visual action plans on 5 folding
tasks (each repeated 5 times) shown in the top. The bottom row shows the
results on the fold requiring to pick the top layer of the garment (repeated 10
times).

performance when scoring the initial visual plans PI as well as the
initial action plans Pu.

Concerning the additional fold, it is repeated 10 times and
the final results are reported in Table 5.6 (bottom row). It can
be observed that the system has no trouble planning the folding
but fails to pick up the top layer of the T-shirt in half of the
cases during the plan execution. This is due to the imprecision of
the Baxter and the difficulty of picking up layered clothing. The
generated action plan, however, correctly identify the layer fold
as a fold where it had to pick the top layer. Therefore, methods
that are specialized in performing a layered cloth picking could be
integrated into the proposed system.

Finally, the APN performance is also evaluated through the
mean squared error (MSE) between the predicted and the ground
truth action specifics on picking and releasing as well as the total
model error. In detail, it achieves 82.6± 22.9, 29.3± 2.2, 270.6±
158.2, 71.8±15.0, 0.0±0.0, 454.3±153.8 for the picking and release
coordinates pc, pr, rc, rr, h and the overall error, respectively.

It can be therefore concluded that the proposed framework al-
lows to effectively manipulate deformable objects in a real setup as
well as improved MM, LSR and APM modules together contribute
to a significant better system than in [153].
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Chapter 6

Conclusions

This thesis work aimed to investigate human multi-robot inter-
action from multiple perspectives. Indeed, coordinating multiple
robots while letting them interact with human operators opens up
several issues that need to be addressed for an effective collabora-
tion. First, human safety must be ensured at all times in scenarios
where humans and robots work side-by-side. This must be guar-
anteed regardless of the human dynamic behavior and the task.
Next, proper strategies must be designed which allow to achieve
synergy between human and robots according to the desired in-
teraction, whether assistance or shared control. Then, the robots’
control strategy must ensure the achievement of the desired hu-
man interaction while complying with possible constraints of the
robotic system. In this regard, distributed architectures are gen-
erally desirable since they confer higher flexibility and robustness
to faults to the system with respect to centralized ones.

In light of the above, this thesis presented solutions that al-
low to realize human multi-robot interaction to different extents
by combining several methodologies from control theory, robotics
and machine learning. More specifically, the problem of ensuring
a reliable multi-robot system for human operators was first ad-
dressed. To this aim, a distributed fault detection and isolation
strategy was proposed which, on the basis of residual signals and
dynamic thresholds, enables each robot to monitor the state of
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health of all the teammates, even if no direct communication with
them exists. Despite the potentiality of this approach to make
the multi-robot system reliable, its main limitation is given by
the need to define reasonable bounds for modeling uncertainties
and disturbances in the operational space. This limitation can be
mitigated by resorting to techniques for the identification of the
robots model [126]. Moreover, as empathized in Section 2, it only
allows to identify faults that affect the end effector dynamics. A
joint space formulation should be carried out in the case this as-
sumption is not reasonable for the system at hand. However, this
would require each robot to access local information of the other
robots in the team, i.e., their joint configurations, thus reducing
the independence of the robots and their decoupling.

A workspace sharing scenario was then considered in which
humans and robots are allowed to work side-by-side without ex-
plicit exchange of forces between them. To this aim, a trajectory
scaling approach relying on distributed observers was designed to
ensure a minimum level of human safety at all times while pre-
serving as much as possible the planned path. In this case, the
main criticality lies in the need to define the value of the min-
imum allowed human safety. Although a procedure was defined
to calibrate this minimum safety in order to ensure a minimum
human-robot distance, this may lead to rather conservative values
that, in restricted work spaces, could compromise the effective-
ness of the human multi-robot system. This can be mitigated by
defining a minimum safety value based on the perceived safety of
the person rather than on the minimum distance. However, this
approach would not provide any guarantee on the human-robot
minimum distance.

The possibility to physically interact with a controlled ex-
change of wrenches on a co-manipulated object was subsequently
introduced. In this regard, a two-layer architecture was devised
which, at the top layer, determines the desired object dynamics
depending on the required interaction and, at the bottom layer,
imposes this dynamics in a distributed fashion while controlling
internal stresses. In particular, in the case of shared control, a Lin-
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ear Quadratic Tracking problem was formulated which takes into
account human and robot intentions, being the former estimated
through Recursive Least Squares. In the case of physical assis-
tance, an adaptive and robust control law was devised to guaran-
tee human wrench regulation. Despite the formal proofs provided
in Section 4, the main criticality of the proposed approaches lies
in the assumption of knowing the human arm end-point model
which is approximated as a damper-spring system. Although this
assumption is commonly embraced in the research community, an
extensive experimental campaign would be required to thoroughly
validate the proposed solutions. This will be subject of future
work.

Moreover, the unpredictable human behavior and the typical
lack of reciprocal human-robot awareness may lead to the occur-
rence of accidental contacts besides intentional ones in physical
interaction scenarios. A data-driven approach was therefore pro-
posed which, based on recurrent neural networks and Gaussian
mixture models, allows to detect and classify possible human con-
tact, even in case the robotic task requires exchange of wrenches
with the environment. In this case, the main criticality lies in
the absence of a formal analysis that guarantees the detection and
correct classification of human contact. In this regard, the exper-
imental validation proved that the detection is generally correctly
performed, while the recognition of the nature of contact suffers
from more inaccuracies. However, the devised reaction strategies
allow in each case to limit possible human harm.

Finally, the possibility of learning from human examples was
included and a methodology was designed to perform visual plan-
ning on the basis of high-dimensional examples in the image space.
To this aim, Variational Auto-Encoders were employed to map
the high-dimensional observations into a lower-dimensional latent
space. Based on this, a graph-based structure was built to plan se-
quence of actions (and respective images) from start to goal. Here,
the main limitation of the proposed approach is that a sufficient
number of examples (i.e., including different configurations of the
system) must be provided as input to the solution in order to ef-
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fectively plan from and to different possible states of the system.
This limitation can be mitigated to a certain extent by including
active learning techniques [176] that allow to learn online by ex-
ploiting information provided by human operators included in the
planning loop.

6.1 Future work

Human-robot interaction is a fervent research field that poten-
tially finds application in a multitude of contexts, ranging from
industrial to domestic ones. Endowing the robots with the ability
to interact and collaborate with human operators is a disruptive
technology which is, however, still far from an effective practical
integration in real systems.

As future work, the problem of detecting and recognizing the
type of human contact in physical interaction scenarios will be ex-
tended to multi-robot setups. In this context, the problem arises
of discerning possible internal wrenches in case of co-manipulation
of a rigid object and, based on these, to recognize possible human
contact. Then, it is necessary to establish proper reaction behav-
iors of the team when the human interacts, voluntarily or not, only
with a subset of it. Moreover, the possibility to also learn from
the human intentional interaction and adapt the robot task accord-
ingly will be investigated and an extensive experimental campaign
will be carried out to validate the approach in a real-world setting,
by using both qualitative and quantitative measures.

Next, the understandability of visual plans will also be ex-
ploited for planning human-robot collaborative tasks. Indeed, the
current framework envisages only the robot as executive agent.
However, the inclusion of multiple agents that simultaneously
and/or sequentially execute the planned actions can benefit the
system in terms of performance. A collaborative visual action
plan would then comprise a sequence of images representing the
intermediate states to reach the goal configuration as well as the
sequence of actions and the respective agents that must perform
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them in order to achieve the state transitions in the visual plan.
In order to select the agents, optimization indices can be included
which, for example, take into account the human level of fatigue.
Note that the presence of images in the plans is particularly note-
worthy for formulating collaborative tasks since they can be in-
tuitively understood by human operators. The approach delin-
eated above could also be relevant to realize co-manipulation of
deformable objects by humans and robots. In this case, in fact, the
presence of humans can be useful to overcome the complexity of
manipulating deformable objects, and, at the same time, the use
of visual information solves the problem of explicitly represent-
ing the state of these objects. This scenario, although potentially
effective, is still unexplored in the current state of the art.

Finally, according to the most recent research directions,
methodologies for awareness of the surrounding environment as
well as human intentions will be investigated in order to make the
robotic system proactive towards the human collaborator. In this
way, depending on the context, the robot can try to identify the
most favorable action to carry out according to what the human
wants to achieve. It follows that the introduction of this awareness
potentially enhances the reasoning skills of the robot system and
makes it closer to a real collaborator.
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Appendix A

Proofs for FDI scheme

A.1 Proof of Lemma 2.1

By differentiating (2.31) and after some straightforward steps, the
following holds

˙̂v⋆ = ˙̂z⋆ − IN ⊗ C̄θ̂⋆g − IN ⊗ F̄ ẑ⋆ (A.1)

thus, from (2.32) it follows

˙̂v⋆ = −koL⋆v̂⋆ + koΠ
⋆ṽ⋆. (A.2)

By exploiting the following property of the Laplacian matrix [35]

L⋆(1N ⊗ v) = (L⋆ ⊗ I2Np)(1N ⊗ v) = (L1N)⊗ (I2Npv) = 02Np2

(A.3)
(A.2) can be rearranged as

˙̂v⋆ = −ko (L⋆ +Π⋆) ṽ⋆ = −koL̃⋆ṽ⋆. (A.4)

By considering from (2.27) that v̇ = B̄(z)
(
fM − d̄

)
, it holds

˙̃v⋆ = 1N ⊗ v̇ − ˙̂v⋆ = −koL̃⋆ṽ⋆ + f ⋆ − d̄⋆ (A.5)
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where f ⋆ = 1N ⊗ B̄(z)fM and d̄⋆ = 1N ⊗ B̄(z)d̄. Finally, in the
absence of faults and uncertainties, the dynamics of ṽ⋆ is

˙̃v⋆ = 1N ⊗ v̇ − ˙̂v⋆ = −koL̃⋆ṽ⋆. (A.6)

By leveraging the results in [55], it can be stated that −L̃⋆ is
Hurwitz provided that the communication graph is strongly con-
nected. Thus, in the absence of faults and model uncertainties,
(A.6) proves the lemma ∀ko > 0.

A.2 Proof of Theorem 2.2

By considering the dynamics of z in (2.27) and of ẑ⋆ in (2.32),
and the Laplacian matrix property (A.3), in the absence of faults
and uncertainties, the dynamics of z̃⋆ can be written as

˙̃z⋆ = −koL̃⋆ṽ⋆ + IN ⊗ C̄θ̃⋆g + IN ⊗ F̄ z̃⋆ (A.7)

where θ̃⋆g = 1N ⊗ θg − θ̂⋆g.

By virtue of Lemma 2.1, the term −koL̃⋆ṽ⋆ is a disturbance
converging to zero at steady state, thus the convergence properties
of z̃⋆ are those of the non-perturbed system

˙̃z⋆ = IN ⊗ C̄θ̃⋆g + IN ⊗ F̄ z̃⋆. (A.8)

Based on (2.25), the auxiliary global input θg can be written
as

θg =

N∑

l=1

ΓT
ul
Γul

lθ̂g =

N∑

l=1

Πul

lθ̂g (A.9)

where Πul
∈ R

Np×Np is a matrix that nullifies all the elements of
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lθ̂g but θg,l. Therefore, the i th element of θ̃⋆g can be written as

iθ̃g =
N∑

l=1

Πul
(Klẑ + θf)−K iẑ − θf =

N∑

l=1

Πul
K(lẑ ± z)−K iẑ

= −
N∑

l=1

Πul
Klz̃ +K iz̃

(A.10)
where the property

∑N

l=1Πul
υ = υ for any vector υ of proper

dimensions has been exploited. From (A.10), θ̃⋆g is given by

θ̃⋆g = (IN ⊗K)z̃⋆ −Π⋆
u(IN ⊗K)z̃ = (INp2 −Π⋆

u)(IN ⊗K)z̃⋆

(A.11)
where Π⋆

u = 1N ⊗
[
Πu1

Πu2
. . . ΠuN

]
∈ R

Np2×Np2. It can be
trivially verified that the following property holds for the matrix
INp2 −Π⋆

u.

Property A.1. Matrix INp2 −Π⋆
u is idempotent, it is character-

ized by Np null rows and rank(INp2 −Π⋆
u) = Np(N − 1).

Based on the Property A.1, there exists a nonsingular permu-
tation matrix P ∈ R

N2×N2

such that

(P ⊗ Ip)(INp2 −Π⋆
u) =

[
0Np×Np2

S

]

(A.12)

where S ∈ R
Np(N−1)×Np2 is a full row rank matrix, i.e., rank(S) =

Np(N − 1). From (A.8) and (A.11), the dynamics of z̃⋆ is

˙̃z⋆ = (IN ⊗ F̄ )z̃⋆ + (IN ⊗ C̄)(INp2 −Π⋆
u)(IN ⊗K)z̃⋆. (A.13)

Then, by considering the state transformation ω̃⋆ = (P ⊗ I2p)z̃⋆
the system (A.13) can be rewritten as:

˙̃ω⋆ = (P ⊗ I2p)(IN ⊗ F̄ )(P ⊗ I2p)−1ω̃⋆ + (A.14)

(P ⊗ I2p)(IN ⊗ C̄)(INp2 −Π⋆
u)(IN ⊗K)(P ⊗ I2p)−1ω̃⋆.

By exploiting the mixed-product property of the Kronecker
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product [177]

(D1 ⊗D2)(D3 ⊗D4) = (D1D3)⊗ (D2D4) (A.15)

with matrices D1,D2,D3, and D4 of proper dimensions, the fol-
lowing chains of equalities hold

(P ⊗ I2p)(IN ⊗ F̄ )(P ⊗ I2p)−1=(P ⊗ I2p)(IN2⊗ F )(P−1⊗ I2p)
=(P ⊗ F )(P−1 ⊗ I2p)=IN ⊗ F̄ ,

(A.16)
(P ⊗ I2p)(IN⊗ C̄)(INp2−Π⋆

u)=(P ⊗ I2p)(IN2⊗C)(INp2−Π⋆
u)

=(IN2 ⊗C)(P ⊗ Ip)(INp2−Π⋆
u)

= (IN2 ⊗C)

[
0Np×Np2

S

]

=

[
02Np×Np2

(IN(N−1) ⊗C)S

]

.

(A.17)
By considering (A.16), (A.17), and the structure of IN ⊗ F̄ , the
system (A.14) can be partitioned as

˙̃ω⋆=

[
IN ⊗ F O2Np,2Np(N−1)

O2Np(N−1),2Np IN(N−1) ⊗ F

]

ω̃⋆

+

[
O2Np×Np2

(IN(N−1) ⊗C)S

]

(IN ⊗K)z̃⋆ (A.18)

=

[
F u

ω O2Np,2Np(N−1)

O2Np×Np2 F c
ω

]

ω̃⋆+

[
O2Np×Np2

Cc
ω

]

(IN ⊗K)z̃⋆.

System (A.18) can be viewed as a linear system with input
(IN ⊗ K)z̃⋆; such a system is composed by the subsystem
{F u

ω,O2Np×Np2} that is clearly uncontrollable, and the subsystem
{F c

ω,C
c
ω}, that is controllable if the system {F ,C} is controllable

since the matrix S is a full row rank matrix. In order to make ω̃⋆

convergent to zero the following conditions must be met:

C1 The uncontrollable part {F u
ω,ONp×Np} must be asymptoti-

cally stable. It is straightforward to recognize that this im-
plies that the dynamics of system (2.26) is asymptotically
stable;
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C2 The control input gain (IN ⊗K) has to be chosen in such a
way to stabilize the subsystem {F c

ω,C
c
ω}.

In order to guarantee that the conditions C1 and C2 are satisfied,
the following choices of the control matrices must be done

• The matrix gain Ks has to be chosen in such a way that
F = A+CKs is a Hurwitz matrix. It is worth noticing that,
since (A,C) represents a controllable system, the existence
of such a matrix is ensured;

• The matrix gain K has to be chosen in such a way to sta-
bilize the subsystem {F c

ω,C
c
ω}. Again, the controllability of

(A,C) ensures that such a matrix exists.

It is worth noticing that the choice of both Ks and K does not
depend on a particular topology, thus the stability condition can
be checked off-line on the basis of the knowledge of the sole system
(2.26).

A.3 Proof of Theorem 2.3

From (A.5), after some algebraic steps, the dynamics of ṽ⋆k, in the
absence of faults, is

˙̃v⋆k=−koΓ⋆
kL̃

⋆ṽ⋆−Γ⋆
kd̄

⋆=−koL̃⋆
kṽ

⋆
k−1N ⊗Bk(zk)k. (A.19)

From (2.36) and by virtue of Property 2.6, the residual irk, in the
absence of faults, can be written as

irk =ΓiL̃
⋆
kṽ

⋆
k = ΓiL̃

⋆
k

[

e−ko
˜L

⋆

kt ṽ⋆
k(0)

−
∫ t

0

e−ko
˜L

⋆

k(t−τ) (1N ⊗Bk(zk)k(τ)) dτ
]

.
(A.20)
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Therefore it can be upper bounded as

∥
∥irk

∥
∥≤
∥
∥
∥ΓiL̃

⋆
k

∥
∥
∥

[ ∥
∥
∥
∥
e−ko

˜L
⋆

ktṽ⋆k(0)

∥
∥
∥
∥

+

∫ t

0

∥
∥
∥
∥
e−ko

˜L
⋆

k(t−τ) (1N ⊗Bk(zk)k(τ)) dτ

∥
∥
∥
∥

]

≤
∥
∥
∥ΓiL̃

⋆
k

∥
∥
∥

[

‖ṽ⋆k(0)‖κe−λt +
κ
√
N d̄

λ εm(M̄ k)
(1− e−λt)

]

(A.21)

where εm(M̄ k) is the minimum eigenvalue of M̄ k, while Property
2.6 and the following inequality

‖1N ⊗Bk(zk)k‖ ≤
√
N

εm(M̄ k)
d̄ (A.22)

have been taken into account. Moreover, it holds [50]

∥
∥
∥ΓiL̃

⋆
k

∥
∥
∥ ≤

√

2pdi +
iδk (A.23)

with di the in-degree of node i, and iδk = 1 if i = k and iδk = 0
otherwise. Therefore, the right-hand member of (A.21) can be
written as a time-varying threshold

iµk(t) = (
√

2pdi +
iδk)

(

‖ṽ⋆k(0)‖κe−λt +
κ
√
N d̄

λ εm(M̄ k)
(1− e−λt)

)

.

The inequality (A.21) and the above equation prove the theorem.

Remark A.1. The calculation of the thresholds iµk requires a
reliable estimate of ‖ṽ⋆k(0)‖, λ and κ. The constant ‖ṽ⋆k(0)‖ can be
estimated on the basis of approximate information about the initial
state of the system by supposing that the robots are included on a
known bounded area. Regarding λ and κ, if the Laplacian matrix
of the system is known can be computed as in [56], otherwise the
Laplacian matrix can be estimated by considering the worst case
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scenario.

A.4 Proof of Theorem 2.4

In the presence of a fault affecting robot k, it holds ‖fk‖ > 0,
therefore the dynamics of ṽ⋆k (A.19) becomes

˙̃v⋆k=−koL̃⋆
kṽ

⋆
k−1N⊗Bk(zk)

(

k+ J
T
M,kfk

)
(A.24)

and, thus, by virtue of (A.20), the residual components irk become

irk =ΓiL̃
⋆
k

[

e−ko
˜L

⋆

ktṽ⋆k(0)−
∫ t

0

e−ko
˜L

⋆

k(t−τ) (1N ⊗Bk(zk)k(τ)) dτ

+

∫ t

0

e−ko
˜L

⋆

k(t−τ)(1N ⊗Bk(zk)J
T
M,kf k(τ))dτ

]

.

(A.25)
Equation (A.25) proves that the residual irk is affected by the
fault. On the other side, by considering that the matrix Γ⋆

j selects
only the components of the vector fM associated with the j th
robot, which are null, the dynamics of iv⋆j with j 6= k, is

˙̃v⋆j = −koL̃⋆
j ṽ

⋆
j − 1N ⊗Bj(zj)j (A.26)

which is not affected by the faulty robot. This proves the theorem.
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Appendix B

Minimum safety index

In this Appendix, the computation of the minimum value F̄min

which ensures that F̄ ≥ F̄min implies d∗ ≥ dmin, being d∗ the
minimum human multi-robot distance in (3.8), is provided. To
this aim, the case of single manipulator (N = 1) composed of
nl links is first considered. The required F̄min is determined by
evaluating the maximum value of the safety index F̄ which can be
obtained when a human point is at minimum distance d∗ = dmin

from any point of the robot, for all possible human configurations.
This ensures that if F̄ ≥ F̄min then certainly all points of the robot
are at greater distance than dmin from all the points of the human
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operator. In light of this, it holds

F̄ =
1

no

no∑

j=1

nl∑

l=1

∫ 1

0

(

α1(d
s
l ) + α2(d

s
l , ḋ

s
l )
)

ds

≤ 1

no

no∑

j=1

nl∑

l=1

(∫ 1

0

α1(‖p0l + s(p1l − p0l )− po,j‖) ds+ k

)

≤ 1

no

no∑

j=1

nl∑

l=1

(∫ 1

0

α1(‖p0l − po,j‖+ s‖p1l − p0l ‖) ds
)

+ k nl

=
1

no

no∑

j=1

nl∑

l=1

(∫ 1

0

α1(‖p0l − po,j‖+ sLl) ds

)

+ k nl

(B.1)
being Ll = ‖p1l − p0l ‖ the length of the l th link. Without loss
of generality, let the human point j∗ be the one at minimum
distance dmin from a point p∗ on the robot structure, that is
‖po,j∗ − p⋆‖ = dmin; then, the following inequalities are verified

‖p0l − po,j∗ ± p⋆‖ ≤ ‖p0l − p⋆‖+ ‖po,j∗ − p⋆‖

≤
nl∑

l=1

Ll + dmin = L+ dmin , L̄
(B.2)

where L is the length of the overall robot structure, i.e.,
L =

∑nl

l=1Ll, and which are obtained by taking into account that
the distance between two points of the robot structure is at most
equal to the overall length L, thus it holds ‖p0l − p⋆‖ ≤ L. Sim-
ilarly, since the human skeleton is modeled through rigid links,
it is always possible to define a maximum constant distance Lo

between any two points belonging to it, which is defined as follows

Lo = max
∀ i,k
‖po,i − po,k‖. (B.3)

As a result, the following chain of inequalities holds

‖p0l − po,j ± p⋆‖ ≤ L+ ‖po,j ± po,j∗ − p⋆‖ (B.4)
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≤ L+ ‖po,j − po,1‖+ ‖po,j∗ − p⋆‖ (B.5)

≤ L̄+ Lo.

Therefore, by considering (B.1) and (B.4), it follows

F̄ ≤ 1

no

no∑

j=1

nl∑

l=1

(∫ 1

0

α1(L̄+ Lo + sLl) ds

)

+ k nl.

By exploiting the Lipschitz property of the coefficient α1(d) and
by denoting with kL the respective constant, one obtains

F̄ ≤ 1

no

no∑

j=1

nl∑

l=1

(∫ 1

0

|α1(L̄+ Lo + sLl)± α1(L̄+ Lo)| ds
)

+ k nl

≤ 1

no

no∑

j=1

nl∑

l=1

(∫ 1

0

(
skLLl + |α1(L̄+ Lo)|

)
ds

)

+ k nl

=
1

no

no∑

j=1

nl∑

l=1

(
1

2
kLLl + |α1(L̄+ Lo)|

)

+ k nl

(B.6)
which leads to the following F̄min

F̄min =
1

2
kLL+

(
|α1(L̄+ Lo)|+ k

)
nl. (B.7)

By generalizing (B.1) to N robots, it holds

F ≤ 1

no

N∑

i=1

no∑

j=1

[
ni+1∑

l=1

(∫ 1

0

α1(‖p0i,l − po,j‖+ sLl) ds

)

+k (ni+1)

]

(B.8)
where Li =

∑ni+1
l=1 Li,l is the length of the overall structure of robot

i and also takes into account a virtual link to the team centroid.
At this point, the structure composed by the i th manipulator
and the one at minimum distance dmin can be analyzed in turn
as an “aggregate” manipulator whose maximum overall length is
Li + Lmax with Lmax = max

i∈1,..,N
Li; therefore by also recalling (B.2)
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and (B.4), it holds

‖p0i,l − po,j‖ ≤ Li + Lmax + Lo + dmin. (B.9)

By following the same reasoning as in (B.6) and by combin-
ing (B.8) and (B.9), it finally follows

F̄min =
N∑

i=1

[1

2
kLLi + (|α1(Li + Lmax + Lo + dmin)|+ k) (ni + 1)

]

(B.10)
which is such as to ensure that each point on each manipulator is
at least at distance dmin from the operator. As an example, by
considering the formulation in (3.41), eq. (B.10) becomes

F̄min=

N∑

i=1

[

k1

(
2ni + 3

2
Li+(ni+1)(Lmax+Lo+dmin)

)

+k2 (ni + 1)
]

.



Appendix C

Additional material for
physical interaction

C.1 Proof of Theorem 4.3

To prove Theorem 4.3, the closed loop dynamics or robot i is first
derived. By replacing (4.43) in (2.10), it holds

M̄iṡi=−C̄ isi−Kssi−∆ui+hi+Ȳi(xi, ẋi,ρi, ρ̇i)π̃i. (C.1)

The following Lyapunov function is considered

V =
1

2

N∑

i=1

(

sTi M̄ isi +
1

kf
∆̂uT

f,i∆̂uf,i + π̃
T
i Kππ̃i

)

. (C.2)
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By virtue of (C.1) and Property 2.3, the time derivative of V is

V̇ =
N∑

i=1

(

sTi M̄ iṡi+
1

2
sTi

˙̄M isi+∆̂uT
f,ih̃int,i−π̃T

i Kπ
˙̂πi

)

=

N∑

i=1

(

− sTi Kssi +
1

2
( ˙̄M i − 2C̄i)si + s

T
i (hi −∆ui)

+ ∆̂uT
f,ih̃int,i − π̃T

i (Kπ
˙̂πi − Ȳ T

i (xi, ẋi,ρi, ρ̇i)si)
)

=

N∑

i=1

(

−sTi Kssi+∆̂uT
f,ih̃int,i−sTi (eint,i + kf∆̂uf,i +

1

N
ih̃h)

− κi(t)sTi si − π̃T
i (Kπ

˙̂πi − Ȳ T

i (xi, ẋi,ρi, ρ̇i)si)
)

.

(C.3)
Given the parameters update law in (4.45), (C.3) simplifies to

V̇ =
N∑

i=1

(

− sTi Kssi + ∆̂uT
f,ih̃int,i − κi(t)‖si‖2

− (ζ̃i + ∆̂uf,i)
T (h̃int,i + ∆̂uf,i) +

1

N
sTi

ih̃h

)

.

(C.4)

Thus, by choosing

κi(t) >
‖ζ̃i‖
‖si‖2

‖h̃int,i + ∆̂uf,i‖

it holds

V̇ ≤
N∑

i=1

(
− sTi Kssi − ∆̂uT

f,i∆̂uf,i +
1

N
‖sTi i‖‖h̃h‖

)

From Lemma 4.2, ‖h̃h‖ converges to the origin after a finite time
Th; then after this time it holds

V̇ ≤
N∑

i=1

(
− sTi Kssi − i∆̂uT

f,i
i∆̂uf,i

)
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which implies that V̇ is semi-negative definite and, consequently,
that V is bounded. By leveraging the boundedness of V and, then,
of si, ∆̂uf,i and π̃i, it can be easily shown the V̈ is bounded as well.
Thus, by virtue of Barbalat’s lemma, V̇ is uniformly continuous
and converges to the origin, as well as si and ∆̂uf,i = kf

∫ t

t0
h̃int,i dτ

(and, therefore, by definition h̃int,i). The main implication of the
latter is that, since because of Lemma 4.2, h̃int,i converges to the
origin in finite time (that is the internal wrenches estimated via
observer converges to the real one), then also eint,i, ∀ i, converges
to the origin.

In view of the expression of si in (4.41) and since ∆̂uf,i con-
verges to the origin, it follows

ėx,i + kpex,i = −∆̂uf,i

which represents an asymptotically stable system (in the state
variable ex,i) with vanishing input −∆̂uf,i. Therefore, ex,i asymp-
totically converges to the origin. Based on the expression of ex,i
in (4.40), it asymptotically holds

(ix̂v − xi) + kc

∫ t

t0

∑

j∈Ni

(xj − xi)dτ → 0p. (C.5)

Let ix̃v = xv − ix̂v ∈ R
p denote the object trajectory estimate er-

ror and ev,i = xv − xi ∈ R
p the object trajectory tracking error.

From (C.5), it asymptotically holds

(xv − xi) + kc

∫ t

t0

∑

j∈Ni

(xj − xv − xi + xv)dτ = −ix̃v

which can be rewritten as

ev,i + kc

∫ t

t0

∑

j∈Ni

(−ev,j + ev,i)dτ = −ix̃v. (C.6)

By denoting with x̃v ∈ R
Np and ev ∈ R

Np the stacked vectors of
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the errors ix̃v and ev,i, respectively, (C.6) leads to

ev(t) = −kc(L⊗ Ip)
∫ t

t0

ev dτ − x̃v (C.7)

in which, from (4.38), x̃v converges to the origin in finite-time. Fi-
nally, since the communication graph is connected, the immediate
consequence of (C.7) is that

∫ t

t0
ev,i =

∫ t

t0
ev,j , ∀ i, j which, based

on (4.40) and (C.5), implies that ev,i = 0p ∀ i. This completes the
proof.

C.2 Complements to Lemma (4.4)

In this section, the expression of the coefficients Ω̄1, Ω̄2, ω̄3 and
Ω1, Ω2, ω3 in (4.48) of Lemma (4.4) is derived. In particular, by
virtue of Assumption 4.1 and by considering virtual model track-
ing, from (4.1) it follows

xv = −K−1
h (hh,d + eh) + xh,d (C.8)

whose time derivatives, by considering that a set-point desired
wrench is assigned, i.e., ḣh,d = ḣh,d = 0p, are

ẋv =K
−2
h K̇h(hh,d + eh)−K−1

h ėh + ẋh,d

ẍv =K
−2
h (K̈h − 2K−1

h K̇
2
h)(hh,d + eh) + 2K−2

h K̇hėh

−K−1
h ëh + ẍh,d.

(C.9)

By replacing (C.8) and (C.9) into (4.46) and by considering Kh

diagonal, the force error dynamics is obtained

ëh+(M−1
v Dv−2K−1

h K̇h)ėh+(M−1
v Kv+M

−1
v Kh

−K−1
h K̈h+2K−2

h K̇
2
h−M−1

v DvK
−1
h K̇h)eh=−M−1

v Khuh

+(K−1
h K̈hhh,d−2K−2

h K̇
2
hhh,d+Khẍh,d+M

−1
v KhDvẋh,d

+M−1
v DvK

−1
h K̇hhh,d−M−1

v Kvhh,d+M
−1
v KhKvxh,d)

(C.10)
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which can be finally expressed as

ëh + Ω̄1ėh + Ω̄2eh =−Ω1(t)ėh −Ω2(t)eh + ω3(t) + ω̄3

−M−1
v Khuh

(C.11)

where

Ω̄1 =M
−1
v Dv, Ω̄2 =M

−1
v Kv,

ω̄3 =−M−1
v Kvhh,d, Ω1 =−2K−1

h K̇h,

Ω2 =M
−1
v Kh−K−1

h K̈h+2K−2
h K̇

2
h−M−1

v DvK
−1
h K̇h

ω3 =K
−1
h K̈hhh,d−2K−2

h K̇
2
hhh,d +M

−1
v DvK

−1
h K̇hhh,d

+Khẍh,d+M
−1
v KhDvẋh,d +M

−1
v KhKvxh,d.

(C.12)

This completes the proof.
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Appendix D

Benchmark for bimanual
cloth manipulation

A benchmark is a set of well-defined tasks to be performed in a
standardized setup which needs to be easy to reproduce in differ-
ent robotics laboratories. This allows to effectively evaluate and
compare robotics methods [178].

In this appendix, based on [155], three benchmarks are pro-
posed relative to the following basic tasks in cloth manipulation,
involving textile objects of different sizes and types: (i) spreading
a tablecloth, which is preparatory for tasks like ironing or folding,
(ii) folding a towel, which is a preparatory action before placing
the cloth on a shelf or in a box for storage/packaging, (iii) partial
dressing, i.e., without considering the sleeves, which forms the ba-
sis for more complex tasks like putting a T-shirt or a sweater on a
human or mannequin. Protocols (RAL-SI-2020-P19-0832 1-V1.0,
RAL-SI-2020-P19-0832 2-V1.0, RAL-SI-2020-P19-0832 3-V1.0 for
the three tasks, respectively) can be found at the link1 with their
respective explanatory videos and benchmark documents. In the
following, a summary of the benchmarks tasks, setup and evalua-
tion is provided. For the sake of clearness, setup, sub-task decom-
position and evaluation are common to three benchmarks and will
thus be presented jointly. Further information can also be found

1https://ral-si.github.io/cloth-benchmark/

https://ral-si.github.io/cloth-benchmark/
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Code Objects for manipulation
Tablecloth IKEA Fullkomlig 1.45× 2.4 m

[st] Small towel IKEA towel Hären 0.3× 0.5 m or 0.3× 0.3 m
[bt] Big towel IKEA towel Hären 0.5× 1 m or 0.4× 0.7 m

T-Shirt Any T-shirt in accordance to Figure D.1

Code Environmental objects

Table

Any table with dimension in the range
Length: [1.2, 1.85] m
Width: [0.7, 0.8] m
Height: [0.72, 0.75] m

[sh] Small head Generate 3D model with provided script
[bh] Big head Generate 3D model with provided script

Table D.1: List of objects with instructions for acquisition

T-shirt measures
A [0.13, 0.25] m
B 0.5 m
C [0.015, 0.05] m
D [0.07, 0.13] m

Figure D.1: Representation of the allowed measures for the T-shirt; B measure
is fixed to equalize the level of difficulty when performing the dressing.

on the website1.

D.1 Tasks description

Task 1: Spreading a tablecloth

This task consists of grasping a tablecloth and spreading it on a
table, using the table and the tablecloth indicated in Table D.1.
An example of implementation is shown in Figure D.2-left. Simi-
larly to the other tasks, this task requires to grasp the cloth at two
grasping points, usually two of the corners, and then to manipulate
it. For the first grasp, different starting cloth configurations are
considered: from folded to crumpled on the table (see Figure D.3).
Note that the large dimension of the cloth to manipulate repre-
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Figure D.2: From left to right, example of implementations of tasks one to
three, respectively.

sents a critical issue for many existing solutions and . may call for
additional strategies. No specific execution strategy is thus defined
in the protocol to give more freedom to researchers to develop and
compare innovative approaches.

Task 2: Folding a towel

This task consists of grasping a towel and folding it. The task
uses the same table as the previous task and two different sizes of
towels, as indicated in Table D.1. An example of implementation
is shown in Figure D.2-middle. The following folding is considered:
always fold in half and perform a maximum of three folds which
are evaluate individually. This strategy has the advantage that
can be easily evaluated by taking top view snapshots after every
fold. Besides the starting crumpled configuration (as in Task 1),
also the “flat on the table” configuration is considered, also shown
in Figure D.3. When the cloth is crumpled, the main difference
for grasping, compared to Task 1, is the size of the object. A
small/medium versus large size would entail the need for different
strategies to enable initial grasping.

Task 3: Partial dressing

The goal of the third task is to put a T-shirt over a simple head
model starting from different initial configurations of the garment,
as shown in Figure D.2-right. Putting on the sleeves is not in-
cluded in the task. The complex geometric shape of T-shirts makes
their manipulation towards desired states a difficult process that
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requires a tight integration of perceptive sensors, such as cameras
and force/torque sensors, into the manipulation strategy. Analo-
gously to the previous tasks, the success of the manipulation task
highly depends on the way the garment is grasped, therefore sev-
eral initial configurations of the T-shirt are considered which allow
to explore different grasping strategies: crumpled, flat or folded on
the table. Another important aspect is the relative size of the head
with respect to the collar circumference: the larger the head is,
the harder it is to execute the task. For this reason, head models
of two different sizes are provided as reported in Table D.1.

D.2 Setup description

Any bimanual setup with grasping capabilities can be employed
and any sensor that can aid in completing the task is allowed.

Objects description

Table D.1 lists all the objects involved in the tasks with the link
or information to acquire them. A range of measures that are
accepted for the T-shirt is defined and reported in Figure D.1.In
this way, greater flexibility is guaranteed compared to the case
of a predefined single T-shirt and the possibility of adopting the
benchmark is maintained despite continuous changes in fashion.
The length of the T-shirt (measure B in Figure D.1) is fixed to
allow comparability of different methods, since it determines the
amount of garment that needs to pass through the head. Finally,
concerning the towel for Task 2, two sizes are included, a small
towel ([st]) and a bigger one ([bt]), where the latter is a step
forward in the literature in terms of object size.

In addition, two environmental objects are required, a table
(for Tasks 1 and 2) and a human-like head (for Task 3). Following
the idea of flexibility to make the setup easy to reproduce, light-
ning conditions are not fixed and no specific table model is indi-
cated but just an interval of table sizes. Concerning the human-like
head, two different sizes are considered which are small ([sh]) and
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big ([bh]) and their models are defined according to the T-shirt
measures.

[fd] [cr] [ft]

Figure D.3: Examples of starting configurations with a towel: [fd]: folded on
the left, [cr]: crumpled on the middle and [ft]: flat on the right.

Initial cloth configuration descriptions

In general, when a task on cloth manipulation is attempted, the
initial state of the cloth falls in one of these categories:

[pg2] Cloth is pre-grasped at two points.

[pg1] Cloth is pre-grasped at one point.

[ft] Cloth is lying flat on a table (Figure D.3-right).

[fd] Cloth is folded on a table (Figure D.3-left).

[cr] Cloth is crumpled on a table (Figure D.3-middle).

These starting configurations will be common for all the protocols
benchmarking each task, although not all starting configurations
are used for all task. For instance, it is pointless to consider the
folded configuration for the folding task.

The parts of the cloth that need to be grasped will be referred
to as grasping points, e.g., in a towel, these are usually the corners,
instead, for a T-shirt, these strictly depend on the manipulation
strategy.
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D.3 Sub-Tasks description

Given a task, the respective sub-tasks are obtained by considering
all the possible combinations of involved objects and initial cloth
configurations: a tablecloth with 4 initial configurations for Task 1,
two towels with 4 initial configurations for Task 2 and two head
sizes with 5 initial configurations for Task 3.

In addition, each sub-task is decomposed in the following
phases:

[GR1] Grasp first grasping point.

[GR2] Grasp second grasping point with other hand.

[MAN] Perform the manipulation (depending on the task).

Note that both [GR1] and [GR2] may require manipulation; for
instance, in order to grasp a crumpled cloth from a table and reach
the first grasping point, the cloth may need to be pre-manipulated,
and all this actions constitute the [GR1] phase. Obviously, no
[GR1] and [GR2] phases are required in case of starting configu-
ration [pg2] as well as no [GR1] phase is executed for the initial
configuration [pg1].

Users can submit all phases of one sub-task, or just one phase
alone. This subdivision in phases and sub-tasks allows to achieve
incremental complexity, letting the user choose the desired level
of difficulty to face, e.g., dressing task with small head and [pg2]

initial configuration is clearly less challenging than the case of big
head with [fd] initial configuration.

D.4 Evaluation of results

To enhance progress, allow reproducibility of results and easy com-
parison between different works, the following list of performance
metrics is proposed: success of each phase, execution time, force
measures (if available) and quality measures. The choice not to
provide a single value to assess quality but a set of values is mo-
tivated by the fact that, in such complex tasks, the former may
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be too reductive; in this way, instead, each user can focus on the
aspects of interest, e.g solutions that require longer time but exert
lower forces. In the following, the proposed performance metrics
are detailed.

Success of each phase
In light of the phases subdivision in Section D.3, each phase can be
evaluated individually in regards to completeness. Phases [GR1]

and [GR2] are considered successfully completed if the grasping
is performed and is held during the whole manipulation and, in
Tasks 1 and 3, if the cloth is unfolded with starting configuration
[fd]. The condition of success for phase [MAN] depends on the
considered task: the tablecloth is successfully spread if it covers
the table top; the folded towel is successfully folded if one fold
is done and opposing corners are together (each fold is evaluated
individually); for the dressing task, this phase is assumed to be
accomplished when the neck hole of the T-shirt is put over the
head and the entirety of the T-shirt lies below the head. Users
can choose different grasping points according to their strategy,
not to limit the possible approaches in the [MAN] phase. In
case the manipulation phase is successful, the grasping phases will
be considered successful in turn. To increase the flexibility of
the benchmarks and promote participation, users can also report
only the manipulation part [MAN], which may be the case for
end-to-end learning-based approaches, or only the grasping part
[GR1] and [GR2] if the group is strong in grasping but lacks the
perception solutions to successfully execute the manipulation.

Execution time
The execution time comprises the times needed for all the phases,
and it is measured from the moment the first robot starts to move
until the end of the manipulation.

Force measures Force measures at the end effectors quantify
the interaction between the robots and the environment; they are
only acquired during phase [MAN] and minimum, maximum and
average norms are considered. Note that, in order not to limit
the possibility of using the benchmarks, force measures are not
mandatory but are highly encouraged especially in dressing task,



224 Appendix D. Benchmark for bimanual cloth manipulation

where monitoring of exerted forces on the head represents a key
feature.
Quality measures
For the tasks of tablecloth spreading and folding, the quality of
the result of the execution can be measured, e.g., poor results
are achieved if the tablecloth is completely tilted or if towels are
folded wrinkly or with the corners not matching. To take that into
account, a quality function is defined that measures the percentage
of error of the task result. Note that for the dressing task, no
measures can be defined because of the binary nature of the task.

Figure D.4: Representation of the measures to evaluate how well the table-
cloth has been placed.

Quality measures for Task 1
Rotation and translation of tablecloth with respect to the table
are evaluated. To this aim, as represented in Figure D.4, a total
of 6 tablecloth drop lengths at different sides of the table need
to be measured after the tablecloth is spread. Measures can be
taken from the middle of each table edge. For a table with length
tl and width tw and a tablecloth with length cl and width cw, the
proposed percentage of errors are:

% rotation error: Eα =
arctan( |h3−h1|

tl
)

π/4

% length translation error: El =
|h6 − h4|
cl − tl

% width translation error: Ew =
|h2 − h5|
cw − tw

(D.1)
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These quality functions can only be applied if the task has been
successfully accomplished, meaning that the tablecloth is covering
all the table top. Then, a 100% rotation error occurs when the
tablecloth is rotated by π/4 radians, which is unlikely to happen
if the tablecloth is fully covering the table. The maximum trans-
lation error occurs when one of the hanging parts is zero, meaning
the table is almost uncovered. If the hanging part of the table
cloth is touching the floor, one needs to measure the tablecloth
drop length ignoring the floor. Note that this error measure is
independent of the size of the table and tablecloth, thus allowing
a fair comparison among different setups.
Quality measures for Task 2
A one fold manipulation is considered successful if the corners of
the original spread cloth are matching two by two. This implies
that if one of the corners is bent, the robot should correct it,
otherwise the task cannot be reported as a success. In addition,
the corners matching is measured by evaluating the ratio between
the surface of the spread cloth before and after the fold. Then,
the proposed quality function for this task is

% of error in a fold Ef =
100

0.5
· ‖Af

Ai

− 0.5‖, (D.2)

where Af is the final area of the cloth from the top view, and Ai is
the initial area of the cloth. Assuming Af will always be smaller
than Ai, 100% error occurs when Ai = Af , but also if Af is less
than half of Ai, which can only happen if there are wrinkles or
extra folds.

D.4.1 Reporting results

Based on the above, it is required that, for each sub-task, five trials
are performed and then, for each trial, measures in Section D.4 are
acquired. In addition, videos of the experiments and snapshots
(or equivalent stylized figures) clearly representing the grasping
points must be provided. A summary table must be filled where,
given a starting configuration, the success rate of each phase and
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average and variance of execution time, force measures and quality
functions over the five trials are reported. When necessary, the
size of the different elements must be reported as well, that are the
table size for Tasks 1 and 2, the towel size for Task 2, and the head
size for Task 3. Note that, in the folding task, results associated
with each fold must be provided and top view pictures of each
fold state have to be reported. Moreover, in order to assess the
generality of the proposed approach, it is required to specify which
assumptions (in a set in the respective scoring sheet) are made for
completing the task, e.g., knowledge of the cloth color and pattern.
In the case new assumptions are considered with respect to those
in the scoring sheets, a detailed description on how they affect the
solution must be reported. Finally, a discussion on:

• Employed hardware/software setup with specification of
robots’ details and respective number of motors;

• What makes the system successful;

• What makes the system fail;

• What is improved compared to other methods;

should be provided. A thorough description for the scoring of
each task can be found in the provided Benchmark documents1.
Finally, baseline solutions to the presented tasks and their respec-
tive evaluations can be found in [155] and on the website1.
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[97] A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan,
and S. Hirche, “The role of roles: Physical cooperation between
humans and robots,” Int. J. Robot. Res., vol. 31, no. 13, pp.
1656–1674, 2012.

[98] A. D. Luca and R. Mattone, “Sensorless robot collision detection
and hybrid force/motion control,” in IEEE Int. Conf. Robot. Au-
tom., 2005, pp. 999–1004.

[99] M. Geravand, F. Flacco, and A. De Luca, “Human-robot physical
interaction and collaboration using an industrial robot with a
closed control architecture,” in IEEE Int. Conf. Robot. Autom.,
2013, pp. 4000–4007.



238 BIBLIOGRAPHY

[100] A. Kouris, F. Dimeas, and N. Aspragathos, “A frequency domain
approach for contact type distinction in human–robot collabora-
tion,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 720–727, 2018.

[101] G. Cheng, E. Dean-Leon, F. Bergner, J. Rogelio Guadarrama
Olvera, Q. Leboutet, and P. Mittendorfer, “A comprehensive re-
alization of robot skin: Sensors, sensing, control, and applica-
tions,” Proceedings of the IEEE, vol. 107, no. 10, pp. 2034–2051,
2019.

[102] A. Albini and G. Cannata, “Pressure distribution classification
and segmentation of human hands in contact with the robot
body,” Int. J. Robot. Res., vol. 39, no. 6, pp. 668–687, 2020.

[103] A.-N. Sharkawy and N. Aspragathos, “Human-robot collision de-
tection based on neural networks,” Int. J. Mechanical Engineer-
ing and Robot. Res., vol. 7, no. 2, pp. 150–157, 2018.

[104] A.-N. Sharkawy, P. N. Koustoumpardis, and N. Aspragathos,
“Neural network design for manipulator collision detection based
only on the joint position sensors,” Robotica, vol. 38, no. 10, pp.
1737–1755, 2020.

[105] Y. J. Heo, D. Kim, W. Lee, H. Kim, J. Park, and W. K. Chung,
“Collision detection for industrial collaborative robots: a deep
learning approach,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp.
740–746, 2019.

[106] N. Briquet-Kerestedjian, A. Wahrburg, M. Grossard,
M. Makarov, and P. Rodriguez-Ayerbe, “Using neural net-
works for classifying human-robot contact situations,” in
European Control Conf., 2019, pp. 3279–3285.

[107] S. Golz, C. Osendorfer, and S. Haddadin, “Using tactile sensa-
tion for learning contact knowledge: Discriminate collision from
physical interaction,” in IEEE Int. Conf. Robot. Autom., 2015,
pp. 3788–3794.

[108] D. Popov, A. Klimchik, and N. Mavridis, “Collision detection,
localization classification for industrial robots with joint torque



BIBLIOGRAPHY 239

sensors,” in IEEE Int. Symp. on Robot and Human Interactive
Communication, 2017, pp. 838–843.

[109] Y. Karayiannidis, L. Droukas, D. Papageorgiou, and Z. Doulgeri,
“Robot control for task performance and enhanced safety under
impact,” Frontiers in Robotics and AI, vol. 2, p. 34, 2015.

[110] M. M. Rahman, R. Ikeura, and K. Mizutani, “Investigation of the
impedance characteristic of human arm for development of robots
to cooperate with humans,” JSME Int. J. Series C Mechanical
Syst., Machine Elem. and Manufacturing, vol. 45, no. 2, pp. 510–
518, 2002.

[111] E. Burdet, D. W. Franklin, and T. E. Milner, Human robotics:
neuromechanics and motor control. MIT press, 2013.

[112] M. S. Erden and A. Billard, “Hand impedance measurements
during interactive manual welding with a robot,” IEEE Trans.
Robot., vol. 31, no. 1, pp. 168–179, 2015.

[113] P. K. Artemiadis, P. T. Katsiaris, M. V. Liarokapis, and K. J.
Kyriakopoulos, “Human arm impedance: Characterization and
modeling in 3d space,” in IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, 2010, pp. 3103–3108.

[114] H. Modares, I. Ranatunga, F. L. Lewis, and D. O. Popa, “Op-
timized assistive human–robot interaction using reinforcement
learning,” IEEE Trans. Cybern., vol. 46, no. 3, pp. 655–667, 2016.

[115] A. Marino and F. Pierri, “A two stage approach for distributed
cooperative manipulation of an unknown object without explicit
communication and unknown number of robots,” Rob. Auton.
Syst., vol. 103, pp. 122 – 133, 2018.

[116] D. Cehajic, P. B. G. Dohmann, and S. Hirche, “Estimating un-
known object dynamics in human-robot manipulation tasks,” in
IEEE Int. Conf. Robot. Autom., 2017, pp. 1730–1737.

[117] M. Lippi and A. Marino, “Human multi-robot physical interac-
tion: A distributed framework,” J. Intelligent & Robotic Systems,
vol. 101, no. 35, 2021.



240 BIBLIOGRAPHY

[118] M. Selvaggio, F. Abi-Farraj, C. Pacchierotti, P. R. Giordano, and
B. Siciliano, “Haptic-based shared-control methods for a dual-
arm system,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4249–
4256, Oct 2018.

[119] T. Yoshikawa and X. Zheng, “Coordinated dynamic hybrid posi-
tion/force control for multiple robot manipulators handling one
constrained object,” Int. J. Robot. Res., vol. 12, no. 3, pp. 219–
230, 1993.

[120] S. Haykin, Adaptive Filter Theory. Prentice-Hall, Inc., 1996.

[121] O. P. Malik, G. S. Hope, and S. J. Cheng, “Some issues on the
practical use of recursive least squares identification in self-tuning
control,” Int. J. Control, vol. 53, no. 5, pp. 1021–1033, 1991.

[122] N. R. Sripada and D. G. Fisher, “Improved least squares identi-
fication,” Int. J. Control, vol. 46, no. 6, pp. 1889–1913, 1987.

[123] R. J. Ansari, G. Giordano, J. Sjöberg, and Y. Karayiannidis,
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and M. J. Maŕın-Jiménez, “Automatic generation and detec-
tion of highly reliable fiducial markers under occlusion,” Pattern
Recogn., vol. 47, no. 6, pp. 2280–2292, 2014.

[142] E. A. Basso and K. Y. Pettersen, “Task-priority control
of redundant robotic systems using control lyapunov and
control barrier function based quadratic programs,” 2020,
https://arxiv.org/abs/2001.07547.

[143] J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar,
“Robotic manipulation and sensing of deformable objects in do-
mestic and industrial applications: a survey,” Int. J. Robot. Res.,
vol. 37, no. 7, pp. 688–716, 2018.

[144] S. M. LaValle, Planning Algorithms. Cambridge U.K.: Cam-
bridge University Press, 2006.

[145] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in IEEE Int. Conf. Robot. Autom., 2017, pp. 2786–2793.
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