

Università degli Studi di Salerno

Dottorato di Ricerca in Informatica e Ingegneria dell’Informazione
Ciclo 32 – a.a 2018/2019

TESI DI DOTTORATO / PH.D. THESIS

Dynamic Programming for

Optimal Planning and Control of
Redundant Robot Manipulators

ENRICO FERRENTINO

SUPERVISOR: PROF. PASQUALE CHIACCHIO

PHD PROGRAM DIRECTOR: PROF. PASQUALE CHIACCHIO

Dipartimento di Ingegneria dell’Informazione ed Elettrica
 e Matematica Applicata
Dipartimento di Informatica

Smallpdf User
Stamp

ii

Contents

1 Introduction 1

1.1 The big picture . 1

1.2 Motivation and scope 4

1.3 Objectives . 6

2 Inverse kinematics of redundant robots 11

2.1 Introduction . 11

2.2 Problem formulation 13

2.3 Local solutions . 14

2.4 Global solution . 17

2.5 Reduced order solutions 36

2.6 Topological analysis of inverse kinematic mappings 52

2.7 Dynamic programming 67

2.8 Application to a 7-DOF robotic arm 121

3 Time-optimal planning of non-redundant robots 133

3.1 Introduction . 133

3.2 Problem formulation 134

3.3 Analysis in the λ domain 146

iii

3.4 Resolution techniques 169

3.5 Use case definition and resolution by identification
of switching points 179

3.6 Resolution with a genetic algorithm 185

3.7 Resolution with dynamic programming 202

3.8 Trajectory tracking 214

4 Time-optimal planning of redundant robots 227

4.1 Existing problem formulations 227

4.2 Time-optimal control of redundant robots with dy-
namic programming 241

4.3 Application to a 7-DOF robotic arm 252

5 Conclusions 277

5.1 Limitations and improvements on planning 277

5.2 Limitations and improvements on control 291

5.3 Application to other systems 292

Bibliography 293

iv

Chapter 1

Introduction

1.1 The big picture

The financial crisis of 2007-2008 has marked an evident disconti-
nuity in the way progress is conceived. Many countries world-wide
realized the weaknesses of their economical systems, strictly con-
nected to the impoverishment of their production chain and the
transfer of employment from high-productivity sectors to less pro-
ductive or non-productive ones. In the last decade, several coun-
termeasures have been taken by government bodies to re-invent
and re-structure their industries, to convert their productive sys-
tem towards jobs and goods of an high technological content, to
the purpose of increasing the competitiveness of their economies
and retake a slow, but continuous growth.

To this end, the strategical plan of many countries looks towards a
new model of economical development, that must be efficient, sus-
tainable and inclusive. Smart factory and Industry 4.0 certainly
are popular keywords that well depict the change in the way our
companies organize, exchange and produce. In this context, au-
tomation and robotics play a fundamental role. Industrial automa-
tion was progressively introduced and developed in the second half
of the last century and the beginning of 2000s. In 1961, General

2 1. Introduction

Motors started automating spot welding operations in cars man-
ufacturing with the Unimate robot. The first programmable logic
controller was developed at the end of the same decade. In the
’70s, industrial automation started spreading in most manufac-
turing companies around the world, while more versatile robotic
arms arose on the market, capable of performing a variety of dif-
ferent tasks, including pick and place operations and assembly of
mechanical parts. With the advent of personal computers, new
programming languages and networks, industrial automation be-
came distributed, cheaper and way more flexible. Direct-drive
designs for robotic manipulators started appearing in the ’80s,
following the revolutionary studies of Takeo Kanade. In the fol-
lowing decades, manufacturing robots and apparatuses started be-
coming synchronized, allowing for full-plant automation in many
sectors. While, nowadays, collaborative and adaptive systems are
already the reality, the current challenge consists in making auto-
mated manufacturing smarter, safer and more advanced. On the
one hand, the market is constantly shifting towards a customer-
centered model, asking for an higher level of product customiza-
tion, on the other, factories need to increase their productivity and
efficiency. In the background, the environment poses the unique
challenge of making the production sustainable.

From the technical viewpoint, this general vision translates, more
practically, in requirements of flexibility, efficiency and sustain-
ability that the robotic and autonomous systems, that make up
the new model of industry, have to comply with. Systems are
flexible when they can easily re-adapt to different objectives and
constraints in a short time, with negligible efforts and costs. Flex-
ibility and re-adaptation are also linked to availability, intended
as the characteristic of a plant to be functioning for the most of its
lifetime, allowing for automatic fault detection and diagnosis and
online maintenance. Systems are efficient when they are utilized
at the maximum of their capacity, when they are optimized in a
way that their limit is structural and not connected to the way
they are operated. Efficiency is naturally linked to sustainability,
in that resources are not wasted, but are totally dedicated to the

1.1. The big picture 3

fulfillment of the production task.

There is no efficiency without the possibility of measuring the
performance of a system, and indeed, one of the pillars of the
industrial revolution we are living consists in the capability of
collecting data and providing means to estimate the margin for
improvement. While, in the past, the adoption of robotic systems
was confined to a few big manufacturing industries, nowadays they
are affordable and available even to medium and small enterprises.
Day by day, their usage is becoming widespread, which further
increases the impact of technologies and algorithms that are able
to optimize their behavior and make them more efficient.

Manufacturing industries are not the only playground for advanced
robotics, but other flourishing markets, and as strategical for the
economy of the future, are aerospace and service robotics. The
interesting matter is that the same requirements of efficiency, flex-
ibility and sustainability hold in these fields. The development
of aerospace technologies is supported by the spillover it entails
into other sectors and by the evidence that the challenges it in-
troduces contribute increasing the competitiveness of industries.
Robots are employed for the exploration and colonization of celes-
tial bodies. They allow a reduction of mission costs, free humans
from dangerous tasks and perform activities otherwise unfeasible
for men. Robots act as human precursors, explore unknown en-
vironments providing useful information and preparing them for
human settlement, explore extreme or remote areas where human
deployment is not currently feasible and support men in the main-
tenance of current assets [1]. But applications are not limited to
exploration and colonization, as robots are employed or regarded
as future enablers for missions involving on-orbit servicing [2], ac-
tive space debris removal [3] and in-space manufacturing [4]. In
space, because of limited energy sources, power efficiency is cer-
tainly central [5], but availability, reliability and safety are also
important factors.

4 1. Introduction

1.2 Motivation and scope

Depending on the application and characteristics of the specific
robotic system, several definitions of efficiency may be given. In
automated manufacturing industries, where the objective is to in-
crease the throughput of the plant, a system is efficient if it can
output goods as fast as possible. In a planetary construction sce-
nario, where the energy sources are limited and expensive, the
efficiency lies in the capability of completing the assigned oper-
ation by consuming as less energy as possible. These are only
some examples, but efficiency can be found in the quality of the
product that is manufactured or the task that is performed, in the
lifetime of the robotic system itself or costs associated to periodic
maintenance, among other things. All these cases have a common
denominator that is the definition of one or more performance in-
dices that have to be optimized, i.e. minimized or maximized, in
order to achieve efficiency.

This dissertation focuses on the applications that require robotic
manipulation and, in particular, on robotic systems characterized
by kinematic redundancy. The introduction of a kinematic redun-
dancy gives the system an higher degree of dexterity and mobility
that can be exploited to optimize the performance indices of in-
terest. Redundancy can be structural, when the robot is designed
to be redundant for generic tasks, or functional, when the robot is
operated so as to be redundant. The concept applies to anthropo-
morphic serial chains, that are by far the most widespread robotic
systems in manufacturing industries, but it is general enough to
be extended to more complex systems. In fact, kinematic redun-
dancy can be found in humanoids, mobile manipulators (terres-
trial, aerial), parallel robots and systems of cooperating robots,
that are more common in service and aerospace robotics. To date,
in order to satisfy the increasing demand for flexible and more
efficient robots, an increasing number of serial robot manufactur-
ers offers products characterized by structural kinematic redun-
dancy. The optimization problem that looks into the exploitation

1.2. Motivation and scope 5

of redundancy to optimize a given performance index is commonly
referred to as redundancy resolution.

Many robotic tasks require to follow a specific path, such as in
welding, cutting, gluing and in some assembly and disassembly
tasks. This is opposed to point-to-point motion, that is rather
typical in pick-and-place operations. Often, although following
a path is not strictly required by the task itself, when the sur-
rounding environment is cluttered by many obstacles, the most
convenient approach is still to assign a specific path that avoids
them. The definition of the speed with which the path is tracked
is also a decision variable that, in most applications, is neces-
sary to optimize. The criterion to follow, as mentioned, could
be related to time minimization, but also tracking accuracy and,
more generally, quality measures defined for the specific process.
The optimization problem that looks into the definition of velocity
along a given path is commonly referred to as trajectory planning
or time-parametrization.

Both the optimization problems just stated can be addressed (and
solved) at planning level, hence off-line, before the robot moves,
or at control level, while the task is being executed and the system
has to react to unplanned events. These two components are not,
in general, alternative, but constitute two layers of a common ar-
chitecture. If the communication is enabled between them, better
performances can be achieved. The specific optimization tech-
nique to adopt at one stage or the other depends, among other
things, on the available computational budget, intended as the
time available to plan an operation, and constraints related to the
computer architecture, in terms of CPU and memory. This aspect
is crucial as it regulates how often the loop between planning and
control can be closed. The shorter the loop period is, the more
reactive the robot and the poorer the quality of the optimization
(local optimality). On the other hand, if the loop period is larger,
the robot is less reactive, but, in general, the objective function
can be better optimized (global optimality).

Nowadays, many applications require the robots to live and oper-

6 1. Introduction

ate in unstructured, unknown and highly-dynamical environments,
which undoubtedly shifts the attention of research towards real-
time planning and control. However, there still are situations, that
are quite frequent in reality, where the process of off-line plan-
ning is not fully optimized in view of the strategical objectives
we described. Indeed, the major employment of anthropomor-
phic arms in industries still concerns the execution of repetitive
tasks in structured environments, where the task is planned once
and executed cyclically. In the aerospace sector, off-line planning
instances exist in the mission design phase for feasibility and bud-
get assessments. Also, some sequences for in-orbit manipulation
can be pre-planned in an optimal way. In missions that are char-
acterized by windowed communications, a long planning time is
usually available on ground to deliver more efficient commands to
the spaceborne asset. On the contrary, when the domain requires
highly-reactive behaviors, off-line planning can help measuring the
performance of on-line algorithms so as to estimate the room avail-
able for improvement. The scenarios just described are the domain
of this dissertation.

1.3 Objectives

Whether they are executed on-line or off-line, redundancy reso-
lution and trajectory planning have been mostly treated as two
independent, consecutive optimization processes [6, 7, 8], as de-
picted in Figure 1.1. A workspace path is given, that is mapped,
through inverse kinematics, into the joint space, then, the joint-
space path is time-parametrized to yield a trajectory that can be
executed through motion control at joint level. The optimization
performed at the former stage can be functional to the optimiza-
tion performed at the latter. For instance, if the objective of tra-
jectory planning is to define a minimum-time motion, redundancy
resolution may optimize, according to an heuristic approach, the
acceleration/deceleration capabilities of the manipulator along the
path. Overall, the two processes “cooperate” to achieve a common

1.3. Objectives 7

objective.

Unfortunately, in an attempt to reach the global optimum, the
resolution of two independent globally-optimal problems does not
guarantee the achievement of the overall global optimum. Indeed,
if the objective is to minimize the path traversing time (or any
other quality measure that depends on time), but the time along
the path is only defined at the level of trajectory planning, there
is no possibility for redundancy resolution to achieve such a goal.

Redundancy
resolution (IK)

Trajectory
planning

x(λ) q(λ) q(t)

Figure 1.1: Redundancy resolution and trajectory planning as two
independent processes; x(λ) is the workspace path, q(λ) the joint-
space path and q(t) the joint-space trajectory

More recently, the two problems have been combined and solved
together [9, 10, 11], as in Figure 1.2, although, because of the prob-
lem complexity and the underlying resolution technique, global
optimality cannot be guaranteed. To provide a unified solution
for both optimization problems is also the objective of this disser-
tation. Although several performance indices can be defined, the
focus of this thesis is on time optimality.

Redundancy resolution
& trajectory planning

x(λ) q(t)

Figure 1.2: Redundancy resolution and trajectory planning as one
unique process; x(λ) is the workspace path and q(t) the joint-space
trajectory

In all the off-line applications that motivate this work, although
the environment where the robot operates is structured, static,

8 1. Introduction

known or partially known, not all the optimization techniques can
capture the complexity of the real system. A typical approach
to guarantee robustness and safety, prevent failures and maximize
availability, is to downgrade the robot capacity and deliver con-
servative plans. This is necessary because the real system is often
too complex to be modeled in mathematical terms, yet some op-
timization techniques show greater flexibility than others. This
dissertation adopts dynamic programming as the main underlying
methodology and central idea to cope with the complexity of real-
ity. Also, because of its employment, in previous works, for both
the optimization problems described above, it naturally arises as
the unifying approach. Dynamic programming is extremely flex-
ible in the accommodation of arbitrary constraints and objective
functions [12, 13, 14] and, compatibly with the available planning
time, can guarantee global optimality. When applied to real sys-
tems, it well describes the constraints at hand and no conservative
hypotheses are necessary. Differently from many other optimiza-
tion techniques, where more constraints make the search of the
optimum cumbersome, in dynamic programming they are benefi-
cial and allow reducing the computational complexity.

This thesis is structured in three main chapters, that address each
of the blocks in Figure 1.1 and Figure 1.2 separately, in the fol-
lowing order: redundancy resolution, trajectory planning (time-
optimal planning, in particular), time-optimal planning for redun-
dant robots. All the chapters have a common structure. At first,
the related literature is recalled, through an overview of the op-
timization strategies that can be adopted to solve the problem
at hand. Then, the dynamic programming approach is presented.
Similarities and differences in the application of dynamic program-
ming for each domain are outlined. Last, each chapter is concluded
with one or more experiments performed in simulation (for chap-
ters 2 and 3) or in reality (for Chapter 4).

Each chapter contains some elements of novelty, briefly summa-
rized here.

� Chapter 2 presents a topological approach to redundancy

1.3. Objectives 9

resolution with dynamic programming. The objective is to
exploit some topological features of the inverse kinematic
mapping (i.e. self-motion manifolds, homotopy classes and
extended aspects) to design a dynamic programming algo-
rithm that is able to overcome the limits of the optimization
techniques based on calculus of variations. The algorithm
is based onto two additional innovations concerning redun-
dancy parametrization and redundant manipulators topol-
ogy. In particular, a minimum parametrization of redun-
dancy has been derived that allows reducing the number of
differential equations that describe the optimal motion of
a redundant manipulator. On the topological side, homo-
topy classes of self-motion manifolds and joint-space paths
have been analyzed and two different homotopy relations
have been identified, here termed C-homotopy and C-path-
homotopy.

� Chapter 3 presents a novel genetic algorithm to perform
time-optimal planning along pre-scribed paths for non-re-
dundant manipulators. The main advantage of this approach
consists in the possibility of solving the singularities affect-
ing time-optimal solutions. To this respect, a comparison
with dynamic programming is provided.

� Chapter 4 presents a novel dynamic programming algorithm
to address the problem of time-optimal planning of redun-
dant robots. It combines the topological approach of Chap-
ter 2 with the classical dynamic programming scheme for
time-optimal planning of Chapter 3. The main advantage of
the algorithm consists in the simplicity with which real-world
constraints are imposed, that allows for a smooth execution
on real hardware.

The thesis is concluded in Chapter 5 by summarizing the achieve-
ment of this work and suggesting some lines of development for
future research in this area.

10 1. Introduction

Chapter 2

Inverse kinematics of
redundant robots

2.1 Introduction

When a task is assigned in a manipulator’s workspace, we define
the inverse kinematics as the problem of finding the joints posi-
tions allowing fulfillment of the task. If the task is more precisely
characterized in terms of velocity and acceleration in the work-
space, the inverse kinematics problem can be solved at differential
level, in order to find the corresponding velocities and accelera-
tions in the joint space.

A manipulator is defined as kinematically redundant when the
number of degrees of freedom required by the task to execute is
lower than the number of degrees of freedom provided by the ma-
nipulator’s kinematic chain. In the simple case of a 3-DOF serial
planar manipulator describing a circular trajectory, it is kinemat-
ically redundant if the end-effector orientation is arbitrary, while
it is not if its orientation is constrained. Kinematic redundancy
must not be confused with actuation redundancy and measure-
ment redundancy, that are typical of closed kinematic chains. Ex-
amples of redundancy for a parallel manipulator are provided in

12 2. Inverse kinematics of redundant robots

Figure 2.1. Actuation redundancy occurs when the end-effector is
over-constrained by the actuators, while measurement redundancy
occurs when the number of sensors is greater than the number of
actuated joints [15]. The reader may recognize that, for the paral-
lel structures of Figure 2.1, once the end-effector position and ori-
entation are given, the kinematically redundant robot on the left
admits infinite configurations for the upper legs. On the contrary,
the redundantly actuated robot in the middle does not and all four
actuators are constrained by the end-effector pose. Throughout
this dissertation, for brevity, the terms redundant and redundancy
will be used to implicitly refer to kinematic redundancy.

Figure 2.1: Kinematic redundancy (left), actuation redundancy
(center) and measurement redundancy (right) for a planar parallel
mechanism, where sensors are identified by dashed lines and arc
[15]

If the manipulator is redundant, the inverse kinematics problem
admits an infinite set of solutions almost everywhere in its work-
space. Each solution represents a different kinematic configuration
that can be reached at each point of the end-effector trajectory,
while the task is achieved. In literature, sequences of such config-
urations are often referred to as self-motions or internal motions.

The augmented dexterity of redundant manipulators can be ex-
ploited to achieve several objectives, which are usually desirable
for a multitude of real applications [16], such as:

� local or global optimization of performance indices;

2.2. Problem formulation 13

� improvement of manipulability and singularity avoidance;

� obstacle avoidance and constrained motions.

In this thesis, we focus on redundancy resolution via global opti-
mization of performance indices. In Section 2.2, the general math-
ematical formulation is given. Sections 2.3 and 2.4 address the
problem of optimizing generic performance indices at each time
instant t and globally, respectively. In Section 2.4, the reader may
also find an overview of the most relevant performance indices
based on the first-order Euler-Lagrange necessary conditions that,
to date, have been used by several researchers in their works. Sec-
tion 2.5 provides an alternative formulation for the solutions found
throughout Section 2.4, which simplifies the set of the differential
equations to be solved. In Section 2.6, several topological features
of the inverse kinematics mapping are presented, on the basis of
which, in Section 2.7, a dynamic programming algorithm for re-
dundancy resolution is defined. The chapter is concluded with
Section 2.8, where the designed algorithm is applied to a 7-DOF
spatial manipulator in simulation.

2.2 Problem formulation

A path is assigned in a m-dimensional task space as x(λ), where
λ ∈ [0,Λ] is a parameter.

If λ is the time, a trajectory is assigned. Otherwise, the time law,
i.e. the relation between λ and the time should be given to obtain
a trajectory.

A redundant manipulator has n joints (with n ≥ m) and is de-
scribed by the direct kinematic functions k(q) and their deriva-
tives. If (•) is a position or angular position variable, we define

(•)′ = d(•)
dλ

and call it λ-velocity or parametric velocity. Likewise,
its derivative with respect to λ will be referred to as λ-acceleration

14 2. Inverse kinematics of redundant robots

or parametric acceleration. Thus, said J(q) = dk
dq

the manipula-
tor’s Jacobian, we have:

x = k(q) (2.1)

x′ = J(q)q′ (2.2)

x′′ = J(q)q′′ + J′(q,q′)q′ (2.3)

The problem is to find the solution q(λ) that keeps the end-effector
on the path and globally minimizes a performance index G, func-
tion of joints positions, joints λ-velocity and parameter λ:

min
q(λ)

∫ Λ

0

G(q,q′, λ)dλ

s.t. x = k(q)

(2.4)

Notice that this is the usual formulation of the problem, but,
in real applications, there actually are other constraints, such as
those on joint limits, joint velocity limits, joint acceleration limits
and torque limits, that might not always be treated by choosing a
suitable performance index G.

2.3 Local solutions

Before analyzing the solutions to (2.4), it is worth considering the
case in which the performance index G has to be locally optimized
(i.e. at each trajectory point). Local solutions are those that, for
every λ, solve the inverse kinematics at a differential level.

2.3.1 First-order

In order to minimize a generic performance index, the problem
can be posed as

min
q′∈<n

1

2
(q′ − φ′)T (q′ − φ′)

s.t. x′ = J(q)q′
(2.5)

2.3. Local solutions 15

that is for each λ to find the closest solution q′ to the vector φ′

that still lets the manipulator follow the path (it is assumed that
x′ ∈ R(J), range space of J). It is easy to show, by using the
Lagrangian multipliers technique, that, outside of singularities,
the solution is [17, 18]

q′(λ) = J†(q)x′(λ) +
[
I− J†(q)J(q)

]
φ′

q(λ) =

∫ λ

0

q′(τ)dτ + q0

(2.6)

First term in the r.h.s. of (2.6) are the minimum-norm joint ve-
locities that are necessary to follow the path [19]. The second
term are the joint velocities projected in the null-space of the Ja-
cobian leading to internal motion. In (2.6), φ′ can be chosen as
φ′ = −k ∂G

∂q
in order to minimize the performance index G.

With this choice, the solution (2.6) tends to minimize the perfor-
mance index without reaching local minima, as ∂G

∂q
is not necessar-

ily zeroed at each λ. In other words, the instantaneous resolution
at velocity level only guarantees that the motion is locally im-
proved by incremental movement from the current arm state [20].
Moreover, the choice of the parameter k can lead to different (and
sometimes unacceptable) solutions.

It is also important to notice that, in order to fully define solution
(2.6), the initial conditions have to be given. Different initial con-
ditions lead to different solutions, providing different results for
the performance index.

In addition, the solution is not conservative (or cyclic) in the whole
space [21], i.e. a closed task-space path does not necessarily lead
to a closed joint-space path.

Lastly, at the end of the path, internal motion could still be per-
formed to reach the minimum possible value of G.

In a few cases, it is possible to find a simpler closed-form solu-
tion to optimize certain performance indices. For instance, if the

16 2. Inverse kinematics of redundant robots

performance index to be minimized is

G =
1

2
q′TWq′ (2.7)

it is well know that the best local solution is

q′(λ) = J†W (q)x′(λ) (2.8)

where J†W (q) = W−1JT (q)
[
J(q)W−1JT (q)

]−1
is the weighted

pseudoinverse of the Jacobian for non-singular J(q)W−1JT (q).

A different choice could be that of choosing the null-space joint
velocities in (2.6) as those that minimize the performance index at
each time instant, that is reaching ∂G

∂q
= 0 at each λ, if the choice

φ′ = −k ∂G
∂q

is made. This gives the local minimum at each λ but
could lead to discontinuities in the velocities. In this case, the
minimization of the performance index can also be performed at
λ = 0 (if not all of the initial joint variables are given). Notice also
that, even though a point-wise optimal solution is obtained, the
resulting velocity could be unacceptably large if the manipulator
is close to a singular configuration.

It is also worth noticing that, regardless of the form of the solution,
closed-loop inverse kinematics schemes [22] have to be necessar-
ily adopted to reduce the integration error when the solution is
implemented in discrete time.

2.3.2 Second-order

Likewise, it is possible to demonstrate that the second-order in-
verse kinematics solution, locally optimizing a generic performance
index, is

q′′(λ) = J†(x′′ − J′q′) + (I− J†J)φ′′

q′(λ) =

∫ λ

0

q′′(τ)dτ + q′0

q(λ) =

∫ λ

0

q′(τ)dτ + q0

(2.9)

2.4. Global solution 17

where, for the sake of clarity, the dependencies on λ and q have
been omitted at the right-hand side of equation (2.9).

Similarly to the first-order case, the first term in the r.h.s. of
(2.9) represents the minimum-norm joints λ-accelerations, while
the second term contains the joints λ-accelerations projected onto
the null-space of the Jacobian.

It is important to note, also for the discussions that will follow,
that the second-order redundancy resolution scheme may lead to
anomalous behaviors, described in [20] and [23]. Such behaviors
consist in large torques, accelerations and velocities, that have
also been observed for a variety of algorithms, including those
obtained by changing the value of φ′′ or by using the inertia-
weighted pseudoinverse J†H in place of J†. Indeed, because the
local solutions do not have visibility over the whole trajectory, they
may lead the manipulator toward configurations where a partial
loss of redundancy may happen (i.e. alignment of links), resulting
in the aforementioned issues.

An alternative solution to (2.9) can be found by differentiating
(2.6). In this case, one would obtain

q′′(λ) = J†(x′′ − J′q′) + (I− J†J)(J†
′
x′ − J†

′
Jφ′ + φ′′) (2.10)

which demonstrates that even though minimum-norm velocities
were chosen (i.e. φ′ = 0 and φ′′ = 0), minimum-norm accelerations
would not be necessarily obtained [24].

2.4 Global solution

Unlike local optimization techniques, global ones aim at minimiz-
ing a certain performance index over the whole trajectory, provid-
ing a solution to problem (2.4). Global solutions might not (and
usually do not) achieve local optimization, i.e. values of λ may
exist where the globally-minimized cost function is greater than

18 2. Inverse kinematics of redundant robots

the locally-minimized cost function, but they guarantee that the
performance index is optimized in a global sense.

Some distinctive features of global solutions are:

� they have to be necessarily computed off-line. It will be
shown in this section that global optimization problems often
result in Boundary Value Problems (BVP) which are time
consuming and sometimes hard to solve, even with modern
technologies. However, while the heavy computation bur-
den required for global methods rules out real-time control,
for common industrial problems requiring repetitive motion,
the global technique may be perfectly suited for finding a
solution which will be used over and over again. Likewise,
in all the cases where pre-planning is possible, such as in
a multitude of space applications, the optimum trajectory
could be computed off-line and sent to the spaceborne asset
to be executed.

� initial conditions could be not given but computed as a part
of the solution;

� it will be shown that only necessary conditions can be given
for a solution to be optimal. This means that global op-
timization techniques may still end up in local minima/-
maxima: there could be multiple trajectories satisfying the
necessary conditions and even multiple optimal trajectories
(i.e. the true minimum is not necessarily unique); also, these
trajectories do not necessarily belong to the same class of
homotopy [25, 26];

� global solutions obtained from the resolution of the BVP
could be anomalous, meaning that, because of the vicinity
to singularities, the quantities in play could uncontrollably
grow, resulting in unfeasible profiles;

� global solutions are not necessarily cyclic per se (i.e. same
initial and final joints configurations), if not explicitly im-
posed as a constraint of the problem.

2.4. Global solution 19

Since the problem (2.4) is the optimization of an integral form
cost function subject to some constraints, calculus of variations
can be used to obtain the necessary conditions from which the
closed-form optimal solution can be derived. In particular, it has
been demonstrated that both the Euler-Lagrange equations and
the Pontryagin’s maximum principle allow to obtain such a solu-
tion and ultimately provide coherent results.

While the Pontryagin’s maximum principle is more suitable for
those cases where the constraints are provided in a differential
form, the Euler-Lagrange method can be directly applied to di-
rect kinematics, immediately solving problem (2.4). In order to
ease the connection between the present dissertation and previous
works, the majority of which uses the Euler-Lagrange conditions,
the same method is chosen here as the reference. However, for
the sake of completeness, mentions of the Pontryagin’s maximum
principle are provided in Section 2.4.3.

2.4.1 Euler-Lagrange necessary conditions

The Lagrangian function is defined as:

L = G(q,q′, λ) + µT [x− k(q)] (2.11)

where G is the performance index of (2.4) and µ is the vector of
Lagrange multipliers. It can be demonstrated that the first-order
necessary conditions for a minimum or a maximum of the integral
performance index are

∂L

∂q
− d

dλ

(
∂L

∂q′

)
= 0

x(λ) = k(q(λ))

(2.12)

which are n second-order differential equations (equivalent to 2n
first-order differential equations), known as Euler’s equations or
Euler-Lagrange’s equations, and m algebraic equations. Together

20 2. Inverse kinematics of redundant robots

with them, the following 2n two-point boundary conditions have
to be satisfied:(

∂L

∂q′

)T
· δq(λB) = 0 for λB = 0,Λ (2.13)

Since algebraic equations and its first derivatives can be used in
principle to simplify the differential equations, 2(n−m) differen-
tial equations remain to be solved. In Section 2.5.2, a method is
proposed to reduce the system of equations, either by choosing
one of the q variables, or by suitably selecting a combination of
them. The limitations of such a method are also discussed.

The differential equation in (2.12) can also be written as

d

dλ
Gq′ −Gq + JTµ = 0 (2.14)

and its boundary condition as

GT
q′ · δq(λB) = 0 for λB = 0,Λ (2.15)

where Gq′ = ∂G
∂q′

and Gq = ∂G
∂q

.

Assuming that we wanted to minimize the cost function, the nec-
essary condition (Legendre’s condition) for the solution to be a
minimum is that, along the solution,

∂2L

∂q′2
≥ 0 (2.16)

As remarked at the beginning of Section 2.4, these are only neces-
sary conditions, which means that solutions could be found which
do not correspond to the actual global minimum. As a matter
of fact, in [25], it has been observed that each solution satisfying
the Euler-Lagrange equations will be optimal within its homo-
topy class, but not necessarily optimal in a global sense. In other
words, the Euler-Lagrange equations are not able to distinguish
optimal solutions in differing homotopy classes. Since more than

2.4. Global solution 21

one homotopy relation can be defined between joint-space paths,
we detail this matter further in Section 2.6.2.

If a cost function G(q,q′,q′′, λ) is given which is dependent on the
second-order derivative of the joints positions, the second-order
necessary conditions have to be considered instead:

∂L

∂q
− d

dλ

(
∂L

∂q′

)
+

d2

dλ2

(
∂L

∂q′′

)
= 0 (2.17)

This formulation allows to accommodate a multitude of cost func-
tions defined on acceleration-dependent terms. For instance, in
[23], the square-norm of torques is minimized.

2.4.2 Euler-Lagrange boundary conditions

For the Euler-Lagrange necessary conditions just described, let us
analyze the boundary conditions. Several cases are possible:

� both the initial and final joint configurations are free;

� only the initial joint configurations are assigned, while the
final ones are free;

� both the initial and final joint configurations are assigned;

� initial and final joint configurations are not assigned, but
they are required to be the same;

� initial joint positions and velocities are assigned, while the
final ones are free.

2.4.2.1 Initial and final configurations not assigned

If the initial and final configurations are not assigned, the “natu-
ral” boundary conditions (2.15) apply. Recalling (2.6), one may
write:

δq(λ) = J†(q)δx(λ) +
[
I− J†(q)J(q)

]
φ′ (2.18)

22 2. Inverse kinematics of redundant robots

At the two extremal points λ = 0 and λ = Λ, x is given, implying
δx = 0 and δq on the left-hand side of the equation corresponds to
internal motion. This implies GT

q′(I−J†J)φ′ = 0 (the dependency
on q and q′ has been omitted to simplify notation), but, since it
has to hold for each φ′, the boundary conditions become

(I− J†J)Gq′ = 0 ⇒ Gq′ ∈ R(JT) (2.19)

where R(JT) is the range space of JT , so that, being N(J) the
null space of J, R(JT) = N⊥(J) holds. Although (2.19) are 2n
conditions, without loss of generality, one may replace the null-
space projector (I− J†J) with the transpose of a basis N ∈ <n×r
of the Jacobian’s null space to reduce the number of conditions to
2(n−m) = 2r [25]:

NT (q(λB))Gq′(λB) = 0 for λB = 0,Λ (2.20)

For typical performance indices, as shown in Section 2.4.5, such
boundary conditions constrain the value of q′ at the boundaries,
while the actual joints initial and final configurations q(λB) will
be an output of the problem. Being only half of the variables,
i.e. q′, constrained at the initial time and the same constrained at
the final time, a Two-Points Boundary Value Problem has to be
solved in this case.

Natural boundary conditions guarantee that the value of the per-
formance index is lower (in case of minimization) or higher (in
case of maximization) than any other value obtained with assigned
boundary conditions.

2.4.2.2 Initial configuration assigned

In this case, at the initial point, δq = 0 and there are no nat-
ural boundary conditions. For the resolution of the differential
equations, n values shall be provided as input to the problem for
the initial joint positions. However, since the initial configura-
tion shall obviously respect the task constraint, n−m conditions

2.4. Global solution 23

are sufficient, while the remaining m are computed from inverse
kinematics. At the final point, the n−m natural conditions apply.

In this case, n variables, i.e. q, are assigned at the initial time,
while the other n, i.e. q′, are constrained at the final time, which
means that, again, a Two-Point Boundary Value Problem has to
be solved.

2.4.2.3 Initial and final configurations assigned

At both the initial and final point, δq = 0 and there are no natural
boundary conditions. This is again a Two-Point Boundary Value
Problem, as only n variables, i.e. q, are assigned at the beginning
and at the end of the trajectory.

For some performance indices, the initial and final configurations
could be chosen according to some local optimization criterion
which is selected coherently with the global optimization criterion.
For example, if the objective was to minimize the variation of the
manipulability index

I =

∫ Λ

0

[
d

dλ
(det(JJT))

]2

dλ (2.21)

the boundary configurations could be chosen so that the manip-
ulability index is as large as possible. This requires to solve the
following problem at the boundaries [27]:

max
q∈<n

det(JJT) (2.22)

In other cases, the initial and final configurations could be ”manu-
ally” fixed on the basis of constraints of the workspace, which is a
common possibility in real applications. In particular, if the initial
and final configurations are chosen as equal, which is possible if the
trajectory is closed in the task space, it will be closed in the joint
space too. This choice made, Choi et al. [28] pointed out that,
for the cases where the redundancy degree is one, i.e. n−m = 1,
the problem could be transformed into an Initial Value Problem

24 2. Inverse kinematics of redundant robots

(IVP), which is trivial to solve compared to BVPs. The idea be-
hind this resolution strategy is that, once the initial position is
assigned, the initial velocity can be sought that ensures conserva-
tivity in the joint space, i.e. q(Λ) = q(0). Once the initial joint
velocity has been parametrized with respect to a scalar parameter,
the objective is achieved by iterating on such a parameter, until
the cost function

K =
1

2
‖q(Λ)− q(0)‖2 (2.23)

gets below a certain pre-assigned tolerance.

2.4.2.4 Equal initial and final configurations

In this case the configurations are not assigned, but it is only
required that they are the same. If they are the same, their varia-
tions must also be the same. This leads to the additional condition
that the initial and final joint velocities must be the same [29].
This means that the optimization problem (2.12) can be solved
with the addition of the following two constraints (conservativity
requirements):

q(0) = q(Λ)

q′(0) = q′(Λ)
(2.24)

Even in this case, we are encountering a highly non-linear bound-
ary value problem, however, the periodicity of the solution could
be exploited to develop an approximate solution. Wang and Kaze-
rounian [29] demonstrated that it is possible to approximate the
redundant joint coordinates with Fourier series and, from these,
to seek the solution through an iterative optimization algorithm.
Their results are extremely close to the optimal solution, while the
execution time is tens to hundreds times less than that needed to
solve the boundary value problem.

2.4. Global solution 25

2.4.2.5 Assigned initial configuration and velocity

In this case, all the boundary conditions are at the initial point.
The problem can then be solved as an Initial Value Problem. But,
while at the initial point δq = 0 and there are no natural boundary
conditions, this is not true at the final point. The solution will
violate the natural boundary conditions at the final point that
is a necessary condition for the minimum, ending up in a weak
minimum. The strong minimum could be achieved with a sudden
jump to the velocity provided by the imposition of the natural
condition, but this would imply a discontinuity in the parametric
velocities between the assigned value at λ = 0 and equation (2.14)
at λ > 0. Since such a discontinuity is physically impossible, the
best strategy would be to ”tend” to the natural velocity as soon
as possible and then continue following (2.14) [24].

2.4.3 Pontryagin’s maximum principle

The Pontryagin’s maximum principle is applicable to all the cases
where an integral cost function has to be optimized, subject to
constraints made of differential equations. The first application of
such a method to redundant manipulators appears in [30], where
problem (2.4) is actually rewritten by using the first-order inverse
kinematics in place of the positions kinematics (with u = φ′):

min
q(λ)

∫ Λ

0

G(q,q′, λ)dλ

s.t. q′ = J†(q)x′ +
[
I− J†(q)J(q)

]
u

(2.25)

It is worth noting that in (2.25), as in [30], the first-order inverse
kinematics is written in its most general form, with the inclusion
of the null-space joints λ-velocities, as done in (2.6). In (2.25),
u ∈ <n can be seen as a system input that is able to affect the
evolution of the state q, when x′ is given.

26 2. Inverse kinematics of redundant robots

Now define the functions g as

g(q,u, λ) = J†(q)x′ +
[
I− J†(q)J(q)

]
u (2.26)

Thus the problem to be solved, more generally, becomes

min
q(λ)

∫ Λ

0

G(q,q′, λ)dλ

s.t. q′ = g(q,u, λ)

(2.27)

The following Hamiltonian is introduced, with η ∈ <n called co-
state vector.

H(q,q′,η,u, λ) = −G(q,q′, λ) + ηTg(q,u, λ) (2.28)

The Pontryagin’s maximum principle asserts that, if u∗(λ) is the
optimal control sequence, i.e. the one maximizing the Hamilto-
nian, the optimal state sequence, i.e. joint-space trajectory, can
be obtained by solving the following differential equations:

η′(λ) = −

(
∂H

∂q

)T

(2.29)

q′(λ) =

(
∂H

∂η

)T

(2.30)

The reader may recognize that (2.30) is equivalent to the con-
straint in (2.25).

Both sets of differential equations will depend on g and thus on
u. According to the principle just enunciated, the optimal control
sequence has to be selected such that

u∗(λ) = max
u(λ)

H(q,q′,η,u, λ) (2.31)

In the case u ∈ <n, (2.31) directly translates into

∂H(q,q′,η,u, λ)

∂u
= 0 (2.32)

2.4. Global solution 27

Otherwise, if u ∈ U, limited subset of <n, maximums could exist
on the boundary of U, not satisfying equation (2.32).

Together with the 2n equations (2.29) and (2.30), the following
boundary conditions have to be satisfied:

ηT (0) · δq(0) = 0 (2.33)

ηT (Λ) · δq(Λ) = 0 (2.34)

x(0)− k(q(0)) = 0 (2.35)

Although it may seem that the number of boundary conditions is
2n + m, in the following section it will be shown that m of the
conditions above are linearly dependent on others. Thus only 2n
of the 2n + m constraints above are needed to solve equations
(2.29) and (2.30). It is also worth remarking that the imposition
of conditions (2.35) is necessary to make sure that the kinematics
constraints are respected. As the integration is performed by using
equations (2.30), which are equivalent to first-order differential
kinematics in (2.25), imposing the kinematic constraints at λ = 0
ensures they are respected at each λ.

If the problem is formulated in such a way that boundary condi-
tions on joints λ-velocities are given, equations (2.33) and (2.34)
can be inserted in the constraints equations (2.30) to obtain alter-
native boundary conditions in joint λ-velocity form [31].

2.4.4 Pontryagin’s boundary conditions

For the Pontryagin’s necessary conditions just described, let us
analyze the boundary conditions. The same cases as the Euler-
Lagrange conditions are considered.

2.4.4.1 Initial and final configurations not assigned

If both q(0) and q(Λ) are free, the “natural” boundary conditions
apply. As far as the final state is concerned, we can say that

28 2. Inverse kinematics of redundant robots

δq(Λ) 6= 0 as q(Λ) is completely free. The same cannot be said
for q(0), as it is partially constrained by (2.35). By making δq(0)
explicit, as in (2.18), boundary conditions (2.33) become[

I− J†
(
q(0)

)
J
(
q(0)

)]
η(0) = 0 (2.36)

In the case of free initial and final configurations, the boundary
conditions (2.33)-(2.35) become[

I− J†
(
q(0)

)
J
(
q(0)

)]
η(0) = 0 (2.37)

η(Λ) = 0 (2.38)

x(0)− k(q(0)) = 0 (2.39)

As observed before in regards to the Euler-Lagrange conditions,
only n − m of the equations (2.37) are linearly independent. In
facts, without loss of generality, one may replace the null-space
projector with a null-space basis, leading to n−m conditions.

Of the conditions above, n are given at the initial stage, n are given
at the final stage, thus a Two-Point Boundary Value Problem has
to be solved.

2.4.4.2 Initial configuration assigned

In this case, at the initial stage, δq = 0 and there are no nat-
ural boundary conditions. For the resolution of the differential
equations, n values shall be provided as input to the problem for
the initial joint positions. However, since the initial configura-
tion shall obviously respect the task constraint, n−m conditions
are sufficient, while the remaining m are computed from inverse
kinematics. At the final point, the n−m natural conditions apply.

Therefore, assuming that the initial configuration does not violate
the kinematic constraints, the boundary conditions are

q(0) = qi (2.40)

η(Λ) = 0 (2.41)

2.4. Global solution 29

As n of the conditions are given at the initial stage and n are given
at the final stage, a Two Point Boundary Value Problem has to
be solved again.

2.4.4.3 Initial and final configurations assigned

At both the initial and final point, δq = 0 and there are no natural
boundary conditions. Like for the Euler-Lagrange method, this is
again a Two-Point Boundary Value Problem, as only half of the
variables, i.e. q, are assigned at the beginning and at the end of
the trajectory:

q(0) = qi (2.42)

q(Λ) = qf (2.43)

2.4.4.4 Equal initial and final configurations

In case the conservativity requirement is imposed, i.e. x(0) =
x(Λ) → q(0) = q(Λ), the boundary conditions to be considered
are [31]:

q(0)− q(Λ) = 0 (2.44)[
I− J†

(
q(0)

)
J
(
q(0)

)](
η(0)− η(Λ)

)
= 0 (2.45)

x(0)− k(q(0)) = 0 (2.46)

The same considerations as Section 2.4.4.1 about the replacement
of the null-space projector with a null-space basis hold here as
well, resulting in 2n independent boundary conditions.

2.4.5 Typical performance indices

The performance indices reported in this section are computed
starting from the Euler-Lagrange necessary conditions (2.12). The
cost function is assumed to be dependent on joints λ-velocities at

30 2. Inverse kinematics of redundant robots

most, not on higher order derivatives. For an example of second-
order necessary conditions, the reader may refer to [31], where
the square norm of torques is globally minimized. In [32], second-
order necessary conditions are employed to minimize the deflection
of a flexible base that supports a redundant manipulator. This
example is of particular interest as the Euler-Lagrange equations
are derived in a context where a coupled dynamic system made of
the manipulator and its base is considered.

Although the Euler-Lagrange conditions are used throughout this
section, it is possible to demonstrate that the application of the
Pontryagin’s maximum principle leads to equivalent results [31].

2.4.5.1 Least-square velocities

If the performance index to minimize is the square norm of λ-
velocities

G =
1

2
q′Tq′ (2.47)

we have Gq′ = q′ and Gq = 0. The differential equations (2.14)
become

q′′ + JTµ = 0 (2.48)

The solution must also satisfy the algebraic equation in (2.12) and
its derivatives. Solving (2.48) for q′′ and putting it in the second-
order differential kinematics Jq′′ = x′′ − J′q′, leads to

− JJTµ = x′ − J′q′ (2.49)

that solved for µ and put in (2.48) leads to the solution

q′′ = J†(x′′ − J′q′) (2.50)

That is, the global least-square joint λ-velocities are obtained by
using the local least-square joint λ-accelerations. The natural
boundary conditions are

q′ = JTp (2.51)

2.4. Global solution 31

where p is a generic vector at the two extremal points that, since
also the equation x′ = Jq′ holds, can be rewritten as x′ = JJTp.
Solving for p and substituting leads to the two boundary condi-
tions

q′(λB) = J†(q(λB))x′(λB) (2.52)

or, equivalently,[
I− J†(q(λB))J(q(λB))

]
q′(λB) = 0 (2.53)

2.4.5.2 Constant-weighted least-square velocities

In this case the performance index is [24]

G =
1

2
q′TWq′ (2.54)

which gives Gq′ = Wq′ and Gq = 0. The differential equations
(2.14) become

Wq′′ + JTµ = 0 (2.55)

With the same reasoning, the solution must satisfy

q′′ = W−1JT (JW−1JT)−1(x′′ − J′q′) = J†W (x′′ − J′q′) (2.56)

with the two natural boundary conditions

q′(λB) = J†W (q(λB))x′(λB) (2.57)

2.4.5.3 Variable-weighted least-square velocities

The performance index above can be easily generalized to the case
where the weights matrix W is configuration dependent and/or,
even more generally, time dependent [24]:

G =
1

2
q′TW(q, λ)q′ (2.58)

32 2. Inverse kinematics of redundant robots

which gives Gq′ = Wq′ and Gq = 1
2
q′T ∂W

∂q
q′. The differential

equations (2.14) become

Wq′′ + W′q′ + JTµ− 1

2
q′T

∂W

∂q
q′ = 0 (2.59)

With the same reasoning, the solution must satisfy

q′′ = J†W (x′′ − J′q′) + (I− J†WJ)W−1

(
−W′ +

1

2
q′T

∂W

∂q

)
q′

(2.60)
with the two boundary conditions

q′(λB) = J†W (q(λB))x′(λB) (2.61)

Kinetic energy A particular case of the above is when the ma-
trix W is equal to the inertia matrix H [24]. In this case it is

G =
1

2
q′TH(q)q′ (2.62)

which gives Gq′ = Hq′ and Gq = 1
2
q′T ∂H

∂q
q′.

With the same reasoning, the solution must satisfy

q′′ = J†H(x′′ − J′q′) + (I− J†HJ)H−1C (2.63)

where the relation C =
(
−H′ + 1

2
q′T ∂H

∂q

)
q′ has been used to high-

light that the last term in (2.60) corresponds to the Coriolis terms
linked to the manipulator’s torques.

The two natural boundary conditions are

q′(λB) = J†H(q(λB))x′(λB) (2.64)

Variation of the weighted manipulability index Another
perfomance index that can be attributed to the variable-weighted

2.4. Global solution 33

least-square velocities case is the variation of the weighted ma-
nipulability index, that has been introduced in Section 2.4.2.3,
concerning boundary conditions. In this case we have:

G =

[
d

dλ
(det(JWJT))

]2

(2.65)

where w(λ) = det(JWJT) is defined as the weighted manipulabil-
ity index and represents the manipulating ability of the robot or
the distance from singularities.

It can be demonstrated [27] that it is possible to find a matrix U
computed from J and W such that

G = q′TUq′ (2.66)

which resembles the cost function (2.58). The solution to mini-
mizing (2.65), as well as its boundary conditions, can be easily
found from equations (2.60) and (2.61) respectively.

2.4.5.4 Stage-dependent weighted least-square velocities
+ configuration dependent term

In this case the cost function is [25]

G =
1

2
q′TW(λ)q′ + g(q) (2.67)

which gives Gq′ = Wq′ and Gq = ∂g
∂q

.

With the same reasoning as above, the solution must satisfy

q′′ = J†W (x′′ − J′q′) + (I− J†WJ)W−1

(
−W′q′ +

∂g

∂q

)
(2.68)

with the two natural boundary conditions

q′(λB) = J†W (q(λB))x′(λB) (2.69)

34 2. Inverse kinematics of redundant robots

2.4.6 Local versus global solutions

In Section 2.4.5 we have seen that global solutions such as (2.50),
(2.56), (2.60) and (2.68) all resemble the local solution of equation
(2.9), where φ′′ may assume one form or the others to exactly
reproduce each of the global solutions. Indeed, global optimization
of performance indices built on velocities is equivalent to some
kind of second-order local optimization of a different performance
index. For instance, equation (2.50) corresponds to both the global
minimization of least-square velocities and the local minimization
of accelerations.

In Section 2.3.2, we recalled that other researchers pointed out
that local second-order solutions may lead to anomalous behaviors.
However, because of the analogy we highlighted, global solutions
must necessarily be affected by the same problem. This observa-
tion deserves some additional words, as it constitutes one of the
most important limitations of solutions based on Euler-Lagrange
and Pontryagin necessary conditions.

In both [20] and [23], the authors observe that local minimization
of torques could actually produce large, and indeed unfeasible ve-
locities, accelerations and torques if some trajectories are given.
In one of the cases, anomalies are demonstrated by using equation
(2.50), which confirms that global solutions may be unfeasible too.

On the other hand, in [23], it is demonstrated that global mini-
mization of torques always achieves the minimum, without causing
any anomaly to the quantities in play, regardless of the assigned
trajectory. However, the selected trajectories are very specific, i.e.
straight lines of different lengths, thus we cannot conclude that, in
general, performance indices exist whose global optimization leads
to stable solutions for any possible trajectory.

From the theoretical standpoint, the reason for such anomalous
behaviors is that pseudoinverse acceleration control is unstable in
the vicinity of singularities [33]. This is confirmed by the fact that
in all the examples in [20] and [23], anomalies happen when two

2.4. Global solution 35

or more links are about to align.

In other words, saying that a performance index exists whose
global optimization leads to stable solutions for any possible tra-
jectory is equivalent to say that no trajectory exists leading the
manipulator or any of its substructures in the vicinity of a singu-
larity when globally optimizing the same performance index.

In conclusion, the distinction between anomalous and regular be-
haviors cannot be made on the basis of whether the performance
index is locally or globally optimized, but it depends on the prox-
imity to singularities to which the optimization of the performance
index may lead.

A particular case is represented by those performance indices which,
in order to be optimized, intrinsically require two or more links to
align (an example is given with the concluding example of Section
2.7). In such cases, the calculus of variations fails in finding the
global optimum as it generates solutions which either avoid passing
through a singularity (local minimum) or are unfeasible/anoma-
lous. In both cases, the performance index is not globally opti-
mized.

Intuitively, these observations suggest that some connection must
exist between the passage through singularities and the capability
of the manipulator to find the optimum across the whole config-
urations space. We postpone the detailed study of this aspect to
Section 2.7, where the argument is tackled from the topological
point of view, after we will have given some additional elements
necessary to the matter.

Summarizing, in light of the above, the user shall be aware that,
by using global optimization algorithms, the solution obtained
through calculus of variations may not be globally optimal with
certain combinations of performance indices and trajectories. In
Section 2.7, it will be shown that, with the use of dynamic pro-
gramming, it is possible to overcome such issues, as the joint space
configurations can be found without involving the first-order dif-
ferential kinematics, but only relying on the inversion of position

36 2. Inverse kinematics of redundant robots

kinematics. This guarantees the achievement of global optima
while avoiding other undesirable behaviors.

2.5 Reduced order solutions

As anticipated in Section 2.4.1, equation (2.12) corresponds to a
solution made of n second-order differential equations, equivalent
to 2n first-order differential equations. However, since m algebraic
equations, i.e. the direct kinematics, are also available, they can
serve the purpose of reducing the number of differential equations
to be solved.

2.5.1 2n - m differential equations

Before employing the direct kinematics equations, it is worth re-
calling the findings of Martin et al. [25] who first noted that a
reduced-order form of the solution, made of only 2n − m equa-
tions can be obtained. The idea is to define a vector γ ∈ <r
of null-space λ-velocities by projecting the joint velocities onto a
basis of the null space of the Jacobian. These are used together
with joint λ-velocities q′ ∈ <n, so that, in the end, a system of
r+n = 2n−m equations is defined. Although they demonstrated
it for the cost function (2.67), it is worth remarking that their
results apply for all the solutions that can be expressed in the
form

q′′ = J†W (x′′ − J′q′) + PWA(q,q′, λ) (2.70)

where W is a generic non-singular n×n symmetric weights matrix,
possibly corresponding to the inertia matrix, PW = (I − J†WJ) is
the W-dependent null-space projector of the Jacobian and A is
a column vector whose form depends on the specific performance
index. Expression (2.70), such as (2.12), corresponds to n second-
order differential equations, equivalent, as said, to 2n first-order
differential equations.

2.5. Reduced order solutions 37

The reader may verify that this is indeed the form obtained for the
most common performance indices mentioned above and certainly
includes a broader category of solutions. In particular, despite the
observations made in [28], we remark that this method applies as
well for kinetic energy, for the variation of the weighted manipu-
lability index and for any other quantity that might be expressed
through a weight matrix.

The reduced order form proposed in [25] is based on a null space
basis of the Jacobian. Said N such a basis, the weighted null-space
basis NW = WN can be defined to handle the most general case.
The relation between the weighted null-space projector and the
weighted null-space basis can then be written as

PW = N(NT
WN)−1NT

W (2.71)

Said γ the vector of null-space λ-velocities leading to internal mo-
tion, the following holds:

γ = NT
Wq′ (2.72)

Recalling the generic first-order solution (2.6) and replacing the
Jacobian pseudo-inverse with the weighted pseudo-inverse, we ob-
tain:

q′ = J†Wx′ + PWφ
′ (2.73)

Considering that both NT
WJ†W = 0 and NT

WPW = NT
W hold, by

putting (2.73) in (2.72), γ can also be written as

γ = NT
Wφ

′ (2.74)

Now, putting (2.71) in (2.73) and using (2.74) leads to

q′ = J†Wx′ + N(NT
WN)−1γ (2.75)

Differentiating (2.72), we have:

γ ′ = N′TWq′ + NT
Wq′′ (2.76)

38 2. Inverse kinematics of redundant robots

Substituting (2.70) in the expression above, we obtain:

γ ′ = N′TWq′ + NT
WA(q,q′, λ) (2.77)

Said r = n − m the degree of redundancy, (2.75) and (2.77) to-
gether are a set of n + r = 2n −m equations in q and γ, which
constitutes the reduced order form of (2.70). For instance, for
a 7-DOF manipulator, such a technique would allow to integrate
only 8 equations instead of 14.

As remarked in [25], finding N′TW might not be trivial, but, if an
analytic form of the null-space basis exists and the degree of re-
dundancy is one, it can be easily calculated by using the chain
rule:

N′TW = q′T
∂NW

∂q
(2.78)

2.5.2 2(n - m) differential equations

When Euler-Lagrange conditions have been introduced in Sec-
tion 2.4.1, the possibility of reducing the system of 2n first-order
differential equations and m algebraic equations, i.e. the direct
kinematics, was briefly discussed. Since algebraic equations and
their derivatives can be used, in principle, to simplify the differen-
tial equations, 2(n −m) = 2r differential equations remain to be
solved. This is an important remark, as the number of differential
equations only depends on the number r of redundant degrees of
freedom, regardless of the total number of joints.

2.5.2.1 Parametrization through joint selection

Assume that the performance index to minimize is the square norm
of velocities, but the dissertation can be easily generalized to any
other performance index that can be managed with the Euler-
Lagrange method, leading to n second-order differential equations.
For the square norm of velocities, the Euler-Lagrange conditions

2.5. Reduced order solutions 39

lead to the following differential equations:

q′′ = J†(q) [x′′ − J′(q,q′)q′] (2.79)

Without loss of generality, and to the only purpose of simplifying
the notation, assume that r = 1, i.e. one degree of redundancy,
and that we want to parametrize the redundancy with one of the
joints, generically called qi. We then pick the i-th equation from
the set above:

q′′i = J†i,all(q) [x′′ − J′(q,q′)q′] (2.80)

where with J†i,all(q) we refer to the i-th row of J†(q).

In order to reduce the order of the differential equation, explic-
itly write the differential equation linking the joint position and
velocity, obtaining a system in the unknowns qi and q′i:

d

dλ

qi
q′i

 =

 q′i

J†i,all(q) [x′′ − J′(q,q′)q′]

 (2.81)

The terms in the second of the equations above are dependent on
qi, as well as on the other joints. Define as qr ∈ <m the position
vector of the remaining joints:

qr =
[
q1 ... qi−1 qi+1 ... qn

]T
(2.82)

The second of the equations (2.81) can then be rewritten as:

q′′i = J†i,all(qi,qr) [x′′ − J′(qi,qr, q
′
i,q
′
r)q
′] (2.83)

Now consider the direct kinematics equations:

x = k(qi,qr) (2.84)

For a redundant manipulator, far from singularities, the inverse
kinematics admits an infinite number of solutions. If qi is driven

40 2. Inverse kinematics of redundant robots

by the differential equations above, the other joints can be found
by inverting equation (2.84). In general, it is not guaranteed,
even in the case qi is given, that the number of solutions will be
finite. However, in the remaining of this section, with qi given,
we will assume that the set of solutions is always finite along the
trajectory, while later in this section, we will analyze this issue
further. We then select qr from such a finite set:

qr = k−1(x, qi) (2.85)

Also, if qi is given, k(qi,qr) = k(qr), which implies that the Ja-
cobian of k is a square matrix. Differentiating (2.84) with respect
to λ we obtain:

x′ = J(qi,qr)q
′ (2.86)

Define Jall,i as the i-th column of J and Jr as the square ma-
trix obtained by removing Jall,i from J, getting to the following
equation:

x′ = Jall,i(qi,qr)q
′
i + Jr(qi,qr)q

′
r (2.87)

Assuming that the kinematic substructure (i.e. the kinematic chain
obtained by removing qi) is not in a singularity we can solve for
q′r, obtaining:

q′r = J−1
r (qi,qr)

(
x′ − Jall,i(qi,qr)q

′
i

)
(2.88)

Putting all the results together, we obtain the following differential
equations:

d

dλ

qi
q′i

 =

 q′i

J†i,all(qi,qr) [x′′ − J′(qi,qr, q
′
i,q
′
r)q
′]

 (2.89)

which, together with equations (2.85) and (2.88), is demonstrated
to be the reduced form of (2.79), with the minimum number of
differential equations.

2.5. Reduced order solutions 41

We have seen above that the minimum number of differential equa-
tions obtained by “fixing” one of the joints makes sense only when
Jr is full-rank and thus, can be inverted. Since n of these Jaco-
bians can be selected, one could think of choosing the one that
never gets rank-deficient along the assigned trajectory.

Thus, in order to ensure that equation (2.88) can be used and
that, as a consequence, the number of solutions of (2.85) is finite,
singularities for the reduced Jacobians need to be identified. It
is worth remarking that a singular Jacobian is a necessary condi-
tion for equation (2.85) to admit an infinite set of solutions, but
not sufficient, i.e. singularities might be spotted for the reduced
Jacobian not leading to an infinite number of solutions.

The following procedure should be followed to select the “redun-
dant” joint:

1. Extract the possible square matrices Jr obtained from J by
removing as many columns as the number of redundancy
degrees. To the purpose of simplifying the dissertation, let’s
assume that r = 1 and call such matrices J

(i)
r , with i = 1..n.

The superscript in parentheses indicates the column removed
from J to obtain the reduced Jacobian.

2. Identify conditions for which J
(i)
r becomes singular. For some

manipulators, such as the one of Figure 2.3, it is possible to
obtain such conditions analytically and some a-priori con-
siderations could be made. Otherwise a trajectory shall be
given and the distance from singularities shall be computed
numerically in the same way as for non-redundant manipu-
lators.

3. Once the joint is selected, which also implies a choice of a
J

(i)
r , trajectories that make it singular cannot be given. On

the other hand, once a trajectory is given, none of the joints
whose reduced Jacobian is singular for at least one trajectory
point can be chosen to parametrize the redundancy.

42 2. Inverse kinematics of redundant robots

In principle, it is possible that a trajectory is such that each of the
reduced Jacobians gets rank-deficient for at least one point on the
trajectory. If this is the case, one parametrization is not enough
to represent the redundancy on the whole trajectory. Assume, for
instance, that q2 is being used for t ∈ [t0, tk[and that x(tk) forces

the joints to make J
(2)
r singular. At time tk, one could take the

states computed up until then and use them as the initial condition
for the same differential equations written for a different joint. In
other words, equations (2.89) can be switched from one joint to
the other anytime Jr is about to be singular.

To the purpose of clarifying this matter, Figure 2.2 provides two
examples of a 3D PRRR (a) and a planar PRP (b) serial manip-
ulators to which a 2D and a 1D task are assigned respectively.

q
1

q2

q3

q4

(a)

q
1

q2

q3

(b)

Figure 2.2: Kinematic structures for which the assigned task
makes the joint q2 meaningless in terms of redundancy parame-
trization

In both cases, if the manipulators were asked to track the depicted
trajectories, only one value of q2 would allow the end-effector to
stay on the path. Note that, with q2 given, both manipulators are
still redundant with respect to the task they have to fulfill, which
means that q2 is not a suitable choice to represent redundancy.
In facts, this confirms that the choice of the joint with respect to
which the redundancy is parametrized cannot be randomly made.

If the manipulator is still redundant, even though r variables are

2.5. Reduced order solutions 43

given, it means that two or more of the rows of Jr are linearly
dependent, which, in turn, implies that Jr is not full rank for at
least one point on the trajectory.

Thus, if we attempted to solve

qr = k−1(x, q2) (2.90)

we would still get an infinite number of solutions.

It is also worth noticing that this issue is not strictly related to
the fact that, said the selected joint qi, q

′
i(λ) = 0 ∀λ, but to the

condition that the manipulator is still redundant in achieving the
task even when qi is given. In facts, it is possible, in principle, to
assign tasks, especially in constrained environments, for which one
joint has to be still along the whole trajectory, but only a finite
number of configurations is admissible for the other joints (i.e. the
manipulator is no longer redundant with respect to the assigned
task). In this case, joint qi (just like any other joint) is still a
suitable choice to parametrize the redundancy.

Example: Anthropomorphic shoulder mounted on a slide
The PRRR robot of Figure 2.2(a) is considered in this example. A
3D schematic of its kinematic chain is shown in Figure 2.3, where
the base reference frame and bodies’ lengths are also reported.
Table 2.1 reports the Denavit-Hartenberg parameters used in this
example.

From the considerations made above, we already know that if a
path in the X-Z plane is given, only q2 = ±π/2 will satisfy the
kinematic equations, while the substructure made of joints q1, q3

and q4 will still be redundant as all the remaining joints operate
on the path plane.

The direct kinematics equations are given by

k(q) =

l1 + l2 + l4 sin (q3 + q4) + l3 sin q3

cos q2 (l4 cos (q3 + q4) + l3 cos q3)

q1 + sin q2 (l4 cos (q3 + q4) + l3 cos q3)

 (2.91)

44 2. Inverse kinematics of redundant robots

x

y

z q
1

q2

q3
q4

l
1

l
2

l
3

l
4

Figure 2.3: Schematic of an anthropomorphic shoulder mounted
on a slide

1 2 3 4

di q1 l1 + l2 0 0

θi 90◦ q2 q3 q4

ai 0 0 l3 l4

αi 90◦ 90◦ 0 0

Table 2.1: Denavit-Hartenberg parameters for the robot of Figure
2.3

whose Jacobian is

J(q) =

0 0 l4c34 + l3c3 l4c34

0 −s2 (l4c34 + l3c3) −c2 (l4s34 + l3s3) −l4c2s34

1 c2 (l4c34 + l3c3) −s2 (l4s34 + l3s3) −l4s2s34

(2.92)

2.5. Reduced order solutions 45

where

si = sin qi

ci = cos qi

sij = sin (qi + qj)

cij = cos (qi + qj)

(2.93)

Proceed as indicated before in this section by computing the con-
ditions making the reduced Jacobian matrices rank-deficient. For
l1 = l2 = l3 = l4 = 1, we obtain:

|J(1)
r | = 0⇔ q4 = 0 ∨ q4 = π ∨ q4 + 2q3 = ±π (2.94)

|J(2)
r | = 0⇔ q2 = ±π

2
∨ q4 = 0 ∨ q4 = π (2.95)

|J(3)
r | = 0⇔ q3 + q4 = ±π

2
∨ q2 = 0 ∨ q2 = π∨

∨ q4 + 2q3 = ±π ∨ q4 = π (2.96)

|J(4)
r | = 0⇔ q2 = 0 ∨ q2 = π ∨ q4 + 2q3 = ±π ∨ q4 = π (2.97)

It is important to remark that only some of the conditions above
are singularities for the whole kinematic chain. For instance, q4 =
π clearly nullifies all the minors and is, therefore, a singularity for
J, but other combinations of the conditions above may produce
the same effect.

Now assume that a trajectory on the X-Z plane is given, which is
immediately recognized to drive q2 toward the forbidden values of
either +π/2 or −π/2. The same condition does not zero any other
minor of J, which means that any joint but q2 can be selected to
parametrize the redundancy for this trajectory, unless a singular
condition for a different J

(i)
r can be reached, e.g. q3 + q4 = ±π/2.

While all the conditions above are equivalent in terms of the effects
they produce on the possibility to solve the redundant differential
kinematics with only 2r equations, on the practical side, they do
not restrict in the same way the number of trajectories that can
be executed. For instance, q2 = ±π/2 excludes all the trajectories

46 2. Inverse kinematics of redundant robots

spanning from one side of the slide to the other, while q4 = 0 only
excludes trajectories requiring the full length l3 + l4, that are more
easily avoidable, by exploiting the capabilities of joint q1 if the
trajectory does not lie at the limits of the workspace.

One more aspect to consider concerns the fact that not all of the
conditions above affect the position kinematics in the same way.
For example, if a trajectory was such that q4 = 0, whatever the
selected joint was, the inverse kinematic solution would be im-
mediately determined, if it exists. The same holds for conditions
q3 + q4 = ±π/2, q2 = 0 and q2 = π. On the other hand, as demon-

strated above, condition q2 = ±π/2 of J
(2)
r implies that the inverse

kinematics admit an infinite number of solutions. Lastly, condi-
tion q4 + 2q3 = ±π reduces the task space of one dimension, but
the system of equations is still compatible, with a finite number
of solutions for joints q1 and q3, while q2 is free to rotate without
affecting the task.

These observations suggest that some a-priori considerations can
be made about

1. the feasibility of trajectories with a given parametrization

2. the meaningfulness of parametrizations with a given trajec-
tory

Problem 1 concerns the derivation of conditions representing the
feasible paths when qi is defined. For instance, assume, again,
that the manipulator is as in Figure 2.3 and qi = q2. We take the
conditions by which the reduced Jacobian

|J(2)
r | = −c2s4 (2.98)

2.5. Reduced order solutions 47

becomes rank-deficient and analyze the direct kinematic equations:

q2 = ±π
2

=⇒

x = 2 + s34 + s3

y = 0

z = q1 ± (c34 + c3)

q4 = 0 =⇒

x = 2 + 2s3

y = 2c2c3

z = q1 + 2s2c3

q4 = π =⇒

x = 2

y = 0

z = q1

(2.99)

The reader may recognize that

� the condition q4 = π is clearly a singularity of the whole
kinematic chain, for which rk(J) = 2;

� the condition q4 = 0 regards the limits of the workspace
along the x-axis and y-axis;

� the condition q2 = ±π/2 tells that the paths lying in the X-
Z plane cannot be meaningfully parametrized through joint
variable q2, excluding the trajectory of Figure 2.2(a).

On the other hand, problem 2 concerns the determination of a suit-
able parametrization for a given path. For instance, assume that,
for the same manipulator we would like to assign a generic path
in the X-Z plane, hence constrained by the task-space condition

y = c2(c34 + c3) = 0 (2.100)

48 2. Inverse kinematics of redundant robots

from which we derive, also considering implications (2.94)-(2.97),
the joint-space conditions

q2 = ±π
2

=⇒ |J(2)
r | = 0

q4 + 2q3 = π =⇒ |J(1)
r | = 0, |J(3)

r | = 0, |J(4)
r | = 0

(2.101)

The reader may recognize that qi = q2 is never a suitable parame-
trization in the plane X-Z, except when y = 0 because q4 +2q3 = π
holds, corresponding to the case of the end-effector tracking a path
(or at least one point) lying along the axis of the second joint.
Depending on the actual path, this could be a case where every
reduced Jacobian becomes rank-deficient for at least one point, re-
quiring the user to implement a switch of the selected joint, or to
adopt a different parametrization, as discussed in Section 2.5.2.2.

2.5.2.2 Parametrization through joint combinations

As noted above, the parametrizations based on a single joint are
exclusively dependent on the kinematic characteristics of the ma-
nipulator, regardless of the assigned trajectory. This implies that
a careful selection of the joint has to be made to allow for cer-
tain tasks to be executed. The choice has to be made between n
possibilities or a switch between joints has to be implemented.

A solution which provides more flexibility is to parametrize the
redundancy with respect to some joint combination v = kv(q).
To other purposes, Burdick [34] used some physical quantities,
like the orientation of one of the links with respect to some fixed
reference system or the angle between an arbitrary plane and some
joint axis. In laser cutting applications, the rotation angle of the
laser tool about the axis perpendicular to the surface to cut is
rather a natural choice [35]. To the purpose of our dissertation,
we could choose similar physical or clearly measurable quantities,
or some other joints combination that may have sense in some
specific applications.

2.5. Reduced order solutions 49

Once v is defined, as a set of r equations, the direct kinematics
equations become: x

v

 =

 k(q)

kv(q)

 = ka(q) (2.102)

By differentiating equation (2.102), we obtain:x′

v′

 =

 J(q)

Jv(q)

q′ = Ja(q)q′ (2.103)

The reader may recognize that such a formulation is equivalent to
that of the augmented Jacobian technique [16] used in the frame
of redundancy resolution via task augmentation. Here, although
the same augmented Jacobian is obtained, v (i.e. the additional
task) is not intended to be given along the trajectory, but has to
be computed as part of the solution to the global optimization
problem.

The objective is now to reorganize equations (2.79) in order to
reduce them to a system of 2r equations in v and v′. To do so,
differentiate the second set of equations in (2.103), getting to:

v′′ = Jv(q)q′′ + J′v(q)q′ (2.104)

By substituting equation (2.79) and adding the differential equa-
tion linking the parameter to its derivative, we obtain

d

dλ

v

v′

 =

 v′

Jv(q)J†(q) [x′′ − J′(q,q′)q′] + J′v(q)q′

 (2.105)

which is the minimum number of differential equations if a com-
bination of the joints is used.

50 2. Inverse kinematics of redundant robots

Similarly to the joint selection case, if v is driven by the differential
equations above, q and q′ can be obtained by inverting equations
(2.102) and (2.103)

q = k−1
a (x,v) (2.106)

q′ = J−1
a

x′

v′

 (2.107)

As noted in [16], the augmented Jacobian suffers from the so-called
algorithmic singularities, which are conditions in which Ja is rank-
deficient, even though the manipulator is not singular. To the
purpose of parametrizing the redundancy, one could choose the
suitable joints combination which allows keeping the singularity
away from the assigned task.

Also, it can be demonstrated that, outside of the singularities of
J

rk(Ja) = n ⇐⇒ R(JT) ∩ R(JTv) = ∅ (2.108)

where with R(A) we refer to the range space of A.

Unlike the augmented Jacobian redundancy resolution method,
here we are not interested in assigning a second task to the manip-
ulator, but to ensure that the selected parametrization is always
meaningful along the trajectory and, possibly, regardless of the
trajectory. This implies that Jv can be suitably selected to make
condition (2.108) always verified. For instance this can be done
by computing a basis of R(JTv) that completes the basis of R(JT)
to n, i.e.

R(JTv) = R⊥(JT) (2.109)

If this condition is satisfied, the two mappings are orthogonal [16]
and Ja is always full-rank.

For the example of Figure 2.3, we may define

Jv =
[
j1 j2 j3 j4

]
(2.110)

2.5. Reduced order solutions 51

and solve

JJTv = 0 (2.111)

One possible solution is given by

j1 = −s4 (c34 + c3)

j2 = c2s4

j3 = s2c34 (c34 + c3)

j4 = −s2 (c34 + c3)2

(2.112)

which gives the augmented Jacobian

Ja =

0 0 α c34

0 −s2α −c2β −c2s34

1 c2α −s2β −s2s34

−s4α c2s4 s2c34α −s2α
2

 (2.113)

with

α = c34 + c3

β = s34 + s3

(2.114)

This parametrization chosen, v is not attributable, in general, to
any physical quantity that one may easily visualize, even for very
simple 3-DOF planar manipulators. Also, its analytic form is not
trivial to find. As a consequence, the system of equations results
to be more suitable for numerical CLIK-based implementations
[22].

Lastly, it is important to notice that the formulation presented
here represents a more general case of the joint selection method
presented in Section 2.5.2.1, whose outcomes could be easily re-
found by imposing r = 1 and v = v = qi.

52 2. Inverse kinematics of redundant robots

2.6 Topological analysis of inverse kine-

matic mappings

2.6.1 Fundamentals of manipulator topology

Preparatory for the discussions that follow in the next sections
are some considerations concerning the topology of solutions to
the inverse kinematics problem. The objective of this section is to
recall some nomenclature and concepts that are useful to describe
the inverse kinematic mapping from the topological standpoint,
in order to fix them in the reader’s mind before using them here-
inafter. Results and figures of this section are taken from [34] and
[25] and suitably modified when necessary to be consistent with
the nomenclature used throughout this dissertation.

Consider the direct kinematic mapping of equation (2.1). The
vector function k maps a joint configuration q to an end-effector
location and orientation x = k(q). The set of all possible joint
configurations C is termed joint space or configuration space, while
the set of all possible end-effector locations and orientations W is
termed workspace. Both of them have a manifold structure. The
function k can then be seen as the global mapping rearranging the
configuration space manifold to produce the workspace manifold:

k(q) : C→W (2.115)

In the case of a revolute joint j with no limits, qj can take all the
values in [−π, π]. However, since −π = π, the configuration space
of qj closes on a circle, denoted S1, as shown in Figure 2.4(a). In
the case of a 2R planar manipulator, two circles of type S1 can
be combined together to form a two-dimensional torus (or just
2-torus) as in Figure 2.4(b).

For the most general case of the manipulator with n revolute joints,
the configuration space C is equivalent to an n-torus, which is a
compact n-dimensional manifold, and can be formalized as the

2.6. Topological analysis of inverse kinematic mappings 53

(a) (b)

Figure 2.4: Configuration space of (a) a revolute joint and (b) a
2R manipulator

n-times product of the individual joints’ manifolds:

C = S1 × S1 × ...× S1 = T n (2.116)

Each of the circles that make up the torus is termed a generator of
the torus. By cutting along generators, it is possible to represent
them in a Cartesian space, which provides an alternative visual-
ization of the configuration space, as in Figure 2.5. It is worth
mentioning that the three-dimensional representation of a 3-torus
is not possible, while its Cartesian representation is.

The geometric representation of W is more complex than the torus
representation of C as it is made up of both linear (end-effector po-
sition) and angular (end-effector orientation) dimensions. For this
reason, it will not be reported here and, to the purpose of keeping
the dissertation as clear and simple as possible, examples limiting
the workspace to position-only dimensions will be considered, so
that a Cartesian representation of W will be possible.

Singularities notoriously play an important role in kinematics map-
ping. Thus it is important to provide a classification of joints
configurations and relating workspace locations with respect to
them. In the case of a non-redundant manipulator, the following
definitions are given:

� a regular point is a configuration q ∈ C for which J(q) is
full-rank, i.e. the manipulator is not singular;

54 2. Inverse kinematics of redundant robots

Figure 2.5: Cartesian representation of a 2-torus (top) and a 3-
torus (bottom)

� a regular value is the image x ∈ W of a regular point, i.e.
a location of the workspace where the manipulator is not
singular;

� a critical point is a configuration q ∈ C for which J(q) is
rank-deficient, i.e. the manipulator is singular;

� a critical value is the image x ∈W of a critical point, i.e. a
location of the workspace where the manipulator is singular.

It is worth observing that, for a non-redundant manipulator:

� a regular value’s pre-image is a finite set of regular points
(e.g. elbow-up and elbow-down configurations for a 2R ma-
nipulator), whose cardinality only depends on the mechan-
ical characteristics of the manipulator; such regular points
are isolated, which means that it is not possible to pass from

2.6. Topological analysis of inverse kinematic mappings 55

one to the other without moving the end-effector from its
current location;

� a critical value’s pre-image can be made up of infinite critical
points, e.g. for a 3R anthropomorphic arm, when the end-
effector is situated along the first joint’s axis.

Now consider a redundant manipulator with degree of redundancy
r = n−m. Given that ∞r inverse kinematics solutions exist for a
certain x ∈W, the pre-image of x is an r-dimensional subspace of
C. Similarly to the non-redundant case, where the pre-image of a
certain x is made up of isolated configurations, the r-dimensional
subspace could be made up of disjoint r-dimensional manifolds.
The inverse kinematics mapping can then be written as:

k−1(x) =

Ng⋃
i=1

Mi(q) (2.117)

where Ng is the total number of manifolds in the pre-image, that
can be demonstrated to be at most 2,2,4 and 16 for planar, spher-
ical, regional and spatial manipulators respectively. Each of the
pre-image manifoldsMi(q) physically corresponds to a “self-motion”,
which is a continuous motion of the joints which leaves the end-
effector motionless. For this reason each manifold in the pre-image
will be referred to as self-motion manifold.

Differently from the non-redundant case, for certain locations in
the workspace, multiple manifolds may be connected at certain
configurations, building a unique self-motion manifold. This hap-
pens because the manipulator, with a continuous motion of its
joints, can pass through all the points contained in the pre-image.
With reference to Figure 2.6, the pre-image of x1 is made up of
two disjoint self-motion manifolds, while the pre-image of x2 is
made up of two adjoint manifolds forming one self-motion mani-
fold. The reader may verify that it is not possible to obtain all
the configurations keeping the end-effector in x1 by a continuous
motion of the joints.

56 2. Inverse kinematics of redundant robots

Figure 2.6: Two points in W (left) and their pre-images in C (right)
for a 3R redundant manipulator: the pre-image of x2 is made of
two self-motion manifolds closing in a circle, whereas the pre-image
of x1 is made of two disjoint self-motion manifolds

As far as singularities are concerned, since infinite configurations
q may exist for certain x ∈ W, redundant manipulators are able
to choose one that does not make J(q) rank-deficient. In other
words, depending on the end-effector location, redundant manip-
ulators could be able to avoid singularities. Thus, it is necessary to
reconsider the definitions given for non-redundant manipulators:

� the definitions of regular point and critical point are un-
changed;

� a regular value is a value x ∈W whose pre-image only con-
tains regular points;

� a coregular value is a value x ∈W whose pre-image contains
both regular and critical points;

� a critical value is a value x ∈W whose pre-image only con-
tains critical points.

Collections of coregular values form coregular value manifolds in
W. With reference to Figure 2.6, the dashed circumferences in

2.6. Topological analysis of inverse kinematic mappings 57

the workspace are coregular value manifolds, as the pre-images of
their points contain critical (i.e. links folded on each other) and
regular points. The outermost circumference is rather a collection
of critical values as their pre-images only contain critical points
(i.e. stretched arm). The coregular value manifolds partition the
workspace W in subspaces called W-covers.

The pre-images of coregular value manifolds are termed coregular
surfaces and the pre-images of W-covers are termed C-bundles.
Just like the coregular value manifolds partition W in several W-
covers, the coregular surfaces partition C in several C-bundles.
Because the pre-image of a regular point could be made up of
distinct self-motion manifolds or of one self-motion manifold, the
pre-image of a W-cover is made up of distinct C-bundles or of one
C-bundle, as Figure 2.7 illustrates.

Figure 2.7: C-bundles and coregular surfaces (right) and relating
W-covers and coregular value manifolds (left) for a 3R planar ma-
nipulator

Since the axes of the configuration space in Figure 2.7 are limited
to [−π, π] for each of the joints, the same pattern repeats over
and over again for other 2π-wide intervals outside of [−π, π]. This
means that the pre-images of W-covers 4 and 2 are made up of one
C-bundle each (one connected volume in C), while the pre-images
of W-covers 1 and 3 are made up of two disjoint C-bundles each.

On the basis of the observations made above, the 3R planar manip-
ulator is not able to fully reconfigure itself in W-covers 1 and 3, as

58 2. Inverse kinematics of redundant robots

not all the configurations in C-bundles 1 and 3 can be reached with
a continuous motion of the joints that keeps the end-effector mo-
tionless. In such situations, singularities, belonging to the coreg-
ular surfaces, bound and actually separate the C-bundles that are
pre-images of the same W-cover. In particular, the singular con-
figuration q = [q1, 0, π]T breaks the pre-image of W-cover 1 in
two distinct C-bundles and likewise does the singular configura-
tion q = [q1, π, 0]T with the pre-image of W-cover 3.

When moving across several C-bundles, for instance, when fol-
lowing a path in the workspace, extending over more than one
W-cover, the manipulator may transit from a C-bundle in which it
can freely reconfigure (i.e. visit all the inverse kinematic solutions
through internal motion) to a C-bundle where this is no longer pos-
sible. An example will be given in Section 2.7.5. Although this is
not fundamental for the conclusions that we draw at the end of this
section, it is an important aspect to keep in mind because it relates
to the sub-optimality of certain redundancy resolution schemes.
For example, local redundancy resolution techniques like (2.6),
based on a first-order gradient search, at each t, can only search
over one self-motion manifold, while the true optimum might lie on
another self-motion manifold. Also, some supposedly global reso-
lution methods could be prone to sub-optimal solutions due to the
existence of distinct self-motion manifolds. This will be clarified
in Section 2.6.3, after introducing the concept of homotopy class
in Section 2.6.2.

2.6.2 Homotopy relations

2.6.2.1 C-homotopy

Before proceeding further in analyzing how multiple, sometimes
disjoint C-bundles affect the computation of the dynamic program-
ming state space and ultimately provide guidelines for the design
of an effective globally-optimal redundancy resolution algorithm,
a few considerations about homotopies are worthwhile.

2.6. Topological analysis of inverse kinematic mappings 59

Each sequence of joint configurations, whether it corresponds to
the same end-effector location (i.e. configurations in the same self-
motion manifold) or to a workspace path, can be represented as
a curve on the surface of the n-torus. Therefore, such can also be
done for k−1(x1) and k−1(x2) of Figure 2.6. Although it is not
immediately evident by looking at their Cartesian representation,
the extremal points of each of the self-motion manifolds corre-
sponding to k−1(x1) are the same, as the q1 axis extends from
−π to π, which, indeed, are the same value. This means that the
self-motion manifolds over x1 include a 2π joint rotation along the
generator of q1 on the surface of the 3-torus. On the contrary, the
pre-image of the regular value x2 does not. From this observa-
tion we conclude that they are not homotopic, as one cannot be
continuously deformed into the other on the surface of the torus.

More formally, the homotopy class of a self-motion can be speci-
fied by an n-tuple of integers (I1, I2, ..., In), where Ij counts how
many integral times the self-motion manifold wraps around the jth

generator of the n-torus [34]. Since the n-torus is a representation
of the whole configuration space C, we define this homotopy re-
lation as C-homotopy. C-homotopy is used in [36] to characterize
the topology of redundant manipulators subject to joint limits.

There is not an easy way to characterize, in terms of cardinality,
the C-homotopy classes of self-motions for generic redundant ma-
nipulators [34]. Also, a procedure that associates C-bundles with
C-homotopy classes does not exist. From the observation of the
simple planar case, we can see that all the self-motions belonging
to the same C-bundle also belong to the same C-homotopy class,
but self-motions from different C-bundles could also be homotopic.
For example, this is the case of self-motions in C-bundles 2 and
4. The generalization of this concept to more complex kinematic
structures is an open problem.

Finally, we should note that the C-homotopy is in no way related
to the sub-optimality of local and global optimization techniques,
like calculus of variations, while the presence of disjoint manifolds
is.

60 2. Inverse kinematics of redundant robots

2.6.2.2 C-path-homotopy

As mentioned above, self-motion manifolds are closed curves on
the surface of the n-torus representing the configuration space,
and so are cyclic inverse kinematic solutions of a cyclic workspace
path. Thus, as for self-motion manifolds, it is possible to define
an equivalence relation between closed joint space paths in terms
of C-homotopy classes they belong to.

However, when the authors of [25] conclude that global inverse
kinematic techniques are unable to distinguish between solutions
in differing homotopy classes, they do not look at the surface of
the n-torus of the configuration space, but at the surface that,
in the Cartesian joint space, sequences of self-motion manifolds
(pre-images of the regular and coregular values belonging to a
continuous workspace path) form. Since this homotopy relation
is linked to the pre-image in C of the workspace path, which is a
different topological space from the n-torus, we define it as C-path-
homotopy. The reader should be aware though that this definition
is different from that of path homotopy, used in [28] to refer to
homotopic curves with equal end-points.

Hence, even though two joint space path were C-homotopic, they
could be not C-path-homotopic. It is convenient to address this
matter by recalling the example of [25].

Consider the 3R planar manipulator of Figure 2.8(a), with links
of lengths l1 = 3.0, l2 = 2.5 and l3 = 2.0, whose end-effector is
requested to follow a circular path centered in C = [6, 0]T and
radius R = 1 in unit time in counterclockwise direction, starting
from x(0) = [5, 0]T . As an additional requirement, initial and final
joint positions must be the same: the solution must be cyclic (or
conservative).

First of all, we notice that the workspace path only lies in the
outermost W-cover. As for the 3R planar manipulator of Figure
2.6, each regular value in such a W-cover pre-maps to only one self-
motion manifold. The sequence of self-motion manifolds obtained

2.6. Topological analysis of inverse kinematic mappings 61

(a) (b)

Figure 2.8: (a) geometry of the manipulator and trajectory; (b)
two inverse kinematics solutions (A and B) and the surface made
from self-motion manifolds on a continuous workspace path pro-
jected onto the q2 − q3 plane (C)

from inverse kinematics of all the points on the workspace path
forms a three-dimensional surface which is similar to a deformed
torus. The projection on the q2−q3 plane, labeled ‘C’, is illustrated
in Figure 2.8(b). In other words, the deformed torus is the pre-
image in C of the workspace path, obtained as the composition of
the infinite self-motion manifolds traversed by the manipulator on
its path. As long as paths are circular and lie in the outermost
W-cover, they all pre-map to deformed tori.

Because of the cyclicity requirement, each solution to the inverse
kinematics problem will be a closed curve on the surface of such
a torus starting from one of its outermost points, reaching one of
the innermost points at the path’s middle point and going back to
the starting point again. In Figure 2.8(b), two of these solutions,
labeled ‘A’ and ‘B’, are projected onto the torus surface in C.
For the performance index used in [25] in this example, A is of
lower cost than B and circles the torus about the small radius.
The higher cost trajectory circles the torus about the small radius
once, but, at the same time, circles the torus once about the large
radius, resulting in a longer trajectory in the joint space. Each
of the curves cannot be transformed into the other: according to

62 2. Inverse kinematics of redundant robots

differential topology, A and B are in different homotopy classes
[25], i.e. A and B are not C-path-homotopic.

It is anyhow worth noticing that workspace paths crossing the
boundaries of a W-cover, as well as more complex paths than
circumferences, pre-map to more complex surfaces in C than de-
formed tori (see Section 2.7.5). Thus, while in the example of
Figure 2.8 we can determine whether the solutions are homotopic
or not from a pure visual analysis, this will not be possible in
general.

From the observations made in this section, we can conclude that
globally-optimal redundancy resolution schemes, as those derived
from calculus of variations, may provide locally-optimal solutions
(that are indeed globally-optimal in their C-path-homotopy class),
such as trajectory B, because of the existence of multiple C-path-
homotopy classes in the pre-image of the workspace path. In order
to prove that C-homotopy and C-path-homotopy are different ho-
motopy relations, the reader may verify that both A and B lie in
the same C-bundle, they do not wrap around any of the generators
of the n-torus representing the whole configuration space and are,
therefore, C-homotopic.

2.6.3 C-path-homotopy classes and disjoint self-
motion manifolds

From a recent study [26], it emerged that a relationship exists
between the disjoint self-motion manifolds theorized in [34] and
the presence of C-path-homotopy classes, as defined in [25] and in
Section 2.6.2.2. In particular, self-motion manifolds may break or
join when the joint space solution crosses some coregular surface.
For instance, with reference to Figure 2.6 and Figure 2.7, when
the manipulator transits from C-bundle 4 to C-bundle 3, the ad-
joint manifold breaks into two disjoint manifolds that only meet
at singular points along the coregular surface. If we imagined to
trace two joint-space paths exiting C-bundle 4 and entering two

2.6. Topological analysis of inverse kinematic mappings 63

different regions of C-bundle 3, it would not be possible to con-
tinuously deform one into the other: the two paths would not be
C-path-homotopic. Hence, disjoint self-motion manifolds have the
property of bifurcating the pre-image of the workspace path in
different branches generating new C-path-homotopy classes. Since
this can only happen on a C-bundle transition, such bifurcation
points are identified to belong, for a given path, to the coregular
value manifolds.

In going from the first to the last self-motion manifold (termi-
nal points of a given workspace path), the joint space path may
traverse several coregular value manifolds and, for the sub-paths
laying in disjoint C-bundles, take one of the branches. All the
possible branches generate several routes. According to [26], for
free boundary conditions, the number of C-path-homotopy classes
is exactly given by the number of such routes:

NH = 2
K−1∏
k=2

Nh(k) (2.118)

where K is the number of C-bundles that are traversed by the
manipulator (counted as many times as traversed) and Nh(k) is
the number of C-path-homotopy classes associated to the k-th C-
bundle. The latter is not, in general, equal to the number of
disjoint regions in a C-bundle since, for closed manifolds, the joint
space path can wrap around for an arbitrary number of times.
By looking at the equation above, it is clear that the number
of homotopy classes rapidly increases as the number of coregular
value crossings increases.

In [26], three typical shapes (or structures) of the pre-image of the
workspace path are analyzed for a 3R planar manipulator with
one degree of redundancy, showing that, already for this simple
problem, Nh(k) can be 1, 3 or 5. This result is obtained by as-
suming that the joint space path cannot wrap more than once for
each direction (clockwise or counter-clockwise).

64 2. Inverse kinematics of redundant robots

2.6.4 Aspects, extended aspects and multiple
IK solutions

One more subject that comes in help for the discussions that will
follow in Section 2.7 is the notion of aspect [37]. By using the
same convention as Section 2.5.2.1, thus assuming, for the sake
of simplyfing the notation, that r = 1, let |J(i)

r (q)|, with i =
1..n, be the determinants of the (n − 1) × (n − 1) minors of a
redundant manipulator Jacobian J. An aspect D can be defined
as a connected set of points in C such that |J(i)

r (q)| 6= 0 ∀q ∈ D.
Thus, by definition, the border of the aspect does not belong to
the aspect [38].

Since |J(i)
r (q)| = 0 for any i makes a partition of C in two sub-

spaces, characterized by conditions |J(i)
r (q)| > 0 and |J(i)

r (q)| < 0,
one may think that 2n aspects are generated from all the possi-
ble combinations positive/negative of the n minors determinants.
However, already for the simple case of a 3R planar manipula-
tor, more than 2n aspects are generated, as shown in Figure 2.9.
Aspects corresponding to the same combination of determinants
signs are identified by the same color and are separated by a single
point nullifying two minors together, as for the couples 1-5, 4-12,
7-11 and 6-10. Since the border of the aspect does not belong to
the aspect, they are all separated aspects. On the other hand, if
some combination of signs cannot happen for any configuration in
C, or joint limits exist, the number of admissible aspects can be
less than 2n.

It is worth noting that the condition |J(i)
r (q)| = 0 for some i phys-

ically corresponds to the singularity of the relating kinematic sub-
chain, by which the manipulator has to transit in order to pass
from one set of postures to another, e.g., from elbow-down to elbow-
up for a planar manipulator. As a consequence, if a solution to
(2.1) exists in aspect D, obtained by fixing r joint variables, it is
unique in the whole aspect. Being the number of aspects greater
than the number of inverse kinematics solutions with r joint vari-
ables given, it follows that several aspects will not contain any of

2.6. Topological analysis of inverse kinematic mappings 65

-150 -100 -50 0 50 100 150

q
2
(deg)

-150

-100

-50

0

50

100

150

q
3
(d
e
g
)

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.9: Aspects partition of C for a 3R planar manipulator
with link lengths l1 = 7, l2 = 7, l3 = 4, projected onto the q2-q3

plane

such solutions.

In Section 2.5.2.2, we have seen that redundancy parametrization
through joint combination, which also includes the joint selection
case, leads to the definition of an extended (or augmented) Ja-
cobian Ja, introducing algorithmic singularities. Like the singu-
larities of non-redundant manipulators, in the general case, they
constitute hypersurfaces in C, generating a partition of C in sub-
spaces. By extending the notion of aspect just mentioned to the
augmented Jacobian, each of this sub-spaces is referred to as an
extended aspect [39], and is identified by the signs of the factors of
|Ja(q)| [40].

The notion of extended aspect is indeed equivalent to the notion
of C-sheet, applicable to non-redundant manipulators, that are de-
fined as the disjoint regions into which the configuration space is
partitioned by the hypersurfaces formed by the loci of singular
configurations (or critical points). C-sheets have been introduced

66 2. Inverse kinematics of redundant robots

in [41] and therein thoroughly studied in relation to the genericity
property of manipulators [42]. In brief, generic manipulators have
non-intersecting critical point surfaces, making a smooth partition
of C, as in Figure 2.10(a), while non-generic manipulators have in-
tersecting critical point surfaces, making a non-smooth partition
of C, as in Figure 2.10(b). It appears that non-genericity often
arises from geometric simplification conditions, like two intersect-
ing or parallel joint axes, and that most industrial manipulators
are, in turn, non-generic. This also means that, when manufac-
turing an industrial manipulator, attention must be paid to the
mechanical tolerances, which may turn a non-generic manipulator
into a generic manipulator, drastically modifying its global kine-
matic properties [43].

(a) (b)

Figure 2.10: Inverse kinematic solutions, critical point surfaces
and C-sheets for a generic (left) and non-generic (right) 3R regional
manipulator

Inverse kinematic solutions for a given x are superimposed on both
images of Figure 2.10. The reader may recognize that, for the
generic manipulator of Figure 2.10(a), there exists a one-to-many
association between C-sheets (aspects of a non-redundant manip-
ulator) and inverse kinematic solutions (or postures). Rather, if
the manipulator has to pass by a singularity to reconfigure its pos-
ture, each C-sheet cannot contain more than one solution to the
inverse kinematic problem, as for the non-generic manipulator of
Figure 2.10(b). In [43], these kinematic structures are referred to

2.7. Dynamic programming 67

as non-cuspidal manipulators (or type-1 manipulators [38]), and
include all the common industrial manipulators. On the contrary,
if the manipulator is cuspidal [43] (or with a type-2 geometry [38]),
more than one posture exists in the same aspect, separated by the
so-called characteristic surfaces, theorized in [38]. Most generic
manipulators are cuspidal, while most non-generic manipulators
are non-cuspidal, but there are some non-generic manipulators
which can change their posture without encountering a singular-
ity [41], as well as some generic manipulators which must pass
through a singularity to change their posture [43]. The belonging
to the class of cuspidal manipulators is an important property, as
it allows to distinguish between postures by using the theory of
aspects.

As we will see in Section 2.7, extended aspects play an important
role in the partition of the solutions space for dynamic program-
ming algorithms and provide a partition criterion for any of the
redundancy parametrization schemes discussed in Section 2.5.2.
In facts, for a given end-effector location and orientation, the ex-
tended aspects contain a constant number of inverse kinematics
solutions [38]. Thus, in the case of planar and spherical manipula-
tors, where only two inverse kinematic solutions exist, the deter-
minant of the augmented Jacobian provides an analytic solution
to the problem of distinguishing between them. For some regional
type 1 manipulators, when the explicit factorization of their Ja-
cobian determinant is possible, an analytic solution could still be
found. However, for more complex robots, this is no longer the
case, and numeric techniques shall be adopted.

2.7 Dynamic programming

As remarked in Section 2.2, the traditional formulation of the
global optimization problem lacks of the possibility to find per-
formance indices which can easily accommodate a multitude of
constraints that are common in real applications, such as limits

68 2. Inverse kinematics of redundant robots

on joints positions, velocities, accelerations and torques. The tech-
nique based on Euler-Lagrange conditions was also demonstrated
being weak in finding Pareto-optimal sets, as the optimization of
multiple performance indices at the same time can only be done
through the usage of weights [44, 12]. Also, a technique to consider
joint limits has been studied in [45], where state space augmen-
tation is used together with the Pontryagin’s maximum principle.
However, the latter results in a rather heavy mathematical for-
mulation, whose scalability with respect to a higher number of
redundant DOFs and additional constraints remains uncertain.

In order to overcome such issues and to then accommodate a mul-
titude of constraints and objective functions, dynamic program-
ming could be used instead, leading to problems that are usually
demanding in terms of computational resources (mainly memory
and time), but much more flexible in addressing the needs arising
from real applications. Moreover, dynamic programming algo-
rithms perform better as the number of constraints increases and
adjustments can be made to achieve an acceptable compromise
between computation time and accuracy of the solution.

In Section 2.4, we have seen that techniques aiming at finding
the globally-optimal solutions only provide necessary conditions
for optimality, as it is the case of the Euler-Lagrange conditions
or Pontryagin’s maximum principle. More complex algorithms
[26] that are deeply based on the topological characteristics of the
inverse kinematic mapping can be more accurate in finding the
globally-optimal solution. However, in practice, they only work for
systems with one degree of redundancy and are not flexible with
respect to the accommodation of arbitrary constraints. Also, their
computational complexity is dependent on the number of C-path-
homotopy classes. In [46] a numeric approach is proposed, where
the unknown joint space position curves are discretized and opti-
mized with the Newton method. The technique is general enough
to accommodate cases where the constraint is not necessarily a
workspace path, but, more generally, a sub-space of the work-
space (e.g. a given surface). However, it is prone to sub-optimal

2.7. Dynamic programming 69

solutions, as the performances strictly depend on a starting guess,
used to initialized the solver. With dynamic programming, we aim
at designing an algorithm that guarantees the achievement of the
global optimum, or at least, that is very likely to achieve it, ac-
cording to a resolution-optimal paradigm. At the same time, the
procedure should be simple enough to be easily applied to systems
with multiple degrees of redundancy.

In Section 2.7.1, we recall the theoretical basics of dynamic pro-
gramming. In Section 2.7.2, we argue about suitable parametriza-
tions of the manipulator’s kinematics, using some of the concepts
presented in Section 2.5.2. Topological analyses of the solutions
space will support the creation of the dynamic programming grids
(see Section 2.7.3.2) which can be combined together with the
algorithm presented in Section 2.7.4.1.

Again with the same use case as Section 2.7.5.1, it is demonstrated,
in Section 2.7.5.2, that dynamic programming can efficiently seek
the global optimum without solving the BVP. The use case is also
analyzed from the topological point of view in Section 2.7.5.3.
The conclusions of such analyses pave the way, in Section 2.7.5.4,
to the possibility of using multiple DP grids to enable the online
reconfiguration of the manipulator while the assigned trajectory
is tracked.

Such a result is of primary importance as it considerably expands
the flexibility of planning techniques for redundant manipulators
operating in constrained environments, while preserving the global
optimality of the solution.

Lastly, in Section 2.7.6, recalling the analogy between local and
global solutions discussed in Section 2.4.6, we build a different use
case where the manipulator is obliged to change its posture to
keep the cost function at its minimum. We observe that solving
the BVP does not lead to any acceptable solution, while the global
minimum is achieved with dynamic programming.

70 2. Inverse kinematics of redundant robots

2.7.1 Generic formulation

Although a continuous time formulation of the dynamic program-
ming problem is possible, this dissertation is limited to the discrete
time systems, as the objective here is to propose a solution that
can be directly implemented on digital hardware. To this purpose,
assume to discretize the interval [0,Λ] such that λ = iτ , where τ
is the sampling interval, i = 0, 1, 2..Ni and Ni = Λ

τ
.

Thus, the following discrete system is given with its initial condi-
tions:

q(i+ 1) = f
(
q(i),u(i)

)
, q(0) = q0 (2.119)

where q represents the state vector of the system, and u is the
input vector. The objective is to find the optimal sequence of in-
puts that minimizes or maximizes a given cost function defined, in
general, on both the state and input vectors and their derivatives.

Usually, u is not free, but constrained to belong to a certain do-
main Ai, which, as its subscript suggests, may change at each
value of the stage variable. In many real applications, where the
input represents some physical quantity (e.g. velocities, torques),
its derivative may also be limited to a given domain Bi(u(i)),
which is, in principle, λ-variant as well as input-variant, such as,
for instance, when the acceleration that an electric motor can pro-
duce is dependent on the motor velocity. We can then write:

u(i) ∈ Ai

u′(i) ∈ Bi(u(i))
(2.120)

Since u is only defined at each i, its derivative can be defined using
the Euler approximation, that is

u′(i) =
u(i+ 1)− u(i)

τ
(2.121)

Thus, at each i, the set of admissible values of u(i), from which it
is possible to reach u(i+1) is given by the intersection between Ai

2.7. Dynamic programming 71

and the set of u-values respecting the constraint on the derivative,
that is

Ci = Ai∩

{
u(i) :

u(i+ 1)− u(i)

τ
∈ Bi(u(i)), with u(i+1) ∈ Ai+1

}
(2.122)

Now that the dynamic system is fully defined, together with the
domain of u, we can introduce the objective function to optimize,
that is

I(0) = ψ
(
q(Ni)

)
+

Ni−1∑
j=0

l
(
q(j),q′(j),u(j),u′(j)

)
(2.123)

where the assumption was made that the cost function computed
locally l only depends on the states, on the inputs and on their
first-order derivatives, but in general, more complex functions
could be defined. If the Euler approximation is used for both
q′ and u′, once τ is given, the cost function can be rewritten as:

I(0) = ψ
(
q(Ni)

)
+

Ni−1∑
j=0

l
(
q(j),q(j + 1),u(j),u(j + 1)

)
(2.124)

At a generic stage i, the objective function can be written as:

I(i) = ψ
(
q(Ni)

)
+

Ni−1∑
j=i

l
(
q(j),q(j + 1),u(j),u(j + 1)

)
(2.125)

or, otherwise, in a recursive form:

I(Ni) = ψ
(
q(Ni)

)
I(i) = I(i+ 1) + l

(
q(i),q(i+ 1),u(i),u(i+ 1)

) (2.126)

Assume that the optimization criterion is to minimize I(0). By
using the Bellman principle, we could then write:

I(Ni) = ψ
(
q(Ni)

)
Iopt(i) = min

u∈Ci

[
l
(
q(i),q(i+ 1),u(i),u(i+ 1)

)
+ I(i+ 1)

] (2.127)

72 2. Inverse kinematics of redundant robots

While Iopt(0) represents the optimized function, the same function
Iopt(i) at a generic stage i is also called optimal return function
and corresponds to the minimum value of the objective function if
the process started at the stage i. The first equation is necessary
to initialize the recursion. If multiple final states are admissible,
q(Ni) represents a variable configuration. In principle, a recursion
should be instantiated for each possible final state. A common
solution to manage, in practice, an undetermined final state, is to
define a mock state at stage Ni + 1 and embed the cost ψ

(
q(Ni)

)
inside the local cost function l between stages Ni and Ni + 1. In
this case, the recursion is initialized with I(Ni + 1) = 0.

2.7.2 Redundancy parametrization

The first issue to address when finding the optimal joint-space
trajectory for a redundant manipulator by using dynamic pro-
gramming is to establish to which quantity the input vector u in
equation (2.119) corresponds. The choice has to take into account
the algorithmic implementation of (2.127), which usually corre-
sponds to a search on a multi-dimensional grid built with discrete
values of λ and u.

One possibility could be to use the discrete form of equation (2.6),
given by

q(i+ 1) = q(i) + τ

{
J†(q)x′(i) +

[
I− J†(q)J(q)

]
φ′(i)

}
(2.128)

and to set u = φ′, as φ′ are the inputs that we could use to condi-
tion the motion in the null space of the Jacobian, without violating
the kinematic constraints. However, this choice would imply that
u ∈ <n, equivalent to seeking the optimal return function in an
n-dimensional space, which is certainly not a viable solution from
the implementation standpoint.

Alternatively, one could think of replacing the null space projector
in (2.6) with a null space basis, reducing the search space to n−m

2.7. Dynamic programming 73

(i.e. number of redundancy degrees). In this case the problem
becomes manageable in terms of local minimization/maximization
over u, but the space of the solutions will uncontrollably grow
with the number of λ-steps. For instance, if we ran the dynamic
programming algorithm for Ni steps and, at each step, p values of
u were admissible, the algorithm should evaluate Np

i solutions.

Indeed, this is a known issue in dynamic programming implemen-
tations, which usually suggests to discretize the state space, in-
stead of the input space, if possible. Inputs are then selected from
a continuous set which allow the system to evolve from one discrete
state on the grid to the next.

The considerations about the minimum number of differential equa-
tions made in Section 2.5.2 suggest that the redundancy could also
be parametrized in a way that the input u corresponds to one of
the joints positions, on the basis of which the other joints position
could be computed at each i. Alternatively, with a more generic
formulation, u could correspond to a joint combination. As in
Section 2.5.2, analyses have to be made on either the reduced Ja-
cobian or the augmented Jacobian to ensure they do not become
singular for any point on the path.

As far as joint selection method is concerned, all the considerations
made in Section 2.5.2.1 apply here as well. Once the trajectory is
assigned, this solution leads to the following dynamic system:

q(i+ 1) = f
(
qr(i),qu(i)

)
, q(0) = q0 (2.129)

where qu and qr are the vector of joints selected to parametrize
redundancy and the vector of the remaining joints respectively.

Rather, if a joint combination is chosen, the dynamic system
(2.119) becomes:

q(i+ 1) = f
(
q(i),v(i)

)
, q(0) = q0 (2.130)

Although initial conditions are given in both (2.129) and (2.130),
it will be shown that they can be computed as part of the solu-
tion, accounting for the case in which natural boundary conditions
apply.

74 2. Inverse kinematics of redundant robots

In the remainder of this dissertation, we will assume to choose a
parametrization based on joint selection, so that qu and u can be
used interchangeably.

2.7.3 Considerations on implementation

2.7.3.1 Forward vs backward implementation

As far as the implementation is concerned, anytime the grid con-
tains the discrete states of the system, the algorithm is limited to
a search over such a grid. This makes it possible to choose be-
tween a recursive and an iterative approach with the usage of a
return function or without and between a forward (i.e. from λ = 0
to λ = Λ) and a backward (i.e. from λ = Λ to λ = 0) implemen-
tation. It is worth remarking that, in this case, a solution can be
found regardless of the Bellman optimality principle, which would
rather be necessary if the states set was continuous. In fact, it is
possible to give a formulation of the problem in terms of graph the-
ory [47], from which it is evident that the search space is an acyclic
directed graph and the so-called dynamic programming algorithm
is, in truth, an optimal path search algorithm.

It has to be noted that if a forward implementation was chosen,
equation (2.127) has to be rewritten as

I(0) =ψ
(
q(0)

)
Iopt(i) = min

ui−1∈Ci−1

[
I(i− 1) + l

(
q(i),q(i− 1),u(i),u(i− 1)

)]
(2.131)

In this case it is convenient to redefine u′(i) as:

u′(i) =
u(i)− u(i− 1)

τ
(2.132)

2.7. Dynamic programming 75

and Ci−1 as:

Ci−1 = Ai−1 ∩

{
u(i− 1) :

u(i)− u(i− 1)

τ
∈ Bi(u(i)),

with u(i) ∈ Ai

} (2.133)

The choice between forward and backward implementation is not,
in general, arbitrary, as it often depends on considerations about
performance and on the hardware architecture used, as well as on
the boundary conditions of the problem.

In order to better understand how boundary conditions affect the
choice, we could highlight that the optimum cost function Iopt(0)
(backward) or Iopt(Ni) (forward) are conditioned by the sequence
of inputs enabled Ai at each i. In many practical cases, unless the
environment in which the robot moves is particularly constrained,
applications require that either the initial joints positions or the
final ones or both are assigned or constrained to belong to a certain
subset of the domain. The optimal solution and the value of the
cost function will then vary together with the initial or final set of
inputs. So we may write Iopt as a function of such sets [44], having
Iopt(0,ANi) or Iopt(Ni,A0).

Assume to run our forward dynamic programming algorithm once,
starting with inputs in A0 and ending with inputs in ANi . One
execution of the algorithm is sufficient to provide the solution to-
gether with its cost for the optimum joint-space paths ending in
each single element of ANi . From the practical standpoint, the
upside is that one may decide to select a sub-optimal solution if
its cost does not vary too much from the optimal cost, while the
final joints position is much more favorable for the particular task
the robot has to execute.

On the other hand, if one asked for a solution starting from a
specific u(0), this may require an additional execution of the al-
gorithm either proceeding backward or by explicitly forcing the

76 2. Inverse kinematics of redundant robots

initial condition at the moment A0 is defined. In other words,
one execution of the forward algorithm with free initial conditions
does not guarantee the computation of a solution for each input in
A0, as well as one execution of the backward algorithm with free
final conditions does not guarantee the computation of a solution
for each input in ANi .

2.7.3.2 Grid computation

As discussed above, dynamic programming algorithms for redun-
dant manipulators are particularly efficient when u is taken from
the state vector or when, like in the case of a joint combina-
tion, directly determines the state vector. In both cases, the ef-
ficiency can be further improved by pre-computing the grid, as
once a point on the path and the “redundant” joints positions
qu (or joint combination parameter v) are given, all joints po-
sitions can be computed from either equation (2.85) or equation
(2.106). For the sake of simplifying the notation, the assumption
that u(i) = u(i) ∈ Ai ⊂ < is made, implying that the grid will be
two-dimensional.

First, one needs to discretize the input domain, by selecting, for
instance, Nu equally spaced values of u, such that Ai is a discrete
set for each i and uj(i) is the j-th element of Ai, with j = 1..Nu

and i = 1..Ni.

Then, the joints positions can be computed from uj(i). If an
analytic form of the inverse kinematics exists, parametrized with
respect to the redundancy parameter, the joints positions can be
computed from the algebraic expression. If an analytic solution
does not exist or is hard to obtain, numeric solvers can be used.

One thing to keep in mind though, is that, in general, equations
(2.85) and (2.106) admit a finite set of solutions, but not a unique
one. While this is immediate to verify when an analytic expression
of the inverse kinematics is available, it might not be as evident
when using numeric solvers, which do not invert the kinematics

2.7. Dynamic programming 77

relations explicitly. Even for non-redundant manipulators, as it
is the case of a simple two-link planar manipulator, the inverse
kinematics solution of a Cartesian point in its workspace is noto-
riously made of two configurations, commonly known as elbow-up
and elbow-down. This suggests that multiple dynamic program-
ming grids need to be considered at the same time if the solution
has to be found across the whole configurations space.

In the following, we will use the term posture to refer to subspaces
of the joints space into which it is possible to find one and only one
solution to the inverse kinematics problem when qu (or v) is given.
If the manipulator is of type 1 [38], the terms posture and extended
aspect can be used interchangeably. The reader must be aware that
there is a slight difference between the posture just defined and the
concept of self-motion manifold recalled in Section 2.6. In facts,
two or more postures may close in one manifold if all configurations
in such spaces can be reached with a continuous motion of the
joints, which, as discussed in Section 2.6, is a condition depending
on where the end-effector is in the workspace.

However, regardless of the self-motion manifold they belong to, the
farther the manipulator or its subchains are from a singularity, the
longer is the distance, in the configuration space, between solutions
belonging to different postures. An arbitrary choice between one
solution or the other may cause jumps in the grid, which are likely
to violate the derivative constraints, affecting the search of the
optimal solution.

We then say that the grids have to be homogeneous (i.e. solutions
have to be continuous) for the dynamic programming algorithm
to provide the optimum in that specific posture.

Some grids examples are provided in Figure 2.11. On the x-axis is
i = 1..Ni, with Ni = 180. On the y-axis are the values uj = q1,j,
obtained by discretizing the input space in the interval [−80, 45]
degrees to the purpose of displaying the features of interest. The
color bars placed next to the figures associate colors to joint po-
sitions in [0, 2π]. The colors in the cells refer to one of the joint

78 2. Inverse kinematics of redundant robots

positions (q3 in this case) computed through inverse kinematics,
given, for each cell, q1,j and x(i). Pronounced colors differences
between adjacent cells suggest that the joints positions associated
with them are far in the configuration space and are likely to be-
long to different postures.

Value of q
3

on the grid

50 100 150

i

-80

-60

-40

-20

0

20

40

q
1
(d
e
g
)

1

2

3

4

5

6

(a)

Value of q
3

on the grid

50 100 150

i

-80

-60

-40

-20

0

20

40

q
1
(d
e
g
)

1

2

3

4

5

6

(b)

Figure 2.11: Examples of non-homogeneous (a) and homogeneous
(b) grids in q3 where u = q1. White areas represent regions where
no solution exists for the given (uj,x(i)) pair

In the grid of Figure 2.11(a), solutions have been obtained through
numerical solving procedures, which usually stop when the first
solution is found. As there is no guarantee that solutions always
belong to the same posture, non-homogeneous grids, as in Figure
2.11(a) are likely to be generated.

Numeric solvers also suffer from bad performances when no so-
lution exists. Depending on actual implementations, they may
try to seek the solution starting from different initial conditions,
which is time consuming. It is the case of the white areas in Figure
2.11(a).

One way to improve efficiency and to ensure obtaining homoge-
neous solutions is to build the grid row by row (i.e. fixing one of
the joints at uj(i)) and to compute the initial condition in the
desired posture by the means of a numeric solver, starting from
which all the other values on the same row are computed by nu-

2.7. Dynamic programming 79

merical integration using the inverse of the Jacobian. The grid
of Figure 2.11(b) has been computed with this method. As the
reader may notice, the colors smoothly change from light blue,
i.e. about 3 radians, to red, i.e. 2π radians, which is an indication
that continuity (in the joint space) is guaranteed between adjacent
cells of the grid. In several previous works, such as [39] and [40],
homogeneous grids have also been referred to as feasibility maps,
as they can be exploited to study the feasibility of trajectories in
environments with obstacles or in presence of joint limits.

Using the terminology adopted in [34], the number of grids to
be generated Ng only depends on the mechanical characteristics
of the manipulator and is equivalent to the maximum number of
self-motion manifolds generated in the configuration space as pre-
images of a generic point in the task space. This means that,
regardless of where the end-effector is and regardless of how many
degrees of redundancy the manipulator has, the maximum num-
ber of grids is constant and is 2,2,4 and 16 for planar, spherical,
regional and spatial manipulators respectively [34]. However, it
is worth remarking that, for some specific kinematic structures,
as well as for some specific trajectories [38], the actual number
of grids could be less than the maximum theoretical value. For
instance, for most six-axis industrial manipulators, the number of
different configurations is equal to 8 [47]. An example of two ho-
mogeneous grids, representing two different postures for the same
manipulator and trajectory is provided with the case study of Sec-
tion 2.7.5.2.

Homogeneous grids may also be obtained by using the topologi-
cal notion of extended aspects discussed in Section 2.6.4. If the
manipulator is planar or spherical, meaning that only two inverse
kinematic solutions exist for a given x, once the redundancy pa-
rameter v is defined, the determinant of the augmented Jacobian
can be tested, such that one grid contains all the solutions satis-
fying |Ja| > 0 and the other all the solutions satisfying |Ja| < 0.
If a numeric solver is employed, one condition or the other could
be used to reduce the search space and guarantee that the solu-

80 2. Inverse kinematics of redundant robots

tion returned by the solver is in the desired posture. In case the
manipulator is more complex, but still of type 1 [38], a possibil-
ity exists to create homogeneous grids if the augmented Jacobian
can be easily factorized. In all the other cases, the augmented
Jacobian singularities only provide one condition to distinguish
between solutions, thus additional criteria have to be found by
testing either the joint variables (e.g. shoulder, elbow, wrist), or
the minors determinants. An example is provided in [48], with
application to parallel robots, and with the case study of Section
2.8, with a 7-DOF manipulator.

2.7.4 Dynamic programming algorithm

2.7.4.1 Single grid and multi-grid algorithms

As discussed in Section 2.7.3.1, several implementations are possi-
ble. In this section, for the sake of brevity, only a forward iterative
algorithm is presented for the case n−m = 1.

First assume to work with each of the grids separately, which
means that as many algorithm executions as the number of grids
are necessary to find the global minimum. Also, if grids are not
used together, the motion is kept confined within a certain posture,
i.e. passes from one configuration to the other are not possible.
Under this assumption, the pseudo-code of the algorithm is as in
Algorithm 1.

Sets Ai at step 1 could be given in terms of inequalities, e.g.
−1.5 < u < 1.5 or as boolean maps when it is necessary to select
specific values from the discrete set. When the knowledge of the
input implies the knowledge of the state, as shown in Section 2.7.2,
the definition of Ai could be extended to include all the constraints
given on the state. This way, Ai could be used to accommodate
any joint limit or more complex, usually application dependent
configuration constraints, such as the distance from obstacles or
singularities [35]. Similar considerations can be done for the ini-
tialization of Bi at step 2 to accommodate joint rates limits or

2.7. Dynamic programming 81

Algorithm 1 Forward iterative dynamic programming algorithm
with single grid
1: Initialize Ai, ∀i = 0..Ni
2: Initialize Bi, ∀i = 1..Ni
3: Initialize Ci = ∅, ∀i = 0..Ni
4: Initialize cost map Ii,j = +∞, ∀i = 1..Ni, ∀j = 0..(Nu − 1)
5: Initialize cost map I0,j , ∀j = 0..(Nu − 1) with the initial cost
6: C0 ← A0

7: for i← 0 to Ni − 1 do
8: for each uj ∈ Ci do
9: for each uk ∈ Ai+1 do

10: u′ ← uk−uj
τ

11: if u′ ∈ Bi+1 then
12: Ci+1 ← Ci+1 + {uk}
13: Compute instantaneous cost function l
14: if Ii,j + l < Ii+1,k then
15: Ii+1,k = Ii,j + l
16: Let uj at stage i be the predecessor of uk at stage i+ 1

17: Iopt(Ni) = minj INi,j
18: Build function u(i) of optimal inputs by screening the predecessors map backward

additional velocity-dependent constraints. It is worth remarking
that Ai and Bi are stage-dependent to account for the most gen-
eral case, but, if only joint position and velocity limits are given,
they are both constant along the motion and their dependence on
i can be omitted.

A more flexible algorithm could be designed to visit all the grids
at the same time. This way, it is possible for the manipulator to
smoothly pass from one posture to the other, increasing dexter-
ity for particularly complex tasks. It has to be noted that the
passage from one posture to the other can only happen in those
regions of the workspace (W-covers, according to terminology in
[34]) where the self-motion manifolds form a continuous curve in
the joint space. At most, they can happen on the borders of such
W-covers, in which case though the manipulator will encounter a
singularity. Rather, when the manipulator reconfigures its pos-
ture inside a W-cover where it can, only a subset of its joints will
align, bringing the relating kinematic subchain to a singularity.
However, from the practical standpoint, this does not represent
an issue for the majority of real applications. An example of us-

82 2. Inverse kinematics of redundant robots

age of multiple grids, although not related to optimization and
dynamic programming, can be found in [48], where an algorithm
is designed for parallel manipulators to visit multiple extended
aspects, therein termed working modes.

Even in the case of multiple grids, several implementations are pos-
sible. Which one to adopt is usually dependent on a time-memory
trade-off. In facts, some implementations may increase the size of
the maps kept in memory but be faster when it comes to execution
time. Rather, others may just compute some constraints in-line,
saving memory to the detriment of time. Assuming that, for in-
stance, one would like to privilege memory over time, a possible
implementation could be as in Algorithm 2.

Algorithm 2 Forward iterative dynamic programming algorithm
with multiple grids
1: Initialize Ai, ∀i = 0..Ni
2: Initialize Bi, ∀i = 1..Ni
3: Initialize Ci = ∅, ∀i = 0..Ni
4: Initialize cost map Ii,j,g = +∞, ∀i = 1..Ni, ∀j = 0..(Nu − 1), ∀g = 1..Ng
5: Initialize cost map I0,j,g , ∀j = 0..(Nu − 1), ∀g = 1..Ng with the initial cost
6: C0 ← A0

7: for i← 0 to Ni − 1 do
8: for each uj ∈ Ci do
9: for each qg within joints positions limits do
10: for each uk ∈ Ai+1 do
11: for each qh within joints positions limits do

12: u′ ← uk−uj
τ

13: if u′ ∈ Bi+1 then

14: q′ ← qh−qg
τ

15: if q′ is such that q̇ is within joints velocity limits then
16: Ci+1 ← Ci+1 + {uk}
17: Compute instantaneous cost function l
18: if Ii,j,g + l < Ii+1,k,h then
19: Ii+1,k,h = Ii,j,g + l
20: Let uj , qg at i be the predecessors of uk, qh at i+ 1

21: Iopt(Ni) = minj,g INi,j,g
22: Build functions u(i) and q(i) of optimal inputs and states by screening the predecessors

map backward

For the algorithm above, the following assumptions have been
made:

� Ai and Bi only account for constraints defined on the input

2.7. Dynamic programming 83

variable, not for those defined on state variables. However,
if u is taken from the state vector, the checks on Ai, Bi and
Ci can be skipped.

� Constraints on the joints positions and velocities are only
given in terms of constant upper and lower bounds.

By removing the assumptions above, more complex algorithms
could be designed, which are not discussed here for the sake of
brevity.

Anyhow, whichever the implementation details are, if all grids are
visited at the same time, all the possible C-path-homotopy classes
will be available to the algorithm, which can find the optimal
solution across them. At any time, the manipulator will be able to
get close to and pass through singularities of any of its kinematic
subchains, overcoming the limits of the solutions based on the
Euler-Lagrange formulation or Pontryagin’s maximum principle.
We will clarify these aspects with the example of Section 2.7.5.

2.7.4.2 Additional performance indices

If the algorithm is implemented as described in the previous sec-
tion, it is clear that a multitude of performance indices can be
accommodated in addition to those mentioned in Section 2.4.5,
such as [35]

� maximum energy

G = max
t

{
q̇TWq̇

}
(2.134)

� maximum of inverse manipulability

G = max
t

{
1

|JJT |

}
(2.135)

84 2. Inverse kinematics of redundant robots

Moreover, vector performance indices of the form G = [G1, G2, ...,
Gn]T can be considered. For instance, in laser cutting applications,
some common indices of this kind are [35] (k is the joint index in
the joint position vector):

� joint coordinate range

Gk = max
t
{qk(t)} −min

t
{qk(t)} (2.136)

� joint coordinate displacement

Gk =

∫ τ

0

|q̇k(t)|dt (2.137)

� joint maximum speed

Gk = max
t
{q̇k(t)} (2.138)

A discrete version of these performance indices can be found in
[47], where they are employed as measures of the trajectory smooth-
ness, as discussed in Section 2.7.4.3. It is clear that, in such cases,
the dynamic programming algorithm will find a Pareto-optimal
solution [12].

Lastly, it is also worth mentioning the performance index proposed
in [49], which, by neglecting the robot dynamics, allows to obtain
the best kinematic approximation of the time-optimal solution. In
a time-optimal problem, the distance in time between two stages
on a DP grid can be approximated as the travel time of the slowest
joint, commanded at the maximum speed, that is

∆ti = max
k=1..n

{
|qk(i+ 1)− qk(i)|

q̇k,max

}
(2.139)

Thus, the total trajectory time can be formalized as the sum of
such contributions

T =
n−1∑
i=1

∆ti (2.140)

2.7. Dynamic programming 85

The reader may verify that, in this case, the velocity constraints
are automatically respected, while the others have to be explicitly
checked.

2.7.4.3 Feasibility and smoothness of solutions

Because the state space is discretized, it might be possible that the
solution resulting from the application of the algorithms described
in Section 2.7.4.1 is not feasible on real hardware. Rather, in other
circumstances, it might happen that the trajectory is feasible, but
it is not smooth enough to be repeated over and over again with-
out damaging the mechanical parts on the long run. Thus, it is
interesting to look at the factors compromising either the fasibil-
ity or the smoothness of the solution and understand what can be
done to address such issues.

At the beginning of Section 2.7, we have argued that dynamic
programming is much more flexible in accommodating additional
constraints than those we can manage with a reasonably simple
mathematical formulation based on calculus of variations. In Sec-
tion 2.7.1, we introduced a rather generic formalism to handle
position and velocity constraints through the sets Ai and Bi, and,
in Section 2.7.4.1, we discussed about the usage of such sets. The
proposed formulation is straightforward, but, in practice, is not
enough to ensure that the motion is always feasible and smooth.
In fact, on one hand, the output joint trajectory could exceed joint
torque capacities and, on the other, could result in oscillations of
the joints because of its non-smoothness.

Hence, in order to achieve both feasible and smooth motions, the
joint torques should be taken into account. This requires a rather
accurate dynamic model, which considerably complicates the im-
plementation of the dynamic programming algorithm and is not
always available in real industrial applications. Thus, a practi-
cal solution consists in transforming torque constraints into ac-
celeration constraints, which are usually provided in the robots
datasheets [47]. This allows to keep the same framework as Sec-

86 2. Inverse kinematics of redundant robots

tion 2.7.4.1, ensuring that the complexity of the algorithm does
not grow too much, with evident consequences on the execution
time.

On the other hand, while the mentioned approximation allows
for smooth joint position functions, it might not be enough to
guarantee smoothness at velocity level. In such cases, it might be
suitable considering additional constraints on the derivative of the
acceleration, which could also be provided in the robots datasheets
[49].

An example of λ-acceleration and λ-jerk computed on the multi-
grid is reported in Figure 2.12: g1, g2, g3 and g4 are four generic
grid indices, i is the current waypoint index and j is the current
redundancy parameter index. As indicated in Algorithm 1 and
Algorithm 2, a predecessor map is created while the dynamic pro-
gramming algorithm is executed, so that each reachable cell from
λ(0) to λ(i), i.e. the current stage, has a predecessor on such a

map, making up a chain starting with q
(g3)
i,j and ending with q

(h)
1,k.

Thus, when a comparison is made with a cell of the next way-
point, e.g. q

(g4)
i+1,j−1, the λ-acceleration and λ-jerk, together with

λ-velocity (step 14 of Algorithm 2), can be computed as

q′′i =
q′i+1 − q′i

τ

q′′′i =
q′′i+1 − q′′i

τ

(2.141)

Figure 2.12: Discrete λ-acceleration and λ-jerk on a DP multi-grid

2.7. Dynamic programming 87

If a time law is assigned, equations (2.141) directly determine the

acceleration and the jerk to pass from configuration q
(g3)
i,j to con-

figuration q
(g4)
i+1,j−1, which can be compared, together with joint ve-

locity (line 15 of Algorithm 2), with the limits from the datasheet.
In Figure 2.12, the colored arrows represent the cells involved in
the computation of the discrete derivatives (note that line 14 in
Algorithm 2 can be generalized to compute any derivative of in-
terest): blue lines only involve two nodes for the computation of
the λ-velocity, green lines involve three nodes for the computation
of the λ-acceleration and the red line involves four nodes for the
computation of the λ-jerk.

Together with the imposed constraints, the discretization step of
the redundancy parameter also plays an important role in the
generation of smooth joint space trajectories. It is clear that the
finer the discretization is, the smoother the trajectory can be, but
this comes to the detriment of time. Indeed, some redundancy
parameters have a higher sensitivity with respect to the motion
to be performed, meaning that for large changes of their value,
all the other variables in play, such as the joint position variables,
change less. If this is the case, a coarser discretization can be
used for the redundancy parameter, as it is very representative of
the motion, resulting in a smooth trajectory, still at a reasonable
computation time. Alternatively, an iterative approach can be
used, where a finer discretization is performed in the neighborhood
of a solution obtained with a coarser discretization at the previous
iteration [49]. This technique yields satisfactory results, but may
compromise the optimality of the solution if the first discretization
is too coarse.

In some other works, such as in [35] and [47], the trajectory
smoothness has also been explicitly included in the performance
index to optimize. For instance, the performance indices (2.136)-
(2.138) can be used as indirect measures of smoothness. They
can be suitably combined with other performance indices of in-
terest for the specific application, but the result will always be a
sub-optimal solution with respect to each of the indices.

88 2. Inverse kinematics of redundant robots

In [49], a different approach is considered, which is based on the
post-processing of the solution. In particular, the redundancy pa-
rameter curve is smoothened by applying a fifth-order polynomial
approximation. Then, in order to guarantee that the trajectory is
exactly tracked, inverse kinematics is solved again with the new
values of the redundancy parameter. In the numerical approach
of [46], the proposal also is to interpolate in post-processing, but
all joint position curves are interpolated at the same time in an
iterative Newton-Rapshon-like root-finding algorithm that aims at
minimizing the distance with the assigned workspace path. Every
time the control input is post-processed before being sent to the
robot controller, the constraints that have been enforced by the
dynamic programming algorithm might be violated between two
interpolation points. Although applied to the domain of time-
optimal control that we will address in Chapter 3, the solution
proposed in [14] foresees to perform the mentioned interpolation
between the grid nodes as opposed to post-processing. The in-
terpolation is embedded in the constraints checking step of the
dynamic programming algorithm so that unfeasible profiles can
be directly excluded, thus ensuring that the generated trajectory
will be eventually smooth and feasible on real hardware without
further modifications.

As far as the feasibility is concerned, together with velocity and
torque constraints, the assigned end-effector trajectory also plays
an important role. Assuming that the requested end-effector veloc-
ity and acceleration are feasible at each point of the trajectory, the
way the trajectory is discretized may compromise the final result.
In fact, according to [35] and [47], a lower bound exists in the dis-
tance between waypoints, which is determined by the capabilities
of the robot controller. In particular, for controllers using a trape-
zoidal velocity profile, the joining of very close waypoints yields
an undesirable velocity reduction [47], thus, said ∆x the distance
between waypoints, ẋ the assigned velocity at the end-effector and
τmin the minimal duration of the acceleration/deceleration sections

2.7. Dynamic programming 89

in a trapezoidal profile, as per controller characteristics, it is

∆x ≥ |ẋ|τmin (2.142)

2.7.5 Example: 4R planar manipulator

The example reported here was first proposed in [24], where a
4R planar manipulator centered in the origin, with links l1 = 7,
l2 = 7, l3 = 4 and l4 = 1.5, is asked to track a circular path of
radius R = 4 centered in (6, 4) at a fixed end-effector orientation of
−60◦ with respect to the x-axis. The initial and final end-effector
position is (10, 4), as shown in Figure 2.13, while its initial and
final velocities are zero.

0 2 4 6 8 10 12

x (units)

-2

0

2

4

6

8

y
 (

u
n

it
s
)

l
1

l
2

l
3

l
4

end-effector

trajectory

Figure 2.13: 4R planar manipulator with end-effector at its ini-
tial/final position

Initial and final joints positions are not given, so assume that the
configuration represented in Figure 2.13 is arbitrary. Under this

90 2. Inverse kinematics of redundant robots

hypothesis, the natural boundary conditions apply, as explained in
Section 2.4.2.1. The objective function to minimize is the square
norm of joints velocities, thus the solution of Section 2.4.5.1 ap-
plies. Also assume that λ = t and that Λ = 9, thus the trajectory
has to be completed in 9 seconds starting from t = 0 s.

End-effector acceleration profile is not given in [24], but accelera-
tions ẍ = x′′ are required in (2.50). For this reason, assume they
are shaped as in Figure 2.14. It is a smooth trapezoidal trajectory
with a peak velocity of 1.05 rad/s. Cubic polynomials have been
used for the jerk in the first and the last third of the trajectory.
The profile has been selected in order to have results comparable
to those from [24].

0 1 2 3 4 5 6 7 8

Time (s)

-2

0

2

4

6

8
Trajectory angle and its derivatives

(t) (rad/s
2
)

(t) (rad/s)

(t) (rad)

Figure 2.14: Trajectory in polar coordinates and its derivatives

As boundary conditions (2.52) apply and the boundary end-effector
velocities shall be zero, boundary conditions become:

q̇(0) = 0, q̇(9) = 0 (2.143)

The problem made of equations (2.50) subject to boundary condi-
tions (2.143) is a BVP in 8 equations, 8 variables (q and q̇) and 8

2.7. Dynamic programming 91

boundary conditions constraining 4 (q̇) of such variables. Half of
the conditions are given at the initial time, half at the final time.

In Section 2.7.5.1, the BVP is first solved with classical numer-
ical integration techniques. Some preliminary considerations are
made about the nature of the optimal solution with respect to the
whole configuration space. In Section 2.7.5.2, the same problem
is solved with dynamic programming using Algorithm 1 as many
times as the number of available DP grids. In Section 2.7.5.3, the
optimal solutions obtained in different postures are analyzed from
the topological point of view, allowing to come to some important
conclusions which apply to generic manipulators. Finally, in Sec-
tion 2.7.5.4, by bringing all the pieces together, we demonstrate
that, with the employment of multiple grids as per Algorithm 2,
it is possible to find globally optimal solutions with one scan of
the DP grids. Also, we demonstrate that the solution will not
be confined within some specific C-path-homotopy class, but the
manipulator will be able to smoothly reconfigure itself along the
path, overcoming the limits of previous techniques.

2.7.5.1 Solving as an initial value problem

As suggested in [24], one method to easily solve the problem with-
out solving the BVP is to make a guess on n − m of the joints
positions (n − m = 1 in this case) at the initial time, such that
initial conditions are given for both q and q̇ and (2.50) is solved as
an initial value problem. The objective is then to find the initial
joints positions leading to q̇(9) = 0 and returning the minimum
cost.

While in [24] the authors assume to make several initial guesses
and, from each of them, to use the Powel’s optimization routine to
reach the minimum, here we propose to discretize one of the joint
position domains and to find the solution(s) for each value in the
discrete set. Although this method results to be heavier from the
computational standpoint, it allows us to draw some important
conclusions about the nature of the solutions.

92 2. Inverse kinematics of redundant robots

First of all, it is worth noting that making several guesses on
n − m of the initial joints positions is not in general enough to
achieve the global minimum, regardless of the number of the initial
guesses. In facts, for each of the guesses made on one of the
joints, multiple solutions for the remaining joints, corresponding
to different postures, exist. In the case of a planar manipulator,
two solutions exist for non-singular points when one of the joint
positions is given.

Thus, in order to ensure that the whole configuration space is ex-
plored, assume to create two 4-dimensional sets of initial joints
positions. q1(0) is first fixed, then the two configurations are com-
puted by inverting the kinematic equations. Call such configu-
rations elbow-left and elbow-right for the sake of symmetry with
the actual path. The “elbow” corresponds to the third joint. The
two sets are reported in Figure 2.15, where q1(0) is used as x-axis.
Notice that no solution to the kinematics equations exists when
q1(0) is lower than about −45◦ (−0.79 rad) as well as when it is
greater than about 100◦ (1.75 rad).

-1 -0.5 0 0.5 1 1.5 2
q

1
(0) (rad)

-3

-2

-1

0

1

2

3
q2(0) (rad)

q3(0) (rad)

q4(0) (rad)

(a)

-1 -0.5 0 0.5 1 1.5 2
q

1
(0) (rad)

-2

-1

0

1

2

3

4

5

q2(0) (rad)

q3(0) (rad)

q4(0) (rad)

(b)

Figure 2.15: Initial angles sets of 300 samples each, corresponding
to elbow-left (a), i.e. negative values of q3, and elbow-right (b)
configurations, i.e. positive values of q3

From each initial position in the sets and q̇ = 0, the initial value
problems are solved. The values of the final joint rates and of

2.7. Dynamic programming 93

the cost function, for each possible initial position, q1(0), are re-
ported in Figure 2.16. Only the trajectories for which q̇(9) = 0
are solutions of the TPBVP.

-1 -0.5 0 0.5 1 1.5 2

q
1
(0) (rad)

0

1

2

3

4

5

6

7

8

(a)

-1 -0.5 0 0.5 1 1.5 2

q
1
(0) (rad)

0

1

2

3

4

5

6

7

8

(b)

Figure 2.16: Final joint rates and cost function for elbow-left (a)
and elbow-right (b) configurations

It is immediate to notice that several solutions exist which satisfy
the Euler-Lagrange equations and boundary conditions. Each of
them corresponds to a local minimum, but only one is the actual
global minimum. According to [25, 26], such solutions belong to
different C-path-homotopy classes and the Euler-Lagrange condi-
tions fail in distinguishing between them.

Thanks to this numerical procedure, it is possible to spot the
global minimum for each of the configurations, occurring when
q1 = 1.5708 rad and q1 = −0.4922 rad for the elbow-left and elbow-
right configurations respectively. The values of the cost function
are I = 2.68 and I = 2.67 respectively. Such results are not imme-
diately comparable with those from [24], as no information about
the trajectory profile is available. For instance, if the same trajec-
tory profile proposed here was used, but lowering the peak velocity
to 1.00 rad/s, the final cost would be I = 2.58, which is lower than
the global minimum found in [24]. One more source of mismatch

94 2. Inverse kinematics of redundant robots

0 2 4 6 8

Time (s)

-2

-1

0

1

2

3

4

J
o
in

t
p
o
s
it
io

n
s
 (
ra

d
)

0 2 4 6 8

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

J
o
in

t
v
e
lo

c
it
ie

s
(r
a
d
/s

)

0 2 4 6 8

Time (s)

-1

-0.5

0

0.5

1

1.5

J
o
in

t
a
c
c
e
le

ra
ti
o
n
s

(r
a
d
/s

2
)

Figure 2.17: Joints positions, velocities and accelerations relating
to the global minimum solution

certainly is the approximation caused by the discretization of the
initial state domain, which implies the computation of solutions
in a neighborhood of the actual minimum.

However, from a qualitative point of view, the joints position, ve-
locity and acceleration profiles obtained with the elbow-right con-
figuration do not differ from those in [24], as Figure 2.17 demon-
strates.

2.7. Dynamic programming 95

2.7.5.2 Solving with dynamic programming

The dynamic system (2.129) is considered, but initial conditions
are not assigned, so that they can be found as part of the solution.
The first joint is chosen to parametrize the redundancy.

Homogeneous state grids for both elbow configurations (postures,
extended aspects) are computed as in Section 2.7.3.2 for all values
of q1 and all values of x. Each cell in the grid contains values for q2,
q3 and q4, while q1 represents the input and therefore constitutes
one of the grid’s axes. As an example, the “slices” of the grids
relating to q3, expressed in degrees, are reported in Figure 2.18.

0 2 4 6 8

Time (s)

-150

-100

-50

0

50

100

150

q
1

(d
e
g
)

-150

-100

-50

0

50

100

150

(a)

0 2 4 6 8

Time (s)

-150

-100

-50

0

50

100

150

q
1

(d
e
g
)

-150

-100

-50

0

50

100

150

(b)

Figure 2.18: State grids in q3 (in degrees) relating to elbow-left
(a) and elbow-right (b) configurations

Algorithm 1 is run on each of the grids separately to find the op-
timal solution for the given manipulator posture. The solutions
found are reported in Figure 2.19 where they overlap to the opti-
mal solutions found by resolving the IVPs, as discussed in Section
2.7.5.1.

In order to make the comparison with the IVP solutions, that
are defined on the continuous state domain, they have been dis-
cretized using the same state grid as the dynamic programming
problem. This means that, at each time step, the actual state q is
replaced by the closest solution available on the grid. It is worth

96 2. Inverse kinematics of redundant robots

0 1 2 3 4 5 6 7 8

Time (s)

-150

-100

-50

0

50

100

150

q
1

(d
e

g
)

qoptimum
1

(t)

qdp
1

(t)

(a)

0 1 2 3 4 5 6 7 8

Time (s)

-150

-100

-50

0

50

100

150

q
1

(d
e

g
)

qoptimum
1

(t)

qdp
1

(t)

(b)

Figure 2.19: Discretized optimal solution (yellow) and dynamic
programming optimal solution (red) for elbow-left (a) and elbow-
right (b) configurations

remarking that such a discretization makes the IVP solutions lose
their property of being optimal, affecting their cost. In particular,
the cost increases from I = 2.67 to I = 2.75 for the elbow-right
configuration and from I = 2.68 to I = 2.76 for the elbow-left one.

As Algorithm 1 is designed to provide the optimal solution given
a certain grid, the costs mentioned above are upper bounds for
the dynamic programming solution. In facts, the cost relating to
the red curves in Figure 2.19 is I = 2.73 and I = 2.72 for elbow-
right and elbow-left configurations respectively. According to the
dynamic programming algorithm, with the given grid resolution
of 0.1 degrees along the q1 axis, the elbow-left configuration is
slightly advantageous over the elbow-right one. However, given
the proximity in cost between the solutions, we could conclude
that the IVP and DP methods are coherent and both highlight
that the two solution are equivalent from a qualitative viewpoint.

The cost is notoriously linked to the grid resolution. For instance,
if we downscaled the q1 set from 0.1 to 0.2 degrees resolution for
the elbow-left grid, the cost would increase to I = 2.76. On the
other hand, if the distance between samples tended to zero, both
the DP and IVP-discretized solutions would tend to the optimal

2.7. Dynamic programming 97

solutions found in Section 2.7.5.1.

2.7.5.3 Topological analysis of solutions

Now that the optimal solutions have been found, it would be inter-
esting to investigate their relationship from the topological point
of view. The objective is threefold:

� to investigate the relationship between the solutions in terms
of C-path-homotopy classes, recalling the observations made
in Section 2.6;

� to understand what happens in the joint space when a de-
cision about the posture is taken and when, on the other
hand, a passage from one posture to the other is required
because of obstacles or other workspace constraints or be-
cause of certain boundary conditions that could be assigned
in real scenarios;

� to identify the sub-structures of the pre-image of the work-
space path with respect to the typical sub-structures de-
scribed in [26].

The upper-right quadrant of the workspace is reported in Figure
2.20, and it is where the manipulator’s end-effector operates. By
considering the singular configurations, i.e. all links aligned in the
case of a planar manipulator, W-covers are drawn and separated
by black arcs. In blue (dotted), the reader may recognize the
path of Figure 2.13. In order to make the matter more tractable,
assume to simplify the problem of the 4R planar manipulator with
assigned position and orientation into the equivalent problem of a
3R planar manipulator with assigned position and free orientation.
Therefore, the kinematic subchain made of joints 1, 2 and 3 is
considered, with the end-effector assumed to be at the end of link
3. Its path in the workspace is drawn in red and corresponds
to the former joint 4’s path. A few points are highlighted on

98 2. Inverse kinematics of redundant robots

such a curve. The green points in W-covers 1 and 3, x5 and x1,
are the ones where the distance between the end-effector and the
manipulator’s base is minimum and maximum respectively. The
one in W-cover 2 is chosen arbitrarily. The points highlighted in
purple, i.e. x2 and x4, are coregular values (see Section 2.6) by
which the end-effector transits when moving toward the base of
the manipulator from its initial location.

0 5 10 15 20

x

0

5

10

15

20

y

Figure 2.20: 3R manipulator’s workspace divided in W-covers;
solid red line: 3R manipulator end-effector’s path, dotted blue
line: 4R manipulator end-effector’s path

Each of the 5 points are pre-mapped onto the joint space in one or
more self-motion manifolds. By definition, pre-images of coregular
values contain singularities.

All the elements are in place to address our first objective: to
investigate about the C-path-homotopy relationship between solu-
tions.

2.7. Dynamic programming 99

First, as done in [25] and [28] for similar analyses, we would like
to outline the curves bounding the path in the joint space. Un-
like examples reported in [25] and [28] though, where bounding
manifolds close in circles (see Figure 2.8), our path crosses all the
coregular value manifolds, jumping from one self-motion manifold
to the other, eventually between self-motions belonging to different
C-homotopy classes (see Section 2.6.2). Our bounding manifolds
will then belong to different C-bundles and will then have different
“shapes”. Figure 2.21(a) shows the bounding manifolds.

(a) (b)

Figure 2.21: (a) Bounding manifolds for the 3R end-effector path
in Figure 2.20 (solid line), projected onto the q2 − q3 plane, ob-
tained from the composition of elbow-left (red) and elbow-right
(blue) inverse kinematic solutions; (b) pre-image of the workspace
path obtained from the union of all the self-motion manifolds for
t ∈ [0, 9]

As a consequence, the surface constituting the pre-image of the
workspace path is not a deformed torus, but the much more com-
plex surface of Figure 2.21(b), that is also a composition of the
typical manifold structures identified in [26].

As Figure 2.22 demonstrates, the path curve in the joint space be-
gins between the large and the small boundary manifolds, either in
the elbow-right (top-right curve) or in the elbow-left (bottom-left

100 2. Inverse kinematics of redundant robots

curve) configuration. It touches the large boundary manifold at
x1, then leaves it to cross the coregular surfaces at x2 and x4. It
touches one of the small manifolds at x5. It ends in the same work-
space point as where it started, but in a different configuration,
as the cyclicity requirement is not imposed.

-150 -100 -50 0 50 100 150

q
2
(deg)

-150

-100

-50

0

50

100

150

q
3
(d
e
g
)

Figure 2.22: Optimal solutions for elbow-left (red) and elbow-
right (blue) configurations; coregular surfaces projections (black)
are also shown, together with bounding manifolds; the pre-image
of regular value x3 is also shown for completeness

The first thing that one may notice by looking at Figure 2.22 is the
symmetry of the solutions. Indeed, the line passing through points
x1 and x5 and through the base of the manipulator has gradient
1.01, which means that it almost coincides with the bisector of the
quadrant. However, the symmetry is not exact, as the velocity
and acceleration profiles are not symmetric with respect to the
same line, but respect to the horizontal line passing through the
center of the 3R manipulator’s path. As velocity is minimized,
configurations are also affected. This is also confirmed by the fact
that the optimal solutions are not symmetric when plotted versus
time, as in Figure 2.19.

The three-dimensional Cartesian representation of the solutions is
reported in Figure 2.23, where two different viewpoints are given

2.7. Dynamic programming 101

to ease the comprehension of the geometry. The reader may verify
that the two curves are not C-path-homotopic and so they would
be even if they were closed under the cyclicity requirement.

Here we have considered the optimal solutions in both the elbow
configurations, but from Figure 2.16, we know that other solutions
exist satisfying the Euler-Lagrange necessary conditions. Each of
them could be C-path-homotopic to one or the other of the op-
timal solutions, or, potentially, they could belong to a different
C-path-homotopy class. According to [25], the BVP (that has not
been solved here, because the problem was transformed in multi-
ple IVPs) is unable to distinguish between such solutions. As re-
marked at the end of Section 2.7.4.1, if the dynamic programming
algorithm is implemented in a way that the whole configuration
space can be explored, i.e. multiple grids are visited together, it
would be able to overcome such a limit. For the example consid-
ered here, Algorithm 2 will only find the elbow-right curve (blue)
which we know to be the global optimum.

Figure 2.23: Three-dimensional Cartesian visualization of solu-
tions in the joint space, plotted onto the surface corresponding to
the pre-image of the workspace path

We are now ready to address the second objective of this section:
to investigate about the capabilities of the manipulator to change
its posture “on the way”. In real scenarios, this could happen

102 2. Inverse kinematics of redundant robots

because of certain constraints in the workspace (e.g. obstacles) or
because of the imposition of certain boundary conditions or cost
functions, as we will show in the next sections.

With reference to Figure 2.22, the topological analysis shows that
the manipulator would be able to fully reconfigure itself while
the end-effector operates in W-cover 3, as the self-motion mani-
folds close in circles within the same C-bundle, e.g. k−1(x1). As
it crosses the first coregular value manifold, getting into W-cover
2, it can still reconfigure joint 3 between elbow-left and elbow-
right configurations, but q2 assumes either positive or negative
values, in two different self-motion manifolds, e.g. k−1(x3). In
other words, the capability of the manipulator to reconfigure itself
is limited. In fact, the pre-image of W-cover 2 is made up of two
disjoint C-bundles, separated by singularities [q1, 0,±π], [q1,±π, 0]
and [q1,±π,±π]. Last, when the end-effector crosses the second
coregular value manifold, getting into W-cover 1, the manipulator
has no possibility to reconfigure itself at all, e.g. k−1(x5). Here,
the pre-image of W-cover 1 is made up of two disjoint C-bundles,
separated by singularities [q1,±π, 0] and [q1,±π,±π].

In Figure 2.24, an alternative visualization of the C-bundles is
given with relation to the trajectory. Vertical black lines corre-
spond to coregular surfaces, hence they contain singularities, in
particular at the points of tangency with the white areas. The re-
gions of the elbow-left and elbow-right grids where the colors are
the same for both q2 and q3 correspond to the configurations where
a passage from one grid to the other is possible. Such regions ad-
join white areas, where no solution to the inverse kinematic prob-
lem exists. As reconfiguration is only possible by passing by a
singularity of the subchain made of links 2 and 3, one may also
look for the light blue (0 deg) and red (±180 deg) regions on the q3

grids. The reader may realize that such regions exist in C-bundles
2 and 3, while they do not in C-bundle 1, where, if the manipulator
approached a white region, it would also approach the boundaries
of C-bundle 1, ending up in a singularity.

The same can also be verified in Figure 2.22 again. If the manip-

2.7. Dynamic programming 103

ulator was in C-bundle 1, that is where k−1(x5) is, and tried to
change its elbow configuration from right to left or left to right
without crossing the coregular surface, it should pass through ei-
ther q = [q1,±π,±π]T or q = [q1,±π, 0]T , which are both singu-
larities of the whole kinematic chain.

Figure 2.24: Grids in q2 (top) and q3 (bottom) for elbow-left
(left) and elbow-right (right) configurations with overlapped the
C-bundles boundaries

The transition map of Figure 2.25 is built by computing the dis-
tance (i.e. the norm of the difference) between joints configurations
in different grids. The darker the color is, the closer the configu-
rations are, making the jump possible from one grid to the other.
The reader may notice that such regions correspond to the con-
tours of the white areas and that in C-bundle 1, the jump is not

104 2. Inverse kinematics of redundant robots

possible without hitting a singularity.

C
-
b
u
n
d
le

 1

C
-
b
u
n
d
le

 2

C
-
b
u
n
d
le

 3

C
-
b
u
n
d
le

 3

C
-
b
u
n
d
le

 2

A

B

C

D

E

Figure 2.25: Transition map showing areas (black) where the jump
from one elbow configuration to the other is possible; difference is
in radians

Referring again to Figure 2.24, it is also interesting noticing how
in C-bundles 2 it is not possible to pass from positive to negative
values of q2, as noted above about Figure 2.22.

The transition map of Figure 2.25 is also a useful tool to provide
a 2D representation of a complex multi-dimensional manifold. In
[26], several sub-structures as cylinders with “pinched” ends and
bifurcating manifolds have been identified. The transition map can
be used to understand these shapes. The elbow-left and elbow-
right grids presented in this section can be seen as two surfaces
that meet at the black borders of the transition map and close
in manifolds. In this sense, the elbow-left and elbow-right grids
can be seen as projections of the lower and upper faces of the
same three-dimensional surface. In C-bundle 3, there only is one
manifold. On one side, for t = 0 and t = 9, its cross-section is
a circle, while at the borders with C-bundle 2, its cross-section
is an eight-shaped line whose center is the singularity A. Regu-
lar points B and C are where the grids are connected forming
one manifold. In C-bundle 2, each of the circles that make up

2.7. Dynamic programming 105

the eight-shaped border constitutes the beginning of two disjoint
manifolds that are separated by an empty region (white area be-
tween A and D in Figure 2.25). This is the same as Figure 6 in
[26]. In C-bundle 1, each grid contains a full manifold, in fact
there are no junction points between the two grids, except for sin-
gularities that, however, only exist at the borders of the bundle.
A cross-section of the border between C-bundle 2 and C-bundle 1
is given in Figure 2.26. The dotted line corresponds to the upper
manifold of C-bundle 2 (q2 < 0), while the solid line corresponds
to the lower manifold of C-bundle 2 (q2 > 0). Both manifolds
contain both elbow-left and elbow-right configurations, coherently
to Figure 2.22. Such manifolds intersect at singularities D and E,
where they generate, in C-bundle 1, an inner (blue, elbow-right)
and an outer (red, elbow-left) manifold that concentrically run to-
gether along C-bundle 1 without meeting. This type of transition
is a combination of junction (of the upper and lower manifolds
of C-bundle 2) and bifurcation (of the elbow-left and elbow-right
manifolds of C-bundle 1), that is not present in the examples from
[26].

D

E

Figure 2.26: Cross-section of the border between C-bundle 2 and
C-bundle 1, where D and E are the singularities of Figure 2.25

Anytime that manifolds bifurcate, as remarked in Section 2.6.3,
new C-path-homotopy classes are generated [26]. Once again, if
the state space grids fully represent the pre-image of the workspace

106 2. Inverse kinematics of redundant robots

path and transitions are allowed between them, i.e. the joint-space
solutions can travel around the manifold, the globally-optimal so-
lution will be found, across all C-path-homotopy classes. With
respect to the algorithm presented in [26], the complexity of the
dynamic programming algorithm is independent of the number
of C-path-homotopy classes, that can be in the order of millions
already for a simple trajectory traversing a few coregular surfaces.

2.7.5.4 Online reconfiguration

In light of the topological analysis above, it is interesting to show
how, by using Algorithm 2, the manipulator is able to reconfigure
itself, when required by the specific application, jumping from one
grid to the other.

In order to do so, assume the manipulator has to track the tra-
jectory of Figure 2.14 and the square norm of velocities has to be
minimized (same as before), but, this time, the robot is forced to
begin its motion in an elbow-left configuration and end it in an
elbow-right configuration. The specific initial and final joints po-
sitions are left as results of the problem. One could call them free
elbow-constrained boundary conditions. In practical terms, this
can be done by imposing ad-hoc punctual position limits on q3,
i.e.

q3 < 0 for t = 0 s

q3 > 0 for t = 9 s
(2.144)

Anywhere in between t = 0 and t = 9, q3 is free, which means that
the solution is always free to “jump” from one grid to the other.
Figure 2.27 shows the solution for q1 obtained from the execution
of Algorithm 2, overlapping the transition map of Figure 2.25.

At time t = 5.8 s, soon after the manipulator passes from C-
bundle 1 to C-bundle 2, the solution approaches the black region
therein and jumps from the elbow-left to the elbow-right grid.
As expected, because of constraints (2.144), the cost increases to

2.7. Dynamic programming 107

Figure 2.27: Solution for q1 obtained by minimizing the square
norm of velocities subject to constraints (2.144); the star indicates
the time instant at which the jump happens

I = 4.18, obtained with a u-set of 1-degree resolution and a t-set
of 0.05 seconds resolution.

Figure 2.28 reports a sequence of four views of the manipulator in
its workspace while tracking the assigned trajectory, showing

� the manipulator in C-bundle 2, before entering C-bundle 1
(a);

� the manipulator in C-bundle 1, prior to the reconfiguration
(b);

� the manipulator at the reconfiguration point, in C-bundle 2
(c);

� the manipulator after the reconfiguration, in C-bundle 2 (d).

To complete the analysis of this case study, the optimal trajectory
is also drawn in the joint space in Figure 2.29, where the projection
onto the q2 − q3 plane is represented. The reader may recognize
that the configuration space represented is the same as Figure 2.22,

108 2. Inverse kinematics of redundant robots

(a) (b)

(c) (d)

Figure 2.28: Sequence of four consecutive frames showing the
joints configuration in the proximity of the reconfiguration point;
for paths, the same color code as Figure 2.20 has been used

but both q2 and q3 now take values in the interval [0, 2π] instead
of [−π, π]. From this representation, it is evident that the motion
starts in the elbow-left configuration and ends in the elbow-right
configuration, as requested by constraints (2.144). In order to
switch from one configuration to the other, the manipulator has
to approach the boundary between the red and the blue regions
in a bundle where they are connected (i.e. where they form one
self-motion manifold). In this case, the chosen boundary is at
q3 = 180◦ and the bundle where the jump happens is C-bundle 2.

2.7. Dynamic programming 109

Figure 2.29: Optimal trajectory drawn in the joint space and C-
bundles. Highlighted by the green circle, the point at which the
reconfiguration happens, i.e. q3 = 180◦

With respect to previous works, the latter example demonstrated
that, by working with multiple dynamic programming grids (e.g.
by using Algorithm 2), it is possible to find the global minimum
across all manifolds and configurations. Recalling the limits of the
Euler-Lagrange conditions expressed in [25], the optimal solution
across all C-path-homotopy classes can be found as well.

At the same time, it was shown that this method keeps the flex-
ibility of a typical dynamic programming redundancy resolution
scheme, where arbitrarily complex constraints and cost functions
can be given as inputs to the problem.

2.7.6 Comparison with BVPs

Now that we have learnt that algorithms based on the multiple
grids search are capable to find solutions spanning the whole joints
space, it would be interesting to make a comparison with the ca-
pabilities of a classical redundancy resolution scheme based on
calculus of variations.

110 2. Inverse kinematics of redundant robots

In order to do so, it is necessary to remove all the constraints,
such as (2.144), which cannot be easily handled with calculus of
variations. Moreover, we would like the boundary conditions to
be free, such that the “true” optimal solutions can be compared.
The objective is then to define a performance index which, in order
to be optimal, clearly requires the manipulator to reconfigure its
posture without the imposition of specific constraints.

The possibility to use configuration-dependent terms, as shown in
Section 2.4.5.4, comes in help in this case. One possibility is to
use the distance from an obstacle (or multiple obstacles), or, for
the simple manipulator and path of Figure 2.13, one could think
to minimize the distance between the elbow, i.e. the third joint,
and the center of the circular path. The latter results in a simpler
expression to be handled with calculus of variations and certainly
requires the manipulator to reconfigure its posture. From the prac-
tical standpoint, this distance could be an approximate measure of
the manipulator’s footprint while the task is accomplished, as the
expected result is that the elbow will be kept, as much as possible,
inside the circular path.

Thus, consider the following performance index:

G = wvq̇
T q̇ + wcd(q) (2.145)

where wv and wc are scalars summing to one, representing the
weights associated to the velocity-dependent and the configuration-
dependent performance indices respectively. d(q) represents the
square distance between the elbow position (xj3) and the center
of the circular path (xC):

d(q) = (xj3(q)− xC)T (xj3(q)− xC) (2.146)

By using the same parametrization as Section 2.7.5.2, the optimal
solution can be found with Algorithm 2. For wv = 0.1 and wc =
0.9, the optimal joint positions are reported in Figure 2.30 (a).
The cost associated to such a solution is I = 7.90, obtained with a
grid resolution of 0.25 deg along the input axis and 0.05 s along the

2.7. Dynamic programming 111

time axis. Velocity and acceleration limits are set to infinity, so
as to make the comparison with the BVP straightforward, where
constraints of this kind cannot be easily accommodated.

(a) (b)

Figure 2.30: Optimal solution for the performance index (2.145)
computed with Algorithm 2; (a) optimal joint positions, (b) tran-
sition points and optimal joint 1 trajectory

As we may have expected, there is a very little variation of the first
two joint positions, whereas the trajectory is tracked by mainly
exploiting the motion of joints 3 and 4, which accomplish a 360
degrees travel, in order to keep the elbow close to the center of the
circular path. The manipulator jumps from one elbow configura-
tion to the other twice: at t = 2.9 s and t = 6.25 s, highlighted
by the star markers in Figure 2.30 (b). Four snapshots picturing
the manipulator tracking the optimal trajectory are reported in
Figure 2.31, showing

� the manipulator in C-bundle 3, prior to the first reconfigu-
ration (a);

� the manipulator in C-bundle 2, after the first reconfiguration
(b);

� the manipulator in C-bundle 2, prior to the second reconfig-
uration (c);

112 2. Inverse kinematics of redundant robots

� the manipulator in C-bundle 2, after the second reconfigura-
tion (d).

-5 0 5 10 15

x (units)

-5

0

5

10

y
 (

u
n
it
s
)

(a)

-5 0 5 10 15

x (units)

-5

0

5

10

y
 (

u
n
it
s
)

(b)

-5 0 5 10 15

x (units)

-5

0

5

10

y
 (

u
n
it
s
)

(c)

-5 0 5 10 15

x (units)

-5

0

5

10

y
 (

u
n
it
s
)

(d)

Figure 2.31: Four snapshots showing the joints configuration in
the proximity of the two reconfiguration points

The joint trajectories of Figure 2.30 (a) are not everywhere smooth.
If necessary, one may improve its smoothness by employing one
of the techniques discussed in Section 2.7.4.3. For instance, the
usage of a spline interpolation yields the result of Figure 2.32. The
interpolation is only performed on the curve q1 and the others are
obtained by inverse kinematics, so as to guarantee that the path
constraint is respected.

2.7. Dynamic programming 113

Figure 2.32: Optimal solution of Figure 2.30(a) smoothed with
spline interpolation applied to q1

Now consider again the cost function (2.145). By following the
same steps as any of the typical performance indices of Section
2.4.5, the solution must satisfy

q̈ = J†(ẍ− J̇q̇) +
wc
wv

(I− J†J)JTj3(xj3 − xC) (2.147)

where Jj3 is the Jacobian associated to the direct kinematics of
joint 3:

Jj3 =
∂xj3
∂q

(2.148)

In addition, the solution must satisfy the following boundary con-
ditions:

q̇(ti) = J†(q(ti))ẋ(ti)

q̇(tf) = J†(q(tf))ẋ(tf)
(2.149)

with ti = 0 s, tf = 9 s and ẋ(ti) = ẋ(tf) = 0 for the example
considered here.

Again, like all the other performance indices mentioned in Section
2.4.5, the solution can be found by solving a Two-Point Boundary

114 2. Inverse kinematics of redundant robots

Value Problem (TPBVP). As done in Section 2.7.5.1, the initial
states can be discretized and as many IVPs as the number of states
in such a discrete set can be solved to seek the solution. The same
graph as Figure 2.16, showing the norm of the final joints velocities
and cost, is reported in Figure 2.33.

-1 -0.5 0 0.5 1 1.5 2

q
1
(0) (rad)

0

200

400

600

800

1000

1200

1400

1600

1800

(a)

-1 -0.5 0 0.5 1 1.5 2

q
1
(0) (rad)

0

200

400

600

800

1000

1200

1400

1600

1800

(b)

Figure 2.33: Final joint rates and cost function for elbow-left (a)
and elbow-right (b) configurations

This time though, the difference of a few orders of magnitude be-
tween the cost function and the final joints rates does not allow
to make a proper analysis by only looking at the graphs. How-
ever, the norm of joints velocities at the final time is never zero
(or sufficiently close to zero), regardless of the initial joints con-
figuration, which means that none of the solutions is a solution to
the BVP and, in turn, none of them respects the necessary condi-
tions for optimality. It is important noticing that the absence of
a solution is not due to the BVP itself, but to the fact that the
proximity to a singularity makes the joint velocities grow almost
instantaneously. As a consequence, the numerical integration in-
duces errors bringing the joints to velocities other than zero at
the final time. However, even though a CLIK implementation [22]
was able to recover from the “instability”, the high joints veloci-
ties would affect the cost function and the global optimality of the
solution [23].

2.7. Dynamic programming 115

In this specific example, the value of the cost function is never
lower than about I = 400, a order of magnitude higher than
I = 7.90, obtained with dynamic programming. Recalling the con-
siderations made in Section 2.4.6, links 2 and 3 must align twice
to keep the elbow joint inside the circular path. As said, this leads
the smallest singular value to zero and, in turn, makes joint ve-
locities rapidly grow. The result is the same anomalous behavior
that previous authors have experimented, which explains why the
cost is extremely high compared to dynamic programming.

Once again, this confirms that no difference exists, from such a
point of view, between local and global solutions and that, indeed,
under certain circumstances, calculus of variations may not be able
to provide a practical solution at all.

On the other hand, as already observed in Section 2.7.5.4, because
no Jacobian inversion is performed, the multiple grid algorithm
based on dynamic programming is capable to explore the whole
configurations space and find a solution across different manifolds
and C-path-homotopy classes, whenever this is necessary to op-
timize the given performance index. Practically speaking, this
means that tasks that would have been unfeasible with calculus
of variation (e.g. to minimize the manipulator’s footprint while
following a circular path, starting and ending with zero velocity)
could actually be feasible and tasks that would have been per-
formed sub-optimally (i.e. optimally in a C-path-homotopy class)
could actually be performed optimally in a global sense.

2.7.7 Computational complexity and efficiency

Although the globally-optimal redundancy resolution is a planning
task to be carried out off-line, there are certain applications that
require to execute such an optimization process in a bounded time
frame.

A first example is provided in [35] and concerns the optimization
of a robotized workcell layout. In fact, because the work has to

116 2. Inverse kinematics of redundant robots

be repeated several times and each execution comes with a certain
cost (execution time, energy consumption, mechanical wear), it is
of interest to find the best positioning of the robot minimizing such
a cost. The employment of redundant robots provides more room
for reducing such a cost, but it is still a function of the workcell
layout. Thus, the redundancy resolution has to be performed as
fast as possible, so that more layouts can be tested by the operator,
who usually interacts with a CAD-based software simulator.

In space applications of planetary exploration and, more in gen-
eral, in all the mission scenarios envisaging relayed communica-
tions between the ground control and the space asset, a bounded
time frame is assigned on ground to the planning stage, which may
vary from some minutes to a few hours [50]. In such cases, it is
clear that the redundancy resolution process has to be completed
in due time, so as to allow for a smooth progressing of the control
center activities.

These scenarios provide a motivation to discuss about the compu-
tational complexity of dynamic programming and relating graph
search algorithms applied to redundancy resolution.

2.7.7.1 Efficiency of the dynamic programming algorithm

Assume that the multi-grid dynamic programming algorithm, as
presented in Section 2.7.4.1, is employed and that the underlying
state space is discretized as described in Section 2.7.3.2 so as to
have multiple grids (either homogeneous or non-homogeneous). In
the terminology used in [47], each column of the grid, obtained for
fixed k, i.e. the grid-index, and i, i.e. the time index, and variable
j, i.e. the redundancy parameter index, is termed cluster. Two
clusters are adjacent if they correspond to adjacent time samples,
regardless of the grid they belong to. This means that cluster
{q(k)

i,j , j = 1..Nu} has 2Ng adjacent clusters that are {q(g)
i−1,j, j =

1..Nu}, with g = 1..Ng, and {q(g)
i+1,j, j = 1..Nu}, with g = 1..Ng.

As discussed in Section 2.7.4.1, dynamic programming solvers are
based on the comparison between adjacent clusters, say {q(k)

i,j , j =

2.7. Dynamic programming 117

1..Nu} and {q(g)
i+1,j, j = 1..Nu}, in order to find the minimal cost

predecessor for each q ∈ {q(g)
i+1,j, j = 1..Nu}, with g = 1..Ng.

This means that each single cell of the current cluster (identified
by indices i and k) is compared to all the cells (of cardinality Nu)
of all the next clusters (of cardinality Ng). Thus, the computa-
tional complexity of this algorithm is O(NiN

2
uN

2
g). Because Ng is

never greater than 16, Ng << Nu and is a constant of the system,
while Ni and Nu can be modified to increase precision. For this
reason, for a given application, the complexity can be considered
of O(NiN

2
u) [47]. For typical values of Ni and Nu, in the case

of real industrial manipulators, finding the globally-optimal solu-
tion may require up to several hours on modern architectures. In
turn, setting up a workcell, as in the process described above, may
require one or more working days. In the example of ground plan-
ning of robotic assets performing planetary exploration on extra-
terrestrial celestial bodies, such optimization time may lead not
to meet the planning deadline, decreasing the utilization of the
expensive space asset.

Thus it is of interest to investigate about techniques to reduce the
computational complexity, without affecting the global-optimality
of the solution, as discussed next.

2.7.7.2 Homogeneous grids

One criterion that can be adopted to reduce the computation time
is to limit the number of comparisons between adjacent clusters.
This is actually possible if grids are homogeneous, since, if a ve-
locity constraint is not respected for the couple {q(k)

i,j ,q
(g)
i+1,h}, it

will not be respected for any other redundancy parameter index
beyond h. The same idea, applied to the problem of time-optimal
control of non-redundant robots is described in [14]. A picto-
rial view of this optimization is represented in Figure 2.34. The
modified procedure is reported in Algorithm 3, where unnecessary
details have been removed for the sake of clarity.

118 2. Inverse kinematics of redundant robots

(1)

(2)

(3)

(4)

(6)

constraint respected

constraint respected

constraint respected

constraint violated

constraint violated

(5)

stop looking above

(7)

stop looking below

abandon grid g

Figure 2.34: Algorithm optimization exploiting homogeneous grids

Algorithm 3 Forward iterative dynamic programming algorithm
with multiple grids and optimization based on homogeneous grids
1: Initialize cost map Ii,j,k = +∞, ∀i = 1..Ni, ∀j = 1..Nu, ∀k = 1..Ng
2: Initialize cost map I1,j,k, ∀j = 1..Nu, ∀k = 1..Ng with the initial cost
3: for i← 1 to Ni − 1 do
4: for each grid k do

5: for each qj in {q(k)
i,j } within limits do

6: for each grid g do
7: w ← 0
8: while h← j ± w are admissible indices in {q(g)

i+1,h} do

9: qh ← {q
(g)
i+1,h}

10: if derivative constraints for qj and qh are respected then
11: Compute instantaneous cost function l
12: if Ii,j,k + l < Ii+1,h,g then
13: Ii+1,h,g = Ii,j,k + l
14: Let uj , qj at i be the predecessors of uh, qh at i+ 1

15: Increase w of 1
16: else
17: Abandon grid g

18: Iopt(Ni) = minj,k INi,j,k
19: Build functions q(i) of optimal states by screening the predecessors map backwards

The set of nodes of the next cluster visited from each single node

2.7. Dynamic programming 119

of the current cluster is termed lookup window, as shown in Figure
2.34 and has a cardinality of Nw. The discussed implementation
allows to reduce the computational complexity of the algorithm
to O(NiNuNw), as the number of constraint tests is no longer N2

u ,
but NuNw, with Nw << Nu. For typical applications, Nw is one to
three orders of magnitude lower than Nu, yielding a drastic reduc-
tion of the execution time. Experiments show that a solution can
be found in a few minutes on modern architectures, even for very
fine discretizations of the redundancy parameters, as summarized
in Table 2.2. The algorithm has been implemented in C++ in ROS
and executed on a 64-bit Ubuntu 16.04 LTS OS running on an
Intel® Xeon(R) CPU E5530@2.40GHz ×8, using the example of
Section 2.7.5, with Ni = 180. No multi-core execution model has
been used in the tests.

Nu

Redundancy
parameter
resolution

Algorithm 2 Algorithm 3

360 1 deg 25 seconds 1 second

720 0.5 deg 4 minutes 9 seconds

1440 0.25 deg 20 minutes 33 seconds

2880 0.125 deg 103 minutes 2 minutes

Table 2.2: Comparison of execution times between unoptimized
and optimized multi-grid DP redundancy resolution algorithms

It is worth mentioning that this kind of optimization can only be
used for velocity constraints, as the principle at the basis of the
optimization, and represented in Figure 2.34, is not true for other
quantities. With an example, given the pair {q(k)

i,j ,q
(g)
i+1,h}, with

h > j, if the acceleration constraint is not satisfied, it could be
satisfied for the pair {q(k)

i,j ,q
(g)
i+1,h+1}, as it depends on the prede-

cessor of q
(k)
i,j , that has been determined at the stage before.

Algorithm 3 also allows abandoning, at the first comparison, the

120 2. Inverse kinematics of redundant robots

grids to which it is not possible to transit from the current state.
In this sense, this is the same as tracking transitional points by
using maps such as the one of Figure 2.25 and test the feasibility
of the transition only at those points, as proposed in [39].

2.7.7.3 Repeated searches

As anticipated in Section 2.7.4.3, repeated searches can be per-
formed to improve the smoothness of the solution, but, on the
other hand, they can also improve the algorithm performances,
as demonstrated in [49]. The idea is to perform a first search
with a rough discretization of the redundancy parameter, so that
it terminates in a short time, returning a first solution. Then,
the redundancy parameter is discretized more finely, but only in
the neighborhood of the previous solution, so that the number of
samples on the redundancy parameter axis does not change. In
this way, it is demonstrated that a solution can be found up to 50
times faster than performing only one search on a very fine grid.

However, the reader must be aware that adopting an excessively
coarse discretization at the first iteration may yield a sub-optimal
solution at the end of the process. For instance, consider the ex-
ample of Section 2.7.5 and the globally-optimal solution of Figure
2.17, also obtained with dynamic programming in Section 2.7.5.2,
with Nu = 3600, i.e. 0.1 deg resolution. Assume to downscale the
resolution up to 1 deg, so that Nu = 360 and to execute either Al-
gorithm 2 or Algorithm 3 using both grids. The result is reported
in Figure 2.35.

The reader may recognize that the solution is very far from that of
Figure 2.17, implying that any search in its neighborhood will not
be able to find the globally-optimal solution. Since the redundancy
parameter resolution at which the solution begins resembling the
globally-optimal one varies on a case-by-case basis, those inter-
ested in picking the globally-optimal solution would be tempted
to use quite a fine resolution already at the first stage. This im-
plies losing the advantages of the two-stage optimization in favor

2.8. Application to a 7-DOF robotic arm 121

0 1 2 3 4 5 6 7 8

time (s)

-3

-2

-1

0

1

2

3

jo
in

t
p

o
s
it
io

n
s
 (

ra
d
)

Figure 2.35: Joint positions resulting from the execution of Algo-
rithm 3 on 180× 360 grids

of the global optimality.

2.8 Application to a 7-DOF robotic arm

2.8.1 Use case description

In order to demonstrate that the methodology developed in the
previous sections can be effectively applied to a real scenario, let
us consider a real robotic arm with 7 degrees of freedom, to which
a task constrained in position and orientation is assigned, with
a time law. The objective is to reduce the energy consumption
indirectly through the global minimization of the square norm of
joint velocities. Sub-optimal solutions are not of interest, hence
the globally-optimal solution must be found. In addition, the com-
putation has to be performed as fast as possible, so as to maximize
the number of planning sessions fitting in a given time window.
Thus, Algorithm 2 and Algorithm 3 are developed in C++ in ROS

122 2. Inverse kinematics of redundant robots

(Robot Operating System), by extending the MoveIt! framework
[51], so as to benefit from the communication and visualization
tools already available. Since the Panda robot by Franka Emika
[52] has 7 degrees of freedom and is the flagship robot of MoveIt!,
it is a convenient choice for the experiment at hand.

The reference frames of the Panda are reported in Figure 2.36
and the relating modified Denavit-Hartenberg parameters [53] in
Table 2.3 [54]. The configuration represented in Figure 2.36 is q =
0T . Let us set the joint position, velocity and acceleration limits
according to the datasheet. Limits on the jerk are not imposed,
but, as discussed in Section 2.7.4.3, it might be convenient to
consider them in case the resulting trajectory has to be executed
on real hardware.

Figure 2.36: Panda reference frames related to the modified
Denavit-Hartenberg parameters

The workspace path is defined in terms of position and orientation

2.8. Application to a 7-DOF robotic arm 123

di θi ai αi

J1 0.333 q1 0 0

J2 0 q2 0 −π
2

J3 0.316 q3 0 π
2

J4 0 q4 0.0825 π
2

J5 0.384 q5 −0.0825 −π
2

J6 0 q6 0 π
2

J7 0 q7 0.088 π
2

Flange 0.107 0 0 0

Table 2.3: Panda modified Denavit-Hartenberg parameters

and is depicted in Figure 2.37, together with the base reference
frame. The axes x, y and z are in red, green and blue respectively.
The planning is performed for the end-effector’s flange that has
to visit five waypoints, in the order xA, xB, xC , xD and xE, de-
scribing the corners of a rectangle in the y-z plane, with variable
orientation. Their values with respect to the base reference frame,
considering a roll-pitch-yaw representation for the orientation, are

xA =
[
0.3 −0.3 0.8 0 −π/2 0

]T
xB =

[
0.3 −0.3 0.4 0 −π/2 0

]T
xC =

[
0.3 0.3 0.4 0 −π 0

]T
xD =

[
0.3 0.3 0.8 0 π/2 0

]T
xE =

[
0.3 −0.3 0.8 π/2 π/2 0

]T
(2.150)

All the points in between each pair of waypoints are obtained by
linear interpolation, with a linear resolution not exceeding 0.01 m.

124 2. Inverse kinematics of redundant robots

Figure 2.37: Workspace path assigned to the Panda arm, together
with the base reference frame

A time law is defined so as to complete the whole trajectory in 60
seconds, with a constant time offset between consecutive points.
The total number of points is Ni = 203.

2.8.2 Grids computation

In order to speed up the calculation of the dynamic programming
grids, as described in Section 2.7.3.2, it is convenient to adopt an
analytic inverse kinematic solver, that is several orders of magni-
tude faster than numeric solvers. In the ROS framework, a possi-
bility is given by IKFast, which can find all the IK solutions on the
order of 6 microseconds, while most numeric solvers may require
even 10 milliseconds or longer, and convergence is not certain [55].
IKFast performs an off-line analytic kinematic inversion and gen-
erates a C++ library containing the algebraic IK solver, able to
return all the solutions for given end-effector position and orien-
tation. The off-line process may require several minutes, but is
independent from the assigned trajectory and, thus, needs to be
executed only once for a given kinematic chain. Currently, IKFast

2.8. Application to a 7-DOF robotic arm 125

is able to manage open kinematic chains with one degree of redun-
dancy. The value of the redundancy parameter has to be provided
at the time the algebraic solver is called, which is the case of the
DP grids considered in this dissertation.

In order to simplify the off-line process of generating the solver
library, we choose the redundancy parameter u = q4. In fact,
since joint 4 is in the middle of the kinematic chain and its axis
does not intersect any other joint axis, we minimize the chances of
encountering degenerate cases and of handling more complicated
expressions [55]. The redundancy parameter can be discretized
so that Nu = 2880, either between −180 deg and 180 deg, which
yields a resolution of 0.125 deg, or between its physical limits, i.e.
−176 deg and −4 deg, which yields a resolution of about 0.06
deg. The Panda manipulator has 8 IK solutions, i.e. Ng = 8, for
all the points on the trajectory, but in practice, because of joint
limits, some points have less. The “slices” corresponding to q1 of
the grids computed with IKFast are reported in Figure 2.38, while
those computed neglecting joint limits, for comparison purposes,
are reported in Figure 2.39.

The first interesting thing to notice about these grids is that they
are homogeneous, as evident from those of Figure 2.39. The ex-
tended Jacobian Ja, obtained from the 6× 7 rectangular Jacobian
by adding the row [0 0 0 1 0 0 0], cannot be easily factorized, im-
plying that we are not provided with analytic conditions to clas-
sify the solutions of IKFast. For this reason, the following three
conditions are used, obtained from an a-posteriori analysis of the
solution sets:

� |J(4)
r | > 0

� q2 > 0

� q5 > 0

Each of the grids in Figure 2.38 and Figure 2.39 corresponds to a
different combination of the conditions above, providing an homo-
geneous classification of the solutions. It is possible to demonstrate

126 2. Inverse kinematics of redundant robots

that both q2 and q5 are factors of Ja and, being the “augmented”
Panda manipulator of type 1, according to [38], they are sufficient
conditions for classifying the solutions.

The second trait of interest is that q4 is not so representative of
the null space for the trajectory assigned. In fact, by looking at
the grids of Figure 2.39 (without joint limits), a large portion of
the joint domain does not contain any solution. This means that
large variations of the other joints shall be expected for little vari-
ations of the redundancy parameter. According to the discussion
of Section 2.7.4.3, a fine discretization of the redundancy parame-
ter is needed for the dynamic programming algorithm to provide
a smooth solution.

Lastly, it is worth noting that joint limits, in real scenarios, no-
tably reduce the search space, giving a chance to the dynamic
programming algorithm to find the globally-optimal solution in a
short time. Also, because of joint limits, the Panda is not able to
track the assigned trajectory remaining in the same extended as-
pect, as none of the grids admits a feasible joint-space path from
xA (corresponding to i = 0) to xE (corresponding to i = 203).
Hence, the robot will need to reconfigure its posture on the way
by passing through singularities of its kinematic subchains.

2.8.3 Globally-optimal solution

Since grids are homogeneous, the optimization discussed in Section
2.7.7.2 applies. Thus both Algorithm 2 and Algorithm 3 can be
executed to find the globally-optimal solution on the grids of Fig-
ure 2.38. Table 2.4 reports the execution time of both algorithms
and different discretization steps of the redundancy parameter, to-
gether with the associated cost function. Tests have been executed
on a 64-bit Ubuntu 16.04 LTS OS running on an Intel® CoreTM

i7-2600K CPU @ 3.40GHz × 8. No multi-core execution model
has been used in the tests.

It is interesting to notice that there is not any considerable im-

2.8. Application to a 7-DOF robotic arm 127

Nu

Redundancy
parameter
resolution

Algorithm
2

Algorithm
3

Cost

360 0.48 deg 11 seconds 11 seconds 4.27

720 0.24 deg 54 seconds 54 seconds 2.76

1440 0.12 deg 4 minutes 4 minutes 2.44

2880 0.06 deg 14 minutes 13 minutes 2.16

4000 0.04 deg 27 minutes 26 minutes 2.04

Table 2.4: Cost function and performance of DP redundancy res-
olution algorithm for the Panda example

provement in the performance by using Algorithm 3 in place of Al-
gorithm 2. This means that either position or acceleration limits
are almost everywhere stricter than velocity limits for the assigned
trajectory.

The convergence rate that we may estimate from the values of
the cost function is a confirmation that q4 is very sensitive for the
considered trajectory, meaning that small variations of q4 yield
considerable changes in the solution for the other joints and, as
consequence, in the final value of the cost function.

The solution obtained for Nu = 4000 is reported in Figure 2.40.
It starts from grid 5, then, at t = 3.3 s (i = 12), it jumps to grid
6 and, at t = 14.6 s (i = 50), to grid 1. For the majority of the
trajectory, up to t = 48.7 s (i = 165), the solution lies on grid
1. Afterwards, it transits to grid 2 and terminates, achieving 3
posture reconfigurations in total and visiting 4 different extended
aspects. As commented in Section 2.7.5.4, posture reconfigura-
tions always happen on the boundaries of the feasible (non-white)
regions, where two or more of the maps have the same color for all
the joints (only q1 is shown in Figure 2.38). It is easy to verify that
this is the case for the sequence of grids visited by the algorithm

128 2. Inverse kinematics of redundant robots

and transitions at the stages mentioned above.

As far as the solution of Figure 2.40 is concerned, the reader may
clearly notice the discontinuities in the derivative of the joint po-
sitions at each of the three intermediate corners of the trajectory.
In between these points the curves are not everywhere smooth. Ei-
ther a post-processing step or the introduction of jerk constraints
would be desirable to allow for the execution on real hardware, as
commented in Section 2.7.4.3. Five snapshots from the simulation,
corresponding to waypoints xA, xB, xC , xD and xE are reported
in Figure 2.41.

2.8. Application to a 7-DOF robotic arm 129

Value of q
1
 for solution set (grid) 1

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 2

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 3

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 4

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 5

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 6

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 7

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 8

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Figure 2.38: Panda grids representing q1 for the trajectory de-
scribed in Section 2.8.1 considering joint limits

130 2. Inverse kinematics of redundant robots

Value of q
1
 for solution set (grid) 1

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 2

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 3

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 4

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 5

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 6

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 7

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Value of q
1
 for solution set (grid) 8

50 100 150 200

waypoints

-150

-100

-50

0

50

100

150

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(d
e

g
)

-150

-100

-50

0

50

100

150

Figure 2.39: Panda grids representing q1 for the trajectory de-
scribed in Section 2.8.1 neglecting joint limits

2.8. Application to a 7-DOF robotic arm 131

0 10 20 30 40 50 60

time (s)

-3

-2

-1

0

1

2

3

jo
in

t
p
o
s
it
io

n
s
 (

ra
d
)

Figure 2.40: Globally-optimal solution for the Panda example

132 2. Inverse kinematics of redundant robots

Figure 2.41: Snapshots of the solution of Figure 2.40, correspond-
ing, from left to right and top to bottom, to waypoints xA, xB,
xC , xD and xE

Chapter 3

Time-optimal planning of
non-redundant robots

3.1 Introduction

A multitude of manufacturing tasks, as well as many other time-
critical applications, such as aerial and space ones, require robotic
manipulation tasks to be executed in minimum time. In auto-
mated workcells or plants, this naturally leads to an increment
of the throughput, while in space applications it allows certain
tasks to fit within a tight schedule of operations, maximizing the
employment of the space asset, whose usage is notably expensive.

Time optimal robotic manipulation tasks can be classified in three
categories [56]:

� unconstrained motion between two endpoints;

� partially-constrained motion between two endpoints with the
presence of obstacles in the workspace;

� fully-constrained motion when the exact path to be tracked
is assigned.

134 3. Time-optimal planning of non-redundant robots

This dissertation focuses on the third category, covering the cases
where either a dense set of points in the workspace or some geo-
metric curve are given to describe the path. If the manipulator is
not redundant, the relating joint space path can be chosen from
a finite set of postures and be optimized with respect to the time
optimality criterion, which is to find the optimal actuators control
torques allowing to track the path in the shortest time. If the
manipulator is redundant, infinite joint space paths exist. The
time-optimal control torques can be chosen after the joint space
path has been determined, or, the two tasks can be accomplished
together, meaning that the choice of the joint space path becomes
part of the time-optimal planning process.

In Section 3.2, the time optimization problem is described for non-
redundant manipulators. In Section 3.3 some analysis techniques
are presented, focusing, in particular, on the properties in the so-
called phase plane of the curvilinear coordinate. Several resolution
techniques are summarized in Section 3.4, each one based on a dif-
ferent formulation of the problem. In Section 3.5, we introduce a
simple use case that allows us to compare some of the methodolo-
gies that, in this dissertation, we are mostly interested in, that are
the shooting method in the phase plane, addressed in the same
section, genetic algorithms, presented in Section 3.6 and dynamic
programming, discussed in Section 3.7.

3.2 Problem formulation

3.2.1 Path parametrization

A path is given either in the m-dimensional task space or in the n-
dimensional joint space, as either x(λ) or q(λ) respectively. λ(t) is
a parameter varying monotonically with respect to time in [0,Λ],
i.e. λ(t) : R → [0,Λ] and λ̇ = dλ

dt
> 0 ∀t. The relationship λ(t),

associating each point of the path to a specific time instant, is
unknown and has to be found as the result of the time optimization

3.2. Problem formulation 135

problem. Once λ(t), representing the time law, is known, the
trajectory x(λ(t)) = x(t) is uniquely determined.

Let (•)′ = d(•)
dλ

be the λ-derivative of a certain quantity (•). If
Λ is chosen as the length of the task space path x(λ), x′(λ) and
x′′(λ) correspond to the path λ-velocity (or parametric velocity)
and λ-acceleration (or parametric acceleration).

If the path is directly parametrized with respect to λ(t) in the
joint space, then the first and second order time derivatives of
q(t) = q

(
λ(t)

)
are given by

q̇ = q′λ̇ (3.1)

q̈ = q′λ̈+ q′′λ̇2 (3.2)

which link the joints’ velocity and acceleration q̇ and q̈ with their
parametric velocity and acceleration q′ and q′′.

Rather, if the path is more commonly parametrized in the task
space, the inverse kinematics mappings can be used to obtain the
joint space path [57]. It is reasonable to assume that the given
path is such that the non-redundant manipulator is far from sin-
gularities. Under this hypothesis, said J(q) the Jacobian matrix
associated to the manipulator’s kinematics, the first and second
order inverse kinematic mappings are given by

q′ = J−1x′ (3.3)

q′′ = J−1(x′′ − J′q′) (3.4)

The time derivatives of q can then be obtained by inserting equa-
tions (3.3) and (3.4) in (3.1) and (3.2):

q̇ = J−1x′λ̇ (3.5)

q̈ = J−1

[
x′λ̈+ x′′λ̇2 − (J−1x′)T

∂J

∂q
(J−1x′)λ̇2

]
(3.6)

where the λ-derivative J′ in (3.4) has been written as J′ = ∂J
∂q

q′

and ∂J
∂q

is the Hessian of the direct kinematic function [57].

136 3. Time-optimal planning of non-redundant robots

3.2.2 Robot dynamics parametrization

In the absence of contact and friction forces, the following manip-
ulator dynamic model is given:

H(q)q̈ + q̇TC(q)q̇ + g(q) = τ (3.7)

where H(q) is the n × n symmetric positive-definite inertia ma-
trix, C(q) is the n×n×n matrix of centrifugal and Coriolis forces
coefficients, g(q) is the n × 1 vector of gravitational torques and
τ is the n × 1 vector of control torques applied to the manipu-
lator’s actuators. Equation (3.7) is a rigid dynamic model, that
is commonly employed for a broad range of applications. Never-
theless, for time-optimal motion of real industrial mechanisms, it
might not be accurate enough, depending on the required perfor-
mances. In fact, at fast transitions, especially when high-order
derivatives are unconstrained, the elasticity that characterizes the
transmission components could no longer be negligible [58]. In
the following, for the sake of simplicity, we will assume that (3.7)
well describes the system at hand, but the reader should be aware
that joint elasticity is an important aspect to consider in order to
achieve superior performances with real systems.

By plugging equations (3.1) and (3.2) into (3.7) and recalling that
q, q′ and q′′ are all functions of λ, the manipulator’s dynamic
model is parametrized as follows:

a(λ)λ̈+ b(λ)λ̇2 + g(λ) = τ (3.8)

where

a(λ) = H
(
q(λ)

)
q′(λ) (3.9)

b(λ) = H
(
q(λ)

)
q′′(λ) +

(
q′(λ)

)T
C
(
q(λ)

)
q′(λ) (3.10)

If the path is specified in the task space, we can use equations
(3.5) and (3.6) in place of (3.1) and (3.2): the parametrization in

3.2. Problem formulation 137

(3.8) is unchanged, but a and b take the values

a(λ) = H(x)J−1x′ (3.11)

b(λ) = H(x)J−1

[
x′′ −

(
J−1x′

)T ∂J

∂q

(
J−1x′

)]
+
(
J−1x′

)T
C(x)

(
J−1x′

)
(3.12)

where the dependence on λ has been omitted to the right-hand
side of equations for the sake of clarity of notation.

Alternatively, it could be convenient, especially when adaptive
control schemes are adopted, to parametrize the robot dynamics
starting from the standard dynamic parameters linear form, as
suggested in [59]. Forms of the dynamic model other than (3.7)
could also be used, as in [60] and [61], but they always lead to the
same parametrization (3.8).

3.2.3 Constraints parametrization

3.2.3.1 Torque limits

Consider each of the rows of the matrix equation (3.8) separately,
such that the right-hand term of the equation corresponds to the
torque applied to the i-th actuator:

ai(λ)λ̈+ bi(λ)λ̇2 + gi(λ) = τi (3.13)

In real applications, torques are usually characterized by lower and
upper bounds τi,min and τi,max, determining the joints maximum
deceleration and acceleration respectively. Thus, for each joint,
the following inequalities hold:

τi,min ≤ τi ≤ τi,max (3.14)

Assuming that ai(λ) 6= 0 and plugging equation (3.13) into (3.14)
and solving with respect to λ̈, we obtain

Li(λ, λ̇) ≤ λ̈ ≤ Ui(λ, λ̇) (3.15)

138 3. Time-optimal planning of non-redundant robots

where, by omitting the dependence on λ of the terms on the right-
hand side

Li(λ, λ̇) =
τi,minδi + τi,max(1− δi)− biλ̇2 − gi

ai
(3.16)

Ui(λ, λ̇) =
τi,maxδi + τi,min(1− δi)− biλ̇2 − gi

ai
(3.17)

with

δi(λ) =

 1 if ai(λ) > 0

0 if ai(λ) < 0
(3.18)

Since (3.15) has to hold for each i, we can write

L(λ, λ̇) ≤ λ̈ ≤ U(λ, λ̇) (3.19)

where

L(λ, λ̇) = max
i
{Li(λ, λ̇)}

U(λ, λ̇) = min
i
{Ui(λ, λ̇)}

(3.20)

In case ai(λ) = 0, the i-th actuator does not contribute to λ̈
bounds as Li(λ, λ̇) and Ui(λ, λ̇) are not defined and, thus, do not
appear in equations (3.20). However, it contributes bounding λ̇2,
as will be shown later.

From the practical standpoint, rated torques can be chosen as
torque limits in (3.14) and this would be a rather natural choice.
However, as pointed out in [62], if the manipulator has to ex-
ecute a repetitive task continuously, rated torques are likely to
exceed the maximum power of the motors and, because of over-
heating, damage the electrical parts. Rather, if the motor’s electric
model is considered, it is possible to define more conservative heat-
dependent limits, which would allow the manipulator to operate
in a safer (and more reliable) condition.

It is also worth remarking that constraints in the form of (3.19) are
valid not only for actual motor torques, but, in general, cover any

3.2. Problem formulation 139

generalized force constraint. For example, in the case of parallel
cable-based manipulators, the same parametrization can be used
to ensure that the cables are always tight during the motion [63].

Lastly, equation (3.14) considers fixed torque bounds. However, in
most real cases, the torque is dependent on the joint velocity, ac-
cording to the motor torque characteristic. This condition can be
easily accommodated in the framework described in this section,
without any major modification [14].

3.2.3.2 Torque rate and jerk limits

In real manipulators, it might be necessary, under certain circum-
stances that will be discussed later, that limits on joint torques
derivatives are considered together with torque limits [64]:

τ̇min ≤ τ̇ ≤ τ̇max (3.21)

In order for such constraints to be usable, it is necessary to consider
the first-order derivative of the manipulator’s dynamic model, that
is

H(q)
...
q + Ḣ(q)q̈ + q̈TC(q)q̇ + q̇T Ċ(q)q̇ + q̇TC(q)q̈ + ġ(q) = τ̇

(3.22)
where

...
q = q′′′λ̇3 + 3q′′λ̇λ̈+ q′

...
λ (3.23)

and

q′′′ = J−1(x′′′ − J′′q′ − 2J′q′′) (3.24)

By plugging all the equations in (3.21), it can be demonstrated
that the following constraints are obtained [64]:

jτ,min(λ, λ̇, λ̈) ≤
...
λ ≤ jτ,max(λ, λ̇, λ̈) (3.25)

ατ,min(λ, λ̇) ≤ λ̈ ≤ ατ,max(λ, λ̇) (3.26)

λ̇ ≤ vτ (λ) (3.27)

140 3. Time-optimal planning of non-redundant robots

where jmin, jmax, ατ,min, ατ,max and vτ are the most restrictive
bounds obtained from the constraints vector (3.21).

Joint jerk limits of the form

...
q i,min ≤

...
q i ≤

...
q i,max (3.28)

also yield similar constraints on the pseudo-jerk
...
λ . In fact, by

plugging equation (3.24) into (3.23), then (3.23) into (3.28) and
solving for

...
λ , we have

jq,min(λ, λ̇, λ̈) ≤
...
λ ≤ jq,max(λ, λ̇, λ̈) (3.29)

where jq,min and jq,max represent the strictest bounds for all i.

3.2.3.3 Joint acceleration and velocity limits

Joint acceleration and velocity limits can also be included in a
similar manner [65]. In particular, acceleration limits like

q̈i,min ≤ q̈i ≤ q̈i,max (3.30)

lead, as for torques, to constraints like

αq,min(λ, λ̇) ≤ λ̈ ≤ αq,max(λ, λ̇) (3.31)

where αq,min and αq,max are the strictest bounds computed by
inserting, for each i, equations (3.2) or (3.6) in (3.30) and solving
for λ̈.

On the other hand, velocity limits like

− q̇i,max ≤ q̇i ≤ q̇i,max (3.32)

lead to constraints in the form

λ̇ ≤ vq(λ) (3.33)

where vq is the minimum between all the quantities computed by
inserting, for each i, equations (3.1) or (3.5) in (3.32) and solving
for λ̇.

3.2. Problem formulation 141

In case of a discrete-time implementation, as noted in [66], a joint
velocity limit can be easily transformed into an acceleration limit.
In fact, said ∆t the sampling interval and k the discrete-time, by
using the Euler approximation, by which

∆tq̈i(k) = q̇i(k + 1)− q̇i(k) (3.34)

constraints (3.32) become

−q̇i,max − q̇i(k)

∆t
≤ q̈(k) ≤ q̇i,max − q̇i(k)

∆t
(3.35)

Such a formulation is equivalent to (3.30), yielding to additional
constraints in the form of (3.31). Its usefulness must be found in
its applicability to real-time resolution of minimum-time trajecto-
ries, as mentioned in Section 3.4.1.

3.2.3.4 Task acceleration and velocity limits

Certain tasks, notably welding, cutting and gluing, require high
accuracy and, as a consequence, cannot be usually executed at the
maximum of the manipulator’s capabilities. For this reason, the
velocity in the task space is usually bounded in order to meet the
accuracy requirements. In pick and place operations, the payload
acceleration is usually bounded so as not to exceed the gripper
force, which would cause the payload loss before reaching the tar-
get destination. For particularly fragile payloads, this is a common
issue [67].

Although, in these cases, task velocity and acceleration need to be
limited, there still is the need to execute such operations as fast as
possible, in order to maximize the throughput of the plant. This
leads to time minimization, subject to task space constraints.

For the sake of simplicity, without loss of generality, assume that
the path is parametrized in the task space, i.e. x(λ) is available,
and that Λ is its length. Under these assumptions, x′(λ) is the
unit vector tangent to the path and x′′(λ) is a vector normal to

142 3. Time-optimal planning of non-redundant robots

the path and whose magnitude depends on the path curvature.
The following properties hold [67]:

‖x′‖ = 1 (3.36)

x′Tx′′ = 0 (3.37)

As for joint velocities and accelerations, we have

ẋ = x′λ̇ (3.38)

ẍ = x′λ̈+ x′′λ̇2 (3.39)

Acceleration constraints are usually given as [67]

‖ẍ‖ ≤ amax =
Fmax
mp

(3.40)

where amax is the task-space acceleration limit, obtained from
Fmax, i.e. the maximum gripping force and mp, i.e. the payload
mass.

By inserting (3.39) into (3.40), we find additional limits on λ̈ in
the form

αx,min(λ, λ̇) ≤ λ̈ ≤ αx,max(λ, λ̇) (3.41)

where

αx,min(λ, λ̇) =
−x′Tx′′λ̇2 −

√
(x′Tx′′)2λ̇4 + ‖x′‖2 (a2

max − ‖x′′‖
2 λ̇4)

‖x′‖2

αx,max(λ, λ̇) =
−x′Tx′′λ̇2 +

√
(x′Tx′′)2λ̇4 + ‖x′‖2 (a2

max − ‖x′′‖
2 λ̇4)

‖x′‖2

(3.42)

By using (3.36) and (3.37), the limits above become [67]

αx,min(λ, λ̇) = −
√
a2
max − ‖x′′‖

2 λ̇4 (3.43)

αx,max(λ, λ̇) = +

√
a2
max − ‖x′′‖

2 λ̇4 (3.44)

3.2. Problem formulation 143

Since the term under square root must be non-negative, the in-
equalities above also impose a limit on λ̇:

λ̇ ≤
√
amax
‖x′′‖

(3.45)

As far as task velocity constraints are concerned, they can be
written as [67]

‖ẋ‖ ≤ vx,max (3.46)

which, by using (3.38) and (3.36), can be transformed into

λ̇ ≤ vx,max (3.47)

3.2.3.5 Process-specific constraints

The constraints analyzed in the previous sections can be classified
as generic or cross-application constraints, in that they are de-
pendent on the physical characteristics of the manipulator and its
actuation system (3.2.3.1, 3.2.3.2, 3.2.3.3) or on the task velocity
and acceleration requirements (3.2.3.4).

However, depending on the specific application, additional con-
straints may be required. A generic set of constraint can be ex-
pressed in the form [68]

A(q)q̈ + q̇TB(q)q̇ + c(q) ≤ 0 (3.48)

where, said nc the number of constraints, A(q) is an nc×n matrix,
B(q) is an n×nc×n tensor and c(q) is an nc-dimensional vector.
It is easy to show that, by setting

A(q) =

 H(q)

−H(q)

 , B(q) =

 C(q)

−C(q)

 , c(q) =

 g(q)− τmax
−g(q) + τmin

(3.49)

one can obtain the torque constraints of Section 3.2.3.1.

144 3. Time-optimal planning of non-redundant robots

Any generic constraint in the form (3.48) yields a generic con-
straint in λ and its derivatives that can be posed as

C(λ, λ̇, λ̈) ≤ 0 (3.50)

It is clear that it can be easily accommodated in the problem
definition and managed in the same manner as the others [69]. In
fact, as long as the constraint can be defined in terms of λ and its
derivatives, it always results in limiting either λ̇ or λ̈ or both.

Some examples of process-specific constraints are provided in [69],
and many others can be defined as needed. As instance, the con-
tour error prediction can enforce a limited error when describing
contours in the workspace. When circular estimation of contour
error is used, the model based contour error constraint is defined
as ∥∥∥∥x̂(λ, λ̇, λ̈)−

(
x(λ)− N(λ)

κ(λ)

)∥∥∥∥− 1

κ(λ)
≤ Emax (3.51)

where x̂(λ, λ̇, λ̈) = x(λ) − ê(λ, λ̇, λ̈), ê(λ, λ̇, λ̈) ∈ Rm is the vector
of error estimates for each of the task variables, κ(λ) is the path
curvature, N(λ) is the path normal and Emax is the maximum
allowed error.

Another example falling in this category is the bandwidth limita-
tion of each axis, because of which the command signals are con-
strained to stay below the frequency tracking ability of individual
axes. For each axis, a dominant frequency is observed, which is
a function of both the path curvature and the tangential velocity,
thus the constraint will be in the form

|ẋ(λ, λ̇)|κ(λ) ≤ ωmax (3.52)

where ωmax is the limit frequency.

An additional example is provided in [14], where the mechanical
power limit is considered, i.e.

Pm,min ≤ Pm(λ, λ̇, λ̈) ≤ Pm,max (3.53)

3.2. Problem formulation 145

where Pm(λ, λ̇, λ̈) = τ T (λ, λ̇, λ̈)q̇(λ, λ̇).

The reader may verify that, by solving the inequalities (3.51),
(3.52) and (3.53) with respect to λ̈ or λ̇, the constraints above are
equivalent to those analyzed in the previous sections.

More recently, in [70], the same kind of parametrization has been
applied in a cooperative grasping scenario to ensure that the nor-
mal force applied to a commonly manipulated object remains in-
side the friction cone in order to ensure stable grasping. Although,
in this case, the formulation is slightly more complex, once again,
there is no difference with the parametric constraints analyzed
here.

3.2.4 Problem formulation with calculus of vari-
ations

Let s(t) = [λ(t), λ̇(t)]T be the state and u(t) = λ̈(t) the control
input of a dynamic system. Under the hypothesis that only torque
constraints are enforced, the problem of finding the minimum time
trajectory can be formalized as follows:

min
u(t)∈[L(s),U(s)]

∫ tf

0

dt

s.t. ṡ(t) = f(s, u) = [s2(t) u(t)]T (3.54)

w/ b.c. s(0) = s0, s(tf) = sf

Necessary conditions for optimality can be found by using the
Extended Pontryagin’s Maximum Principle (EPMP) [56] which,
in addition to the classic PMP formulation, allows to consider the
presence of state-dependent constraints on the input in the form
of equalities and inequalities. In the case of constraints (3.19),
they are

u(t)− L
(
s(t)
)
≥ 0 (3.55)

U
(
s(t)
)
− u(t) ≥ 0 (3.56)

146 3. Time-optimal planning of non-redundant robots

As demonstrated in [56], the optimal control input u(t) = λ̈(t) al-
ways takes either its maximum (U) or minimum (L) value, except
for a few cases discussed later.

In the case the problem is complicated with additional constraints
like (3.31) and/or (3.41), the control may no longer be bang-bang
in the torques, but stricter limits may exist preventing the actua-
tors torques from saturating [65, 67].

As demonstrated in [64], the fact that the solution to the time-
optimal problem is bang-bang in the torques is of utmost practical
relevance. In fact, several drawbacks exist when implementing the
bang-bang torque control in real manipulators, such as joint vi-
brations due to finite joint stiffness and overshoot of the nominal
torque limits due to unmodeled actuator (and structure) dynam-
ics. Also, since the trajectory is then executed in closed loop, the
controller is likely to have no margin to reduce the errors on the
reference values [71]. As a consequence, bang-bang control often
leads to poor performances, in terms of both trajectory tracking
and execution time. An example of this phenomenon is given in
[72].

In adaptive control, torque saturation typically yields tracking er-
rors and significant parameters estimation error. In these cases,
trajectories are often planned which do not exploit all the avail-
able torque. However, on one hand, the robot performances are
conservative while, on the other, the efficiency of the adaption law
is limited as the estimation quality of the dynamic parameters
increases with growing excitation of the modeled dynamics [59].

In all the real cases, it is then convenient to impose constraints on
the torque rates, such as (3.21), or on the jerk, as in [59].

3.3 Analysis in the λ domain

Although using the EPMP necessary conditions may seem attrac-
tive to seek after the solution, more efficient techniques exist which

3.3. Analysis in the λ domain 147

also provide further insights into the analysis of the time-optimal
control problem. Such techniques are based upon the analysis of
the curves in the λ− λ̇ plane (also referred to as phase plane), and
in the λ̇2 − λ̈ plane.

3.3.1 Properties in the λ̇2 − λ̈ plane

In the λ̇2 − λ̈ plane, the constraints (3.15), at each λ, are regions
limited by a pair of parallel lines representing the torque limits.
The intersection of such regions is a polygon, as Figure 3.1 shows,
which varies as λ varies. All the pseudo-accelerations inside the
polygon are considered feasible, in that they guarantee the manip-
ulator to stay on the assigned path. On the contrary, those outside
the polygon are unfeasible, not because they cannot be physically
achieved by the actuators, but because, if commanded, they would
drive the end-effector off the path.

feasible

�-accelerations

Figure 3.1: Feasible pseudo-accelerations in the λ̇2− λ̈ plane with
L(λ, λ̇2

max) = U(λ, λ̇2
max) and constant λ

148 3. Time-optimal planning of non-redundant robots

The following statements hold:

� as a consequence of the EPMP necessary conditions, if the
time has to be minimized, λ̈ will always be at either the
upper or lower bound of the feasible region;

� λ̇2 is limited, to the left, by the λ̈ axis, as it cannot be
negative;

� λ̇2 has a maximum, i.e. λ̇2
max, at which the condition L(λ, λ̇) =

λ̈ = U(λ, λ̇) is satisfied, which means that, when the pseudo-
velocity is maximum, only one pseudo-acceleration is al-
lowed.

It is worth remarking that the latter only holds if either ai(λ) 6=
0 ∀i or ai(λ) = 0, but i is not the bounding actuator, i.e. minj{Uj} 6=
Ui. Figure 3.2 shows the case in which ai(λ) = 0 and i = 1 is the
bounding actuator.

In this case, the i-th pair of constraints (3.14) no longer affects the
pseudo-acceleration, but only provides the bounds for the pseudo-
velocity. Assuming bi(λ) 6= 0, we obtain:

τi,minγi + τi,max(1− γi)− gi
bi

≤ λ̇2 ≤ τi,maxγi + τi,min(1− γi)− gi
bi

(3.57)
where

γi(λ) =

 1 if bi(λ) > 0

0 if bi(λ) < 0
(3.58)

At the maximum pseudo-velocity, i.e. λ̇2
max, the pseudo-acceleration

is no longer unique, which may lead to singular conditions when
searching for the optimal control input, as will be discussed later.
Also, the condition represented in Figure 3.2 can only happen if
the torque constraints constitute straight lines, as in (3.15), or
when the constraint is made up of a set of straight segments. If
not, the reader may easily verify that there always exists one value
of λ̈ at λ̇2

max.

3.3. Analysis in the λ domain 149

feasible

�-accelerations

Figure 3.2: Feasible pseudo-accelerations in the λ̇2− λ̈ plane with
L(λ, λ̇2

max) 6= U(λ, λ̇2
max) and constant λ

Lastly, the case ai(λ) = 0 ∧ bi(λ) = 0 represents a degenerate case
where the inequality (3.14) reduces to

τi,min ≤ gi(λ) ≤ τi,max (3.59)

meaning that no constraint is imposed on λ̈ and λ̇2 in the λ̇2 − λ̈
plane. However it only implies that the available torques at the
actuators must be at least sufficient to balance the gravity and
does not provide any useful information in the process of seeking
the optimal trajectory.

3.3.1.1 Redundantly actuated robots

Computing the feasibility polygon from inequalities (3.15), or,
more generally, from (3.14), is interesting for analysis purposes,
as will be clear next. However, in certain situations, it is also
useful from the practical standpoint. As instance, in the case of

150 3. Time-optimal planning of non-redundant robots

redundantly actuated robots, the dynamic model does not respect
equation (3.7), thereby not allowing to proceed with the same
parametrization as Section 3.2.2. Nevertheless, by following the
developments of [73], the tree structure, resulting from cutting at
some joints the closed kinematic chain to obtain an open kine-
matic chain, can still be handled according to Section 3.2.2 [74].
Its kinematic model is:

H(qO)q̈O + q̇TOC(qO)q̇O + g(qO) = τO (3.60)

where the subscript O indicates that the quantities are related to
joints belonging to the tree structure (or open kinematic chain).
The dynamic model above can then be parametrized as:

aO(λ)λ̈+ bO(λ)λ̇2 + gO(λ) = τO (3.61)

Torque limits in (3.14) are clearly expressed, for redundantly actu-
ated robots, only on actuated joints. Therefore, we extract vector
τA of the actuated joint torques from the torque vector τ and set
the limits

τAi,min ≤ τAi ≤ τAi,max (3.62)

The connection between torques in the open chain and those in
closed chain is given by

STτA = WTτO (3.63)

where S and W are sensitivity matrices of the appropriate size,
as defined in [73]. By plugging (3.61) into (3.63), we get:

STτA = WTaO(λ)λ̈+ WTbO(λ)λ̇2 + WTgO(λ) (3.64)

In order to define the parametrized dynamics of the closed chain,
represented by vectors a(λ), b(λ) and g(λ), and to consequently
use the constraints in (3.62), it would be necessary that ST was
invertible, which is not the case for redundantly actuated robots.

Hence, it is convenient to rewrite constraints (3.62) as:

τA ∈ C with C =
[
τAmin,1, τ

A
max,1

]
× ...×

[
τAmin,nA , τ

A
max,nA

]
(3.65)

3.3. Analysis in the λ domain 151

from which, pre-multiplying ST to both sides, we get:

STτA ∈ STC (3.66)

By defining a∗(λ) = WTaO(λ), b∗(λ) = WTbO(λ), g∗(λ) =
WTgO(λ), C∗ = STC, and plugging (3.64) into (3.66), we have:

a∗(λ)λ̈+ b∗(λ)λ̇2 + g∗(λ) ∈ C∗ (3.67)

Since C is a parallelotope and ST is linear, C∗ is a convex polytope.

As remarked in [74], by using the polytope projection technique,
for each λ, determining a value for a∗, b∗ and g∗, C∗ can be pro-
jected onto the λ̇2 − λ̈ plane to obtain a polygon like the one of
Figure 3.1. One possibility could be to derive the analytic con-
straints from the feasibility polygon, but it is actually more ef-
ficient to work on the polygon directly. For example, one could
compute L(λ, λ̇) and U(λ, λ̇) at a given λ0 and λ̇0 by simply inter-
secting the polygon for λ = λ0 with the vertical line λ̇2 = λ̇2

0. This
would allow the computation of minimum and maximum pseudo-
accelerations, without any knowledge of the analytic form in (3.16)
and (3.17), with a complexity of O(Nv), being Nv the total number
of vertices of the polygon.

3.3.2 Properties in the phase plane

3.3.2.1 Phase plane trajectory and maximum velocity
curve

The solution to (3.54) can be directly represented as a sequence
of points in the λ − λ̇ plane, i.e. the phase plane, just like any
other trajectory parametrized with respect to λ. Such a continuous
sequence of points forms a curve, which will be referred to as phase
plane curve or phase plane trajectory (PPT).

Because of the torque constraints, not all the phase plane curves
correspond to feasible trajectories. From the considerations made

152 3. Time-optimal planning of non-redundant robots

in Section 3.3.1 about the presence of a maximum pseudo-velocity
at each λ, it is possible to conclude that any feasible phase plane
curve will be limited above by the so-called maximum-velocity
curve (MVC) λ̇

(τ)
max(λ). In case additional constraints are enforced,

such as those discussed in sections 3.2.3.2, 3.2.3.3 and 3.2.3.4, a
stricter limit usually exists for λ̇, termed λ̇max(λ) [75]. In the re-
mainder of this section, we assume that no constraint exists other
than (3.19), hence λ̇max(λ) = λ̇

(τ)
max(λ).

The pseudo-acceleration λ̈ = dλ̇
dλ
λ̇, as per (3.19), always lies in

between its maximum and minimum value which could be repre-
sented, at each λ, as a pair of arrows in the phase plane (illus-
trated in Figure 3.3), as they indicate the range of directions for
the phase plane curve [76]. In other words, the tangent vector of
the phase plane curve will always be in between the maximum ac-
celeration and maximum deceleration direction. The direction of
the arrows in Figure 3.3 corresponds to the magnitude of the maxi-
mum pseudo-acceleration U and maximum pseudo-deceleration L.
When divided by λ̇, they correspond to the tangent vectors of the
phase plane trajectories passing by the origin of the arrows. A
three-dimensional representation of the same concept is provided
in Figure 3.4.

Figure 3.3: Pseudo-accelerations represented in the phase plane
with a pair of arrows [76]

At the maximum velocity curve, if no joint satisfying the con-

3.3. Analysis in the λ domain 153

Figure 3.4: Feasibility volume in the space λ− λ̇− λ̈ [60]

dition ai(λ) = 0 is bounding the feasible region, only one λ̈ =
L(λ, λ̇max) = U(λ, λ̇max) is admissible, leading the jaws of the
scissors to close on each other. In this case, only one direction is
allowed for the phase plane trajectory when touching the maxi-
mum velocity curve.

As far as the minimum time trajectory is concerned, as discussed
in Section 3.2, the optimal control input u(t) = λ̈(t) always takes
either the maximum or minimum value, which means that the
gradient of the phase plane curve is as large as possible, during
both acceleration and deceleration phase. This is always true as
long as additional constraints limiting λ̈, such as those discussed
in sections 3.2.3.2, 3.2.3.3 and 3.2.3.4 are not present.

By starting at a certain s(0) = s0 with λ̇(0) < λ̇max (usually λ̇(0) =
0) and by applying the maximum acceleration λ̈(t) = U(λ, λ̇), the
phase plane trajectory may hit the maximum velocity curve at a
certain λ = λ̂, before reaching the final state, as Figure 3.5 shows.
If the acceleration λ̈ = L(λ̂, λ̇max) = U(λ̂, λ̇max) enters the region
above the trajectory curve, it means that the enforcement of such

154 3. Time-optimal planning of non-redundant robots

an input will drive the manipulator off the trajectory. In this case,
the control input λ̈ = L = U is unfeasible.

Figure 3.5: Phase plane curve hitting the maximum velocity curve

Thus, in order to keep the phase plane trajectory below the maxi-
mum-velocity curve, a switch from maximum acceleration to max-
imum deceleration has to happen before the curves intersect and,
when they do, the maximum control input must point toward the
feasible region of the plane. The same behavior could need to be
repeated several times before reaching the final state s(tf).

Figure 3.6 shows a feasible time-minimum trajectory, where an
alternation of maximum acceleration, i.e. λ̈ = U , and maximum
deceleration, i.e. λ̈ = L, segments leads to the maximization of ve-
locity without crossing the feasible region boundaries. The switch-
ing points from maximum acceleration to maximum deceleration
do not belong to the MVC, while those from maximum decelera-
tion to maximum acceleration do.

While the switching points on the maximum-velocity curve, i.e. λ1,
λ2 and λ3 in the example of Figure 3.6, can be found by looking for
those points where an entering maximum deceleration curve (tra-
jectory sink) and exiting maximum acceleration curve (trajectory
source) exist at the same time, the others, i.e. λa, λb, λc and λd,
correspond to the intersection between the trajectory obtained by
integrating forward with maximum acceleration and the one ob-
tained by integrating backward with maximum deceleration.

3.3. Analysis in the λ domain 155

Figure 3.6: Time-minimum trajectory with switching points

As the manipulator cannot track the path any faster than what
it can do by following the time-minimum phase trajectory, any
other feasible trajectory is limited above by the time-minimum
one. In other words, if the manipulator was in a state anywhere in
between the time-minimum curve and the maximum-velocity one,
it would be forced to hit the maximum-velocity curve and enter
the unfeasible region, deviating from the assigned path. This leads
to reconsider the feasible region as the portion of the phase plane
below the time-minimum curve [57]. All the areas between the
time-minimum curve and the maximum-velocity curve are rather
classified as trap regions [75], as, if the manipulator entered them,
it could not exit without violating the acceleration constraints.

An algorithm to compute trap regions is proposed in [62]. The
reader may verify that, if trap regions are pre-computed, the time-
optimal trajectory can everywhere be chosen as the boundary of
such regions, except for the first accelerating segment and the last
decelerating segment which link the trap regions boundaries to
λ = 0 and λ = Λ respectively.

Together with trap regions, locked regions may also appear in the
phase plane [75]. A region is locked if no point (λ, λ̇) exists in
the phase plan from which the region can be reached by neither
integrating forward along λ̈ = U , nor integrating backward along
λ̈ = L. For certain resolution techniques, such as dynamic pro-

156 3. Time-optimal planning of non-redundant robots

gramming, these regions can be excluded from the computation, as
they are unreachable, speeding up the search of the time-minimum
trajectory and saving memory.

Although the curve we have identified by applying the maximum
acceleration and deceleration in a bang-bang control fashion is
termed “time-minimum trajectory”, when dealing with real ma-
nipulators, its execution does not necessarily provide the minimum
tracking time. In fact, because of unmodelled dynamics and/or ac-
tuators saturation, bang-bang trajectories usually result in poor
performances in terms of both path tracking error and execution
time. In [64, 77], it is demonstrated that it is possible to set torque
rate constraints like (3.21) that, although generating lower curves
in the phase plane (and, hence, longer planned times), do not sat-
urate the actuators and, at execution, allow for a shorter tracking
time than executing theoretical time-minimum trajectories.

3.3.2.2 Calculating the maximum velocity curve

As mentioned above, under the assumption that no joint satisfying
the condition ai(λ) = 0 is bounding the feasible region in the λ̇2−λ̈
plane, and said L = Li and U = Uj, the maximum velocity curve
can be found by imposing

L(λ, λ̇max) = U(λ, λ̇max) (3.68)

which, by using equations (3.16) and (3.17), leads to

λ̇2
max =

ai
(
τj,maxδj + τj,min(1− δj)− gj

)
−

−aj
(
τi,minδi + τi,max(1− δi)− gi

)
aibj − ajbi

(3.69)

Equivalently, said i and j free indices spanning all the joints, the
maximum velocity curve can be computed, as in [78], as

λ̇2
max = min

ij

{
max
τiτj

{
aj(τi − gi)− ai(τj − gj)

ajbi − aibj

}}
(3.70)

3.3. Analysis in the λ domain 157

If ai(λ) = 0 and i is the bounding actuator, the maximum velocity
curve can be computed from (3.57) as

λ̇2
max =

τi,maxγi + τi,min(1− γi)− gi
bi

(3.71)

In order to cover both cases at the same time, more in general,
following the analysis in Section 3.3.1, the MVC can be obtained
as the solution to the following linear programming problem in the
state variables λ̈ and λ̇2 for each value of λ:

max{λ̇2}

s.t. ai(λ)λ̈+ bi(λ)λ̇2 + gi(λ) ≤ τi,max (3.72)

ai(λ)λ̈+ bi(λ)λ̇2 + gi(λ) ≥ τi,min

The geometric properties in the λ̇2− λ̈ plane, described in Section
3.3.1 are directly exploited in [74] to identify the feasible region
without computing the vectors a(λ), b(λ) and g(λ) explicitly. The
Authors employ a geometric approach, also used in [79], that iter-
atively expands the polygon in the λ̇2 − λ̈ plane until constraints
are satisfied. Eventually, at each λ, the MVC corresponds to the
rightmost vertex of the feasibility polygon. This procedure is also
advantageous from the computational point of view, as the com-
plexity of finding the vertex of interest is O(Nv), being Nv the
total number of vertices.

If the task space trajectory is given analytically, i.e. as a curve
equation in the m-dimensional space, the maximum velocity curve
can also be calculated analytically. In particular, it can be demon-
strated that, in absence of critical arcs (see Section 3.3.2.4), the
MVC is made of a sequence of differentiable curves obtained by
imposing that two actuators have to saturate at the same time [80].
The method can also be applied in those cases where the actuators
models are included in the robot’s dynamics and when additional
constraints are present (e.g. joints velocities) besides the torque
ones. However, it cannot be applied when viscous friction effects
(see Section 3.3.3) are considered.

158 3. Time-optimal planning of non-redundant robots

It is clear that, in order for the MVC to exist, the inequality

L(λ, 0) ≤ U(λ, 0) (3.73)

must hold ∀λ [68]. On the contrary, the given path is unfeasible
under the assigned torque constraints because the actuator capac-
ities are not even sufficient to balance gravity.

3.3.2.3 Classification of switching points

By using the analysis in the λ − λ̇ plane, the EPMP problem in
(3.54) can be reduced to a search of the switching points over the
phase plane. Several techniques have been proposed to search for
the switching points on the maximum velocity curve in [60], [76]
and [81].

Depending on the characteristics of the maximum velocity curve
at such points, the following classification can be made [57]:

� tangent points are those where the maximum-velocity curve
is continuous and differentiable and where the phase trajec-
tory intersects tangentially;

� critical points are those where the maximum-velocity curve
is continuous, but not differentiable, which can be demon-
strated to coincide with the case ai(λ) = 0 for the bounding
actuator (zero-inertia condition)[78];

� discontinuity points are those where the maximum-velocity
curve is not continuous, which happens when, in the neigh-
borhood of a certain λ = λ1, said i one of the two bounding
actuators, bi(λ) is discontinuous because q′′i is discontinuous;
thus, discontinuity points can be avoided if the geometric
path is sufficiently smooth [77].

With reference to Figure 3.6, λ1, λ2 and λ3, are examples of dis-
continuity, tangent and critical points respectively. Conditions for

3.3. Analysis in the λ domain 159

which points on the maximum-velocity curve belong to one of the
three categories can be determined analytically [57], without the
need of computing the maximum-velocity curve, but the belonging
to such categories is only necessary for those points to be switching
points.

A few additional considerations are now worth to be made about
the critical points. As discussed in Section 3.3.1, ai(λ3) = 0 (nec-
essary and sufficient condition to classify λ3 as a critical point)
implies that λ̈ is not uniquely determined at sc = [λ3, λ̇max]

T ,
as U(sc) > L(sc). In principle, when entering the critical point
from the left, λ̈ = L should hold while, when exiting the critical
point to the right, λ̈ = U should hold, as in Figure 3.6. However,
sometimes, the direction of U or the opposite of the direction of
L may point outside of the feasible region, as depicted in Figure
3.7. This makes it impossible to follow the maximum acceleration
to the right and/or the maximum deceleration to the left of the
point. When this happens, the critical point is further classified
as a singular critical point or simply singular point [78].

Figure 3.7: Time-minimum trajectory with two singular points

With reference to Figure 3.7, λs,1 corresponds to a singular point,
as it is a critical point, i.e. U > L, and U exits the feasible region.
The input λ̈ = U(λs,1, λ̇max) is then unfeasible. Still, λ̈ has to be
maximized, thus the maximum feasible pseudo-acceleration λ̈a,f

160 3. Time-optimal planning of non-redundant robots

shall be chosen and it is immediate to verify that it corresponds
to the one along the right-gradient of the maximum velocity curve
in λs,1 [78], i.e.

λ̈a,f = λ̇max
dλ̇max(λ

+
s,1)

dλ
(3.74)

Similarly, λs,2 also corresponds to a singular point because it is a
critical point, i.e. U > L, and L enters the feasible region coming
from the unfeasible region. The input λ̈ = L(λs,2, λ̇max) is then
unfeasible. In order to minimize λ̈ while guaranteeing feasibility, it
is chosen to be on the direction of the left-gradient of the maximum
velocity curve in λs,2, i.e.

λ̈d,f = λ̇max
dλ̇max(λ

−
s,2)

dλ
(3.75)

Both equations (3.74) and (3.75) can be easily obtained from the
more general relationship linking λ̇ with its derivative, by applying
the chain rule:

λ̈ =
dλ̇

dt
=
dλ

dt

dλ̇

dλ
= λ̇

dλ̇

dλ
(3.76)

These conclusions about the singular points demonstrate that, in
general, λ̈ has to be extremized in agreement with (3.20), but, at
singular points, these bounds are not feasible and tighter limits
exist.

From the numerical standpoint, it is clear that a critical point
cannot exist, as ai(λ) never equals zero exactly. For this reason,
said λ∗ the critical point, U and L have to be chosen from the left
(−) and right (+) neighborhoods of λ∗ [78]:

U(λ∗, λ̇max) = max{U(λ−∗ , λ̇max), U(λ+
∗ , λ̇max)}

= max{L(λ−∗ , λ̇max), L(λ+
∗ , λ̇max)}

L(λ∗, λ̇max) = min{U(λ−∗ , λ̇max), U(λ+
∗ , λ̇max)}

= min{L(λ−∗ , λ̇max), L(λ+
∗ , λ̇max)}

(3.77)

3.3. Analysis in the λ domain 161

where the equality in both equations is because U = L at the
MVC. Maximum and minimum pseudo-accelerations U and L in
the neighborhood of a critical point are represented in Figure 3.8.
At the critical point it is clear that U(λ∗, λ̇max) points outside of
the feasible region, thus this critical point is also singular.

Figure 3.8: Maximum and minimum pseudo-accelerations in the
phase plane in the proximity of a critical point, here represented
by a yellow circle

The existence of critical points only depends on the mathematical
model chosen to represent the torque limits and is not a property
of the mechanics of the manipulator-path system. For the sake of
clarity, the main findings of [82] are here recalled.

Consider the dynamic model (3.7) and the torque constraints (3.14)
and assume, for simplicity, that g(λ) = 0:

τmin ≤ a(λ)λ̈+ b(λ)λ̇2 ≤ τmax (3.78)

From the geometrical point of view, the torque τ can be seen as
the sum of the vectors a(λ)λ̈ and b(λ)λ̇2 in the space identified
by the admissible torques. If the manipulator is two-jointed, the
representation of τ is as in Figure 3.9.

162 3. Time-optimal planning of non-redundant robots

(a) (b)

Figure 3.9: Geometrical interpretation of control torque off (a)
and on (b) the MVC

It is clear that, in case a(λ) becomes parallel to either τ1, i.e.
a2(λ) = 0, or τ2, i.e. a1(λ) = 0, when the manipulator is at the
MVC, τ is not uniquely determined, i.e. the point is critical, as
shown in Figure 3.10(a).

(a) (b)

Figure 3.10: Geometrical interpretation of a critical point for a
polyhedral torque constraint (a) and of a tangent point for a
strictly convex torque constraint (b)

Hence, critical points can be generated any time the set of feasible

3.3. Analysis in the λ domain 163

torques is polyhedral, as in the case of constraints (3.14). On the
contrary, if the feasible torques are a strictly convex set, critical
points cannot exist, confirming the results of the analysis in the
λ̇2 − λ̈ plane of Section 3.3.1. A typical case of a strictly convex
set, which is also of practical relevance, is a hyper-ellipsoid, i.e.

n∑
i=1

(
τ 2
i

τ 2
i,max

)
≤ 1 (3.79)

which is also represented in Figure 3.10(b). Constraints of this
kind are used to account for the coupling between the individual
actuators when they are driven by a single power supply [82]. If
the constraint above is more generally expressed as

n∑
i=1

(
τ 2
i

τ 2
i,max

)K
≤ 1 (3.80)

for K → +∞, it converges (in the Hausdorff sense) to the con-
straints (3.14). This means that K can be tuned such that the
time-optimal solution is more or less close to the bang-bang one
with arbitrary accuracy [83].

3.3.2.4 Critical and singular arcs

Sequences of critical points form critical arcs. On critical arcs,
the maximum acceleration and deceleration differ for each single
point on the arc. If, at such points, the maximum acceleration
and/or deceleration are not feasible, the critical arcs are classified
as singular arcs. Critical arcs occur if the condition ai(λ) = 0,
with i corresponding to the bounding actuator, is satisfied for a
contiguous sequence of values of λ. For a two-link manipulator, the
zero-inertia condition is satisfied along lines in the two-dimensional
joint space. If the assigned path follows, in the joint space, one of
the zero-inertia lines, and the zero-inertia joint is also the bounding
joint, then the manipulator will be forced to track a critical arc.
Figure 3.11 depicts a critical arc for such a two-link manipulator
following a circular path centered in the manipulator’s base [78].

164 3. Time-optimal planning of non-redundant robots

Figure 3.11: Time-optimal trajectory along a singular arc [78]

As shown in Figure 3.11, when a singular arc exists, the time-
minimum trajectory simply follows the maximum-velocity curve
for the duration of the arc, or until deceleration is necessary to
maintain the end-effector on the path. It is worth noticing that
singular arcs satisfy the condition

L(λ, λ̇max)

λ̇max
≤ dλ̇max

dλ
≤ U(λ, λ̇max)

λ̇max
(3.81)

that is, the inclination of the maximum velocity curve is always
in between the maximum acceleration and the maximum decel-
eration. If this condition is satisfied ∀λ ∈ [0,Λ], then only one
singular arc exists and the time-optimal curve λ̇∗(λ) will be [84]

λ̇∗(λ) =

λ̇U λ ∈ [0, λ1]

λ̇max λ ∈ [λ1, λ2]

λ̇L λ ∈ [λ2,Λ]

(3.82)

where λ̇U and λ̇L are the pseudo-velocities computed by integrat-
ing with maximum acceleration and deceleration respectively, and
λ1 and λ2 are the points at which the time-optimal curve reaches
and leaves the maximum velocity curve respectively, as shown in
Figure 3.11.

As far as actuators are concerned, it was demonstrated in [56]
that one and only one actuator saturates on any finite time/path

3.3. Analysis in the λ domain 165

interval along the time optimal trajectory, except for the following
two cases, where at least one actuator saturates:

� when an acceleration is chosen at the intersection of the lines
in the λ̇2 − λ̈ plane, which covers both the cases λ̇2 < λ̇2

max

(i.e. solution below the maximum-velocity curve) and λ̇2 =
λ̇2
max (i.e. solution on the maximum-velocity curve);

� when, at singular points or singular arcs, two or more lines
bounding λ̇2, parallel to the λ̈ axis, are coincident with each
other.

3.3.3 Viscous friction effects and state-depen-
dent torques

Consider to modify the manipulator’s dynamic model to include
the actuators viscous friction and to account for state-dependent
control torques. Equation (3.7) then becomes:

H(q)q̈ + q̇TC(q)q̇ + Bq̇ + g(q) = v + Kq̇ (3.83)

where B is the n×n diagonal matrix of viscous friction coefficients,
v is the n-dimensional vector of actuators input voltages and K is
the n× n diagonal matrix of coefficients which, depending on the
motor, may account for motor winding resistance, voltage source
resistance and back E.M.F. generated by the motor [76]. All the
other terms are unchanged with respect to the dynamic model of
equation (3.7).

By plugging equations (3.1) and (3.2) into (3.83) and recalling
that q, q′ and q′′ are all functions of λ, the manipulator’s dynamic
model is parametrized as follows:

a(λ)λ̈+ b(λ)λ̇2 + c(λ)λ̇+ g(λ) = v (3.84)

where a(λ) and b(λ) are as in Section 3.2.2 and c(λ) = (B −
K)q′(λ).

166 3. Time-optimal planning of non-redundant robots

Similarly to Section 3.2.3.1, each of the rows of the matrix equa-
tion above can be considered separately, such that the right-hand
term of the equation corresponds to the voltage applied to the i-th
actuator:

ai(λ)λ̈+ bi(λ)λ̇2 + ci(λ)λ̇+ gi(λ) = vi (3.85)

If the motor, as in real cases, is characterized by bounded input
voltages, one can write:

vi,min ≤ vi ≤ vi,max (3.86)

Assuming that ai(λ) 6= 0 and plugging equation (3.85) into (3.86)
and solving with respect to λ̈, we obtain equation (3.15) again,
but the boundaries are re-defined as

Li(λ, λ̇) =
vi,minδi + vi,max(1− δi)− biλ̇2 − ciλ̇− gi

ai
(3.87)

Ui(λ, λ̇) =
vi,maxδi + vi,min(1− δi)− biλ̇2 − ciλ̇− gi

ai
(3.88)

All the considerations made in Section 3.3.2 hold here as well,
except that bounds (3.87) and (3.88) now represent parabolae,
instead of lines, in the λ̇2− λ̈ plane. They may cause the presence
of inadmissible regions inside the admissible region of the phase
plane, called inadmissible islands or just islands [76], as Figure
3.12 shows.

When islands exist, forward or backward integration shall be stopped
before the trajectory enters the islands. This implies that tangent
switching points can be found which belong to the boundaries of
the islands. It requires the necessary condition for tangentiality
to be modified accordingly, as discussed in [57].

3.3.4 Properties in the three-dimensional phase
space

If constraints on the torque rates (see Section 3.2.3.2) are imposed,
the problem could still be addressed in the phase plane, as done

3.3. Analysis in the λ domain 167

Figure 3.12: Phase plane with highlighted the inadmissible region
(above the velocity limit curve) and an inadmissible island

in [64]. However, the methodology developed therein is prone
to sub-optimal solutions. Therefore, in [85, 77], the problem is
directly addressed in the space λ− λ̇− λ̈, here referred to as three-
dimensional phase space, where the variable

...
λ is termed pseudo-

jerk.

In [85], the authors demonstrate that the time-optimal profile still
has a bang-bang structure in the pseudo-jerk, while in [77], a more
robust implementation is proposed to cope with the generation of
the optimal solution even in presence of singularities.

With reference to (3.25), the phase space trajectory of Figure 3.13
can be computed by integrating forward along the maximum jerk
field, starting at (0, λ̇(0), λ̈(0)) and backward along the maximum
jerk field, starting at (Λ, λ̇(Λ), λ̈(Λ)). Then a minimum-jerk field
has to be found to connect the two profiles computed before: a
techniques is proposed in [77]. The control then has a jmax-jmin-
jmax structure. It is important to remark that the minimum-
jerk field connecting the two maximum-jerk profiles could be not
unique, and each of them may have a different cost, thus the bang-
bang control is only a necessary condition for global optimality,
but not sufficient.

In the two-dimensional case, the torque constraints constitute
lower and upper bounds for the pseudo-acceleration and an up-
per bound for the pseudo-velocity, yielding the MVC. Likewise,

168 3. Time-optimal planning of non-redundant robots

Figure 3.13: Time-optimal phase space trajectory with two maxi-
mum jerk segments (blue) and one connecting minimum jerk seg-
ment (red); projections onto the λ − λ̈ plane are represented by
dashed lines

in the three-dimensional case, the torque rate constraints provide
the lower and upper bounds for the pseudo-jerk and, in addition,
both a lower and an upper bound for the pseudo-acceleration,
as evident from (3.26). The minimum and maximum pseudo-
accelerations generated by torque rate constraints, i.e. ατ,min(λ, λ̇)
and ατ,max(λ, λ̇) respectively, constitute surfaces in the phase space,
termed Minimum Acceleration Surface (MiAS) and Maximum Ac-
celeration Surface (MaAS) respectively [77].

Like in the phase plane, where we have identified tangent, crit-
ical and discontinuity points, in [77], it is argued that the same
classification is possible in the three-dimensional phase space, but
only critical points (and related features) are analyzed. Similarly
to the two-dimensional case, switching points always lie on the
MiAS and the MaAS.

The condition triggering critical points in the phase space is the
same that triggers critical points in the phase plane, i.e. ai(λ) = 0,
where i is the bounding actuator. In [77], the authors demonstrate
that such points form curves on the MiAS and the MaAS and are

3.4. Resolution techniques 169

therefore termed critical curves1. On the MiAS and the MaAS,
the maximum and minimum pseudo-jerks are equal everywhere,
except on the critical curves.

When a phase space profile approaches a critical curve, it suddenly
terminates, and this is similar to the divergence that maximum
and minimum acceleration fields expose in the vicinity of criti-
cal points in the two-dimensional case (see Section 3.5.1). This
requires to “extend” the profiles integrated with maximum jerk
through these critical curves. A technique is proposed in [77],
where the authors also demonstrate that, in this case, the con-
trol is no longer jmax-jmin-jmax, but jmax-jmin-jmax-...-jmin-jmax
and that a critical curve is connected to a forward maximum-jerk
profile through a backward minimum-jerk profile, i.e. the jmin-to-
jmax switching point lies exactly on the maximum critical curve
(critical curve on the MaAS).

3.4 Resolution techniques

3.4.1 Resolution by identification of switching
points

In Section 3.3.2.3, we have seen that one method to solve problem
(3.54) is by classifying the switching points and integrating for-
ward and backward by using either the maximum acceleration/de-
celeration or equations (3.74) and (3.75) for singular points.

The algorithms proposed in previous researches, falling in this cat-
egory, mainly differ in the way the switching points are identified,
providing more or less efficiency and robustness with respect to
singular points and singular arcs.

In [81], an algorithm is proposed which, starting at λ = 0, inte-

1here we prefer the term critical over singular, that is used in [77], because
of the analogy with critical points in the two-dimensional case, that are not
always singular

170 3. Time-optimal planning of non-redundant robots

grates forward with maximum acceleration, until a point on the
maximum velocity curve is reached at λa. Here, with λ = λa
fixed, λ̇ is progressively decreased and forward integration with
maximum deceleration is performed starting from such points un-
til the maximum velocity curve is intersected tangentially, using a
try-and-error approach. The point of intersection is recognized as
a switching point from which the same procedure can be repeated
again. This algorithm requires the maximum velocity curve to be
computed explicitly and, in its original version, fails at singular
points, as no acceleration other than the minimal and maximal
one is allowed.

A similar algorithm is proposed in [76], where, rather than using a
try-and-error approach from λ = λa, a search is performed on the
maximum velocity curve, until the gradient of the time-optimal
curve is lower than that of the maximum velocity curve, i.e. a
trajectory source is found. This algorithm is slightly more efficient,
as less points are calculated to be discarded at a later stage. In [60],
the same algorithm is essentially used, with a minor difference in
the parametrization of the path. Even in this case, the maximum
velocity curve has to be computed explicitly and singular points
are not accounted for.

The first algorithm not needing the computation of the maximum
velocity curve is proposed in [57], where the classification pre-
sented in Section 3.3.2.3 yields the necessary conditions for switch-
ing points, which are identified before the time-minimum curve is
actually integrated. This method further reduces the amount of
points that are computed uselessly and, with a minor modification,
can account for singular points.

3.4.1.1 Real-time resolution

A variant of the algorithm presented in [81], is proposed in [66],
which is also suitable for an online implementation. The algo-
rithm can manage, similarly to others, joint velocity, acceleration
and torque constraints, but joint velocity limits, yielding, in the

3.4. Resolution techniques 171

continuous time domain, constraints on the pseudo-velocity λ̇, are
transformed into constraints on the pseudo-acceleration λ̈, as dis-
cussed in Section 3.2.3.3. In this way, pseudo-velocity constraints
are guaranteed to be respected on the basis of the satisfaction of
pseudo-acceleration constraints. Also, the algorithm does not re-
quire the explicit calculation of the MVC, as it can be identified
by the condition L > U , on a step-by-step basis. Since the imple-
mentation is discrete, critical points exist with zero probability.

The algorithm of [66] is similar to [81] in that it is based on the
same try-and-error approach: at each iteration along a maximum
acceleration profile, an integration with maximum deceleration is
performed. If the phase plane trajectory can reach the condition
λ̇(λ) = 0 for λ < Λ, without meeting the condition L > U , the in-
tegration can continue with maximum pseudo-acceleration U , i.e.
the phase plane trajectory is still in the feasible region. Otherwise,
the next state s = [λ, λ̇]T is in a trap region and, according to the
arguments of Section 3.3.2, is already unfeasible. In this case, the
integration must proceed along the maximum deceleration field.

Figure 3.14: On-line resolution through identification of switching
points

With reference to Figure 3.14, the phase plane trajectory is being
integrated along the maximum acceleration field, i.e. λ̈ = U . At
iteration i− 1, the state at the next iteration i is computed with
λ̈ = U and, from this, an integration along the maximum decel-

172 3. Time-optimal planning of non-redundant robots

eration field is attempted, while the condition L < U is verified
at each step. The decelerating phase plane trajectory meets the
λ-axis before Λ, meaning that the integration along the maximum
acceleration field can continue. At the following iteration, i.e. i,
the same procedure is repeated for the next state at iteration i+1.
This time, the integration along the maximum deceleration field
stops because L > U , i.e. if integrated from the state in i + 1,
the phase plane trajectory would hit the MVC other than tan-
gentially. The state at iteration i + 1 is unfeasible and must be
discarded. The integration continues along the maximum deceler-
ation field computed at iteration i. A dual procedure is followed
when integrating with λ̈ = L, up until λ = Λ is reached.

This approach, coupled with a dynamic modulation of the inte-
gration interval, allows for an online implementation, and possi-
bly supports re-planning in case of modifications of the geomet-
ric path. On the other hand, the coarse discretization that is
sometimes necessary to reduce the computation time may yield
to non-smooth phase plane trajectories, which, in turn, provoke
unacceptable jitters on the actuation torques.

A more relaxed formulation for online time-optimal planning is
provided in [58]. Therein, the classical bang-bang integration in
the phase plane is coupled with the generation of trapezoidal ve-
locity profiles (TVP) along short segments. Several segments can
then be connected to form longer trajectories and allow for replan-
ning, whenever necessary. The usage of TVPs allows to simplify
the computation of phase-plane trajectories with non-zero bound-
ary conditions and greatly reduces the computation time, mak-
ing the system more reactive to unplanned events. On the other
hand, solutions are only nearly optimal and performances tend to
degrade near singular configurations or for longer path segments.

3.4.2 Resolution by area maximization

A different approach, which does not consider switching points
explicitly, but still exploits the properties in the phase plane, is

3.4. Resolution techniques 173

proposed in [86]. The algorithm has been termed perturbation
trajectory improvement algorithm (PTIA) as the time-minimum
curve is calculated iteratively, by “perturbating” an initial non-
optimal feasible solution.

The underlying idea is that bringing the phase plane trajectory
as close as possible to the maximum velocity curve is equivalent
to maximizing the area underneath. By using a combination of
gradient and binary search techniques, the area underneath the
trivial solution, e.g. the phase plane trajectory λ̇(λ) = 0 ∀λ ∈
[0,Λ], is progressively increased at each iteration.

The domain of λ is discretized and for each sample, at each stage,
the pseudo-velocity is increased of the current increment only if
the local acceleration constraints are respected, otherwise the in-
crement is halved and the check is repeated. The algorithm ter-
minates when no increment of λ̇ is possible for any of the discrete
values of λ. Like other algorithms examined before, the maximum
velocity curve has to be available in order to determine which the
maximum velocity increment is at each stage.

Unlike dynamic programming, which will be addressed later, PTIA
requires relatively little memory, while the computation time is not
negligible and tied to the resolution of the discretized λ-domain. In
fact, the time increases as the square of the number of λ-intervals.
On the other hand, choosing a small number of intervals would
negatively affect the accuracy of the solution. However, given the
high degree of locality, the algorithm can be easily parallelized,
which would be advantageous in case more CPUs are available.

When equating the area maximization and the time minimization,
the reader should be aware that the two objectives are not exactly
the same and pursuing one or the other may yield different results.
It is easy to provide a demonstration in discrete time. In this case,
assuming a fixed sampling interval for λ of amplitude ∆λ, said k
the index identifying such intervals and Ni the total number of

174 3. Time-optimal planning of non-redundant robots

intervals, the overall tracking time can be written as:

t = ∆λ

Ni∑
k=1

1

λ̇k
(3.89)

On the other hand, the area underneath the phase-plane curve, in
the discrete domain, with the same assumptions as above, is:

A = ∆λ

Ni∑
k=1

λ̇k (3.90)

By making the sum in (3.89) explicit, the same equation can also
be written as:

t =
∆λ
∑Ni

k=1 λ̇k∏Ni
k=1 λ̇k

=
A∏Ni
k=1 λ̇k

(3.91)

From the equation above, it is evident that more than one value
of t can be obtained for the same value of A, meaning that the
area maximization does not correspond, in general, to time mini-
mization. For example, let us assume Ni = 2 and ∆λ = 0.02. In
a first case, let us also assume λ̇1 = 1 and λ̇2 = 2. The area is

A = 0.02(1 + 2) = 0.06 (3.92)

Then, let us assume λ̇1 = 1.5 and λ̇2 = 1.5. Even in this case, the
area is

A = 0.02(1.5 + 1.5) = 0.06 (3.93)

For the first case, the time is

t =
0.06

1 · 2
= 0.03 (3.94)

while for the second case, the time is

t =
0.06

1.5 · 1.5
= 0.026 (3.95)

3.4. Resolution techniques 175

3.4.3 Resolution by direct integration

An alternative method to find the time-optimal curve is by direct
integration. The differential equations to be integrated have been
determined in [84], by extending the well-known comparison prin-
ciple [87] to state-constrained differential inequalities, where the
state constraint is precisely given by the maximum velocity curve.

The differential equations are:

dy

dλ
=

yM(λ, λ̇) y < β(λ)

min

{
yM(λ, λ̇),

dβ(λ)

dλ

}
y ≥ β(λ)

w/ b.c. y(0) = 0

(3.96)

dy

dλ
=

ym(λ, λ̇) y < β(λ)

max

{
ym(λ, λ̇),

dβ(λ)

dλ

}
y ≥ β(λ)

w/ b.c. y(Λ) = 0

(3.97)

where y = |λ̇|2, ym(λ, λ̇) = 2L(λ, λ̇), yM(λ, λ̇) = 2U(λ, λ̇) and
β(λ) = |λ̇max|2.

Differential equations (3.96) and (3.97) can be integrated by ap-
plying directly any well-known numerical integration method (e.g.
Euler, Runge-Kutta), yielding solutions yF (λ) and yB(λ) respec-
tively.

Since λ̇F =
√
yF and λ̇B =

√
yB, the time-optimal trajectory is

computed as:

λ̇∗(λ) = min
{
λ̇F , λ̇B

}
(3.98)

A discrete implementation of the same concept is provided in
[69], where a double-scan search algorithm is designed and demon-
strated for several paths and constraints. The λ and λ̇ axes are
discretized. For each value of λ, from λ = 0 to λ = Λ (forwards),
the maximal value of λ̇ is found which locally satisfies all the con-
straints, using the maximum acceleration. This results in a phase

176 3. Time-optimal planning of non-redundant robots

plane trajectory made of feasible and unfeasible (i.e. belonging to
a trap region) segments. Then, for each value of λ, from λ = Λ
to λ = 0 (backwards), the maximal value of λ̇ is found which lo-
cally satisfies all the constraints, using the maximum deceleration.
When the backward phase plane trajectory intersects the forward
phase plane trajectory, the latter is followed until entering a trap
region, where the maximum deceleration is used again. The back-
ward trajectory obtained with this technique corresponds to the
time-optimal one and, indeed, is equivalent to considering the min-
imum between λ̇F and λ̇B, as in (3.98). A pictorial view is given
in Figure 3.15. The backward integration profile is drawn entirely
in order to show the effect of the minimization in (3.98), however,
in [69], the forward integration profile is followed backwards at
intersections with the backward profile.

Figure 3.15: Time-optimal planning through direct integration

With respect to the solution obtained by integrating the differ-
ential equations (3.96) and (3.97), the algorithm in [69] does not
require the computation of the maximum velocity curve, can ac-
commodate several constraints more easily and is able to find time-
optimal trajectories even in the presence of inadmissible islands
(see Section 3.3.3) with only one more scan per island. On the
other hand, the solution accuracy will strictly depend on the dis-
cretization step.

3.4. Resolution techniques 177

3.4.4 Resolution by convex optimization

A completely different approach, which does not make use of any
of the properties mentioned in Section 3.3, consists in transforming
a possibly more general form of the problem (3.54)-(3.56) into a
convex optimization problem [88]. This is done by setting the
non-linear change of variables

A(λ) = λ̈ (3.99)

B(λ) = λ̇2 (3.100)

and imposing the additional constraints:

B′(λ) = 2A(λ) (3.101)

B(λ) ≥ 0 (3.102)

Problem (3.54)-(3.56) is then reformulated as:

min
A,B,τ

∫ Λ

0

1√
B(λ)

dλ

s.t. τ = a(λ)A(λ) + b(λ)B(λ) + g(λ)

τmin ≤ τ ≤ τmax (3.103)

B′(λ) = 2A(λ)

B(λ) ≥ 0

B(0) = B(Λ) = 0

It is important to remark that, in order for the problem to be con-
vex, this approach has some important limitations. First, viscous
friction cannot be considered because, as observed in Section 3.3.3,
it yields non-linear constraints in the λ̇2 − λ̈ plane. Second, con-
straints on the torque rates (Section 3.2.3.2) cannot be included,
as they are not convex.

Despite these limitations, this problem formulation is extremely
flexible, as it can easily accommodate additional convex objective
functions, together with the time-minimum one, and numerous

178 3. Time-optimal planning of non-redundant robots

convex constraints, which include, but are not limited to, joint-
space and task-space velocity and acceleration limits, as those ex-
amined in Sections 3.2.3.3 and 3.2.3.4.

Direct transcription can be used to transform problem (3.103) into
a large sparse optimization problem, which can be solved using any
general-purpose non-linear solver. However, as shown in [88], the
objective function and the constraints can be further manipulated
to be formulated as a second-order cone program (SOCP), which
allows to use more efficient dedicated solvers, which are able to
return the time-minimum solution in a few seconds of CPU time,
even for complex paths.

Although the theoretical formulation and the manipulation of the
equations are not straightforward, the time-optimal planning prob-
lem can be solved without any knowledge of the maximum velocity
curve and of the phase plane properties. Thus, critical and singu-
lar points and arcs are automatically supported by the algorithm.
Global optimality is guaranteed by the numeric solving procedure.

On the practical side, a few issues may arise by the critical points:
results show a little jitter in the motor torques at such points,
caused by the numeric optimization procedure. This can be avoided
by introducing, in the objective function, a little component pe-
nalizing torque jumps, with a negligible impact on the overall ex-
ecution time.

3.4.5 Resolution by spline interpolation

In Section 3.3.2, we have seen that the phase-plane trajectory is
a set of smooth curves separated by critical points, if any. This
property paves the way to the possibility of approximating the
phase-plane trajectory with a set of splines. In [64], a knot-point,
i.e. a point where two splines adjoin, is chosen for each switch-
ing point, thereby identified beforehand. Additional knot-points
could be chosen to improve the precision of the solution, to the
detriment of the time needed for computing the time-optimal tra-

3.5. Use case definition and resolution by identification of
switching points 179

jectory. Usually, cubic splines are sufficient, as they are the lowest-
degree polynomial resulting in smooth curves.

With such a problem formulation, the optimization variables are
the pseudo-velocities at the knot-points and the slopes at the two
end-points of the phase-plane trajectory. All the variables have
to be maximized under the constraints that all the limits are
respected. In [64], this problem is addressed with the Flexible
Tolerance Method (FTM), but other numeric techniques, such as
evolutionary algorithms, could also be used.

While this method allows to manage torque rate limits very straight-
forwardly, it does not guarantee the achievement of the minimum
time trajectory [77]. On the other hand, because of the intrinsic
smoothness of the solution, jitters in the torques in the proximity
of critical points are likely to be eliminated.

3.5 Use case definition and resolution

by identification of switching points

In this section, we introduce a simple use case that we can later
use to present two more techniques that we will analyze in greater
detail with respect to those of Section 3.4: genetic algorithms and
dynamic programming. For the sake of comparison, we also solve
the same use case, as done in [78], by the identification of switching
points and management of singular points, so as to always obtain
feasible solutions, as explained in Section 3.3.2.3.

Let us consider a 2R planar manipulator with parameters as in Ta-
ble 3.1, that is requested to track the geometrical path represented
in Figure 3.16 in minimum time. The robot’s initial configuration
is as in Figure 3.16. The use case is essentially the same as [78] and
[82], but, since the path parameters are not available therein, the
path considered here is generated from the drawing in [82] through
a spline interpolation with six control points, i.e., p1, ..., p6, whose
coordinates are reported in Table 3.2, to be as close as possible to

180 3. Time-optimal planning of non-redundant robots

the original path. The path is designed to have 5 switching points
in the phase plane, where one is a critical (and singular) point, one
is a tangent point and the remaining three are U -to-L switching
points.

Link/Joint 1 Link/Joint 2

Link length (m) 1.00 1.00

Link COM position (m) 0.50 0.50

Link mass (kg) 1.00 1.00

Link inertia (kg·m2) 0.08 0.08

Torque (N·m) 20 10

Table 3.1: Shiller’s 2R manipulator parameters

-0.5 0 0.5 1 1.5

x (m)

-0.5

0

0.5

1

1.5

2

y
(m

)

Figure 3.16: Shiller’s 2R manipulator (red) and path (blue)

The procedure employed to solve this use case by the identification
of switching points is reported in Algorithm 4. Specific checks on
the singularity of the critical points are made to generate feasible

3.5. Use case definition and resolution by identification of
switching points 181

p1 p2 p3 p4 p5 p6

x (m) 0.9112 0.3190 0.3107 0.4697 0.8093 1.1452

y (m) 1.7087 1.2309 0.5155 0.2772 0.1286 -0.3073

Table 3.2: Shiller’s path control points

phase plane trajectories according to (3.74) and (3.75), but singu-
lar arcs are not taken into account. In this sense, Algorithm 4 is a
simplified version of the algorithm in [78], which, on the contrary,
considers them.

Algorithm 4 Time-optimal trajectory planning algorithm with
identification of switching points and management of singular
points

1: Compute the MVC λ̇max
2: From the initial state s0 = [0, 0]T , integrate forward with λ̈ = U until λ̇max is reached

or λ = Λ is reached
3: if λ == Λ then Go to 13
4: if λ̇ ≥ λ̇max then
5: Search forward on the MVC for the next L-to-U switching point
6: if λ̈ = L is singular then
7: Integrate backward with λ̈ = λ̈d,f

8: Integrate backward with λ̈ = L until the forward profile of the PPT is met
9: if λ̈ = U is singular then
10: Integrate forward with λ̈ = λ̈a,f

11: Integrate forward with λ̈ = U until λ̇max is reached or λ = Λ is reached
12: Go to 3
13: From the final state s0 = [Λ, 0]T , integrate backward with λ̈ = L until the phase plane

trajectory is met

The time-optimal phase plane trajectory generated by Algorithm
4 on the use case considered here is shown in Figure 3.17, together
with the MVC. The trajectory tracking time is topt = 0.840 s, ob-
tained with a resolution of 800 samples for λ. Since the geometri-
cal path is sampled more finely at the higher curvature segments,
this number of samples yields a variable integration step between
0.0015 and 0.0066. The results are not immediately comparable
with those from [82] since the geometrical path in Figure 3.16 is
only an approximate reconstruction of the one in [82]. However,

182 3. Time-optimal planning of non-redundant robots

from the qualitative point of view, the characteristics of the time-
optimal phase-plane trajectory are comparable.

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

Figure 3.17: Maximum velocity curve and time-optimal phase
plane trajectory for the use case of Figure 3.16

3.5.1 Handling of critical points

The phase-plane trajectory of Figure 3.17 is not everywhere smooth.
In particular, some jitters are visible at the singular point. This
is a well-known issue when critical points exist.

In Section 3.3.2.3, critical points have been introduced. They are
points where the maximum and minimum pseudo-accelerations are
not equal, because the bounding inertia term ai(λ) vanishes. In
the λ̇2 − λ̈ plane, this means that a vertical line bounds the max-
imum pseudo-velocity. In the λ − λ̇ plane, the incoming pseudo-
acceleration in the trajectory sink and the outgoing pseudo-accel-
eration from the trajectory source are different, marking a discon-
tinuity in the derivative of the phase plane trajectory. In general,
it does not represent an issue, as discontinuities of this kind are

3.5. Use case definition and resolution by identification of
switching points 183

likely to be generated for all the switching point from maximum
pseudo-acceleration to minimum pseudo-acceleration, however, in
the specific case of critical points, such discontinuities could be
troublesome.

Maximum and minimum pseudo-accelerations form fields in the
phase plane and the integration of the phase plane trajectory with
one of the methods discussed in Section 3.4.1 follows one of the
profiles in the fields for any acceleration or deceleration segment.
In the proximity of critical points though, such fields are divergent
(see Figure 3.18), meaning that the integration of the phase plane
trajectory is unlikely to reach the critical point. In truth, for
some of the methods discussed in Section 3.4.1, the integration
starts from the critical point, which implies that the phase plane
trajectory necessarily passes through it. However, it has been
demonstrated that the integration starting from the critical point
and following either L (for the backward integration) and U (for
the forward integration) or (3.74) and (3.75), in the case of singular
points, may cause jitters in the torque profiles [68]. Figure 3.19
shows a detail of the phase plane trajectory in Figure 3.17 about
the singular point and highlights this phenomenon.

(a) (b)

Figure 3.18: Fields of L (green) and U (red) in the proximity of a
critical point (a); close-up view, zoomed in the black box (b) [68]

Let us consider the case of backward integration. Starting from

184 3. Time-optimal planning of non-redundant robots

(a) (b)

Figure 3.19: Jitter in the phase plane (a) and in the torques (b)
caused by divergence of the pseudo-acceleration fields for the same
critical point as Figure 3.8

the idea that the phase plane trajectory has to pass by the critical
point, for any small ε > 0, the gradient g of the phase plane
trajectory at λ∗− ε, with reference to Figure 3.18 (b), must point
toward the critical point. It is clear that the only point satisfying
this condition in the left neighborhood of the critical point is the
one lying on the dashed line of Figure 3.18(a). Thus the gradient
can be approximated with

g =
λ̇max − λ̇max + gε

λ∗ − λ∗ + ε
(3.104)

Recalling the chain rule, we also have

g =
dλ̇

dλ
=
Li(λ∗ − ε, λ̇max − gε)

λ̇max − gε
(3.105)

where Li is the minimum pseudo-acceleration enforced by the i-
th joint. In [68], it was demonstrated that, if a critical point is
caused by the i-th joint, i.e. ai(λ) = 0, then L = Li to the left of
the critical point and U = Ui to the right.

Through some algebraic manipulation and employing a first-order
Taylor expansion in ε, said λ̇max = λ̇max(λ∗), we can approximate

3.6. Resolution with a genetic algorithm 185

the gradient as [68]

g = − b′i(λ∗)λ̇
2
max + c′i(λ∗)

[2bi(λ∗) + a′i(λ∗)] λ̇max
(3.106)

where

ci(λ) = τi,minδi(λ) + τi,max
(
1− δi(λ)

)
− gi(λ) (3.107)

Likewise, in order to find the value of the gradient for the forward
integration, one should solve

g =
−Ui(λ∗ + ε, λ̇max + gε)

λ̇max + gε
(3.108)

which can be demonstrated to yield equation (3.106) as well.

By integrating from the critical point both backward and for-
ward with gradient (3.106) for a few λ samples, the jitters can
be avoided, resulting in much smoother profiles [68].

In the three-dimensional phase space, the same issue arises on the
critical curves. The same strategy presented here can be adopted
without any major change [77]. It yields a pseudo-jerk different
from jmin and jmax that can be used at the switching point to
connect the backward and forward profiles, eliminating jitters on
the torques.

3.6 Resolution with a genetic algorithm

The idea behind an Evolutionary Algorithm (EA) is to evolve a
population of solutions (also called genomes or individuals) by
means of the mechanisms of selection, recombination and muta-
tion. The evolutionary search starts with a randomly generated
population of solutions where each individual has a one-to-one
connection with a time-optimal phase plane trajectory, meaning
that a genome can directly represent a time-optimal trajectory or

186 3. Time-optimal planning of non-redundant robots

can be used to compute one and only one time-optimal trajectory.
Since a torque has to be defined for each joint, it is certainly con-
venient to work in the λ domain, so that only one variable, i.e.,
the pseudo-velocity, must be optimized.

Each individual in the population is evaluated through a fitness
function, which is a measure of its quality with respect to a given
performance index. In the case of time-optimal planning, the fit-
ness function must be related to the inverse of time.

Once an initial population is available, the genomes therein can be
combined according to the crossover operator, in order to generate
individuals with a higher fitness. Since the features of the optimal
individual might not be present in the initial population, and, as a
consequence, cannot be generated by the means of crossover, some
sort of mutation should also be considered, which is a random
variation of the genome itself.

In [89], a class of EAs, called Evolution Strategy (ES), is employed
for the same problem of time-optimal planning along prescribed
paths that we address here. Therein, the resolution is only per-
formed at kinematic level, while in this section the dynamic prop-
erties of the manipulator are considered and the problem is solved
by exploiting the results of the phase plane analysis that we intro-
duced in Section 3.3.2. The resolution technique is also different,
as we present a formulation based on a Genetic Algorithm (GA),
that is a different class of EAs.

3.6.1 Constraints

In a genetic algorithm, the accommodation of constraints is not
an easy task. In the literature, it is usual to refer to direct con-
straint handling when the constraints are explicitly enforced on
the individuals of the population, and to indirect constraint han-
dling when they are included in the objective function. In [90],
four techniques are reported for direct constraint handling:

3.6. Resolution with a genetic algorithm 187

� elimination: crossover and mutation are free to generate un-
feasible candidates that are later spotted and eliminated by
the selection mechanism;

� repairment : crossover and mutation are free to generate un-
feasible candidates that are later spotted and corrected so
as to become feasible, by means of a specific operator;

� preservation: crossover and mutation are designed for the
specific applications, so that, once an initial population of
feasible individuals is given, only feasible individuals can be
generated by the operators;

� decoding : the search space is transformed so that constraints
are automatically satisfied in the domain of the transformed
variables.

Recalling the problem formulation in (3.54) and the considerations
of Section 3.3.2.1, time-optimal planning, represented in the λ
domain, requires the following constraints to be satisfied:

0 < λ̇(λ) < λ̇max(λ) ∀λ ∈]0,Λ[(3.109)

L(λ, λ̇) ≤ λ̈(λ, λ̇) ≤ U(λ, λ̇) ∀λ ∈ [0,Λ] (3.110)

λ̇(0) = 0 (3.111)

λ̇(Λ) = 0 (3.112)

If viscous friction effects are included in the dynamic model, the
constraint (3.109) more generically is

λ̇(λ) ∈ F (3.113)

where F represents the feasible region in the phase plane. For
each value of λ, because of the presence of islands, F(λ) is not, in
general, a connected set.

188 3. Time-optimal planning of non-redundant robots

3.6.2 Definition of genomes and fitness func-
tion

The first issue to address in our genetic algorithm is to determine
which variables the genomes in the population represent, that is
to choose the variables to optimize. As done in [91], let us first
assume to discretize the λ domain, i.e.,

λ(i) = i∆ with i = 0, 1, 2, .., Ni − 1 and Ni =
Λ

∆
+ 1 (3.114)

so that λi and i can be used interchangeably. Then, let us associate
each discrete value of λ with one and only one chromosome, i.e.,
a variable in the genome.

Then, at least two options are available for the genome semantics:

� each individual in the population represents the vector of
pseudo-velocities for each λ, i.e., λ̇(λ);

� each individual in the population represents the vector of
pseudo-accelerations for each λ, i.e., λ̈(λ).

As far as the fitness function f is concerned, as discussed in Sec-
tion 3.4.2, the trajectory time (the cost function to minimize) is
inversely proportional to the area underneath the phase-plane tra-
jectory A, that, thereby, needs to be maximized. Hence, it is a
natural choice for the fitness function:

f = A =

∫ Λ

0

λ̇(λ)dλ (3.115)

3.6.2.1 Genomes representing pseudo-velocities

If the semantics of the chromosome relates to the pseudo-velocity,
one should consider that:

� since a genome is a phase-plane trajectory, the area under-
neath can be computed directly from it;

3.6. Resolution with a genetic algorithm 189

� preservation can be used to lock the first and last chro-
mosomes to zero in order to satisfy constraints (3.111) and
(3.112), meaning that crossover and mutation shall not op-
erate on them;

� decoding can be used to adopt a different MVC-dependent
domain for each chromosome, so that constraint (3.109) is
automatically satisfied;

� constraint (3.110) could be managed indirectly, but the penal-
ty to be considered in the fitness function would be depen-
dent on as many local contributions as the number of samples
in the discrete λ-set, posing a problem of sensitivity, espe-
cially when the number of samples changes; alternatively,
one could think of setting up a repairment mechanism by
which, when the pseudo-acceleration is beyond the maxi-
mum or minimum threshold, it is saturated to either L or U ;
however local repairment does not guarantee feasibility be-
cause, if the trajectory ends up in a trap region (see Section
3.3.2.1), it cannot exit without violating either the pseudo-
acceleration or MVC constraints.

3.6.2.2 Genomes representing pseudo-accelerations

If the semantics of the chromosome relates to the pseudo-acceler-
ation, we have that:

� an integration in the phase plane is necessary to compute
λ̇(λ), from which the fitness function can be computed;

� λ̇(0) = 0 is the initial condition for the integration, meaning
that constraint (3.111) is automatically satisfied; this could
be seen as a form of preservation, although it only affects the
integration and not the crossover and mutation operators;

� ideally, any value between L and U can be used, so that
singular points are automatically taken into account;

190 3. Time-optimal planning of non-redundant robots

� constraint (3.109) can be managed indirectly by including it
in the fitness function; a measure of the constraint violation
is given by the area Ap (penalty area) underneath the phase-
plane trajectory when it is above the MVC, i.e.,

Ap =

∫ Λ

0

λ̇(λ)
(
λ̇(λ) > λ̇max(λ)

)
dλ (3.116)

which allows to redefine the fitness function f as

f =
A

1 + hAp
(3.117)

where h is a tunable constant; if inadmissible islands are
present in the phase plane, Ap should also include the portion
of area inside them;

� decoding can be used to satisfy constraint (3.110): the range
of values for the pseudo-acceleration is variable with λ and
λ̇, meaning that the domain of the chromosomes is not con-
stant; for this reason, it might be convenient to adopt a do-
main transformation by which each chromosome represents
the gain k ∈ [0, 1] between the minimum and maximum
pseudo-acceleration, i.e.,

λ̈ = min {L,U}+ k (max {L,U} −min {L,U}) (3.118)

where the usage of functions min and max is necessary to ac-
count for the case when, above the MVC, L > U ; the reader
may verify that constraint (3.110) is automatically satisfied
with this domain transformation, while the chromosome’s
domain is constant across λ;

� repairment can be used to enforce constraint (3.112); it is
interesting to notice that, because the area maximization is
independent of the last deceleration segment bringing the
phase-plane trajectory back to zero, it is sufficient to repair
just the best solution at the end of the optimization pro-
cess, without correcting each single individual in the pop-
ulation; in other words, after the last switching point, the

3.6. Resolution with a genetic algorithm 191

phase-plane trajectory is free to proceed with the maximum
acceleration up to λ = Λ, to be then repaired afterwards
with a backward integration starting from λ̇(Λ) = 0.

Because of the difficulty in managing constraint (3.110) with chro-
mosomes corresponding to pseudo-velocities, it is convenient to
associate genomes to pseudo-accelerations. However, on the other
hand, the CPU execution time considerably increases, since a nu-
merical integration must be performed for each single individual
in the population. In response, we need to mitigate by limiting its
cardinality as much as possible.

3.6.3 Implementation with TurboGA

The implementation of the genetic algorithm performing time-
optimal planning is based on TurboGA [92], a versatile tool de-
signed to cope with generic genetic problems. It is characterized
by the usual sequence of steps, common to several genetic algo-
rithms, reported in Algorithm 5.

Algorithm 5 Overview of a genetic algorithm
1: Randomly generate the initial population
2: for each generation do
3: Compute fitness of all individuals
4: Perform σ-scaling (if configured)
5: Select parents
6: Perform crossover
7: Perform mutation

8: Pick best individual

TurboGA works with binary chromosomes, meaning that the genome
is a string of bits. With this representation, the crossover and mu-
tation operations are based on binary operators and are, therefore,
very efficient. Each bit in a chromosome, which could be individ-
ually modified by the mutation operator, is referred to as locus.
The number of loci in the chromosome determines the precision of
the relating variable. In our implementation, it corresponds to the
precision of the pseudo-acceleration gain, and indirectly affects the

192 3. Time-optimal planning of non-redundant robots

precision of the pseudo-acceleration itself. In absence of singular
points, since the solution is bang-bang, one locus per chromosome
would be sufficient to obtain the time-optimal solution, i.e.,

k = 0 ⇒ λ̈ = L

k = 1 ⇒ λ̈ = U
(3.119)

Rather, if singular points exist, the pseudo-acceleration must be
chosen in]L,U [, meaning that one locus is no longer sufficient to
obtain a feasible solution. Since we do not pre-process the MVC to
identify and classify the switching points, in our implementation,
we assume a constant number of loci for each chromosome.

Once the fitness (3.117) has been computed for all the individuals
in the population, as a preparatory stage for selection, we may
decide to apply σ-scaling [93], which allows to rescale the fitness to
increase or decrease the probability for an individual to be selected
as a parent for the new generation. An higher σ-scaling factor
flattens the fitness values in the population and causes a slow
convergence. On the other hand, it increases the probability that
important features do not get lost after crossover, since it gives a
chance to low-fitness individuals with high-fitness features to pass
them to the next generations. From the optimization standpoint,
σ-scaling can be tuned to increase the chances of avoiding local
optima.

The parent selection process is based on the σ-scaled fitness values.
As many parents as the number of individuals in the population
are selected, but the same parent can be selected more than once,
and individuals in the population with lower fitness are excluded.
Two common selection mechanisms are the Roulette Wheel (RW)
and the Stochastic Universal Sampling (SUS), where the latter
guarantees that high-fitness individuals are always selected, while
the former does not, especially for small populations [93], as the
one we are considering here. It is clear that SUS is the natural
choice for time-optimal planning.

Crossover and mutation are implemented through bitmasks, that
are randomly generated beforehand and saved in a repository to

3.6. Resolution with a genetic algorithm 193

use them in the main cycle. Since we are not implementing any
form of preservation, except for the integration in the phase-plane,
these operators do not need to be modified.

One more aspect that deserves a mention is clamping, which is
the capability of protecting some loci from mutation. In fact, in
absence of crossover, the capability of an individual to be present
in the next generations decreases with the number of generations.
If the probability of mutation is, say, 0.003, the probability for
an individual to survive after j generations is (0.997)jl, where l is
the total number of loci in a genome. The reader may recognize
that this probability is very low after a few generations, meaning
that, even though an individual is promising, because of mutation
it is not likely to survive. This phenomenon is referred to as mu-
tational drag. The clamping is a mechanism to “clamp” the loci
that in the population are very frequent, which is an indication
that crossover preserved them because of their high-fitness, saving
from the mutational drag.

Once the best individual is picked from the last generation, it is re-
paired to respect constraint (3.112) in order to provide a solution
where the robot stops at the final endpoint, which is a require-
ment in our problem. The phase-plane trajectory is integrated
backwards from the state λ = Λ and λ̇ = 0, until it meets the for-
ward profile. This step is common to other time-optimal planning
techniques as it is independent of the MVC after the last L-to-U
switching point. The assumption here is that, if a phase-plane
trajectory is optimal for λ̇(Λ) 6= 0, it is also optimal after the
addition of a decelerating segment bringing it to zero.

On the basis of the observations above, the algorithm perform-
ing time-optimal planning with genetic search is provided in Al-
gorithm 6. It is assumed that the dynamic parameters of the
manipulator are known.

194 3. Time-optimal planning of non-redundant robots

Algorithm 6 Time-optimal trajectory planning with a genetic
algorithm
1: Initialize trajectory x(λ), or q(λ)
2: Initialize torque limits τmin, τmax
3: Initialize the number of chromosomes Ni
4: Compute a, b, g, λ̇max by using the parameters above
5: Generate crossover and mutation bitmasks repos
6: Randomly generate the initial population
7: for each generation do
8: for each genome do
9: Integrate forwards starting from (3.111) and transform chromosomes to pseudo-

accelerations according to (3.118) so as to satisfy (3.110)
10: Compute fitness as in (3.117) so as to tend to (3.109)

11: Perform σ-scaling
12: Select parents with SUS
13: Perform locus-wise crossover
14: Perform locus-wise mutation

15: λ̇(λ)← best individual in the population
16: Repair λ̇(λ) so as to satisfy (3.112)
17: Compute trajectory execution time t from λ̇(λ)

3.6.4 Results on a 2R planar manipulator

Let us consider again the use case of Section 3.5. The list of
parameters used in TurboGA simulations is reported in Table 3.3.
A few comments are worthwhile:

� the size of the population, because of the need to perform
an integration for each genome, must be kept small;

� the number of generations has been tuned experimentally,
but in the large majority of cases, convergence happens around
generation 2000.

� the σ-scaling coefficient is relatively small compared to typ-
ical values and this is to guarantee a faster convergence; ex-
perimental results show that the time-optimal planning GA
is unlikely to end up in local maxima that are “too far” from
the global one;

� the clamping parameters have been tuned experimentally to
compensate the mutation rate, as discussed in Section 3.6.3.

3.6. Resolution with a genetic algorithm 195

Name Value Notes

nchrom 150 number of chromosomes (Ni)

nloci 32 number of loci in a chromosome

lower 0 lower bound of chromosome domain

upper 1 upper bound of chromosome domain

popSize 100 number of genomes in the population

maxGens 3000 number of generations

probCrossover 1.000 probability of crossover

probMutation 0.003 probability of locus-wise mutation

sigmaScalingCoeff 0.04 σ-scaling coefficient (multiplier of vari-
ance)

crossoverType 2 uniform crossover

flagFreq 0.1 percentage of occurrence of a 0 or 1 for
given locus across the population above
which the locus is flagged for clamping

unflagFreq 0.1 percentage of occurrence of a 0 or 1 for
a given locus across the population below
which the locus is unflagged for clamping

flagPeriod 150 number of generations after which a
flagged locus is clamped

h 0.15 see equation (3.117)

Table 3.3: Parameters used in the TurboGA runs

By using the switching points technique described in Algorithm 4,
the optimal execution time, with a λ-discretization of 150 samples,
is

topt = 0.870 s (3.120)

corresponding to an optimal fitness function of

fopt = Aopt = 10.557 (3.121)

Algorithm 6 is executed with the parameters of Table 3.3. The
average fitness and standard deviation over 20 runs are

µf = 10.557

σf = 0.005
(3.122)

196 3. Time-optimal planning of non-redundant robots

corresponding to an average time and standard deviation of

µt = 0.869 s

σt = 0.5 ms
(3.123)

The genetic algorithm always obtains a solution in the neighbor-
hood of the optimal one and, sometimes, provides a shorter time
than (3.120). This is another consequence of the discretization
of λ. In fact, assume an MVC that has no singular points and
that the switching points method is used to compute the time-
optimal phase-plane trajectory. Theoretically, the solution must
be bang-bang. However, if λ is discretized, the solution is every-
where bang-bang, except at the U -to-L switching points, where
the leftmost point of the backward integration trajectory must be
connected to the rightmost point of the forward integration tra-
jectory. If the number of loci in a chromosome is greater than one,
other pseudo-accelerations than L and U can be chosen. Hence,
the solution adapts better at the U -to-L switching points and can
produce a slightly faster solution. The coarser the discretization is,
the higher is the margin for the genetic algorithm to perform better
than the switching points technique. A typical solution of Algo-
rithm 6, indicated with λ̇ga(λ), which also encompasses this as-
pect, is shown in Figure 3.20. The phase-plane trajectory λ̇opt(λ),
computed with the switching points technique, is also shown for
comparison. The solution has 5 switching points, coherently to
[82]. The reader may recognize that almost everywhere λ̇ga ' λ̇opt.
In the range between the third and fourth switching point, where
λ ∼ 1.5, the 32-bits sensitivity provided by the loci in the chro-
mosomes allows to “adapt” better to the discretization and gain
a portion of area above the λ̇opt. The best individual after 3000
generations, from one of the runs, is shown in Figure 3.21. The
reader may recognize the quasi-bang-bang shape of the solution
with three accelerating segments and two decelerating segment.
The last maximum deceleration segment, bringing to satisfaction
of constraint (3.112), as discussed before, is added through repair-
ment so that to generate the λ̇ga curve of Figure 3.20. Also, the

3.6. Resolution with a genetic algorithm 197

pseudo-acceleration gains in Figure 3.21 clearly show the higher
sensitivity in the vicinity of the switching points.

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

Figure 3.20: MVC (blue) and phase-plane trajectories computed
with switching points (yellow) and genetic algorithm (red) for ma-
nipulator and path in Figure 3.16

As far as the singular point is concerned (corresponding to the
second switching point), the time-optimal phase-plane trajectory
presents some discontinuities in its derivatives. This is an expected
behavior, that causes jitters in the torque profile, as theorized in
[68]. With the genetic algorithm solution, a smoother profile is
obtained to the left of the singular point. Once again, this is due
to the higher sensitivity in the pseudo-accelerations. Although
this is not common to all runs, it is quite a frequent behavior in
genetic solutions. Also, at the singular point, the genetic algorithm
“automatically” chooses pseudo-accelerations that do not violate
the MVC constraint.

The execution time of Algorithm 6, implemented in MATLAB®,
with the parameters in Table 3.3, is ∼ 2.4 minutes, with a 64-bit
Windows 10 OS running on an Intel® Xeon(R) E-2146G CPU @
3.50GHz. The time required to compute the parametrized dynam-

198 3. Time-optimal planning of non-redundant robots

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

k

Figure 3.21: Best individual after 3000 generations from one of
the runs

ics and maximum velocity curve in step 4 is about 10 seconds.

3.6.5 Parameter sensitivity analysis

All the parameters reported in Table 3.3 are standard parameters
for a GA, except for the parameter h that we defined in (3.117).
It is clear that, if h is too small, unfeasible solutions will be pe-
nalized less, and are likely to survive to the selection process. On
the other hand, if h is too large, solutions close to the optimal
one will be penalized too much and are likely to be excluded by
the selection process. A sensitivity analysis for the parameter h,
showing this phenomenon, is reported in Figure 3.22. The graph
to the left represents the fitness function mean over 20 runs and
related variance for h ∈ [0.10, 1000]. When h = 0.10, the fitness
function is much higher than for other values, but all the 20 solu-
tions are unfeasible: the phase-plane trajectory is above the MVC.
As h tends to infinity, the fitness function decreases, moving away
from the optimal value. Rather, the graph to the right represents

3.6. Resolution with a genetic algorithm 199

the fitness function mean over 20 runs and related variance for
h ∈ [0.10, 0.20], i.e., in the vicinity of 0.15, which is the value we
selected for our GA. While for h > 0.14, the fitness function is
at the optimal value indicated in (3.122); for h < 0.14, unfeasible
solutions start to be accepted. For instance, for h = 0.13, only 11
solutions are feasible out of 20.

10
-1

10
0

10
1

10
2

10
3

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

0.1 0.12 0.14 0.16 0.18 0.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

Figure 3.22: Mean of fitness function and related variance (repre-
sented with vertical bars), on 20 runs, with respect to parameter
h on a logarithmic scale (left) and in the vicinity of the selected
value (right)

3.6.6 Scalability analysis

Together with the parameter sensitivity above, it is interesting to
estimate the performance of the GA with respect to the variation
of Ni, the number of chromosomes, or number of waypoints in the
path. We set six different values for Ni, and execute 20 runs for
each of them. In order to estimate the CPU execution time, runs
are stopped as soon as they reach the optimal area, that is pre-
computed from the switching points method. Results are shown in
Table 3.4 and Figure 3.23, showing that the CPU execution time is
approximately linear with the number of waypoints/chromosomes.

200 3. Time-optimal planning of non-redundant robots

Table 3.4: Optimal area, average µcpu and standard deviation σcpu
of the CPU execution time over 20 runs for different numbers of
waypoints/chromosomes

Ni 50 150 250 350 450 550

Aopt 10.477 10.557 10.567 10.590 10.609 10.618

µcpu (s) 26.3 143.3 220.8 345.9 375.4 457.1

σcpu (s) 6.1 5.0 6.7 6.4 6.0 7.1

50 150 250 350 450 550

0

200

400

Figure 3.23: Average µcpu and standard deviation σcpu of the
CPU execution time over 20 runs for different numbers of way-
points/chromosomes

3.6.7 Parameters robustness to path charac-
teristics

One of the most important drawbacks of genetic algorithms is their
high number of parameters, most of which have to be tuned exper-
imentally. In general, changes in the problem formulation, such as
robot characteristics (e.g., kinematic structure, dynamic parame-
ters) and path characteristics (e.g., regularity, maximal curvature,
distance from workspace boundaries) might require the re-tuning
of the GA parameters. In order to estimate the robustness of our
GA-based time-optimal planning algorithm with respect to path
characteristics, it is worth testing a second path that has different
characteristics from the one of Figure 3.16. The latter is a quite
irregular path, with varying curvature (but never straight) that

3.6. Resolution with a genetic algorithm 201

starts very close to the workspace outer boundary and presents
two critical points, one of which is singular. Hence, a good choice
for our second use case could be the path of Figure 3.24: it is a
straight line between points (0.3, 1) and (0.3,−1), that passes very
close to the inner workspace boundary, i.e., the manipulator’s base,
and only presents one singular point that, in the optimal solution,
lies very close to the preceding U -to-L switching point.

-1 -0.5 0 0.5 1

x (m)

-1.5

-1

-0.5

0

0.5

1

1.5

y
 (

m
)

Figure 3.24: Shiller’s 2R manipulator at its starting configuration
(red) and straight path (blue)

The problem is solved again with the switching points shooting
method, providing the ground truth for this second use case, hav-
ing the following optimal execution time:

topt = 0.781 (3.124)

corresponding to an optimal fitness function of

fopt = Aopt = 5.930 (3.125)

202 3. Time-optimal planning of non-redundant robots

Since, in Section 3.6.4, we did not make any path-specific consid-
eration in the tuning of the parameters, Algorithm 6 is executed
again with the same values as before, reported in Table 3.3. The
average fitness and standard deviation over 20 runs are

µf = 5.963

σf = 0.002
(3.126)

corresponding to an average time and standard deviation of

µt = 0.777 s

σt = 0.1 ms
(3.127)

Although we assigned a fixed number of generations for all the
runs, for this use case, the GA converges to the globally-optimal
solution at around generation 500, corresponding to a CPU exe-
cution time of ∼ 46 s. A comparison between a typical solution of
Algorithm 6 and that of the switching points shooting method is
provided in Figure 3.25.

In this particular case, the GA-based algorithm is able to com-
pletely eliminate the torque jitter at the singular point. Since it
cannot be observed from the phase plane trajectories in Figure
3.25 directly, torques profile are reported in Figure 3.26.

3.7 Resolution with dynamic program-

ming

3.7.1 Problem formulation

The first demonstration of solving the trajectory planning problem
over a specified path with dynamic programming (DP) was given
in [91]. Therein, the problem formulation is generic enough to
accommodate a family of integral performance indices, including
the trajectory tracking time. The authors propose to discretize

3.7. Resolution with dynamic programming 203

0 0.5 1 1.5 2

0

1

2

3

4

5

6

Figure 3.25: MVC (blue) and phase-plane trajectories computed
with switching points (yellow) and genetic algorithm (red) for ma-
nipulator and path in Figure 3.24

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-20

-10

0

10

20

T
o

rq
u

e
s
 (

N
m

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-20

-10

0

10

20

T
o

rq
u

e
s
 (

N
m

)

Figure 3.26: Comparison of torque profiles between the switching
points shooting method (top) and Algorithm 6 (bottom)

the phase plane so as to create a grid in λ and λ̇, i.e.

λ(i) = i∆λ with i = 0, 1, 2, .., Ni and Ni =
Λ

∆λ

λ̇j = j∆λ̇ with j = 0, 1, 2, .., Nj and Nj =
λ̇M
∆λ̇

(3.128)

204 3. Time-optimal planning of non-redundant robots

where ∆λ and ∆λ̇ are the sampling intervals for the λ-domain and
λ̇-domain respectively, while λ̇M is a constant representing the
theoretical upper limit for any feasible phase plane trajectory, so
that, said λ̇opt(λ) the minimum-time trajectory, λ̇opt(λ) < λ̇M ∀λ,
e.g.

λ̇M = max
λ
{λ̇max(λ)} (3.129)

It is anyhow worth remarking that, for MVCs with high peaks,
where trap regions are particularly large, (3.129) may cause a loss
of resolution in the feasibility region, which is where the time-
optimal phase-plane trajectory must be searched. Hence, λ̇M
might be set to a conservative value, that is later increased only
if the time-optimal trajectory hits the upper bound of the grid.
This may require more than one execution of the algorithm, but
repeated searches with increasing resolution are one of the tech-
niques that are often used in dynamic programming to cope with
the computation time (see, e.g. [71, 72]).

Each cell in such a grid is a state sj(i) = [λ(i), λ̇j(i)]
T that can

be evaluated by the dynamic programming algorithm. For each of
them, the maximum and minimum pseudo-accelerations Lj(i) =
L(λ(i), λ̇j(i)) and Uj(i) = U(λ(i), λ̇j(i)) can be pre-computed, as
well as the parametrized dynamics, represented by the vectors
a(i) = a(λ(i)), b(i) = b(λ(i)) and g(i) = g(λ(i)), that are shared
by all the states sj(i) for fixed i and variable j.

The dynamic programming algorithm can be implemented in the
traditional way, i.e. backward, from the final waypoint to the initial
one (as in [91]), or, considering that all the states possibly visited
by the DP algorithm are already available, from i = 1 to i = Ni,
i.e. forward. Thus, according to the latter, for a given phase-plane
trajectory, a generic objective function can be written as:

I(Ni) = ψ
(
s0

)
+

Ni∑
k=1

φ
(
s(k − 1), s(k)

)
(3.130)

where ψ
(
s0

)
is a cost associated to the initial state and φ is the cost

computed locally between two adjacent states. More specifically,

3.7. Resolution with dynamic programming 205

since the objective function to minimize is the time, there is no
cost associated to the initial state, i.e. ψ

(
s0

)
= 0 and I = t.

Therefore, using, for the discrete time, the same approximation as
[71], we have:

t(Ni) =

Ni∑
k=1

2
λ(k)− λ(k − 1)

λ̇(k) + λ̇(k − 1)
(3.131)

or, in a recursive form,

t(0) = 0

t(i) = t(i− 1) + 2
λ(i)− λ(i− 1)

λ̇(i) + λ̇(i− 1)

(3.132)

It has to be noted that dynamic programming, with respect to
other techniques, is flexible with respect to the inclusion of other
performance indices within the same objective function to opti-
mize. For instance, in [14], the time-optimality is coupled with
energy-optimality. Weights can be used to privilege one or the
other index, as in [14], or Pareto optimality can be achieved.

In order to be complete, the problem definition must include the
usual constraints on the pseudo-velocity and maximum and mini-
mum pseudo-accelerations. In particular, we may define the stage-
dependent set of admissible pseudo-velocities as Ai and the stage-
dependent set of admissible pseudo-accelerations as Bi such that
the constraints are generally formalized as

λ̇(i) ∈ Ai

λ̈(i) ∈ Bi

(
λ̇(i)

) (3.133)

It is worth noticing that such a formulation is generic enough to
accommodate the majority of the constraints presented in Section
3.2.3. In case constraints exist on the pseudo-jerk, such as (3.25),
an additional set can be defined to include them in the problem
definition. Also, in case viscous friction is modeled (see Section
3.3.3), inadmissible islands are automatically taken into account
in Ai. The dependence of Bi on λ̇ is necessary because the pseudo-
acceleration depends on both λ and λ̇. The sets in (3.133) can be

206 3. Time-optimal planning of non-redundant robots

combined so as to define the set of reachable pseudo-velocities for
each stage i:

Ci = Ai ∩

{
λ̇(i) :

λ̇(i)− λ̇(i− 1)

∆λ

λ̇(i− 1) ∈ Bi−1

(
λ̇(i− 1)

)
,

with λ̇(i− 1) ∈ Ai−1

}
(3.134)

By minimizing over the admissible values of λ̇, the equations in
(3.132) become:

t(0) = 0

topt(i) = min
λ̇(i)∈Ci

[
2
λ(i)− λ(i− 1)

λ̇(i) + λ̇(i− 1)
+ t(i− 1)

]
(3.135)

While topt(Ni) represents the optimized function, the same func-
tion topt(i) at a generic stage i is also called optimal return function
and corresponds to the minimum value of the objective function
if the process stopped at stage i.

It is worth remarking that this problem formulation is valid under
the hypothesis that the torque constraints can be expressed as in
(3.14) or in a similar manner which allows for the definition of

L(λ, λ̇) and U(λ, λ̇). If the actuators were driven by the same
power supply, as mentioned in Section 3.3.2.3, this might not be
the case. As instance, if the torque constraint was expressed, as
in [91], as

τ = [τ1, τ2, ..., τn]T ∈ E(q, q̇) (3.136)

the maximum and minimum pseudo-accelerations would not be
defined, making the employment of the sets in (3.133) impossible.
In this case, the vector of joint torques should be computed explic-
itly in order to verify constraint (3.136). Rather, if the coupling
of the actuator torques was modeled as in (3.79), it would still be
possible to define L and U , as shown in [82], and use the sets in
(3.133).

3.7. Resolution with dynamic programming 207

A similar approach to trajectory optimization is proposed in [71],
where the λ axis is replaced by the list of waypoints and the λ̇
axis is replaced by the velocity of a non-stationary joint. Con-
ceptually, there is no difference with the approach presented here,
since there exists a one-to-one correspondence between a waypoint
in the workspace (or in the joint space) and λ. By recalling (3.1),
the same is true for q̇i(λ) and λ̇. With respect to the formulation
discussed in this section, using the joint variables directly implies
to verify the constraints on each kinematic and dynamic variable
in play, e.g. velocity and torque of each joint.

In [72], the authors adopt a slightly different formulation based on
the Hamilton-Jacobi-Bellman equation, to which they give an ap-
proximate solution using finite difference methods. This approach
allows computing the optimal control sequence λ̈ and the execu-
tion time without calculating the phase-plane trajectory explicitly,
that is found only at a later stage by integrating the optimal con-
trols.

3.7.2 Algorithmic implementation

In light of the problem formulation above, we can define the time-
optimal trajectory planning (TOTP) algorithm based on dynamic
programming as in Algorithm 7.

As briefly mentioned in Section 3.7.1, at step 1, the vectors a,
b and g can be pre-computed on the basis of the parametrized
trajectory (given either in the joint space or in the workspace),
as discussed in Section 3.2.1. Since all the values of λ and λ̇ are
given beforehand, the pseudo-acceleration limits can also be pre-
computed (step 3), as well as the constraints limiting the pseudo-
velocity (step 2). If the problem is defined in a way that the
manipulator starts from a rest condition, i.e. λ̇(0) = 0, this can be
easily imposed by configuring the set A0 accordingly. The reader
may notice that here it is not required the explicit computation of
the MVC, which is rather necessary with different algorithms. In
fact, if Lj(i) and Uj(i) are available, the MVC condition can be

208 3. Time-optimal planning of non-redundant robots

Algorithm 7 Time-optimal trajectory planning with dynamic
programming
1: Compute a, b, g from x(λ), or q(λ)
2: Initialize Ai, ∀i = 0..(Ni − 1)
3: Initialize Bi(λ̇j), ∀i = 1..Ni, ∀j = 0..(Nj − 1)
4: Initialize Ci = ∅, ∀i = 0..Ni
5: Initialize cost map ti,j = +∞, ∀i = 0..(Ni − 1), ∀j = 0..(Nj − 1)
6: t0,j ← 0, ∀j = 0..(Nj − 1)
7: C0 ← A0

8: for i← 0 to Ni − 1 do
9: for each λ̇j ∈ Ci do

10: for each λ̇k ∈ Ai+1 do

11: λ̈← λ̇k−λ̇j
∆λ

λ̇j

12: if λ̈ ∈ Bi+1 then

13: Ci+1 ← Ci+1 + {λ̇k}
14: Compute instantaneous cost function φ
15: if ti,j + φ < ti+1,k then
16: ti+1,k = ti,j + φ

17: Let λ̇j at stage i be the predecessor of λ̇k at stage i+ 1

18: topt(Ni) = tNi,0
19: Build function λ̇(i) of optimal pseudo-velocities by screening the predecessors map

backward

verified through the test Lj(i) > Uj(i).

The pseudo-acceleration is computed in-line (step 11) for each pair
of states sj(i) and sk(i + 1). We remark that, under the rest
condition λ̇(0) = 0, the pseudo-acceleration needs to be computed
with the same approximation as [81], that is

λ̈ ∼ dλ̇

dλ
=
λ̇k − λ̇j

∆λ

(3.137)

If L ≤ λ̈ ≤ U (step 12), the state sk(i+ 1) is reachable and can be
added to the set of nodes that will be visited at the next waypoint,
i.e. step 13. Among all the states sj(i), with variable j, that can
reach sk(i+1), a reference to the minimum-time one is saved (step
17), so that each reachable state sk(i + 1), with variable k, will
have one and only one predecessor. Predecessors can be stored in
a separate map of references or as pointers embedded in the nodes,
depending on the selected implementation paradigm.

Since the dynamic programming algorithm computes the minimum-

3.7. Resolution with dynamic programming 209

time trajectory for each possible final state sj(Ni), if the problem
definition requires the manipulator to end its motion in a rest
condition, i.e. λ̇(Ni) = 0, the solution is immediately available by
picking the related state from the vector of final states, as done at
step 18.

In this formulation we assume that the grid nodes are connected
through straight segments, i.e. first-order interpolation, but more
complex functions can be used as proposed in [91, 14]. In par-
ticular, if the grid resolution is coarse, it might be convenient
to perform an interpolation of an higher order. In such cases,
the violation of the torque constraint (corresponding to a pseudo-
acceleration constraint) might happen anywhere between two con-
secutive stages λ(k) and λ(k + 1), implying that the test at step
12 is no longer sufficient to guarantee the feasibility, but the whole
curve connecting the nodes must be tested.

Eventually, if constraints on the torque rates exist, Algorithm 7
should be modified to work on a three-dimensional grid (including
the λ̈ axis) and to test the limits on the pseudo-jerk in (3.25),
although the underlying logic remains unchanged [91]. The intro-
duction of an additional dimension is also the solution proposed
in [77], but the underlying method is the switching points tech-
nique in the phase plane. It should be noted that the employ-
ment of jerk and/or torque rate constraints becomes particularly
important when the trajectories have to be executed on the real
hardware, however the introduction of an additional dimension
might make the problem intractable from the practical standpoint.
This is the issue addressed in [14], where jerk and torque rate
constraints are enforced in a planning scenario based on dynamic
programming. Therein, continuous and differentiable profiles are
generated in the phase plane through interpolation between two
consecutive stages. The constraints of interest, including jerk and
torque rate, are verified at selected check points along such pro-
files. This way, the search space does not need to be augmented
and the complexity can be controlled without exiting the phase
plane.

210 3. Time-optimal planning of non-redundant robots

On the same path identified by [14], as an additional alternative
to enlarging the state space, the pseudo-jerk should be computed
according to a discrete approximation, that is

...
λ = λ̇′′λ̇2 +

(
λ̇′
)2

λ̇ (3.138)

With a backward Euler approximation, it can be computed as

...
λ (k) =

λ̇′(k)− λ̇′(k − 1)

∆λ

λ̇2(k) +
[
λ̇′(k)

]2

λ̇(k) =

=
λ̇(k)− 2λ̇(k − 1) + λ̇(k − 2)

∆2
λ

λ̇2(k)+

+

[
λ̇(k)− λ̇(k − 1)

∆λ

]2

λ̇(k)

(3.139)

where, at each step, λ̇(k), λ̇(k−1) e λ̇(k−2) are available through
the predecessors map. With respect to [14], this is a simpler solu-
tion, but it is expected to provide less accurate results due to the
discrete approximation. In both cases, when jerk and torque rate
constraints are checked without augmenting the search space, the
global optimality is compromised [14].

In Section 4.2, when we will deal with redundant robots, we will
see that both augmenting the search space and generating differ-
entiable profiles between waypoints is practically unfeasible and
using simple Euler approximations is the only way to impose such
kind of constraints. Nevertheless, in that case, because of the im-
possibility of calculating the pseudo-jerk explicitly, the discrete
joint torque rates will be directly computed. Despite the coarse
approximation, we will see that the planned trajectory can be ex-
ecuted on the real robot with satisfactory results.

3.7.3 Reference generation

Once the vector λ̇(i) is available for each i from the execution of
Algorithm 7, the references for the robot controller can be gener-

3.7. Resolution with dynamic programming 211

ated from equations (3.1) and (3.2). The objective here is to derive
the discrete approximations of such equations, assuming that the
forward Euler method is adopted.

For a generic i, the pseudo-velocity λ̇(i) and parametric joint ve-
locities q̇(i) can be respectively written as:

λ̇(i) =
λ(i+ 1)− λ(i)

t(i+ 1)− t(i)
(3.140)

q̇(i) =
q(i+ 1)− q(i)

t(i+ 1)− t(i)
(3.141)

From the first equation, we have that

t(i+ 1)− t(i) =
λ(i+ 1)− λ(i)

λ̇(i)
(3.142)

that, folded into (3.141), yields

q̇(i) =
q(i+ 1)− q(i)

λ(i+ 1)− λ(i)
λ̇(i) = q′(i)λ̇(i) (3.143)

that corresponds to the discrete form of equation (3.1).

As far as the parametric joint accelerations are concerned, we have
that

q̈(i) =
q̇(i+ 1)− q̇(i)

t(i+ 1)− t(i)
(3.144)

By substituting (3.143) into the equation above, we get

q̈(i) =
q′(i+ 1)λ̇(i+ 1)− q′(i)λ̇(i)

t(i+ 1)− t(i)
=

=
q′(i+ 1)λ̇(i+ 1) + q′(i+ 1)λ̇(i)− q′(i+ 1)λ̇(i)− q′(i)λ̇(i)

t(i+ 1)− t(i)
=

=
q′(i+ 1)− q′(i)

t(i+ 1)− t(i)
λ̇(i) +

λ̇(i+ 1)− λ̇(i)

t(i+ 1)− t(i)
q′(i+ 1)

(3.145)

212 3. Time-optimal planning of non-redundant robots

Using again equation (3.142) for the first term and noticing that
the second term includes the pseudo-acceleration, we can write

q̈(i) = q′′(i)λ̇2(i) + λ̈(i)q′(i+ 1) (3.146)

that corresponds to the discrete form of (3.2) [94].

Once joint velocities and accelerations are available, the actuation
torques can be algebraically computed from (3.7) through equa-
tions (3.143) and (3.146). Alternatively, they can be obtained
directly from (3.8) by using the pre-computed vectors a(i), b(i)
and g(i), the pseudo-velocity λ̇(i) and pseudo-acceleration λ̈(i).
In the same way, in case of viscous friction and state-dependent
torques, the input voltages can be computed from (3.83).

Because of the discrete forms (3.143) and (3.146), the parametrized
dynamics terms in (3.8) are

a(i) = H
(
q(i)

)
q′(i+ 1) (3.147)

b(i) = H
(
q(i)

)
q′′(i) +

(
q′(i)

)T
C
(
q(i)

)
q′(i) (3.148)

that are also used in the pre-processing step 1 of Algorithm 7.

Lastly, in this formulation, it should be noted that the forward
Euler equation in (3.140) is not coherent with (3.132), the latter
corresponding to a trapezoidal approximation. With a large dis-
cretization step, this misalignment yields non-negligible errors on
the final control inputs [94]. However, if a forward Euler approxi-
mation was used even for the evaluation of the cost function, spe-
cific approximations should be foreseen at the boundaries, when
the pseudo-velocity equals zero. On the other hand, if a trape-
zoidal approximation was consistently used for all computations,
numerical oscillations would be likely to arise.

3.7.4 Application to a 2R planar robot

The TOTP dynamic programming algorithm is applied to the
same use case as Section 3.5. The sampling intervals are set in

3.7. Resolution with dynamic programming 213

such a way that Ni = 150 and Nj = 104. As remarked in [91, 71],
when discretizing the axes λ and λ̇, it is important to choose Nj

and Ni such that the sets Bi(λ̇j) are not empty, with fixed i, for
all the possible values of j. Usually, this requires Nj >> Ni.
On the other hand, if Nj is too large, the execution time of the
dynamic programming algorithm considerably grows. As far as
the pseudo-velocity upper bound is concerned, in this example,
it is set to λ̇M = 10 because we have a prior knowledge of the
phase plane trajectory (computed with the switching points tech-
nique). Otherwise, the considerations of Section 3.7.1 hold. It is
also worth mentioning that, with these values of the discretization
steps, the grid nodes can be connected by straight segments and it
is not necessary to use more complex curves, thus the formulation
of sections 3.7.1 and 3.7.2 is valid. Refer to [14] for an implemen-
tation that considers more complex interpolations, which allow to
drastically reduce the number of nodes.

The time-minimum phase plane trajectory computed with Algo-
rithm 7 is reported in Figure 3.27, together with the MVC and,
for the sake of comparison, the time-minimum trajectory com-
puted with the switching points technique of Algorithm 4. The
trajectory tracking time corresponding to the optimal solution is
topt = 0.875 s. The algorithm, implemented in MATLAB®, exe-
cuted in ∼ 2 minutes on a 64-bit Windows 10 OS running on an
Intel® CoreTM i7-7600U CPU @ 2.80GHz. No parallel execution
model was used in the tests.

It is interesting to notice that the optimal solution is extremely
close to the switching point analogue and that the algorithm be-
haves better to the left of the critical point. The reason must
be found, as for the genetic algorithm, in the fact that values of
the pseudo-acceleration other than U and L can be selected by
the algorithm, although the resolution of pseudo-accelerations is
much lower in this case and is dependent on Nj. Like the genetic
algorithm, the DP algorithm is able to gain some area over the
switching points solution because of the discrete approximation in
the neighborhood of the U -to-L switches, which is anyhow negli-

214 3. Time-optimal planning of non-redundant robots

0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

Figure 3.27: MVC (blue) and phase plane trajectories computed
with switching points (yellow) and dynamic programming (red)

gible. As evident from the shape of the phase-plane trajectory in
the proximity of the critical point, jitters in the torques are not
completely eliminated. For a more extensive explanation of this
phenomenon, refer to Section 3.5.1.

3.8 Trajectory tracking

All the resolution techniques analyzed in this chapter allow the
trajectory to be planned at the limits of the robot capacity. How-
ever, when it comes to executing these time-optimal trajectories,
additional issues may arise. Let us recall that at least one actuator
has to saturate for every single point of the path. Controlling the
motors close to their limits, so that they saturate, reserves no mar-
gin for the controller to compensate for the unmodeled dynamics
(like elasticity in the joints or the controller dynamics themselves)
and uncertainties in the modeled dynamics. Some very simple, as
well as low-performance techniques to account for this issue are

3.8. Trajectory tracking 215

[95]:

� to adopt conservative torque bounds;

� to estimate the uncertainty in the dynamic parameters and
plan in the worst-case scenario;

� to respect the execution time while allowing for small tra-
jectory deviations.

The first two solutions are flat, meaning that they apply uniformly
along the path, causing an overall degradation of performances.
The latter is only valid for some applications that allow for small
path deviations.

More elaborate solutions exist and can be classified in two cate-
gories: trajectory pre-shaping and online trajectory scaling, that
we discuss in this section.

3.8.1 Trajectory pre-shaping

Often, in commercial robots, the primary controller that receives
the references from the user and generates commands for the ac-
tuators is delivered with the robot itself and cannot be modified.
Usually, the dynamic parameters of the robot are available or can
be estimated with some uncertainty. In these situations, the ref-
erences generated by a planning system can take into account the
robot dynamics, but not the controller’s. Nominally, this is not an
issue, as the controller has the specific function to allow for tra-
jectory tracking and compensate for uncertainties and unmodeled
dynamics. However, when the robot is driven close to its torque
limits, such function is lost, resulting in poor tracking. As demon-
strated in [96], better tracking performances can be obtained with
a simple feed-forward scheme that is designed to “cancel” the con-
troller dynamics.

The proposed solution is to manipulate (or pre-shape) the planned
trajectory to include a correction term that accounts for the un-

216 3. Time-optimal planning of non-redundant robots

modeled dynamics of the controller. This is still an off-line pro-
cess, that does not require the primary controller to be modified.
When applied to robotic manipulators, the assumption is made
that an independent joint control is implemented according to a
SISO model. The high-level scheme is reported in Figure 3.28,
where P (s) and C(s) are the transfer functions of the plant and
controller respectively. The Laplace transform of the desired out-
put Yd(s) is multiplied by the chain P−1(s)C−1(s) to obtain the
additive correction term Z(s) so as to generate the actual reference
R(s) for the controller.

Figure 3.28: Trajectory pre-shaping control scheme [96]

The reader may recognize that the closed-loop transfer function
of the system in Figure 3.28 is the identity, meaning that, in the-
ory, the controller dynamics can be removed. Clearly, in practice,
this scheme can only be implemented if both the plant and the
controller dynamics are known. If the latter is unknown, but at
least its structure is known, its parameters can be estimated with
a learning approach based on an iterative optimization. However,
as remarked in [96], its performances are heavily dependent on an
initial guess. If this is wrong, the tracking accuracy is even worse
than a simple feed-forward scheme without pre-shaping. Also, the
controller has to respect specific properties for this method to be
implemented. In particular, it must not have unstable zeros and
its inverse must still be a causal system.

Assuming that all the hypotheses are respected, a better tracking
can be achieved. Residual errors have to be anyhow expected,
which depend on the estimation of the controller’s parameters and
uncertainty associated with P (s). In [97], the work [96] is extended
to underline that the residual error, in the experiments considered

3.8. Trajectory tracking 217

therein, is mainly due to the unmodeled dynamics of the brushless
motors’ friction. The issue is addressed by extending P (s) with
a linear model of the viscous friction, so that it is invertible and
can be used in pre-shaping. The Authors demonstrate that the
residual error can be further reduced.

For complex dynamics and longer paths, the uncertainties accu-
mulate and open-loop control cannot guarantee a bounded error
[98]. In these cases, a feedback scheme has to be adopted.

3.8.2 Trajectory scaling

For many industrial tasks, tracking accuracy is vital and, there-
fore, most of the effort in research has been put in designing con-
trollers that sacrifice time to achieve better accuracy. This is the
principle of online trajectory scaling. To this end, several tech-
niques exist.

3.8.2.1 Scaling of the phase plane trajectory

In [95] the idea is presented to design a secondary controller on top
of the primary one. Here, the primary controller is the one that
generates the motor torques to be sent to the joint actuators. The
assumption is made that it is accessible and can be modified. The
scheme is presented for two different primary controllers: feed-
forward torque controller and computed torque controller.

Let us assume that a feed-forward torque controller is used. The
commanded torques are computed from position and velocity feed-
back as

τ = H(qd)q̈d+C(qd, q̇d)q̇d+d(q̇d)+g(qd)+Kpe+Kdė (3.149)

where qd, q̇d and q̈d are the vectors of desired joint positions, ve-
locities and accelerations respectively, d(q̇d) is the n× 1 vector of
joint friction torques, e = qd − q, ė = q̇d − q̇, Kp and Kd are the

218 3. Time-optimal planning of non-redundant robots

matrices of proportional and derivative gains respectively. q and
q̇ are intended here as measured quantities.

The model in (3.149) can be parametrized in the same way as the
robot’s dynamic model, yielding

τ = b1(λ,q)λ̈+ b2(λ, λ̇,q, q̇) (3.150)

where b1 and b2 are n × 1 vectors that depend on the reference,
but also on the tracking error. Thus, an updated limit for the
pseudo-acceleration can be computed from

τmin ≤ b1λ̈+ b2 ≤ τmax (3.151)

The larger the tracking error is, the stricter will be the new limits
on the pseudo-acceleration. According to [95], they can be used
in the secondary controller as in the scheme of Figure 3.29. The
actual pseudo-acceleration that is passed to the primary controller
is updated online to limit the slope of the phase plane trajectory.
Nominally, γ = 1 and the error λ̇2

d − λ̇2 is zero, so that the de-
sired pre-planned pseudo-acceleration λ̈d can be delivered to the
primary controller, as long as the limits L and U , that are com-
puted on the basis of measured data, do not clip the signal. If
the actuators saturate, a little scaling can be imposed by tuning
γ adaptively.

The proposed technique works in general, not only for time-optimal
trajectories, and solves two issues at the same time:

� when the pseudo-acceleration reference is not compliant with
the error in the pseudo-velocity, the former is saturated up
to reaching the desired pseudo-velocity; the controller limits
the slope of the phase plane trajectory so that it becomes
feasible;

� when a time-optimal trajectory is being executed, the pseudo-
velocity is modified (through scaling of pseudo-acceleration)
to be trackable.

3.8. Trajectory tracking 219

Primary controller
Robot

Compute

error-dependent

limits

Secondary controller

Figure 3.29: Trajectory scaling with primary and secondary con-
trollers and adaptive pseudo-acceleration [95]

The advantage of this technique is that, although the controller has
to be parametrized, its gains Kp and Kv do not need re-tuning.
Thus the nominal properties of robustness are preserved. The
functioning of this method on a real industrial robot is illustrated
in [99].

A control scheme very similar to the one of Figure 3.29, is proposed
in [5], where a different parametrization of the path is proposed.
Rather than using the simple scalar information of the curvilin-
ear coordinate λ, the Authors propose to parametrize the path
through its tangential and normal components. The former is still
the curvilinear coordinate, while the latter represents the vector
of all directions along which the manipulator can deviate from the

220 3. Time-optimal planning of non-redundant robots

reference path.

The two components (tangential and normal) are controlled in-
dependently. The normal component has priority, so that, when
the controller has to keep the manipulator on the path, the tan-
gential velocity can be limited. On the other hand, when the
tracking error is small, the controller can increase the tangential
component so as to gain speed. The normal component control
is performed through a simple PID, while that of the tangential
component is performed equivalently to [95]. In this case though,
the pseudo-acceleration limits are regulated on the basis of the
normal components error.

As for [95], the technique proposed in [5] is not based on any
feature of time-optimal solutions, like the bang-bang control law.
For this reason, it can also be applied in different contexts.

The principle of Figure 3.29 is also at the basis of the solution pro-
posed in [100]. Assuming a computed torque controller, the given
time law λ(t), possibly planned with a time-optimal algorithm, is
multiplied to a correction term c(t), so that the actual joint-space
reference trajectory is given by

qd(t) = qd
(
c(t)λ(t)

)
(3.152)

The primary controller is then parametrized to take into account
this factor, yielding:

τ = b1(c, λ,q)c̈+ b2(c, ċ, λ, λ̇,q, q̇) (3.153)

The control law is defined on c, equivalently to [95] and even the
limits cmax and cmin are computed from the equation above by
using the torque limits and the measured data.

It is worth remarking that all three schemes recalled here can only
be implemented if the robot primary controller is accessible and
can be modified.

3.8. Trajectory tracking 221

3.8.2.2 Disturbance models

Another category of online time-scaling controllers is based on
modeling the unknown dynamics of the controller-robot system as
disturbances. In [98], they are modeled as additive disturbances
δ̈ on the accelerations q̈, so that

H(q)q̈ + f(q, q̇) + H(q)δ̈ = τ (3.154)

should represent an “exact model” of the robot, where the vector
f(q, q̇) ∈ Rn includes all the centrifugal, Coriolis, friction and
gravity terms. In this case, the problem becomes to estimate the
disturbances δ̈ due to the model uncertainties.

One possibility is to estimate them as

δ̈ = H−1(q)
(
τ −H(q)q̈− f(q, q̇)

)
(3.155)

where the quantities q, q̇, q̈ and τ are measured from a trail execu-
tion. Assuming that δ̈ will be similar for a similar trajectory, and
assuming a computed torque controller, the error can be predicted
through the linear relationship:

ë(t) + Kdė(t) + Kpe(t) = δ̈ (3.156)

and, as a consequence, the desired torques τd can be computed as

τd = H(q)q̈d + f(q, q̇) + τδ (3.157)

where
τδ = H

(
q)(Kdė + Kpe

)
(3.158)

are the corrective torques necessary to cancel the disturbances.

The time-optimal planning session can be executed directly with
the model in (3.157) that considers the disturbance torques τδ.
This is equivalent to saving some margin during planning that
allows to control even in presence of uncertainties and actuator
saturation. This feed-forward term is coupled, in [98], with a
time-scaling controller similar to the one in Figure 3.29, where

222 3. Time-optimal planning of non-redundant robots

the pseudo-acceleration limits L and U are computed through a
controllability analysis in the phase plane, while λ̈a only contains
the pre-planned term.

Another example of managing uncertainties as disturbances is pro-
vided in [101]. Starting from a standard dynamic model like

H(q)q̈ + C(q, q̇)q̇ + d(q̇) + g(q) = τ (3.159)

uncertainties are modeled as disturbances on torques, i.e.

Ĥq̈ + τδ(q, q̇, q̈) = τ (3.160)

Ĥ is a diagonal inertia matrix with constant terms, estimated
by evaluating the frequency response of each single axis indepen-
dently, while τδ, in a similar manner as before, are the disturbance
torques including the remaining dynamics, the coupling effects and
the payload uncertainty. The elements of τδ are given by

τδ,i =
n∑

j=1,j 6=i

Hij(q)q̈j +
n∑
j=1

n∑
k=1

Cijkq̇j q̇k + gi + di +
(
Hii(q)− Ĥii

)
q̈i

(3.161)

With the model in (3.160), it is possible to design a disturbance
observer for each single joint, so that τδ can be estimated and
summed to the commanded torques to cancel it. Under this hy-
pothesis, the system to control is simply given by

Ĥq̈ = τ (3.162)

Being the system linear and decoupled, a simple control scheme
can be used, e.g. PD control, as shown in Figure 3.30.

The disturbance observer can make the system unstable, while, in
[101], the stability is guaranteed through the introduction of an
additional saturation element.

For time-optimal trajectories, the disturbance observer might not
work properly if the disturbance is bigger than the physical torque

3.8. Trajectory tracking 223

Robot

Disturbance

Observer

PD

System with observer

Figure 3.30: Control loop with disturbance observer [101]

limit. For this reason, the scheme in Figure 3.30 should be ex-
tended with a module performing online scaling. As for the other
scaling techniques, it is based on the definition of new acceleration
limits (in this case, in the Cartesian space rather than in the phase
space) and of an additional Cartesian acceleration correction term
ẍc. Such module is only activated when actuator saturation is
detected. The overall scheme is shown in Figure 3.31, where a
saturation is also shown between the PD controller and the plant
indicating that the maximum output the controller can deliver is
dependent on the disturbance, i.e.

umax = τmax − δ̂ (3.163)

Robot

Disturbance

Observer

System with observer

PDIK

Modification

Law

Figure 3.31: Control loop with disturbance observer and online
trajectory scaling [101]

In [102], a control scheme is proposed for generic dynamic systems
controlled with torques close to saturation. It foresees the addition

224 3. Time-optimal planning of non-redundant robots

of a feedback controller with anti-windup and of an online trajec-
tory planner. The former is necessary to ensure stability, reject
disturbances and measurement noise and reduce the degradation
of performance in presence of saturation. The latter allows to keep
the tracking accuracy within a defined tolerance. The tracking er-
ror is associated to the contouring error, that is the difference
between the actual position at a given time and the closest point
on the path, regardless of time. The error is controlled through
the introduction of additional waypoints that are inserted every
time a torque is predicted to saturate. An online interpolation
technique is employed. More waypoints have the effect of scaling
the velocity along the path. The overall scheme is shown in Figure
3.32.

Plant
Anti-windup

controller

Trajectory

planning

Figure 3.32: Control loop with anti-windup controller and
contouring-error-based online trajectory planner [102]

Even though the scheme is sufficiently generic, in [102], the trajec-
tory planner is based on a decoupled dynamic model and results
show some chattering in the controller output due to instantaneous
changes in velocity when waypoints are added. The Authors only
demonstrate their methodology on a 2-axes Cartesian position sys-
tem.

3.8.2.3 Other techniques

When a time-optimal trajectory is being executed for a non-redun-
dant manipulator, one actuator is in saturation while the others
adjust to keep the end-effector on the path. Since control with sat-
uration is prone to poor tracking performances, the non-saturating

3.8. Trajectory tracking 225

actuators can be used to reduce the tracking error in the Cartesian
space. This is the underlying idea in [103]. The control is based
on the minimization of a cost function defined on the path devi-
ation and normal acceleration, suitably weighted. Perturbations
are defined that are associated to the switching times, final times,
and output of the controllers corresponding to the non-saturating
joints. The advantage of this technique is that the gains associ-
ated with such perturbations can be pre-computed with a linear-
quadratic problem, so as to reduce the work that the controller has
to perform online. Compared to a classic feed-forward scheme,
the proposed method allows respecting the path constraint and
achieving tracking times comparable to those planned.

A much more simple controller, with respect to the ones analyzed
in this section, is the one proposed in [89]. It is a sliding mode
controller (SMC) whose task is to provide corrections to the nom-
inal torques to take into account the dynamic model uncertainties,
that are supposed to be large. The scheme is shown in Figure 3.33.

PlantSMC

Planner

Figure 3.33: Feed-forward planner and sliding mode controller
(SMC) [89]

If the dynamic model is very inaccurate, bang-bang control is
prone to fail. Thus, the idea is to generate the desired torques
τd with such a model, but only imposing kinematic constraints,
like velocity, acceleration and jerk limits. Motivated by the same
assumption, the SMC is not model-based, but its parameters are
found with an evolutionary technique, called Evolution Strategy
(ES). The advantage of ES is that it is flexible with respect to

226 3. Time-optimal planning of non-redundant robots

notable variations of dynamics, as when the manipulator has to
carry a payload of non-negligible mass and size.

Chapter 4

Time-optimal planning of
redundant robots

4.1 Existing problem formulations

Let us recall that kinematic redundancy occurs when the assigned
task is characterized by m equality constraints, while n, the num-
ber of degrees of freedom in the robotic system, is strictly greater
than m. The difference r = n − m is referred to as degree of
redundancy and corresponds to the dimension of the subspace of
the configuration space into which it is possible to find the infinite
joint-space solutions to the inverse kinematic problem when the
task is assigned.

For kinematically redundant systems, a question naturally arises
on how the extra degrees of redundancy can be exploited to the
purposes of time-optimal planning. Intuitively, since the pseudo-
velocity λ̇ constitutes an optimization variable (or, in other words,
a dimension along which the optimization is possible), the pres-
ence of r additional degrees of freedom could be used to the same
purposes and they undoubtedly increase the dimensionality of the
space where the optimal solution is found. Nevertheless, kine-
matically redundant systems are nowadays extremely common in

228 4. Time-optimal planning of redundant robots

a multitude of applications, thus investigating their capability of
performing time-optimal motion is of utmost interest.

The techniques performing time-optimal planning for redundant
robots along prescribed paths differ in

� the solution optimality, i.e. locally-optimal or globally-opti-
mal;

� the way the kinematic path constraint is handled within the
problem formulation: some techniques directly use the posi-
tion kinematics and embed it in the parametrization of dy-
namics, as done in Section 3.2.2 for non-redundant robots,
others use first- to fourth-order derivatives of position kine-
matics, which explicitly appear as constraints of the prob-
lem;

� the adopted analytic or numeric resolution technique;

� the possibility of producing solutions that are smooth enough
to be directly used as references for real robot controllers.

4.1.1 Problem formulation with calculus of vari-
ations

If the task is assigned directly in the joint space, all the theory
of non-redundant manipulators holds without modifications. The
path parametrization respects the usual form of (3.1) and (3.2)
and the problem is that in (3.54). On the contrary, if the task is
more commonly defined in the task space, the Jacobian J is not
invertible, implying that parametrizations (3.5) and (3.6) are no
longer valid.

Since it is not possible to determine q̇ and q̈ as functions of the
path parameter λ because of the non-square Jacobian, the state
equation in (3.54) no longer represents the problem at hand. In
order to fully describe the system, the state s must be extended

4.1. Existing problem formulations 229

to include q and q̇ [83], i.e.:

s(t) =
[
qT λ q̇T λ̇

]T
(4.1)

Since the dynamic equations cannot be parametrized if the path
is given in the task space, they must be treated separately. For
convenience, if the dynamic model is as in (3.7), define f(q, q̇) =
q̇TC(q)q̇+g(q). If viscous friction is modeled, as in (3.83), define
f(q, q̇) = q̇TC(q)q̇ + Bq̇ + g(q). Rewrite the dynamic equations
as

H(q)q̈ + f(q, q̇) = τ (4.2)

In addition, consider the new definition of the state in (4.1), and
rewrite the kinematic constraints as:

φ(s) = φ(q, λ) = x(λ)− k(q) = 0 (4.3)

where x(λ) is the assigned task-space path, belonging to the class
of twice continuously-differentiable functions, and k : Rn → Rm

is the kinematic mapping from the joint space to the task space.
The first-order and second-order kinematic constraints can then
be respectively written as:

χ(s) =
∂φ

∂s
ṡ

ψ(s) =
∂χ

∂s
ṡ

(4.4)

The constraints above are indeed equivalent to (4.3), provided that
φ(s0) = 0 and χ(s0) = 0 are satisfied, with s0 = s(t = 0).

Let φi(s) be one of the equations in (4.3) and φr(s) ∈ Rm−1 the
vector of the remaining ones, representing a reduced task, with
χr(s) and ψr(s) its first and second time derivatives. Let us ex-
plicitly derive φi twice with respect to time. We obtain:

− Jiq̈ + x′iλ̈− J̇iq̇ + x′′i λ̇
2 = 0 (4.5)

230 4. Time-optimal planning of redundant robots

where Ji is the i-th row of the manipulator Jacobian and xi is the
i-th component of the assigned path x(λ).

The dynamic model (4.2) and the constraint (4.5) can be bundled
together to yield: H 0

−Ji x′i

q̈
λ̈

+

 f(q, q̇)

−J̇iq̇ + x′′i λ̇
2

 =

In

0T

 τ (4.6)

where In is the n× n identity matrix.

By inverting the equation above and using the state vector s, the
following dynamic system is derived, having input u = τ :

ṡ = ae(s) + be(s)u (4.7)

where

ae(s) =

q̇

λ̇

−

 H 0

−Ji x′i

−1 f(q, q̇)

−J̇iq̇ + x′′i λ̇
2

be(s) =

0 H 0

−Ji x′i

−1 In

0

(4.8)

The subscripts in the vectors above indicate that this is an ex-
tended dynamic system, as it groups the manipulator’s dynamic
model with a kinematic equation that depends on the assigned
task.

By inserting (4.7) in (4.4), the dependence of the differential con-

4.1. Existing problem formulations 231

straints on the input vector u becomes explicit:

χr(s,u) =
∂φr
∂s

(ae(s) + be(s)u) (4.9)

ψr(s,u) =
∂χr
∂s

(ae(s) + be(s)u) (4.10)

where only the reduced task has been considered.

The reader may recognize that the system described by (4.2) and
(4.3) is indeed equivalent to that represented by (4.7) and (4.10).
The problem of finding the minimum time trajectory can thus be
formalized as follows:

min
u

∫ tf

0

dt

s.t. ṡ = ae(s) + be(s)u

τmin ≤ u ≤ τmax
ψr(s,u) = 0

w/ b.c. s(0) = s0, s(tf) = sf

φ(s0) = 0, φ(sf) = 0

(4.11)

where s0 = s(t = 0) =
[
qT (0), 0,0T , 0

]T
and sf = s(t = tf) =[

qT (tf),Λ,0
T , 0
]T

.

A numerical solution to the problem above, slightly modified in
the input (torque) constraints, is given in [83] by making use of
the Extended Pontryagin’s Maximum Principle (EPMP). Assum-
ing that u∗ are the optimal control inputs and x(t) is a regular
time-optimal trajectory, it is possible to demonstrate that at most
n −m + 1 actuators are at their bounds. If the control problem
(4.11) is non-singular, exactly n−m+1 actuators saturate. More-
over, these results can be extended to point-to-point time-optimal
control problems with constraints on the state and/or the input
variables [104].

On the other hand, in [105], the authors demonstrate that also a
minimum number of saturating torques exists. They consider an

232 4. Time-optimal planning of redundant robots

extension of the model in (4.2), namely

H(q)q̈ + f(q, q̇) = T(q)τ + χT (q)w (4.12)

where q ∈ Rn is the vector of configuration coordinates of the sys-
tem, including both active and passive joints, τ ∈ Rp is the vector
of input torques, with p ≤ n, T ∈ Rn×p is the matrix mapping the
torques onto the configuration coordinates, χ ∈ Rn×v is the set of
differential constraints (holonomic or non-holonomic), such that
χ(q)q̇ = 0 and w ∈ Rv is the vector of internal forces necessary to
respect the constraints in χ. The model is rather generic and can
describe a large class of systems: redundant and non-redundant,
as well as closed chains where the control of internal forces is of
utmost importance.

By using such a dynamic description, it is demonstrated in [105]
that the minimum number of torques and/or internal forces brought
to saturation in a time-optimal control problem is v+p+1−n. It is
interesting to notice that this result is task-independent and thus,
independent of the degrees of redundancy. If p = n and v = 0,
i.e. all joints are actuated and there are no differential constraints,
there would be only one actuator in saturation, finding again the
single-torque bang-bang control of Section 3.2.4. In conclusion,
for a redundant robotic system without internal forces to control
and all joints actuated, there is at least one and no more than
n−m+ 1 actuators at their bounds.

4.1.2 Locally-optimal redundancy resolution in
time-optimal planning

The EPMP formulation of Section 4.1.1 is characterized by the
same drawbacks of the non-redundant case. Among those, it
is especially awkward to deal with generic constraints, as those
discussed in Section 3.2.3. For this reason, a simpler, but also
sub-optimal technique is preferred in several real-world applica-
tions, which is based on the projection of joint-space velocities in
the null-space of the Jacobian. Let us recall once again that, if

4.1. Existing problem formulations 233

the manipulator is redundant, (3.3) is not valid because J−1 does
not exist. However, a general solution to the first-order inverse
kinematics can be written by making use of the Moore-Penrose
pseudo-inverse:

q′ = J†x′ + (I− J†J)γ ′ (4.13)

where J† = JT
(
JJT

)−1
is the unweighted Moore-Penrose pseudo-

inverse, γ ′ ∈ Rn is a vector of additional joint-space pseudo-
velocities and I − J†J is an n × n matrix projecting γ ′ in the
null-space of the Jacobian, producing internal motion. Usually
γ ′ = −k ∂G

∂q
, where k is a gain factor and G is a performance index

to optimize.

Alternatively, the joint-space solution can be modified by the effect
of a weighted pseudo-inverse, i.e.

q′ = J†Wx′ (4.14)

where J†W = W−1JT
(
JW−1JT

)−1
and W is a symmetric, positive

definite, possibly configuration-dependent weight matrix.

Both forms (4.13) and (4.14) can be employed to parametrize the
joint velocities and accelerations with respect to the path param-
eter λ, when x(λ) is given. In particular (4.13), or (4.14), is dif-
ferentiated once with respect to the path parameter to yield q′′.
Both q′ and q′′ can then be inserted in (3.1) and (3.2) to obtain
q̇(λ, λ̇) and q̈(λ, λ̇, λ̈). Being the parametrization complete, the
problem formulation is the same as discussed for non-redundant
manipulators and a time-optimal solution can be obtained with
one of the techniques of Section 3.4, Section 3.6 or Section 3.7.

If one wants to exploit the redundancy for time-optimal planning,
the problem is simply reduced to finding a suitable form for the
performance index G or the weight matrix W. The former method
is investigated in [6], while the latter in [7]. In both cases, the free
parameters of the problem are heuristically selected so as to max-
imize the acceleration/deceleration capacity of the manipulator,
with evident benefits on the overall execution time. In particu-
lar, in [7], the authors come up with a straightforward formula-
tion demonstrating that maximizing the acceleration/deceleration

234 4. Time-optimal planning of redundant robots

capacity yields a penalization of the joints with a higher inertia-
torque ratio. They observe that the overall trajectory tracking
time is notably reduced, concluding that weighted pseudo-inverse
control is favorable with respect to a simpler unweighted pseudo-
inverse scheme.

The same idea is essentially exploited in [8], but with a second-
order locally-optimal redundancy resolution scheme like

q′′ = J†W (x′′ − J′q′) + (I− J†WJ)γ ′′ (4.15)

where γ ′′ = −k ∂G
∂q
−Dq′ and D is a n × n positive semi-definite

damping matrix, used to guarantee bounded displacements in the
joint space. In this formulation, null-space projection and weighted
pseudo-inverse are used together to achieve better performances.
Like in [7] and [6], the matrix W and the performance index G
are selected so as to maximize the acceleration/deceleration ca-
pabilities of the manipulator along the path. On the other hand,
additional parameters are introduced, whose tuning is crucial to
the improvement of the trajectory tracking time. In [8], the au-
thors propose to select ranges for each parameter and search the
best values on a discretized grid after a large number of simula-
tions.

The formulation in (4.15) can be further enriched by the addition
of a stabilizing PD term in order to avoid numerical drifts [8]:

q′′ = J†W (x′′ − J′q′ + Kde
′ + Kpe) + (I− J†WJ)γ ′′ (4.16)

where Kd > 0 and Kp > 0 are diagonal gain matrices, e = x−k(q)
and e′ = x′ − J(q)q′.

Common to all the techniques of this section is the problem of de-
termining the initial condition for the integration of the first-order
or second-order differential equations defined on the curvilinear co-
ordinate domain. Usually, these are decided by the current robot
state before planning. Nevertheless, for repeated tasks, it might
be of interest to start the motion from the best initial configura-
tion, i.e. the one allowing for the shortest trajectory tracking time.

4.1. Existing problem formulations 235

In [8], a time control scheme equivalent to (4.16) is proposed to
choose q(0) and q′(0) so as to maximize the acceleration capa-
bilities at rest, coherently with the underlying idea of the control
scheme. Thus, starting from an arbitrary configuration, typically
still satisfying the kinematic constraint x = k(q), the joints move
by mainly exploiting internal motions until reaching the best ini-
tial configuration.

4.1.3 Problem formulation in the extended phase
space

It is still possible for redundant manipulators to conduct an analy-
sis in the phase plane, as shown in Section 3.3.2 for non-redundant
manipulators. However, intuitively, since r more parameters are
free, one should expect that the phase “plane” actually is a more
generic phase space, of a greater number of dimensions. In order
to formulate the problem this way, it is convenient to adopt a
redundancy parametrization based on joint selection or joint com-
bination [106]. The former is also known as Joint Space Decompo-
sition (JSD) [11]. Here, let us analyze the problem by assuming to
parametrize redundancy with a subset of the joint position vector,
termed qj ∈ Rr, while the vector of the remaining joint positions
is termed qr ∈ Rm. We recall that m+r = n. The first and second
λ-derivatives of the workspace path can thus be written as:

x′ = Jj(q)q′j + Jr(q)q′r

x′′ = Jj(q)q′′j + Jr(q)q′′r + J′j(q,q
′)q′j + J′r(q,q

′)q′r
(4.17)

The Jacobian Jr ∈ Rm×m, made up of the columns multiplying
the non-redundant joints qr, is square and, far from singularities
of the kinematic subchain, can be inverted. On the other hand,
Jj ∈ Rm×r is made up of the columns multiplying the redundant
joints qj. One can solve the equations above for q′ and q′′:

q′r = J−1
r (q)

(
x′ − Jj(q)q′j

)
(4.18)

q′′r = J−1
r (q)

(
x′′ − Jj(q)q′′j − J′j(q,q

′)q′j − J′r(q,q
′)q′r

)
(4.19)

236 4. Time-optimal planning of redundant robots

Inserting (4.18) and (4.19) in (3.1) and (3.2) and substituting
(4.18) in (4.19) yields:

q̇r =J−1
r

(
x′ − Jjq

′
j

)
λ̇

q̈r =J−1
r

[
x′λ̈+

(
x′′ − J′rJ

−1
r x′

)
λ̇2 − Jj

(
q′jλ̈+ q′′j λ̇

2
)
−

−
(
J′j − J′rJ

−1
r Jj

)
q′jλ̇

2
] (4.20)

where the dependency of the Jacobians and their derivatives on q
and q′ has been omitted for the sake of clarity.

If one replaced q′jλ̇ = q̇j and q′jλ̈+q′′j λ̇
2 = q̈j, the equations above

would become:

q̇r = J−1
r

(
x′λ̇− Jjq̇j

)
(4.21)

q̈r = J−1
r

[
x′λ̈+

(
x′′ − J′rJ

−1
r x′

)
λ̇2 − Jjq̈j −

(
J′j − J′rJ

−1
r Jj

)
q̇jλ̇
]

(4.22)

From the expression of q̇r and q̈r above, it results that velocity
and acceleration of the non-redundant joints are functions of the
path parameter λ and its derivatives and of the redundant joint
positions qj and their derivatives, i.e.

q̇r = q̇r(λ, λ̇,qj, q̇j) = q̇r(λ, λ̇,qj,q
′
j)

q̈r = q̈r(λ, λ̇, λ̈,qj, q̇j, q̈j) = q̈r(λ, λ̇, λ̈,qj,q
′
j,q
′′
j)

(4.23)

The same decomposition between redundancy parameters and re-
maining joints at acceleration level can be adopted for the dynamic
model in (3.7), yielding:

Hr(q)q̈r + Hj(q)q̈j + f(q, q̇) = τ (4.24)

where Hj ∈ Rn×r is made up of the columns of H multiplying the
redundant joints qj and Hr ∈ Rn×m is made up of the remaining
columns of H. From this form of the dynamic model, using the
expression of q̈r in (4.22), we get [107]:

a(λ,qj)λ̈+ A(λ,qj)q̈j + η(λ, λ̇,qj, q̇j) = τ (4.25)

4.1. Existing problem formulations 237

where

a(λ,qj) = HrJ
−1
r x′

A(λ,qj) = Hj −HrJ
−1
r Jj

η(λ, λ̇,qj, q̇j) = f + HrJ
−1
r

[(
x′′ − J′rJ

−1
r x′

)
λ̇2−

−
(
J′j − J′rJ

−1
r Jj

)
q̇jλ̇
] (4.26)

We may define the control input u =
[
λ̈, q̈Tj

]T
∈ R1+r and M =

[a,A] ∈ Rn×(1+r) and rewrite (4.25) as:

M(λ,qj)u + η(λ, λ̇,qj, q̇j) = τ (4.27)

With this parametrization, the problem (4.11) can be reformulated
in a simpler form as:

min
u

∫ tf

0

dt

s.t. τmin ≤Mu + η ≤ τmax
w/ b.c. λ̇(0) = 0, λ̇(tf) = 0

q̇j(0) = 0, q̇j(tf) = 0

(4.28)

The reader may notice the similarity to the non-redundant prob-
lem definition in (3.54).

Solving problem (4.28) is not an easy task, especially because of
the impossibility to compute the input limits explicitly and dealing
with an optimization in the multi-dimensional space. An attempt
to solve an approximation of the problem above is given in [107].
Being the input constraint inequalities linear in u, the authors
propose to use a linear programming (LP) approach. For each

possible value of the state s =
[
λ,qTj , λ̇, q̇

T
j

]T
, by which both M

and η are determined, they solve an LP problem with objective
function I = λ̈, that has to be minimized or maximized, depending
on whether the phase-space trajectory is following an acceleration
or deceleration profile.

238 4. Time-optimal planning of redundant robots

Of course, in order to provide an initial state for λ = 0, they
fix the initial joint positions for the redundant parameters, i.e.
qj(0) = qj,0. Also, since the MVC-equivalent surface cannot be
computed explicitly, many of the algorithms analyzed for non-
redundant manipulators cannot be applied. The integration in the
phase space thus resembles the try-and-error approach first pro-
posed in [81] and recalled in Section 3.4.1. The proposed technique
does not use any backward integration, whose starting condition
would be impossible to define without a prior identification of the
switching points and with the presence of the additional degrees
of freedom qj. In addition, in order to make the algorithm more
efficient, the number of switching points is possibly reduced with
respect to the real time-optimal trajectory. Lastly, the proposed
algorithm cannot enforce the boundary condition q̇j(tf) = 0. For
all these reasons, even though (4.28) is formulated as a globally-
optimal control problem, the technique of [107] can only generate
sub-optimal trajectories.

4.1.4 Problem formulation for multiple shoot-
ing

All the techniques mentioned so far adopt some sort of parame-
trization of robot dynamics resembling that of Section 3.2.2, dis-
cussed for non-redundant manipulators. In other words, the dy-
namic equations establishing the connection between the applied
torques and the kinematic quantities are manipulated to extract
the path parameter and its derivatives, that are subject to opti-
mization.

An alternative formulation consists in addressing the optimization
problem directly, without any prior manipulation of the quantities
in play. The time axis is divided in a fixed number of intervals Ni

of the same variable length, whose sum is tf , that is the result of
the optimization process. When tf is given, the duration of each
time interval in the time domain is also determined. The problem
is to find, for each of the intervals, the value of the path parameter

4.1. Existing problem formulations 239

λ, the joint position vector q and their derivatives λ̇ and q̇. More
formally, said i the interval index, the objective is to find

si =
[
qTi λi q̇Ti λ̇i

]T
(4.29)

so that tf is minimum [9]. The reader may notice the similarity
with (4.1), but here the state vector is discretized.

In order to impose the torque constraints, it suffices to discretize
the dynamic model in (4.2), that is:

τmin ≤ H(qi)q̈i + f(qi, q̇i) ≤ τmax (4.30)

The imposition of the path constraint is rather non-trivial, as in-
finite joint position vectors exist that satisfy it, and they are not
equivalent with respect to the optimization goal. In [9] and [11],
two techniques are proposed to this respect, both considering at
least the second-order derivative of the kinematic constraint: joint-
space decomposition and null-space projection. In the former case,
the constraint, suitably discretized, can be written as

q̈r,i = J−1
r

(
ẍi − J̇q̇i − Jjq̈j,i

)
(4.31)

where the meaning of symbols is the same as Section 4.1.3. The

input control vector is, in this case, ui =
[
q̈Tj,i, λ̈i

]T
. In the latter

case, the constraint, again suitably discretized, can be written as

q̈i = J†i (ẋi − Jqi) + Nγi (4.32)

where N is a null-space basis of the Jacobian which allows to span
the infinite solutions to the IK problem, and γi is the vector of
scaling factors at the i-th interval and can be used to impose spe-
cific boundary conditions, e.g. zero velocity along the self-motion
manifold at the beginning and at the end of the trajectory. The

input control vector is, in this case, ui =
[
γTi , λ̈i

]T
. For both

techniques, since the path constraint is enforced through the inte-
gration of (4.31) or (4.32), a closed-loop inverse kinematics scheme
[108] needs to be used, as in [10].

240 4. Time-optimal planning of redundant robots

Finally, in order to guarantee the coherency between si and si+1,
the state equation needs to be imposed, that is

si+1 = h(si,ui) (4.33)

Since the problem is addressed directly, the optimization vector w
includes all the free variables, that is:

w =
[
sT0 uT0 ... sTNi uTNi tf

]T
(4.34)

Summarizing all the above, the problem can be formulated as
follows

min
w

tf

s.t. τmin ≤ H(qi)q̈i + f(qi, q̇i) ≤ τmax
si+1 = h(si,ui)

0 ≤ λi ≤ Λ

λ̇i ≥ 0

q̈r,i = J−1
r

(
ẍi − J̇q̇i − Jjq̈j,i

)
or q̈i = J†i (ẋi − Jqi) + Nγi

w/ b.c. λ0 = 0, λNi = Λ

λ̇0 = 0, λ̇Ni = 0

q0 = q̄0, qNi = q̄Ni
q̇0 = 0, q̇Ni = 0

(4.35)

where q̄0 and q̄Ni are assigned joint positions at the beginning and
at the end of the trajectory.

Together with the above, the formulation is flexible enough to in-
clude constraints on the joint positions and their derivatives, as
well as other application-specific constraints. For instance, in [11],
constraints are considered on joint positions, velocities, acceler-
ations, jerks and jounces (i.e. the fourth-order derivative of the
position), through which the authors demonstrate that it is pos-
sible to obtain continuous and quasi-differentiable motor torques.

4.2. Time-optimal control of redundant robots with dynamic
programming 241

It is clear that, in this case, the kinematic path constraints need to
be derived further to obtain a closed-form equation for the control
inputs. This result is of utmost importance since controlling the
torques at their bounds, as discussed above, rules out close-loop
motor control because of insufficient margins. On the other hand,
the system is subject to unacceptable vibrations. In conclusion, as
commented in [11], the insufficient continuity of globally-optimal
minimum time trajectories is the main shortcoming when it comes
to the control of real robots.

The problem (4.35) can be solved with direct multiple shooting
using the interior-point method, after an initial guess on the vari-
ables tf , λi, qi (or γi) has been made. Since (4.35) is non-convex,
globally-optimal solutions cannot be guaranteed and, in general,
the quality of the resulting solution strictly depends on the initial
guess [10].

4.2 Time-optimal control of redundant

robots with dynamic programming

Both in Section 2.7 and Section 3.7, we have seen that dynamic
programming can be beneficial to overcome the limits of calculus of
variations, first of all because of its flexibility that allows to tackle
complex real-world scenarios. Since it is a successful methodology
for both inverse kinematics of redundant robots and time-optimal
planning of non-redundant ones, its application to time-optimal
control of redundant robots comes naturally.

At the same time, we also learned that dynamic programming
is very sensitive to system complexity and a problem that can
be solved in a few seconds or minutes might become unsolvable
in any reasonable amount of time, just with a little increase of
complexity, even for off-line applications. For this reason, all the
considerations and analyses of the previous sections will need to
be thoroughly put in practice to achieve time-optimal planning

242 4. Time-optimal planning of redundant robots

and control of redundant robots.

4.2.1 Problem formulation with dynamic pro-
gramming

For both problems addressed in the previous sections, we arranged
the dynamic programming formulation as a graph search problem,
where the graph is conveniently represented as a grid or multi-
grid. Intuitively, the same can be done for time-optimal planning
of a redundant robot by suitably combining the state information
coming from one domain and the other. Thus, we expect to be
dealing with a problem of an increased dimension, and cope with
complexity by using all the information and constraints that come
from a real-world scenario.

Let us consider an m-dimensional task x(λ) such that a given
manipulator with n degrees of freedom is redundant, i.e. n > m.
Let us also suppose that the given task only constrains the end-
effector path, but not the time law along it. In a discrete-time
formulation, both the sequence of joint-space configurations and
the sequence of timestamps along the path are unknown and they
fully represent the state of the system along the path:

s =
[
q λ̇

]T
(4.36)

The system evolves in agreement with a certain dynamic model,
that can be generally written, in discrete time, as

s(i+ 1) = f
(
s(i),u(i)

)
(4.37)

The control input u in the equation above usually equates to the
actuator torques, that, in discrete time, can be expressed as:

τ (i) = H
(
q(i)

)
q̈(i) + f

(
q(i), q̇(i)

)
(4.38)

where, by omitting the dependence on i for simplicity,

f(q, q̇) = q̇TC(q)q̇ + d(q̇) + g(q) (4.39)

4.2. Time-optimal control of redundant robots with dynamic
programming 243

and d(q̇) is the n×1 vector of Coulomb and viscous friction terms.

Let S(·)(i) be the discrete-time function (or sequence of samples)
of the continuous-time function (·)(λ) up until the i-th sample,
obtained through a discretization of λ such that

λ(i) = i∆λ with i = 0, 1, 2, .., Ni and Ni =
Λ

∆λ

(4.40)

For instance, Sλ̇(i) = {λ̇(0), ..., λ̇(i)} is the discrete-time phase-
space trajectory up until stage i.

The joint velocities and accelerations at a given stage i, q̇(i) and
q̈(i) respectively, in a discrete-time formulation, are functions, in
general, of the sequences Sq(i), Sq̇(i) and St(i), i.e.

q̇(i) = fq̇
(
Sq(i), St(i)

)
(4.41)

q̈(i) = fq̈
(
Sq̇(i), St(i)

)
(4.42)

The specific form of the functions above depends on the discrete
approximation used, ranging from simple Euler approximations
that only involve stages i and i − 1, to more complex approxi-
mations that, at the limit, can involve all the stages up until the
initial one.

Now, recalling Section 2.7 and adopting a joint selection (or joint
space decomposition) scheme [106, 13], each of the joint positions
in Sq(i) can be computed from inverse kinematics, like

q(i) = k−1
(
x(i),v(i), g(i)

)
(4.43)

where v ∈ Rr is the vector of redundant joints (or redundancy
parameters) and g is an indicator of the specific extended aspect
in which the manipulator lies at stage i. This way defined, q(i)
is unique. Since x(λ) is a bijective function, we may rewrite the
equation above as

q(i) = k−1
(
λ(i),v(i), g(i)

)
(4.44)

In the same way, as done in Section 3.7, each timestamp in St(i)
can be derived from the phase-space trajectory up until stage i,

244 4. Time-optimal planning of redundant robots

through some discrete approximation, e.g. (3.131), that is

t(i) = ft
(
Sλ(i), Sλ̇(i)

)
(4.45)

Let us remark, once again, that Sλ̇(i) is unknown, and, as a con-
sequence, t(i) is unknown too.

Now, we may fold equations (4.44) and (4.45), for each i, into
(4.41) and (4.42), yielding

q̇(i) = fq̇
(
Sλ(i), Sλ̇(i), Sv(i), Sg(i)

)
(4.46)

q̈(i) = fq̈
(
Sλ(i), Sλ̇(i), Sv(i), Sg(i)

)
(4.47)

By substituting both equations above into (4.38), we find that, in
general, the input is a function of the four identified sequences,
i.e.

τ (i) = fτ
(
Sλ(i), Sλ̇(i), Sv(i), Sg(i)

)
(4.48)

This means that, given the current state s(i), selecting the input
τ (i) that drives the discrete-time system in (4.37) to s(i + 1) is
equivalent to select the parameters λ̇, v and g at the next stage,
i.e. the input is a subset of the state variables. This is coherent
with the logic of discretizing the state space instead of the input
space that we adopted in Section 2.7 and Section 3.7, that is also
a way to control the curse of dimensionality. It is also worth not-
ing that the parameters λ̇, v and g also constitute a minimum
representation of the state for each stage, as opposite to (4.1) and
(4.29), that, rather, are redundant representations. In a formula-
tion based on calculus of variations, this result is somehow related
to the minimum number of differential equations required to fully
represent the system at hand, discussed in Section 2.5.2 and in
[106].

Thus, let us proceed discretizing the variables λ̇ and v. The former
is

λ̇l = l∆λ̇ with l = 0, 1, 2, .., Nl and Nl =
λ̇M
∆λ̇

(4.49)

4.2. Time-optimal control of redundant robots with dynamic
programming 245

where λ̇M is the maximum pseudo-velocity value that the phase-
space trajectory can reach. The latter is

v = j ◦∆v + vmin (4.50)

where ‘◦’ denotes the Hadamard product, ∆v = [∆v,1, ...,∆v,r]
is the vector of the sampling intervals and j ∈ Nr the vector of
indices for each of the redundancy parameters, and vmin is the
vector of lower bounds of the redundancy parameters domains.
The elements of j take the maximum values Nj,1, ..., Nj,r so that
[Nj,1, ..., Nj,r]◦∆v+vmin equals the upper bound of the redundant
joint domains.

Let us recall equations (3.11) and (3.12), where the dynamic pa-
rameters a(λ) and b(λ) are expressed as functions of the geomet-
ric path. In the case considered here, the manipulator’s Jaco-
bian J is no longer invertible and both the dynamic parameters
may take infinite values, depending on where, in the null-space
of the Jacobian, the joints move. As a consequence, unlike time-
optimal planning of non-redundant robots, the maximum and min-
imum pseudo-accelerations, as defined in (3.20), cannot be pre-
computed. As done for other problem formulations, we can still
create a grid on the basis of the discrete values of the state, but
the content of each single node should be reconsidered in light of
this observation. Each node in the grid will then contain a state
given by

sljg(i) = [λ̇l(i),qjg(i)] (4.51)

where qjg is the vector of joint positions obtained from equation
(4.44) using the redundancy parameters vj and selecting the ex-
tended aspect g.

Since all the states are available in the grid, the dynamic program-
ming problem is again a graph search problem, where the objective
function can be generally defined as:

I(Ni) = ψ
(
s0

)
+

Ni∑
k=1

φ
(
s(k − 1), s(k)

)
(4.52)

246 4. Time-optimal planning of redundant robots

with the same meaning of terms as (3.130). More specifically,
since the objective function to minimize is the time, there is no
cost associated to the initial state, i.e. ψ

(
s0

)
= 0 and I = t.

Assuming a backward Euler approximation,

t(Ni) =

Ni∑
k=1

λ(k)− λ(k − 1)

λ̇(k)
(4.53)

or, in a recursive form,

t(0) = 0

t(i) = t(i− 1) +
λ(i)− λ(i− 1)

λ̇(i)

(4.54)

For each λ̇(i) = 0, a different approximation should be used, like
the one proposed in [71].

As far as constraints are concerned, here we tackle the case of real
robots, so that all the possible constraints that may arise from the
control of a physical system are considered to reduce the search
space and eventually lead to a solution in a relatively short time.
In particular, let us include the following limits:

� minimum/maximum joint positions

� maximum joint velocities

� maximum joint accelerations

� maximum joint jerks

� maximum joint torques

� maximum joint torque rates

In addition, optional constraints can be taken into account, like:

� obstacles in the workspace

4.2. Time-optimal control of redundant robots with dynamic
programming 247

� maximum Cartesian velocity

� maximum Cartesian acceleration

� initial/final joint configurations

� cyclicity (for closed workspace paths)

� power limit

� maximum/minimum forces exchanged with the environment
in an interaction scenario

We discussed in the previous sections about the flexibility of dy-
namic programming algorithms with respect to the inclusion of
arbitrary constraints and indeed the list above is certainly non-
exhaustive. Many other constraints can be designed depending on
the specific application at hand.

As opposite to time-optimal planning of non-redundant robots, in
this case, it is not convenient to perform any parametrization of
the dynamics and hence, of the constraints. In facts, since the
parametric vectors a(λ) and b(λ) cannot be pre-computed, they
would need to be computed in-line, which does not provide any
advantage with respect to verifying the constraints directly on the
joint variables. Therefore, let us define the stage-dependent set Ai,
containing all nodes returning joint positions that respect the joint
domains, the path constraint and, possibly, imposed initial/final
configurations. Such constraints are formalized as

sljg(i) ∈ Ai (4.55)

Joint velocities, accelerations and jerk limits can be directly en-
coded in equivalent stage-dependent, as well as state-dependent
sets B1

i B
2
i and B3

i , so that:

q̇(i) ∈ B1
i

(
s(i)
)

(4.56)

q̈(i) ∈ B2
i

(
s(i)
)

(4.57)
...
q(i) ∈ B3

i

(
s(i)
)

(4.58)

248 4. Time-optimal planning of redundant robots

Equivalently, joint torque and torque rate limits can be encoded
in similar sets C1

i and C2
i :

τ (i) ∈ C1
i

(
s(i)
)

(4.59)

τ̇ (i) ∈ C2
i

(
s(i)
)

(4.60)

More commonly, all the quantities above are given within fixed
domains that do not change along the trajectory, are not config-
uration dependent and not velocity-dependent, but the generality
of the framework allows for the accommodation of more complex
constraints. For example, in Section 3.7.1, we argued that it is
not possible to handle interacting torque constraints in the form
of (3.136) with a complete parametrization of the problem. To
this respect, the formulation that we introduce here for redundant
robots is more generic and flexible and also encompasses (3.136).

All the sets above can be combined together to define the set Di

of reachable states for a generic stage i, that is

Di = Ai ∩

{
s(i) : q̇(i) ∈ B1

i , q̈(i) ∈ B2
i ,

...
q(i) ∈ B3

i ,

τ (i) ∈ C1
i , τ̇ (i) ∈ C2

i

with s(i− 1) ∈ Ai−1, ..., s(0) ∈ A0

} (4.61)

The set Di can be used to complete our dynamic programming
formulation, by minimizing over the admissible states, such that
equations (4.54) become:

topt(0) = 0

topt(i) = min
s(i)∈Di

[
topt(i− 1) +

λ(i)− λ(i− 1)

λ̇(i)

]
(4.62)

where topt(i) at a generic stage i is the optimal return function and
topt(Ni) represents the optimal cost.

4.2. Time-optimal control of redundant robots with dynamic
programming 249

4.2.2 Algorithmic implementation

Based on the problem formulation above, we can define the time-
optimal trajectory planning algorithm for redundant robots (TOTP-
R) with dynamic programming as in Algorithm 8. A pictorial view
is provided in Figure 4.1.

Algorithm 8 Time-optimal trajectory planning for redundant
robots with dynamic programming

1: Initialize state space grid through inverse kinematics and discretization of λ̇, according
to equations (4.44) and (4.51)

2: Initialize Ai, ∀i = 0..(Ni − 1)
3: Initialize B1

i ,B
2
i ,B

3
i ,C

1
i ,C

2
i ∀i = 0..(Ni − 1) with state-independent information

4: Initialize Di = ∅, ∀i = 0..Ni
5: Initialize cost map ti,l,j,g = +∞ ∀i, l, j, g
6: t0,l,j,g ← 0 ∀l, j, g
7: D0 ← A0

8: for i← 0 to Ni − 1 do
9: for each sljg ∈ Di do
10: for each smkh ∈ Ai+1 do
11: Compute q̇, q̈,

...
q , τ , τ̇

12: if Constraints (4.56) - (4.60) are satisfied then
13: Di+1 ← Di+1 ∪ {smkh}
14: Compute instantaneous cost function φ
15: if ti,l,j,g + φ < ti+1,m,k,h then
16: ti+1,m,k,h = ti,l,j,g + φ
17: Let sljg at stage i be the predecessor of smkh at stage i+ 1

18: topt(Ni) = minj,g

[
tNi,0,j,g

]
19: Build functions λ̇(i) and q(i) of optimal pseudo-velocities and joint positions by screen-

ing the predecessors map backward

The algorithm assumes that a workspace path is given, as a dis-
crete set of points and that they are associated to discrete values of
the curvilinear coordinate, from λ = 0 up to the length of the path
λ = Λ. At step 1, the redundancy parameters vector is discretized
according to (4.50), which allows to compute inverse kinematic
(IK) solutions as in (4.44). The pseudo-velocity is also discretized
according to (4.49), so that the grid nodes can be defined as in
(4.51).

Usually, with reference to (4.44), analytic IK solvers are such that
all the IK solutions for all extended aspects are obtained at once
with one call to the solver, but, if this is not the case, or an ana-
lytic solver is not available, the parameter g should be specified.

250 4. Time-optimal planning of redundant robots

Figure 4.1: Pictorial view of the dynamic programming algorithm
showing the possible transitions between a generic node at stage
i and all the admissible nodes at stage i+ 1; red crosses represent
nodes that are not enabled at the next stage, meaning that they
cannot be reached by any node at the current stage

In practice, this means solving a constrained inverse kinematic
problem since g should represent a condition by which one and
only one IK solution is available for a given combination of redun-
dancy parameters and workspace pose. As already discussed in
Chapter 2 and in [13], finding such a condition is not trivial. If it
cannot be found, g no longer represents the extended aspect, but
should be interpreted as a simple grid index enumerating the IK
solutions. The state space grids obtained in this case are termed
non-homogeneous [13].

At step 2, the nodes in the grid are enabled/disabled according to
geometrical constraints, including for example, configurations that
bring the robot to collide with the surrounding environment. Also,
if IK solutions are homogeneous, entire grids can be excluded to

4.2. Time-optimal control of redundant robots with dynamic
programming 251

make the DP algorithm find a trajectory in specific extended as-
pects. The sets Ai can also be used to impose that the robot must
start and finish its motion at rest, or even stop along the path
if this is required by the specific task. In time-optimal planning
of non-redundant robots, the same sets Ai were used to impose
the MVC constraint. In this case, since we do not perform any
parametrization of dynamics and constraints, this is not possible,
and the MVC constraint is implicitly checked at the time of veri-
fying (4.56)-(4.60) at step 12.

In most practical cases, constraints on joint velocities, accelera-
tions, jerks, torques and torque rates are given in terms of state-
independent connected sets, e.g. q̇ ∈ [q̇min, q̇max]. In this case, the
sets in (4.56)-(4.60) are completely defined beforehand, as done at
step 2. Conversely, if they were state-dependent, they could be
re-computed at the time the constraints are checked, where the
current velocity and acceleration of the system are known.

At a given stage i, for each pair of nodes (steps 9 and 10) the
discrete-time functions (or sequences) of parameters Sλ(i), Sλ̇(i),
Sv(i), Sg(i) are available through back-pointers to compute joint
velocities, accelerations and torques as in (4.46)-(4.48) respec-
tively, as well as joint jerks and torque rates with equivalent dis-
crete approximations. If constraints are satisfied, we say that the
node smkh(i + 1) can be reached by the node sljg(i). The former
is then added to the set of nodes Di+1 that can be visited at the
next stage (step 13). Among all the nodes at stage i that can
reach smkh(i + 1), at step 17, we save the pointer to the one that
provides the lowest cumulative cost (or optimal return function),
according to (4.62).

After the process above has been repeated for all the workspace
points, the one with minimum cumulative traversing time is picked
(step 18) and, from it, the information about the time law, i.e. λ̇(i),
and exploitation of the null-space, i.e. q̇(i), are retrieved by follow-
ing the map of predecessors backwards (step 19). The timestamps
can be computed through (4.45) and applied to the joint space
path to obtain the globally-optimal joint space trajectory. Like-

252 4. Time-optimal planning of redundant robots

wise, globally-optimal joint velocities, accelerations and torques
can be computed from (4.46)-(4.48).

4.3 Application to a 7-DOF robotic arm

The dynamic programming algorithm presented in Section 4.2 is
validated on a spatial 7-DOF manipulator, that has been already
used in Chapter 2 for redundancy resolution along a pre-scribed
workspace trajectory. Here the objective is to address the spe-
cific issues that arise at control level and that are connected with
the employment of a dynamic programming algorithm and time-
optimal planning.

In particular, from Chapter 2 and from several other works, e.g.
[14], we know that the execution of a DP-planned trajectory on
a real system yields additional challenges, like that of the control
references smoothness, mainly in terms of continuity of accelera-
tions and torques. On the other hand, from Section 3.8, we know
that several other issues arise when tracking time-optimal trajec-
tories and several solutions exist to cope with them. The control
scheme that guarantees the best performances must be necessarily
evaluated on a case-by-case basis, as robots have different charac-
teristics and the knowledge of their dynamic model can be more
or less accurate. The parameters that allow us to assess the best
solution mainly are:

� the possibility of replacing or modifying the robot’s primary
controller, provided by the manufacturer;

� the availability of an accurate dynamic model;

� several other factors including the robustness of the controller-
robot system, the availability of pre-tuned controllers, the
flexibility of the control scheme with respect to changes in
the architecture, etc.

4.3. Application to a 7-DOF robotic arm 253

After addressing the issues above for the specific architecture at
hand, the objective is to demonstrate that the developed dy-
namic programming algorithm can be effectively employed for
time-optimal planning and control of redundant robots along pre-
scribed paths. It is clear that, at control level, the resulting track-
ing accuracy cannot be properly judged if the task is not con-
textualized within a specific application. Nevertheless, the control
architecture can be modified later on to cope with specific require-
ments, while the optimization of the controller itself for a specific
task goes beyond the scope of this dissertation.

4.3.1 Franka Emika’s Panda

The Panda robot by Franka Emika [52] is a 7-DOF manipulator
conceived for both research and industrial applications with or
without the presence of human operators. Some of its kinematic
characteristics and Denavit-Hartenberg parameters have been al-
ready introduced in Section 2.8. In this section, we want to provide
some more information about the robot, especially concerning its
dynamic parameters, limits and hardware/software architecture.

4.3.1.1 Joint limits and other constraints

The Panda robot is characterized by the joint limits reported in
Table 4.1. In Section 2.8.2, we already discussed about the effect
of such limits on the null space observing that it gets significantly
reduced for the assigned trajectory and the selected redundancy
parameter v = q4.

Franka Emika also provide limits in the Cartesian space in terms
of translation and rotational velocity, acceleration and jerk of the
end-effector, but they are not considered here since the experi-
ments always showed that they are implicitly respected when joint
limits are respected. Also, our tasks do not enforce specific re-
quirements for the end-effector motion, except for the assigned
geometrical path. However, the dynamic programming algorithm

254 4. Time-optimal planning of redundant robots

Joint qmin qmax q̇max q̈max
...
qmax τmax τ̇max

[rad] [rad] [rad/s] [rad/s2] [rad/s3] [Nm] [Nm/s]

1 −2.8973 2.8973 2.1750 15 7500 87 1000

2 −1.7628 1.7628 2.1750 7.5 3750 87 1000

3 −2.8973 2.8973 2.1750 10 5000 87 1000

4 −3.0718 −0.0698 2.1750 12.5 6250 87 1000

5 −2.8973 2.8973 2.6100 15 7500 12 1000

6 −0.0175 3.7525 2.6100 20 10000 12 1000

7 −2.8973 2.8973 2.6100 20 10000 12 1000

Table 4.1: Panda joint limits [54]

that we discussed in Section 4.2 does not introduce any restric-
tion to this respect and Cartesian space constraints can be easily
accommodated in the framework.

4.3.1.2 Dynamic model

The dynamic parameters that make up the model of the Panda
are not available from the official Franka Emika channels. The
robot is provided with a library, called libfranka, that allows to re-
trieve dynamic parameters on demand, by providing specific joint
positions and velocities. libfranka also supports off-line requests,
where dynamic parameters can be obtained for joint positions and
velocities other than the current ones.

By default, the Panda robot performs automatic implicit com-
pensation of gravity and joint friction, meaning that, when the
robot is commanded in torques, only the net efforts τnet have to
be provided to the controller, i.e.

τnet = H(q)q̈ + C(q, q̇) (4.63)

The dynamic parameters that can be retrieved from the libfranka
interface are

� inertia matrix H(q);

4.3. Application to a 7-DOF robotic arm 255

� Coriolis vector C(q, q̇)q̇;

� gravity vector g(q).

Unfortunately, the usage of the libfranka library requires the con-
nection with the Franka Control Interface be established, which
is not always desirable in an off-line planning scenario. Also, the
experiments showed that calls to libfranka are particularly slow,
which discourages a systematic usage of the interface and practi-
cally rules out its employment in our dynamic programming al-
gorithm where the dynamic model has to be computed billions of
times. As far as friction torques are concerned, as highlighted in
[109], they are not negligible, but, at the same time, they are not
available through libfranka. For all these reasons, it is certainly
convenient to work with the identified model of [109] and related
libraries: they provide a much faster implementation and allow
to retrieve friction torques directly. It is worth remarking that
the friction model used in [109] is not a simple viscous friction
model, but it also includes Coulomb terms and adopts a sigmoidal
formulation to avoid discontinuities for low joint velocities.

4.3.1.3 Hardware and software architecture

The high-level hardware and software architecture of the Panda
robot is summarized in Figure 4.2. The Franka Control Interface
(FCI) allows to command the robot through a Linux worksta-
tion. It enables a UDP packet-based communication over Eth-
ernet, preferably on a point-to-point connection to avoid network
delays. On the workstation side, real-time capabilities are required
to respect the controller frequency of 1 kHz. For this reason, the
operating system is required to be patched with PREEMPT RT [110].

The FCI provides two real-time interfaces, at different levels. If
the user wants to control the robot with high level commands such
as joint or Cartesian positions and velocities, the motion genera-
tors interface is used. Rather, if the user wants to control with

256 4. Time-optimal planning of redundant robots

Figure 4.2: High-level hardware and software architecture of
Franka Emika’s Panda robot [54]

torques, commands are sent through the external controller inter-
face. In the first case, the commands provided through the inter-
face are completed (by computing forward or inverse kinematics)
and provided to some internal controller to generate torques. In
the second case, the provided net torques are summed to gravity
and friction components and forwarded to the actuators. Internal
controllers can generate torques to follow joint references (joint im-
pedence controller) or Cartesian references (Cartesian impedence
controller). A summarizing scheme is provided in Figure 4.3.

On the workstation side, on top of the operating system, the Panda
communication protocol is implemented by libfranka, that is the
proprietary library by Franka Emika. It allows user programs to
access the kinematic and dynamic model, send commands and
receive measurement data. Through libfranka, both the motion
generators interface and the external controller interface can be
used. It also implements some signal processing functions, that
are a low pass filter and a rate limiter. The former is needed
to smooth the user-commanded signal to allow for a more stable
motion, while the latter ensures that the interface limits are not
exceeded in terms of rate of change of the signals sent by the user
(acceleration and jerks when the motion generators interface is

4.3. Application to a 7-DOF robotic arm 257

Figure 4.3: Panda’s data flow in real-time communications [54]

used, torque rates when the external controller is used).

With reference to Figure 4.2, the Panda is also provided with a
ROS package called franka ros, that implements an interface for
ros control [111]. This way, all the ROS and MoveIt! technolo-
gies can be used to control the Panda robot through the capabili-
ties offered by libfranka.

4.3.2 Task definition

Two paths are designed in the workspace to validate the algorithm
presented in Section 4.2. They are shown in Figure 4.4. The path
on the left is a straight line path having x = 0.5 m, z = 0.4 m and
y spanning for 0.5 m from ys = 0.25 m to ye = −0.25 m. In terms
of orientation the end-effector is aligned with the base reference
for roll and yaw, while the pitch is θ = π rad along the whole
path. The path on the right is an ellipse-like line with Λ = 1.45,
generated with spline interpolation between the following control

258 4. Time-optimal planning of redundant robots

points:

xA =
[
0.5 0 0.8 0 π/2 0

]T
xB = xA +

[
0 −0.3 −0.2 0 π/2 0

]T
xC = xA +

[
0 0 −0.3 0 π/2 0

]T
xD = xA +

[
0 0.3 −0.2 0 π/2 0

]T
xE = xA

(4.64)

Both tasks constrain six dimensions, leaving one degree of freedom
for redundancy resolution. In addition, the robot has to track the
path as fast as possible. With respect to time-optimal planning of
non-redundant mechanisms, in this case, the objective is to exploit
the robot’s kinematic redundancy to contribute maximizing the
assigned performance index in a kineto-dynamic planning scenario,
where the time law has to be defined too.

Figure 4.4: Workspace paths used for the experiments

Already in Section 2.7.4.3, we have argued that the workspace
trajectory discretization plays an important role for the feasibility
of the dynamic programming solution on real hardware. In case

4.3. Application to a 7-DOF robotic arm 259

timestamps are already available and the characteristics of the mo-
tor controllers are known, equation (2.142) can be used to deter-
mine the minimum displacement between waypoints that ensures
feasibility. Unfortunately, in the case of time-optimal planning of
redundant robots, the time derivative of the workspace points is a
result of the optimization process, and, in the case of the Panda,
not enough details are available on the profile used by motor con-
trollers to connect waypoints with each other. For these reasons,
in our experiments, the number of waypoints is treated as one of
the parameters to tune for the algorithm. Then, some a-posteriori
considerations can be made to guess the number of waypoints for
new workspace paths.

In the setup considered in this dissertation, workspace paths are
generated with MATLAB and exported to bagfiles, to be directly
exploitable by ROS and MoveIt!, where the dynamic programming
algorithm is implemented.

4.3.3 Planning results

The execution of the dynamic programming algorithm that we in-
troduced in Section 4.2 requires a set of parameters to be defined
beforehand, that are crucial for the performance of the algorithm,
both in terms of quality of the joint-space solution and planning
time. As noted in Section 4.1, this is common to other techniques
(see, for example, [8]). The quality can be certainly associated to
the vicinity to the globally-optimal solution, but, as commented
in the previous sections, the trajectory smoothness is also an im-
portant factor. When the DP-planned trajectories are sent to the
real robot, some discrepancies have to be expected with respect
to the plan. They depend on the precision of the dynamic param-
eters and the model itself, but also on the type of command that
is used to control the robot. Hence, another quality measure is
associated with the path tracking precision in terms of maximal
displacement in the joint or Cartesian space.

The parameters that we can tune to eventually achieve better

260 4. Time-optimal planning of redundant robots

results are:

� number of waypoints in the assigned workspace path, as dis-
cussed in Section 4.3.2;

� pseudo-velocity limit to be used in the grid computation al-
gorithm; in principle, this should be small enough not to
decrease the pseudo-velocity resolution and large enough to
contain the maximum pseudo-velocity that the phase-space
trajectory can reach, that is not known beforehand;

� pseudo-velocity resolution, determining, on one side, the ac-
curacy in the definition of the phase-space trajectory and, on
the opposite, the computational complexity of the dynamic
programming algorithm;

� redundancy parameter resolution, determining, on one side,
the capability of the redundant manipulator to exploit its
null-space to optimize the performance index at hand, and,
on the opposite, such as before, the computational complex-
ity of the algorithm.

The redundancy parameter is always selected as the joint position
q4, because it simplifies the analytical inverse kinematics that we
perform, as in Section 2.8.2, with IKFast.

With respect to pure redundancy resolution at kinematic level,
addressed in Chapter 2 and pure time-optimal planning for non-
redundant robots, addressed in Chapter 3, here we have a search
space of an increased dimension. Practically, we cannot use an
arbitrarily fine discretization and more trade-offs should be con-
sidered. Therefore, our solutions might be, in some cases, far
from the true global optimum, and we should rely on a more re-
laxed condition of resolution-optimality. However, the theoretical
results of calculus of variations that we recalled in Section 4.1.1
provide some information about how a time-optimal trajectory for
a redundant robot should look like. We can use such results to

4.3. Application to a 7-DOF robotic arm 261

provide an indication of “how optimal” the dynamic programming
solutions are.

In Section 4.2, we said that the specific discrete approximation
for, e.g., equations (4.41) and (4.42), is a user choice. In our ex-
periments, that are based on a single-threaded implementation,
we select a simple backward Euler approximation so as to speed
up the computation and consume less memory. However, with an
high-performance implementation, more complex discrete approx-
imations could be used.

4.3.3.1 Straight line path

Algorithm 8 is first executed on the straight line path presented
in Section 4.3.2 with different values for number of waypoints,
pseudo-velocity (PV) limit, pseudo-velocity resolution and redun-
dancy parameter (RP) resolution. The results for different sets
of parameters are reported in Table 4.2. Together with the cost,
the trajectory percentage for which at least one actuator saturates
is reported. Since a necessary condition for global optimality is
that at least one actuator saturates for each waypoint, globally-
optimal solutions should report a saturation of 100%. In our dy-
namic programming algorithm, saturation is never exact because
of discretization, thus an actuator is considered in saturation if its
velocity, acceleration, jerk, torque or torque rate is above 90% of
its capacity, in agreement with Table 4.1. The first waypoint is ex-
cluded in the computation of the saturation percentage because it
never saturates by construction, i.e. the manipulator always starts
its motion with all quantities equal to zero.

The first aspect that we may notice, by looking at Table 4.2, is
that the optimal cost consistently is in a neighborhood of 0.6 s,
with a variability of a few milliseconds, which is acceptable for a
mechanical system. By increasing the number of waypoints only
(see plans 4-6), the cost may increase or decrease. We should
remark that more waypoints correspond to a larger number of
constraints along the path and less freedom in deviating from the

262 4. Time-optimal planning of redundant robots

Plan Length Number of PV RP res. PV Cost Saturation

ID (m) waypoints limit (deg) res. (s) (%)

1 0.5 10 1.4 0.500 0.02 0.655 100

2 0.5 10 1.4 0.250 0.02 0.594 89

3 0.5 10 1.4 0.250 0.01 0.592 89

4 0.5 10 1.4 0.125 0.02 0.574 89

5 0.5 15 1.4 0.125 0.02 0.645 100

6 0.5 20 1.4 0.125 0.02 0.602 95

Table 4.2: Results of Algorithm 8 on the straight line path for
different sets of parameters

true straight line. On the other hand, more waypoints allow to
reduce the error related to the linear approximation that we make
at each step by using a simple Euler integration scheme. As far as
the saturation is concerned, ideally, it should be 100% for infinite
waypoint, pseudo-velocity and redundancy parameter resolution.
However, some combinations of non-infinite values may still yield
maximum saturation, as for plans 1 and 5. As expected, with a
fixed number of waypoints, the cost decreases for finer resolutions
of the redundancy parameter and the pseudo-velocity (see plans
1-4), although the improvement due to the latter, in our experi-
ments, is negligible (see plans 2 and 3).

The actuation limits of the Panda robot (see Table 4.1), in our ex-
periments, are always such that constraints (4.56)-(4.57) activate
before constraints (4.58)-(4.60). This is also due to the fact that
the planning is performed by considering zero load at the end-
effector, while jerk limits are very large. The resolution-optimal
joint-space solution for plan 6 is reported in Figure 4.5 and Figure
4.6. The computation time needed to find such a solution is 219
minutes on a 64-bit Ubuntu 18.04 LTS OS running on an Intel®

CoreTM i7-2600 CPU @ 3.40GHz ×8. No multi-core execution
model has been used in the tests.

The reader may notice that, at first, joint 1’s acceleration saturates
to reach the maximum velocity, which persists for a large portion

4.3. Application to a 7-DOF robotic arm 263

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1.5

-1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-2.2

-2.1

-2

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

-0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

1.6

1.7

1.8

Joint positions

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-2.8
-2.6
-2.4
-2.2

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Joint velocities

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Joint accelerations

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Joint jerks

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Figure 4.5: Optimal joint positions, velocities, accelerations and
jerks (plan 6), normalized in [−1, 1], for the straight line path

264 4. Time-optimal planning of redundant robots

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Joint efforts

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Joint effort rates

0 0.1 0.2 0.3 0.4 0.5 0.6

Time [s]

-1

0

1

Figure 4.6: Optimal joint torque and torque rates (plan 6) for the
straight line path

of the trajectory, between t = 0.16 s and t = 0.37 s. Here, there
is a rather simultaneous saturation of joint 4’s acceleration and
joint 7’s velocity, up until t = 0.44 s. In the last segment, joint
1’s acceleration saturates again, followed by joint 2’s acceleration
to perform the final braking. For some segments of the trajectory,
two actuators are in saturation at the same time, which is expected
for a redundant manipulator, as discussed in Section 4.1.1.

The state space grids for the straight line path with 20 waypoints
(plan 6) and joint position q1 are reported in Figure 4.7. Because
of the manipulator geometry and joint limits, only 4 of the 8 grids
have feasible configurations. The redundancy parameter, i.e. q4,
is represented along the y-axis in its physical domain (see Table
4.1). The inverse kinematics solutions are returned by IKFast in
a way that grids are not homogeneous. Although it is easy in this
case to separate the extended aspects apart, we will not have any

4.3. Application to a 7-DOF robotic arm 265

advantage in doing so, as position constraints are likely to activate
before velocity ones (see Section 2.8.3).

Value of q
1
 for solution set (grid) 1

5 10 15 20

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 2

5 10 15 20

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 3

5 10 15 20

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 4

5 10 15 20

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Figure 4.7: Panda grids representing q1 (in radians) for the straight
line path

The phase space trajectory (PST) is reported in Figure 4.8. As
noted above, for redundant manipulators, the PST is a function of
two independent variables that are λ (the progress along the path)
and v, the redundancy parameter(s). The 3D view provides an in-
dication of how the dynamic programming algorithm exploits the
redundancy parameter to increase the pseudo-velocity and conse-
quently compute a better solution with respect to a pre-assigned
joint-space path. Although it gets very close to the upper limit,
the pseudo-velocity does not saturate, meaning that the plan is
valid. On the contrary, should the pseudo-velocity hit the limit
defined in Table 4.2, an artificial constraint would have been in-
serted, which requires the plan to be re-computed with an higher

266 4. Time-optimal planning of redundant robots

bound.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.8: On the left, phase-space trajectory (blue) with projec-
tions (black) on planes λ-λ̇ and λ-v; on the right, a front view of
the former projection (or phase-plane trajectory)

4.3.3.2 Ellipse-like path

The best parameters for the straight line path are directly re-used
for the ellipse-like path, to assess their consistency across different
paths. Since the path is longer (Λ = 1.45 m), a higher number
of waypoints should be used to keep a similar spatial resolution.
The parameters used for this use case are reported in Table 4.3,
together with the optimal cost and percentage of saturation. The
resolution-optimal joint-space solution is reported in Figure 4.9.
As for the straight line trajectory, velocity and acceleration limits
activate first and therefore jerk, torque and torque rate curves
are not reported here for the sake of brevity. The computation
time needed to find such a solution is about 34 hours on a 64-bit
Ubuntu 18.04 LTS OS running on an Intel® CoreTM i7-2600 CPU
@ 3.40GHz ×8. No multi-core execution model has been used in
the tests.

In this case, the joint accelerations are much less smooth than be-
fore, which complicates the individuation of the switching points
along the trajectory, although some segments show a clear satu-
ration, especially for joint 2 at t ∈ [0.08, 0.31], t ∈ [0.90, 1.09] and

4.3. Application to a 7-DOF robotic arm 267

Length Number of PV RP res. PV Cost Saturation

(m) waypoints limit (deg) res. (s) (%)

1.45 60 1.4 0.125 0.02 1.856 90

Table 4.3: Results of Algorithm 8 on the ellipse-like path with
same parameters as plan 6 of Table 4.2

t ∈ [1.34, 1.55]. In the other segments, there is some saturation of
velocity, for joints 1, 5 and 7 and acceleration for the same joints.

The state space grids are reported in Figure 4.10. Even in this
case, grids are not homogeneous, but Algorithm 8 can still find
the optimal solution across all extended aspects. As before, the
improvement of performances given by homogeneous grids should
be expected to be negligible.

The phase-space trajectory and its projection on the phase plane
are drawn in the graphs of Figure 4.11. As before, the pseudo-
velocity limit is not reached, meaning that no artificial constraint
has been inserted. With respect to the PST of Figure 4.8, we may
notice a less smooth curve. Indeed, this is quite a typical behavior
of Algorithm 8 and strongly depends on the redundancy param-
eter discretization and the way inverse kinematics is performed.
In Chapter 3, for non-redundant mechanisms, we have seen that
the joint space path is directly time-parametrized. The kinematic
inversion that is performed to obtain such a path is performed
offline and can be designed to generate arbitrarily smooth curves.
For instance, one may adopt a second-order integration scheme to
guarantee differentiable joint positions. In this case, for a given
manipulator, the switching points that are either classified before-
hand (such as with the shooting method in the phase plane) or
found a-posteriori (such as with dynamic programming) are only
due to the workspace path geometry. In the case of Algorithm
8, the joint space path cannot be arbitrarily smooth because of
the state space discretization. As a consequence, sharp motions
can be required in the joint space in addition to those related to
the workspace path geometry. In other words, artificial switching

268 4. Time-optimal planning of redundant robots

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1.6

-1.4

-1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1.2

-1

-0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-2.2

-2

-1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-2.5

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

2

2.5

Joint positions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-2.6
-2.4
-2.2

-2
-1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

Joint velocities

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

Joint accelerations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time [s]

-1

0

1

Figure 4.9: Optimal joint positions, velocities and accelerations,
normalized in [−1, 1], for the plan of Table 4.3

4.3. Application to a 7-DOF robotic arm 269

Value of q
1
 for solution set (grid) 1

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 2

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 3

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 4

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 5

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 6

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 7

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Value of q
1
 for solution set (grid) 8

10 20 30 40 50 60

waypoints

-3

-2.5

-2

-1.5

-1

-0.5

re
d

u
n

d
a

n
c
y
 p

a
ra

m
e

te
r

(r
a

d
)

-3

-2

-1

0

1

2

3

Figure 4.10: Panda grids representing q1 (in radians) for the
ellipse-like path

270 4. Time-optimal planning of redundant robots

points can be generated as a result of the state space discretiza-
tion. Such an effect can be reduced by selecting suitable values of
the spatial resolution in the workspace (number of waypoints) and
in the joint space (redundancy parameter resolution), as seen for
plan 6 of the straight line path, and eliminated, at the limit, only
when the discretization step tends to zero. In these conditions,
it is clear that the global optimality is compromised in favor of a
more relaxed condition of resolution-optimality.

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.11: On the left, phase-space trajectory (blue) with pro-
jections (black) on planes λ-λ̇ and λ-v; on the right, a front view
of the former projection (or phase-plane trajectory)

4.3.4 Execution results

The execution of Algorithm 8 on either trajectory generates sev-
eral control signals, as seen in figures 4.5, 4.6 and 4.9. Before
they can be used as commands for the Panda robot, it is neces-
sary to interpolate them at the frequency of the controller, i.e.
1 kHz. Ideally, since the planning we performed considers the
manipulator’s dynamic model, commands should be provided as
open-loop torques. However, the torque signals in, e.g. Figure 4.6,
are characterized by an average frequency of 33 Hz. Increasing
it at the planning stage means expanding the planning time con-
siderably, at the point that our dynamic programming algorithm
becomes useless in any practical situation. On the other hand,

4.3. Application to a 7-DOF robotic arm 271

we should expect that interpolating the open-loop torques in a
post-processing stage will introduce errors that ultimately make
the performance degrade in terms of tracking accuracy. Also, as
noted in Section 4.3.1, the external controller interface requires
net torques to be sent to the actuators, meaning that the efforts
in Figure 4.6 should be further post-processed to remove gravity
and friction contributions.

Alternatively, the robot can be commanded with joint positions
and control torques be generated with the internal joint impedance
controller, configured with maximum stiffness. Position control
has already been used in other works, e.g. [8], dealing as well with
execution of time-optimal joint space solutions, with satisfactory
results.

A high-level description of the control setup is shown in Figure
4.12. Algorithm 8 is implemented in ROS/MoveIt! and deployed
as a node. Workspace paths x(λ) are provided in bagfiles and
optimal joint space solutions, i.e. curves q(t), q̇(t) and q̈(t) are
also stored in bagfiles. The controller manager of ros control

is configured to work with the Panda robot hardware interface
(provided through franka ros) and to load a robot-agnostic joint
trajectory controller (JTC). Internally, the JTC performs interpo-
lation on the input signals to deliver smoother signals to the robot
driver. The supported interpolation types are linear, cubic and
quintic, depending on the provided input, position only, position
and velocity, or position, velocity and acceleration respectively. In
our setup, all derivatives are provided, thus a quintic interpolation
is performed.

Notoriously, cubic and quintic interpolations guarantee that the
interpolated curve passes through the provided samples, but local
high-frequency oscillations are generated among them. Since the
JTC has no information about the specific robot, such oscillations
are likely to violate the kinematic and dynamic limits [14]. Several
techniques exist to perform interpolation of control signals and
still generate curves that are within bounds. In this case, we
exploit some basic signal processing functions that are already

272 4. Time-optimal planning of redundant robots

Figure 4.12: Block diagram showing the control setup

provided by libfranka and that we discussed in Section 4.3.1. In
particular, both the low-pass filter and the rate limiter, shown
in Figure 4.3, are active to deliver less oscillating commands and
ensure the compliance to the actuator limits. The employment of
a filter to smooth the trajectory is also beneficial to eliminate the
high frequency content that excites the unmodeled joint elasticity
that characterizes joints transmission in time-optimal control [58].

Since additional systems are placed between the planner and the
actual control of the robot, that are not modeled in the planner it-
self, we should expect discrepancies between the planned solution
and the measured one. However, we will see that they are negli-
gible and that results comparable to those from other works, e.g.
[8], are eventually obtained. In comparing with previous works, we
should remark that our plans are calculated with the real robot ca-
pacities, as reported in Table 4.1, while conservative values might
be employed elsewhere, e.g. a given percentage of the actual limit.

4.3.4.1 Straight line trajectory

A comparison between the planned joint positions and the mea-
sured ones for the straight line joint space trajectory of Figure 4.5
and Figure 4.6 is given in Figure 4.13. The maximum error in the

4.3. Application to a 7-DOF robotic arm 273

joint space is 0.8 deg, while the actual execution time is 0.619 s,
2.68% slower than planned. The delay introduced by the low-pass
filter has been removed to provide a faithful comparison with the
planned references. The same has been done for all the graphs
shown in this section and in the next. A video of the execution
can be found in [112].

0 0.1 0.2 0.3 0.4 0.5

t [s]

-1.5

-1

0 0.1 0.2 0.3 0.4 0.5

t [s]

0.8

1

0 0.1 0.2 0.3 0.4 0.5

t [s]

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5

t [s]

-2.2

-2.1

-2

0 0.1 0.2 0.3 0.4 0.5

t [s]

-1

-0.8

0 0.1 0.2 0.3 0.4 0.5

t [s]

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5

t [s]

-3

-2.5

-2

Figure 4.13: Planned (blue) vs measured (red) joint positions for
the trajectory of Figure 4.5 and Figure 4.6

The same planned trajectory is scaled in time to be 10% faster and
is sent to the robot again to estimate its performance. A compar-
ison between the planned joint positions and the measured ones
are reported in Figure 4.14. In this case the robot completes the
task in 0.559 s, only 2.08% slower than planned, but the maximum
error in the joint space increases to 4.7 deg, as it is evident from
the graph of joint 1. As expected, the robot cannot be controlled
beyond its capacities and the actual motion results in a remarkable
degradation of the tracking performances.

274 4. Time-optimal planning of redundant robots

0 0.1 0.2 0.3 0.4 0.5

t [s]

-2

-1.5

-1

0 0.1 0.2 0.3 0.4 0.5

t [s]

0.8

1

0 0.1 0.2 0.3 0.4 0.5

t [s]

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5

t [s]

-2.2

-2.1

-2

0 0.1 0.2 0.3 0.4 0.5

t [s]

-1

-0.8

0 0.1 0.2 0.3 0.4 0.5

t [s]

1.6

1.7

1.8

0 0.1 0.2 0.3 0.4 0.5

t [s]

-3

-2.5

-2

Figure 4.14: Planned (blue) vs measured (red) joint positions for
a trajectory 10% faster than the optimum

4.3.4.2 Ellipse-like trajectory

The result of the execution of the more complex trajectory of
Figure 4.9 is reported in Figure 4.15. The robot completes the
motion in 1.859 s, 0.13% slower than planned with a maximum
error in the joint space of 0.8 deg. By providing commands that
are 10% faster than the optimal plan, the motion is completed in
1.70 s, 0.67% slower than planned, with a maximum error of 1.86
deg, associated to joint 1 at t = 0.11 s. The curves associated to
this execution are shown in Figure 4.16. A video of the execution
can be found in [112].

4.3. Application to a 7-DOF robotic arm 275

0 0.5 1 1.5

t [s]

1.5

2

0 0.5 1 1.5

t [s]

-1.5

-1

0 0.5 1 1.5

t [s]

-1.2

-1

-0.8

0 0.5 1 1.5

t [s]

-2.5

-2

0 0.5 1 1.5

t [s]

-2.5

-2

0 0.5 1 1.5

t [s]

2

2.5

0 0.5 1 1.5

t [s]

-3

-2.5

-2

Figure 4.15: Planned (blue) vs measured (red) joint positions for
the trajectory of Figure 4.9

0 0.5 1 1.5

t [s]

1.5

2

0 0.5 1 1.5

t [s]

-1.5

-1

0 0.5 1 1.5

t [s]

-1.2

-1

-0.8

0 0.5 1 1.5

t [s]

-2.5

-2

0 0.5 1 1.5

t [s]

-2.5

-2

0 0.5 1 1.5

t [s]

2

2.5

0 0.5 1 1.5

t [s]

-3

-2.5

-2

Figure 4.16: Planned (blue) vs measured (red) joint positions for
a trajectory 10% faster than the optimum

276 4. Time-optimal planning of redundant robots

Chapter 5

Conclusions

5.1 Limitations and improvements on

planning

The primary objective of this dissertation was to provide an al-
ternative method (with respect to those described in Section 4.1),
based on dynamic programming, to exploit kinematic redundancy
to the purpose of time-optimal planning, in an unified framework.
The motivation of this work is that dynamic programming is very
flexible in the accommodation of several constraints that charac-
terize real applications and that are usually neglected to make the
problem fit into a sufficiently straightforward mathematical for-
mulation. Furthermore, even when all the problem requirements
can be accommodated and the equations can be established, find-
ing a solution is not an easy task. We have seen in Section 4.1
that some researchers just use their formulations to perform some
analysis of the problem, so as to extract distinctive features, and
only some of them effectively resolve the problem by coming up
with a time-optimal joint-space trajectory. The most representa-
tive example is certainly given by multiple-shooting [9, 10, 11],
where the underlying optimization technique is the interior-point
method. Although the achievement of the globally-optimal solu-

278 5. Conclusions

tion is subject to an initial guess on the variables to optimize, the
technique is still comparable with dynamic programming in terms
of flexibility.

One more advantage of the DP algorithm presented here over oth-
ers is that it is built on known results of both redundancy reso-
lution and time-optimal planning. In this sense, it is transparent
and allows one to perform additional analyses on the problem in
addition to computing a time-optimal solution. In fact, the usage
of state space grids, that are connected to the manifold represen-
tation, allows to understand whether a solution exists, given the
geometrical constraints and joint limits, and whether a transition
through one or more singularities or semi-singularities is necessary.
Regarding time-optimal planning, the proposed method does not
deny the curvilinear coordinate parametrization of the path, that
still allows representing the solution in the phase space and in-
ferring about its properties. Future research might concentrate
on their analysis and possibly on the design of algorithms that
are able to compute the maximum velocity surface and use it to
provide ad-hoc techniques for time-optimal planning.

Dynamic programming is not the groundbreaking technique for
time-optimal planning of redundant robots, or at least, not as
defined in this dissertation. This is mainly due to its computa-
tional complexity. Although it is perfectly suited to solve one
or the other problem separately, it still requires hours to days to
solve a medium-complexity planning problem for redundant ro-
bots and, most importantly, it is not scalable. The challenges
that we are nowadays facing require techniques to be highly flexi-
ble and efficient with respect to problems of different dimensions
and complexities. In our case, the DP algorithm is not scalable
for systems characterized by an higher degree of redundancy, i.e.
r > 1, and this is an important limitation. Also, if one wanted to
impose constraints on higher-order derivatives and, at the same
time, preserve global-optimality, the phase space should be fur-
ther augmented with additional dimensions (see, e.g. [64, 85, 77]).
Again, dynamic programming is not scalable to this respect.

5.1. Limitations and improvements on planning 279

To outline some lines of development for the future, while trying
to build upon the results of this dissertation, we may identify
three main direction: methodological developments, algorithmic
enhancements and technological improvements.

5.1.1 Methodological developments: 2-stages
approach

We have seen that the employment of dynamic programming is
beneficial for many reasons, but a trade-off is established between
computation time and optimality of the solution. The trade-off
is regulated by the discretization of the axes that compose the
state space. We said that, in general, we should accept a more
relaxed criterion of optimality, that we call resolution-optimality.
Dynamic programming can find the globally-optimal solution for
a given discretized state space, but, if the discretization is coarse,
the optimum will be far from the “true” optimum (i.e. the globally-
optimal solution of the continuous domain problem). We can think
of our trajectories in Section 4.3.3 as close to the global optimum,
but we do not have a measure of this proximity. Future research
might concentrate on this aspect and adopt techniques like, for
example, that of [8]. Therein, a point-to-point (PTP) globally-
optimal planning is performed between two workspace poses and
the joint space trajectory is stored as q∗(t). Then, the joint space
solution is transposed in the workspace through direct kinematics,
i.e. x∗(t) = k

(
q∗(t)

)
. Last, the time law is removed and the path

x(λ) is used as input to time-optimal planning along a pre-scribed
path, yielding q(t). The difference q(t)−q∗(t) can be evaluated to
estimate the quality of the optimization process. The only limit
of this approach is that it does not work for a generic path, as
it cannot be chosen by the user but is determined by the PTP
optimization.

In light of the above, it is licit to expect that some distance exists
between our solutions and the global optimum. This means that
there is room for 2-stages approaches, like that of Figure 1.1, to

280 5. Conclusions

perform better than unified approaches, like that of Figure 1.2. As
pointed out several times throughout this dissertation, redundancy
resolution and time-optimal planning can be easily solved indepen-
dently, with an acceptable computational burden, even with dy-
namic programming. Future developments might regard a deepen
study into 2-stages techniques to understand whether some spe-
cific objective functions can be used for redundancy resolution
(e.g., acceleration capability of the manipulator) that allow mini-
mizing the trajectory tracking time at a later stage. Also, it should
be investigated whether global-optimality can be beneficial to this
respect, in place of the local optimization methods discussed in
Section 4.1.2.

Additional a-posteriori analyses of DP solutions (assuming they
are sufficiently close to the global optimum) might yield interest-
ing insights on which objective function to choose for redundancy
resolution if a 2-stage approach was adopted. To this end, there
is also room for identification and learning techniques that can
exploit data collected from different use cases to infer an optimal
policy.

5.1.2 Algorithmic enhancements: a compari-
son with rapidly-exploring random trees

Time-optimal planning along pre-scribed paths is only one exam-
ple of kineto-dynamic planning. In the literature, several other
techniques exist to address this category of problems. Among
them, randomized algorithms have attracted and still attract the
attention of many researchers, especially because of their simplic-
ity, effectiveness and theoretical guarantees. In this section, a
category of them, the Rapidly-exploring Random Trees are briefly
recalled in order to highlight the commonalities and differences
they have with dynamic programming. The objective is to sketch
some ideas about mixing the two techniques to design a more ef-
ficient algorithm for kineto-dynamic planning.

5.1. Limitations and improvements on planning 281

5.1.2.1 What is an RRT?

Let C be a d-dimensional state (or configuration) space, xinit ∈
C the initial state and Xgoal ⊂ C a set of possible goal states.
The name Rapidly-exploring Random Tree (RRT) [113] refers to
a specific class of algorithms that are able to find a sequence of
states in C (also termed, more generally, a solution) connecting
xinit with any state xgoal ∈ Xgoal, while avoiding obstacles. This
is done by building a tree data structure T rooted in xinit, where
the possible solutions are the paths connecting a tree leaf with the
tree root.

Very briefly, the main steps taken by an RRT are:

� randomly sample the configuration space to get xrand;

� identify the node xnear in T nearest to xrand;

� create a new node xnew in the direction of xrand starting from
xnear and add it to T.

A solution is obtained by repeating the steps above as many times
as the number of nodes xnew necessary to reach Xgoal.

This very straightforward formulation can be complicated to ad-
dress the following extensions:

� allow for more than one initial state;

� seek a solution that minimizes or maximizes, in a local or
global sense, a given performance index;

� manage kineto-dynamic constraints, with limits on veloci-
ties, torques or other constraints;

� allow for bidirectional (equality) constraints, such as, for a
manipulator, a task for the end-effector.

All these extensions are clearly required for the time-optimal plan-
ning of redundant robots along prescribed paths.

282 5. Conclusions

5.1.2.2 Comparison with dynamic programming

The RRTs are not complete, while dynamic programming is, since
they do not guarantee to find a solution in a given time hori-
zon. They satisfy a more relaxed property of completeness, that
is known as probabilistic completeness [114], implying that the
probability of an algorithm to fail in finding a solution tends to
zero as the number of iterations (i.e., in this case, the number of
nodes in the solution sequence) tends to infinity.

The classic RRT algorithm is not optimal, while an optimal algo-
rithm exists, called RRT* [115]. Even in this case, RRT* is not
globally-optimal in a strict sense, but more precisely is asymp-
totically optimal, meaning that the globally-optimal solution is
reached asymptotically as the number of iterations tends to infin-
ity.

In order to draw a comparison with dynamic programming, we
should remark that classical DP, that is based on the Bellman’s
optimality principle, is indeed globally-optimal in a strict sense.
In other words, it is able to optimize the integral over the path of
the assigned cost function. However, in practice, when DP deals
with a continuous domain, it is affected by the well-known curse
of dimensionality, which obliges, from the practical standpoint,
to work with a discretized state space. Hence, as remarked sev-
eral times throughout the dissertation, the DP algorithm will only
be resolution-optimal. As the resolution of the discretization pro-
cess becomes finer and, ultimately, tends to infinity, the solution
asymptotically converges to the globally-optimal one.

Concerning again the optimality, it is lastly interesting to notice
that, in case the space of all possible sequences from xinit to Xgoal

is characterized by different homotopy classes, both RRT* and DP
are able to asymptotically converge to the global optimum across
all homotopy classes [115].

From a procedural standpoint, RRT* and DP differ in that

� RRT* randomly extracts samples from the continuous con-

5.1. Limitations and improvements on planning 283

figuration space and evaluates transitions in the direction of
such samples only starting from the nodes that, in the tree,
are considered close to it;

� DP discretizes the configuration space and evaluates transi-
tions between all combinations of nodes between two adja-
cent clusters. In other words, the adjacency is determined
by construction.

This distinction draws a clear dividing line between the two tech-
niques when it comes to the enforcement of constraints. Keeping
aside possible variants and extensions of both classes of algorithms,
the enforcement of constraints is

� beneficial for DP, as it allows to limit the number of evalu-
ations that are made between two adjacent clusters;

� harmful for RRT because it leads to trashing non-feasible
states after that computations have been made on them.
This is particularly true for RRTs working with kineto-dy-
namic systems, where computations involve the integration
of differential equations.

In order to confirm the above, we may have a look at the compu-
tational complexity. The DP time complexity is O(NiN

2d
u), where

Ni is the time (or curvilinear coordinate) dimension and indicates
the progress towards the goal state, while Nu is the number of
discrete samples for the d dimensions of the configuration space.
In case of constraints, as observed in Section 2.7.7, the computa-
tional complexity reduces to O(NiN

d
wN

d
u), where Nw << Nu and

refers to the cardinality of a window inside a cluster, satisfying
the constraints. Ultimately, Nw, for highly-constrained systems,
may just contain a few nodes. For RRT, the time complexity is
O(k log k logd c) [115], where k is the number of samples in the
final solution and it is, in general, different from Ni, while c is
connected to the number of constraints in the configuration space.

284 5. Conclusions

The usual RRT formulation, as briefly commented above, and that
of its optimal variant RRT* foresee only one initial state xinit, that
also is the root of the tree T. However, although this is the case
of the majority of planning problems, it is not suitable for off-line
planning of repeatable motions, as in manufacturing plants, where
the interest is in finding both the initial and final configurations as
a result of the optimization problem. However, it could be possible
that RRTs can be extended to this respect to introduce a “virtual”
initial state, which becomes the root of the tree. Then, the states
satisfying the constraints on the initial conditions can be picked
as children of the root. Alternatively, one should generate a new
tree for each xinit ∈ Xinit, where Xinit ⊂ C represents the set of
the states satisfying the initial conditions.

The performance of the RRT, as well as the optimality of its op-
timal variant RRT*, depend on a certain number of configuration
parameters. This is indeed common to several algorithms char-
acterized by one or more random components, such as genetic
algorithms (GA), to mention a class that we have analyzed in this
dissertation. However, an important difference with GA is that
RRT* can guarantee global optimality (once again, asymptoti-
cally), while GA convergence to the global optimum does not have
any theoretical foundation. Also, the probabilistic theory behind
RRT* provides conditions by which the configuration parameters
guarantee global optimality.

Regarding the performance of RRT in general, it is mainly affected
by the following two parameters [114]:

� amplitude of the step between a node in the tree and its
children;

� bias towards the goal state.

5.1.2.3 Planning for kineto-dynamic systems

RRT was originally designed to tackle a class of planning problems
that is much broader than kineto-dynamic planning [113]. For

5.1. Limitations and improvements on planning 285

this reason, several adaptations have been necessary to be able to
effectively plan in presence of differential state equations.

The main challenge of this kind of planning problems is to connect
two known states in the configuration space through differential
state equations, piloted by a control input, which means to solve a
TPBVP. As discussed before, this kind of connections, between a
node in the tree and a target one generated by random sampling,
is the core of RRT.

In order to address the challenge, the Authors of [116] propose
to apply, starting from the node in the tree, sequences of control
inputs driving the system to a state that is sufficiently close to the
target one, without reaching it exactly. The search for the best
sequence of inputs, among the available ones, can be done with
different techniques, such as the shooting method.

Compared to the classic RRT, RRT* foresees the following addi-
tional steps to guarantee asymptotic convergence to the globally-
optimal solution [115]:

� after xnew has been connected to his parent xnear, new con-
nections are tried with any other tree node xnext in a neigh-
borhood of xnew, even though xnext is not a leaf of the tree;

� a connection from xnew to xnext is established if the cost is
lower than that of the existing path connecting xinit to xnext;

� in order to keep the tree structure, the connection between
xnext and its old parent node has to be removed;

� the cost is updated for all the nodes children of xnext, since a
lower cost path is now available toward the tree root, passing
by xnew.

The operations above are known as rewiring and are particularly
delicate when it comes to kineto-dynamic systems [116]. In fact,
theoretically, a TPBVP should be solved for every xnext that is
rewired toward xnew. Even in this case, because of the presence of

286 5. Conclusions

differential equations, it is usually accepted to reach a neighbor-
hood of xnext, say the state x̃next. Then, since xnext already had
children, the entire sub-tree rooted in xnext must be re-computed
starting from x̃next and this is usually done by replaying the pre-
stored inputs. On one hand, this operation is computationally very
expensive, as it has to be repeated for every node in the neighbor-
hood of xnew yielding a lower cost, on the other, constraints are not
re-checked when the nodes are re-computed, meaning that they
can be violated. In [116], the Authors observe that the unfeasi-
ble solutions are later automatically excluded by the optimization
process, but a formal proof is not provided.

In the case of bidirectional constraints, like an end-effector path
constraint, the rewiring operation certainly yields the violation of
the constraint, since the possibly negligible error between xnext and
x̃next is later integrated for all the subsequent nodes, ultimately
deviating from the path.

Since nodes are connected by respecting the state equation, one
of the advantages of employing RRT* for kineto-dynamic systems
is that the resulting solution does not need to be post-processed
before it can be sent to the robot controllers.

5.1.2.4 Bi-directional constraints

As anticipated above, an interesting use case for RRT and RRT* is
when the problem formulation includes bi-directional constraints,
especially for kineto-dynamic systems.

The first remark is that sampling on the whole configuration space
is not efficient since the large majority of the states will not comply
with the bi-directional constraint and will need to be discarded.
Rather, it is convenient to work directly on a subspace of C where
all the configurations therein already satisfy the bi-directional con-
straint [117].

If the bi-directional constraint is given by a path in a multi-
dimensional space, as for time-optimal planning of redundant ro-

5.1. Limitations and improvements on planning 287

bots across prescribed paths, and the geometry is not simply de-
scribable analytically, it is also very inefficient to work on a con-
tinuous state space. For this reason, in [117], the authors have
accepted a discretization of the constraint (i.e. the path) and re-
strict the sampling only on such a discrete domain.

For instance, in the case of a path constraint x(λ) = k(q) assigned
to a redundant robot, the sampling procedure is the following:

� the domain of the curvlinear coordinate λ is discretized, say
in [0, 1] or [0,Λ], being Λ the path length;

� λrand is obtained by randomly sampling the continuous do-
main of λ;

� the discrete value closest to the sample λrand is picked, say
λ(i), corresponding to a given x(λ(i)) = x(i);

� the redundancy parameter is randomly sampled in its do-
main: if the redundancy parameter is one of the joints, we
may call this sample qj,rand;

� the remaining joint positions qr are computed as

qr = k−1(x(i), qj,rand), (5.1)

yielding a complete random configuration qrand.

By following this procedure, the path constraint is respected by
construction.

The RRT (or RRT*) can proceed as usual by identifying the near-
est node in the tree qnear. Since the path typically needs to be
followed entirely, and it is now discretized, it is convenient to pick
qnext directly from the next sample on the path (or the previous
one if the end-effector is allowed to reverse its direction on the
path) [117]. Thus, if qnear = qnear(k), qnew = qnew(k − 1) or
qnew = qnew(k + 1). In the case of time-optimal planning, only
the latter will hold.

288 5. Conclusions

If the discretization of λ is fine, it is perhaps possible to avoid
the exact integration of the state equation and to adopt a simpler
discrete approximation, as it is done for our dynamic programming
algorithm.

Clearly, this does not exclude the possibility of picking qrand and,
consequently, qnew in proximity to some intermediate node in the
tree, which actually is a necessary condition for RRT* to optimize
the existing solution.

By adopting the procedure described in this section, RRT* be-
comes very similar to DP, with the following differences:

� in RRT*, the state space, except for waypoints, is not dis-
cretized;

� in RRT*, transitions are not evaluated between all nodes in
adjacent clusters, but only between the neighbors of qnew.

A deepen analysis of these aspects may yield interesting develop-
ments in dynamic programming applied to planning of redundant
robots, that would allow to

� design an anytime version of dynamic programming that
adapts to the available planning horizon, by delivering solu-
tions that asymptotically tend to the global optimum;

� generate smoother results as the discretizations of the redun-
dancy parameters and pseudo-velocity are no longer neces-
sary.

5.1.3 Algorithmic enhancements: heuristics

We have seen that the computational complexity of the algorithm
is quadratic with respect to all the dimensions that are not the
path and this cannot be avoided with the classical DP formulation.
In Section 2.7.7, we analyzed the problem in greater detail to

5.1. Limitations and improvements on planning 289

highlight that the constraints play an important role in reducing
the number of nodes that, at each stage, are enabled and subject to
comparisons with neighbors. We also demonstrated that the CPU
time can be greatly reduced if the properties of such constraints
are exploited in the design of the algorithm.

Indeed, nodes can be excluded if they do not satisfy the con-
straints, but their cost could also be an indication of whether
they will belong to the globally-optimal solution or not. In a for-
ward implementation of the algorithm, for each node j, the grid
stores the cumulative cost Ij(i) associated with the optimal sub-
trajectory connecting it with an initial state. The total cost of the
trajectory passing through j will be given by

Ij(Ni) = Ij(i) +Hj(i) (5.2)

where Hj(i) is the cost associated to the optimal sub-trajectory
that connects the node j with a final state. For each i < Ni, Hj(i)
is unknown. Further research might tackle the problem of finding
a consistent heuristic that allows determining an estimation for
Hj(i) such that the number of enabled nodes could be further re-
duced, preserving global optimality. Such heuristic function could
be based on the topological characteristics of the problem and the
concept of C-path homotopy class introduced in this dissertation,
or on locally-optimal resolution techniques.

5.1.4 Technological improvements: parallelism

Dynamic programming, as we have defined it, i.e. like a graph
search problem, is highly parallelizable. The parallelism can be
implemented at several levels of granularity:

� with a bi-directional scan: forward and backward DP algo-
rithms are run together and optimal solutions are merged at
some intermediate waypoint of the path;

� each grid (corresponding to a different inverse kinematic so-
lution, or extended aspect) can be scanned independently,

290 5. Conclusions

but transition points along the manifold are shared resources
that should be suitably managed;

� the comparisons between a node in a cluster at i+ 1 and all
the nodes in clusters at i can be performed independently,
as the former is a read-write resource, while the latter are
read-only resources (see Figure 5.1).

constraints checking

and cost evaluation

by Thread 1

constraints checking

and cost evaluation

by Thread N

Figure 5.1: Dynamic programming parallelism at node level

The parallelism can be implemented at thread level, or the node-
level parallelism, where the operations to be performed are sim-
ple and atomic, can be implemented on a dedicated hardware,
like graphical processing units (GPU). In the aerospace sector, in
ground centers, parallelism is also often achieved through process-
ing clusters that allow for a much higher computational power.

5.2. Limitations and improvements on control 291

5.2 Limitations and improvements on

control

Our dynamic programming algorithm is focused on finding the
optimal time law that is encoded in λ̇(λ). Since all the quanti-
ties of interest are connected to λ̇(λ), any kind of control signal
can be generated. Unfortunately, because of the discretization
of the state space, the control is only defined at the waypoints,
while its behavior between them is undetermined. On the other
hand, the controller period is much smaller than the planner’s,
thus some kind of interpolation is necessary. In [14], it is per-
formed at planning level, so that continuous and differentiable
phase-plane profiles can be generated by the dynamic program-
ming algorithm itself, while in Section 4.3, we addressed this issue
in post-processing, using interpolation, low-pass filtering and rate
limiting. Clearly, the best solution might depend on the specific
manipulator and primary controller provided by the robot man-
ufacturer. Some different ways of coping with a non-modifiable
primary controller have been commented in Section 3.8.

When a smooth control signal is available, the control still has to
cope with uncertainties in the dynamics of the manipulator, dy-
namics associated to the controller itself, and torque saturation.
To this end, future research may address this issue for redun-
dant robots, considering that, compared to non-redundant ones,
they provide greater flexibility, even in adapting to tracking er-
rors. Pseudo-velocity and pseudo-acceleration are used at control
level to scale down the velocity along the path (see Section 3.8),
but, with a redundant manipulator, self-motion in the null-space
could also be used to compensate for poor tracking. Techniques
that use non-saturating actuators to counterbalance the error on
the saturating ones also look promising to this respect.

In order to help the controller in keeping the tracking error bounded,
the planner could be further extended to consider the controller
dynamics. This is especially useful when the control has complex

292 5. Conclusions

dynamics due to closed-loop control (as in the case of position and
velocity control, that we also used in the experiments of Section
4.3).

5.3 Application to other systems

Although the formulation of the problem with dynamic program-
ming is quite general, we only applied it to relatively simple se-
rial chains whose task is to follow a pre-determined path in min-
imum time, without exchanging forces with the surrounding en-
vironment. In reality, many other applications exist that expose
some kinematic redundancy. In fact, given the flexibility of redun-
dant robots, they are more and more frequently employed in many
fields, including manufacturing, service and medical robotics, aero-
space robotics. There, robots are often required to interact with
the environment or with each other, or, more in general, collabo-
rate to achieve a common goal.

In case the robot has to exert forces on external bodies, our dy-
namic programming algorithm can be employed with some mini-
mal modifications. In fact, the only extension concerns the intro-
duction of a suitable interaction model. To this end, the flexibility
of dynamic programming, for a non-redundant case, has been al-
ready demonstrated in [70], but more interesting scenarios can be
investigated, depending on the type of the interaction and degree
of redundancy. Again, [70] is a first demonstration of applying
time-optimal planning with dynamic programming to a coopera-
tive grasping scenario, but future research may address the prob-
lem of redundancy in closed kinematic chains, when time-optimal
motions are planned.

Lastly, the application of the proposed algorithm (or, more proba-
bly, extensions of it) to more complex systems, for off-line planning
or benchmarking of algorithms, is of utmost scientific and practi-
cal interest. They include, among others, parallel robots, mobile
manipulators and flying manipulators.

Bibliography

[1] International Space Exploration Coordination Group (ISECG).
(2018, January) The global exploration roadmap. [Online].
Available: https://www.globalspaceexploration.org/wordpress/
wp-content/isecg/GER 2018 small mobile.pdf

[2] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, “A review
of space robotics technologies for on-orbit servicing,” Progress
in Aerospace Sciences, vol. 68, pp. 1–26, July 2014. [Online].
Available: https://doi.org/10.1016%2Fj.paerosci.2014.03.002

[3] J. L. Forshaw, G. S. Aglietti, N. Navarathinam, H. Kadhem,
T. Salmon, A. Pisseloup, E. Joffre, T. Chabot, I. Retat,
R. Axthelm, S. Barraclough, A. Ratcliffe, C. Bernal,
F. Chaumette, A. Pollini, and W. H. Steyn, “RemoveDEBRIS:
an in-orbit active debris removal demonstration mission,” Acta
Astronautica, vol. 127, pp. 448–463, October 2016. [Online].
Available: https://doi.org/10.1016%2Fj.actaastro.2016.06.018

[4] R. N. Hoyt, J. Cushing, G. Jimmerson, J. T. Slostad, R. Dyer,
and S. Alvarado, “SpiderFab: Process for on-orbit construction
of kilometer-scale apertures,” 2018.

[5] H. Arai, K. Tanie, and S. Tachi, “Path tracking control of a
manipulator considering torque saturation,” IEEE Transactions
on Industrial Electronics, vol. 41, no. 1, pp. 25–31, 1994.
[Online]. Available: https://doi.org/10.1109%2F41.281604

[6] P. Chiacchio, “Exploiting redundancy in minimum-time path
following robot control,” in 1990 American Control Conference.

https://www.globalspaceexploration.org/wordpress/wp-content/isecg/GER_2018_small_mobile.pdf
https://www.globalspaceexploration.org/wordpress/wp-content/isecg/GER_2018_small_mobile.pdf
https://doi.org/10.1016%2Fj.paerosci.2014.03.002
https://doi.org/10.1016%2Fj.actaastro.2016.06.018
https://doi.org/10.1109%2F41.281604

294 BIBLIOGRAPHY

IEEE, May 1990, pp. 2313–2318. [Online]. Available: https:
//doi.org/10.23919%2Facc.1990.4791142

[7] F. Basile and P. Chiacchio, “A contribution to minimum-time
task-space path-following problem for redundant manipulators,”
Robotica, vol. 21, no. 2, pp. 137–142, February 2003. [Online].
Available: https://doi.org/10.1017%2Fs0263574702004678

[8] K. Al Khudir and A. De Luca, “Faster motion on cartesian
paths exploiting robot redundancy at the acceleration level,”
IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3553–3560, October 2018. [Online]. Available: https:
//doi.org/10.1109%2Flra.2018.2853806

[9] A. Reiter, A. Müller, and H. Gattringer, “Inverse kinematics in
minimum-time trajectory planning for kinematically redundant
manipulators,” in IECON 2016 - 42nd Annual Conference of
the IEEE Industrial Electronics Society. IEEE, October 2016,
pp. 6873–6878. [Online]. Available: https://doi.org/10.1109%
2Fiecon.2016.7793436

[10] A. Reiter, H. Gattringer, and A. Müller, “Redundancy resolution
in minimum-time path tracking of robotic manipulators,” in
Proceedings of the 13th International Conference on Informatics
in Control, Automation and Robotics. SCITEPRESS - Science
and Technology Publications, 2016, pp. 61–68. [Online].
Available: https://doi.org/10.5220%2F0005975800610068

[11] A. Reiter, A. Müller, and H. Gattringer, “On higher order inverse
kinematics methods in time-optimal trajectory planning for
kinematically redundant manipulators,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 4, pp. 1681–1690, April 2018.
[Online]. Available: https://doi.org/10.1109%2Ftii.2018.2792002

[12] A. Guigue, M. Ahmadi, R. Langlois, and M. J. D. Hayes,
“Pareto optimality and multiobjective trajectory planning for a
7-dof redundant manipulator,” IEEE Transactions on Robotics,
vol. 26, no. 6, pp. 1094–1099, December 2010. [Online].
Available: https://doi.org/10.1109%2Ftro.2010.2068650

https://doi.org/10.23919%2Facc.1990.4791142
https://doi.org/10.23919%2Facc.1990.4791142
https://doi.org/10.1017%2Fs0263574702004678
https://doi.org/10.1109%2Flra.2018.2853806
https://doi.org/10.1109%2Flra.2018.2853806
https://doi.org/10.1109%2Fiecon.2016.7793436
https://doi.org/10.1109%2Fiecon.2016.7793436
https://doi.org/10.5220%2F0005975800610068
https://doi.org/10.1109%2Ftii.2018.2792002
https://doi.org/10.1109%2Ftro.2010.2068650

BIBLIOGRAPHY 295

[13] E. Ferrentino and P. Chiacchio, “On the optimal resolution
of inverse kinematics for redundant manipulators using a
topological analysis,” Journal of Mechanisms and Robotics,
vol. 12, no. 3, June 2020. [Online]. Available: https:
//doi.org/10.1115%2F1.4045178

[14] D. Kaserer, H. Gattringer, and A. Müller, “Nearly optimal
path following with jerk and torque rate limits using
dynamic programming,” IEEE Transactions on Robotics,
vol. 35, no. 2, pp. 521–528, April 2019. [Online]. Available:
https://doi.org/10.1109%2Ftro.2018.2880120

[15] J. P. Mallet, Parallel robots, 2nd ed. Springer Netherlands, 2006.

[16] B. Siciliano and O. Khatib, Springer Handbook of Robotics, B. Si-
ciliano and O. Khatib, Eds. Springer International Publishing,
2016.

[17] A. Liegeois, “Automatic supervisory control of the configuration
and behavior of multibody mechanisms,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 7, no. 12, pp.
868–871, 1977. [Online]. Available: https://doi.org/10.1109%
2Ftsmc.1977.4309644

[18] C. A. Klein, “Use of redundancy in the design of robotic sys-
tems,” in Robotics Research: The Second International Sympo-
sium. MIT Press, August 1985, pp. 207–214.

[19] D. Whitney, “Resolved motion rate control of manipulators
and human prostheses,” IEEE Transactions on Man Machine
Systems, vol. 10, no. 2, pp. 47–53, June 1969. [Online]. Available:
https://doi.org/10.1109%2Ftmms.1969.299896

[20] J. M. Hollerbach and K. C. Suh, “Redundancy resolution of
manipulators through torque optimization,” IEEE Journal on
Robotics and Automation, vol. 3, no. 4, pp. 308–316, August
1987. [Online]. Available: https://doi.org/10.1109%2Fjra.1987.
1087111

[21] D. R. Baker and C. W. Wampler, “On the inverse kinematics of
redundant manipulators,” The International Journal of Robotics

https://doi.org/10.1115%2F1.4045178
https://doi.org/10.1115%2F1.4045178
https://doi.org/10.1109%2Ftro.2018.2880120
https://doi.org/10.1109%2Ftsmc.1977.4309644
https://doi.org/10.1109%2Ftsmc.1977.4309644
https://doi.org/10.1109%2Ftmms.1969.299896
https://doi.org/10.1109%2Fjra.1987.1087111
https://doi.org/10.1109%2Fjra.1987.1087111

296 BIBLIOGRAPHY

Research, vol. 7, no. 2, pp. 3–21, April 1988. [Online]. Available:
https://doi.org/10.1177%2F027836498800700201

[22] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano,
“Closed-loop inverse kinematics schemes for constrained re-
dundant manipulators with task space augmentation and
task priority strategy,” The International Journal of Robotics
Research, vol. 10, no. 4, pp. 410–425, August 1991. [Online].
Available: https://doi.org/10.1177%2F027836499101000409

[23] K. C. Suh and J. M. Hollerbach, “Local versus global torque
optimization of redundant manipulators,” in Proceedings - IEEE
International Conference on Robotics and Automation. IEEE,
1987, pp. 619–624. [Online]. Available: https://doi.org/10.
1109%2Frobot.1987.1087955

[24] K. Kazerounian and Z. Wang, “Global versus local optimization
in redundancy resolution of robotic manipulators,” The
International Journal of Robotics Research, vol. 7, no. 5, pp.
3–12, October 1988. [Online]. Available: https://doi.org/10.
1177%2F027836498800700501

[25] D. P. Martin, J. Baillieul, and J. M. Hollerbach, “Resolution
of kinematic redundancy using optimization techniques,” IEEE
Transactions on Robotics and Automation, vol. 5, no. 4, pp. 529–
533, 1989. [Online]. Available: https://doi.org/10.1109/70.88067

[26] J. J. Rice and J. M. Schimmels, “Multi-homotopy class optimal
path planning for manipulation with one degree of redundancy,”
Mechanism and Machine Theory, vol. 149, July 2020. [Online].
Available: https://doi.org/10.1016%2Fj.mechmachtheory.2020.
103834

[27] K. Gotlih, I. Troch, and K. Jezernik, “Global optimal control
of redundant robot,” Robotica, vol. 14, no. 2, pp. 131–140,
March 1996. [Online]. Available: https://doi.org/10.1017%
2Fs0263574700019044

[28] B. W. Choi, J. H. Won, and M. J. Chung, “Optimal
redundancy resolution of a kinematically redundant manipulator

https://doi.org/10.1177%2F027836498800700201
https://doi.org/10.1177%2F027836499101000409
https://doi.org/10.1109%2Frobot.1987.1087955
https://doi.org/10.1109%2Frobot.1987.1087955
https://doi.org/10.1177%2F027836498800700501
https://doi.org/10.1177%2F027836498800700501
https://doi.org/10.1109/70.88067
https://doi.org/10.1016%2Fj.mechmachtheory.2020.103834
https://doi.org/10.1016%2Fj.mechmachtheory.2020.103834
https://doi.org/10.1017%2Fs0263574700019044
https://doi.org/10.1017%2Fs0263574700019044

BIBLIOGRAPHY 297

for a cyclic task,” Journal of Robotic Systems, vol. 9,
no. 4, pp. 481–503, June 1992. [Online]. Available: https:
//doi.org/10.1002%2Frob.4620090404

[29] Z. Wang and K. Kazerounian, “An efficient algorithm for
global optimization in redundant manipulations,” Journal
of Mechanisms Transmissions and Automation in Design,
vol. 111, no. 4, pp. 488–493, 1989. [Online]. Available:
https://doi.org/10.1115%2F1.3259026

[30] Y. Nakamura and H. Hanafusa, “Optimal redundancy control
of robot manipulators,” The International Journal of Robotics
Research, vol. 6, no. 1, pp. 32–42, March 1987. [Online].
Available: https://doi.org/10.1177%2F027836498700600103

[31] S.-W. Kim, K.-B. Park, and J.-J. Lee, “Redundancy
resolution of robot manipulators using optimal kinematic
control,” in Proceedings of the 1994 IEEE International
Conference on Robotics and Automation. IEEE Comput.
Soc. Press, 1994, pp. 683–688. [Online]. Available: https:
//doi.org/10.1109%2Frobot.1994.351407

[32] Y. Zhang, Y. Liu, Z. Xie, and M. Moallem, “Optimal
reaction control for the flexible base redundant manipulator
system,” in 2019 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, December 2019, pp. 515–
520. [Online]. Available: https://doi.org/10.1109%2Frobio49542.
2019.8961851

[33] Y. C. Chen and K. O’Neil, “Stabilization of pseudoinverse
acceleration control of redundant mechanisms,” in Robotics 98.
American Society of Civil Engineers, April 1998, pp. 293–299.
[Online]. Available: https://doi.org/10.1061%2F40337%28205%
2943

[34] J. W. Burdick, “On the inverse kinematics of redundant
manipulators: characterization of the self-motion manifolds,” in
IEEE International Conference on Robotics and Automation.
IEEE, 1989, pp. 264–270. [Online]. Available: https://doi.org/
10.1109%2Frobot.1989.99999

https://doi.org/10.1002%2Frob.4620090404
https://doi.org/10.1002%2Frob.4620090404
https://doi.org/10.1115%2F1.3259026
https://doi.org/10.1177%2F027836498700600103
https://doi.org/10.1109%2Frobot.1994.351407
https://doi.org/10.1109%2Frobot.1994.351407
https://doi.org/10.1109%2Frobio49542.2019.8961851
https://doi.org/10.1109%2Frobio49542.2019.8961851
https://doi.org/10.1061%2F40337%28205%2943
https://doi.org/10.1061%2F40337%28205%2943
https://doi.org/10.1109%2Frobot.1989.99999
https://doi.org/10.1109%2Frobot.1989.99999

298 BIBLIOGRAPHY

[35] A. P. Pashkevich, A. B. Dolgui, and O. A. Chumakov,
“Multiobjective optimization of robot motion for laser cutting
applications,” International Journal of Computer Integrated
Manufacturing, vol. 17, no. 2, pp. 171–183, March 2004. [Online].
Available: https://doi.org/10.1080%2F0951192031000078202

[36] C. L. Lück and S. Lee, “Self-motion topology for redundant
manipulators with joint limits,” in Proceedings - IEEE
International Conference on Robotics and Automation, vol. 3.
IEEE Comput. Soc. Press, 1993, pp. 626–631. [Online].
Available: https://doi.org/10.1109%2Frobot.1993.291835

[37] P. Borrel and A. Liegeois, “A study of multiple manipulator
inverse kinematic solutions with applications to trajectory
planning and workspace determination,” in Proceedings -
International Conference on Robotics and Automation. IEEE,
1986, pp. 1180–1185. [Online]. Available: https://doi.org/10.
1109%2Frobot.1986.1087554

[38] P. Wenger, “A new general formalism for the kinematic analysis
of all nonredundant manipulators,” in Proceedings - IEEE
International Conference on Robotics and Automation. IEEE
Comput. Soc. Press, 1992, pp. 442–447. [Online]. Available:
https://doi.org/10.1109%2Frobot.1992.220300

[39] J. A. Pámanes, P. Wenger, and J. L. Zapata, “Motion planning
of redundant manipulators for specified trajectory tasks,” in
Advances in Robot Kinematics. Springer Netherlands, 2002,
pp. 203–212. [Online]. Available: https://doi.org/10.1007%
2F978-94-017-0657-5 22

[40] P. Wenger, P. Chedmail, and F. Reynier, “A global
analysis of following trajectories by redundant manipulators
in the presence of obstacles,” in Proceedings - IEEE
International Conference on Robotics and Automation. IEEE
Comput. Soc. Press, 1993, pp. 901–906. [Online]. Available:
https://doi.org/10.1109%2Frobot.1993.292258

[41] J. W. Burdick, “Global kinematics for manipulator planning
and control,” in Intelligent Control and Adaptive Systems,

https://doi.org/10.1080%2F0951192031000078202
https://doi.org/10.1109%2Frobot.1993.291835
https://doi.org/10.1109%2Frobot.1986.1087554
https://doi.org/10.1109%2Frobot.1986.1087554
https://doi.org/10.1109%2Frobot.1992.220300
https://doi.org/10.1007%2F978-94-017-0657-5_22
https://doi.org/10.1007%2F978-94-017-0657-5_22
https://doi.org/10.1109%2Frobot.1993.292258

BIBLIOGRAPHY 299

G. Rodriguez, Ed. SPIE, February 1990, pp. 57–68. [Online].
Available: https://doi.org/10.1117%2F12.969907

[42] D. K. Pai and M. C. Leu, “Genericity and singularities
of robot manipulators,” IEEE Transactions on Robotics and
Automation, vol. 8, no. 5, pp. 545–559, 1992. [Online]. Available:
https://doi.org/10.1109%2F70.163780

[43] P. Wenger, “Classification of 3R positioning manipulators,”
Journal of Mechanical Design, vol. 120, no. 2, pp. 327–332, June
1998. [Online]. Available: https://doi.org/10.1115%2F1.2826976

[44] A. Guigue, M. Ahmadi, M. J. D. Hayes, R. Langlois,
and F. C. Tang, “A dynamic programming approach to
redundancy resolution with multiple criteria,” in IEEE
International Conference on Robotics and Automation. IEEE,
2007, pp. 1375–1380. [Online]. Available: https://doi.org/10.
1109%2Frobot.2007.363176

[45] Z. Zhou and C. C. Nguyen, “Globally optimal trajectory planning
for redundant manipulators using state space augmentation
method,” Journal of Intelligent and Robotic Systems: Theory
and Applications, vol. 19, no. 1, pp. 105–117, 1997. [Online].
Available: https://doi.org/10.1023/A:1007905817998

[46] Y. Shen and K. Huper, “Optimal trajectory planning of
manipulators subject to motion constraints,” in ICAR ’05.
Proceedings of the 12th International Conference on Advanced
Robotics, 2005. IEEE, 2005, pp. 9–16. [Online]. Available:
https://doi.org/10.1109%2Ficar.2005.1507384

[47] A. Dolgui and A. Pashkevich, “Manipulator motion planning
for high-speed robotic laser cutting,” International Journal
of Production Research, vol. 47, no. 20, pp. 5691–5715,
July 2009. [Online]. Available: https://doi.org/10.1080%
2F00207540802070967

[48] D. Reveles, J. A. Pámanes, and P. Wenger, “Trajectory
planning of kinematically redundant parallel manipulators by
using multiple working modes,” Mechanism and Machine

https://doi.org/10.1117%2F12.969907
https://doi.org/10.1109%2F70.163780
https://doi.org/10.1115%2F1.2826976
https://doi.org/10.1109%2Frobot.2007.363176
https://doi.org/10.1109%2Frobot.2007.363176
https://doi.org/10.1023/A:1007905817998
https://doi.org/10.1109%2Ficar.2005.1507384
https://doi.org/10.1080%2F00207540802070967
https://doi.org/10.1080%2F00207540802070967

300 BIBLIOGRAPHY

Theory, vol. 98, pp. 216–230, April 2016. [Online]. Available:
https://doi.org/10.1016%2Fj.mechmachtheory.2015.09.011

[49] J. Gao, A. Pashkevich, and S. Caro, “Optimization of
the robot and positioner motion in a redundant fiber
placement workcell,” Mechanism and Machine Theory, vol.
114, pp. 170–189, August 2017. [Online]. Available: https:
//doi.org/10.1016%2Fj.mechmachtheory.2017.04.009

[50] D. Bussi, M. Barrera, R. Trucco, F. Salvioli, M. Rabaioli,
E. Topa, A. D’Ottavio, L. Savioli, L. Ravagnolo, G. Martucci di
Scarfizzi, P. Franceschetti, L. Joudrier, A. Williams, and T. Lim,
“Challenges in the definition, validation and simulation of the
ground operations of the ExoMars 2020 Rover surface mission at
the Rover Operations Control Centre (ROCC),” in 69th Interna-
tional Astronautical Congress, October 2018.

[51] PickNik Consulting. (2018) Moveit! web page. [Online].
Available: https://moveit.ros.org/

[52] Franka Emika. (2018) Panda web page. [Online]. Available:
https://www.franka.de/panda

[53] W. Khalil and J. Kleinfinger, “A new geometric notation
for open and closed-loop robots,” in Proceedings - IEEE
International Conference on Robotics and Automation. IEEE,
1986, pp. 1174–1179. [Online]. Available: https://doi.org/10.
1109%2Frobot.1986.1087552

[54] Franka Emika. (2018) Franka Control Interface (FCI). [Online].
Available: https://frankaemika.github.io/docs/

[55] R. Diankov, “Automated construction of robotic manipulation
programs,” Ph.D. dissertation. [Online]. Available: http:
//www.programmingvision.com/rosen diankov thesis.pdf

[56] Y. Chen, S. Y.-P. Chien, and A. A. Desrochers, “General
structure of time-optimal control of robotic manipulators
moving along prescribed paths,” International Journal of
Control, vol. 56, no. 4, pp. 767–782, October 1992. [Online].
Available: https://doi.org/10.1080%2F00207179208934342

https://doi.org/10.1016%2Fj.mechmachtheory.2015.09.011
https://doi.org/10.1016%2Fj.mechmachtheory.2017.04.009
https://doi.org/10.1016%2Fj.mechmachtheory.2017.04.009
https://moveit.ros.org/
https://www.franka.de/panda
https://doi.org/10.1109%2Frobot.1986.1087552
https://doi.org/10.1109%2Frobot.1986.1087552
https://frankaemika.github.io/docs/
http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf
https://doi.org/10.1080%2F00207179208934342

BIBLIOGRAPHY 301

[57] J.-J. E. Slotine and H. S. Yang, “Improving the efficiency of
time-optimal path-following algorithms,” IEEE Transactions on
Robotics and Automation, vol. 5, no. 1, pp. 118–124, 1989.
[Online]. Available: https://doi.org/10.1109%2F70.88024

[58] J. Kim and E. A. Croft, “Online near time-optimal trajectory
planning for industrial robots,” Robotics and Computer-
Integrated Manufacturing, vol. 58, pp. 158–171, August 2019.
[Online]. Available: https://doi.org/10.1016%2Fj.rcim.2019.02.
009

[59] I. T. Pietsch, O. Becker, M. Krefft, and J. Hesselbach,
“Time-optimal trajectory planning for adaptive control of plane
parallel robots,” in The Fourth International Conference on
Control and Automation. IEEE, 2003, pp. 639–643. [Online].
Available: https://doi.org/10.1109%2Ficca.2003.1229182

[60] F. Pfeiffer and R. Johanni, “A concept for manipulator
trajectory planning,” IEEE Journal on Robotics and Automation,
vol. 3, no. 2, pp. 115–123, April 1987. [Online]. Available:
https://doi.org/10.1109%2Fjra.1987.1087090

[61] Y. Chen and A. A. Desrochers, “Structure of minimum-time
control law for robotic manipulators with constrained paths,”
in Proceedings - IEEE International Conference on Robotics
and Automation. IEEE Comput. Soc. Press, 1989, pp. 971–
976. [Online]. Available: https://doi.org/10.1109%2Frobot.1989.
100107

[62] S. Ma, “Time-optimal control of robotic manipulators with
limit heat characteristics of the actuator,” Advanced Robotics,
vol. 16, no. 4, pp. 309–324, January 2002. [Online]. Available:
https://doi.org/10.1163%2F15685530260174502

[63] S. Behzadipour and A. Khajepour, “Time-optimal trajectory
planning in cable-based manipulators,” IEEE Transactions on
Robotics, vol. 22, no. 3, pp. 559–563, June 2006. [Online].
Available: https://doi.org/10.1109%2Ftro.2006.870663

[64] D. Constantinescu and E. A. Croft, “Smooth and time-optimal
trajectory planning for industrial manipulators along specified

https://doi.org/10.1109%2F70.88024
https://doi.org/10.1016%2Fj.rcim.2019.02.009
https://doi.org/10.1016%2Fj.rcim.2019.02.009
https://doi.org/10.1109%2Ficca.2003.1229182
https://doi.org/10.1109%2Fjra.1987.1087090
https://doi.org/10.1109%2Frobot.1989.100107
https://doi.org/10.1109%2Frobot.1989.100107
https://doi.org/10.1163%2F15685530260174502
https://doi.org/10.1109%2Ftro.2006.870663

302 BIBLIOGRAPHY

paths,” Journal of Robotic Systems, vol. 17, no. 5, pp.
233–249, 2000. [Online]. Available: https://doi.org/10.1002/
(sici)1097-4563(200005)17:5〈233::aid-rob1〉3.0.co;2-y

[65] G. Pardo-Castellote and R. H. Cannon, “Proximate time-optimal
algorithm for on-line path parameterization and modification,”
in Proceedings - IEEE International Conference on Robotics and
Automation. IEEE, 1996, pp. 1539–1546. [Online]. Available:
https://doi.org/10.1109%2Frobot.1996.506923

[66] A. Casalino, A. M. Zanchettin, and P. Rocco, “Online
planning of optimal trajectories on assigned paths with dynamic
constraints for robot manipulators,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, October 2016. [Online]. Available: https:
//doi.org/10.1109%2Firos.2016.7759168

[67] L. Z̆lajpah and B. Nemec, “Implementation of time-optimal
path-tracking control on palletizing robots,” in Proceedings
- IEEE International Symposium on Industrial Electronics.
IEEE, 1999, pp. 861–866. [Online]. Available: https://doi.org/
10.1109%2Fisie.1999.798726

[68] Q.-C. Pham, “A general, fast, and robust implementation
of the time-optimal path parameterization algorithm,” IEEE
Transactions on Robotics, vol. 30, no. 6, pp. 1533–1540,
December 2014. [Online]. Available: https://doi.org/10.1109%
2Ftro.2014.2351113

[69] J. Dong and J. A. Stori, “A generalized time-optimal bidirec-
tional scan algorithm for constrained feed-rate optimization,”
Journal of Dynamic Systems, Measurement, and Control,
vol. 128, no. 2, pp. 379–390, 2006. [Online]. Available:
https://doi.org/10.1115%2F1.2194078

[70] D. Kaserer, H. Gattringer, and A. Müller, “Time optimal
motion planning and admittance control for cooperative
grasping,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 2216–2223, April 2020. [Online]. Available:
https://doi.org/10.1109%2Flra.2020.2970644

https://doi.org/10.1002/(sici)1097-4563(200005)17:5<233::aid-rob1>3.0.co;2-y
https://doi.org/10.1002/(sici)1097-4563(200005)17:5<233::aid-rob1>3.0.co;2-y
https://doi.org/10.1109%2Frobot.1996.506923
https://doi.org/10.1109%2Firos.2016.7759168
https://doi.org/10.1109%2Firos.2016.7759168
https://doi.org/10.1109%2Fisie.1999.798726
https://doi.org/10.1109%2Fisie.1999.798726
https://doi.org/10.1109%2Ftro.2014.2351113
https://doi.org/10.1109%2Ftro.2014.2351113
https://doi.org/10.1115%2F1.2194078
https://doi.org/10.1109%2Flra.2020.2970644

BIBLIOGRAPHY 303

[71] S. Singh and M. C. Leu, “Optimal trajectory generation for
robotic manipulators using dynamic programming,” Journal of
Dynamic Systems, Measurement, and Control, vol. 109, no. 2,
pp. 88–96, 1987. [Online]. Available: https://doi.org/10.1115%
2F1.3143842

[72] A. J. Cahill, M. R. James, J. C. Kieffer, and D. Williamson,
“Remarks on the application of dynamic programming to the
optimal path timing of robot manipulators,” International
Journal of Robust and Nonlinear Control, vol. 8, no. 6, pp.
463–482, May 1998. [Online]. Available: https://doi.org/10.
1002/(sici)1099-1239(199805)8:6〈463::aid-rnc312〉3.0.co;2-r

[73] Y. Nakamura and K. Yamane, “Dynamics computation of
structure-varying kinematic chains and its application to human
figures,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 2, pp. 124–134, April 2000. [Online]. Available:
https://doi.org/10.1109%2F70.843167

[74] Q.-C. Pham and O. Stasse, “Time-optimal path parameterization
for redundantly actuated robots: a numerical integration
approach,” IEEE/ASME Transactions on Mechatronics, vol. 20,
no. 6, pp. 3257–3263, December 2015. [Online]. Available:
https://doi.org/10.1109%2Ftmech.2015.2409479

[75] L. Z̆lajpah, “On time optimal path control of manipulators
with bounded joint velocities and torques,” in Proceedings -
IEEE International Conference on Robotics and Automation.
IEEE, 1996, pp. 1572–1577. [Online]. Available: https:
//doi.org/10.1109%2Frobot.1996.506928

[76] K. Shin and N. McKay, “Minimum-time control of robotic manip-
ulators with geometric path constraints,” IEEE Transactions on
Automatic Control, vol. 30, no. 6, pp. 531–541, June 1985. [On-
line]. Available: https://doi.org/10.1109%2Ftac.1985.1104009

[77] H. Pham and Q.-C. Pham, “On the structure of the time-optimal
path parameterization problem with third-order constraints,”
in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2017. [Online]. Available:
https://doi.org/10.1109%2Ficra.2017.7989084

https://doi.org/10.1115%2F1.3143842
https://doi.org/10.1115%2F1.3143842
https://doi.org/10.1002/(sici)1099-1239(199805)8:6<463::aid-rnc312>3.0.co;2-r
https://doi.org/10.1002/(sici)1099-1239(199805)8:6<463::aid-rnc312>3.0.co;2-r
https://doi.org/10.1109%2F70.843167
https://doi.org/10.1109%2Ftmech.2015.2409479
https://doi.org/10.1109%2Frobot.1996.506928
https://doi.org/10.1109%2Frobot.1996.506928
https://doi.org/10.1109%2Ftac.1985.1104009
https://doi.org/10.1109%2Ficra.2017.7989084

304 BIBLIOGRAPHY

[78] Z. Shiller and H.-H. Lu, “Computation of path constrained time
optimal motions with dynamic singularities,” Journal of Dynamic
Systems, Measurement, and Control, vol. 114, no. 1, pp. 34–40,
1992. [Online]. Available: https://doi.org/10.1115%2F1.2896505

[79] K. Hauser, “Fast interpolation and time-optimization with
contact,” The International Journal of Robotics Research,
vol. 33, no. 9, pp. 1231–1250, August 2014. [Online]. Available:
https://doi.org/10.1177%2F0278364914527855

[80] A. Obradović, J. Vuković, N. Mladenović, and Z. Mitrović, “Time
optimal motions of mechanical system with a prescribed trajec-
tory,” Meccanica, vol. 46, no. 4, pp. 803–816, August 2010. [On-
line]. Available: https://doi.org/10.1007%2Fs11012-010-9339-3

[81] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-
optimal control of robotic manipulators along specified paths,”
The International Journal of Robotics Research, vol. 4,
no. 3, pp. 3–17, September 1985. [Online]. Available:
https://doi.org/10.1177%2F027836498500400301

[82] Z. Shiller, “On singular time-optimal control along specified
paths,” IEEE Transactions on Robotics and Automation,
vol. 10, no. 4, pp. 561–566, 1994. [Online]. Available:
https://doi.org/10.1109%2F70.313107

[83] M. Galicki and I. Pajak, “Optimal motions of redundant
manipulators with state equality constraints,” in Proceedings -
IEEE International Symposium on Assembly and Task Planning
(ISATP’99). IEEE, July 1999, pp. 181–185. [Online]. Available:
https://doi.org/10.1109%2Fisatp.1999.782956

[84] S.-J. Kim, D.-S. Choi, and I.-J. Ha, “A comparison principle
for state-constrained differential inequalities and its application
to time-optimal control,” IEEE Transactions on Automatic
Control, vol. 50, no. 7, pp. 967–983, July 2005. [Online].
Available: https://doi.org/10.1109%2Ftac.2005.851434

[85] M. Tarkiainen and Z. Shiller, “Time optimal motions of
manipulators with actuator dynamics,” in Proceedings -

https://doi.org/10.1115%2F1.2896505
https://doi.org/10.1177%2F0278364914527855
https://doi.org/10.1007%2Fs11012-010-9339-3
https://doi.org/10.1177%2F027836498500400301
https://doi.org/10.1109%2F70.313107
https://doi.org/10.1109%2Fisatp.1999.782956
https://doi.org/10.1109%2Ftac.2005.851434

BIBLIOGRAPHY 305

IEEE International Conference on Robotics and Automation.
IEEE Comput. Soc. Press, 1993. [Online]. Available: https:
//doi.org/10.1109%2Frobot.1993.291873

[86] K. Shin and N. McKay, “Robust trajectory planning for robotic
manipulators under payload uncertainties,” IEEE Transactions
on Automatic Control, vol. 32, no. 12, pp. 1044–1054, December
1987. [Online]. Available: https://doi.org/10.1109%2Ftac.1987.
1104523

[87] H. K. Khalil, Nonlinear Systems. Prentice Hall, 1996.

[88] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter,
and M. Diehl, “Time-optimal path tracking for robots: a convex
optimization approach,” IEEE Transactions on Automatic
Control, vol. 54, no. 10, pp. 2318–2327, October 2009. [Online].
Available: https://doi.org/10.1109%2Ftac.2009.2028959

[89] Y.-K. Choi, J.-H. Park, H.-S. Kim, and J. H. Kim,
“Optimal trajectory planning and sliding mode control
for robots using evolution strategy,” Robotica, vol. 18,
no. 4, pp. 423–428, July 2000. [Online]. Available: https:
//doi.org/10.1017%2Fs0263574799002118

[90] B. Craenen, A. Eiben, and E. Marchiori, “How to handle
constraints with evolutionary algorithms,” in The Practical
Handbook of Genetic Algorithms. Chapman and Hall/CRC,
December 2000. [Online]. Available: https://doi.org/10.1201%
2F9781420035568.ch10

[91] K. Shin and N. McKay, “A dynamic programming approach to
trajectory planning of robotic manipulators,” IEEE Transactions
on Automatic Control, vol. 31, no. 6, pp. 491–500, June
1986. [Online]. Available: https://doi.org/10.1109%2Ftac.1986.
1104317

[92] K. M. Burjorjee, “Generative fixation: a unifed explanation
for the adaptive capacity of simple recombinative genetic algo-
rithms,” PhD Thesis, Brandeis University, August 2009.

https://doi.org/10.1109%2Frobot.1993.291873
https://doi.org/10.1109%2Frobot.1993.291873
https://doi.org/10.1109%2Ftac.1987.1104523
https://doi.org/10.1109%2Ftac.1987.1104523
https://doi.org/10.1109%2Ftac.2009.2028959
https://doi.org/10.1017%2Fs0263574799002118
https://doi.org/10.1017%2Fs0263574799002118
https://doi.org/10.1201%2F9781420035568.ch10
https://doi.org/10.1201%2F9781420035568.ch10
https://doi.org/10.1109%2Ftac.1986.1104317
https://doi.org/10.1109%2Ftac.1986.1104317

306 BIBLIOGRAPHY

[93] M. Mitchell, An Introduction to Genetic Algorithms. The MIT
Press, Cambridge, MA, 1996.

[94] G. Zinni, “Analysis, design and implementation of a time-optimal
planner for robotic applications,” Master’s thesis, Politecnico di
Torino, 2019.

[95] O. Dahl and L. Nielsen, “Torque-limited path following by
online trajectory time scaling,” IEEE Transactions on Robotics
and Automation, vol. 6, no. 5, pp. 554–561, October 1990.
[Online]. Available: https://doi.org/10.1109%2F70.62044

[96] Z. Shiller and H. Chang, “Trajectory preshaping for high-
speed articulated systems,” Journal of Dynamic Systems,
Measurement, and Control, vol. 117, no. 3, pp. 304–310,
September 1995. [Online]. Available: https://doi.org/10.1115%
2F1.2799120

[97] Z. Shiller, H. Chang, and V. Wong, “The practical im-
plementation of time-optimal control for robotic manip-
ulators,” Robotics and Computer-Integrated Manufacturing,
vol. 12, no. 1, pp. 29–39, March 1996. [Online]. Available:
https://doi.org/10.1016%2F0736-5845%2895%2900026-7

[98] J. Kieffer, A. Cahill, and M. James, “Robust and accurate
time-optimal path-tracking control for robot manipulators,”
IEEE Transactions on Robotics and Automation, vol. 13,
no. 6, pp. 880–890, December 1997. [Online]. Available:
https://doi.org/10.1109%2F70.650167

[99] O. Dahl, “Path-constrained robot control with limited torques
- experimental evaluation,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 5, pp. 658–669, October 1994. [Online].
Available: https://doi.org/10.1109%2F70.326570

[100] J. Moreno-Valenzuela, “Tracking control of on-line time-scaled
trajectories for robot manipulators under constrained torques,”
in Proceedings - 2006 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2006, pp. 19–24. [Online].
Available: https://doi.org/10.1109%2Frobot.2006.1641155

https://doi.org/10.1109%2F70.62044
https://doi.org/10.1115%2F1.2799120
https://doi.org/10.1115%2F1.2799120
https://doi.org/10.1016%2F0736-5845%2895%2900026-7
https://doi.org/10.1109%2F70.650167
https://doi.org/10.1109%2F70.326570
https://doi.org/10.1109%2Frobot.2006.1641155

BIBLIOGRAPHY 307

[101] K. S. Eom, I. H. Suh, and W. K. Chung, “Disturbance
observer based path tracking control of robot manipulator
considering torque saturation,” Mechatronics, vol. 11, no. 3,
pp. 325–343, apr 2001. [Online]. Available: https://doi.org/10.
1016%2Fs0957-4158%2800%2900021-0

[102] W. Niu and M. Tomizuka, “A new approach of coordinated
motion control subjected to actuator saturation,” Journal
of Dynamic Systems, Measurement, and Control, vol. 123,
no. 3, pp. 496–504, July 1999. [Online]. Available: https:
//doi.org/10.1115%2F1.1387247

[103] H. Tam, “Minimum time closed-loop tracking of a specified path
by robot,” in 29th IEEE Conference on Decision and Control.
IEEE, December 1990, pp. 3132–3137. [Online]. Available:
https://doi.org/10.1109%2Fcdc.1990.203368

[104] M. Galicki, “Time-optimal controls of kinematically redundant
manipulators with geometric constraints,” IEEE Transactions
on Robotics and Automation, vol. 16, no. 1, pp. 89–93, 2000.
[Online]. Available: https://doi.org/10.1109%2F70.833194

[105] J. McCarthy and J. Bobrow, “The number of saturated
actuators and constraint forces during time-optimal movement
of a general robotic system,” IEEE Transactions on Robotics
and Automation, vol. 8, no. 3, pp. 407–409, June 1992. [Online].
Available: https://doi.org/10.1109%2F70.143358

[106] E. Ferrentino and P. Chiacchio, “Redundancy parametrization
in globally-optimal inverse kinematics,” in Advances in Robot
Kinematics 2018. Springer International Publishing, June
2018, pp. 47–55. [Online]. Available: https://doi.org/10.1007%
2F978-3-319-93188-3 6

[107] S. Ma and M. Watanabe, “Time optimal path-tracking control
of kinematically redundant manipulators,” JSME International
Journal Series C, vol. 47, no. 2, pp. 582–590, 2004. [Online].
Available: https://doi.org/10.1299%2Fjsmec.47.582

https://doi.org/10.1016%2Fs0957-4158%2800%2900021-0
https://doi.org/10.1016%2Fs0957-4158%2800%2900021-0
https://doi.org/10.1115%2F1.1387247
https://doi.org/10.1115%2F1.1387247
https://doi.org/10.1109%2Fcdc.1990.203368
https://doi.org/10.1109%2F70.833194
https://doi.org/10.1109%2F70.143358
https://doi.org/10.1007%2F978-3-319-93188-3_6
https://doi.org/10.1007%2F978-3-319-93188-3_6
https://doi.org/10.1299%2Fjsmec.47.582

308 BIBLIOGRAPHY

[108] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano,
“Closed-loop inverse kinematics schemes for constrained re-
dundant manipulators with task space augmentation and
task priority strategy,” The International Journal of Robotics
Research, vol. 10, no. 4, pp. 410–425, August 1991. [Online].
Available: https://doi.org/10.1177%2F027836499101000409

[109] C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, and
A. De Luca, “Dynamic identification of the Franka Emika Panda
robot with retrieval of feasible parameters using penalty-based
optimization,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 4147–4154, October 2019. [Online]. Available:
https://doi.org/10.1109%2Flra.2019.2931248

[110] Real-time linux wiki. [Online]. Available: https://rt.wiki.kernel.
org/

[111] Open Source Robotics Foundation. (2020) Ros control wiki
page. [Online]. Available: http://wiki.ros.org/ros control

[112] E. Ferrentino and H. Judiss Savino. (2020) Execution of time-
optimal trajectories with Franka Emika’s Panda robot. [Online].
Available: https://www.youtube.com/watch?v=9xStJSPJ3bM

[113] S. M. LaValle, “Rapidly-exploring random trees: A new tool for
path planning,” 1998, iowa State University TR 98-11.

[114] M. Elbanhawi and M. Simic, “Sampling-based robot motion
planning: A review,” IEEE Access, vol. 2, pp. 56–77,
2014. [Online]. Available: https://doi.org/10.1109%2Faccess.
2014.2302442

[115] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The International Journal of Robotics
Research, vol. 30, no. 7, pp. 846–894, jun 2011. [Online].
Available: https://doi.org/10.1177%2F0278364911406761

[116] J. H. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation
of time-optimal off-road vehicle maneuvers using the rrt*,”
in IEEE Conference on Decision and Control and European

https://doi.org/10.1177%2F027836499101000409
https://doi.org/10.1109%2Flra.2019.2931248
https://rt.wiki.kernel.org/
https://rt.wiki.kernel.org/
http://wiki.ros.org/ros_control
https://www.youtube.com/watch?v=9xStJSPJ3bM
https://doi.org/10.1109%2Faccess.2014.2302442
https://doi.org/10.1109%2Faccess.2014.2302442
https://doi.org/10.1177%2F0278364911406761

BIBLIOGRAPHY 309

Control Conference. IEEE, dec 2011. [Online]. Available:
https://doi.org/10.1109%2Fcdc.2011.6161521

[117] M. Cefalo and G. Oriolo, “A general framework for task-
constrained motion planning with moving obstacles,” Robotica,
vol. 37, no. 3, pp. 575–598, oct 2018. [Online]. Available:
https://doi.org/10.1017%2Fs0263574718001182

https://doi.org/10.1109%2Fcdc.2011.6161521
https://doi.org/10.1017%2Fs0263574718001182

	Introduction
	The big picture
	Motivation and scope
	Objectives

	Inverse kinematics of redundant robots
	Introduction
	Problem formulation
	Local solutions
	Global solution
	Reduced order solutions
	Topological analysis of inverse kinematic mappings
	Dynamic programming
	Application to a 7-DOF robotic arm

	Time-optimal planning of non-redundant robots
	Introduction
	Problem formulation
	Analysis in the domain
	Resolution techniques
	Use case definition and resolution by identification of switching points
	Resolution with a genetic algorithm
	Resolution with dynamic programming
	Trajectory tracking

	Time-optimal planning of redundant robots
	Existing problem formulations
	Time-optimal control of redundant robots with dynamic programming
	Application to a 7-DOF robotic arm

	Conclusions
	Limitations and improvements on planning
	Limitations and improvements on control
	Application to other systems

	Bibliography

