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 . CHAPTER 1 

INTRODUCTION 

 
1.1. Aluminium as a Structural Material 

The success of aluminium alloys as constructional material in civil engineering structural applications 

is based on some prerequisites. They are connected with the physical and mechanical properties, the 

production process and the technological features. In particular, the main properties of this material 

are: the lightness, its specific weight 𝛾 is 2700 kg/m3 equal to one-third that of steel, the corrosion 

resistance (except for some specific alloys) thanks to the formation of a thin inert aluminium oxide 

film which blocks further oxidation, the functionality of the structural shapes, due to the extrusion 

fabrication process, allowing the design of tailor-made shapes for specific applications. Figure 1.1 

shows the main cross-sectional shapes employed in the structural applications, while the main 

mechanical properties of aluminium and steel materials are summarised in Figure 1.2.  

Moreover, the favorable life-cycle cost given by the sum of the initial cost of the product, the cost of 

operating and maintaining and the cost of disposing or recycling it after its life [1.1],[1.2].  

For these reasons, the 25% of the global aluminium production is currently used in the structural 

sector [1.3]. Aluminium is used in external facades, roofs and walls, in windows and doors, in 

staircases, railings, shelves, and other several applications. Deteriorated bridge decks replacements, 

residential area bridges and structures situated in inaccessible places far from the fabrication shop 

[1.1],[1.2] are also typical applications. Moreover, in the seismic applications aluminium alloys can 

assume different tasks being used as fuses, dissipative shear walls or seismic links [1.5]-[1.7]. 

Recently, columns made of an aluminium alloy have also been used for the construction of a 

residential building in a seismic area [1.8]. Typical structural aluminium applications along with brief 

information are depicted in Figure 1.3, Figure 1.4. 

The aluminium alloys are also characterized by some structural disadvantages: the thermal coefficient 

𝛼 is twice the one of steel, consequently, it is more sensitive to thermal variations; the initial cost is 

very high, so that other metals are selected instead of aluminium. Another disadvantage is related to 

the strain-hardening behaviour. Figure 1.2 shows the qualitative trends of the steel and aluminium. 

From the comparison of two typical stress-strain curves, it can be observed that: both materials 

present a linear elastic behaviour with a different slope up to the yield stress 𝑓  for steel and the 

conventional limit 𝑓 .  for aluminium, corresponding to the residual strain of 0.1%. After the elastic 

region, aluminium alloys provide a continuous strain-hardening behaviour which is not preceded by 
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a perfectly plastic branch corresponding to yielding plateau as for steel material. In particular, up to 

𝑓 . , the aluminium behaviour presents a non-linear “knee” up to the conventional yielding of 𝑓 . , 

the stress corresponding to the residual strain of 0.2%, and subsequently, the plastic behaviour occurs. 

The “knee” shape of 𝜎 − 𝜀 curve depends on the ratio 𝑓 . /𝑓 . . Moreover, the ultimate deformation 

𝜀  is about 8-12%, while that of steel is greater than 20% [1.2]. 

However, the main problem of the aluminium structures is referred to the instability phenomena. In 

fact, because of the small value of Young’s modulus 𝐸, the instability phenomenon is more likely to 

occur than in steel structures and, besides, the increase of the deformability gives rise to additional 

drawbacks in checking serviceability limit states. As will been seen below, the focus of the present 

work is related to the study of the instability phenomenon at the sectional level and the influence of 

strain-hardening behaviour of aluminium alloys. 

Aluminium is not just one material, but it gives rise to a wide family of different groups of alloys 

whose mechanical properties vary from one group to another and within each group itself.  The 

Aluminum Association Inc. divides the aluminium alloys into 9 series using a four-digit system and 

each series includes different combinations of alloying additions. The first digit (Xxxx) provides the 

principal constituent alloy, while the second digit (xXxx) indicates the modifications made in the 

original alloy. The last two digits (xxXX) represent arbitrary numbers so that the specific alloy can 

be identified in the series. Research on aluminium alloys has focused on wrought alloys belonging to 

5000,6000 and 7000 which are the most attractive for structural applications due to their mechanical 

properties [1.9]. The alloy classification is also obtained as a function of the temper designation in 

order to provide more information about the fabrication treatment. It is possible to define five basic 

tempers; F, O, H, W, or T, accompanied by additional digits for more details about the fabrication 

treatment: 

 F (fabricated): The thermal conditions during working or strain-hardening process to obtain 

specific material properties do not demand any special control.   

 O (annealed): Treatment under high-temperature conditions in order to achieve maximum 

workability, toughness and ductility. 

 H (strain-hardened): Used for non-heat-treatable alloys cold worked by strain-hardening 

method in order to stabilise their strength. 

 W (solution heat treated): Applied to alloys subjected to natural aging after the solution heat 

treatment.  

 T (thermally treated): Used for heat-treatable alloys subjected to natural or artificial aging in 

order stable tempers different than F, O, or H to be elaborated. 
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In the present work, the aluminium alloys belong to 2000, 6000 and 7000 thermally treated (temper 

T) have been considered, because they represent the most widespread alloys in Europe and they are 

the most used in the civil engineering. As for any structural material, structural design codes are 

present for aluminum alloy structures. Currently there are four international design specifications for 

the structural design of aluminum alloys: 

 European Committee for Standardization: BS EN 1999:2007, “Design of Aluminium 

Structures” [1.10] 

 The Aluminium Association: AA 2020, “Aluminium Design Manual” [1.11] 

 Australian/New Zealand Standard: AS/NZS 1664: 1997, “Aluminium Structures” [1.12] 

 Chinese Standard: GB 50429: 2007, “Code for design of Aluminium Structures” [1.13] 

All future references will be made to the Eurocode 9 which is currently under review. 

 
Figure 1.1. Main cross-sectional shapes employed in the structural applications. 

 

 𝐀𝐥𝐮𝐦𝐢𝐧𝐢𝐮𝐦 𝐒𝐭𝐞𝐞𝐥 

𝜸 [𝐤𝐠/𝐦𝟑] ~2700 ~7860 

𝜶 [−] 2.4x10  1.2x10  

𝑬 [𝐆𝐏𝐚] 70 210 

𝝂𝒆 [−] 0.30 0.30 

𝜺𝒓  [%] 8 − 12 > 20 
 

Figure 1.2. Comparison between aluminium alloy and mild steel. 
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Retrofitting of the “Real Ferdinando” bridge (1990) 

Prof. F.M. Mazzolani 
Truss aluminium roof of Ferrari’s stand (2010) 

Prof. V. Piluso 

 

 

 

 

The iceberg Skating Palace (2012) 
UP MNIIP mosproject-4 group 

“The aluminium is one of the key materials in the structure of 
this building.” 

The Crystal (2012) 
Wilkinson Eyre Architects 

“The roof is made from recycled aluminium” 

  
St. Mary Axe (2003) 

Foster’s group 
“the aluminium was used to integrate the raking columns with 

the curved façade” 

Casablanca Finance City Tower (2019) 
Morphosis Architects 

“for cost reasons, the modular façade elements are made out 
from aluminium” 

  
Figure 1.3. Examples of aluminium alloy buildings. 
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Aluminium Heliport in Singapore (2015) A tower for parabolic antennas 

  
 

A rotating bridge crane  Aluminium pedestrian bridge 

  
Figure 1.4. Examples of aluminium alloy structures. 
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1.2. State of Art 

The physical phenomenon occurring when the deformed configuration of a structure undergoes a 

sudden shape variation accompanied by a significant increase of displacements and strains is usually 

referred to as buckling. The most well-known example is that of column buckling under axial 

compression. Buckling phenomena constitute a widespread field involving a wide category of civil 

and mechanical engineering problems.  

The occurrence of buckling leads to a sudden loss of strength due to second-order effects rising from 

the deformed configuration resulting from buckling itself. In the case of metal structures, depending 

on the overall slenderness and on the local slenderness of the structural elements, buckling can be of 

concern for the structure as a whole (global level), the individual structural elements (member level) 

or the plate elements constituting the member section (sectional level), [Figure 1.5]. Besides, it can 

occur either in the elastic or in the plastic range. 

 

Figure 1.5. Instability phenomena on the metal structures. 

At sectional level, the occurrence of the local buckling in the compressed part elements of section 

influences the ultimate behaviour of metal members in terms of ultimate resistance and deformation 

capacity. The occurrence of local buckling depends on the width-to-thickness ratios of the plate 

elements constituting the cross-section. For this reason, elastic bifurcation and post-buckling 

behaviour of thin plates have been extensively studied and well documented in standard texts [1.14], 

[1.15]. The need for reducing the width-to-thickness ratios to improve the ductile deformation of 

metal members is well known and codified [1.10], [1.16]. However, for small values of the width-to-

thickness ratio, typically lower than 20, the use of thick plate theories such as the plate theory of 

Mindlin [1.17] is needed to calculate the buckling load; otherwise, the buckling load will be 

overestimated. Moreover, elastic/plastic theories are required for a more advanced bifurcation 

buckling analysis. The first researcher who arrived at a satisfactory theoretical solution for inelastic 

buckling was Bijlaard [1.18]. His work considered both incremental and deformation theories. It has 

been pointed out that deformation theory predicts buckling loads that are smaller than those obtained 

with flow theory [1.19]. During the last decade, analytical elastic/plastic stability criteria have been 
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derived for rectangular plates [1.20]. In particular, the Mindlin plate theory and two plasticity theories 

have been investigated. The application of both the incremental theory, also named the flow theory 

of plasticity, with the Prandtl-Reuss constitutive equations and the deformation theory of plasticity 

with the Hencky stress-strain relation has pointed out discrepancies in critical load predictions. Such 

differences obtained from the two plasticity theories are known as the plastic buckling paradox. 

However, even though there is a general agreement among researchers that the deformation theory is 

physically less correct than flow theory [1.21], experimental evidence has proved the better accuracy 

of the results obtained from the deformation theory (see Section 2.3.1). 

The aforementioned theoretical works concern isolated plates subjected to different boundary 

conditions at their edges. However, a more complex behaviour occurs because most of the local 

buckling phenomena occurring in metal structures involve interactive buckling between the plate 

elements constituting the structural members. In addition, the occurrence of bifurcation does not 

necessarily represent the limit of the load carrying capacity. Obviously, the occurrence of local 

buckling phenomena influences greatly the ultimate resistance and the deformation ability of the 

cross-sections. Consequently, accounting for the effects of local buckling, the current Eurocode 9 

[1.10] provides an approach similar to the one used for the steel [1.16]. In particular, the cross-sections 

may be classified according to the width-to-thickness ratio of the individual plate elements composing 

the section and the conventional yield strength of the material. So that, four classes are considered.  

First-class sections can develop their whole plastic resistance with a high plastic deformation 

capacity. The whole plastic resistance can be also attained in the case of second-class sections, but 

with a limited plastic deformation capacity. Third-class sections locally buckle before the complete 

development of the plastic sources, so their plastic deformation capacity is very limited. Finally, in 

the case of fourth-class sections, local buckling occurs in the elastic range [1.22]-[1.25]. This 

classification allows to evaluate the ultimate resistance of a generic cross-section, taking into account 

the local buckling effects. So that, in the case of uniform compression, the maximum load can be 

computed according to the Section 6.2.4 of EN 1999-1-1: 

𝑁 . =
𝐴 𝑓 .

𝛾
 (1.1) 

where 𝐴  represents the effective section area based on the reduced thickness allowing for local 

buckling, 𝑓 .  is the conventional yield stress and 𝛾  is the safety coefficient equal to 1.10. While 

the maximum bending moment is evaluated according to Section 6.2.5 of EN 1999-1-1: 

𝑀 . =
𝛼𝑊 𝑓 .

𝛾
 (1.2) 
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where 𝑊  is the elastic modulus of section, while 𝛼 is the shape factor provided by: 

𝛼 =

𝑊 𝑊⁄  𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 1 𝑎𝑛𝑑 2

1        𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 3

𝑊 𝑊⁄  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 4
 (1.3) 

where 𝑊  is the plastic modulus and 𝑊  represents the effective elastic section modulus, obtained 

using a reduced thickness for the fourth-class sections. Obviously, this approach represents a 

conservative method, however the Eqns. (1.1) and (1.2) often provide the values of the maximum 

resistances far from the real behaviour of aluminium members. So that, many research works have 

been devoted to improvement the accuracy in the prediction of the inelastic response of the aluminium 

alloy sections.  

In order to increase the knowledge of the aluminium column under uniform compression, many stub 

column tests have been performed on a wide range of cross-sectional shapes: Faella et al. [1.23] 

tested SHS and RHS sections and they proposed an empirical equation about the local buckling 

resistance.  

Mazzolani et al. [1.26] tested angles and they evaluated the ultimate resistance by means of the 

effective width approach, currently adopted for steel sections. Liu et al. [1.27] investigated the 

behaviour of stiffened and irregular-shaped cross-sections and they compared the experimental 

results with those obtained by the Direct Strength Method (DSM) originally developed for the cold-

formed steel [1.34],[1.35] . Yuan et al. [1.28] evaluated experimentally the post-buckling behaviour 

of slender H-sections and Wang et al. [1.29] and Feng and Young [1.30] conducted stub columns tests 

on CHSs. 

Through the experimental campaign on the cross-sections in compression, Su et al. [1.31] highlighted 

the contribution of the material strain-hardening on the cross-section capacity and evaluated the 

applicability of the Continuous Strength Method (CSM), that was originally developed for stainless 

steel stocky (i.e. small width to thickness ratio) cross-sections [1.32],[1.33].  

In the case of the prediction of aluminium beams under uniform and non-uniform bending, the first 

experimental work is carried out by Panlio in 1947, which investigated the behaviour of two-span 

statically indeterminated beams [1.36]. Subsequently, Welo performed tests under uniform moment 

for determining the moment–curvature behaviour [1.37]. In the last thirty years, many experimental 

and numerical investigations have been carried out on aluminium beams under three, four and five 

bending conditions. Opheim [1.38] performed four point bending tests and demonstrated that there is 

no significant difference between tensile and compressive behaviour of 6060-T4 beams. Moen et al. 

[1.39],[1.40] carried out three- and four-point bending tests and numerical studies, demonstrating that 

the rotational capacity is dependent on the strain-hardening of aluminium material and the magnitude 
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of the moment gradient. Zhu and Young [1.41] modified the current Direct Strength Method (DSM) 

to achieve more accurate design provisions for flexural SHS members, while Kim and Pek�̈�𝑧 [1.42] 

presented a simplified design approach called Numerical Slenderness Approach (NSA) for 

determining the nominal stresses of each plate element of a complex section under flexure. Feng et 

al. [1.43], [1.44] performed many experimental and numerical studies on perforated CHS beams 

subjected to gradient and constant moments, while  Wang et al. [1.45] led recently the experiments 

on H-shaped beams with and without intermediate stiffeners subjected to concentrated loads. Finally, 

Su et al. [1.31], [1.46], [1.47] performed an extensive experimental campaign on the SHS and RHS 

sections with and without internal stiffeners. Numerous experimental and numerical investigations 

have been carried out on aluminium beams under three, four- and five-point bending conditions. 

It is important to underline that some experimental and numerical data have been collected by 

Georgantzia et al. [1.48] which have recently developed a review of research on the use of aluminium 

alloys as structural material. 

The results of these studies are summarised in Table 1.1 and Table 1.2, where the comparison between 

the experimental results and those obtained by the theoretical approaches is shown. The mean values 

μ  and standard deviations σ  of ratios of the predicted strength, 𝑁 . (𝑀 . ) , to the reported 

experimental strength, 𝑁 .  (𝑀 . ), are provided. For mean ratios 𝑁 . 𝑁 .⁄  (𝑀 . 𝑀 .⁄ ) 

lower than 1.00, the predictions are conservative, for higher than 1.00 they are unsafe and for close 

to 1.00 they are accurate. 
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Table 1.1. Summary of main numerical and experimental results for aluminium members in compression. 

𝐀𝐮𝐭𝐡𝐨𝐫𝐬 
𝐀𝐥𝐮𝐦𝐢𝐧𝐢𝐮𝐦 

𝐚𝐥𝐥𝐨𝐲𝐬 

𝐜𝐫𝐨𝐬𝐬 

𝐬𝐞𝐜𝐭𝐢𝐨𝐧 
𝐍𝐨 𝐨𝐟 𝐭𝐞𝐬𝐭𝐬 𝐃𝐞𝐬𝐢𝐠𝐧 𝐜𝐨𝐝𝐞𝐬 

𝑵𝒖.𝒕𝒉 𝑵𝒖.𝒆𝒙𝒑⁄  

𝐌𝐞𝐚𝐧 [𝛍] 
𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝 

𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧 [𝛔] 

Faella et al. 

6060 T6 
6061T6 
6082 T6 
6082 TF 

RHS, SHS 39 EWM 1.00 0.11 

Mazzolani et 

al. 

6060 T6 
6061 T6 
6082 T6 
6082 TF 

L 64 EWM 1.012 0.10 

Liu et al. 6063 T5 
Stiffened 
irregular 

cross-section 

17 

GB 50429 1.04 0.05 

EN 1999-1-1 0.99 0.04 

AA 1.06 0.08 

DSM 1.20 0.05 

Yuan et al. 
6061 T6 
6063 T5 

I, H 15 

GB 50429 0.88 0.11 

EN 1999-1-1 0.89 0.11 

AA 0.94 0.08 

AS/NZS 0.91 0.08 

Wang et al. 6082 T6 CHS 9 - - - 

Feng and 

Young 
6061 T6 

Perforated 
SHS 

28 AA 1.05 0.35 

Su et al. 6061 T6 
6063 T5 

SHS, RHS  
(with and 
without 

stiffeners) 

15 

EN 1999-1-1 0.93 0.09 

AS/NZS 0.75 0.12 

AA 0.84 0.16 

CSM 0.96 0.06 

Heimerl et al. 
2014 T6 
7178 T6 
7075 T6 

I,H 139 - - - 
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Table 1.2. Summary of main numerical and experimental results for aluminium members in bending. 

𝐀𝐮𝐭𝐡𝐨𝐫𝐬 
𝐀𝐥𝐮𝐦𝐢𝐧𝐢𝐮𝐦 

𝐚𝐥𝐥𝐨𝐲𝐬 

𝐜𝐫𝐨𝐬𝐬 

𝐬𝐞𝐜𝐭𝐢𝐨𝐧 

𝐓𝐲𝐩𝐞 

𝐨𝐟 𝐭𝐞𝐬𝐭𝐬 

𝐍𝐨 

𝐨𝐟 𝐭𝐞𝐬𝐭𝐬 
𝐃𝐞𝐬𝐢𝐠𝐧 𝐜𝐨𝐝𝐞𝐬 

𝑴𝒖.𝒕𝒉 𝑴𝒖.𝒆𝒙𝒑⁄  

𝐌𝐞𝐚𝐧 [𝛍] 
𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝 

𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧 [𝛔] 

Opheim 6060 T4 
6064 T6 

SHS 4-point - - - - 

Moen et al. 

6082 T4 

6082 T6 

7108 T7 

SHS, RHS 
H 

(welded and 
unwelded) 

3-point 37 EN 1999-1-1 0.87 0.10 

Zhu and 

Young 

6061 T6 

6063 T5 
SHS 4-point 70 

EN 1999-1-1 0.80 0.09 

AS/NZS 0.70 0.10 

AA 0.74 0.15 

DSM 0.83 0.06 

Kim and 

Peköz 
6063 T6 I, H 4-point 3 AA 0.83 0.05 

Feng et al. 6061 T6 
6063 T5 

Perforated 
CHS 

3-point 

4-point 
416 AA 0.83 0.19 

Wang et 

al. 
6061 T6 
6063 T5 

I, H 3-point 40 EN 1999-1-1 1.08 0.14 

Su et al. 6061 T6 
6063 T5 

SHS, RHS 
3-point 

4-point 
161 

EN 1999-1-1 0.85 0.09 

AS/NZS 0.65 0.16 

AA 0.72 0.14 

CSM 0.90 0.09 

Su et al. 6061 T6 
6063 T5 

SHS, RHS 5-point 147 

EN 1999-1-1 0.55 0.13 

AS/NZS 0.44 0.10 

AA 0.50 0.26 

CSM 0.72 0.12 

Su et al. 6063 T6 
6063 T5 

SHS, RHS  
(with and 
without 

stiffeners) 

3-point 

4-point 

5-point 

180 

EN 1999-1-1 0.71 0.08 

AS/NZS 0.50 0.05 

AA 0.60 0.11 

CSM 0.77 0.08 
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1.3.  Motivation of Work 

The difficulties on the assessment of inelastic response of aluminium alloys is related to the 

occurrence of local buckling phenomena, which can be presented in the elastic-plastic region. It is 

well known that the local buckling depends on the geometrical width-to-thickness ratios of the plate 

elements constituting the section, but a generic member is an assembly of plates interacting on each 

other, so that also the plate interaction plays a fundamental role on the inelastic response. Another 

aspect concerns the effect of the different material properties, such as the strain-hardening behaviour 

and the plastic anisotropy on the local buckling. 

Nowadays, a substantial gap of knowledge regarding the ultimate behaviour of aluminium sections 

is recognised. In fact, according to the results provided in the previous section, the numbers of 

experimental tests and the numerical investigations are still not exhaustive respect to those regarding 

to steel members. Moreover, the design codes often provide the ultimate strength values excessively 

conservative than the experimental data, especially in the case of the flexural resistance. Only a few 

studies indicated accurate cross-sectional strength predictions. Obviously, this aspect is opposed to 

an economic design process. Another main aspect is related to the prediction of the deformation 

capacity of aluminium cross-sections. In fact, both stub and bending tests, provided in the scientific 

literature, have shown that the aluminium members have a good ductility, but which is still difficult 

to accurately determine with the current methodologies available.  The lack of accuracy is also related 

to the fact that the design formulations for aluminium are often adopted in a similar manner to the 

steel members, without sufficient consideration of the differences between the two materials. It is 

clear that a substantial gap of knowledge is related to the high variety of aluminium alloy tempers 

and section shapes which would require a large number of experimental tests. 

For these reasons, the present research work is devoted to increase the knowledge of the ultimate 

behaviour of aluminium members under uniform compression and non-uniform bending. Starting 

from the main plate stability theories, both in elastic and plastic range, and through the experimental 

results, different methodologies are proposed to predict the ultimate resistances and the deformation 

capacities of box-shaped and H-shaped sections in compression or in bending. 

In particular, Starting from the J2 deformation theory of plasticity, which are extended to include the 

variability of the Poisson’s ratio depending on the stress levels (Chapter 2), a fully theoretical 

approach for predicting the ultimate resistance of aluminium alloy members subjected to local 

buckling under uniform compression is presented, taking into account the interaction of the plate 

element constituting the cross-sections by means of the boundary conditions along the common edges 

(Chapter 4).  



Introduction 

35 

The second issue is related to the study on the ultimate flexural resistance and rotation capacity of 

aluminium alloy members under non-uniform bending. To this scope, a wide parametric analysis has 

been performed by the ABAQUS computer program to investigate the response parameters 

characterising the ultimate behaviour of I-beams. The parameters affecting the ultimate performances 

of aluminium alloy I-beams subject to local buckling under non-uniform bending are the flange 

slenderness, the flange-to-web slenderness ratio and the non-dimensional shear length. Based on this 

analysis, the mathematical formulations are proposed to predict both the maximum bending resistance 

and the rotation capacity of aluminium beams (Chapter 5). 

Then, an extension of the effective thickness approach, currently adopted Eurocode 9, is herein 

presented. In particular, the new version of this method represents a simplified approach which allows 

to estimate the load-strain and the moment-curvature of each aluminium cross-section (Chapter 6).  

The results obtained by the previous methodologies are compared with the experimental data 

provided in technical literature and in Chapter 3 describing both compression and bending tests.  

Finally, it is important to underline that the present research work is supportive within the activities 

of CEN-TC250/SC9 the technical committee encharged of the revision of Eurocode 9. In fact, the 

empirical regressions, provided in Chapter 5 and the extension of effective thickness method (ETM) 

are currently adopted in the new proposed Annex L of EN1999-1-1. 

 

1.4. Organization of Work 

The present work is divided in seven Chapters and it is included five Appendices and two Annex: 

 CHAPTER 1 provides the background and motivation, objective and scope, and organization 

of the work. 

 CHAPTER 2 preliminarily reports the main results of the elastic stability theory of a single 

plate under uniform and non-uniform compression. Subsequently, starting from the J2 

deformation theory of plasticity, the theory of plastic buckling of plates is presented including 

also the variability of the Poisson’s ratio depending on the stress levels. This chapter includes 

the Appendices A, B and C, where some intermediate steps are reported.  

 CHAPTER 3 presents the experimental tests performed at the Structural Engineering Testing 

Hall Laboratory (STRENGTH Lab) of the Department of Civil Engineering of Salerno 

University. In particular, 9 stub column tests and 12 three point bending tests have been 

carried out on four SHS sections made of EN AW 6060 with temper T6. 

 CHAPTER 4 provides a fully theoretical approach for predicting the ultimate resistance of 

aluminium alloy members subjected to local buckling under uniform compression. In 
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particular, starting from the buckling differential equation of a single plate, derived under the 

assumption that the Poisson’s ratio is variable in the elastic-plastic range (Chapter 2), the 

plastic critical stress and the corresponding deformation have been predicted by imposing the 

boundary conditions accounting for the interaction between the plate elements constituting 

the section resulting from the edge’s connection between adjacent plates. 

 CHAPTER 5 is dedicated to evaluation of aluminium beams under non-uniform bending. the 

finite element analyses have been performed on the four different aluminium alloys belonging 

to 6000 series, in order to evaluate the influence of the strain-hardening on the inelastic 

response of the aluminium beams. Subsequently, an extensive parametric analysis has been 

performed by varying the main mechanical and geometrical non-dimensional parameters. 

Finally, the four mathematical formulations are derived to estimate the flexural overstrength 

and the rotation capacity of aluminium beams in the post elastic range. This chapter includes 

the Appendix D, where the normalised moment-rotation curves, provided by the finite element 

simulations, are reported. 

 CHAPTER 6 provides an extension of the effective thickness approach properly modified to 

account for the occurrence of buckling in the plastic range, as it occurs in the case of sections 

whose plate elements are characterised by small values of the width-to-thickness ratio. This 

method has been applied both on compressed columns and on beams in bending. It includes 

the Appendix E, where the program scripts of the previous procedure are reported. 

 CHAPTER 7 presents the summary of the work with some suggestions for future research. 

 ANNEX A shows the numerical comparison between the experimental results of the stub 

column tests, provided in Chapter 3 and in scientific literature, with those obtained by means 

of the theoretical approach, presented in Chapter 4, and of the effective thickness method.  

 ANNEX B shows the numerical comparison between the experimental results of the three 

point bending tests, provided in Chapter 3 and in scientific literature, with those obtained by 

means of the mathematical formulations, presented in Chapter 5, and of the effective thickness 

method.  

1.5. References 
 
[1.1] F.M. Mazzolani: “Structural applications of aluminium in civil engineering”, Structural 

Engineering International: Journal of the International Association for Bridge and Structural 

Engineering, 16(4), pp. 280-285, 2006. 

[1.2] F.M. Mazzolani: “3D aluminium structures”, Thin-Walled Structures, 61, pp. 258-266, 2012. 



Introduction 

37 

[1.3] E. Georgantzia, M. Gkantou, G.S. Kamaris: “Aluminium alloys as structural material: A 

review of research”, Engineering Structures, 227, art. no. 111372, 2021. 

[1.4] E. Georgantzia, M. Gkantou, G.S. Kamaris: “Aluminium alloys as structural material: A 

review of research”, Engineering Structures, 227, art. no. 111372, 2021. 

[1.5] G. De Matteis, G. Brando, F.M. Mazzolani: "Hysteretic behaviour of bracing-type pure 

aluminium shear panels by experimental tests", Earthquake Engineering and Structural Dynamics, 40 

(10), pp.1143-1162, 2011.  

[1.6] G. Brando, G. De Matteis: "Design of low strength-high hardening metal multi-stiffened shear 

plates", Engineering Structures, 60, pp. 2-10, 2014. 

[1.7] G. Brando, G. Sarracco, G. De Matteis: “Strength of an aluminum column web in tension”, 

Journal of Structural Engineering, 141(7), no. 4014180, 2015. 

[1.8] C.C. Spyrakos, J. Ermopoulos: “Development of aluminum load-carrying space frame for 

building structures”, Engineering Structures, 27, pp. 1942-1950, 2005.  

[1.9] J.G. Kaufman: “Introduction to aluminium alloys and tempers”, Materials Park (OH): ASM 

International, 2000. 

[1.10] EN1999-1-1: “Eurocode 9: Design of aluminium structures - Part 1-1: General structural 

rules”, European Committee for Standardization, 2007. 

[1.11] The Aluminium Association: “Aluminium Design Manual”, Washington, 2020. 

[1.12] Australian/New Zealand Standard (AS/NZS): “Aluminium Structures part 1: Limit Stade 

Design”, Sydney, 1997. 

[1.13] GB 50429: “Code for Design of Aluminium Structures”, Ministry of Construction of the 

People’s Republic of China, 2007. 

[1.14] S. Timoshenko: “Theory of Elastic Stability”, McGraw-Hill Book Co., Inc., 1936. 

[1.15] Z. P. Bazant, L. Cedolin: “Stability of Structures”, Oxford University Press, New York, 1991. 

[1.16] EN 1993-1-1: “Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for 

buildings”, European Committee for Standardization, 2005. 

[1.17] R.D. Mindlin: “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic 

plates”, ASME Trans. J. Appl. Mech., 18, pp. 31-38, 1951. 

[1.18] P.P. Bijlaard: “Theory and Tests on the Plastic Stability of Plates and Shells”, Journal of the 

Aeronautical Science, 16(9), pp. 529.541, 1949. 

[1.19] G. Gerard and H. Becker: “Handbook of structural stability. I: Buckling of flat plate”, 

National Advisory Council for Aeronautics (NACA), Washington, D.C., 1957. 

[1.20] C.M. Wang, Y. Xiang, J. Chakrabarty: “Elastic/plastic buckling of thick plates”, 

International Journal of Solids and Structures, 38, pp. 8617-8640, 2001.  



Chapter 1 

38 

[1.21] D. Durban and Z. Zuckerman: “Elastoplastic buckling of rectangular plates in biaxial 

compression/tension”, International Journal of Mechanical Sciences, 41, pp. 751-756, 1999. 

[1.22] F.M. Mazzolani, V. Piluso: “Prediction of the rotation capacity of aluminium alloy beams”, 

Thin-Walled Structures, 27 (1), pp. 103-116, 1997. 

[1.23] C. Faella, F.M. Mazzolani, V. Piluso, G. Rizzano: “Local buckling of aluminium members: 

testing and classification”, Journal of Structural Engineering, ASCE 2000, 126 (3), pp.353–60, 2000. 

[1.24] G. De Matteis, L.A. Moen, M. Langseth, R. Landolfo, O.S. Hopperstad, F.M. Mazzolani: 

“Cross-sectional classification for aluminium beams: a parametric study”, Journal of Structural 

Engineering, 127 (3), pp. 271-279, 2001. 

[1.25] G. De Matteis, R. Landolfo, M. Manganiello, F.M. Mazzolani: “Inelastic behaviour of I-

shaped aluminium beams: Numerical analysis and cross-sectional classification”, Computers and 

Structures, 82, pp. 2157-2171, 2004. 

[1.26] F.M. Mazzolani, V. Piluso, G. Rizzano: “Local buckling of aluminum alloy angles under 

uniform compression”, Journal of Structural Engineering, 137(2), pp. 173-184, 2011. 

[1.27] M. Liu, L. Zhang, P. Wang, Y. Chang: “Experimental investigation on local buckling 

behaviors of stiffened closed-section thin-walled aluminum alloy columns under compression”, Thin-

Walled Structure, 94, pp. 188-198, 2015. 

[1.28] H.X. Yuan, Y.Q. Wang, T. Chang, X.X. Du, Y.D. Bu, Y.J. Shi: “Local buckling and post 

buckling strength of extruded aluminium alloy stub columns with slender I-sections”, Thin-Walled 

Structures, 90, pp.140-149, 2015. 

[1.29] Y. Wang, F. Fan, S. Lin: “Experimental investigation on the stability of aluminium alloy 

6082 circular tubes in axial compression”, Thin-Walled Structures, 89, pp.54-66, 2015. 

[1.30] R. Feng and B. Young: “Experimental investigation of aluminum alloy stub columns with 

circular openings”, Journal of Structural Engineering, 141(11), pp. 1-10, 2015. 

[1.31] M.N. Su, B. Young, L. Gardner: “The continuous strength method for the design of 

aluminium alloy structural elements”, Engineering Structures, 122, pp.338–348, 2016. 

[1.32] L. Gardner and M. Ashraf: “Structural design for non-linear metallic materials”, Engineering 

Structures, 28(6), pp.926-934, 2006. 

[1.33] M. Ashraf and B. Young: “Design formulations for non-welded and welded aluminium 

columns using continuous strength method”, Engineering Structures, 33(12), pp.3197-3207, 2011. 

[1.34] B.W. Schafer and T. Pek�̈�𝒛: “Direct Strength prediction of cold-formed steel members using 

numerical elastic buckling solutions, International Specialty Conference on Cold-Formed Steel 

Structures: Recent Research and Developments in Cold-Formed Steel Design and Construction, pp. 

69-76, 1998. 



Introduction 

39 

[1.35] C.D. Moen and B.W. Schafer: “Direct strength method for design of cold-formed steel 

columns with holes”, Journal of Structural Engineering, 137(5), pp. 559-570, 2011. 

[1.36] F. Panlio: “The theory of limit design applied to magnesium alloy and aluminium alloy 

structures”, R Aerinaut Soc, pp. 534-571, 1947. 

[1.37] T. Welo: “Inelastic deformation capacity of flexurally-loaded aluminium alloy structures”, 

Norwegian University of Science and Technology, 1990. 

[1.38] B.S. Opheim: “Bending of thin-walled aluminium extrusions”, Norwegian University of 

Science and Technology, 1996. 

[1.39] L.A. Moen, O.S. Hopperstad, M. Langseth: “Rotational capacity of aluminum beams under 

moment gradient. I: Experiments”, Journal of Structural Engineering, 125 (8), pp. 910-920, 1999. 

[1.40] L.A. Moen, G. De Matteis, O.S. Hopperstad, M. Langseth, R. Landolfo, F.M. Mazzolani: 

“Rotational capacity of aluminum beams under moment gradient. II: numerical simulation”, Journal 

of Structural Engineering, 125 (8), pp. 921-929, 1999. 

[1.41] J.H. Zhu and B. Young: “Design of aluminum alloy flexural members using direct strength 

method”, Journal of Structural Engineering, 135 (5), pp. 558-566, 2009. 

[1.42] Y. Kim and T. Pek�̈�z: “Numerical Slenderness Approach for design of complx aluminium 

extrusion subjected to flexural loading”, Thin-Walled Structures, 127, pp. 62-75, 2018. 

[1.43] R. Feng, C. Shen, J. Lin: “Finite element analysis and design of aluminium alloy CHSs with 

circular through-holes in bending”, Thin-Walled Structures, 144, 2019. 

[1.44] R. Feng, Z. Chen, C. Shen, K. Roy, B. Chen, J.B.P. Lim: “Flexural capacity of perforated 

aluminium CHS tubes–An experimental study”, Structures, 25, pp. 463-480, 2020. 

[1.45] Y.Q. Wang, Z.X. Wang, F.X. Yin, L. Yang, Y.J. Shi, J. Yin: “. Experimental study and 

finite element analysis on the local buckling behavior of aluminium alloy beams under concentrated 

loads”, Thin-Walled Structures, 105, pp. 105-144, 2016. 

[1.46] M.N. Su, B. Young, L. Gardner: “Deformation-based design of aluminum alloy beams” 

Engineering Structures, 80, pp. 339-349, 2014. 

[1.47] M.N. Su, B. Young, L. Gardner: “. Flexural response of aluminium alloy SHS and RHS with 

internal stiffeners”, Engineering Structures, 121, pp. 170-180, 2016. 

[1.48] E. Georgantzia, M. Gkantou, G.S. Kamaris: “Aluminium alloys as structural material: A 

review of research”, Engineering Structures, 227, art. no. 111372, 2021. 





 

41 

 . CHAPTER 2 

STABILITY OF PLATES 

 
2.1. Introduction 

The structural behaviour of aluminium thin-walled sections is strongly affected by local buckling 

phenomena, which arise in the compressed part of the members. Considering the cross-section 

composed by a finite number of plates, the theory of stability of a single plate under uniform and non-

uniform compression represents an aspect of primary importance to analyze the influence of the local 

instability on the sectional behaviour. Obviously, the study of the plate subjected to the actions in his 

middle-plane is extremely complex, because geometrical and mechanical non-linearity effects occur.  

For this reason, the main results of the elastic buckling theory are reported in the case of a single plate 

under uniform and non-uniform compression for different boundary conditions, neglecting the 

geometrical imperfections.  

Subsequently, including the mechanical nonlinearity of material, the critical load of a single plate 

under compression is derived in the elastic-plastic region. Starting from the fundamental relationships 

in 𝐽  deformation theory, the theory of plastic buckling of plates is presented also including the 

variability of the Poisson’s ratio depending on the stress levels. The differential equation of the plates 

at the onset of buckling is developed and the corresponding solution is provided. This is an innovative 

step compared to the theoretical solutions currently existing in the technical literature because the 

variability of the Poisson’s ratio in the elastic-plastic range is commonly neglected. 

2.2. Elastic Buckling 

2.2.1. Second order differential equation 

It is well known that the second order differential equation which describes the behaviour of a thin 

plate under uniform compression in its middle plane was derived for the first time in 1807 from De 

Saint Venant [2.1]. According to Figure 2.1, where the infinitesimal plate element under the 

membrane actions of the middle plane is depicted, the basic assumptions of the elastic buckling 

criterion are: 

a. The material is perfectly elastic according to the Hooke’s law; 

b. The material is homogenous and isotropic, for this reason the mechanical properties are 

independent of the direction of the applied stresses; 
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c. The thickness of plate is constant and small compared to the two dimensions of the plate in 

plane; 

d. The segments which are orthogonal to the middle-plane of the plate remain orthogonal to the 

middle-plane also after the deformations; 

e. The plate is incompressible in the direction orthogonal to the middle plane, so the stresses in 

the same direction are negligible; 

f. The displacements 𝑤(𝑥, 𝑦) orthogonal to the middle plane have an order of magnitude less 

than the thickness of the plate, consequently, the curvature can be assumed as the second 

derivatives of 𝑤(𝑥, 𝑦); 

 
Figure 2.1. Infinitesimal plate element subjected to the membrane actions in the plane 𝑥 − 𝑧 and 𝑥 − 𝑦. 

It is important to underline that the same assumptions are the basis of the first order differential 

equation of a single plate under uniform load, provided by Sophie German and Lagrange [2.1].  

The elastic buckling criterion is expressed by Eq.(2.1), where 𝐷  represents the elastic flexural 

stiffness of the plate and it is expressed in (2.2): 

𝜕 𝑤

𝜕𝑥
+ 2

𝜕 𝑤

𝜕𝑥 𝜕𝑦
+

𝜕 𝑤

𝜕𝑦
= −

1

𝐷
𝑁

𝜕 𝑤

𝜕𝑥
+ 2𝑁

𝜕 𝑤

𝜕𝑥𝜕𝑦
+ 𝑁

𝜕 𝑤

𝜕𝑦
 (2.1) 
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and: 

𝐷 =
𝐸𝑡

12(1 − 𝜈 )
 (2.2) 

where 𝐸 and 𝜈  are, respectively, the Young’s modulus and the Poisson’s ratio in the elastic region 

of metal materials and 𝑡 represents the plate thickness. 

In the simple case of only uniform compression along 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, as depicted in Figure 2.2, the 

second order differential equation becomes:  

𝜕 𝑤

𝜕𝑥
+ 2

𝜕 𝑤

𝜕𝑥 𝜕𝑦
+

𝜕 𝑤

𝜕𝑦
= −

𝑁

𝐷

𝜕 𝑤

𝜕𝑥
 (2.3) 

From a mathematical point of view, the previous relation represents a homogeneous linear differential 

equation of the fourth order with partial differential, which can be solved taking into account the 

specific boundary conditions. A trivial solution, corresponding to undeformed configuration of the 

plate, is the displacement function equal to zero (𝑤 = 0). The buckling condition is achieved for 

infinite values of compressed load 𝑁 (eigenvalues) for which a non-trivial displacement solution 

(eigenvector) correspond. The smallest eigenvalue represents the critical load. 

 

Figure 2.2. Single plate under uniform compression along 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 
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2.2.2. Solutions Methods of the Buckling Equation 

The solution of Eq.(2.3) can be solved by means of different approaches [2.2]. The main solution 

methods are, briefly, described: 

Eulerian approach. It consists in the integration of the differential equation starting from a general 

solution, which satisfies the constraint and loading conditions along the sides of the plate. In the 

following, this method is applied to determine the elastic critical load of a single plate under uniform 

compression along 𝑥 direction and for different edge condition along unloaded sides. 

Energy approaches. These methods are all based on the definition of the strain energy produced by 

the internal stresses (𝑈) and the potential energy of external actions (𝑃) [2.3]. In particular, it is 

possible to apply two different methods: 

 The principle of energy conservation states that the sum of the strain energy of system and the 

work done by the applied loads during the loading process is equal to zero: 

𝑈 + 𝑃 = 0 (2.4) 

This method can be applied when the deflected shape 𝑤 is known. For this reason, the final 

value of the elastic critical stress is not approximated. 

 The minimum potential energy (Rayleigh-Ritz method) [2.4], [2.5]. When the plate reaches the 

buckling point, it is in neutral equilibrium and in this state the total potential energy (𝑈 + 𝑃) 

is always a minimum. So, it is necessary to satisfy the following relationship: 

𝛿𝑈 + 𝛿𝑃 = 0 (2.5) 

The importance of this method consists of choosing arbitrarily a deflected shape and, 

consequently, the final solution the buckling stress is approximated and, in particular, this 

value is higher than the true critical stress. Obviously, if the shape chosen for the deflection is 

exact, this method provides the same result as the previous approach.  

Galerkin’s method [2.6]. It is an alternative to the Rayleigh-Ritz solution. In this case, an 

approximate shape is assumed for the deflection surface, however the expression for 𝑤(𝑥, 𝑦) is 

directly substituted in the differential equation. After replacement, a waste is provided, and the 

Galerkin’s method is necessary to minimize this error. Obviously, if the deflection shape is exact and, 

consequently the previous waste is equal to zero, so this method perfectly coincides with the eulerian 

approach. 

The finite difference method. It represents an approximate numerical procedure, based on the use 

of the expressions of the Taylor series to describe the derivatives of the deflection, which appear in 

the fundamental differential equation. In particular, the technique is to subdivide the plate 

longitudinally and transversely by a grid system, so that the spacing between the intersection points 
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is sufficiently small. In this way, the first derivative at a point can be expressed as the difference 

between adjacent deflections divided by the distance between them. Similarly, the second derivatives 

can be obtained as the difference between the first derivatives divided by distance between adjacent 

points. The fourth derivatives can be expressed by deducing the second derivatives of the second 

derivatives. Then, substituting these expressions in the differential equation, an algebraic equation is 

obtained in terms of the deflections at the surrounding points. Applying this equation to each point of 

the grid, a simple system of linear equations in the unknown deflections can be derived. Obviously, 

the points near the sides of the plate are influenced by the boundary conditions.  

The finite elements method. Also, this approach represents a simplified numerical procedure, and it 

consists of cutting the plate into a finite number of flat elements joined only at specified nodes and 

the continuity and equilibrium are established at these nodes only. These elements are connected to 

each other to their corners. In order to respect the continuity, the deflection of adjacent elements has 

to be the same and the rotations of adjacent elements orthogonal to the axes 𝑥 and 𝑦 must be equal. 

The most important advantage of this method is the widespread implementation to the software 

program, which allows to solve the plates with mixed boundary and loading conditions. 

2.2.3. Buckling Factor of a Single Plate under Uniform Compression 

Following the eulerian approach, the elastic buckling stress of a thin plate under uniform compression 

is derived for different edge conditions and without initial geometrical imperfections. According to 

Figure 2.2, the edges 𝑥 = 0 and 𝑥 = 𝑎 are considered simply supported, so the solutions of Eq. (2.3) 

depends on the edge conditions along the other sides (𝑦 = 0 ; 𝑦 = 𝑏). In the following, the different 

conditions for unloaded edges are considered to estimate the critical stress under uniform 

compression. 

Free edges for unloaded sides. The simplest case of buckling is verified when the uniform 

compression is applied to simply supported edges, while the other sides are free. In this configuration, 

the plate behaves in the same way as a column subjected to the normal force, so the critical load is 

provided by the Euler theory [2.1].  

All edges are simply supported. In the case of the simply supported along all four edges, the 

unknown function  𝑤(𝑥, 𝑦)  is searched in the form of the infinite double trigonometrical series 

(Fourier series): 

(𝑥, 𝑦) = 𝑤 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏
 (2.6) 

where 𝑚 and 𝑛 are, respectively, the number of half waves in 𝑥 and 𝑦 directions, while 𝑤  are the 

unknown coefficients, satisfying the differential equation reported in (2.3) and they represent the 
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amplitudes of function 𝑤(𝑥, 𝑦). Substituting the Eq.(2.6) into Eq.(2.3), the following relationship is 

obtained: 

𝑤
𝑚 𝜋

𝑎
+ 2

𝑚 𝑛 𝜋

𝑎 𝑏
+

𝑛 𝜋

𝑏
−

𝑁

𝐷

𝑚 𝜋

𝑎
𝑠𝑖𝑛

𝑚𝜋𝑥

𝑎
𝑠𝑖𝑛

𝑛𝜋𝑦

𝑏
= 0 (2.7) 

The first term of the above equation is made by the sum of the infinite number of the independent 

functions. So that the Eq.(2.7) is satisfied when all coefficients are equal to zero and with reference 

to the single component of the double Fourier series, it means: 

𝑤
𝑚 𝜋

𝑎
+ 2

𝑚 𝑛 𝜋

𝑎 𝑏
+

𝑛 𝜋

𝑏
−

𝑁

𝐷

𝑚 𝜋

𝑎
= 0 (2.8) 

Obviously, 𝑤 = 0 represents a trivial solution to which corresponds an undeformed configuration 

of the plate, so it is neglected. Conversely, a nontrivial solution can be obtained in closed form, by 

assuming  𝑛 = 1, i.e.  the plate buckles forming only one half-wave in the 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛; and it 

represents the expression of the buckling load in the elastic region: 

𝑁 . = 𝑘
𝜋 𝐷

𝑏
 (2.9) 

where 𝑘 is the buckling factor and it depends on the number of half-waves in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (𝑚) and 

the ratio between the geometrical dimension of the plate (𝑎/𝑏) by means of the following relationship: 

𝑘 =
𝑏

𝑎
𝑚 +

1

𝑚

𝑎

𝑏
 (2.10) 

Figure 2.3 shows the trend of the buckling factor. The minimum value of 𝑘 is achieved for integer 

values of the ratio 𝑎/𝑏 and it is equal to 4. Moreover, for the plates with 𝑎 𝑏⁄ > 4, it results that 𝑘 →

4  because the variation of the buckling factor respect to the minimum value can be neglected. 

Theoretically, this procedure should be repeated for each component of double series and the final 

result is the sum of all components, however it is well known that it is possible to consider the 

component of the series which is related to the main buckling mode and in this specific case to the 

ratio between the geometrical dimensions of the plate (𝑎/𝑏). As an example, the buckling shape of 

the plate with 𝑎 𝑏⁄ = 2 is reported in Figure 2.4. By dividing the first and second members of Eq. 

(2.9) and taking into account Eq. (2.2), the critical stress in the elastic range can be expressed as: 

𝜎 . = 𝑘
𝜋 𝐸

12(1 − 𝜈 )(𝑏/𝑡)
 (2.11) 
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Figure 2.3. Buckling factor 𝑘 for simply supported plates. 

 
Figure 2.4. Buckling shape for plate with simply supported edges and for 𝑚 = 2. 
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When the plate under uniform compression is not simply supported along the unloaded sides, the 

buckling load cannot be determined in the closed form, but it is necessary to define an iterative 

procedure, as shown in the following cases. Moreover, the deflected function 𝑤(𝑥, 𝑦) cannot be 

searched by means of Fourier series (2.6), but it is possible to use the Levy’s general solution in the 

following form [2.1]: 

𝑤(𝑥, 𝑦) = 𝑓(𝑦)𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
 (2.12) 

where 𝑓(𝑦) represents an unknown function of 𝑦. The Eq. (2.12) satisfies the boundary conditions 

along the loaded sides, in particular the displacements and the bending moments for 𝑥 = 0 and 𝑥 =

𝑎 are equal to zero: 

𝑤(𝑥, 𝑦)| ; = 0 

𝑀 | ; = 0 => 𝐷 𝑠𝑖𝑛
𝑚𝜋𝑥

𝑎
𝑓(𝑦)

𝑚𝜋

𝑎
− 𝜈

𝜕 𝑓

𝜕𝑦
;

= 0 
(2.13) 

By substituting the general solution (2.12) into Eq.(2.3) and replaced 𝜆 = 𝑚𝜋/𝑎 , the following 

homogenous fourth order differential equation is obtained: 

𝑑 𝑓

𝑑𝑦
− 2𝜆

𝑑 𝑓

𝑑𝑦
+ 𝑓𝜆 𝜆 −

𝑁

𝐷
= 0 (2.14) 

the corresponding algebraic characteristic equation of previous relationship is equal to: 

𝜓 − 2𝜆 𝜓 + 𝑓𝜆 𝜆 −
𝑁

𝐷
= 0 (2.15) 

Through some mathematical steps, the general solution of Eq. (2.14) is equal to: 

𝑤(𝑥, 𝑦) = (𝑎 𝑐𝑜𝑠ℎ𝛼𝑦 + 𝑎 𝑠𝑖𝑛ℎ𝛼𝑦 + 𝑎 𝑐𝑜𝑠𝛽𝑦 + 𝑎 𝑠𝑖𝑛𝛽𝑦)𝑠𝑖𝑛𝜆𝑥 (2.16) 

where 𝑎  represent the constants of integrations and they can be determined by means of the boundary 

conditions, while the coefficients 𝛼 and 𝛽 are expressed by following relationships: 

𝛼 = 𝜆 + 𝜆
𝑁

𝐷
 

𝛽 = −𝜆 + 𝜆
𝑁

𝐷
 

(2.17) 

The edge 𝒚 = 𝟎 is simply supported - the edge 𝒚 = 𝒃 is free. According to the conditions of 

constraints, the deflection 𝑤 and the bending moment 𝑀  are zero along the side 𝑦 = 0, while the 

side  𝑦 = 𝑏 is free and, consequently, the bending moment 𝑀 , the twisting moment 𝑀  and the 

shearing force 𝑉  are equal to zero. However, it is possible to reduce the boundary conditions along 
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the free edge, in particular the twisting moment and the shearing action can be replaced by one 

boundary condition 𝑅∗  defined equivalent shearing force [2.1]: 

𝑅∗ = 𝑉 +
𝜕𝑀

𝜕𝑥
 (2.18) 

So, the boundary conditions along the unloaded edges are: 

1) 𝑤| = 0 

2) 𝑀 = 0 => + 𝜈 = 0 

3) 𝑀 = 0 => + 𝜈 = 0 

4) 𝑅∗ = 0 => + (2 − 𝜈 ) = 0 

(2.19) 

By substituting Eq.(2.16) into previous relations, it results: 

1) 𝑎 + 𝑎 = 0 

2) 𝑎 𝜙 + 𝑎 𝜙 = 0 

3) 𝑎 𝜙 𝑠𝑖𝑛ℎ𝛼𝑏 − 𝑎 𝜙 𝑠𝑖𝑛𝛽𝑏 = 0 

4) 𝑎 𝜓 𝑐𝑜𝑠ℎ𝛼𝑏 − 𝑎 𝜓 𝑐𝑜𝑠𝛽𝑏 = 0 

(2.20) 

where 𝜙 , 𝜙 , 𝜓  and 𝜓  are equal to: 

𝜙 = 𝛼 − 𝜈 𝜆  

𝜙 = 𝛽 + 𝜈 𝜆  

𝜓 = 𝛼(𝛼 − 𝜈 𝜆 ) 

𝜓 = 𝛽(𝛽 + 𝜈 𝜆 ) 

(2.21) 

From the first two boundary conditions, 𝑎 = 𝑎 = 0, consequently, by neglecting the trivial solution 

𝑎 = 𝑎 = 0  corresponding to the unbuckled configuration, the solution can be performed by 

imposing the following determinant of coefficients equal to zero: 

𝜙 𝑠𝑖𝑛ℎ𝛼𝑏 −𝜙 𝑠𝑖𝑛𝛽𝑏

𝜓 𝑐𝑜𝑠ℎ𝛼𝑏 −𝜓 𝑐𝑜𝑠𝛽𝑏
= 0 => 𝜙 𝜓 𝑠𝑖𝑛𝛽𝑏𝑐𝑜𝑠ℎ𝛼𝑏 = 𝜙 𝜓 𝑠𝑖𝑛ℎ𝛼𝑏𝑐𝑜𝑠𝛽𝑏 (2.22) 

As depicted in Eq.(2.17) , the coefficients 𝛼 and 𝛽 are dependent on the load level, so the elastic 

critical stress 𝜎 .  can be provided by means of an iterative procedure by satisfying the previous 

condition. The smallest value of the buckling load corresponds to 𝑚 = 1, i.e., by assuming that the 

buckled plate has only one half-wave. Moreover, in the scientific literature and according to Eq.(2.9), 

the expression of buckling factor can be expressed, with a good approximation, by means of the 

following relationship: 

𝑘 ≅ 0.456 +
𝑏

𝑎
 (2.23) 
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The comparison between the previous relation and the trend of buckling factor obtained by an iterative 

procedure is shown in Figure 2.5, while the  buckling shape of a plate under uniform compression 

with an unloaded edge simply supported and the other free is reported in Figure 2.6. 

 
Figure 2.5. Buckling factor 𝑘 for a plate with one free edge and the other simply supported. 

 

 
Figure 2.6. The buckling shape of a plate with one free edge and the other simply supported. 
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Similar considerations can be repeated for the other following boundary conditions: 

The unloaded edges are clamped. In this case, the deflection 𝑤 and the rotation 𝜑  are equal to zero 

along the unloaded sides, while the bending moments 𝑀  and the equivalent shearing forces 𝑄   have 

non-zero values: 

1) 𝑤| = 0 

2) 𝜑 = 0 => = 0 

3) 𝑤| = 0 

4) 𝜑 = 0 => = 0 

(2.24) 

According to the Levy’s solution (2.16) into previous conditions, it results: 

1) 𝑎 + 𝑎 = 0 => 𝑎 = −𝑎  

2) 𝑎 𝛼 + 𝑎 𝛽 = 0 => 𝑎 = −(𝛼 𝛽⁄ )𝑎  

3) 𝑎 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝑎 𝑠𝑖𝑛ℎ𝛼𝑏 + 𝑎 𝑐𝑜𝑠𝛽𝑏 + 𝑎 𝑠𝑖𝑛𝛽𝑏 = 0 

4) 𝑎 𝛼𝑠𝑖𝑛ℎ𝛼𝑏 + 𝑎 𝛼𝑐𝑜𝑠ℎ𝛼𝑏 − 𝑎 𝛽𝑠𝑖𝑛𝛽𝑏 + 𝑎 𝛽𝑐𝑜𝑠𝛽𝑏 = 0 

(2.25) 

By substituting the results of the first two relations into into the other equations and neglecting the 

trivial solution 𝑎 = 𝑎 = 0, the elastic critical stress can be derived by imposing the determinant of 

the following matrix is equal to zero: 

(𝑐𝑜𝑠ℎ𝛼𝑏 − 𝑐𝑜𝑠𝛽𝑏) 𝑠𝑖𝑛ℎ𝛼𝑏 −
𝛼

𝛽
𝑠𝑖𝑛𝛽𝑏

(𝛼𝑠𝑖𝑛ℎ𝛼𝑏 + 𝛽𝑠𝑖𝑛𝛽𝑏) 𝛼(𝑐𝑜𝑠ℎ𝛼𝑏 − 𝑐𝑜𝑠𝛽𝑏)
= 0 (2.26) 

In this case, according to Eq.(2.9), the minimum value of elastic critical stress can be achieved when 

the buckling factor is equal to 7, as depicted in Figure 2.7. The values of the critical load are about 

twice the one of those obtained for the same plate but with the unloaded edges simply supported. This 

result is justified by the presence of the clamp constraints which provide the greater resistance to the 

instability phenomena. In Figure 2.8, the buckling shape of a single plate with the clamped unloaded 

edges is shown in the case of 𝑎/𝑏 = 2 and, consequently, with three half-waves along 𝑥 (𝑚 = 3). 
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Figure 2.7. Buckling factor 𝑘 for a plate with clamped edges. 

 

 
Figure 2.8. Buckling shape of a plate with clamped edges. 
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The edge 𝒚 = 𝟎 is clamped - the edge 𝒚 = 𝒃 is free. The displacement 𝑤 and the rotation 𝜑  are 

equal to zero for the edge 𝑦 = 0, while along the other side 𝑦 = 𝑏 the bending moments 𝑀  and the 

equivalent shearing forces 𝑅∗   are zero: 

1) 𝑤| = 0 

2) 𝜑 = 0 => = 0 

3) 𝑀 = 0 => + 𝜈 = 0 

4) 𝑅∗ = 0 => + (2 − 𝜈 ) = 0 

(2.27) 

By substituting the Eq.(2.16) into previous conditions, it results: 

1) 𝑎 + 𝑎 = 0 => 𝑎 = −𝑎  

2) 𝑎 𝛼 + 𝑎 𝛽 = 0 => 𝑎 = −(𝛼 𝛽⁄ )𝑎  

3) 𝑎 𝜙 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝑎 𝜙 𝑠𝑖𝑛ℎ𝛼𝑏 − 𝑎 𝜙 𝑐𝑜𝑠𝛽𝑏 − 𝑎 𝜙 𝑠𝑖𝑛𝛽𝑏 = 0 

4) 𝑎 𝜓 𝑠𝑖𝑛ℎ𝛼𝑏 + 𝑎 𝜓 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝑎 𝜓 𝑠𝑖𝑛𝛽𝑏 − 𝑎 𝜓 𝑐𝑜𝑠𝛽𝑏 = 0 

(2.28) 

The elastic critical stress can be estimated by imposing the determinant of following matrix equal to 

zero: 

𝜙 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝜙 𝑐𝑜𝑠𝛽𝑏 𝜙 𝑠𝑖𝑛ℎ𝛼𝑏 +
𝛼

𝛽
𝜙 𝑠𝑖𝑛𝛽𝑏

𝜓 𝑠𝑖𝑛ℎ𝛼𝑏 − 𝜓 𝑠𝑖𝑛𝛽𝑏 𝜓 𝑐𝑜𝑠ℎ𝛼𝑏 +
𝛼

𝛽
𝜓 𝑐𝑜𝑠𝛽𝑏

= 0 (2.29) 

As depicted in Figure 2.9, for increasing of the ratio 𝑎 𝑏⁄ , the value of 𝑘 → 1.25 and, consequently, 

the smallest value of critical stress is achieved. the buckling shape of a single plate with two half-

waves in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 is reported in Figure 2.10. 
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Figure 2.9. Buckling factor 𝑘 for a plate with one free edge and the other clamped. 

 

 
Figure 2.10. Buckling shape of a plate with one free edge and the other clamped. 
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The edge 𝒚 = 𝟎 is clamped - the edge 𝒚 = 𝒃 is simply supported. The restraints of this scheme are 

characterized by two kinematic conditions for 𝑦 = 0, in particular and, specifically, the displacement 

𝑤 and the rotation 𝜑  are zero, while the displacement 𝑤 and the bending moment 𝑀  are equal to 

zero for 𝑦 = 𝑏: 

1) 𝑤| = 0 

2) 𝜑 = 0 => = 0 

3) 𝑤| = 0 

4) 𝑀 = 0 => + 𝜈 = 0 

(2.30) 

By developing the previous boundary conditions according to the Levy’s solution, the following 

relationships are obtained: 

1) 𝑎 + 𝑎 = 0 => 𝑎 = −𝑎  

2) 𝑎 𝛼 + 𝑎 𝛽 = 0 => 𝑎 = −(𝛼 𝛽⁄ )𝑎  

3) 𝑎 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝑎 𝑠𝑖𝑛ℎ𝛼𝑏 + 𝑎 𝑐𝑜𝑠𝛽𝑏 + 𝑎 𝑠𝑖𝑛𝛽𝑏 = 0 

4) 𝑎 𝜙 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝑎 𝜙 𝑠𝑖𝑛ℎ𝛼𝑏 − 𝑎 𝜙 𝑐𝑜𝑠𝛽𝑏 − 𝑎 𝜙 𝑠𝑖𝑛𝛽𝑏 = 0 

(2.31) 

By substituting 𝑎 = −𝑎  and 𝑎 = −(𝛼 𝛽⁄ )𝑎  in the other relations, the elastic critical stress can be 

determined by imposing the following determinant equal to zero: 

(𝑐𝑜𝑠ℎ𝛼𝑏 − 𝑐𝑜𝑠𝛽𝑏) 𝑠𝑖𝑛ℎ𝛼𝑏 −
𝛼

𝛽
𝑠𝑖𝑛𝛽𝑏

𝜙 𝑐𝑜𝑠ℎ𝛼𝑏 + 𝜙 𝑐𝑜𝑠𝛽𝑏 𝜙 𝑠𝑖𝑛ℎ𝛼𝑏 +
𝛼

𝛽
𝜙 𝑠𝑖𝑛𝛽𝑏

= 0 (2.32) 

According to Eq. (2.9), the minimum value of the elastic critical stress 𝜎 .  is achieved for 𝑘 ≅ 5.40, 

as depicted in Figure 2.11. The buckling shape of a single plate with two half-waves in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

is depicted in Figure 2.12. 
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Figure 2.11. Buckling factor 𝑘 for a plate with one edge simply supported and the other clamped. 

 

 
Figure 2.12. Buckling shape of a plate with one edge simply supported and the other clamped. 
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2.2.4. Buckling Factor of a Single Plate under Non-uniform Compression 

When the plate is subjected to non-uniform compression, as in the case of web plates of aluminium 

members in bending, the solution of differential equation can not be solved by following the eulerian 

approach, but it is necessary to apply the energy or similar method, based on an assumed deflected 

form. The main results, reported in the scientific literature, are discussed for the same boundary 

conditions of the previous cases. According to Figure 2.13, the expression of the linearly variable 

stress is assumed as: 

𝜎 = 𝜎 1 +
𝜔 − 1

𝑏
𝑦  (2.33) 

where the coefficient 𝜔 as the ratio between 𝜎  and 𝜎  which represent the stresses at the end of the 

plate. When 𝜔 is equal to 1, the plate is subjected under uniform compression, while the plate is only 

in bending for 𝜔 = −1. 

 

Figure 2.13. The single plate under non-uniform compression. 

In the case of simply supported plates, Timoshenko provided the solution by means of the principle 

of conservation of energy [2.1], while N�̈�lke solved the plate under non-uniform compression when 

the unloaded sides are clamped [2.7]. In  Figure 2.14, the main results of the above solutions are 

shown in terms of the minimum buckling factor 𝑘 as function of 𝜔. It is possible to observe that the 

buckling factor and, consequently, the value of elastic buckling stress  𝜎 .  , increases from 𝜔 = 1, 

i.e., the state of uniform compression, to 𝜔 = −1, i.e., pure bending loading. For every value of  𝜔, 

the ratio between the buckling factor of a plate with edges clamped and those derived by a simply 
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supported plate is included in the range 1.66 − 1.88, so the variation of buckling factor as function 

of the loading variability is almost the same for both cases. Finally, it is possible to verify that the 

approximate values of the minimum buckling factor can be obtained, considering the mean value of 

the distributed stress 𝜎  , but only for 𝜔 ∈ [0,1]. 

Kollbrunner and Hermann provided the minimum value of the buckling factor, when the plate is 

characterized by the clamped edge in 𝑦 = 0 and the simply supported edge in 𝑦 = 𝑏  [2.8]. The 

boundary conditions along the two unloaded sides are different, for this reason the value of 𝑘 varies 

depending on the orientation of the edge stress to 𝑦 = 0, as shown in Figure 2.15. When the simply 

supported edge is in tension side of the plate for 𝜔 = −1 , the value of 𝑘 is 39.52 and it does not 

differ greatly from that with both clamped edges (𝑘 = 39.60). Conversely, when the fixed edge is in 

tension, the minimum buckling factor is about 24.48 and it is not very different from that with both 

edges simply supported (𝑘 = 23.90). 

Figure 2.16 shows the trend of the buckling factor as function of the stress distribution for a plate 

with the clamped edge in 𝑦 = 0, while the edge 𝑦 = 𝑏 is free. Also in this case, the value of 𝑘 again 

depends on the orientation of the edge forces to 𝑦 = 0. 

Finally, in Figure 2.17, the case of the plate with one edge simply supported and the otherside free is 

depicted. Moreover, when in the case of pure bending (𝜔 = −1), the relationship between the 

buckling factor and the ratio of the geometric dimensions of the plate is equal to: 

𝑘 ≅ 2
𝑏

𝑎
+

6

𝜋
(1 − 𝜈 )  (2.34) 
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Figure 2.14. The minimum values of buckling factor 𝑘 for plates with simply supported and clamped edges. 

 

 
Figure 2.15. The minimum values of buckling factor 𝑘 when the edge 𝑦 = 0 is clamped and the other is supported. 
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Figure 2.16. The minimum values of buckling factor 𝑘 when the edge 𝑦 = 0 is clamped and the edge 𝑦 = 𝑏 is free. 

 

 
Figure 2.17. The minimum values of buckling factor 𝑘 when the edge 𝑦 = 0 is supported and the edge 𝑦 = 𝑏 is free. 
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2.3. Plastic Buckling 

2.3.1. Plastic buckling paradox 

In this section, with reference to a single plate under uniform compression, an extension of the 

buckling criterion in the elastic-plastic range is provided.  

When the instability phenomena occur after the yielding of the material, the mechanical nonlinearity 

has to be taken into account in the buckling analysis, for this reason, it is necessary to introduce a 

new model for describing the inelastic response of material. 

Since the beginning of the twentieth century, many developments in the study of elastic-plastic 

behaviour of structures gave rise to a large improvement in the theory of plasticity, leading to the 

identification of different models for engineering materials based on whether path-dependence is 

accounted for or not. In particular, the plasticity models currently adopted for metal structures can be 

divided into two main groups: 1) the deformation theory of plasticity (Hencky-Nadai); 2) the flow 

theory of plasticity (Lévy-Mises). A common issue in these theories is that the plastic deformation 

does not allow any volume change. As this issue is ruled by the second invariant of the stress deviator, 

under this point of view, both the flow and the deformation theories are called J2 theories of plasticity. 

However, the flow theory of plasticity leads to a path-dependent relationship in which the current 

strain depends not only on the value of the current total stress but also on how the actual stress value 

has been reached. The flow theory of plasticity assumes that an infinitesimal increment of strain is 

determined by the current stress and its increment. In particular, it is worthwhile mentioning that 

according to J2 flow theory of plasticity the unloading takes place along a line parallel to the initial 

elastic path. This is in agreement with the experimental behaviour of most metals. Conversely, the 

deformation theory of plasticity is based on the assumption that the state of strain is uniquely 

determined by the state of stress. Therefore, it is essentially a special path-independent nonlinear 

constitutive law. In particular, loading and unloading take place along the same non-linear stress-

strain path. However, even though the deformation theory lacks physical rigour compared to the flow 

theory of plasticity, in many engineering problems involving the inelastic buckling of structures, the 

deformation theory seems to be more in agreement with the experimental results. This phenomenon 

is usually referred to as the “plastic buckling paradox” [2.9]-[2.11]. Despite the more satisfactory 

theoretical framework, the use of the J2 flow theory of plasticity leads to overestimated predictions 

of the critical load. Conversely, the application of the J2 deformation theory of plasticity has proved 

its ability to lead to more accurate results when theoretical predictions are compared to available 

experimental data. This paradox has existed for many years leading to a multitude of controversies, 

many of them are still to be solved. For this reason, many numerical, analytical, and experimental 

investigations have involved many researchers in the attempt of solving the plastic paradox since the 
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early 40s. According to some studies, the possible reason for the discrepancies in the results obtained 

with the two plasticity theories was likely due either to the assumption of small deformation or the 

exclusion of transverse shear deformation in buckling analysis. Conversely, other studies concluded 

that a reduction of the discrepancies in the results between the flow and the deformation theory can 

be obtained provided that imperfections are included in the application of the flow theory. Moreover, 

other researchers pointed out that the deformation theory predicts a lower plastic shear modulus as 

the plasticity level increases and, as a consequence, this is the reason why deformation theory tends 

to predict lower buckling loads when compared to those obtained by applying the flow theory [2.12]. 

According to Yun and Kyriakides [2.13], the plastic buckling paradox has to be still considered 

“unresolved”. This position is agreed by other researchers stating the available explanations are still 

to be judged “inconclusive”.  

This work is not aimed to contribute to solving the controversies resulting from the plastic buckling 

paradox. For this reason, flow theory of plasticity is not applied because the use of the deformation 

theory of plasticity is still recommended for practical applications concerning the investigation of the 

inelastic buckling of plates and shells. Research studies have confirmed once again that the 

deformation theory predictions are more in-line with experimental results than those of flow theory. 

This fact can be accepted in practical applications, so that reference can be made only to the 

deformation theory [2.9]. Therefore, the analytical study herein presented will refer to the 

deformation theory of plasticity. The original contribution of the analytical approach herein presented 

is given by the introduction of the variability of the Poisson’s ratio in the elastic-plastic range, i.e., as 

dependent on the stress intensity measure, in the evaluation of the plate buckling differential equation. 

2.3.2. Fundamental Relations in 𝐉𝟐 Deformation Theory of Plasticity 

The simple J2 deformation theory of plasticity is herein used aiming to relate the biaxial stresses to 

the plastic deformation [2.14]. According to the J2 deformation theory of plasticity for isotropic 

materials under biaxial plane stress state 𝜎 = 𝜏 = 𝜏 = 0 , the stress intensity is given by: 

𝜎 = 𝜎 + 𝜎 − 𝜎 𝜎 + 3𝜏  (2.35) 

The corresponding strain intensity, as a function of the biaxial strains, is given by: 

𝜀 =
1

1 − 𝜈
(1 − 𝜈 + 𝜈 ) 𝜀 + 𝜀 − (1 − 4𝜈 + 𝜈 )𝜀 𝜀 +

3

4
(1 − 𝜈) 𝛾  (2.36) 
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According to Eq. (2.36), developed by Lunchick [2.15], the strain intensity is a continuous function 

of the biaxial strains and of the Poisson’s ratio which varies from the elastic value 𝜈 = 0.30 to the 

plastic value 𝜈 = 0.50.  

 
Figure 2.18. A generic universal stress-strain curve. 

According to the deformation theory, the stress-strain relations with general non-linear material 

properties are given by: 

𝜎 =
𝐸

1 − 𝜈
𝜀 + 𝜈𝜀  

𝜎 =
𝐸

1 − 𝜈
𝜀 + 𝜈𝜀  

𝜏 =
𝐸

2(1 + 𝜈)
𝛾  

(2.37) 

According to Figure 2.18, 𝐸  is the secant modulus. A fundamental assumption of the 𝐽  Theory is 

that the universal stress-strain curve 𝜎 − 𝜀  is perfectly identical to the uniaxial stress-strain curve 

𝜎 − 𝜀 and, consequently, the secant modulus 𝐸  is simply the ratio between 𝜎 and 𝜀 and it coincides 

with the secant modulus of the multiaxial stress state: 

𝐸 =
𝜎

𝜀
=

𝜎

𝜀
 (2.38) 
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This important identity allows to determine the main properties of an isotropic material under 

multiaxial stress state through the uniaxial stress-strain curve. For linear elastic materials, this relation 

is trivial because the material properties are independent of the stress level, conversely it is 

fundamental when the behaviour of material is non-linear, because the material properties are non-

linear function of the acting stress state. Moreover, 𝜈  is the Poisson’s ratio which, according to 

Gerard and Wildhorn [2.16], given by: 

𝜈 = 𝜈 − 𝜈 − 𝜈
𝐸

𝐸
=

1

2
−

1

2
− 𝜈

𝐸

𝐸
 (2.39) 

Therefore, in this paper, a smooth transition is obtained between the elastic compressible state and 

the plastic incompressible state. Conversely, the classical Stowell’s [2.17] and Ilyushin’s [2.18] 

assumption is 𝜈 = 𝜈 = 𝜈 = 0.50, i.e. a plastically incompressible state. From Eq.(2.37), it is well 

known that the strain-stress relations are given by: 

𝜀 =
𝜎 − 𝜈𝜎

𝐸
 

𝜀 =
𝜎 − 𝜈𝜎

𝐸
 

𝛾 =
2(1 + 𝜈)

𝐸
𝜏  

(2.40) 

 

2.3.3. Variation of Stresses during Buckling 

The assumption d, introduced in the section 2.2.1, is considered valid also in the elastic-plastic 

buckling criterion so that, according to Figure 2.1,  the segments which are orthogonal to the mid-

plane of the plate remain orthogonal also in the deformed configuration. Therefore, the variation of 

strains can be expressed by the following relationships: 

𝛿𝜀 = 𝛿𝜀 . − 𝑧𝛿𝜒  

𝛿𝜀 = 𝛿𝜀 . − 𝑧𝛿𝜒  

𝛿𝛾 = 2𝛿𝜀 . − 2𝑧𝛿𝜒  

𝜀 = 𝛾 /2  

(2.41) 

where 𝛿𝜀 . , 𝛿𝜀 .  and 2𝛿𝜀 .  are the strain variations at the mid-thickness line of the plate; 𝛿𝜒 , 

𝛿𝜒  and 2𝛿𝜒  are the variations of curvatures and twisting, respectively; 𝑧 is the distance of the 

generic fibre from the mid-thickness line of the plate. The stresses during buckling vary from their 



Stability of Plates 

65 

pre-buckling values. Considering the variability of 𝐸  and 𝜈 with the stress levels, the variation of the 

normal stress 𝛿𝜎  can be derived from the first of Eqns.(2.37) as follows: 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿(𝜀 ) + 𝜈𝛿 𝜀 +

𝛿(𝐸 )

1 − 𝜈
𝜀 + 𝜈𝜀 + 𝐸 𝜀 𝛿

1

1 − 𝜈
+ 𝐸 𝜀 𝛿

𝜈

1 − 𝜈
 (2.42) 

It is worthwhile noting that: 

𝛿(𝐸 ) = 𝛿
𝜎

𝜀
=

𝛿(𝜎 )𝜀 − 𝛿(𝜀 )𝜎

𝜀
=

𝛿(𝜎 )

𝜀
−

𝛿(𝜀 )𝜎

𝜀
=

𝛿(𝜀 )

𝜀
(𝐸 − 𝐸 ) (2.43) 

Where, according to Figure 2.18,  𝐸  is the tangent modulus. Eq.(2.43) can be rearranged as: 

𝛿(𝐸 ) = −
𝐸

𝜀
1 −

𝐸

𝐸
𝛿(𝜀 ) = −

𝐸

𝜎
1 −

𝐸

𝐸
𝛿(𝜀 ) (2.44) 

Besides: 

𝛿
1

1 − 𝜈
=

2𝜈

(1 − 𝜈 )
𝛿𝜈 (2.45) 

𝛿
𝜈

1 − 𝜈
=

𝛿𝜈(1 − 𝜈 ) + 2𝜈 𝛿𝜈

(1 − 𝜈 )
=

1 + 𝜈

(1 − 𝜈 )
𝛿𝜈 (2.46) 

𝛿𝜈 = 𝛿
1

2
−

𝐸

𝐸

1

2
− 𝜈 = −

1

2
− 𝜈

𝛿(𝐸 )

𝐸
=

1
2 − 𝜈𝑒

𝐸
1 −

𝐸

𝐸

𝐸

𝜎
𝛿𝜀  (2.47) 

By substituting the Eqns.(2.44)-(2.47) into Eq.(2.42), 𝛿𝜎  can be expressed as: 

𝛿𝜎 =
𝐸

1 − 𝜈

𝛿𝜀 + 𝜈𝛿𝜀 +
1

2𝐻𝜎
1 −

𝐸

𝐸

1 − 2𝜈

2(1 − 𝜈 )
𝜎 + 𝜈𝜎 − 𝜎

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾

 (2.48) 

where 𝐻 is equal to: 

𝐻 = 1 −
1 − 2𝜈

2(1 − 𝜈 )
1 −

𝐸

𝐸
2𝜈 +

1

2𝜎
2(𝜈 + 2)𝜎 𝜎 − (2𝜈 + 1) 𝜎 + 𝜎 − 6(1 + 𝜈)𝜏  (2.49) 

Similarly, by exchanging 𝑥 with 𝑦 and the other way around: 

𝛿𝜎 =
𝐸

1 − 𝜈

𝛿𝜀 + 𝜈𝛿𝜀 +
1

2𝐻𝜎
1 −

𝐸

𝐸

1 − 2𝜈

2(1 − 𝜈 )
𝜎 + 𝜈𝜎 − 𝜎

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾

 (2.50) 

Starting from Eqns.(2.37) (third):  

𝛿𝜏 =
𝐸

2(1 + 𝜈)
𝛿𝛾 + 𝛾

𝛿(𝐸 )

2(1 + 𝜈)
+

𝐸

2

𝛿𝜈

(1 + 𝜈)
 (2.51) 

After a few algebraic passages, the variation of the shear stress is given by: 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )

(1 − 𝜈)𝛿𝛾 −
3

2𝐻𝜎
1 −

𝐸

𝐸

𝜏

1 + 𝜈

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾

 (2.52) 
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Moreover, by combining the variations of strains, provided in Eq.(2.41), with Eqns. 

(2.48),(2.50),(2.51) and (2.52) , the final expressions of variations of stresses are obtained: 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿𝜀 . + 𝜈𝛿𝜀 . − 𝑧 𝛿𝜒 + 𝜈𝛿𝜒 − Ψ𝜎 𝑆 (Κ − 𝑧Κ )  (2.53) 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿𝜀 . + 𝜈𝛿𝜀 . − 𝑧 𝛿𝜒 + 𝜈𝛿𝜒 − Ψ𝜎 𝑆 (Κ − 𝑧Κ )  (2.54) 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )
2(1 − 𝜈)(𝛿𝜀 . − 𝑧𝛿𝜒 ) − Ψ𝜏 𝑆 (Κ − 𝑧Κ )  (2.55) 

where the coefficients Ψ, 𝑆 , 𝑆 , 𝑆 , Κ  and Κ  are expressed as: 

Ψ =
1

2𝐻𝜎
1 −

𝐸

𝐸
 

𝑆 = 1 −
1 − 2𝜈

2(1 − 𝜈 )

𝜎 + 𝜈𝜎

𝜎
 

𝑆 = 1 −
1 − 2𝜈

2(1 − 𝜈 )

𝜎 + 𝜈𝜎

𝜎
 

𝑆 =
3

(1 + 𝜈)
 

Κ = 𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜏 𝛿𝜀 .  

Κ = 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜏 𝛿𝜒  

(2.56) 

while 𝑘 , 𝑘  and 𝑘  are equal to: 

𝑘 = (2 − 𝜈) − (1 − 2𝜈)
𝜎

𝜎
 

𝑘 = (2 − 𝜈) − (1 − 2𝜈)
𝜎

𝜎
 

𝑘 = 6(1 − 𝜈) 

(2.57) 

The intermediate steps to determine the final expressions of Eqns.(2.53),(2.54) and (2.55) are 

provided in the Appendix A. 

2.3.4. Variation of Internal Actions in Thin Plates 

The variations of the bending moments and the twisting moment due to buckling are given by: 

𝛿𝑀 = 𝛿𝜎 ∙ 𝑧𝑑𝑧
/

/

 𝛿𝑀 = 𝛿𝜎 ∙ 𝑧𝑑𝑧
/

/

 𝛿𝑀 = 𝛿𝜏 ∙ 𝑧𝑑𝑧
/

/

 (2.58) 



Stability of Plates 

67 

By substituting Eq. (2.53) into Eq.(2.58) (first), the variation 𝛿𝑀  is equal to: 

𝛿𝑀 = −
𝐸 𝑡

12(1 − 𝜈 )
𝛿𝜒 + 𝜈𝛿𝜒 − Ψ𝜎 𝑆 Κ  (2.59) 

By explaining the quantity Κ , through the relation provided in (2.56), it results: 

𝛿𝑀 = −
𝐸 𝑡

12(1 − 𝜈 )
𝛿𝜒 + 𝜈𝛿𝜒 − Ψ𝜎 𝑆 (𝑘 𝜎 𝛿𝜒 + 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜏 𝛿𝜒 )  

𝛿𝑀 = −
𝐸 𝑡

12(1 − 𝜈 )
𝛿𝜒 (1 − Ψσ 𝑘 𝑆𝑥) + 𝛿𝜒 𝜈 − Ψσ 𝜎 𝑘 𝑆𝑥 − 𝛿𝜒 Ψ𝜎 𝜏 𝑘 𝑆𝑥  

(2.60) 

Finally, the previous relationship can be rearranged as: 

𝛿𝑀 = −𝐷 𝐴 𝛿𝜒 + 𝐴 𝛿𝜒 + 𝐴 𝛿𝜒  (2.61) 

where 𝐷  represents the flexural rigidity in the elastic-plastic region and it is equal to: 

𝐷 =
𝐸 𝑡

12(1 − 𝜈 )
 (2.62) 

while the coefficients 𝐴  are equal to: 

𝐴 = 1 − Ψσ 𝑘 𝑆 = 1 −
𝜎

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

𝐴 = 𝜈 − Ψσ 𝜎 𝑘 𝑆 = 𝜈 −
𝜎 𝜎

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

𝐴 = −Ψσ 𝜏 𝑘 𝑆 = −
𝜎 𝜏

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

(2.63) 

Similarly, the variation 𝛿𝑀  can be defined as: 

𝛿𝑀 = −𝐷 𝐴 𝛿𝜒 + 𝐴 𝛿𝜒 + 𝐴 𝛿𝜒  (2.64) 

where the coefficients 𝐴  are equal to: 

𝐴 = 𝜈 − Ψσ 𝜎 𝑘 𝑆 = 𝜈 −
𝜎 𝜎

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

𝐴 = 1 − Ψσ 𝑘 𝑆 = 1 −
𝜎

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

𝐴 = −Ψσ 𝜏 𝑘 𝑆 = −
𝜎 𝜏

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

(2.65) 

Finally, by substituting Eq. (2.55) into Eq. (2.58) (third), the variation 𝛿𝑀  is provided: 

𝛿𝑀 = −
𝐸 𝑡

24(1 − 𝜈 )
2(1 − 𝜈)𝛿𝜒 − Ψ𝑆∗𝜏 Κ  (2.66) 
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By explaining the quantity Κ , it results: 

𝛿𝑀 = −
𝐷

2
2(1 − 𝜈)𝛿𝜒 − Ψ𝑆 𝜏 (𝑘 𝜎 𝛿𝜒 + 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜏 𝛿𝜒 )  

𝛿𝑀 = −
𝐷

2
−Ψ𝑆 𝜏 𝜎 𝑘 𝛿𝜒 − Ψ𝑆 𝜏 𝜎 𝑘 𝛿𝜒 + 2(1 − 𝜈) − Ψ𝑆 𝜏 𝑘 𝛿𝜒  

(2.67) 

Then, the previous equation can be expressed as: 

𝛿𝑀 = −
𝐷

2
𝐴 𝛿𝜒 + 𝐴 𝛿𝜒 + 𝐴 𝛿𝜒  (2.68) 

where the coefficients 𝐴  are equal to: 

𝐴 = −Ψσ 𝜏 𝑘 𝑆 = −
𝜎 𝜏

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

𝐴 = −Ψσ 𝜏 𝑘 𝑆 = −
𝜎 𝜏

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

𝐴 = 2(1 − 𝜈) − Ψ𝑆 𝜏 𝑘 = 2(1 − 𝜈) −
𝜏

2𝐻𝜎
1 −

𝐸

𝐸
𝑘 𝑆  

(2.69) 

2.3.5. Equilibrium Equation at the onset of Buckling 

If the plate is subjected to membrane forces only, in the pre-buckling stage, the bending deflection of 

the plate is equal to zero. Therefore, by denoting with 𝑤 = 𝑤(𝑥, 𝑦) the bending deflection of the plate 

at buckling, the changes in curvatures are given by: 

𝛿𝜒 =
𝜕 𝑤

𝜕𝑥
 𝛿𝜒 =

𝜕 𝑤

𝜕𝑦
 𝛿𝜒 =

𝜕 𝑤

𝜕𝑥𝜕𝑦
 (2.70) 

In the pre-buckling stage, the plate is in equilibrium under the membrane actions 𝑁 , 𝑁  and 𝑁 . At 

buckling, the variations of the bending moments and the twisting moments have to assure the 

equilibrium under the actions resulting from the second-order effects due to the changes in curvatures. 

Therefore, the differential equation of the plate under in-plane loading at buckling can be written as: 

𝜕 (𝛿𝑀 )

𝜕𝑥
+ 2

𝜕 (𝛿𝑀 )

𝜕𝑥𝜕𝑦
+

𝜕 (𝛿𝑀 )

𝜕𝑦
= 𝑁

𝜕 𝑤

𝜕𝑥
+ 2𝑁

𝜕 𝑤

𝜕𝑥𝜕𝑦
+ 𝑁

𝜕 𝑤

𝜕𝑦
 (2.71) 

By substituting Eqns.(2.61), (2.64) and (2.68) into Eq. (2.71) , the plate differential equation becomes: 

𝐶
𝜕 𝑤

𝜕𝑥
− 𝐶

𝜕 𝑤

𝜕𝑥 𝜕𝑦
+ 2𝐶

𝜕 𝑤

𝜕𝑥 𝜕𝑦
− 𝐶

𝜕 𝑤

𝜕𝑥𝜕𝑦
+ 𝐶

𝜕 𝑤

𝜕𝑦
= −

1

𝐷
𝑁

𝜕 𝑤

𝜕𝑥
+ 2𝑁

𝜕 𝑤

𝜕𝑥𝜕𝑦
+ 𝑁

𝜕 𝑤

𝜕𝑦
 (2.72) 

Where the coefficients 𝐶  are equal to: 

𝐶 = 𝐴  𝐶 = −(𝐴 + 𝐴 ) 2𝐶 = 𝐴 + 𝐴 + 𝐴  𝐶 = −(𝐴 + 𝐴 ) 𝐶 = 𝐴  (2.73) 
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Eq. (67) is an original contribution because, to the best of the author’s knowledge, provides the plate 

buckling differential equation accounting for the variability of the Poisson’s ratio in the elastic-plastic 

range, i.e. as dependent on the stress and strain intensity measure. 

Taking into account Eqns. (2.63), (2.65) and (2.69) , accounting for Eq. (2.57), after few passages the 

following relations are obtained: 

𝐶 = 1 −
1

4𝐻𝜎 (1 − 𝜈 )
1 −

𝐸

𝐸
(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎  

𝐶 =
3𝜏

𝐻𝜎 (1 + 𝜈)
1 −

𝐸

𝐸
(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎  

𝐶 = 1 −
1

4𝐻𝜎
1 −

𝐸

𝐸

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 + 18𝜏 (1 − 𝜈)

1 − 𝜈
 

𝐶 =
3𝜏

𝐻𝜎 (1 + 𝜈)
1 −

𝐸

𝐸
(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎  

𝐶 = 1 −
1

4𝐻𝜎 (1 − 𝜈 )
1 −

𝐸

𝐸
(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎  

(2.74) 

Aiming to the analysis of aluminium alloy members subjected to local buckling under uniform 

compression, in the following reference is made to the case of plate uniaxial compression as depicted 

in Figure 2.2: 

𝜎 = 𝜎  

𝜎 = 𝜏 = 0 
(2.75) 

Under uniaxial compression, by substituting Eq. (2.75) into Eq. (2.74) the coefficients 𝐶  are 

simplified as follows: 

𝐶 = 1 −
(2 − 𝜈)

4𝐻(1 − 𝜈 )
1 −

𝐸

𝐸
 

𝐶 = 0 

𝐶 = 1 +
(2 − 𝜈)(1 − 2𝜈)

4𝐻(1 − 𝜈 )
1 −

𝐸

𝐸
 

𝐶 = 0 

𝐶 = 1 −
(1 − 2𝜈)

4𝐻(1 − 𝜈 )
1 −

𝐸

𝐸
 

(2.76) 

Besides, Eq. (2.49) provides: 

𝐻 = 1 +
(1 − 2𝜈)

4(1 − 𝜈 )
1 −

𝐸

𝐸
 (2.77) 
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So, the differential equation of a single plate under uniform compression in the elastic-plastic range 

is equal to: 

𝐶
𝜕 𝑤

𝜕𝑥
+ 2𝐶

𝜕 𝑤

𝜕𝑥 𝜕𝑦
+ 𝐶

𝜕 𝑤

𝜕𝑦
= −

𝑁

𝐷

𝜕 𝑤

𝜕𝑥
 (2.78) 

In Table 2.1, a comparison of the final expressions of coefficients  𝐶  is reported in the different 

theories of the plate stability. Starting from the relationships in the elastic-plastic range, it is easy to 

observe that, by imposing 𝜈 = 𝜈 = 0.30  and 𝐸 = 𝐸 = 𝐸 , the buckling differential equation 

represents the elastic buckling criterion proposed by De Saint Venant [2.1]; while fixed 𝜈 = 𝜈 =

0.50, the Eq. (2.78) returns the well-known plastic buckling equation provided by Yliushin and 

Stowell in [2.17], [2.18]. 

Table 2.1.Comparison of expressions of coefficients 𝐶  in the elastic, plastic and elastoplastic regions. 

ELASTIC REGION 

(De Saint Venant) 

𝜈 = 0.30 − 𝐸 = 𝐸 = 𝐸 

ELASTIC-PLASTIC REGION 

 

𝜈 = 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 

PLASTIC REGION 

(Yliushin-Stowell) 

𝜈 = 0.50 

𝐶 = 1 𝐶 = 1 −
(2 − 𝜈)

4𝐻(1 − 𝜈 )
1 −

𝐸

𝐸
 𝐶 =

1

4
+

3

4

𝐸

𝐸
 

𝐶 = 0 𝐶 = 0 𝐶 = 0 

𝐶 = 1 𝐶 = 1 +
(1 − 2𝜈)(2 − 𝜈)

4𝐻(1 − 𝜈 )
1 −

𝐸

𝐸
 𝐶 = 1 

𝐶 = 0 𝐶 = 0 𝐶 = 0 

𝐶 = 1 𝐶 = 1 −
(1 − 2𝜈)

4𝐻(1 − 𝜈 )
1 −

𝐸

𝐸
 𝐶 = 1 

𝐻 = 1 𝐻 = 1 +
(1 − 2𝜈)

4(1 − 𝜈 )
1 −

𝐸

𝐸
 𝐻 = 1 

The solution of the differential equation (2.78) can be found according to Levy’s form presented in 

Section 2.2.3. In particular, by substituting Eq.(2.12) into Eq. (2.78), it results: 

𝑑 𝑓

𝑑𝑦
−

2𝐶 𝜆

𝐶

𝑑 𝑓

𝑑𝑦
+

𝐶 𝜆

𝐶
−

𝑁𝜆

𝐷 𝐶
𝑓(𝑦) = 0 (2.79) 

where 𝜆 = 𝑚𝜋 𝑎⁄  and the trivial solution 𝑠𝑖𝑛𝜆𝑥 = 0  has been neglected. The solution of the 

differential equation (2.79) can be easily found through the same general solution, presented in the 

only elastic range, specifically in Eq. (2.16), where 𝑎  always represent the unknown constants of 

integration, while 𝛼 and 𝛽 are expressed as: 
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𝛼 =
𝐶 𝜆

𝐶
+

𝐶

𝐶
𝜆 − 𝜆 𝜆

𝐶

𝐶
−

𝑁

𝐷 𝐶
 

𝛽 = −
𝐶 𝜆

𝐶
+

𝐶

𝐶
𝜆 − 𝜆 𝜆

𝐶

𝐶
−

𝑁

𝐷 𝐶
 

(2.80) 

The integration constants have to be derived accounting for the boundary conditions. The writing of 

the boundary conditions can concern kinematic conditions (i.e. displacements and rotations) and static 

conditions (i.e. internal actions). Regarding the internal actions, the variation of the bending moments 

and the twisting moment are simplified as follows: 

𝛿𝑀 = −𝐷 𝐶
𝜕 𝑤

𝜕𝑥
+ (𝜈 + 𝐶 − 1)

𝜕 𝑤

𝜕𝑦
 

𝛿𝑀 = −𝐷 𝐶
𝜕 𝑤

𝜕𝑦
+ (𝜈 + 𝐶 − 1)

𝜕 𝑤

𝜕𝑥
 

𝛿𝑀 = −𝐷 (1 − 𝜈)
𝜕 𝑤

𝜕𝑥𝜕𝑦
 

(2.81) 

Therefore, the variations of the shear actions are given by: 

𝛿𝑉 =
𝜕(𝛿𝑀 )

𝜕𝑥
+

𝜕 𝛿𝑀

𝜕𝑦
= −𝐷 𝐶

𝜕 𝑤

𝜕𝑥
+ 𝐶

𝜕 𝑤

𝜕𝑥𝜕𝑦
 

𝛿𝑉 =
𝜕 𝛿𝑀

𝜕𝑦
+

𝜕 𝛿𝑀

𝜕𝑥
= −𝐷 𝐶

𝜕 𝑤

𝜕𝑦
+ 𝐶

𝜕 𝑤

𝜕𝑥 𝜕𝑦
 

(2.82) 

Finally, the edge equivalent shear actions are given by: 

𝛿𝑅∗ = 𝛿𝑉 +
𝜕 𝛿𝑀

𝜕𝑦
= −𝐷 𝐶

𝜕 𝑤

𝜕𝑥
+ (𝐶 + 1 − 𝜈)

𝜕 𝑤

𝜕𝑥𝜕𝑦
 

𝛿𝑅∗ = 𝛿𝑉 +
𝜕 𝛿𝑀

𝜕𝑥
= −𝐷 𝐶

𝜕 𝑤

𝜕𝑦
+ (𝐶 + 1 − 𝜈)

𝜕 𝑤

𝜕𝑥 𝜕𝑦
 

(2.83) 

2.3.6. Correction Factor of Plastic Buckling 

As described previously, following an eulerian approach, the solution of the elastic-plastic buckling 

equation can only be solved by means of an iterative procedure, taking into account that the 

mechanical properties (Poisson’s ratio, secant and tangent moduli) depend on the stress level. 
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Conversely, the energy method allows to obtain a solution in closed form but approximate. The 

accuracy of which depends upon how closely the assumed deflection surface describes the true 

deflection surface. However, by using this approach, it is possible to define a correction factor 𝜉 

which taking into account the mechanical nonlinearity and it depends on the boundary conditions 

along the unloaded sides. This factor can be obtained as: 

𝜉 =
𝜎 .

𝜎 .
 (2.84) 

where 𝜎 .  and 𝜎 .  represent, respectively, the elastic and the elastic-plastic critical stress of a 

single plate under compression. Obviously, if 𝜉 and 𝜎 .  are known, remembering Eq. (2.11), the 

elastic-plastic buckling stress can be expressed as: 

𝜎 . = 𝜉𝜎 . = 𝜉𝑘
𝜋 𝐸

12(1 − 𝜈 )(𝑏/𝑡)
 (2.85) 

Starting from the results provided by Stowell in [2.17], the formulation of 𝜉 is provided in the elastic-

plastic region and for different boundary conditions. In particular, two cases are considered: the plate 

supported along three sides while the last edge is free, and the rectangular plate supported along 

edges. In addition, the formulations are derived under the assumption that the unloaded sides are 

elastically restrained. The restraint coefficient 𝜖 depends upon the relative stiffness of the plate and 

the restraining element along the side edge of the plate. The simplest relation of 𝜖 is obtained when 

the restraining element, or stiffness, is assumed to be replaced by an elastic medium in which rotation 

at one point does not influence rotation at another point [2.19], [2.20]. For this type of restraining 

medium along the edge of the plate, 𝜖 can be expressed as: 

𝜖 =
4𝑆 𝑏

𝐷
 (2.86) 

where 𝑆  is the stiffness per unit length of elastic restraining medium or moment required to rotate a 

unit length of elastic medium through one-fourth radian; 𝐷  represents the elastic flexural rigidity of 

the plate provided in Eq. (2.2) while 𝑏 is the width of the plate. So, according to energy method, the 

critical stress in the elastic region, in the case of uniform compression, can be expressed as: 

𝜎 . =
𝐷

𝑡

∬
𝜕 𝑤
𝜕𝑥

+
𝜕 𝑤
𝜕𝑥𝜕𝑦

+
𝜕 𝑤
𝜕𝑥

𝜕 𝑤
𝜕𝑦

+
𝜕 𝑤
𝜕𝑦

𝑑𝑥𝑑𝑦 +
𝜖
𝑏 ∫

𝜕𝑤
𝜕𝑦

𝑑𝑥

∬
𝜕𝑤
𝜕𝑥

𝑑𝑥𝑑𝑦

 (2.87) 

The quantity ∫ 𝑑𝑥 represents the strain energy due to the elastically restraining side, 

while 𝑦  is the edge coordinate. By replacing 𝐷  with flexural rigidity in elastoplastic region 𝐷  and 
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taking into account the coefficients 𝐶  provided in the previous section, the elastoplastic critical stress 

can be expressed by the following energy integrals: 

𝜎 . =
𝐷

𝑡

∬ 𝐶
𝜕 𝑤
𝜕𝑥

+ 𝐶
𝜕 𝑤
𝜕𝑥𝜕𝑦

+ 𝐶
𝜕 𝑤
𝜕𝑥

𝜕 𝑤
𝜕𝑦

+ 𝐶
𝜕 𝑤
𝜕𝑦

𝑑𝑥𝑑𝑦 +
𝜖
𝑏 ∫

𝜕𝑤
𝜕𝑦

𝑑𝑥

∬
𝜕𝑤
𝜕𝑥

𝑑𝑥𝑑𝑦

 (2.88) 

Assuming a specific deflection 𝑤(𝑥, 𝑦), the coefficient 𝜉 can be defined by means of Eqns. (2.86), 

(2.87) and (2.88).  

Case I: the edge 𝑦 = 0 is elastically restrained - the edge 𝑦 = 𝑏 is free 

 

Figure 2.19. Scheme of a plate with one free edge and the other elastically restrained  
under uniform compression. 

According to Figure 2.19, if 𝑦 = 0 is the elastically restrained edge and 𝑦 = 𝑏 is the free edge, a 

deflection surface, satisfying these conditions with a good accuracy, is provided by Lundquist and 

Stowell in [2.19]: 

𝑤(𝑥, 𝑦) =
𝑦

𝑏
+

𝜖

2𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
+ +𝛼

𝑦

𝑏
𝑐𝑜𝑠𝜆𝑥 (2.89) 

where 𝜆 = 𝑚𝜋/𝑎 while 𝛼  represent the fitting coefficients and they are equal to: 

𝛼 = −4.963 𝛼 = 9.852 𝛼 = −9.778 (2.90) 

By substituting Eq. (2.89) into Eq. (2.88), and taking into account that 𝑦 = 0,  the elastoplastic 

critical stress can be expressed as: 

𝜎 . =
𝐷

𝑡

𝜆 𝐶
1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

+
𝐶
𝑏

1
2

+ (𝜅 − 𝜅 )
𝜖
2

+ (𝜅 − 𝜅 )
𝜖
2

+
1

2𝜆 𝑏
(𝐶 𝜅 𝜖 + 𝜖)

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

 (2.91) 
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where the coefficients 𝜅  are equal to: 

𝜅 = 0.11847 𝜅 = 0.04391 𝜅 = 0.14178 

(2.92) 𝜅 = 0.010715 𝜅 = 0.04924 𝜅 = 0.11847 

𝜅 = 0.3977 𝜅 = 0.005429 𝜅 = 0.01072 

The intermediate steps to define Eq. (2.91) are reported in Appendix B. In order to find the minimum 

value of 𝜎 . , it is necessary to impose the variation of stress with respect to that of  𝜆  equal to zero: 

𝜕𝜎 .

𝜕𝜆
= 0 (2.93) 

which gives: 

𝜆 =
1

𝑏

1
2𝑏

(𝐶 𝜅 𝜖 + 𝜖)

𝐶
1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

 (2.94) 

By substituting Eq. (2.94) into Eq. (2.91), it results: 

𝜎 . =
𝐷

𝑡𝑏

⎣
⎢
⎢
⎡2

𝐶
2

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

(𝐶 𝜅 𝜖 + 𝜖) + 𝐶
1
2

+ (𝜅 − 𝜅 )
𝜖
2

+ (𝜅 − 𝜅 )
𝜖
2

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2 ⎦

⎥
⎥
⎤

 (2.95) 

For the elastic case, the same expression is obtained with 𝐶 = 𝐶 = 𝐶 = 1 and 𝐷  replaced by 𝐷 : 

𝜎 . =
𝐷

𝑡𝑏

⎣
⎢
⎢
⎡2

1
2

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

(𝜅 𝜖 + 𝜖) +
1
2

+ (𝜅 − 𝜅 )
𝜖
2

+ (𝜅 − 𝜅 )
𝜖
2

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2 ⎦

⎥
⎥
⎤

 (2.96) 

By substituting Eqns. (2.95) and (2.96) into Eq. (2.84), the final expression of 𝜉 is given by: 

𝜉 =
𝐷

𝐷

⎣
⎢
⎢
⎡2

𝐶
2

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

(𝐶 𝜅 𝜖 + 𝜖) + 𝐶
1
2

+ (𝜅 − 𝜅 )
𝜖
2

+ (𝜅 − 𝜅 )
𝜖
2

2
1
2

1
6

+ 𝜅
𝜖
2

+ 𝜅
𝜖
2

(𝜅 𝜖 + 𝜖) +
1
2

+ (𝜅 − 𝜅 )
𝜖
2

+ (𝜅 − 𝜅 )
𝜖
2 ⎦

⎥
⎥
⎤

 (2.97) 
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According to level of elastic constraint, expressed by 𝜖, it is possible to identify two limit schemes: 

a. 𝝐 = 𝟎 ⇒ 𝒚 = 𝟎 𝒊𝒔 𝒉𝒊𝒏𝒈𝒆𝒅 

From the condition a. and remembering the expression of the flexural rigidities and the values of 

coefficients 𝜅 , the Eq. (2.97) becomes: 

𝜉 = 𝐶
1 − 𝜈

1 − 𝜈

𝐸

𝐸
 (2.98) 

b. 𝝐 → ∞ ⇒ 𝒚 = 𝟎 𝒊𝒔 𝒄𝒍𝒂𝒎𝒑𝒆𝒅 

From the condition b. and remembering the expression of the flexural rigidities and the values of 

coefficients 𝜅 , the Eq. (2.97) becomes: 

𝜉 = 0.33𝐶 + 0.67 𝐶 𝐶
1 − 𝜈

1 − 𝜈

𝐸

𝐸
 (2.99) 

The expressions of 𝜉 are functions of the variability of Poisson’s ratio and the secant and tangent 

moduli through the elastoplastic coefficients 𝐶 .  

Moreover, it is easy to observe that these relationships return the final expressions provided by 

Stowell in [2.17] under the assumption of only plastic case. In fact, by fixing the Poisson’s ratio equal 

to  0.50 and remembering the values of plastic coefficients 𝐶  reported in Table 2.1, it results: 

𝜉 =
𝐸

𝐸
 𝑖𝑓 𝑦 = 0 𝑖𝑠 ℎ𝑖𝑛𝑔𝑒𝑑 

𝜉 = 0.33 + 0.67
1

4
+

3

4

𝐸

𝐸

𝐸

𝐸
 𝑖𝑓 𝑦 = 0 𝑖𝑠 𝑐𝑙𝑎𝑚𝑝𝑒𝑑 

(2.100) 

Figure 2.20 shows a comparison between Eq.(2.98) and (2.99). In particular, according to the nominal 

mechanical properties of EN-AW 6082 aluminium alloy [ 𝑓 . = 260  MPa; 𝑛 = 25 ], the trend 

between the stress values and the values obtained by the previous formulations are reported. It is 

possible to observe that, for a fixed value of stress, the coefficient referring to a plate with the hinged 

edge is greater than the coefficient referring to a plate with clamped edge. All others intermediate 

conditions are included between the previous boundary schemes and they are expressed by the general 

relationship, Eq. (2.97), depending on the level of elastic constraint 𝜖.  
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Figure 2.20. Elastoplastic coefficient-stress curves referring to a single plate  
with one free edge and the other restrained. 

Case II: Plate elastically restrained along two unloaded sides (𝑦 = ±𝑏/2) 

 

Figure 2.21. Scheme of a plate with unloaded edges elastically restrained under uniform compression. 

According to Figure 2.21, if 𝑦 = ±𝑏/2 are the elastically restrained, a deflection surface, satisfying 

these conditions with a good accuracy, is provided by Lundquist and Stowell in [2.20]: 

𝑤(𝑥, 𝑦) = 𝑒
𝑦

𝑏
+ 𝑒 𝑐𝑜𝑠𝐵𝑦 −

𝑒

4
𝑐𝑜𝑠𝜆𝑥 (2.101) 

where: 

𝑒 =
𝜋𝜖

2
 𝑒 = 1 +

𝜖

2
 𝐵 =

𝜋

𝑏
 (2.102) 
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By substituting Eq. (2.101) into Eq. (2.88), and taking into account that 𝑦 = −𝑏/2,  the elastoplastic 

critical stress can be expressed as: 

𝜎 . =
𝐷

𝑡

𝑎𝜆 𝐶
2

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2
+ 𝑎𝜆 𝐶

𝑒
3𝑏

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏𝐵

2
+

𝑎𝐶
2

4𝑒
𝑏

−
8𝑒 𝑒

𝑏
+

𝑒 𝑏𝐵
2

+
𝑎𝜖
2𝑏

𝑒
𝑏

−
2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵

𝑎𝜆
2

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2

 (2.103) 

The intermediate steps to define Eq. (2.103) are reported in Appendix C. In order to find the minimum 

value of 𝜎 . , it is necessary to impose the variation of stress with respect to that of  𝜆  equal to zero 

from which 𝜆  can be expressed as: 

𝜆 =

𝑎𝐶
2

4𝑒
𝑏

−
8𝑒 𝑒

𝑏
+

𝑒 𝑏𝐵
2

+
𝜖

2𝑏
𝑒
𝑏

−
2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵

𝐶
2

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2

 (2.104) 

By substituting Eq. (2.104)into Eq. (2.103), it results: 

𝜎 . =
𝐷

𝑡

⎩
⎪
⎨

⎪
⎧

2
𝐶 𝐶

4𝑒
𝑏

−
8𝑒 𝑒

𝑏
+

𝑒 𝑏𝐵
2

+
𝜖
𝑏

𝑒
𝑏

−
2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2

+ 2𝐶

𝑒
3𝑏

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏𝐵

2

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2
⎭
⎪
⎬

⎪
⎫

 (2.105) 

For the elastic case, the same expression is obtained with 𝐶 = 𝐶 = 𝐶 = 1 and 𝐷  replaced by 𝐷 : 

𝜎 . =
𝐷

𝑡

⎩
⎪
⎨

⎪
⎧

2

4𝑒
𝑏

−
8𝑒 𝑒

𝑏
+

𝑒 𝑏𝐵
2

+
𝜖
𝑏

𝑒
𝑏

−
2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2

+ 2

𝑒
3𝑏

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏𝐵

2

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2
⎭
⎪
⎬

⎪
⎫

 (2.106) 

By substituting Eqns. (2.105)and (2.106) into Eq. (2.84), the final expression of 𝜉 is given by: 

𝜉 =
𝐷

𝐷
⎩
⎪
⎨

⎪
⎧

2
𝐶 𝐶

4𝑒
𝑏

−
8𝑒 𝑒

𝑏
+

𝑒 𝑏𝐵
2

+
𝜖
𝑏

𝑒
𝑏

−
2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2

+ 2𝐶

𝑒
3𝑏

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏𝐵

2
𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2
⎭
⎪
⎬

⎪
⎫

⎩
⎪
⎨

⎪
⎧

2

4𝑒
𝑏

−
8𝑒 𝑒

𝑏
+

𝑒 𝑏𝐵
2

+
𝜖
𝑏

𝑒
𝑏

−
2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵

𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2

+ 2

𝑒
3𝑏

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏𝐵

2
𝑒 𝑏
30

−
8𝑒 𝑒
𝑏 𝐵

+
𝑒 𝑏

2
⎭
⎪
⎬

⎪
⎫

 (2.107) 
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According to level of elastic constraint, expressed by 𝜖, it is possible to identify two limit schemes: 

a. 𝝐 = 𝟎 ⇒ 𝒚 = ±𝒃/𝟐 𝒂𝒓𝒆 𝒔𝒊𝒎𝒑𝒍𝒚 𝒔𝒖𝒑𝒑𝒐𝒓𝒕𝒆𝒅 

From the condition a. and remembering the expression of the flexural rigidities and the values of 

coefficients 𝑒  and 𝐵, the Eq. (2.107) becomes: 

𝜉 =
𝐶 + 𝐶 𝐶

2

1 − 𝜈

1 − 𝜈

𝐸

𝐸
 (2.108) 

b. 𝝐 → ∞ ⇒ 𝒚 = 𝒃/𝟐 𝒂𝒓𝒆 𝒄𝒍𝒂𝒎𝒑𝒆𝒅 

From the condition b. and remembering the expression of the flexural rigidities and the values of 

coefficients 𝑒  and 𝐵, the Eq. (2.107) becomes: 

𝜉 = 0.34𝐶 + 0.66 𝐶 𝐶
1 − 𝜈

1 − 𝜈

𝐸

𝐸
 (2.109) 

Also in this case, Moreover, it is easy to observe that these relationships return the final expressions 

provided by Stowell in [2.17] under the assumption of only plastic case. In fact, by fixing the Poisson’s 

ratio equal to  0.50 and remembering the values of plastic coefficients 𝐶  reported in Table 2.1, it 

results: 

𝜉 =
1

2
+

1

2

1

4
+

3

4

𝐸

𝐸

𝐸

𝐸
 𝑖𝑓 𝑦 = ±

𝑏

2
𝑎𝑟𝑒 𝑠𝑖𝑚𝑝𝑙𝑦 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 

𝜉 = 0.34 + 0.66
1

4
+

3

4

𝐸

𝐸

𝐸

𝐸
 𝑖𝑓 𝑦 = ±

𝑏

2
𝑎𝑟𝑒 𝑐𝑙𝑎𝑚𝑝𝑒𝑑 

(2.110) 

All previous considerations will be resumed in Chapter 6, where an extension of the effective 

thickness method is provided for aluminium members under uniform and non-uniform compression 

in the elastic-plastic range. In particular, by combining Eqns. (2.108) and (2.109) a new formulation 

will be adopted for deriving a simplified method to evaluate the ultimate behaviour of a generic 

aluminium members in compression and in bending, taking into account the plastic local buckling 

and the interaction between the plate elements constituting the cross-section. In particular, the 

Formulation 1, defined as the average of two previous relationships, is equal to: 

𝜉 = 0.42𝐶 + 0.58 𝐶 𝐶
1 − 𝜈

1 − 𝜈

𝐸

𝐸
 (2.111) 

The trends of previous formulations, Eqns. (2.108), (2.109) and (2.111), depending on the stress level, 

are depicted in Figure 2.22. The considerations made to the previous condition are also valid in this 

case. However, in the last one, there is not much difference between the hinged edges and the clamped 

edges.  
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Figure 2.22. Elastoplastic coefficient-stress curves referring to a single plate unloaded restrained edges. 
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Appendix A  

Intermediate Steps for Determining the Final Expressions of 𝜹𝝈𝒙,𝜹𝝈𝒚 and 𝜹𝝉𝒙𝒚 

By substituting Eqns. (2.44)-(2.47) into Eq.(2.42), the following relation for 𝛿𝜎  is obtained: 

𝛿𝜎 =
𝐸

1 − 𝜈
  𝛿𝜀 + 𝜈𝛿𝜀 −

𝐸

𝜎
1 −

𝐸

𝐸
𝜀 + 𝜈𝜀 −

1
2 − 𝜈

𝐸

2𝜈𝐸 𝜀 + (1 + 𝜈 )𝐸 𝜀

1 − 𝜈
𝛿𝜀  (A.1) 

To apply Eq. (A.1), the variation of the strain intensity has to be expressed as a function of the stress 

levels and the variation of the strains. To this scope, it is convenient to rearrange Eq.(2.36) as follows: 

𝜀 =
1

1 − 𝜈
√Φ (A.2) 

where: 

Φ = (1 − 𝜈 + 𝜈 ) 𝜀 + 𝜀 − (1 − 4𝜈 + 𝜈 )𝜀 𝜀 +
3

4
(1 − 𝜈) 𝛾  (A.3) 

so that: 

𝛿𝜀 = 𝛿
1

1 − 𝜈2
Φ +

1

1 − 𝜈2

𝛿Φ

2√Φ
 (A.4) 

From Eq. (A.3): 

𝛿Φ = 𝜓1𝛿𝜈 + 𝜓2 (A.5) 

where: 

𝜓 = 2(2 − 𝜈)𝜀 𝜀 − (1 − 2𝜈) 𝜀 + 𝜀 −
3

2
(1 − 𝜈)𝛾  (A.6) 

and: 

𝜓 = 2(1 − 𝜈 + 𝜈 ) 𝜀 𝛿𝜀 + 𝜀 𝛿𝜀 − (1 − 4𝜈 + 𝜈 ) 𝜀 𝛿𝜀 + 𝜀 𝛿𝜀 +
3

2
(1 − 𝜈) 𝛾 𝛿𝛾  (A.7) 

By combining Eq. (2.45) and (A.5) with Eq. (A.6), the variation of the strain intensity can be 

expressed as: 

𝛿𝜀 =
2𝜈√Φ

(1 − 𝜈 )
+

𝜓

2(1 − 𝜈 )√Φ
𝛿𝜈 +

𝜓

2(1 − 𝜈 )√Φ
 (A.8) 

Combining Eq. (2.47) and Eq. (A.4), the following relation is obtained: 

𝛿𝜀 1 −
1

2 − 𝜈

𝐸
1 −

𝐸

𝐸

𝐸

𝜎

2𝜈√Φ

(1 − 𝜈 )
+

𝜓

2(1 − 𝜈 )√Φ
=

𝜓

2(1 − 𝜈 )√Φ
 (A.9) 
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From Eq. (A.2), √Φ = 𝜀 (1 − 𝜈 ), so that, taking into account that 𝐸 = 𝜎 𝜀⁄ ,  Eq. (A.9) can be 

rewritten as: 

𝛿𝜀 1 −
1

2 − 𝜈

1 − 𝜈

𝐸

𝐸
1 −

𝐸

𝐸
2𝜈 +

𝜓 𝐸

2(1 − 𝜈 )𝜎
=

𝜓

2(1 − 𝜈 ) 𝜀
 (A.10) 

From Eq. (2.39): 

1

2
− 𝜈

𝐸

𝐸
=

1

2
− 𝜈 =

1 − 2𝜈

2
 (A.11) 

Therefore, Eq. (A.10) becomes: 

𝛿𝜀 1 −
1 − 2𝜈

2(1 − 𝜈 )
1 −

𝐸

𝐸
2𝜈 +

𝜓 𝐸

2(1 − 𝜈 )𝜎
=

𝜓

2(1 − 𝜈 ) 𝜀
 (A.12) 

By denoting with: 

𝐻 = 1 −
1 − 2𝜈

2(1 − 𝜈 )
1 −

𝐸

𝐸
2𝜈 +

𝜓 𝐸

2(1 − 𝜈 )𝜎
 (A.13) 

The variation of the strain intensity can be written as: 

𝛿𝜀 =
𝜓

2𝐻(1 − 𝜈 ) 𝜀
 (A.14) 

By combining Eqns. (2.40) and (A.6), the parameter 𝜓  can be expressed as a function of stress levels. 

After some few passages, the following relation is obtained: 

𝜓 =
1 − 𝜈

𝐸
2(𝜈 + 2)𝜎 𝜎 −(2𝜈 + 1) 𝜎 + 𝜎 − 6(1 + 𝜈)𝜏  (A.15) 

By substituting Eq. (A.15) into Eq. (A.13), the parameter 𝐻 is expressed as: 

𝐻 = 1 −
1 − 2𝜈

2(1 − 𝜈 )
1 −

𝐸

𝐸
2𝜈 +

1

2𝜎
2(𝜈 + 2)𝜎 𝜎 − (2𝜈 + 1) 𝜎 + 𝜎 − 6(1 + 𝜈)𝜏  (A.16) 

Besides, by combining Eq. (A.14) with Eq. (A.7), the strain intensity is given by: 

𝛿𝜀 =
1

2𝐻𝜀 (1 − 𝜈 )
2(1 − 𝜈 + 𝜈 ) 𝜀 𝛿𝜀 + 𝜀 𝛿𝜀 − (1 − 4𝜈 + 𝜈 ) 𝜀 𝛿𝜀 + 𝜀 𝛿𝜀 +

3

2
(1 − 𝜈) 𝛾 𝛿𝛾  (A.17) 

Taking into account Eq. (A.11), the stress variation 𝛿𝜎 , Eq. (A.1), can be written as: 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿𝜀 + 𝜈𝛿𝜀 −

𝐸

𝜎
1 −

𝐸

𝐸
𝜀 + 𝜈𝜀 −

1 − 2𝜈

2(1 − 𝜈 )
2𝜈𝜀 + (1 + 𝜈 )𝜀 𝛿𝜀  (A.18) 

By substituting Eqns. (2.40) into Eq. (A.17)(A.17) and taking into account that 𝐸 = 𝜎 𝜀⁄ , after few 

algebraic passages, the final expression for the strain intensity as a function of the stress levels and 

strain variations is obtained: 

𝛿𝜀 =
1

2𝐻𝜎 (1 − 𝜈 )
(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾  (A.19) 
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The stress variation 𝛿𝜎 , Eq. (A.18), taking into account Eq. (2.37) (first) and Eqns. (2.40), after a 

few algebraic passages, is given by: 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿𝜀 + 𝜈𝛿𝜀 −

𝐸

𝜎
1 −

𝐸

𝐸
𝜎 −

1 − 2𝜈

2(1 − 𝜈 )
(𝜎 + 𝜈𝜎 ) 𝛿𝜀  (A.20) 

Finally, by substituting Eq. (A.19) into Eq. (A.20), the stress variation is expressed as a function of 

the stress levels and strain variations: 

𝛿𝜎 =
𝐸

1 − 𝜈

𝛿𝜀 + 𝜈𝛿𝜀 +
1

2𝐻𝜎
1 −

𝐸

𝐸

1 − 2𝜈

2(1 − 𝜈 )
𝜎 + 𝜈𝜎 − 𝜎

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾

 (A.21) 

Similarly, by exchanging 𝑥 with 𝑦 and the other way around: 

𝛿𝜎 =
𝐸

1 − 𝜈

𝛿𝜀 + 𝜈𝛿𝜀 +
1

2𝐻𝜎
1 −

𝐸

𝐸

1 − 2𝜈

2(1 − 𝜈 )
𝜎 + 𝜈𝜎 − 𝜎

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾

 (A.22) 

From Eqns. (2.37) (third): 

𝛿𝜏 =
𝐸

2(1 + 𝜈)
𝛿𝛾 + 𝛾

𝛿(𝐸 )

2(1 + 𝜈)
+

𝐸

2

𝛿𝜈

(1 + 𝜈)
 (A.23) 

Accounting for Eq. (2.44), (2.47) and (A.11), after a few algebraic passages, the variation of the shear 

stress is given by: 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )
(1 − 𝜈)𝛿𝛾 −

𝐸

2𝜎
1 −

𝐸

𝐸

3(1 − 𝜈 )

(1 + 𝜈)
𝛾 𝛿𝜀  (A.24) 

and accounting for Eqns. (2.40) (third): 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )
(1 − 𝜈)𝛿𝛾 −

1

2𝜎
1 −

𝐸

𝐸
6(1 − 𝜈)𝜏 𝛿𝜀  (A.25) 

By substituting Eq. (A.11) into Eq. (A.25), also the variation of the shear stress is expressed as a 

function of the stress levels and strain variations: 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )

(1 − 𝜈)𝛿𝛾 −
3

2𝐻𝜎
1 −

𝐸

𝐸

𝜏

1 + 𝜈
∙

(2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎 𝛿𝜀 + [3(1 − 𝜈)𝜏 ]𝛿𝛾

 (A.26) 

By denoting with: 

𝑘 = (2 − 𝜈) − (1 − 2𝜈)
𝜎

𝜎
=> 𝑘 𝜎 = (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎  

𝑘 = (2 − 𝜈) − (1 − 2𝜈)
𝜎

𝜎
=> 𝑘 𝜎 = (2 − 𝜈)𝜎 − (1 − 2𝜈)𝜎  

𝑘 = 6(1 − 𝜈) 

(A.27) 
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The expressions of 𝛿𝜎 , 𝛿𝜎  and 𝛿𝜏  can be rearranged, by substituting Eqns. (2.41) and (A.27) into 

Eqns. (A.21), (A.22) and (A.26): 

𝛿𝜎 =
𝐸

1 − 𝜈

𝛿𝜀 . + 𝜈𝛿𝜀 . − 𝑧(𝛿𝜒 + 𝜈𝛿𝜒 ) +
1

2𝐻𝜎
1 −

𝐸

𝐸

1 − 2𝜈

2(1 − 𝜈 )
𝜎 + 𝜈𝜎 − 𝜎 ∙

𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜏 𝛿𝜀 . − 𝑧(𝑘 𝜎 𝛿𝜒 + 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜏 𝛿𝜒 )

 (A.28) 

𝛿𝜎 =
𝐸

1 − 𝜈

𝛿𝜀 . + 𝜈𝛿𝜀 . − 𝑧(𝛿𝜒 + 𝜈𝛿𝜒 ) +
1

2𝐻𝜎
1 −

𝐸

𝐸

1 − 2𝜈

2(1 − 𝜈 )
𝜎 + 𝜈𝜎 − 𝜎 ∙

𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜏 𝛿𝜀 . − 𝑧(𝑘 𝜎 𝛿𝜒 + 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜏 𝛿𝜒 )

 (A.29) 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )

2(1 − 𝜈)(𝛿𝜀 . − 𝑧𝛿𝜒 ) −
3𝜏

2𝐻𝜎 (1 + 𝜈)
1 −

𝐸

𝐸
∙

𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜎 𝛿𝜀 . + 𝑘 𝜏 𝛿𝜀 . − 𝑧(𝑘 𝜎 𝛿𝜒 + 𝑘 𝜎 𝛿𝜒 + 𝑘 𝜏 𝛿𝜒 )

 (A.30) 

By substituting the relations reported in (2.56) into previous equations, it results: 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿𝜀 . + 𝜈𝛿𝜀 . − 𝑧 𝛿𝜒 + 𝜈𝛿𝜒 − Ψ𝜎 𝑆 (Κ − 𝑧Κ )  (A.31) 

𝛿𝜎 =
𝐸

1 − 𝜈
𝛿𝜀 . + 𝜈𝛿𝜀 . − 𝑧 𝛿𝜒 + 𝜈𝛿𝜒 − Ψ𝜎 𝑆 (Κ − 𝑧Κ )  (A.32) 

𝛿𝜏 =
𝐸

2(1 − 𝜈 )
2(1 − 𝜈)(𝛿𝜀 . − 𝑧𝛿𝜒 ) − Ψ𝜏 𝑆 (Κ − 𝑧Κ )  (A.33) 

Appendix B 

Intermediate Steps for Determining the Eq. (2.91) 

Taking into account the Eq. (2.89), the final expressions of derivatives, presented in Eqns. (2.87) and 

(2.88), are provided in the following equation: 

𝜕𝑤

𝜕𝑥
= −𝜆𝑠𝑖𝑛𝜆𝑥

𝑦

𝑏
+

𝜖

2𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
 (B.1) 

𝜕 𝑤

𝜕𝑥
= −𝜆 𝑐𝑜𝑠𝜆𝑥

𝑦

𝑏
+

𝜖

2𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
+ 𝛼

𝑦

𝑏
 (B.2) 

𝜕𝑤

𝜕𝑦
= 𝑐𝑜𝑠𝜆𝑥

1

𝑏
+

𝜖

2𝛼 𝑏
5

𝑦

𝑏
+ 4𝛼

𝑦

𝑏
+ 3𝛼

𝑦

𝑏
+ 2𝛼

𝑦

𝑏
 (B.3) 

𝜕 𝑤

𝜕𝑦
= 𝑐𝑜𝑠𝜆𝑥

𝜖

2𝛼 𝑏
20

𝑦

𝑏
+ 12𝛼

𝑦

𝑏
+ 6𝛼

𝑦

𝑏
+ 2𝛼  (B.4) 
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𝜕 𝑤

𝜕𝑥𝜕𝑦
= −𝜆𝑠𝑖𝑛𝜆𝑥

1

𝑏
+

𝜖

2𝛼 𝑏
5

𝑦

𝑏
+ 4𝛼

𝑦

𝑏
+ 3𝛼

𝑦

𝑏
+ 2𝛼

𝑦

𝑏
 (B.5) 

By substituting the previous relations into the integrals presented in Eqns. (2.87) and (2.88), the final 

expressions are obtained: 

𝜕2𝑤

𝜕𝑥2

2

𝑑𝑥𝑑𝑦 = 𝜆4𝑎𝑏
1

6
+ 𝜅1

𝜖

2
+ 𝜅2

𝜖2

2
 (B.6) 

𝜕 𝑤

𝜕𝑥𝜕𝑦

2

𝑑𝑥𝑑𝑦 =
𝜆2𝑎

𝑏

1

2
+ 𝜅3

𝜖

2
+ 𝜅4

𝜖2

2
 (B.7) 

𝜕2𝑤

𝜕𝑥2

𝜕 𝑤

𝜕𝑦
𝑑𝑥𝑑𝑦 = −

𝜆2𝑎

𝑏
𝜅5

𝜖

2
+ 𝜅6

𝜖2

2
 (B.8) 

𝜕2𝑤

𝜕𝑦2

2

𝑑𝑥𝑑𝑦 =
𝜅7𝑎

2𝑏
𝜖2 (B.9) 

𝜕𝑤

𝜕𝑦
𝑑𝑥 =

𝑎

2𝑏
2
 (B.10) 

𝜕𝑤

𝜕𝑥

2

𝑑𝑥𝑑𝑦 = 𝜆2𝑎𝑏
1

6
+ 𝜅8

𝜖

2
+ 𝜅9

𝜖2

2
 (B.11) 

where the values of coefficients 𝛼  and 𝜅  are reported, respectively, in Eq. (2.90) and Eq. (2.92). By 

substituting Eqns. (B.6)-(B.11) into Eq. (2.88), the final expression of 𝜎 .  is defined and provided 

in Eq. (2.91) 

Appendix C 

Intermediate steps for determining the Eq. (2.103) 

Taking into account the Eq.(2.101), the final expressions of derivatives, presented in Eqns. (2.87) and 

(2.88), are provided in the following equation: 

𝜕𝑤

𝜕𝑥
= −𝜆𝑠𝑖𝑛𝜆𝑥 𝑒

𝑦

𝑏
+ 𝑒 𝑐𝑜𝑠𝐵𝑦 −

𝑒

4
 (C.1) 

𝜕 𝑤

𝜕𝑥
= −𝜆 𝑐𝑜𝑠𝜆𝑥 𝑒

𝑦

𝑏
+ 𝑒 𝑐𝑜𝑠𝐵𝑦 −

𝑒

4
 (C.2) 
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𝜕𝑤

𝜕𝑦
= 𝑐𝑜𝑠𝜆𝑥

2𝑒

𝑏

𝑦

𝑏
− 𝑒 𝐵𝑠𝑖𝑛𝐵𝑦  (C.3) 

𝜕 𝑤

𝜕𝑦
= 𝑐𝑜𝑠𝜆𝑥

2𝑒

𝑏
− 𝑒 𝐵 𝑐𝑜𝑠𝐵𝑦  (C.4) 

𝜕 𝑤

𝜕𝑥𝜕𝑦
= −𝜆𝑠𝑖𝑛𝜆𝑥

2𝑒

𝑏

𝑦

𝑏
− 𝑒 𝐵𝑠𝑖𝑛𝐵𝑦  (C.5) 

By substituting the previous relations into the integrals presented in Eqns. (2.87) and (2.88), the final 

expressions are obtained: 

𝜕 𝑤

𝜕𝑥
𝑑𝑥𝑑𝑦 =

𝜆 𝑎

2

𝑒

30
−

8𝑒 𝑒

𝑏 𝐵
+

𝑒 𝑏

2
 (C.6) 

𝜕 𝑤

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 =

𝜆 𝑎

2

𝑒 𝑏

3𝑏
−

8𝑒 𝑒

𝑏 𝐵
+

𝑒 𝑏𝐵

2
 (C.7) 

𝜕 𝑤

𝜕𝑥

𝜕 𝑤

𝜕𝑦
𝑑𝑥𝑑𝑦 =

𝜆 𝑎

2

𝑒 𝑏

3𝑏
−

8𝑒 𝑒

𝑏 𝐵
+

𝑒 𝑏𝐵

2
 (C.8) 

𝜕 𝑤

𝜕𝑦
𝑑𝑥𝑑𝑦 =

𝑎

2

4𝑒

𝑏
−

8𝑒 𝑒 𝐵

𝑏
+

𝑒 𝑏𝐵

2
 (C.9) 

𝜕𝑤

𝜕𝑦
𝑑𝑥 =

𝑎

2

𝑒

𝑏
−

2𝑒 𝑒 𝐵

𝑏
+ 𝑒 𝐵  (C.10) 

𝜕𝑤

𝜕𝑥
𝑑𝑥𝑑𝑦 =

𝜆 𝑎

2

𝑒 𝑏

30
−

8𝑒 𝑒

𝑏 𝐵
+

𝑒 𝑏

2
 (C.11) 

where the values of coefficients 𝑒  and 𝐵 are reported in Eq. (2.101). By substituting Eqns. (C.6)-

(C.11) into Eq. (2.88), the final expression of 𝜎 .  is defined and provided in Eq. (2.103). 
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 . CHAPTER 3 

EXPERIMENTAL TESTS 

 
3.1. Previous experimental works 

The study of inelastic behaviour of aluminium members, in terms of resistance and capacity of 

deformation, must necessarily start from the experimental tests. However, due to the low spread of 

aluminium compared to steel material in the structural applications, experimental activities are 

currently not very widespread in the scientific literature. With reference to the SHS,RHS and I,H 

shaped sections subjected to uniform and non-uniform compression, a summary of the main 

experimental campaigns is provided below.  

In the early 2000s, within the activities of CEN-TC250/SC9 [3.1], Faella et al.  [3.2] carried out an 

experimental program devoted to the evaluation of the ultimate resistance of aluminium alloy hollow 

members subjected to local buckling under uniform compression. Successively, Feng et al. [3.3] have 

tested a total of 44 perforated box-section specimens of different aluminium grade. Instead, Su et al. 

[3.4] evaluated the performance of SHS-RHS aluminium members with and without internal 

stiffeners. As regards the I,H shaped sections under uniform compression, the most recent 

contribution is provided by Yuan et al. [3.5] in the 2015, however the most of the investigated 

specimens are characterized by the high width-to-thickness ratios, consequently these members are 

affected by the elastic local buckling, by neglecting the influence of inelastic behaviour. An extensive 

experimental campaign was carried out to the second half of the 20th century and it is provided in the 

NACA reports, however the results are reported only in terms of ultimate resistance [3.6]-[3.8].  

As regards the aluminium beams under bending, the main experimental campaign has been carried 

out by Moen et al. [3.9] in 1999. In particular, three and four-point bending tests have been performed 

on box-shaped and H-sections, with and without stiffeners, made of alloys 6082-T4, T6 and 7108-

T7. Successively, other 4-point tests have been carried out on SHS sections by Zhu and Young, while 

Kim and Pek�̈�z analyzed the I-shaped sections [3.10],[3.11].  Lately, Su et al. performed three, four 

and five point bending tests on box sections made of 6061-T6, 6063-T5,T6 aluminium alloys, with 

and without internal stiffeners [3.12],[3.13]; while Wang et al. performed only three point bending 

tests on the unwelded I-shaped aluminium beams made of the same previous aluminium alloys [3.14]. 

A summary of the main stub tests and the bending tests, presented in the scientific literature, is 

reported in Table 3.1. 
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In the present Chapter, for increasing known out of aluminium members under compression and 

bending, 9 stub columns tests and 12 three-point bending tests have been carried out on 4 different 

SHS sections made of alloys 6060. Obviously, the main aim of these experiments is the evaluation 

local buckling effects on the ultimate behaviour of aluminium members, in terms of resistance and 

capacity of deformation. The tests have been performed at the Structural Engineering Testing Hall 

Laboratory (STRENGTH Lab) of the Department of Civil Engineering of Salerno University. It is 

important to underline that no specific standards have been adopted in the stub and bending tests, but 

the test speeds are defined in order to accurately evaluate the main mechanical properties in the elastic 

and post-elastic regions, avoiding speed variations that could influence the experimental results. 

Moreover, the results provided here were used to compare and validate the methodological 

approaches presented in the following chapters. In particular, the results of stub column tests have 

been compared with those obtained by a theoretical approach (DTP) and the effective thickness 

method (ETM), provided, respectively, in Chapter 4 and Chapter 6. While the experimental curves 

obtained by three-point bending tests have been used to calibrate a finite element model presented in 

the Chapter 5 and, also in this case, the results, in terms of the flexural resistance and the capability 

of rotation, have been compared with those provided by the effective thickness method (ETM).  

Table 3.1. Summary of stub column tests and bending tests. 

Authors Date Alloy Type of test Shape  No of tests 

Faella et al. [3.2] 2000 

6060 T6 
6061 T6 
6082 T6 
6082 TF 

Stub column test RHS,SHS 39 

Feng et al. [3.3] 2018 
6061 T6 
6063 T5 

Stub column test Perforated RHS,SHS 16 

Su et al. [3.4] 2014 
6061 T6 
6063 T5 

Stub column test 
RHS,SHS (with and 
without stiffeners) 

15 

Yuan et al. [3.5] 2015 
6061 T6 
6063 T5 

Stub column test I,H 15 

Heimerl & Niles [3.6] 1946 2014 T6 Stub column test I,H 48 

Heimerl & Roy [3.7] 1945 7178 T6 Stub column test I,H 40 

Heimerl & Fay [3.8] 1945 7075 T6 Stub column test I,H 51 

Moen et al. [3.9] 1999 
6082 T4,T6 

7108 T7 
3-point bending test 

RHS,SHS,H (welded 
and unwelded) 

37 

Zhu & Young [3.10] 2009 
6061 T6 
6063 T5 

4-point bending test SHS 70 

Kim and Peköz [3.11] 2010 6063 T6 4-point bending test I,H 3 

Su et al. [3.12],[3.13] 2015-16 
6061 T6 
6063 T5 

3,4,5-point bending 
test 

RHS,SHS (with and 
without stiffeners) 

327 

Wang et al. [3.14] 2016 
6061 T6 
6063 T5 

3-point bending test I,H 34 
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3.2. Geometrical and Mechanical Properties  

The aluminium members investigated in the current experimental tests are extruded profiles made of 

EN-AW 6060 T6 with the SHS section. Temper T6 is the treatment corresponding to EN-AW6082 

aluminium alloy and it identifies a material artificially aged at a prescribed low temperature (100-

200ºC) until the metal reaches a stable condition. It is suitable for structural applications because of 

its high resistance but shows lower ductility than the naturally aged tempers. 

Four types of section are considered for both stub and bending tests, characterized by nominal width 

of 40,60,80,100 mm and with the same nominal thickness equal to 2 mm. According to Figure 3.1, 

the nominal and measured geometrical properties of specimens are reported in Table 3.2. 

Table 3.2. Nominal and measured geometrical properties of tested specimens. 

Section 
𝑩𝟏.𝐧𝐨𝐦 
[mm] 

𝑩𝟐.𝐧𝐨𝐦 
[mm] 

𝒕𝐧𝐨𝐦 
[mm] 

𝑨𝐧𝐨𝐦 
[mm2] 

𝑩𝟏 
[mm] 

𝑩𝟐 
[mm] 

𝒕𝟏 
[mm] 

𝒕𝟐 
[mm] 

𝒕𝟑 
[mm] 

𝒕𝟒 
[mm] 

𝑨 
[mm2] 

SHS40 40.00 40.00 2.00 304 40.18 40.11 1.99 2.20 2.09 2.00 315.26 

SHS60 60.00 60.00 2.00 464 60.31 60.40 2.00 2.16 2.00 2.09 480.92 

SHS80 80.00 80.00 2.00 624 80.17 80.06 2.00 1.98 1.90 1.89 607.40 

SHS100 100.00 100.00 2.00 784 100.30 100.30 2.24 2.04 2.12 2.37 860.40 

 

 
 

Figure 3.1. Geometrical scheme of box section. 

Standard tensile testing was performed on specimens cut from each type of section, according to UNI-

EN-ISO 6892-1-1 [3.15]. In particular, the specimens P  were cut from each plate constituting the 

section according to the shape depicted in Figure 3.2, while the dimensions of the specimens are 

reported in Table 3.3. The monotonic tests have been carried out under displacement control 

according to the Method A2 as described in the aforementioned standard. So, the speed test has been 

computed as a function of the length 𝐿  and the estimated strain rate �̇� : 

𝑣 = 𝐿 ∙ �̇�  (3.1) 
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With reference to the scheme depicted in Figure 3.3, four intervals of speed have been considered for 

predicting accurately the elastic and inelastic property of aluminium material. For each interval is 

reported the corresponding strain rate, while in the speed tests are reported for each section according 

to the Eq. (3.1), as shown in Table 3.3. 

Table 3.3. Geometrical properties and displacement speed of tensile testing. 

Section 
𝑺𝟎 

[mm] 
𝑺 

[mm] 
𝑳𝒄 

[mm] 
𝑳𝒔 

[mm] 
𝑳𝒕𝒐𝒕 

[mm] 
𝒗𝒄

(𝐈) 
[mm/s] 

𝒗𝒄
(𝐈𝐈) 

[mm/s] 
𝒗𝒄

(𝐈𝐈𝐈) 
[mm/s] 

𝒗𝒄
(𝐈𝐕) 

[mm/s] 

SHS40 15 30 80 90 275 0.0056 0.020 0.16 0.54 

SHS60 15 30 80 90 275 0.0056 0.020 0.16 0.54 

SHS80 20 40 100 100 320 0.0070 0.030 0.20 0.67 

SHS100 20 40 100 100 320 0.0070 0.030 0.20 0.67 

 

 

 
Figure 3.2. Geometrical scheme of material specimen. 

 

 

Interval �̇�𝑳𝒄
 

I 7.00x10  

II 2.50x10  

III 2.00x10  

IV 6.70x10  
 

Figure 3.3. strain rate for each interval provided by UNI-EN-ISO 6892-1 [3.15]. 
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The experimental stress-strain curves are depicted in Figure 3.5-Figure 3.8, while the summary of 

tensile tests is shown for each plate constituting each tested section in Table 3.4. In particular, the 

following measured properties are provided: 

 The experimental Young’s modulus 𝐸  

 The stress at a residual strain of 0.1% [𝑓 . ] 

 The stress at a residual strain of 0.2% [𝑓 . ] 

 The engineering maximum stress [𝑓 ] 

 The engineering strain corresponding to the maximum stress [𝜀 ] 

 The ultimate strain [𝜀 ] 

 The Ramberg-Osgood coefficient [𝑛] given by: 

𝑛 =
𝑙𝑛2

𝑙𝑛
𝑓 .

𝑓 .

 (3.2) 

Moreover, the experimental curves have also been described according to the Ramberg-Osgood law 

expressed by the following relationship [3.16]: 

𝜀 =
𝜎

𝐸
+ 0.002

𝜎

𝑓 .
 (3.3) 

The Ramberg-Osgood curves are always reported in Figure 3.5-Figure 3.8, while Figure 3.4 shows 

the real specimens after the tensile testing. By analyzing the results of the tensile testing, it can be 

observed that after the elastic range, for each test, aluminium alloy presents the typical strain-

hardening behaviour which is not preceded by a perfectly plastic branch corresponding to yielding 

plateau as for steel material. The ultimate deformation 𝜀  is around 6-10%, while the maximum stress 

𝑓  varies between 187.38 to 255.41 MPa, while the yield stress  𝑓 .  never assumes values lower than 

152 MPa. Moreover, it is interesting to observe that the coefficient 𝑛, which influences the shape and 

the strain hardening behaviour of the stress-strain curves, even the single section has very different 

values. It is well known that if 𝑛 → ∞, the Ramberg-Osgood law represents the mild steel behaviour, 

conversely for low values of the exponent, the relationship tends to linear elastic behaviour. This is 

clearly evident by observing the Ramberg-Osgood model curves. Finally, the break line at 

45 ,characterizing almost all the specimens, generally indicate good ductility of aluminium alloy. 
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Table 3.4. Mechanical properties of tested specimens. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑬𝒆𝒙𝒑  

[MPa] 
𝒇𝟎.𝟏 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝜺𝒖 
[-] 

𝜺𝒓 
[-] 

𝒏 
[-] 

SHS 40 

P1 73054 171.00 181.75 207.85 0.055 0.075 11.34 

P2 75767 176.70 182.59 203.03 0.046 0.062 21.14 

P3 71465 160.83 174.03 202.17 0.053 0.074 8.78 

P4 66793 154.92 166.92 192.36 0.057 0.072 9.29 

SHS 60 

P1 65669 210.11 227.32 252.65 0.054 0.064 8.80 

P2 61254 207.09 215.00 238.83 0.065 0.088 18.49 

P3 65277 224.68 231.39 252.22 0.065 0.082 23.55 

P4 72674 213.20 226.59 253.58 0.069 0.095 11.38 

SHS 80 

P1 69665 210.82 224.17 246.02 0.039 0.064 11.29 

P2 75975 199.00 211.00 253.41 0.061 0.068 11.84 

P3 65174 226.46 236.92 255.41 0.042 0.050 15.35 

P4 63341 217.45 231.12 253.71 0.070 0.091 11.37 

SHS 100 

P1 71564 168.65 174.75 199.10 0.060 0.088 19.51 

P2 70044 165.38 175.61 201.80 0.060 0.098 11.55 

P3 66906 140.02 152.86 187.38 0.080 0.103 7.90 

P4 69317 155.32 169.36 195.79 0.060 0.085 8.00 

 

 

Figure 3.4. The specimens after the tensile testing. 
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Figure 3.5. Experimental curves(top) and Ramberg-Osgood models(bottom) for SHS40. 
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Figure 3.6. Experimental curves(top) and Ramberg-Osgood models(bottom) for SHS60. 
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Figure 3.7. Experimental curves(top) and Ramberg-Osgood models(bottom) for SHS80. 
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Figure 3.8. Experimental curves(top) and Ramberg-Osgood models(bottom) for SHS100. 
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3.3. Stub Column Tests 

With reference to the SHS aluminium members previously described, the stub column tests have been 

carried out in order to evaluate the maximum load 𝑁 .  and the corresponding displacement 𝛿 . .  

Figure 3.9 shows the setup of compression tests, in particular, they have been performed with a 

Schenck Hydropuls S56 testing machine (maximum load 630 kN, piston stroke ± 125 mm). For each 

profile, a minimum of two stub tests have been carried out under displacement control. The test speed 

was not defined by any standard protocol, the choice is based on the application of two different test 

speeds, equal for each specimen: an initial low speed 𝑣  equal to 0.42 mm/min up to post elastic level 

and, successively, a final speed 𝑣  equal to 1.20 mm/min. The speed change was set for each 

specimen according to the theoretical yield displacement 𝛿 .  mentioned below. The reasons are 

related to test under displacement control and for evaluating accurately the main mechanical 

properties in the elastic region. The axial displacements have been measured by means of three 

inductive transducers (LDT). The mean value of the three measures have been considered.  Almost 

all the specimens have failed due to pure local buckling without any coupling phenomenon, except 

the tests referring to SHS100 (test a, test b) and SHS80 (test a) where the instability phenomenon 

occurred, preliminarily, of a single plate due to the geometrical imperfections of sections and as can 

also be depicted by observing the shapes of 𝑁 − 𝛿 curves provided in Figure 3.10-Figure 3.13. The 

test results are summarized in Table 3.5, where the specimen height 𝑎, the ultimate resistance 𝑁 . , 

its nondimensional value 𝑁  , the maximum displacement 𝛿 .  are given. In particular, the 

nondimensional values are expressed as: 

𝑁 =
𝑁 .

𝐴 ∙ 𝑓 .
 (3.4) 

and: 

𝛿̅ =
𝛿 .

𝛿 .
 (3.5) 

where 𝐴 represents the section area of each section reported in Table 3.3, 𝑓 .  is the mean value of 

the four measures provided in Table 3.4 for each section, while 𝛿 .  corresponds to the displacement  

according to the conventional strain 𝜀 = 𝑓 . 𝐸⁄ . So, taking into account that 𝛿 = 𝜀 ∙ 𝑎, the previous 

relationship can be expressed as the normalised buckling strain: 

𝜀̅ =
𝜀

𝜀
 (3.6) 

By defining 𝜀  as the strain corresponding to the occurrence of local buckling. The results highlight 

that for SHS40 the occurrence of local buckling occurs in the inelastic region, in fact the 

nondimensional values 𝑁  slightly exceed 1.00; conversely the other cases are strongly affected by 
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the elastic local buckling. It is obviously depended on the with-to-thickness ratios which increase 

from SHS40 to SHS100. Figure 3.14 shows the specimens after stub column tests which present the 

typical formation of local buckles. 

Table 3.5. Results of stub column tests. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑻𝒆𝒔𝒕 
𝒂 

[mm] 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖 
[-] 

𝜹𝒖.𝒆𝒙𝒑 
[mm] 

𝜹𝒖(𝜺𝒖) 
[-] 

SHS40 

a 120.05 58.30 1.05 0.87 2.96 

b 120.12 57.53 1.04 0.86 2.92 

c 130.43 55.55 1.01 0.51 1.60 

SHS60 
a 181.10 92.26 0.85 0.59 0.96 

b 180.80 85.62 0.79 0.61 0.99 

SHS80 
a 240.12 79.50 0.58 0.60 0.76 

b 240.32 87.18 0.63 0.64 0.81 

SHS100 
a 300.10 90.22 0.62 0.62 0.58 

b 299.00 80.85 0.55 0.61 0.75 
 
 

 

 

Figure 3.9. Setup of stub column test. 
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Figure 3.10. Experimental curve relating compression load 𝑁 to displacement 𝛿 for SHS40. 

 

 
Figure 3.11. Experimental curve relating compression load 𝑁 to displacement 𝛿 for SHS60. 
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Figure 3.12. Experimental curve relating compression load 𝑁 to displacement 𝛿 for SHS80. 

 

 
Figure 3.13. Experimental curve relating compression load 𝑁 to displacement 𝛿 for SHS100. 
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Figure 3.14. Specimens after stub column tests showing typical buckling shape for box section. 

3.4. Three Point Bending Tests 

In order to evaluate the maximum flexural resistance and the corresponding rotational capacity, three-

point bending tests have been carried out on the same box-shaped beams for three different length: 

𝐿 = 1300 𝑚𝑚, 𝐿 = 800 𝑚𝑚 and 𝐿 = 500 𝑚𝑚; giving a total of 12 reported tests. 

The test rig is depicted in Figure 3.16. A simply supported beam is vertically loaded at the midspan 

through the same hydraulic actuator used in the stub tests. The load is measured by a load cell on top 

of the loading device which consists of a compact steel half cylinder with diameter of 50 mm. The 

beam is placed on top of the other half cylindrical supports which are fixed on top of a stiff supporting 

steel beam HEA 220, consequently, the support system may be considered stiff compared the test 

specimen. In order to neglect any displacements and rotations out of the plane, two transducers (LDT-

S; LDT-D) are placed at the supports, while others two transducers (LDT-C1; LDT-C2) are placed at 

the midspan for computing the displacements during the tests. In particular, the displacements were 

measured as the distance between loading device and the support system. Moreover, four one-

dimensional strain gauges were fixed to the web plates of each specimens for evaluating the maximum 
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curvature under bending tests. The adopted strain gauge is FLAB-3-23 produced by Tokyo 

Instruments Lab and its main properties are summarized in Figure 3.15.  

Also in the case of three point bending tests, the test speeds were not defined by any specific standard 

protocol. The tests have been carried out under displacement control and the speed rate has been 

calibrated as a function of the length of beams. In particular, for each length, two displacement speeds 

are defined: an initial speed  𝑣  up to a limit displacement 𝛿∗, successively a final speed 𝑣  until the 

beam collapses. The values of speed adopted for each length are reported in Table 3.6. 

Table 3.6. Speed rate of Three Point Bending Test. 

𝑳𝒆𝒏𝒈𝒕𝒉 
[𝐦𝐦] 

𝒗𝒊  
[𝐦𝐦/𝐦𝐢𝐧] 

𝜹∗ 
[𝐦𝐦] 

𝒗𝒇  
[𝐦𝐦/𝐦𝐢𝐧] 

𝐿 = 1300 5 20 15 

𝐿 = 800 3 12 9 

𝐿 = 500 1 4 3 

Figure 3.17-Figure 3.20 show the experimental curves 𝐹 − 𝛿 of each section and for the three tested 

lengths, while the main results are summarized in Table 3.7. In particular, the maximum load 𝐹 .  

and the corresponding displacements 𝛿 .  are given. Moreover, with reference to the middle section 

and according to the geometrical scheme, the maximum bending moment 𝑀 .  has been expressed 

as: 

𝑀 . =
𝐹 . 𝐿

4
 (3.7) 

While the corresponding chord rotation 𝜃 .  has been computed as: 

𝜃 . =
2𝛿

𝐿
 (3.8) 

where 𝐿 represents the generic length of the tested beams. Moreover, the nondimensional flexural 

overstrength 𝑀  and the rotational capacity �̅�  are computed as: 

𝑀 =
𝑀 .

𝑀 .
 

�̅� =
𝜃 .

𝜃 .
 

(3.9) 

where 𝑀 .  and 𝜃 .  are, respectively, the bending moment and the rotation at the conventional yield 

stress 𝑓 .  and they are expressed as: 

𝑀 . = 𝑊 𝑓 .  

𝜃 . =
𝑀 . 𝐿

4𝐸𝐼
 

(3.10) 
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where 𝑊  is the elastic moment resistance, 𝐼 represents the inertia moment of geometrical section and 

𝐸 is the Young’s modulus of aluminium material. Finally, by means of the experimental data obtained 

by the strain gauges, it was possible to determine the maximum curvature 𝜒 .  in the middle section 

and, consequently, its nondimensional value �̅�  given by: 

�̅� =
𝜒 .

𝜒 .
 (3.11) 

where 𝜒 .  represents the curvature at the conventional yield stress, so it is expressed as: 

𝜒 . =
𝑀 .

𝐸𝐼
 (3.12) 

The experimental results show that the SHS40 aluminium beams and the SHS60 beams with 𝐿  and 

𝐿  present the flexural overstrength, in fact both 𝑀  and �̅�  exceed 1.00. Conversely, in the other 

cases, the local buckling occurs in the elastic range. For each section, the maximum vertical load and, 

consequently, the maximum bending moment enhances by decreasing the length of the beam while, 

conversely, the corresponding maximum chord rotation reduces. The same observation is valid when 

the beam section increases with the fixed length.  

During testing, the specimens SHS100 and SHS80 with lengths  𝐿  and 𝐿  achieved the collapse due 

to the transversal concentrated load which provided, prematurely, the local buckling of the web plates. 

So, these cases are not governed by the flexural behaviour, but the crisis is related to the transverse 

load, as described in Section 6.7.5 of Eurocode 9 [3.1]. For this reason, the previous specimens will 

be neglected during the discussion of the following chapters. 

Finally, as an example, the typical buckling shape of hollow section beam under bending is reported 

in Figure 3.21, where it is evident that the instability phenomena occur in the upper plate in 

compression and in the compression parts of the web plates. 

 

Type FLAB-3-23 

Test condition 23 C − 50% RH 

Gauge Length 3 mm 

Gauge Width 1.70 mm 

Backing Length 8.80 mm 

Backing Width 3.50 mm 

Gauge Resistance 120 ± 0.3Ω 

Gauge Factor 2.09 ± 1% 
 

Figure 3.15. The main properties of FLAB-3-23 strain gauge. 
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Table 3.7. Results of Three Point Bending Tests. 

𝑺𝒆𝒄𝒕𝒊𝒐𝒏 
𝑳 

[𝐦𝐦] 
𝑭𝒖.𝒆𝒙𝒑 
[kN] 

𝜹𝒖.𝒆𝒙𝒑 
[mm] 

𝑴𝒖.𝒆𝒙𝒑 
[kNm] 

𝑴𝒖 
[−] 

𝜽𝒖.𝒆𝒙𝒑 
[𝐫𝐚𝐝] 

𝜽𝒖  
[−] 

𝝌𝒖.𝒆𝒙𝒑  
[𝐦 𝟏] 

𝝌𝒖  
[−] 

SHS40 

1300 2.50 35.17 0.81 1.23 0.054 1.73 0.503 3.44 

800 4.04 11.46 0.81 1.19 0.029 1.59 0.320 2.23 

500 6.56 5.19 0.82 1.21 0.021 1.94 0.362 2.34 

SHS60 

1300 6.71 18.99 2.18 1.08 0.027 1.07 0.167 1.32 

800 10.40 7.17 2.08 1.03 0.018 1.03 0.163 1.33 

500 15.31 3.03 1.91 0.95 0.012 0.79 0.122 0.99 

SHS80 

1300 9.18 10.54 2.98 0.86 0.016 0.56 0.096 1.08 

800 13.05 3.89 2.61 0.76 0.010 0.55 0.084 0.94 

500 17.07 1.67 2.13 0.62 0.007 0.60 0.098 1.09 

SHS100 

1300 11.24 6.42 3.65 0.80 0.010 0.60 0.076 1.52 

800 14.57 2.76 2.91 0.65 0.007 0.69 0.046 0.94 

500 18.20 1.41 2.28 0.51 0.006 0.90 0.062 1.24 

 

 

  
Figure 3.16. Setup of Three Point Bending Test. 
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Figure 3.17. Experimental curve 𝐹 − 𝛿 for SHS40. 

 

 

Figure 3.18. Experimental curve 𝐹 − 𝛿 for SHS60. 
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Figure 3.19. Experimental curve 𝐹 − 𝛿 for SHS80. 

 

 

Figure 3.20. Experimental curve 𝐹 − 𝛿 for SHS100. 
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Figure 3.21. Close-up of beam after testing showing typical formation of local buckles. 
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 .CHAPTER 4  

INTERACTIVE LOCAL BUCKLING 
UNDER UNIFORM COMPRESSION 

4.1. Introduction 

The ultimate resistance and the plastic deformation capacity of metal members are strongly affected 

by the local slenderness of the plate elements constituting the member section, i.e., the width-to-

thickness ratios of the plate elements. The occurrence of local buckling, either in the elastic or in the 

plastic range, is the phenomenon governing the ultimate behaviour of metal members.  In particular, 

ductile behaviour can be obtained provided that the occurrence of local buckling in the elastic range 

is prevented by properly limiting the width-to-thickness ratios of the plate elements [4.1],[4.2]. 

Therefore, the study of plastic local buckling has paramount importance in the investigation of the 

ultimate resistance and plastic deformation capacity of metal members [4.3]-[4.5]. 

For this reason, many research activities have been carried out to predict the ultimate resistance and 

the plastic deformation of metal members, considering the occurrence of local buckling in the plastic 

range [4.6]-[4.10]. However, as illustrated by Georgantzia et al. [4.11], the current methodologies, 

aiming the evaluation the inelastic response of aluminium members, provide the predictional values 

of ultimate compressive resistance which are excessively conservative in comparison with the 

experimental results, presented in the technical literature. 

So, in order to improve the accuracy in the evaluation of the ultimate behaviour of aluminium profiles 

under uniform compression, a fully theoretical approach has been developed for hollow sections and 

H-shaped sections, taking into account the instability phenomena in the plastic range. In particular, 

starting from the buckling differential equation of a single plate, derived under the assumption that 

the Poisson’s ratio is variable in the elastic-plastic range (Chapter 2), the plastic critical stress and the 

corresponding deformation have been predicted by imposing the boundary conditions accounting for 

the interaction between the plate elements constituting the section resulting from the edge’s 

connection between adjacent plates. Specifically, the plastic critical stress is obtained by looking for 

the stress value leading to a non-trivial solution of the equation’s system resulting from the boundary 

conditions. 

Finally, the accuracy of the theoretical approach, based on the J2 deformation theory of plasticity, is 

pointed out by the comparison with available experimental data. In particular, in the case of hollow 
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sections, the comparison has been made with the experimental results presented in Chapter 3 (Table 

3.5) and with those provided by Su et al. [4.8] and Faella et al. [4.12].  In the case of H-shaped 

sections, the results of the stub column test have been extracted from the NACA reports [4.13]-[4.15] 

and from the experimental campaign carried out by Yuan et al. [4.16]. The main mechanical and 

geometrical properties of the experimental data are reported in Annex A at the end of this work. 

4.2. Interactive Local Buckling of Aluminium Members 

4.2.1. Theoretical Procedure for Box Section 

In the section 2.3.5, the solution of the differential equation of the plate at buckling under uniaxial 

compression has been derived for the single plate element, Eq. (2.78) . To investigate the interactive 

local buckling of box-sections in either the elastic or the plastic range the solution of the plate 

differential equation, Eq. (2.16), has to be applied to the two plate elements (plate 1 and plate 2 in 

Figure 4.1) constituting the member section. Therefore, 8 integration constants have to be derived to 

get: 

Plate 1 

𝑤 (𝑥, 𝑦) = 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑦 + 𝐴
( )

𝑠𝑖𝑛ℎ𝛼 𝑦 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑦 + 𝐴
( )

𝑠𝑖𝑛𝛽 𝑦 𝑠𝑖𝑛𝜆𝑥 (4.1) 

Plate 2 

𝑤 (𝑥, 𝑦) = 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑦 + 𝐴
( )

𝑠𝑖𝑛ℎ𝛼 𝑦 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑦 + 𝐴
( )

𝑠𝑖𝑛𝛽 𝑦 𝑠𝑖𝑛𝜆𝑥 (4.2) 

By remembering that  𝑚  is the number of half-waves along 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 and 𝑎  the height of 

aluminium member, according to Figure 4.1, the coefficient 𝜆 is equal to  𝑚𝜋/𝑎. The coefficients 

𝛼 ,𝛽 , 𝛼  and 𝛽  are expressed in (2.80) and they are dependent on the plastic coefficients 𝐶  and, 

consequently, the stress level and the mechanical non-linearity of aluminium material. Finally, the 

coefficients  𝐴( ) and 𝐴( ) are, respectively, the unknown integration coefficients of the plate 1 and 

the plate 2. 



Interactive Local Buckling under Uniform Compression 

111 

 

 
Figure 4.1. Geometrical scheme of a stub column under uniform compression having box-section. 

According to Figure 4.1, in the middle of each plate the rotations and the equivalent shear actions are 

equal to zero: 

Plate 1 

1)
𝜕𝑤

𝜕𝑦
= 0 ⇒ 𝐴

( )
𝛼 + 𝐴

( )
𝛽 = 0 

2) 𝑅 .
∗ | = 0 ⇒ 𝐶

𝜕 𝑤

𝜕𝑦
+ (𝐶 + 1 − 𝜈)

𝜕 𝑤

𝜕𝑥 𝜕𝑦
= 0 ⇒ 

⇒ 𝐶 𝐴
( )

𝛼 − 𝑎
( )

𝛽 − 𝜆 (𝐶 + 1 − 𝜈) 𝐴
( )

𝛼 + 𝐴
( )

𝛽 = 0 

(4.3) 

Plate 2 

1)
𝜕𝑤

𝜕𝑦
= 0 ⇒ 𝐴

( )
𝛼 + 𝐴

( )
𝛽 = 0 

2) 𝑅 .
∗ | = 0 ⇒ 𝐶

𝜕 𝑤

𝜕𝑦
+ (𝐶 + 1 − 𝜈)

𝜕 𝑤

𝜕𝑥 𝜕𝑦
= 0 ⇒ 

⇒ 𝐶 𝐴
( )

𝛼 − 𝐴
( )

𝛽 − 𝜆 (𝐶 + 1 − 𝜈) 𝐴
( )

𝛼 + 𝐴
( )

𝛽 = 0 

(4.4) 

Because of double symmetry, it is easy to recognize that: 

𝐴
( )

= 𝐴
( )

= 𝐴
( )

= 𝐴
( )

= 0 (4.5) 
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Consequently, there are only four unknown integration coefficients which can be collected in the 

transpose vector 𝐴: 

𝐴 = 𝐴
( )

𝐴
( )

𝐴
( )

𝐴
( )  (4.6) 

So that. The Eqns. (4.1) and (4.2) becomes: 

𝑤 (𝑥, 𝑦) = 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑦 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑦 𝑠𝑖𝑛𝜆𝑥 (4.7) 

and: 

𝑤 (𝑥, 𝑦) = 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑦 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑦 𝑠𝑖𝑛𝜆𝑥 (4.8) 

The remaining boundary conditions along the common side are: 

 Displacement condition for 𝑦 = 𝑏  

1) 𝑤 | = 0 ⇒ 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑏 = 0 (4.9) 

 Displacement condition 𝑦 = −𝑏  

2) 𝑤 | = 0 ⇒ 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑏 = 0 (4.10) 

 Rotation condition at the common edge 

3)  
𝜕𝑤

𝜕𝑦
=

𝜕𝑤

𝜕𝑦
⇒ 

⇒ 𝐴
( )

𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 − 𝐴
( )

𝛽 𝑠𝑖𝑛𝛽 𝑏 + 𝐴
( )

𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 − 𝐴
( )

𝛽 𝑠𝑖𝑛𝛽 𝑏 = 0 

(4.11) 

 Bending moment condition at the common edge 

4) 𝑀 = 𝑀 ⇒ 

⇒ 𝐷
( )

𝐶
𝜕 𝑤

𝜕𝑦
+ (𝜈 + 𝐶 − 1)

𝜕 𝑤

𝜕𝑥
= 𝐷

( )
𝐶

𝜕 𝑤

𝜕𝑦
+ 𝜈(𝜈 + 𝐶 − 1)

𝜕 𝑤

𝜕𝑥
  

(4.12) 

where 𝐷( ) and 𝐷( ) are, respectively, the secant flexural rigidities of the plate 1 and the plate 2 and 

their expressions are provided in (2.62). By noting that: 

𝜕 𝑤

𝜕𝑥
= −𝜆2𝑠𝑖𝑛𝑘𝑥 𝐴

( )
𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝐴

( )
𝑐𝑜𝑠𝛽 𝑏  

𝜕 𝑤

𝜕𝑥
= −𝜆2𝑠𝑖𝑛𝑘𝑥 𝐴

( )
𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝐴

( )
𝑐𝑜𝑠𝛽 𝑏  

(4.13) 
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and taking into account the Eqns. (4.9) and (4.10), it results: 

𝜕 𝑤

𝜕𝑥
= 0 

𝜕 𝑤

𝜕𝑥
= 0 

(4.14) 

So, Eq. (4.12) can be written as: 

4) 𝐷
( ) 𝜕 𝑤

𝜕𝑦
= 𝐷

( ) 𝜕 𝑤

𝜕𝑦
⇒  

⇒ 𝐷
( )

𝐴
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 − 𝐷
( )

𝐴
( )

𝛽 𝑐𝑜𝑠𝛽 𝑏 = 𝐷
( )

𝐴
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 − 𝐷
( )

𝐴
( )

𝛽 𝑠𝑖𝑛𝛽 𝑏  

(4.15) 

The four boundary conditions along the common edge lead to a system of four equations, which can 

be expressed under matrix form, as follows: 

⎣
⎢
⎢
⎢
⎡

𝑐𝑜𝑠ℎ𝛼 𝑏 𝑐𝑜𝑠𝛽 𝑏 0 0
0 0 𝑐𝑜𝑠ℎ𝛼 𝑏 𝑐𝑜𝑠𝛽 𝑏

𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 −𝛽 𝑠𝑖𝑛𝛽 𝑏 𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 −𝛽 𝑠𝑖𝑛𝛽 𝑏

𝐷
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 −𝐷
( )

𝛽 𝑐𝑜𝑠𝛽 𝑏 −𝐷
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 𝐷
( )

𝛽 𝑐𝑜𝑠𝛽 𝑏 ⎦
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧𝐴

( )

𝐴
( )

𝐴
( )

𝐴
( )

⎭
⎪
⎬

⎪
⎫

=

0
0
0
0

 (4.16) 

A trivial solution 𝐴 = 0 represents the unbuckled configuration. A nontrivial solution, corresponding 

to the occurrence of buckling, is obtained when the membrane axial force reaches a value such that 

the determinant of the coefficient matrix is equal to zero: 

𝑐𝑜𝑠ℎ𝛼 𝑏 𝑐𝑜𝑠𝛽 𝑏 0 0
0 0 𝑐𝑜𝑠ℎ𝛼 𝑏 𝑐𝑜𝑠𝛽 𝑏

𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 −𝛽 𝑠𝑖𝑛𝛽 𝑏 𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 −𝛽 𝑠𝑖𝑛𝛽 𝑏

𝐷
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 −𝐷
( )

𝛽 𝑐𝑜𝑠𝛽 𝑏 −𝐷
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 𝐷
( )

𝛽 𝑐𝑜𝑠𝛽 𝑏

= 0 (4.17) 

The buckling stress corresponding to the solution of Eq. (4.17) can be easily found employing a 

numerical procedure working for increasing values of the axial stress in the plate elements up to the 

identification of the value satisfying Eq. (4.17).  

4.2.2. Theoretical procedure for H-shaped section 

The same considerations and, consequently the same steps, can be repeated to evaluate the ultimate 

behaviour of H-shaped aluminium members under uniform compression. Therefore, in order to 

investigate the interactive local buckling of box-sections in either the elastic or the plastic range the 

solution of the plate differential equation, Eq. (2.16), has to be applied to the flanges and the web 

plates constituting the member section.  
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However, because the double symmetry, it is possible to consider only one half of web and one half 

of flange, as shown in Figure 4.2 (plate 1, plate 2): 

 

 

Figure 4.2. Geometrical scheme of a stub column under uniform compression having H-section. 

In this case, the unknown integration coefficients are six: four for plate 1 and two for plate 2. In 

particular, it results: 

Plate 1 

𝑤 (𝑥, 𝑦) = 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑦 + 𝐴
( )

𝑠𝑖𝑛ℎ𝛼 𝑦 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑦 + 𝐴
( )

𝑠𝑖𝑛𝛽 𝑦 𝑠𝑖𝑛𝜆𝑥 (4.18) 

Plate 2 

𝑤 (𝑥, 𝑦) = 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑦 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑦 𝑠𝑖𝑛𝜆𝑥 (4.19) 

The plate 2 is an internal element and, consequently, it is possible to carry out the same considerations 

made for the hollow sections [See Eqns. (4.3) and (4.4)]. The unknown vector  𝐴 is equal to: 

𝐴 = 𝐴
( )

𝐴
( )

𝐴
( )

𝐴
( )

𝐴
( )

𝐴
( )  (4.20) 

By neglecting the trivial solution 𝑠𝑖𝑛𝜆𝑥 = 0, the boundary conditions along the common edge are: 

 Displacement condition for 𝑦 = 0 

1) 𝑤 | = 0 ⇒ 𝐴
( )

+ 𝐴
( )

= 0 (4.21) 

 Displacement condition for 𝑦 = 𝑏  

2) 𝑤 | = 0 ⇒ 𝐴
( )

𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝐴
( )

𝑐𝑜𝑠𝛽 𝑏 = 0 (4.22) 
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 Rotation condition at the common edge 

3)  
𝜕𝑤

𝜕𝑦
=

𝜕𝑤

𝜕𝑦
⇒ 𝐴

( )
𝛼 + 𝐴

( )
𝛽 − 𝐴

( )
𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 + 𝐴

( )
𝛽 𝑠𝑖𝑛𝛽 𝑏 = 0 (4.23) 

 Bending moment at the common edge [see Eqns. (4.14) and (4.15)] 

4) 𝑀𝑦 𝑦1=0
= 𝑀𝑦 𝑦2=𝑏2

⇒ 𝐷
( ) 𝜕 𝑤

𝜕𝑦
= 𝐷

( ) 𝜕 𝑤

𝜕𝑦
⇒ 

⇒ 𝐴1
(1)

𝐷𝑠
(1)𝛼1

2 − 𝐴3
(1)

𝐷𝑠
(1)𝛽

1
2 − 𝐴1

(2)
𝐷𝑠

(2)𝛼2
2𝑐𝑜𝑠ℎ𝛼2𝑏2 + 𝐴3

(2)
𝐷𝑠

(2)𝛽
2
2𝑐𝑜𝑠𝛽

2
𝑏2 = 0 

(4.24) 

The boundary condition along the free edge (𝑦 = 𝑏 ) are: 

 Bending moment for 𝑦 = 𝑏  

5) 𝑀𝑦 𝑦1=𝑏1
= 0 ⇒ 𝐷𝑠

(1) 𝐶5

𝜕2𝑤1

𝜕𝑦
1
2

+ (𝜈 + 𝐶3 − 1)
𝜕2𝑤1

𝜕𝑥2
𝑦1=𝑏1

= 0 ⇒ 

⇒ 𝐴
( )

𝜙
𝛼

𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝐴
( )

𝜙
𝛼

𝑠𝑖𝑛ℎ𝛼 𝑏 − 𝐴
( )

𝜙
𝛽

𝑐𝑜𝑠𝛽 𝑏 − 𝐴
( )

𝜙
𝛽

𝑠𝑖𝑛𝛽 𝑏 = 0 

(4.25) 

 Equivalent shear action for 𝑦 = 𝑏  

6) 𝑅 .
∗ | = 0 ⇒ 𝐶

𝜕 𝑤

𝜕𝑦
+ (𝐶 + 1 − 𝜈)

𝜕 𝑤

𝜕𝑥 𝜕𝑦
= 0 ⇒ 

 ⇒ 𝐴1
(1)

𝜓 𝑠𝑖𝑛ℎ𝛼1𝑏1 + 𝐴2
(1)

𝜓 𝑐𝑜𝑠ℎ𝛼1𝑏1 + 𝐴3
(1)

𝜓 𝑠𝑖𝑛𝛽
1
𝑏1 − 𝐴4

(1)
𝜓 𝑐𝑜𝑠𝛽

1
𝑏1 = 0 

(4.26) 

where the expressions of the coefficients 𝜙 , 𝜙 , 𝜓  and 𝜓  are reported in Eq. (4.27) and they are 

perfectly analogous to the expressions provided for only the elastic region and reported in Eq. (2.21). 

𝜙 = 𝐶 𝛼1
2 − (𝜈 + 𝐶3 − 1)𝜆  

𝜙 = 𝐶 𝛽
1
2 + (𝜈 + 𝐶3 − 1)𝜆  

𝜓 = 𝐶 𝛼1
3 − (𝐶 + 1 − 𝜈)𝛼1

2𝜆  

𝜓 = 𝐶 𝛽
1
3 + (𝐶 + 1 − 𝜈)𝛽

1
2𝜆  

(4.27) 

By expressing 𝐴
( )

= −𝐴
( ) , the unknown coefficients can be further reduced to five and, 

consequently, the critical stress can be obtained by solving the following system: 

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 𝑐𝑜𝑠ℎ𝛼 𝑏 𝑐𝑜𝑠𝛽 𝑏
0 𝛼 𝛽 −𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 𝛽 𝑠𝑖𝑛𝛽 𝑏

𝐷
( )

(𝛼 + 𝛽 ) 0 0 −𝐷
( )

𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 𝐷
( )

𝛽 𝑐𝑜𝑠𝛽 𝑏

𝜙 𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝜙 𝑐𝑜𝑠𝛽 𝑏 𝜙 𝑠𝑖𝑛ℎ𝛼 𝑏 −𝜙 𝑠𝑖𝑛𝛽 𝑏 0 0

𝜓 𝑠𝑖𝑛ℎ𝛼 𝑏 − 𝜓 𝑠𝑖𝑛𝛽 𝑏 𝜓 𝑐𝑜𝑠ℎ𝛼 𝑏 −𝜓 𝑐𝑜𝑠𝛽 𝑏 0 0 ⎦
⎥
⎥
⎥
⎥
⎤

⎩
⎪⎪
⎨

⎪⎪
⎧𝐴

( )

𝐴
( )

𝐴
( )

𝐴
( )

𝐴
( )

⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎩
⎪
⎨

⎪
⎧

0
0
0
0
0⎭

⎪
⎬

⎪
⎫

 (4.28) 
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A nontrivial solution, corresponding to the occurrence of buckling, is obtained when the membrane 

axial force reaches a value such that the determinant of the coefficient matrix is equal to zero: 

0 0 0 𝑐𝑜𝑠ℎ𝛼 𝑏 𝑐𝑜𝑠𝛽 𝑏
0 𝛼 𝛽 −𝛼 𝑠𝑖𝑛ℎ𝛼 𝑏 𝛽 𝑠𝑖𝑛𝛽 𝑏

𝐷
( )(𝛼 + 𝛽 ) 0 0 −𝐷

( )
𝛼 𝑐𝑜𝑠ℎ𝛼 𝑏 𝐷

( )
𝛽 𝑐𝑜𝑠𝛽 𝑏

𝜙 𝑐𝑜𝑠ℎ𝛼 𝑏 + 𝜙 𝑐𝑜𝑠𝛽 𝑏 𝜙 𝑠𝑖𝑛ℎ𝛼 𝑏 −𝜙 𝑠𝑖𝑛𝛽 𝑏 0 0

𝜓 𝑠𝑖𝑛ℎ𝛼 𝑏 − 𝜓 𝑠𝑖𝑛𝛽 𝑏 𝜓 𝑐𝑜𝑠ℎ𝛼 𝑏 −𝜓 𝑐𝑜𝑠𝛽 𝑏 0 0

= 0 (4.29) 

It is worthwhile mentioning that the parameters 𝛼 , 𝛽 , 𝛼 , and 𝛽  in the previous equations are 

dependent on the stress level according to Eq. (2.80), where also the coefficients of the plate stability 

differential equation (C1, C3 and C5) are dependent on the stress level. Therefore, the buckling stress 

corresponding to the solution of Eq. (4.29) can be easily found employing a numerical procedure 

working for increasing values of the axial stress in the plate elements up to the identification of the 

value satisfying Eq. (4.29). 
 

4.3. Numerical Procedure by means of MATLAB  

As mentioned previously, the solutions of the Eqns. (4.17) and (4.29) can not be reached in closed 

form, because the parameters, presented in these relationships, are dependent on the stress level and, 

consequently, on the value of the critical stress to be determined. For this reason, a numerical 

procedure has been developed through the MATLAB program [4.17]. In particular, the critical value 

of the stress in the plastic region, corresponding to the bifurcation point of equilibrium, can be found  

for increasing values of the axial stress in the plate elements until the determinant of the coefficient 

matrix is equal to zero, as depicted in Figure 4.3. 

As an example, the program script is reported in reference only to the hollow section. It is divided in 

three main parts: 

 Section 1. The main mechanical e geometrical properties are reported in this part. In particular, the 

stress-strain relationship of aluminium material is described according to Ramberg-Osgood law 

[Eq. (3.3)].  

%ELASTIC-PLASTIC BUCKLING FOR BOX SECTION UNIFORM COMPRESSION 
clear all 
close all 
clc 
 
%MECHANICAL PROPERTIES 
E=70000; %Young's modulus [MPa] 
n=25; %Ramberg-Osgood exponent 
f02=260; %Yield stress [MPa] 
fu=310; %Ultimate stress [MPa] 
s= [0: fu]; % Stress vector [MPa] 
e =s./E+0.002*(s./f02). ^n; %Strain vector 
ne=0.33; %Poisson's ratio 
np=0.5; %Plastic Poisson's ratio 
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%GEOMETRIC DATA 
m=[1:8]; %Number of buckling half-waves along the loading direction  
a=300; % Plate length [mm]  
%PLATE 1 
b1=100; %width plate 1 [mm] 
t1=5; %thickness plate 1 [mm] 
%PLATE 2 
b2=100; %width plate 2 [mm] 
t2=5; %thickness plate 2 [mm] 
%% 

 Section 2. The secant and tangent moduli, the Poisson’s ratio and, consequently, the elastic-plastic 

coefficient 𝐻  and 𝐶  are determined as a function of the stress vector, according to the 

relationships provided in Section 2.3. Moreover, the vectors of coefficients 𝛼  and 𝛽  are 

computed according to Eq. (2.80). 

%DEFINITION OF ELASTIC-PLASTIC COEFFICIENTS 
for i=2: length(e) 
    Es(i)=s(i). /e(i); %Secant modulus vector 
    Et(i)=(s(i)-s(i-1)). /(e(i)-e(i-1)); %Tangent modulus vector 
    ni(i)=np-(Es(i). /E) *(np-ne); %Poisson’ ratio according to Gerard and Wildhorn 
    H(i)=1+(((1-2*ni(i)). ^2). /4*(1-ni(i). ^2)). *(1-Et(i)./Es(i)); 
    C1(i)=1-(((2-ni(i)). ^2). /(4*H(i). *(1-ni(i). ^2))) .*(1-Et(i)./Es(i)); % Coefficient C1 
    C3(i)=1+(((2-ni(i)). *(1-2*ni(i))). /(4*H(i). *(1-ni(i). ^2))).*(1-Et(i)./Es(i)); % Coefficient C3 
    C5(i)=1-(((1-2*ni(i)). ^2). /(4*H(i). *(1-ni(i).^2))).*(1-Et(i)./Es(i)); %Coefficient C5 
    D1(i)=Es(i)*(t1^3/(12*(1-ni(i)^2))); %Flexural rigidity of the plate 1 
    D2(i)=Es(i)*(t2^3/(12*(1-ni(i)^2))); %Flexural rigidity of the plate 2 
end 
  
%DEFINITION OF COEFFICIENTS ALPHA AND BETA  
%Plate 1 
k1=(m*pi)/a; %Buckling factor for plate 1 
N1=t1*s; 
A1=sqrt((C3*(k1^2) +k1*sqrt((C3*k1). ^2-C5. *(C1*(k1^2)-N1./D1)))./C5); 
B1=sqrt((-C3*(k1^2) +k1*sqrt((C3*k1). ^2-C5. *(C1*(k1^2)-N1./D1)))./C5); 
  
%Plate 2 
k2=(m*pi)/a; %Buckling factor for plate 2 
N2=t2*s; 
A2=sqrt((C3*(k2^2) +k2*sqrt((C3*k2). ^2-C5. *(C1*(k2^2)-N2. /D2))). /C5); 
B2=sqrt((-C3*(k2^2) +k2*sqrt((C3*k2). ^2-C5. *(C1*(k2^2)-N2. /D2))). /C5); 
%% 

 Section 3. In the last part, the determinant of coefficient matrix is computed by increasing the load 

applied to the plates constituting the box section. Finally, the elastic-plastic buckling stress is 

evaluated as the value corresponding to a determinant equal to zero. However, this will never be 

exactly zero, for this reason, the final result can be obtained by means of a linear interpolation. 

%DEFINITION OF DETERMINANT OF COEFFICIENT MATRIX  
for i=1:length(e)  
Det(i)=det([cosh(A1(i)*b1),cos(B1(i)*b1),0,0;0,0,cosh(A2(i)*b2),cos(B2(i)*b2);A1(i)*sinh(A1(i)*b1),-
B1(i)*sin(B1(i)*b1),A2(i)*sinh(A2(i)*b2),-B2(i)*sin(B2(i)*b2);D1(i)*(A1(i)^2)*cosh(A1(i)*b1),-
D1(i)*(B1(i)^2)*cos(B1(i)*b1),-D2(i)*(A2(i)^2)*cosh(A2(i)*b2),D2(i)*(B2(i)^2)*cos(B2(i)*b2)]); 
end 
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 %COMPUTATION OF ELASTIC-PLASTIC CRITICAL STRESS  
p=find(Det<=0); 
Scr=(-Det(p(1)-1)*((s(p(1))-s((p(1)-1)))/(Det(p(1))-Det(p(1)-1))))+s(p(1)-1); 
%% 

Obviously, this procedure has to be repeated for increasing the number buckling half-waves along 

the loading direction. The final value of the buckling stress will be the smallest among those 

computed. The ultimate resistance 𝑁 .  is provided by the product of the critical stress 𝜎 .  and the 

geometric area of aluminium member 𝐴. With reference to aluminium alloy 6082-T6, characterized 

by a nominal conventional stress 𝑓 . = 260 𝑀𝑃𝑎 and the Ramberg-Osgood coefficient 𝑛 = 25, the 

relationship between the width-to-thickness ratio and the interactive critical stress in the elastic-

plastic range is reported in Figure 4.4. for a square hollow section and a H-shaped section.  It is 

possible to observe that, for a fixed value of the slenderness ratio b/t, the critical stress of box section 

is greater than that of H-section. This is obvious because, under the same conditions, the occurrence 

of the local buckling occurs earlier in the outstand parts, constituting the H-section, than in the flat 

internal parts constituting the hollow sections. Moreover, by observing the shape of curves, the 

transition between the only elastic region and the post elastic region is provided by the change in 

curvature of the curves. 

 

  

Figure 4.3. A generic trend between the determinant 
of matrix and the stress level in compression. 

Figure 4.4. Relationship between the width-to-
thickness ratio and the interactive critical stress. 
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4.4. Comparison with Stub Tests  

The accuracy of the theoretical procedure can be investigated by comparing the theoretical results 

with the values of the ultimate resistance obtained by stub column tests. To this scope, in the case of 

hollow section, reference is made to the stub column tests provided in Chapter 3, the stub tests 

recently performed by Su et al. [4.8] at the Structural Laboratory at the University of Hong Kong and  

the experimental campaign carried out by Faella et al. [4.12] at the beginning of the new millennium 

at the University of Salerno. As regards the H-shaped section, the comparison is referred to the 

experimental campaign performed by Heimerl et al. [4.13]-[4.15] in 1945 and whose results are 

collected NACA Technical Reports (National Advisory Committee on Aeronautics) and, more 

recently, the stub column tests carried out by Yuan et al. [4.16] at the school of Civil Engineering of 

Wuhan University. Most of the specimens are made of aluminium alloys belonging to the 6000 series, 

as it represents the series most used in civil structural applications. However, there are some 

specimens belonging to the 2000 and 7000 series, especially for the H-shaped sections. 

The geometrical and mechanical properties of all specimens, considered for comparison with the 

theoretical results, are collected in Annex A. In the case of the stub column tests, described in the 

Section 3.3, reference is made to the mean values of the mechanical and geometrical properties, 

provided in  Table 3.2 and Table 3.3.  

In Figure 4.5-Figure 4.8, the comparison between the theoretical procedure and the experimental tests 

is provided. In particular, in  Figure 4.5 and Figure 4.7, the theoretical buckling loads 𝑁 . , obtained 

by the procedure based on the deformation theory of plasticity, are compared with the experimental 

results 𝑁 . . While Figure 4.6 and Figure 4.8 show the comparison between the theoretical 

normalised strains 𝜀̅ . , corresponding to the theoretical buckling load 𝑁 . , and the 

experimental normalised strains 𝜀̅ . .   The normalization of the strain, corresponding to the 

occurrence of local buckling, is defined according to Eq. (3.6). The accuracy of the prediction of the 

ultimate behaviour of aluminium members is very high, especially, as regards the ultimate resistance. 

In fact, the average value of the ratio 𝑁 . 𝑁 .⁄  is equal to 1.02 for hollow sections and 1.01 for 

H-shaped sections, while the standard deviation is, respectively, equal to 0.089 and 0.080. Instead, 

the prediction of the deformation capacity is less accurate. In fact, the average value of the ratio 

𝜀̅ . 𝜀̅ . .⁄  is equal to 0.99 for hollow sections and 0.97 for H-shaped sections, while the standard 

deviation is, respectively, equal to 0.176 and 0.173. However, the theoretical approach is a safety 

procedure, because, in most cases, the experimental values are greater than those provided by DTP 

Method. For the sake of completeness, the numerical results are given in Annex A. 
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Figure 4.5. Comparison of the theoretical ultimate resistances with experimental results for box sections.  

 

 
Figure 4.6. Comparison of the theoretical normalised strains with experimental results for box sections.  
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Figure 4.7. Comparison of the theoretical ultimate resistances with experimental results for H- sections. 

 

 
Figure 4.8. Comparison of the theoretical normalised strains with experimental results for H-sections. 
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 .CHAPTER 5  

INTERACTIVE LOCAL BUCKLING 
UNDER NON-UNIFORM BENDING 

5.1. Introduction 

The present Chapter is devoted to the study of the ultimate behaviour of aluminium beams under non-

uniform bending moment. It is well known that, under seismic forces, structural members are often 

subjected to double curvature bending. This is the main reason why the ultimate behaviour and the 

plastic rotation capacity of metal members are usually investigated by referring either to a cantilever 

scheme or to the three-point bending testing scheme. In this way, the response under double curvature 

bending is interpreted considering the influence of the so-called shear length which is practically 

coincident with the distance between the point of zero moment and the section where the maximum 

bending moment occurs, i.e. the section where the development of the plastic hinge is expected.    

As seen in the compressed members, even under bending actions, the occurrence of the instability 

phenomena, in the compressed parts of the member section influences the inelastic response of the 

beams. The behaviour obtained is dependent on the width-to-thickness ratio of the plate elements 

constituting the member section. Such phenomenon governs both the flexural resistance of metal 

members and their plastic deformation capacity.  

Moreover, in the case of aluminium material, the strain-hardening plays a fundamental role both on 

the ultimate resistance and on the plastic rotation capacity. Strain hardening is related to the exponent 

𝑛 of the Ramberg-Osgood (R–O) constitutive law adopted in Eurocode 9 [5.1]. As higher is the 

coefficient 𝑛 as lowest is the strain-hardening effect. So that, the attainment of a comprehensive 

knowledge of the ultimate behaviour of aluminium alloy beams, compared to the case of steel 

members, is even more difficult because of the great variety of aluminium alloys with different 

properties of the stress-strain constitutive law. 

Naturally, in case of members subjected to non-uniform bending, plate elements are subjected to a 

strain gradient along the section and a longitudinal stress gradient due to the shear action. Moreover, 

the possibility of occurrence of lateral torsional buckling further complicates the ultimate behaviour 

of such members. 

In modern codes, such as Eurocode 3 for steel structures [5.2] and Eurocode 9 [5.1] for aluminium 

structures, the computational methods are based on the section classification criterion and, in 
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particular, on the maximum slenderness parameter and the restraining conditions only. Conversely, 

neither mutual restraining conditions nor the longitudinal stress gradient due to shear is taken into 

account. Therefore, Eurocodes do not consider the interaction between the slenderness parameters of 

the plate elements constituting the member section. The influence of the so-called shear length is also 

neglected. The Japanese code for steel structures adopts a more sophisticated approach; in fact, the 

member classification accounts for slenderness interaction formulas [5.3]. 

Nowadays, there is still a substantial gap of knowledge regarding the ultimate behaviour of aluminium 

alloys beams which would require a large number of experimental tests because of the high variety 

of aluminium alloy tempers and section shapes. For this reason, many research activities aiming at 

the development of simplified procedures and formulas for evaluating the ultimate resistance and the 

rotation capacity of aluminium alloy beams subjected to local buckling under non-uniform bending 

have been planned.  

It is evident that the study of aluminium beams is more complex than the aluminium columns and, 

consequently, a fully theoretical approach can not be carried out as made for aluminium members 

under uniform compression (Chapter 4). For this reason, in order to investigate the ultimate behaviour 

of hollow sections and H-shaped sections under bending moment, the finite element analyses have 

been performed on the four different aluminium alloys belonging to 6000 series, in order to evaluate 

the influence of the strain-hardening on the inelastic response of the aluminium beams. Obviously, 

the validation of FE models, adopted in the simulations, have been provided by comparing moment-

rotation curves, obtained by the ABAQUS program [5.4],[5.5] with the experimental curves of the 

three point bending tests. In particular, in the case of box section, the reference is made to the 

experimental campaign described in Chapter 3; while for H-shaped section, the finite element curves 

are compared with the experimental curves provided by Moen et al. [5.6]. Subsequently, an extensive 

parametric analysis has been performed by varying the main mechanical and geometrical non-

dimensional parameters: the flange slenderness and the flange-to-web slenderness ratio for taking 

into account the influence of the interactive local buckling; the ratio between the shear length and the 

width of section, in order to evaluate the influence of the moment gradient through the shear length. 

Finally, the empirical relationships are derived to estimate the flexural overstrength and the rotation 

capacity of aluminium beams in the post elastic range. 

5.2. Finite Element Analysis 

5.2.1. FE Model and its Validation 

FEM simulations represent a practical tool to compensate the gap of knowledge due to the limited 

number of available experimental test results. In fact, many researchers have simulated the behaviour 
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of extruded aluminium beams subjected to gradient moment loading [5.7]-[5.10]. In particular, De 

Matteis et al. [5.11],[5.12] evaluated the influence of the main geometrical and mechanical 

parameters on the ultimate response of extruded beams subjected to the non-uniform bending 

moment, but they did not propose a formulation to predict the response parameters for practical 

applications. Also in this case, the attention is devoted to the rectangular and H-shaped sections.  

The adopted FE model has been defined in Abaqus program and is similar to the one already proposed 

by Moen et al. [5.7] in a previous work. The scheme of the test set-up corresponds to the simply 

supported beam with a vertical load at mid-span (Figure 5.1), referred to as three-point bending test. 

However, the symmetry conditions of this structural scheme allow modelling only one half of the 

beam according to a cantilever scheme subjected to increasing displacement of a control node 

corresponding to the support location of the testing scheme. Moreover, the beam is transversely 

restrained to avoid the lateral displacements and the twist out of the vertical plane, which could 

generate flexural-torsional buckling. The choice of the partitions and the mesh discretization have 

been carried out according to the sensitivity analysis provided by Moen et al. [5.7] and De Matteis et 

al. [5.11],[5.12]. In particular, the mesh is based on the use of a 4-node shell element with reduced 

integration (S4R) with five integration points given through the thickness of the plate to guarantee 

that the spreading of plastic flow and the failure are adequately considered. The mesh density is not 

constant in the longitudinal direction. In particular, it increases close to the fixed end, where the 

maximum bending moment occurs. Figure 5.2 shows the partitions, the mesh discretization and the 

restraints of FE models adopted for box and H-shaped sections.  

 

Figure 5.1. Geometrical scheme of FE model. 

The numerical analyses have been carried out under displacement control, imposed on the cantilever 

section corresponding to the support of the testing scheme. In this section, a coupling constraint 

applied to all the points of section simulates a rigid diaphragm. Preliminarily, the influence of the 

geometrical imperfections on the ultimate behaviour has been investigated. To this scope, the 

buckling analysis has been performed and the lowest buckling mode characterised by a buckling 

shape corresponding to the local buckling of the flange in compression close to the fixed end is used 

for modelling initial geometrical imperfections. Such buckling mode is depicted in Figure 5.2 (down). 

The calibration of the magnitude of the corresponding eigenmode to be applied to the undeformed 
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model accounts for the initial geometrical imperfections. In particular, the scale factor of the 

eigenmode has been assumed equal to 𝑏/500, where 𝑏 is the width of the base plates. The choice of 

the value of the initial imperfection is made according to the sensitivity analysis carried out by Moen 

et al. [5.7], which showed that the results obtained in the case of the moderate imperfection level are 

more coherent with the experimental results.  The “Static, General” procedure has been performed by 

automatically increasing the step size. The input parameters imposed for the analysis are reported in 

the following table: 

Table 5.1. The input parameters of static general analysis. 

Static general Analysis 

Type: Automatic 

Maximum Number of increments: 100 

Increment size: 
Initial Minimum Maximum 

1 ∙ 10  1 ∙ 10  1 

As the work herein presented is specifically devoted to the distribution of internal actions occurring 

in the three-point bending test (i.e. non uniform bending accompanied by shear), it is important to 

underline the differences occurring when four-point bending tests are carried out. In fact, in case of 

four-point bending tests, the part of the beam subjected to local buckling is under uniform bending 

so that there is no any longitudinal stress gradient in the plate elements of the bucked zone. 

Conversely, a stress gradient occurs in case of the three-point bending test so that the occurrence of 

local buckling is delayed. However, at the same time the length of the yielded zone in the four-point 

bending test is increased when compared to the three-point bending test. As a result of these effects, 

the beams subjected to four-point bending test exhibit a decrease of the flexural resistance and an 

increase of the plastic rotation supply when compared to the results of the three-point bending tests. 

According to Eurocode 9, the stress-strain relationship is provided in the form 𝜀 = 𝜀(𝜎) according to 

the Ramberg-Osgood model (R-O) and reported in Eq. (3.3).  However, the experience in finite 

element analysis of aluminium alloy structures showed significant numerical difficulties and missing 

convergence drawbacks when using the Ramberg-Osgood model implemented in ABAQUS 

[5.7],[5.12]. For this reason, the use of the Hopperstad exponential model fitted on the Ramberg-

Osgood curve is adopted as the material model. The following equation provides the uniaxial true-

stress true-strain model used for the simulations: 

𝜎 = 𝑌 + 𝑄 1 − exp(−𝐶𝜀 )  (5.1) 

where 𝜎  is the current stress, 𝜀  is the plastic strain, 𝑌   is the conventional elastic limit strength equal 

to 𝑓 . , 𝑄 and 𝐶, are curve fitting parameters, whose values are presented below (Table 5.3). 
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Figure 5.2. Finite element model: mesh discretization and partitions (top); buckling mode adopted to 
modelling initial imperfections(down). 

According to Figure 5.3, the results of the Abaqus program are expressed as the normalised moment-

rotation curves (𝑀/𝑀 . − 𝜃/𝜃 . ), which entirely describe the ultimate behaviour of aluminium 

alloy beams under non-uniform bending. In particular, 𝑀 is the bending moment along the member 

length, occurring at the fixed end, 𝜃 is the rotation at the cantilever section where the displacement is 

imposed. As seen above, 𝑀 .  and 𝜃 .  are, respectively, the moment and the rotation corresponding 

to the achievement of the conventional yield stress 𝑓 . , consequently, according to Figure 5.4, it 

results: 

𝑀 . = 𝑊 𝑓 .  

𝜃 . =
𝑀 . 𝐿

4𝐸𝐼
=

𝑓 . 𝐿

𝐸ℎ
 

(5.2) 

where 𝑊  is the elastic section modulus, 𝐸 is the Young’s modulus of aluminium material, 𝐿 is the 

total length of beam, 𝐿  is the shear length and it is equal to 𝐿/2 and, finally, 𝐼 is the inertia moment 

of section. However, in this case, the elastic section modulus evaluated with reference to the mid-

thickness lines of the plate elements constituting the section. This choice is justified considering the 

use of shell elements for the development of the FE model, rather than the use of brick elements 

discretizing also the thickness of the plate elements. So that, according to the Figure 5.4, it results: 
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𝐁𝐎𝐗 𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

𝑊 = 𝑏 𝑡 ℎ +
𝑡 ℎ

3
 

𝐇 −  𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

𝑊 = 𝑏 𝑡 ℎ +
𝑡 ℎ

6
 

(5.3) 

where 𝑏  and 𝑡  are, respectively, the width and thickness of the base plate and the ℎ and 𝑡  are the 

width and thickness of the web plate, referring to the thickness lines of the elements constituting the 

section (Figure 5.4). 

 

Figure 5.3. Scheme of normalized moment-rotation curve. 

 

  

Figure 5.4. Schemes of geometric sections. 

The accuracy of FE model has been checked against the available experimental tests presented in 

Chapter 3 and provided  by Moen et al. [5.6]. In particular, for the box section, the results presented 

in Section 3.4 are compared with those obtined by the sofware program. While, in the case of H-

section, the comparison is performed with the experimental results, referred to the specimens I  and 

I , obtained by Moen. The mechanical properties of aluminium alloys, considered for the model 

calibration, are reported in Table B.1 of Annex B. In the case of the hollow sections, only the beams, 

exceeding the yield region, have been reported for the comparison, specifically, the SHS40 and 
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SHS60 aluminium members. Figure 5.5 and Figure 5.6 show the comparison between the nomalised 

moment-rotation curves obtained by Abaqus and the corresponding  experimental curves, 

respectively, for box sections and H-shaped sections.  

  

  

 
Figure 5.5. Comparison between FE numerical results and experimental test results for box section 

provided in Chapter 3. 
 



Chapter 5 

132 

  

  
Figure 5.6. Comparison between FE numerical results and experimental test results for H-shaped section  

provided by Moen et al. [5.6]. 

 

5.2.2. Parametric Analysis 

In order to investigate the ultimate behaviour of aluminium beams under non-uniform bending, a 

parametric analysis has been performed. The beams considered in this analysis are extruded profiles 

made of EN-AW6082 with temper T4 and T6 , EN-AW6063 T5 and, finally, EN-AW6061 T6. 

Temper T4 is a combination of solution process and natural ageing. After solution, followed by 

cooling, the material is not work hardened. In case of temper T5, the alloy is cooled after hot working 

and artificially aged. After the extrusion process, the material is rapidly cooled to obtain further 

hardening due to artificial ageing. Finally, temper T6 is the treatment it identifies a material artificially 

aged at a prescribed low temperature, as described in Section 3.2. Table 5.2 provides the nominal 

chemical composition of such alloys, while Table 5.3 presents the nominal mechanical properties and 

the values of the best fitting coefficients according to Hopperstad’s model [Eq. (5.1)]. The comparison 

between the stress-strain curves provided by Ramberg-Osgood’s law and those obtained by means of 

Hopperstad’s model is reported in Figure 5.7. 
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Table 5.2. Chemical composition according to EN573-3 [5.13]. 

Alloy Si Fe Cu Mn Mg Cr Zn Ti 
Others 

Al 
Each Total 

6082 0.70 -1.30 max 0.50 max 0.10 0.40 - 1.00 0.60 -1.20 max 0.25 max 0.20 max 0.10 max 0.05 max 0.15 rest 

6063 0.20 -0.60 0.35 0.10 0.10 0.45 -0.90 0.10 0.10 0.10 max 0.05 max 0.15 rest 

6061 0.40-0.80 0.70 0.15-0.40 0.15 0.80-1.20 0.04-0.35 0.25 0.15 max 0.05 max 0.15 rest 

 
Table 5.3. Nominal mechanical material properties of aluminium alloys. 

𝑨𝒍𝒍𝒐𝒚 𝑻𝒆𝒎𝒑𝒆𝒓 
𝑬 

[𝐌𝐏𝐚] 
𝒏 

[−] 
𝒇𝟎.𝟐 

[𝐌𝐏𝐚] 
𝒇𝒖 

[𝐌𝐏𝐚] 
𝒀𝟎 

[𝐌𝐏𝐚] 
𝑸 

[𝐌𝐏𝐚] 
𝑪 

[−] 

EN-AW6082 T4 70000 8 110 205 110 80 20 

EN-AW6063 T5 70000 16 130 175 130 45 20 

EN-AW6082 T6 70000 25 260 310 260 50 30 

EN-AW6061 T6 70000 55 240 260 240 20 40 
 

  

  

Figure 5.7. Comparison between the Ramberg-Osgood and the Hopperstad stress-strain curves. 
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According to Figure 5.2 and Figure 5.4, the parametric analysis investigated six parameters: the flange 

width  𝑏, the depth of the section ℎ measured as the distance between the mid-thickness lines of 

flanges, the flange thickness 𝑡 , the web thickness  𝑡  and the shear length 𝐿  and the Ramberg-

Osgood coefficient 𝑛 by considering four different aluminium alloys (Table 5.3). However, the case 

𝑡 = 𝑡  is assumed so that the main parameters reduce to five.  

Three main non-dimensional parameters, which influence the non-linear response of H-shaped and 

box-shaped beams under non-uniform bending, are identified in the following table: 

Table 5.4. The main non-dimensional parameters. 

𝐍𝐨𝐧 𝐝𝐢𝐦𝐞𝐧𝐬𝐢𝐨𝐧𝐚𝐥 𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐁𝐎𝐗 𝐒𝐄𝐂𝐓𝐈𝐎𝐍 𝐇 −  𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

Flange slenderness [𝝀𝒇] 𝜆 = 0.52
𝑏

𝑡

𝑓 .

𝐸
 𝜆 = 0.807

𝑏

𝑡

𝑓 .

𝐸
 

Flange to web slenderness ratio [𝜶𝒔] 𝛼 =
𝑏 𝑡

ℎ𝑡
 𝛼 =

𝑏 𝑡

2ℎ𝑡
 

Normalised shear length [𝑳𝒔] 𝐿 =
𝐿

𝑏
 𝐿 =

𝐿

𝑏
 

The slenderness parameters are considered to evaluate the influence of the geometrical properties of 

cross-section on the ultimate behaviour of beams, while the normalised shear length is introduced to 

take into account the influence of stress gradient along longitudinal direction. In the case of box-

shaped section, 12 value of 𝜆   have been considered: 0.27, 0.29, 0.33, 0.37, 0.41, 0.44, 0.47, 0.50, 

0.55, 0.60, 0.70 and 0.80. While the influence of the flange-to-web slenderness ratio 𝛼  has been 

investigated by varying its value from 0.50 to 2.00 with a step size equal to 0.50, so that 4 values of 

have been analysed. Regarding the H-section, the flange slenderness varies 𝜆  its value from 0.52 to 

1.24 with a step size equal to 0.08 for a total of 10 values. While the flange-to-web slenderness ratio 

𝛼  ranges from 0.20 to 0.50 with a step size equal to 0.10, so that 4 values of have been analysed.  

Finally, concerning the ratio between the shear length and the flange width 𝐿 , three typical values 

have been considered for both section types: 6.25, 12.5 and 18.75. It is important to underline that the 

variation ranges of the investigated parameters are selected according to the commercial geometrical 

dimensions currently adopted in the structural applications. The number of analysed cases for each 

alloy is equal to 144 and 120, respectively, for the hollow section and H-shaped section, where only 

the material characteristics are constant, while the cross-section dimensions and the length of the 

tested beams change according to the ranges, mentioned above, of variation of the parameters 

investigated. It is useful to note that, even though minor difference in the definition of the non-

dimensional parameters, the parametric analysis herein presented is similar to the one developed by 
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De Matteis et al. [5.11],[5.12] which gave rise to the background for the classification of cross 

sections according to Eurocode 9 [5.1]. The different approaches can be proposed for the definition 

of the slenderness parameter. In the present work, the simple definitions of slenderness parameters 

are adopted according to Eurocode purpose. Obviously, the disadvantage is that the interaction 

between the plate elements is not taken into account in the local slenderness definition. 

A different approach has been proposed by other researchers where the slenderness is directly defined 

as the square root of the ratio between the yield and the critical stress [5.14],[5.15]. The main 

advantage of this approach is that the interaction between the plate elements can be directly taken 

into account as soon as the critical stress is numerically computed using programs such as CUFSM 

[5.16] or analytical expressions [5.17] .However, this approach gives rise to additional numerical or 

analytical work compared to the one herein adopted. The results of the finite element simulations are 

reported in Appendix D of the present Chapter. In particular, for each investigated aluminium alloy 

and for a fixed value of  𝛼  and 𝐿 , the simulation curves are obtained by increasing the flange 

slenderness parameter 𝜆 . 

5.3. Derivation of mathematical formulas 

In this section, in order to evaluate the ultimate behaviour of aluminium members, the mathematical 

relationships are provided to compute the ultimate flexural resistance and the rotation capacity are 

presented. In particular, the obtained relations fitted the numerical results coming from FE 

simulations, previously described. According to  Figure 5.3, Such relations provide the non-

dimensional ultimate flexural resistance, the stable part of the rotation capacity and the total rotation 

capacity as functions of non-dimensional parameters presented in the previous section. These 

parameters are defined according to Mazzolani and Piluso [5.18], as also implemented by Eurocode 

9. In particular, the flexural overstrength is defined as already shown in Eq. (3.9): 

𝑀 =
𝑀

𝑀 .
 (5.4) 

While the capability of the plastic rotation is evaluated by means of two quantities: the stable part of 

rotation 𝑅 , corresponding to the maximum bending moment and the total rotation capacity 𝑅, which 

includes the post-buckling behaviour. They are given by: 

𝑅 =
𝜃

𝜃 .
− 1 (5.5) 

and: 

𝑅 =
𝜃

𝜃 .
− 1 (5.6) 
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Aiming to develop a formula for predicting the non-dimensional ultimate flexural strength of 

aluminium beams subjected to non-uniform bending, it is necessary to study, preliminarily, the 

influence of the different non-dimensional geometrical parameters by graphical representations of the 

finite element model results. The aim is pointing out the role of each parameter, given all the others.  

From these curves, the first evident observation is that the maximum moment 𝑀  and the ultimate 

rotation 𝜃  decrease for increasing values of the normalized slenderness parameter 𝜆 . In addition, it 

is evident that 𝑀 /𝑀 . , 𝜃 /𝜃 . , 𝜃 /𝜃 .  and, consequently, 𝑀 , 𝑅  and 𝑅 reduce for increasing 

values of the non-dimensional shear length 𝐿 . Moreover, by analysing the results provided by FE 

simulations, it is immediate observing that the normalised flexural strength 𝑀  decreases as the 

flange-to-web slenderness ratio 𝛼  increases. In order to evaluate the trend between the normalised 

values of flexural capability and the non-dimensional parameters, the Figure 5.8-Figure 5.11 show 

these relations with reference to H-shaped beams made of EN-AW 6082 T4 aluminium alloy. In 

particular, Figure 5.8 and Figure 5.9 provide the normalised maximum bending moment 𝑀  as a 

function of the slenderness parameters 𝜆 , 𝛼  and the non-dimensional shear length 𝐿 . While the 

trend between the rotation capacity, in terms of stable rotation part  𝑅  and total rotational ability 𝑅, 

and the main non-dimensional parameters are reported in Figure 5.10 and Figure 5.11. 

The strain-hardening behaviour of aluminium alloys, governed by the Ramberg-Osgood coefficient 

𝑛, affects the ultimate response of the beams. In particular, it is evident that for each fixed value of 

𝜆 , 𝛼  and  𝐿  the non-dimensional parameters  𝑀 , 𝑅  and 𝑅 decreases when the R-O exponent 𝑛 

increases. This means that, even though aluminium alloys EN-AW6082 T6 and EN-AW6061 T6 are 

characterized by high yielding values, the plastic overstrength capacity is limited by the high values 

of the R-O exponent. Conversely, the opposite behaviour occurs for low yielding aluminium alloys 

EN-AW6082 T4 and EN-AW6063 T5. However, it is important to underline that these quantities are 

a measure of the ductile behaviour of the member, i.e. is the capacity of the aluminium beam of 

exhibiting a hardening behaviour and, therefore, a plastic capacity.  

Taking into account the previous observations as well as the trend between the quantities involved, 

three multivariate regression are proposed for estimating the flexural overstrength and the rotational 

capacity of aluminium beams under non-uniform bending: 

𝑀 = [c 𝐿 + c  ]𝛼 + (c 𝑛 )(𝐿 )[ ] 𝜆
[ ( ) ]

 (5.7) 

𝑅 = c 𝐿 exp 𝛼 c 𝐿 − 𝛼 𝜆 − 𝜆 (c 𝑛 )𝐿  (5.8) 

𝑅 = 𝛼 (c 𝑛 )𝐿 𝑒𝑥𝑝 𝑐 𝛼 − [c 𝐿 + c 𝑙𝑛(𝑛) + c ]𝜆  (5.9) 
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where c , with 𝑖 = 1 … 8, are the regression coefficients and they are different for each formula. In 

Table 5.5 and Table 5.6 are reported the values of the regression coefficients, respectively, for box 

section and H-section. It is important to underline that The Eqns. (5.7),(5.8) and (5.9) are the outcomes 

of the fitting with numerical results obtained by advanced finite element simulations so that they 

should be used within the following ranges of the performed parametric analysis: 

𝐁𝐎𝐗 𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

0.27 ≤ 𝜆 ≤ 0.80 

0.50 ≤ 𝛼 ≤ 2.00 

6.25 ≤ 𝐿 ≤ 18.75 

𝐇 −  𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

0.52 ≤ 𝜆 ≤ 1.24 

0.20 ≤ 𝛼 ≤ 0.50 

6.25 ≤ 𝐿 ≤ 18.75 

(5.10) 

The accuracy of the mathematical formulas is show in Figure 5.12, Figure 5.13 and Figure 5.14, 

providing the comparisons between the empirical results coming from the mathematical fitting 

models [𝑀 . − 𝑅 . − 𝑅 ] and the numerical results obtained by FE simulations [𝑀 . −

 𝑅 . − 𝑅 ]. Moreover, in Table 5.7 the main statistical indices of the ratios between the values 

computed by Eqns. (5.8)-(5.10) and the corresponding results provided by FE simulations. From the 

comparison of the results, it is evident that the accuracy of the mathematical formula for estimating 

𝑀  is very high, as testified by the mean value of the empirical over numerical ratio equal to 1.00 

while the corresponding standard deviation is equal to 0.02 for both section types. Conversely, in the 

estimation of the rotational capacity by means of Eqns. (5.8) and (5.9), the standard deviation assumes 

values higher than 0.15 and this indicates less accuracy in the prediction of  𝑅  and 𝑅. Therefore, to 

predict the rotation capacity of aluminium beams subjected to local buckling under non-uniform 

bending, it is suggested the use of Eqns. (5.8) and (5.9) with the corresponding model factors 𝛾  

evaluated according to prEN1993-1-14:2020 [5.19] and delivered in Table 5.7. In particular, the 

model factor 𝛾  has been computed as corresponding to the 5% fractile of the ratio between the 

values resulting from mathematical formulas and the values obtained from FE simulations.  
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Table 5.5. Regression coefficients for evaluating 𝑀  , 𝑅  and 𝑅 in the case of box-shaped beams. 

 𝐜𝟏 𝐜𝟐 𝐜𝟑 𝐜𝟒 𝐜𝟓 𝐜𝟔 𝐜𝟕 𝐜𝟖 

𝑴𝒖 -0.00076 -0.09282 1.0318 0.07255 -0.00059 -0.00383 0.08722 -0.4265 

𝑹𝟎 793.8 -0.9470 1.0318 -5.769 4.506 0.2414 -0.1445 / 

𝑹 117800 -1.3765 -0.9129 -0.8155 -0.00045 -2.0083 11.40 / 

 

Table 5.6. Regression coefficients for evaluating 𝑀  , 𝑅  and 𝑅 in the case of H-shaped beams. 

 𝐜𝟏 𝐜𝟐 𝐜𝟑 𝐜𝟒 𝐜𝟓 𝐜𝟔 𝐜𝟕 𝐜𝟖 

𝑴𝒖 0.0008 -0.3766 1.4982 -0.0149 0.0002 -0.0684 0.0843 -0.4719 

𝑹𝟎 82.83 -0.1663 1.4982 1.942 1.789 0.1656 0.2543 / 

𝑹 222100 -0.8908 -1.6453 -0.7752 -0.0036 -0.0005 4.560 / 

 

Table 5.7. Summary of the comparison between the empirical regressions and the finite element simulations. 

𝐁𝐎𝐗 𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

 
Mean 
 [𝜇] 

Standard 
deviation 

 [𝜎] 

Coefficient 
of variation 

 [𝑐𝑜𝑣] 

Safety 
coefficient 

 [𝛾 ] 

𝑴𝒖.𝑬𝑹/𝑴𝒖.𝑭𝑬𝑴 1.00 0.02 0.02 1.03 

𝑹𝟎.𝑬𝑹/𝑹𝟎.𝑭𝑬𝑴 1.00 0.49 0.49 1.79 

𝑹.𝑬𝑹/𝑹.𝑭𝑬𝑴 1.05 0.30 0.29 1.55 

𝐇 −  𝐒𝐄𝐂𝐓𝐈𝐎𝐍 

 
Mean 
 [𝜇] 

Standard 
deviation 

 [𝜎] 

Coefficient 
of variation 

 [𝑐𝑜𝑣] 

Safety 
coefficient 

 [𝛾 ] 

𝑴𝒖.𝑬𝑹/𝑴𝒖.𝑭𝑬𝑴 1.00 0.02 0.02 1.03 

𝑹𝟎.𝑬𝑹/𝑹𝟎.𝑭𝑬𝑴 0.95 0.16 0.17 1.22 

𝑹.𝑬𝑹/𝑹.𝑭𝑬𝑴 1.00 0.15 0.15 1.21 
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Figure 5.8. Influence of parameter 𝛼  and 𝜆  on 𝑀  for fixed value of 𝐿  . 

 

  

  
Figure 5.9. Influence of parameter 𝐿   and 𝜆  on 𝑀  for fixed value of 𝛼 . 
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Figure 5.10. Influence of parameter 𝛼  and 𝜆  on the rotational capacity for fixed value of 𝐿  . 

 



Interactive Local Buckling under Non-uniform Bending 

141 

  

  

  

  

Figure 5.11. Influence of parameter 𝐿   and 𝜆  on the rotational capacity for fixed value of 𝛼 . 
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Figure 5.12. Accuracy of the mathematical fitting model for 𝑀 . 

 

  
Figure 5.13. Accuracy of the mathematical fitting model for 𝑅  

 

  
Figure 5.14. Accuracy of the mathematical fitting model for 𝑅. 
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5.4. Comparison with Bending Tests 

In this section, the comparison between the results obtained by the previous methodology and the 

experimental results referring to the three point bending tests is provided. In particular, the empirical 

formulas, Eqns. (5.7) and (5.8), have been applied to evaluate the inelastic response of aluminium 

beams in terms of the maximum bending moment 𝑀  and the corresponding non-dimensional 

rotation �̅� . For this reason, according to the definition provided in the previous section and 

considering the Eqns. (5.4) and (5.5), the maximum bending moment and the corresponding rotation 

can be computed as: 

𝑀 = 𝑀 . ∙ 𝑀 .  (5.11) 

and: 

�̅� =
𝜃

𝜃 .
= 1 + 𝑅 .  (5.12) 

where 𝑀 .  and 𝜃 .  are, respectively, the bending moment and the rotation corresponding to the 

yielding region, while 𝑀 .  and 𝑅 .  represent the flexural overstrength and the stable part of the 

rotation expressed as the empirical regressions in Eqns. (5.7) and (5.8). 

For the comparison with the experimental results, the reference is made to the three point bending 

tests provided in Chapter 3 those performed by Moen et al. [5.6] at the Norwegian University of 

Science and Technology in 1999 and by Su et al. [5.14] at the University of Hong Kong in 2014. The 

experimental data are collected in the Section B.1 of Annex B.  

Figure 5.15 shows the comparison between the values of the flexural resistance computed by Eq. 

(5.11) with those obtained by the experimental tests. The accuracy of the prediction of the ultimate 

behaviour of aluminium members is very high, especially, as regards the ultimate resistance. In fact, 

the average value of the ratio 𝑀 . 𝑀 .⁄  is equal to 1.02 with the standard deviation equal to 0.14. 

Instead, the prediction of the normalised rotational capacity is less accurate. In fact, the average value 

of the ratio �̅� . �̅� . . is equal to 0.92, while the standard deviation is 0.15. However, the empirical 

approach is a safety procedure, because, in most cases, the experimental values are greater than those 

provided by empirical formula provided in Eq.(5.12). For the sake of completeness, the numerical 

results are given in Annex B. In cases where the experimental results are not reported, it means that 

they have not been presented by the authors. Moreover, in the comparison of the normalised rotations, 

some experimental tests are not considered because they did not exhibit a ductile behaviour being 

affected by the local buckling phenomena in the elastic range.  
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Figure 5.15. Comparison of the theoretical bending moments with experimental results. 

 

 
Figure 5.16. Comparison of the theoretical normalised rotations with experimental results. 
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Appendix D 

D.1. The Normalised Moment-Rotation Curves for Box-shaped Section 

𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟖𝟐 𝐓𝟒 [𝒏 = 𝟖] 
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𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟔𝟑 𝐓𝟓 [𝒏 = 𝟏𝟔] 
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𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟖𝟐 𝐓𝟔 [𝒏 = 𝟐𝟓] 
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𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟔𝟏 𝐓𝟔 [𝒏 = 𝟓𝟓] 
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D.2. The normalised Moment-Rotation Curves for H-shaped Section 

𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟖𝟐 𝐓𝟒 [𝒏 = 𝟖] 
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𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟔𝟑 𝐓𝟓 [𝒏 = 𝟏𝟔] 
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𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟖𝟐 𝐓𝟔 [𝒏 = 𝟐𝟓] 
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𝐄𝐍 − 𝐀𝐖 𝟔𝟎𝟔𝟏 𝐓𝟔 [𝒏 = 𝟓𝟓] 
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 .CHAPTER 6  

EFFECTIVE THICKNESS METHOD 

6.1. Different Approaches in the Design of Aluminium Sections 
 
In technical literature, there are different simplified methods to evaluate the behaviour of aluminium 

members under uniform and non-uniform compression, taking into account that the response of thin-

walled sections is strongly affected by local instability phenomena which arise in the compressed 

part. The main approaches, codified and adopted by the European Eurocodes, are: 1) the width 

effective approach, 2) the reduced strength approach and 3) the effective thickness approach.  

The first one is very well known, being codified for many years with particular reference to steel 

structures [6.1]. It was first introduced by Von Kármán in 1932 [6.2]. He stated that, for a fixed 

thickness, a fictitious plate with the width of 𝑏  would have the critical stress equal to the yield 

stress. If the actual plate has larger width, the capacity would be the same as that of the fictitious 

plate. In a plate the real stress distribution is approximated, or replaced, with two strips which describe 

the load carrying effective width of the plate. Consequently, this method is based on the reduction of 

the cross-section area in the parts affected by plate buckling.  

The reduced stress method, used in the past in Aluminium Associated Code [6.3], checks at which 

stress level a plate part buckles, if a cross-section is built up from multiple plate parts the lowest stress 

is governing for the entire cross-section. So, it evaluates the capacities of a slender section by 

considering a reduced value of the limiting stress acting on the full section. 

Finally, the effective thickness approach, firstly introduced in the British Code of Practice for 

Structural Aluminium [6.4], has been more recently introduced in EN1999-1-1 dealing with 

aluminium alloy structures [6.5]. It is based on replacing the true section by an effective one obtained 

to reduce the actual thickness of the compressed parts. The main advantage of the effective thickness 

approach is that it allows more easily to account for the influence of heat-affected zones in the case 

of cross-sections composed by welding. This is very important in the case of aluminium alloy 

structures where a significant reduction of the material properties arises in the heat-affected zones. 

Figure 6.1 shows a qualitative comparison between the different design approaches for a generic box 

section subjected to non-uniform compression.  

Nowadays, the currently European Code Provisions suggests the use of the effective width approach 

and the effective thickness method, respectively, for the steel and aluminium cross-section. In 
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particular, these methods are indirectly used to evaluate the behaviour of the slender sections, 

belonging to the class 4, affected by the local buckling occurring in the elastic region. 

Moreover, as already mentioned in the previous chapters, in order to evaluate the ultimate behaviour 

of aluminium members, taking into account the interactive local buckling in the post elastic region, 

others simplified approaches have been recently been proposed as, for example, the continuous 

strength method (CSM) [6.6] or the direct strength method (DSM) [6.7] provided, respectively, by 

Gardner and Schafer. However, the current methodologies, aiming the evaluation the inelastic 

response of aluminium members, provide the predictional values of ultimate compressive resistance 

which are excessively conservative in comparison with the experimental results, presented in the 

technical literature. 

In this Chapter, an extension of effective thickness method (ETM) is provided in order to take into 

account the interaction of the plate elements constituting the cross-sections and the strain-hardening 

behaviour of aluminium alloys. 

 
Figure 6.1. Comparison of the different design approaches for a rectangular section in bending. 

 

6.2. Extension of the Effective Thickness Method (ETM) 

The new version of the effective thickness approach properly modifies the simplified rules given in 

the general provisions of EN1991-1-1 [6.5] to account for the occurrence of buckling in the plastic 

range, as it occurs in the case of sections whose plate elements are characterised by small values of 

the width-to-thickness ratio. 

As reported in Chapter 2 [Eq. (2.11)], the elastic buckling stress of an isolated plate element is given 

by: 

𝜎 . = 𝑘
𝜋 𝐸

12(1 − 𝜈 )(𝑏 𝑡⁄ )
 (6.1) 

where 𝐸 is the elastic modulus, 𝜈  is the Poisson’s ratio in the elastic range, 𝑏 is the plate width, 𝑡 is 

the plate thickness and 𝑘  is the buckling factor. The factor 𝑘  accounts for the edge restraining 

conditions and the stress distribution along the loaded edges. 

In the case of the plate elements constituting the section of a structural member, the occurrence of 

elastic buckling is also affected by the interaction between the plate elements constituting the member 
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section and by the longitudinal stress gradient. These effects can be taken into account by modifying 

Eq. (6.1) using two factors: 𝜁 and 𝛼 . The factor 𝜁 accounts for the interaction between the plate 

elements composing the section. The factor 𝛼  accounts for the influence of the longitudinal stress 

gradient occurring in structural members under non-uniform bending. Obviously, in the case of 

uniform compression, herein investigated, 𝛼 = 1.0. 

Therefore, including the effects of interactive buckling and longitudinal stress gradient, the elastic 

buckling stress can be expressed as: 

𝜎 . = 𝜁 𝛼 𝑘
𝜋 𝐸

12(1 − 𝜈 )(𝑏 𝑡⁄ )
  (6.2) 

The occurrence of buckling in the plastic range can be accounted for using a correction factor which 

depends on the non-linear behaviour of the material. By denoting with 𝜉 such correction factor, the 

buckling stress in the plastic range 𝜎 .  is given by: 

𝜎 . = 𝜉 𝜁 𝛼 𝑘
𝜋 𝐸

12(1 − 𝜈 )(𝑏 𝑡⁄ )
  (6.3) 

where also the Poisson’s ratio 𝜈 has to be evaluated accounting for the non-linear behaviour of the 

material. Regarding the 𝜉 factor, many different expressions have been proposed in the technical 

literature for its evaluation. Some of them will be presented in the following discussion. 

Concerning the Poisson’s ratio in the yield region, as shown in Chapter 2, Gerard and Wildhorn  [6.8] 

have studied the problem in the case of several aluminium alloys and have shown that it is seriously 

affected by the anisotropy of the material. In the case of materials exhibiting the same properties in 

the two directions orthogonal to the loading direction, they proposed Eq. (2.39). However, in the case 

of perfectly plastic material, the condition 𝜈 = 𝜈  is reached only when the strain assumes infinite 

value (ε → ∞) so that 𝐸 → 0. Therefore, within the framework of a simplified procedure like the 

effective thickness approach, an alternative relation can be proposed: 

𝜈 = 𝜈 −
 𝐸

𝐸
𝜈 − 𝜈   (6.4) 

which assures 𝜈 = 𝜈  in the elastic range (𝐸 = 𝐸) and the condition 𝜈 = 𝜈  when a plastic plateau is 

reached (𝐸 = 0). Eq. (6.3) can be written as follows: 

𝐸  𝜀 = 𝜉 𝜁 𝛼 𝑘
𝜋 𝐸

12(1 − 𝜈 )(𝑏 𝑡⁄ )
  

(6.5) 
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where 𝜀 is the strain corresponding to buckling. Consequently, the effective ratio 𝑏 𝑡⁄   can be defined 

as a function of the strain level as: 

𝑏

𝑡
=

𝜉𝐸

 𝐸
 𝜁 𝛼 𝑘

𝜋

12(1 − 𝜈 ) 
 
1

𝜀
 (6.6) 

The effective thickness can be derived by noting that: 

𝑡

𝑏
=  

 𝐸

𝜉𝐸

1

𝜁 𝛼 𝑘

12(1 − 𝜈 )

𝜋
 𝜀 (6.7) 

and by introducing a parameter 𝜇, which accounts for the non-linear behaviour of the material: 

𝜇 =
𝜉𝐸

 𝐸

1

1 − 𝜈
 (6.8) 

so that the following relation is obtained: 

𝑡

𝑡
=

𝑏

𝑡
 
12

𝜋
 
1

𝜇
 

1

𝜁 𝛼 𝑘
 𝜀 (6.9) 

Remembering that: 

�̅� =
𝑡

𝑡
 (6.10) 

It means that the normalised slenderness in the non-linear range (elastic-plastic range), depending on 

the strain level, can be defined as: 

�̅� =
𝑏

𝑡
 
12

𝜋
 
1

𝜇
 

1

𝜁 𝛼 𝑘
 𝜀 (6.11) 

To use the buckling curves of EN1999-1-1 with the normalised slenderness corrected to account for 

the non-linearity depending on the strain level, it has to be considered that: 

�̅� = 0.03143 
𝛽

𝜖
 (6.12) 

where 𝜖 = 250 𝑓 .⁄  , therefore: 

𝛽

𝜖
=  

�̅�

0.03143
=

1

0.03143
 

3

𝜋
  

𝜀

𝜇 𝜁 𝛼
 

2

√𝑘
 
𝑏

𝑡
 (6.13) 

Taking into account that, in EN1999-1-1, the factor accounting for the stress distribution along the 

loaded edge is: 

𝜂 =
2

√𝑘
  (6.14) 
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Eq. (6.12) provides: 

𝛽

𝜖
=  17.54 𝜂 

𝑏

𝑡
 

𝜀

𝜇 𝜁 𝛼
   (6.15) 

which is the final expression to compute the slenderness parameter of the plate element to be used, in 

combination with the buckling curves of EN1999-1-1. This allows computing the effective thickness 

in the non-linear range as a function of the strain level 𝜀. In fact, according to EN1999-1-1, the 

reduction factor accounting for local buckling is computed as: 

𝜌 = 1          𝑖𝑓      
𝛽

𝜖
≤

1

2
C + C − C (3 + 𝜓)   (6.16) 

  and: 

𝜌 =
C

𝛽 𝜖⁄
−

C (3 + 𝜓)

4 (𝛽 𝜖⁄ )
          𝑖𝑓      

𝛽

𝜖
>

1

2
C + C − C (3 + 𝜓)   (6.17) 

The parameter 𝜓 accounts for the strain distribution along the loaded edge of the plate. It is given by 

the ratio between the maximum compression strain at one end of the plate and the strain at the second 

end of the plate element. In the case of uniform compression, it results 𝜓 = 1 while 𝜓 < 0 when the 

second end of the plate element is subject to tension. While the coefficient C  and C  are reported in 

Eurocode 9 and they are defined according to the Buckling Curves: 

Table 6.1. Values of the coefficients 𝐶  and 𝐶  reported in the Eurocode 9. 

𝑩𝒖𝒄𝒌𝒍𝒊𝒏𝒈 𝑪𝒖𝒓𝒗𝒆 
𝑰𝒏𝒕𝒆𝒓𝒏𝒂𝒍 𝒑𝒂𝒓𝒕 𝑶𝒖𝒕𝒔𝒕𝒂𝒏𝒅 𝒑𝒂𝒓𝒕 

𝐂𝟏 𝐂𝟐 𝐂𝟏 𝐂𝟐 

A 32 220 10 24 

B 30.5 209 9.5 22 

C 29 198 9 20 

Regarding the 𝜉 factor needed in Eq. (6.8) as already stated, a variety of different formulations have 

been proposed in the technical literature [6.9]-[6.12].The most commonly used formulations are: 

 tangent modulus theory: 𝜉 =
𝐸

𝐸
 

 secant modulus theory: 𝜉 =
𝐸

𝐸
 

 Stowell (1948), Bijlaard (1949): 
𝜉 =

𝐸

𝐸

1

3
+

2

3

1

4
+

3

4

𝐸

𝐸
 

 Li and Reid (1992): 𝜉 =
𝐸

𝐸

1

2
+

1

2

1

4
+

3

4

𝐸

𝐸
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The use of the tangent modulus theory provides the smallest value of the buckling load. Conversely, 

the secant modulus theory provides the greatest value of the buckling load. While the relationships 

provided by Stowell-Bijlaard and Li-Reid provide intermediate values. However, aiming to improve 

the accuracy of the results obtained when the effective thickness approach is applied to predict to 

ultimate resistance of aluminium members subjected to local buckling under compression and non-

uniform bending, other two formulations are proposed. The first one derives by the theoretical results 

obtained in Chapter 2. In particular, as seen in Section 2.36, this is obtained by combining the Eqns. 

(2.108) and (2.109) derived by a single plate simply supported along four edges under uniform 

compression:  

𝜉 = 0.42𝐶 + 0.58 𝐶 𝐶
1 − 𝜈

1 − 𝜈

𝐸

𝐸
 (6.18) 

where the expressions of the plastic coefficients 𝐶  are reported in Eq.(2.76).  It is possible to observe 

that this formulation is similar to the relations proposed by Stowell-Bijlaard and Li-Reid, however in 

this case the variability of Poisson’s ratio is accounted. While, in the case of aluminium beams in 

bending, the following relationship is suggested: 

𝜉 =
𝐸

𝐸

𝑛 − 8

8
+

8

𝑛

𝐸

𝐸
 (6.19) 

It can be recognised that Eq. (6.19) is a combination of the secant modulus theory with the Gerard 

formula. In particular, for small values of the Ramberg-Osgood exponent 𝑛, Eq. (6.19) tends to 

provide values close to those given by Gerard. Conversely, for high values of 𝑛, Eq. (6.19) tends to 

provide values close to the secant modulus theory. In the following, referring to the application of the 

effective thickness approach, Eqns. (6.18) and (6.19) are used. 

Regarding the factor accounting for the influence of the longitudinal stress gradient, the following 

relations can be adopted [6.13],[6.14]: 

 for a flat internal compression cross-section part: 

𝛼 = 1 +
1

4

1.70

𝐿
𝑏

.

− 0.20

 (6.20) 

 in case of flat outstand compression elements: 

𝛼 = 1 +
1

0.425

1.70

𝐿
𝑏

.

− 0.60

 (6.21) 
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where 𝐿  is the shear length and 𝑏 is the plate width in compression. The shear length is defined as 

the distance between the point of zero bending moment and the section where the maximum bending 

moment occurs. In the case of uniform compression, 𝛼 = 1.0. 

The correction factor 𝜁 for interactive buckling can be evaluated taking into account that it represents 

the ratio between the buckling factor 𝑘 accounting for interactive buckling and the buckling factor 𝑘  

evaluated for the isolated plate element, i.e. 𝜁 = 𝑘 𝑘⁄ . 

 in the case of plate elements, acting as flange, connected to webs on both edges (curve 1 of Figure 

6.2) 

𝜁 =  1.75 −
0.45 𝑏 𝑏⁄

0.15 + 𝑏 𝑏⁄
− 0.02275(𝑏 𝑏⁄ ) ≥ 1 (6.22) 

which is derived from the expression of 𝑘 given by BS5950-5 [6.15] considering that, in this case, 

𝑘 = 4. 

 in the case of plate elements, acting as flange, connected to the web on one edge and the lip on 

another edge (curve 2 of Figure 6.2) 

𝜁 =  1.35 −
0.35 𝑏 𝑏⁄

0.60 + 𝑏 𝑏⁄
− 0.005(𝑏 𝑏⁄ ) ≥ 1 (6.23) 

which is derived from the expression of 𝑘 given by BS5950-5 [6.15] considering that, in this case, 

𝑘 = 4. 

 in the case of unstiffened elements, acting as a flange (Figure 6.2) 

𝜁 =  3.00 −
1.882 𝑏 𝑏⁄

2.0 + 𝑏 𝑏⁄
− 0.0059(𝑏 𝑏⁄ ) ≥ 1 (6.24) 

which is derived from the expression of 𝑘 given by BS5950-5 [6.15] considering that, in this case, 

𝑘 = 0.425. 

  
Figure 6.2. Correction factor for interactive buckling: for stiffened compression elements of beams (left) 

and unstiffened compression elements of beams (right) 
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6.3. Numerical Procedure under Displacement Control 

The application of the effective thickness approach, as previously described, requires a procedure 

under displacement control. Regarding stub columns subjected to uniform compression, for 

increasing values of the axial displacement 𝛿 the corresponding average strain 𝜀 = 𝛿 ℎ⁄  is derived, 

being ℎ the height of the specimen. Therefore, the slenderness parameter is given by Eq. (6.15) for 

increasing values of the strain level and computed for the plate elements constituting the member 

section. It increases for increasing values of 𝜀. The appropriate buckling curve is used, according to 

EN1999-1-1, so that the effective thickness is computed for all the plate elements and the effective 

cross-section area 𝐴  is computed. The axial force corresponding to the axial displacement 𝛿 is 

obtained as 𝑁 = 𝜎 𝐴  where 𝜎 is the stress level corresponding to 𝜀, evaluated according to the 

constitutive stress-strain curve of the material, i.e., the Ramberg-Osgood model. The axial force 

versus axial displacement curve is thus obtained. The maximum value of this curve is the ultimate 

buckling resistance. The obtained curve includes also the softening branch due to the post-buckling 

behaviour. It occurs when the progressive reduction of the effective area is no more compensated by 

the increase of the stress due to the increase of the strain level (Figure 6.3).  

In the case of beams under bending, the numerical procedure is more complicate than the previous 

case. In fact, after the strain level and, consequently, the corresponding stress 𝜎,  are not constant, but 

they vary along the section heigh. For this reason, it is not possible to apply a continuous relation, as 

depicted for the uniform compression, but a fiber model is used to evaluate the curvature 𝜒 as a 

function of the strain level 𝜀. Finally, the bending moment 𝑀 by means of the rotational equilibrium 

equation between the compression parts and the tension parts (Figure 6.3).  

Moreover, according to Figure 6.4, the rotation 𝜃 corresponding to the attainment of the flexural 

resistance 𝑀 has been calculated by integrating the curvature diagram 𝜒 along the shear length of the 

structural member: 

𝜃 = 𝜒[𝑀(𝑥)] 𝑑𝑥 (6.25) 

Obviously, the rotation 𝜃 , can be estimated by means of Eq. (6.25) for 𝜒[𝑀(𝑥)] = 𝜒 , i.e., the 

curvature corresponding to the maximum bending moment 𝑀 . Instead, the maximum rotation 𝜃 , 

corresponding to the at the point where the moment resistance drops back below the conventional 

yield value 𝑀 . , can be computed as: 

𝜃 = 𝜃 + (𝜒 − 𝜒 )𝐿  (6.26) 
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where 𝜒  is the ultimate curvature and 𝐿  is the length of the plastic hinge evaluated as the distance 

between the points where the conventional yield curvature 𝜒 .  and 𝜒  occur. 

  
COMPRESSION BENDING 

Figure 6.3.Scheme of a generic box section in compression (left) and in bending (right). 

 

 
Figure 6.4. Moment and Curvature diagrams for a beam subjected to the concentrated load. 

For the sake of completeness, the MATLAB scripts [6.24] of the numerical procedures, previously 

described, are given in Appendix E referring to a generic box section. Obviously, the same 

considerations can be assumed for the H-shaped sections. Finally, Figure 6.5 - Figure 6.8 show a 

comparison between the experimental curves, provided in Chapter 3, with those obtained by effective 

thickness approach. In particular, the stub column tests curves are compared with the compressive 

load- strain curves in Figure 6.5, while Figure 6.6-Figure 6.8 report the comparison between the three 

point bending tests and the moment-curvature curves. In the last cases, it is easy to recognize that the 

accuracy of the theoretical curves decreases for increasing the section width and when the length of 

beam decreases. Moreover, as already pointed out in Chapter 3, the experimental results of specimens 
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SHS80_L2, SHS80_L3, SHS100_L2 and SHS100_L3 are neglected, because they are not governed 

by the pure flexural behaviour, conversely, they are affected by the local instability phenomena due 

to the concentrated force. 

  

  

Figure 6.5. Comparison between stub test curves and compressive load-strain curves obtained by effective 
thickness method (ETM). 
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Figure 6.6. Comparison between experimental curves and moment-curvature curves obtained by effective 
thickness method (ETM) for length 𝐿 = 1300 𝑚𝑚 

 

  
Figure 6.7.  Comparison between experimental curves and moment-curvature curves obtained by effective 

thickness method (ETM) for length 𝐿 = 800 𝑚𝑚 
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Figure 6.8. Comparison between experimental curves and moment-curvature curves obtained by effective 

thickness method (ETM) for length 𝐿 = 500 𝑚𝑚 
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6.4. Comparison with Stub and Bending Tests 

In this section, the accuracy of this methodology is evaluated in the prediction of the ultimate 

behaviour of aluminium members in compression and in bending. In particular, the same comparisons 

with experimental results, provided in Sections 4.4 and 5.4, respectively, for members in compression 

and in bending, have been proposed computing the theoretical values of the maximum resistances 

and the corresponding deformation capacities by means of the effective thickness method (ETM). 

In the case of the uniform compression, Figure 6.9-Figure 6.12 show the comparison between the 

theoretical buckling loads 𝑁 . , and the normalised deformation 𝜀̅ .   with the corresponding 

experimental results reported in Chapter 3 and in scientific literature [6.16]-[6.21].The normalization 

of the strain, corresponding to the occurrence of local buckling, is defined according to Eq. (3.6). The 

prediction of the ultimate behaviour of aluminium members is accurate, especially, as regards the 

ultimate resistance. In fact, the average value of the ratio 𝑁 . 𝑁 .⁄  is equal to 0.96 for hollow 

sections and 0.93 for H-shaped sections, while the standard deviation is, respectively, equal to 0.07 

and 0.11. Instead, the prediction of the deformation capacity is less accurate. In fact, the average value 

of the ratio 𝜀̅ . 𝜀̅ . .⁄  is equal to 0.81 for hollow sections and 1.01 for H-shaped sections, while 

the standard deviation is, respectively, equal to 0.22 and 0.28. However, the theoretical approach is a 

safety procedure, because, in most cases, the experimental values are greater than those provided by 

the effective thickness method (ETM). The numerical results are given in Annex A.  

In the case of aluminium beams in bending, the comparison refers to the three point bending tests 

presented in Chapter 3 and to the experimental results reported in scientific literature [6.22],[6.23]. 

Due to lack of lot of available experimental data, the results of the hollows sections and the H-shaped 

sections are not evaluated separately as for the case of compression. Figure 6.13 and Figure 6.14 

shows the comparison between the results obtained by ETM method and those provided by the three 

point bending tests. There is a good accuracy in the prediction of the ultimate behaviour of aluminium 

members, especially, as regards the ultimate resistance. In fact, the average value of the ratio 

𝑀 . 𝑀 .⁄  is equal to 0.97 with the standard deviation equal to 0.15. 

Instead, the prediction of the normalised rotational capacity is less accurate. In fact, the average value 

of the ratio �̅� . �̅� .  is equal to 0.90, while the standard deviation is 0.12. However, the effective 

thickness method can be applied in all cases without any limitations, instead the empirical regressions, 

although more accurate and simpler in the computation, can not be always used, but their application 

has to respect the limit the ranges provided in (5.10). The numerical results are given in Annex B. 
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Figure 6.9. Comparison of the theoretical ultimate resistances with experimental results for box sections. 

 

 

Figure 6.10. Comparison of the normalised strains with experimental results for box sections. 
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Figure 6.11. Comparison of the theoretical ultimate resistances with experimental results for H-sections. 

 

 
Figure 6.12. Comparison of the theoretical normalised strains with experimental results for H- sections. 
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Figure 6.13. Comparison of the theoretical flexural resistances with experimental results. 

 

 
Figure 6.14. Comparison of the rotational capacities with experimental results. 
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Appendix E 

E.1. Script for Box Section in Compression 

%EFFECTIVE THICKNESS METHOD FOR UNIFORM COMPRESSION 
  
clear all 
close all 
clc 
%% DATA 
%%MECHANICAL PROPERTIES 
E=71770; %Young's Modulus [MPa] 
n=11.8; %Ramberg-Osgood coefficient 
f02=168; %Yield stress [MPa] 
fu=201.4; %Ultimate stress [MPa] 
csi=3; %Plastic coefficient 
%GEOMETRIC PROPERTIES 
a=180; %Height of column [mm] 
B1=40; % Width of plate 1 [mm] 
B2=40; % Width of plate 2 [mm] 
B3=B1;  
B4=B2; 
t1=2.197; % Thickness of plate 1 [mm] 
t2=2.085; % Thickness of plate 2 [mm] 
t3=1.99; % Thickness of plate 3 [mm] 
t4=1.997; % Thickness of plate 4 [mm] 
b1=B1-(t2+t4); 
b2=B2-(t1+t3); 
b3=b1; 
b4=b2; 
%% STRESS-STRAIN CURVE-SECANT AND TANGENT MODULI-POISSON'S RATIO 
s=1:fu; %Stress vector 
e =s./E+0.002*(s./f02).^n; %Strain vector 
ne=0.33; %Elastic Poison's ratio 
np=0.5;   %Plastic Poison's ratio 
for i=2:length(e) 
Es(i)=s(i)./e(i); %Secant Modulus vector 
Et(i)=(s(i)-s(i-1))./(e(i)-e(i-1)); %Tangent Modulus vector 
ni(i)=np-(Es(i)./E)*(np-ne); %Poisson ratios vector 
end 
  
%% DEFINITION OF CSI,ZETA,ALPHA 
 z=1.35-(0.35*(B2/B1)/(0.60+B2/B1))-0.005*(B2/B1)^3; %ZETA FACTOR 
a1=1+0.25*(1.7/((h/b1)^0.75-0.20)); %ALPHA FACTOR FOR PLATE 1 AND 3 
a2=1+0.25*(1.7/((h/b2)^0.75-0.20)); %ALPHA FACTOR FOR PLATE 2 AND 4 
  
if csi==1; 
x=Et/E; % theory of tangent modulus 
end 
if csi==2; 
x=Es/E; % theory of Secant modulus 
end 
if csi==3; 
x=Es/E.*(1/3+(2/3)*sqrt(0.25+0.75*(Et./Es))); %Theory of Stowell 
end 
if csi==4; 
x=Es/E.*(1/3+(2/3)*sqrt(0.5+0.5*(Et./Es))); %Theory of Li and Reid 
end 
if csi==5; 
x=Es/E.*((n-8)/n+(8/n)*sqrt(Et./Es)); %Piluso&Pisapia 



Chapter 6 

182 

end 
if csi==6; 
x=Es/E.*((n-5)/n+(5/n)*sqrt(Et./Es)); % Piluso&Pisapia 
end 
m=(x*E)./(Es.*(1-ni.^2)); 
 
%% DEFINITION OF BETA 
 b_1=17.54*(b1/t1)*sqrt(e./(m.*z.*a1)); %Beta plate 1 
b_3=17.54*(b3/t3)*sqrt(e./(m.*z.*a1)); %Beta plate 2 
b_2=17.54*(b2/t2)*sqrt(e./(m.*z.*a2)); %Beta plate 3 
b_4=17.54*(b4/t4)*sqrt(e./(m.*z.*a2)); %Beta plate 4 
%% DEFINITION OF RO FACTORS 
C1=32; 
C2=220; 
%plate 1 
for i=1:length(b_1); 
    if b_1(i)<=0.5*(C1+sqrt(C1^2-4*C2)); 
        r_1(i)=1; 
    else 
        r_1(i)=C1/b_1(i)-C2/((b_1(i))^2); 
    end 
end 
%plate 2   
for i=1:length(b_2); 
    if b_2(i)<=0.5*(C1+sqrt(C1^2-4*C2)); 
        r_2(i)=1; 
    else 
        r_2(i)=C1/b_2(i)-C2/((b_2(i))^2); 
    end 
end 
%plate 3   
for i=1:length(b_3); 
    if b_3(i)<=0.5*(C1+sqrt(C1^2-4*C2)); 
        r_3(i)=1; 
    else 
        r_3(i)=C1/b_3(i)-C2/((b_3(i))^2); 
    end 
end 
%plate 4  
for i=1:length(b_4); 
    if b_4(i)<=0.5*(C1+sqrt(C1^2-4*C2)); 
        r_4(i)=1; 
    else 
        r_4(i)=C1/b_4(i)-C2/((b_4(i))^2); 
    end 
end 
  
%% N-e Curve 
A1=(b1+t2)*t1*r_1; 
A2=(b2+t3)*t2*r_2; 
A3=(b3+t4)*t3*r_3; 
A4=(b4+t1)*t4*r_4; 
A=A1+A2+A3+A4; 
  
N=A.*s;  
 plot(e,N);  
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E.2. Script for Box section in Bending 

%EFFECTIVE THICKNESS METHOD FOR NON-UNIFORM BENDING 
clear all 
close all 
clc 
%% DATA 
%%MECHANICAL PROPERTIES 
E=71770; %Young's Modulus [MPa] 
n=11; %Ramberg-Osgood coefficient 
f02=171; %Yield stress [MPa] 
fu=201.36; %Ultimate stress [MPa] 
BC='A'; %Buckling curve 
csi=7; %plastic coefficient 
  
%%GEOMETRIC PROPERTIES 
B1=40.11; %section width 
B2=40.18; %section height 
L=650; %shear length 
t1=2.09; 
t2=2.085; 
t3=t1; 
t4=t2; 
  
B3=B1; 
B4=B2; 
bf=B1-(t2+t4); 
bw=B2-(t1+t3); 
%% BUCKLING CURVE 
if BC=='A'; 
C1=32; 
C2=220; 
end 
if BC=='B'; 
C1=30.5; 
C2=209; 
end 
if BC=='C' 
C1=29; 
C2=198; 
end 
%% SECTION CLASSIFICATION  
e_0=sqrt(250/f02); 
  
%Internal part 
if BC=='A' 
    beta1=11; 
    beta2=16; 
    beta3=22; 
end 
if BC=='B' 
    beta1=12; 
    beta2=16; 
    beta3=20; 
end 
if BC=='C' 
    beta1=13; 
    beta2=16; 
    beta3=18; 
end 
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%flanges 
betaf_1=(bf/t1)/e_0; 
betaf_3=(bf/t3)/e_0; 
if betaf_1<beta2 
    S_f_1=1; 
end 
if betaf_1>=beta2&betaf_1<=beta3 
    S_f_1=3; 
end 
if betaf_1>beta3 
    S_f_1=4; 
end 
  
if betaf_3<beta2 
    S_f_3=1; 
end 
if betaf_3>=beta2&betaf_3<=beta3 
    S_f_3=3; 
end 
if betaf_3>beta3 
    S_f_3=4; 
end 
  
%webs 
betaw_2=0.4*(bw/t2)/e_0; 
betaw_4=0.4*(bw/t4)/e_0; 
if betaw_2<beta2 
    S_w_2=1; 
end 
if betaw_2>=beta2&betaw_2<=beta3 
    S_w_2=3; 
end 
if betaw_2>beta3 
    S_w_2=4; 
end 
  
if betaw_4<beta2 
    S_w_4=1; 
end 
if betaw_4>=beta2&betaw_4<=beta3 
    S_w_4=3; 
end 
if betaw_4>beta3 
    S_w_4=4; 
end 
  
S=max([S_f_1,S_f_3,S_w_2,S_w_4]); %class section 
%% STRESS-STRAIN CURVE-SECANT AND TANGENT MODULI-POISSON'S RATIO 
s=0:fu; %stress vector 
e =s./E+0.002*(s./f02).^n; %strain vector 
ne=0.33; %elastic Poison's ratio 
np=0.5;   %plastic Poison's ratio 
for i=2:length(e) 
    Es(i)=s(i)./e(i); %Secant Modulus Vector 
    Et(i)=(s(i)-s(i-1))./(e(i)-e(i-1)); %Tangent Modulus Vector 
    ni(i)=np-(Es(i)./E)*(np-ne); %Poisson coefficient 
    H(i)=1+(((1-2*ni(i)).^2)./4*(1-ni(i).^2)).*(1-Et(i)./Es(i));%Interactive elastic-plastic coefficients 
    c1(i)=1-(((2-ni(i)).^2)./(4*H(i).*(1-ni(i).^2))).*(1-Et(i)./Es(i)); 
    c3(i)=1+(((1-2*ni(i)).*(2-ni(i)))./(4*H(i).*(1-ni(i).^2))).*(1-Et(i)./Es(i)); 
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    c5(i)=1-(((1-2*ni(i)).^2)./(4*H(i).*(1-ni(i).^2))).*(1-Et(i)./Es(i)); 
end 
%% DEFINITION OF PLASTIC COEFFICIENT "CSI" 
  
if csi==1; 
x=Et/E; % theory of tangent modulus 
end 
if csi==2; 
x=Es/E; % theory of Secant modulus 
end 
if csi==3; 
x=Es/E.*(1/3+(2/3)*sqrt(0.25+0.75*(Et./Es))); %Theory of Stowell 
end 
if csi==4; 
x=Es/E.*(1/3+(2/3)*sqrt(0.5+0.5*(Et./Es))); %Theory of Li and Reid 
end 
if csi==5; 
x=Es/E.*((n-8)/n+(8/n)*sqrt(Et./Es)); %Piluso&Pisapia 
end 
if csi==6; 
x=Es/E.*(1-ne^2)./(1-ni.^2).*(0.58*sqrt(c1.*c5)+0.42*c3); % Piluso&Pisapia 
end 
m=(x*E)./(Es.*(1-ni.^2)); %Influence of plastic coefficient 
%% DEFINITION OF ZETA AND ALPHA FACTORS 
z=1.35-(0.35*(B2/B1)/(0.60+B2/B1))-0.005*(B2/B1)^3; %Influence of plate interaction 
af=1+0.25*(1.7/((L/bf)^0.75-0.20)); %Influence of stress gradient along the length of flange plate 
aw=1+0.25*(1.7/((L/bw)^0.75-0.20)); %Influence of stress gradient along the length of web plate 
%% DEFINITION OF BETA 
b_f=17.54*(bf/t3)*sqrt(e./(m.*z.*af)); %Beta for upper flange 
%flange   
for i=1:length(b_f); 
    if b_f(i)<=0.5*(C1+sqrt(C1^2-4*C2)); 
        r_f(i)=1; 
    else 
        r_f(i)=C1/b_f(i)-C2/((b_f(i))^2); 
    end 
end 
  
t_3=r_f*t3; 
  
%webs 
Aeff=B1*t1+bw*t2+bw*t4+bf*t3+t3*(t2+t4);  
Sx=(B1*t1^2)/2+bf*t3*(B2-0.5*t3)+0.5*bw*B2*(t2+t4)+t3*(t2+t4)*(B2-0.5*t3); 
Yg=Sx/Aeff; 
  
for i=2:length(e); 
    e_i(i)=Yg*e(i)/(B2-Yg); 
    psi(i)=-e_i(i)/e(i); 
    eta(i)=0.70+0.30*psi(i); 
    b_2(i)=17.54*eta(i)*(bw/t2)*sqrt(e(i)/(m(i)*z*aw)); %Beta for web flange 2 
    b_4(i)=17.54*eta(i)*(bw/t4)*sqrt(e(i)/(m(i)*z*aw)); %Beta for web flange 4 
    if b_2(i)<=0.5*(C1+sqrt(C1^2-C2*(3+psi(i)))) 
        r_2(i)=1; 
    else 
        r_2(i)=C1/b_2(i)-C2*(3+psi(i))/(4*(b_2(i))^2);%coefficient "ro" 2 
    end 
    if b_4(i)<=0.5*(C1+sqrt(C1^2-C2*(3+psi(i)))) 
        r_4(i)=1; 
    else 
        r_4(i)=C1/b_4(i)-C2*(3+psi(i))/(4*(b_4(i))^2);%coefficient "ro" 4 
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    end 
t_2(i)=r_2(i)*t2; 
t_4(i)=r_4(i)*t4; 
Aeff(i)=B1*t1+bw*t_2(i)+bw*t_4(i)+bf*t_3(i)+t3*(t2+t4); 
Sx(i)=(B1*t1^2)/2+bf*t_3(i)*(B2-0.5*t3)+0.5*bw*B2*(t_2(i)+t_4(i))+t3*(t2+t4)*(B2-0.5*t3); 
Yg(i)=Sx(i)/Aeff(i); 
end 
  
Ieff=(B1*(t1^3))/12+B1*t1.*(Yg-0.5*t1).^2+(t_2+t_4).*((bw^3)/12+bw.*(Yg-
0.5.*bw).^2)+(bf.*(t_3.^3))/12+bf.*t_3.*(B2-Yg-0.5.*t_3).^2+(t2+t4).*((t3^3)/12+t3.*(B2-Yg-0.50*t3).^2); 
chi=e./(B2-Yg);  
  
M02=f02*(Ieff(2)/Yg(2)); %Bending moment correponding to f0.2 
chi02=M02/(E*Ieff(2));   %curvature corresponding to M0.2 
%% MOMENT-CURVATURE  
  
% Section 1-2-3 
% web in tension_compression 
nw=100; 
for i=1:length(e) 
    for j=1:nw 
        chi_s(i)=e(i)/(B2-Yg(i)); 
        bw_s(i)=B2-t1-Yg(i); 
        br_sup(i,j)=bw_s(i)-(bw_s(i)/nw)*j+bw_s(i)/(2*nw); 
        e_sup(i,j)=chi_s(i)*(bw_s(i)-(bw_s(i)/nw)*j+bw_s(i)/(2*nw)); 
    end 
end 
e_sup=e_sup';         
br_sup=br_sup' 
for i=1:length(e) 
    for j=1:nw 
        bw_i(i)=Yg(i)-t1; 
        br_inf(i,j)=bw_i(i)-(bw_i(i)/nw)*j+bw_i(i)/(2*nw); 
        e_inf(i,j)=chi_s(i)*(bw_i(i)-(bw_i(i)/nw)*j+bw_i(i)/(2*nw)); 
    end 
end 
e_inf=e_inf';  
br_inf=br_inf'; 
for i=1:nw 
    for j=1:length(e) 
        if e_sup(i,j)<f02/E 
            s_sup(i,j)=E*e_sup(i,j); 
        else 
            s_sup(i,j)=(((e_sup(i,j)-f02/E)/0.002)^(1/n))*f02; 
        end 
    end 
end 
for i=1:nw 
    for j=1:length(e) 
        if e_inf(i,j)<f02/E 
            s_inf(i,j)=-E*e_inf(i,j); 
        else 
            s_inf(i,j)=-(((e_inf(i,j)-f02/E)/0.002)^(1/n))*f02; 
        end 
    end 
end 
  
m_sup=t_2.*(bw_s/nw).*s_sup.*br_sup+t_4.*(bw_s/nw).*s_sup.*br_sup; 
  
m_inf=t_2.*(bw_i/nw).*s_inf.*br_inf+t_4.*(bw_i/nw).*s_inf.*br_inf; 
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M_web=sum(m_sup-m_inf); 
%flanges 
  
%flange 3 in compression 
  
B_3=(B2-Yg-0.50*t3); 
M_f_s=t_3*(B3-t2-t4).*s.*B_3+t2*t3.*s.*B_3+t4*t3.*s.*B_3;  
  
%flange 1 in tension 
nf=100; 
for j=1:nf; 
for i=1:length(e) 
   e_1(i,j)=(e_i(i)/Yg(i))*(Yg(i)-(t1/nf)*j+0.50*(t1/nf)); 
   B_1(i,j)=Yg(i)-0.50*t1; 
end 
end 
e_1=e_1';         
B_1=B_1'; 
  
for i=1:nf 
    for j=1:length(e) 
        if e_1(i,j)<f02/E 
            s_1(i,j)=E*e_1(i,j); 
        else 
            s_1(i,j)=(((e_1(i,j)-f02/E)/0.002)^(1/n))*f02; 
        end 
    end 
end 
  
m_1=B1*(t1/nf).*s_1.*B_1; 
  
M_f_i=sum(m_1);  
  
M=M_f_s+M_f_i+M_web; 
end 
  
Mmax=max(M)/10^6 % MAXIMUM BENDING MOMENT 
chi_max=chi(find(M==max(M)));%CURVATURE CORRESPONDING TO MAXIMUM BENDING MOMENT 
%title('Moment-Curvature') 
%hold on 
  
  
%% ULTIMATE ROTATION AND ROTATION CORRESPONDING TO MAXIMUM BENDING MOMENT 
L_u=(L/length(chi))*(1:length(chi)); 
CHI_0=chi(1:find(chi==chi_max)); 
L_0=(L/length(CHI_0))*(1:length(CHI_0)); 
  
teta_0=sum(CHI_0*(L/length(CHI_0))); 
teta_u=sum(chi*(L/length(chi))); 
  
figure; 
plot(chi/chi02,(M/M02)/10^6); 
  
figure; 
plot(L_0,-CHI_0,'b'); 
hold on 
plot(L_u,-chi,'r'); 
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 . CHAPTER 7  

CONCLUSIONS 

 
The present research work was addressed to the study of the influence of the local buckling 

phenomena on the behaviour of aluminium members in compression or in bending. So that, starting 

from the main results on the theories of the plate stability in the elastic, the theory of plastic buckling 

has been developed according to the J2 deformation theory of plasticity to define the plate differential 

equation by introducing the variability of Poisson’s ratio as a function of the stress level. 

Subsequently, the stub column tests and the three point bending tests, carried out on the same SHS 

aluminium members, have been presented. 

Starting from the theoretical and experimental results, previously described, different methodologies 

have been proposed to evaluate the ultimate behaviour of aluminium members under uniform 

compression and the beams under moment gradient.  

In particular, the plate differential equation at the onset of buckling has been integrated referring to 

plates under uniform compression and applied to analyse the interactive buckling occurring in the 

case of box sections, like SHS and RHS, and of H-shaped sections. The boundary conditions 

accounting for plate elements interaction have been properly derived and the buckling criterion has 

been defined by imposing the conditions assuring a non-trivial solution of the relevant equation 

system, so that a fully theoretical approach has been proposed to evaluate the behaviour of columns 

under uniform compression. 

The non-linear behaviour of aluminium alloy beams subject to non-uniform bending has been 

investigated by means of a finite element model including both geometrical and mechanical non-

linearity and initial geometrical imperfections. In particular, a wide parametric analysis has been 

carried out by varying the non-dimensional geometrical parameters describing the structural scheme 

and the accuracy of the finite element model, carried out using ABAQUS software. Moreover, in 

order to evaluate the influence of the strain-hardening, the parametric analysis has been performed 

with reference to four different alloys: EN-AW6082 temper T4 and T6, EN-AW6063 temper T5 and 

EN-AW6061 temper T6. The numerical results derived by finite element simulations have allowed 

the development of mathematical formulations for estimating the non-dimensional ultimate flexural 

resistance and the rotational capability of box-shaped and H-shaped beams. 
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Finally, the effective thickness approach, currently adopted in the Eurocode 9 for evaluating the 

ultimate resistance of the fourth-class sections affected by the local buckling, has been extended 

accounting for the mechanical non-linearity of aluminium material and the interaction of the plate 

elements constituting the cross sections. In particular, a simplified procedure under displacement 

control has been performed to determine the inelastic response of the box-shaped sections and H-

shaped sections in compression or in bending.  

To evaluate the accuracy of the previous methodologies, the experimental results presented in this 

work and provided in the technical literature have been compared with those obtained by the 

theoretical and empirical procedures.  The comparison of these methodologies is summarised in Table 

7.1 and Table 7.2. In the case of members under compression, both the theoretical approach (DTP) 

and the effective thickness method (ETM) accurately estimate the maximum compressive load. 

Instead, as regard the estimated of the normalised deformation, the ETM method represents a very 

conservative approach, although simpler to apply than the DTP method. 

As for the beams under non-uniform bending, the empirical formulas provide the results closer to the 

experimental one in comparison to the effective thickness method and their applications are very 

simple. However, the mathematical formulas can not be applied to evaluate the behaviour of 

aluminium beams in the elastic region and, generally, they have to be applied according to specific 

ranges of validity of the non-dimensional parameters, previously mentioned. The prediction of the 

rotational capacity, corresponding to the maximum bending moment, is more conservative than the 

values obtained by the three point bending tests. Furthermore, high values of standard deviations 𝜎 

suggest the scattering and thus the rotational predictions are considerate of low reliability in relation 

to the low number of cases analysed.  

For the sake of completeness, the comparison has been carried out also with the values of the 

resistance obtained by the Eurocode 9. In particular, the maximum compressive strength is computed 

according to Section 6.2.4 of EN 1999-1-1, as depicted in Eq. (1.1), while  the maximum flexural 

strength is evaluated according to Section 6.2.5 of EN 1999-1-1, as provided in Eqns. (1.2) and (1.3). 

The safety coefficient 𝛾  is assumed equal to 1.00 for both cases, because the estimation is carried 

out from the point of view of maximum resistance prediction not from that of the safety control as 

reported in the design code provisions. The values computed according to Eurocode 9 are, 

respectively, reported in Annex A and in Annex B. From the comparison of the results, it is evident 

that the ultimate strength values computed according to the design code approach are more 

conservative than others, including the experimental ones.  

Moreover, it is worth to underline that the mathematical relationships and the extension of effective 

thickness approach are currently adopted in the new proposed informative Annex L of EN1999-1-1.  
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They have been proposed within the framework of the activities of the project teams of 

CEN/TC250/SC9 encharged of the revision of Eurocode 9. 

Finally, the following future developments can be suggested. The fully theoretical procedure, 

developed for the box-shaped and H-shaped sections, could easily be extended to the other aluminium 

cross-section (channel section, angle section stiffened rectangular section, ecc).  

In reference to the study of the ultimate behaviour of beams in bending, there is still a substantial gap 

of knowledge, especially, regarding the H-shaped sections. So that, an extensive experimental 

campaign could be carried out on the H-shaped beams, by varying the width-to-thickness ratios, the 

shear length and the aluminium alloy. Moreover, for extending the validation of the proposed 

mathematical formula, the parametric analysis, developed in Chapter 5, could be performed on the 

other different aluminium alloys possibly belonging to the 5000 and 7000 series. Another aspect that 

might be worth investigating is related to evaluate accurately the maximum rotational capacity. In 

fact, the estimation by means of Eq. (6.26) provided very different values respect to the experimental 

results and for this reason, they have not been depicted. One reason could be related to the inaccurate 

assessment of the length of the plastic hinge. So that, a future study could be devoted to improving 

the evaluation of the plastic length through the experimental tests and finite element analysis.  
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Table 7.1. Comparison between the deformation theoretical procedure (DTP) 
 and the effective thickness method (ETM). 

𝐒𝐄𝐂𝐓𝐈𝐎𝐍 
 

Design Code 
EN 1999-1-1 

Deformation 𝐓𝐡𝐞𝐨𝐫𝐞𝐭𝐢𝐜𝐚𝐥 
𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 (𝐃𝐓𝐏) 

𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐓𝐡𝐢𝐜𝐤𝐧𝐞𝐬𝐬 
𝐌𝐞𝐭𝐡𝐨𝐝 (𝐄𝐓𝐌) 

𝐒𝐇𝐒, 𝐑𝐇𝐒 
𝑵𝒖.𝑬𝑪𝟗

𝑵𝒖.𝒆𝒙𝒑
 

𝑵𝒖.𝑫𝑻𝑷

𝑵𝒖.𝒆𝒙𝒑
 

𝜺𝒖.𝑫𝑻𝑷

𝜺𝒖.𝒆𝒙𝒑
 

𝑵𝒖.𝑬𝑻𝑴

𝑵𝒖.𝒆𝒙𝒑
 

𝜺𝒖.𝑬𝑻𝑴

𝜺𝒖.𝒆𝒙𝒑
 

Mean 
 [μ] 

0.93 1.02 0.99 0.96 0.81 

Standard deviation  
[σ] 

0.09 0.09 0.18 0.07 0.22 

    

𝐒𝐄𝐂𝐓𝐈𝐎𝐍 
 

Design Code 
EN 1999-1-1 

Deformation 𝐓𝐡𝐞𝐨𝐫𝐞𝐭𝐢𝐜𝐚𝐥 
𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 (𝐃𝐓𝐏) 

𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐓𝐡𝐢𝐜𝐤𝐧𝐞𝐬𝐬 
𝐌𝐞𝐭𝐡𝐨𝐝 (𝐄𝐓𝐌) 

𝐈, 𝐇 
𝑵𝒖.𝑬𝑪𝟗

𝑵𝒖.𝒆𝒙𝒑
 

𝑵𝒖.𝑫𝑻𝑷

𝑵𝒖.𝒆𝒙𝒑
 

𝜺𝒖.𝑫𝑻𝑷

𝜺𝒖.𝒆𝒙𝒑
 

𝑵𝒖.𝑬𝑻𝑴

𝑵𝒖.𝒆𝒙𝒑
 

𝜺𝒖.𝑬𝑻𝑴

𝜺𝒖.𝒆𝒙𝒑
 

Mean  
[μ] 

0.90 1.01 0.97 0.93 0.97 

Standard deviation  
[σ] 

0.14 0.08 0.17 0.11 0.28 

 

Table 7.2. Comparison between the empirical regressions (ER) and the effective thickness method (ETM). 

𝐒𝐄𝐂𝐓𝐈𝐎𝐍 
Design Code 
EN 1999-1-1 

𝐄𝐦𝐩𝐢𝐫𝐢𝐜𝐚𝐥 
𝐑𝐞𝐠𝐫𝐞𝐬𝐬𝐢𝐨𝐧𝐬 (𝐄𝐑) 

𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞 𝐓𝐡𝐢𝐜𝐤𝐧𝐞𝐬𝐬 
𝐌𝐞𝐭𝐡𝐨𝐝 (𝐄𝐓𝐌) 

𝐒𝐇𝐒, 𝐑𝐇𝐒, 𝐈, 𝐇 
𝑴𝒖.𝑬𝑪𝟗

𝑴𝒖.𝒆𝒙𝒑
 

𝑴𝒖.𝑬𝑹

𝑴𝒖.𝒆𝒙𝒑
 

𝜽𝒖.𝑬𝑹

𝜽𝒖.𝒆𝒙𝒑

 
𝑴𝒖.𝑬𝑻𝑴

𝑴𝒖.𝒆𝒙𝒑
 

𝜽𝒖.𝑬𝑻𝑴

𝜽𝒖.𝒆𝒙𝒑

 

Mean  
[μ] 

0.91 1.02 0.92 0.97 0.90 

Standard deviation  
[σ] 

0.06 0.14 0.15 0.15 0.12 
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ANNEX A 

A.1. Geometrical and Mechanical Properties of Experimental Tests  

In this section, the main experimental properties of the stub column test, presented in the technical 

literature, are reported according to the following geometric schemes: 

  

Table A.1. Geometrical and mechanical properties of tested hollow sections provided in Chapter 3. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐 

[mm] 
𝒕𝟐  

[mm] 
𝒂 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

SHS40 

A 6060 T6 40.11 2.097 40.18 2.038 120.05 314.90 71770 176.00 201.36 11.85 

B 6060 T6 40.11 2.097 40.18 2.038 120.12 314.90 71770 176.00 201.36 11.85 

C 6061 T6 40.11 2.097 40.18 2.038 130.43 314.90 71770 176.00 201.36 11.85 

SHS60 
A 6060 T6 60.31 2.000 60.40 2.123 181.10 480.71 66219 225.07 249.32 13.45 

B 6060 T6 60.31 2.000 60.40 2.123 180.80 480.71 66219 225.07 249.32 13.45 

SHS80 
A 6060 T6 80.06 1.950 80.17 1.940 240.12 608.16 68539 225.80 252.14 8.49 

B 6060 T6 80.06 1.950 80.17 1.940 240.32 608.16 68539 225.80 252.14 8.49 

SHS100 
A 6060 T6 100.30 2.180 100.30 2.200 300.10 859.44 69558 168.15 201.80 10.43 

B 6060 T6 100.30 2.180 100.30 2.200 299.00 859.44 69558 168.15 201.80 10.43 

Table A.2. Geometrical and mechanical properties of tested hollow sections provided by Faella et al [4.12]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐  

[mm] 
𝒕𝟐  

[mm] 
𝒂 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

SHS1 
A 6060 T6 15.00 1.910 15.00 1.910 44.50 100.01 67520 214.4 241.3 22.4 

B 6060 T6 15.00 1.910 15.00 1.910 46.00 100.01 67520 214.4 241.3 22.4 

SHS2 
A 6060 T6 40.10 4.100 40.05 4.075 115.70 588.40 72265 223.6 244.3 19.1 

B 6060 T6 40.10 4.100 40.05 4.075 120.00 588.40 72265 223.6 244.3 19.1 

SHS3 
A 6060 T6 50.40 3.100 50.35 3.100 149.40 586.21 64863 222.5 244.8 28.9 

B 6060 T6 50.40 3.100 50.35 3.100 149.40 586.21 64863 222.5 244.8 28.9 

SHS4 
A 6060 T6 50.40 4.275 50.35 4.250 149.40 786.22 64090 202.6 225.2 30.6 

B 6060 T6 50.40 4.275 50.35 4.250 149.30 786.22 64090 202.6 225.2 30.6 

SHS5 
A 6060 T6 70.15 4.150 70.10 4.100 209.50 1089.01 70211 175.7 202.9 20.6 

B 6060 T6 70.15 4.150 70.10 4.100 209.50 1089.01 70211 175.7 202.9 20.6 

SHS6 
A 6060 T6 80.40 4.240 80.20 4.275 239.00 1295.00 71733 194.2 220.3 26.8 

B 6060 T6 80.40 4.240 80.20 4.275 239.00 1295.00 71733 194.2 220.3 26.8 

SHS7 A 6060 T6 100.00 3.950 99.80 3.900 296.00 1506.82 70757 209.8 228.3 28.4 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐  

[mm] 
𝒕𝟐  

[mm] 
𝒂 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

SHS7 B 6060 T6 100.00 3.950 99.80 3.900 299.00 1506.82 70757 209.8 228.3 28.4 

SHS8 
A 6060 T6 60.40 2.275 60.35 2.250 179.00 525.92 71963 158.2 186.6 12 

B 6060 T6 60.40 2.275 60.35 2.250 179.00 525.92 71963 158.2 186.6 12 

SHS9 
A 6060 T6 80.40 2.100 80.20 2.050 239.00 649.28 65125 186.7 203.9 27.5 

B 6060 T6 80.40 2.100 80.20 2.050 239.00 649.28 65125 186.7 203.9 27.5 

SHS10 
A 6060 T6 100.30 5.975 99.90 6.050 303.00 2262.78 65321 293.5 323.7 26.9 

B 6060 T6 100.30 5.975 99.90 6.050 303.00 2262.78 65321 293.5 323.7 26.9 

SHS11 
A 6060 T6 150.20 4.975 150.10 4.850 437.00 2853.95 75250 208.9 252.1 11.3 

B 6060 T6 150.20 4.975 150.10 4.850 451.00 2853.95 75250 208.9 252.1 11.3 

SHS12 
A 6082 T6 149.90 5.100 149.90 5.125 451.50 2960.91 68368 258.4 300.1 13.4 

B 6082 T6 149.90 5.100 149.90 5.125 452.00 2960.91 68368 258.4 300.1 13.4 

RHS1 
A 6060 T6 34.00 3.000 20.00 3.000 46.80 288.00 62814 218.7 250.9 23.6 

B 6060 T6 34.00 3.000 20.00 3.000 46.80 288.00 62814 218.7 250.9 23.6 

RHS2 
A 6060 T6 39.90 4.000 29.90 4.000 73.60 494.40 69750 202 214.3 31.1 

B 6060 T6 39.90 4.000 29.90 4.000 120.40 494.40 69750 202 214.3 31.1 

RHS3 
A 6060 T6 50.10 4.050 20.00 4.150 52.30 504.58 68439 210.7 233.3 26.5 

B 6060 T6 50.10 4.050 20.00 4.150 52.30 504.58 68439 210.7 233.3 26.5 

RHS4 
A 6060 T6 50.00 3.025 30.25 3.075 80.70 451.33 70873 217.4 242.5 19.5 

B 6060 T6 50.00 3.025 30.25 3.075 149.00 451.33 70873 217.4 242.5 19.5 

RHS5 
A 6060 T6 50.25 2.700 40.30 2.700 104.50 459.81 69695 221.6 244.5 48.4 

B 6060 T6 50.00 2.700 40.00 2.700 211.00 456.84 69695 221.6 244.5 48.4 

RHS6 
A 6060 T6 60.20 3.000 34.10 3.000 88.80 529.80 77760 212.5 235 18.6 

B 6060 T6 60.20 3.000 34.10 3.000 179.00 529.80 77760 212.5 235 18.6 

RHS7 
A 6060 T6 60.20 2.550 40.10 2.550 179.50 485.52 62761 234.6 258.9 31.3 

B 6060 T6 60.20 2.550 40.10 2.550 176.00 485.52 62761 234.6 258.9 31.3 

RHS8 
A 6060 T6 80.25 4.000 40.10 3.900 234.50 892.38 63508 222 258.6 26.6 

B 6060 T6 80.25 4.000 40.10 3.900 233.50 892.38 63508 222 258.6 26.6 

RHS9 
A 6060 T6 99.80 4.000 40.10 3.950 236.00 1051.99 70203 216.6 242.2 45.2 

B 6060 T6 99.80 4.000 40.10 3.950 236.00 1051.99 70203 216.6 242.2 45.2 

RHS10 
A 6060 T6 120.30 4.150 50.60 4.275 361.00 1360.16 68945 215.8 227.3 24.7 

B 6060 T6 120.30 4.150 50.60 4.275 361.00 1360.16 68945 215.8 227.3 24.7 

RHS11 
A 6060 T6 150.50 4.100 40.80 4.050 225.00 1498.16 68796 224.6 255.5 13.5 

B 6060 T6 150.50 4.100 40.80 4.050 225.00 1498.16 68796 224.6 255.5 13.5 

RHS12 
A 6060 T6 181.20 4.200 40.80 4.100 242.00 1787.76 74543 212.3 246.8 18.7 

B 6060 T6 181.20 4.200 40.80 4.100 237.00 1787.76 74543 212.3 246.8 18.7 

RHS13 
A 6060 T6 100.10 3.950 50.25 3.950 299.00 1125.36 68504 216 236.6 33.3 

B 6060 T6 100.10 3.950 50.25 3.950 299.00 1125.36 68504 216 236.6 33.3 

RHS14 

A 6060 60.10 2.150 40.10 2.050 181.00 405.21 62446 219.6 242.8 34.7 

B 6060 60.10 2.150 40.10 2.050 178.00 405.21 62446 219.6 242.8 34.7 

C 6060 60.10 2.150 40.10 2.050 176.00 405.21 62446 219.6 242.8 34.7 

RHS15 

A 6060 79.90 3.950 40.00 3.900 234.50 881.59 69329 188.9 212.4 26.8 

B 6060 79.90 3.950 40.00 3.900 235.50 881.59 69329 188.9 212.4 26.8 

C 6060 79.90 3.950 40.00 3.900 233.90 881.59 69329 188.9 212.4 26.8 

RHS16 
A 6060 80.20 2.075 40.25 2.075 239.00 482.65 60000 225.4 260.5 53 

B 6060 80.20 2.075 40.25 2.075 238.00 482.65 60000 225.4 260.5 53 

RHS17 
A 6060 T6 59.90 1.950 40.00 2.000 180.00 378.01 69263 234.3 253.3 37.5 

B 6060 T6 59.90 1.950 40.00 2.000 178.00 378.01 69263 234.3 253.3 37.5 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐  

[mm] 
𝒕𝟐  

[mm] 
𝒂 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

RHS18 
A 6082 100.30 2.300 25.70 2.300 125.00 558.44 68037 264.8 285 27.8 

B 6082 100.30 2.300 25.70 2.300 127.00 558.44 68037 264.8 285 27.8 

RHS19 
A 6060 119.90 2.700 61.00 2.600 359.00 936.58 69318 209.7 229.4 33.7 

B 6060 119.90 2.700 61.00 2.600 355.00 936.58 69318 209.7 229.4 33.7 

RHS20 
A 6060 200.00 4.850 99.90 4.900 601.00 2823.96 65234 235.2 282.8 14.6 

B 6060 200.00 4.850 99.90 4.900 601.00 2823.96 65234 235.2 282.8 14.6 

RHS21 
A 6082 47.00 2.875 40.00 2.875 140.00 467.19 67488 251.3 276.9 32.9 

B 6082 47.00 2.875 40.00 2.875 140.00 467.19 67488 251.3 276.9 32.9 

RHS22 
A 6082 T6 179.50 4.575 70.00 4.650 540.00 2208.33 72038 320 353.4 83.7 

B 6082 T6 179.50 4.575 70.00 4.650 540.00 2208.33 72038 320 353.4 83.7 

RHS23 
A 6082 TF 153.00 4.850 71.60 6.850 411.00 2309.00 71850 309.2 329.9 90.7 

B 6082 TF 153.00 4.850 71.60 6.850 411.00 2309.00 71850 309.2 329.9 90.7 

RHS24 
A 6082 T6 200.50 15.300 179.20 9.225 531.20 8660.00 71360 340 362.1 77.4 

B 6082 T6 200.50 15.300 179.20 9.225 535.00 8660.00 71360 340 362.1 77.4 

RHS25 
A 6082 TF 120.50 4.750 100.35 6.775 361.00 2268.00 68841 323 342.8 30.3 

B 6082 TF 120.50 4.750 100.35 6.775 361.00 2268.00 68841 323 342.8 30.3 

RHS26 
A 6082 201.00 6.100 181.50 6.100 601.00 4373.00 71601 185 220 84.4 

B 6082 201.00 6.100 181.50 6.100 601.00 4373.00 71601 185 220 84.4 

Table A.3. Geometrical and mechanical properties of tested hollow sections provided by Su et al [4.8]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏 

[mm] 
𝑩𝟐 

[mm] 
𝒕𝟐 

[mm] 
𝒂 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H64x64x3 
A 6061 T6 63.90 2.810 63.90 2.810 191.10 686.65 66000 234 248 12 

B 6061 T6 63.90 2.850 63.90 2.850 191.50 695.97 66000 234 248 12 

H70x55x4.2 
A 6061 T6 69.90 4.080 54.90 4.080 209.80 951.78 65000 193 207 22 

B 6061 T6 69.90 4.090 54.90 4.090 209.90 953.95 65000 193 207 22 

H95x50x10.5 A 6061 T6 94.80 10.360 49.70 10.360 284.90 2564.72 71000 229 242 11 

H120x70x10.5 A 6061 T6 119.90 10.390 69.90 10.390 360.00 3512.24 69000 226 238 10 

H120x120x9 A 6061 T6 120.00 8.910 120.00 8.910 360.20 3959.25 65000 225 234 13 

N95x50x10.5 A 6063 T5 94.90 10.370 49.70 10.370 285.20 2568.86 69000 179 220 10 

N120x70x10.5 A 6063 T5 119.90 10.450 69.80 10.450 360.90 3527.92 71000 139 194 9 

N120x120x9 A 6063 T5 120.00 8.920 120.00 8.920 361.30 3963.33 69000 181 228 9 

Table A.4. Geometrical and mechanical properties of tested H-shaped sections provided by Heimerl and Niles [4.13]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂 

[mm] 
𝑨 

[mm] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H1 
A 2014 T6 41.15 3.277 47.45 3.18 163.58 420.30 72395 370 415 30 

B 2014 T6 41.15 3.226 47.35 3.18 165.61 415.79 72395 370 415 30 

C 2014 T6 41.15 3.226 47.09 3.20 165.10 416.18 72395 370 415 30 

H2 
A 2014 T6 45.72 3.277 47.70 3.15 192.53 449.85 72395 370 415 30 

B 2014 T6 45.72 3.277 47.70 3.15 193.04 449.85 72395 370 415 30 

C 2014 T6 45.72 3.277 47.70 3.15 190.50 449.85 72395 370 415 30 

H3 
A 2014 T6 49.78 3.277 47.70 3.15 221.49 476.48 72395 370 415 30 

B 2014 T6 49.78 3.302 47.75 3.15 220.98 479.17 72395 370 415 30 

C 2014 T6 49.78 3.251 47.65 3.15 226.57 473.80 72395 370 415 30 

H4 
A 2014 T6 53.85 3.277 47.45 3.15 230.89 502.32 72395 370 415 30 

B 2014 T6 53.85 3.277 47.70 3.15 231.14 503.12 72395 370 415 30 

C 2014 T6 53.85 3.302 47.75 3.15 230.63 506.01 72395 370 415 30 
H5 A 2014 T6 57.91 3.302 47.75 3.15 238.25 532.85 72395 370 415 30 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂 

[mm] 
𝑨 

[mm] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H5 B 2014 T6 57.91 3.277 47.70 3.15 239.78 529.75 72395 370 415 30 

H6 
A 2014 T6 61.47 3.302 47.75 3.18 244.35 557.55 72395 370 415 30 

B 2014 T6 61.47 3.302 48.01 3.18 245.87 558.35 72395 370 415 30 

C 2014 T6 61.47 3.277 47.96 3.15 245.36 553.85 72395 370 415 30 

H7 
A 2014 T6 68.07 3.30 47.50 3.15 257.56 599.15 72395 370 415 30 

B 2014 T6 68.07 3.30 47.75 3.18 256.54 601.16 72395 370 415 30 

C 2014 T6 68.07 3.30 47.75 3.15 258.06 599.95 72395 370 415 30 

H8 
A 2014 T6 45.72 3.18 62.99 3.07 226.57 483.92 72395 370 415 30 

B 2014 T6 45.72 3.18 63.25 3.05 227.08 483.10 72395 370 415 30 

C 2014 T6 45.72 3.15 63.20 3.05 226.06 480.62 72395 370 415 30 

H9 
A 2014 T6 51.31 3.18 63.25 3.05 274.32 518.58 72395 370 415 30 

B 2014 T6 51.31 3.18 63.25 3.05 256.03 518.58 72395 370 415 30 

C 2014 T6 51.31 3.15 62.94 3.07 255.52 516.64 72395 370 415 30 

H10 
A 2014 T6 57.40 3.18 63.25 3.05 285.24 557.29 72395 370 415 30 

B 2014 T6 57.40 3.18 63.25 3.05 286.00 557.29 72395 370 415 30 

C 2014 T6 66.04 3.18 63.25 3.05 286.00 612.13 72395 370 415 30 

H11 
A 2014 T6 68.58 3.15 63.45 3.05 307.85 625.39 72395 370 415 30 

B 2014 T6 68.58 3.15 63.20 3.05 308.36 624.62 72395 370 415 30 

C 2014 T6 68.58 3.15 63.20 3.05 309.12 624.62 72395 370 415 30 

H12 
A 2014 T6 80.26 3.18 62.99 3.07 328.68 703.28 72395 370 415 30 

B 2014 T6 80.26 3.18 63.25 3.05 329.18 702.45 72395 370 415 30 

C 2014 T6 80.26 3.18 62.99 3.07 328.68 703.28 72395 370 415 30 

H13 
A 2014 T6 92.96 3.18 62.99 3.07 357.63 783.92 72395 370 415 30 

B 2014 T6 92.96 3.18 62.99 3.07 360.68 783.92 72395 370 415 30 

H14 
A 2014 T6 55.88 3.07 75.49 3.00 319.02 569.74 72395 370 415 30 

B 2014 T6 55.88 3.05 75.44 3.00 318.52 566.75 72395 370 415 30 

C 2014 T6 55.88 3.05 75.69 2.97 318.52 565.59 72395 370 415 30 

H15 
A 2014 T6 62.99 3.05 75.44 3.02 334.26 612.02 72395 370 415 30 

B 2014 T6 62.99 3.07 75.23 3.02 332.23 614.60 72395 370 415 30 

C 2014 T6 62.99 3.07 75.49 3.02 335.79 615.37 72395 370 415 30 

H16 
A 2014 T6 69.60 3.05 75.69 3.00 346.46 651.12 72395 370 415 30 

B 2014 T6 69.60 3.05 75.69 3.00 345.19 651.12 72395 370 415 30 

C 2014 T6 69.60 3.05 75.69 3.00 352.04 651.12 72395 370 415 30 

H17 
A 2014 T6 84.33 3.07 75.74 3.02 373.38 747.29 72395 370 415 30 

B 2014 T6 83.82 3.07 75.74 3.00 374.90 742.24 72395 370 415 30 

Table A.5. Geometrical and mechanical properties of tested H-shaped sections provided by Heimerl and Roy [4.14]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂 

[mm] 
𝑨 

[mm] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H1 

A 7075 T6 41.66 3.20 47.29 3.05 154.94 410.79 72395 460 530 24 

B 7075 T6 40.64 3.20 47.29 3.05 154.94 404.28 72395 460 530 24 

C 7075 T6 41.66 3.18 47.50 3.05 154.94 409.29 72395 460 530 24 

H2 

A 7075 T6 45.72 3.20 47.29 3.05 153.67 436.80 72395 460 530 24 

B 7075 T6 45.72 3.20 47.55 3.05 154.18 437.57 72395 460 530 24 

C 7075 T6 49.78 3.20 47.55 3.05 154.94 463.59 72395 460 530 24 

H3 B 7075 T6 50.29 3.20 47.55 3.05 154.43 466.84 72395 460 530 24 

H4 A 7075 T6 50.29 3.07 47.29 3.05 222.25 453.29 72395 460 530 24 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂 

[mm] 
𝑨 

[mm] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H4 
B 7075 T6 50.29 3.07 47.29 3.05 222.25 453.29 72395 460 530 24 

C 7075 T6 50.29 3.07 47.29 3.05 222.25 453.29 72395 460 530 24 

H5 

A 7075 T6 52.32 3.20 47.55 3.05 164.85 479.84 72395 460 530 24 

B 7075 T6 52.32 3.20 47.55 3.05 165.61 479.84 72395 460 530 24 

C 7075 T6 52.32 3.20 47.55 3.05 164.08 479.84 72395 460 530 24 

H6 

A 7075 T6 54.86 3.07 47.29 3.05 222.25 481.39 72395 460 530 24 

B 7075 T6 55.37 3.10 47.35 3.05 222.50 487.48 72395 460 530 24 

C 7075 T6 54.86 3.07 47.29 3.05 222.50 481.39 72395 460 530 24 

H7 

A 7075 T6 58.93 3.20 47.55 3.05 176.02 522.12 72395 460 530 24 

B 7075 T6 59.44 3.20 47.55 3.05 177.80 525.37 72395 460 530 24 

C 7075 T6 59.94 3.20 47.55 3.05 178.05 528.62 72395 460 530 24 

H8 
A 7075 T6 58.93 3.20 47.29 3.05 198.63 521.34 72395 460 530 24 

B 7075 T6 59.44 3.20 47.55 3.05 198.12 525.37 72395 460 530 24 

H9 

A 7075 T6 59.44 3.07 47.29 3.05 256.54 509.50 72395 460 530 24 

B 7075 T6 59.44 3.07 47.29 3.05 256.54 509.50 72395 460 530 24 

C 7075T6 59.44 3.07 47.29 3.05 256.54 509.50 72395 460 530 24 

H10 A 7075 T6 63.50 3.20 47.55 3.05 198.63 551.38 72395 460 530 24 

H11 

A 7075 T6 68.07 3.23 47.35 3.05 221.49 583.48 72395 460 530 24 

B 7075 T6 68.07 3.23 47.35 3.05 221.23 583.48 72395 460 530 24 

C 7075 T6 68.07 3.23 47.35 3.05 221.23 583.48 72395 460 530 24 

H12 

A 7075 T6 68.07 3.10 47.35 3.07 273.05 567.39 72395 460 530 24 

B 7075 T6 68.07 3.07 47.29 3.05 274.32 562.58 72395 460 530 24 

C 7075 T6 68.07 3.10 47.35 3.05 274.32 566.19 72395 460 530 24 

H13 

A 7075 T6 64.01 3.12 62.89 3.05 295.15 591.64 72395 460 530 24 

B 7075 T6 64.01 3.12 62.89 3.02 294.89 590.04 72395 460 530 24 

C 7075 T6 64.01 3.12 62.89 3.02 294.64 590.04 72395 460 530 24 

H14 

A 7075 T6 69.09 3.12 63.14 3.02 319.79 622.55 72395 460 530 24 

B 7075 T6 69.60 3.12 62.89 3.02 320.80 624.96 72395 460 530 24 

C 7075 T6 69.09 3.12 62.89 3.02 320.80 621.78 72395 460 530 24 

H15 

A 7075 T6 72.64 3.12 63.14 3.02 337.82 644.77 72395 460 530 24 

B 7075 T6 72.64 3.12 62.89 3.02 337.82 644.00 72395 460 530 24 

C 7075 T6 72.64 3.12 62.89 3.02 338.07 644.00 72395 460 530 24 

H16 

A 7075 T6 81.28 3.12 62.89 3.02 351.03 697.96 72395 460 530 24 

B 7075 T6 80.77 3.12 62.89 3.02 351.28 694.79 72395 460 530 24 

C 7075 T6 80.77 3.12 62.89 3.02 350.77 694.79 72395 460 530 24 

H18 
A 7075 T6 58.93 3.07 75.74 3.12 291.85 598.85 72395 460 530 24 

B 7075 T6 62.99 3.07 76.25 3.12 291.85 625.42 72395 460 530 24 

H19 

A 7075 T6 62.99 3.073 75.74 3.10 329.69 621.91 72395 460 530 24 

B 7075 T6 62.99 3.073 75.49 3.12 330.20 623.04 72395 460 530 24 

C 7075 T6 61.98 3.048 75.44 3.10 330.45 611.57 72395 460 530 24 

H20 

A 7075 T6 69.60 3.023 75.64 3.10 365.76 655.12 72395 460 530 24 

B 7075 T6 69.60 3.048 75.69 3.10 366.01 658.81 72395 460 530 24 

C 7075 T6 70.10 3.048 75.69 3.10 365.76 661.91 72395 460 530 24 
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Table A.6. Geometrical and mechanical properties of tested H-shaped sections provided by Heimerl and Fay [4.15]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂 

[mm] 
𝑨 

[mm] 
𝑬 

[MPa] 
𝒇𝟎.𝟐 

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H1 

A 7178 T6 42.16 3.18 48.01 3.15 151.89 418.94 72395 495 565 25 

B 7178 T6 42.16 3.15 47.70 3.15 154.94 415.84 72395 495 565 25 

C 7178 T6 42.16 3.10 47.85 3.15 153.16 412.04 72395 495 565 25 

H2 

A 7178 T6 45.72 3.10 47.60 3.15 176.53 433.27 72395 495 565 25 

B 7178 T6 45.72 3.10 47.85 3.15 177.80 434.07 72395 495 565 25 

C 7178 T6 45.72 3.10 47.60 3.12 177.80 432.06 72395 495 565 25 

H3 

A 7178 T6 50.29 3.10 47.85 3.12 201.17 461.19 72395 495 565 25 

B 7178 T6 50.29 3.10 47.85 3.15 199.14 462.41 72395 495 565 25 

C 7178 T6 50.29 3.10 47.85 3.12 199.90 461.19 72395 495 565 25 

H4 

A 7178 T6 54.86 3.10 47.85 3.15 221.49 490.74 72395 495 565 25 

B 7178 T6 54.86 3.10 48.11 3.15 221.49 491.54 72395 495 565 25 

C 7178 T6 54.86 3.12 47.90 3.15 222.25 493.69 72395 495 565 25 

H5 

A 7178 T6 59.94 3.07 48.06 3.12 256.03 518.60 72395 495 565 25 

B 7178 T6 59.94 3.10 48.36 3.12 256.03 522.60 72395 495 565 25 

C 7178 T6 59.94 3.10 48.36 3.12 255.52 522.60 72395 495 565 25 

H6 

A 7178 T6 64.01 3.10 47.85 3.15 264.16 547.42 72395 495 565 25 

B 7178 T6 64.01 3.10 47.85 3.12 264.16 546.20 72395 495 565 25 

C 7178 T6 64.01 3.10 48.11 3.15 264.16 548.22 72395 495 565 25 

H7 

A 7178 T6 69.09 3.12 47.90 3.15 274.32 582.57 72395 495 565 25 

B 7178 T6 69.09 3.10 47.85 3.15 274.32 578.90 72395 495 565 25 

C 7178 T6 69.09 3.07 48.06 3.12 274.57 574.81 72395 495 565 25 

H8 

A 7178 T6 56.90 3.10 62.84 3.30 271.53 560.12 72395 495 565 25 

B 7178 T6 56.90 3.10 63.09 3.30 271.27 560.95 72395 495 565 25 

C 7178 T6 56.90 3.12 62.89 3.30 268.99 563.17 72395 495 565 25 

H9 
A 7178 T6 62.99 3.10 63.60 3.12 292.10 589.10 72395 495 565 25 

B 7178 T6 62.99 3.10 63.60 3.12 294.13 589.10 72395 495 565 25 

H10 

A 7178 T6 68.58 3.10 62.84 3.30 319.53 632.53 72395 495 565 25 

B 7178 T6 69.09 3.07 63.55 3.28 318.52 632.90 72395 495 565 25 

C 7178 T6 69.09 3.07 63.55 3.28 318.77 632.90 72395 495 565 25 

H11 

A 7178 T6 74.68 3.10 63.35 3.30 336.80 671.99 72395 495 565 25 

B 7178 T6 75.18 3.07 63.30 3.28 337.31 669.54 72395 495 565 25 

C 7178 T6 75.18 3.10 63.60 3.30 339.09 675.97 72395 495 565 25 

H12 
A 7178 T6 81.28 3.10 63.35 3.30 350.52 712.91 72395 495 565 25 

B 7178 T6 80.77 3.07 63.55 3.30 351.54 706.33 72395 495 565 25 

H18 

A 7178 T6 99.57 3.07 76.25 3.12 422.91 850.25 72395 495 565 25 

B 7178 T6 99.57 3.10 76.30 3.10 422.40 853.53 72395 495 565 25 

C 7178 T6 99.57 3.10 76.56 3.07 420.62 852.37 72395 495 565 25 

H19 

A 7178 T6 114.81 3.07 76.25 3.12 451.36 943.92 72395 495 565 25 

B 7178 T6 114.81 3.10 76.30 3.10 450.85 947.98 72395 495 565 25 

C 7178 T6 114.81 3.10 76.30 3.15 450.60 951.85 72395 495 565 25 

Table A.7. Geometrical and mechanical properties of tested H-shaped sections provided by Yuan et al [4.16]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂  

[mm2] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H1 A 6061 T6 149.40 10.89 278.30 7.79 897.90 5421.89 69500 269 293 27 

H2 A 6061 T6 199.20 10.87 278.30 7.67 899.40 6465.17 69500 269 293 27 

H3 A 6061 T6 159.40 9.90 259.70 6.94 839.80 4958.44 71300 264 295 26 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇 

[mm] 
𝑯𝒘 

[mm] 
𝒕𝒘 

[mm] 
𝒂  

[mm2] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

H4 A 6061 T6 111.00 10.06 329.10 7.72 1052.90 4773.97 71650 256 292 26 

H5 A 6061 T6 149.90 10.01 330.60 7.95 1049.40 5629.27 71650 256 292 26 

H6 A 6061 T6 199.80 10.00 330.60 7.93 1049.80 6617.66 71650 256 292 26 

H7 A 6061 T6 147.40 10.21 429.10 8.40 1351.50 6614.35 69100 250 276 24 

H8 A 6061 T6 199.70 10.50 428.90 8.64 1348.10 7899.40 69100 250 276 24 

H9 A 6063 T5 74.70 6.96 225.80 4.44 719.60 2042.38 65250 149 193 15 

H10 A 6063 T5 117.30 6.90 226.00 4.35 720.30 2601.84 65250 149 193 15 

H11 A 6063 T5 168.70 7.00 225.20 4.25 720.30 3318.90 65250 149 193 15 

H12 A 6063 T5 206.90 6.92 225.20 4.11 719.60 3789.07 65250 149 193 15 

H13 A 6063 T5 100.30 5.96 257.20 3.59 809.10 2118.92 64150 169 217 17 

H14 A 6063 T5 144.50 5.96 257.30 3.64 808.60 2659.01 64150 169 217 17 

H15 A 6063 T5 178.00 5.83 257.20 3.63 809.00 3009.12 64150 169 217 17 
 

A.2. Collection of Numerical Results   

A.2.1. Box Sections 

Table A.8. Comparison between the theoretical ultimate loads with the experimental results 
 provided by Faella et al [4.12]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

SHS1 
A 30.6 21.44 25.47 25.05 RHS8 B 212 198.11 209.29 197.37 

B 29.7 21.44 25.47 25.05 
RHS9 

A 222.6 227.86 232.03 212.50 

SHS2 
A 158.4 131.57 155.94 152.98 B 224.9 227.86 232.03 212.50 

B 160.8 131.57 155.95 152.98 
RHS10 

A 271.2 279.03 296.30 250.31 

SHS3 
A 132.4 130.43 139.00 136.29 B 255.6 279.03 296.30 250.31 

B 131.3 130.43 139.00 136.29 
RHS11 

A 290.8 275.92 312.79 236.38 

SHS4 
A 186.6 159.29 174.22 171.79 B 261.2 250.83 312.79 236.38 

B 180.9 159.29 174.22 171.79 
RHS12 

A 313.2 250.83 336.21 260.00 

SHS5 
A 213.8 191.34 208.81 203.64 B 315.6 284.01 335.99 265.00 

B 208.7 191.34 208.81 203.64 
RHS13 

A 248.1 243.08 248.44 248.00 

SHS6 
A 264.4 251.49 265.75 259.65 B 248.2 243.08 248.44 228.33 

B 263.8 251.49 265.75 259.65 

RHS14 

A 85.1 85.90 89.02 80.50 

SHS7 
A 300.2 316.13 320.23 305.19 B 79.1 85.90 89.02 80.50 

B 304.8 316.13 320.25 305.19 C 79.7 85.90 89.02 80.50 

SHS8 
A 82.7 83.20 86.49 80.53 

RHS15 

A 185.7 166.53 176.42 168.19 

B 83.3 83.20 86.49 80.53 B 190.7 166.53 176.42 168.19 

SHS9 
A 84.7 81.03 107.85 92.33 C 185.2 166.53 176.41 168.19 

B 84.6 81.03 107.85 92.33 
RHS16 

A 92.5 90.14 99.49 83.03 

SHS10 A 728.5 664.13 706.27 686.75 B 92.8 90.14 99.49 83.03 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

SHS10 B 731.5 664.13 706.27 686.75 
RHS17 

A 89.4 81.80 87.67 78.14 

SHS11 
A 605.5 540.06 577.65 509.27 B 88.6 81.80 87.67 78.14 

B 592.5 540.06 577.55 509.27 
RHS18 

A 92.7 94.92 116.27 92.35 

SHS12 
A 626.5 605.82 721.78 626.40 B 89.4 87.00 115.72 92.35 

B 643.5 605.82 721.77 626.40 
RHS19 

A 137.7 132.00 166.64 143.78 

RHS1 
A 78.7 62.99 71.77 70.00 B 139.6 132.00 166.78 143.78 

B 77.5 62.99 71.77 70.00 
RHS20 

A 513.5 529.34 535.33 474.27 

RHS2 
A 124.3 99.87 111.39 109.26 B 506.5 529.34 535.33 474.27 

B 122.4 99.87 111.36 109.26 
RHS21 

A 115.3 117.40 124.58 121.58 

RHS3 
A 134.8 106.32 118.72 116.00 B 116.5 117.40 124.58 121.58 

B 136.8 106.32 118.72 115.50 
RHS22 

A 493 525.32 571.11 496.62 

RHS4 
A 109.8 98.12 109.19 104.19 B 497 525.32 571.11 496.62 

B 109.2 98.12 109.22 104.19 
RHS23 

A 621.5 631.77 708.55 611.11 

RHS5 
A 108.5 101.89 105.45 103.46 B 612 631.77 708.55 611.11 

B 109.1 101.24 104.78 103.46 
RHS24 

A 2939.4 2743.00 3016.10 2929.40 

RHS6 
A 122.4 112.58 122.53 115.24 B 2934 2743.00 3016.12 2929.40 

B 122.9 112.58 122.47 115.24 
RHS25 

A 669 664.00 748.64 714.22 

RHS7 
A 120.6 113.90 116.88 108.88 B 670.5 672.07 748.64 714.22 

B 118.7 113.90 116.87 108.88 
RHS26 

A 865 771.97 802.70 780.13 

RHS8 A 212 198.11 209.30 197.37 B 852 771.97 802.70 780.13 

 
Table A.9. Comparison between the theoretical ultimate loads with the experimental results 

 reported in the Chapter 3 and provided by Su et al [4.8]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

SHS40 

A 58.3 50.38 56.82 56.21 
H64x64x3 

A 164.2 160.68 170.16 148.13 

B 57.53 50.38 56.82 56.09 B 165.4 162.86 173.28 150.54 

C 55.55 50.38 55.00 56.09 
H70x55x4.2 

A 196.2 183.69 200.46 191.31 

SHS60 
A 92.26 89.62 94.38 87.65 B 196.9 184.11 200.98 191.74 

B 85.62 89.62 94.38 87.65 H95x50x10.5 A 626.2 587.32 613.59 722.86 

SHS80 
A 79.5 88.11 85.12 81.21 H120x70x10.5 A 862.5 793.77 840.28 924.23 

B 87.18 88.11 85.12 81.21 H120x120x9 A 981.5 890.83 882.53 987.83 

SHS100 
A 90.22 78.70 96.12 89.86 N95x50x10.5 A 609.8 459.83 572.61 574.76 

B 80.85 78.70 96.12 89.86 N120x70x10.5 A 736.9 490.38 684.69 583.69 

      N120x120x9 A 811.1 717.36 769.20 812.48 
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Table A.10. Comparison between the theoretical normalised strains with the experimental results  
provided by Faella et al [4.12]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

SHS1 
A 30.04 31.00 21.73 RHS8 B 2.88 3.52 3.10 

B 32.51 30.95 21.73 
RHS9 

A 1.95 2.49 0.98 

SHS2 
A 18.36 17.80 12.69 B 1.88 2.49 0.98 

B 21.07 17.81 12.69 
RHS10 

A 1.60 1.82 1.06 

SHS3 
A 4.94 4.73 3.12 B 1.35 1.20 1.06 

B 5.07 4.73 3.12 
RHS11 

A 1.09 1.16 1.14 

SHS4 
A 11.65 10.92 7.46 B 1.09 1.16 1.14 

B 13.26 10.92 7.46 
RHS12 

A 1.04 0.96 0.99 

SHS5 
A 6.88 5.93 3.95 B 0.99 0.96 0.99 

B 7.89 5.93 3.95 
RHS13 

A 1.95 2.33 1.06 

SHS6 
A 3.52 4.30 2.77 B 1.88 2.00 1.06 

B 4.13 4.30 2.77 

RHS14 

A 1.24 1.27 1.05 

SHS7 
A 1.43 1.99 1.23 B 1.26 1.20 1.05 

B 1.47 1.99 1.23 C 1.15 1.58 1.05 

SHS8 
A 1.90 2.49 1.60 

RHS15 

A 4.64 4.50 3.21 

B 1.71 2.49 1.60 B 4.16 4.50 3.21 

SHS9 
A 0.81 0.70 0.91 C 5.21 4.50 3.21 

B 0.76 0.70 0.91 
RHS16 

A 1.12 0.92 0.95 

SHS10 
A 2.91 3.39 2.13 B 1.08 0.92 0.95 

B 3.26 3.39 2.13 
RHS17 

A 1.24 1.39 1.03 

SHS11 
A 1.56 1.47 1.17 B 1.28 1.39 1.03 

B 1.29 1.47 1.17 
RHS18 

A 0.98 0.79 0.95 

SHS12 
A 1.13 1.19 1.07 B 1.02 0.78 0.95 

B 1.06 1.19 1.07 
RHS19 

A 0.83 0.85 0.99 

RHS1 
A 19.41 13.64 11.98 B 0.83 0.85 0.99 

B 19.39 13.64 11.98 
RHS20 

A 0.89 0.83 0.80 

RHS2 
A 24.93 21.69 18.76 B 0.93 0.83 0.80 

B 24.54 21.56 18.76 
RHS21 

A 2.77 2.00 2.79 

RHS3 
A 15.10 13.21 10.11 B 3.26 3.00 2.79 

B 15.12 13.21 10.14 
RHS22 

A 0.97 0.81 0.95 

RHS4 
A 6.70 6.36 4.20 B 0.92 0.81 0.95 

B 6.45 6.39 4.20 RHS23 A 1.00 1.00 0.96 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

RHS5 
A 3.75 4.34 2.33 RHS23 B 0.99 0.98 0.96 

B 3.28 4.36 2.33 
RHS24 

A 2.83 2.83 1.01 

RHS6 
A 3.83 4.62 3.05 B 2.85 2.70 1.01 

B 4.15 4.59 3.05 
RHS25 

A 1.37 1.37 1.26 

RHS7 
A 1.94 1.50 1.13 B 1.39 1.37 1.26 

B 1.63 1.50 1.13 
RHS26 

A 1.95 1.39 1.13 

RHS8 A 2.90 3.52 3.10 B 1.92 1.39 1.13 

Table A.11. Comparison between the theoretical normalised strains with the experimental results  
reported in the Chapter 3 and provided by Su et al [4.8]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

SHS40 

A 2.94 2.96 2.05 
H64x64x3 

A 2.14 2.18 1.14 

B 2.90 2.92 2.05 B 2.20 2.25 1.15 

C 1.60 1.60 2.05 
H70x55x4.2 

A 5.67 5.69 2.69 

SHS60 
A 0.97 0.96 0.93 B 5.70 5.72 2.69 

B 0.99 0.99 0.93 H95x50x10.5 A 2.07 2.05 2.43 

SHS80 
A 1.38 0.76 0.84 H120x70x10.5 A 2.17 2.14 2.60 

B 0.80 0.81 0.84 H120x120x9 A 1.61 1.50 2.00 

SHS100 
A 1.08 0.58 0.83 N95x50x10.5 A 8.24 8.16 8.51 

B 1.41 0.75 0.83 N120x70x10.5 A 22.11 22.00 21.70 

     N120x120x9 A 2.56 2.50 3.47 

A.2.2. H-shaped Sections 

Table A.12. Comparison between the theoretical ultimate loads with the experimental results 
 provided by Heimerl and Niles [4.13]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

H1 

A 3.15 161.91 2.35 2.24 
H9 

B 2.40 191.49 1.37 1.20 

B 4.21 160.04 2.32 2.21 C 1.60 190.88 1.37 1.16 

C 3.76 160.29 2.35 2.23 

H10 

A 1.39 202.56 1.21 1.16 

H2 

A 2.31 171.69 2.02 1.93 B 1.39 202.55 1.21 1.16 

B 1.82 171.70 2.03 1.93 C 1.30 214.96 1.03 1.11 

C 2.31 171.68 2.02 1.93 

H11 

A 0.95 216.15 0.98 1.11 

H3 

A 3.03 180.20 1.78 1.69 B 0.97 215.97 0.99 1.07 

B 2.35 181.34 1.79 1.71 C 0.95 215.97 0.99 1.06 

C 2.75 179.05 1.76 1.68 

H12 

A 0.75 223.20 0.86 1.06 

H4 
A 2.12 188.08 1.57 1.50 B 0.78 221.70 0.86 1.06 

B 2.53 188.36 1.57 1.49 C 0.76 223.20 0.86 1.02 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

H4 C 2.38 189.61 1.58 1.51 
H13 

A 0.59 196.31 0.68 1.02 

H5 
A 1.43 197.49 1.41 1.14 B 0.61 196.52 0.68 1.02 

B 1.71 196.13 1.40 1.14 

H14 

A 1.11 200.34 1.04 0.99 

H6 

A 1.48 204.49 1.29 1.10 B 1.16 199.06 1.03 0.99 

B 1.53 204.78 1.29 1.10 C 1.20 197.96 1.02 0.96 

C 1.48 202.76 1.27 1.07 

H15 

A 0.93 209.37 0.96 0.96 

H7 

A 1.01 214.14 1.10 1.07 B 0.94 210.89 0.97 0.96 

B 1.00 214.99 1.11 1.07 C 0.96 210.98 0.97 0.96 

C 1.01 214.39 1.10 1.04 

H16 

A 0.80 212.55 0.89 0.96 

H8 

A 2.15 180.60 1.52 1.04 B 0.84 212.59 0.89 0.96 

B 1.99 180.03 1.49 1.22 C 0.84 212.43 0.89 0.96 

C 2.36 179.02 1.48 1.04 
H17 

A 0.63 199.39 0.72 0.96 

H9 A 2.33 191.40 1.36 1.20 B 0.63 198.61 0.72 0.96 

Table A.13. Comparison between the theoretical ultimate loads with the experimental results 
 provided by Heimerl and Roy [4.14]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

H1 

A 213.93 172.24 195.96 186.63 

H11 

A 241.02 188.21 243.39 211.16 

B 204.81 171.26 193.36 184.15 B 239.46 188.21 243.39 211.16 

C 210.24 171.20 195.04 185.76 C 242.57 188.21 243.39 211.16 

H2 

A 226.43 175.66 205.80 196.00 

H12 

A 234.03 180.34 233.20 202.04 

B 225.70 176.02 206.11 196.29 B 231.73 178.01 229.83 199.50 

C 235.15 178.80 215.06 204.82 C 230.94 179.75 232.25 201.47 

H3 B 237.48 179.11 216.12 205.83 

H13 

A 234.90 189.86 244.23 217.95 

H4 

A 225.01 171.31 208.62 198.68 B 235.10 188.76 242.94 217.17 

B 228.61 171.31 208.62 198.68 C 235.88 188.76 242.95 217.17 

C 222.91 171.31 208.62 198.68 

H14 

A 221.42 190.38 241.94 221.15 

H5 

A 241.22 180.29 220.29 209.80 B 221.89 190.42 241.45 221.21 

B 239.63 180.29 220.30 209.81 C 220.73 190.28 241.82 220.86 

C 242.80 180.29 220.28 209.79 

H15 

A 217.06 191.30 236.10 223.48 

H6 

A 236.37 173.50 216.54 206.23 B 219.81 191.20 236.10 223.20 

B 238.44 175.34 219.05 208.62 C 216.79 191.20 236.08 223.20 

C 235.42 173.50 216.54 206.23 

H16 

A 196.18 193.08 216.03 228.23 

H7 

A 248.81 183.49 231.71 201.63 B 196.19 192.98 217.08 227.96 

B 250.07 183.70 232.46 202.11 C 195.26 192.98 217.15 227.96 

C 252.73 183.91 233.19 202.58 
H18 

A 246.99 192.71 243.35 218.02 

H8 
A 244.97 183.13 231.79 202.11 B 255.80 194.25 243.70 222.49 

B 247.98 183.70 232.73 201.34 

H19 

A 228.20 192.89 241.58 221.15 

H9 

A 239.90 175.32 223.11 192.93 B 233.98 194.03 243.85 222.38 

B 233.47 175.32 223.11 192.93 C 239.05 190.86 239.34 218.32 

C 231.78 175.32 223.11 192.93 

H20 

A 199.20 191.41 227.97 223.58 

H10 A 253.03 185.27 237.59 205.74 B 213.10 193.08 230.96 225.45 
      C 211.03 193.21 230.09 225.87 
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Table A.14. Comparison between the theoretical ultimate loads with the experimental results 
 provided by Heimerl and Fay [4.15]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

H1 

A 211.25 185.59 213.90 195.32 H7 C 227.93 191.40 244.62 217.47 

B 207.78 183.68 212.16 193.45 

H8 

A 244.45 206.38 262.55 231.80 

C 204.33 181.07 209.86 190.72 B 247.07 206.51 262.76 232.14 

H2 

A 213.67 183.29 217.93 195.15 C 250.25 208.06 264.47 233.67 

B 212.08 183.69 218.27 195.48 
H9 

A 236.48 200.57 258.13 231.97 

C 210.57 182.65 217.15 194.51 B 237.66 200.57 258.04 231.97 

H3 

A 220.25 185.79 227.34 200.28 

H10 

A 235.48 210.19 265.55 200.78 

B 220.17 186.43 228.13 200.91 B 234.90 207.72 260.15 199.52 

C 220.86 185.79 227.33 200.28 C 235.32 207.72 260.14 199.52 

H4 

A 227.10 188.65 236.46 205.69 

H11 

A 218.76 211.91 250.95 204.60 

B 227.81 189.05 236.78 206.02 B 214.92 209.00 243.60 202.38 

C 230.08 190.37 238.32 207.55 C 218.75 212.15 249.35 205.14 

H5 

A 230.70 188.67 240.78 208.11 
H12 

A 201.95 213.23 231.25 207.69 

B 233.86 190.82 243.19 210.38 B 198.66 211.40 228.75 205.89 

C 229.35 190.82 243.19 210.38 

H18 

A 152.41 210.18 176.33 194.56 

H6 

A 235.49 192.04 247.08 213.71 B 155.89 210.83 178.06 193.97 

B 236.47 191.39 246.12 213.09 C 158.00 209.62 176.91 192.53 

C 233.66 192.43 247.36 214.03 

H19 

A 137.72 211.69 152.39 197.76 

H7 
A 233.64 195.33 251.32 219.59 B 144.72 212.37 153.45 201.37 

B 229.86 193.48 248.44 215.06 C 142.06 214.93 156.12 195.47 

 

Table A.15. Comparison between the theoretical ultimate loads with the experimental results 
 provided by Yuan et al [4.16]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑵𝒖.𝒆𝒙𝒑 
[kN] 

𝑵𝒖.𝑬𝑪𝟗 
[kN] 

𝑵𝒖.𝑫𝑻𝑷 
[kN] 

𝑵𝒖.𝑬𝑻𝑴 
[kN] 

H1 A 1353.00 1246.15 1323.66 1237.92 H9 A 254.10 254.71 243.86 227.10 

H2 A 1569.50 1338.97 1560.49 1434.29 H10 A 340.20 332.81 310.04 307.18 

H3 A 1139.60 1059.20 1171.13 1098.97 H11 A 446.80 377.41 392.22 378.41 

H4 A 1057.80 978.58 901.32 899.80 H12 A 520.60 383.80 433.17 401.37 

H5 A 1271.00 1141.88 1112.96 1085.68 H13 A 295.10 269.14 212.33 226.93 

H6 A 1442.00 1220.58 1286.30 1290.41 H14 A 315.60 302.78 271.05 293.16 

H7 A 1135.70 1204.20 929.62 1069.41 H15 A 332.00 306.36 303.54 314.66 

H8 A 1365.10 1362.86 1127.52 1305.92       
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Table A.16. Comparison between the theoretical normalised strains with the experimental results 
 provided by Heimerl and Niles [4.13]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

H1 

A 3.15 2.35 2.24 
H9 

B 2.40 1.37 1.20 

B 4.21 2.32 2.21 C 1.60 1.37 1.16 

C 3.76 2.35 2.23 

H10 

A 1.39 1.21 1.16 

H2 

A 2.31 2.02 1.93 B 1.39 1.21 1.16 

B 1.82 2.03 1.93 C 1.30 1.03 1.11 

C 2.31 2.02 1.93 

H11 

A 0.95 0.98 1.11 

H3 

A 3.03 1.78 1.69 B 0.97 0.99 1.07 

B 2.35 1.79 1.71 C 0.95 0.99 1.06 

C 2.75 1.76 1.68 

H12 

A 0.75 0.86 1.06 

H4 

A 2.12 1.57 1.50 B 0.78 0.86 1.06 

B 2.53 1.57 1.49 C 0.76 0.86 1.02 

C 2.38 1.58 1.51 
H13 

A 0.59 0.68 1.02 

H5 
A 1.43 1.41 1.14 B 0.61 0.68 1.02 

B 1.71 1.40 1.14 

H14 

A 1.11 1.04 0.99 

H6 

A 1.48 1.29 1.10 B 1.16 1.03 0.99 

B 1.53 1.29 1.10 C 1.20 1.02 0.96 

C 1.48 1.27 1.07 

H15 

A 0.93 0.96 0.96 

H7 

A 1.01 1.10 1.07 B 0.94 0.97 0.96 

B 1.00 1.11 1.07 C 0.96 0.97 0.96 

C 1.01 1.10 1.04 

H16 

A 0.80 0.89 0.96 

H8 

A 2.15 1.52 1.04 B 0.84 0.89 0.96 

B 1.99 1.49 1.22 C 0.84 0.89 0.96 

C 2.36 1.48 1.04 
H17 

A 0.63 0.72 0.96 

H9 A 2.33 1.36 1.20 B 0.63 0.72 0.96 

Table A.17. Comparison between the theoretical normalised strains with the experimental results  
provided by Heimerl and Roy [4.14]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

H1 

A 4.28 4.20 4.00 

H11 

A 0.92 0.94 1.02 

B 4.29 4.20 4.00 B 0.91 0.94 1.02 

C 5.57 4.82 4.59 C 0.93 0.94 1.02 

H2 

A 6.67 5.50 5.24 

H12 

A 0.92 0.91 1.02 

B 6.03 4.30 4.09 B 0.92 0.91 1.02 

C 4.39 3.79 3.61 C 0.90 0.91 1.02 

H3 B 4.63 3.73 3.56 

H13 

A 0.87 0.92 1.08 

H4 

A 3.04 3.59 3.42 B 0.88 0.92 1.06 

B 3.96 3.59 3.42 C 0.88 0.92 1.06 

C 2.63 2.11 2.01 

H14 

A 0.77 0.85 1.06 

H5 

A 3.74 2.08 1.98 B 0.77 0.84 1.06 

B 3.35 2.08 1.98 C 0.77 0.85 1.06 

C 4.20 2.08 1.98 

H15 

A 0.73 0.80 1.05 

H6 
A 2.57 1.86 1.77 B 0.74 0.80 1.04 

B 2.44 1.85 1.76 C 0.73 0.80 1.04 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

H6 C 2.43 1.86 1.77 

H16 

A 0.61 0.67 1.02 

H7 

A 1.77 1.76 1.12 B 0.61 0.68 1.02 

B 1.75 1.74 1.12 C 0.61 0.68 1.02 

C 1.83 1.72 1.12 
H18 

A 0.92 0.90 0.97 

H8 
A 1.55 1.77 1.12 B 0.91 0.85 0.97 

B 1.61 1.74 1.12 

H19 

A 0.80 0.85 0.97 

H9 

A 1.57 1.68 1.12 B 0.82 0.86 0.97 

B 1.28 1.05 1.12 C 0.86 0.86 0.97 

C 1.23 1.05 1.12 

H20 

A 0.66 0.76 0.96 

H10 A 1.29 1.00 1.10 B 0.70 0.76 0.96 
     C 0.69 0.76 0.96 

Table A.18. Comparison between the theoretical normalised strains with the experimental results 
 provided by Heimerl and Fay [4.15]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

H1 

A 1.48 1.67 1.29 H7 C 0.80 0.87 1.06 

B 1.38 1.65 1.28 

H8 

A 0.89 1.02 1.18 

C 1.31 1.63 1.28 B 0.91 1.02 1.17 

H2 

A 1.26 1.45 1.22 C 0.92 1.03 1.18 

B 1.20 1.45 1.22 
H9 

A 0.81 0.90 1.07 

C 1.18 1.44 1.22 B 0.82 0.90 1.07 

H3 

A 1.08 1.26 1.17 

H10 

A 0.75 0.85 0.77 

B 1.07 1.27 1.17 B 0.75 0.83 0.77 

C 1.10 1.26 1.17 C 0.75 0.83 0.77 

H4 

A 0.99 1.12 1.13 

H11 

A 0.66 0.75 0.76 

B 0.99 1.12 1.13 B 0.65 0.74 0.76 

C 1.01 1.13 1.13 C 0.65 0.75 0.76 

H5 

A 0.92 1.00 1.11 
H12 

A 0.57 0.66 0.75 

B 0.93 1.00 1.11 B 0.57 0.65 0.75 

C 0.90 1.00 1.11 

H18 

A 0.36 0.42 0.32 

H6 

A 0.88 0.94 1.08 B 0.37 0.42 0.32 

B 0.88 0.94 1.08 C 0.37 0.42 0.32 

C 0.87 0.94 1.08 

H19 

A 0.29 0.33 0.32 

H7 
A 0.81 0.88 1.06 B 0.31 0.33 0.32 

B 0.80 0.88 1.06 C 0.30 0.33 0.32 

Table A.19. Comparison between the theoretical normalised strains with the experimental results  
provided by Yuan et al [4.16]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜺𝒖.𝒆𝒙𝒑 

[-] 
𝜺𝒖.𝑫𝑻𝑷 

[-] 
𝜺𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜺𝒖.𝒆𝒙𝒑 
[-] 

𝜺𝒖.𝑫𝑻𝑷 
[-] 

𝜺𝒖.𝑬𝑻𝑴 
[-] 

H1 A 1.00 0.95 0.85 H9 A 0.90 0.84 0.88 
H2 A 0.94 0.93 0.80 H10 A 1.01 0.84 0.97 
H3 A 0.88 0.92 0.82 H11 A 1.11 0.82 0.87 
H4 A 0.88 0.74 0.97 H12 A 1.20 0.79 0.82 
H5 A 0.90 0.77 0.80 H13 A 0.85 0.59 0.83 
H6 A 0.86 0.76 0.78 H14 A 0.70 0.60 0.80 
H7 A 0.69 0.56 0.78 H15 A 0.65 0.60 0.78 
H8 A 0.69 0.57 0.77     
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ANNEX B 

B.1. Geometrical and Mechanical Properties of Experimental Tests  

In this section, the main experimental properties of the three point bending tests, presented in the 

technical literature, are reported according to the following geometric schemes: 

 

 
 

Table B.1. Geometrical and mechanical properties of tested hollow sections provided in Chapter 3. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐  

[mm] 
𝒕𝟐  

[mm] 
𝑳 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐  

[MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

SHS40_L1 6060 T6 40.11 2.097 40.18 2.038 1300 314.90 71770 176.00 201.36 11.85 

SHS40_L2 6060 T6 40.11 2.097 40.18 2.038 800 314.90 71770 176.00 201.36 11.85 

SHS40_L3 6061 T6 40.11 2.097 40.18 2.038 500 314.90 71770 176.00 201.36 11.85 

SHS60_L1 6060 T6 60.31 2.000 60.40 2.123 1300 480.71 66219 225.07 249.32 13.45 

SHS60_L2 6060 T6 60.31 2.000 60.40 2.123 800 480.71 66219 225.07 249.32 13.45 

SHS60_L3 6060 T6 60.31 2.000 60.40 2.123 500 480.71 66219 225.07 249.32 13.45 

SHS80_L1 6060 T6 80.06 1.950 80.17 1.940 1300 608.16 68539 225.80 252.14 8.49 

SHS80_L2 6060 T6 80.06 1.950 80.17 1.940 800 608.16 68539 225.80 252.14 8.49 

SHS80_L3 6060 T6 80.06 1.950 80.17 1.940 500 608.16 68539 225.80 252.14 8.49 

SHS100_L1 6060 T6 100.30 2.180 100.30 2.200 1300 859.44 69558 168.15 201.80 10.43 

SHS100_L2 6060 T6 100.30 2.180 100.30 2.200 800 859.44 69558 168.15 201.80 10.43 

SHS100_L3 6060 T6 100.30 2.180 100.30 2.200 500 859.44 69558 168.15 201.80 10.43 

Table B.2. Geometrical and mechanical properties of tested hollow sections provided by Moen et al [5.6]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐  

[mm] 
𝒕𝟐  

[mm] 
𝑳 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐 

 [MPa] 
𝒇𝒖 

 [MPa] 
𝒏 
[-] 

Q1-1m-1 6082 T6 99.60 5.94 100.30 5.89 1000 2224 68886 315.50 323.50 64.0 

Q1-1m-2 6082 T6 99.60 5.94 100.30 5.89 1000 2224 68886 315.50 323.50 64.0 

Q1-2m-1 6082 T6 99.60 5.94 100.30 5.89 2000 2224 68886 315.50 323.50 64.0 

Q1-2m-3 6082 T6 99.60 5.94 100.30 5.89 2000 2224 68886 315.50 323.50 64.0 

Q2-1m-1 6082 T4 100.00 5.95 100.00 5.88 1000 2225 66868 176.60 283.40 38.0 
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𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏  

[mm] 
𝑩𝟐  

[mm] 
𝒕𝟐  

[mm] 
𝑳 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐 

 [MPa] 
𝒇𝒖 

 [MPa] 
𝒏 
[-] 

Q2-1m-2 6082 T4 100.00 5.95 100.00 5.88 1000 2225 66868 176.60 283.40 38.0 

Q2-2m-1 6082 T4 100.00 5.95 100.00 5.88 2000 2225 66868 176.60 283.40 38.0 

Q2-2m-2 6082 T4 100.00 5.95 100.00 5.88 2000 2225 66868 176.60 283.40 38.0 

Q3-1m-1 6082 T4 100.00 2.89 99.70 2.83 1000 1110 66853 120.10 221.00 26.0 

Q3-1m-3 6082 T4 100.00 2.89 99.70 2.83 1000 1110 66853 120.10 221.00 26.0 

Q3-2m-1 6082 T4 100.00 2.89 99.70 2.83 2000 1110 66853 120.10 221.00 26.0 

Q3-2m-2 6082 T4 100.00 2.89 99.70 2.83 2000 1110 66853 120.10 221.00 26.0 

Q4-2m-1 7108-T7 100.10 5.94 100.00 5.98 2000 2243 66880 314.00 333.40 65.0 

Q4-2m-2 7108-T7 100.10 5.94 100.00 5.98 2000 2243 66880 314.00 333.40 65.0 

R1-1m-1 6082 T6 60.00 2.29 119.40 2.58 1000 867 66577 288.50 302.30 51.0 

R1-2m-1 6082 T6 60.00 2.29 119.40 2.58 2000 867 66577 288.50 302.30 51.0 

R1-2m-2 6082 T6 60.00 2.29 119.40 2.58 2000 867 66577 288.50 302.30 51.0 

R1-3m-1 6082 T6 60.00 2.29 119.40 2.58 3000 867 66577 288.50 302.30 51.0 

R1-3m-2 6082 T6 60.00 2.29 119.40 2.58 3000 867 66577 288.50 302.30 51.0 

R2-1m-1 6082 T6 60.10 2.94 100.00 2.94 1000 906 66225 281.40 290.40 45.0 

R2-1m-2 6082 T6 60.10 2.94 100.00 2.94 1000 906 66225 281.40 290.40 45.0 

R2-2m-1 6082 T6 60.10 2.94 100.00 2.94 2000 906 66225 281.40 290.40 45.0 

R2-2m-2 6082 T6 60.10 2.94 100.00 2.94 2000 906 66225 281.40 290.40 45.0 

R2-3m-1 6082 T6 60.10 2.94 100.00 2.94 3000 906 66225 281.40 290.40 45.0 

R2-3m-2 6082 T6 60.10 2.94 100.00 2.94 3000 906 66225 281.40 290.40 45.0 
Table B.3. Geometrical and mechanical properties of tested hollow sections provided by Su et al [5.14]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝟏 

[mm] 
𝒕𝟏 

 [mm] 
𝑩𝟐 

 [mm] 
𝒕𝟐  

[mm] 
𝑳 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐 

 [MPa] 
𝒇𝒖 

 [MPa] 
𝒏 
[-] 

H70x55x4B3 6061 T6 69.80 4.09 55.20 4.09 695 906 67000 207.00 222.00 16.0 

H55x70x4B3 6061 T6 54.70 4.09 69.80 4.09 693 956 67000 207.00 222.00 16.0 

H95x50x10B3 6061 T6 94.70 10.34 49.60 10.34 695 951 68000 229.00 242.00 11.0 

H50x95x10B3 6061 T6 49.50 10.34 94.60 10.34 693 2556 68000 229.00 242.00 11.0 

H64x64x3B3 6061 T6 63.90 2.89 63.80 2.89 693 2552 67000 232.00 245.00 10.0 

H120x120x9xB3 6061 T6 120.00 8.90 119.90 8.90 691 705 65000 225.00 234.00 13.0 

H120x70x10xB3 6061 T6 119.80 10.28 69.80 10.28 691 3953 68000 226.00 238.00 10.0 

H70x120x10xB4 6061 T6 69.80 10.26 119.80 10.26 692 3475 68000 226.00 238.00 10.0 

H70x55x4B3-R 6061 T6 69.80 4.07 54.80 4.07 694 3470 65000 193.00 207.00 22.0 

H50x95x10B3-R 6061 T6 49.50 10.33 94.70 10.33 693 948 68000 229.00 242.00 11.0 

H64x64x3B3-R 6061 T6 63.90 2.83 63.90 2.83 696 2552 67000 232.00 245.00 10.0 

N120x70x10B3 6063 T5 120.00 10.40 69.90 10.40 689 691 71000 139.00 194.00 9.0 

N70x120x10B3 6063 T5 69.90 10.40 119.90 10.40 688 3517 71000 139.00 194.00 9.0 

N120x120x9B3 6063 T5 119.90 8.90 119.90 8.90 693 3515 69000 181.00 228.00 9.0 
Table B.4. Geometrical and mechanical properties of tested H-shaped sections provided by Moen et al [5.6]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 𝑨𝒍𝒍𝒐𝒚 
𝑩𝒇 

[mm] 
𝒕𝒇  

[mm] 
𝑯𝒘 

 [mm] 
𝒕𝒘  

[mm] 
𝑳 

[mm] 
𝑨  

[mm2] 
𝑬 

[MPa] 
𝒇𝟎.𝟐 

 [MPa] 
𝒇𝒖  

[MPa] 
𝒏 
[-] 

I1-2m-1 6061 T6 119.90 7.96 120.20 7.98 2000 2438 66716 312.20 324.20 74 
I2-1m-1 6082 T6 70.00 4.94 80.35 4.95 1000 1042 66874 279.40 300.70 62 
I2-1m-2 6082 T6 70.00 4.94 80.35 4.95 1000 1042 66874 279.40 300.70 62 
I2-1m-3 6082 T6 70.00 4.94 80.35 4.95 1000 1042 66874 279.40 300.70 62 
I2-2m-1 6082 T6 70.00 4.94 80.35 4.95 2000 1042 66874 279.40 300.70 62 
I2-2m-2 6082 T6 70.00 4.94 80.35 4.95 2000 1042 66874 279.40 300.70 62 
I2-2m-3 6082 T6 70.00 4.94 80.35 4.95 2000 1042 66874 279.40 300.70 62 
I2-3m-1 6082 T6 70.00 4.94 80.35 4.95 3000 1042 66874 279.40 300.70 62 
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B.2. Collection of Numerical Results   

Table B.5. Comparison between the theoretical ultimate bending moments with the experimental results 
 provided by Moen et al [5.6] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑴𝒖.𝒆𝒙𝒑 
[kNm] 

𝑴𝒖.𝑬𝑪𝟗 
[kNm] 

𝑴𝒖.𝑬𝑹 
[kNm] 

𝑴𝒖.𝑬𝑻𝑴 
[kNm] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑴𝒖.𝒆𝒙𝒑 
[kNm] 

𝑴𝒖.𝑬𝑪𝟗 
[kNm] 

𝑴𝒖.𝑬𝑹 
[kNm] 

𝑴𝒖.𝑬𝑻𝑴 
[kNm] 

Q1-1m-1 27.87 22.42 29.18 25.44 R1-3m-1 7.62 7.53 9.27 7.85 

Q1-1m-2 27.87 22.42 29.18 25.44 R1-3m-2 7.54 7.53 9.27 7.85 

Q1-2m-1 27.15 22.42 28.20 25.32 R2-1m-1 8.65 7.22 9.19 8.35 

Q1-2m-3 27.39 22.42 28.20 25.32 R2-1m-2 8.65 7.22 9.19 8.35 

Q2-1m-1 18.43 12.55 17.00 14.78 R2-2m-1 8.58 7.22 8.96 8.33 

Q2-1m-2 18.30 12.55 17.00 14.78 R2-2m-2 8.80 7.22 8.96 8.33 

Q2-2m-1 17.76 12.55 16.61 14.78 R2-3m-1 9.03 7.22 8.82 8.33 

Q2-2m-2 18.30 12.55 16.61 14.78 R2-3m-2 8.95 7.22 8.82 8.33 

Q3-1m-1 4.78 4.30 5.33 4.67 I1-2m-1 39.04 32.24 43.07 39.76 

Q3-1m-3 4.69 4.30 5.33 4.67 I2-1m-1 10.76 8.03 9.85 9.69 

Q3-2m-1 4.64 4.30 5.24 4.65 I2-1m-2 10.40 8.03 9.85 9.69 

Q3-2m-2 4.87 4.30 5.24 4.65 I2-1m-3 10.40 8.03 9.85 9.69 

Q4-2m-1 28.81 22.39 28.06 25.22 I2-2m-1 10.32 8.03 9.45 9.69 

Q4-2m-2 27.85 22.39 28.06 25.22 I2-2m-2 10.40 8.03 9.45 9.69 

R1-1m-1 8.10 7.53 9.69 7.90 I2-2m-3 10.58 8.03 9.45 9.69 

R1-2m-1 8.10 7.53 9.43 7.86 I2-3m-1 10.05 8.03 9.22 9.69 

R1-2m-2 8.10 7.53 9.43 7.86      

Table B.6. Comparison between the theoretical ultimate bending moments with the experimental results 
reported in Chapter 3 provided by Su et [5.14]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑴𝒖.𝒆𝒙𝒑 
[kNm] 

𝑴𝒖.𝑬𝑪𝟗 
[kNm] 

𝑴𝒖.𝑬𝑹 
[kNm] 

𝑴𝒖.𝑬𝑻𝑴 
[kNm] 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝑴𝒖.𝒆𝒙𝒑 
[kNm] 

𝑴𝒖.𝑬𝑪𝟗 
[kNm] 

𝑴𝒖.𝑬𝑹 
[kNm] 

𝑴𝒖.𝑬𝑻𝑴 
[kNm] 

H70x55x4.2B3 4.75 4.16 4.88 4.75 N120x70x10.5B3 20.72 14.30 18.69 18.17 

H55x70x4.2B3 6.76 4.63 5.89 5.56 N70x120x10.5B3 37.30 18.43 28.00 28.36 

H95x50x10.5B3 12.09 12.68 15.95 11.33 N120x120x9.0B3 40.53 30.93 40.14 42.01 

H50x95x10.5B3 21.09 17.05 27.67 18.25 SHS40_L1 0.81 0.70 0.84 0.82 

H64x64x3.0B3 4.10 3.72 4.14 4.17 SHS40_L2 0.81 0.69 0.84 0.81 

H120x120x9.0xB3 44.42 38.47 48.22 41.79 SHS40_L3 0.82 0.69 0.84 0.81 

H120x70x10.50xB3 23.59 22.92 28.05 22.41 SHS60_L1 2.18 1.89 2.20 1.95 

H70x120x10.50xB4 37.86 29.53 44.74 32.63 SHS60_L2 2.08 1.89 2.23 1.95 

H70x55x4.2B3-R 4.82 3.83 4.49 4.75 SHS60_L3 1.91 1.89 2.23 1.93 

H64x64x3.0B3-R 10.28 3.65 4.04 11.33 SHS80_L1 2.98 2.79 3.48 2.93 

     SHS100_L1 3.65 3.76 4.71 3.32 
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Table B.7. Comparison between the theoretical normalised rotations with the experimental results 
 provided by Moen et al [5.6]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜽𝒖.𝒆𝒙𝒑 

[-] 
𝜽𝒖.𝑬𝑹 

[-] 
𝜽𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜽𝒖.𝒆𝒙𝒑 
[-] 

𝜽𝒖.𝑬𝑹 
[-] 

𝜽𝒖.𝑬𝑻𝑴 
[-] 

Q1-1m-1 1.80 1.46 1.30 R1-3m-1 1.00 - 1.04 

Q1-1m-2 1.82 1.46 1.30 R1-3m-2 1.00 - 1.08 

Q1-2m-1 1.49 1.25 1.27 R2-1m-1 1.43 1.44 1.23 

Q1-2m-3 1.55 1.25 1.27 R2-1m-2 1.41 1.44 1.23 

Q2-1m-1 1.67 1.90 1.46 R2-2m-1 1.35 1.43 1.22 

Q2-1m-2 1.67 1.90 1.32 R2-2m-2 1.38 1.43 1.22 

Q2-2m-1 1.41 1.87 1.25 R2-3m-1 1.37 1.42 1.23 

Q2-2m-2 1.50 1.87 1.25 R2-3m-2 1.35 1.42 1.23 

Q3-1m-1 2.29 1.98 2.08 I1-2m-1 1.44 1.02 1.21 

Q3-1m-3 1.74 1.65 2.08 I2-1m-1 2.35 1.93 1.85 

Q3-2m-1 1.37 1.40 1.04 I2-1m-2 2.37 1.93 1.85 

Q3-2m-2 1.62 1.40 1.04 I2-1m-3 2.37 1.93 1.85 

Q4-2m-1 1.66 1.46 1.16 I2-2m-1 1.93 1.33 1.61 

Q4-2m-2 1.66 1.46 1.16 I2-2m-2 2.00 1.33 1.61 

R1-1m-1 1.00 - 1.07 I2-2m-3 1.86 1.33 1.61 

R1-2m-1 1.00 - 1.05 I2-3m-1 1.62 1.17 1.61 

R1-2m-2 1.00 - 1.09     

 

Table B.8. Comparison between the theoretical normalised rotations with the experimental results 
  reported in Chapter 3 provided by Su et al [5.14]. 

𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 
𝜽𝒖.𝒆𝒙𝒑 

[-] 
𝜽𝒖.𝑬𝑹 

[-] 
𝜽𝒖.𝑬𝑻𝑴 

[-] 
𝑺𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

𝜽𝒖.𝒆𝒙𝒑 
[-] 

𝜽𝒖.𝑬𝑹 
[-] 

𝜽𝒖.𝑬𝑻𝑴 
[-] 

H70x55x4.2B3 - 2.03 1.27 N120x70x10.5B3 - 4.47 5.18 

H55x70x4.2B3 - 2.45 1.29 N70x120x10.5B3 - 5.31 5.43 

H95x50x10.5B3 - 2.61 1.12 N120x120x9.0B3 - 2.17 2.29 

H50x95x10.5B3 - 2.36 1.19 SHS40_L1 1.44 1.26 1.33 

H64x64x3.0B3 - 1.46 1.12 SHS40_L2 1.22 1.30 1.31 

H120x70x10.50xB3 - 2.65 1.16 SHS40_L3 1.41 1.37 1.34 

H70x120x10.50xB4 - 2.67 1.20 SHS60_L1 1.19 1.07 1.06 

H70x55x4.2B3-R - 1.83 1.27 SHS60_L2 1.18 1.06 1.06 

H50x95x10.5B3-R - 2.40 1.29 SHS60_L3 0.79 - 0.78 

H64x64x3.0B3-R - 1.46 1.12 SHS80_L1 0.56 - 0.55 

    SHS100_L1 0.60 - 0.59 
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