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“A computer would deserve to be called intelligent if it could
deceive a human into believing that it was human.”

Alan Turing
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Abstract

In the surveillance systems, Unmanned Vehicle (UV) scene inter-
pretation is a non-trivial problem, because UVs need to possess
human-like common-sense knowledge to correctly interpret events
and situations occurring in the monitored environment. Mobile
camera-related issues, such as motion blur, can further complicate
scene interpretation, causing a lack of reference points that badly
affects the interpretation of scene entities and situations. To this
purpose, this thesis investigates the synergistic combination of
video tracking with Semantic Web technologies to enhance UVs at
the interpretation of dynamic scenarios.

The first part of the thesis provides a survey conducted on
the methods employed to extract knowledge from the acquired
structured and unstructured data. When dealing with unstructured
data, there is the need to define and process contextual data
to extract high-level concepts from text. To this purpose, an
approach is introduced to mine concepts from texts by building
layered contextual knowledge on document terms exploiting a
geometrical structure, called Simplicial Complex. Then, the focus
switches to the knowledge extraction from multimedia data, and
more specifically, video data. To this purpose, an ontology-based
approach is presented to represent the video scene as composed of
mobile (i.e., people, vehicles) and fixed entities (i.e., environmental
sites and features), along with the spatio/temporal relations among
them. The use of the ontology reasoning can support alerting event
detection.

In the second part, solutions to detect high-level activities
and events have been investigated. In order to build high-level
descriptions of the activities and events, there is the need to build
knowledge on various aspects of the scene at various levels of
detail (scene object, environment, specific events, overall situation),
additionally, there is a lack of general and reusable models to build
knowledge on the various levels. In literature there are lots of
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approaches that fuse data to spot simple or contextual events, but
there are no models to relate them in order to fully describe the
scene. Therefore, a composing approach is proposed to recognize
complex activities from simpler activities carried out by the mobile
entities in the scene. Then, a comprehensive situation detection
approach is introduced. It defines a multi-ontology design pattern
to incrementally build various layers of knowledge and depict the
whole scene observed by the UVs, from the single scene entities to
the high-level activities and situations.

The last part of the thesis analyses the scenario interpretation
through systems employing multiple UVs and smart devices. Mul-
tiple UVs need ways to combine the knowledge they acquired to
better interpret what happened. To this purpose, the previously
introduced ontology-based framework has been enhanced with a
novel agent-based model to allow UVs to cooperatively build knowl-
edge on the scene. The employment of multiple devices can indeed
provide better views on the scene to monitor, however, UVs not nat-
urally come to an agreed scene interpretation. To tackle this issue,
a consensus-based Group Decision Making (GDM) approach is pro-
posed to support teams of UVs to robustly interpret the monitored
scenario and evaluate the reliability of their interpretations.



Chapter 1

Introduction

In recent years, Unmanned Vehicles (UVs) have been widely used
both in military and civil fields due to their capabilities of perform-
ing tasks in an automatic or semi-automatic way. Their success
depends on the fact that they can be used to accomplish tasks, that
can be too risky or difficult to perform, without directly involving
humans. UVs can be of different types, such as Unmanned Aerial
Vehicles (UAVs), Unmanned Ground Vehicles (UGVs) and Un-
manned Underwater Vehicles (UUVs). Therefore, they can be used
in applications set in different environmental contexts. Common
applications include crowd monitoring, target searching, agricul-
ture management, film making, public structure maintenance and
more. Camera-equipped UVs have also been used to monitor ob-
jects moving in the video scene, such as people, animals, vehicles,
for surveillance purposes. Computer vision algorithms have been
employed to track the movements of the scene objects. To perform
these tasks, camera-equipped UVs need to become aware of what
they are observing to accomplish a specific task, they have been
assigned with. In other words, camera-equipped UVs need to “un-
derstand” what they observed through their sensors. Therefore,
situation comprehension requires UVs enhanced with human-like
cognitive capabilities to deduct events and situations from video
data.

To this purpose, this dissertation discusses various methodolo-
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gies to allow smart devices to extract knowledge from structured
and unstructured data. Then, several solutions are proposed to
allow UVs to become aware of situations. The debated frameworks
enhance UVs as knowledge-based systems, which use novel cog-
nitive models to abstract knowledge on the monitored area. The
presented approaches allow the UV to incrementally build knowl-
edge from the collected data to reach a human-like description
of the scenario. This UV feature can support human operators
to monitor and analyse various situations and take action. This
dissertation also tackles problems related to reaching robust scene
interpretation by using system composed of multiple UVs and
sensors.

1.1 Context and problem statement
The employment of UVs to accomplish surveillance tasks requires
UVs capable of collecting information and defining their own in-
terpretation of what is happened. In order to achieve scenario
interpretation, humans can percept some elementary information,
such as the presence of people, and detect some events. Then,
humans use the logic, the experience and their own common-sense
reasoning to relate the events and explain what happened in a
scenario. As humans, UVs can percept information from the en-
vironment through their sensors, but they do not naturally come
to a scenario interpretation. In fact, UVs lack the common sense
reasoning capabilities to interpret the sensed raw data and ab-
stract knowledge from them. Therefore, UVs, patrolling an area,
need to “reason” over the data acquired to become aware of the
occurred situations. Then, UVs require to be enhanced with cog-
nitive capabilities to understand and relate situational elements
(i.e., people, events, etc.) to achieve a robust situation awareness
to accomplish their tasks. Let us consider a practical example: a
human, observing a road environment, can immediately recognize
the moving people and vehicles. Then, if the vehicle does not
stop when a person crosses the road, the human mind relates the
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events by exploiting its experience with the common-sense reason-
ing ending up classifying the situation as potentially dangerous.
In order to let a UV understand this scenario, it needs Computer
Vision methodologies to recognize the moving objects and recog-
nize them as people and vehicles. Then, the UV needs to analyse
and recognize their movements and actions (i.e., people crossing,
vehicle accelerating), this implies UVs possessing highly cognitive
capabilities to contextualize people and vehicle movements with
the environment, and analyse their interaction over time. Further-
more, to recognize the scenario as alerting, UVs need to possess
knowledge on events and situations, that can be alerting, and use
it to analyse the recognized events. Therefore, they must “know”
that the co-occurrence of people and vehicles actions (i.e., people
crossing, vehicle accelerating), along with their proximity, can put
people’s life at risks.

To understand a scenario, UV situation awareness requires, as
first step, the acquisition of the main actors of the scene. Video
tracking algorithms can support this step, performing the detection
of mobile scene objects from frame to frame. The UV dynamism
causes a lack of reference points that makes situation comprehension
difficult to achieve. In fact, a mobile camera can cause problems
to the object detection and tracking from video, as well as to the
general interpretation of the events. For this reason, contextual
information is strongly required to support UV comprehension
of the video scene [1, 2]. Consequently, knowledge representation
models are required to integrate video data with contextual data [2].
A robust scene knowledge representation also requires to model the
space and time to understand the evolution of the scene. Therefore,
scenario interpretation involves the comprehension of scene object
movements and interactions to recognize events and situations
from the observed scene. To this purpose, UVs need knowledge
abstraction models to detect higher-level events from video data.

When using multiple UVs, the scenario comprehension becomes
more and more challenging. The use of multiple UVs can indeed
take the scene from many different angles and provide more useful
information to depict the observed scenario. However, multiple
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UVs can generate different interpretations of the observed scene.
Therefore, there is the need of methods to guide UVs to a common
interpretation of the scenario. UVs, usually, report contrasting
information on the scene due to their different perspectives and
features (i.e., different UV type, different applications). Many
approaches, present in literature [3, 4, 5, 6], perform data fusion to
integrate data coming from different UVs. Data fusion can certainly
bridge UV information, but it cannot evaluate how the final group
scenario interpretation satisfies each UV interpretation. Therefore,
there is the need of methods to lead UVs to reach an agreed team
interpretation of the scenario. Furthermore, UVs need tools to also
evaluate how much the final group scenario interpretation satisfies
all the UV perspectives on the scene, and, accordingly, evaluate
the reliability of the team scenario interpretation. Another open
problem is to determine which UVs in a team have the strongest
impact on the determination of the team scenario interpretation.

We can summarize issues related to the UV situation awareness
acquisition into the following questions:

• How UVs can acquire and represent knowledge from a video
scenario ?

• How UVs can abstract knowledge on the scene to detect
events and situations ?

• Do multiple UVs reach an agreed scenario interpretation that
can better serve surveillance applications ?

1.2 Objectives
In this dissertation, our objective is to make advances in the field of
UAV-based video surveillance by proposing novel knowledge-based
frameworks to allow camera-equipped UVs to become aware of
situations by starting from video data. Indeed, the achieved con-
tribution in this thesis is motivated by the following assumptions:
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• The existing approaches propose knowledge-based models
to understand scenario from fixed cameras. These mod-
els exploit pre-fixed knowledge about the environment and
the application to fulfil. Therefore, the approaches are not
general-purpose and reusable.

• The mobile UV camera can generate several issues, such as
prohibitive shots and motion blur, that make object detection
and scenario recognition difficult to accomplish.

• The existing approaches focus exclusively on knowledge mod-
els that detect event and activities by fusing information
retrieved from sensors. They do not propose solutions to
abstract further knowledge to improve scenario description.

• When dealing with systems of multiple UVs, the main trends
in literature focus exclusively on data fusion to support scene
comprehension, but little has been proposed to evaluate
UV information and, accordingly, reach a collective scene
interpretation that satisfies all UV perspectives.

Consequently, the main contributions of this dissertation are
targeted at alleviating UV issues to allow them to become aware of
the observed scenario to support surveillance and monitoring tasks.
Therefore, the main ultimate goal of this dissertation is to explore
solutions to allow UVs to provide human-like interpretations of the
scene. To this purpose, the discussion is aimed at answering to the
following research questions:

• How can knowledge be extracted from structured and un-
structured data ? Then, how can the extracted knowledge
be organized to be easily exploited and reused ?

• How can UVs extract and represent knowledge on an evolu-
tionary scenario to accomplish their tasks ?

• How can UVs abstract knowledge from tracking data to detect
higher-level events and situations ?
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• Can the combination of Computer Vision techniques with
knowledge-based technologies lead to robust interpretations
of the UV-monitored scene ?

• Multiple UVs can indeed provide different perspectives on the
environment enriching the information for a comprehensive
scene description. However, the information, collected by
the UV from the environment, can lead to contrasting scene
interpretations. Therefore, how can multiple UVs be guided
to reach an agreed interpretation of the scenario they observed
?

1.3 Contributions
This dissertation contributes to solve the issues discussed in the
previous section, by presenting novel knowledge-based frameworks
for UV scenario comprehension. The proposed frameworks allow
UVs to provide a human-like situation description. In details, they
introduce:

• a knowledge-layered schema, based on the geometrical struc-
ture, to extract concepts from unstructured data

• an ontology-based knowledge representation of the scene,
observed by UVs, in terms of mobile and fixed scene elements
along with their relations.

• a module to detect activities and events from UV video
through reasoning on spatio/temporal relations among the
detected scene objects, and between them and the environ-
ment.

• a knowledge scheme of well-known ontologies to incrementally
build knowledge on scene objects and activities to detect
situation assessment by using Situation Theory.



1.4. Organization of this dissertation 9

• an agent-based modeling of UVs to allow them to build a
global mental landscape of the scene and achieve comprehen-
sion.

• a GDM-based model to lead UVs to reach an agreed inter-
pretation of the observed scenario.

• an application based on the introduced framework to get
human-like information from a video that can support human
operators in monitoring the evolution of monitored areas.

1.4 Organization of this dissertation
This dissertation is organized as follows. Chapter 2 introduces the
Situation Awareness (SA) concept for humans and devices, and
delineate the main SA features to support decision in complex
dynamic environments. The main challenges in the mobile video
surveillance and monitoring of evolutionary environments are pre-
sented. Then, Semantic Web technologies are also discussed to
build knowledge on a domain.

In Chapter 3, an analysis of methods for knowledge extraction
from structured and unstructured data is conducted. The analysis
presents an incremental schema to classify methods according to the
level of knowledge they build. Then, the chapter focuses on concept
mining methods to extract knowledge from natural language texts.
Among these methods, a method based on Simplicial complex
geometric structure is described to build layered conceptualizations.
The last section introduces the reader to the knowledge extraction
from multimedia data, including features and issues.

Chapter 4 tackles the problem of extracting knowledge from
multimedia data, specifically focussing on videos taken by camera-
equipped drones. The first part of the chapter discusses how to
alleviate the main issues related to knowledge extraction from drone
videos by bridging Computer Vision with semantics. Semantic Web
technologies are delineated to represent and generate knowledge
on a scene observed by flying drones. Then, the rest of the chapter
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presents the TrackPOI ontology model to represent knowledge on
the scene by modeling the tracked scene objects and contextual
knowledge on the monitored environment.

After TrackPOI has been introduced, the Chapter 5 proposes
to go further into the use of structured knowledge models for UV-
based video surveillance. The chapter explores knowledge-based
models to allow UVs to interpret the scene they observed. Firstly, a
knowledge schema is introduced to allow the analysis and building
of UV SA. Then, a preliminary extension of TrackPOI ontology is
presented to model the scene events. As the next step, the chapter
discusses the detection of activities, carried out by the detected
scene objects. Thus, an activity detection approach is introduced
to infer complex activities by composing simpler ones. Finally,
the chapter provides an ontology design pattern to represent and
support knowledge building at various layers from the video raw
data on the detected objects to the high-level interpretation of the
whole scene.

In Chapter 6, the focus moves to the use of multiple UVs and
sensors to monitor evolutionary outside environments with the aim
of interpreting the scene. The chapter introduces the main features
and issues about multi-UV systems, including uses and capabilities
of devices of different types along with methodologies to integrate
and combine the knowledge they acquired from the environment.
Then, the chapter introduces an agent-based model to support
UVs in the definition of a mental representation of the scene, that
integrates their knowledge to better interpret the monitored scene.
According to the acquired data and perspective, UVs in a team can
have different interpretations of the same scene. Therefore, they
need to find agreement on the description that would better depict
what they observed. To this purpose, an approach is analysed,
that applies consensus-based Group Decision Making (GDM) to
lead UVs to reach a robust scene interpretation.



Chapter 2

State of the art

2.1 Introduction
As stated in the previous chapter, UV scenario interpretation is
a complex process composed of several tasks, such as object de-
tection, environment detection and complex event detection. To
accomplish these tasks, there is the need of solutions to observe
dynamic environments, collect information and extract knowledge
to reach Situation Awareness. Therefore, scenario interpretation
requires to use different methodologies. Since many of the above
mentioned tasks (i.e., event detection, situation assessment, etc.)
are cognitively complex, knowledge-based approaches can be used
to accomplish them. Historically, knowledge-based systems have
been used for sensor data fusion and support scene object detection.
This dissertation, instead, explores knowledge-based system poten-
tials to support knowledge abstraction on the scene, starting from
raw video sensor data, with the aim of making UAVs capable of
providing human-like scenario interpretations. Obviously, receiving
quick high-level responses can help human operators to improve
the monitoring of multiple areas or desert areas, as well as the
surveillance of urban or risky environments.

The employment of multiple UVs for surveillance can add fur-
ther issues to an automated scenario interpretation. These issues
are not only related to the UV fleet cooperation and coordina-
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tion, but also concern the knowledge acquisition and evaluation
for task accomplishment. In fact, multiple UVs need to share and
compare their information to achieve an agreed collective scenario
interpretation.

The reminder of this chapter introduces the Situation Awareness
for UVs, knowledge-based systems and consensus-based GDM
processes. It also discusses existing knowledge-based approaches
to allow UVs to represent knowledge, detect activities and find an
agreed interpretation of the scenario.

2.2 Situation Awareness
According to Endsley [7], the Situational Awareness (SA) is the
perception of the elements in the environment within a volume
of time and space, the comprehension of their meaning and the
projection of their status in the near future. SA is recognized as a
critical foundation for robust decision-making in many fields, such
as air traffic control, military command, emergency response and
more. A scarce SA has been demonstrated to be one of the primary
factors of human error in accidents.

According to Endsley definition [7], SA can be defined into
achieving three states corresponding to three distinct levels of
knowledge:

• Perception (level 1 SA) concerns the perception of the
status, attributes and dynamics of the relevant elements in
the environment. Perception is basically a simple recognition
of situational spatial elements.

• Comprehension (level 2 SA) refers to a higher level of
knowledge, which is achieved by integrating level 1 SA ele-
ments, through pattern recognition, evaluation and interpre-
tation, to understand how the generated information impacts
on prefixed goals. This integration process is aimed at achiev-
ing a comprehensive picture of the world or part of it.
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• Projection (level 3 SA) is the highest SA level, which
consists in the ability to project the actions of the situational
elements in the future. Once the perception of the elements
(level 1 SA) and the comprehension of the situation are
accomplished (level 2 SA), the projection of the situational
elements in the future allows the evaluation of the possible
impacts on the environment in the near future.

The SA states represent different levels of knowledge, SA sys-
tems refer to the level of SA achieved in a team and SA processes,
sometimes referred as situational assessment, refer to processes to
acquire knowledge and update the SA state. Endsley’s SA model
employs several variables that can impact on SA building and
maintenance. These variables include the individual, who has to
acquire SA, the environment and the specific task the individual
must accomplish. For instance, different individuals can have dif-
ferent abilities to acquire SA. Therefore, different individuals can
achieve different SA, even though they use the same SA system
and training. For what concerns the main purpose of an SA sys-
tem, Endsley points out that SA “provides the primary basis for
subsequent decision making and performance in the operation of
complex, dynamic systems” [7]. Therefore, the overall objective of
an SA system is basically to build a thorough knowledge to support
decision, covering cue recognition, situation assessment and pre-
diction at basis of a good decision process, but it is not enough to
make decision itself. Beyond the variations related to individuals,
environment and tasks, an SA system strongly depends on time,
especially when SA is required to make decision in time-critical
scenarios. SA can vary with respect to changes in the environment,
individual actions and task characteristics over time. Individuals,
who have to perform a task, need to build and update their own
mental representation according to time, updating their plans and
actions as new input data are acquired. SA also involves spatial
knowledge about the events and activities occurred in specific
locations. Consequently, according to Endsley’s model, SA re-
quires the perception, comprehension and projection of situational
information, as well as spatial and temporal knowledge.
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When tasks are assigned to a team of individuals, team members
need to build global awareness. Since tasks assigned to individuals
can overlap, they need to share their knowledge (shared SA).

SA has not only been applied to humans, but also to non-human
individuals, such as electronic devices (i.e., smart sensors, robots,
etc.). Many trends in literature apply SA to mobile devices to help
them to accomplish tasks, such as formation, mission control and
navigation [8]. The application of SA to devices allows them to
increase their knowledge on the environment, and, consequently,
raise up their level of autonomy. According to SA definition, if
the device goes from lower to higher SA levels, it can reach higher
levels of autonomy due to a thorough knowledge acquired.

Among devices, let us consider sensor-equipped UAVs. The
application of the SA definition to a UAV allows the definition of
the UAV Situation Awareness into the three distinct SA levels:

• UAV Perception refers to UAV ability to sense mobile
and fixed elements in an environment. Technically, the UAV
percepts situational elements through sensor data acquisition.

• UAV Comprehension concerns the UAV capabilities to
process the sensor data on situational elements with some
methods, that allow the UAV to achieve higher-level compre-
hension of the whole environment.

• UAV Projection involves the UAV ability to project the
current environment state in the future.

This framework allows the analysis and building of the UV
Situation Awareness.

2.3 Semantic Web
The Semantic Web is an extension of the World Wide Web pro-
posed by Tim Berners-Lee to allow computers to automatically
reuse, retrieve and reason over a web of data. The main aim of
Semantic Web is to extend web resources with meta data expressing
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Figure 2.1: Semantic Web Stack

a meaning about them. This way, computers can process humans ,
according to Tim Berners-Lee [9]:

I have a dream for the Web in which computers be-
come capable of analyzing all the data on the Web,
the content, links, and transactions between people
and computers. A “Semantic Web”, which makes this
possible, has yet to emerge, but when it does, the day-
to-day mechanisms of trade, bureaucracy and our daily
lives will be handled by machines talking to machines.
The “intelligent agents” people have touted for ages will
finally materialize.

According to this idea, computers can act as intelligent or
semantic agents, capable of understanding the content of web re-
sources and smartly exchange and reuse the acquired information.
Therefore, the semantic agents need to understand the knowledge
expressed in web documents to relate them. This way, the seman-
tic agents can perform automatic searches and lead the human
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users to find the right information they were looking for. To allow
this semantic enhancement of Web, the Semantic Web offers a
set of data formats and languages to represent, query and infer
knowledge from documents. Therefore, the Semantic Web provides
a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries [10]. The
Semantic Web stack reports all the formats and technologies, as
components of a unique framework, introduced to allow the collec-
tion, structuring and recovery of linked data. These technologies
provide formal descriptions of concepts, terms and relationships
among them within a given domain. The complete Semantic Web
Stack is shown in Figure 2.1, the components are:

• XML provides a basic syntax for web documents

• Resource Description Framework (RDF) is the fundamen-
tal language to express data models, representing the web
resources and their relationships.

• RDFSchema (RDFS) extends RDF with a vocabulary of
principles to define classes and properties about the RDF-
based resources.

• OWL provides an advanced vocabulary to model further
features and relationships about classes and properties.

• SPARQL is a language for querying web data sources.

• RIF and SWRL are web rule languages to run rule-based
inference over the web sources.

2.3.1 Ontologies

The proliferation of textual information makes the extraction and
collection of relevant information a tricky task. Although search en-
gines are recently enhanced with Artificial Intelligence techniques,
the vagueness of natural language is still an open problem. At
present, the ontology has proven itself to be an effective technology
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for representing as a form of concepts, the web information and then
sharing common conceptualizations that are referenced as knowl-
edge. An ontology gathers concepts from the real world by means
of unambiguous and concise coding. At the same time, it should
capture the terminological knowledge that sometimes embeds im-
precise information, should support the management of semantic
data and the intrinsic ambiguity in their model theoretic represen-
tation, provide enhanced data processing and reasoning, and then
supply a suitable conceptualization that bridges the gap between
flexible human understanding and hard machine-processing [104].
Simple ontology schemas, called taxonomies reflect vocabulary
properties (such as term definitions, constraints and relationships)
are often used as semantic models representing hierarchical classifi-
cation of concepts. A taxonomy describes relations between related
concepts as super-sub category or subsumption relationship. This
schema enables to represent articulated concepts as subsets of more
simple concepts, and create a layered structure based on concept
complexity useful for concept analysis. In most cases, taxonomies
are represented by hierarchical tree structure of classifications for
a given set of objects.

In order to represent concepts, an ontology can be seen as
a semantic network composed of nodes and edges to link nodes,
where the nodes represent the concepts and the edges represent the
relationships among concepts. Abstract concepts are represented by
ontology classes, therefore, a real concrete example of an abstract
concept is represented by class instance. The relations among
two different concepts are represented by ontological properties.
Ontological axioms are represented in the form of triples subject-
predicate-object, in order to represent that a resource (subject) has
a property (predicate) which assumes as value another resource or
a literal (object).

The model-theoretic semantics behind the Semantic Web are
based on Description Logics (DLs), in order to model assertions and
perform reasoning on the ontological schema, in order to produce
new axioms and increase the knowledge about the concepts.

Coding (meta-) data and relations between them into an ontol-
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ogy, starting from unstructured text is a necessary step towards the
knowledge modeling [105]. Ontologies and ontology-based appli-
cations [106] achieve language processing for extracting keywords
inherent to domain concepts from natural language documents.
Semantic Web technologies yield knowledge in the form of concepts
and relations among them; they translate the vagueness of natural
language (embedded in the linguistic terms) by identifying con-
ceptual entities in the resource content. Intelligent AI computing
proactively supports these activities, modeling this ambiguity by
more suitable methods and techniques that natively reflect the
uncertainty and the reasoning of the human thought process [104].

The nature of the ontology modeling moves towards a shared
conceptualization and a consequent reuse of the same data, rein-
forcing the request that data about concepts and their relationships
must be specified explicitly and data needs a robust formalization.

Due to the stringent reliance of applications on well-designed
data structure, semi-automatic tools like OntoLearn1, AlchemyAPI2,
Karlsruhe Ontology (KAON) framework3, Open Calais4 and Se-
mantria5 are widely developed, to automatically extract entities,
keywords and concepts from unstructured texts.

Systems and applications as KnowItAll [107], DBpedia [108],
Freebase [109] also provide publicly semantically annotated knowl-
edge resources; some others such as ConceptNet [110], Yago [111]
aim at conceptually capturing common sense knowledge; some-
times, due to the quality bottleneck, projects like Cyc, OpenCyc
[112] and WordNet are often built on manually compiled knowledge
collection.

1http://ontolearn.org/
2https://www.ibm.com/watson/alchemy-api.html
3http://kaon2.semanticweb.org/
4http://www.opencalais.com/
5https://www.lexalytics.com/semantria
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2.3.2 Fuzzy ontologies

Ontologies have been widely employed as a knowledge representa-
tion model for multi-agent systems and have played a crucial role in
the development of the Semantic Web. Typical ontologies represent
facts as axioms exploiting a two-valued semantics. The imprecise
and vague nature of the real world applications needs an extension
of the traditional logic behind ontology modeling [11], with a more
flexible, fuzzy version of it [1]. Axioms, classes, instances and prop-
erties present in the traditional ontologies, are re-defined in fuzzy
ontologies as fuzzy axioms (A), fuzzy concepts (C), instances (I),
relations (R) and fuzzy relations or roles (F ). The fuzzy ontology
can be defined as a quintuple QF = (I, C,R, F,A) [12]. Fuzzy
ontologies use fuzzy modifiers and quantifiers [13]. In ordinary
crisp ontologies, an instance can be of a specific type (class) or not.
The fuzzy concept, instead, allows a soft class membership, ex-
pressed with a degree of truth. For instance, given the Deep_river
class instances: Amazon and Danube; and their class memberships:
(Danube a Deep_river 0.81 ) and (Amazon a Deep_river 0.45 );
it can be stated that the Amazon River is quite deep, but not as
deep as the Danube.

FuzzyDL reasoner [13] provides a language to define and reason
over fuzzy ontologies, by using variables which can assume a degree
of truth. Axioms can be combined in a more complex way to
build a fuzzy knowledge base. Fuzzy operators can be applied to
the concepts, in particular the aggregation operators provide a
powerful tool to model complex domains by aggregating simpler
fuzzy concepts.

Inference on the fuzzy knowledge base allows to check knowledge
base consistency, concept subsumption and concept satisfiability,
as well as to support the variable optimization and the computa-
tion of defuzzification [13]. In our approach, Maximum Concept
Satisfiability queries are used. Maximum Concept Satisfiability
queries involve Concept Satisfiability [13]:

Concept Satisfiability. Let C be a fuzzy concept in the
knowledge base K, and D a degree of truth, C is said to be D-
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satisfiable, with respect to K, if there exists some instance with
degree greater than or equal to D.

FuzzyDL extends the Concept Satisfiability definition to a
specific instance o instead of an arbitrary one. Then, the Maximum
Concept Satisfiability query infers the maximal degree to which
the concept is satisfiable (best satisfiability degree):

Best satisfiability degree. Let C be a fuzzy concept in the
knowledge base K, and D a degree of truth, the best satisfiability
degree of C is the maximal degree D such that C is D-satisfiable.

The sapplication of the Maximum Satisfiability for the concept
C over the specific instance o assesses how much o satisfies C.

Since experts’ opinion in GDM problems are vague for their
nature, fuzzy ontologies better deal with imprecise experts’ judge-
ments [14, 15]. Fuzzy ontologies make it also possible to store
large amounts of data [14], represent and merge interpretations
of different aspects [15]. Fuzzy ontologies are also employed in
information retrieval [16], ambient intelligence [1], image interpre-
tation [17], ontology merging [18], recommendation systems [19]
and decision-making [15].

2.4 Multi-UV scenario acquisition
In multi-UV monitoring systems, UVs need to achieve a robust
and unambiguous interpretation of what they observed. Methods
to lead a group to an agreed outcome have been studied in Group
Decision Making (GDM).

2.4.1 GDM with consensus modeling

A GDM problem may be defined as decision situations where there
is a problem to be solved by two or more experts [20]. Therefore,
a GDM problem can be described as follows. Let E = {e1, . . . , en}
be a set of experts and X = {x1, . . . , xm} a set of alternatives.
A GDM problem is to sort X using the preference values P k,
∀k ∈ [1, n], provided by the experts. When having to provide
preferences, there is an expert-system communication gap. The
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Figure 2.2: GDM process.

system prefers to manage numerical values while the experts are
used to express himself/herself by using imprecise information such
as “good”, “bad”, etc. Therefore, there is a need of methods that
help systems to understand imprecise information provided by the
experts.

In order to deal with vague and imprecise information, fuzzy
set theory has been widely investigated in literature [21, 22], to
represent the linguistic terms by means of linguistic variables,
whose values are not numbers but words in natural language.
Expert preferences can be expressed as terms from a fuzzy linguistic
variable. In [21], the linguistic terms are used to model complex
linguistic expressions, for qualitative decision-making. In [22], the
consistency of different types of reciprocal preference relations
have been studied, which are expert preferences constructed by
comparing the alternatives. Expert preferences, expressed as fuzzy
linguistic variables, [23], can be aggregated to build collective
preferences by using well-known aggregation operators, such as the
weighted means [24, 25], the Ordered Weighting Averaging (OWA)
[26], the Linguistic Ordered Weighting Averaging (LOWA) [27],
etc. Many works [24, 25] propose these operators to aggregate
preferences; they present some generalized weighted averaging
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aggregation operators to aggregate intuitionistic fuzzy sets [24], or
pythagorean aggregation operators for enhanced decision-making
approaches [25].

Consensus Reaching Processes (CRPs) can be applied to the
GDM problems to help experts reach an agreement [28]. Figure
2.2 shows the GDM process employing a CRP: the experts provide
their preferences on the alternatives, which are aggregated to build
a collective preference. The consensus is calculated and reached
iteratively: if the experts reach consensus, the built collective
preference is used to rank the alternatives (selection process). Oth-
erwise, the process keeps running by asking the experts to modify
their preferences to achieve a solution with a higher consensus. In
the CRP process, an external moderator leads the experts to reach
the highest consensus and keeps the most of the involved experts
in agreement among them. In some approaches, the consensus
achievement depends on a prefixed threshold value [28]. Many
trends [29, 30, 31] in literature studied the application of CRPs to
GDM problems. In [29], a series of criteria is defined to analyze and
compare the efficiency of different CRPs. In [30] a novel CRP with
individual consistency control is proposed to avoid repeating the
time-consuming consistency improving process after the application
of CRP. Weighing the expert opinions give them more importance:
their opinion is interpreted as more reliable than others or more
highly experienced to solve the problem [31].



Chapter 3

Knowledge extraction from
structured and unstructured
data

3.1 Introduction
The knowledge extraction is a complex activity of identifying
valid and understandable patterns in data. When dealing with
unstructured data, these patterns are often related to the Natural
Language Processing tools: the text content is parsed to identify
topics that could be described by single terms, enhanced terms
matching by adding phrases, complex key-phrases. Extracting
the relations between terms, or verbs and their arguments in a
sentence has the potential for identifying the context of terms
within a sentence. Contextual information can serve high-level
concept extraction, as it will be discussed in the first part of this
chapter (Section 3.2).

In texts, the fundamental first step to knowledge extraction
is the interpretation of the natural language. When dealing with
mobile devices, such as robots and drones, the output data is a
multimedia file, such as an audio or video file. These file types
are structured, therefore, they report the device output in a spe-
cific format rather than in natural language. Data in multimedia
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files can refer to specific law level data, which can be relative to
sensors or other features of the device, or to higher-level infor-
mation. Therefore, knowledge extraction from a multimedia file
requires specific knowledge about the data and models to allow
their integration and interpretation. Knowledge extraction from a
multimedia files is particularly challenging because it can support
many applications with smart devices, such as the employment of
drones or robots in video surveillance. To this purpose, knowledge
extraction from multimedia files has been investigated in aerial
video surveillance applications and discussed in the second part of
this chapter (Section 3.3). Before going into details about knowl-
edge extraction from texts and multimedia files, the rest of this
section analyses some knowledge extraction approaches according
to a layered knowledge representation.

3.1.1 Knowledge extraction: from words to con-
cepts

The contextual information can be very informative for capturing
the actual meaning of some terms, and the sense relations involved
in the case of polysemy. The information about “who is doing
what to whom” reveals the role of each term in a phrase and the
higher level meaning of the phrase. Simple terms or complex ex-
pressions represent different granularity levels of the knowledge
that can vary depending on the formal methods used, the final con-
ceptualizations and to the intended meaning behind the sentences,
whose interpretation often escapes automated machine-oriented
approaches. Figure 3.1 shows our representation of the knowledge
continuum, in an incremental layer-based transformation. The
knowledge schema is composed of more granularity levels, starting
from “atomic” entities, i.e., single words, to reach a high level
representation of knowledge as ensemble of conceptualization and
semantic correlations.

The lowest layer represents the primitive knowledge related to
single words and terms in a document. Word collection per docu-
ment is considered the basic data, or more simply, the data. The



3.1. Introduction 25

Unstructured text Structured text

Data

Information 

Concept

Figure 3.1: Layered representation of the knowledge: from words
to concepts

Data layer consists of raw data, which are generally composed by
single words extracted from textual documents. These documents
can be unstructured, i.e., the content is plain text, or structured,
such as web resources with markup annotations (with standard
languages such as XML, HTML, CSS, etc.).

In other words the unstructured texts contain just words, while
the structured ones contain meta-information like HTML tags,
which can be used to extract more information about the concepts
expressed by the text and the document structure. Let us consider
the following document extract:

Canadian pop star Michael Buble married Argentine
TV actress Luisana Lopilato in a civil ceremony on
Thursday. The Grammy-winning singer of “Crazy Love”
and his Argentine sweetheart posed for a mob of fans
after tying the knot at a civil registry in downtown
Buenos Aires.
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Approaches modeling the Data layer directly work on the single
words such as: “star”, “actress”, “TV”, etc. and often only nouns
(and adjectives in some cases) are precessed: since these approaches
work on the term frequency, proper nouns can be discarded if no
named entity task is foreseen in the process. Usually, flat term
ensembles are produced by this layer.

When data are furthermore processed or structured, the infor-
mative granule increases. The Information layer consists of more
data structuring which considers linguistic and grammar relation-
ships among atomic terms. More articulated sequences of words,
often called keyphrases are extracted by the text analysis. Stem-
ming, lemmatization, part of speech tagging are the basic NLP
tasks involved; they allow the identification of terms that are linked
by relations: sequences of only nouns, combinations of adjectives
and nouns, named entities, etc. characterize the information.

By considering the previous extract, named entities such as
“Michael Buble’, “Buenos Aires”, and a keyphrase such as “pop
star”, or syntactic relations between terms or entities, i.e., “civil
ceremony” are the candidates to describe the information granule
generated by this layer.

The highest layer of knowledge corresponds to a further and
articulated structuring of the data which represent a more de-
tailed and high-level knowledge. The informative granules of this
layer define complex structure of terms that are supported by
external sources, such as lexicons, knowledge bases and ontology-
based schemas in order to provide richer conceptualization, special-
ized thanks to contextual information and the terms relationships.
Compositions of simpler linguistic expressions yield complete and
complex descriptions of concepts that, at this stage, are well-
defined. The Concept Layer produces correlations of terms so
rich that clearly identify a conceptualization, often specific in a
given domain (according to the content of the processed document
collection) and assumes a clear connotation for an authentic inter-
pretation of the textual content. A crucial role is played by external
knowledge-based sources, especially if they are semantically anno-
tated, because, they yield additional (often inferred) information
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Figure 3.2: Knowledge stratification example

to extend, enrich and disambiguate concepts extracted by text.
The extracted concepts, connected to each other by term-based
relationship, compound a wider semantic network that represents
the highest granulation layer.

The Concept layer can deduct more articulated concepts as
facts from text; recalling the previous extract, the ex-novo concept
<< marriage >> coming from the named entities “Michael Buble”
and “Luisana Lopilato” could be extracted exploiting an ontological
schema, thus enriching the initial more vague concept.

Each knowledge level introduces further relations among more
articulated and high level data are taken into account. These
relations are useful to provide a better contextual insight. To this
purpose, let us consider a further example of knowledge stratifica-
tion, given in Figure 3.2, which considers the three words “mercury”,
“orbital” and “freddie”. At the Data level, these words are con-
sidered, according to the proposed conceptualization, as simple
three words or singleton terms << mercury >>, << orbital >>,
<< freddie >> (see words beside the bullets at bottom of Figure
3.2). Terms or words, at the Information level, are further struc-
tured according to term relationships and/or other transformations
(e.g. POS tagging). Thus, terms appearing close to each other
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within a document can be recognized as named entities or linguistic
period structure (e.g. noun, verb, etc.). In this case if the words
“freddie” and “mercury” are very close and used as phrase subject
or object, << freddie mercury >> will be recognised as proper
noun (see texts in rectangles, Figure 3.2). Finally, these more
structured data can be further structured at Concept level. At this
level, the data include more contextual information about terms
on different documents. The word “mercury” , at this level, can
refer to different concepts: the chemical element, the singer if close
to “freddie”, or the planet in the solar system if contextual related
to “orbital” (see texts in the ellipses, Figure 3.2).

In a nutshell, a strongly connected structure may be figured
from the layer-based knowledge model shown in Figure 3.1: all the
informative granules are linked, through all the granulation levels,
in order to generate a large knowledge base that comprehensively
describes the entire text documents domain.

3.1.2 An analysis of Data-, Information- and
Concept-driven approaches

In the light of the layered stratification of the knowledge, described
in Section 3.1.1, the frameworks and tools, designed for knowl-
edge extraction from documents, can be analyzed and classified
according to the introduced layered knowledge model. To this
purpose, some salient features/aspects have been selected to ev-
idence peculiarity and/or similarity in the basic approaches, at
each knowledge layer. Tables 3.1, 3.2 and 3.3 show indeed the
main frameworks, whose methodologies and implementation design
produce a knowledge model that better reflects a knowledge layer
of Figure 3.1. The selected features are mainly five, described as
follows.

- Research sub-field: this feature identifies the research ar-
eas where the framework and tools are located, according to
the methodologies, functionalities and techniques employed.
The feature highlights the synergies between the different
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areas involved in the knowledge structuring, through an in-
cremental informative granulation that yields the knowledge
representation. In tables, the first reported field is a macro-
field which the approach deals with. Three macro-fields
have been considered: Natural Language Processing (NLP),
Information Retrieval (IR) or Semantic Web (SW).

- Knowledge representation: reports formal methods used
for the knowledge extraction from text. It presents the
methodologies and the tecnologies employed to represent and
model the knowledge extracted.

- Ontology-based support: evidences the role of external
ontologies or ontology-based tools, in supporting the concept-
based knowledge representation. Referencing to concepts of
existing ontologies to describe entities is becoming a common
practice in Text Mining.

- Similarity measure: presents a primary feature, aimed
at discovering low-level informative granules of knowledge.
The similarity is the basic measure to compare text entities,
such as words, terms, named entities, concepts, targeted
at discovering syntactic or semantic relationship. Syntactic
similarity concerns the sentence structure, exploiting for
instance, the root or the lemma of a term; the semantic
similarity is more complex to elicit: it discerns the correct
sense (or concept) behind the term (or sentences) to get the
contextual, actual meaning.

- Semantic annotation support: semantic annotation is a
new way to represent knowledge in the form of concepts,
which is far from the textual annotations on the content
of documents. The feature indicates if the annotation is
retrieved by pre-existent or ad-hoc defined ontologies. Tools
that achieve IR tasks using semantic web technologies often
carry out annotation tasks.
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These features are presented in Tables 3.1, 3.2 and 3.3 with
respect to the main frameworks, tools, presented in the paper, and
classified according to the three knowledge layers.

As shown in Table 3.1, data-driven approaches work on low-level
data. These approaches mainly adopt linguistic, statistical and
unsupervised methods, such as clustering, word-space model and
subsumption relations. The knowledge representation is strongly
based on term-to term relationship, often generating flat ensemble
of terms. In some cases other formal methods, such as Formal
Concept Analysis (FCA), fuzzy set or graph theory, are also used,
that produce a kind of term structuring. Data-driven approaches
do not exploit semantic annotation or require external ontology-
based tools support. Although the work presented in [32] may
seem an exception, it is a tentative to combine two different data
spaces extracting from the same dataset, but describing terms and
(semantic-oriented) RDF-tags, in order to mix the data with a
different feature nature, in the clustering generation.

Table 3.2 shows information-driven approaches that usually
extract relations between keywords or (more complex key-phrases)
named entities adopting supervised or semi-supervised methods.
The enhancement with respect to previous layer is that these ap-
proaches exploit topological representations for raw data extracted
from text. Formal models, such as fuzzy set, part-whole rela-
tions and entity relations, induct richer semantic relations between
named entities. The revealed tendency is to find patterns useful
to group named entities and keywords and clustering methods are
largely used in order to fulfill this task. Some approaches gather
additional information from external tools, such as thesauri and
knowledge bases, in order to better identify the terms sense and
then produce more meaningful relations among NE and keywords.
Table 3.2 hightlights that information-driven approaches are mainly
used in Information Retrieval field.

Concept-driven approaches shown in Table 3.3 are aimed at
producing a more refined representation of the corpus in input,
achieving a knowledge structuring that evidences a deeper granular-
ity of the information. These approaches focus mainly on building
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a conceptual map or term-dependency network that allow the high-
level knowledge description. At this purpose, they propose various
methodologies based on formal models that reveal hierarchies or
tree-based structures, such as Formal Concept Analysis (FCA),
Conceptual Ontological Graph (COG); they exploit fuzzy modifiers
to capture the vagueness in written text, that is hidden behind
lexical relations and grammar dependencies; then they exploit these
semantic and lexical connections to get the taxonomy and ontology
learning. In general, the most of these approaches extract knowl-
edge from external sources, but some of them build a conceptual
structure based exclusively on the analysed text corpora.
External support, for these methods, includes both syntactical and
semantic sources and tools. The most used external tool seems
to be WordNet, whose synsets yield synonyms from each term
sense, useful to contextualize concepts. Other external sources are
knowledge bases, such as DBpedia, verb-lexicon (e.g. VerbNet1),
as well as more sophisticated semantic tools, such as semantic
frameworks (e.g. FrameNet2) and ontology-based knowledge or-
ganisation schema (SKOS3). Concept-driven approaches are used
as well in Information Retrieval and Natural Language Processing
areas.

Some approaches seem to prefer methodologies, capable of
producing a topological conceptualisation of data, such as Formal
Concept Analysis (FCA), Fuzzy sets, Graph Theory, etc. which are
largely used to extract relations, patterns and recognize articulated
concepts and topics. Since the Concept Mining approaches aim at
generating more complex topological structures, they often combine
methodologies and technologies from the three fields taken into
consideration: NLP, IR, SW.

In conclusion, the Text Mining approaches presented in the
literature combine methodologies from the three macro-fields and
subfield (IR is mainly adopted in the information-driven ones).
Topological semantic similarity measures are the most used simi-

1http://verbs.colorado.edu/ mpalmer/projects/verbnet.html
2https://framenet.icsi.berkeley.edu/fndrupal/
3https://www.w3.org/2004/02/skos/
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Table 3.1: Data-driven approaches test results

Approach Research Knowledge Ontology- Similarity Semantic
sub-fields representation based measure annotation

support support

Phillips [33]

NLP, syntagmatic

n.a.

co-occurrence

Noclustering lexical similarity
conceptual networks

maps networks

Schutze [34] IR, Word space n.a. Semantic NoEM clustering model similarity
Sanderson IR, Subsumption

n.a.
semantic

Noand Croft [35] subsumption relation-based similarity
relation hierarchy

Loia et al. [36] SW, Word space n.a. Proximity YesP-FCM model measure

Loia et al. [32] SW, P-FCM, Word and n.a. Proximity YesCollaborative RDF-tag measure
clustering space model

Lau et al. [37]

NLP, Fuzzy

n.a.

term

NoPOS tagging subsumption frequency,
relation mutual
hierarchy information

Kruschwitz [38] IR HTML tag n.a. semantic Nostructure similarity
Chuang and IR, suffix tree

n.a.
topological

NoChieng [39] agglomerative hierarchy measure
clustering

Baeza-Yates [40] IR, graph-based n.a. semantic Nograph theory relations measure

larity measures, since they are more effective than frequency-based
and statistical measures to extract relations between terms or
concepts. Although data-driven approaches are based on term
frequency-based measures, such as co-occurrence measure, tf-idf,
mutual information to assign a weight to each word, information
and concept-driven approaches employ semantic similarity, espe-
cially topological measures, in order to better represent complex
relationships among articulated concepts. The most used measure
acts on lexical similarity to extract hyponymy, hypernymy and
WordNet synsets, as well as fuzzy measures, which provide a more
sensible evaluation of the ambiguousness about NE and concepts.

The use of external sources seems more useful when dealing
with high-level input data, i.e., concepts, or when the modelling
requires higher-level conceptualisations. The semantic annotation
support is instead frequent in the concept-driven and information-
driven approaches, while it is almost missing with data-driven
approaches (see Table 3.1). The data-driven approaches indeed
work mainly on row data that generate not very complex knowledge
(often composed of terms ensemble), so the semantic annotation
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Table 3.2: Information-driven approaches test results

Approach Research Knowledge Ontology- Similarity Semantic
sub-fields representation based measure annotation

support support

Girju et al. [41]
IR Part-whole

n.a.
topological

NoClassification relations similarity
rule extraction

Snow et al. [42] IR hyponymy WordNet Taxonomy YesClassification hypernymy
Reichartz IR, Parse tree n.a. phrase Noet al. [43] kernel similarity

methods

Giuliano IR, entity

WordNet

Semantic

Yeset al. [44]
kernel relations similarity,

methods (Synsets, WordNet
Hypernym) synsets

Cao et al. [45]

IR, Fuzzy vector

n.a.

Fuzzy

Nohierarchical space model similarity
fuzzy measure

clustering

Diaz-Valenzuela IR, clustering-

n.a.

Frequency

Noet al. [46]
document based measure
clustering, constraints
partitional
clustering

Mintz et al. [47]
IR Freebase

Freebase
entity-

Yesrelation relations relation
extraction model

classification

Loia et al.[48]

IR, Fuzzy

n.a.

Fuzzy

Yestopic extraction multiset measure
proximity-based
fuzzy clustering

tools are not required at this stage. The use of external ontology-
based tools is instead predominant when the knowledge becomes
articulated and generates specialized conceptualization. Table 3.3
indeed provides a list of concept-driven approaches that reinforce
the generated knowledge with the support of external semantic
sources and databases.

The reminder of this chapter focuses on methods to extract
knowledge from texts (3.2) and multimedia data (3.3).

3.2 Knowledge extraction from texts...

3.2.1 Concept Mining

Current research trends are interested in knowledge acquisition
from text, especially in Concept Mining, whose goal is the ex-
traction of concepts from artifacts. Concept Mining represents a
subfield of Text Mining, aimed at extracting concepts from text.
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Table 3.3: Concept-driven approaches test results

Approach Research Knowledge Ontology- Similarity Semantic
sub-fields representation based measure annotation

support support
Della Rocca IR, LDA-based SKOS, statistical Yeset al. [49] Conceptual concept WordNet (LSA)

analysis learning
Cimiano IR, FCA-based

n.a.
Frequency

Noet al. [50] Formal hierarchy measure,
Concept topological
Analysis measure
(FCA)

De Maio IR, Fuzzy DBpedia, hierarchical Yeset al. [51] Conceptual FCA-based WordNet
analysis hierarchy

Loia et al. [52] Sentiment Fuzzy WordNet, Semantic YesAnalysis, modifiers, SentiWordNet similarity,
Sentic fuzzy WordNet

Computing sets synsets

Ontolearn [53] NLP, Taxonomy WordNet, Topological Yesstatistical learning FrameNet, similarity
statistical VerbNet

Navigli NLP, Taxonomy WordNet, Topological
Noet al. [54] statistical learning, Dmoz similarity,

approaches synsets
Valarakos NLP, Ontology

n.a.
Statistical

Yeset al. [55] Knowledge learning, similarity
discovery HMM

Alani IR, Syntactic Gate, Semantic Yeset al. [56] knowledge analysis, WordNet similarity
extraction semantic WordNet similarity

analysis
Shehata IR, Conceptual

n.a.
Topological

Noet al. [57] concept ontological similarity
extraction graph (COG)

Agirre NLP, topic

WordNet

Topological

Noet al. [58] word-sense signature similarity
disambiguation WordNet

concepts

Concept Mining approaches are largely used in many fields, such
as Information Retrieval (IR) [59] and Natural Language Process-
ing (NLP) [60]. The main applications include detecting indexing
similar documents in large corpora, as well as clustering document
by topic. Most of the common techniques in this area are mainly
based on the statistical analysis of term frequency, to capture the
relevance of a term within a document [61]. More accurate methods
need to capture the semantics beyond the terms. Traditionally,
concept extraction methods employed thesauri, such as WordNet4,
to transform words extracted from documents in concepts. The
main issue related to thesauri is that the word mapping to concepts
is often ambiguous. Ambiguous terms can be generally related to
more than one concept, only the human abilities allow contextu-

4https://wordnet.princeton.edu/
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alizing terms and find the right concept to which terms belong.
Since thesauri do not describe the context along with the terms,
further techniques have been introduced to face the word sense
disambiguation; some of them perform linguistic analysis of text,
based on term frequency similarity measures, some others employ
knowledge-based models to generate a context useful to evaluate a
semantic similarity between concepts.

Since documents are often described as a sequence of terms, a
widely used data representation adopted by many methods is the
vector space model (VSM) [62, 63, 64]. The VSM model represents
each document as a feature vector of terms (words and/or phrases)
present in the document. The vector usually contains weights of
the document terms, defined mainly on the frequency with which
the term appears in the document. Other techniques extend the
VSM representation with context-related information for each term,
transforming the VSM vector in a global text context vector. This
way, a global context about a term is built by merging its local
contexts, which are derived from each document where the term
appears in [65].

Similarity between documents is calculated by similarity mea-
sures, which evaluate the document similarity as the similarity
between their feature vectors. Similarity measures are various,
the most used include euclidean, cosine, Jaccard, etc. Other tech-
niques use document attribute information involved in query and
possessed jointly by documents to evaluate, in order to extract inter-
document information useful to calculate their similarity. These
techniques are called query-sensitive similarity [66].
In Text Mining domain, the term importance in a document is
based on the frequency with which the term appears in the doc-
ument. Moreover, a high frequency does not mean that a term
contributes more to the meaning of a sentence. There are some
words with a low frequency which provide key concepts to the
sentence. The importance of the term is important as some sum-
marization techniques, which represent their summarizes based on
the importance of their words [67]. The sentence meaning usually
depends strongly on verbs and their arguments. Verb analysis
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allows finding out who is doing something, or acting toward some-
thing or someone else, clarifying each term role in explaining the
meaning of the sentence topic.

Whether extracting sophisticated information or simple ones,
these techniques constitute the underlying methodological back-
ground of the Concept Mining research area and most approaches
are modeled and developed on the basis of them.

In this section, an approach for concept detection is discussed.
This approach discriminates straightforward concepts from a doc-
ument corpus, through the discovery of their context, i.e., the
surrounding text (words or sentences) that describes the concepts.

3.2.2 Simplicial complex model

The concept extraction from text lies on a straightforward formal
model, the simplicial complex. The approach builds a topological
space called Simplicial Complex, which connects points composing
incremental geometrical structures, such as line segments, trian-
gles and their n-dimensional counterparts. The most elementary
structure that constitutes the complex is a simplex S, defined as
follows:

Definition 1. n-Simplex. A semantic n-Simplex or simple n-
Simplex S is a set of independent abstract vertices (v0, v1, ..., vn)
that constitutes a convex hull of n+ 1 points.

For example, a 0-Simplex is a singleton representing a vertex
(e.g. the set (v1) where v1 is a vertex), a 1-Simplex is a two
elements set that corresponds to an open segment (v1, v2), a 2-
Simplex is a three elements set representing an open triangle that
does not include its edges and vertices (v1, v2, v3). Generally, an
n-simplex is the high dimensional analogy of those low dimensional
simplexes (segment, triangle, tetrahedron and so on) in n-space.
Geometrically, an n-simplex uniquely determines a set of linearly
independent vertices and vice versa. It is the smallest convex set
in a euclidean space Rn that contains n+ 1 points v0, ..., vn that
do not lie in a hyperplane of dimension less than n.
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The n-simplex is a basic structure but it can be formed by more
elemental structures called faces.

Definition 2. r-Face
Given an n-Simplex [v0, v1, ..., vn], an r-face is an r-Simplex

[vj0, vj1, ..., vjr] whose vertices are a subset of (v0, v1, ..., vn) with
cardinality r + 1.

The convex hull of any r vertices subset of the n-simplex is
an r-face. The 0-face, 1-face, 2-face for example, are respectively
points, edges and triangles of the n-simplex, whereas the n-face is
the whole n-simplex. Then, the simplicial complex may be defined
as an overall structure, composed of one or more simplexes; this
complete geometrical structure is suitable to represent terms and
their relationships in our approach.

Definition 3. The simplicial n-complex
The simplicial n-complex C is a finite set of simplexes that

satisfies the following two conditions:

– Any face of a simplex from C is also in C

– The intersection of any two simplexes S1, S2 ∈ C is a face of
both S1 and S2.

In other words, an n-complex is a closed set of m-simplexes,
with m ≤ n and n is the maximal dimension of a simplex in the
n-complex. The union of the vertices v0, v1, .. of all the m-simplexes
are the vertices of the n-complex and all h-faces of the simplexes
are also contained in the complex. An example: if the 3-Simplex
{a, b, c} is in the n-complex C then its r-faces {a, b}, {b, c}, {a, c},
{a}, {b} and {c} belong to C.

In order to properly describe the relationships between terms
in our modelling, other notions about a complex structure will be
introduced as follows.

Definition 4. Direct connection between simplexes
Two simplexes in a n-complex are directly connected if the

intersection among them produces a non empty h-face with h ≤ n.
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Thus, if A = {a, b, c} and B = {b, c, d} are two simplexes in a
n-complex and their intersection is the non empty set {b, c}, then
they can be said directly connected.
In general, two non empty simplexes are h-connected or simply
connected if a finite sequence of directly connected simplexes con-
necting them exists. More formally,

Definition 5. h-Connection of simplexes
Let A = S1, S2, . . . , Sm = B be non empty simplexes, then, A

and B are h-connected if every pair of consecutive Si and Si+1 has
a h-face in common with i = 0, 1, 2, ...,m− 1 where h ≤ n.

For instance, if A = {a, b, c}, B = {b, c, d} and C = {d, e, f}
are simplexes in an n-complex, then (A,B) and (B,C) are two
directly connected pairs of simplexes by the 1-face {(b, c)} and
the 0-face {(d)} respectively (see Figure 3.3). This implies that
(A,C) are two connected simplexes because of (B) which is directly
connected with both (A) and (C).

Definition 6. (n, k)-skeleton
An (n, k)-skeleton is the n-complex in which all the m-simplexes,

of dimension m, with m ≤ k, and their faces have been removed.

Notions about connected simplexes and skeletons are strictly
related. The h-connected component in a skeleton may be defined
as the maximal h-connected subcomplex (it is in turn, a complex
composed of h-connected simplexes) of an n-complex, which im-
plies that does not exist any other h-connected component that is
superset of it.

As an example, let us consider the complex built on the three
simplexes, mentioned above, A,B and C ( Figure 3.3 a), all the
conceivable faces are: {(a, b)} , {(b, c)} , {(a, c)} , {(c, d)} , {(b, d)}
, {(d, e)} , {(d, f)} , {(e, f)} , {(a)} , {(b)} , {(c)} , {(d)} , {(e)} ,
{(f)}. With k=0, the (3,0)-skeleton is the original n-complex with
the three main simplexes and all their faces. A (3, 1)-skeleton can
be built by removing all its own 0-simplexes (see Figure 3.3 b); the
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Figure 3.3: An example of skeleton

new complex is composed of the three simplexes A, B, C and their
edges are: {(a, b)} , {(b, c)} , {(a, c)} , {(c, d)} , {(b, d)} , {(d, e)} ,
{(d, f)} , {(e, f)}. According to Definition 4 and Definition 5, the
simplexes A and B are still connected, while simplexes B-C, and
A-C not yet because the face (d) has been removed. The removal
of all the 2-Simplexes from the previous structure (k = 2), and
particularly {(b, c)} (Figure 3.3 c), produces the (3, 2)-skeleton,
that is a new complex composed of the three simplexes A, B, C,
which are not connected between them because their intersections
are empty sets. This structure is very useful to analyse vertices
and the relationships between them, considering different levels of
detail.

3.2.3 Simplicial complex of terms for concept
extraction

The simplicial complex represents a topological space suitable to
describe linguistic relations among terms extracted from the text
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Figure 3.4: A concept-based perspective of a complex: level by
level, terms are extended by distance-based connections, generating
specific concepts.

corpora. In fact, each term can be represented by a vertex of the
structure, the edges between the vertices represent the relationships
between these terms. This way, simplexes of terms can represent
concepts. Simplexes, aggregated through various skeletons, repre-
sent more precise and contextualized concepts. Figure 3.4 shows a
level-based representation of terms and their relationships. Each
level shows a different conceptualization depending on how the
terms are linked to each other. A 0-simplex, for example, is the
term Network which expresses the generic concept associated with
its own term label. This 0-simplex can be combined with other
0-simplexes (i.e., concepts) to form the following three 1-simplexes:
(computer, network), (traffic, network), (neural, network). These
sets express more detailed and specific concepts than the individ-
ual 0-simplexes, hence two 2-simplexes are built by starting from
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Figure 3.5: A logical overview of the framework

1-simplexes: (artificial, neural, network) and (biological, neural,
network) express a richer semantics and describe a more precise con-
cept. This layered contextualization is the key for disambiguation,
which leads to robust concept extraction. In fact, the incomplete
and generic concept neural network could be properly characterized
by the term artificial defining the very specialistic concept artificial
neural network.

The simplicial complex construction has been used to define
a framework for concept extraction from texts. Figure 3.5 shows
the main steps of the approach, divided into three macro phases:
Preprocessing, Complex Building and Concept Mining. In the
Preprocessing phase, the input document corpus is processed to
remove the “noisy” text (numbers, punctuation, stop words, etc.):
only terms that represent nouns and adjectives in the grammatical
categories are selected for the next phase.

The Complex Building phase builds the simplicial complex as
skeletons representing different conceptualizations, which range
from a more basic view to a more general and cross-topic one. To
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achieve this, the relevance of the extracted and pre-processed terms,
with respect to the document corpus, is assessed by using the tf-idf
(term frequency-inverse document frequency) measure [68]. Then,
given a corpus composed of n documents, each term t is expressed
as an n-dimensional column vector (v1(t), v2(t), ..., vn(t)), such that
the i-th value vi(t) (evaluated by the tf-idf measure) represents the
relevance of t in the i-th document of the corpus. The vectors from
the terms form a document-term matrix. To build the matrix, terms
are selected by comparing their tf-idf value with a given threshold
FeaTHR. This term selection allows to get accurate concepts
and speed up the complex building. Relationships between terms
(column vectors) are assessed through the euclidean distance. Since
term vectors are normalized to one with respect to the Euclidean
norm, the Euclidean distance is equivalent to the cosine measure
[69]. According to term relationships, the structure of the simplicial
complex is incrementally built by connecting terms on several layers.
At each layer k, if Definitions 1 - 5 hold, an (n, k)-skeleton is built
by connecting simplexes according to Definition 6. The process
starts from all 0-simplexes to gradually reach more connected
components by increasing the k level. In order to preserve the
complex definitions, the size of each simplex must not be greater
than the number of levels reached till that moment. More formally:

Definition 7. Simplexes size upper bound (SSUB) At the
k-th level, an (m-1)-simplex can be extended with a new term tj, if
a term ti exists in the simplex, such that

argmin
tj

d(ti, tj) (3.1)

Then, the new m-simplex contains j terms, with j ≤ k.

This definition outlines the principal property of the simplicial
complex (Definition 3), which asserts that in an n-complex the
highest sized simplexes can not contain more than n+ 1 vertices
(terms). This upper bound guarantees that the building of sim-
plexes prevents their fast expansions that can generate interleaving
concepts. At each level indeed, the simplexes with the highest size
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can add only one new term to themselves, thus only new terms
highly related are included in simplexes. On the other hand, a
disadvantage of this definition is to get simplexes whose vertices
(terms) are very far to each other. The following definition prevents
this effect:

Definition 8. Weak relationships cut off radius per term
(WRCRT)

Given z m-simplexes Sk1 , Sk2 , ...Skz , at the k-th level, a term tj
is a candidate to be part of the m-simplex Ski if ∀ti ∈ Ski

d(ti, tj) ≤ τ (3.2)

where τ is an a-priori fixed threshold, with i, j ≤ m and i 6= j.

WRCRT is a covering radius, which considers only relationships
among terms that fall into their own neighbourhood. This threshold
constraints the relationships useful to link simplexes, and thus, to
connect concepts. For this reason, fixing small values of WRCRT
allows to cut off the weakest relationships per each term selecting
the most specific concepts. On the contrary, big values of WRCRT
allows to consider very general (cross-topic) concepts.

Algorithm 1 implements the whole structure building process.
The algorithm takes in input the document-term matrix M , eu-
clidean distance matrix among terms D, the WRCRT threshold
τ and the maximum number of levels Kmax. At each level k, new
simplexes sk1, sk2, ..., skz are generated or unified according to the
(n, k)-skeleton property. Lines 5-13 trace all the evolution of the
simplexes and a data structure S stores the simplexes collection
produced at each iteration k. At each iteration k (until to Kmax),
a new level is explored, i.e., distance-based relations are considered
to unify simplexes, whereas simplexes with size greater than k + 1
at iteration k are filtered out, and will be reconsidered from the
level k + 1. For each term pair ti and tj, the distance d (ti, tj) in
D between them is evaluated in order to decide if the simplexes,
which ti and tj belong to, must be connected or not in the cur-
rent skeleton Sk. Line 6 condenses the definition conditions about
SSUB and WRCRT (Definitions 7 and 8). The algorithm output
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is a skeleton collection S, where each skeleton Sk is composed of a
simplex list representing the concepts.

The Concept Mining phase is in charge of discovering admissible
concepts. Two types of concepts are extracted: the Basic Concepts
(BCs) and the Concept Extending Terms (CETs). The former relate
to specific concepts composed of terms strongly related to each other
(i.e.,“Dolce & Gabbana”). The latter are BCs extended with terms
which define the context extending the initial conceptualization
of the BC (i.e. CETs of “Dolce & Gabbana” can be “fashion”,
“designers”, etc.).

Algorithm 1 Build a skeleton collection of terms
Require: M : n×m document-term matrix, whose terms are t1, t2, ..., tm

D: ascendant ordered distance D = {d (ti, tj) | i 6= j, i, j = 1, ..,m}
τ : prefixed WRCRT
Kmax: prefixed maximum number of levels

Ensure: S: list of skeletons of the simplicial complex of terms
1: k = 0
2: S = ∅
3: while k ≤ Kmax do
4: Let ti, tj be two terms inM and ski , s

k
j the simplexes which respectively they belong

to (s.t. ski ∩ skj= ∅).
5: for all d (ti, tj) in D do
6: if d (ti, tj) ≤ τ ∧ ski ∪ skj ≤ k + 1 then

7: sk (i, j)← ski ∪ skj
8: Add sk (i, j) to Sk

9: end if
10: end for
11: Add Sk to S
12: k ← k + 1
13: end while
14: return S

In order to extract BCs and CETs, the complex building pro-
cess described in Algorithm 1 has been executed several times
on different values of WRCT τ to get the most lasting simplexes
through the levels, which are the simplexes candidate to represent
BCs, formally:

Definition 9. BCs extraction through threshold on levels
Given a prefixed threshold extTHR, a simplex s of a simplicial
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complex is a basic concept (BC) if:

BC (s) =
1 if mean (s) > extTHR
0 else (3.3)

where mean(s) is the mean number of levels of s, in which s rests
unchanged, computed on level sums per run l (s, τ) =

PKmax
k=0 sk,

with sk = sk − 1 by varying the WRCRT τ in the range [sd , fd]
with incremental step inc:

mean (s) =

Pfd
τ=sd l(s, τ)

Rmax
(3.4)

The number Rmax of possible runs of Algorithm 1 trivially is
Rmax = ((fd− sd)/inc) + 1.

Once all the BCs have been identified according to Definition
9, all the other terms added to the BCs by incrementing the τ
value are considered as CETs. As stated, a CET represents wide
concepts that extend a BC. Let us notice that the (distance-based)
ordering to add new terms in CETs suggests the relevance of that
new term in enriching the primary concept related to the BC, thus,
as additional terms are connected to an initial BC, new, extended
(often cross-topic) concepts are identified. The final result is a list
of BCs with the related CETs as two distinct associated simplexes.
Then ExtTHR represents a threshold for the concept extraction,
assessed as the mean of levels on all of the runs. It judges whether
a linkage among terms is strong enough to represent a BC. A high
ExtTHR value guarantees BCs formed by strong relations (but
often they are few); a low ExtTHR captures more BCs, which
could be formed by terms that are not strongly connected. The
choice of the ExtTHR value strongly depends on the selected
dataset and it is chosen during the experimental stage.

In order to clarify the comprehensive procedure, a sketched
example is given as follows. Let us suppose the initial configuration:
sd = 0.1, fd = 0.8, inc = 0.1. According to the description of
the approach, Algorithm 1 is executed (Rmax = 8) eight times,



463. Knowledge extraction from structured and unstructured data

by varying the parameter τ in [0.1, 0.8]. Listing 3.1 shows the
construction of some simple simplexes, considering the two initial
terms (1-Simplexes) “Dolce” and “Gabbana” whose distance satisfies
the relation in line 6 of Algorithm 1. Starting with τ = 0.1, a
2-Simplex {Dolce, Gabbana} is built, connecting the two terms.
With the next τ values, no additional edges are added, because no
distance between two terms is lower or equal to τ ; this holds for the
next runs of Algorithm 1, respectively with τ = 0.1, 0.2, 0.3, 0.4, 0.5.
Listing 3.1 sketches only the runs of Algorithm 1 with τ = 0.1 and
τ = 0.5, where the only simplex is {Dolce, Gabbana} which does
not change during these executions.
1 τ = 0.1
2

3 1−Simplex ( Dolce ) ,
4 1−Simplex (Gabbana ) Leve l 1
5

6

7 2−Simplex ( Dolce , Gabbana ) Fina l Leve l
8

9 τ = 0.5
10

11 1−Simplex ( Dolce ) ,
12 1−Simplex (Gabbana ) Leve l 1
13

14

15 2−Simplex ( Dolce , Gabbana ) Fina l Leve l

Listing 3.1: BCs extraction, with τ= 0.1 and τ= 0.5

1 τ = 0.6
2

3 1−Simplex ( Dolce ) ,
4 1−Simplex (Gabbana ) Level 1
5

6

7 6−Simplex ( Dolce , Gabbana ,
8 Designers , Tr ia l , Defense ,
9 Prosecutor ) Leve l 6
10

11

12 13−Simplex ( Dolce , Gabbana ,
13 Designers , Tr ia l , Legal , Defense ,
14 Prosecutor , Risky ,
15 Dangerous , Construct ion , Work ,
16 Child , Father ) F ina l Leve l

Listing 3.2: BCs extraction with τ= 0.6
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1 τ = 0.7
2

3 13−Simplex ( Dolce , Gabbana ,
4 Designers , Tr ia l , Court ,
5 Course , Weaky , Idea ,
6 Problems , Attorney , Legal ,
7 January , Short ) F ina l Leve l
8

9 τ = 0.8
10

11 20−Simplex ( Dolce , Gabbana ,
12 Designers , Tr ia l , Court ,
13 I nv e s t i g a t i on , Safety , Miles ,
14 Spokesman , Xinhua , Cross ing ,
15 Garcia , Chi ld i sh , Parents , Son ,
16 St ra t eg i c , Western , Forces ,
17 Libyan , Rebels ) F ina l Leve l

Listing 3.3: BCs extraction with τ= 0.7 and τ= 0.8

Listing 3.2 shows the evolution of previous simplex with τ = 0.6.
Level by level, the Algorithm 1 tries to find the term connections.
The simplex at 1-st level was previously analyzed. At 6-th level,
four new terms are added to the simplex (Designers , Trial , De-
fense, Prosecutor) that enrich the previous simplex, while at final
level, there is a simplex compound of new further words, {Dolce,
Gabbana, Designers, Trial, Legal, Defense, Prosecutor, Risky, Dan-
gerous, Construction, Work, Child, Father}.
Increasing τ , i.e., increasing the covering distance, other terms can
be added, as shown in Listing 3.3, where, with τ = 0.7, the simplex
is composed of a common subset of the previous analyses and some
new more specific terms such as “Court”, “Attorney”, etc. Similar
analysis happens with τ = 0.8.
Generally, the last terms added are more general, cross-topic and
based on weaker relationships, for this reason they can easily change
in the last distinct runs.
Let us suppose that ExtTHR = 8, Rmax = ((0.8− 0.1) /0.1)+1 = 8
then, according to Definition 9, the terms “Dolce”, “Gabbana” will
be compound a BC:mean({Dolce,Gabbana}) = (20+20 +20+18+
12+ 6+ 5+ 3)/8 = 13 > ExtTHR, where each addend in the sum
is the number of levels where the 2-Simplex(“Dolce”, “Gabbana”)
rests unchanged, through a run. Thus, the 2-Simplex(“Dolce”,
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“Gabbana”) is a BC(“Dolce”, “Gabbana”).
Then, the simplexes built from this BC (by increasing τ), adding
new terms will identify complete concepts about the BC(“Dolce”,
“Gabbana”). For example the term “designers” refers directly to the
BC “Dolce & Gabbana”, the famous fashion designers, while terms
like “trial”, “court”, “investigation”, “safety”, “prosecutor”, “legal”,
“defense”, “miles”, “spokesman”, “course”, etc. describe a fact about
a trial on a copyright infringement that involves Dolce & Gabbana.
Increasing τ leads to a further generalization of the topic “trial”
that involves also a trial relative to prisoners of libyan war, repre-
sented by terms like “western”, “forces”, “libyan”, “rebels”, etc. that
refer to another BC.
Let notice that a wider generalization (built with simplexes com-
pound by many levels, i.e., by increasing τ) could introduce too
terms that ambiguously would describe a concept.

3.2.4 Approach evaluation

Our experimental evaluation aims to assess the effectiveness of our
approach in identifying accurate conceptualization (in terms of
BCs and CETs).

The experimentation was conducted on two datasets: 500N-
KPCrowd-v1.1 and Reuters-215785. The former contains 500 doc-
uments, 72,713 words in total after preprocessing, divided into
ten topic categories. The latter, subset of the well-known Reuters-
21578, contains 16,368 after the preprocessing phase. The approach
quality in identifying concepts has been tested by comparing sim-
plicial complex results to results of two baseline methods. The
first one is AlchemyAPI, which is commercial tool for text mining
including a set of NLP features (i.e., named-entity extraction, sen-
timent analysis, etc.). The second method consists in the manual
annotation of relevant terms, keyphrases, compound terms, present
in documents, from the two datasets 500N-KPCrowd-v1.1 and
Reuters-21578.

5http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Two main experiment types have been conducted: one is ori-
ented to extract the basic concepts (BCs) the other extends them
to get richer and wide concepts, i.e., the concept expanding terms
(CETs).

The simplicial complex approach builds BCs from the scratch
and they are not a-priori classified or labeled. Each BC is compared
with concepts from the baseline. If a match occurs, the BC can be
of two different types:

• Perfect Matching BC: the extracted BC is equal to the con-
cept from the baseline i.e., it is composed of a set of words
that is exactly the same occurring in the reference concept.

• Partial Matching BC: the extracted BC is partially equal to
the concept from baseline, i.e., a subset of words matches at
least half of words in the reference concept.

Before presenting the tests on BCs, an initial study has been
achieved to adequately tune the parameters of the simplicial com-
plex approach, and to show the overall system performance. The
experiments have been carried out on the 500N-KPCrowd-v1.1
dataset, using AlchemyAPI as baseline method. Table 3.4 shows
the precision and recall, with different parameter configurations.
According to Definition 9, the incremental setting in range [0.1,
0.8] with step=0.1 is fixed, with the maximum number of levels to
generate, Kmax= 20.

The parameters taken into account are the threshold FeaTHR,
for selecting the most meaningful terms used in the experiment,
and the extraction threshold extTHR, that affects the concept
extraction (see Definition 9). Precision and recall are calculated on
the BCs extracted by our framework with respect to the concepts,
i.e., named entities (NE) returned by AlchemyAPI; precisely, pre-
cision and recall are evaluated on the Perfect Matching BC (PeM),
i.e. perfect matches between BC and NE, and on Partial Matching
BC (PaM), i.e., partial matches between the extracted BC and the
reference NE.

Table 3.4 evidences that increasing the number of terms (i.e.,
by reducing the FeaTHR value), involved in the building of the
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Table 3.4: Precision and recall on 500N-KPCrowd-v1.1 dataset
w.r.t. all the AlchemyAPI categories (with sd= 0.1, fd=0.8, inc=0.1,
kmax=20)

FeaTHR ExtTHR Precision Recall
PaM PeM PaM PeM

0.4 10 12.76 22.8 15.83 20.94
0.4 7 26.25 27.44 25.27 24.94
0.4 5 34.36 31.72 31.21 27.55
0.4 3 16.57 11.82 22.68 8.01
0.3 10 32.84 27.68 29.68 33.21
0.3 7 34.73 30.39 30.15 28.59
0.3 5 37.58 33.76 34.55 28.24
0.3 3 29.37 26.53 24.95 11.24
0.2 10 32.29 33.59 28.51 36.57
0.2 7 35.74 38.24 31.43 35.25
0.2 5 47.36 44.18 41.98 38.90
0.2 3 32.36 35.15 27.34 14.78
0.18 10 32.21 37.12 26.87 33.20
0.18 7 30.12 31.52 25.67 31.66
0.18 5 48.93 35.88 43.73 28.24
0.18 3 37.47 33.87 28.91 14.85
0.12 10 33.83 35.83 32.71 21.16
0.12 7 41.83 31.62 36.62 27.71
0.12 5 57.66 41,27 52.11 41.83
0.12 3 36.48 29.27 30.63 20.13

complex, contributes to improve precision and recall results, along
with the extraction threshold (ExtTHR) value which affects the
construction of BCs: it has to be not too small because it can select
many BCs composed of single terms, but at the same time, too
high ExtTHR values can cut off terms for composing BCs, leading
to more cross-topic and confused BCs.

Let us notice that by varying the FeaTHR value, the best
recall and precision values for PaM and PeM are generally with
ExtTHR = 5, evidencing that, with this dataset, strong linkages
among terms form relevant concepts when those terms stay con-
nected in about 6 levels, for each run, according to Definition
9. The best result is with feaTHR equals to 0.12 and ExtTHR
equals to 5, as shown in Table 3.4, where the recall on PeM is
greater than 40% and the recall on PaM overcomes 50%, precision
on the perfect matches also overcomes the 40%, while it is almost
60% on the partial matches. The performance is comprehensively
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satisfactory, considering that the dataset is human generated, and
so the selection of keyphrases can result more accurate and precise,
enriched with extra words that could not be included in the given
documents. Let us recall that feaTHR equals to 0.12 means that
almost all the terms extracted in the preprocessing are candidate
to form the feature space (in this case, only the 7.2% of terms are
discarded).

Let us notice that when FeaTHR decreases, see Table 3.4, the
framework produces increasing total recall and precision, even
though the PeM tends to decrease on the highly dimensioned
feature sets. As an example, with FeaTHR = 0.2 and ExtTHR =
5, the recall on PaM is 41.98% and on PeM is 38.90%, while the
experiment with FeaTHR = 0.18 and ExtTHR = 5 the PaM for
recall improves (43.73%), because more terms contribute to define
the BCs but, at the same time, the same terms affect the value of
the perfect matches (PeM) that decreases (28.24%).

Figure 3.6: Precision and recall on 500N-KPCrowd-v1.1, by varying
the number of features (terms)

Figure 3.6 shows the tendency of PaM and PeM for recall and
precision, by varying FeaTHR, with ExtTHR = 5. As stated, in
general, increasing the features set involved in the process, PaM
and PeM assume higher values. On the contrary, reducing the
features set, both their values decrease. One of the best values
in terms of recall and precision are indeed given with ExtTHR =
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Figure 3.7: Precision and recall on 500N-KPCrowd-v1.1 by varying
the extraction threshold ExtTHR

5, fixing FeaTHR=0.12. Figure 3.7 shows the tendency of PaM
and PeM, with FeaTHR=0.12, by varying the extraction threshold
ExtTHR. The ExtTHR threshold guarantees the selection of strong
BCs (viz., BCs generated by simplexes that stay unchanged, given
that threshold) with values equal to 5: the perfect matches on
extracted BCs might keep increasing with values greater than 5
(i.e., there are further BCs that perfectly match the AlchemyAPI
NEs); on the contrary, ExtTHR values greater than 5, enlarge
concepts too much, degrading the number of partial matches.

In the light of the overall system performance analysis, the
parameter setting with feaTHR = 0.12, and ExtTHR = 5 in
Table 3.4 has been considered to accomplished the effective experi-
mentation on BCs.

For each AlchemyAPI category, Table 3.5 shows three values
for the precision and recall: the values of perfect and partial
matches and their comprehensive value TOT . Let us notice that our
approach accurately extracts BCs which can cover several categories
of AlchemyAPI NEs: good precision and recall values are given for
categories as Continent, EntertainmentAward, FieldTermnology,
Natural Disaster, Organization and PrintMedia, especially in terms
of total values (TOT). Lower recall appears with Country and
Crime, even though they present quite good recall values on the
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Table 3.5: 500N-KPCrowd-v1.1 dataset: precision and recall on
BCs w.r.t. AlchemyApi NE for different categories

Category Precision Recall
PeM PaM TOT PeM PaM TOT

Automobile 90.25 9.75 100 33.33 33.33 66.66
Company 15.46 43.04 58.50 13.95 38.83 52.79
Continent 100 0 100 57.14 28.57 85.71
Country 41.12 17.20 58.32 41.17 5.88 47.05
Crime 95.46 4.54 100 37.50 6.25 43.75
Degree 98,32 1,69 100 25.0 25.0 50.0
Drug 100 0 100 50.0 8.33 58.33

EntertainmentAward 100 0 100 28.57 57.14 85.71
Facility 0.0 89.67 89.67 0.0 79.88 79.88

FieldTerminology 1.06 98.94 100 1.88 88.36 90.25
GeographicFeature 20.82 79.18 100 2.27 68.18 70.45
HealthCondition 52 32 84 41.93 25.80 67.74

Holiday 100 0 100 16.66 33.33 50.0
JobTitle 25.24 65.04 90.29 21.66 55.83 77.5
Movie 86.27 6.48 92.75 16.66 50.0 66.66

NaturalDisaster 100 0 100 100 0.0 100
OperatingSystem 25.24 65.05 90.29 50.0 16.66 66.66
Organization 16.70 70.67 87.37 15.38 65.10 80.48

Person 7.62 54.45 62.07 6.95 49.71 56.67
PrintMedia 9.80 90.2 100 6.84 84.93 91.78
Region 100 0 100 10.52 68.42 78.94
Sport 100 0 100 71.42 0.0 71.42

StateOrCounty 33.76 28.57 62.33 26.53 22.44 48.97
Technology 91.76 8.24 100 40.90 22.72 63.63

perfect matches. While the precision presents lower results on
Company and Country categories, which are about 58%. The
mean value on the sum of perfect and partial matches (TOT) for
recall is around 70%, and the mean value on the total matches for
precision is equal to 90.65%.

Table 3.6 shows instead the precision and recall comparing our
approach with the more traditional clustering algorithms, using the
manual concept identification as a baseline. The two measures are
calculated for the six categories shown in Table 3.6 (see the legend
for details). The results show high performance of our approach
which in general overwhelms all the other methods. Let us notice
that also the hierarchical clustering presents a fair precision values,
they are much lower than our results, in all the categories.
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Table 3.6: 500N-KPCrowd-v1.1 dataset - precision and recall
computed on BCs w.r.t. hand annotated concepts: com-
parison between our approach and hierarchical clustering,
K-means, PAM

Clustering Categories
Methods (# clust) P L O D M Po

P
re

ci
si

on Our Approach (2089) 98.80 98.40 100 100 96.64 100
Hier. clust. (2221) 38.11 12.05 41.64 18.11 1 8.82
K-means (2097) 36.44 12.33 48 20.33 0.66 16.66
PAM (2143) 47.2 14.4 59.8 27.6 0.8 15

R
ec

al
l Our Approach (2089) 88.21 77.00 90.47 100 97.23 100

Hier. clust.(2221) 38.38 36.54 67.42 57.89 7.20 81.08
K-means (2097) 19.43 19.78 41.14 34.39 2.54 81.08
PAM (2143) 27.96 25.66 56.95 51.87 3.38 81.08

Legend: Person (P), Location (L), Organization (O), Date (D),
Money (M), Politics (Po).

A similar experiment was also executed on the dataset Reuters-
21578. For this dataset, whose size is smaller, the initial parameter
FeaTHR = 0 (i.e., the feature space was composed of all the terms
from dataset) is a good choice, and ExtrTHR = 5, as stated above.
Table 3.7 shows precision and recall computed on BCs by our
approach, w.r.t the AlchemyAPI NE, for each category. The re-
sults seem interesting: (PeM ) are high on many categories; the
total value TOT ranges from a minimum value of 50% on category
Holiday for recall and 55.73% on category Company for precision,
to 100% on the following categories for recall: Continent, Coun-
try, Crime, Drug, EntertainmentAward, Facility, HealthCondition,
JobTitle, ProfessionalDegree, RadioProgram, RadioStation, Sport,
SportingEvent and StateOrCounty; and for precision: City, Conti-
nent, Country, Crime, Facility, FieldTerminology, JobTitle, Movie,
NaturalDisaster, ProfessionalDegree, RadioProgram, RadioStation,
Sport, SportingEvent, StateOrCounty and Technology. The mean
value on TOT is 89.37% and more than 70% of the TOT values
are greater than 90% for recall. While precision presents a mean
value on TOT of 85.92% and 16 categories out of 36 present 100
% as total precision.
Similarly, the test with the manual annotations has been also
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Table 3.7: Reuters-21578 dataset: precision and recall on BCs w.r.t.
AlchemyAPI NE for different categories

Category Precision Recall
PeM PaM TOT PeM PaM TOT

Anatomy 53.65 26.82 80.48 61.11 30.56 91.67
Anniversary 36.24 55.1 91.34 26.53 57.14 83.67
Automobile 21.31 45.90 67.21 60 20 80

City 52.08 48.92 100 65.96 6.38 72.34
Company 50.82 4.91 55.73 66.67 0 66.67
Continent 100 0 100 100 0 100
Country 100 0 100 100 0 100
Crime 100 0 100 33.33 66.67 100
Degree 94.72 3.12 97.84 7.23 89.16 96.39
Drug 5.88 72.54 78.43 6.67 93.33 100

EntertainmentAward 5 70 75 100 0 100
Facility 100 0 100 100 0 100

FieldTerminology 100 0 100 43.75 46.87 90.63
FinancialMarketIndex 61.57 30.73 92.3 50 40.63 90.63
GeographicFeature 34.14 36.58 70.73 59.24 27.72 86.96
HealthCondition 39.02 31.70 70.73 0 100 100

Holiday 44.30 20.73 65.04 50 0 50
JobTitle 100 0 100 100 0 100
Movie 100 0 100 58.33 8.33 66.67

NaturalDisaster 25.43 74,57 100 0 91.36 91.36
OperatingSystem 63.41 30.94 94.35 61.11 30.56 91.67
Organization 22.35 67.07 89.48 26.53 57.14 83.67

Person 53.65 26.82 80.48 60 20 80
PrintMedia 21.31 45.90 67.21 65.96 6.38 72.34
Product 93.63 6.37 100 66.67 0 66.67

ProfessionalDegree 100 0 100 100 0 100
RadioProgram 100 0 100 100 0 100
RadioStation 76.84 23.16 100 33.33 66.67 100

Region 24.78 67.99 92.77 7.23 89.16 96.39
Sport 100 0 100 6.67 93.33 100

SportingEvent 100 0 100 100 0 100
StateOrCounty 100 0 100 100 0 100
Technology 93.86 6.14 100 43.75 46.88 90.63

TelevisionShow 5 70 75 50 40.63 90.63
TelevisionStation 5.88 72.54 78.43 59.24 27.72 86.96

Money 34.14 36.58 70.73 0 91.36 91.36



563. Knowledge extraction from structured and unstructured data

Table 3.8: Reuters-21578 dataset - precision and recall com-
puted on BCs w.r.t. hand annotated concepts: comparison
between our approach and hierarchical clustering, K-means,
PAM

Clustering Categories
Methods Categories
(# clust) P L O D M Po

P
re

ci
si

on Our Approach (2089) 100 100 100 94.83 100 100
Hier. clust. (2221) 70 68.88 70.74 97.04 74.81 81.11
K-means (2097) 62 61.33 63 59.66 67.33 72.66
PAM (2143) 68.76 60.21 62 34.3 67.33 72.66

R
ec

al
l Our Approach (2089) 97.54 100 99.01 93.81 99.01 99.09

Hier. clust. (2221) 92.64 89.85 94.08 77.95 95.06 99.54
K-means (2097) 91.17 88.88 93.1 48.11 96.01 90.29
PAM (2143) 85.12 86.95 91.62 27.41 89.35 92.42

Legend: Person (P), Location (L), Organization (O), Date (D),
Money (M), Politics (Po).

done on Reuters-21578 dataset and presented in Table 3.8. Our
approach outperforms all the other methods, especially on the
precision. However, there is a lower gap between our approach
results and the other method results, especially if these results are
compared to those reported on the 500N-KPCrowd-v1.1 dataset
(see Table 3.6).

In order to evaluate the performance of our approach in re-
turning CETs, a further experiment was carried out. AlchemyAPI
was used to run on our datasets, enabling the concept extraction
option. A list of relevant concepts was returned, ranked by the
most relevant to less relevant. Each concept indeed was associated
with a relevance value in the range [0, 1]: a value close to 0 means
a low relevance, on the contrary, values close to 1 means strong
relevance.

To simplify the comparison of CETs with AlchemyAPI concepts,
the ranked list was split in some relevance ranges. Each range
describes a relevance class. Table 3.9 shows these ranges, skipping
the range [0.1, 0.2] (concepts with such low relevance values are
not meaningful for the purpose of the experimentation). The rel-
evance ranges have been considered as AlchemyAPI “categories”:
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the range (0.8, 1] represents the class of all the concepts that are
strongly relevant (i.e., with relevance degree greater than 0.8),
because they are the most descriptive of the document collection;
the terms whose relevance value is lower than 0.4 belong to the last
category defined, the less relevant. In this way, the performance
has been still evaluated in term of recall and precision. Precisely,
the recall represents the percentage of relevant AlchemyAPI con-
cepts that our system can retrieve, with respect to all the returned
AlchemyAPI concepts; the precision, instead, is the percentage of
relevant AlchemyAPI concepts that our system can retrieve, with
respect to all the concepts retrieved by our system.
Table 3.9 shows the performances of our approach (the rows Our
approach for Precision and Recall) on 500N-KPCrowd-v1.1 dataset,
compared with the clustering methods. To guarantee a similar
parametric setting, the same term matrix (i.e., the same feature
set) was given as input to the methods. All methods are optimized
properly by analyzing their performance for different number of
clusters. Table 3.9 shows also the optimal setting of cluster number
(# clust), for each method.
Our approach returns good results especially for the concepts clas-
sified in the two medium-high relevance ranges (values between
0.4 and 0.8) where the precision is very high, confirming the ef-
fectiveness of our approach in retrieving relevant concepts. These
ranges collect the most of the concepts that AlchemyAPI returns
and that are enough relevant. Particularly, our approach returns
high values of precision as the AlchemyAPI concepts become more
relevant (i.e., the concepts with relevance value greater than 0.6
but less than 0.8): it means that our approach retrieves the most
of the meaningful AlchemyAPI concepts. Anyway, with concepts
that are very relevant in the AlchemyAPI ranking (relevance range
0.8-1.0), the precision tends to be a little lower, even though the
value is higher than 60%. Also the recall is quite satisfactory,
since in general, more than 40% of relevant concepts have been
retrieved. A reason of lower recall might be that AlchemyAPI
is based on enhanced IR techniques that use external knowledge
bases to return concepts. Thus, it can return additional concepts
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Table 3.9: 500N-KPCrowd-v1.1 dataset - precision and recall com-
puted on CETs w.r.t. AlchemyAPI concepts: comparison between
our approach and hierarchical clustering, K-means, PAM

Clustering Relevance Range
Methods

(# clust) (0.2 - 0.4] (0.4 - 0.6] (0.6 - 0.8] (0.8 - 1.0]

P
re

ci
si

on Our Approach (2089) 6.54 68.20 93.80 61.19
Hier. clust. (2221) 2.71 30 37.28 26.57
K-means (2097) 3.47 31.69 41.44 30.17
PAM (2143) 2.57 30 36.57 26.71

R
ec

al
l Our Approach (2089) 34.72 42.69 41.27 41.42

Hier. clust.(2221) 26.39 36.14 34.54 39.72
K-means (2097) 31.94 40.36 37.97 42.42
PAM (2143) 25.00 39.53 36.92 38.88

whose terms cannot be present in the processed text corpus.
The performance of our approach, was furthermore validated,

achieving a comparative analysis with the hierarchical clustering.
As stated before, the hierarchical clustering is a method of clus-
tering analysis that evidences some similarity with the simplicial
complex model. In the agglomerative model, it works as a simpli-
cial complex, linking terms (in general, entities) according to some
distance measure. The final structure is a dendrogram that can be
interpreted as a concept-based structure and compared with our
simplexes structure generated through the iterative execution of
Algorithm 1. The same term matrix (i.e., the same feature set) was
given as input to both methods, by using the euclidean distance
as metric.

As evidenced in Table 3.9, our approach always overwhelms the
hierarchical clustering: the recall and precision values, computed
for the clustering are lower than our approach on every relevance
range; even though the recall returned by our approach is higher on
all relevant relevance ranges, the precision is very high, if compared
with the results of hierarchical clustering. The reasons of the
better results in using the simplicial complex than the hierarchical
clustering are mainly ascribed to the way the concepts are identified
in the complex structure. The level-by-level construction evidences
the strong relations among terms forming structures (simplexes)
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Table 3.10: Reuters-21578 dataset - precision and recall computed
on CETs w.r.t. AlchemyAPI concepts: comparison between our
approach and hierarchical clustering, K-means, PAM

Clustering Relevance Range
Methods
(# clust) (0.2 - 0.4] (0.4 - 0.6] (0.6 - 0.8] (0.8 - 1.0]

P
re

ci
si

on Our Approach (461) 7.63 45.20 68.08 53.57
Hier. clust. (514) 2.66 17.33 27 19.21
K-means (477) 4.28 25.92 36.07 26.08
PAM (422) 4.23 21.92 36.54 27.21

R
ec

al
l Our Approach (416) 52.17 44.37 50.70 57.78

Hier. clust. (514) 34.78 34.43 37.67 42.22
K-means (477) 52.12 44.37 46.98 54.07
PAM (422) 47.82 42.17 44.19 52.59

that stay unchanged across the levels. This way, basic concepts
are clearly identified; moreover, the complex structure maintains
basic and extended concepts as well-formed and separate concepts,
thus contributing to get an increased number of matchings, when
compared with AlchemyAPI concepts.
Table 3.9 shows also a performance comparison with the two well-
known partitional clustering: K-means and PAM methods. Let
us notice that in some range, K-means returns recall values that
are better than the other methods, similar or even better than our
approach (range (0.8, 1.0]), whereas the hierarchical clustering and
PAM have very similar recall value in all the ranges; in general
the percentage of relevant concepts that all the clusering methods
retrieve, is always around to 40%. This fact confirms that, more
likely AlchemyAPI returns additional ad-hoc defined concepts.
Differently, the precision value returned by our approach far exceeds
all the other methods, confirming that our approach can better
recognize more concepts among the retrieved ones, than the other
clustering methods.

Finally, Table 3.10 shows the recall and precision computed
on CETs for Reuters-21578 dataset, with respect to the relevance
ranges defined for AlchemyAPI concepts. As before, a comparative
analysis between our approach and the hierarchical clustering, K-
means and PAM is also shown. The performance results confirmed



603. Knowledge extraction from structured and unstructured data

the trend already shown in Table 3.9 on the previous dataset.
Specifically on this dataset, the performance of our approach was
completely satisfying with very relevant concepts (i.e., with rele-
vance value greater than 0.6); the precision values of our approach
indeed, far exceed those ones returned with the hierarchical clus-
tering, K-means and PAM methods. On this dataset, k-means
and PAM generally showed better recall values than the hierar-
chical clustering, even though the performance of our approach
overwhelmed all the other methods, in the high relevance ranges.
In nutshell, the proposed framework shows good performance in
extracting accurate (basic and extended) concepts, that are also
well characterized by additional terms that describe the context.
Differently from AlchemyAPI, it works exclusively on the input
corpus, without any additional external supporting tool.

3.3 ...to multimedia data generated by
devices

3.3.1 Knowledge acquisition from UAV videos:
the problem

In the recent years, aerial surveillance is becoming crucial in many
safety-critical application domains, such as fire detection, traffic
congestion or accidents, etc. Unmanned Aerial Vehicles (UAVs) rep-
resent a clear, low cost reply to ground-plane surveillance systems,
in order to recognize alerting situations. Although UAVs should
guarantee rapid time of response, especially when considering a
victim’s mortality and morbidity after a severe injury accident, at
the same time, they should also potentially fly in uncomfortable
weather conditions, that could be too dangerous for a manned air-
craft. The main issue with the UAVs is the difficulty in acquiring
a high-level description of the scenes appearing in the video se-
quence, only from the object detection, identification and tracking
algorithms. Enabling a UAV to acquire a complete description
of the scenario, during the flights and then, to recognize critical
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scenes from a video sequence is indeed, a very useful and desirable
capability. To this purpose, a robust tracking to handle complex
tasks, such as object identification [70] and event detection [71]
is required. Many studies focus indeed on alleviating common
problems related to UAV video tracking such as camera resolution,
camera shaking, illumination change and appearance change of
the background [72], [73], but also to achieve optimal trajectory
tracking [74] and alleviate vehicle routing problems [75]. Although
many tracking algorithms can deal with occlusion, split objects,
shadows and reflection, object tracking suffers in object labelling
[76]; moreover, camera movements add further problems to the
object tracking algorithm. Most of the algorithms presented in
literature work on object tracking with a fixed camera, and, on
moving camera, the traditional background subtraction algorithms
are not applicable. For this reason, most approaches concentrate on
a single object class recognition task, for instance, pedestrians [77]
or crowds [78]; vehicles [79], or their relations [80] and the main ap-
plications in this area converge on a single type of scenario [81], [82].

Although scene comprehension from moving camera is a hot
topic for improving decision-making processes and supporting video-
tracking activities like moving object detection and tracking [70],
[71], [83], there are a few related works in literature studying the
problem. This depends on the fact that the moving camera causes
a lack of reference points in the scene, which affects both the object
detection and tracking activities, and high-level scene interpreta-
tion. Then, most of studies focus only on low-level data coming
from video or at most adding only few environmental variables to
the problem. Moreover, a priori knowledge based on static context
is not suitable with a dynamic environment like a scene taken from
a moving drone with an on-board camera, which can record many
different environments with many different moving object kinds
moving in it.
The moving camera adds new problems to object detection and
tracking, especially because there is no fixed background, which
makes the distinction between self moving objects and environmen-
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tal elements more difficult [84, 85, 86, 87]. Therefore, consolidated
fixed camera techniques, such as the background subtraction [88],
cannot work because environmental element pixel data change with
the moving camera. To constrain this problem, studies on the mov-
ing camera video-tracking make assumptions on the environment
and camera; for instance, they assume a priori that the environ-
ment is finite and well known [81], [89], [90]; camera movements
are constant or constrained; tracking is carried out on only one
object [77], [79]. Some studies also achieve object recognition by
object classification in predefined classes, even though many issues
as low resolution [91], motion blur [92], prohibitive camera shots
[93], [94] need to be addressed.
For scene understanding, many works propose pattern recognition
methods to recognize scene elements or regions [95, 96]. Classifi-
cation results are quite limited and do not provide a deeper and
high-level understanding of the scene, which is required when deal-
ing with evolving scenarios. Furthermore, a camera-equipped UAV
can take many different environment types with many different
typologies of moving objects doing specific activities. Generally,
most of these methods work exclusively on low-level pixel-based
data, such as colour, shape and position. For instance, a tracked
object on a road (where other similar tracks appear), more likely
is a car; if a similar track appears on a river, it will be a boat. An
object trajectory (hereinafter a track) whose predominant color
is red could be a fire: if it appears in a wood, then probably it
represents a dangerous situation; but if it appears on a beach, it
could be just a bonfire, which is likely not dangerous. Therefore,
the information on the trajectory is not enough to understand
scene object interactions. Further data to discriminate contexts
are required. Furthermore, there is a need of methods capable of
processing data at different levels of detail (from raw video data
to contextual data) to extract thorough knowledge on the scene
and support the situation comprehension.
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3.3.2 Research questions

Beyond classic tracking-related issues, such as resolution, cam-
era shaking, illumination change and appearance change of the
background [72, 73, 97, 98], scene knowledge extraction from UAV
videos can be compromised by the camera movements, causing a
lack of reference points to interpret scene object movements. Track-
ing data can also be not enough to depict scene object interaction
and situations coming from them. Then, summarizing, the issues
related to the knowledge extraction from UAV videos generate the
following questions:

• tracking data are not enough to recognize objects and events.
What kind of information is required to improve these tasks ?
Then, how to integrate tracking data with the new acquired
information ?

• Tracking detects the object trajectory, but how can the
trajectory be used to explain interactions among objects ?
And between the object and the environment ?

• Tracking detects the mobile objects, but fixed elements in the
scene can be useful for object labeling and event detection.
How can environmental data be acquired and used to improve
these tasks ?

• Machine learning methods require great amounts of training
samples and can have bad performances. How can object
labeling and event detection tasks be improved ?

All these issues require methods to process data and achieve
high level comprehension of the scene. In order to get a deeper
knowledge of the environment, this dissertation discusses a frame-
work adopting semantic techniques to model a dynamic environ-
ment starting from some basic features. Semantic technologies
allow building a high-level description of the environment and
its elements, based on heterogeneous information gathered from
different sources. They provide a machine-oriented representation
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of the scenario and the situations evolving in the scenario. It
is the main role, along with the inference process that, applied
to the built model, can enhance the knowledge about the evolv-
ing scenario. The enhanced knowledge is useful to understand
complex situations in the current scenario, even though it is far
from the comprehensive prediction of possible dangerous situations,
especially when unpredictable behaviours happen, nor it is able
to quantify the chance of an event occurring [4]. A synergistic
approach that exploits consolidated methodologies (for example,
deep learning-based methods) could alleviate the issues related to
the foreseeing of future unexpected/unpredictable events.

The role of Semantic Web technologies is crucial in the knowl-
edge representation, yielding the knowledge in the form of concepts
and relations among them; they encode the vagueness of natural
language (embedded in the linguistic terms) by identifying con-
ceptual entities in the resource content. The ontology is a specific
artifact designed to represent a real world domain by explicit,
well-defined concepts, that presuppose a shared view between sev-
eral parties [99, 100]. It gathers concepts from the real world by
means of unambiguous and concise coding [101, 102]. At the same
time, it allows capturing the terminological knowledge that some-
times embeds imprecise information, supporting the management
of semantic data and the intrinsic ambiguity in their theoretic
representation model, providing enhanced data processing and
reasoning, and then supplying a suitable conceptualization that
bridges the gap between flexible human understanding and hard
machine-processing [103]. The next chapter explores the synergistic
use of semantics with tracking for knowledge extraction from UV
videos.



Chapter 4

Knowledge extraction from
UAV videos

4.1 Overview
As stated in the previous chapter, object labeling and event de-
tection through UAVs suffer from some issues basically related
to the lack of reference points to interpret the object trajectories.
Tracking data alone is not enough to correctly interpret interactions
among scene objects.

In the light of these observations, our basic idea is to improve the
object tracking task in a video sequence, augmenting the tracking
data with the contextual data, i.e., complementary data related
to the surrounding background objects of the scene, in order to
acquire a more complete scene information to alleviate tracking
issues. Data from tracking algorithms and additional background
information are collected and coded into ontological statements.
The role of the semantic web technologies in the modeling of tracked
objects and their relations with other objects in the environment
is critical for object classification and labeling, especially when a
moving camera is involved (videos taken by flying UAVs).

The reminder of this chapter explores Semantic Web technolo-
gies application to tracking data for knowledge extraction from
video in Section 4.2. Then, in Section 4.3, a knowledge representa-
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tion model for UAV videos is presented and discussed.

4.2 Semantics applied to tracking for scene
knowledge extraction

Since Semantic Web technologies allow the modeling of high-level
knowledge, they can be used to enrich tracking raw data with
high-level information. This way, Semantic Web technologies can
provide a semantic enhancement in the object labeling and scene
understanding, in order to suggest critical situations (i.e., situations
where for example, the spatial relations among objects are out of
the allowed range) and eventually, to wisely support a decision.

Semantic Web technologies have already been used in combi-
nation with video-tracking, but with fixed camera applications.
Semantic Web technologies are mainly used for data fusion of low-
level data coming from different sensors [113], and for data fusion
between low-level data and contextual variables [114]. The main
goal of methods proposed in literature is to alleviate tracking prob-
lems like occlusion, grouping, shadowing, etc. [114], [115], [116],
[117]. They are also used to support object detection proposing
semantic segmentation techniques to classify pixel regions in pre-
defined classes [118]. Semantic segmentation often involves deep
learning techniques to classify pixels in pre-determined categories.
These methods report good performances on detecting environ-
mental features [119], even though they require many pre-acquired
training samples [120].
In [114], a framework producing high-level knowledge on an envi-
ronment is presented. The application recognizes a door, a person
by dimensions and the action of the person entering in the scene
by the door. This approach needs to acquire the scene a priori
(e.g. door presence) with a fixed camera filming a static and well-
known environment. Our approach, instead, is aimed at building
an adaptable framework for various possible scenarios: it models
at the semantic level, firstly, basic and general concepts, suitable
for every kind of scenario, and then, employs a map-based tool to
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retrieve more specific environmental data, to enrich the knowledge
about the scenario. To the best of our knowledge, there are no
studies on the moving camera video tracking employing semantic
web technologies to improve the accuracy in the object identifica-
tion. Moreover, this hybrid approach can overcome the missing
data problem in tracking algorithms, and, thanks to the expressive
power of the semantics, produces a high-level description of events
and objects in the scene.

The rationale behind the semantic enrichment of the scene
description is indeed to exploit the contextual information from
surrounding background objects such as places, buildings, rivers,
roads, in general, points of interest (POIs) to better identify and
then label the tracked objects. Semantically coded scenes feed
a knowledge base, which becomes a source to query and to infer
comprehensive, high-level information about the objects enclosed
in the scene and in the video. The ontology-based modelling
of scene from video sequences can enhance the video tracking
methods, supporting the object labeling and providing a high-level
interpretation of the scenes in the video sequence: objects are
discovered and automatically labeled with the actual name; at
the same time, event and object interactions in the scene can be
monitored so that a critical situation can be detected when an
alarming event (pedestrian on the road, car crash, fire, etc.) is
revealed.

The next section discusses a knowledge-based approach to UAV
knowledge extraction from video. The approach exploits the syn-
ergy between the tracking methods and semantic technologies to
bridge the object labelling gap, enhance situation awareness, as
well as detect and classify simple alerting events. The UAV, pro-
vided with a camera mounted on board, can recognize moving and
background objects, that populate the scene, and relations/inter-
actions between them. The semantic technologies provide the way
to collect all these data and produce a comprehensive description
of the scene, that will be used to infer additional information. The
UAV becomes “aware” of the situations occurring in the evolving
scenario and, from the contextual (background) data, can also
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individuate and interpret alerting events.

4.3 A model for knowledge extraction
from UAV videos

Figure 4.1 shows the high-level scheme of the framework, with
all the components and their main interactions. The core of the
framework is represented by the semantic modules that, in the
figure, are enclosed in a black border square. This framework
extends a preliminary work, presented in [121].
The main input is a video recorded by a flying drone with an
on-board installed camera (top left of the figure). The recorded
video is taken as input by the Tracking Module which extracts the
trajectories of the objects moving in the scene, frame by frame.
For each frame, tracked object dimensions and speeds are also
calculated. The other input of the framework is environmental
data (top right in the figure): it is composed of specific places called
Points of Interest (POIs), which are fixed geo-referred points or
areas retrieved with Google Maps service, lying in the area where
the drone flies. The video sequence and the object trajectories,
as well as the POIs retrieved with Google Maps are passed to
the Semantic Mapping module. This module in turn, translates
tracking and contextual data in semantic statements according
to TrackPOI ontology, an ad-hoc designed ontology to model the
on-the-road scenarios.

The Semantic Mapping module is composed of three sub-
modules. The first one is Track semantic mapper which maps
moving objects and frame data in assertions about their identity,
real dimensions, speed and position. The POI semantic mapper
aims at defining assertions on the POIs data retrieved with Google
Maps query. The third module is Relation semantic mapper : from
the knowledge base produced by the track and POI semantic map-
pers, it extracts positional relations between tracked objects, and
tracked objects and POIs in the scene, and then generates the
corresponding assertions which feed the knowledge base.



4.3. A model for knowledge extraction from UAV videos 69

Figure 4.1: A logical overview of the framework

The collected knowledge on tracks, POIs and their relations is
passed to a Collecting Module, which collects and selects most
relevant assertions from the semantic mappers to better model and
refine the contexts in the evolving scene. Finally, this knowledge
is passed to the Inference Module, which deducts new assertions
on tracks, POIs and relations, to feed a comprehensive knowledge
base, for a deep high-level scene understanding.
Before detailing the framework component, a brief description
of the ontology and its role in the semantic description of main
components is given in the next section.
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Figure 4.2: Bounding boxes of a scene object in the tracking output
file.

4.3.1 Tracking, scene object and area classifica-
tion output

Tracking is used to detect mobile scene objects, such as people, vehi-
cles, animals from the environment. The tracking algorithm detects
BLOBS from frames, BLOB stands for Binary Large OBject and
refers to a group of connected pixels in a binary image. Therefore,
the tracking algorithm generates a bounding box as a rectangle on
each BLOB for each frame. The generated bounding boxes in a
frame represent mobile entities in the scene. Each bounding box
is also provided with an ID number identifying a specific object.
Bounding boxes with the same ID in distinct frames identify the
same scene object. Therefore, bounding boxes with the same ID
in successive frames allow to reconstruct the trajectory of a scene
object in the video.

The tracking output is stored in an XML-like file representing
the information on the generated bounding boxes with specific tags.
The main tags contain information about the video, such as the
framerate, length, number of frames. The tags object contain data
about the bounding boxes generated for each scene object. Figure
4.2 shows an example of these tags in the tracking output file. The
tag object represents the scene object with a specific ID number.
The child tag attribute with attribute Location contains a series
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Figure 4.3: Object and area classification results added to bounding
box tags in the tracking output file.

of tag data:bbox representing the bounding boxes of the object in
distinct frames. The attribute of the tag data:bbox describe the
features of a bounding box, as follows:

• The attribute framespan represents the number of the frame
in which the bounding box is present

• The attributes height and weight represent the set width and
the height of the bounding box, respectively

• The attributes x and y represent the position in pixel of the
bounding box in the frame.

The object classification, introduced in [122], is also applied
to the tracking data to detect the object identity among people,
vehicles or unknown categories. This way, each bounding box of
a scene object can be associated with a type expressing the scene
object identity. The application of area classifiers, introduced in
[122], allow to detect the identity of places where the scene objects
move. Then, each bounding box of a scene object can be associated
with the area it stays or areas in its surroundings. Classification
results are added to the tracking output to enrich the information
related to each bounding box. Figure 4.3 shows the new attributes
added to each tag data:bbox, that relate the classification results
to the bounding box. They are reported as follows:

• the attribute type associates the bounding box of a scene
object with the scene object identity
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• the attribute inArea associates the bounding box with the
type of environment on which it is moving

• the attribute nearestPlace associates the bounding box with
the type of environment which is the closest in its surround-
ings.

• the attribute direction associates the bounding box with its
direction according to its movement from the previous frame

• the attributes realWidth and realHeight associate the bound-
ing box with real dimensions of the bounding box.

4.3.2 TrackPOI ontology

After the video analysis tasks have been accomplished, the data
flow passes to Semantic component that generates high-level knowl-
edge on the whole scenario present in the video. Semantic Web
technologies are used to code tracking data and higher-level data on
the scene environment into semantic statements. To this purpose,
the TrackPOI ontology (see Figure 4.4) is used to describe the
scenario at a semantic level. The ontology, written in OWL lan-
guage, models the scene as composed of two main entities, which
are the mobile and the fixed objects. The former are modeled
as instances of the TrackPOI:Track class, while the latter as
instances of the TrackPOI:POI. These two main classes can
have subclasses representing specialized types of mobile and fixed
objects. Instances of these classes can be related by properties to
build contextual knowledge on the scene by bridging video raw
data with higher-level information retrieved from sources external
to the UAV. The next sections introduce the instantiation of the
two main types of scene objects and the relations among them to
build a spatial/temporal context useful to perform object labeling
and describe object interactions.
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Figure 4.4: The TrackPOI ontology schema

4.3.3 Mobile objects: TrackPOI:Track class

The Track semantic mapper is in charge of converting the track-
ing output, provided by the Tracking Module, into ontological
statements. A tracked scene object is a dynamic object present
in the video, that moves in the scene. We define track as the
bounding box marking the tracked scene object in a frame. A
tracked scene object can rapidly change from a moving to fixed
state and viceversa in a few of frames. The mobile objects, that
populate the scene, can be of different type. In most cases, the
mobile objects move autonomously in the environment, and they
often are living beings, such as humans or animals, but they can
also be non-living things carried, pushed or driven by living beings
like vehicles, shopping carts, etc. Formally, M̂ = {ô1, ô2, ..} is the
set of the mobile objects moving in the video scene. Each mobile
object ôi ∈ M̂ is a sequence of tracks ôi = {ôt1i , ô

t2
i , ..., ô

tn
i }, where

each track ôtji represents the mobile object in a specific time instant
tj, with j = 1, . . . , n of the video. The tracks of each object ôi
are, respectively, directly coded into Track class instances of the
TrackPOI ontology.

The instantiation of the tracks is automatically performed by
reading the tracking output. The tracking output includes data
about the tracks and frames which they are in. The Track semantic
mapper reads the tracking output and extracts data about each
track. For each track identified, the mapper generates a Track
individual according to the proposed TrackPOI ontology (Figure
4.4), where Track is the ontology class modelling the tracked
objects. The Track individual describes a specific track in the
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frame, by means of the following properties:

• TrackPOI:trackID, bounding box ID

• TrackPOI:trackName, track name

• TrackPOI:width, TrackPOI:height, bounding box dimen-
sions

• TrackPOI:X, TrackPOI:Y , bounding box position as co-
ordinates of the top left point of the bounding box

• TrackPOI:width_m, TrackPOI:height_m, track real di-
mensions (width, height) in meters

• TrackPOI:hasSpeed, track speed

• georss:point, track position (GPS coordinates)

• TrackPOI:frame_ID, ID of the frame which the track is
related to

Information about track real dimensions and speed, are calcu-
lated by using well-known frame-scene mapping models, such as
the Pinhole Model [124, 125].

A track instance is generated for each frame where the track is
in. Tracks, describing the same objects in distinct frames, have the
same ID value. Therefore, the scene object is identifiable through
frames by its track ID. Another important added property is the
TrackPOI:hasRelationWith, which relates the track individual
to all the other tracks or POIs present in the same frame. All
the generated Track individuals along with their own properties,
representing track data in the video frames and the calculated ones
in the real scene, are added to the knowledge base (see the ontology
in Figure 4.4).

Since TrackPOI ontology is designed to deal with various outside
environments mainly populated by humans, animals and vehicles,
these mobile object types are modeled by the ontology as subclasses
of the Track class. The Track class has three subclasses modeling
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three specialized types of track: V ehicle, Person and Unknown.
Therefore, if data about the track identity is available, the Track
instance is also coded as instance of one of the Track subclasses.
As stated in Section 4.3.1, the tracking output file can be also
annotated with classification results. Then, if classification recog-
nizes a tracked object as person, the Track instance will be also
a Person instance. Otherwise, the object recognized as Vehicle
will trigger the generation of a V ehicle class instance. In case the
Track instance is not recognized as Person or V ehicle, the Track
instance is added as Uknown instance to the knowledge base. If
there is no object classification result available, object labeling can
be evaluated by using contextual relations between tracks and the
environment, as it will be described in Section 4.3.5.

4.3.4 Fixed objects: TrackPOI:POI class

The POI semantic mapper processes POIs and places appearing
in video scenes. POIs identify specific places and environmental
elements. They are permanently fixed objects in the scene by
definition, and for this reason they can be considered as reference
points, which are very useful to understand movements of objects
present in a mobile camera-taken video. Furthermore, POIs play
another important role in modelling knowledge about the video
scenes. In fact, POI data can also be used to define a context
by restricting domain about the scenario. For example, if the
system retrieves POI data about a public park which generally
not allows vehicle transit, the main moving objects walking and
standing in the park area will be people and pets. Similarly, if
the system detects POI data about a highway, it expects to find
vehicles running on it.

The fixed objects, or simply POIs, present in a video scene can
be formally represented as the elements of the set F = {y1, y2, ...}.
The F elements are environmental static features, identifying areas
and localities generally present in outside scenarios, such as roads,
parks, parking lots, as well as less extended environmental elements
(i.e., stores, ATMs, etc.). Each fixed object in the F set can be
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easily represented as an instance of the POI class from TrackPOI
ontology, that models all the fixed elements of the scenario.

Data about the fixed objects can be got through several sources.
Among them, GPS-based services like Google Maps [123] can be
used. These services provide data about the identity and features
of the Points of Interest (POIs), and possible places appearing in
the scene.

Google API provides Google Maps Geocoding API1 and Google
Maps Places API2 to localize, geo-refer and retrieve specific data
about POIs. Therefore, POI semantic mapper adopts Geocoding
API to make reverse geocoding by a simple query, which takes a
pair of coordinates and returns a Json/XML file with a human-
readable address and related data about the area which the pair
of coordinates corresponds to. The main retrieved data are POI
identity or type, administrative area level, postal code, street ad-
dress and GPS area and position. In other words, POIs represent
structured data about urban and natural sites (i.e., roads, build-
ings, business activities, national parks, rivers, mountains, etc.)
localized with their own GPS coordinates. The POI data are useful
to identify the macro area which the drone is flying over. For
each retrieved POI, the POI semantic mapper generates a new
POI individual, i.e., an instance of the POI class (described by
Track-POI ontology, Figure 4.4), and codes its own retrieved data
in RDF triples. Precisely, the POI position and area are retrieved
from geoRSS ontology3, a well-known geographical ontology that
provides geospatial properties of POIs, and then, they are inte-
grated into our ontology.
Since Geocoding API returns data about macro places, such as uni-
versity, park, zoo, etc., Google Maps Places API has been queried
to get information about small and more simple POIs, which are
additional reference points which a track can also interact with.
Google Maps Places API indeed returns a list of 97 different places
(e.g. bank, bar, park) and their related information in a similar

1https://developers.google.com/maps/documentation/geocoding/intro
2https://developers.google.com/places/
3http://www.georss.org/rdf_rss1.html
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Table 4.1: Some Google places

Places
airport amusement_park train_station

art_gallery bank subway_station
bus_station car_repair stadium
cemetery church parking

gas_station hospital school
movie_theater museum police
night_club park ATM

way to Geocoding API. Some of the place types are shown in Table
4.1.

Let us notice that a place is not associated with an area (like
macro places) but just a position identified with GPS coordinates.
Queries submitted to both Google APIs are based on the drone
coordinates (associated with every frame of the recorded video),
whereas the covering radius to retrieve places is based on the
distance covered by the drone.
In a nutshell, the POI semantic mapper retrieves data about the
POI location, identity and its related data which contribute to
depict the context of a scenario. Then, each POI appearing in a
frame is coded as a POI individual, i.e., a class instance of the
Track-POI Ontology (see the ontology in Figure 4.4).

Beyond the GPS-based services, pixel data can be also used to
detect fixed object identities. As stated in Section 4.3.1, an area
classifier applied to pixel data can support the identification of
areas present in the video. Obviously, classifiers need to be trained
on all the environment types that the UAV needs to detect. The
areas detected by classification results, that are associated to each
track in the tracking output file, can be directly coded into POI
instances.
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4.3.5 Spatio/temporal relations

The Relation semantic mapper acquires the asserted knowledge
on both tracks and POIs, generated by the other two semantic
modules, POI semantic mapper and Track semantic mapper, re-
spectively. Its goal is to recognize relations between the distinct
scene elements appearing in the frames by the analysis of the
possible interactions between them in the evolving scene. The
investigated relations can hold between a track and a POI, and
among two tracks, which, respectively, represent two distinct scene
objects. As tracks and POIs, relations can be coded as asserted
knowledge, which can serve the building of a context useful to
depict the UAV monitored scenario. In this dissertation we focus
particularly on the positional relations, which make possible to
analyse how a track is positioned with respect to fixed POIs in the
scene, and how a track is interacting with other tracks in the scene.
The analysed relations cover the main grammar prepositions of
place: front of, behind, near, between, in, on. Each preposition
describes a geometric relation between GPS coordinates of tracks
and POIs.
As a first task, Relation semantic mapper creates a relation in-
stance TrackPOI:hasRelationWith between each track and POI,
present in the same frame, then it adds them to the asserted
knowledge. The mapper processes track-POI relations frame by
frame, in order to specialize these relations with respect to the
contextual information. For each frame indeed, it analyses every
TrackPOI:hasRelationWith statement among track-track and
track-POI filtering out irrelevant relations (i.e., on tracks without
a specified position).
Geometric calculations are applied on each relation per frame,
taking into account: GPS coordinates of the tracks and POIs,
positional speed of a track in the current and previous frame, track
and POI real dimensions and track directions. The geometric data
allows Relation semantic mapper to discern positional relations
between entities in the scene, for example, a track in the area of a
POI, a track/POI in proximity of another track/POI, etc. More
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specifically, Relation semantic mapper can produce five different
specializations of the predicate TrackPOI:hasRelationWith, that
are modelled in the TrackPOI ontology. They are detailed as
follows.

• TrackPOI:isInTheAreaOf : this predicate is used to relate two
entities, x and y. The statement x TrackPOI:isInTheAreaOf
y (see Figure 4.5 a) is produced if the GPS coordinates of x
(a track or a POI) lie within the area of y (a POI). Generally,
the area of y is retrieved by the Google Maps query on POIs,
that provides two pairs of coordinates which respectively
represent the north-east and south-west zone bounds. When
the retrieved POIs lack of these area bounds, the Relation
semantic mapper defines a covering radius, according to place
type and video features, to delineate an area for the POI.

• TrackPOI:isNear : this predicate relates two entities x and
y which are close to each other, and, similarly to predicate
TrackPOI:isInTheAreaOf, the mapper enables us to specify a
covering radius value to define the concept of closeness (see
Figure 4.5 b).

• TrackPOI:hasDirection: this is a predicate that can be spe-
cialized, according to spatial relations between two entities.
The mapper calculates the track trajectory (considering po-
sitions in successive frames) which is translated in cardinal
points; an assertion x TrackPOI:hasDirection p is produced
for every frame the track is in, where x is the track and p the
cardinal point representing its direction (see Figure 4.5 c).

• TrackPOI:isInFrontOf : thanks to track direction per frame,
the Relation semantic mapper evaluates if two entities x, and
y, are coming in front of one to the other. In details, the
assertion x TrackPOI:isInFrontOf y holds if the direction of x
in a frame is opposite to the direction or position of y, where
y is a POI and the distance between x and y in successive
frames decreases (see Figure 4.5 d).
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• TrackPOI:isBehind : in a similar but reverse way, the mapper
uses the predicate TrackPOI:isBehind to state x and y leave
each other behind and proceed to opposite direction ways
(see Figure 4.5 e).

• TrackPOI:isInBetween: if the track x is between two entities
y and z, Relation semantic mapper can state that x Track-
POI:isInBetween (y,z). This assertion holds if the position of
x falls on the conjunction of y and z direction vectors, and if
also the assertions x TrackPOI:isNear y, x TrackPOI:isNear
z hold (see Figure 4.5 f).

These new specialized relations, such as TrackPOI:inFrontOf,
TrackPOI:isBehind, TrackPOI:isInBetween, etc. allow a better
characterization of the positional context. The spatial relations are
also related to video time. In fact, the spatial relations among the
objects are timed according to the video time, relating the track
instance to its frame time instant with a specialized property. This
property is TrackPOI:hasTime, which is associated with each track
in the video.

UAV GPS data is not always available, or precise according to
the service employed. Therefore, a robust relation asserter needs
to use other services to estimate relations among tracks, and es-
pecially between a track and a POI. To this purpose, the area
classification, introduced in Section 4.3.1, has also been employed
to code relations among scene objects into ontological statements.
Beyond the GPS-based spatial relations listed in Figure 4.5, fur-
ther relations are generated according to the area classification
results. The classification result-based relations added are two,
respectively, expressed by using two properties: TrackPOI:inArea
and TrackPOI:nearestPlace. The TrackPOI:inArea property codes
the relation between the scene object (Track instance) and the
area (POI instance) where the track is moving. Similarly, the POIs
or places lying in the track neighbourhood are related to it by
using the property TrackPOI:nearestPlace. A track and a POI
are related with this property if the distance between the object
and the place contour lies under a reasonable threshold, which is
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Figure 4.5: Relation Predicates

related to the features of the involved POI. The TrackPOI:inArea
and TrackPOI:nearestPlace properties describe the context of the
track movements by relating them with the POIs and the video
time. The spatial relations are asserted for the track in each video
frame; the frame number is associated with the discovered relations
as well as the frame instant where they happen, in order to get a
complete description of track relations both in terms of space and
time.
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4.3.6 Collecting and reasoning by using the Track-
POI representation: a case scenario

The Collecting Module completes the assertion process, taking as
input the asserted statements produced by the semantic map-
pers. It synthesizes the semantic knowledge removing redun-
dant information, then checks if the statements are consistent,
according to TrackPOI ontology and drone data; finally, state-
ments are merged producing the definitive assertional knowledge
base (ABOX). The asserted statements are conform to class and
property definitions and restrictions of TrackPOI ontology (Fig-
ure 4.4). The Collecting Module checks if these restrictions are
satisfied to guarantee a consistent schema, especially on the re-
lations between track and track or track and POI. For exam-
ple, if a track x has a TrackPOI:inFrontOf relation with an-
other track y, (x TrackPOI:inFrontOf y), y must have the
same relation with x (y TrackPOI:inFrontOf x) because the
TrackPOI:inFrontOf property holds on two objects going to-
wards each other. TrackPOI:inFrontOf is indeed a symmetric
property.
The statements produced are merged to form the definitive asserted
knowledge base on all the scenes of the video.
In order to give an example about the way Collecting Module gen-
erates the comprehensive assertional knowledge, some statements
from a video sample are discussed. Figure 4.6 shows a video frame
(whose identifier is 1395), showing two persons: one walking on
the grass, and the other one crossing the road, in the proximity of
a moving car. The frame shows the corresponding two bounding
boxes, identified by the Tracking Module. Listing 4.3 describes all
the tracks appearing in the frame by ontological statements (black
lines 1-32 and 38-50). For the sake of simplicity, the statements
in the form of triples <subject-predicate-object> are expressed in
Turtle4 semantic language. Lines 6-18 show statements on the POI
entity named POI_1: it is an individual of the TrackPOI:POI
class (line 8); it is a route (line 9). It is also described by assertions

4https://www.w3.org/TR/turtle/
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Figure 4.6: Frame 1395 from Video 1

on the area and the geo-position (lines 16, 17), and other Google
Maps data like street address, country, administrative area level
and postal code (lines 10-15). Tracks are described in black lines
20-32 and 38-50, precisely track_211_1395 and track_252_1395
whereas the statements about track_239_1395 are not shown be-
cause very similar to axioms about track_211_1395. The track
objects are individuals of the class type Track (lines 21-22, 39-40)
with object dimensions and movements data like width, height and
speed (lines 28-30, 46-48) and GPS track position (lines 31, 49).
The remaining assertions on track entities are about movements
and relations. Specifically, statements in lines 23-27 and 41-45
describe the geometrical or positional relations that the track has
with other tracks and POIs in the same frame. Direction state-
ments express the track direction from the previous frame with
compass points (lines 32 and 50).
The knowledge base about each video frame is passed to the Infer-
ence Module, which, by the analysis of the acquired statements,
can infer new statements about the scene.

The Inference Module implements the reasoning component
of the framework. As stated, it produces new axioms about the
scene objects and the context built on their relations, with the aim
of enriching the knowledge base and enhancing the scene under-
standing. The new knowledge produced by this module is aimed
mainly at providing object classification and labelling, as well as
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recognizing critical events in scene sequences. The inference engine
is built on OWL class equivalent, subclass and disjoint restrictions
as well as on rules implemented with SWRL (Semantic Web Rule
Language)5.
Class restrictions are useful to provide precise modeling of classes to
guarantee a straightforward reasoning process in inferring new as-
sertions and provide their accurate classification. Track individual
classification has been designed on Track class restrictions which
involve the main bounding box features and contextual data. Track
subclasses (e.g. Person, Vehicle, etc.) are defined as equivalent
class restrictions, that express a high-level definition of the class
type (see Figure 4.4). Listing 4.1 shows an example of Person class
modeling as a class restriction: an individual of the class Person
requires real dimensions (width, height) falling in a specific range
which reflects the precise dimensions of a person seen from a top
view (lines 4, 6), and a speed which is acceptable for a moving
human being (line 5). Relations with the context have to be also
specified: the Person class definition requires at least a relation
with a POI which admits persons in its area (e.g. the presence of
the person in a park). The admissibility about the presence of a
Track individual in a POI area is expressed by the ObjectsAllowed
property (lines 2, 3). In order to define the right relations between
entities, allowable Track individuals for a certain POI have to be
specified. Listing 4.2 for instance, outlines that the only allowable
Track types for a Park class are individuals of the Person class:
only person tracks can appear in a park area. If an object can not
be related to some POI (e.g., a person is not in a Park), the object
can be recognized by its dimensions and speed, but it is marked as
not recognized by context with a special property.
1 Track
2 and ((hasRelationWith some (POI
3 and ((ObjectsAllowed some Person) or (ObjectsAllowed only Person))))
4 and (hasHeight only xsd:decimal[>= 100 , <= 220])
5 and (hasSpeed only xsd:decimal[>= 0 , <= 37])
6 and (hasWidth only xsd:decimal[>= 10 , <= 90]))

Listing 4.1: Equivalent class restriction for Person class

5https://www.w3.org/Submission/SWRL/
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1 POI and (ObjectsAllowed only Person)

Listing 4.2: Equivalent class restriction for Park class

Restriction-based reasoning supports the object labelling, but the
expressive power is not suitable for situation understanding. Con-
sequently, rules have been designed to recognize alerting events
occurring when restrictions on the scenes involving track objects
and POIs do not hold. Each rule has been designed to verify that,
in a specific situation, no unexpected event is revealed. When it is
triggered, it identifies the critical event occurred on the involved
objects and forces the system to provide an alert. For example, let
us consider the following rule:

Person(?x) ∧ Route(?y) ∧ Vehicle(?z) ∧ isInTheAreaOf(?x, ?y)

∧ isInTheAreaOf(?z, ?y) ∧ isNear(?x, ?z) → isInDangerOn(?x,?y)

The SWRL rule describes an alerting situation that happens when
a person is on a road. Given a Route individual y, and two tracks
respectively representing a Person individual x and a V ehicle
individual z, if x falls in the area of y, (isInTheAreaOf(?x, ?y)),
the person x is in danger on the route y, especially because the ve-
hicle z is coming (isInTheAreaOf(?z, ?y)∧ isNear(?x, ?z)). The
inferred property isInDangerOn represents an imminent alerting
situation, a detection of an event that can lead to a future danger-
ous situation.
The reasoning process, mainly based on class restrictions and rules,
works on one frame at a time. The Inference Module cycles on
frames: it retrieves the statements related to it with a SPARQL
query, and produces a subset of statements associated with each
frame. Then, the Inference Module processes this statement subset
and infers new statements, which are added to the knowledge base.
Thus, when the Inference Module processes the statements for the
frame in Figure 4.6, new assertions are generated on the tracks
Track_211_1395 and Track_252_1395: Listing 4.3 shows the final
augmented knowledge, with the inferred statements in red.

These assertions state that Track_211_1395 is actually a person
(line 35): so far the previous asserted statements (lines 21, 22)
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state that it was just a track and thanks to Inference Module,
Track_211_1395 is labeled as a person. Track_252_1395 is a
vehicle (line 52) and more specifically a car (line 53). Statements on
the situation are also deducted: Track_211_1395 is in an alerting
situation, since it is on the route POI_1 (line 36).
1 @prefix trackpoi: <http://www.semanticweb.org/danilo/ontologies/2016/1/ .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix georss: <http://www.georss.org/georss/> .
5
6 # POI_1 triples
7 TrackPOI:POI_1 rdf:type owl:NamedIndividual ,
8 TrackPOI:POI_1 rdf:type TrackPOI:POI .
9 TrackPOI:POI_1 rdf:type TrackPOI:Route .
10 TrackPOI:POI_1 TrackPOI:Administrative_area_level_1 "Campania" .
11 TrackPOI:POI_1 TrackPOI:Administrative_area_level_2 "Provincia di Salerno" .
12 TrackPOI:POI_1 TrackPOI:Administrative_area_level_3 "Fisciano" .
13 TrackPOI:POI_1 TrackPOI:Country "Italy" .
14 TrackPOI:POI_1 TrackPOI:Postal_code "84084" .
15 TrackPOI:POI_1 TrackPOI:Street_address "Anello Esterno, 84084 Fisciano SA, Italy" .
16 TrackPOI:POI_1 georss:box "40.775762,14.787031,40.772937,14.785706" .
17 TrackPOI:POI_1 georss:point "40.7743843,14.7860267" .
18 TrackPOI:POI_1 TrackPOI:Name "Anello Esterno" .
19
20 # track_211_1395 triples
21 TrackPOI:Track_211_1395 rdf:type owl:NamedIndividual .
22 TrackPOI:Track_211_1395 rdf:type TrackPOI:Track .
23 TrackPOI:Track_211_1395 TrackPOI:hasRelationWith TrackPOI:POI_1 .
24 TrackPOI:Track_211_1395 TrackPOI:hasRelationWith TrackPOI:Track_239_1395 .
25 TrackPOI:Track_211_1395 TrackPOI:hasRelationWith TrackPOI:Track_252_1395 .
26 TrackPOI:Track_211_1395 TrackPOI:isNear TrackPOI:Track_252_1395 .
27 TrackPOI:Track_211_1395 TrackPOI:isInTheAreaOf TrackPOI:POI_1 .
28 TrackPOI:Track_211_1395 TrackPOI:hasHeight 58.309975411032354 .
29 TrackPOI:Track_211_1395 TrackPOI:hasSpeed 3.2 .
30 TrackPOI:Track_211_1395 TrackPOI:hasWidth 38.51992315031834 .
31 TrackPOI:Track_211_1395 georss:point "40.77454810242632, 14.78530388911672" .
32 TrackPOI:Track_211_1395 TrackPOI:hasDirection TrackPOI:N .
33
34 # inferred triples for track_211_1395
35 TrackPOI:Track_211_1395 rdf:type <https://schema.org/Person> .
36 TrackPOI:Track_211_1395 TrackPOI:isInDangerOn TrackPOI:POI_1 .
37
38 # track_252_1395 triples
39 TrackPOI:Track_252_1395 rdf:type owl:NamedIndividual .
40 TrackPOI:Track_252_1395 rdf:type TrackPOI:Track .
41 TrackPOI:Track_252_1395 TrackPOI:hasRelationWith TrackPOI:POI_1 .
42 TrackPOI:Track_252_1395 TrackPOI:hasRelationWith TrackPOI:Track_211_1395 .
43 TrackPOI:Track_252_1395 TrackPOI:hasRelationWith TrackPOI:Track_239_1395 .
44 TrackPOI:Track_252_1395 TrackPOI:isInTheAreaOf TrackPOI:POI_1 .
45 TrackPOI:Track_252_1395 TrackPOI:isNear TrackPOI:Track_211_1395 .
46 TrackPOI:Track_252_1395 TrackPOI:hasHeight 50.35861512770976 .
47 TrackPOI:Track_252_1395 TrackPOI:hasSpeed 3.4 .
48 TrackPOI:Track_252_1395 TrackPOI:hasWidth 13.428964034055936 .
49 TrackPOI:Track_252_1395 georss:point "40.77412995839289, 14.786379978047478" .
50 TrackPOI:Track_252_1395 TrackPOI:hasDirection TrackPOI:ENE .
51 # inferred triples for track_252_1395
52 TrackPOI:Track_252_1395 rdf:type <https://schema.org/Vehicle> .
53 TrackPOI:Track_252_1395 rdf:type TrackPOI:Car .
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Listing 4.3: Assertional and inferred knowledge in Turtle statements
for POI_1, :track_211_1395 and :track_252_1395. The inferred
triples are in red.
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Chapter 5

UAV comprehension of
activities and situations

5.1 Introduction
UAVs are extensively used for research, monitoring and assistance
in several fields of application ranging from defense, emergency and
disaster management to agriculture, delivery of items, filming and
so on. Their performance is often estimated about how accurate
and precise is the provided scenario description, ranging from the
basic identification of fixed and mobile targets, to recognize target
actions that constitute events occurring in the real-time scenario.
Especially, when a high-level description of the scenario is strongly
desired, UAVs should be able to process the initial tracking data
and, by adding environmental information, interpret the scene
captured by the on-board camera. Although the human remote
control of these vehicles is often decisive to clearly understand the
scene and make an action, UAV equipped with such abilities could
support human operators in many situations, especially if they are
dangerous for humans.

By focusing on a UAV-based surveillance system, video scenario
understanding is accomplished gradually through the three hierar-
chical levels that form the SA [126]: perception, comprehension and
projection, starting from data sensing to high-level comprehension.
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Figure 5.1 shows a sketched mapping of the three SA levels to
our approach of UAV-based surveillance system in a broken car
case study. The perception level involves all the sensing processes
aimed at acquiring data from the video scene (e.g. presence of a car
and smoke), the comprehension level concerns the high-level un-
derstanding about the object interaction in the scenes (e.g. some
smoke from car, which probably has broken down), finally the
projection level involves methodologies to make a decision or to
evaluate some possible evolutions of the current scene (e.g., request
for roadside assistance).

1° Level: 

Perception

2° Level: 

Comprehension

3° Level: 

Projection

Data & sensors

Situation 

understanding

Projection of 

future state

ontologies

“car” with “smoke” broken car

ALERT

Alerting

situation

Figure 5.1: The three levels of SA mapped in the UAV-based
survillance system

The scenario comprehension requires to analyze low level data
and, then, build knowledge on different aspects of the scene, col-
lecting distinct levels of data detail and merge them, increasingly,
to get a complete picture of what it is happening [127].

A straightforward interpretation of a scenario requires, as first
step, the detection of the main scene actors, such as people, vehicles
moving in the scene. Then, the comprehension of their movements
and interactions is required to recognize actions or events. Series of
events, to which one or more objects participate, depict higher-level
activities or situations. This process gradually transforms primitive
data (e.g. from sensors or tracking) into high-level information
to reach a high-level view of the scenario. Figure 5.2 represents
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Raw sensor data

Situation

Object

Video frames

… …

id
2

id3

Person

Activity Person
Walking

People 
Crossing

Target

Target tracking

Target labeling

Activity/event recognition

Scene description

Figure 5.2: Layered knowledge schema on a video scenario

this process. A layered representation describes the incremental
knowledge extraction. At the bottom of the figure, the original
video frames are processed by tracking algorithms (in the figure,
the focus is on a zoomed frame portion), to get target bounding
boxes. The Raw sensor data label evidences the layer of primitive
tracking data acquisition, these data include object dimensions,
positions, width and height of bounding boxes, etc., and also
possible sensing data if sensors are used to collect data at this layer.
Tracked targets are the output of the initial data transformation
step. The next layer is defined on the scene object detailed features,
obtained through the tracking process or external sources. The
Object layer is composed of all the recognized targets, including
the target identification and classification activities. In Figure 5.2,
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for example, the targets identified in the video frames are classified
and labeled with the name Person. In other words, Person is
the (class) label associated with the bounding boxes identified
as id1, id2. The Activity layer describes the relations between
objects appearing in the scene: moving objects can interact with
other (moving or fixed) objects, involving actions, movements,
or any scene change. For instance, from people movements and
interactions it derives that the objects, labeled as Person, are
walking. The upper layer represents the interpretation of the scene
at the highest level, through the activities carried out by the
named objects in the scene. The layer Situation abstracts the
object movements in the environment, to achieve a final human-
like interpretation of the scene. In this case, the revealed situation
is People Crossing that is a high-level synthetic description, which
is got by condensing the individual activities Person Walking of
the previous layer. It explains what is happening on the scene,
straightforwardly and concisely. This layered knowledge schema
can be taken into consideration as a methodological framework to
systematically analyse and design systems for video frame scenario
interpretation.

The remaining of this chapter is structured as follows: Section
5.2 presents a preliminary extension of the TrackPOI ontology to
detect simple events over time by using temporal windows. Section
5.3 goes deeper into UAV activity detection and introduces a frame-
work to detect articulated activities by relating and integrating
simpler activities. Finally, Section 5.4 discusses a multi-ontology
framework to build knowledge at each detail layer, according to the
schema in Figure 5.2, and achieve comprehension of the high-level
situations occurring in the scene.

5.2 A TrackPOI extension for event mod-
eling

The TrackPOI ontology, presented in Chapter 4, allows semantic
annotation of each frame in the video. Since event detection re-
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Figure 5.3: A logical overview of the framework

quires temporal evaluations of the object interactions, the ontology
model needs to analyse spatio/temporal relations among objects.
To this purpose, a preliminary extension of the TrackPOI ontol-
ogy has been done to allow a temporal modelling of the relations
among tracks and POIs and the events. In order to deal with
triple processing over time, OWL streaming can be used. OWL
streaming allows to process knowledge as a stream of timed triples,
that allows the temporal analysis of object relations.

The extension of the knowledge model with the timed analysis
of triples is sketched as in Figure 5.3. The figure divides the
model into three main stages. The first stage Video Tracking codes
the input video sequence from the drone on-board camera into a
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“tagged” video, where object tracks are identified with an ID and
framed by a rectangle, namely the bounding box, described by its
position and size. The second stage Tracking Data Annotation
is in charge of the semantic enrichment of the video sequence.
Then, ontological assertions, generated from the tagged video,
feed the knowledge base associated with the video sequence. In
details, along with the tracking data, further data related to the
geographical position of mobile and fixed objects in the video are
retrieved and converted into semantic assertions. These steps can
be accomplished by using the TrackPOI representation presented
in Chapter 4. Then, besides the coding of the spatial relations,
the object tracks are related to each others, with respect to the
time. This stage also deals with the ID management, in order to
correctly identify an object within the scene when its ID changes
due to camouflage or sudden disappearance. The last stage OWL
Stream Processing aims at processing the collected knowledge base
in the form of a stream of ontological statements processed by a
temporal window-based application. The temporal window selects
sets of consecutive ontological triples according to their temporal
ordering to detect relevant spatial/temporal events occurring in
the video. Further details about each stage are illustrated in the
following sections.

5.2.1 TrackPOI event temporal modeling

According to the TrackPOI ontology, discussed in the previous
chapter, the output of tracking, along with target classification
data, is coded into semantic assertions. The TrackPOI ontology
has been designed to describe dynamic scenarios, where mobile
and fixed objects move and interact with each other. The mobile
objects in the ontology can be people, vehicles, animals or things
moved by the people, which are detected by applying tracking
algorithms. The Track class represents the bounding box marking
the detected object (viz., the track) in each frame of the video.
Therefore, each detected object in a frame sequence is represented
as a series of Track class instances with the same ID value. Track
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is a general class of the TrackPOI ontology and includes all the
recognized moving objects. It needs to be specialized in order to
identify instances of its own subclasses, such as Person and Vehicle.
Thus, according to classification results, a Track instance can also
be a Person, Vehicle or Unknown instance.
The fixed scene objects include environmental features, such as
rivers, buildings, stores, etc. The fixed objects are coded as Points
of Interest (POIs) retrieved by Google Maps service. In the figure,
some fixed objects, namely Highway, Route, Park, Parking_lot are
represented as the sub-classes of the POI class. TrackPOI uses
GeoRSS ontology to model POI GPS data and also employs Time
ontology to represent the instant of a track instance.
TrackPOI defines also the spatio/temporal relations among tracks
and POIs in a video scene. Relation modelling allows to describe
the interactions among tracks, and the track movements in the
environment. According to the layered knowledge scheme of Figure
5.2, TrackPOI models the knowledge on the lowest layer, dedicated
to the mobile objects of the scene. It is in charge of generating
assertions on tracking and classification data to describe targets
and the elementary movements involving them.

In order to model objects and events with respect to time,
TrackPOI has been further extended with OWL Time Ontology1.
OWL Time ontology defines the class TemporalEntity to repre-
sent a temporal event composed of succeeding instants. Event
duration, starting and ending instants are expressed by the proper-
ties hasDuration, hasBeginning, hasEnd. The novel integrated
ontology is shown in Figure 5.4.

Recalling the sketch in Figure 5.3, when the positional data
mapping, in the stage 2, is accomplished, each moving object is
described as a series of bounding boxes, each one related to a
specific frame. Then, the temporal data mapping module employs
the described ontology schema to model collections of timed tracks
(bounding boxes). Each track happens in a precise time instant
(τ) corresponding to a specific frame of the video. Therefore, each
track instance is provided with the time instant of the frame in

1https://www.w3.org/TR/owl-time/
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Figure 5.4: The TrackPOI ontology extension with the OWL Time
ontology. The TemporalEntity class allows to model the events.

which it appears, then, all the bounding boxes with the same ID
and related to the same object are collected. The obtained track
collection represents the object temporal evolution in the scene.
All the positional relations which link the same couple of tracks
or track and POIs through succeeding time intervals are provided
with a time duration. Time duration is expressed with a couple
of starting and ending time instants. Just to give an example, let
us consider the following extracts, describing spatial and temporal
aspects between a track and a POI in form of triples:

Tr_1_36 isNear POI_1.
Tr_1_36 hasTime τ23.
Tr_1_37 isNear POI_1.
Tr_1_37 hasTime τ24.
Tr_1_38 isNear POI_1.
Tr_1_38 hasTime τ25.

Precisely, the object with ID equal to 1 (track instances starting
with Tr_1) is near POI_1 in the frames numbered 36, 37 and 38, at
the time instants τ23, τ24 and τ25, respectively. The relation isNear
between Tr_1 and POI_1 lasts three time instants, starting at τ23
and ending at τ25. Duration time for each relation is calculated
with a SPIN2 rule.

2http://spinrdf.org/
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SPIN3 (SPARQL Inference Notation) is a SPARQL based rule
language. It defines rules exploiting SPARQL query format which
can be used to assert new facts, create new individuals or compute
the probability of a certain event (abductive reasoning). The great
advantage of using SPIN stays also in the possibility to use, in
addition to SPARQL, other languages for defining a rule like JAVA.

Once each relation is provided with a temporal duration, the
temporal mapping module adds specific relations defined in OWL
Time Ontology, which reinforces relations between temporal events
according to Allen’s algebra. This algebra is included in the ontol-
ogy in order to model relations on intervals (e.g., meets, overlaps)
for representing qualitative temporal information. Specifically,
OWL Time Ontology is used to represent temporal relations be-
tween positional statements, modeled in TrackPOI Ontology via
OWL properties such as isNear, isInTheAreaOf, etc. In other
words, the temporal relations are meant to describe if two posi-
tional relations, as temporal events occurring between time periods,
are overlapping, meeting, equal, etc. The temporal relations be-
tween the positional statements are calculated by a Spin rule. A
rule to check if two events overlap and create instances of two new
properties intervalOverlaps (and its inverse intervalOverlappedBy)
in the knowledge base is reported in Listing 5.1.
1 INSERT {
2 ?A time:intervalOverlaps ?B .
3 ?B time:intervalOverlappedBy ?A .
4 }
5 WHERE {
6 ?A a time:TemporalEntity .
7 ?B a time:TemporalEntity .
8 ?A time:hasBeginning ?AStart .
9 ?A time:hasEnd ?AEnd .
10 ?B time:hasBeginning ?BStart .
11 ?B time:hasEnd ?BEnd .
12 ?AStart time:inXSDTime ?AStartTime .
13 ?AEnd time:inXSDTime ?AEndTime .
14 ?BStart time:inXSDTime ?BStartTime .
15 ?BEnd time:inXSDTime ?BEndTime .
16 FILTER( ?AStartTime<?BStartTime ) .
17 FILTER( ?AEndTime>?BStartTime ) .
18 };

3http://www.w3.org/Submission/spin-overview/
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Listing 5.1: Overlapping events: the query generates triples
stating the any two events are overlapping

Lines 2 and 3 under the INSERT clause generate, in the knowl-
edge base, the overlap relation between all the possible combina-
tions of existing events belonging to the class TemporalEntity (lines
6-7) that have overlapping starting and ending times. In particular,
lines 8-11 evidence for two events, among the retrieved ones from
the knowledge base, the starting times (variables ?AStart and
?BStart) and the ending times (variables ?AEnd and ?BEnd) using
the properties hasBeginning and hasEnd, respectively. Lines 16-17
simply filter out all the events that do not overlap.

5.2.2 Event detection by using temporal win-
dows

Triples produced in the Semantic Annotation stage feed the knowl-
edge base that in turn is processed by the Stream Generator module,
in the OWL stream processing stage (Figure 5.3). The Stream
Generator is a server that reads all the triples produced so far
and selects them according to their temporal ordering, in order to
send these triples as a stream of information to a temporal window
based application. Each stream packet contains a set of triples
happening in the same time interval. The time interval has been
set by the Stream Generator to a fixed time amount in seconds,
then, before starting the sending process, the server has divided
the video time length in a succession of time intervals. The server
inserts the triples into packets according to the triple time ordering,
and periodically send them to the temporal window.
This stream generator processes information in real time and filters
out all the triples representing useless or redundant information,
in order to simplify and speed up the inference processing. This
stream model is also useful to build real time applications for
processing live video streaming.

To discover events throughout the video, a temporal window
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gradually analyses OWL triples occurring in a set of consecutive
time intervals. The window gradually moves from the start to the
end of the video evaluating the temporal relations between the
events in real time. Precisely, the temporal window application
sets the window size in seconds or in terms of the succeeding time
intervals to cover. Then, the process starts and the application
takes as input the OWL streaming generated by the Stream Gen-
erator. As new stream data is received, the window moves by a
fixed step forward to analyse new triples. The temporal window
is implemented by a SPIN rule which takes the window size, as
argument, to choose how many time intervals the window has to
process at once. At each shift of the temporal window, the set of
triples in the current window are passed to an inference engine,
which applies some rules in order to temporally relate the spatial
relations among the moving objects and POIs and detect some
possible events. These rules include some general spatio/temporal
events, such as object grouping and dispersing or crossing, resting
in an area for a specific amount of time.

In order to show how the proposed framework recognizes spa-
tial/temporal events, we have produced a video set with some
events involving cars and people. The videos are recorded with a
DJI F-450 drone, equipped with a full HD resolution camera. The
environment captured by those videos is a main road located inside
our Campus with some POIs in the surroundings (e.g. department
buildings, laboratories, bar, etc.). One of the analyzed videos4 lasts
165 seconds and shows some students walking on the lawn and near
the road, then one of the students crosses the road while some cars
are running down the road. The two main spatio/temporal events
that occur in this video are: People walking in group (close one
to each other) or alone, and a man crossing the road. As stated,
the framework codes the spatial relations in temporal events, as-
signing to each positional relation its duration as a time interval.
Then, the formed temporal ordered triples are generated as an
OWL streaming by the Stream Generator. The stream of triples
is analysed in real time by a fixed size temporal window, which

4https://goo.gl/eA95gq
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Figure 5.5: Frames 1086 and 1247 from time intervals t8 and t9.

gradually analyses the succeeding time intervals. The temporal
window has been built by a SPIN rule. In this example, a temporal
interval is fixed equal to 5 seconds; the temporal window is fixed
to 20 seconds, then it analyses 4 intervals at a time.

The first event concerns with people grouping and dispersing
phenomenons while they are walking. Understanding why they
group or divide is a general interesting problem. In Figure 5.5, two
students are walking close to each other in the same direction in
time intervals between t5 and t8, then they departed keep going
alone from interval t9. Our framework detects this event using
a SPIN rule which exploits the spatio/temporal knowledge base,
collected in the Semantic annotation stage. The rule checks if,
and for how much time, the two students are walking as group
(or close to each other within a minimum distance) or alone. To
this purpose, the rule verifies the students’ direction, checking if
the relation isNear between them is lost. If so, a different event is
triggered, in that case they are dispersing, otherwise they maintain
the relation, staying grouped. The spin rule is presented in Listing
5.2.
1 Select DISTINCT ?event1 ?event2 ?event1After ?event2After
2 Where{
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Figure 5.6: Frames 1376 and 1682 from time intervals t11 and t13.

Figure 5.7: Crossing event Spin rule result

3 ?event1 a time:TemporalEntity .
4 ?event2 a time:TemporalEntity .
5 ?event1 trackpoi:eventOf ?obj1 .
6 ?event2 trackpoi:eventOf ?obj2 .
7 ?event1 trackpoi:isNear ?obj2 .
8 ?event1 trackpoi:isInTheAreaOf ?poi .
9 ?event1 trackpoi:hasDirection ?direction .
10 ?event1 time:intervalMeets ?event1After.
11 ?event2 trackpoi:isNear ?obj1 .
12 ?event2 trackpoi:isInTheAreaOf ?poi .
13 ?event2 trackpoi:hasDirection ?direction .
14 ?event2 time:intervalMeets ?event2After.
15 ?event1After trackpoi:eventOf ?obj1 .
16 ?event2After trackpoi:eventOf ?obj2 .
17 ?event1After trackpoi:hasDirection ?directionAfter .
18

19 {MINUS {?event1After trackpoi:isNear ?obj2 .} }
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20 UNION
21 {MINUS {?event2After trackpoi:isNear ?obj1 .} }
22 UNION
23 {MINUS {?event2After trackpoi:hasDirection ?directionAfter .} }
24

25 }

Listing 5.2: Spin rule for group event

The second event aims at detecting if a moving object is crossing
an area, and how much time he/she spends in doing it. Specifically,
in this example the video shows one of the two students crossing
the road while a car is arriving. In details, the student walks on
the lawn till interval t10, then from interval t11 he starts crossing,
finally goes back on the lawn in interval t13.

A SPIN rule has been designed to check if some object track
(the student) is crossing the road and how long this event lasts.
The rule checks if in some succeeding time intervals there is a
isNear relation between the student and the road, followed by the
isInTheAreaOf relation and finally a isNear relation again.

The result of the query (in form of table) is given in Figure
5.7. Let us notice from the resulting table that the framework
has found a crossing event, involving a moving object (trackpoi :
person2). The crossing event is composed of two consecutive
sub-events: the presence of trackpoi : person2 in the area of
the lawn (eventBefore), followed by the presence of trackpoi :
person2 in the area of the route (event). The duration of the
event regarding the presence of trackpoi : person2 on the route is
calculated according to its starting and ending instants (begT and
endT ). Then, trackpoi : person2 crosses the road in 16 seconds.
Furthermore, an overlapping event is also detected: a car arriving
while trackpoi : person2 is crossing (eventOverlap).

The generated triples, although good to explain the occurred
events, feed the knowledge base with a high number of triples.
Consequently, further methods are needed to collect and select
information to make reasoning more efficient. Moreover, the detec-
tion of situations over time require refined methods to process and
fuse knowledge on the UAV detected events.
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5.3 Detection of activities
Current trends in the Video Surveillance field evidence the main
role of intelligent systems in acquiring and understanding scenarios.
A UAV is considered “smart” if it is equipped with a semantic-
based reasoning component, enabling it to capture heterogeneous
information on the scene and then, reasoning about events and
activities, occurring in the environments, in order to get an overall
scene understanding. To this purpose, this section provides a
review of recent literature on the intelligent systems and the use
of high-level knowledge to support activity detection.

A UAV to perform scenario detection is as highly desirable as
complex to achieve in the surveillance and monitoring systems.
UAV movements bring some issues to scenario interpretation from
a high-level perspective. UAV can fly over different environments in
a few of seconds, this causes the loss of reference points in the scene.
The loss of reference points complicates the recognition of object
action and interaction with the environmental elements of the scene
[128]. Moreover, the ever-changing outside scenarios, caught on
camera by the UAV, make even more difficult the interpretation
of events occurring in the video scenario. Scenario interpretation
requires the understanding of heterogeneous environments. To
this purpose, the Machine Learning methodologies alone are not
enough to support scenario interpretation, because they need high
amounts of samples to be trained [120, 129], and do not possess
cognitive capabilities to allow a deeper understanding of the object
actions and scene events.
In order to achieve high-level scenario comprehension, intelligent
systems are often taken into consideration. These systems emulate
cognitive reasoning by employing an ontology, representing high-
level knowledge on a domain. Reasoning over a scene ontology,
representing knowledge on the video scene, can support the deduc-
tion of new facts on the scenario [123]. Some solutions proposed in
literature focus on data fusion, collecting information from hetero-
geneous sources [130]. Some approaches are aimed at generating
high-level contextual knowledge to improve scenario interpretation
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through contextual reasoning, and help decision-makers to deal
with sensor imprecision [3]. Some solutions are designed for specific
environments, so that they present ad-hoc scene ontologies [2],
generally exploiting scene segmentation, to represent environment
areas and allow deduction of events and object activities [131].
Obviously, ontologies built on specific applications are not reusable
for other environments caught on UAV camera. In order to build
more adaptable ontologies, some trends include spatial [132] and
temporal information [133] to describe the events occurred in the
scenario. Some approaches [134], [132] specialise ontologies and
query to model places at different levels of granularity (i.e. states,
regions, cities) to detect place areas. The approach presented in
this section, instead, detects place areas by using an area classifier
and retrieves additional information on the environment from exter-
nal sources, exploiting databases and geo-positional map services,
such as Google Maps. This information allows to model knowledge
about different kinds of outside environments.
The proposed approach introduces a new way to build a human-
like description of the observed scenario as composed of high-level
activities by starting from a video stream. Contrary to approaches
stating a simple message or reporting raw data, in this chapter, we
discuss a framework that codes and generates high-level knowledge
and, then, return a refined set of people or vehicle actions detailing
what happened in the observed UAV video.

Recent trends are aimed at building scene ontologies to elicit
knowledge about events and activities carried out by the scene
objects [131]. Generally, these models are thought to deal with
one well-known domain, kind of environment and application (i.e.
activity daily living), so that these approaches exploit a priori
knowledge to build the scene ontology [135]. UAVs could fly over
different kinds of environments and catch different kinds of ob-
jects and situations. Therefore, a priori knowledge [136], or pose
classification [137], could not be reliable, available or enough to
detect activities. The desirable thing is to build models suited to
accomplish activity detection in different heterogeneous environ-
ments. The framework, proposed in this chapter, defines a general
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model for the detection of people and vehicle activities in different
contexts.
Other solutions in literature enhance the scene ontology with knowl-
edge about space and time. Generally, these approaches employ
fixed-sized temporal windows to detect events through the analysis
of video time intervals, and store the most relevant detected events
[138, 139]. These solutions find other issues related to the window
management, correct size choice and evaluation of relevant activi-
ties, that could happen at same time or in distinct time intervals
throughout the video [140]. The framework, presented in this chap-
ter, instead, firstly defines spatio/temporal relations among the
scene objects, and between the scene objects and the environment.
Then, it contextualizes these relations by generating knowledge on
objects to detect simple activities. Higher-level activities can be
then elicited by composing the detected simple activities.

5.3.1 A framework for high-level activity detec-
tion

Unlike the most trends in literature, aimed at directly detecting
activities by exploiting patterns, the framework, presented in this
section, not only detects activities, but also introduces a higher-level
incremental activity modelling that allows to better contextualize
the activities over time and achieve higher-level abstraction and a
better comprehension of the scene.

The Figure 5.8 shows a logical overview of this activity mod-
elling, added as an extra layer to the TrackPOI ontology-based
scene representation, that has been introduced in Chapter 4. Specif-
ically, the figure evidences two macro areas: Scene/Object Video
Analysis, and Semantic Annotation and Reasoning. These are the
main components of the activity detection system, that are in
charge of the object recognition in the scenario (through video
tracking and classification algorithms) and the semantic annotation
of objects (through semantic web technologies), respectively. The
input data is a video recorded by a flying UAV. The Scene/Object
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Figure 5.8: TrackPOI scene ontology extended to complex activity
detection

Video Analysis component accomplishes the tracking algorithm
on the video to object detection and recognition through frames.
As shown in Figure 5.8, this component is in turn composed of
three modules: each one achieves a specific processing on the input
video. After the Video tracking task, the Object Classification
accomplishes an object classification task, identifying and labeling
the objects appearing in the video; the Area Classification module
instead, detects area contours of distinct places in the environment
(e.g. roads, grass, etc.). The tracking and classification output are
included in an XML-based file as explained in Chapter 4, Section
4.3.1.
The Semantic Annotation and Reasoning component aims at the
semantic enrichment of scenario: it collects the data processed by
the Scene/Object Video Analysis component and produces state-
ments describing the scenario and involved objects at a semantic
level. Specifically, the High-level knowledge generation module



5.3. Detection of activities 107

generates semantic annotations on object identity and place ar-
eas. It uses the TrackPOI ontology representation, presented in
Chapter 4, to semantically describe scenarios populated by moving
and fixed scene objects along with their spatio/temporal relations.
Finally, the remaining components are in charge of the knowledge
inference on the scene by relating all the object activities occurring
in a spatio/temporal context. Simple activity detection module
detects general object activities by relating the object identity to
tracking data and spatio/temporal relations at each time instant,
then Activity composition module composes simple activities over
time in order to deduce more articulated and specialised activities
for each object. Activity composition acts to put the detected
activities of the involved scene objects in the right context, with
respect to time, space and the environment. Scenario detection
module collects the revealed activities to provide a human-like
description of the occurred scenario.

The activity detection process starts after the knowledge base
has been populated with tracks and POIs, and the spatio/temporal
relations have been determined. Therefore, the Scenario detec-
tion through object activities subcomponent may take charge of
activity detection. The complex activity detection is achieved in
an incremental way: the idea behind this approach is identifying
activities or events that involve mobile objects and then composing
these activities in more complex and high-level activities. Figure
5.9 describes the incremental abstraction model composed of dif-
ferent levels of knowledge achieved by performing several steps:
spatio/temporal relations are built on the detected tracks and POIs
(Track and POI detection step). The built spatio/temporal track
relations are fused with environmental information on tracks and
POIs to detect simple activities (Track, POI and relation fusion
step). Then, simple activities are connected and composed with
respect to space, time and environment where they appear, to
describe complex activities expressing higher-level knowledge on
the observed scene (Activity composition step). Figure 5.9 shows a
growing level of semantics, starting from the simple spatio/tempo-
ral relations to get a human-like description of complex activities; at
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Figure 5.9: Activity modeling: from the row data to the high level
scene description, by an incremental definition of the activities

the same time, the domain-dependence increases: as the activities
becoming complex, so they are more specialized.

5.3.2 Simple or instant activities

The spatio/temporal relations designed in the TrackPOI ontology
represent elementary general activities where a track can be in-
volved. So, for instance, the Trackpoi:inArea relation represents
the static elementary activity of standing in the area of a specific
POI. The relation associates the track, at the instant t, with the
spatial data (i.e., POI, pixel data) and video time. The reasoning
model can enhance the knowledge base by inferring new statements
over these ontological relations. As stated, the track spatio/tempo-
ral relations can be merged with other collected track data (i.e.,
dimensions, speed, direction) and along with the involved POI,
allow the detection of higher-level activities. Let us remark that
these activities are labeled “simple” because they are detected by
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directly fusing the spatio/temporal relations with the knowledge
about the track and POI involved in the relation. Simple activities
can be considered as binary relations between the track performing
the activity and the object or place of the activity. Recalling the
previous definitions of mobile object and fixed object sets, respec-
tively, given in Chapter 4, Section 4.3.3 and Section 4.3.4, the
simple activity is defined as follows:

Definition 10. Simple activity. Let F = {y1, y2, ..., yp} be the
fixed object set and ôi, ôj ∈ M̂ be distinct mobile objects, each one
composed of tracks at distinct time instants ôi = {ôt1i , ô

t2
i , ..., ô

tn
i },

ôj = {ôt1j , ô
t2
j , ..., ô

tn
j }. A simple activity St carried out by the mobile

object ôi, at a time instant t, is expressed as the binary relation R
between the track ôti of the mobile object ôi and some object z:

St = < R, ôti, z >t (5.1)

where z =

(
ôtj, ôtj ∈ ôj, with j 6= i

yh, yh ∈ F, with 1 ≤ h ≤ p

These simple activities are also more contextualized than the
simple spatio/temporal relations, although they are still quite
general and capable of happening in many different scenarios (i.e.,
going towards some place, accelerating, decelerating, etc.).
As an example of a simple activity, let us consider a video showing
a car running on a road. To detect a car moving on a road, the
spatio/temporal relations, stating that the car is on a road at
the instant t, must be combined with the context-based features.
To this purpose, the proposed model uses a SPARQL Inferencing
Notation (SPIN5) rule, shown in Listing 5.3, to detect this simple
activity. As a first step, the rule checks if the trackpoi:inArea
relation holds (line 8). This property relates a track ?this (i.e.
trackpoi:Track), performing the activity, and a POI ?poi identifying
a place. In this example, ?this should be a car and ?poi a road,
in fact, the rule checks if ?this is a trackpoi:Vehicle instance (line

5https://www.topquadrant.com/technology/sparql-rules-spin/
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5) and if ?poi is a trackpoi:Route (line 7). The rule also checks
if ?this speed (line 9) is greater than 0 (line 10), which means
that vehicle is moving. In other words, if ?this instance is a track
and ?poi instance is a route and the track ?this is moving (speed
greater than 0), the CONSTRUCT clause holds, viz., the statement
asserting that the vehicle ?this is running on route ?poi can be
deduced.
1 CONSTRUCT {
2 ?this trackpoi:running ?poi .
3 }
4 WHERE {
5 ?this a trackpoi:Vehicle .
6 ?this trackpoi:track_ID ?id .
7 ?poi a trackpoi:Route .
8 ?this trackpoi:inArea ?poi .
9 ?this trackpoi:speed ?s .
10 FILTER (?s > 0) .
11 }

Listing 5.3: Running cars: the SPIN rule detects the simple
activity running as triples stating that cars are running on a
road

5.3.3 Complex activity detection through activ-
ity composition

After the simple activities have been detected, the system merges
data from simple activities (carried out by one or more tracks
and/or POIs) to define a complex activity, through a high-level de-
scription. More specifically, the knowledge about a simple activity,
performed by a track, is combined with knowledge related to other
activities performed by the same track or other tracks over time.
Activities are first combined by location (if they occur at the same
location) or in adjacent areas. In addition, they are also linked by
time because complex activities are often composed of simple and
consecutive activities over time. The collected knowledge describes
complex activities that are more detailed and dependent on the
scenario domain, such as the crossing activity which identifies a
proper people’s action strictly related to the road environment. As
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stated, complex activities combine more activities carried out by
tracks over time. The simple activities are related to a frame and
its time instant in the video. The Activity Composition module
(Figure 5.8) not only has to check a combination of occurred sim-
ple activities for each track of an object, but also evaluates the
temporal relations among them. Since a simple activity is defined
as an instant timed (binary) relation (Definition 10), the complex
activity is a collection of these simple activities/binary relations
that hold in a time interval T , more formally:

Definition 11. Complex activity. Let M̂ = {ô1, ô2, ..} and
F = {y1, y2, ..., yp} be the mobile and fixed object sets respectively,
the complex activity of a mobile object ôi ∈ M̂ in a time interval
T = [t1, t2, . . . , tn] consists of time-related single activities St (with
t ∈ T ) carried out by the mobile object ôi and some object z in the
time interval T :

< CT , ôi, z >T = St1 ∧ St2 ∧ ... ∧ Stn (5.2)

where z =

(
ôj, ôj ∈ M̂, with j 6= i

yh, yh ∈ F, with 1 ≤ h ≤ p
.

An example of complex activity, which needs to be detected
over time, is the people crossing. Generally, to state that a person
is crossing the road, there is a need to know if the person is on
the road and if he/she is going to the other side of the road,
otherwise the person is doing something else. In fact, people could
keep staying on the road for many other reasons, for instance, for
helping someone, i.e., police and rescuers if an accident is occurred,
as well as, for working, i.e., road workers or reckless kids playing.

The detection of a complex activity, such as crossing, requires
the analysis of the mobile object evolution over time. Since the
track represents the mobile object in a single video frame, the
Activity Composition module collects all the tracks with the same
ID that are related to the same object. The collected tracks, each
one related to a time instant, represent the object movement. As
stated in Section 5.4.2, the scene object, moving in the scene, is
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Figure 5.10: Activity composition: the complex activity man
crosses the road is from three simple activities happening over the
time t ∈ [1.31, 1.39]

labeled with the name SO, representing the collection of all its
representations (i.e., tracks) in the video frames.

Since a track is associated with a specific frame/time instant
of the video, the times associated to the first and last tracks of the
SO represent the entry and exit times of the object in the scene,
as well as the time duration of the object stay in the scene.
Similarly, simple activities, directions and speeds associated with a
track, are also collected for each SO through its tracks. Then, track
simple activities are combined with respect to time and space, to
identify the complex activity.
Figure 5.10 shows the activity composition for the crossing activity.
Several simple activities are identified, each one detected for each
track at a specific time instant of the video; in the example, the
activities are detected in the time interval [1.31, 1.39]: for instance,
at the time 1.31, the simple activities walks on the lawn and is
running on the road are performed by tracks Tr:14 and Tr:16,
respectively.
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Once the simple activities are detected, tracks with the same
identifier are collected to represent the SO , for example, the tracks
identified by Tr:14 over time (i.e. tracks Tr:14 in 1.31, 1.36 and
1.39 instants), delineate the moving object SO:14. The different
consecutive activities, carried out by the tracks compounding the
SO, are collected; for example, the SO:14 is composed of all the
activities carried out by tracks Tr:14 : walks on the lawn, at the
time 1.31, and the walks on the road activities at the time 1.36
and 1.39. The time relations among the simple activities are fused
with the direction (SO:14 barely modifies its direction) and the
spatial relations (SO:14 moves to the opposite side of the road).
The merging of the time-related simple activities (walks on the
lawn, walks on the road) with the object features (direction, speed)
and the contextual facts (moving to the opposite side of the road),
supports the detection of the crossing people activity. Therefore,
the system infers that SO:14 crosses the road.

The composition model presented emulates an abstraction pro-
cess which is typical of humans to understand activities and events.
Notwithstanding this, the proposed model and a human may have
different ways to understand and describe a dynamic scene. In
fact, the abstraction process in the model proposed firstly detects
mobile objects through video tracking, then it derives simple events
by integrating the tracking output with contextual knowledge, and
finally complex activities are detected by composing the simple
ones with respect to time, space and context. Contrary to the
model proposed, humans may have different ways to recognize
scene objects (i.e., people, vehicles), detect events, activities and
situations from a scene, that may be very different from the ab-
straction process followed by the model proposed. Furthermore,
humans may also describe the scene in different ways, for instance,
a person can simply describe the scene in Figure 5.10 by saying
"there are a vehicle and man on a road", someone else may describe
the same scene at a higher level of abstraction by stating that: "a
guy almost got it by a car".

Given these differences in scene understanding, it would be
interesting to assess the extent to which our model reflects the



114 5. UAV comprehension of activities and situations

actual human behaviours, in terms of object detection, action
description and complete scenario comprehension. Therefore, to
evaluate how much the model behaviour on activity understanding
can be considered correspondent to one of a human, the model
behaviour should be compared to real human behaviours. Up to
now, the composition model has been tested on expert’s annotation
in the next section. Anyway, to better assess how much the model
behaviour is similar to one of a human, future evaluations will
require to compare the model evaluations with those provided by
different types of people with various features (age, experience,
intelligence quotient, etc) in various environmental contexts.

5.3.4 A demonstrative case study

In order to show how the system works, a case study is described.
The video was shot on the road and it is part of our dataset
[123], taken in our university campus. The focused scenario shows
two persons meeting near a road, which decide to move together
to some place in the surroundings; then, one of them, probably
changing his mind, crosses the road on which a car is running.
The video is given as an input to the system to detect the main
activities carried out by the people and vehicles. Figures 5.11 and
5.12 show the main output by our system on a processed video
portion. As the first step, the system runs tracking and detects
the moving objects in the video. Three people and several vehicles
are detected throughout the lifespan video. Recalling the system
overview shown in Figure 5.8, the modules Object Classification
and Area Classification are involved in these activities. The Object
Classification module labels the tracked objects, according to the
object classification results. In the figure, tracks with identifier
ID:1 and ID:2 are recognized as people, while the track ID:4 is
classified as a vehicle. Peculiar data about each track are calculated
(i.e., speed, direction, width and height); the figures show the most
significant ones. The Area Classification module performs area
detection so that road and lawn areas in the scenario are correctly
recognized. These areas are marked with graphical lines, and
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contours in the video.
Then, the tracking data along with the object and area classification
data are provided to the semantic component (Semantic Annotation
and Reasoning), which is in charge of the semantic annotation of
the scenario with high-level information. It translates the data
about tracked objects and POIs (i.e., in our case, the two people,
the vehicle and the road shown in the scenario), into individuals
of Track and POI classes, with the aim of populating the scene
ontology TrackPOI.

Figure 5.11: System at work: the walkingTowards and walking-
Together activities are detected. The functioning of the system is
shown on a video scene showing two people walking together to-
wards a place. The object annotations show the detected relations
and activities.

Furthermore, this module semantically codes the spatio/tempo-
ral relations among the tracked objects, and between the objects
and the POIs.
In the first part of the video (Figure 5.11), a near relation between
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Figure 5.12: System at work: a crossing activity is detected. The
functioning of the system is shown on a video scene showing a
man crossing the road. The object annotations show the detected
relations and activities.

the two people (i.e., track ID:1 and ID:2 ) is found, then, later in
the video, another near relation between one (of the two) people
crossing the road and an oncoming car is discovered. Then, inArea
relations between the people and the lawn, and then, between a
person, a vehicle and the road are asserted as well. These relations
are combined with track directions and speed to detect simple
activities occurred in a frame. The merging of the speed and di-
rection data of the two people with the near relation among them
allows the detection of the manMeeting simple activity (Figure
5.11a). Similarly, the inArea relation between the vehicle and the
road along with the vehicle movements detect the vehicle running
on the road (vRunning) activity (Figure 5.12a).
At this time, the Semantic Annotation and Reasoning component
composes discovered relations and simple activities (by reasoning
on the knowledge base) to detect complex activities. Activity com-
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position works the spatio/temporal relations with tracks, POIs and
simple activities. Therefore, the manMeeting activity between
tracks ID:1 and ID:2 is combined with people direction, speed, po-
sition over time and the environmental POI (i.e., the pub building
on their direction). The system infers that the two people are mov-
ing together to the POI (walkingTogether and walkingTowards
activities, see Figure 5.11b). These complex activities start when
the manMeeting relation is found (Figure 5.11a), then, the people
moving in the same direction, and almost the same speed allow
the complex activity detection. These activities end when the
manMeeting activity is no longer detected, and the directions and
speeds change (see Figure 5.11c).
Later in the video, Activity composition module combines the
movements of the track ID:2 (speed, direction) over time, with the
spatio/temporal relations (i.e., near, inArea) and single activities
(i.e., walkingOnThe) that hold between the track and the road,
to infer that the person is crossing (Figure 5.12b). This activity
composition is triggered by the detection of walkingOnThe simple
activity (ID:2 walkingOnThe route), as shown in Figure 5.12a.
The crossing activity for ID:2 object lasts until walkingOnThe
activity with the route is detected and no significant change in the
direction is detected: in Figure 5.12c indeed, the walkingOnThe
activity is no longer detected when the ID:2 object runs out of
the route and the scene. Let us notice that combining all the
activities associated with a mobile object provides a complete sce-
nario description: in the example, the person activity (crossing),
the near relation between vehicle and person, the vehicle activity
(vRunning), and its own features (i.e., speed and direction) allow
the detection of a typical crossing scenario, without apparent risks
(even though, the car and the person are very close to each other).

5.3.5 Experimental model evaluation

An experimental evaluation of the activity detection model, pro-
posed in this section, has been conducted and detailed on the
following. The approach has been tested on a dataset of annotated
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drone videos. The annotation comprises the presence of the events
happening in the video, including time, places, and IDs of the
involved objects. The resulting accuracy achieves good results,
evidencing that the synergy between low-level tracking algorithms
and high-level semantic scene description leads to performance
improvement of the overall system.

The datasets employed for tests are composed of both videos
recorded in our campus and downloaded from the Web6. They show
scenes from several distinct outdoor environments, such as roads,
heliports, parks, etc. Also the UAV123 dataset7 has been used in
our experiments. Videos on our campus have been taken by using a
DJI F-450 drone equipped with a Nilox F60 HD resolution camera.
Tests have been carried out on 21 videos from these datasets
and are selected, based on a similar length; they show different
types of activities carried out by people and vehicles in different
environments. Table 5.1 describes schematically all the information
taken into account in our experimentation. Videos are grouped
by the contextual environment appearing in the video (i.e. route,
highway, parking lot, etc.), then, simple and complex activities
detected from videos are listed in the corresponding columns (Table
5.1) along with a cumulative number of occurrences, given in the
parenthesis. Detailed descriptions about the activities are reported
in the Table 5.2 and Table 5.3.

The object activities in the videos are mainly carried out by
people and vehicles in different environments such as highways, ur-
ban roads, parking lot, parks etc., that can appear also in the same
video. The most difficult activities to detect are those occurring in
road scenarios, where the interaction between people and vehicles
complicates activity detection. Our system performance has been
assessed in recognition of simple and complex activities. Tables 5.2
and 5.3 show, respectively, the set of simple and complex activities
considered in this experimentation.
Our experimentation is based on a ground truth of the identified
activities, and some specific metrics have been designed to evaluate

6https://drive.google.com/open?id=0B75yuWMeqbP5NVloZEIzc05jeW8
7https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx
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Table 5.2: Tested simple activities.

Activity Performer Description

vRunning

Vehicle

Vehicle running on a place,
generally a road

runningOff Vehicle running off a place,
generally the road

overSpeedLimit Vehicle breaking the speed limit
vehicleStopping Vehicle stopping

vehicleAccelerating Vehicle accelerating

walkingOnThe

Person

Man walking in/on a place
(i.e. road, park, heliport, square)

manRunning Man running in a place

walkingNear Man walking close to a place area
(i.e. road, park, heliport, square)

walkingAround Man walking around a place area
(i.e. road, park, heliport, square)

movingObjects Man pushing or carrying not living beings
manMeeting Men meeting

Table 5.3: Tested complex activities.

Activity Performer Description composed of (simple activities)

goingTowards
Vehicle

Vehicles going vRunning,
towards each other vehicleAccelerating

parking
Man parking vehicle vRunning,
in a parking lot or vehicleStopping,

by roadside runningOff

turnAround Vehicle turning vehicleStopping,
around vehicleAccelerating

avoidingObstacle Vehicle avoiding vehicleStopping,
another object vehicleAccelerating

crossing

Person

Men crossing walkingOnThe,
the road manRunning,

walkingNear

walkingTowards
Man going towards walkingOnThe,
a place or POI walkingNear,

walkingAround

walkingTogether People walking manMeeting,
together manRunning

waitingFor Man standing in an walkingOnThe,
area until a walkingAround

certain moment

getsInTheCar Man gets in walkingAround,
the car walkingNear

getsOutOfTheCar Man gets out walkingAround,
of the car walkingNear
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the accuracy returned by our system. The ground truth for a video
lists all the occurred activities in chronological order of appearance
in the video. Each activity entry provides information on the
activity type (listed in Table 5.2 and Table 5.3), the scene object
performing the activity and the place where the activity has been
carried out. The starting and ending time of the activity are also
included in the activity entry.
Our system detects the activities as triples written in the Web On-
tology Language (OWL) 8. Each triple consists of subject, property
and object: the property name indicates the type of the detected
activity, the triple subject says who (people or vehicle) performed
the activity while the triple object represents where it happened.
Figure 5.13 shows a succession of activities, namely the system-
detected (S) and ground truth (GT ) activities, placed on the video
timeline. Precisely, Figure 5.13a displays two activities, namely,
vRunning (VR) and manRunning (MR), detected by our system
and present in the ground truth. They are represented as boxes
placed on video timeline: the box length describes the duration
of the activity, and the time overlap among S and GT activities
occurs when they are in front of each other, on the same portion
of the timeline. Depending on the attained time match between
the detected and ground truth activities, four possible comparison
cases can be distinguished: (1) S and GT activities of the same
type overlap temporally (for example, activities V R1 and V Ra in
Figure 5.13a), (2) S activity has no temporal overlap with any GT
activities (i.e., MR1), (3) S and GT activities overlap temporally
but they are of different type (i.e. V R2 and MRa) and (4) GT
activity does not find any temporal overlap with any S activities
(i.e. V Rb).
These cases reflect the outcomes in terms of true positives (TPs),
false positives (FPs) and false negatives (FNs) in precision and re-
call computation. As Figure 5.13b shows, true positives indeed are
essentially the number of successful matches between temporally-
overlapping S and GT activities of the same type (i.e. V Ra and
V R1). Let us remark that activities of the same type are carried

8https://www.w3.org/OWL/
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out by the same scene object and happening in the same place. If
a detected activity S does not temporally overlap with any other
GT activities or, just it overlaps with GT activities of different
types, it is considered as a false positive (see MR1 and V R2 in the
figure). Similarly, a GT activity is considered as a false negative if
it does not temporally overlap with any S activity or overlaps with
S activities of different types (see V Rb and MRa in the figure).
In case of detected activity, S and a ground truth activity GT of
the same type have a temporal overlap (see Figure 5.13b, activi-
ties named V R1 and V Ra, respectively), then S represents a true
positive.

Figure 5.13: An example of activity comparison on vRunnnig (VR)
and manRunning (MR): (a) temporal relations between the ground
truth and detected activities, (b) True positive, false positive and
false negative definition

The accuracy of our system is evaluated by using two accuracy
metrics, that take into account the discovered temporal relations
between detected and ground truth activities (of the same type).
They have been used to evaluate the precision and recall of semantic
activity recognition; they are described as follows.
Jaccard metric (JC) [141]: it is based on the comprehensive
duration of the activity time and the overlapping time between a
detected activity S and a ground truth activity GT . According
to Figure 5.14, JC calculates the ratio in seconds between the
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Figure 5.14: Temporal relations between a detected activity (S)
and a temporally overlapping ground truth activity (GT) of the
same type

overlapping time among the two activities (c− b) and the overall
time covered by the two activities (d− a), defined as follows:

JC(S,GT ) =
c− b

d− a
(5.3)

JC value for a detected activity S is compared to a prefixed
threshold µ: if JC value is greater than or equal to µ, the activity
S is assumed to be correctly detected and then considered as a TP.
Otherwise, S is an FP; more formally:

TPS =

(
1, if JC(S,GT ) ≥ µ

0, otherwise

FPS =

(
1, if JC(S,GT ) < µ

0, otherwise

The value µ is set to 0.2, accordingly to literature [141, 142]. In a
nutshell, a JC-based TP is the number of the detected activities
with JC value greater than or equal to µ. In case the detected
activity S has JC value lower than µ, it is counted as an FP, and
the relative activity GT is taken as an FN.

Mean Absolute Error Boundary (MAEB) metric [143]:
it provides a value in the range [0, 1] which represents how much
the system-detected activity (S) overlaps with the ground truth
activity (GT ) of the same type. This value represents how much
S can be considered as a TP. MAEB is different from the JC
metric, that uses a threshold to select or not an activity as a TP;
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the MAEB value, indeed, is directly calculated according to the
durations and the temporal overlap between the detected activity
(S) and the ground truth activity (GT ) of the same type, which
are performed by an object in a place. Figure 5.14 shows three
different values which directly represent the extent to which the
detected activity S is considered a TP or an FP, and the extent to
which GT is considered an FN, more formally:

TPS =
c− b

c− a
(5.4)

FPS = 1− TPS (5.5)

FNGT = 1− c− b

d− b
(5.6)

Adding up all the TPS values so calculated, for each detected
activity S which overlaps with the ground truth activities GT of
the same type, the final TPs are calculated. In the same way, the
total FPs and FNs are calculated as well.

As stated, TPs, FPs and FNs, determined with the two
metrics, are employed to calculate precision and recall. Table 5.4
shows the precision and recall calculated with the MAEB and JC
metrics on the simple and complex activities occurred in the video
set. At first glance, results from the JC metric assume slightly
greater values than those calculated with the MAEB metric, even
though the performance is generally good for both the metrics. Let
us notice that the precision in some cases is very high (i.e., greater
than 90%): these values are obtained for several detected activities,
such as vRunning, overSpeedLimit, goingTowards, getsInTheCar etc.
High recall values greater than 90% are also obtained for activities
such as walkingOnThe, vehicleAccelarating, goingTowards, parking.

The precision values obtained with JC are somewhat higher
than the precision values obtained with MAEB; they are in corre-
spondence with the activities runningOff, manRunning and man-
Meeting. In many cases, the two metrics, JC and MAEB, provide
similar values for both precision and recall, or even identical (i.e.
movingObjects, getsOutOfTheCar). MAEB-based results have al-
most the same precision and recall on simple activities (precision:
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Table 5.4: Test results on the detected simple and complex activi-
ties. Precision and recall, calculated with MAEB and JC metrics,
are reported.

Activity MAEB JC

Precision Recall Precision Recall
vRunning 0.94 0.86 0.95 0.91
runningOff 0.74 0.87 0.81 0.90

overSpeedLimit 0.94 0.87 0.97 0.91
vehicleStopping 0,71 0.89 0.76 0.94

vehicleAccelerating 0,78 0.90 0.84 0.94
walkingOnThe 0.87 0.93 0.92 0.96
manRunning 0.83 0.74 0.93 0.79
walkingNear 0.88 0.85 0.93 0.91

walkingAround 0.97 0.86 0.99 0.88
movingObjects 0.84 0.75 0.84 0.79
manMeeting 0.80 0.86 0.89 0.88
goingTowards 0.93 0.88 0.97 0.94

parking 0.86 0.92 0.94 0.92
turnAround 0.80 0.87 0.84 0.90

avoidingObstacle 0.77 0.84 0.81 0.86
crossing 0.80 0.86 0.84 0.86

walkingTowards 0.86 0.78 0.88 0.83
walkingTogether 0.78 0.75 0.83 0.77

waitingFor 0.85 0.81 0.88 0.84
getsInTheCar 0.92 0.88 0.94 0.92

getsOutOfTheCar 0.88 0.82 0.88 0.84
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0.85, recall: 0.85) and complex activities (precision: 0,84, recall:
0,85), whereas the JC-based results have slightly greater recall
on simple activities (precision: 0.89, recall: 0.89) than complex
activities (precision: 0.88 recall: 0.86). By comparing the two
metrics, on average, the MAEB-based results have a slightly lower
precision (0.85) than JC-based results (0.89), while recall values are
around 0.88 for both of them. MAEB metric is more sensitive to
the variation of the durations and overlapping times of the detected
and ground truth activities. Therefore, the MAEB-based results
assume values very similar to the JC-based results, confirming that
our system offers good performances, not only at recognizing the
simple and complex activities but also at identifying their correct
duration and occurrence in the video.

Our system reveals satisfying video content analysis, although
the performance analysis in terms of real-time capability requires
a further investigation. On short videos (one minute long and
with a frame-rate equals to 25), real-time system performance
looks promising for semantic annotation tasks. However, since
the framework encodes information at the frame level, the system
performance on longer videos is affected by the accumulation of
data, whose semantic content is often redundant between successive
frames. Our forthcoming task is indeed, to discard irrelevant
knowledge at runtime (during the frame-by-frame generation of
RDF triples) to speed up the complex activity composition, and
hence, to enhance system performance and real-time replies.

5.4 Multi-ontology design pattern for sit-
uation awareness

Recent literature [123, 144] focuses on enhancing UAVs as knowledge-
based systems to become aware of situations occurring in a real-
world scenario. Knowledge-based methods have been used to
perform sensor fusion to integrate heterogeneous data and support
various applications [3, 130], such as UAV-driven object detection
in video scenes [140, 145]. Cognitive models have been proposed



5.4. Multi-ontology design pattern for situation awareness 127

to improve object detection and tracking by fusing information
on the scene to catch tracking faults, such as occlusion, ID lost
and motion blur. Other researchers [131, 122, 2] proposed new
models to cope with UAV-based event detection both in inside and
outside environments. They proposed ontology-based approaches
to model knowledge on the scene and objects. Some approaches
focus on a robust interpretation of events over time to abstract
higher-level knowledge on a scene and provide refined descriptions
of the whole scenario [140, 131, 103]. In [103], the authors propose
a novel reasoning mechanism to deal with uncertainty in activ-
ity detection. In [140], the ontology-based model introduced in
[123] is extended by considering a query-based temporal window
to analyze spatio/temporal relations among tracked people and
detect events over time. In [131] an ontology-based system, namely
iKnow, detects activities of daily-living by merging dependencies
among low-level and high-level concepts, such as locations and
objects involved in activities. This model introduces the telic-
ity criteria, which is applied to group already detected activities
for situation interpretation. The approach, presented in Section
5.3, detects simple activities carried out by tracked scene objects,
then, compositions of these activities over time enable the defini-
tion of higher-level complex activities. The knowledge modeling
is achieved by ontology axioms and applying reasoning on them.
The knowledge-based system proposed in [2] introduces a context
layer over tracking, that employs an ontology composed of several
sub-ontologies, each one devoted to a specific aspect/layer of the
scene, from the lowest to the highest level (i.e., tracking data, scene
objects, situations).

The approaches [123, 122, 144, 131, 2] employ knowledge-based
methods to detect activities and situations, but they do not provide
a methodological approach to achieve a scene description. This
section introduces an ontology design pattern that provides the in-
cremental steps (in form of ontological models) to describe a scene,
at different levels of detail. Coding design patterns into ontologies
has been proven to be useful for supporting and improving Semantic
Web ontology engineering [146]. In [146], content-oriented patterns
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are shown to be useful to abstract knowledge and support compo-
sition. The next sections introduce a multi-ontology process design
pattern to support knowledge acquisition and reuse about a UAV-
taken scenario. The employment of a knowledge-based approach
does not prevent the use of a statistical-based or probabilistic
approach. In fact, in [147], ontologies and Markov Logic Networks
are used synergistically to accomplish activity recognition.

Recent studies evidence the role of ontology for modeling the fea-
tures arisen from the UAV-observed scene [123, 148, 149]. In [123],
the ontology namely TrackPOI represents scene mobile objects
(i.e., people, vehicles, etc.) and environments (roads, buildings,
etc.) by starting from tracked scene data. Activity Ontology De-
sign Pattern (ODP) [148] introduces a core ontology for activity
modelling that can be used in different contexts. The activity is
modelled along with its features (time duration, people involved,
etc.). This ontology also allows the modeling of an activity as
composed by simpler activities. An ontology similar to ODP is
proposed in [150], the authors present a core ontology to model
the activity and its features. Then, the model is extended with a
specialization pattern and a composition pattern to, respectively,
specialize the core ontology to model a specific domain and build
complex activities from simpler ones. Situation Theory Ontology
(STO) [149] concerns the modelling of concepts in Situation Theory
(additional details will be provided in the next sections).

In the Situation Awareness domain, ontologies often combine
classes modeling sensor-related information with classes modeling
high-level features, such as relations among scene objects, events,
and situations. The ontologies proposed in the literature are upper
ontologies, representing general relations among the data, that can
be specialized to accomplish a specific application. In [151], a novel
method to knowledge representation for Situation Awareness is
discussed. It uses RuleML-based domain theories and proposes
the Situation Awareness (SAW) ontology. The ontology models a
situation as a collection of goals, entities or objects and relations
among these objects. The ontology also models events as acquired
by sensors and allows the definition of dynamic representation
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over time by updating specific properties. The ontology is a core
ontology, but its classes can be extended to represent situations
occurring in specific domains. In [2], several connected upper
ontologies are proposed to describe different aspects of the scene,
such as tracked entities, scene objects, activities, etc.

Recalling the knowledge schema in Figure 5.2, that shows a
methodological infrastructure to incrementally recognize objects,
their activities and, systematically, describe a video frame scenario.
The logic behind this schema needs solid formal modeling that finds
its answer in the use of a thorough ontological design. Ontologies
provide indeed formal models to describe axiom-based knowledge
and infer new knowledge through semantic reasoning.

In this section a layered ontological model is discussed to achieve
a synthetic scenario interpretation by starting from the video track-
ing data. The layered knowledge schema provides a methodological
approach to yield a scenario description exploiting the ontology
language. Bearing in mind one of the focal principles of the Seman-
tic Web, viz., the data re-usability, the layered knowledge schema
is achievable by integrating existing upper and domain ontologies,
aligning similar concepts and extending them, in order to bridge
different domain knowledge. Ontology integration is not an easy
task to fulfil, due to the difficulties to relate distinct domains
(ontology alignment). Poor ontology integration can result in ex-
cessive redundancy of information, with a consequent reduction in
performance [152], that inevitably affect semantic reasoning and
query processing [153].

To address this issue, this section introduces an ontology-based
approach to incrementally model knowledge describing a real world
scenario from a frame sequence of a video. The approach follows the
schema in Figure 5.2 to achieve multi-granule knowledge generation:
an incremental abstraction process of the video content, supported
formally by ontology modeling. The knowledge is extracted for each
layer is modeled as ontology concepts, corresponding to the main
scene actors, and their relationships constituting movements, event,
activities, and finally, situations on the scene. At each layer, data
augments their expressive power (becoming higher level knowledge),
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thanks to the corresponding ontology model, that describes that
level conceptualization. Applying the ontology-based reasoning
on generated knowledge, the following upper layer of knowledge is
inferred. The rest of this section details the ontological modeling
at each layer, including Raw sensor data, Object, Activity and
Situation layers. Then, the integration of the employed ontologies
and the generation of knowledge. Finally, an experimental case
study shows the functioning of the model.

5.4.1 Raw sensor data layer

This layer represents the basic level, namely, 0-layer, to highlight
the fact that it is an initial processing step, on which the onto-
logical model is based. It indeed collects the input data from the
UAV-recorded video, sensing the main actors of the scene and
the environmental context. Video Analysis techniques are widely
employed to accomplish this task: video tracking is performed to
track the movements of the mobile scene objects, such as people,
vehicles, etc.; also target classification information are returned
about scene object identified.

The output is an XML-based file, described in Chapter 4, Sec-
tion 4.3.1, including the information on the scene objects detected
frame by frame. To detect the environment type, area classifi-
cation is also provided for the types of ground areas present in
the video. The classification results annotate each tracked object
along with the area where they appear and the areas in its sur-
roundings. In general, the XML file collects information types such
as bounding boxes dimensions and positions, speed, direction as
well as object identity and area classification, etc. The ontology
modeling approach supposes that the generated XML file is the
result of accurate video tracking as well as object recognition and
classification activities, to guarantee an effective nested knowledge
generation layering. Deep learning, as reinforcement learning are
established techniques used in Video Analysis and represent a solid
basis on which to build our ontological modeling.

The output results of Raw sensor data Layer are roughly the
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main mobile and fixed objects present in the scene, annotated with
the class label. These data are the raw knowledge on the scene, on
which our approach incrementally builds higher-level knowledge
on the UAV-monitored scene.

5.4.2 Object layer: the thing object

As it has been demonstrated, the TrackPOI ontology provides
the formal model to describe what appears in each frame, frame-
by-frame. If a series of track instances, identified by a certain
ID, appears in a frame sequence, it represents the same physical
object. Moreover, in terms of ontology coding, the axioms related
to the object presence in a time interval are replicated as many
times as the number of frames is. To this purpose, the initial
TrackPOI ontology has been extended with the ThingObject class,
that supports the conceptual abstraction of the object presence over
time, by a digest, time-based axiom. Therefore, the ThingOject
class represents the scene object, moving in the scene over time, as
a collection of all its bounding boxes (Track instances) per frame.
Figure 5.15 shows the class ThingObject that is related to the class
Track by the relation hasTrack, or conversely, each Track is part of
(trackOf ) a ThingObject.

Figure 5.15: TrackPOI ThingObject class: the high-level dynamic
object model

In other words, an instance of ThingObject is the actual object
appearing in the scene, described by a sequence of Track instances
(identified by the same ID) over time.
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5.4.3 Activity layer: Ontology Design Pattern
(ODP)

The activities carried out by the main actors in the scenes are
modeled by using an ontology design pattern [148] (briefly, ODP)
to model the common core of activities in different domains.

Figure 5.16: Activity OPD ontology for high-level activities model-
ing

Figure 5.16 shows the Activity ODP schema with classes and
properties. According the schema in the figure, a generic activ-
ity has a starting and finishing time (respectively, described by
the properties hasStart and hasEnd), represented by xsd:time; it
lasts over time, the range of property hasDuration is xsd:duration
which represents the activity time duration. Moreover, a generic
activity can be composed of other activities. In fact, an activity
individual, represented as an instance of the Activity:Activity class,
can be related to its component activities through the hasPart
property. The Activity:Activity class is connected by relations
Activity:hasRequirement and Activity:produces to the two main
classes that characterize the activity, the Activity:Requirement and
Activity:Outcome classes, that represent the input and the output
of the activity, respectively. These classes enable modeling logical
order among the activities.

Classes from external ontologies are also used to contextualize
the activity. Accordingly, in the figure, the POI:place class mod-
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els the place where the activity occurred. The foaf:Agent class
represents the participants in the activity.

The ODP ontology has been employed to model knowledge on
detected activities (that specialize this generic class) and support
the definition of higher-level complex activities.

5.4.4 Situation layer: Situation Theory Ontol-
ogy (STO)

In common sense, a situation is often represented by a combination
of circumstances in which someone or something finds itself or a
specific status with regard to conditions and circumstances. A
situation can be a simple people’s activity, or the effect caused
by some complex events. In Situation Awareness [7], situation
is defined as the perception of some situational elements, the
comprehension of their meaning and the projection of their state
in the future.

The STO ontology models the fundamental concepts involved in
the situation theory [149]. Situation theory concerns the situation
semantics developed by Barwise and Perry [154, 155, 156] to reason
over common-sense and real world situations. In this theory, a
situation is composed of infons, elementary units of information
that characterize a situation. More formally, it is defined on
an n-ary relation R among n objects or individuals a1, . . . , an,
therefore, it is written as follows: hhR, a1, . . . , an, 0/1ii. The infon
represents a fact that can be true or false and it is represented by
the last argument in the infon definition (0/1) that expresses its
own polarity. The relation (R) in the infon represents the type of
event or action involving one or more individuals. The individuals
(a1, . . . , an) are entities (i.e., people, animals, etc.) that participate
in the situation.

Figure 5.17 shows the core ontology schema of STO. The
root class is STO:Situation which represents the situation. The
classes STO:ElementaryInfon, STO:Relation and STO:Individual
are involved in the situation definition. More specifically, the
STO:Situation class is related to the STO:ElementaryInfon class
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Figure 5.17: Situation Theory Ontology (STO): it models Situation
Theory

by the supportedInfon relation. An STO:ElementaryInfon is an
STO:Relation existing among one or more STO:Individual in-
stances. The STO:Attribute class describes attributes that can
be associated with both individuals and situations. The class is
devoted to represent locations and time instants related to the
situation or individuals.

5.4.5 Ontology Integration and knowledge gen-
eration

The ontologies are the building blocks of our layered knowledge
scheme of Figure 5.2. They contribute to provide a high-level
abstraction of the scene in a dynamic environment. Conceptual
alignments or, more in general, portions of ontology merging and
integration need to be harmonized in a comprehensive ontology
model that reflects our schema.

Figure 5.18 shows the final ontology schema, with the integra-
tion model design (additional relations connecting the individual
ontologies) in evidence. The figure strictly reflects the layered
knowledge schema, namely from the bottom layer Raw sensor data
(layer 0), Scene object (layer 1), activity/event (layer 2), Situation
(layer 3).

The layer 0 provides the xml-based data describing bounding
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boxes and their positions, as well as their membership class (for
example, if the bounding box represents a person, a car, etc.), as
described in Chapter 4, Section 4.3.

At the layer 1, the data, generated at the previous layer, are
translated into semantic assertions that describe the recognized
mobile and fixed objects as instances of the TrackPOI:Track and
TrackPOI:POI, respectively, from the ontology TrackPOI. The
track identifiers and class names are coded into semantic assertions:
for example, the triple <t_1_2 a TrackPOI:Person> states
that the track with ID:1 in the second frame (numbered as 2)
represents a Person (in other words, t_1_2 is an individual of the
class Person). POIs collected by Google Maps service, or detected
by area classification at layer 0, are described by ontology assertions
in a similar way.

Interactions between fixed (e.g., POIs) and moving objects are
also identified in this layer. To this purpose, object positions,
with respect to a specific area or just generic spatio-temporal
relations occurring in the scene are detected. Therefore, triples
representing spatio-temporal relations among tracks are generated.
Furthermore, in this layer, the identification of the scene object, as
composed of tracks appearing in a frame sequence, is accomplished
as individuals of the TrackPOI:ThingObject class. Spin rules help
the consolidation of the object movements and interactions, as well
as the merging of the tracks associated to the same object (see
Section 5.4.2 for details). For instance, the generated triple <s_1
a TrackPOI:ThingObject> represents the mobile scene object
s_1 composed of tracks with ID equals to 1 from the video frame
sequence, such as <t_1_1 a TrackPOI:Person>, <t_1_2 a
TrackPOI:Person>, <t_1_3 a TrackPOI:Person>, etc.

In the layer 2, SPARQL queries are designed to elicit activi-
ties, that are based on the generated TrackPOI:ThingObject in-
stances and spatio-temporal relations among tracks. In further
details, according to the composition model presented in Section
5.3, queries support the detection of high-level activities over time
[122]. The detected activities are represented as instances of the
Activity:Activity class, then, new triples are generated. These
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triples relate the activity with the thing objects who carried out or
participate to the activity and the place where it happened. In the
figure, for instance, a generic activity act_1 is characterized by
the participant (the thing object named s_1 ) in that activity, the
place where it occurs (the POI o_2 ) and the starting and ending
times (at the second 0.12 and 0.42, respectively).

Let us notice that the layer 1 and layer 2 are joined by new
additional relations (isEquivantTo), that connect similar concepts
from the ontologies TrackPOI and ODP, respectively.

Figure 5.18: The integrated ontology model and an example of
knowledge generation at each layer. The thick coloured lines
represent the properties that integrate the three ontologies.

More specifically, the TrackPOI:ThingObject instance is the
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high-level object that carries out the activity; since it represents the
main participant of the activity, it is equivalent to the foaf:Agent
class. In this way, through the Activity:hasParticipant property
(that connects the Activity:Activity class to the foaf:Agent class),
the activity (i.e., Activity:Activity instance) is related to the ob-
ject doing it (i.e., TrackPOI:ThingObject instance). Similarly,
the TrackPOI:POI and POI:place classes are equivalent and re-
lated to the Activity:Activity class through the property Activ-
ity:takesPlaceAt.

At layer 3, the high level ontology STO is in charge of situation
description. Figure 5.18 shows the connection between the STO and
the ontologies in the two underlying layers. As stated in Section
5.4.4, the STO:Individual class, in the STO ontology, models
entities (i.e., people, animals, etc.) that carry out activities or are
involved in events and situations. The TrackPOI:ThingObject class
represents the same concept (i.e., it is assumed to be equivalent) to
STO:Individual. The Activity:Activity class exclusively represents
activities carried out by one or more scene objects. Activities are
also modelled in the STO ontology by the STO:Relation class. The
Activity:Activity class is designed as a subclass of the STO:Relation
class, that connects directly the ODP ontology to the STO ontology.

When new Activity:Activity instances have been generated at
layer 2, the same instances are also of type STO:Relation. At layer
3, infons on each generated STO:Relation instance are produced.
Precisely, an instance of STO:ElementaryInfon is yield, for each de-
tected activity type in Activity:Activity, equivalent to STO:Relation.
These instances represent the detected activities along with time,
location and the participants to the activity. Concatenations of
infons defined by Spin rules allow defining high-level situations.
For instance, given the infons Infon1, Infon2 and the situation
Sit1 defined by the rule R : Infon1 ∧ Infon2 =⇒ Sit_1; if the
two infons Infon1 and Infon2 are generated, the rule R allows
the detection of the situation Sit1.
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Figure 5.19: Knowledge augmentation through the ontology-driven
layered schema: an illustrative example

5.4.6 Representation of a case scenario

This section presents a case study showing the applicability of
the proposed ontology modeling and effectiveness in the scene
description, on a real-world video. Figure 5.19 shows the generation
of the ontology population, through the layers of the knowledge
schema, starting from the initial raw data to yield a high level
description of the scenario. The video frames, at the layer 0, show
a typical outside scenario recorded by a camera-equipped UAV. A
vehicle is running while a person is crossing and another person is
walking on the lawn beside the road. As stated, data retrieved by
sensors and tracking algorithms allows us to recognize targets in
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the scene. The tracking algorithm used in this case study estimates
camera movements for background scene extraction and identifies
object position. Moreover, feedforward control [123] has been
used to improve trajectory tracking of objects through frames. In
the example, the tracking algorithm returns the objects identified
by id:0, id:1 and id:2. Then classification algorithms have been
employed to object and background area annotations. The used
object classifier considers three object categories: people, vehicles
and unknown objects. The object classification is performed frame-
by-frame and, then, the object label is got through a majority voting
approach [123]. The classification results are used to annotate
each detected scene object, adding a class-type field, expressing
its identity. Identity and area annotations on scene objects are
added as attributes to tags, expressing the tracked objects, in the
original tracking output file. The area classifier detects the main
background environments (e.g., lawn or road) where the objects
stay or places they get close to [122].

Identity and area annotations on scene objects are added as
attributes to tags, expressing the tracked objects, in the original
tracking output file. Tracking and classification data are then
encoded into ontology assertions [123], generating actual instances
of TrackPOI ontology. At layer 1, for each frame, the instances of
Vehicle and Person are created. In the frame numbered 1, the gen-
erated instances TrackPOI:Track_0_1, TrackPOI:Track_1_1
and TrackPOI:Track_2_1, represent the tracks produced at the
layer 0 and are individuals of TrackPOI ontology TrackPOI:V ehicle,
TrackPOI:Person. Considering video frames, it is possible to seek
the same track through frames.

Tracks with the same ID are grouped in a unique dynamic entity
(i.e., thing object) representing the mobile object in the scene. For
instance, the instances TrackPOI:Track_1_1, TrackPOI:Track_1_2
and TrackPOI:Track_1_3 represent the tracks with the ID equals
to 1 in frames 1, 2 and 3, respectively. These tracks, represent-
ing the same instance of the TrackPOI:Person class through the
frames, are grouped to build the TrackPOI:ThingObject_1 in-
stance of the class TrackPOI:ThingObject. At the same time, the



140 5. UAV comprehension of activities and situations

generated TrackPOI:Track instances are related to TrackPOI:POI
instances, representing the environments where they move, through
the TrackPOI:inArea property. Through this property, tracks
of the vehicle and the person with ID:1 are found in the area of
the route, while the other person with ID:2 is found on the lawn
besides the route. These spatial relations are also timed because re-
lated to a specific frame. Therefore, the generated spatio/temporal
relations support the contextualization of the object movements
and interactions with other objects. The outcome of layer 1 is the
identification of three objects (belonging to the class TrackPOI:
ThingObject), and their relation with the places where they appear
(i.e., the route and the lawn).

At the layer 2, some rules are designed on the TrackPOI:ThingObject
instances and the spatio/temporal relations. Collecting data on
objects and their spatio-temporal relation, by SPARQL reason-
ing, activities are detected. In the figure, some specialized ac-
tivities are shown: they are carried out by the two people and
the vehicle arisen at layer 2 of Figure 5.19. More precisely, the
following activities are elicited: Activity:_0_vehicleStopping, Ac-
tivity:_1_ManOnTheRoad, Activity:_2_ManOnTheLawn. At high
level of description, the observed scenario shows a vehicle which is
stopping (Activity:_0_vehicleStopping) when the person crosses
the route (Activity:_1_ManOnTheRoad). Then, the other person
is simply walking in the lawn area (Activity:_2_manOnTheLawn).
1 SELECT ?ob ?track ?time ?poi
2 WHERE {
3 ?track a trackpoi:Person .
4 ?track trackpoi:inArea ?poi .
5 ?poi a trackpoi:Route .
6 ?track trackpoi:hasTime ?time .
7 ?track trackpoi:track_ID ?id .
8 ?track trackpoi:trackOf ?ob .
9 } ORDER BY ?id ?time

Listing 5.4: manOnTheRoad activity: SPARQL query for
detecting people on the road

As a SPARQL query example for activity definition, let us con-
sider the query to detect the activity instance Activity:_1_ManOnTheRoad
shown in Listing 5.4. The SPARQL query detects people walking
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on the road over video time. This query makes possible to create
an instance of a specific class Activity:ManOnTheRoad, subclass of
Activity:Activity, for each track who carried out this activity. The
query returns a list of tracks ordered by their ID and time when
they appear in the video. The TrackPOI:trackOf property supports
the identification of the person (TrackPOI:ThingObject instance)
walking on the road, while its track time serves the detection of
the times of entrance and exit on the road.

At the layer 3, the scene description becomes concise, and
reaches a very high level of abstraction. Situation Theory is applied
to the detected activities and scene objects to abstract knowledge
from them and provide high-level situations describing the whole
scene. Infons are generated on the detected activities and scene
objects to relate all the information and build situations. The
situations are Spin rule-defined as concatenation of infons. The
outcome of the layer 3 are the infons Infon_1 and Infon_2 in
correspondence with activities Activity:_0_vehicleStopping and
Activity:_1_ManOnTheRoad, respectively. The Spin rules define
a situation, namely STO:_0_vehicleStopToLetPeopleCross, that
comes from the concatenation of these infons, in the road context.
This situation exactly captures the main action happening in the
road scenario, and provide a human-oriented, high-level view of
the scene.

The proposed ontology modeling provides a systematic way to
feed a knowledge base describing a video, ranging from the identi-
fication of the individual objects to the occurring activities, till to
incrementally achieve a general, high-level scenario description.

In order to assess the applicability of this approach and its
effectiveness in term of scenario description, some videos have
been processed, as described in the case study. Three videos9
recorded in our campus have been processed: they show people
and vehicles carrying out some activities in different environments,
such as roads, lawns and heliports. Table 5.5 shows the results
of the application of the proposed ontology model, according to
the multi-layer knowledge schema. The table provides the video

9https://tinyurl.com/yygg282c

https://tinyurl.com/yygg282c
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Figure 5.20: Situation detection: frames from Video #1: people
grouping; Video #2: people crossing; Video #3: people moving on
a heliport

content description: specifically, for each video, the situations and
the activities that compound these situations are shown, in the
time interval they occur. Then, each activity includes the thing
object who carried out the activity, the thing object type, the POI
where the activity happened and the activity beginning and ending
times. Figure 5.20 shows one of the situations recognized in each
of the three videos (i.e. people grouping from Video #1, people
crossing from Video #2, people moving on a heliport from Video
#3 ). Situations are described exactly by the time interval they
occur, expressed by the starting and ending frames. Let us notice
that by comparing situations, objects and times in the figure with
the table results, the detected situations correspond to those found
in the videos.
For instance, looking at Video #2 in Table 5.5 the recognized situa-
tions are Sit_3_ManCrossing, Sit_1_Grouping, Sit_2_Grouping,
and Sit_0_VehicleStopstoLetPeopleCross. The Video #2 shows
a road scene with people grouping, and a crossing happening in
presence of an oncoming vehicle (see Figure 5.20). In Table 5.5,
for Video #2, the situation Sit_3_ManCrossing is produced by
the individual activity 0_ManCrossing (in the Activity column);
the situations Sit_1_Grouping, Sit_2_Grouping are described
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by the grouping activities (identified as 0_Grouping, 1_Group-
ing, 2_Grouping, 3_Grouping). Each grouping activity can be
carried out by only one thing object, so there are as many group-
ing activities as there are thing objects involved in the group-
ing. The thing objects namely TO_3 and TO_1 are both recog-
nized as persons (Type column) and participate to the situations
Sit_2_Grouping and Sit_1_Grouping. More interesting is the
situation Sit_3_VehicleStopstoLetPeopleCross that represents a
vehicle stopping to let people cross the road, described by the
activities 1_ManOnTheRoad and 4_Stopping. The two activities
involve two thing objects recognized as a person (TO_1 ) and a
vehicle (TO_2 ). Situations and activities last a certain amount of
time, from a starting to ending time (Start and End columns, in the
table).The starting and ending times allow us to describe the tem-
poral succession of the situations detected in the video. The Video
#2 indeed shows initially two people grouping (Sit_2_Grouping),
then moving away from each other, and one of them crosses the
street (Sit_3_ManCrossing) while an oncoming vehicle stops to
let the person cross (Sit_0_VehicleStopstoLetPeopleCross); in the
end, the people meet again (Sit_1_Grouping) (see Figure 5.20).

5.5 Discussion
The activity composition model, presented in Chapter 5.3, bridges
Computer Vision and Semantic Technologies, to UAVs to achieve
a high-level video comprehension. The system is able to detect
moving and fixed objects, to acquire the spatio-temporal relation
among them and with the environment and, finally, to reconstruct
the complete scenario from the activity viewpoint. The system
is composed of two main components: the first one accomplishes
Video Analysis tasks, it aims at detecting scene objects and the
places where the objects move by using classification methodologies.
The other component employs Semantic Web technologies to encode
video tracking and classification data into ontological statements:
the built knowledge allows the generation of a high-level description
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of the scenario through activity detection. The main novelty of
this model is the object activity modeling at different levels of
abstraction, which are then integrated to better describe the whole
scenario. Simple activities are detected with respect to time, space
and context. Then, they are composed together to obtain complex
activities that allow a human-like characterization of the whole
scenario. A UAV providing descriptions of high-level articulated
activities over time can support human operators, employed in
surveillance and monitoring of various environments, with human-
like detailed video content analysis.

The approach, discussed in Chapter 5.4, presents a systematic
ontology-based design process based on the introduced multi-layer
knowledge schema, that composes the scene increasingly at a high
level of abstraction. The layered knowledge model indeed allows
feeding knowledge on the scene incrementally, from tracked data
to the situations describing the scene. The integrated ontology
model exploits the features of several well-known ontologies to
thoroughly model different aspects of the scene and achieve com-
plete scene comprehension. Data tracking along with activity and
situation (theory) modeling support the three levels underpinning
the Situation Awareness: Perception (collecting row sensing data),
Comprehension (seeking main actors in the scene: e.g., objects and
carried activities), Projection (assessing possible critical issues on
the detected situations).

The proposed ontology design is a kind of guideline that, reflect-
ing the multi-layer knowledge schema, produces a formal knowledge
modeling as well as arise the semantic description on an observed
scene. In the light of the recent literature on situation comprehen-
sion, the main benefits of the proposed approach are briefly listed
below.

• An ontology design pattern for scenario understand-
ing. The whole ontology can be considered as a sort of
ontology design pattern, coming from the modeling and in-
tegration of ontologies intended to portray the layering of
our proposed knowledge schema described in Figure 5.2. In
particular, the ontologies ODP and STO are indeed ontol-
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ogy design patterns, in charge of covering the Activity and
Situation layers, respectively. The Object layer is the only
one achieved with a domain ontology, and, for this reason, it
can be easily replaced with another ontology, if a different
video context (for example, the video scenes take place in a
environment other than a road scenario) appears.

• A modular design process for easy methodological
integration. The ontology design not only offers seamless
extensibility at the ontology design level, but the modular
layering also guarantees high flexibility and interchangeability
of the methodological approaches for target tracking and
classification in the Raw sensor data layer. The employment
of high-performance Machine and Deep Learning methods
for target tracking and classification tasks, for example, can
enhance the effectiveness of the global system. Depending on
the computer vision methods, used in the Raw sensor data
layer, the ontology model can combine/compound more or
less accurately detected scene objects, in order to produce
higher-level scene descriptions.

• A knowledge base to support video content analysis.
The ontology model allows populating a knowledge base
describing the video content, collecting, depending on the
layering of the knowledge schema, the information granule
associated with the corresponding knowledge layer. The
knowledge base is accessible by SPARQL queries: objects,
activities, and situations appearing in a video (or in a portion
of it) can be recovered by a query easily. The collected
knowledge becomes a flexible repository to facilitate video
content analysis targeted, for instance, at surveillance and
monitoring applications.

• A human-oriented scenario description. The role of
semantics is crucial in the scenario description: modeling
a situation as a composition of activities and, in turn, an
activity as spatio-temporal relations among objects and be-
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tween the object and the environment, enables the logical
“thinking” process, for understanding what really is happen-
ing in a scene and explaining why particular conclusion is
achieved. The logics behind a situation can yield human-like
video content description along with the reasoning steps that
build a situation.

The proposed approach provides a semantic support for object
detection and scenario description, if used in combination with
Machine and Deep Learning methods, whose synergy provides solid
performances.
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Chapter 6

Multi-UV systems for
scenario interpretation

6.1 Introduction
The goal of surveillance systems is to perform the real-time monitor-
ing of persistent and transient objects within a specific environment:
from the sensors to the final output, they support data gathering
to processing, transform the information into knowledge through
inference capability and, then, enhance situation awareness for
decision-making tasks. The first objective of these systems is to
assess the situation automatically: they offer a comprehensive un-
derstanding of scenes and their evolutions, especially to interpret
the actions and interactions of the observed objects.
The situation understanding is a complicated activity which in-
cludes the acquisition of the initial raw data collected by different
environmental sources (sensors, video, etc.) toward an incremen-
tal enrichment and aggregation (data fusion) to generate final
information [157, 158, 83].

Multiple and heterogeneous sensing sources provide a different
field of view of the same scene, not just for improving robustness
and monitoring performance of the whole system, but also for a
reliable and feature-rich perception of the current evolving situation,
and the consequent possible decision to take (Figure 6.1). Each
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source individually represents a subsystem targeted at performing
specific tasks, providing accurate and precise details about the
tracked target. Then, data from the different sources are collected
and merged together by a collector (often a ground control station),
to provide a comprehensive perception of the acquired scenario.
Contextual data (relation between moving objects, stationary-
moving objects, stationary objects) are often taken into account,
in order to elaborate also a wider awareness of the comprehensive
scenario.

In order to fully monitor the environment and acquire mean-
ingful data, the surveillance of outside scenarios requires mobile
devices, capable of monitoring targets and better depict the whole
environment.

6.1.1 From Unmanned Ground Vehicles (UGVs)...

Remote reconnaissance and environment monitoring is historically
in charge of Unmanned Ground Vehicles (UGVs) that often partic-
ipate in collaborative tasks for detection and tracking [159]. The
UGVs deployed in a given environment can perform repetitive tasks
with precision, efficiency and reliability; they are often targeted
at a specific task, to reduce the design complexity. At the same
time, the performance of an unmanned ground robot is crucial to
assess its capability in obstacle detection. Collision avoidance is a
challenging problem in UGV navigation since path planning and
navigation algorithms rely on the obstacle’s profile and their spatial
distribution [160]. UGV navigation includes the surrounding envi-
ronment perception, to identify existing obstacles and paths, by
a path planning: an ordered sequence of intermediate points that
the UGV must visit and reach them to generate a collision-free
path from origin to destination, and a control of UGV actions
and movements, to guarantee that UGV follows the right path
[161]. A UGV collects information about the spatial distribution
of obstacles from its surroundings by employing environment per-
ception sensors, such as laser scanner, infrared, sound navigation
and ranging (SONAR) and cameras etc.
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One of the main problems encountered during the deploy of a
UGV in rough environments is the limited field of view obtained
by the on-board cameras and sensors. In very hazardous environ-
ments, such as those that concern with demining operations, it can
be really hard to be aware of the situation and make a decision
on the best path planning. Moreover, the sensing feature has a
non-derisory cost, for instance, the laser scanner for distance mea-
surement can be quite expensive in terms of power consumption
and cost [162].
Unmanned systems have to offer a well-balanced relationship be-
tween the quality of support, reliability and additional workload;
thus the synergistic use of UGVs and UAVs is often the best solu-
tion for improving navigation capabilities of multi-sensor situation-
aware systems [159] whose purposes and applications range from
real-time surveillance, entertainment, defense, military, and deliv-
ery.

6.1.2 ... to Unmanned Aerial Vehicles (UAVs)

Unmanned Aerial Vehicles (UAVs) represent a clear, low cost reply
to (ground-plane) surveillance systems: they support the object
detection and tracking [70, 71, 83], providing a complete description
of the scene. Surveillance and coverage of a dynamically changing
environment is an important task for which a UAV can be deployed;
enabling a UAV to an intelligent visual surveillance is a very useful
and desirable capability, that basically involves some stages such as
moving object definition, recognition, tracking [163], behavioural
analysis [164], and retrieval. These stages are accomplished by
formal and methodological approaches in the area of machine vision,
clustering [165] and pattern analysis [166], artificial intelligence
[4] and data management that contribute to define and model the
UAV situation awareness (SA).

The increase of the UAV awareness level consequently raises up
its autonomy level. Therefore, individual unmanned vehicles can
communicate, coordinate and finally interact with each other, to
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yield collaborative teams of unmanned assets. Coordinate activities
indeed improve the effectiveness of coalition unmanned systems
through the acquisition of the raw data from different environmen-
tal sources (sensors, video, etc.) and the incremental enrichment
and data aggregation (data fusion) towards “active” information,
i.e., the knowledge that describes the observed area. The primary
goal of the unmanned vehicle systems is to support the automated
situation assessment: a comprehensive understanding of the scenes
and their evolutions, especially the actions and interactions of the
fixed and mobile objects appearing in the scenario [157, 158, 83].
Multiple and heterogeneous sensing sources provide a different field
of view of the same scene, not just targeted at improving robustness
and monitoring performance of the whole system, but at providing
a reliable and feature-rich perception of the actual scenario, and
then the consequent decision to take in view of its feasible evolu-
tion [167]. Figure 6.1 shows a cooperative system of unmanned
vehicles: each one individually represents a subsystem targeted
at performing specific tasks, providing precise details about the
tracked target. Data from the different sources are collected and
merged together by a collector (often a ground control station),
which processes them to provide a comprehensive perception of
the acquired scenario.

6.1.3 Multi-sources fusion

Intelligent monitoring, detection and control are becoming hot
topics in many safety-critical application domains, such as fire
detection, traffic congestion or accidents, etc. It would be highly
desirable that unmanned vehicles exhibit human-like behaviours.
For example, in aerial video surveillance, a UAV after having ac-
quired data from sensors, video and context, should be able to
merge the acquired data and thanks to some cognitive inference-
based ability, elaborates them, in order to get its own situation
assessment observing the evolving scene.
Generally, the data fusion focuses only on grouping detection and
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presentation of critical events, while the threat identification is
just the outcome of a predictive analysis, leaving the final deci-
sion to human experts [168]. Automated situation assessment and
scene understanding are the uncompromising desiderata of every
situation awareness system. Many approaches in machine learning
[169], probability theory [170], fuzzy inference [171], Markov Logic
Network [172] try to trace patterns for isolating the threatening
behaviour, intrusion detection, traffic analysis, event and state-
based detection. One crucial requirement for an effective situation
awareness is the acquisition and integration of information at mul-
tiple scales [173]. A significant challenge for such systems is indeed
to collect data from heterogeneous distributed sources [157] and
then combine them to compose a richer data level, also called
information level that is the main avenue to enhance the situa-
tion understanding. Multi-sensor data fusion as well as extracted
contextual information enhance the knowledge about entities and
objects involved in a scene. Data fusion produces an intermediate
stage that adds relevant details in the description of events, scenes,
situations. This new knowledge on the data provides a better
view on what is shown in the scene, which events happened and
which situation is occurred: it is the background layer to deduct,
by inference, new information that provides a higher abstraction
level of the comprehensive scene. The acquired data, and then
the processed knowledge become awareness: the system becomes
“aware” about the evolving scene, can recognize the criticality level
of the situation, and then knows how to act accordingly. An ef-
ficient situation awareness system must acquire data from many
sources through the use of real time video analysis, multiple object
models, and pattern analysis, and then process them, in order to
provide comprehensive situation understanding. For example, a
camera captures a video about a truck and some smoke comes out
of the truck (event); in meanwhile a sensor in the neighbouring
area detects smoke in the air; a such system should collect the data
from the two sources and then deduct that the truck probably has
a malfunction to its engine (alerting situation); at that point, the
system may decide whether or not to call the roadside assistance.
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6.2 UVs as intelligent agents
Multi-agent architectures well suit to model unmanned robot sys-
tems, generally employed in patrolling, surveillance, search and
rescue and human-hazardous missions. The agent paradigm indeed
encapsulates some specific features that are the basic requirements
of unmanned vehicles. An agent is able of performing autonomous
actions, in order to meet its design goals; it is proactive: it ex-
hibits a goal-directed behavior and takes its own initiatives, in
response to the environment where is placed. In team-work design,
it achieves collaborative and cooperative activities to reach the
collective goal. The agent-based paradigm acts as a glue among het-
erogeneous unmanned systems communicating through distributed
asynchronous interactions. Thanks to their intrinsic features such

Figure 6.1: Multi-sensing unmanned vehicle systems for a coordi-
nate data processing in dynamic environments [167]

as simplicity, flexibility, responsiveness, self-organization, cooper-
ation/coordination, low-cost agent design, they can be applied
to a wide range of applications, from tackling complex problems
[174], the cooperation of agents-robots [175], till to data fusion
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and game-solving approaches [176]. Multi-agent systems provide a
technology supporting the fusion of several traditional Unmanned
Aerial Vehicle system areas: autonomy and navigation, attitude
control, telemetry, etc. Moreover, they provide a distributed ar-
chitecture, rejecting sequential top-down programs and preferring
simple, distributed and decentralized processes with a direct access
to sensors and actuators of the agent-robot. The effectiveness of
the multi-agent systems is also due to the possibility to encapsulate
a reasoning model in the agent-based paradigm: the agent exhibits
some deductive capabilities that enable it to make decisions. The
multi-agent modeling is a consolidated paradigm to support dis-
tributed systems that cooperate to reach a final objective. Thanks
to these features, it is suited for designing Unmanned Vehicle sys-
tems, which are often mission-oriented, with requests for control,
communication and coordination mechanisms. The next sections
present an agent-based model to lead UVs to scene comprehension.

6.2.1 An agent-based multi-UV system

An agent-based UV system for scene comprehension has been
designed. Figure 6.2 depicts its functioning through a logical
schema, that represents the whole model as composed of three main
functionalities: Agent-based Knowledge Collection, Data Fusion-
based Awareness and Intervention. The main objective of this
approach is the design of a team composed of multiple UVs, where
each UV is modelled as an agent, namely Vehicle Agent (V. Agent,
in figure). The agent-based UV team analyses scenes from an
environment, where the individual vehicles stay, and each Vehicle
Agent generates a comprehensive reading of a scenario portion,
depending on the viewpoint, type and features of the UV. The
design of a multi-agent system suits to model UVs of different type
(i.e., UAV, UGV). Therefore, each agent controls a vehicle that
collects data from the environment, hence the agent is instantiated
to process the collected data. Then, depending on the vehicle
feature, the agent processes the data and codes them into semantic
statements, that become the initial concepts. The Agent-based



156 6. Multi-UV systems for scenario interpretation

Figure 6.2: Model overview: Unmanned Vehicle Systems (UVs) are
modeled as independent Vehicle Agents (V.Agent), the Collector
Agent fuses other agent output to evaluate the most suited kind of
intervention.

Knowledge Collection concerns the collection of data acquired
from the environment by the vehicle agents through their sensors,
cameras, etc. After the initial processing, thanks to the ontological
coding, data becomes knowledge. One of the agents in the team is
called the “collector”, and it is assigned with the management of
the Agent-based Knowledge Collection process. The collector agent
could govern a UAV or a mobile UGV equipped with sensors, or
even a simple laptop, enhanced with a cognitive model to gather
data and conceptualizations provided by other agents and generate
new inferred knowledge. The agents can be mobile or fixed devices,
such as sensor-equipped UAVs, UGVs, or even satellites, infra-red
cameras, radars or gas sensors. The agents are task-oriented: this
means that, equipped with specific sensors, they can get data about
the scene objects or features of the environment they are observing.

The collected raw video data are processed by each vehicle
agent, and, then, transformed into semantic concepts according
to an ontological model. For instance, data about a scene object,
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that has been detected and recognized as a car by a Computer
Vision algorithm, is coded as the ontological concept Car. After
that the agents have accomplished their own tasks, they provide
the collector-agent with the conceptualization they produced.

The collector-agent employs a mental model, defined as a global
Fuzzy Cognitive Map (FCM), which represents high-level knowl-
edge on the main ground area where the scene, monitored by the
agent vehicles, evolve. The area description is extended with the
geo-referential data and the fixed objects. The mental model allows
the collector to elicit events and state what is happening in the
observed scene. If the collector evaluates the data reported by an
agent partial or unsatisfying, it can query that agent or even other
agents, in the team, asking for data about a precise geographical
position. The results, provided by the agents, are taken as initial
concept values to initialize the FCM, and, depending on the re-
turned concept values (i.e. “people presence”, “fire detection”), some
portions of the FCM are activated and run. The FCM simulation
generates new global, high-level knowledge about what happened
in the observed ground area thanks to the individual vehicle agents,
which generate semantic-coded data, describing portions of that
area. This way, the collector agent builds a global view of events
occurred in the observed area and it can make decisions according
to the final concept values returned by the FCM simulation. Con-
sequently, on the basis of the comprehensive situation assessment,
the agent-based system can decide if and which rescue intervention
is required, among firemen, police, ambulance, highway patrol, etc.
Moreover, the FCM simulation process not only highlights the
situations, but it also determines the main possible causes that
lead to alerting events.

6.2.2 Vehicle agent knowledge collection

In the Agent-based Knowledge Collection, the designed vehicle
agents can control vehicles of different type (i.e. UAVs, UGVs,
satellites, etc.), and according to the vehicle features (environment-
installed sensors, satellite-based services, servers, smart robots or
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simple laptops), they can be provided with different functionalities.
Therefore, agent vehicles can have just basic functionalities, such
as sensor data acquisition, or more advanced capabilities, such as
target detection and identification, scene object activity recogni-
tion, environmental context definition, alerting event detection (i.e.
conflagration, earthquake, seaquake detection).

Each agent is assigned with a task, hence its main goal is to
solve the assigned task independently from the other agents. To this
purpose, the vehicle agent is equipped with proper methodologies to
accomplish its task, such as Video Analysis and Machine Learning
(ML) methods to achieve target detection. For instance, an agent
can control a UAV, equipped with gas sensors, to individuate city
areas affected by pollution, or a UGV, provided with cameras and
ML classification algorithms designed for people detection in the
environment. The agents can solve tasks of different complexity
level. Some agents are designed to perform simple tasks (easy-task),
such as acquiring data from the environment, while other agents can
accomplish more complex tasks (hard-task). In order to monitor
an event of interest, the preliminary step of the multi-agent system
is to allow the agents to accomplish the easy-tasks, collecting the
environmental and contextual data necessary to depict the event.
Then, agents, capable of accomplishing hard-tasks, are sent to
achieve cognitively complex tasks to enrich the knowledge base
with ontology data related to the event and situations detected.
The whole process is started by the collector agent in the Knowledge
Collecting Station, which provides the vehicle agents with the
geographical coordinates of an area to inspect (where some events
can happen, i.e. fire, high-speed roads, traffic congestion). When
the vehicle agents receive the coordinates, they start to monitor
the area and acquire data from the environment to return the
sensed data to the collector. After a preliminary processing, each
agent, targeted at the retrieval of specific data, codes the raw
data into semantic knowledge. Each agent can generate high-
level knowledge, thus it is enhanced with an ontology model and
a semantic inferential engine. The TrackPOI ontology model,
discussed in Chapter 4, represents scenes set in road, wooded,
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urban environments, and it also defines spatio-temporal relations
among the detected scene objects. The inferential engine generates
new statements by reasoning over the initial facts: consequential
concepts and events, modeled as ontological assertions, representing
actions and interactions among the scene objects ( i.e., walking,
grouping, traffic, etc.) are the output of the ontology reasoning.

Summarizing, the data, sensed by the agent vehicles, are trans-
formed into semantic assertions and processed by the inference
engine, that elicits new high-level knowledge about that data help-
ing to describe the scenario. In other words, the agent can acquire
information, reason about it, and generate a high-level reading of
the acquired local information.

6.2.3 A reasoning model for agent UVs: FCM

The agents, in the presented model, can evaluate the scene and
find the most suited rescuers by defining and running an FCM. An
FCM is a knowledge-driven methodology suited to design complex
decision systems, that exploit causal reasoning to make decisions.
FCM has been defined By Kosko [177] by synergistically combining
neural networks with the fuzzy logic. FCM is a representation of a
mental model in terms of concepts, that characterize behaviours
and functionalities of a knowledge-based system [178]. FCM can
be defined on a specific domain to represent and analyse articu-
lated problems, that can be represented in terms of heterogeneous
concepts and eventual causal relations among them. Consequently,
the model is perfectly suited to represent knowledge on a complex
evolutionary scenario, composed of various features. In fact, the
FCM allows the scenario evolution analysis by varying its features
and analyse configurations different from the initial ones.

FCMs are designed by experts to deal with real world applica-
tions in various contexts, such as, for example, the political field
and international relations [179, 180]. These cognitive models have
also been widely explored in system control to improve control
environment [181], to model actors’ intelligence and give better
support to decision-making tasks [182], to support failure modes
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and effect analysis [183], and model system supervisors [184].

An example of FCM is reported in Figure 6.3: the model is
represented as a directed graph, where the oval nodes represent
the FCM concepts. Generally, a concept can represent a specific
entity, a variable or a state of the problem with a specific value,
generally taken from the [0, 1] interval. The directed edges, linking
the concepts in the model, represent causal relations among couples
of concepts. Given the concepts C1 and C2 from the FCM shown
in figure, the directed edge (C1, C2) going from C1 to C2 represents
the causal impact of C1 on C2. The edge sign expresses the way
C1 variations impact on C2, in other words they cause an increase
or decrease of the C2 value. Therefore, in presence of a positive
sign, an increase of the C1 value causes an increase in the value
of C2. On the contrary, if the edge sign is negative, an increase
of the C1 value triggers a decrease in the value of C2. The edge
value is a fuzzy value representing how much the the concept C1

impacts on the C2. Generally, the greater the value, the more C1

variations affect the C2 value.
According to the edges, FCM concepts are divided into three types:
starting concepts, transition concepts and goal concepts. Concepts
that do not have edges directed at them are called starting concepts,
and represent the input of the model. The starting concepts can not
be affected by other concepts. Concepts, that have edges directed
at them, are said to be effect nodes, because these edges represent
the causal effect that other concepts have on them. The effect
nodes include transition and goal concepts. The transition concepts
can be affected directly or indirectly by the starting concepts. The

Figure 6.3: An example of FCM
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goal concepts do not have edges directed at other concepts, their
incident edges are all directed at them. Consequently, the goal
concepts can be influenced by the other concepts but they can not
affect any other concept. For this reason, goal concept final values
represent the output of the FCM.

The agents build the FCM and perform fuzzy causal reasoning
through a process called FCM simulation. Once the agents provided
initial values for the starting concepts, the FCM simulation or FCM
run consists in generating new values for the FCM concepts from
the initial concept values and the causal relations among them.
The process implements a causal reasoning on the concepts, that,
according to the edge weights, allows the FCM concept to activate
themselves by assuming new values.

The agents provide the input to the FCM as an initial activation
concept vector, containing the initial values for the concepts. After
the initial concepts have been initialised or activated, a propagation
process in the FCM network is started: each concept updates its
value according to its previous value and the values of the concepts
connected to it combined with the weights on the edges connecting
them. The simulation iteratively propagates the initial activation
concept vector until either the map converges to a fixed-point or a
maximal number of iterations is reached. Formally, at each iteration
t the value Ct

i for the ith concept is calculated by computing the
influence of the other concepts Ct−1

j on it at previous iteration
t− 1, according to the following formula:

Ct
i = f

 
nX
j=1

Ct−1
j Wji + Ct−1

i

!
(6.1)

where j 6= i, Ct
i is the updated value for concept i at iteration t,

Ct−1
j are all the other values of concepts which have a relationship

with concept i at iteration k, while Wji is the edge weight between
concept i and j. Ct−1

i is the value for concept i at iteration t−1 and
f is a threshold function to squash the result into the [0, 1] interval.
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6.2.4 Agent-based knowledge building through
FCMs

Figure 6.4: FCM building: Agent 1 (Fire detector) activates fire
concept, Agent 3 (Vehicle detector) activates the Stopped cars-Fire
proximity concept, Agent 2 (People detector) does not enable the
map rooted at Person-Fire proximity because it does not find any
people in the scenario

Once the vehicle agents, that monitor the area of interest,
have gathered information from the environment, they send it to
the collector agent. The collector, in the Knowledge Collecting
Station, builds a mental representation of the observed scenario
dynamically, by combining the individual high-level knowledge
produced by the agents. When the agents accomplished their own
task, they send the generated data, that generally is in the form of
semantic statements, to the collector. Thus, the collector receives
the semantic data, that include the concepts obtained by the local
agents. These concepts are collected to build the initial knowledge
base on the scene, including facts about the scene objects (i.e.,
people and vehicles) and their interactions with the environment.
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As stated in Section 6.2.2, the TrackPOI ontology model is used
to represent the collected knowledge on the scene objects and
the environment. The ontology also allows the representation of
spatio/temporal relations among the scene objects and between
the object and the fixed features of the environment, namely Points
of Interest (POIs), such as parks, roads, or even banks, stores and
others. As seen in Chapter 5, the application of inference to the
defined ontology concepts provides new facts expressing events and
activities carried out by the scene objects , such as vehicles going
off road, vehicles overcoming speed limits, people crossing the road,
people meeting, etc.

The high-level knowledge produced by each vehicle agent,
through ontology reasoning, is used to dynamically define a com-
plete mental landscape of the scenario. This scenario landscape is
made up of high-level concepts and the causal relations among them.
In more details, the ontological concepts and events, generated
by the agents, enable the activation of a global FCM delineating
causal knowledge acquisition and representation related to a spe-
cific scenario.

As stated in the previous section, an FCM represents a mental
model as a directed graph, where the nodes represent high-level
concepts and the edges model the causal relations among the
concepts. The concept can assume values, generally in the range
[0, 1] or [−1, 1], representing a specific state of the concept. Then,
the sensor data and the high-level events detected by the vehicle
agents can be used to specialize the initial concept states.

Figure 6.4 shows an example of FCM, that models high-level
knowledge on a road scenario as causally related high-level concepts.
The FCM comprises concepts representing people and vehicle fea-
tures (i.e., “people meeting”, “burning cars”), general events (i.e.
“fire”, “explosion”) and general features of the environment (“smoke”,
“fog”, “visibility”, etc.).

As stated, the FCM can be run to reason over the concepts
and their causal relationships. The whole process can be started
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by providing the initial concept values to the FCM, and then
updating concept values according to the edge weights. The process
is iterative and comes to an end when convergence is reached.
At each iteration, the concept values change defining a specific
FCM configuration, representing an evolution from the first FCM
configuration. Since the FCM starting concepts are not influenced
by other concepts (i.e., they do not have edges directed at them),
they need to be initialised to run the FCM. If the input concepts
have values different from zero, the FCM is said to be activated by
these concepts. Then, the input concept values are propagated to
the other concepts in the FCM.

The FCM extract in Figure 6.4 has been designed by domain
experts as a composition of different sub-maps or sub-FCMs. Each
sub-FCM represents knowledge on a simple scenario, or specific
events, associated to the observed environment. Therefore, the
sub-FCMs are often related to specific local knowledge about the
scene objects and the environment (i.e., people in a storm, fire in
a forest, etc.) produced by the vehicle agents.

As stated, each FCM concept is associated with a number
expressing its state. Then, concepts in the sub-FCMs, related
to a specific agent, can be activated by the agent that provides
them with some values. For instance, the agent can provide speed
values for the concept “car speed”, or a presence value for the “fire
presence” value. Once the initial concepts have been initialised,
the causal inference on the concepts can be performed by running
the FCM.

According to the concept states or values provided by the agent
vehicles, some sub-FCMs can be activated or not. If the returned
values do not activate some initial concepts, the sub-FCMs rooted
at these concepts, will not be used for the FCM simulation pro-
cess. In other words, after the vehicle agents have returned their
concepts values to the collector, it initializes the FCM accordingly
by setting FCM concepts with the returned values. This way, the
collector defines the first FCM configuration by activating only the
sub-FCMs rooted at the activated concepts. The FCM is then run
on this configuration. The output, generated by running the FCM,
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is the knowledge inferred on the whole scenario by bridging the
local knowledge provided by each vehicle agent.

In order to demonstrate this model, let us consider the FCM
model shown in Figure 6.4 composed of three sub-FCMs represented
by dotted ovals. We assume that the collector agent sends three
vehicle agents to monitor the environment, they are: Agent 1,
Agent 2, Agent 3. The three agents are , respectively, assigned with
specific tasks: Fire detection (Agent 1 ), People detection (Agent
2 ), Vehicle detection (Agent 3 ). Then, each agent is assigned with
one of the three sub-FCMs, modelling knowledge on its task.

Once the agents have processed the initial data, they generate
concept states that are returned to the collector. Therefore, Agent
1 states the presence of fire in the scene by returning a non-zero
value for the Fire concept; Agent 3 detects stopped cars in the
environment and notifies this result by setting Stopped cars-Fire
proximity concept with a non-zero value. This way, the agents
Agent 1 and Agent 3 activate the sub-FCMs they are in charge
of (marked by red ovals in figure). The Agent 2, in charge of
people detection, does not find any people in the environment. As
a consequence, the agent fixes the Person-Fire proximity concept
value to 0. This way, the sub-FCM rooted at this concept (marked
by the blue oval) is not activated. The final obtained FCM is built
as a composition of the agent-enabled sub-FCMs, and initialised
with the values provided by the vehicle agents. The so built and
initialised FCM can be run to infer events and asses the level of
criticality, represented by the values assumed by the goal concepts
(i.e., Explosion, Level of criticality).

6.3 Consensus-based GDM for UV team
scenario interpretation

In recent years, UVs have become common-used devices to per-
form complex tasks. UVs have been used to act as substitute for
humans in tasks, that can be risky or hard to perform. UVs found
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applications in various fields, including military operations, crowd
monitoring, fire fighting, breeding and agriculture management
[185, 186, 187, 188]. As seen in the previous chapters, sensor-
equipped UVs can recognize people, environments, interpret scene
object interactions and events by using refined Computer Vision
[185] and Artificial intelligence [144] methodologies.

However, to serve the applications introduced above, the use
of a single UV can not be enough because of issues about the
sensor reliability, weather, methods used and type of environment.
Moreover, a single UV provides only one viewpoint on the envi-
ronment, that can really constraint the scenario interpretation.
For instance, the use of a single UGV does not allow to achieve
a complete vision of the whole environment. A fleet of UVs of
different type (i.e., UAV, UGV, UUV) and equipped with various
sensors and technologies can indeed provide a multi-perspective
view of the observed scenario. Since each UV has its perspective on
the scene, a global complete scenario comprehension is reachable
as an agreement among the various UV perspectives.

A team composed of multiple UVs can be seen in Figure 6.5.
The team comprises three UVs, including two UAVs and a UGV,
devoted to monitor an urban environment. Each UV can observe
the scene from its own angle, and, accordingly, produce its own
interpretation of situations occurred. Obviously, UVs in the team
can have different interpretations of the scene. Therefore, UVs
need to find agreement on the scenario comprehension, which can
reflects a more realistic scenario description. This problem can be
considered as a Group Decision-Making (GDM) problem, where
multiple UVs need to reach an agreed collective interpretation
of a real-world scenario from their individual distinct views. The
application of consensus measures to a GDM problem allows helping
experts to find agreement [189, 190]. and choose a collective
solution that better satisfies experts’ interpretations[191, 192].

The next sections present a consensus GDM approach to allow
multi-UV systems to reach an agreed decision on situations that
better depict what happened in the scenario observed by the UVs.
Given UVs capable of detecting events, the approach enables each
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UV to generate preferences on high-level situations through the
fuzzy-based aggregation of the events the UV detected.

UVs are considered as experts in a GDM problem, that have to
decide which situations are most suited to describe the scenario.
Therefore, each UV can express preferences on situations. Then,
an agreed collective interpretation of situations is got by applying
consensus measures to the UV individual preferences. The con-
sensus application to the UV GDM problem gurantees the UVs to
find agreement on the scenario description.

Figure 6.5: Different scene interpretation from the UVs needs to
find a collective agreement on the more probable scene description

6.3.1 A consensus GDM model for UVs

The approach, discussed in this section, defines a a consensus-based
GDM model to allow a multi-UV system for event detection [144]
to reach an agreed interpretation of the monitored scenario.
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A logical schema of the approach is shown in Figure 6.6. A
UV team, composed of different-type UVs (i.e., UAV, UGV, etc.),
monitors an environment and detects events. Each UV is equipped
with sensors and enhanced technologies to detect events (Team of
UVs for event detection). In details, each UV can use the model
introduced in Chapter 5 for event and activity detection. As seen,
this model applies tracking algorithm to detect scene objects, whose
data are coded into semantic statements and fuse with contextual
knowledge on the scene by using scene ontologies. Then, ontology
reasoning allows the detection events and activities involving the
tracked objects.

After UVs have detected events, fuzzy reasoning is applied
to allow each UV to recognize situations as fuzzy aggregation of
the detected events, and to express preferences for each situation.
The M1 module (Fuzzy-based UV situation preference generation)
implements a fuzzy modeling of the detected events by using a fuzzy
ontology, that allows the UV to define fuzzy linguistic descriptors
of the events. The descriptors are then aggregated to get high-level
situations, and a preference value for each situation.

The UV preferences are then passed to the M2 module (Collec-
tive preference and consensus assessment), that applies the GDM
model to lead UVs to decision. The model supports the generation
of collective preferences on situations by aggregating the UV indi-
vidual preferences. Then, consensus and proximity measures are
applied to assess the agreement level on situations among the UVs.
The modules M1 and M2 are detailed in Section 6.3.2 and Section
6.3.3, respectively.

6.3.2 UV preference assessment through fuzzy
reasoning

As stated in Chapter 5, the TrackPOI ontology can be used by a
smart UV to model contextual knowledge on evolutionary video
scenes, and detect high-level events through ontology reasoning.
The inferred events detail the actions of the scene objects (i.e.,
people, vehicles), along with their interactions with the environment
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Figure 6.6: Logical view of the model: from UV team event detec-
tion to the final team scenario interpretation.

(i.e., POIs) or other scene objects. The events, inferred by each UV,
are represented by semantic statements. Therefore, a UV detected
event involving the scene object o1 is represented in triple form as
follows: ho1, e, pi; where o1 is a UV detected scene object, e the
event kind and p the place where the event occurred.

Some events are more recurrent than others for a place or
involve a different number of vehicles and people. Therefore, an
analysis of people’s (or vehicle) involved in an event, can contribute
to explain the event better. To this purpose, given a scene, the
M1 module assesses the frequency of an event kind occurring in
a place, according to the number of objects involved in the event.
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The event kind frequency is defined as follows.
Event kind frequency. Let us suppose that a UV is mon-

itoring a place p, where the event kind e is happening. A UV
detects m scene objects (i.e., people or vehicles) on the place, and
recognizes n objects which are involved in the event e. Then, the
frequency for the event kind e is calculated as the ratio between n
and m.

In order to show how the event frequency is calculated, let us
consider the event kind e, occurred in place p, which involves three
over six detected people, namely o1, o2, o3). Then, the frequency
of e is equal to 0.5. In order to model the event kinds and their
frequencies, the TrackPOI ontology is converted to a fuzzy ontology.
All the UV-detected event kinds and their frequencies are coded
into fuzzy axioms and added to the ontology. These axioms are
represented as triples, according to the following format: hu, e, fi ;
where u is the instance of a UV, e the event kind and f its frequency
value. Therefore, the triple asserts that the UV u detected the
event kind e, whose frequency value is equal to f .

Figure 6.7: Event descriptors for the event e.

According to the event kind frequency values, event descrip-
tors are defined in the fuzzy ontology. The event descriptors are
modelled as fuzzy concepts, that describe the event kinds. For
instance, three event descriptors of the event kind e are shown in
Figure 6.7, they are: LowE, MediumE, HighE. In other words, the
event kind e becomes a fuzzy variable that can be associated with
three linguistic terms (the three concepts), which are represented
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by the three fuzzy membership functions shown in the figure. The
three concepts represent three different types of people (or vehi-
cles) participating to the event kind e, in a given scene. This way,
once the event frequency values have been calculated, the event
descriptors describe scene object participation to an event as a
fuzzy membership value. For example, if the frequency on the
event e is high, the concept HighE is more suited to describe scene
object involvement in e than LowE and MediumE.

Since the event descriptors better depict the UV-detected events,
they are used to define high-level situation for scene description.
A situation is defined as an aggregation of event descriptors, that
describe the people or vehicle involvement in the detected events
that lead to the situation. Therefore, a situation can be defined, in
the ontology, as a fuzzy aggregated concept of event descriptors on
distinct event kinds. This situation definition is supported by the
fact that the event descriptors represent situational patterns, then,
their aggregation leads to describe the overall situation. Given
situations defined in terms of the event descriptors, the UV can
generate a preference value for each defined situation through
maximum concept satisfiability (see Chapter 2, Section 2.4.1).
Therefore, running a maximum concept satisfiability query, the
UV preference value for a situation can be assessed by aggregating
the membership values of event descriptors involved in a situation
definition. The aggregation can be computed by using one of the
well-known aggregation operators, such as weighted mean, OWA,
LOWA, etc. As required by these operators, the event descriptors,
involved in the aggregation process for the situation definition, must
be chosen. To this purpose, domain experts are in charge of fixing
the weights according to how fundamental the event descriptors
are in the situation definition. The tasks, accomplished by module
M1, to allow each UV to define situations and express preferences
on them are to be considered as part of a preliminary step (step 0 ).
The output of this step (i.e. situations and preferences) are passed
to the module M2, that applies the consensus-based GDM model
to lead UVs to decision. This model is detailed in the next section.
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6.3.3 Consensus model

Once each UV expressed preferences on situations, the M2 module,
firstly, allows UVs to build group decision, and then to assess team
consensus and detect which UVs lead decision by applying a CRP.
Multi-UV system-based situation comprehension is formulated as
a GDM problem: the situations are considered as alternatives, on
which each UV in the team, seen as an expert, can make eval-
uations. Then, each UV expresses preferences on the detected
situations (Section 6.3.2). Formally, given n UVs and m situa-
tions, each UV expresses preferences on the m situations. The
preferences expressed by the ith UV are represented as a vector:
P i = (xi1, x

i
2, ..., x

i
m), where P i ∈ Rm,∀i = 1, 2, ..., n. The prefer-

ence xij, in the preference vector P i represents how much the ith
UV prefers the jth situation over the others.
Our UV systems can be composed of different types of UV (ground,
aerial, sensor-based, etc.), each one with different features and
capabilities. Moreover, weathering such as humidity and luminos-
ity, or other environmental features (i.e., radioactive areas, dense
forest), can drop performances of some UVs. For this reason, a
reliability degree is associated with each UV, more formally, wi
is the reliability weight associated with the ith UV. Just to give
an example, let us consider a UV team composed of 3 UVs (i.e.,
UV_1, UV_2, UV_3) where UV_1 and UV_3 are equipped with
an action camera, and UV_2 with an infra-red camera. The UV
weights are fixed, for example, according to how the task assigned
to the UV and the environment impact on its performances. If the
team has to patrol an area affected by low luminosity, UV_2 will
provide more accurate results than the other UVs. Therefore, a
reasonable weight assignment to (UV_1, UV_2, UV_3) could be
( 0.5, 1, 0.5).
Since UV preference vectors represent the information obtained
by the single UVs on the scene, the aggregation of these prefer-
ence vectors contains the overall information of all the UVs that
participate in the GDM process. This aggregation provides the
collective preferences on situations. Then, consensus and proxim-
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ity measures are applied to assess group decision reliability. The
formal model behind this approach can be summarized in three
main steps, described as follows:

1. Collective preferences. The model aggregates UV pref-
erences to define a collective preference vector on the situa-
tions. The collective preference vector cp = (cp1, cp2, ..., cpm)
is composed of m elements, where the jth element (cpj)
represents the team preference on the jth situation. Let
P i = (xi1, x

i
2, ..., x

i
m) and wi be, respectively, the preference

vector and the weight associated to the ith UV, cpj is calcu-
lated as the weighted arithmetic mean of the UV preferences
on the jth situation:

cpj =
1Pn

k=1wk

nX
i=1

xij · wi (6.2)

where j = 1, 2, ...,m.

The cpj value represents the global aggregated preference
value on the jth situation. The higher the value, the more
the situation is preferred by the team. The collective prefer-
ence vector (cp) represents the final group decision on each
situation.
After the assessment of the final group decision, our consen-
sus model assesses the general level of agreement among the
UVs in the team and which UVs lead the group decision by
calculating the consensus (step 2) and proximity measures
(step 3), respectively.

2. Consensus. The consensus measures take into account
UV preferences, which are aggregated to determine different
levels of consensus degree among the UVs in the team. As
aggregation operator, our model uses the power average mean
operator, that has been proven to achieve good performances
for decision-making in recent literature [193]. Therefore,
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the built consensus process is articulated in three levels of
aggregation:

Level 1, Similarity vectors among pairs of UVs. At
the first level, consensus among pairs of UVs is determined.
In order to detect the similarity on preferences among two
UVs, a similarity vector is defined by comparing the two
UV preference vectors. Similarity vectors are determined
for all the pairs of UVs involved. Therefore, given n UVs, t
similarity vectors are assessed, where t = n · (n− 1) /2. Let
P i and P j be the preference vectors for the ith and jth UVs,
respectively, the similarity vector SV k among the UV pair is
calculated as the distance among the UV preference vectors:

SV k =| P i − P j | (6.3)

where k = 1, 2, ..., t; i, j = 1, 2, ..., n and i 6= j

Level 2, Consensus on situations (cs). The consensus
degree among all the UVs on each situation (cs) is got by
aggregating the similarity vectors among the UV pairs. Given
the similarity vector SV k = svk1 , sv

k
2 , ..., sv

k
m among the

preference vectors P i and P j where i, j = 1, 2, ..., n and i 6= j
, the consensus degree csj among all the UVs on the jth
situation is calculated as the power average mean of the jth
element in all the similarity vectors:

csj =

 
1

t

tX
k=1

| svkj |p
! 1

p

(6.4)

where j = 1, 2, ...,m, t = n · (n− 1) /2 and p is the p-norm
power value.

Consensus on situations degree (cs) identifies which situations
the UVs are at odds on, and consequently to judge how the
group decision on each situation is reliable.

Level 3, Consensus on the relation (cr). The aggrega-
tion of the consensus on situations (cs) provides the consensus
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among UVs on all the situations (or consensus on the relation)
expressed as a unique value. Consensus degree on all the
situations (cr) is calculated as the power average mean of
the consensus degree on each situation (csj):

cr =

 
1

m

mX
j=1

| csj |p
! 1

p

(6.5)

Consensus on the relation (cr) provides a unique cumulative
measure to assess the agreement among UVs in the team on
all the situations. The closer cr is to 0, the more UVs are in
agreement on all the situations and the more reliable is the
final group decision (cp). The cr value can be used to accept
or discard the group decision on the situations.
In the case study discussed in Section 6.3.4, consensus degrees
are calculated by setting p = 2 to Equation 6.4 and Equation
6.5.

3. Proximity measures. In order to identify which UVs lead
the group decision, or which UVs mostly disagree with the
group decision about situations, our model defines some
proximity measures. These measures are directly calculated
on UV preferences and team preference (cp), two levels of
proximity measures are built:

Level 1, Proximity on situations (ps). This measure
assesses how much the single UV preferences are in agreement
with the collective preferences of the team. Given the prefer-
ence vector P i for the ith UV and the collective preference
vector cp (Equation 6.2), the proximity measure of P i to the
collective preferences is calculated as follows:

psi = cp− P i (6.6)

where i = 1, 2, ..., n

The higher psi absolute values, the more P i preferences
differ from team preferences. The negative sign of psij value
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represents that the ith UV prefers the jth situation more than
team. On the contrary, a positive sign means that the UV
prefers the jth situation less than team.

Level 2, Cumulative proximity on situations (cps).
Proximity measures on situations (ps) express proximity on
each situation. In order to represent the agreement among
the single UV and the team on all the situations, cumulative
proximity measures have been defined. The cumulative col-
lective preference (ccp) is calculated as the arithmetic mean
of the elements in the collective preference vector (cp):

ccp =
1

m

mX
j=1

cpj (6.7)

Given the preference vector P i = (xi1, x
i
2, ..., x

i
m) for the ith

UV, the cumulative preference for the ith UV among all the
situations is the arithmetic mean of its elements:

cuvi =
1

m

mX
j=1

xij (6.8)

where i = 1, 2, ..., n

The cumulative proximity on all the situations (cps) for the
ith UV is calculated as the difference between the cumulative
collective preference and the cumulative preference for the
UV:

cpsi = ccp− cuvi (6.9)

where i = 1, 2, ..., n

The cpsi value represents how much the decision of the ith UV
differs from the final group decision. The higher cpsi absolute
value, the more P i preferences differ, on average, from team
preferences on all the situations. Then, UVs, which lead the
group decision, will present the lowest cumulative proximity
values.
The negative sign of cpsi means that the ith UV expresses
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higher preferences, on average, than team on all the situa-
tions. The positive sign means the opposite: P i preferences
are averagely lesser than team preferences on all the situa-
tions. In essence, the sign of cpsi allows to state if the ith
UV is optimist or pessimist on all the situations with respect
to the group decision.

The same scenario is taken several times by the UVs by keeping their
configurations and positions. This way, UVs acquire several distinct
measurements of the same scenario, each one of them is considered
as a GDM round. Then, the round with the highest consensus
(cr) among the UVs is chosen, and the collective preferences (cp)
expressed on situations during this round are considered as the
final group decision.

The consensus and proximity degrees are used to annotate
axioms on situations and UVs. Accordingly, the system can detect
the most plausible situations and UVs leading the group decision
by queries.

6.3.4 An application to a real-world scenario

This section presents a case study to show how our model works
in a real-world scenario. Let us consider the road scenario shown
in Figure 6.8. The scenario involves some people crossing and
others walking near the road. Then, let us suppose that a team of
six UVs, reached a place, is monitoring the area, where the scene
shown in Figure 6.8 is happening. Each UV can detect the five
people in the scene through video tracking, other mobile objects
are filtered out (i.e., obj_6 in the figure). The event detection
model, introduced in [122], allows each UV to build knowledge on
the tracked objects and the environment by using the TrackPOI
ontology. The UV applies reasoning over the built knowledge to
detect events as ontology axioms (i.e., subject-predicate-object
triples), where the event kind (predicate) is related to the person
involved (subject) and the place where the event occurred (object).
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Figure 6.8: Case study: a team of 6 UVs observes and interprets a
road scenario.

For instance, the axioms, shown as Turtle1 code in Listing 6.1,
describe the events detected by the UV_1 involving the detected
people and POIs.
1 obj_1 trackpoi:isNear shop .
2 obj_1 trackpoi:goingTowards building .
3 obj_2 trackpoi:walkingInside route .
4 obj_2 trackpoi:crossing route .
5 obj_3 trackpoi:isNear shop .
6 obj_4 trackpoi:walkingInside route .
7 obj_4 trackpoi:crossing route .
8 obj_5 trackpoi:walkingInside route .
9 obj_5 trackpoi:crossing route .

1https://www.w3.org/TR/turtle/
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Listing 6.1: Events inferred by UV_1 : the event is an axiom
where the subject is the person or vehicle involved, the predicate
is the kind of the event and the object the place where the event
occurred.

According to Section 6.3.2, the M1 module achieves a preliminary
step (identified by 0 ) targeted at UV preferences setting, then the
M2 module leads UVs to the final group interpretation through
other steps (identified by 1-3 ).

0. Situation and preference generation. The frequencies
associated with each event kind detected by the UVs are
calculated. For instance, the crossing event kind, in Listing
6.1, detected by the UV_1, involves 3 among 5 detected
people: obj_2, obj_4 and obj_5 (see lines 4, 7 and 9), then
its frequency is 0.6. As Listing 6.2 shows, frequencies support
the definition of fuzzy ontology axioms. Precisely, in Listing
6.2 the fuzzy axioms describe the event kinds with their
frequencies generated by UV_1 on the events it detected (see
Listing 6.1).
1 (instance UV_1 (= hasGoingTowards 0.2) 1.0 )
2 (instance UV_1 (= hasCrossing 0.6) 1.0 )
3 (instance UV_1 (= hasWalkingInsideRoute 0.6) 1.0 )
4 (instance UV_1 (= hasNearShop 0.4) 1.0 )
5 (instance UV_1 (= hasVrunning 0) 1.0 )

Listing 6.2: Axioms on UVs and events in FuzzyDL syntax:
the events and their frequencies are added to the ontology
as annotated triples (axioms) which relate the UV (subject)
with the event kind (predicate) and its frequency (object).
The last value for each triple is the axiom truth degree.

Recall that the event is described by three descriptors: for
example, the event kind GoingTowards is described by the
three event descriptors LowGoingTowards,MediumGoingTowards
and HighGoingTowards. Once the event frequencies are
assessed, the situation can be revealed and their prefer-
ence computed for each UV. Let us consider the People
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marching situation described in Listing 6.3. It is an ag-
gregation of four event descriptors: HighGoingTowards,
HighWalkingInsideRoute, LowCrossing and LowV Running.
The People marching situation happens when “many people
walking in the same direction” HighGoingTowards, “many
people walking inside the road area” HighWalkingInsideRoute,
“few people crossing the road” LowCrossing and the “limited
presence of vehicles running on the road” LowCrossing.
Let us suppose that the event descriptors contribute equally
(equal weight, e.g., 0.25) to the situation modeling.
1 (define−concept people_marching (w−sum
2 (0.25 (some hasGoingTowards HighGoingTowards))
3 (0.25 (some hasWalkingInsideRoute HighWalkingInsideRoute))
4 (0.25 (some hasCrossing LowCrossing))
5 (0.25 (some hasVrunning LowVrunning)) ))

Listing 6.3: The definition of people marching situation:
the situation is defined as an aggregated fuzzy concept of
distinct event descriptors.

At this point, it is possible to compute the preference of
UV_1 on the People marching situation, by query-based
maximum concept satisfiability. In general, the UV prefer-
ence on a situation is generated by querying the maximum
concept satisfiability over the UV instance and its event kind
frequencies. Table 6.1 shows the preferences generated by
the six UVs on the People marching situation. Given the
People marching concept defined in Listing 6.3, the query is
applied to UVs over their frequency values for the 4 event
kinds involved in the People marching concept (from the
second to the fifth column). The last column shows the query
results representing the preference values for each UV on
the situation. The higher the preference value, the more the
UV considers the situation suited to describe the observed
scenario. In this example, the People marching situation is
considered very suited for scenario description by UV_4.

1 Collective preferences.
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Table 6.1: UV preference generation for the people marching situa-
tion on the event kinds: goingTowards (gt), walkingInsideTheRoute
(wir), crossing (crs), vRunning - vehicle running on route (vr).

UV(#) Event frequencies Preference

gt wir crs vr query result
UV_1 0.20 0.60 0.60 0 0.39
UV_2 0.90 0.75 0.60 0.32 0.56
UV_3 0.50 0.20 1.00 0.82 0.11
UV_4 0.72 0.97 0.11 0.21 0.86
UV_5 0.72 0.11 0.81 0.31 0.30
UV_6 0.12 0.18 0.18 0.71 0.20

Five situations can occur in the scene shown in Figure 6.8:
simple crossing, men at work on the road, people marching,
traffic and shopping. UVs generate preferences on these
situations, as reported in Table 6.2.

Table 6.2: Preferences of six UVs on five situations: simple crossing
(crs), men at work on the road (wrk), people marching (mar),
traffic (trf), shopping (sho).

UV(#) Preferences on situations

crs wrk mar trf sho
UV_1 0.29 0.75 0.39 0.00 0.29
UV_2 0.79 0.61 0.56 0.04 0.99
UV_3 0.71 0.00 0.11 0.46 0.00
UV_4 0.37 0.65 0.86 0.25 0.71
UV_5 0.81 0.12 0.30 0.26 0.00
UV_6 0.00 0.00 0.20 0.59 0.77

According to Equation (6.2), the team collective preference
vector (cp) is calculated, its values are reported in Table 6.3.
The team prefers simple crossing (crs) as the most suited
situation to describe the observed scenario, while traffic (trf)
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Table 6.3: The collective preferences: the values represent the
group decision on each situation.

Measure Collective preferences
on situations

crs wrk mar trf sho
cp 0.37 0.27 0.30 0.20 0.35

and men at work on the road (wrk) are the least eligible
situations to depict what happened. This result represents
the final group decision. Since the considered scenario does
not present any condition that can compromise performances
of any UV, for sake of simplicity, we assumed each UV as
equally reliable by assigning their weights to 1 in Equation
(6.2).

2 Consensus. Once the collective preferences have been gen-
erated, the consensus measures, described in Section 6.3.3,
allow evaluating the agreement level among the UVs. Re-
call that our consensus model is composed of three levels
of aggregation, as described in Section 6.3.3. The Level 1,
Similarity vectors among pairs of UVs assesses the similarity
among pairs of UVs. Similarity vectors are the rows in Table
6.4, and represent how UV pairs agree about situations. For
example, in the case of the simple crossing situation, the
UV pairs, which agree most, are the couples: (UV_1, UV_4 ),
(UV_2, UV_3 ), (UV_2, UV_5 ) and (UV_3, UV_5 ). The aggre-
gation of the similarity vectors on the UVs, according to cs
measure (Equation 6.4), allows the evaluation of the consen-
sus degree among the UVs on each situation. The results
are represented as the cs vector and reported in Table 6.5.
Let us notice that the team agrees mostly on the traffic (trf)
situation while strongly disagrees on shopping (sho) situation.
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Table 6.4: Similarity among UV pairs are assessed on the situations:
simple crossing (crs), men at work on the road (wrk), people
marching (mar), traffic (trf), shopping (sho).

UV(#) Similarity among UV pairs
on situations

crs wrk mar trf sho
UV_1 - UV_2 0.50 0.14 0.17 0.04 0.71
UV_1 - UV_3 0.43 0.75 0.29 0.46 0.29
UV_1 - UV_4 0.09 0.10 0.47 0.26 0.43
UV_1 - UV_5 0.52 0.63 0.09 0.26 0.29
UV_1 - UV_6 0.29 0.75 0.19 0.59 0.49
UV_2 - UV_3 0.07 0.61 0.45 0.42 0.99
UV_2 - UV_4 0.41 0.03 0.30 0.20 0.29
UV_2 - UV_5 0.02 0.49 0.25 0.22 0.99
UV_2 - UV_6 0.79 0.61 0.36 0.55 0.23
UV_3 - UV_4 0.34 0.65 0.75 0.21 0.71
UV_3 - UV_5 0.09 0.12 0.19 0.20 0.0
UV_3 - UV_6 0.71 0.0 0.09 0.14 0.77
UV_4 - UV_5 0.44 0.53 0.56 0.01 0.71
UV_4 - UV_6 0.37 0.65 0.66 0.35 0.06
UV_5 - UV_6 0.81 0.12 0.10 0.34 0.77

Table 6.5: The consensus degree among the UVs on each situation
(cs vector).

Measure Consensus on
situations

crs wrk mar trf sho
cs 0.46 0.50 0.39 0.33 0.60
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Starting from the cs vector, the consensus on the relation
(cr) measure is calculated (Equation 6.5). Its value is 0.46,
which means that, on average, the UVs agree on all situations
at 54%. In other words, they partially agree on all situations.

3 Proximity measures. To detect the UVs leading the group
decision, the proximity ps (Equation 6.6) of each single UV
to team is assessed. The resulting ps vectors are shown
in Table 6.6. The values on the ith row show how the ith
UV preferences differ from the team preferences on each
situation. This measure detects which situations the single
UVs are most at the odds on with the team, as well as which
UVs lead the group decision on each situation. For example,
UV_2 and UV_5 most disagree about the team preference
on simple crossing (crs) situation, whereas the UV_4 and
UV_1 lead the decision process on this situation. The people
marching (mar) situation is the one with the greatest number
of decision leaders (i.e. UV_1, UV_5 and UV_6 ).
To detect UVs, who lead the decision process on all situations,
the cumulative proximity on situations measure is employed
(Equation 6.9). Table 6.7 shows cps vector, let us notice that
UV_5 leads the group decision on all the situations, while
UV_2 and UV_4 present the most different decisions from the
final group decision.

6.4 Discussion
The main novelties evidenced in the presented approach are basi-
cally related to team-based activities, as listed as follows.

• Team decision evaluation through a consensus pro-
cess: the main trends in literature propose team solutions
for target searching [194], path planning [195] and team con-
trol [185] by collecting and fusing UV information. These
methods do not evaluate how reliable the final outcome of
the task is. Our model, instead, provides the agreement



6.4. Discussion 185

Table 6.6: Individual UV proximity to team on the five situations:
simple crossing (crs), men at work on the road (wrk), people
marching (mar), traffic (trf), shopping (sho).

UV(#) UV-team proximity
on situations

crs wrk mar trf sho
UV_1 0.08 -0.48 -0.09 0.20 0.06
UV_2 -0.42 -0.35 -0.26 0.16 -0.65
UV_3 -0.34 0.27 0.20 -0.26 0.35
UV_4 -0.0008 -0.38 -0.56 -0.05 -0.37
UV_5 -0.44 0.15 -0.001 -0.06 0.35
UV_6 0.37 0.27 0.10 -0.39 -0.43

Table 6.7: UV cumulative proximity to team: each row shows
how the single UV decision differs from group decision on all the
situations.

UV(#) Cumulative UV-team
proximity (cps)

UV_1 - 0.05
UV_2 -0.30
UV_3 0.04
UV_4 -0.27
UV_5 -0.0005
UV_6 -0.02
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level assessment among the UVs in the team. The reached
agreement states how reliable the team solution is and how
suitable the individual evaluations of the UVs in the team
are. Therefore, the cr measure also provides the reliability
degree of the final group decision.

• Scene comprehension and situation detection: to reach
the situation awareness, the design of approaches for target
searching [196], and event detection [185, 144] requires to
analyze data on the observed environment and the detection
and monitoring of events and possible situations [144]. High
level abstraction is not easy to achieve, because UVs can
recognize target, accomplish tasks (firefighting [186], crowd
monitoring [185], etc.), but emulating the human capability
of understanding and synthesis when observing a scenario is
also a challenge. Therefore, it would be interesting to assess
the extent to which the multi-UV system correctly detected
a specific situation. Our model determines the situations,
which better describe the scene, by a collective consensus
reached by the UV team on the scene. Thanks to consen-
sus degree, it is possible to check how reliable is the system
evaluation on a specific situation.

• Checking when to re-plan UV missions: many ap-
proaches focus on processing UV features and positions to
handle the cooperation [185, 195] and apply decision-making
methods to allow UVs to decide when to patrol an area [197].
An important feature is the UV reliability in scenario detec-
tion, especially if compared with the remaining team, to take
possible replanning individual target mission into account. If,
for example, the UVs do not find agreement on the detected
situations, they need to re-plan their missions to acquire
better information.

• Individual vs. team perspective on scene interpre-
tation: the main trends in literature employ information
sharing among the UVs to build a common global knowledge
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on the observed scene [194, 196, 185]. Our model, instead,
uses proximity measures between each UV and the team,
to check how each UV perspective on the scene meets the
final collective outcome. This measure describes the extent to
which the scene comprehension takes into account evaluations
from different perspectives.

• Automatic critical UVs detection: UV positions as well
as specific sensor-based features are often used to UV control
and path planning [198, 195] , especially in team mission.
For instance, team reliability can be guaranteed by knowing
if a UV has damaged or unreliable sensors, or other kinds of
issues. Our model is designed to evaluate how much the single
UV agrees with its team. This way, UVs that do not reflect
the team behavior (measured by the proximity measure) need
to be fixed.

Although the model has several benefits, the proposed approach
could suffer from some drawbacks:

• Complex scenario interpretation issues: the model has
been demonstrated on straightforward case studies. Crowded
scenario or scenes populated with numerous, heterogeneous
targets could cause problems in object detection and tracking
[185], with consequent effects on the event and situation
identification. These issues could affect the effectiveness of
the consensus calculation, based on the semantic reasoning
performance for the situation identification.

• UV teams have to work on the situations from the
same scenario: GDM with consensus modeling enables
experts to express a judgment/preference on the prefixed set
of possible alternatives [189]. Our model works with UVs
devoted to a predefined set of possible situations. [144]. In
these systems, indeed, there is the need to find some common
aspects on which the UVs can interact to improve scenario
comprehension.
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Chapter 7

Conclusion

As aforementioned, the contributions of this thesis are manifold,
as reported on the following.

• A geometrical structure for concept learning. The
first aim was to explore knowledge extraction from struc-
tured and unstructured data to support smart surveillance
applications with Unmanned Vehicles (UVs). Therefore, a
layered geometrical structure, namely the simplicial complex,
has been introduced to extract high-level concepts from texts.

• Ontology modeling of dynamic scenarios. Subsequently,
the focus has been set on knowledge extraction from multi-
media files generated by UVs. The main thesis contribution
to this problem is an ontology-based approach that allows
high-level knowledge modelling of the scene as composed of
mobile actors, detected through video tracking, and fixed
environmental entities. Then, ontology reasoning has been
explored to generate new knowledge on the scene.

• A human-like event detection model. The interpreta-
tion of an evolutionary scenario requires not only recognition
of scene actors (i.e., people, vehicles) but also the interpreta-
tion of events and activities. To this purpose, this disserta-
tion investigated methods to understand the scene at various
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levels of detail (i.e., scene actors, events, activities and sit-
uations). The main contributions on these topics include
knowledge-based frameworks, that based on the introduced
ontology-based approach, incrementally build knowledge on
tracking data to depict activities and situations. The pro-
posed frameworks allow knowledge abstraction to accomplish
human-like descriptions of the overall monitored scene.

• An agent-based modeling for cooperative devices to
scene knowledge building. The last contribution of this
dissertation concerns models to let systems, composed of
multiple UVs and sensors, achieve scenario comprehension.
The main issues related to those systems is knowledge sharing
and combination to achieve group interpretation of a scenario.
This thesis proposed an agent-based modelling of the devices
to let them build knowledge on the scene cooperatively.

• A consensus-based GDMmodel for UV-group-agreed
scenario interpretation. Multiple smart devices can per-
form multi-view scene monitoring, however, they can pro-
vide different interpretations of the scenario. This thesis
contributes to tackle this problem by introducing a new
consensus-based Group Decision Making (GDM) approach
to let devices achieve an agreed team interpretation of the
scene.

Case studies and experimentations, presented throughout the
thesis, demonstrated the applicability of the proposed models for
enhancing UV systems to support humans in complex surveillance
and monitoring tasks.

Despite the benefits introduced by the presented models, they
may suffer from some limitations, that are reported on the following.

• The projection of the current environment state (level
3 SA) is not fully supported. According to Endsley defini-
tion, as reported in Section 2.2, the Situation Awareness (SA)
is defined as the perception of the environmental elements
(level 1 SA), the comprehension of the current environment
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(level 2 SA) and the projection of the current environmental
state in the future (level 3 SA). The ontology-based models
support the comprehension of the current state of the scene
(level 1 SA and level 2 SA), but they can not make predictions
on future evolutions of the scene and fully satisfy the final
level of Situation Awareness (level 3 SA).

• GDM requires UVs returning the same output. The
use of the GDM for UV team scene interpretation allows a
group of devices to reach an agreed multi-view interpretation
of the scene. However, the GDM solution requires devices
capable of making judgements on the same set of alternatives.

Future works will focus on addressing the limitations to the
presented models, and explore solutions to evaluate the extent to
which the knowledge-based models presented reflect a human-like
behaviour, as discussed in Section 5.3.3. This evaluation will have
to support the implementation and use of the proposed solutions
in various application contexts.
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