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Abstract

The mission of homeland security is ensuring the safety of living
communities and protecting citizens from unforeseen events. In
this research field, intelligent and advanced systems are extremely
useful to prevent from tragic epilogues. Homeland security sys-
tems aim at supporting humans in those continuous and tiring
activities of monitoring and detecting dangerous situations occur-
ring in a surveilled area. Fatigue and distraction can reduce the
human attention over time and be the cause of risks for safety and
security. This thesis highlights the recent advances in this field
and proposes some contributions on the state-of-the-art to deal
with di�culties of the homeland security issues. The work focuses
on a specific perspective view of the problem consisting in the use
of biometrics to detect and recognize individuals. The biometric
traits explored in this work are both hard biometrics, i.e. the face,
and soft biometrics, i.e. the gait. Face is traditionally and widely
used as a strong biometric trait for recognition and authentica-
tion. A reliable and robust face biometric recognizer is based on
the assumption that facial features are good in quality and num-
ber. This is achieved when the face is detected in collaborative
conditions and the pose is ideal to extract the features. The pose
of the face is not always frontal therefore a preprocessing phase
of facial recognition involves the estimation of the pose of an ac-
quired face. As a contribution to the state-of-the-art of head pose
estimation, three di↵erent methods have been proposed that en-
code the face thanks to the use of facial landmarks and extract the
pose. The features extracted from the face can be both static and
dynamic. With static facial features we extract information from
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a face if its identity is not known. Dynamic facial features relate
to lip movement and lip recognition. The landmarks that define
the skeleton have been extracted from a series of videos of people
walking; this made it possible to study the gait and classify people
on the basis of gender and on the basis of their ”cooperativeness”,
that is the aptitude to support the camera or to try to escape
it. The results obtained and discussed in this thesis are strongly
linked to the concepts of security, surveillance and trust and there-
fore may serve as insights to further explore the strengths and the
limitations of software solutions applied to homeland security.



Chapter 1

Introduction

Biometrics has become an essential component of the most ef-
fective solutions for automatic person identification. A biometric
recognition system is a system that exploits physical characteris-
tics (such as fingerprints, iris, face, ear shape, etc.) and/or behav-
ioral characteristics (ie, voice print, signature, writing, etc.) of a
subject for his/her identification and recognition[1]. The physio-
logical characteristics of an individual are quite stable, subject to
only small variations over time. Behavioral ones can be influenced
by the psychological situation of the individual and require con-
stant updating. Biometric systems operate under the premise that
these distinctive human characteristics can be e↵ectively acquired
through special sensors and represented in numerical form so that
they can be processed, stored and, subsequently, compared.

1.1 Biometric features

Any morphological characteristic of a subject can be considered
a biometric key for its recognition when it manages to meet the
requirements of:

• Universality: each individual must possess that particular
biometric characteristic. In practice this may not happen;
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the minimum percentage of the population for which a re-
quirement enjoys the property of universality is 99%;

• uniqueness: the trait must be di↵erent enough from indi-
vidual to individual so as to be su�ciently discriminating.
Ideally, two individuals should not share the exact same bio-
metric trait;

• permanence: refers to the way in which the stroke varies
over time. The biometric feature must remain unchanged
over time. The degree of permanence of a trait has a strong
impact on system design and long-term management of bio-
metric data;

• capturability: the biometric characteristic must be capa-
ble of being acquired and quantitatively measurable. Fur-
thermore, the collection of biometric data should be non-
intrusive, reliable, robust and cost-e↵ective.

• performance: requirement linked to the goodness of the
technology used, the various stages of recognition must not
be expensive in terms of time and space;

• acceptability: the acquisition procedure must be tolerated
by the majority of the population;

• elidibility: the system must not be easily evaded, to prevent
it from being cheated or misled.

Not all traits satisfy all requirements equally, the choice of one
biometry over another depends on the nature and purpose of the
biometric system in which it is to be used.

Some physical traits, such as the geometry of the hand, are
more appropriate for authentication, others such as fingerprints,
iris or face recognition are more suitable for identifying a subject
as they are better able to discriminate the identity of an individual
in a very broad context [2].
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A further classification of biometrics is made according to their
discriminating power; as in figure 1.1 biometrics can be classified
into two categories:

• Hard Biometric: able to guarantee a unique identifica-
tion of the subject. They allow two individuals to be dis-
tinguished in a marked way (strong uniqueness) and keep
their measurability almost or completely unchanged over
time (permanence). Hard Biometrics are the fingerprint, the
iris and the ear.

• Soft Biometric: they do not ensure unique identification.
There can be several subjects with the same so-called ”weak”
trait. Biometries such as voice, finger and hand geometry,
in general those of a behavioral nature (gait, face dynamics,
handwriting dynamics, etc.) are considered less unique and
less stable. Most often these traits are used in association
with each other, or with strong traits [3].

In a video surveillance context, some biometrics are more suit-
able than others. This type of acquisitions take place in an uncon-
trolled context and often without the knowledge of the subject, the
most suitable biometrics are those without contact and which can
also be acquired at a distance: for example the face, the gait and
the way in which we speak. It is precisely these three biometrics
that have been deepened within this thesis work.

Figure 1.1: Some of the main physiological and behavioral bio-
metric traits.
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1.1.1 Homeland security context

Homeland security currently feeds undoubtedly one of the most ex-
plored lines of research and development; ports, airports, customs
and border areas are extremely sensitive areas as they are crossed
by millions of people every day. For this reason, intelligent and
advanced systems are necessary for the protection of citizens and
to prevent as much as possible unexpected events that could give
rise to tragic epilogues. Traditional methods for recognizing vio-
lence in crowded and video-monitored environments today involve
the intervention of a human operator who, through monitors, is
required to personally and continuously check and recognize these
situations. But human intervention in these contexts is not al-
ways e↵ective for several reasons. The first reason concerns the
need to have a human agent available at (almost) full time; the
second reason regards the human error, as a distraction or mis-
understanding of the situation detected on video. Furthermore,
in a video surveillance context a human being can hardly pay the
same attention to multiple monitors, so the risk of error is high.
Consequently, attempts are made to integrate video surveillance
systems more and more with artificial intelligence systems capable
of intercepting anomalous situations.

1.1.2 Human recognition in video surveillance
context

The goal of this research is to deduce from a frame or video infor-
mation about an individual about his identity, context and behav-
ior, in a nutshell: who he/she is, where he/she is and what he/she
is doing.

• Who is he/she? An individual can be identified by a sys-
tem through facial recognition techniques. This is possible
if the individual is registered in the system and if the image
available to us is suitable for recognition. From the video it
is possible to extract a face in the best pose for recognition
purposes. To do this techniques of head pose estimation
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[4, 5] are used. In the head pose estimation problem, the
reference points on a human face are detected and the pose
is determined in terms of angle degrees in pitch, yaw and
roll. In a video surveillance system of a shopping center, for
example, a photo of the face and its pose in pitch, yaw and
roll degrees would be stored for each individual, so that they
can be recognized again if they reappear on the system.

• Where is he/she? Context analysis is a technique used
to classify the context in which a scene is set. This is not a
biometric technique because it is not based on purely human
characteristics, but provides information that can allow us
to more faithfully reconstruct what is happening and deter-
mine the choices of the system; combined with the identity
and action performed by the subjects being filmed, for ex-
ample, the presence of suitcase abandoned in an airport can
determine the choice of alerting the police to prevent a risk
of attacks.

• What is he/she doing? It is a very important and chal-
lenging problem to monitor and understand user behavior
through the videos taken from various cameras; the study
of this problem is called action recognition. The techniques
mainly employed use Computer Vision. The starting point
for understanding the action performed by an individual in
a video is to estimate a sequence of static poses for which
it is necessary to detect and locate the main parts/joints of
the body (e.g. shoulders, ankles, knee, wrist etc.). Thanks
to the existing state-of-the-art pose detection techniques it
is possible to extract the coordinates relating to the skele-
ton of individuals within a frame and therefore the distances
between the various parts of the body. This information,
inserted in a sequence and given as input to a well trained
recurrent neural network (RNN), can return the binary clas-
sification related to gender (male or female) [6, 7], to the
action performed by the subject (standing, sitting, running,
walking, arguing, etc.) [8] or the type of interaction between
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di↵erent individuals.

These three pieces of information are necessary to allow the
system to ”understand” if what is happening is normal in relation
to the context or requires the need for an emergency human inter-
vention (if necessary, then alert the police, firefighters, ambulances
or other).

1.2 Contributions of the Thesis

Our contributions to the state-of-the-art in the field of soft bio-
metrics are related to the use of biometrics in homeland security
by analyzing in detail the information that can be extracted in
video surveillance videos. The first obstacle in recognizing a face
from a video surveillance camera is the face pose estimation in
terms of degrees of pitch, yaw and roll that represent the rotation
of the face with respect to a frontal position.

Regarding the head pose estimation problem, the aim is to
reduce the error, that is the di↵erence between the classified pose
and the real one of the input photo. The following problems have
been solved for this issue:

• classification of the facial pose by a quad-tree coding. This
solution led to the development of an algorithm that through
a quad-tree coding of the face classifies the facial pose up to
the reduction of the error to 4.07� in yaw, 7.51� in pitch and
5.50� in roll;

• identification of a reference system called ”Spider-web”, for
the coding of the facial pose. This encoding enabled the
development of a pose classification algorithm that further
reduces the error to 6.21� in yaw, 3.95� pitch and 4.16� in
roll;

• last contribution in the head pose estimation is the choice to
use regression instead of classification to estimate the pose.
Regression, compared to classification, better approximate
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the pose estimation. The pose coding algorithm used is
that of the ”Spider-web” which has improved performance
through logistic regression, reducing errors to 3.12� in pitch,
2.31� in yaw and 1.88� in roll.

To allow us to experiment with pose recognition algorithms
and body movements, we have built a dataset of videos. This
dataset, called Gotcha-I, contains videos of 62 subjects walking in
a controlled context with di↵erent lighting conditions. From this
dataset it was possible to carry out the following experiments:

• an algorithm for recognizing the biological gender of an indi-
vidual (man / woman) based on the pose of the body. This
allowed us to recognize genre from a single frame with 78%
accuracy.

• a gender recognition algorithm based on the gait of the body.
This led us to 82% accuracy in indoor video with the light
o↵ and with the camera flash.

• the development of a recurrent neural network (RNN) to
recognize from the gait if the individual is non-cooperative
or cooperative (that is, if he/she escapes the camera or not).
This algorithm achieves 97.58% accuracy.

Finally, the last part of the thesis is dedicated to two case
studies in a real-world environment. We created two applications
for biometric recognition.

• The first one consists of a software application that acquires
facial features from people faces; on request there is also the
possibility of grouping faces that share the same characteris-
tics. This software application can be used to tag the facial
features of a large number of faces within a database.

• We then created a facial recognition application to recognize
the identity of an individual from the dynamics of the face.
This application was created for the control of personnel in
a company; to enter the company building the person in
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question is required to pronunce a given sentence in front of
the camera, the system will allow the entrance if it recognizes
the subject’s lip dynamics corresponding to that sentence.

1.3 Outline of the Thesis

This work is the result of an industrial doctorate course. This
path includes one year and a half of research at the University of
Salerno, six months of research abroad and one year of research in
the company Softlab. My thesis is based on this path and concerns
three di↵erent aspects of the same topic:

• In this first chapter we have introduced the ideas behind
biometric recognition in video surveillance.

• Chapter 2: focuses on estimating head position as a pre-
processing step of facial recognition. This chapter introduces
three methods that use face geometry to solve this task.

• Chapter 3: contains the study carried out in Spain in collab-
oration with the Universidad Las Palmas de Gran Canaria
and focuses on gait analysis studies, in particular on how to
detect the gender and cooperation of a person by analyzing
the way in which he/she walks. The experiments of these
works were carried out on the Gotcha-I dataset collected
specifically to deepen these studies.

• Chapter 4: contains the research carried out with the Soft-
lab company, and focuses on biometric recognition through
facial features, this is expressed both through the results
conducted on a specific study on static features and through
a tool created specifically to recognize dynamic features such
as the labial.

• In chapter 5 we draw concluding remarks and future research
issues.



Chapter 2

Head Pose Estimation

Biometric recognition focuses on recognizing individuals by phys-
ical or behavioral characteristics. The face is one of the most
widespread biometrics and one of the most accepted for both au-
thentication and identification of the person. In particular, the
face is one of the features that tend to be a↵ected by lighting, pose
and expression (PIE) and sometimes even by low image quality.
Occlusions from scarves or sunglasses and non-frontal head pose
are sources of problems [9]. These conditions can complicate face
detection and recognition especially for video acquisitions at a
distance or into the wild. The first studies were conducted under
controlled conditions, therefore with faces captured with uniform
lighting, a front pose, a neutral expression and a face free of occlu-
sions. However, in order to have feedback with situations in the
real world, research must tackle increasingly challenging problems.
Faces captured in the real world are a↵ected by critical factors,
such as uneven lighting, natural and / or artificial occlusions or
self-occlusion, and the subject’s pose or expression [10, 11]. These
factors play a particularly relevant role when dealing with unas-
sisted acquisition (i.e. no expert operator guides the operation)
and acquisitions in the wild. A relevant example is found in video
surveillance [12, 13], which involves partially or even totally un-
aware subjects. These factors particularly a↵ect the processing
and extraction of features such as face, ears, periocular region and
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iris.

Among the factors mentioned, the pose is probably one of the
most di�cult to deal with, whether it concerns the entire body of
a subject [14, 15], or the head alone [16]. Head rotation can hide /
distort the discriminating features of the face; partial self-occlusion
of the face due to the pose can complicate further processing [17].
Furthermore, the possible rotations of the head around the x, y
and z axes (pitch, yaw and roll, respectively), shown in Figure 2.1
[18, 19], cause inherent deformations in the geometric relationships
between the element faces that are quite di�cult to adjust [20].
The accuracy of recognition depends on how far the pose moves
away from the neutral pose, in terms of elementary rotations with
respect to each axis. In figure 2.2(a) examples of poses and the
corresponding degrees of pitch, yaw and roll are shown. When
a face is captured at a distance by video surveillance devices it
is more common to find the face rotated in a combination of the
three axes of rotation, rather than in the neutral pose. In these
scenarios, on one hand there is a high probability that in a ran-
domly selected image the captured face is not in a pose suitable
for recognition, but on the other hand, there is also a high chance
that in at least one frame of the captured sequence the face will
be close to the neutral pose. With neutral pose we mean the pose
close to 0� pitch, 0� yaw and 0� roll (see figure 2.2(b)).

We define optimal frame of a video an extracted frame in which
the subject has the pose closest to the desired one. In video surveil-
lance we may need to extract a specific pose of the subject to allow
more accurate recognition.

The ability to select that optimal frame, possibly in real time,
could improve the recognition performance, knowing the degree of
head rotation acquired. In the following the existing Head Pose
Estimation (HPE in following) methods that evaluate the head
rotations by detecting two or three axes are discussed.
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Figure 2.1: Axes of rotation of the head : Pitch, Yaw and Roll

Figure 2.2: Examples of poses and the corresponding degrees of
pitch, yaw and roll.

2.1 HPE state-of-the-art

Many HPE algorithms have been proposed over the years; here
the techniques that have produced the best results at the state-
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of-the-art are reported. When studying HPE, the most dividing
choices are between the choice of 2D (intensity) or 3D (depth)
images and the choice of whether to use deep learning techniques
or use machine learning techniques (without neural networks).

Some methods are made for 3D images, known as RGB-D im-
ages; the D stands for ”depth” image as, in addition to the color
information, there is also the depth information. The use of 3D
data implies the use of special sensors and cameras capable of
capturing the subject and acquiring its depth; furthermore for
this type of acquisition the operating distance between the cam-
era and the subject is limited; for these reasons the use of the
above methods in video surveillance contexts is very limited and
the methods that use 3D images often use also 2D images. The
following subsection describe the existing papers and the di↵erent
choices adopted.

2.1.1 2D image methods

In the category of approaches working on 2D images there are
many methods involving machine learning techniques in particu-
lar with the use of deep neural networks (DNN) and convolutional
neural networks (CNN). The method presented in [21] estimates
the horizontal and vertical alignment of the head (pitch and yaw)
through a neural network. FSA-Net [22] is another method that
estimates head pose based on the use of a neural network, which is
based on regression and aggregation of characteristics. They pro-
pose learning a fine-grained structure mapping to spatially group
features prior to aggregation. The method in [23] estimates head
position by applying a deep neural network in a Coarse-to-Fine
strategy. Two subnets are used jointly to classify the input image
into four categories and then estimates the pose via a Fine Re-
gression. The method in [24] uses the combination of two trained
CNNs to identify both the head pose and the body pose; simi-
larly, the head pose estimation approach in [25] uses information
from the video scene to evaluate the orientation of the head using
the direction of movement of the subject. QuatNet is a multi-
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regression loss function applied in [26] to train a CNN to estimate
head poses from RGB images with no depth information.

The proposal in [27] deals with a whole body estimation ap-
proach, consisting of three modules: the first module uses the
HOG (histogram of oriented gradients) method to extract the
characteristics related to the person’s appearance; the second mod-
ule updates a classifier with the person’s tracking and direction in-
formation. Based on the direction in which he/she walks and the
information of the first module, the third module estimates the ori-
entation of the body, merging the information gathered from the
previous modules. The authors in [28] analyze the region of the
nose and, based on its orientation, they evaluate the pose of the
face. The experiments show that this information has a high dis-
criminatory power to determine the orientation of the head com-
pared to the techniques that are based on the analysis of the entire
facial region. In [29] and [30] through transfer learning approach
two well-known neural networks are used: Multi-Loss ResNet50
and Hyperface. ResNet50 is used to predict the Yaw, Pitch and
Roll angles of faces, directly from the image; Hyperface uses a
CNN to detect the face, locate the reference points and estimate
the pose. In [31] the authors address the face alignment prob-
lem with KEPLER: an iterative method for Keypoint Estimation
and Pose prediction of unconstrained faces by Learning E�cient
H-CNN Regressors (KEPLER) for addressing.

In [32] it is proposed the use of a combination of linear re-
gressions that learns to map high-dimensional feature vectors ex-
tracted from the face bounding boxes on the head pose angles
and the bounding box displacements, so that they are predicted
in robust way also in presence of unobservable phenomena. In
the method presented in [33] the pose estimation is formulated as
a mixture of linear regression problems. The method maps the
HOG-based descriptors extracted from the face bounding boxes
to the corresponding head poses. The paper in [34] addresses the
problem of estimating head position over a wide range of angles
from low resolution images using chrominance-based functions. A
linear auto-associative memory is obtained by training with the
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Widrow-Ho↵ correction rule.

2.1.2 3D image methods

The majority of the existing solutions operate on 2D images, but
3D imaging has also been exploited. For example, [35] addresses
the problem of head pose estimation from depth data. They syn-
thesize a large amount of annotated training data using a sta-
tistical model of the human face. Experiments show that the
approach is capable of handling real-world data presenting large
pose changes, partial occlusions and facial expressions, even if it
is trained only on synthetic facial data. In [36] 3DDFA (3D Dense
Face Alignment) is proposed, which adapts a dense Morphable 3D
model (3DMM) of a face to an image via cascading CNNs. In [37]
a very large 2D dataset is synthetically expanded by converting
the annotations of the 2D landmarks into 3D and unifying all the
existing datasets, leading to the creation of LS3D-W. The method
presented in [38] introduces a robust method in the case of vari-
able lighting and rotation. Head pose is estimated from 2D key
points drawn in two consecutive frames in the head region and
their 3D projection on a simple geometric model. In the automo-
tive field, [39] presents a solution for monitoring the driver’s head.
By combining 2D and 3D information, head position is estimated
and regions of interest identified. They use this methodologies to
detect special driver-related events such as drowsiness or inatten-
tion.

2.2 Head Pose Dataset

The Head Pose is a biometric trait closely related to the face. It is
studied in the preprocessing phase of the face detection before car-
rying out the recognition. This technique is used on surveillance
videos to extract the frame with a certain pose in terms of degrees
of pitch, yaw and roll. A person’s identity or facial features are
easily recognized by whoever collects the dataset and labels the
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data. However, an user cannot easily classify head rotations with-
out special devices capable of gathering depth information. In the
HPE, images that have RGB-D depth information in addition to
the three color channels are preferred.

Table 2.1 shows the main characteristics of the most popular
datasets. For each dataset popularity (”Pop”) represents the num-
ber of recent HPE documents that used that dataset over the past
five years, to the best of our knowledge.

Table 2.1: Characteristics of the most used datasets for HPE; (nd
stands for ”Not Declared”).

Dataset Year Type #Subj #Frames Pop
BIWI 2013 Depth+RGB 20 +15K 17
ICT-3DHP 2012 Depth+RGB 10 1400 6
SASE 2016 Depth+RGB 50 +30K 3
Pointing’04 2004 RGB 15 2790 12
AFLW 2011 RGB 20 25K 9
AFLW2000 2018 RGB nd 2000 10
300W lp 2016 RGB nd +61K 4
Gotcha-I 2020 Video 62 +137K 1
UPNA 2016 Video 10 36K 1
UBIPOSE 2016 Video nd +10K 1

In the following studies, RGB images belonging to three of
the main datasets used to study HPE were used: Biwi Kinect
Head Pose Dataset, the Annotated Facial Landmarks in the Wild,
Pointing ’04 and Gotcha-I.

2.2.1 Biwi Kinect Head Pose Database

The Biwi Kinect Head Pose dataset [40] comprises 24 sequences of
20 di↵erent subjects (14 men and 6 women, 4 people with glasses)
recorded while sitting about one meter away from the sensor. All
subjects rotated their heads trying to span all possible ranges of
yaw and pitch angles, but also some roll is present in the data. To
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label the sequences with the position of the head and its orienta-
tion, the data has been processed o↵-line with a template-based
head tracker [41], as illustrated in Fig. 2.3. A generic template
was used to match each person’s identity as follows: first, a se-
quence of scans of the users’ neutral face recorded from di↵erent
viewpoints were registered and fused into one 3D point cloud as
described in [42]; then, the 3D morphable model of [43] was used,
together with graph-based non-rigid ICP (Iterative Closest Point)
[44], to adapt the generic face template to the point cloud. Each
sequence was thus tracked with the subject’s template using ICP
[45], obtaining as output for each frame the 3D location of the
head (and thus of the nose tip) and the rotation angles. Over
15k frames have been annotated using such automatic method to
acquire the ground truth for this database; the mean translation
and rotation errors were around 1 mm and 1� respectively. The
resulting Biwi Kinect Head Pose Database contains head rotations
in the range of around ±75� for yaw, ±60� for pitch, and ±50� for
roll. Faces are 90 x 110 pixels in size, on average. In addition to
the depth data used for the tagging algorithm, the corresponding
RGB images are also available, as shown in Fig. 2.4.

Figure 2.3: Automatic pose labeling. A user turns the head in
front of the depth sensor, the scans are integrated into a point
cloud model and a generic template is fit to it. The personalized
template is used for accurate rigid tracking.
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Figure 2.4: Example frames from the Biwi Kinect Head Pose
Database. Both depth and RGB images are present in the dataset,
annotated with head poses.

2.2.2 The Annotated Facial Landmarks in the
Wild (AFLW)

Annotated Facial Landmarks in the Wild dataset (AFLW) pro-
vides a large-scale collection of annotated face images gathered
from the social network Flickr, exhibiting a large variety in ap-
pearance (e.g., pose, expression, ethnicity, age, gender) as well as
general imaging and environmental conditions. In total about 25k
faces are annotated with up to 21 landmarks per image (figure
2.5).

Figure 2.5: The points on the faces represent the 21 landmarks
acquired for each image.

Of these faces, 59% are tagged as female, 41% are tagged as
male; some images contain multiple faces. No rescaling or cropping
has been performed. Most of the images are color and some of
them are gray-scale imges. The facial landmarks are annotated
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Figure 2.6: Some sample images taken from the AFLW2000
dataset, in di↵erent poses of the head.

upon visibility. So, if a facial landmark, e.g., the left ear lobe, is
not visible no annotation is present. The database is not limited
to frontal or near frontal faces. AFWL can be downloaded at [46].

2.2.3 Pointing’04

Pointing ’04 Head Pose Image Database [21] is from the PRIMA
Lab (INRIA) group. It includes 2,790 384 x 288 pixel resolution
images from 15 subjects. This dataset is heavily researched for
HPE regarding pitch and yaw, but does not include roll angle.
During the acquisition, 93 post-its were placed in the room and
the subject was asked to look at one post-it at a time by mov-
ing his head and not his eyes. The annotations shown are not
precise as many subjects also moved their eyes to look at the
post-its. Despite this, Pointing’04 is highly regarded and used in
HPE research. Figure 2.7 shows a small subset of images from the
Pointing ’04 dataset.

2.2.4 GOTCHA-I

GOTCHA-I [? ] contains videos of 62 subjects in 11 di↵erent
environments, for a total of 682 videos. Each frame was extracted
from a video of the subject’s head starting from the right ear to



2.2. Head Pose Dataset 23

Figure 2.7: Some example images taken from the Pointing ’04
dataset, in di↵erent poses of the head.

the left ear, framing the face (180� video), as in figure 2.8. From
each 180� video a 3D model was built for each subject, and then
obtained 2,223 head pose labeled images for each subject in the
range of �40� and +40� in yaw and �30� and +30� in pitch and
�20� and +20� in roll, with a step of 5�. The entire dataset has
in total 137,826 labeled images.

Figure 2.8: Frames extracted from a 180� video of the Gotcha-I
dataset.
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2.3 Our contribution to Head Pose Es-
timation

In our studies we used an algorithm that extracts 68 facial land-
marks [47] which is among the most used ones. This method makes
a prediction of the position of the points on the face and even in
presence of occlusions or low quality images, the output will al-
ways be composed of the coordinates of all the 68 points (none
excluded). Furthermore, this method has excellent performance
in the case of 2D RGB images. In figure 2.9 we see how the 68
face landmarks are positioned on a face.

Figure 2.9: 68 facial landmark and their positions in a face.

The structure of the landmarks was coded based on the poses
represented by Lara, the synthetic dataset we created for this
study. Lara is the name we gave to the 3D model of the face
in the figure 2.10; using Blender, we extracted 2,223 poses of Lara
at 5� degrees each. In this way we created 2,223 classes, each
represented by a facial pose in a range of ±45� for Yaw, ±30�

for Pitch and ±20� for Roll which represent the method’s dis-
crete search space. These ranges have been selected to reduce
the search-space for practical considerations such as the statistical
prevalence of the yaw rotation values compared to pitch and roll
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values as well as the working limits of most face detection and fa-
cial landmark localization algorithms. Similar reasoning applies to
the angular granularity of 5� adopted, which is reasonably small,
however still visually significant. A smaller angular step would be
barely noticeable, though it would have a significant impact on
the e�ciency of the method. It is worth to note that the proposed
approach has no inherent limitations in terms of angular range
and could work on large poses as well. Actually, apart from the
considerations made above, the greater limit is in the landmark lo-
calization algorithm we used, that provides optimal results within
limited angular ranges and suggested the current number of poses
distributed on the three axes.

Figure 2.10: Variations on pitch, yaw, and roll in Lara Dataset.

2.3.1 QT PYR: The Quad-Tree approach

We have carried out several studies and experiments using the
QuadTree to estimate HP[4]. The method consists of three main
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steps:

• 1. Facial landmark extraction.

• 2. QuanTree decomposition.

• 3. Classification of Head Pose.

1. Facial landmark extraction. This task is accomplished
using the method presented in [47].

2. QuadTree decomposition. The image containing the
landmarks is recursively decomposed on the base, i.e. of the pres-
ence of landmarks. The image with 68-face landmarks is the root
of the tree; since it contains at least one landmark, it is split into 4
sub-images. This methodology is applied recursively to each sub-
image, so splitting each one in turn whenever it contains at least
one landmark. This subdivision stops if there are no landmarks
in a sub-image or if the sub-image is 4x4 pixels large, as shown
in fig. 2.11. The QuadTree is then encoded in a binary array: a
”1” denotes that the image has been split into 4 sub-images, a ”0”
denotes that the image has not been splitted. Fig.2.12 shows how
the images are splitted recursively.

This encoding has the property that the resulting binary vector
has a fixed length regardless of the encoded pose. The length of
the vector is of 1.356 binary items.

3. Classification of Head Pose using the Lara model. This
encoding is done for each Lara head pose, thus obtaining 2223
binary vectors. The QuadTree encoding described above is per-
formed to test an image. The binary array resulting from the
QuadTree encoding is compared to those in the dataset using the
Hamming distance. Let us recall the definition of the Hamming
distance. Given two strings s and t of length n, it is defined as

d(s, t) =
nX

i=1

�(si, ti) (2.1)

where �(si, ti) is the following function
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Figure 2.11: Example of four subsequent quad-tree subdivision
steps from the coarser to the finer level.

�(si, ti) =

(
1, if si 6= ti

0 if si = ti

(2.2)

This metric is particularly fast for our purpose. In our case
the length of the strings is the length of the binary array; we will
show that it does not require to be high to reach a good preci-
sion for HPE. For face extraction this is resized to 128x128 pixels.
Considering the lower limit of 4x4 pixels for each QuadTree encod-
ing, we obtain, for each pose, a binary array of size 1,365. Once
the 2,223 arrays have been sorted, the comparison is performed
as in a binary search. So instead of performing 2,223 comparisons
for each image to be tested, the comparisons will be at most 8
(log21, 356); this reduces the computational time for each image
to 0.044 seconds.
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Figure 2.12: Each head pose is encoded as a binary array.

This method is named QT PYR and its overall framework is
shown in Figure 2.13.

2.3.2 QuadTree PY+R and PYR

The results of this method are presented for the datasets BIWI
and AFLW in table 2.2. Given a face, it is classified in one of the
2,223 poses wrt the pitch, yaw and roll axes of rotation. Start-
ing from QT PYR, another methodology was experimented. This
methodology, called QT PY + R method, pre-processes the image
by normalizing the face of the subject based on the roll rotation.
The roll normalization is carried out starting from the measure-
ment of the angular coe�cient of the straight line passing through
the two points represented by the external corners of the eyes. In
Table 2.2 we can see the results of both the methods (QT PYR and
QT PY+R) on the BIWI and AFLW datasets. Err yaw, Err pitch
and Err roll represent the di↵erences in degrees between the pre-
dicted pose and the actual pose along the yaw, pitch and roll axes
respectively. The MAE value is the Mean Absolute Error and rep-
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Figure 2.13: The QT PYR workflow.

resents the distance between the predicted and the ground truth
poses, as defined by the following equation 2.3:

MAE =
1

n

nX

j=1

|yj � ŷj| (2.3)

where yj is the actual pose and ŷj is the predicted pose, in
our case the predicted angular value. We calculated the MAE for
Pitch, Yaw and Roll separately and also an overall MAE of the
error along the three axes.

In the results in the table 2.2 we can also observe that evaluat-
ing the roll separately does not improve the error in the estimation
of the pose.
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Table 2.2: Results of QT (QT PYR and QT PY+R) methods on
BIWI and AFLW.

Dataset Config Err yaw Err pitch Err roll MAE
BIWI QT PYR 4.07 7.51 5.50 5.69
BIWI QT PY+R 6.28 14.95 4.12 8.45
AFLW QT PYR 7.6 7.6 7.17 7.45
AFLW QT PY+R 9.33 17.84 3.44 10.20

2.3.3 The Web-Shaped Model (WSM)

The Web-Shaped Model (WSM) [48] di↵ers from the previous one
in the image encoding with facial landmarks. In the proposed
method a spider-web model is applied to encode the 68 facial land-
marks. The spider-web is constructed by placing the center of a
spider-web on the landmark corresponding to the tip of the nose
(landmark 33).

Figure 2.14: The main steps of WSM.

The radius of the spider-web is given by the distance between
the point O and the most distant landmark from the point O itself,
i.e. the maximum distance to collect all the landmarks. Then the
size of the spider-web adapts to the size and pose of the face.

Let us now introduce some terminology used in theWeb-Shaped
Model:

• by circles we mean the concentric circumferences that com-
pose the spider-web (the red circles in fig. 2.15-a);
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• by quarter we mean a quarter of the spider-web determined
by a pair of Cartesian axes passing through the origin O

centered on the nose (the part in blue in figure 2.15-a);

• with the term slice we refer to a slice of the spider-web de-
limited by two radiuses (the black radiuses in fig. 2.15-a);

• by sector we mean the shape delimited by two concentric
circles and two radiuses (the green section in fig. 2.15-a).

Once we have defined the number of circles and slices that our
spider-web has, the pose of the face is defined according to the
number of landmarks that fall in each sector. For example, if we
have a spider-web with 4 circles and 3 slices for each quadrant,
we will have a total of 48 sectors = 3 (slices) * 4 (quadrants) *
4 (circles). The resulting array of this encoding will have length
48 and the values within the vector will correspond to the number
of landmarks that fall in each sector, as shown in fig.2.16. The
reading of the array from the spider web will proceed from the
outside to the inside, as shown in figure 2.15-b.

Figure 2.15: a) The structure of the spider-web; b) the numbering
of the sectors.

Thanks to this technique, each pose is encoded in its corre-
sponding array. The method was tested on 2,223 poses of the
synthetic Lara model. Lara’s poses were extracted with 5� devia-
tions for the following ranges:
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Figure 2.16: The image shows how the spider-web built on the
facial landmarks turns into an array.

• pitch: [-30�, +30�]

• yaw: [-45�, +45�]

• roll: [-20�, +20�]

The model takes in input the images to be classified; then it
encodes them using the spider-web method; finally the resulting
encoding is compared with the Lara’s images to extract the pose.
The comparison is made using the Hamming distance. It is im-
portant that the images of Lara and the images to be classified are
encoded with the same spider-web configuration. At the beginning
of the algorithm the configuration and the number of slices, cir-
cles and sectors of the spider-web are fixed. In fact, a too high or
too low number of circles and slices give worse results: a number
too high of sectors could result in an excessive discrimination; on
the other hand, a too low number could collapse more poses and
be not su�ciently discriminating. Moreover, to understand which
configuration gives the best results, several experiments with dif-
ferent configurations have been made. The best results have been
obtained with the configuration with 4 circles and 4 slices.

The experiments were conducted on the BIWI, Ponting’04 and
AFLW datasets introduced in Section 2.2. The results are shown
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in the table 2.3

Table 2.3: Results of the WSM model. The Pointing’04 dataset
does not contain the Roll information.

Dataset Err yaw Err pitch Err roll MAE
BIWI 6.21 3.95 4.16 4.77
Pointing’04 10.63 6.34 \ 8.485
AFLW 3.11 4.82 2.25 3.39

To evaluate the performance even in more competitive condi-
tions, the method was also tested on the videos of the Gotcha-I
dataset. Given a video of a walking person, the frame in which
the face has the position closest to the neutral one was extracted
(fig. 2.17).

Figure 2.17: Frames from video. The last frame reproduces the
one chosen by the procedure using the proposed pose estimation.
The same frame (the 15-th one) is highlighted in the sequence by
a yellow rectangle.

2.3.4 WSM with Regression

In the previous method [48] we made a comparison between the
pose feature vector extracted and those stored in the dataset to
perform the pose classification, as in figure 2.18. The output ob-
tained is the pose, whose reference vector has the lowest distance
(Euclidean) from the extracted vector of the input image.
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With classification the output class can only fall into one of
the 2,223 classes. For example, if the pose is (0�, 3�, 0�), the clas-
sification can give us the class (0�, 0�, 0�) or (0�, 5�, 0�) as output,
because the classes are a discrete number of values. Example in
figure 2.18-B). In the classification of the output it is a continu-
ous number of values in the range; so in the previous example the
regression method is able to predict the exact degree.

Starting from this approach, we use regression instead of clas-
sification, to outperform results. So, for each experiment, three
di↵erent regression models were built, for pitch, yaw and roll:

• a regression model for pitch prediction that returns a number
in the continuous range [- 30, +30];

• a regression model for yaw prediction that returns a number
in the continuous range [- 45, +45];

• a regression model for roll prediction that returns a number
in the continuous range [- 20, +20].

The method is represented in Figure 2.18-C). In doing so, the
minimum error can be less than 5� unlike the previous method
that uses classification.

2.3.5 Supervised Learning: Regression vs. Clas-
sification

Supervised Learning (SL) refers to a class of algorithms that learns
a function f that maps an input space X to an output space Y

based on a sequence of input-output pairs. There are two main
groups of Supervised learning (SL) methods, namely classification
and regression, depending on the nature of the output space. Clas-
sification methods predict discrete responses and aim to assign a
label yj 2 Y at each input element xi 2 X. Regression models
predict continuous responses [49]. Relationships between two vari-
ables are modeled by linear regression trying to fit linear equation
to observed data. Consequently, classification techniques provide
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Figure 2.18: Representation of the method: A) Summary of the
WSM approach; B) Classification; C) Regression.

the model or function that predicts new data in discrete categories;
conversely, regression methods model functions at constant values,
which means that it predicts data in continuous numeric data.
Our approach stimulates the sensitivity of the regression methods
to identify the head pose estimation. The goal is to predict the
value of the dependent variable for the three angular values, re-
spectively for pitch, yaw and roll axes associated to head’s degrees
of freedom, for which some information relating to the explana-
tory variables is available, in order to estimate the e↵ect on the
dependent variable.

2.3.5.1 Linear Regression

A linear relationship between an independent variable x, usually
referred to as a predictor variable and a dependent variable y, i.e.
a criterion variable, is expressed by the following equation:

y = mx+ b (2.4)
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where m is the slope of the relationship and b is the y intercept.
Linear Regression (LR) is employed to fit a predictive model to the
set of training observations (x, y) [50]. The result is the prediction
equation that gives the best estimate of y in terms of x. Then, the
fitted model is used to make predictions of y for new instances of
x.

2.3.5.2 Bayesian Ridge Regression

Bayesian Regression estimates a probabilistic model using regu-
larization parameters in the procedure [51]. It assumes that the
response y results from a probability distribution rather than es-
timated as a single value. Formally, to obtain a fully probabilistic
model, the output y is assumed to be Gaussian distributed around
Xw:

p(y|X,w,↵) = N(y|0, Xw,↵) (2.5)

where ↵ is again treated as a random variable that is to be
estimated from the data. A Bayesian view of Ridge Regression
(BRR) is obtained in Eq. 2.6. The spherical Gaussian is adopted
for the prior of the coe�cient w:

p(w|�) = N(w|0,��1
, Ip) (2.6)

The priors over ↵ and � represent the gamma distributions.
The parameters w, ↵ and � are estimated jointly during the fit of
the model, the regularization parameters and being estimated by
maximizing the log marginal likelihood [52].

2.3.5.3 Lasso Regression

Lasso (LsR) is a linear model that reduces the regression coef-
ficients towards zero by penalizing the regression model with a
penalty term called l1 norm, which is the sum of the absolute co-
e�cients [49]. Mathematically, the Lasso model is described by the
following equation, in order to minimize the objective function:
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min
1

2nsamples
||Xw � y||22 + ↵||w||1 (2.7)

The parameter ↵ is a constant and ||w||1 represent the l1 norm
of the coe�cient vector.

2.3.5.4 Logistic Regression

In the existing multiple regression models, Logistic Regression
(LgR) represents a particular case of the generalized linear model.
It is a regression model applied in cases where the dependent vari-
able y is dichotomous [51], [49]. Therefore, LgR allows to ana-
lyze the relationship between a dichotomous variable and one or
more explanatory variables (both continuous and categorical). In
general, the Logistic model can be represented by the following
equation:

y =
e
↵+�x

1 + e↵+�x
(2.8)

where x is the input value, ↵ and � the coe�cients of the
input value (constant real numbers) and y the predict value. Our
implementation fit the model with L2 regularization. More details
about the LgR algorithm can be found at [53].

2.3.6 Results and Discussion

The four regression methods discussed in the previous section were
used in the experiments.

The 70% of the datasets images was used to extract the model
reference dataset, and the remaining ones are used for testing. To
evaluate the proposed approach it is used a performance index
commonly present as an evaluation criterion in HPE, namely the
Mean Absolute Error (MAE). The MAE represents the distance
between the predicted and the ground truth poses (MAE formula
is presented in Section 2.3).

The results of our methods on the BIWI dataset have been
compared with those known at the state of the art found in the
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last rows of table 2.4; the results on the AFLW dataset are shown
in table 2.5; instead table 2.6 shows the results of the experiments
carried out on the Pointing’04 dataset. Also in table 2.7 we com-
pare the computational time needed to carry out the experiments;
it can be noted that WSM takes much less time than QuatNet but
has worse results.

Table 2.4: Mean Absolute Error of Pitch, Yaw, and Roll Angles
Across Di↵erent Methods over the Biwi Dataset

Method Yaw Pitch Roll MAE
Multi-Loss ResNet50 [29] 5.17 6.97 3.39 5.177

GPR [54] 7.72 9.64 6.01 7.79
PLS [55] 7.35 7.87 6.11 7.11
SVR [56] 6.98 7.77 5.14 6.63

hGLLiM [32] 6.06 7.65 5.62 6.44
FSA-Net [22] 4.27 4.96 2.76 3.99

Coarse-to-Fine [23] 4.76 5.48 4.29 4.84
QuatNet [26] 4.01 5.49 2.93 4.14
WSM [48] 6.21 3.95 4.16 4.77
QT PYR [5] 4.07 7.51 5.50 5.69
QT PY+R [5] 6.28 14.95 4.12 8.45
WSM-LR 3.63 3.44 2.15 3.07
WSM-BRR 3.61 3.35 2.11 3.02
WSM-LsR 3.63 3.36 2.16 3.05
WSM-LgR 3.12 2.31 1.88 2.43

2.4 Conclusions

In this chapter we have examined the algorithms behind head pose
estimation and show our contribution to the state of the art. The
algorithms presented use 2D RGB images so they can be captured
by any type of camera; this choice is suitable for easily adapting
these methods to video shooting in video surveillance contexts.To
investigate further uses of the presented method, we performed
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Table 2.5: Mean Absolute Error of Pitch, Yaw, and Roll Angles
Across Di↵erent Methods over the AFLW2000 Dataset

Method Yaw Pitch Roll MAE
Multi-Loss ResNet50 [29] 6.470 6.559 5.436 6.155
Hyperface [30] 7.61 6.13 3.92 5.89
KEPLER [31] 6.45 5.85 8.75 7.01
3DDFA [36] 5.400 8.530 8.250 7.393
FAN [57] 6.358 12.277 8.714 9.116
QuatNet [26] 3.973 5.615 3.92 4.503
QT PYR [4] 7.6 7.6 7.17 7.45
QT PY+R [4] 9.33 17.84 3.44 10.20
WSM [48] 3.11 4.82 2.25 3.39
WSM-LR 3.88 4.66 2.50 3.68
WSM-BRR 3.82 4.67 2.49 3.66
WSM-LsR 3.86 4.69 2.58 3.71
WSM-LgR 4.31 5.34 2.62 4.09

Table 2.6: Mean Absolute Error of Pitch and Yaw Angles Across
Di↵erent Methods over the Pointing’04 Dataset

Method Yaw Pitch MAE
Stiefelhagen [21] 9.7 9.5 9.6
Gourier et al. [34] 12.1 7.3 9.7
SVR [56] 12.82 11.25 12.035
hGLLiM [32] 7.93 8.47 8.2
Probabilistic HDR [33] 8.70 8.85 8.775
Kong et al. [58] 10.98 9.71 10.345
WSM [48] 10.63 6.34 8.4
WSM-LR 5.61 7.73 6.67
WSM-BRR 5.60 7.68 6.64
WSM-LsR 5.61 7.61 6.61
WSM-LgR 4.44 7.55 5.99

tests on video sequences. The aim was to look for the one with
the optimal pose in a sequence of frames. In this case the method
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Table 2.7: QuatNet (training) vs WSM (training-free)

Method GPU Time E Pitch E Yaw E Roll MAE

QuatNet [26]
NVIDIA
GTX 1080

4.5h 4.32 3.93 2.59 3.61

WSM [48]
Intel HD
Graphics 515

0.16h 4.82 3.11 2.25 3.39

was adapted to the purpose. Taking the video of an interview
with an actress we asked the algorithm to extract a frame with
the central pose (or the one with the pose closest to the one with
coordinates 0� pitch, � yaw, 0� roll), then we asked the algorithm
to extract a certain pose from the video (or the closest one). In
figure 2.19 the video of the interview, the query picture of the
frame with the neutral pose (a) and the output frame in which
the subject has the required pose (b). The second query requires
to extract a frame with a specific pose (c), returns the frame in
which the subject has the pose closest to the one requested (d).

Figure 2.19: Search for the desired pose in a sequence of frames
extracted from a video interview (a) Search for an image that
matches the frontal pose (the one with angle P: +00�, Y: +00�,
R: +00�) (b) Front-most frame in the sequence (c) Search for an
image that matches pose with angles: P +10�, Y +30�, R +05�

(d) Frame more similar to the required pose.

A similar experiment was done on the Gotcha-I dataset. Given
a video, the frame with the most frontal face was extracted, shown
in fig. 2.17.



Chapter 3

Gait analysis

The work presented in this Chapter was carried out in collabo-
ration with the Universidad de Las Palmas de Gran Canaria. In
this chapter we delve into several aspects of biometrics that af-
fect the way a person walks: the gait. Gait analysis is the study
of human motion; this biometry has advanced with the rise of
photography and cinematography that has allowed its acquisition.
In recent decades it has been studied in medicine, sports and for
biometric analysis. In medicine, gait abnormalities can be symp-
toms of diseases such as Cerebral Palsy or stroke. In sport, the
study of gait can determine the choice of athletes’ shoes, in or-
der to optimize their performance. In biometric analysis, gait has
the advantage that it can be acquired non-invasively by a video
surveillance camera. Analysis of this biometry was conducted to
explore what information can be acquired about walking subjects.
In the course of this chapter we will see that thanks to the creation
of a specific dataset it was possible to classify the genre and the
cooperativeness of the subjects.
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3.1 The state-of-the-art on gait analy-
sis

In this section we provide an overview of the recent state of the
art of the research on gait analysis. The gait is acquired both
through sensors placed on the body of the subjects, called wear-
ables, and through computer vision. Wearable devices acquisition
in gait analysis are widely used in diagnosis or monitoring in the
medical setting. For example, in the work in [59] the authors want
to optimize gait acquisition by looking for the optimal positioning
of sensors on the foot, varying five di↵erent positions. Internet
of Things wearables [60] also performs gait recognition based on
walking speed using the accelerometer. Walking speed has also
been used in the medical field following disabilities caused by cere-
bellar ataxia [61]. In this case, the gait was acquired through sen-
sors placed on the stomach and legs. Wearable gait also provides
information on the health of the elderly, the authors in [62] imple-
mented a method which, based on the age, gender and gait of the
individual, determines whether the subject is healthy. Machine
learning techniques used with wearable sensors involve Support
Vector Machine (SVM) as in [63], K-Nearest Neighbor (KNN) as
in [64, 65]. But the most popular methods concern neural net-
works and in particular Convolutional Neural Networks (CNN)
[66, 67].

The wearable devices described above require the cooperation
and awareness of the acquisition subject. In the context of video
surveillance it is not possible to request the collaboration of all the
subjects. Therefore it is preferable to analyze the video image of
the subject, with the aid of computer vision techniques. In wild
environments, such as in video surveillance, a person’s gait can
also be acquired from behind and still be meaningful [68]. Fur-
thermore, the acquisition can take place through a normal RGB
camera or from specific cameras to add depth information [69].
Depth information can be provided by depth cameras, multiple
cameras or via Kinect [70]. When we acquire a person’s gait, we
cannot expect him to be in a front pose; as for the HPE, the



3.1. The state-of-the-art on gait analysis 43

estimate of the pose [71] is also studied for the gait.
Figure 3.1 shows two types of gait that can be extracted from

a 2d camera: Binary Silhouettes and Human Poses [72].
There are many studies to extract and analyze the binary sil-

houettes [73]. The Gait Energy Image (GEI) can be constructed
from the human silhouette. GEI has been studied involving both
small neural networks such as [74] and deep neural networks [75].

The human pose 3.1-b) extracted can be 2D or 3D and consists
of creating the points of the human skeleton.

Figure 3.1: An examples of vision-based gait features. (a) the
binary silhouettes and (b) the 2D human skeleton, extracted using
OpenPose [76].

The software used in this study to extract the 2D human pose
features is OpenPose [76]. This type of acquisition is less strong
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in recognition than in identifying people by behavioral traits.
The human pose of OpenPose can be used in di↵erent areas.

In the medical field: to prevent the fall of elderly people with
senile dementia [77]; or assessing Parkinson’s disease by gait as
the second most dangerous neurological disorder [78]; or to detect
di↵erences between di↵erent issues by gender [79]. In the field of
video surveillance, gender can be recognized for security purposes
[80, 6, 7]. It is possible to classify the age of an individual based
on the way he/she walks [81, 82]. In addition, the gait in video
surveillance also allows us to classify [83, 84, 85] shares; acquired
from video [86] or even from images transmitted by drones [87,
88]. As actions, intentions and behavior can also be analyzed
through the gait; the study in [8] deepens the recognition of the
cooperativeness and non-cooperativeness towards the camera of
the framed subjects.

To carry out an in-depth analysis on these issues, it was nec-
essary to create a special Gotcha-I dataset.

3.2 GOTCHA-I Dataset

The GOTCHA-I [? ] dataset is a multi-environment dataset. This
dataset has been partially presented in section 2.2.4. The Gotcha-I
dataset was acquired at the University of Salerno, and was created
to study the acquisition of features in people walking in di↵erent
environmental contexts. Gotcha-I dataset contains 62 subjects:
15 women and 47 men. Thanks to the presence of both men and
women it was possible to carry out a gender recognition on the
gait [7] and on the human skeleton [6]. Dataset videos were cap-
tured in di↵erent ways: indoor with the flash camera, indoor with
the artificial lights on and outdoor. Each of these contexts has
also been acquired in cooperative and non-cooperative mode. In
cooperative mode, the subjects were asked to walk normally with-
out feeling bothered by the camera shot. In the non-cooperative
mode the subjects were asked to act as if they felt annoyed by the
presence of the camera, thus trying to evade the gaze. The dataset
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contains a sample of data extracted from reality without changing
its spontaneity, as the subjects were asked to keep glasses, hats or
scarves if they were already clothing them. The main feature of
the Gotcha-I dataset is that the videos have been acquired taking
inspiration from body worn cameras; the intention is to simulate
the wearable cameras used by police o�cers from di↵erent coun-
tries around the world.

All the videos of the dataset can be summarized as follows:

• (1) indoor with artificial light - cooperative mode;

• (2) indoor with artificial light - non cooperative mode;

• (3) indoor without any lights but the camera flash - cooper-
ative mode;

• (4) indoor without any lights but the camera flash - non
cooperative mode;

• (5) outdoor with sunlight - cooperative mode;

• (6) outdoor with sunlight - non cooperative mode;

• (7) 180°head video;

• (8) stairs outdoor - cooperative mode;

• (9) stairs outdoor - non cooperative mode;

• (10) path outdoor - cooperative mode ;

• (11) path outdoor - non cooperative mode;

Figure 3.6 shows the main di↵erences between each video re-
garding the environment and the cooperation of the subjects.

Furthermore, the 3D model of people faces was extracted from
the 180� videos (fig. 3.3) using photogrammetry techniques, from
which the faces in all poses were synthetically extracted, so as to
be able to study the HPE (fig. 3.4).
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Table 3.1: Comparison of the contents of the datasets in the litera-
ture and of the Gotcha-I dataset: the number of subjects (Subj.),
the analyzed biometries (Biom.), the type of environment (En-
vir.), the device used for the acquisition and information about
non-cooperativeness (NC).

Dataset Subj Biom Envir Device NC
COMPACT [89] 108 Face Indoor Camera no
UBEAR [90] 126 Ear Indoor Camera no
Quis-Campi [12] 320 Body Outdoor Camera no
Droneface [91] 11 Face Outdoor Camera yes
Mubidius-I [92] 80 Multi Multi Camera no
Salsa [93] 18 Body Multi Multi no
BIWI HeadPose [40] 20 Face Indoor Multi no
GOTCHA-I [? ] 62 Multi Multi Camera yes

3.3 Gender from Gait

In this section we explore two studies to classify the gender from
the human skeleton [6] and from the gait [7] of the subjects. This
method consists of: the extraction of the body features with the
OpenPose[76] algorithm; ii) the features creation starting from
the OpenPose landmarks; iii) and finally the binary classification
(male, female). In [6] the output of OpenPose (fig. 3.5), was stud-
ied to empirically establish which are the most important features
for gender classification.

OpenPose estimates the position of 18 body landmarks in (x,
y) coordinates. The body landmarks were extracted from all the
videos present in the Gotcha-I dataset.

Features creation. The features have been created starting
from the 18 OpenPose body landmarks (figure 3.6-a), with two
di↵erent configurations: in the first configuration the distances
between all the body landmarks (figure 3.6-b) were considered;
in the second configuration, the distances between only the body
landmarks of the upper part of the body (figure 3.6-c). The con-
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Figure 3.2: Examples of frames extracted from the Gotcha-I
dataset: outdoor with sunlight - cooperative mode (top left); in-
door with artificial light - non coopeerative mode (top center);
path outdoor - non cooperative mode (top right); indoor without
any lights but the camera flash - non cooperative mode (bottom
left); stairs outdoor - coopertive mode (bottom right).

figuration with the landmarks of the only upper part of the body
was chosen for two reasons: because the landmarks of the whole
body are not visible in all the frames, so often the lower part of
the body is not captured by the camera; and because anthropo-
morphically the main di↵erence between men and women is given
by the di↵erent ratio between hip width and shoulder width [94].

We obtained 5,870 arrays of features, each representing a frame
(3,970 arrays in cooperative mode and 1,830 arrays in non-cooperative
mode). The number of arrays is unbalanced since it is not possible
to extract landmarks from all the frames, because the whole body
is not visible in all the frames.

Classification. The arrays with the distances were divided
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Figure 3.3: An example of the 3d model of the faces of the subjects
in the 180� videos

into 70% for the training set and 30% for the test set and were
given as input to a Random Forest (RF) classifier, with di↵erent
depth configurations.

From the results in Table 3.2 the configuration with all the
landmarks of the body gave the best results.

As it can be seen from Table 3.2, the possibility of using all
the frames and of decreasing the computational time required to
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Figure 3.4: The faces extracted in all poses from the 3D model of
the face.

Table 3.2: Result of the first method based on Random Forest
classifier.

RF Depth C. Acc. Non-C. Acc. C. and Non-C. Acc.
Total body keypoints

12 98.3% 55.4% 78.7%
Upper body keypoints

4 83.3% 59.8% 73.7%

compute the distances, are paid with a less accuracy using only
some upper body features. This preliminary study [7] was useful
to empirically understand which configuration of features gives us
better results in gender classification In the next study we created
a method for identifying the gender from the gait; to this aim, we
considered as input a video and not single frames. We examined
the 18 body keypoints shown in figure 3.3 for 200 frames per video
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Figure 3.5: OpenPose is used to detect human body keypoints on
single images. The output consists of 18 body keypoints estima-
tion.

and calculated the 153 distances between all body keypoints; so
for each video we obtained 36,000 features. For the gender clas-
sification we used 30 subjects (15 male and 15 female from the
Gotcha-I dataset). As classifiers we used 4 di↵erent classifiers:

• Random Forest (RF): with 100 trees, entropy as a function to
calculate the quality of the split in each phase and bootstrap
samples during the construction phases of the tree.

• K-Nearest Neighbor (KNN): this algorithm is based on the
similarity between the samples. K is the minimum number
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Figure 3.6: a) The body landmarks of OpenPose on a subject
of the Gotcha-I dataset. b) The distances between all the body
landmarks. c) The distances of the body landmarks of the upper
body.

of neighboring values to rank a sample, and a value of K =
5 was chosen.

• Support Vector Classifier (SVC): it create a hyperplane to
separate the two classes involved.

• AdaBoost: converts the classification problem into simpler
subproblems.

The 70% of the data was used for the training set, while 30%
was used for the test set. Furthermore, the experiments were car-
ried out in the cooperative and non-cooperative mode separately
in order to highlight any di↵erences between the two modes. The
results are shown in table 3.3.

As shown by the results in the table, the non-cooperative mode
always obtains lower results than the corresponding cooperative
mode. The best results are given by the Random Forest classifier
in cooperative mode - indoor with camera flash; for this mode the
gender was recognized whit a success percentage of 82,5%.
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Table 3.3: The gender recognition results using di↵erent classifiers,
modalities and environments.

Classifier Modality Environment Acc Mean
RF Cooperative Indoor light 80.7%
RF Non-cooperative Indoor light 75.5%
RF Cooperative Indoor flash 82.5% 75.45%
RF Non-Cooperative Indoor flash 77.9%
RF Cooperative Outdoor 68%
RF Non-Cooperative Outdoor 68.1%
KNN Cooperative Indoor light 69.1%
KNN Non-cooperative Indoor light 65.8%
KNN Cooperative Indoor flash 74.1% 67.36%
KNN Non-Cooperative Indoor flash 69.5%
KNN Cooperative Outdoor 62.6%
KNN Non-Cooperative Outdoor 63.1%
SVC Cooperative Indoor light 74.1%
SVC Non-cooperative Indoor light 66.6%
SVC Cooperative Indoor flash 77.7% 69.06%
SVC Non-Cooperative Indoor flash 69.4%
SVC Cooperative Outdoor 63.9%
SVC Non-Cooperative Outdoor 62.7%
AdaBoost Cooperative Indoor light 77.4%
AdaBoost Non-cooperative Indoor light 72%
AdaBoost Cooperative Indoor flash 80.9% 71.2%
AdaBoost Non-Cooperative Indoor flash 77.4%
AdaBoost Cooperative Outdoor 59.7%
AdaBoost Non-Cooperative Outdoor 60.2%

3.4 Human cooperation detection

Given the information contained in the Gotcha-I dataset, it was
possible to study cooperativeness detection: the problem was that
of recognizing if a user was moving freely/naturally or trying to
avoid the camera. The results obtained about this topic are also
reported in the work in [8]. Figure 3.7 shows the pipeline of the
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method for cooperativeness detection; it uses Recurrent Neural
Networks, and its steps can be summarized as follows:

Figure 3.7: The pipeline of the cooperativeness detection method.

Figure 3.8: The features used refer only to the upper body.

• in the first step OpenPose skeleton representation is ob-
tained: the features we are going to analyze are the body
landmarks extracted with the OpenPose algorithm, as in the
previous methods. In this case, however, we focus only on
the upper body. As in the method for gender classification,
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we start from the keypoints of the skeleton. In this case, as
in the first gender analysis, we will only use the keypoints of
the upper body, as shown in figure 3.8.

• in the second step the Bucket algorithm is invoked: this is
the normalization phase of the data to be given in input to
the network. This normalization phase serves to increase the
training speed of the network.

• Attentive recurrent network: the Recurrent Neural Network
(RNN) learns the long-term contextual dependencies. For
the videos we solve this problem by using a multi-layer long
short-term memory (LSTM). In this work we use a particular
RNN combined with an LSTM, known as BiLSTM [95]. This
network is bidirectional, so it can move both forward and
backward. Usually not all human movements contribute in
the same way, so we introduce a movement attention mech-
anism to capture the distinguished influence of the move-
ment on cooperative/non-cooperative issues. If T denotes
the number of time steps in the sequence, at the weights cal-
culated at each time step t and ht the hidden state vector,
the attentions can be defined as

S =
TX

i=1

at ⇤ ht (3.1)

the attention can be seen is a weighted average of ht, and
the resulting vector S is used to feed a fully connected layer
to generate the final classification output.

The Gotcha-I dataset is the only video dataset in the liter-
ature that contains videos covering both cooperative and non-
cooperative subjects. The training set and test set were randomly
chosen and 5-fold validation was applied. Furthermore, the same
subject was not used both in training and in the set to avoid cre-
ating bias in the model. To train the models, the metric chosen is
the Matthews Correlation Coe�cient (MCC), taking into account
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true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). The MCC can be calculated as follows:

MCC =
(TP ⇤ TN)� (FP ⇤ FN)p

(TP + FP ) ⇤ (TN + FN) ⇤ (TN + FP ) ⇤ (TP + FN)
(3.2)

Unlike accuracy, in the case of MCC, if we have a binary class
problem and it is balanced, the value will be 0, instead of 0.5,
because MCC is between -1 and 1.

The experiments conducted take into account several variables.
First of all, the number of buckets per video. A high number can
reduce noise but, on the other hand, a low number can provide
greater accuracy. Our architecture is compared to a basic LSTM,
a CNN-LSTM, ConvLSTM (where the convolutional step is within
the LSTM), BiLSTM and VGG16. The best results of our method
were obtained for 100 buckets as reported in table 3.4 where we
obtained for MCC a value of 0.952 with an accuracy of 97.58%.
Also, with 50 and 150 buckets our method outperforms the other
methods.

Table 3.4: Comparisons of Att-RNN with other methods.

Method MCC Acc
LSTM 0.909 95.43%
CNN-LSTM 0.877 93.82%
ConvLSTM 0.919 95.96%
BiLSTM 0.909 95.43%
VGG16 0.709 76.62%
Att-RNN (our) 0.952 97.58%

We also conducted experiments by fusing Att-RNN with other
methods mentioned in the previous table. We got the results re-
ported in table 3.5.
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Table 3.5: Accuracies of the methods fused with Att-RNN.

Methods fused MCC Acc
Att-RNN
ConvLSTM

0.957 97.84%

Att-RNN (100 buckets)
Att-RNN (150 buckets)
BiLSTM

0.963 98.12%

Att-RNN
CNN-LSTM
ConvLSTM (100 buckets)
ConvLSTM (150 buckets)

0.969 98.39%

3.5 Conclusions

In this chapter we have analyzed the human gait. We presented
the Gotcha-I dataset created specifically to study gait and HPE.
From the Gotcha-I dataset we extracted the frames to study gen-
der recognition on 2D human skeleton reaching 78 % accuracy
thanks to the use of a Random Forest classifier. From the same
dataset we extracted the information on 200 consecutive frames
so as to be able to study gender from the gait. We achieved 82%
accuracy with the Random Forest classifier for indoor cooperative
videos with the lights o↵ but the camera flash. We used more
sophisticated techniques to solve the problem of recognizing the
subjects’ cooperativeness. We introduced ATT-RNN which has
achieved approximately 98% accuracy by recognizing cooperative
and non-cooperative users.

The information extracted could have a strong impact in the
study of biometric recognition in video surveillance. This also
opens the door to studies on action recognition.



Chapter 4

Face Recognition by facial
features.

In this chapter we collect the work done in the year spent in the
Softlab company, foreseen by the industrial doctorate. In this
chapter we first make an introduction on biometric recognition
systems in Section 4.1. We created two applications for biometric
recognition. The first one consists of a software application that
acquires facial features from people faces; on request there is also
the possibility of grouping faces that share the same characteris-
tics. The software application, presented in Section 4.2, can be
used to tag the facial features of a large number of faces within
a database. We then created a facial recognition application to
recognize the identity of an individual from the dynamics of the
face. This application was created for the control of outgoing per-
sonnel in a company; to enter the company building the person in
question is required to pronunce a given sentence in front of the
camera, the system will allow the entrance if it recognizes the sub-
ject’s lip dynamics corresponding to that sentence (Section 4.3).

4.1 Biometric systems

In this section we examine in details the existing approaches and
applications at the state-of-the-art of facial recognizers, both in
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the case of recognition of facial features, and in the case of labial
recognition.

The term ”biometric system” refers to the set of technologies
and applications (software) based on the use of biometrics and
related characteristics. The main areas of interest of these tech-
nologies are the authentication and direct verification of personal
identity and the indirect identification of a person by means of
the biometric features available. An automatic recognition sys-
tem is the set of methodologies and techniques to automatically
identify objects and individuals, using information previously ac-
quired and saved in a database. The results thus collected can
then be analyzed and compared to carry out the recognition.

A typical biometric system has two operational phases (fig.
4.4):

• 1. Enrollment : the phase that involves the acquisition
of the biometric traits of an individual, and their process-
ing in order to extract a series of features for generating
the templates used for subsequent identification/authenti-
cation operations. The extracted templates are stored in a
database.

• 2. Recognition the phase when the system acquires the
biometric traits of an individual, extracts a new set of char-
acteristics, generates a template that will be compared with
those in the database.

Environmental conditions can have significant e↵ects on the
performance of the devices and on the stability of the biometric
characteristics extracted; these should be ideal in terms of noise of
the acquisition devices (good lighting for video acquisitions, tem-
perature, humidity, background noise for audio acquisitions, etc.).
The user plays an important role in the design choices concerning
the system: an user can be cooperative, if it is in his interest to be
recognized by the system; or non-cooperative, if he/she is indif-
ferent to the recognition process. The choice of which biometrics
to use is therefore dictated by the requirements of the application
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Figure 4.1: Operational Phases of a Biometric Recognition Sys-
tem.

in which it must be used; rarely one biometrics is optimal for any
application context, but one biometrics may be more suitable than
others for a specific case.

4.1.1 Facial recognition

Face recognition is a task that humans perform habitually and ef-
fortlessly in their daily life. The perception of faces, understood as
the set of cognitive processes that induces the understanding and
interpretation of the physiological characteristics of a face, is a ca-
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Figure 4.2: In art, pareidolia has been widely exploited to create
works that have multiple interpretations. For example, a land-
scape that looks like a face.

pacity that human beings develop from birth. It is a mechanism so
rooted in the human brain that it often induces the phenomenon
of Pareidolia: a subconscious illusion that tends to lead objects
or profiles with a random shape to known shapes; this associa-
tion is manifested especially towards human figures and faces (fig.
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4.2). In Computer Vision, facial recognition becomes a method
for identifying or verifying the identity of an individual using his
face. Facial recognition systems can be used to identify people in
photos, videos or in real time; these are non-intrusive methodolo-
gies that do not necessarily require the active participation of the
subject. Despite the intrapersonal variations (the same subject
can appear in several di↵erent ways) and inter-personal similar-
ities (several subjects can resemble each other), the face as bio-
metrics represents a good compromise between ease of acquisition
(non-invasive) and performance (modern approaches with neural
networks make recognition fast and accurate) as well as having
excellent acceptance by users as it is the most natural method to
associate identity with a subject. The most used approaches for
facial recognition, according to [96], are based on the position and
shape of facial attributes, such as the eyes, eyebrows, nose, lips
and chin and the spatial relationships between them, or on the
overall analysis of the face image representing a face as a weighted
combination of a number of canonical faces. Facial recognition
systems have the dual objective of identifying an individual or
verifying his/her identity thanks to a series of discriminating bio-
metric features present on the face. Therefore, they can operate
in one or both operating modes, as in figure 4.3:

• face verification (authentication): implies a one-to-one
correspondence that compares the image of the face in the
query with the image in the database whose identity is claimed;

• face identification: implies a one-to-many correspondence
that compares the image of the face in the query with all the
images in the database in order to establish the identity of
the subject to which the face belongs.

Another face recognition scenario involves a comparison with
a watch list in which the face of the query is compared with a list
of suspects (match one to many). In particular, a watch list can
be of two types:

• White list: a list containing only the subjects admitted to
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Figure 4.3: The two operting logics: a) authentication mode; b)
identification mode.

the system. The membership of the individual on the list is
verified before allowing access.

• Black list: a list in which the subjects excluded from the
system are present. As soon as the system notices that
an unauthorized individual is trying to access, an alarm is
raised.

4.1.1.1 Facial attributes

Facial Attribute Analysis provides additional information where
the face cannot be fully recognized. This may be due to an oc-
clusion which may be voluntary such as wearing sunglasses, a hat
or a scarf, or involuntarily due to poor lighting or environmental
factors [97]. Being able to infer the identity of an occluded face
is another vast field of research, the occlusions are also known as
PIE (Pose, Illumination and Expression):

• Pose: the pose of the face concerns the inclination of the face
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in relation to the camera. This problem has been addressed
in chapter 2 and can lead to a distortion of the face and
therefore to a misidentification.

• Lighting: capture lighting can create shadows or noise and
create conditions that make it di�cult to capture and locate
facial features.

• Expressions: they reduce the possibility of a correct identi-
fication of the face because they distort its morphology.

• Occlusions: they partially occlude the face and can a↵ect its
recognition. Hats, glasses and scarves are occlusions.

With facial attributes we also mean all those characteristics
that characterize the face such as: the color of the eyes, the color
of the hair, the shape of the face, the absence or presence of make-
up or beard and others. In section 4.2 we will deepen the study of
these facial attributes within the CelebA dataset [98].

4.1.2 Structure of a Facial Recognition System

A facial recognition system generally consists of 4 modules: face
detection and face alignment, features extraction and matching;
detection and alignment are pre-processing phases performed be-
fore the actual recognition takes place, as shown in figure 4.4

• 1. Face detection: the region containing only the face is
extracted from the image. This region is segmented, associ-
ating a semantic meaning to each area of the face.

• 2. Face Alignment: the alignment module is designed to
obtain a more accurate localization and to normalize faces
with respect to geometric properties (eg. size or pose) using
a series of transformations (morphing). A further normaliza-
tion can take place with respect to photometric properties,
designed to alleviate the variability introduced by lighting
or color (usually the images are shown in gray scale).
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• 3. Feature Extraction: once the face has been normal-
ized, a series of distinctive features are extracted which allow
the subjects to be e↵ectively discriminated based on specific
geometric or photometric variations. The extracted charac-
teristics are collected in a data structure (vector of charac-
teristics) capable of representing a specific subject.

• 4. Matching: the vector of the extracted features is com-
pared with those present in the database the identity of the
face that matches with a certain degree of accuracy (if found)
is output.

The performance of a facial recognition system is highly depen-
dent on the characteristics that are extracted to represent the face
model and on the classification methods used to distinguish be-
tween these models. The detection and normalization modules
form the basis for a correct extraction of the characteristics.

Figure 4.4: The four stages of a facial recognition system.

4.1.3 Performance evaluation

Unlike password-based systems, where a perfect match between
two alphanumeric strings is required to allow access to a service, a
biometric system rarely encounters two samples of the biometric
trait extracted by the same user that translate exactly to the same
set of features. This can be due to imperfect sensing conditions
(e.g. noisy fingerprints due to sensor malfunction), alterations in
the user’s biometric characteristics (e.g. respiratory disorders af-
fecting speech recognition), changes in environmental conditions
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(e.g. inconsistent lighting levels in facial recognition) and/or vari-
ations in user interaction with the sensor (e.g. occluded iris or
partial fingerprints). Consequently, it is rare to find two vectors of
characteristics of the same subject that are perfectly identical [1].
In this case, a perfect match between two sets of features could
indicate the possibility that a replay attack has been launched
against the system. The observed variability in an individual’s
biometric characteristics is called intra-class variation, (see figure
4.5 for some examples), the variability between sets of characteris-
tics from two di↵erent individuals is known as inter-class variation,
in figure 4.6. A good set of features shows little intra-class varia-
tion and large inter-class variation.

In the following paragraphs we deepen some of the analyses
used to evaluate the performance of the proposed system.

Figure 4.5: Intra-class variations of pose, lighting, expression, oc-
clusion, color and brightness.[99]

4.1.3.1 FAR, FRR, EER

The goodness of the performance of a biometric recognition system
is measured on the basis of two types of errors:

• FRR (False Rejection Rate): it represents the per-
centage of false rejections that leads the system to reject
authorized users by mistake, failing to recognize;

• FAR (False Acceptance Rate): it represents the per-
centage of false acceptances: users who are not authorized
are accepted by mistake.
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Figure 4.6: Interclass variations: similarity of faces between twins
and between a father and his son [99]

FRR and FAR are two inversely proportional quantities, as
one decreases, the other increases. The FRR/FAR ratio is ar-
bitrarily adjustable in any biometric system, of which, depending
on the purpose and on the application context, it can be decided
whether to increase or decrease its sensitivity. The degree of tol-
erance that one chooses to give to a system is defined through a
threshold t designed to determine its goodness in terms of safety.
As the degree of tolerance increases, there is an increase in the
number of false acceptances, i.e. the FAR rises; with a low de-
gree of tolerance there is a higher number of false rejections, i.e.
the FRR rises. Once the variable t has been arbitrarily fixed, the
functions FAR(t) and FRR(t) are constructed, which result to
be respectively, as non-increasing monotone and non-decreasing
monotone. Through these two functions it is possible to calculate
the ERR (Equal Error Rate) which represents the intrinsic error
of the system:

FAR(t0) = FRR(t0) = EER (4.1)

that is, EER describes the point at which FAR and FRR

assume the same value. t0 represents the point where it is possible
to adjust the ratio FRR/FAR, in fact, at point t0 this ratio is equal
to 1; for values t > t

0 the ratio decreases, while for values t < t
0

the ratio increases. Graphically it represents the point where the
two monotonic functions (non-increasing for the FAR and non-
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decreasing for the FRR) intersect; in fact, the EER also takes
the name of CER (Crossover Error Rate) [100]. It follows that,
depending on the specific case and the level of security required,
the threshold is adjusted according to which of the two errors
(FAR or FRR) is considered less serious or more acceptable than
the other: for example, in a system for controlling access to a
restricted area it is more prudent to maintain the risk of false
refusals than to risk of allowing access to false positives. Generally
false positives are considered more serious than false negatives; in
real applications the tolerance threshold t often assumes a value
lower than t

0, that is: t < t
0 guaranteeing a reduced number of

false acceptances.

Figure 4.7: Graphic representation of the Equal Error Rate

4.1.3.2 Accuracy, precision and recall

For a more accurate assessment of biometric systems, other perfor-
mance measures are also used such as accuracy, precision and recall
that refer to the methodologies applied in the actual recognition
phase. One of the most used metrics in performance evaluation
is certainly the Accuracy. Informally, accuracy is the fraction of
forecasts made correctly. Formally, it is defined as follows:
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Accuracy =
number of correct predictions

total number of predictions
(4.2)

Accuracy can also be calculated in terms of false/true positives
and false/true negatives:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.3)

Where:

• TP = True Positive

• TN = True Negative

• FP = False Positive

• FN = False Negative

Accuracy alone is not enough to define the goodness of a 360-
degree model, especially when dealing with an unbalanced data
set, i.e. where there exists a disparity between the number of ex-
amples belonging to a class rather than to another one. It there-
fore becomes necessary to introduce two other measures: Precision
and Recall; Precision attempts to answer the following question:
What percentage of positive identifications is actually correct? It
is formally defined as:

Precision =
TP

TP + FP
(4.4)

Recall, on the other hand, tries to answer the question: What
percentage of actual positives was correctly identified? Mathemat-
ically, the Recall is defined as follows:

Recall =
TP

TP + FN
(4.5)
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4.1.3.3 ROC curve and AUC

For a more complete evaluation of the performance of a system, we
rely on the Receiver Operating Characteristic curve (ROC in the
following), a graph showing the performance of a predictive model
at all classification thresholds. Commonly used with ensemble, it
plots the following two parameters:

• TPR (True Positive Rate), synonymous with Recall, is de-
fined as follows:

TPR =
TP

TP + FN
(4.6)

• FPR (False Positive Rate) is the ratio of negative instances
that are incorrectly classified as positive:

FPR =
FP

FP + TN
(4.7)

In other words, the relationships between ”true alarms” and
”false alarms” are studied. The higher the Recall or TPR, the
more false positives FPR the classifier produces. The dashed line
represents the ROC curve of a purely random classifier; a good
classifier stays as far away from that line as possible (towards the
upper left corner). One way to ascertain the accuracy of a classifier
is to measure the area under the curve (AUC). A perfect classifier
will have a AUC equal to 1, it is clear that the greater the area,
the better the performance [101].

4.1.3.4 Confusion matrix

One of the most visually intuitive methods for evaluating the per-
formance of a self-learning model is probably the confusion matrix.
The general idea is to count the number of times the instances of
class A are classified as class B [101]. Each row in the confusion
matrix represents the e↵ective class, while each column represents
the predicted class, the parameters of true positive/negative and
false positive/negative (respectively TP, TN, FP, FN).
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Figure 4.8: Example of ROC curves and AUC curves

4.2 Clustering Facial Features

We present a method of clustering of facial features, discussed in
[102]. This method consists of a pre-trained neural network which
is able to group people faces based on facial characteristics. The
dataset on which the experiments have been performed is CelebA,
presented later in this section
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Figure 4.9: Structure of a confusion matrix

4.2.1 State-of-the-art in clustering facial fea-
tures

In this section various aspects of the state-of-the-art of facial fea-
ture clustering are discussed. The related areas that are explored
concern the prediction of facial attributes, clustering methods and
transfer learning. These are the main issues addressed in this part.

4.2.1.1 Attribute prediction

Attribute prediction leads facial recognition in case of missing in-
formation or non-recognition. From the structure of the face, it
is possible to reconstruct the missing information thanks to the
geometric proportion of the facial features [103]. The authors in
[? ] have proposed a deep learning framework for predicting facial
attributes in the wild; this framework uses two CNNs in cascade.
These two networks are pre-trained di↵erently: one locates the
face and the other one predicts its facial attributes. The works
in [104, 105], tackle the problem by learning the discriminating
representation of the face. The authors in [105] implement a CNN
to study angularly discriminative features. The idea is to exploit
this type of features to study the intra-class and inter-class dis-
tances of the faces. In [104] it is presented FaceNet, a system
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that synthesizes each image in a Euclidean space to which a sim-
ilarity measure of the face belongs. This method facilitates the
recognition and clustering of faces. Both of these methods o↵er
a synthetic representation of facial attributes, known as face em-
bedding.

4.2.1.2 Clustering methods

The clustering techniques considered in this study are K-means,
Agglomerative Clustering and DBSCAN. K-Means [106] creates n
groups of equal variance by minimizing the distance between the
points of the same cluster. The number of clusters to be formed
is decided a priori; it is therefore established empirically. The
agglomerative clustering [107] approach creates clusters by build-
ing a hierarchical tree structure (dendrogram), in fact this type of
method falls within the hierarchical clusters. DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [108], unlike
K-Means, arbitrarily decides the number of clusters and creates
clusters based on density. Any point reachable from a point in
the cluster must belong to that cluster. The goal of this work is
to choose a priori the number of clusters based on the number of
facial features we want to extract. The choice falls inevitably on
the K-Means algorithm, because it is the only one that allows us
to choose the number of clusters a priori.

4.2.1.3 Transfer learning

The complexity of the Machine Learning tasks increases as the
research goes further. Consequently, the model architectures tend
to become particularly big together with both time and computing
demanding. In turn, this implies the need for enormous processing
power and longer training time duration. This point is particu-
larly true for recent Convolutional Neural Networks models [109],
which require a huge amount of data and computational power.
Thanks to the ImageNet classification challenge [110], the sub-
mitted AlexNet model [109] marked a turning point in 2012 for
deep learning in computer vision. The models that followed, like
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VGGNet [111], InceptionNet [111], and ResNet [112] are exam-
ples nowadays very used and useful as solvers for a wide range
of computer vision tasks. The success and the accuracy achieved
by these models have assessed, over the years, the tendency of
using them as feature extractors, rather than as a solution for
classification or regression problems. The Transfer Learning [113]
has so achieved huge consideration, for the benefit of using pre-
trained models like o↵-the-shelf solutions which do not required
to be trained from scratch. Thus, recycling a model trained for a
specific task on a new similar task reduces significantly the overall
training time to cope with the new problem. In this work, this
technique is exploited to fine-tune the proposed model.

4.2.2 Our approach

The following work can be summarized as follows:

• preprocessing: data on 37 facial features taken from the
CelebA [98] dataset are preprocessed to be fed to the model;

• clustering: the output from the model above is used to
label the clusters that will be created by the clustering algo-
rithm;

• analysis and results: the attributes results from each clus-
ter are used to calculate the accuracy of the method and the
percentage of membership to a cluster of each face.

4.2.3 The CelebA dataset

The CelebA dataset [114] was chosen for the experiments. This
dataset contains more than 200,000 celebrity face images tagged
with 40 di↵erent facial features; some examples are shown in fig-
ure 4.11. CelebA, unlike similar LFW [115] or UTKFace [116]
datasets, is very demanding due to the diversity of the features it
contains. As it can be seen from figure 4.10, the dataset is vast but
not balanced and there is a wide variety of environmental factors
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and face types for pose, age, gender, facial expressions, occlusions,
and so on. One third of the attributes are extremely rare facial fea-
tures (10 % frequency or less), and only a couple of them are very
common (they occur in more than 70 % of cases). The imbalance
just mentioned negatively a↵ects many loss functions significantly
if adopted during training.

Figure 4.10: The percentage of images for each label.

4.2.4 The fine-tuning of the model

Our model performs a transfer learning from the MobileNetV2
[117] network, chosen empirically after experimenting with di↵er-
ent architectures. It turned out that MobileNet2 performs better
at the cost of slower training. The proposed model achieves a test
accuracy of 90.95 %. Transfer learning was implemented by re-
moving the top ranking layers (see figure 4.12), adding new top
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Figure 4.11: Examples of images for label.

layers for classification adapted to the problem to be solved (see
figure 4.13) and adjusting the network weights by a quick training
phase.

Figure 4.12: MobileNetV2 architecture.
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Figure 4.13: From the upper layer: Top Layers: a Dense Layer
with 1536 neurons; standardization by Batch-Normalization; reg-
ularization of neurons by applying a dropout on 30 % of the con-
nections; the last dense layer outputs 37 neurons to classify the 37
facial features.).

The output of the proposed model consists of a binary vector
with 37 values; compared to the dataset, three tags have been
eliminated because they are considered too subjective (light skin
and attractiveness) or not inherent to the subject face (blurred
image). In figure 4.13 the last layers added to the final layer of the
MobileNetV2 model are shown. A Data augmentation technique
was used to overcome the problem of the unbalanced dataset and
to obtain a higher level of generalization of the results. New image
samples have been introduced starting from those available by
applying:

• maximum rotation of 20 degrees of the image;

• pixel shift for rows and columns for a maximum of 20% of
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Figure 4.14: The output of the method on a sample of images; se-
lecting the attributes ”Eyeglasses”, ”Male”, ”Bald” and ”Young”
four clusters were extracted.

Figure 4.15: Performance of our attribute prediction models.

the entire length/height of the image;

• random shear;

• zoom, maximum 20% of the image size;

• horizontal flipping of images.
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4.2.5 Experimental results

The dataset was divided into training set, validation set and test
set. The model was trained with 160,000 samples of size 224 x 224
pixels. The validation phase took place on 20,000 samples, the
batch size was set to 64 images. The output gives us information
on: the number of clusters found, the attributes contained in each
cluster, a graphical view of the clusters and an eigenface (all the
facial features of the cluster summarized in a single face). In figure
4.14 an example of the output is shown: four clusters have been
identified, the content of the clusters is shown in the first image,
the eigenface is shown in the second image and the percentage of
occurrences of each attribute in the cluster is shown in the third
image.

The clustering method used is K-Means, the number of clusters
to be input is decided by the DBSCAN method. Figure 4.15 shows
the forecast accuracy percentage of each cluster attribute.

4.3 Lip-based video surveillance system

In this section we analyze how a system is created to recognize
the identity of an individual from the dynamics of the subject’s
face, framed by an RGB camera, when he/she pronounces phrases
that induce sub-facial movements; these dynamics can be seen
as a kind of signature that uniquely and unmistakably identifies
an individual. An authentication system is therefore developed
which extracts a series of facial geometric characteristics, given
a continuous video stream; the geometric characteristics are then
subjected to a normalization procedure and given as input to a
machine learning model that returns the class of membership of
the subject. The work presents a series of experimental results
using four di↵erent machine learning models: artificial neural net-
works, SVM, Decision Tree and Random Forest. Performance is
estimated through metrics such as accuracy, precision and recall,
ROC and AUC curves, EER and confusion matrices. The system
shows a good percentage of accuracy, which on the best config-
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urations, regarding neural networks, SVM and Random Forest,
exceeds 90% reaching a maximum threshold of 99% in more con-
trolled conditions and with low ambiguity. On the other hand,
the proposed method shows a fair sensitivity to noise as well as
a decline in performance in the presence of noises induced by en-
vironmental factors (unfavorable lights and shadows) that have a
negative impact on the extraction of facial features. The low com-
plexity of calculation of the features makes the extraction method
suitable for a real-time authentication procedure in an application
context of a small/medium-sized company that wants to increase
the security level of any sensitive area or gate, to a limited number
of employees. The ability to deliver an output with an average of 6
seconds represents an excellent compromise between performance
and response time.

4.3.1 State-of-the-art of labial recognition

Facial recognition research today is strongly motivated by the nu-
merous practical applications to which this biometrics lends itself
very e�ciently, both in terms of ease of acquisition and perfor-
mance. Thanks to the rapid advancements of technologies such as
digital cameras, Internet, mobile devices and the growing security
needs, face recognition has aroused increasing interest to become
one of the most important and used biometric recognition tech-
nologies. Let us now focus our attentions on the discriminating
power that the dynamism of a face o↵ers. The idea behind the
proposed study is based on two research areas, and on the analysis
of the changes that occur on the face when a certain expression
or phrase is pronounced: facial expression recognition and visual
speech recognition.

Facial expression recognition: the recognition of facial ex-
pressions is part of the AFEA (Automatic Facial Expression Anal-
ysis) systems which aim to automatically analyze and recognize
facial movements and changes in facial features with respect to
visual information, [96]. In 1978, a first attempt to automatically
study expressions was presented by Suwa et al. [118], who au-
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tomatically analyzed facial expressions by tracing the movement
of 20 points located on the face, on a sequence of images. Since
then, progresses have been made in building systems that aim to
understand and use facial expressions [119, 120, 121].

Visual speech recognition: the principal results are repre-
sented by audio-visual speech recognition systems (AVSR) [122,
123] designed to automate the lip reading process. These systems
di↵er according to the purpose: Automated Lips Reading (ARL)
[124, 125] and Lip Motion Recognition Systems (LMR) aim to
recognize, respectively, the words spoken by an individual and the
lip movement using only the visual signal produced during the
speech, excluding any auditory signals. These can be divided into
two categories, based on the type of features they use: geometric
features and appearance-based features.

4.3.1.1 Geometric features

The geometric features explicitly analyze facial features and the
geometric relationships that exist between them, thus describing
the shape of the face and its components, such as mouth, nose or
cheekbones. An example of geometric features are the facial land-
marks detailed in section 4.3.1.1. Geometry-based facial recog-
nition algorithms exploit key points located on the face and the
distances between them to obtain a representative descriptor of
the face. Therefore, the main operations are the localization and
tracing of a dense set of facial points (landmarks). J. Zhang et al.
in [126] present a study on modern face geometry based recogni-
tion techniques (eigenface, elastic matching and neural networks)
starting from the foundations laid in 1992 by the work of A. Samal
and P.A. Iyengar [127]. In [128] the landmarks are used to deter-
mine a series of measurements derived from three key points of
the human face: the two eyes and the center of the mouth (SDAM
method, Simple Direct Appearance Mode [129]). In [130] a method
is proposed that measures the Procrustes distance [131] between
two sets of facial landmarks. Another geometric approach, this
time dynamic, for the extraction of the features is developed by
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Petajan [124], whose Lip Reading system makes use of measures
such as height, width, perimeter and area of the mouth, obtained
separately from binary facial images. The extraction process uses
a simple technique based on thresholding, while Dynamic Time
Warping (DTW) is used for the recognition phase. The prototype
proposed by Werda et al. [132]: Automatic Lip Feature Extrac-
tion (ALiFE), on the other hand, includes a lip localization mod-
ule, which exploits the geometric characteristics relating to height,
width and area of the mouth.

4.3.1.2 Appearance-based features.

Other recognition techniques use features based on appearance to
describe the facial texture and how it is modified following an ex-
pression. The best known methods are Eigenfaces [133] and PCA
(Principal Component Analysis) [96]. Given a set of normalized
images of human faces, a projection is made in a subspace in which
the salient features are highlighted, excluding information that is
not relevant. The structure of the face is then broken down into a
combination of uncorrelated orthogonal components (eigenfaces).
Then, each image is represented as a weighted sum (vector of fea-
tures) of these eigenfaces. The comparison between the images is
done simply by evaluating the distance between these vectors of
local characteristics. On the basis of [133], various studies have
been carried out that have led not only to drastically improve their
performance, but also to the expansion of the fields of application
of these methods. In 1995, Belongie and Weber introduced a lip-
reading system that exploits the optical flow and a gradient-based
filtering technique for the extraction of features. These are en-
coded in the form of a 1D wave and further processed by a PCA.
The performances of traditional approaches are sensitive to un-
conditional or uncontrolled facial changes. These are changes in
brightness, changes in poses, masking and management of the dif-
ferent possible expressions. These issues are analyzed in the work
of M.Pantic and L.J.M. Rothkrantz [134] An improvement in per-
formance can be found in Gabor [135] and LBP (Local Binary
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Pattern) [136], and even more in their multi-dimensional exten-
sions [137, 138, 139] thanks to the use of some invariance proper-
ties related to local filtering. The binary local pattern method is
also exploited for the recognition of the periocular area: in [140] a
system is proposed that detects the iris and pupil region within an
image of the eye and extracts the characteristics using LBP. The
matching is then carried out by means of bit-shifting.

4.3.1.3 Approaches with neural networks

The growing interest and development of machine learning models
has made it possible to tackle several intrinsically complex prob-
lems, such as gender classification and expression recognition. In
[141] a system for face recognition and verification and for the
analysis of facial expression, called WISARD, is developed; it uses
a single-level adaptive network. A classifier is built for each sub-
ject in the dataset, and the result is obtained by choosing the
one that gives the highest recognition accuracy value for a given
input image. A further push towards self-learning was given in
2012 with the advent of Deep Learning (DL) and AlexNet [109].
DL includes a set of algorithms that solve a large class of prob-
lems using Machine Learning algorithms in multi-level Neural Net-
works, each corresponding to a di↵erent degree of abstraction.
With Convolutional Neural Networks (CNN), features are auto-
matically extracted directly from the network. Although the DL
methods show a strong invariance to unconditional changes, the
use of facial descriptors has some advantages: a very large dataset
is not necessary, the analysis of the features is much simpler and
the computational complexity decreases both in terms of machine
power and execution times. In the proposed work, a geometric
approach based on landmarks is exploited, with the addition of
a dynamic component, linked to the temporal aspect, which con-
tributes to making biometrics more robust and secure. Further-
more, the method of extracting the landmarks of the face is very
e�cient in terms of time complexity. The choice of a biometry
that links facial features (facial recognition techniques) to the fa-
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cial dynamics triggered during phonation depended not only on
the considerations made just now but also on a series of encourag-
ing results obtained in the works [142, 143], in which the dynamism
of the face was a very strong discriminating factor.

4.3.2 The proposed system

Figure 4.16: Architecture of the proposed system.

In this section the goal is, therefore, to develop a video surveil-
lance system that exploits facial dynamics for sta↵ authentication.

4.3.2.1 System requirements

The fundamental requirements were performance, in terms of recog-
nition accuracy, algorithm response time and privacy. In partic-
ular, the time taken by the system from the identification of the
face in the video stream to a response (access denied or consented)
must be a few tens of seconds. Furthermore, the transformation
of a face into a numerical vector of characteristics allows full re-
spect for privacy [144] as the identity of the subject is associated
with a series of distance measures, regardless of the images of the
face. The system is, moreover, tolerant to partial occlusions of
the face, which, in facial recognition systems, negatively a↵ect the
acquisition process, hindering it or completely preventing it. The
proposed solution, at the end of the design phase, provided for a
system that takes as input a continuous video stream and vali-
dates the access of an individual based on the pronunciation of a
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sentence. The conclusion of the design phase consists of the def-
inition of the functional and non-functional requirements of the
system.

Figure 4.17: Examples of facial occlusions

4.3.3 System implementation

The implementation of the proposed authentication system is di-
vided into the two operational phases of Enrollment and Recogni-
tion [145], as in figure 4.18.

Figure 4.18: Architecture of the proposed system.
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Figure 4.19: Face Detector (Dlib) is the result of applying a set of
random regression trees, used to extract 194 landmarks of a face
in an image.

4.3.3.1 Enrollment phase

The Enrollment phase involves the implementation of three dis-
tinct modules. The first module consists of the pre-processing
phase and extraction of the characteristics from the previously
collected videos. As a first step, a face detection algorithm im-
plemented in the DLib library is applied to the video sequence.
This algorithm carries out the face alignment, that is the identi-
fication of the geometric structure of the human face. Given the
position and size of the face, the shape of the components, such
as eyes and nose, is automatically detected. Once the area con-
taining the face has been located, the feature calculation process
begins, which identifies and tracks the landmarks, key points for
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the calculation and extraction of features. A total of 59 land-
marks has been identified, some of which are connected in pairs
by a segment representing their distance; the variation of the ex-
pression will lead to a variation of these distances. The trend of
these distances allows to obtain a time series that summarizes the
variations frame by frame, thus representing the dynamism of the
subject’s expression. Formally, each segment connecting two land-
marks represents a geometric feature fi characterized by a length
li and a weight wi, with 1  i  K where K is the number of
features. Let:

Tsi = (li1wi, li2w2, ..., lijwi, ..., liNwi) (4.8)

be the i-th time series, related to the variation of a given feature
in all N frames of the video. The final ”Dynamic Facial Feature”
vector is obtained as the sequence of all time series:

DEF = (Ts1, Ts2, ..., Tsi, ..., TsK) (4.9)

The dimension of the DEF vector is equal to K ⇤ N , that is
the product of the number of features by the number of frames.
The second module, takes the previously extracted characteristics
as input, applies a normalization procedure that reorganizes the
data and makes them structurally homogeneous in order to be
able to input them to the classifier in an adequate way. In fact,
the same number of frames is taken into consideration for each
video in order to make all DEF of equal size. The procedure also
provides for a reduction in the set of features from 59 to the most
important 14. This importance has been attributed to each feature
in terms of weight, through the use of Random Forest. Random
Forest allow us to get information about the contribution of each
feature during the training process. The results showed that 14
features (all located on the lower part of the face) had a weight
greater than the others.
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Figure 4.20: Comparison between the complete set of 59 features
and the optimized one reduced to 14.

4.3.3.2 Model training phase

In the third and last module, the set of data previously processed
is divided into two subsets: one for the training of the automatic
learning model and the other for the verification. These two sub-
sets are called training set and test set and comprise respectively
80% and 20% of the data of the entire dataset. The training set is
used to train the classifier to recognize subjects, while the test set
is used to verify the correctness of the classification. The good-
ness of the classifier was measured through the use of appropriate
performance evaluation metrics presented in detail in the system
validation phase. Once trained, the model is exported and used
for the subsequent verification and recognition procedure.

4.3.3.3 Real-time recognition

The single procedure for real-time recognition involved the inte-
gration of the first two modules in a sequential manner and the
querying of the previously trained model. More specifically, given
a continuous video stream, the subject who wishes to authenticate
is identified through a procedure which, in addition to the detec-
tion of the face, captures the lip movement in order to acquire the
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frames related to the dynamics of speech. Once a minimum num-
ber of pre-established frames has been collected (61 in our case),
the feature extraction procedure is applied and the new vector of
characteristics is created. Finally, through the prediction function,
the array of features is given as input to the pre-trained classifier
which returns the class to which the subject in question belongs.
If the declared identity coincides with the aforementioned identity,
access is granted, otherwise it is denied.

Figure 4.21: The subject is correctly associated with ID 1

4.3.4 Response time

Once the system detects a face and detects a lip movement (in-
dicating that there is a person ready to authenticate), it acquires
a certain number of frames from which it extracts the geometric
facial features that will be collected in a vector for the newly ac-
quired subject (DEF ). The machine learning module provides the
subject’s identity in output. As this is a real-time authentication
system, all the steps described above must take place in a time
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interval ranging from 0 to a maximum of 10 seconds. The con-
struction of the vector of characteristics involves the simple pro-
cessing of a series of distances calculated starting from the points
identified on the face, so the complexity in terms of time becomes
minimal, allowing an average response time of about 6 seconds.

4.3.5 Experiments and results

The validation of the system proposed in this work gave rise to
a series of experiments that allowed both to evaluate its perfor-
mance and to understand which configuration (number of frames
captured - characteristics extracted) was the most suitable for the
purpose. All tests were carried out on a Lenovo Legion Y540,
equipped with an Intel Core i7-9750H processor (4.5 GHz with
6-core Turbo Boost), NVIDIA GTX1660Ti GPU and 16 GB of
RAM. On the software side Python in version 3.6.10 was used, and
for the test and tuning of the network the Tensorflow framework
in its version for GPU, with the help of the Keras library. The
classifiers were created with the help of libraries such as Scikit-
learn, SciPy, NumPy and Pandas, while for the part related to
Computer Vision (face detection and alignment) OpenCV2 and
DLib were used.

4.3.5.1 The XM2VTS dataset

Privately developed by the University of Surrey in England as part
of the M2VTS project (Multimodal Verification for Remote Assis-
tance and Security Services) XM2VTS is a multimodal database
that collects digital videos relating to 295 subjects. The acquisi-
tions are divided into 4 sessions and perpetuated over time for a
period of 4 months (one session per month). Videos are recorded
in an indoor environment with controlled lighting conditions us-
ing a Sony VX1000E digital video camera in .avi format, 725x576
resolution with 25 fps and 32GHz audio sampling rate. [146] The
database also presents a fair intra-class variability for di↵erent
subjects in which it is possible to find changes such as hair, beard,
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glasses, etc. The recordings see the subjects utter three sentences:

• 1. ordered sequence of numbers: ”zero, one, two, three, four,
five, six, seven, eight, nine, ten”;

• 2. unordered sequence of numbers: ”five, zero, six, nine,
two, eight, one, three, seven, four”;

• 3. a sentence: ”Joe took fathers green shoe bench out”.

There are also recordings, for possible stress tests, in which the
participants do not speak, but rotate their heads to the right and
left. Given the large number of subjects, the sessions acquired
at di↵erent times and the consequent intra-class variability, the
XM2VTS dataset lends itself perfectly to the experiments of this
work.

4.3.5.2 The tests on the XM2VTS dataset

The experiments carried out starting from the XM2VTS database
are divided:

• by number of subjects, 294 subjects were initially con-
sidered in order to test the e↵ectiveness of the recognition
system based on the dynamics of geometric facial features;
the number of subjects was then reduced, first to 50 and
then to 10 in order to simulate an application context relat-
ing to a real-time authentication system in which only some
employees are authorized to access (column ”Subj” in table
4.1).

• the number of facial landmarks taken into considera-
tion (59 for the complete feature-set, 14 weighted features)
(column ”Feat” in table 4.1).

• the number of frames captured by the videos, from 61
frames (UPSAMPLED) to 10 (DOWNSAMPLED), (column
”Frames” in table 4.1).
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Having to deal with a video surveillance system placed near
an opening in which real time acquisitions take place in an un-
controlled environment, the tests were conducted taking into con-
sideration both the videos in which the subjects pronounce the
sentence in front of the camera and those in which they rotate
their heads left and right.

The best results were obtained on the subset of 10 subjects,
with the use of 59 features and the number of frames collected
around 61 (UPSAMPLED). The experiments were carried out
with the help of three di↵erent types of classifiers (SVM, Deci-
sion Tree and Random Forest). Below are the results obtained
on four di↵erent configurations through the use of metrics such as
confusion matrix, accuracy, precision, recall and ROC curves.

For the small set of 10 subjects, there was a notable increase
in performance of a general nature, due to a lowering of inter-class
variability. The best results in terms of accuracy were obtained
through the use of the Random Forest classifier, which reaches an
accuracy of 99% in the configuration with 59 features for the max-
imum number of frames (59 UPSAMPLED) showing an ideal con-
fusion matrix (Fig.4.22). Excellent performance is also achieved
by the SVM classifier which not only has a better ROC curve than
the Random Forest for 59 UPSAMPLED (Fig.4.22b and 4.22f) but
on the configuration with 14 features for the maximum number of
frames (14 UPSAMPLED) it presents a slightly higher accuracy.
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Table 4.1: The results of the experiments carried out with all the
combinations of features described.

Subj Feat Frames Method Acc Prec Rec
294 59 UPSAMP ANN 0,83 - -
294 14 UPSAMP ANN 0,70 - -
50 59 UPSAMP SVM 0,910 0,889 0,901
50 59 UPSAMP DT 0,542 0,614 0,542
50 59 UPSAMP RF 0,937 0,954 0,937
50 59 UPSAMP ANN 0,85 - -
50 59 DOWNSAMP SVM 0,910 0,889 0,901
50 59 DOWNSAMP DT 0,582 0,634 0,582
50 59 DOWNSAMP RF 0,951 0,962 0,952
50 59 DOWNSAMP ANN 0,91 - -
50 14 UPSAMP SVM 0,870 0,866 0,871
50 14 UPSAMP DT 0,466 0,523 0,466
50 14 UPSAMP RF 0,826 0,877 0,826
50 14 UPSAMP ANN 0,85 - -
50 14 DOWNSAMP SVM 0,862 0,838 0,861
50 14 DOWNSAMP DT 0,386 0,440 0,386
50 14 DOWNSAMP RF 0,831 0,878 0,831
50 14 DOWNSAMP ANN 0,80 - -
10 59 UPSAMP SVM 0,955 0,967 0,949
10 59 UPSAMP DT 0,689 0,871 0,689
10 59 UPSAMP RF 0,999 0,999 0,999
10 59 DOWNSAMP SVM 0,954 0,967 0,9498
10 59 DOWNSAMP DT 0,636 0,690 0,636
10 59 DOWNSAMP RF 0,957 0,970 0,957
10 14 UPSAMP SVM 0,919 0,944 0,907
10 14 UPSAMP DT 0,729 0,822 0,729
10 14 UPSAMP RF 0,909 0,947 0,909
10 14 DOWNSAMP SVM 0,869 0,912 0,871
10 14 DOWNSAMP DT 0,544 0,501 0,544
10 14 DOWNSAMP RF 0,954 0,977 0,954
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Figure 4.22: ROC curves and confusion matrix related to video
experiments with 59 features with the maximum number of frames
for 10 subjects, which are the experiments that achieved the best
results.





Chapter 5

Conclusions

In this thesis we have presented our results in terms of biometric
systems in the field of Homeland Security, developed in the last
three years. We explored both physical and behavioral traits:

• head pose estimation, to find out the frontal pose of a person
from a video sequence or to extract a required pose. In this
context, the use of regression has given better results than
classification. This method, used on high resolution images,
can help in building a database of frontal faces;

• gender recognition, to understand the gender of a person
based on how he/she walks. It has given us excellent re-
sults on the Gotcha-I dataset purposely built in a controlled
context. In the future we plan to experiment with these
methods in contexts in the wild;

• facial features that can be derived from the face of an in-
dividual; a future contribution consists in the creation of a
platform capable of automatically labeling all the informa-
tion concerning the shape of the face, eyebrows, gender, age,
eye color, hair color, etc. from a face. This tool can be of
support to the police for the construction of the identikit of
wanted persons;

• cooperativeness, to identify the subject’s attitude towards
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the camera. This biometrics, associated with context recog-
nition techniques, can return information useful in video-
surveillance applications;

• labial, as identification of an individual based on his/her
facial expressions during the pronunciation of a certain sen-
tence. Such a tool could be of interest in access control
applications.

The biometric data considered are not to be intended as an
alternative to other types of biometrics for recognition, but as
additional sources of information. The same biometrics can be
used in di↵erent contexts to extract information for di↵erent tasks.

These studies are aimed at the constitution of research results
useful for an in-depth analysis of the action recognition. Infor-
mation on who the person is and what he/she is doing in a
video surveillance context is important for the creation of increas-
ingly advanced video surveillance systems that minimize the need
for human intervention.
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[Online]. Available: https://doi.org/10.1007/s10462-016-9474-x

[14] M. Ding and G. Fan, “Articulated and generalized gaussian ker-
nel correlation for human pose estimation,” IEEE Transactions
on Image Processing. DOI: 10.1109/TIP.2015.2507445, vol. 25,
no. 2, pp. 776–789, 2016.

[15] J. Chen, S. Nie, and Q. Ji, “Data-free prior model for upper
body pose estimation and tracking,” IEEE Transactions on Im-
age Processing. DOI:10.1109/TIP.2013.2274748, vol. 22, no. 12,
pp. 4627–4639, 2013.

[16] N. M. . R. D. De Marsico, M., “Face authentication with
undercontrolled pose and illumination.” SIViP 5, 401 (2011).
https://doi.org/10.1007/s11760-011-0244-6.

[17] R. Valenti, N. Sebe, and T. Gevers, “Combining head pose and
eye location information for gaze estimation,” IEEE Transactions
on Image Processing. DOI: 10.1109/TIP.2011.2162740, vol. 21,
no. 2, pp. 802–815, 2012.

[18] M. De Marsico, M. Nappi, and D. Riccio, “Measuring
measures for face sample quality,” in Proceedings of the 3rd
International ACM Workshop on Multimedia in Forensics and
Intelligence, ser. MiFor ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 7â12. [Online]. Available:
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