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Introduction

This thesis is mainly devoted to the study of existence results for noncoercive

nonlinear Dirichlet problems in unbounded domains.

Let Ω be an open subset of RN , N > 2. Consider the classical linear Dirichlet

problem


−div(M(x)∇u) + µu = −div(uE(x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω),

(1)

where M : Ω → RN2 is a measurable matrix field such that there exist α,

β ∈ R+ such that

α|ξ|2 ≤M(x) ξ · ξ, |M(x)| ≤ β, a.e. x ∈ Ω, ∀ ξ ∈ RN , (2)

µ > 0, (3)

E : Ω→ RN is a vector field (4)
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and

f : Ω→ R is a real function. (5)

In the Sixties, Guido Stampacchia, in [27, 28], studies problem (1), assuming

that the set Ω is bounded.

He proves existence, uniqueness and regularity results for (1) considering that

the problem is coercive due to some particular assumptions on µ and |E|,

with |E| belonging to an opportune Sobolev space.

Namely, in [27], he shows, among other important results, that, if µ > 0

is large enough, then problem (1) is coercive and that, if ‖E‖LN (Ω) is small

enough, problem (1) still remains coercive, even if µ is small or null. Under

hypotheses (2), (4), (5), with f ∈ L
2N
N+2 (Ω), and if the problem is coercive,

he proves that (1) has a unique weak solution u. In particular, in order to

obtain these results, he uses the Lax-Milgram Lemma taking µ large enough

or measure of Ω small enough.

Successively, in [3], Lucio Boccardo obtaines the same results, also con-

sidering the case µ = 0, assuming Ω bounded, |E| ∈ LN(Ω) and f ∈ Lm(Ω),

1 ≤ m <
N

2 .

We point out that the main difficulty here is due to the noncoercivity of the

operator −div(M(x)∇u) + div(uE(x)). Indeed, on ‖E‖LN (Ω) no smallness

assumptions are done, while, as already observed, in order to obtain the co-

ercivity in the case µ = 0, one has to require that ‖E‖LN (Ω) is small enough.

The lack of the coercivity of the operator does not allow to use classical the-

orems to achieve the existence and uniqueness results.
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Thus, in order to prove that there exists a unique solution u, Lucio Boccardo,

inspired from the papers [27, 28] by Guido Stampacchia and from [9, 10, 12],

follows a nonlinear approach. Namely, he approximates noncoercive linear

problem (1) by nonlinear coercive problems. By means of Schauder fixed

point Theorem, he shows that, for every fixed n, there exists a weak solu-

tion un of the approximate problem. Later on, using the classical truncate

function introduced by Stampacchia, he obtaines the boundedness of un in

W 1,2
0 (Ω). Exploiting this result and passing to the limit in the variational

formulation of the problem, he firstly proves the existence and, later on, the

uniqueness result.

Few years later, in [4], Lucio Boccardo considers, always in the case of

bounded domains, a nonlinear version of the noncoercive boundary value

problem (1) with µ = 0 studied in [3]. He proves existence and uniqueness

results assuming 1 < p < N , |E| ∈ L
N
p−1 (Ω) and f ∈ Lm(Ω) with m ≥ (p∗)′,

where by ( )∗ we denote the Sobolev conjugate of ( ) and by ( )′ the Hölder

conjugate of ( ).

In order to do this, the key point is to approximate his problem by co-

ercive nonlinear problems, following the same approach of linear case. In

particular, he obtaines the existence result for the approximate problems by

means of Schauder fixed point Theorem and, then, he proves the bounded-

ness in W 1,p
0 (Ω) of these solutions using Stampacchia’s truncate functions.

Successively, he passes to the limit in the variational formulation proving the

existence of a weak solution of the original problem. Finally, he is able to

obtain also the uniqueness result for u, but only for 1 < p ≤ 2.
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The study of problem (1) is extended to the case of Ω unbounded for the

first time in [14] by Gianfranco Bottaro and Maria Erminia Marina. They

assume that the problem is coercive and give existence and uniqueness results

under opportune hypotheses on the coefficients. Successively, in [29], Maria

Transirico and Mario Troisi generalize the results of [14] proving, among

other important results, that problem (1) admits a unique weak solution u.

This is done always assuming the coercivity of the bilinear form associated

to the matrix M , but under assumptions on µ, |E| and f weaker than those

of [14].

The main difficulties one has to deal with when working on unbounded sets

are the following well known ones:

• there are no natural decreasing inclusions among the Lp(Ω) spaces;

• there are no compactness results;

• the norm in W 1,p
0 (Ω) is not equivalent to the norm of gradient since

Poincaré inequality does not hold.

This has lead to consider the Mp(Ω) spaces, with p ∈ [1,+∞[, introduced

for the firts time in [29] and recently recalled in [1].

We remind that, for p ∈ [1,+∞[,Mp(Ω) denotes the space of all the functions

f in Lploc(Ω) such that

‖f‖Mp(Ω) = sup
x∈Ω
‖f‖Lp(Ω∩B(x,1)) < +∞,

endowed with the previous norm.
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The importance of these Sobolev spaces derives from their special properties.

Indeed, for these spaces the natural decreasing inclusions are valid also in

the case of unbounded domains. Moreover, a compactness result holds (see

Theorem 1.10, Chapter 1).

The noncoercive linear problem, analysed by Lucio Boccardo in [3], is

generalized by Sara Monsurrò and Maria Transirico in [24], to the case

when Ω is unbounded, with different hypotheses due to the unboundedness

of the domain. The authors suppose µ > 0, |E| ∈ L2(Ω) ∩ MN
0 (Ω) and

f ∈ L1(Ω) ∩ L
2N
N+2 (Ω).

Under these assumptions, in [24], the authors obtain existence and uniqueness

results by approximating the noncoercive linear problem via coercive nonlin-

ear problems and, then, passing to the limit in the variational formulation

of approximate problems. Namely, by means of Schauder fixed point Theo-

rem, they prove that there exists a solution un of the approximate problem,

for every fixed n. Later on, using the classical truncate function introduced

by Stampacchia, the authors prove that the un are bounded in W 1,2
0 (Ω), for

every fixed n. Thus, they can pass to the limit using the compactness re-

sult stated in Theorem 1.10, that applies in view of the assumption on the

coefficient appearing in the noncoercive term. This leads to the proof of the

existence of a weak solution of their problem. Successively, they also obtain

the uniqueness of the solution.

Inspired by the work [4], in [2], we consider a nonlinear version of the

noncoercive boundary value problem, in the case of unbounded domains.

Aim of the paper [2] is to extend the results of [24] to the nonlinear case,
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when the set Ω is unbounded. We consider the problem



−div(b(x)|∇u|p−2∇u) + µ|u|p−2u =

−div(|u|p−2uE(x)) + f(x) in Ω,

u ∈ W 1,p
0 (Ω),

(6)

assuming

1 < p < N,

α ≤ b(x) ≤ β, for some 0 < α ≤ β, a.e. x ∈ Ω,

µ > 0,

|E| ∈ Lp′(Ω) ∩M
N
p−1

0 (Ω)

and

f ∈ L1(Ω) ∩ Lm(Ω), m ≥ (p∗)′.

We emphasize the presence of the noncoercive operator−div(b(x)|∇u|p−2∇u)+

div(|u|p−2uE(x)), where on the second term no smallness assumptions are

done. Due to the unboundedness of the domain, the hypothesis µ > 0 is

necessary (see Section 3.1). Despite this, since µ is not required to be large

enough, the operator in (6) still remains noncoercive.

The technique used to achieve the existence result follows by the ideas of

Lucio Boccardo used in [3] and in [4]. Hence, in order to prove the existence

of a solution of (6), our noncoercive nonlinear problem is approximated by
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coercive nonlinear problems, depending on n, and, then, we pass to the limit.

Differently from [4] and [24] where the existence of the solutions un of ap-

proximate problems is an immediate consequence of the Schauder fixed point

Theorem, here it must be explicitly proved by means of the Surjectivity The-

orem. Successively, we prove the boundedness in W 1,p
0 (Ω) of these solutions,

using Stampacchia’s truncate functions. Later on, thanks to the hypothesis

on the coefficient of the noncoercive term and in view of the compactness

result in MN
0 (Ω), it is possible to pass to the limit obtaining the existence

of the solution of the initial problem (6). The proof of the uniqueness of the

solution is quite delicate and will be object of a forthcoming study. Also in

the case of bounded domains, in [4], only a partial result (1 < p ≤ 2) has

been achieved.

This thesis is organized as follows.

In Chapter 1 we give an overview about the Mp(Ω) spaces. In particular,

we recall the definitions and the properties of some important subspaces of

Mp(Ω). One of the most relevant results of this Chapter is contained in

Theorem 1.10 that deals with some compactness results holding when the

coefficients of the operators belong to this class of suitable Sobolev spaces.

Chapter 2 is devoted to existence, uniqueness and regularity results for

coercive and noncoercive elliptic Dirichlet problems on bounded domains.

Firstly, we recall the papers [27, 28] by Guido Stampacchia about coercive

problems in the linear case and, later on, the main techniques introduced by

Lucio Boccardo, both in the linear case and in nonlinear one (see [3, 4]).

Chapter 3 opens with the analysis of the main difficulties one has to
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deal with when working on unbounded sets. Then, preliminary results, that

are useful in the linear and nonlinear case, are recalled. Successively, the

existence, uniqueness and regularity results for noncoercive elliptic Dirichlet

problems on unbounded domains, treated in the paper [24] by Sara Monsurrò

and Maria Transirico, are examined. In this thesis, we give the complete

proof of a regularity result, contained in Lemma 3.9, that was only outlined

by authors in [24].

Finally, in Chapter 4, we study the noncoercive nonlinear elliptic prob-

lem in unbounded domains. We consider some approximate problems, that

depend on n, and give the existence of these coercive nonlinear problems by

means of the Surjectivity Theorem. Later on, thanks to some boundedness

results of the solutions of the approximate problems, it is possible to pass to

the limit obtaining the existence of the solution of the initial problem. The

results of this section are contained in the paper [2] by Emilia Anna Alfano

and Sara Monsurrò.

8



Chapter 1

A class of suitable Sobolev

spaces

In this chapter we recall the definition and some properties of a class of

functional spaces, suitable for our aim, introduced for the first time in [29].

1.1 Some notations

Let F be a subset of RN , N > 2. We define F (x, t) = F ∩ B(x, t), for every

x ∈ F and every t ∈ R+, where B(x, t) is the open ball with center x and

radius t, and F (x) = F ∩B(x, 1). The σ-algebra of all Lebesgue measurable

subset of F is denoted by Σ(F ).

Given A ∈ Σ(F ), |A| denotes the Lebesgue measure of A and χA denotes

its characteristic function. We set by D(F ) the class of restrictions to F of

functions ζ ∈ C∞0 (RN) with F ∩ supp ζ ⊆ F and, for p ∈ [1,+∞[, we denote
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by Lploc(F ) the class of all functions g : F → R such that ζg ∈ Lp(F ) for any

ζ ∈ D(F ).

1.2 The space M p(Ω)

From now on, Ω is assumed to be an unbounded open subset of RN , N > 2.

For p ∈ [1,+∞[ and for fixed t ∈ R+, Mp(Ω, t) denotes the space of all the

functions f in Lploc(Ω) such that

‖f‖Mp(Ω,t) = sup
x∈Ω
‖f‖Lp(Ω(x,t)) < +∞, (1.1)

endowed with the norm defined in (1.1).

The properties ofMp(Ω, t) spaces and of some of their subspaces, introduced

for the first time in [29], are studied in different works (see, for istance,

[1, 15, 30, 31]). Here we recall some results on these spaces, useful in the

sequel.

In the next proposition we prove that, for every t ∈ R+, the Mp(Ω, t) spaces

are isomorphic.

Proposition 1.1. For every t1 and t2 ∈ R+:

i) f ∈Mp(Ω, t1) is equivalent to f ∈Mp(Ω, t2);

ii) if t2 > t1, we have

‖f‖Mp(Ω,t1) ≤ ‖f‖Mp(Ω,t2) ≤ 8N
(
t2
t1

)N
‖f‖Mp(Ω,t1), ∀f ∈Mp(Ω, t1).
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Proof. It is sufficient to prove ii).

Let t2 > t1. Then

‖f‖Mp(Ω,t1) = sup
x∈Ω
‖f‖Lp(Ω(x,t1)) ≤ sup

x∈Ω
‖f‖Lp(Ω(x,t2)) = ‖f‖Mp(Ω,t2).

In order to prove the converse inequality, we observe that, for every x ∈ Ω,

Ω ∩B(x, t2) ⊂ Ω ∩Q(x, 2t2)

where Q(x, 2t2) is the cube with center x, sides parallel to the axes and edges

with length 2t2.

Since t2 > t1, there exists k ∈ N such that

2k−1 <
t2
t1
≤ 2k

that implies
2t2

2k+2 ≤
t1
2 .

Therefore, every cube Ω∩Q(x, 2t2) can be diadically decomposed in 2N(k+2)

cubes with sides 2t2
2k+2 and center xi ∈ Ω∩Q(x, 2t2). Furthermore, each cube

is contained in the ball with center xi and radius t12 . Thus

Q(x, 2t2) =
2N(k+2)⋃
i=1

Q
(
xi,

2t2
2k+2

)
⊂

2N(k+2)⋃
i=1

B
(
xi,

t1
2

)
.
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Hence, for every fixed x ∈ Ω, one has

‖f‖Lp(Ω(x,t2)) ≤
2N(k+2)∑
i=1

‖f‖Lp(Ω(xi,
t1
2 )) ≤

2N(k+2)∑
i=1

‖f‖Lp(Ω(xi,t1))

≤
2N(k+2)∑
i=1

‖f‖Mp(Ω,t1) = 2N(k+2)‖f‖Mp(Ω,t1).

In view of the choice of k and thanks to the arbitrariness of x ∈ Ω, we obtain

‖f‖Mp(Ω,t2) ≤ 8N
(
t2
t1

)N
‖f‖Mp(Ω,t1).

From now on, we consider the space

Mp(Ω) = Mp(Ω, 1). (1.2)

The following result shows that, also in the case of unbounded domains,

the natural inclusions are still valid forMp(Ω) spaces, differently from Lp(Ω)

ones.

Proposition 1.2. For every p, q ∈ [1,+∞[,

(i) Lp(Ω) ⊂Mp(Ω) and L∞(Ω) ⊂Mp(Ω);

(ii) M q(Ω) ⊆Mp(Ω) if p ≤ q.

Proof. We start proving (i).
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If f ∈ Lp(Ω), then

‖f‖Mp(Ω) = sup
x∈Ω
‖f‖Lp(Ω(x)) ≤ ‖f‖Lp(Ω).

If f ∈ L∞(Ω), since Ω(x) ⊂ B(x, 1), then

‖f‖Mp(Ω) = sup
x∈Ω
‖f‖Lp(Ω(x)) ≤ ‖f‖L∞(Ω) sup

x∈Ω
|Ω(x)|

1
p ≤ C ‖f‖L∞(Ω),

where C = C(N, p). This gives (i).

Now, let us prove (ii).

Let p ≤ q. For every fixed x ∈ Ω, since Ω(x) ⊂ B(x, 1), by Hölder inequality

one gets

‖f‖Lp(Ω(x)) ≤ ‖f‖Lq(Ω(x)) · |Ω(x)|
1
p
− 1
q ≤ C ‖f‖Lq(Ω(x)) ≤ C ‖f‖Mq(Ω),

where C = C(N, p, q). Thanks to the arbitrariness of x ∈ Ω, we obtain

‖f‖Mp(Ω) = sup
x∈Ω
‖f‖Lp(Ω(x)) ≤ C‖f‖Mq(Ω).

This gives (ii).

We observe that the previous inclusions are both algebraic and topologi-

cal. Moreover, in the case of Ω bounded, we point out that Propositions 1.1

and 1.2 show that f ∈ Mp(Ω) is equivalent to f ∈ Lp(Ω). This justifies the

choice to consider Ω unbounded.
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1.3 The space M̃ p(Ω)

For p ∈ [1,+∞[, M̃p(Ω) is the subspace of Mp(Ω) made up of the functions

f ∈Mp(Ω) such that

lim
h→+∞

sup
E∈Σ(Ω)

sup
x∈Ω
|E(x)|≤1/h

‖fχE‖Mp(Ω) = 0. (1.3)

This is equivalent to require that

∀ε ∈ R+ ∃hε ∈ R+ : ∀E ∈ Σ(Ω), sup
x∈Ω
|E(x)| ≤ 1

hε
⇒ ‖fχE‖Mp(Ω) < ε. (1.4)

The next two propositions show that M̃p(Ω) is a closed subspace of Mp(Ω).

Proposition 1.3. For every p ∈ [1,+∞[,

L∞(Ω) ⊂ M̃p(Ω).

Proof. Proposition 1.2 gives L∞(Ω) ⊂Mp(Ω).

Let E ∈ Σ(Ω) and f ∈ L∞(Ω). One has

‖fχE‖Mp(Ω) = sup
x∈Ω
‖fχE‖Lp(Ω(x)) ≤ ‖f‖L∞(Ω) · sup

x∈Ω
|E(x)|

1
p . (1.5)

Fixed ε > 0, let hε > 0 be such that

hε =
(
‖f‖L∞(Ω)

ε

)p
.
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If we show that sup
x∈Ω
|E(x)| ≤ 1

hε
, we obtain

‖fχE‖Mp(Ω) ≤ ‖f‖L∞(Ω) ·
ε

‖f‖L∞(Ω)
= ε

and hence f ∈ M̃p(Ω).

Proposition 1.4. For every p ∈ [1,+∞[,

M̃p(Ω) is the closure of L∞(Ω) in Mp(Ω).

Proof. Let f ∈ M̃p(Ω). For every k ∈ N, we define

Fk = {x ∈ Ω : |f(x)| ≥ k}. (1.6)

Now, putting Fk(x) = Fk ∩B(x, 1) and since

‖f‖Mp(Ω) = sup
x∈Ω
‖f‖Lp(Ω(x)) ≥ sup

x∈Ω
‖f‖Lp(Fk(x)) ≥ k sup

x∈Ω
|Fk(x)|

1
p ,

one has

sup
x∈Ω
|Fk(x)| ≤

(
‖f‖Mp(Ω)

k

)p
. (1.7)

Fixed ε > 0, let hε such that (1.4) is verified, we put

kε = ‖f‖Mp(Ω) · h
1
p
ε .
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By (1.7), one has

sup
x∈Ω
|Fkε(x)| ≤ 1

hε
,

that implies

‖fχFkε‖Mp(Ω) < ε. (1.8)

We put fε = f − fχFkε . Observing that

fε =


0 if x ∈ χFkε

f if x ∈ Ω \ χFkε ,

by (1.6), we obtain fε ∈ L∞(Ω). Furthermore, by (1.8),

‖f − fε‖Mp(Ω) = ‖fχFkε‖Mp(Ω) < ε,

then f belongs to the closure of L∞(Ω) in Mp(Ω).

Conversely, let f ∈ Mp(Ω) the limit of a sequence (fh)h∈N of functions of

L∞(Ω). Thus, thanks to Proposition 1.3, for every ε > 0 there exists hε > 0

such that, if E ∈ Σ(Ω) with sup
x∈Ω
|E(x)| ≤ 1

hε
, we have

‖f − fhε‖Mp(Ω) <
ε

2

and

‖fhεχE‖Mp(Ω) <
ε

2 .
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Hence,

‖fχE‖Mp(Ω) = ‖(f − fhε)χE‖Mp(Ω) + ‖fhεχE‖Mp(Ω)

≤ ‖f − fhε‖Mp(Ω) + ‖fhεχE‖Mp(Ω) < ε,

that gives f ∈ M̃p(Ω).

Remark 1. From Proposition 1.2 it easily follows that, for every p, q ∈

[1,+∞[ with p ≤ q,

M̃ q(Ω) ⊆ M̃p(Ω). (1.9)

The following result improves (1.9) and (ii) of Proposition 1.2.

Proposition 1.5. For every p, q ∈ [1,+∞[ with p < q,

M q(Ω) ⊂ M̃p(Ω).

Proof. Proposition 1.2 gives M q(Ω) ⊂ Mp(Ω). Now, let E ∈ Σ(Ω) and

f ∈M q(Ω), by Hölder inequality, one has

‖fχE‖Mp(Ω) = sup
x∈Ω
‖fχE‖Lp(Ω(x)) ≤ sup

x∈Ω
‖f‖Lq(Ω(x)) · |Ω(x) ∩ E|

1
p
− 1
q

≤ ‖f‖Mq(Ω) · sup
x∈Ω
|E(x)|

1
p
− 1
q .

For ε > 0, let hε > 0 such that hε =
(
‖f‖Mq(Ω)

ε

) pq
q−p

.
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If sup
x∈Ω
|E(x)| ≤ 1

hε
, we obtain

‖fχE‖Mp(Ω) < ‖f‖Mq(Ω) ·
( 1
hε

) q−p
pq

= ε

that implies f ∈ M̃p(Ω).

1.4 The space M p
0 (Ω)

For p ∈ [1,+∞[, Mp
0 (Ω) is the subspace of Mp(Ω) made up of the functions

f ∈Mp(Ω) such that

lim
|x|→+∞

‖f‖Lp(Ω(x)) = 0. (1.10)

This is equivalent to require that

∀ε ∈ R+ ∃kε ∈ R+ s.t. ∀x ∈ Ω, |x| > kε ⇒ ‖f‖Lp(Ω(x)) < ε. (1.11)

Now, we recall the following important results.

Proposition 1.6. For every p ∈ [1,+∞[,

(i) f ∈ Lploc(Ω), lim
|x|→+∞

f(x) = 0 ⇒ f ∈Mp
0 (Ω);

(ii) f ∈ L∞(Ω), lim
|x|→+∞

‖f‖L1(Ω(x)) = 0 ⇒ f ∈Mp
0 (Ω).

Proof. We start proving (i).
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Let f ∈ Lploc(Ω) and lim
|x|→+∞

f(x) = 0. Then

∀ε ∈ R+ ∃kε ∈ R+ s.t. ∀x ∈ Ω, |x| > kε ⇒ |f(x)| < ε.

Hence, since Ω(x) ⊂ B(x, 1), for x ∈ Ω such that |x| > kε,

‖f‖Lp(Ω(x)) ≤ ε |Ω(x)|
1
p < C · ε,

where C = C(N, p).

This implies that f ∈Mp
0 (Ω) and, thus, (i) holds.

Now, we want to prove (ii).

Let f ∈ L∞(Ω) and lim
|x|→+∞

‖f‖L1(Ω(x)) = 0. Then

∀ε ∈ R+ ∃kε ∈ R+ s.t. ∀x ∈ Ω, |x| > kε ⇒ ‖f‖L1(Ω(x)) < ε.

Hence, for x ∈ Ω such that |x| > kε,

‖f‖Lp(Ω(x)) =
(∫

Ω(x)
|f |p−1 · |f |dy

) 1
p

≤ ‖f‖
p−1
p

L∞(Ω) · ‖f‖
1
p

L1(Ω) < ‖f‖
p−1
p

L∞(Ω) · ε
1
p .

This implies that f ∈Mp
0 (Ω) and, thus, (ii) holds.

Now, we introduce a class of functions useful in the sequel.

For h ∈ R+, we denote by ζh a function of class C∞0 (RN) such that

0 ≤ ζh ≤ 1, ζh|
B(0,h)

= 1, supp ζh ⊂ B(0, 2h). (1.12)
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In order to prove that alsoMp
0 (Ω) is a closed subspace ofMp(Ω), we focus

on the relationship between Mp
0 (Ω) and M̃p(Ω).

Proposition 1.7. For every p ∈ [1,+∞[, one has that f ∈ Mp
0 (Ω) if and

only if f ∈ M̃p(Ω) and

lim
h→+∞

‖(1− ζh)f‖Mp(Ω) = 0. (1.13)

Proof. We start proving that, if f ∈ Mp
0 (Ω), then f ∈ M̃p(Ω) and

lim
h→+∞

‖(1− ζh)f‖Mp(Ω) = 0.

Observe that, by the properties of ζh, one has, for r ≥ 2h,

‖(1− ζr)f‖Mp(Ω) ≤ ‖(1− ζ2h)f‖Mp(Ω) ≤ ‖fχΩ\B(0,2h)‖Mp(Ω). (1.14)

If f ∈Mp
0 (Ω), then

∀ε ∈ R+ ∃hε ∈ R+ s.t. ∀x ∈ Ω, |x| > 2hε ⇒ ‖f‖Lp(Ω(x)) < ε. (1.15)

Therefore, by (1.14) and (1.15), one has that for every ε > 0 there exists

rε ≥ 2hε such that

‖(1− ζrε)f‖Mp(Ω) ≤ ‖fχΩ\B(0,2hε)‖Mp(Ω)

≤ sup
x∈Ω
‖f‖Lp(Ω(x)\B(0,2hε)) ≤ sup

x∈Ω
|x|>2hε

‖f‖Lp(Ω(x)) < ε,
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that is

lim
h→+∞

‖(1− ζh)f‖Mp(Ω) = 0. (1.16)

Let ε > 0 and E ∈ Σ(Ω). By (1.16), there exists hε > 0 such that

‖fχE‖Mp(Ω) ≤ ‖(1− ζhε)χE f‖Mp(Ω) + ‖ζhε χE f‖Mp(Ω)

≤ ‖(1− ζhε) f‖Mp(Ω) + ‖ζhε χE f‖Mp(Ω)

<
ε

2 + ‖ζhε χE f‖Mp(Ω).

(1.17)

Observe that, by the properties of ζhε , one has

‖ζhε χE f‖Mp(Ω) = sup
x∈Ω
‖ζhε χE f‖Lp(Ω(x)) ≤ sup

x∈Ω
‖f‖Lp(E(x)∩B(0,2hε)). (1.18)

On the other hand, there exist mε ∈ N and x1, ..., xmε ∈ Ω such that

E(x) ∩B(0, 2hε) ⊂
mε⋃
i=1

E ∩B(xi, 1)

that implies

|E(x) ∩B(0, 2hε)| ≤
mε∑
i=1
|E ∩B(xi, 1)| ≤ mε sup

x∈Ω
|E(x)|. (1.19)

Thanks to the absolute continuity in the spaces Lp(Ω), one has that there

exists δε > 0 such that ‖f‖Lp(A) <
ε

2, if A ∈ Σ(Ω) with |A| < δε .
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Therefore, if sup
x∈Ω
|E(x)| ≤ δε

mε

, from (1.19), we have

‖f‖Lp(E(x)∩B(0,2hε)) <
ε

2 .

Thus, by (1.18),

‖ζhε χE f‖Mp(Ω) <
ε

2 . (1.20)

From (1.17) and (1.20), it follows that f ∈ M̃p(Ω).

Now we prove that, if f ∈ M̃p(Ω) and (1.13) holds, then f ∈Mp
0 (Ω).

From the hypotheses and from the properties of the functions ζh, we have

∀ε ∈ R+ ∃hε > 1 s.t. ‖(1− ζhε)f‖Mp(Ω) < ε.

For |x| > 3hε, one has that, if y ∈ B(x, 1), then |y| > 2hε. Therefore, for

x ∈ Ω such that |x| > 3hε, one has

‖f‖Lp(Ω(x)) = ‖(1− ζhε)f‖Lp(Ω(x)) ≤ ‖(1− ζhε)f‖Mp(Ω) < ε

and, hence, f ∈Mp
0 (Ω).

Remark 2. The following algebraic and topological inclusions are valid:

M q
0 (Ω) ⊆Mp

0 (Ω) if 1 ≤ p ≤ q ≤ +∞, (1.21)

Lp(Ω) ⊂Mp
0 (Ω) if 1 ≤ p < +∞. (1.22)
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Remark 3. For the readers’ convenience, let us recall that, as proved in [30],

if f ∈Mp(Ω) the following properties are equivalent:

i) f ∈Mp
0 (Ω),

ii) for any ε ∈ R+ there exist νε, σε ∈ R+ such that

E ∈ Σ(Ω), |E(0, σε)| ≤ νε ⇒ ||fχE ||Mp(Ω) ≤ ε, (1.23)

iii) for any ε ∈ R+ there exist hε, kε ∈ R+ such that

‖(1− ζhε) f‖Mp(Ω) ≤ ε, E ∈ Σ(Ω), sup
x∈Ω
|E(x)| ≤ 1

kε

⇒ ‖f χ
E
‖Mp(Ω) ≤ ε.

(1.24)

Now, we are able to prove the following closure result.

Proposition 1.8. For every p ∈ [1,+∞[,

Mp
0 (Ω) is the closure of C∞0 (Ω) in Mp(Ω).

Proof. Let f ∈ Mp
0 (Ω). Fixed ε > 0, from Proposition 1.7 there exists

hε > 0 such that

‖(1− ζhε)f‖Mp(Ω) <
ε

2 . (1.25)

Observe that, from the properties of the functions ζh and from Proposition

1.2, we have

‖ζh f‖Mp(Ω) ≤ ‖f‖Mp(Ω) ≤ ‖f‖Lp(Ω) ∀f ∈ Lp(Ω) and ∀h > 0. (1.26)
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Moreover, since f ∈ Lploc(Ω), we know that ζ2hεf ∈ Lp(Ω). From the density

of C∞0 (Ω) in Lp(Ω), there exists ϕkε ∈ C∞0 (Ω) such that

‖ζ2hεf − ϕkε‖Lp(Ω) <
ε

2 . (1.27)

Since ζ2h ζh = ζh, by (1.25), (1.26) and (1.27), one obtains

‖f − ζhεϕkε‖Mp(Ω) ≤ ‖f − ζhεf‖Mp(Ω) + ‖ζhεf − ζhεϕkε‖Mp(Ω)

= ‖(1− ζhε)f‖Mp(Ω) + ‖ζ2hεζhεf − ζhεϕkε‖Mp(Ω)

<
ε

2 + ‖ζhε(ζ2hεf − ϕkε)‖Mp(Ω) ≤
ε

2 + ‖ζ2hεf − ϕkε‖Lp(Ω) <
ε

2 + ε

2 = ε.

Namely, since ζhεϕkε ∈ C∞0 (Ω), f is in the closure of C∞0 (Ω).

Now, we suppose that f ∈ Mp(Ω) and that there exists a sequence ϕk ∈

C∞0 (Ω) (k ∈ N) such that

lim
k→+∞

‖f − ϕk‖Mp(Ω) = 0. (1.28)

For every k ∈ N, let hk > 0 such that suppϕk ⊂ B(0, hk).

From the properties of ζhk , we have

‖(1− ζhk)f‖Mp(Ω) = ‖(1− ζhk)(f − ϕk)‖Mp(Ω) ≤ ‖f − ϕk‖Mp(Ω),
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from which

lim
k→+∞

‖(1− ζhk)f‖Mp(Ω) ≤ lim
k→+∞

‖f − ϕk‖Mp(Ω) = 0. (1.29)

Now, let E ∈ Σ(Ω). One has

‖fχE‖Mp(Ω) ≤ ‖(f − ϕk)χE‖Mp(Ω) + ‖ϕkχE‖Mp(Ω)

≤ ‖f − ϕk‖Mp(Ω) + ‖ϕkχE‖Mp(Ω).

(1.30)

Observing that ϕk ∈ C∞0 (Ω) and that C∞0 (Ω) ⊂ L∞(Ω) ⊂ M̃p(Ω), by (1.28)

and (1.30) it follows that f ∈ M̃p(Ω). Therefore, by (1.29) and Proposition

1.7, we obtain that f ∈Mp
0 (Ω).

1.5 Further results about the M p(Ω) spaces

In this section we recall some properties of the Mp(Ω) spaces, that will be

useful in the study of our differential operators.

Firstly, we define the modulus of continuity of a function in Mp
0 (Ω).

Namely, if g belongs to Mp
0 (Ω), a modulus of continuity of g in Mp

0 (Ω) is
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an application σo
p[g] : R+ → R+ such that

‖(1−ζh)g‖Mp(Ω) + sup
E∈Σ(Ω)

sup
x∈Ω
|E(x)|≤ 1

h

‖g χ
E
‖Mp(Ω) ≤ σo

p[g](h),

with lim
h→+∞

σo
p[g](h) = 0 .

(1.31)

This definition is well posed thanks to Proposition 1.7 and to the definition

of M̃p(Ω).

Let us remind the following result proved in Lemma 3.1 of [30], see also

[15], adapted here to our needs, that allow us to approximate functions in

Mp
0 (Ω) by means of sequences of functions in L1(Ω) ∩ Lp(Ω).

Lemma 1.9. If g ∈ Mp
0 (Ω), with p > 1, then there exists a sequence gh,

h ∈ N, with gh ∈ L1(Ω) ∩ Lp(Ω), such that

gh → g in Mp(Ω), (1.32)

|gh(x)| ≤ |g(x)|, a.e. in Ω,∀h ∈ N, (1.33)

σo
p[gh] = σo

p[g],∀h ∈ N. (1.34)

Now, we recall the following results concerning the multiplication operator

u ∈ W 1,p
0 (Ω) −→ g u ∈ Lp(Ω), (1.35)

where the function g belongs to MN(Ω).
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These results have been proved in [31] (see also [15]) in a more general case.

Here, we report only a specific one, required in the sequel.

Theorem 1.10. Let 1 < p < N . If g ∈ MN(Ω), then the operator in (1.35)

is bounded and there exists a positive constant c such that

‖g u‖Lp(Ω) ≤ c ‖g‖MN (Ω) ‖u‖W 1,p(Ω) ∀u ∈ W 1,p
0 (Ω), (1.36)

with c = c (N, p).

Moreover, if g ∈MN
0 (Ω), then the operator in (1.35) is also compact.
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Chapter 2

Elliptic equations in bounded

domains

This chapter is dedicated to recall the most important existence, uniqueness

and regularity results about coercive and noncoercive elliptic Dirichlet prob-

lems on bounded domains.

We start with the milestones results by Guido Stampacchia [27, 28] dealing

with coercive problems in the linear case and, later on, we recall those by

Lucio Boccardo concerning noncoercive problems in the linear and nonlinear

case, contained in his papers [3] and [4].
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2.1 Stampacchia’s results

From now on, let Ω be a bounded, open subset of RN , N > 2. In the Sixties,

Guido Stampacchia studies the following linear Dirichlet problem


−div(M(x)∇u) + µu = −div(uE(x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω),

(2.1)

where M : Ω → RN2 is a measurable matrix field such that there exist α,

β ∈ R+ such that

α|ξ|2 ≤M(x) ξ · ξ, |M(x)| ≤ β, a.e. x ∈ Ω, ∀ ξ ∈ RN , (2.2)

E : Ω→ RN is a vector field (2.3)

and

f : Ω→ R is a real function such that f ∈ L
2N
N+2 (Ω). (2.4)

In [27] Stampacchia proves that, if µ > 0 is large enough, then problem (2.1)

is coercive. Moreover, he shows that, if ‖E‖LN (Ω) is small enough, problem

(2.1) still remains coercive, even if µ is small or null.

Under hypotheses (2.2), (2.3), (2.4) and if the problem is coercive, in

[27, 28], he proves that (2.1) has a unique weak solution u. Furthermore, he

also obtaines the following regularity results:

• if |E| ∈ LN(Ω) and f ∈ Lm(Ω), m >
N

2 , then the solution u of (2.1) is

29



in W 1,2
0 (Ω) ∩ L∞(Ω);

• if |E| ∈ LN(Ω) and f ∈ Lm(Ω), 2N
N + 2 ≤ m <

N

2 , then the solution u

is in W 1,2
0 (Ω) ∩ Lm∗∗(Ω), with m∗∗ = Nm

N − 2m .

In [27, 28], Guido Stampacchia also proves the existence of a solution u of

(2.1) even if the summability of f is less than 2N
N + 2, and further regularity

results, namely:

• if f ∈ Lm(Ω), 1 < m <
2N
N + 2, then u ∈ W

1,m∗
0 (Ω), m∗ = Nm

N −m
;

• if f ∈ L1(Ω), then u ∈ W 1,q
0 (Ω), ∀q < N

N − 1.

2.2 Boccardo’s results

In this section we report the main results obtained by Lucio Boccardo in

[3, 4] for noncoercive problems in the linear and nonlinear cases. We focus

on the techniques used to obtain existence and uniqueness of the solution

in bounded domains that will be generalized to unbounded ones to get our

results.

2.2.1 The noncoercive linear case

In [3], Lucio Boccardo considers the following linear Dirichlet problem
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
−div(M(x)∇u) = −div(uE(x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω),

(2.5)

where M : Ω → RN2 is a measurable matrix field such that there exist α,

β ∈ R+ such that

α|ξ|2 ≤M(x) ξ · ξ, |M(x)| ≤ β, a.e. x ∈ Ω, ∀ ξ ∈ RN , (2.6)

E : Ω→ RN is a vector field such that

|E| ∈ LN(Ω) (2.7)

and f : Ω→ R is a real function such that

f ∈ Lm(Ω), 1 ≤ m <
N

2 . (2.8)

The Dirichlet problem (2.5) is problem (2.1) studied by Stampacchia in the

case µ = 0. (The linear case in bounded domains has also been studied in

[16, 25], assuming |E| in classes wider than LN(Ω)).

We observe that the main difficulty here is due to the presence of the differ-

ential operator −div(M(x)∇v) + div(v E(x)) bacause it is noncoercive, since

no smallness assumptions are done on ‖E‖LN (Ω). While, as already observed,

in order to obtain the coercivity in the case µ = 0, one has to require that

‖E‖LN (Ω) is small enough.
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In order to obtain existence and uniqueness results for (2.5), Boccardo follows

a nonlinear approch. In particular, he approximates (2.5) by the following

nonlinear coercive problems



−div(M(x)∇un) = −div
(

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)|

)
+ fn(x),

un ∈ W 1,2
0 (Ω),

(2.9)

with fn(x) = Tn(f(x)), where, for k ∈ R+,

Tk(t) =


t, if |t| ≤ k

k t
|t| , if |t| > k,

(2.10)

is the classical truncate function introduced by Stampacchia.

Thanks to the Schauder fixed point Theorem, he proves that, for every fixed

n, a weak solution un of (2.9) exists.

The main idea to obtain this existence result is the following:

fixed n ∈ N, let wn ∈ W 1,2
0 (Ω). He considers the problems



−div(M(x)∇un) = −div
(

wn
1 + 1

n
|wn|

E(x)
1 + 1

n
|E(x)|

)
+ fn(x),

un ∈ W 1,2
0 (Ω)

(2.11)
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and proves that there exists a unique and bounded solution un of (2.11).

Later on, he considers the operator

P : wn ∈ W 1,2
0 (Ω)→ P (wn) = un ∈ W 1,2

0 (Ω)

and, by means of Schauder fixed point Theorem, he shows that P has a fixed

point. This gives the existence result for the solution of problem (2.9).

Successively, he shows that, if m = 2N
N + 2, the sequence un is bounded

in W 1,2
0 (Ω). Namely, for every k ∈ R+, he proves that the sequence Tk(un)

is bounded in W 1,2
0 (Ω) and later, for sufficiently large k, he gets that the

sequence Gk(un) := un − Tk(un) is bounded in W 1,2
0 (Ω). This leads to the

boundedness of the sequence un.

Later on, exploiting this result and passing to the limit, he obtains the exis-

tence of a weak solution u ∈ W 1,2
0 (Ω) of problem (2.5), with m = 2N

N + 2.

Indeed, since {un} is bounded in W 1,2
0 (Ω), up to a subsequence, un converges

weakly in W 1,2
0 (Ω) to a function u. Furthermore, un is a solution of (2.9)

and then, passing to the limit as n→ +∞ in the variational formulation and

thanks to the linearity of the problem, he obtains that u is a weak solution

of (2.5).

Now, by taking Tε(u−w) as test function in the variational formulation of the

problem, where ε > 0 and where u and w are weak solutions of (2.5), thanks

to the Hölder inequality, Lucio Boccardo also proves that, under hypotheses

(2.6), (2.7) and (2.8) with m = 2N
N + 2, the solution is unique.
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As in Stampacchia’s works, also in this case some regularity results are

obtained, namely:

• if |E| ∈ LN(Ω) and f ∈ Lm(Ω), 2N
N + 2 ≤ m <

N

2 , then there exists a

solution u of (2.5), u ∈ W 1,2
0 (Ω) ∩ Lm∗∗(Ω), with m∗∗ = Nm

N − 2m ;

• if |E| ∈ Lr(Ω), r > N and f ∈ Lm(Ω), m >
N

2 , then there exists a

solution u of (2.5), u ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Moreover, he also proves the existence of a distributional solution u of (2.5)

and, even if the summability of f in less than 2N
N + 2, the following regularity

results:

• if |E| ∈ LN(Ω) and f ∈ Lm(Ω), 1 < m <
2N
N + 2, then u ∈ W

1,m∗
0 (Ω),

m∗ = Nm

N −m
;

• if |E| ∈ LN(Ω) and f ∈ L1(Ω), then u ∈ W 1,1∗
0 (Ω), where 1∗ = N

N − 1.

2.2.2 The noncoercive nonlinear case

In this section we recall the main results obtained by Lucio Boccardo in [4],

where he considers, in the case of bounded domains, a nonlinear version of

the noncoercive boundary value problem studied in [3].

Let A be the differential operator defined as

A(v) = −div(a(x,∇v)),
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where a : Ω× RN → RN is a Carathéodory function such that



a(x, ξ)ξ ≥ α|ξ|p,

|a(x, ξ)| ≤ β|ξ|p−1,

(a(x, ξ)− a(x, η)) (ξ − η) > 0,

(2.12)

for a.e. x ∈ Ω, for every ξ ∈ RN and η ∈ RN with ξ 6= η, and where α, β are

strictly positive costants.

In [4], Lucio Boccardo proves the existence and uniqueness of the weak so-

lution of the following nonlinear Dirichlet problem


A(u) = −div(g(u)E(x)) + f(x) in Ω,

u ∈ W 1,p
0 (Ω),

(2.13)

where

1 < p < N, (2.14)

|E| ∈ L
N
p−1 (Ω), (2.15)

f ∈ Lm(Ω), m ≥ (p∗)′, (2.16)

where p∗ denotes the Sobolev conjugate of p and p′ the Hölder conjugate of
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p,

g(s) is a real continuous function such that |g(s)| ≤ γ|s|p−1, (2.17)

for some γ > 0.

We observe that, thanks to (2.12), the operator A is monotone and coercive,

therefore the Surjectivity Theorem applies and thus A is surjective. As in the

linear case studied in [3], the main difficulty here is due to the noncoercivity

on W 1,p
0 (Ω) of problem (2.13).

Following the same approach of the linear case (cfr. [3]), inspired by the

papers of Guido Stampacchia [28, 27], Lucio Boccardo in [4] approximates

the noncoercive nonlinear problem by coercive nonlinear problems and then

passes to the limit. In particular, he considers the following approximate

problems



−div(a(x,∇un)) =

−div
(

g(un)
1 + 1

n
|un|p−1

E(x)
1 + 1

n
|E(x)|

)
+ f(x)

1 + 1
n
|f(x)| ,

un ∈ W 1,p
0 (Ω).

(2.18)

Thanks to (2.12) and under the hypotheses (2.14), (2.15), (2.16) and (2.17),

the Schauder fixed point Theorem immediately applies and then he obtaines
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the existence of a weak solution un of (2.18), for every fixed n.

Exploiting Stampacchia’s truncates (2.10) and remembering that Gk(un) :=

un − Tk(un), by the boundedness of the sequences Tk(un) and Gk(un) in

W 1,p
0 (Ω), for sufficiently large k, he obtains that also the sequence un is

bounded in W 1,p
0 (Ω).

Later on, passing to the limit, he obtains the existence of a weak solution

u ∈ W 1,p
0 (Ω) of (2.13). Namely, since {un} is bounded in W 1,p

0 (Ω), up to a

subsequence, un converges weakly in W 1,p
0 (Ω) to a function u. Furthermore,

he proves that un converges strongly to u in W 1,p
0 (Ω). This allows him to

pass to the limit, as n → +∞, in the variational formulation of (2.18), and

thus he obtains the existence of a weak solution u ∈ W 1,p
0 (Ω) of (2.13).

To achieve the uniqueness of the solution, under the same hypotheses of

(2.13), he considers the problem


−div(b(x)|∇u|p−2∇u) = −div(g(u)E(x)) + f(x) in Ω,

u ∈ W 1,p
0 (Ω),

(2.19)

where

α ≤ b(x) ≤ β, for some 0 < α ≤ β

and where the function g is required to be such that |g′(s)| ≤ µ|s|p−1 + µ for

some µ > 0.

Obviously for this problem, that is a special case of (2.13), all the results

obtained previously are valid. Differently from linear case analysed in [3],
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where the uniqueness result can be achieved for p = 2, in the nonlinear case

it can be obtained, for problem (2.19), only for p : 1 < p ≤ 2. In particular,

Lucio Boccardo proves the uniqueness of the solution taking Th(u − w)+ as

test function in the variational formulation of the problem, where h > 0 and

where u and w are weak solutions of (2.19) and proving that u is equal to w.
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Chapter 3

Noncoercive elliptic equations

in unbounded domains: the

linear case

In this chapter we consider the Dirichlet problem for noncoercive linear el-

liptic equations in unbounded domains studied in the paper [24], by Sara

Monsurrò and Maria Transirico. First of all, we remark the main difficul-

ties one has to deal with when working on unbounded sets. Later on, we

introduce some preliminary tools, useful both in the linear case and in the

nonlinear one. Finally, we focus on the existence, uniqueness and regularity

results.

39



3.1 Main difficulties in unbounded domains

The main difficulties one has to afford when working on unbounded sets are

the following:

1) There are no natural decreasing inclusions among the Lp(Ω) spaces;

2) There are no compactness results;

3) The norm inW 1,p
0 (Ω) is not equivalent to the norm of gradient (Poincaré

inequality does not hold).

How can we overcome these problems?

1) For the first problem, we use the Mp(Ω) spaces defined in Chapter 1

for which the natural inclusions are valid also in unbounded domains.

In particular, we suppose that the coefficients of our problem belong

to the intersections of these spaces with Lt(Ω) ones, for a suitable t.

2) In order to solve the second problem, we exploit a compactenss result

on Mp
0 (Ω) spaces, stated in Theorem 1.10 of Chapter 1, proved in [31]

by Maria Transirico, Mario Troisi and Antonio Vitolo.

3) Since the norm in W 1,p
0 (Ω) is not equivalent to the norm of gradient

when Ω is unbounded, it is necessary to take µ > 0 in the equation of

problem (2.1). Nevertheless, since µ is not required to be large enough,

the problem remains noncoercive.
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3.2 Preliminary results

Let us recall some important results useful in the sequel. Let Ω be an un-

bounded, open subset of RN , N > 2.

Let k ∈ R+ and Tk(t), defined in (2.10), be Stampacchia’s truncate functions.

Put

Gk(t) = t− Tk(t). (3.1)

Given u ∈ W 1,p
0 (Ω), define

Ak = {x ∈ Ω : |u(x)| > k}. (3.2)

The following lemma contains some useful properties of the composition

of the functions Tk and Gk with u ∈ W 1,p
0 (Ω), needed in the sequel.

Lemma 3.1. Let p > 1. For every u ∈ W 1,p
0 (Ω) and k ∈ R+ one has

Tk(u) = Tk ◦ u ∈ W 1,p
0 (Ω), (3.3)

|∇u|p−2∇u∇Tk(u) = |∇Tk(u)|p, a.e. in Ω, (3.4)

|u|p−2u Tk(u) ≥ |Tk(u)|p, a.e. in Ω, (3.5)

|u|p−2u ∇Tk(u) = |Tk(u)|p−1∇Tk(u), a.e. in Ω, (3.6)

Gk(u) = Gk ◦ u ∈ W 1,p
0 (Ω), (3.7)
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|Gk(u)| ≤ |u|, a.e. in Ω, (3.8)

|u| ≤ |Gk(u)|+ k, a.e. in Ω, (3.9)

|u|p−1 ≤ 2p−2(|Gk(u)|p−1 + kp−1), a.e. in Ω, (3.10)

|∇u|p−2∇u∇Gk(u) = |∇Gk(u)|p, a.e. in Ω, (3.11)

|u|p−2u Gk(u) ≥ |Gk(u)|p, a.e. in Ω, (3.12)

supp Gk(u) ⊆ Ak, (3.13)

(Gk(u))xi =


uxi a.e. in Ak,

0 a.e. in Ω \ Ak, i = 1 . . . n.
(3.14)

Let us mention a generalization to unbounded sets of a result proved in

[28], in the case of bounded domains, and already showed, for the case p = 2,

in [14].

Lemma 3.2. Let p > 1, G be a uniformly Lipschitz function such that

G(0) = 0 and u ∈ W 1,p
0 (Ω). Then G ◦ u ∈ W 1,p

0 (Ω).

Proof. The proof is obtained following the same arguments of [14], with

opportune modifications.

Now, we recall Lemma 4.1 of [28] by Stampacchia. This is useful to prove

an important summability result that can lead us to the existence of a weak

solution for the problem.

Lemma 3.3. Let k0 > 0 and ϕ : [k0,+∞[→ R be a non negative and non
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increasing function such that

ϕ(h) ≤ C

(h− k)γ [ϕ(k)]δ ∀h > k ≥ k0, (3.15)

where C, γ and δ are positive constants, with δ > 1. Then, for

d = 2
δ
δ−1C1/γ [ϕ(k0)]

δ−1
γ , (3.16)

one has

ϕ(k0 + d) = 0. (3.17)

Proof. We consider

ks = k0 + d− d

2s .

By (3.15), we obtain

ϕ(ks+1) ≤ C 2(s+1)γ

dγ
(ϕ(ks))δ (3.18)

because

ϕ(ks+1) ≤ C

(ks+1 − ks)γ
(ϕ(ks))δ = C(

d
2s+1

)γ (ϕ(ks))δ = C 2(s+1)γ

dγ
(ϕ(ks))δ .

We want to prove by induction that

ϕ(ks) ≤
ϕ(k0)
2−sµ (3.19)
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where µ = γ

1− δ .

The case s = 0 is trivially true.

Now, we suppose the inequality (3.19) true for s and let us prove it for s+ 1.

By (3.18) and hypothesis of induction,

ϕ(ks+1) ≤ C 2(s+1)γ

dγ
(ϕ(ks))δ ≤

C 2(s+1)γ

dγ
(ϕ(k0))δ

2−sδµ .

Thanks to hypotesis (3.16), we obtain

ϕ(ks+1) < ϕ(k0)
2−(s+1)µ

and hence (3.19) holds for every s.

Now, passing to the limit, as s→ +∞,

ϕ(ks) = ϕ

(
k0 + d− d

2s

)
→ ϕ(k0 + d)

and then the proof is done.

For sake of completeness, we recall now two important theorems, useful

in the sequel: the Schauder fixed point Theorem in its formulation given, for

instance, in Theorem 1.11 of [6], and the Vitali Theorem (see, for instance,

[26]).

Theorem 3.4 (Schauder). Let X be a Banach space. If F is a function

completely continuous and F admits a bounded and closed invariant convex

subset K of X, then F has a fixed point on K.
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Theorem 3.5 (Vitali). Let un ⊂ Lp(Ω) be a sequence such that un → u a.e.

in Ω. Then u ∈ Lp(Ω) and un → u in Lp(Ω) if and only if

(i) for each ε > 0 there exists a set Aε ⊂ Ω such that |Aε| < +∞ and

∫
Ω\Aε
‖un‖p < ε ∀n ∈ N;

(ii) for each ε > 0 these exists δ > 0 such that

∫
A
‖un‖p < ε ∀n ∈ N,

for every A ⊂ Ω with |A| < δ.

3.3 Existence, Uniqueness and Regularity re-

sults

Let us now recall the existence, uniqueness and regularity results, obtained

in [24], in the case when Ω is unbounded.

Consider the following noncoercive linear Dirichlet problem


−div(M(x)∇u) + µu = −div(uE(x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω),

(3.20)
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where M : Ω → RN2 is a measurable matrix field such that there exist α,

β ∈ R+ such that

α|ξ|2 ≤M(x) ξ · ξ, |M(x)| ≤ β, a.e. x ∈ Ω, ∀ ξ ∈ RN , (3.21)

µ > 0, (3.22)

E : Ω→ RN is a vector field such that

|E| ∈ L2(Ω) ∩MN
0 (Ω) (3.23)

and f : Ω→ R is a real function such that

f ∈ L1(Ω) ∩ L
2N
N+2 (Ω), (3.24)

where MN
0 (Ω) is the functional space strictly containing LN(Ω), described in

Section 1.4 of Chapter 1.

The techniques used to obtain these results issue from an idea of [3], inspired

by the papers of Guido Stampacchia [27, 28], and by [9, 10, 12], where non-

linear problems are treated.

In particular, as already mentioned, in [3], the noncoercive problem is ap-

proximated by coercive nonlinear problems and then the author passes to

the limit. Here, it is possible to pass to the limit, thanks to the compactness

result in MN
0 (Ω) (see Theorem 1.10) that applies in view of the assumption

(3.23) on the coefficient appearing in the noncoercive term, as showed in the
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next section.

3.3.1 Existence and uniqueness results

In order to obtain the existence and uniqueness results, the authors, inspired

by the technique of Lucio Boccardo in [3], approximate noncoercive linear

problem (3.20) by the following coercive nonlinear problems



−div(M(x)∇un) + µun =

−div
(

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)|

)
+ f

1 + 1
n
|f |
,

un ∈ W 1,2
0 (Ω).

(3.25)

To prove that a bounded weak solution of (3.25) exists, for every fixed n, a

previous result is needed (proved in Lemma 3.4 of [24]).

Lemma 3.6. Assume (3.21), (3.22), |F | ∈ L2(Ω) and f ∈ L
2N
N+2 (Ω). Then

there exists a unique solution u of the problem


−div(M(x)∇u) + µu = −div(F (x)) + f(x) in Ω,

u ∈ W 1,2
0 (Ω).

(3.26)

If in addition |F | ∈ Lp(Ω) and f ∈ L p
2 (Ω), p > N, then the solution u is of
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class L∞(Ω).

Let us give an idea of the proof.

Thanks to the Lax-Milgram Lemma, one obtains the existence and unique-

ness of the solution. In order to prove the boundedness, one takes Gk(u) as

test function in the variational formulation of (3.26), in view of (3.7) with

p = 2. Using (3.21), the definition of Ak (3.2), properties (3.11), (3.12),

(3.13) in the case p = 2 and Hölder and Sobolev inequalities, one gets

‖Gk(u)‖L2∗ (Ω) ≤ C(|Ak|
1
2−

1
p + |Ak|1−

1
2∗−

2
p ),

with C = C(α, S, ‖F‖Lp(Ω), ‖f‖L p2 (Ω)
) and where S is the Sobolev constant

(cfr. Theorem 3.17 of [6]).

Now, since |Ak| → 0, as k → +∞, it is possible to assume that there exists

k0 ∈ R+ such that |Ak| ≤ 1, for k ≥ k0. Thanks to (3.2) and (3.9) (where

p = 2), one gets the following inequality

|Ah| ≤ C ′′
|Ak|

2∗
2 −

2∗
p

(h− k)2∗ , ∀h > k ≥ k0,

with C ′′ = C ′′(α, S, ‖F‖Lp(Ω), ‖f‖L p2 (Ω)
).

Finally, since N < p, one gets that 2∗
2 −

2∗
p
> 1, hence Lemma 3.3 applies

and therefore there exists d ∈ R+ such that |Ak0+d| = 0, thus u ∈ L∞(Ω).

We are now in a position to show, by means of the Schauder fixed point

Theorem, the existence and boundedness of a solution of approximate prob-
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lem (3.25). This is done for n = 1 and it can be analogously obtained for

n ≥ 2.

Theorem 3.7. Assume (3.21), (3.22), |E| ∈ L2(Ω)∩MN
0 (Ω) and f ∈ L1(Ω).

Then there exists a weak solution u of class L∞(Ω) of the following problem



−div(M(x)∇u) + µu = −div
(

u

1 + |u|
E(x)

1 + |E(x)|

)
+ f

1 + |f | ,

u ∈ W 1,2
0 (Ω).

(3.27)

Proof. Let w ∈ W 1,2
0 (Ω). Thanks to Lemma 3.6, there exists a unique

and bounded solution u of the problem



−div(M(x)∇u) + µu = −div
(

w

1 + |w|
E(x)

1 + |E(x)|

)
+ f

1 + |f | ,

u ∈ W 1,2
0 (Ω).

(3.28)

In order to apply the Schauder fixed point Theorem, one considers the oper-

ator

P : w ∈ W 1,2
0 (Ω)→ u = Pw ∈ W 1,2

0 (Ω) (3.29)

and shows that the following two hypotheses are satisfied:

1. P admits a bounded and closed invariant convex set.

2. P is completely continuous.

In order to prove point 1, one takes u as test function in the variational
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formulation of (3.28), obtaining

∫
Ω

M(x)∇u · ∇u+
∫
Ω

µu2 =
∫
Ω

w

1 + |w|
E(x)

1 + |E(x)| · ∇u+
∫
Ω

f u

1 + |f | .

Thus, by hypotheses (3.21), (3.22) and thanks to the Hölder and Sobolev

inequalities, one has that there exist two positive constants C0 = C0(α, µ)

and C = C(α, µ, ‖E‖L2(Ω), ‖ f
1+|f |‖L 2N

N+2 (Ω)
, S) such that

‖u‖2
W 1,2(Ω) ≤ C0(‖E‖L2(Ω)‖∇u‖L2(Ω)+

∥∥∥ f

1 + |f |‖L 2N
N+2 (Ω)

‖u‖L2∗ (Ω)) ≤ C‖u‖W 1,2(Ω).

Hence, if one considers the closed ball ‖w‖W 1,2(Ω) ≤ C, one obtains that

‖Pw‖W 1,2(Ω) = ‖u‖W 1,2(Ω) ≤ C. This concludes the proof of the first point.

In order to prove the point 2, one has to show that if wn ⇀ w̄ weakly in

W 1,2
0 (Ω), then Pwn → Pw̄ in W 1,2

0 (Ω).

Let un = Pwn and ū = Pw̄. One takes un − ū as test function in the

variational formulations of (3.28) written in correspondence of w = wn and

w = w̄, respectively, and subtracts member from member obtaining

∫
Ω

M(x)[∇(un − ū)]2 +
∫
Ω

µ(un − ū)2

=
∫
Ω

(
wn

1 + |wn|
− w̄

1 + |w̄|

)
E(x)

1 + |E(x)| · ∇(un − ū).

Thanks to hypotheses (3.21), (3.22) and by the Hölder inequality, one gets
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the following inequality

‖un − ū‖W 1,2(Ω) ≤
∥∥∥∥( wn

1 + |wn|
− w̄

1 + |w̄|

)
|E|

∥∥∥∥
L2(Ω)

.

Now, thanks to the compactness result of the operator u ∈ W 1,2
0 (Ω) →

|E|u ∈ L2(Ω), stated in Theorem 1.10 used in the case p = 2, since wn ⇀ w̄

weakly in W 1,p
0 (Ω), one has |E|wn → |E|w̄ in L2(Ω), and hence, up to a

subsequence, wn converges to w̄ a.e. in Ω. Thus, it is possible to apply the

Lebesgue dominated convergence Theorem obtaining

∥∥∥∥( wn
1 + |wn|

− w̄

1 + |w̄|

)
|E|

∥∥∥∥
L2(Ω)

→ 0.

This concludes the proof.

Successively, in [24], the authors show that the sequence un of the so-

lutions of problems (3.25) is bounded in W 1,2
0 (Ω) thanks to some prelim-

inary estimates on the sequence Tk(un) and Gk(un). Namely, assuming

|E| ∈ L2(Ω) ∩ MN
0 (Ω) and f ∈ L1(Ω) ∩ L

2N
N+2 (Ω), one gets that the se-

quence Tk(un) is bounded in W 1,2
0 (Ω), for any k ∈ R+. This is done taking

Tk(un) as test function in the variational formulation of (3.25), that can be

done in view of (3.3) for p = 2. Then, to obtain that the sequence Gk(un)

is bounded in W 1,2
0 (Ω) too, for sufficiently large k, one uses Gk(un) as test

function in the variational formulation of (3.25), that can be done in view

of (3.7) for p = 2. This allows to obtain the boundedness of un in W 1,2
0 (Ω),

fixed k sufficiently large, in view of (3.1). Moreover, by the estimates on
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Tk(un) and Gk(un), one gets the following a priori bound on {un}

‖un‖2
W 1,2(Ω) ≤ C

(
‖E‖2

L2(Ω) + ‖f‖L1(Ω) + ‖f‖2
L

2N
N+2 (Ω)

)
. (3.30)

where C = C
(
N,α, µ, S, σo

N [E]
)
.

Finally, in Theorem 3.8 below, by approximation, S. Monsurrò and M. Tran-

sirico get the existence result of a weak solution of problem (3.20).

Theorem 3.8. Assume (3.21), (3.22), |E| ∈ L2(Ω) ∩ MN
0 (Ω) and f ∈

L1(Ω) ∩ L
2N
N+2 (Ω). Then there exists u ∈ W 1,2

0 (Ω) weak solution of (3.20),

that is

∫
Ω

M(x)∇u ·∇v+µ
∫
Ω

uv =
∫
Ω

uE(x) ·∇v+
∫
Ω

f v, ∀ v ∈ W 1,2
0 (Ω). (3.31)

Moreover, there exists a positive constant C = C(N,α, µ, S, σoN [E]) such that

‖u‖2
W 1,2(Ω) ≤ C(‖E‖2

L2(Ω) + ‖f‖L1(Ω) + ‖f‖2
L

2N
N+2 (Ω)

). (3.32)

Proof. Since un is a solution of (3.25) and the sequence {un} is bounded

in W 1,2
0 (Ω), one has that

∫
Ω

M(x)∇un · ∇v + µ
∫
Ω

unv

=
∫
Ω

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)| · ∇v +

∫
Ω

f

1 + 1
n
|f |
v ,

(3.33)
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for every v ∈ W 1,2
0 (Ω). Now, let us to pass to the limit, as n → +∞, in

(3.33).

Clearly the first, the second and the last integral do not give problems by

the weak convergence un ⇀ u in W 1,2
0 (Ω). Let us now analyse the following

integral ∫
Ω

un
1 + 1

n
|un|

E(x)
1 + 1

n
|E(x)| · ∇v.

Since un converges weakly to u in W 1,2
0 (Ω), by Lemma 1.10 one has that

|E|un converges strongly to |E|u in L2(Ω). Hence, it is possible to use the

Vitali Theorem (cfr. Theorem 3.5) obtaining that for any ε > 0 there exists

Ωε ⊂ Ω with |Ωε| < +∞ such that

∫
Ω\Ωε
|un|2|E|2 < ε, uniformly with respect to n,

and that there exists δ > 0 such that for every A ⊂ Ω with |A| < δ, one has

∫
A
|un|2|E|2 < ε, uniformly with respect to n.

Now, ∫
Ω\Ωε

|un|2

(1 + 1
n
|un|)2

|E(x)|2
(1 + 1

n
|E(x)|)2 ≤

∫
Ω\Ωε
|un|2|E|2 < ε,

and ∫
A

|un|2

(1 + 1
n
|un|)2

|E(x)|2
(1 + 1

n
|E(x)|)2 ≤

∫
A
|un|2|E|2 < ε,

uniformly with respect to n and furthermore, since un converges a.e. to u,
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one gets
un

1 + 1
n
|un|

|E(x)|
1 + 1

n
|E(x)| → u|E| a.e. in Ω.

Hence, using again the Vitali Theorem (cfr. Theorem 3.5), in the reverse

sense, we obtain that

un
1 + 1

n
|un|

|E(x)|
1 + 1

n
|E(x)| → u |E| in L2(Ω).

Passing to the limit, as n→ +∞, in (3.33) one obtains (3.31).

Estimate (3.32) follows then by (3.30).

In order to achieve the uniqueness result, the authors follow some ideas

of [3, 11]. In particular, they prove that, if (3.21) and (3.22) hold, |E| ∈

L2(Ω)∩MN
0 (Ω) and f ∈ L1(Ω)∩L

2N
N+2 (Ω), then the weak solution u of (3.20)

is unique.

The idea is to consider u and w weak solutions of (3.20) and to obtain u

equal to w almost everywhere. This is done assuming δ ∈ R+ and ε ∈]0, δ[

and using Tε(u−w) as test function in the variational formulation of problem

(3.20), written in correspondence of the solutions u and w respectively. Then,

subtracting, one has

∫
Ω

M(x)∇(u− w)∇Tε(u− w) + µ
∫
Ω

(u− w)Tε(u− w)

=
∫
Ω

(u− w)E(x)∇Tε(u− w).

Finally, thanks to some inequalities and to hypotheses, it is simple to show
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that u(x) = w(x) almost everywhere, getting the uniqueness.

3.3.2 Regularity results

This section is devoted to prove two regularity results for the weak solution

u ∈ W 1,2
0 (Ω) of problem (3.20). More precisely,

(i) if |E| ∈ L2(Ω)∩MN
0 (Ω) and f ∈ L1(Ω)∩Lm(Ω), 2N

N + 2 ≤ m<
N

2 , then

the solution u of (3.20) is in Lm∗∗(Ω), with m∗∗ = (m∗)∗ = Nm

N − 2m ;

(ii) if one requires stronger assumptions on E and f , namely if |E| ∈

L2(Ω) ∩ Lr(Ω), r > N , and f ∈ L1(Ω) ∩ Lm(Ω), m >
N

2 , then the

solution u of (3.20) is in L∞(Ω).

To show (i), some preliminary results for the sequences Tk(un) and Gk(un)

are needed.

Firstly, assuming (3.21) and (3.22), |E| ∈ L2(Ω) ∩MN
0 (Ω) and f ∈ L1(Ω) ∩

L
2N
N+2 (Ω), for any k ∈ R+, one gets that the sequence Tk(un) is bounded in

Lm
∗∗(Ω), for every 2N

N + 2 ≤ m <
N

2 . More precisely, there exists a positive

constant C = C(N,m, α, S) such that

[ ∫
Ω

|Tk(un)|m∗∗
] 2

2∗

≤ C
(
k

2m∗∗
2∗

∫
Ω

|E|2 + k
2m∗∗

2∗ −1
∫
Ω

|f |
)
. (3.34)

To prove (3.34), one takes |Tk(un)|2(λ−1)Tk(un)
2λ− 1 , with λ = m∗∗

2∗ , as test

function in the variational formulation of problem (3.25). This can be done

in view of Lemma 3.2, for p = 2, and of Theorem 3.7. Thus, estimate (3.34)

55



is obtained using some properties and Young and Sobolev inequalities.

For the sequence Gk(un), it is not possible to obtain an analogous result

with |E| ∈ L2(Ω)∩MN
0 (Ω). But, as we see in Lemma 3.9, under the stronger

assumption |E| ∈ L2(Ω) ∩ LN(Ω) and if f ∈ L1(Ω) ∩ Lm(Ω), with 2N
N + 2 ≤

m <
N

2 , it is possible to prove the boundedness of Gk(un) in Lm
∗∗(Ω), for

sufficiently large k. We explicitly give the complete proof of Lemma 3.9, that

was only outlined in [24].

Lemma 3.9. Assume (4.3), (4.4), |E| ∈ L2(Ω) ∩ LN(Ω) and f ∈ L1(Ω) ∩

Lm(Ω). If 2N
N + 2 ≤ m <

N

2 , then there exists a k̃ ∈ R+ such that the

sequence {Gk(un)} is bounded in Lm
∗∗(Ω), for every k > k̃. More precisely,

there exists a positive constant C = C(N,m, α, S) such that

[ ∫
Ω

|Gk(un)|m∗∗
] 2

2∗−
1
m′

≤ C
(
k2 + ‖f‖Lm(Ω)

)
. (3.35)

Proof. Since the function |t|2(λ−1)t, with λ > 1, satisfies the hypotheses of

Lemma 3.2, provided that |t| ≤ M , for some M > 0, and since un ∈ L∞(Ω)

by Theorem 3.7, we can take |Gk(un)|2(λ−1)Gk(un)
2λ− 1 , with λ = m∗∗

2∗ , as test

function in the variational formulation of (3.25).

Observe that

∇
(
|Gk(un)|2(λ−1)Gk(un)

2λ− 1

)
= |Gk(un)|2(λ−1)∇Gk(un).
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By (3.11), (3.21), one obtains

α
∫
Ω

|Gk(un)|2(λ−1)∇Gk(un)

≤
∫
Ω

|un|
(
|Gk(un)|λ−1|E|

) (
|Gk(un)|λ−1|∇Gk(un)|

)
+ 1

2λ− 1

∫
Ω

|f | |Gk(un)|2λ−1

Now, Young and Hölder inequalities imply that

α
∫
Ω

|Gk(un)|2(λ−1)∇Gk(un)

≤ ε
∫
Ω

|Gk(un)|2(λ−1)|∇Gk(un)|2 + 1
4ε

∫
An(k)

|un|2|Gk(un)|2(λ−1)|E|2

+ ‖f‖L
m(Ω)

2λ− 1

∫
Ω

|Gk(un)|(2λ−1)m′
 1

m′

where, for k ∈ R+ and n ∈ N,

An(k) = {x ∈ Ω : k < |un(x)|}.

Taking ε = α

2 , by (3.9) and thanks to Sobolev inequality, we have

C1

∫
Ω

|Gk(un)|2∗λ
 2

2∗

≤ C2

∫
An(k)

|Gk(un)|2λ |E|2 + C2 k
2
∫

An(k)

|Gk(un)|2(λ−1) |E|2
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+ ‖f‖L
m(Ω)

2λ− 1

∫
Ω

|Gk(un)|(2λ−1)m′
 1

m′

,

where C1 and C2 are positive constants indipendent on n such that C1 =

C1(N,m, α, S) and C2 = C2(N,m, α, S), where S is the Sobolev constant as

in Theorem 3.17 of [6]. Using Hölder inequality again, we obtain

C1

∫
Ω

|Gk(un)|2∗λ
 2

2∗

≤ C2

∫
Ω

|Gk(un)|2∗λ
 2

2∗
 ∫
An(k)

|E|N


2
N

+C2 k
2(meas An(k)) 2

2∗λ

∫
Ω

|Gk(un)|2∗λ


2(λ−1)
2∗λ

 ∫
An(k)

|E|N


2
N

+ ‖f‖L
m(Ω)

2λ− 1

∫
Ω

|Gk(un)|(2λ−1)m′
 1

m′

.

Since |E| ∈ LN(Ω), (45) of [24] implies that there exists k̃ such that

C2

 ∫
An(k)

|E|N


2
N

≤ C1

2 ∀k > k̃.

Notice, now, that

2∗λ = (2λ− 1)m′ = m∗∗,
2(λ− 1)

2∗λ <
2
2∗
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and
2
2∗ >

1
m′

if and only if m <
N

2 (as in our case).

Then, we deduce that, for k > k̃,

C1

2

∫
Ω

|Gk(un)|m∗∗
 2

2∗

≤ C3 k
2

∫
Ω

|Gk(un)|m∗∗


2(λ−1)
2∗λ

+ ‖f‖L
m(Ω)

2λ− 1

∫
Ω

|Gk(un)|m∗∗
 1

m′

,

where C3 = C3(N,m, α, S).

Thus, for k > k̃, since 2
2∗ >

1
m′

, the sequence {Gk(un)} is bounded in

Lm
∗∗(Ω).

Now, putting together (3.34) and (3.35), in view of (3.1), if |E| ∈ L2(Ω)∩

LN(Ω) and f ∈ L1(Ω) ∩ Lm(Ω), with 2N
N + 2 ≤ m <

N

2 , fixed k sufficiently

large, one gets the boundedness of un in Lm∗∗(Ω), i. e. there exists a positive

constant C = C
(
N,m, α, S, σNo [E]

)
such that

‖un‖m
∗∗

Lm∗∗ (Ω) ≤ C(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1). (3.36)

This allows to obtain that, under the same hypotheses, the weak solution

u of problem (3.20) is in Lm
∗∗(Ω). Indeed, there exists a positive constant
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C = C(N,m, α, S, σNo [E]) such that

‖u‖m∗∗Lm∗∗ (Ω) ≤ C(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1). (3.37)

Finally, by approximation, one gets the regularity result (i) for u. Namely,

assuming (3.21), (3.22), |E| ∈ L2(Ω) ∩ MN
0 (Ω) and f ∈ L1(Ω) ∩ Lm(Ω),

2N
N + 2 ≤ m<

N

2 , the weak solution u of (3.20) belongs toW 1,2
0 (Ω)∩Lm∗∗(Ω).

More precisely, there exists a positive constant C = C
(
N,m, α, S, σNo [E]

)
such that

‖u‖m∗∗Lm∗∗ (Ω) ≤ C(‖E‖
2

2∗
L2(Ω) + ‖f‖

2
2∗
L1(Ω) + ‖f‖

2∗
2−2∗/m′

Lm(Ω) + 1). (3.38)

To show (ii), the authors follow Stampacchia’s method ([27], see also [3])

based on the boundedness of the function log(1+|u|). In particular, assuming

(3.21), (3.22), if |E| ∈ L2(Ω)∩Lr(Ω), r > N , and f ∈ L1(Ω)∩Lm(Ω),m >
N

2 ,

then the weak solution u of (3.20) belongs to W 1,2
0 (Ω) ∩ L∞(Ω).

The proof is done defining the function

G(t) =



0, if |t| ≤ l,

t

1 + t
− l

1 + l
, if t > l,

t

1− t + l

1 + l
, if t < −l,

with l ∈ R+. Namely, let u ∈ W 1,2
0 (Ω) be the solution of (3.20). In view

of Lemma 3.2 for p = 2, one takes G(u) as test function in the variational
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formulation of (3.20) and gets that

∫
u>l

M(x)∇u · ∇
(

u

1 + u

)
+

∫
u<−l

M(x)∇u · ∇
(

u

1− u

)

+ µ
∫
u>l

u
(

u

1 + u
− l

1 + l

)
+ µ

∫
u<−l

u
(

u

1− u + l

1 + l

)

=
∫
u>l

uE(x) · ∇
(

u

1 + u

)
+

∫
u<−l

uE(x) · ∇
(

u

1− u

)

+
∫
u>l

f
(

u

1 + u
− l

1 + l

)
+

∫
u<−l

f
(

u

1− u + l

1 + l

)
.

They obtain the result thanks to some known inequalities and to Lemma 3.3.
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Chapter 4

Existence results for

noncoercive elliptic equations

in unbounded domains: the

nonlinear case

In this chapter we consider a nonlinear version of the noncoercive bound-

ary value problem analysed by Sara Monsurrò and Maria Transirico in [24],

where the domain Ω is still supposed to be unbounded. These results are

contained in the recent paper by Emilia Anna Alfano and Sara Monsurrò [2].

62



Let Ω be an unbounded open subset of RN , N > 2. We consider the

following Dirichlet problem



−div(b(x)|∇u|p−2∇u) + µ|u|p−2u =

−div(|u|p−2uE(x)) + f(x) in Ω,

u ∈ W 1,p
0 (Ω),

(4.1)

where

1 < p < N, (4.2)

α ≤ b(x) ≤ β, for some 0 < α ≤ β, a.e. x ∈ Ω, (4.3)

µ > 0, (4.4)

|E| ∈ Lp′(Ω) ∩M
N
p−1

0 (Ω) (4.5)

and

f ∈ L1(Ω) ∩ Lm(Ω), m ≥ (p∗)′, (4.6)

where by ( )∗ we denote the Sobolev conjugate of ( ) and by ( )′ the Hölder

conjugate of ( ). Therefore, one has:

• p′ = p

p− 1;

• p∗ = Np

N − p
;

• (p∗)′ = Np

Np−N + p
.
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We emphasize the presence of the noncoercive operator−div(b(x)|∇u|p−2∇u)+

div(|u|p−2uE(x)) where on the second term no smallness assumptions are

done. Due to the unboundedness of the domain, the hypothesis (4.4) is nec-

essary (as we see in Section 3.1). Despite this, since µ is not required to be

large enough, the operator in (4.1) still remains noncoercive.

The idea is to extend the results of [24] to the nonlinear case and to general-

ize the existence result of [4] to the case when Ω is unbounded. In order to

obtain the existence of a solution of our problem, inspired by an idea of [3],

we approximate noncoercive nonlinear problem (4.1) by coercive nonlinear

problems and then we pass to the limit. Differently from [4] where the exis-

tence of the solutions of the approximate problems is immediately obtained

thanks to the Schauder fixed point Theorem, here it is done by means of the

Surjectivity Theorem. Due to the assumption (4.5) on the coefficient appear-

ing in the noncoercive term and thanks to a compactness result in MN
0 (Ω)

proved in [30] (see Theorem 1.10), it is finally possible to pass to the limit.

For related problems on bounded domains we quote here [5, 7, 8, 13, 25, 32]

while for linear coercive problems on unbounded domains we refer the reader

to [18, 19, 20, 21, 22, 23].

4.1 A coercive approximate problem

Let us start by proving a useful property, needed in the sequel.

64



Proposition 4.1. Let p > 2. Then

(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η) > 0 ∀ξ, η ∈ RN with ξ 6= η. (4.7)

Proof. Let ξ 6= η. If |ξ| = |η|, then

(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η) = |ξ|p−2(ξ − η)2 > 0.

Hence (4.7) holds.

Let us now consider the case |ξ| 6= |η|.

(
|ξ|p−2ξ − |η|p−2η

)
(ξ − η)

= |ξ|p − |ξ|p−2 < ξ, η > −|η|p−2 < η, ξ > +|η|p

= |ξ|p + |η|p −
(
|ξ|p−2 + |η|p−2

)
< ξ, η > .

Since by Young inequality | < ξ, η > | ≤ |ξ| |η| ≤ 1
2 |ξ|

2 + 1
2 |η|

2 and

− < ξ, η >≥ −| < ξ, η > |,

|ξ|p + |η|p −
(
|ξ|p−2 + |η|p−2

)
< ξ, η >

≥ |ξ|p + |η|p −
(
|ξ|p−2 + |η|p−2

)(1
2 |ξ|

2 + 1
2 |η|

2
)

= 1
2
(
|ξ|2 − |η|2

) (
|ξ|p−2 − |η|p−2

)
> 0.

This gives (4.7).
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We will prove the existence of a weak solution of problem (4.1) following

an idea of [3] and [4], inspired from the papers [27, 28] by Guido Stampacchia

and from [9, 10, 12].

We consider the following class of nonlinear coercive approximate problems



−div(b(x)|∇un|p−2∇un) + µ|un|p−2un =

−div
(
|un|p−2un

1 + 1
n
|un|p−1

E(x)
1 + 1

n
|E(x)|

)
+ f

1 + 1
n
|f |
,

un ∈ W 1,p
0 (Ω).

(4.8)

We start proving, in Theorem 4.5, that a weak solution un of (4.8) exists,

for every fixed n ∈ N. Then, we show, in Theorem 4.6, that this solution of

(4.8) is also bounded. The proofs are done for n = 1, but they are analogous

for n ≥ 2.

The existence of a solution of approximate problems (4.8) will be proved

by means of the following Surjectivity Theorem (see also [6]).

Theorem 4.2 (Surjectivity). Let V be a reflexive and separable Banach

space. Let the operator A : V → V ′ be

1. coercive, i.e.
< A(u), u >
‖u‖

→ +∞, ‖u‖ → +∞;

2. pseudomonotone, i.e.
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i) A is bounded (it trasforms bounded sets of V in bounded sets of

V ′);

ii) if un ⇀ u weakly in V and lim sup
n→+∞

< A(un), un − u >≤ 0, then

lim inf
n→+∞

< A(un), un − v >≥< A(u), u− v > for all v in V .

Then A is surjective, i.e. for every f in V ′ there exists u in V such that

A(u) = f .

To our aim, some further preliminary results are needed. In particular,

we recall the next lemma, proved in [6] in the case of bounded domains, that

remains valid also in the case of unbounded sets (cfr. Theorem 2.1 of [6]).

Lemma 4.3. Let p > 1, {fn} be a sequence of functions in Lp(Ω) and f be

a function in Lp(Ω). Assume that

1. {fn} is uniformly bounded in Lp(Ω);

2. fn → f a.e. in Ω.

Then fn ⇀ f weakly in Lp(Ω).

Now, we prove a preliminary lemma, useful in the sequel.

Lemma 4.4. Let p > 1 and un, u ∈ W 1,p
0 (Ω). Under hypotheses (4.3) and

(4.4) and if

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

+µ
(
|un|p−2un − |u|p−2u

)
(un − u)→ 0 a.e. in Ω,
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then

∇un → ∇u a.e. in Ω (4.9)

and

un → u a.e. in Ω. (4.10)

Proof. Let us start observing that (4.7) holds. Now, since

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

+µ
(
|un|p−2un − |u|p−2u

)
(un − u)→ 0 a.e. in Ω,

by (4.3), (4.4) and (4.7), one gets

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)→ 0 a.e. in Ω, (4.11)

µ
(
|un|p−2un − |u|p−2u

)
(un − u)→ 0 a.e. in Ω. (4.12)

By (4.11) there exists c(x) such that

∣∣∣∣b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

∣∣∣∣ ≤ c(x), (4.13)

up to a set of null measure Z.

We want to show that there exists a function C such that, in Ω \Z, one has

|∇un(x)| ≤ C(x). (4.14)
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Indeed, by (4.3) and (4.7), from (4.13) we get

c(x) ≥ b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

≥ α|∇un|p − β|∇un|p−1|∇u| − β|∇u|p−1|∇un|+ α|∇u|p.

Hence, since on the right-hand side we have a polynomial in |∇un|, we get

(4.14).

Let us now prove (4.9). By contradiction, assume that there exists x0 ∈ Ω\Z

such that ∇un(x0) does not converge to ∇u(x0).

In view of (4.14) and the Bolzano-Weierstrass Theorem, up to a subsequence,

one has ∇unk(x0)→ ζ ∈ RN .

Then, passing to the limit in (4.11), we get

b(x0)
(
|ζ|p−2ζ − |∇u(x0)|p−2∇u(x0)

)
(ζ −∇u(x0)) = 0.

Therefore, by (4.3) and (4.7), ζ = ∇u(x0). This gives (4.9).

Following a similar argument, by (4.12) one gets (4.10).

We are now in a position to prove the existence of a weak solution of the

approximate problems. We give the proof just for n = 1, the cases n > 2

being completely analogous.

Theorem 4.5. Assume (4.2), (4.3), (4.4), (4.5) and f ∈ L1(Ω). Then there
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exists a weak solution u of the following problem



−div(b(x)|∇u|p−2∇u) + µ|u|p−2u =

−div
(
|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)|

)
+ f

1 + |f | ,

u ∈ W 1,p
0 (Ω).

(4.15)

Proof. We want to apply Theorem 4.2 to the following operator:

A : u ∈ W 1,p
0 (Ω)→ −div

(
b(x)|∇u|p−2∇u

)
+ µ|u|p−2u

+div
(
|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)|

)
− f

1 + |f | ∈ W
−1,p(Ω).

Therefore we have to prove that A is coercive and pseudomonotone.

Step 1. A is a coercive opearator. Indeed,

< A(u), u >

≥
∫
Ω

b(x)|∇u|p + µ
∫
Ω

|u|p −
∫
Ω

|u|p−1

1 + |u|p−1
|E(x)|

1 + |E(x)| |∇u| −
∫
Ω

|f ||u|
1 + |f |

≥ c‖u‖pW 1,p(Ω) − ‖E‖Lp′ (Ω)‖u‖W 1,p(Ω) −
∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
Lp′ (Ω)

‖u‖W 1,p(Ω)
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=
c‖u‖p−1

W 1,p(Ω) − ‖E‖Lp′ (Ω) −
∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
Lp′ (Ω)

 ‖u‖W 1,p(Ω)

where the constant c = min{α, µ}.

Step 2. A is a bounded operator. Indeed,

< A(u), v >=
∫
Ω

b(x)|∇u|p−2∇u∇v + µ
∫
Ω

|u|p−2uv

−
∫
Ω

|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)|∇v −
∫
Ω

f

1 + |f |v

≤ β‖∇u‖p−1
Lp(Ω)‖∇v‖Lp(Ω) + µ‖u‖p−1

Lp(Ω)‖v‖Lp(Ω)

+‖E‖Lp′ (Ω)‖∇v‖Lp(Ω) +
∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
Lp′ (Ω)

‖v‖Lp(Ω)

≤

C‖u‖p−1
W 1,p(Ω) + ‖E‖Lp′ (Ω) +

∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
Lp′ (Ω)

 ‖v‖W 1,p(Ω)

where C = max{β, µ}.

Step 3. Let

un ⇀ u weakly in W 1,p
0 (Ω) (4.16)

and

lim sup
n→+∞

< A(un), un − u > ≤ 0, (4.17)
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we must show that

lim inf
n→+∞

< A(un), un − w > ≥ < A(u), u− w > ∀w ∈ W 1,p
0 (Ω). (4.18)

To this aim, we start proving that

lim
n→+∞

 ∫
Ω

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

+µ
∫
Ω

(
|un|p−2un − |u|p−2u

)
(un − u)

 = 0.

(4.19)

Observe that

lim sup
n→+∞

< A(un), un − u >

= lim sup
n→+∞

 ∫
Ω

b(x)|∇un|p−2∇un∇(un − u) + µ
∫
Ω

|un|p−2un(un − u)

−
∫
Ω

|un|p−2un
1 + |un|p−1

E(x)
1 + |E(x)|∇(un − u)−

∫
Ω

f

1 + |f |(un − u)
.

Now, by (4.16)

lim
n→+∞

 ∫
Ω

b(x)|∇u|p−2∇u∇(un − u) + µ
∫
Ω

|u|p−2u(un − u)
 = 0. (4.20)
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Therefore

lim sup
n→+∞

< A(un), un − u >

= lim sup
n→+∞

 ∫
Ω

b(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)

+µ
∫
Ω

(|un|p−2un − |u|p−2u)(un − u)

−
∫
Ω

|un|p−2un
1 + |un|p−1

E(x)
1 + |E(x)|∇(un − u)−

∫
Ω

f

1 + |f |(un − u)
.

(4.21)

Let us prove that

lim
n→+∞

∫
Ω

|un|p−2un
1 + |un|p−1

E(x)
1 + |E(x)|∇(un − u) = 0. (4.22)

Indeed, arguing as before, by (4.16) one has

lim
n→+∞

∫
Ω

|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)|∇(un − u) = 0. (4.23)

Thus

lim
n→+∞

∫
Ω

|un|p−2un
1 + |un|p−1

E(x)
1 + |E(x)|∇(un − u)

= lim
n→+∞

∫
Ω

(
|un|p−2un

1 + |un|p−1 −
|u|p−2u

1 + |u|p−1

)
E(x)

1 + |E(x)|∇(un − u).

(4.24)
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Now, by the compactness result stated in Theorem 1.10, |E(x)|
1
p−1un →

|E(x)|
1
p−1u in Lp(Ω) and un → u a.e., up to a subsequence, hence

|un|p−2un
1 + |un|p−1

E(x)
1 + |E(x)| →

|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)| a.e. in Ω.

Furthermore
|un|p−1

1 + |un|p−1
|E(x)|

1 + |E(x)| ≤ |E(x)| ∈ Lp′(Ω).

Thus the Lebesgue dominated convergence Theorem applies and we get that

|un|p−2un
1 + |un|p−1

E(x)
1 + |E(x)| →

|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)| in L
p′(Ω). (4.25)

Thus, thanks to (4.16), (4.24) and (4.25), we get (4.22).

By (4.16), (4.17), (4.21) and (4.22) we obtain

lim sup
n→+∞

(∫
Ω

b(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)

+µ
∫
Ω

(|un|p−2un − |u|p−2u)(un − u)
)
≤ 0.

Furthermore, by (4.3), (4.4) and (4.7),

∫
Ω

b(x)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)

+µ
∫
Ω

(|un|p−2un − |u|p−2u)(un − u) ≥ 0
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and hence (4.19) holds.

By (4.3), (4.4), (4.7) and (4.19), we deduce that

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

+µ
(
|un|p−2un − |u|p−2u

)
(un − u)→ 0 in L1(Ω).

(4.26)

Now, we want to prove (4.18).

Let unk be the subsequence of un such that

lim inf
n→+∞

< A(un), un − w >= lim
k→+∞

< A(unk), unk − w > . (4.27)

Let us observe that (4.26) clearly holds with unk in place of un, hence there

exists unkm such that

b(x)
(
|∇unkm |

p−2∇unkm − |∇u|
p−2∇u

)
∇(unkm − u)

+µ
(
|unkm |

p−2unkm − |u|
p−2u

)
(unkm − u)→ 0 a.e. in Ω.

Hence, by Lemma 4.4

unkm → u a.e. in Ω

∇unkm → ∇u a.e. in Ω.

(4.28)
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By (4.27)

lim inf
n→+∞

< A(un), un − w >= lim
m→+∞

< A(unkm ), unkm − w >

= lim
m→+∞

∫
Ω

b(x)|∇unkm |
p +µ

∫
Ω

|unkm |
p−

∫
Ω

|unkm |
p−2unkm

1 + |unkm |p−1
E(x)

1 + |E(x)|∇unkm

−
∫
Ω

f

1 + |f |unkm −
∫
Ω

b(x)|∇unkm |
p−2∇unkm∇w − µ

∫
Ω

|unkm |
p−2unkmw

+
∫
Ω

|unkm |
p−2unkm

1 + |unkm |p−1
E(x)

1 + |E(x)|∇w +
∫
Ω

f

1 + |f |w
.

Passing to the limit as m → +∞ in the right-hand side, by (4.16), (4.25),

(4.28), the Fatou Lemma, the Lebesgue dominated convergence Theorem and

Theorem 4.3 give

lim inf
n→+∞

< A(un), un−w >≥
∫
Ω

b(x)|∇u|p+µ
∫
Ω

|u|p−
∫
Ω

|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)|∇u

−
∫
Ω

f

1 + |f |u−
∫
Ω

b(x)|∇u|p−2∇u∇w − µ
∫
Ω

|u|p−2uw

+
∫
Ω

|u|p−2u

1 + |u|p−1
E(x)

1 + |E(x)|∇w +
∫
Ω

f

1 + |f |w =< A(u), u− w >,

hence (4.18) holds.

This concludes our proof.

The last theorem of this section is an essential tool to prove our main

result, obtained following some techniques of [17, 27].
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Theorem 4.6. Assume (4.2), (4.3), (4.4), (4.5) and (4.6). Then every

solution u of problem (4.15) is of class L∞(Ω).

Proof. In order to prove the boundedness of u, take Gk(u) as test function

in the variational formulation of (4.15) (this is allowed by (3.7)). Then, by

(4.3), (3.2), (3.11), (3.12), (3.13), Hölder and Sobolev inequalities, one gets

α
∫
Ω

|∇Gk(u)|p + µ
∫
Ω

|Gk(u)|p

≤
∫
Ak

∣∣∣∣∣ E(x)
1 + |E(x)|

∣∣∣∣∣ |∇Gk(u)|+
∫
Ak

∣∣∣∣∣ f

1 + |f |

∣∣∣∣∣ |Gk(u)|

≤
∥∥∥∥∥ E

1 + |E|

∥∥∥∥∥
Lp′ (Ak)

‖∇Gk(u)‖Lp(Ω) +
∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
L(p∗)′ (Ak)

‖ Gk(u)‖Lp∗ (Ω)

≤

∥∥∥∥∥ E

1 + |E|

∥∥∥∥∥
Lp′ (Ak)

+ 1
S

∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
L(p∗)′ (Ak)

 ‖∇Gk(u)‖Lp(Ω)

≤

∥∥∥∥∥ E

1 + |E|

∥∥∥∥∥
Lq(Ω)

|Ak|
1
p′−

1
q + 1

S

∥∥∥∥∥ f

1 + |f |

∥∥∥∥∥
Lq(Ω)

|Ak|
1

(p∗)′−
1
q

 ‖∇Gk(u)‖Lp(Ω)

and where, to our aim, we take q >
N

p− 1 (> p′ > (p∗)′) and with S =

S(N, p) Sobolev constant as in Theorem 3.17 of [6].

Whence, using again Sobolev inequalities and (4.4), one has

‖Gk(u)‖p−1
Lp∗ (Ω) ≤ C(|Ak|

1
p′−

1
q + |Ak|

1
(p∗)′−

1
q ),

with C = C
(
N, p, α,

∥∥∥ E
1+|E|

∥∥∥
Lq(Ω)

,
∥∥∥ f

1+|f |

∥∥∥
Lq(Ω)

)
.

Observe that since |Ak| → 0, as k → +∞, we can assume that there exists
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k0 ∈ R+ such that |Ak| ≤ 1, for k ≥ k0. Moreover, since 1
p′
− 1
q
<

1
(p∗)′ −

1
q
,

we get

‖Gk(u)‖Lp∗ (Ω) ≤ C ′|Ak|
(

1
p′−

1
q

)
1
p−1 ,∀k ≥ k0, (4.29)

with C ′ = C ′
(
N, p, α,

∥∥∥ E
1+|E|

∥∥∥
Lq(Ω)

,
∥∥∥ f

1+|f |

∥∥∥
Lq(Ω)

)
.

Now, by (3.2) and (3.9),

h|Ah|
1
p∗ =

( ∫
Ah

|h|p∗
) 1
p∗

≤ ‖u‖Lp∗ (Ah) ≤ ‖Gk(u)‖Lp∗ (Ah) + k|Ah|
1
p∗ .

Thus

(h− k)|Ah|
1
p∗ ≤ ‖Gk(u)‖Lp∗ (Ah). (4.30)

Putting together (4.29) and (4.30), we obtain

|Ah| ≤ C ′′
|Ak|

(
1
p′−

1
q

)
p∗
p−1

(h− k)p∗ ∀h > k ≥ k0,

with C ′′ = C ′′
(
N, p, α,

∥∥∥ E
1+|E|

∥∥∥
Lq(Ω)

,
∥∥∥ f

1+|f |

∥∥∥
Lq(Ω)

)
.

Finally, as a consequence of the fact that q > N

p− 1 , one has
( 1
p′
− 1
q

) p∗

p− 1 >

1, therefore Lemma 3.3 applies and there exists d ∈ R+ such that |Ak0+d| = 0,

thus u ∈ L∞(Ω).
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4.2 Existence result

In this section we finally achieve the existence of a weak solution of problem

(4.1).

Lemma 4.7. Assume (4.2), (4.3), (4.4), (4.5) and f ∈ L1(Ω), and let un be

a solution of (4.8). Then, for any k ∈ R+, the sequence {Tk(un)} is bounded

in W 1,p
0 (Ω). More precisely we have:

α

2

∫
Ω

|∇Tk(un)|p + µ
∫
Ω

|Tk(un)|p ≤ C kp
∫
Ω

|E|p′ + k
∫
Ω

|f |, (4.31)

where C = C(p, α).

Proof. Let us take Tk(un) as test function in the variational formulation

of (4.8), this can be done in view of (3.3). We have

∫
Ω

b(x)|∇un|p−2∇un∇Tk(un) + µ
∫
Ω

|un|p−2unTk(un)

=
∫
Ω

|un|p−2un
1 + 1

n
|un|p−1

E(x)
1 + 1

n
|E(x)|∇Tk(un) +

∫
Ω

f

1 + 1
n
|f |
Tk(un) .
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In view of (4.3), (3.4), (3.5), (3.6) and by Young inequality we get

α
∫
Ω

|∇Tk(un)|p + µ
∫
Ω

|Tk(un)|p

≤
∫
Ω

|Tk(un)|p−1 |E(x)| |∇Tk(un)|+
∫
Ω

|f | |Tk(un)|

≤ α

2

∫
Ω

|∇Tk(un)|p + C(p, α)
∫
Ω

|Tk(un)|p |E(x)|
p
p−1 +

∫
Ω

|f | |Tk(un)|.

Therefore, in view of (2.10), (4.31) follows.

Lemma 4.8. Assume (4.2), (4.3), (4.4), (4.5) and f ∈ L1(Ω). Then every

solution un of (4.8) satisfies

[ ∫
Ω

| log(1 + |un|)|p
∗
] p
p∗

≤ C

∫
Ω

|E|p′ +
∫
Ω

|f |

, (4.32)

where C = C(N, p, α).

Proof. In view of Lemma 3.2, we can take 1
p− 1

[
1− 1

(1 + |un|)p−1

]
sign(un)

as test function in (4.8).

Now, observe that 1
1+ 1

n
|un|p−1 ≤ 1, |un|p−1

(1+|un|)p−1 ≤ 1, 1
1+ 1

n
|E(x)| ≤ 1, 1

1+ 1
n
|f | ≤ 1

and∣∣∣∣∣
[
1− 1

(1 + |un|)p−1

]
sign(un)

∣∣∣∣∣ ≤ 1, hence, using (4.3) and (4.4), we have

α
∫
Ω

|∇un|p

(1 + |un|)p
≤
∫
Ω

|E(x)||∇un|
1 + |un|

+ 1
p− 1

∫
Ω

|f | .

80



Hence, in view of Young inequality, we get

α

2

∫
Ω

|∇un|p

(1 + |un|)p
≤ C ′(p, α)

∫
Ω

|E(x)|p′ + 1
p− 1

∫
Ω

|f |,

which implies, by Sobolev inequality,

Spα

2

[ ∫
Ω

| log(1 + |un|)|p
∗
] p
p∗

≤ α

2

∫
Ω

|∇ log(1 + |un|)|p

= α

2

∫
Ω

|∇un|p

(1 + |un|)p
≤ C ′(p, α)

∫
Ω

|E(x)|p′ + 1
p− 1

∫
Ω

|f |,

which gives (4.32).

Remark 4. Remark that, thanks to the estimate (4.32), one has

meas
{
x ∈ Ω : |un(x)| > k

}p/p∗
≤ C

| log(1 + k)|p

∫
Ω

|E|p′ +
∫
Ω

|f |

. (4.33)

Thus, for any ε > 0, it is possible to choose kε such that

meas
{
x ∈ Ω : |un(x)| > k

}p/p∗
≤ ε, ∀ k > kε,∀n ∈ N. (4.34)

Lemma 4.9. Assume (4.2), (4.3), (4.4), (4.5) and (4.6), and let un be a

solution of (4.8). Then there exists k∗ ∈ R+, with k∗ = k∗(N, p, σo
N
p−1 [E]),

such that the sequence {Gk(un)} is bounded in W 1,p
0 (Ω), for every k > k∗.
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More precisely we have:

∫
Ω

|∇Gk(un)|p +
∫
Ω

|Gk(un)|p ≤ C
(
kp‖E‖p

′

Lp′ (Ω) + ‖f‖p
′

L(p∗)′ (Ω)

)
, (4.35)

where C = C(N, p, α, µ).

Proof. Let k ∈ R+ and n ∈ N, define

An(k) = {x ∈ Ω : k < |un(x)|}.

The use of Gk(un) as test function in the variational formulation of (4.8)

(that can be done in view of (3.7)), (4.3), (3.10), (3.11) and (3.12) give that

α
∫
Ω

|∇Gk(un)|p + µ
∫
Ω

|Gk(un)|p

≤ c′
(∫

Ω

|Gk(un)|p−1|E(x)||∇Gk(un)|

+kp−1 ∫
Ω
|E(x)||∇Gk(un)|+

∫
Ω
|Gk(un)||f |

)
,

(4.36)

with c′ = c′(p).

By (4.5), (3.13), Hölder inequality and (1.36) of Theorem 1.10, we get that
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By (4.5), (3.13), Hölder inequality and (1.36) of Lemma 1.10, we get that

∫
Ω

|Gk(un)|p−1|E(x)||∇Gk(un)|

≤
(∫

An(k)
|E(x)|p′|Gk(un)|p

) 1
p′
(∫

Ω

|∇Gk(un)|p
) 1
p

≤ c′′‖E‖
M

N
p−1 (An(k))

‖Gk(un)‖p−1
W 1,p(Ω)‖∇Gk(un)‖Lp(Ω)

≤ c′′‖E‖
M

N
p−1 (An(k))

‖Gk(un)‖pW 1,p(Ω),

(4.37)

with c′′ = c′′(N, p).

Therefore, by (4.36), (4.37) and Young, Hölder and Sobolev inequalities, one

has that, for ε > 0,

α
∫
Ω

|∇Gk(un)|p + µ
∫
Ω

|Gk(un)|p

≤ c′′′
[
‖E‖

M
N
p−1 (An(k))

(∫
Ω

|∇Gk(un)|p +
∫
Ω

|Gk(un)|p
)

+ε
∫
Ω

|∇Gk(un)|p + kp

(εp)
1
p−1p′

‖E‖p
′

Lp′ (Ω)

+ε
∫
Ω

|∇Gk(un)|p + 1
Sp′(εp)

1
p−1p′

‖f‖p
′

L(p∗)′ (Ω)

]
,

with c′′′ = c′′′(N, p).

83



Thus it results

[
α

c′′′
− ‖E‖

M
N
p−1 (An(k))

− 2ε
] ∫

Ω

|∇Gk(un)|p

+
[
µ

c′′′
− ‖E‖

M
N
p−1 (An(k))

] ∫
Ω

|Gk(un)|p

≤ kp

(εp)
1
p−1p′

‖E‖p
′

Lp′ (Ω) + 1
Sp′(εp)

1
p−1p′

‖f‖p
′

L(p∗)′ (Ω).

Fix ε so that 2ε = α

4c′′′ . Then (1.23) and (4.34) imply that there exists

k∗ ∈ R+ such that

‖E‖
M

N
p−1 (An(k))

≤ min
{
α

4c′′′ ,
µ

2c′′′
}
, ∀k > k∗. (4.38)

Let us explicitly observe that, in view of (1.23), (1.24) and by the definition

(1.31) of σo
N
p−1 [E], one has k∗ = k∗(N, p, σo

N
p−1 [E]). This concludes our proof.

Theorem 4.10. Assume (4.2), (4.3), (4.4), (4.5) and (4.6). Then the se-

quence {un} of the solutions of problems (4.8) is bounded in W 1,p
0 (Ω).

Proof. Let k∗ be given by Lemma 4.9. Definition (3.1) together with the

estimates (4.31) and (4.35) imply that for any k > k∗ there exists a positive
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constant C ′ = C ′(N, p, α, µ) such that

∫
Ω

|∇un|p +
∫
Ω

|un|p

≤ C ′

kp ∫
Ω

|E(x)|p′ + k
∫
Ω

|f |+
∫

Ω

|f |(p∗)′
1+ p′

N

 .
(4.39)

This concludes the proof.

Finally, let us prove the existence result.

Theorem 4.11. Assume (4.2), (4.3), (4.4), (4.5) and (4.6). Then there

exists u ∈ W 1,p
0 (Ω) weak solution of (4.1), that is

∫
Ω

b(x)|∇u|p−2∇u∇v +
∫
Ω

µ|u|p−2uv

=
∫
Ω

|u|p−2uE(x)∇v +
∫
Ω

fv, ∀v ∈ W 1,p
0 (Ω).

(4.40)

Let us explicitly observe that the right hand side of formula (4.40) makes

sense. In particular, for the term

∫
Ω
|u|p−2uE(x)∇v (4.41)

one has that, in view of hypothesis (4.5), by Lemma 1.10 it follows that

|E(x)|
1
p−1u is in Lp(Ω), thus |E(x)||u|p−2u belongs to Lp′(Ω). Therefore by

Hölder inequality the integral in (4.41) is bounded.
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Proof of Theorem 4.11. The sequence {un} is bounded in W 1,p
0 (Ω) by

Theorem 4.10. Then, up to a subsequence,

un ⇀ u weakly in W 1,p
0 (Ω). (4.42)

Let us start proving that if un solves (4.8), then, up to a subsequence,

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

+µ
(
|un|p−2un − |u|p−2u

)
(un − u)→ 0 a.e. in Ω.

(4.43)

To this aim, we firstly show that

lim
n→+∞

 ∫
Ω

b(x)
(
|∇un|p−2∇un − |∇u|p−2∇u

)
∇(un − u)

+µ
∫
Ω

(
|un|p−2un − |u|p−2u

)
(un − u)

 = 0.

(4.44)

Indeed, if we take un − u as test function in the variational formulation of

(4.8) we get

∫
Ω

b(x)|∇un|p−2∇un∇(un − u) + µ
∫
Ω

|un|p−2un(un − u)

=
∫
Ω

|un|p−2un
1 + 1

n
|un|p−1

E(x)
1 + 1

n
|E(x)|∇(un − u) +

∫
Ω

f

1 + 1
n
|f |

(un − u).

(4.45)
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Now, let us show that

lim
n→+∞

∫
Ω

|un|p−2un
1 + 1

n
|un|p−1

E(x)
1 + 1

n
|E(x)|∇(un − u) = 0. (4.46)

By (4.42) and by the compactness result in Lemma 1.10, we obtain that, up

to subsequences,

|E(x)|
1
p−1un → |E(x)|

1
p−1u in Lp(Ω)

and

un → u a.e. in Ω.

Thus, in view of the Vitali Theorem (cfr., for istance, [26]), we get that for

any ε > 0 there exists Ωε ⊂ Ω with |Ωε| < +∞ such that

∫
Ω\Ωε
|un|p|E(x)|

p
p−1 < ε, uniformly with respect to n

and there exists δ > 0 such that for every A ⊂ Ω with |A| < δ, one has

∫
A
|un|p|E(x)|

p
p−1 < ε, uniformly with respect to n.

On the other hand,

∫
Ω\Ωε

(|un|p−2un)
p
p−1(

1 + 1
n
|un|p−1

) p
p−1

|E(x)|
p
p−1(

1 + 1
n
|E(x)|

) p
p−1
≤
∫

Ω\Ωε
|un|p|E(x)|

p
p−1 < ε
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and

∫
A

(|un|p−2un)
p
p−1(

1 + 1
n
|un|p−1

) p
p−1

|E(x)|
p
p−1(

1 + 1
n
|E(x)|

) p
p−1
≤
∫
A
|un|p|E(x)|

p
p−1 < ε,

uniformly with respect to n.

Furthermore, since |un|p−2un converges a.e. to |u|p−2u in Ω, we obtain

|un|p−2un
1 + 1

n
|un|p−1

|E(x)|
1 + 1

n
|E(x)| → |u|

p−2u|E(x)| a.e. in Ω.

Hence, by using in the reverse sense the Vitali Theorem, we get

|un|p−2un
1 + 1

n
|un|p−1

|E(x)|
1 + 1

n
|E(x)| → |u|

p−2u|E(x)| in Lp′(Ω). (4.47)

Putting together (4.42) and (4.47) we obtain (4.46).

Furthermore, by (4.6) and (4.42), one has

lim
n→+∞

∫
Ω

f

1 + 1
n
|f |

(un − u) = 0. (4.48)

Thus, by (4.46) and (4.48), identity (4.45) gives

lim
n→+∞

 ∫
Ω

b(x)|∇un|p−2∇un∇(un − u) + µ
∫
Ω

|un|p−2un(un − u)
 = 0.

(4.49)
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Moreover, always in view of (4.42) and of (4.3) and (4.4)

lim
n→+∞

 ∫
Ω

b(x)|∇u|p−2∇u∇(un − u) + µ
∫
Ω

|u|p−2u(un − u)
 = 0. (4.50)

Therefore, subtracting (4.50) from (4.49) we obtain (4.44).

Hence, in view of (4.3), (4.4) and (4.7)

b(x) (|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)

+µ (|un|p−2un − |u|p−2u) (un − u)→ 0 in L1(Ω)

(4.51)

and this gives (4.43) up to a subsequence.

Convergence (4.43) together with Lemma 4.4 yield then

∇un → ∇u a.e. in Ω (4.52)

and

un → u a.e. in Ω. (4.53)

We are now able to pass to the limit, as n → +∞, in the variational

formulation of (4.8)

∫
Ω
b(x)|∇un|p−2∇un∇v +

∫
Ω
µ|un|p−2unv

=
∫

Ω

|un|p−2un
1 + 1

n
|un|p−1

E(x)
1 + 1

n
|E(x)|∇v +

∫
Ω

f

1 + 1
n
|f |
v,

(4.54)
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v ∈ W 1,p
0 (Ω).

By (4.3), Theorem 4.10, (4.52), (4.53) and the Lebesgue dominated conver-

gence Theorem, we get

∫
Ω
b(x)|∇un|p−2∇un∇v →

∫
Ω
b(x)|∇u|p−2∇u∇v (4.55)

and ∫
Ω
µ|un|p−2unv →

∫
Ω
µ|u|p−2uv. (4.56)

Moreover, by (4.47)

∫
Ω

|un|p−2un
1 + 1

n
|un|p−1

E(x)
1 + 1

n
|E(x)|∇v →

∫
Ω
|u|p−2uE(x)∇v. (4.57)

On the other hand,
f

1 + 1
n
|f |
v → fv a.e. in Ω

and ∣∣∣∣∣ f

1 + 1
n
|f |
v

∣∣∣∣∣ ≤ |fv| ∈ L1(Ω).

Thus, again in view of the Lebesgue dominated convergence Theorem, we

have ∫
Ω

f

1 + 1
n
|f |
v →

∫
Ω
fv. (4.58)

Taking into account (4.55), (4.56), (4.57) and (4.58) and passing to the limit,

as n→ +∞, in (4.54), we conclude the proof.
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The uniqueness of the solution will be object of a forthcoming study;

probably this can be obtained for 1 < p ≤ 2 as in the case of bounded

domains (cfr. [4]). In order to prove this, the following last result can be

useful.

Corollary 4.12. If f(x) ≥ 0 then u(x) ≥ 0.

Proof. We use Th(u−) as test function in (4.1). We have

∫
Ω

b(x)|∇u|p−2∇u∇Th(u−) + µ
∫
Ω

|u|p−2uTh(u−)

=
∫
Ω

|u|p−2uE(x)∇Th(u−) +
∫
Ω

fTh(u−).

(4.59)

We obtain that

Th(u−) =



0, if u ≥ 0

−u, if − h ≤ u < 0

h, if u < −h.

(4.60)

Thus

|u|p−2uTh(u−)



= 0, if u ≥ 0

= −|Th(u−)|p, if − h ≤ u < 0

≤ −|Th(u−)|p, if u < −h.

(4.61)

Hence, by (4.59), (4.60) and (4.61)

−
∫
Ω

b(x)|∇Th(u−)|p − µ
∫
Ω

|Th(u−)|p
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≥ −
∫
Ω

b(x)|∇Th(u−)|p + µ
∫
Ω

|u|p−2uTh(u−)

=
∫
Ω

|u|p−2uE(x)∇Th(u−) +
∫
Ω

fTh(u−).

Therefore,

α
∫
Ω

|∇Th(u−)|p + µ
∫
Ω

|Th(u−)|p ≤
∫
Ω

|u|p−1|E(x)||∇Th(u−)| −
∫
Ω

fTh(u−).

Hence

∫
Ω

|∇Th(u−)|p +
∫
Ω

|Th(u−)|p ≤ C
∫
Ω

|u|p−1|E(x)||∇Th(u−)|

with C = C(α, µ).

Let 0 < h < δ. Then

∫
Ω

|∇Th(u−)|p +
∫
Ω

|Th(u−)|p ≤ C hp−1

 ∫
−h<u<0

|E(x)|p′


1
p′

‖∇Th(u−)‖Lp(Ω).

Thus,

‖Th(u−)‖pW 1,p(Ω) ≤ C hp−1

 ∫
−h<u<0

|E(x)|p′


1
p′

‖Th(u−)‖W 1,p(Ω),

‖Th(u−)‖p−1
W 1,p(Ω) ≤ C hp−1

 ∫
−h<u<0

|E(x)|p′


1
p′
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and

‖Th(u−)‖p−1
Lp(Ω) ≤ C hp−1

 ∫
−h<u<0

|E(x)|p′


1
p′

.

The previous inequality gives

h
p
p′meas{u < −δ} ≤ C hp−1

 ∫
−h<u<0

|E(x)|p′


1
p′

namely

meas{u < −δ} ≤ C

 ∫
−h<u<0

|E(x)|p′


1
p′

.

Then, in view of (4.5), the right hand side goes to 0, as h→ 0. This means

that meas{u < −δ} = 0, for every δ > 0, which concludes our proof.
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