
UNIVERSITY OF SALERNO

DEPARTMENT OF INDUSTRIAL ENGINEERING

Ph.D. Course in Industrial Engineering
Curriculum in Industrial Engineering - XXXI Cycle

ROBOTIC FRAMEWORK FOR DEVELOPING
OF UNMANNED VEHICLES

Supervisor Ph.D. Student

Prof. Domenico Guida Zandra Betzabé Rivera Chávez

Scientific Referees

Prof. Jhoniers Gilberto Gerrero Erazo
Prof. Predrag Dasic

Ph.D. Course Coordinator

Prof. Francesco Donsì

Marco
Font monospazio

Marco
Font monospazio
Academic year 2017/2018

Marco
Font monospazio

Marco
Font monospazio

Acknowledgments

First of all, I would like to thank Professor Domenico Guida infinitely for
the academic, professional, and personal support provided me during these
years of doctoral studies outside my home. Without his help, his patience, his
recommendations, and suggestions, it would not be possible to take this vital
step in my professional and personal life in one of the most challenging mo-
ments of my life.

I would also give an exceptional thanks to my co-supervisor, Marco Clau-

dio de Simone, for his permanent support and his valuable advice in all aspects
that allowed me to continue with the thesis.

I want to express my immense gratitude to the entire team of Professor

Guida, who received me with respect and affection, making this journey pos-
sible.

I want to give an exceptional thanks to my family, who have always been

by my side, giving me support. I want to sincerely thank my mother, who
knew how to overcome all the difficulties still to provide me with words of
encouragement and hope. Other special thanks to my little nieces for being
my "moral backbone."

Another very special thank you to my husband, who has been making back

and forth traveling to support me and teach me. His presence helped me a lot
to be active to face of all adversities.

 Rivera, Z. B., De Simone, M. C., & Guida, D. (2019). Unmanned Ground
Vehicle Modelling in Gazebo/ROS-Based Environments. Machines, 7(2),
42.

 De Simone, M., Rivera, Z., & Guida, D. (2018). Obstacle avoidance sy-
stem for unmanned ground vehicles by using ultrasonic sensors. Machi-
nes, 6(2), 18.

 Rivera, Z. B., De Simone, M. C., Guida D. Waypoint navigation for whee-
led mobile robots in ROS-based environments. 18th International Confe-
rence “Research and Development in Mechanical Industry” RADMI-
2018 13-16 September 2018 Vrnjačka Banja (Serbia)

vii

Contents

 Literature Review ... 1
I.1 Introduction ... 1
I.2 Unmanned Vehicles .. 2

I.2.1 Unmanned Ground Vehicles (UGV): .. 4
I.2.2 Unmanned Aerial Vehicles (UAV): ... 14

I.3 Robotics Frameworks .. 20

 Robotics Frameworks for UNISA Unmanned Vehicles 25
II.1 Introduction .. 25
II.2 Gazebo 3D Simulator .. 25
II.3 Robot Operating System (ROS) Middleware Platform 32
II.4 UNISA-UVF Framework .. 39

II.4.1 Requirements Engineering .. 39
II.4.2 Technologies .. 45
II.4.3 General Design .. 46
II.4.4 Functionalities ... 53

 Kinematic and Dynamic Modeling of Unisa_bots 59
III.1 Introduction ... 59
III.2 Coordinate system (reference frames) ... 59
III.3 Modeling UNISA-UGV .. 61

III.3.1 UNISA-UGV Description .. 61
III.3.2 Unisa-UGV Kinematics ... 63
III.3.3 Unisa-UGV Dynamics ... 70

III.4 Modeling UNISA-UAV .. 71
III.4.1 UNISA-UAV Description .. 71
III.4.2 Unisa-UAV Kinematics ... 72
III.4.3 Unisa-UAV Dynamics ... 74

III.5 Modeling in GAZEBO-ROS ... 82
III.5.1 Gazebo-ROS Kinematic - main characteristics 82
III.5.2 Gazebo-ROS Dynamics - main characteristics 85

 Mobile Robotics Techniques used in Unisa_bots 91
IV.1 Introduction ... 91
IV.2 Design Modeling Techniques (3D models) .. 92
IV.3 Sensors and Sensing Techniques .. 101

viii

IV.4 Positioning and Transformations Techniques 105
IV.5 Path Planning Techniques .. 108
IV.6 Localization, Mapping and SLAM Techniques 113
IV.7 Collision checking and Recovery Techniques 117
IV.8 Summary of ROS Methods and Techniques 120

 Case Studies using UNISA Unmanned Vehicles 121
V.1 Introduction .. 121
V.2 UNISA-UGV Use Cases .. 121

V.2.1 Use Case 1: One UGV Autonomous Navigation – from
MATLAB/Simulink ... 124

V.2.1 Use Case 2: One UGV performing a SLAM 128
V.2.3 Use Case 3: Two UGV creating a single Map 133

V.3 UNISA-UAV Use Cases .. 140
V.3.1 Use Case 1: fixed-wing UAV controlled by a Gazebo plugin 140
V.3.2 Use Case 2: fixed-wing UAV in Dubins waypoint navigation

 ... 150

ix

i. List of Figures

Figure I.1 Common Robotics Wheels .. 5
Figure I.2 Common Wheels Steerability .. 6
Figure I.3 "UGVs lifetime in Military and Civilian fields (upper & lower)” ... 8
Figure I.4 "Sharkey" mobile robot - First Unmanned Robot 10
Figure I.5 “Sojourner” - NASA First Rover on Mars................................... 12
Figure I.6 "UAVs lifetime in Military and Civilian fields (upper & lower)” . 17
Figure I.7 “Amber” - First Unmanned Aerial Vehicle 18
Figure I.8 “Zephyr S” - First solar-electric UAV pioneering the stratosphere .. 19
Figure II.1 Gazebo General Structure .. 27
Figure II.2 ROS Layers and Packages .. 36
Figure II.3 ROS Communication – a) Topic .. 37
Figure II.4 ROS Communication – b) Action .. 37
Figure II.5 ROS Communication – c) Service ... 38
Figure II.6 UNISA-UVF Product/Service environment 41
Figure II.7 Architecture of the UNISA-UVF framework 45
Figure II.8 Structure implementation of the UNISA-UVF framework 50
Figure III.1 UNISA-UGV 3D prototype ... 61
Figure III.2 UNISA-UGV Structure ... 62
Figure III.3 Basic types of three-wheel configurations 64
Figure III.4 Differential Drive kinematics .. 67
Figure III.5 UNISA Unmanned Aerial Vehicle Structure 72
Figure III.6 Rotation in 2D ... 73
Figure III.7 Air pressure at aerodynamics center of MAVs 75
Figure IV.1 UNISA-UGV designed in ROS and presented on Gazebo 93
Figure IV.2 UNISA-UGV designed in Solidworks and presented on Gazebo . 93
Figure IV.3 Flow chart of Solidworks to Gazebo 95
Figure IV.4 File->Export as URDF .. 96
Figure IV.5 Exporter Property Manager ... 96
Figure IV.6 Exporter Joint Properties .. 97
Figure IV.7 Link Properties Tab .. 98
Figure IV.8 Folder and files for Gazebo - sw2urdf plugin 98
Figure IV.9 Graphical interface for robot model assembling from Solidworks 99
Figure IV.10 Link configuration Tab in Gazebo Exported procedure 100
Figure IV.11 Generated Folder from Gazebo Exported procedure 100
Figure IV.12 Integrated approach for Mapping, Localization and Path

Planning ... 115
Figure V.1 UNISA UGV 3-D model joints disposition 122
Figure V.2 UNISA UGV 3-D model contact points 122
Figure V.3 UNISA UGV Frames Tree ... 123
Figure V.4 UNISA UGV in Gazebo_ROS – Waypoints Navigation and

PID control from MATLAB/Simulink at start 126
Figure V.5 UNISA UGV Waypoints Navigation plot at the start 127

x

Figure V.6 UNISA UGV Waypoints Navigation plot at the turn 127
Figure V.7 UNISA UGV Autonomous Waypoints Navigation – Path

followed .. 128
Figure V.8 rosgraph Nodes and Topics .. 130
Figure V.9 One UGV performing SLAM and Obstacle Avoidance 130
Figure V.10 One UGV facing an Obstacle... 131
Figure V.11 One UGV facing an Obstacle – Plots of Position, Velocity,

and Acceleration ... 131
Figure V.12 One UGV facing a door ... 132
Figure V.13 One UGV facing a door – Plots of Position, Velocity, and

Acceleration .. 132
Figure V.14 Coordinate Frames Tree – two UGVs mapping together 134
Figure V.15 rosgraph nodes and topics .. 137
Figure V.16 Two UGVs in Gazebo for Collaborative Work 138
Figure V.17 Two UGVs in Gazebo and RVIZ Navigating and Mapping

together ... 139
Figure V.18 Two Maps created by each UGVs Collaboratively 139
Figure V.19 UAV Processes to bring and control a Model into Gazebo ... 140
Figure V.20 UAV Description – links and joints 141
Figure V.21 MioMilvusPlugin for Gazebo – initial definitions 142
Figure V.22 MioMilvusPlugin for Gazebo – Class Constructor and Destructor 143
Figure V.23 MioMilvusPlugin for Gazebo – FindJoint method 143
Figure V.24 MioMilvusPlugin for Gazebo – Load method 1of3 144
Figure V.25 MioMilvusPlugin for Gazebo – Load method 2of3 145
Figure V.26 MioMilvusPlugin for Gazebo – Load method 3of3 145
Figure V.27 MioMilvusPlugin for Gazebo – the Update method 146
Figure V.28 MioMilvusPlugin for Gazebo – Control method 146
Figure V.29 MioMilvusPlugin for Gazebo – UpdatePIDs method 147
Figure V.30 MioMilvusPlugin for Gazebo – PublishState method 148
Figure V.31 MioMilvus in Gazebo – at launch (start) 149
Figure V.32 MioMilvus in Gazebo – taking-off .. 149
Figure V.33 MioMilvus in Gazebo – flying ... 150
Figure V.34 MioMilvus in Gazebo – turning for landing 150
Figure V.35 Nodes and topics in Gazebo-ROS .. 157
Figure V.36 Milvus UAV ascension ... 157
Figure V.37 Milvus UAV Plot while ascending .. 158
Figure V.38 Milvus UAV Plot of the Dubins path followed 158
Figure V.39 Milvus UAV in Gazebo at launch .. 159
Figure V.40 Milvus UAV in Gazebo at starting the execution 160
Figure V.41 Milvus UAV in Gazebo at takeoff ... 160
Figure V.42 Milvus UAV in Gazebo at turning in Dubins path 161
Figure V.43 Milvus UAV in Gazebo straight flights in Dubins path 161
Figure V.44 Milvus two onboard cameras images 162

xi

ii. List of Tables

Table I.1 Rovers Characteristics and mission .. 11
Table I.2 Classification of UAVs by Flight capacity 16
Table I.3 Middleware Platforms Summary .. 20
Table I.4 Robotic framework and middleware comparison 23
Table I.5 Middleware Advantage Summary .. 24
Table II.1 Gazebo - SDF compliant versions ... 29
Table II.2 Gazebo External Dependencies ... 30
Table II.3 Gazebo Acropolis’ Libraries .. 31
Table II.4 Gazebo’s classic and Ignition Physics Engine 31
Table II.5 Gazebo’s classic and Ignition Render Engine 31
Table II.6 Technologies Used in UNISA-UVF Platform 46
Table II.7 ROS packages implemented in UNISA-UVF 51
Table III.1 Dynamics Paradigms in Numeric Simulation 87
Table III.2 Physics Engines for Simulation .. 88
Table III.3 Coordinate Representation in Numeric Simulation 88
Table III.4 Spring-Damper Computation ... 89
Table IV.1 Classification of sensors for mobile robots 102
Table IV.2 Positioning - Methods, Techniques, and Sensors 105
Table IV.3 Sensors and Methods for Collision Checking 117
Table IV.4 Methods and Techniques for mobile robotics in ROS 120

xii

iii. Abstract

Unmanned Vehicles, known as UVs, have been developed to accomplish
difficult, tedious, and unpleasant missions for human beings. Their usage
started in military applications; subsequently, specific industries adopt them
to increase the productive capacity of their factories already automated with
industrial robots relying on the mobility and autonomy offered by these vehi-
cles. However, unmanned vehicles could operate in many other sectors - like
in agriculture, construction, logistic, customer service -, facilitating and im-
proving the quality of life in general. It is necessary to increase its develop-
ment and implementation substantially to achieve this.

As we will show in this document, progress in the area of mobile robotics,

especially in the field of unmanned vehicles, has been essential and prolifer-
ates. However, it is not robust yet to be reliable and accepted beyond the con-
trolled environments in which they operate nowadays. The enlarged area to
cover, due to mobile capabilities, plus the risky missions they need to accom-
plish, increases the complexity of autonomous steering and control of such a
vehicle. For this reason, the modeling considerations to achieve the task of
autonomous driving is considered complex and reserved to humans (Litman
T., 2018), due to the high frequency of interactions with other mobile objects,
which requires sensing and acting capabilities in real-time bases, with an es-
sential degree of intelligence and skills.

An essential step in their development is the robotics environments for de-

veloping and testing unmanned vehicles, these computational environments
incorporate and centralizes all technologies, in their broadest sense, related to
robotics. In both professional and academic literature, these environments are
called with different names, such as robotic middleware, robotic platform, and
robotic framework. Their degree of development and their capacities are not
homogeneous, being those specialized and commercial branded who have
reached essential levels of maturity and acceptance. As it is the case of X-
Plane, a platform for the simulation of autonomous flights of many well-
known aircraft, the Federal Aviation Administration (FAA) can even certify
the implementation if they also count on certified hardware.

Some conventional robot models are offered in these robotic environments,

which are highly used for research in robotics. It is an essential contribution
to the robotics community to get the research efforts to concentrate on the
central issues of their work. However, it does not help much if there is a need
to test a new robot model from scratch, where the initial main effort is in the
modeling and evaluation of behavior in order to redesign the model itself.
These environments also offer standard robotic functionalities that come to
help in both cases.

xiii

Then, the complete development of a new unmanned vehicle, from a 3D
model creation to the real prototype testing, requires an ad-hoc platform in
every step of the process. It also requires a good understanding of kinematic
and dynamic modeling, added to programming skills and powerful simulation
environments. To our knowledge, no open-source robotic environment or sys-
tem can cover the complete process of UVs development robustly and quickly.
Some of them are powerful in control and simulation; others help a lot in al-
gorithm development; some others accept mathematical formulation natu-
rally; others deal very well with the communication systems.

Thus, one solution is to integrate some of these platforms and benefit from

their advantages. For this reason, we have thought to develop an integrated
framework that facilitates the design of unmanned vehicles, initially in simu-
lation, capable of fulfilling autonomous behavior, performing tasks like path
planning, location, mapping, and safe navigation by avoiding obstacles in the
ground and air environments. We initiate by evaluating the offer, by installing
and testing some robotics middleware in order to choose the platform that al-
lows the best integration capabilities with robust applications at each step of
unmanned vehicle modeling from scratch.

Doing in this way, we integrate different robotic platforms and tools to

build a framework in which it is possible to have all the standard functionali-
ties by type of unmanned vehicle. Therefore, when the need for a new vehicle
arrives, it is possible to create and add a new model, with its peculiarities
(characteristics and capabilities). Thus, our robotic framework, called
UNISA-UVF, is designed to facilitate the modeling, simulation, and testing of
unmanned vehicles. UNISA-UVF is a sensor-based robotics system that uses
model-based and learning-based approaches.

Also, in our framework, it is possible to create different versions of the

same vehicles with slight variations in the description of their morphology,
which facilitates the collaborative missions in which several UVs are required
to carry out them together. Therefore, we reserve a workspace in which we
have implemented some classic group activities such as leader-follower or co-
operative-SLAM. Having built our framework on the open-source middleware
Gazebo-ROS, we can take full advantage of code reusing.

Our framework will allow the Industrial Engineering Department of

UNISA to build and test unmanned ground and air vehicles in simulated en-
vironments with the possibility of testing physical prototypes with much less
effort. Our framework, designed to be completely reusable, also allows inte-
gration with MATLAB/Simulink and X- plane in order to increase this capac-
ity, by using 3D design software for vehicle modeling.

xiv

iv. Resume

I veicoli senza pilota, noti come UV, sono stati sviluppati per compiere
missioni difficili, noiose e spiacevoli per gli esseri umani. Il loro utilizzo è
iniziato in applicazioni militari; successivamente, alcune industrie specifiche
li hanno adottati per aumentare la capacità produttiva delle loro fabbriche già
automatizzate con dei robot industriali affidandosi alla mobilità e all'autono-
mia offerta da questi veicoli. Però, i veicoli senza pilota potrebbero operare in
molti altri settori - come l'agricoltura, l'edilizia, la logistica, il servizio al
cliente -, facilitando e migliorando la qualità di vita in generale. Per raggiun-
gere questo obiettivo è necessario aumentarne sostanzialmente lo sviluppo e
l'implementazione gli UVs.

Come mostreremo in questo documento, i progressi nell'area della robotica

mobile, ovvero il settore dei veicoli senza pilota, sono stati essenziali e proli-
ferano. Tuttavia, non è ancora robusto per essere affidabile e accettato al di là
degli ambienti controllati in cui operano al giorno d'oggi. La vasta area da
coprire, vista la capacità mobile, e le missioni rischiose che devono compiere,
aumenta la complessità della guida e del controllo autonomi di un veicolo di
questo tipo. Per tale ragione, le considerazioni modellistiche per raggiungere
il compito di guida autonoma sono considerate complesse e quindi riservate
all'uomo (Litman T., 2018), a causa dell'alta frequenza di interazioni con altri
oggetti mobili, che richiede capacità di rilevamento e di azione in tempo reale,
con un grado di intelligenza e competenze fondamentali.

Un passo essenziale nel loro sviluppo sono gli ambienti robotici per lo svi-

luppo e la sperimentazione di veicoli non pilotati, questi ambienti computa-
zionali incorporano e centralizzano tutte le tecnologie, nel loro senso più am-
pio, legate alla robotica. In ambito sia professionale che accademico, questi
ambienti sono chiamati con nomi diversi, come middleware robotico, piatta-
forma robotica, e framework robotico. Il loro grado di sviluppo e le loro ca-
pacità non sono omogenee, in quanto sono quelli specializzati e commerciali
di marca che hanno raggiunto livelli essenziali di maturità e accettazione.
Come nel caso di X- Plane, una piattaforma per la simulazione di voli auto-
nomi di molti velivoli rinomati, anche la Federal Aviation Administration
(FAA) può certificarne l'implementazione se dispone di un hardware certifi-
cato.

In questi ambienti robotizzati vengono offerti alcuni modelli di robot con-

venzionali, molto utilizzati per la ricerca in robotica. Si tratta di un contributo
essenziale alla comunità della robotica per far sì che gli sforzi di ricerca si
concentrino sulle questioni centrali del loro lavoro. Tuttavia, non aiuta molto
se c'è la necessità di testare da capo un nuovo modello di robot, dove lo sforzo
principale di partenza è la modellazione e la valutazione del comportamento

xv

per riprogettare il modello stesso. Tali ambienti offrono anche funzionalità
robotiche standard che vengono in aiuto in entrambi i casi.

Quindi, lo sviluppo completo di un nuovo veicolo non pilotato, dalla crea-

zione di un modello 3D al testaggio del prototipo reale, richiede una piatta-
forma ad hoc in ogni fase del processo. Richiede inoltre una buona conoscenza
della modellazione cinematica e dinamica, oltre a competenze di programma-
zione e ad ambienti di simulazione potenti. A nostra conoscenza, nessun am-
biente o sistema robotizzato open-source può coprire l'intero processo di svi-
luppo degli UV in modo robusto e rapido. Alcuni di essi sono potenti nel con-
trollo e nella simulazione; altri aiutano molto nello sviluppo di algoritmi; altri
accettano naturalmente la formulazione matematica; altri si occupano molto
bene dei sistemi di comunicazione.

Quindi, una soluzione è quella di integrare alcune di queste piattaforme e

beneficiare dei loro vantaggi. Per questo motivo, abbiamo pensato di svilup-
pare un framework integrato che faciliti la progettazione di veicoli non pilo-
tati, inizialmente in simulazione, in grado di realizzare comportamenti auto-
nomi, eseguendo compiti come la pianificazione dei percorsi, la localizza-
zione, la mappatura e la navigazione sicura, evitando ostacoli in ambienti aerei
e terrestri. Siamo partiti valutando l'offerta, installando e testando alcuni
middleware di robotica al fine di scegliere la piattaforma che permette le mi-
gliori capacità di integrazione con applicazioni robuste in ogni fase della mo-
dellazione di veicoli non pilotati da capo.

Facendo in questo modo, integriamo diverse piattaforme robotiche e stru-

menti per costruire un framework in cui è possibile avere tutte le funzionalità
standard per tipo di veicolo non pilotato. Pertanto, quando arriva la necessità
di un nuovo veicolo, è possibile creare e aggiungere un nuovo modello, con le
sue peculiarità (caratteristiche e capacità). Così, il nostro framework robotico,
chiamato UNISA-UVF, è stato progettato per facilitare la modellazione, la
simulazione e il testing di veicoli non pilotati. UNISA-UVF è un sistema di
robotica basato su sensori che utilizza approcci basati sul model-based e lear-
ning-based.

Inoltre, nel nostro framework, è possibile creare diverse versioni degli

stessi veicoli con leggere variazioni nella descrizione della loro morfologia,
facilitando così le missioni collaborative in cui sono necessari più UV per
svolgerle insieme.

xvi

v. Introduction

The advances made in automatic control systems, artificial intelligence,
and wireless communication make it possible to incorporate Unmanned Ve-
hicles (UV) at home, office, and industry. Vacuum cleaners and logistics ro-
bots are commercially available with increasingly sophisticated autonomous
functions. Also, some significant number of UV are using for monitoring,
evaluation, and surveillance of different environments, including, among oth-
ers, search and rescue operations, structural conformity assessments after dis-
asters, environmental and biological ocean surveys and sampling.

Perhaps, the most important fact is that unmanned vehicles have revealed

their enormous potential for action in a wide variety of military missions,
pushing their development. Whereas, there is a need to have a keep going
proof of concepts of new functionalities, to exploit its full potentiality also for
civilian activities. For this reason, we are assembling a testing environment
for unmanned vehicles, using the existing technologies, research results, and
best practices, through reliable virtual simulations that help to prove innova-
tive mechanical and control designs.

One of the central elements for the design, creation, development, and con-

tinuous testing of UV prototypes is the computational environment or plat-
form for robotics, which contains aspects of hardware and software that allow
conceiving, developing, and simulating UVs. Initially, with virtual prototypes,
which after multiple tests of viability, operability, and feasibility, allow creat-
ing physical prototypes to continue with a new battery of tests until having a
successful UV capable of fulfilling their missions safely and efficiently.

To date, these platforms exist in commercial and open-source versions and

are useful because they make available to developers or amateurs in robotics
common and most used functionalities, such as location, navigation, obstacle
detection, mapping. However, those that seem to prevail in the market are
those very specialized as flight simulators. As it is the case of X-Plane, a plat-
form that simulates flights of various commercial aircraft, both in manual
mode, i.e., by the control through pilot maneuvering and steering and in an
autonomous way with the use of autopilots.

From the market perspective, the sectors of robotics overgrow, according

to the International Federation of Robotics (IFR)1, the sale in the industrial
robotics sector will grow from USD 44.02 reached in 2018 to USD 69.140
billion in 2023, with a compound annual growth rate (CAGR) of 9.45%. It is

1 https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_Robots.pdf

xvii

also expected that the service robotics market will grow from USD 11.27 bil-
lion in 2018 to USD 29.76 billion by 20232, with a CAGR of 21.44% (Re-
search and market 2018) while the demand for unmanned aerial vehicles
(UAV) was valued at USD 18.14 billion in 2017 projected to reach USD 52.30
billion by 2025, at a CAGR of 14.15% from 2018 to 20253 (Marketsandmar-
kets, 2017).

Geographically, the Asia Pacific region dominates the demand for mobile

robotics, thus in 2016, it had a 32.20% share of the global market, thanks to
its growing investment in the defense and logistics sectors. North America
follows with its increasing demand for domestic robots, such as vacuum clean-
ing robots and floor cleaning robots, lawnmowers, and entertainment robots.
It has also observed that the European market is increasing its demand for
warehouse automation and the growing adoption of mobile robotics in various
industries, such as medicine, defense, and agriculture.

The market ecosystem for Unmanned Aerial Vehicles (UAVs) are assorted

and usually classified according to the type of UAV, its application, class,
system, mode of operation, or region. United States of America (USA) firms,
namely, General Atomics, Northrop Grumman, Textron, Boeing, are the ones
that lead the frame, shortly after 3D Robotics. Other critical firms in the world
are DJI (China), Parrot (France), and Aeryon Labs (Canada).

Although this growth of almost two figures, only traditional industries such

as automotive, electrical, and electronics benefits from them. When these are
incorporated efficiently into their production processes, they quickly increase
their performance as it was reported in the Executive Summary World
Robotics 2018 Industrial Robots. The well-known suppliers of industrial
robotics mainly satisfy these "large account" customer automation needs.

For service robots, on the other hand, it seems that the higher speed of

development benefits mainly from the progress of low-cost robotics, ready-
to-use electronic equipment and components. In addition to the open-source
software packages for standard functionalities that can be reused or tailored,
with the support of active communities of practice around the world.

Another way to see the interest in the topic of mobile robotics and un-

manned vehicles is through the number of references found in Google search.

2 Robotics Market Research Reports & Consulting from
 https://www.marketsandmarkets.com/robotics-market-research-112.html
3 Unmanned Aerial Vehicle by 2025 |authorSTREAM.
 http://www.authorstream.com/Presentation/Abhi.hole-3866937-unmanned-

aerial-vehicle-2025/

xviii

By the end of November 2018, the following keywords search UGV, un-
manned aerial vehicle, UAV, unmanned surface vehicle, USV, and unmanned
submarine vehicle, UUV; results in 15,600 links and 615 links in Google ac-
ademic in a variety of disciplines. If we review some of the first research arti-
cles shown, we see that the most cited ones have to do with mobile robots that
work collaboratively, that is, teams of network robots that perform missions
in a joint and coordinated manner. We can also see many articles that analyze
the problems related to the use of UVs on aquatic surfaces and particularly
underwater missions.

In addition to the technology, the possibilities of use, and the enthusiasm

for the UVs, it requires regulation to accompanies the growth. The regulatory
institutions of vehicles may expand the use of unmanned vehicles and create
the necessary rules as they have the confidence and security in such a vehicle.
Like investors to produce and market them, and end-users to incorporate UVs
into their homes, offices, factories, lands, and other installations.

vi. Background and motivation

In the last decades, robotics has experienced a very marked development;
robots tend to perform increasingly complex tasks with less human interven-
tion. They become more autonomous and interact more and more with their
environment to fulfill the mission that has been assigned to them, so the robot
becomes an "intelligent machine." It means that robotics enthusiasts and re-
searchers are moving in this direction, giving mobile robots advanced capa-
bilities that allow them to reach a level of increasing autonomy in dynamic
and unpredictable environments.

This trend in complex robotics development needs practical integration

tools to implement valuable scientific contributions in the area of research into
mobile robotics and related hardware and software technologies. For this rea-
son, it is essential that robotics, developers, and implementers know how the
models, methods, platforms, and algorithms available deal with the underlying
physical and numerical paradigms of robotic environments. As well as de-
velop the skills and technical abilities to interact with them.

The robotics community undertakes significant developments by launch-

ing engaging robotics platforms to support research and testing. Thus, we
could say that the offer is available, with the right level of development also
in the opensource arena. On the other hand, the Campania region in Italy hosts
a critical number of companies related to aeronautics, vehicles’ industry, and
services. The companies related to modeling and delivering vehicle prototypes
and components need to create virtual models to do many tests in a simulation.

xix

There is ample and vital space for applied research matching the offer and
the demand. In this case, an opportunity to take an increased and challenging
hands-on in a complex field. Because small UVs is getting affordable with
opensource platforms and cheap microelectromechanical (MEMs) system, it
will also be necessary to transfer this know-how to partner academic institu-
tions in Latin America.

Gazebo-ROS encapsulates all the robotics complexity, but to keep it gen-

eral-purpose, performing very well with any accessory. Some cutting deci-
sions have been made; for example, it is not a graphically rich platform, alt-
hough it has necessary graphical tools that help in visualization, simulation,
and control is not intuitive. It is easy to understand the choice that prioritizes
performance over ease of use, also considering the flexibility and integration
options with other robotic environments. Therefore, it requires substantial
knowledge to take advantage of the full potential of the Gazebo-ROS plat-
form. For this reason, it is known that the first steps and initial learning be-
come complex and leave the feeling of being insurmountable. However, once
this great difficulty of the initial barrier is overcome, a minimum level of au-
tonomy can be reached to develop confidently and safely in this environment.

Due to the above and even though there are several books and tutorials, we

believe that our work on unmanned vehicles seen from the mechanics and ro-
botics perspective at each stage of development could help to understand the
platform and the behavior of UVs on it. Therefore, in this thesis work, we
focus on the configuration of an open and profitable code framework for un-
manned vehicles, which will allow UNISA mobile robotics researchers and
students to enter the world of Gazebo-ROS modeling and control of unmanned
vehicles.

vii. Thesis Objectives and Organization

The objective of this thesis work is to develop a framework for the creation
and simulation of unmanned vehicles with functionalities such as location,
navigation, and control in individual and group missions on an open-source
platform. The chosen platform is Gazebo-ROS for the simulation and control
of unmanned virtual vehicles. Besides, we have considered it appropriate to
interconnect and integrate the robotic platforms Simulink-MATLAB and X-
plane, recognized as standards in the robotics and aeronautics industry, re-
spectively. By doing so, we can reuse existing models and UV systems within
the university as in the robotic community.

xx

So, the framework UNISA-UVF will allow the mechanical department of
UNISA to build and test land and unmanned air vehicles in simulated envi-
ronments, with the possibility of testing prototypes of physical vehicles with
much less effort. The open-source environment, Gazebo-ROS, is designed to
be completely reusable and interoperable, now with MATLAB Simulink and
X-plane, but is open to adding other ones.

To limit the scope of this thesis work, we remain in the field of mobile

robotics, focusing on the control and engineering problems of unmanned ve-
hicles (UVs) in the ground and aerial environments that perform autonomous
operations over UNISA-UVF framework, independently or in groups. The
structure of the thesis is as follows:

 In chapter one, we present the literature review of unmanned ve-
hicles and the available computational robotic structures that
support them. For each type of unmanned vehicle, we show its
characteristics, common usages, and evolution to nowadays.

 In chapter two, we present the open-source Gazebo-ROS robotic
platforms selected as the leading platforms in the development
of UNISA-UVF, a detailed description of the main characteris-
tics and functionalities, as well as, those of the integrated com-
mercial platforms Simulink-MATLAB and X- Plane.

 In chapter three, we present the characteristics of autonomous
vehicles developed for the simulations that we test in our frame-
work, as well as the kinematic, dynamic, and control models of
the Unisa_bots, a UGV of a differential type and a fixed-wing
UAV.

 In chapter four, we present some useful robotics techniques and
how Gazebo-ROS implement them.

 Finally, in chapter five, the practical use of the UNISA-UVF
framework is presented in two case studies, the first
Unisa_Gbots is a group of UGV in a simulation that performs a
SLAM of a free of use 3D indoor environment; the second UAV
(rosmilvus) a new unmanned aerial vehicle in a simulation that
delivers Dubin's waypoint navigation.

1

Literature Review

I.1 Introduction

This chapter presents a literature review related to the research objective
of this thesis, starting with the study of the state of the art of mobile robotics
with a focus on unmanned vehicles, followed by the analysis of robotic plat-
forms with a focus on opensource that allow the modeling and control of un-
manned vehicles. In both cases, we make a brief definition of the concepts,
methods, and related techniques, to put the reader on the terms used and the
meaning we have taken in each case.

The discussion and conclusion of the chapter have an opportunistic ap-

proach since it considers the views of mechanical engineers and robotics pro-
fessionals on the relevant aspects of the design, modeling, control, and in gen-
eral, in the processing of information related to Unmanned Vehicles. Within
these two perspectives, we can identify and evaluate the best alternatives to
build the Unisa framework for Unmanned Vehicles (UNISA-UVF).

The vision of mechanical engineers in robotics pays special attention to the

physical and mechanical aspects of robots and their interaction with their en-
vironment. Thus, for example, to the selection and management of the most
suitable sensors and actuators in mobile robots according to the missions they
must fulfill. In the same way, the professionals in robotics pay more attention
to the computational platform of the equipment embarked on the mobile ro-
bots as the central or distributed systems, like their integration and communi-
cation capacities, the algorithms, and programming languages. Therefore,
they ignore or overlook the problems related to the generation of energy, the
electrical distribution, and some of the kind.

CHAPTER I

2

I.2 Unmanned Vehicles

The term “Unmanned Vehicle” refers to the capability of a vehicle to nav-
igate in the environment for which it was designed (ground, air, water) without
an onboard human presence. The type and level of autonomy vary, ranging
from the absence of automation to full automation. The form and degree of
control are implemented based on their detection system, and it usually relies
on the usage of model-based and learning approaches to increase their levels
of driving over time (Rivera Z.B et al., 2016).

Unmanned vehicles are within the realm of mobile robotics; they are robots

with motion capabilities in different environments. Its roots include many dis-
ciplines of engineering and science, from mechanical, electrical, and elec-
tronic engineering to computational, cognitive, and even social sciences, due
to the increased interaction with human beings in daily life activities. Their
essential components include at least one controller, a power source, a soft-
ware or control algorithm, some sensors, and actuators.

The following definition of a mobile robot by Arkin (1998) identifies their

feature and purpose: "An intelligent robot is a machine able to extract infor-
mation from its environment and use knowledge about its world to move safely
in a meaningful and purposive manner." (Chapter I, pg.2). This definition eas-
ily contrasts with reality, because unmanned mobile robots have been used in
difficult, dangerous, and highly unpleasant tasks to be carried out by human
beings, either because the costs of accessibility, safety, survival are high, or
fatigue, time, or unpleasantness are unsupportable.

Therefore, nowadays, missions for ground, aerial, over and underwater-

unmanned vehicles fulfill tasks like monitoring infrastructures as bridges, ca-
nals, offshore oil, and gas installation. Also, mobile robots are in inhospitable
and remote environments where they can be impossible for a human being to
go, like Mars.

Depending on these environments of action, a first classification includes:
 Terrestrial robotics covers both wheeled vehicles operating on regular

surfaces (roads, parking lots, homes, offices) and field robotics, which
deals with off-road vehicles or lands for agriculture.

 Aerial robotics includes all flying vehicles (mainly fixed-wing and
rotor drones), both at low altitudes and at high altitudes and in all
types of environments (includes interiors for micro and mini ver-
sions).

 Finally, marine robotics includes submarines and autonomous ves-
sels.

CHAPTER I

3

Recently, the degree of automation increases in the automotive industry,
employing "intelligent vehicles," which deals with the mobility of people and
goods on paved surfaces commonly; however, there are some critical off-road
developments. For these cars, the adapted equipment includes a high quantity
and preformat automation components, and usually, parallel steering and trac-
tion systems for automation since levels of security required to transport hu-
mans are higher.

In addition to mobility, we can appreciate that the size and nature of the

working environments have essential characteristics to consider. Thus, an im-
mediate consequence is that its creation, testing, and implementation, require
quite a consistent means (robots in themselves, experimental sites, computer
infrastructure and possible infrastructures for command posts, specialists and
researchers), both in costs and in the level of knowledge in various domains
related to the type of mobile robot and the environment of action. Therefore,
there is an essential "knowledge" and "know-how" to master, from conception
to experiments passing for implementations.

The areas of knowledge involved in the field of mobile robotics are Me-

chanical engineering, responsible for the design of vehicles, in particular, the
mechanisms of motion. Computer science, accountable for visualization, sim-
ulation, and control with algorithms for detection, planning, navigation, con-
trol, mapping. Electrical engineering, responsible for integrating systems, sen-
sors, and communications. Cognitive psychology, perception, and neurosci-
ence, for the study of biological organisms to understand how they analyze
information and how they solve problems of interaction with the environment.
Finally, Mechatronics, which is a combination of mechanical engineering with
computing, computer engineering, and electrical engineering.

The expansion of robotics has shown a significant transformation in its

scope and dimensions, especially since the new millennium, in some fields, it
has a level of maturity, backed by advances in related technologies. However,
seen from the spectrum of scientific challenges, we can appreciate that being
broad, multidisciplinary and complex environment there are still many unan-
swered questions, or they need to be perfected; among others, we have the
autonomy of the movement, freedom of decision, the conception and manage-
ment of "system systems", the human-machine interaction.

As it is known, innovation drivers can come from the side of technology

that allows the development of a specific type of mobile robots, or from the
knowledge side that encourages the development of technology to materialize
or supports the new findings. For this reason, the degree of development of
mobile robots varies significantly according to the time and the impetus with
which the research topics, technologies, and initiatives were approached, the

CHAPTER I

4

same ones that allowed their progress until now. To describe these achieve-
ments in mobile robots, we will do a broad classification according to the en-
vironment where they operate (ground, air, or water). We include the "intelli-
gent vehicles" within the mobile ground robots, because to date, it is the only
environment in which tests have been carried out by transporting human be-
ings.

The standard classification for unmanned vehicles, in the academic com-

munity, are Autonomous Ground Vehicles (UGV), autonomous land vehicles
(ALV), or mobile robots for vehicles traveling on land, which are also known
as "Intelligent vehicles." Autonomous Aerial Vehicles (UAV) generally clas-
sified as rotors and fixed-wing for those who move in the air. Autonomous
Submarine Vehicles (UUV) or Unmanned Surface Vehicles (USV) for those
traveling below and above the surface of the water. The following paragraphs
cover, for each of these three groups of unmanned vehicles, a brief definition,
uses, characterization, and evolution.

I.2.1 Unmanned Ground Vehicles (UGV):

Brief definition
The unmanned ground vehicle is a vehicle that operates while in contact

with the ground and without a human presence on board. Its development
begins as an application domain for Artificial Intelligence research at the end
of the 1960s; the initial purpose was to recognize, monitor, and acquire
objectives in military environments. In the civil area, they are used for disaster
management responses throughout the world (Murphy, 2014).

Characterization
In the realm of mobile robotics, the locomotion mechanisms on land can

be diverse and rely on the choice made during the conception and
implementation. Thus, the robots can walk, jump, run, slide, crawl, and roll.
The mechanism of locomotion on ground preferred and chosen by researchers,
and the robotics industry has been by far the wheel, being mechanically more
straightforward and more efficient, especially on flat surfaces.

For this reason, key components that influence the total kinematics of the

UGV are undoubtedly the wheels, so the selection and the arrangement of
these in the vehicle are essential. Four types of wheels are commonly used
(see Figure I.1), with advantages and disadvantages, and have very different
kinematics, as:

CHAPTER I

5

 Standard wheel: two degrees of freedom, rotation around the wheel
axle (usually motorized), and one point of contact.

 Rotating wheel: two degrees of freedom, rotation around a controlla-
ble displaced joint.

 Swedish wheel (Swedish): three degrees of freedom, rotation around
the wheel axis (usually monitored), the rollers or bearings, and the
point of contact.

 Ball or spherical wheel: three degrees of freedom with technically
tricky realization.

Figure I.1 Common Robotics Wheels
(Source: Introduction to Autonomous Mobile Robots (p .36)

The common UGV steerability based on wheels are depicted in Figure I.2,

for highly directional wheels, usually standard wheels are fixed in primary
rotational axis, or combined with castor wheels. Standard wheels could be
configured as traction and direction, with the center of rotation passing
through the contact patch with the ground, while the castor wheel rotates
around an offset axis, causing a force to be imparted to the robot chassis during
steering. There is a need for Swedish wheels to have an omnidirectional UGV
that thanks to the rollers or bearings of its surface allow them to move in all
directions; there are other ways but has increased complexity.

CHAPTER I

6

 Fixed centered steerable wheel

Off-center steerable wheel (castor) Swedish wheel
 (omnidirectional)

Figure I.2 Common Wheels Steerability
(Source: Adapted from Introduction to Autonomous Mobile Robots)

 According to the number, selection, and disposition of these wheel types,

the UGV will have different degrees of freedom, which will characterize its
maneuverability, how easily roll in a straight line, or make turn motions. The
Unicycle type robot has a simple and known mechanical and electronic struc-
ture, which makes it the preferred one for its kinematics in laboratory tests. It
has two conventional fixed wheels arranged on the same axis and controlled
independently, each one that allows the direction and synchronization, and a
locator or castor wheel conveniently arranged to give stability. Its traction-
steering system allows controlling the linear and angular speed independently.

Two other configurations also used are the tricycle and the quadricycle or

quad, so-called by the number of wheels used, generally conventional. The
tricycle resembles the unicycle with the difference that the traction-steering
function is given in the steerable centered front wheel, while the rear wheels
are fixed on the same axis. It also has simple kinematics but can lose traction
during movement when its center of gravity is too close to the permitted limits,
making it unstable and unreliable in the estimation of the vehicle's position.
Thus, it is usually used to transport heavy loads to low speed.

The Ackerman steering quadricycle, have the axes of the two front steera-

ble wheels intercepting in an Instantaneous Center of Rotation (ICR or ICC).
The ICR point belongs to the projection of the common axis of the rear fixed

CHAPTER I

7

wheels. In this way, a set of concentric arcs is observed in the plane traced by
each wheel around this point ICR, whose instantaneous velocity vectors of
each wheel are the tangent to these arcs. Its kinematics, mechanical structure,
and control electronics are not as simple as the previous one, but it provides
more excellent stability, prevents slippage in the wheels, and therefore reduces
odometry errors, especially for all-terrain vehicles.

The efficiency of wheeled robots depends to no small extent on the quality

of the terrain, particularly the smoothness or hardness of the ground, the type
of surface (flat or non-flat), the number of obstacles (free or dense). Conven-
tional wheeled vehicles usually move on flat and hard enough terrain, while
on non-flat, irregular and non-dense terrains, track wheels with gears and
adapted diameters are required. For example, at home, for indoor floor clean-
ing missions, the mobile robotic vehicles need an appropriate configuration to
move on polished and carpeted floors in general. Nevertheless, in devastated
outdoor places, the ground mobile robots used for monitoring will have a di-
verse configuration to be capable of adapting to irregular terrain, with debris
and other conditions that will limit its displacement.

Another essential feature is the traction and steering system, which is re-

lated to the arrangement of wheels in the vehicle. Three types are depending
on how they are linked to the axes; so, the traction and direction can be:

 On independent axles, traction on the rear wheels, and steering control
on the front wheels, the accuracy is related to the level of adherence
of the wheels because its mass is negligible concerning that of the
complete vehicle, and the turning radius is high (distance to ICR).

 In the same axle or differential traction, using independent motors in
the wheels of the same axle and idle wheels or castor arranged appro-
priately, this configuration allows turns even of the size of the vehicle.
Engines with the same characteristics are usually suggested to sim-
plify the control.

 On all axes or integral, used in vehicles that require high adherence,
the odometrical system is more complicated due to the uncertainty in
the associated turning radius.

There are also unique configurations that associate the systems described

above in order to expand the functionality of the robot, granting it more de-
grees of freedom or improving the errors related to wheel slippage and odo-
metrical measurements. However, the associated mechanics, electronics, and
computing will be more complex, given that the control and direction systems
are associated with the algorithms of local motor control and the mechanics
associated with them.

CHAPTER I

8

Evolution and Usage
Autonomous unmanned vehicles have had a significant development in the

military field since the beginning of World War II, the remote tanks of the
USSR "Teletanks" were used in the Winter War (1939-1940) against Finland,
and the beginning of the Eastern Front after Germany invaded the USSR in
1941. While the Germans used the Goliath mine with 60 kg of explosive
charge directed through a control cable. Nowadays, the Unmanned Ground
Vehicles are mostly used for Intelligence, Surveillance, and Reconnaissance
(ISR), Search & Rescue, Combat Support, Transportation, Explosive Ord-
nance Disposal, Mine Clearance, Firefighting and others (Counter CBRN,
Hazmut).

The following timeline shows some of the military UGVs that have been

developed and deployed by several armies around the world, it is certainly not
a complete list of them but shows the diversity of army efforts (upper Figure
I.3). The investments in research for military usage of UGVs are always in-
creasing, in order to make them more autonomous, to operate on their own
(through artificial intelligence) for long periods, capable of carrying on large
payloads or being very light and small to enter through the enemy lines.

Figure I.3 "UGVs lifetime in Military and Civilian fields (upper & lower)”
(Source: self-drawing based on a literature review)

While lifetime UGVs for civilian and commercial applications that have

been developed and deployed for different purposes like agriculture, manu-
facturing, mining, supply chain, and for Aerospatiale missions (Figure I.3.

CHAPTER I

9

lower) are mostly created in academia for research purposes, in the industry,
UGVs are used for map building, transporting materials and goods, stock
scanning, and inventory taking with autonomous vehicles, forklifts, and con-
veyors.

The first car was unmanned and controlled wirelessly via radio created by
a subsidiary of General Electric back in 1921, then “Elmer and Elsie” tor-
toises, considered as the ancestors of ground robots and "intelligent" weapons,
because in order to identify the sources of dim light and approached them,
they had capabilities of locomotion, detection, and evasion of obstacles. They
are also recognized as the pioneers of Artificial Intelligence (AI) because of
their ability to react to stimuli as "conditioned reflex." However, Shakey, cre-
ated in 1966-67, is considered the pioneer of unmanned vehicles. It was able
to navigate by himself from one room to another and even to transport an ob-
ject; it established the functional and performance baselines for mobile robots
(Nilsson, 1969).

Shakey carried on several sensors: a camera, a distance measuring device,

and tactile sensors to perceive obstacles, actuators as step by step motors. It
was the pioneers of mobile robots able to "feel" his surroundings (requiring
enormous computational resources for calculation at that time). It served as a
testbed for AI's work funded by DARPA at the Stanford Research Institute
(SRI) (Nilsson, 1969).

Both Sharkey and Bristol turtles defined the research agenda of Artificial

Intelligence (AI) in areas like planning, vision, conditioned reflex processing,
and natural language (Flynn, 1985). The Sharkey mobile robot continued his
evolution, by the end of the 80s, was an eight-wheel all-terrain with standard
hydrostatic steering, able to move on roads and in rough terrains; as well as,
had incorporated the electronics and software for an unmanned navigation and
objectives search (Everett, 1996).

CHAPTER I

10

Figure I.4 "Sharkey" mobile robot - First Unmanned Robot
(Source: http://www.historyofinformation.com)

NASA, in 1997, launched the "Sojourner" rover (a type of UGV) to ex-

plore, analyze, and photograph the surface of Mars. It was active for two
months on this planet in a radius of action of 20 meters around the landing and
continuous communication platform called PathFinder. After "Spirit" and
"Opportunity," two twin rovers were launched in January 2004 to explore a
broader area. Then "Curiosity" was sent in August 2012 in the mission Sci-
entific Laboratory on Mars, and it is expected to send "Mars2020" by 2021 to
continue the mission of exploration to know if there was life on that planet
and if it is possible to send human beings.

CHAPTER I

11

Table I.1 Rovers Characteristics and mission

Rovers Structure Weigh
t (lbs)

Vel.
Max(
mph)

Scien-
tific
Inst.

Mission

Sojourner Chassis with so-
lar panel

Six independent
metal drive
wheels studded
with nails

bogie tipper
suspension sys-
tem

2. 3 0.02 two Move, explore and
photograph within a
radius of 20m
around the commu-
nication platform

Spirit and
Opportunity

374
each

0.1
each

5 each Explore and look for
evidence of water on
Mars

Curiosity 1982 0.09 10 Discover if Mars
ever had everything
necessary for life:
durable water and
adequate chemical
ingredients

Mars2020 ? ? ? 7 Look for signs of
past life or current
possibilities, see if a
human being can ex-
plore it one day

Source: based on NASA public website information

The rovers sent to Mars by NASA have six steel wheels with different

types and sizes of steel tines, to improve grip, has solar panels on the top and
a bogie-type swinging suspension system that gives excellent freedom of
movement, being developed in each new rover launched on Mars (see Figure
I.5). With this type of leaned suspension, the rovers can overcome an obstacle
one and a half times greater than the diameter of its wheels, moving at a cruis-
ing speed of 40 cm per minute in Sejourner, reaching up to 180 cm per minute
in Curiosity.

CHAPTER I

12

Figure I.5 “Sojourner” - NASA First Rover on Mars
(Source: NASA website)

The size of the rovers was growing and increasing in weight, going from

only 11 kg to 900 kg to support an increasing number of communications,
sensing, sampling, and research equipment, going from only 2 to 10 scientific
instruments. The technology present in the rovers are those of propulsion to
provide them with energy to reach Mars and conduct long-term studies,
sources of power to increase the efficiency of the central system and its sub-
systems, telecommunications to send control commands and to receive data
in real-time and in large quantities. Finally, avionics and software engineering,
to provide the electronics, computing, and commands necessary for the oper-
ation of the spacecraft and its subsystems.

As we can see, there is an essential effort from the scientific community,

but the state-of-the-art technology remains on research centers of these crucial
institutions and universities. Therefore, it is interesting to see how the Defense
Advanced Research Projects Agency (DARPA) of the Department of Defense
of the United States, a pioneer institution in the technological development
related to robotics, becomes an essential driver of the sector. Because to in-
crease its research efforts, launch challenge programs in order to involve ex-
ternal civil agents at a global level. Thus, DARPA provides excellent re-
sources for research and development through challenges in the creative mo-
bile robotics sector from the late 1960s to the present.

The competitions of intelligent unmanned vehicles "Grand Challenge" in

2004 and 2005 and "Urban Challenge" in 2007 of DARPA are followed by
other initiatives aimed at promoting the development of technologies and re-
search topics related to mobile robotics. Both competitions of DARPA un-
manned vehicles are based on the levels of autonomy defined by the Society

CHAPTER I

13

of Automobile Engineers (SAE), a global association of engineers and related
technical experts in the aerospace, automotive and commercial vehicle indus-
tries. The SAE defined five levels of autonomy for driving cars, depending on
the degree of capabilities reached in four categories, namely the execution of
the steering and the control of the acceleration; the monitoring of the driving
environment; the alternative performance of the dynamic driving task; and
system capacity or driving modes.

The Urban Challenge was the more significant trigger from where it is

looked for because it pushes competitors to manager complex maneuvers re-
quired to overcome obstacles in a dynamic, uncontrolled environment (other
vehicles, pedestrians). In addition to respecting a series of traffic rules im-
posed for the city as for any other type of vehicle, such as negotiating the
passage at an intersection, respecting the signals of the traffic lights, parking
only in permitted places, among others.

With the DARPA challenges, the capacities of the UGVs were increased,

and a real interaction of unmanned vehicles under challenging conditions like
the desert (Grand Challenge 2005) and in the complexity of an urban environ-
ment (Urban Challenge 2007) had been tested for the first time. Also, the
rovers launched by NASA show the crucial advances of these vehicles in com-
pletely unsafe environments, having examined all the technologies imple-
mented in the design and modeling of the mobile robot itself as in the comple-
mentary systems to allow navigation, exploration, communication and data
analysis with a significant payload of scientific instruments. By the same pe-
riod, another DARPA Advanced Ground Vehicle Technology (AGVT) pro-
ject was created, specialized in military applications (Gage, 1995).

However, despite these critical advances, today, only some vehicles can

operate autonomously under certain conditions, as is the case of autonomous
vacuum cleaners inside homes or offices and the use of some cargo robots,
who perform some logistical maneuvers. In order to generalize the use of mo-
bile robots, unmanned vehicles, and "intelligent vehicles,” more research and
tests must be carried out to solve all the theoretical and technical problems, to
increase their level of accuracy in sensing and actuating. Also, the intelligence
for making timely and accurate decisions in a highly interactive environment
in number and frequency, such as urban environments and public roads, in
order to ensure safe driving in all conditions.

CHAPTER I

14

I.2.2 Unmanned Aerial Vehicles (UAV):

Brief definition
The Unmanned Aerial Vehicle Systems (UAS) is known by different

names and acronyms, such as an unmanned aerial vehicle (UAV), flying ro-
bot, remotely piloted vehicle (RPV), or just ''drone. '' It is an airplane charac-
terized by the absence of a human pilot, which can be controlled through a
computer system on board and remotely through a navigator. This equipment
respects the same procedures of a conventional airplane.

When the ground control station (GCS) is incorporated, and a communica-

tion data link for command and control is usually called UAS. However, other
components are considered critical, such as autopilots, navigation sensors, im-
age sensors, mechanical servos, and wireless systems.

Characterization
There are mainly two types of Unmanned Aerial Vehicles by their kind of

take-off; those that can do a vertical takeoff and those that do not, in the second
group, are the fixed or flexible wing. In general, fixed-wing UAVs excel due
to their speed of travel, resistance to external disturbances such as wind gusts,
load capacity, while the rotors (usually Quad-rotors) for their maneuverability,
vertical flight capacity, indoor flight capabilities. It is possible to see in the
literature that is being built hybrid UAV to take advantage of the characteris-
tics of both, so there are airplanes with rotors strategically willing to give such
a hover or capacity vertical takeoff and landing.

You can also find in the literature a commonly used classification that takes

as reference the maximum weight to the takeoff (MTOW) of the unmanned
aerial vehicles, as well as the comparative table that follows (Table I.2), ob-
tained from the international organization UVS, allows to perceive the weight,
range, altitude and flight duration of the UAV. In the table, the essential fea-
tures reserved for particular tasks in the military field are listed, where re-
search and development of UAV have more time and have reached a certain
degree of maturity. Recently the European Airbus launch Zephyr, which is the
world's leading, solar-electric, stratospheric UAV, combines the endurance of
a satellite with the versatility of a UAV 4. The Airbus is working on a new
large model Zephyr T with a wingspan of 33m and weighs 140kg to accom-
modate payloads with larger masses.

4 Zephyr - UAV - Airbus. http://www.airbus.com/defence/uav/zephyr.html

CHAPTER I

15

Starting from the most basic classification, according to aircraft weight,
that can go from Micro air vehicle (MAV) weighing less than 1g to heavier
ones around 5t. They have specific physical components, materials, and
shapes, powerful propulsion technologies, control systems (electronic, envi-
ronmental), varying functions, and feature sets. For example, a research field
in MUAVs function is dealing with Flapping-wing ornithopters, imitating
birds or insects, exploring miniature optic-flow sensors. To realize how to
transmit data to neuromorphic, they are testing chips able to treat optic flow
as well as light intensity discrepancies.

It is also possible to classify the UAVs by their level of autonomy, being

able to go from not being autonomous until carrying on board a complete in-
telligent autopilot. If there is no level of autonomy, the flight path should be
planned and scheduled in advance, in order to guide and control it continu-
ously from a dedicated command post on the ground, called the ground seg-
ment. It is linked to the air segment by systems of communications. Even
though the UAV has complete autonomy, there are tasks carried out in the
ground segment, such as the definition of the mission and the supervision of
the development of the mission. In the air, on the other hand, the tasks related
to on-board sensors and actuators are carried out, to obtain information and
control the flight, respectively.

As in the human-crewed aircraft, to transmit and receive digital signals a

data links, it is always necessary to have onboard controllers, those low-level
systems allow telecommunications between the aircraft and the control sta-
tion; while the protocol that establishes the transmission rules governs the
communication. (De Simone M.C. & Guida D. 2018). Unmanned Aerial Ve-
hicles (UAVs) implements full or half-duplex systems to send control signals
and receive telemetry signals. The onboard computer (generally with GPS
navigation) is connected to the aircraft control system to be capable of flight
and operating system control. Usually, it includes one or more control stations,
communication links, data terminals, launch and recovery systems, pieces of
equipment, ground support, and an air traffic control interface.

CHAPTER I

16

Table I.2 Classification of UAVs by Flight capacity

 Mass (Kg) Range
(Km)

Flight alt.
(m)

Endurance
(h)

Micro < 5 < 10 250 1

Mini <
20/25/30/150 <10 150/250/30

0 <2

Tactical
Close Range (CR) 25-150 10-30 3000 2-4
Short Range (SR) 20-250 30-70 3000 3-6
Medium Range

(MR) 150-500 70-200 5000 6-10

MR Endurance
(MRE) 500-1500 >500 8000 10-18

Low Attitude Deep
Penetration

(LADP)
250-2500 >250 5-9000 0.5-1

Low Altitude Long
Endurance (LALE) 15-25 >500 3000 >24

Medium Altitude
Long Endurance

(MALE)
1000-1500 >500 3000 24-48

Strategic
High Altitude Long
Endurance (HALE) 2500-5000 >2000 20000 24-48

Stratospheric
(Strato) >2500 >2000 >20000 >48

Exstratospheric
(EXO) TBD TBD >30500 TBD

Special task
Unmanned combat

AV (UCAV) >1000 1.5 12000 2

Lethal (LET) TBD 300 4000 3-4
Decoys (DEC) 150-250 0-500 50-5000 <4

Source: Unmanned aerial vehicles with international UVS information (MTOW)

The applications of UAVs in military environments are at the service of

intelligence, surveillance, and reconnaissance (ISR), combat operations, and
other related. In civil and commercial settings, they are used for precision ag-
riculture; remote sensing, security and border management; monitoring of in-
spection, traffic, public structures and roads; photography, media coverage
and film production; topography and mapping, research and conservation of
wildlife, scientific research; shipment of packages, among many others.

CHAPTER I

17

Developing a good architecture, a model is a crucial element; it serves to
evaluate the full functionality, reducing ambiguity, and increasing the robust-
ness of the system. From the structure (model), for a new aircraft, it is im-
portant to do many tests in simulation environments as much as possible to
test the model and each component, understanding their behaviors.

Evolution
From the early times, the Unmanned Aerial Vehicles (UAV) technology

has been used for military purposes, with a large size and purpose range. The
latest UAVs generations have sophisticated and miniaturized sensors, allow-
ing remote control of the aircraft, to complete their mission without losing
lives. Within the time, the UAVs are increased their usage by different mili-
tary forces, by government agencies and by businesses (De Simone M.C. &
Guida, D. 2018). For example, in the United States, government agencies use
some UAVs, like the RQ-9 Reaper, to patrol the borders of the nation, to ex-
plore and identify fugitives and migrants.

Figure I.6 "UAVs lifetime in Military and Civilian fields (upper & lower)”
(Source: self-drawing based on a literature review)

The first military unmanned aerial systems (UAS) go back to the year 1916

(see Figure I.6 upper), the ' AerialTarget' of the British professor AM Low,
and the airplanes Hewitt-Sperry Automatic of the Wright brothers also in
1916. Then many developments have been seen, mostly related to war con-
flicts. Later, in 1988, Amber (see Figure I.7), the first unmanned aerial vehicle
of resistance, flew more than 38 hours straight to 25,000 feet; it had digital

CHAPTER I

18

flight control, microprocessors, and satellite navigation. In the same year, the
DARPA/Navy unmanned vehicle program was initiated to serve as a stand-
alone test-bed vehicle and then integrated with specific missions such as mine
location, avoidance, and remote monitoring. More recently, the Air Force Re-
search Laboratory announced “Skyborg,” a UAV with artificial intelligence
that by the end of 2023 could take off and land autonomously, fly in bad
weather, and avoid other aircraft, terrains, and obstacles. It is expected to be
combat-ready at this time.

Unmanned aerial vehicles are having essential drivers that are boosting the

supply, demand and research to increase the capabilities of UAVs or drones
(as they are commonly known), as well as to improve the models, methods,
and techniques of modeling, control and simulation, through enhanced perfor-
mance of the associated hardware, software and telecommunications compo-
nents. For these reasons, the UAV, especially the rotors, have been popular
commercial devices, which due to their low cost, have been used for distrac-
tion purposes, to take photographs or other tasks in private events, even though
this depends on the regulation of each country or region. However, there are
a professional use drones, which have better flight routines (automatic flights,
GPS navigation, corrections by altitude) and can carry onboard components
with better technological features such as high-resolution cameras, thermal
sensors, gas, multispectral, radars, and higher performance batteries, some of
them are draw in the Figure I.6 (lower).

Figure I.7 “Amber” - First Unmanned Aerial Vehicle
(Source: DARPA https://www.darpa.mil/about-us/timeline/amber-predator-golden-
hawk-predator)

Also, the unmanned aircraft is intended to fly in the stratosphere, Zephyr

S (see Figure I.8), and Zephyr T, the new models of the European Airbus they

CHAPTER I

19

operate exclusively with solar energy, flying about 70,000 feet above conven-
tional air traffic5. They are cataloged as a HAPS (High Altitude Pseudo-Sat-
ellite), the wingspan of 25m and 33m, and weighs less than 75kg and 140kg,
respectively, give them the ability to fly for months at a time.

Figure I.8 “Zephyr S” - First solar-electric UAV pioneering the stratosphere
(Source: AIRBUS https://www.airbus.com/defence/uav/zephyr.html)

The growth projections of the unmanned vehicle market were valued at

USD 18.14 billion in 2017 and are projected to reach USD 52.30 billion by
2025, with a CAGR of 14.15% from 2018 to 2025, according to Mar-
ketsandmarkets. The market leaders are the North American groups occupy-
ing the first places, among them General Atomics, Northrop Grumman, Tex-
tron, Boeing, and 3D Robotics, followed by DJI from China, Parrot from
France, and Aeryon Labs of Canada.

 The latent potential of unmanned aerial systems for civil applications is

and has always been perceived as favorable. However, sustainability and op-
erational complexity remain essential. The experiences of the missions with
unmanned aerial vehicles in the military sector are more frequent and with
significant technological advances. In the civil areas, they are developed in
the field of university research, apart from the light transport aircraft, that is
currently venturing into the best distribution sector established in some devel-
oped countries, and there has been significant progress in the design of robust
control software and hardware in this specific type of UAV as quad-rotors.

5 https://www.airbus.com/defence/uav/zephyr.html

CHAPTER I

20

I.3 Robotics Frameworks

The nowadays interest and demand in robotics requires to have robust
computational platforms and tools to make rapid prototyping, robot design,
simulations of virtual models and sensors, provision, and evaluation of models
and controllers. It is also crucial for developers and implementers to be aware
of the available platforms, methods, algorithms, and most used hardware
components, as well as their underlying physical and numerical paradigms,
advantage, and disadvantage. Those reasonable reasons push us to select and
design an ad-hoc platform.

To build a UNISA unmanned vehicle framework (UNISA-UVF), knowing

state of the art, the tendencies, and best practices are essential. In this chapter,
we present our findings and analyze the most relevant robotics framework
available from a broader perspective, with an emphasis on those based on
open-source. A comparison of their main characteristics, components,
relevance, and adoption is made. We rely on a seminal work of Kramer &
Scheutzin in 2007, they established a systematic evaluation of available
Robotic Development Environments (RDEs) for mobile robots, building a
comprehensive list of evaluation criteria targeted at robotics applications,
comparing their strengths and weaknesses.

We start with a paper of MIRA middleware (Einhorn, E. et al. 2012); their

essential characteristics are summarized in Table I.3. The authors present their
robotic framework MIRA comparatively, through a benchmarking with the
robotics platforms available at that moment, between them the ROS
middleware. Once updated and completed the benchmarking, we could realize
which platform will fit better to specific robotics needs and purposes.

Table I.3 Middleware Platforms Summary

Name Organization Description Webpage
ASEBA Aseba The engine of the educational

Thymio mobile robot, to
program in a user-friendly
using a cozy integrated
development environment. A
modular architecture for
event-based control for
complex robotic systems.

https://www.th
ymio.org/hom
e-en:home

CARMEN Carnegie
Mellon Robot
Navigation
Toolkit

The platform provides basic
navigation primitives,
including base and sensor
control, logging, obstacle
avoidance, localization, path
planning, and mapping.

http://carmen.s
ourceforge.net
/home.html

CHAPTER I

21

MIRA Middleware
for Robotic
Applications

Applications of several
different processes (algorithms
for specific tasks) on different
machines (either in real-time)
in a distributed layout.

http://www.mi
ra-
project.org/joo
mla-mira/

MIRO Middleware
for Robotics

A distributed object-oriented
framework for mobile robot
control, based on CORBA
technology designed for high
performance and real-time
applications

https://www.o
penhub.net/p/
miro-
middleware

MOOS Mission
Oriented
Operating
Suite

Star-shaped topology network.
Data as named messages
stored in MOOSDB. Other
clients can also fetch the
history of changes.

http://www.ro
bots.ox.ac.uk/
~mobile/MOO
S/wiki/pmwiki
.php/Main/Ho
mePage

OROCOS Open Robot
Control
Software

Real-time control of robots
and machine tools: A
Kinematics and Dynamics
library, Bayesian Filtering
Library and Orocos Toolchain

http://www.or
ocos.org/

Player Player/Stage
Project

Fits well for simple, non-
articulated mobile platforms.
It offers more hardware
drivers, provides easy access
to sensors and motors on
laser-equipped.

http://playerst
age.sourceforg
e.net/index.ph
p?src=index

ROS Robot
Operating
System

Distributed environment for
complex mobile and
manipulator robots, based on
algorithms and actuated
sensing.

http://www.ros
.org/

Urbi Universal
Robotic

Distributed at runtime.
Determined by UObject (C++
API) for drivers and
algorithms exposed to
urbiscript (event-based) used
to connect components in an
application.

https://github.
com/urbiforge
/urbi

YARP Yet Another
Robot
Platform

Modular, code reuse,
transport-neutral interposes
communication-based on
Ports with different protocols.

http://www.ya
rp.it/

Source: based on a literature review.

A recent paper makes a detailed technical comparison of thirty-two most

popular robotic frameworks, architectures, and middlewares, for our analysis,

CHAPTER I

22

we select and complete them with the listed above (see Table I.4). The authors,
Tsardoulias, E., Mitkas, A.P. (2017 p1-2), start with a clarification on the
definitions of those three words which are used almost interchangeably in the
literature. For them,

 The robotic framework is “a collection of software tools, libraries, and

conventions, aiming at simplifying the task of developing software for
a complex robotic device,” as the APIs.

 Robotic middleware is “the glue that holds toget her the differ ent
modules of a r obotic system… it pr ovides the essential softwar e-
hardware interfaces between the high level (software) and the low level
(hardware) components of the system, ” like the communications
infrastructure between the software nodes running in a robotic system.

 Robotic architecture is “a more abstract description of how modules in
a robotic system should be interconnected and interact with each other,”
for example, to provide the communication infrastructure between the
different modules (software or hardware).

CHAPTER I

23

Table I.4 Robotic framework and middleware comparison

RFWs OS Programming
language

O
pe

n-
so

ur
ce

D
ist

ri
bu

te
d

ar
ch

ite
ct

ur
e

H
W

 in
te

rf
ac

es
 &

 d
ri

ve
rs

R
ob

ot
ic

 a
lg

or
ith

m
s

Si
m

ul
at

io
n

C
nt

ro
l /

 R
ea

lti
m

e o
ri

en
te

d

ASEBA Linux aseba   ~ 

CARMEN Linux C++  

MIRA Linux,
Windows

C++, Python,
JavaScript   

MIRO Linux C++    

MOOS Windows,
Linux, OS/X C++  ~   

MSRS
(MRDS) Windows C#   ~   

OROCOS Linux, OS/X C++   
Player/Stage/

Gazebo
Linux,

Solaris, BSD
C++, Tcl, Java,

Python  ~  

ROS Unix

C++, Python, Lisp,
Java

adapters for Oc-
tave/MATLAB

 ~ 

Urbi (language) Linux, OS/X,
Windows C++ like      

YARP Windows,
Linux, OS/X C++    

Source: updated from Robotic frameworks, architectures and middleware comparison
(Tsardoulias, E., Mitkas, A.P. 2017)

For a robotic system to function successfully, all the layers need to be

covered, from the low-level embedded systems, with software for controlling
the physical robot actuators, all the way up to high-level tasks such as
collaboration and reasoning. All these layers of computation must be able to
communicate and perfectly integrate, ideally. Common to many robotic
applications are tasks such as localization, mapping, navigation. For that
reason, a layer of software above the operating system but below the
application program appears in the market as middleware to wrap this

CHAPTER I

24

complexity and to provide a common programming abstraction across a
distributed system. Table I.5 summarizes the advantages of these platforms.

Table I.5 Middleware Advantage Summary

Advantage Description

Portability
It relies on standard programming model across language
and platform boundaries, as well as across distributed end
systems.

Reliability
The software modules can be reused over many applica-
tions and optimized if needed with confidence.

Managing
complexity

Managing complexity by decomposition and abstraction of
low-level layers increases the availability of suitable (ob-
ject-oriented) libraries. However, it can be extremely tedi-
ous and error-prone the Programmation of combinations of
these abstractions. Pattern aware middlewares reduce both
the programmer pain and the chances to introduce errors in
the code (Schmidt et al. 2000).

25

 Robotics Frameworks for

UNISA Unmanned Vehicles

II.1 Introduction

Robotics community uses Gazebo-ROS to simulate and control any robot.
This powerful combination is supporting complex distributed environments
with multiple robots performing tasks in a coordinated manner. It offers credible
simulations and flexible, robust, and standards for robots’ development.

With all these functionalities, the management of this complexity that

permits both flexibility and integration with other robotic environments
requires some substantial knowledge to exploit the full potential of this
Gazebo-ROS platform. Thus, the first steps and learning become complicated
and leave a feeling of being difficult to overcome that initial barrier that allows
a minimum level of autonomy to develop with confidence in this environment.

Because of the above, and even though there are several books and tutorials,

we think that a presentation of this platform from a focus on the Gazebo-ROS
functionalities in the stages of modeling of mobile robots is still of interest. First,
we will present an extensible Gazebo and ROS introduction, in order to identify
their points of strength, the terms used, the structure and the modeling
techniques of their main functionalities. Then, kinematics and dynamics over
Gazebo-ROS are presented. Finally, the discussion and conclusion will suggest
some range of parameters that usually works to summarize the strengths and
weaknesses found in the modeling of mobile robots in this platform.

II.2 Gazebo 3D Simulator

Gazebo development starts at the University of Southern California in
2002 as part of a Ph.D. research project, after in 2009 it had been integrated
with ROS in a PR2 robot at Willow Garage Company, which become the most
critical financial support since 2011. Now the version 10 is on development;

CHAPTER II

26

it is expected to be launch by January 2019. While the v.11 is already
describing their major new functionalities scheduled to be done by January
2020. Therefore, Gazebo launches a new significant version once a year, with
a useful life of two years for even and five years for odd versions, respectively.

Gazebo, a powerful 3D simulator, could be integrated into different robotic

platforms, ROS select it as a natural complement. It incorporates different
physical engines that require to be invoked at run time from the launch scripts
in ROS. The different physical engines have their level of development; some
have a marked orientation to simulate certain types of robots, as in the case of
Simbody for humanoids.

The rendering is crucial during robotics simulation to manage the

appearance of the moving image. The rendering and the physical engine make
the simulation plausible, and in the modeled environment, it is required a
compromise to achieve between the accuracy of response to the physical
phenomenon and the capacity to respond in computational terms. Thus, now,
for the mobile robots of generalized use, it is still not possible to have both in
their highest degree of reach at the same time. For example, in 3D games,
many objects generally move at high speed, where the precision of the
movements and the response to that set of interacting forces are not necessarily
exact; however, in our eyes, they are credible. While for the development of a
robotic component that must intervene in a medical environment, it will surely
be of great importance the exact control of the movements and forces involved
that the speed of presentation of the image.

In any simulator, a visual perspective and laws of physics of the situation

they represent need to be managed. Gazebo calls it "world" to the graphical
environment where various static and/or dynamic objects must be served. To
each object Gazebo call "model." The configuration parameters of both
"world" and "model" have a series of configuration parameters that are
accessed from the graphic Gazebo environment, through plugins (executable
with specific functionalities) or ROS’ control platforms.

It seems very simple described in this way, but working in a virtual

environment, simulating the necessary capabilities of a mobile robot, is not
that simple. These powerful tools hide all this functionality’s complexity,
allowing us to interact with them just by setting some parameters. Those
parameters related to the physical environment are interrelated, and in many
cases, have immediate implications for each other. Therefore it is essential to
know the basic concepts and laws that govern them, to understand why and
how they have been incorporated into these tools and what they mean in each
environment.

CHAPTER II

27

Thus, Gazebo is a tridimensional open-source dynamics simulator for a
single and multi-robots’ mechanisms, for inside and outside environments.
Although it was created to close the gap of realistic robot simulation in
outdoor environments, the users mostly use it for indoor simulations. The
realistic worlds observed in Gazebo rely heavily on physics-based
characteristics, which means that when the model is pushed, pulled, knocked
over, or carried “reflect the physics” (Koenig, N. P., & Howard, A. (2004).

Figure II.1 Gazebo General Structure
(Source: Adapted from Koenig, N. P., & Howard, A. (2004 p.2150)).

Gazebo's general structure (Figure II.1) relies on third-party software

packages as ODE for dynamics and kinematics of articulated rigid bodies;
independent visualization toolkit, called GLUT, interactive applications (from
standard library OpenGL) for the 2D and 3D creation. For that reason, it seems
almost unchanged from its creation in 2004. This characteristic makes Gazebo
be platform-independent, which permits, for example, to add some Dynamics
Engines as Bullet, Simbody, and DART for specific versions and platforms;
however, the original ODE remains as a default engine.

By doing that way, Gazebo's models like robots, actuators, sensors

(dynamic objects), planes, buildings, and other stationary objects can be
created and added into its virtual environment. Those objects interact based
on ODE Dynamics employing Newton-Euler equations and First-order time
integrator for Motion; Frictionless joints for Constraints; Perfectly inelastic
collision* for Collisions and Friction pyramid for Contacts. The
environmental factors as gravity and lighting are defined into the World.
Finally, Client programs use interfaces to communicate and control the
dynamic objects (Hsu et al. 2014).

CHAPTER II

28

As we could see in Gazebo Architecture (Figure II.1), there is a division
between a server and a client. Governed by two executable programs
“gzserver” for simulating the physics, rendering, and sensors; and “gzclient”
for a graphical interface to visualize and interact with the simulation. The
Gazebo communication library (like Google Protobuf and boost::ASIO, used
respectively for message serialization and transport mechanism) serves to put
in touch clients and servers (Koening et al. 2014).

The Gazebo official website6 describes its features and functionalities;

there are also tutorials and models to use in order to get confidence in their
usage. For our work, the functionalities on which we are interested are related
to robot modeling, sensors data treatment, plugins control, and dynamics
simulation.

Gazebo uses SDF (Simulation Description Format), an XML format file,

to describe objects and worlds capable of representing all robots' properties
and simulated environments. Those are models of links, joints, sensors, static
and dynamic objects, lighting, terrain, and, indeed the physics. The links are
described by Inertial (mass and moment of inertia), Collision, and Visual
(geometry) properties, which are used by physics, collision, and render
engines, respectively. The Joints connecting two links are used to constrain
their movements, defining the DOF (degree of freedom) of the robot, which
is determined by their configuration type (revolute, prismatic, revolute2,
universal, ball, screw).

The supported SDF protocol versions are 1.4, 1.5, and 1.6. Also, Gazebo

has a dependency on SDFormat (a C++ library) to brings protocol needed by
Gazebo to describe every aspect of the simulation. The library (SDFormat)
handles the version dependencies (SDF protocol) automatically, those are
summarized in Table II.1:

6 http://gazebosim.org/#status

CHAPTER II

29

Table II.1 Gazebo - SDF compliant versions

Gazebo version SDFormat version SDF protocol version
1.9 > 1 <= 1.5
2.2 > 1.4.7 and < 2.0 <= 1.5
3 > 2.0.1 and < 3.0 <= 1.5
4 > 2.0.1 and < 4.0 <= 1.5
5 > 2.3.1 and < 4.0 <= 1.5
6 > 3.1.1 and < 4.0 <= 1.5
7 > 4.0.1 and < 5.0 <= 1.6
8 5.0 <= 1.6
9 6.0 <= 1.6

10 6.0 <= 1.6

Source: Self-constructed, based on Gazebo SDF documentation.

Sensors are independent units and are usually attached to models in Gazebo;

the plugins are used to request data from sensors and to send data to them for
configuration management. By the time of this paper is written, there are
almost 20 sensors definitions ready to be used, those go from different types
of cameras to wireless transmitters, some of them also support Gaussian and
custom noise output signals. It is possible to add new sensors plugins or use
third-party ones.

Plugins in Gazebo allow controlling almost every functionality through

C++ classes. These complementary coded routines are compiled as shared
libraries and are used to manage one of the six specific Gazebo components,
namely: World (all models and physics engine), Model (joints and links),
Sensor (data generation and processing), System (load and init processes),
Visual, and GUI. By this means, the users can include the functionalities that
are best adapted to their simulations.

The dynamics in Gazebo are done by physics libraries providing a generic

and straightforward interface to fundamental simulation; by now, in Gazebo-
classic versions, there are four open-source physics engines (ODE, Bullet,
Simbody, and DART) integrated with a choice possibility. The ODE engine is
the default; the other engines must be installed and compiled before usage.
Those engines provide access to different algorithm implementations and
simulation features. In simulation environments, “dynamics” is mostly related
to “articulated rigid body dynamics,” but in robotics, it could be a need for
particle dynamics, cloth dynamics, wave dynamics, fluid dynamics, flexible
body dynamics, and fracture dynamics.

CHAPTER II

30

The default physics engine is ODE (Open Dynamics Engine) 7 , a
sophisticated software system that includes multiple numerical algorithms to
deal with mathematical models of dynamical systems. It could be any
collection of things (bodies) or more precisely rigid body properties (position
vector, linear velocity of a point of reference, orientation of a body, angular
velocity, mass, center of mass, inertia) that moves or changes over time in
environments of virtual reality (Gallagher et al. 2005).

A vital change arrived since Gazebo 5 when some internal core libraries

were started to move into a new external library to get more modularity; by
now (since Gazebo 9), the new libraries dependencies are ignition-cmake,
ignition-common, ignition-fuel-tools, ignition-math, ignition-msgs, ignition-
transport (see table II.2).

Table II.2 Gazebo External Dependencies

Gazebo version Ignition Math version
Ignition

Transport
version

Ignition
Messages
version

6 2.0 - -

7 2.4 1.0 or 2.0 -

8

3.0

3.0 0.4 The built-in gazebo::math
library is completely dep-

recated

9

4.0

4.0 1.0 The built-in gazebo::math
library is wholly removed

10 (24 Jan 2019) 4.0 4.0 1.0

Source: Self-constructed, based on Gazebo Dependencies from source tutorial.

In this ever-evolving field, the Open Source Robotics Foundation,
responsible for the Gazebo simulator, announced the release of Ignition
Acropolis8 (March 2019). This new architecture uses ignition libraries (see
Table II.3), which means significant changes, one of them is the default
physics engine being DART the new one and new render engines (see Table
II.4 and Table II.5) with a promise of “level of acc uracy surpassing game
engines.” The main objectives of Ignition robotics are to have Distributed

7 http://ode.org/
8 https://ignitionrobotics.org/features

CHAPTER II

31

Simulation to gain in performance, to be Cross-platform supporting Linux,
macOS, and Windows (late in 2019). Also, it will offer Cloud Integration and
Extensible features throughout plugins.

Table II.3 Gazebo Acropolis’ Libraries

Gazebo Acropolis
Library name Version
ign-cmake 2.x
ign-common 3.x
ign-fuel-tools 3.x
ign-gazebo 1.x
ign-gui 1.x
ign-launch 0.x
ign-math 6.x
ign-msgs 3.x

Gazebo Acropolis
Library name Version
ign-physics 1.x
ign-plugin 1.x
ign-rendering 1.x
ign-sensors 1.x
ign-tools 0.x
ign-transport 6.x
sdformat 8.x

Source: Gazebo Feature comparison

Table II.4 Gazebo’s classic and Ignition Physics Engine

Feature Gazebo-classic Ignition Gazebo

ODE engine ✓ Default engine

Bullet engine ✓

DART engine ✓ ✓ Plugin shipped with
ign-physics

Simbody engine ✓
Custom engine plugins ✕ ✓

Source: Gazebo Feature comparison

Table II.5 Gazebo’s classic and Ignition Render Engine

Feature Gazebo-classic Ignition Gazebo
Ogre 1.x engine ✓ ✓
Ogre 2.x engine ✕ ✓
Optix engine ✕ ✓ Partial support
Custom engine plugins ✕ ✓

Source: Gazebo Feature comparison

CHAPTER II

32

All those libraries, tools, dependencies gain access to always improved
developments, more modularity, and a higher provision of components, but on
another hand, complicates the versioning management during the implement-
tation. It makes that some robot models that run entirely over a software
architecture will require work to be done in order to use on another one. The
hardest or not of the implementation will depend on the version and type
distance of the software involved, and the ability to coding.

II.3 Robot Operating System (ROS) Middleware Platform

Until a few decades ago, the entire process of robot creation needs to be
done from the very beginning, every time, making the research and
development process tedious and lengthy. For this reason, platforms called
frameworks, middleware, and robotic environments begin to emerge and have
acceptance. These robotic platforms, initially proprietary and then open-
source, have developed the standard functionalities of the robots, such as
location, displacement, obstacle detection, and more. These functionalities
obtain information from the environment through the sensors loaded in the
robots, create the kinematic and dynamic models adapted to the geometry of
the robots - their mass and the payload they carry.

ROS is one of this middleware for robotics that was born in the year 2000

at Stanford University, and then since 2007 it is supported by Willow -Garage,
as a robotic development platform it is modular and distributed, capable of
being integrated natively with other environments, as they state when
presenting ROS as an “open-source, robot-agnostic, multi-purpose robotics
middleware”. Being still young, with his little more than ten years, is hugely
active, so much so that there is a new distribution every year, which means
that new options and functionalities are integrated and existing ones optimized.

This dynamic within the Willow-Garage and the robotics community has

made ROS the “de facto standard” framework, which increasingly increases
the packages available in the market. It is undoubtedly favorable but can also
be overwhelmed for someone who starts, not to mention that robotics is a
multidisciplinary field where different areas of science combine with state-of-
the-art technologies (Quigley et al. 2009).

The primary function of ROS is to allow the development of robots,

offering basic standard features that can work in a distributed, multi-language
environment, capable of integrating to other robotic platforms natively as far
as possible. That is to say, the robots implemented in ROS have a
computational capacity embedded in the small cards that travel with the robot

CHAPTER II

33

and have a ROS version configured locally to meet the immediate needs as
well as they have hardware and software to communicate with remote
computing units with all ROS functionalities for the execution of complex or
cumbersome tasks in terms of information processing. This ROS distributed
work mode is not limited to native platforms but can be integrated with other
robots or robotic platforms through the simplicity of the "message-passing"
with which it manages its communication system.

This ability of ROS to allow the interconnection of diverse environments,

in multiple platforms, and written in different languages is a significant
comparative advantage between distributed robotic systems. With this same
logic, the ROS environment connects with various simulation environments,
although the natural selection by default is that of Gazebo, a powerful 3D
simulator that was born with ROS and then separated to have its development.
The combination Gazebo-ROS allows the control and simulation of robots
that allows going from the simulation to the real world in an almost transparent
way, that is using the same packages, parameters and configurations file with
slight modifications.

Another important capability of ROS is that it makes transparent the

management of sensors and actuators, many of the most known and used by
the robotic community already have the ROS plugins, enabled by Willow-
garage, by the critical ROS community or by the same manufacturers of these
components. For example, as we will see later, during the initial simulation
processes, it will be enough to incorporate some of these fake prototypes, or
rather, virtual description and control codes available for sensors and actuators.

The "core" of ROS itself is design and develop in a modular way; it can

even be adapted for particular developments, and after knowing this
environment deeply. In general, depending on the needs in functionalities and
capabilities of the robot that we are modeling, we must make the selection of
the functions already available within the ROS distribution that we have
selected or after a search on the web, where we will find packages made
possible by the research community and the fans. However, the latter is not
well documented, requires essential knowledge of programming to discern if
it will adapt well to our needs and if it will adequately complement the
selection made for the complementary functionalities.

Like for any other tool, it is vital to know the terms, methods, and models

used to interact with them. Thus, ROS identifies the robots by their names,
configured as "robot name" and described through the environment parameter
"robot_description" in the scripts used when launching them in execution. The
environment or "world" can be a real or simulated one. The robots have
defined the "links" and "joints" in .urdf extension configuration files, in

CHAPTER II

34

addition to the name that identifies them, which are the solid parts and hinges
of the "solid body" as mobile robots are generally classified (Martinez et
Fernandez, 2013).

The .urdf files (the standard robot description format in ROS) contain the

description of the robot and its physical components, whether they are real or
false (simulated), that is, through "links" and "joints." Together with the
"meshes" (3D models) or basic geometric shapes, thoroughly describe the
objects that will later be used by the simulation, visualization, and control
tools. In other words, the Gazebo simulator, the ROS visualization tools, the
plugins, interprets these files or command algorithms to impose a force, a
torque that will make them act in the middle.

The movement capacity of the robot is closely related to the arrangement

and configuration of these "links" and "joints," this configuration determines
the "degree of freedom" of the "rigid body." The identification of this degree
of freedom by each robot or mobile body will serve for the "kinematic
modeling." It will also allow finding the limits of the movement when the
"dynamic modeling" is made that incorporates the forces that interact between
the rigid body and its environment.

All this sequence of modeling, starting with the 3D model of the robot,

followed by kinematic and dynamic modeling, as well as the individual or
group missions that must be fulfilled, are already defined in specific
"packages" in the Gazebo-ROS environment. These can be used as-is, with
minimal changes, if the robot we are creating has similar characteristics and
has to fulfill typical missions or very similar to the packages that we want to
use.

The packages are a set of algorithms, configuration files, and

methodologies that have a common goal and have been packaged together to
be used "on-the-shelf" or "as-it" to fulfill a mission. For example, the packages
"Localization," "Mapping," "Move_base," as their names imply, aim to locate
the robot at a specific moment, draw a map or manage the movement of the
base of a mobile robot respectively. ROS also has meta-package or "stacks",
as we could see in Figure II.2, that are the grouping of packages that together
allow us to fulfill a more complex mission; thus, for example, two of its
powerful stacks are "Navigation" and "Moveit!" which will use, among others,
the packages described shortly before (Marder-Eppstein et al., 2010).

All these stacks, packages, plugins, and the core of ROS have a relevant

theoretical background that should be known in order to interpret the behavior
of the mobile robot in its interaction with its environment, with other robots
or other objects in its real environment or simulation. On the other hand, the

CHAPTER II

35

algorithms that support the platform and its main functionalities have been
modified with each "distro" in order to support the new hardware and software
in which it is sustained. Therefore, to maintain the compatibility of the
packages between one version and another, there is a considerable effort of
those in charge of maintenance; however, this is not guaranteed, especially
when the changes in the dependencies are significant and ROS must adapt
accordingly. The same happens with the packages that must be tailored to
these new requirements; consequently, the packages created as part of our
implementation will require an adaptation in turn.

It is essential to visit its website9, again and again, to make the tutorials and

fully understand the terms used, to be confident using ROS. Repair in the
documentation of the packages the dependencies and conditions necessary for
proper implementation, as well as the restrictions or suggestions identified. It
is also convenient to visit regularly the GIT site of ROS10 and the community
where it is possible to find the source libraries that can be "cloned" and
installed in the work environment.

The software modularity and distributed computing require an important

communication feature, in ROS these core functions are done by Message
Passing that provides an anonymous publish/subscribe through Topics;
Remote Procedures Calls for synchronous request/response interactions
between processes through Services, and Distributed Parameter System to
share configuration information through a Global key-value store.

ROS is a middleware for robotics; it “sits in the middle” of a variety of

hardware components (sensors, actuators) and a high level of software
functionalities (sensing, obstacle avoidance, orientation, and motion planning)
(Pyo, 2015). In this sense, ROS manages the overall process providing
hardware encapsulation, distributed computing, code reusing through nodes
(processes) with granular specific functionalities or complete high
functionalities packages, and meta-packages grouping related packages for
broadening needs like SLAM (Simultaneous Localization and Mapping), or
AMCL (Adaptive Monte Carlo Localization) integrated methods on ROS
Navigation and MoveIt! (Crick et al., 2017).

Package, meta-packages, and specific functionalities in ROS are written

mostly in C++ or phyton using roscpp and rospy libraries, respectively; the
other languages are still in early development over ROS (Lisp, Java, Lua). It
is possible to configure and integrate multiple sensors data and time stamps of
different devices through drivers, plug-ins, parameters, services, and messages

9 http://www.ros.org/
10 https://github.com/ros

CHAPTER II

36

communication. This granularity of code supported by an active community
makes code re-usability possible because there are already implemented
device driver and interfaces for high-end sensors as Velodyne-LIDAR, Laser
scanners, Kinect, and popular actuators such as Dynamixel servos.

Figure II.2 ROS Layers and Packages
(Source: Book ROS Robot Programming p.13 (Pyo, Y. S. 2015))

The fundamental concepts of ROS implementation are nodes, messages,

topics, and services (Figure II.3). Many nodes form a system, which are unit
processes or modules that perform the computation of each functionality.
Nodes communicate with each other through messages (typed data structure
as an integer, floating-point, boolean, different messages, arrays of other
messages) (Quigley, M. et al. 2009) that flows asynchronously and
synchronously. Those messages are published to a given topic or service that
could be seen as channels of communication, or as many to many
asynchronous for the former and as synchronous feedback requirement for the
later (Fankhauser et Hutter 2016).

CHAPTER II

37

Figure II.3 ROS Communication – a) Topic

Figure II.4 ROS Communication – b) Action

CHAPTER II

38

Figure II.5 ROS Communication – c) Service
(Source: ETH Zurich Robotic Systems Lab. Lecturer Péter Fankhauser (16-02-2018)

The execution and communication between nodes are independent of the
coding language (C++ or phyton); what is essential is that nodes use the same
typed messages. The roscpp and rospy libraries are it-selfs ROS packages with
functionalities to initialize, handle and eliminate nodes in the system, and client
libraries specific to each language program, which permits to use topics, services,
and parameters to communicate with all applications running in the system.

As we already say, robotics is a rapidly changing field, and it is not an

exception for ROS middleware that previously launched the third release of
ROS2 call ROS Crystal last December 2018. However, the migration has not
been undertaken jet, because mature roboticist considered it is still under heavy
development (releasing new versions every six months). The motivations for
this significant change to ROS2 pretend to reach the following goals11:

 Teams of multiple robots, ROS can do it now, but with no standards.
 Small embedded platforms instead of segregated from ROS by device

drivers.
 Real-time systems in inter-process and inter-machine communication.
 Network robustness, keep working even over non-ideal networks.
 Evolve into ROS-based for production environments suitable for use

in real-world applications and not only for research labs.
 Remain flexible but incorporate some prescribed patterns for building

and structuring systems.

11 Why ROS 2?. http://design.ros2.org/articles/why_ros2.html

CHAPTER II

39

II.4 UNISA-UVF Framework

To search, analyze, and select the platform that best suits the unmanned
vehicle needs of the mechanical engineering department of the University of
Salerno, we must understand what the objectives that motivate that need are.
How they are doing until now and what they expect from this new platform.
In order to relieve the necessary information, we use the requirements
engineering techniques.

II.4.1 Requirements Engineering

Usually, when designing a technological product or service, the product or
service must be identified, the objectives pursued, and the expected function-
alities clarified. Also, there is a need to understand in which environment the
new product or service will act. Three generic questions are formulated to find
it out, namely: For whom is this service or product being created? What ex-
actly is it about? Furthermore, What functions will it provide?

To start answering these questions ourselves, we look at the objectives for-

mulated in this research thesis, which is to propose a technological platform
that allows the mechanical engineering laboratory of the University of Salerno
to carry out the modeling and simulation of unmanned vehicles of various
types. Thus, from this initial approach, we can try first answers; it is mostly a
software product, capable of doing modeling, simulation, and controlling of
no-pilot mobile robots on any kind. The user will be a mechanical engineering
team related to some advanced courses teaching, academy projects, and a spin-
off to boost the university-industry relationship through real applied engineer-
ing projects.

In order to select the technological tool that best adapts to the requirement,

we must fully understand the current, and the immediate future needs in order
to propose an efficient environment. The first observation is that the user of
this platform requires outstanding versatility and flexibility, so the element of
integration between different platforms is a consideration to take into account
for the reasons described above. Another observation linked to flexibility is
the capacity of the current team for the creation of prototypes of non-piloted
vehicles for various applications. Thus they are currently investigating areas
related to the use of unmanned vehicles for precision agriculture, for the sur-
veillance of zones extensive, for collaborative robotics, and so on.

Thus, the unmanned vehicles that must be incorporated into the platform

are terrestrial and aerial; for the first, "indoor" navigation capabilities are re-

CHAPTER II

40

quired, and for the second, a fixed-wing aircraft capable of flying long dis-
tances and for long periods. In addition to these current projects, we have seen
that the robots available in the laboratory can be reactivated to test new mis-
sions or investigate new issues related to kinematic, dynamic modeling, con-
trol, vibration, or other related to the area. Among others, they are a robotic
arm, two UGVs both with traction system, one with wheels and the other with
the caterpillar tractor type, that equipment that they use with more frequency.
Two other projects on the way are related to an airship that should keep float-
ing at a certain distance for extended periods and a mechanical platform with
multiple uses in the industry.

Formally, in software engineering, this stage is related to the engineering of

the requirements, which is an iterative process to identify the functional, data,
environment, user, and usability needs of the system. The objective is to collect
enough, relevant, and appropriate data to define a stable set of requirements.
Even though this process has not been previously established as such, we could
say that it has been most of the interview and observation type, by being in con-
tact with the daily life of the users, it has allowed us, among others:

 understand the context of user activity
 collect qualitative information
 collect ideas about the uses that will give
 get much information

Using the requirements engineering techniques, we will define the func-

tional needs of the UNISA-UVF framework through the description of its
work environment, the identification of its primary functions, as well as the
characterization of the service functions it will provide — finally, a classifi-
cation of the functionalities according to usage and reusability.

Functional Expression of Need
We can summarize the framework that we build graphically in Figure II.4.

This UNISA-UVF framework must be able to meet the requirements of the
users that will interact in it through the functionalities they want for their au-
tonomous vehicles. The researchers and students are building, currently a mo-
bile robot with wheels, a small fixed-wing aircraft, and soon, they are going
to develop an unmanned vehicle with caterpillar traction and an unmanned
airship. Despite the unmanned underwater and boats are not coming up pro-
jects, the possibility exists because they have meaningful relationships with
region companies in the maritime sector. In the same way, the framework
must be able to support the sensors and actuators that are currently available
in the laboratory as those that could be acquired in the future; a detailed list is

CHAPTER II

41

not of interest in this case since these components are generally supported on
all the robotic platforms.

Figure II.6 UNISA-UVF Product/Service environment

The following lines describe the components of needs expressed regarding

this framework; we get the information through interviews with the main ac-
tors and by following the area internal meetings where it is discussed the pri-
orities of the actual projects and those that are coming.

The Users
The users will be the engineers of the Department of Applied Mechanics

belonging to the DIIN (Industrial Engineering) of the Salerno University in
Italy, the same one that has affiliated a laboratory that supports the experi-
mental work of the students of laureate and masters related to the career. Ad-
ditionally, international students who come to do research or exchange intern-
ships for a double diploma from abroad universities, especially from Argen-
tina, Colombia, and from the European community. Those students could be
involved in unmanned vehicle projects as part of the thesis works or as part of
their internships when some partners' companies are involved.

Another talented group that will make use of the framework will be the

collaborators associated with the MEID4 spin-off those who are working on
projects related to unmanned vehicles by means of university-industry pro-
jects, which are national and international companies that joint innovative pro-
jects when they ask for these consultancies, or when they are asked to be part
of an innovative project in open founds competitions.

The UNISA Vehicles

CHAPTER II

42

The unmanned vehicles that must be supported by the platform are diverse,
being able to be cataloged in land and air environments; without ruling out the
possibility of also incorporating unmanned water vehicles. These vehicles
must travel in "indoor" and "outdoor" environments for land vehicles and at
different altitudes for drones. The duration of the displacement of all un-
manned vehicles will vary depending on the mission that they will be as-
signed.

The vehicles to be used are usually modeled "from scratch," that is, con-

ceived by the users described above since they are generally linked to innova-
tive projects with peculiar characteristics depending on the nature of the inno-
vation. It implies that the platform should offer them the ability to incorporate
their designs.

Likewise, the configuration of the additional components that autonomous

vehicles must carry out as payloads will be related to the mission assigned to
them, at least during the simulation period, the platform should offer them the
ability to incorporate various sensors and actuators, up to that have found the
right combination for the purpose pursued. It is also to be assumed that these
components will be those that are present in the laboratory or the market.
Thus, the framework should make available some of these with standard con-
figurations that allow them to speed up its use.

The Product Need: General Robotic Framework for Unmanned Vehicles
Given the level of complexity of unmanned vehicles, especially when there

is a need to have to incorporate several of these for different types of projects
and missions, we should immediately think of a robotic framework that offers
the basic functionality already proven by other professionals of the sector.
Other researchers or roboticists have been previously expressed their prefer-
ences while presenting their research paper tests by discussing the perfor-
mance, essential characteristics, advantages, and disadvantages. Thus, also
taken this information, we evaluate those preferred platforms looking for the
features and strengths of the central platform and its components, which allow
us to think that they will conveniently support the need expressed by the
UNISA-UVF users, and their current and future projects related to the un-
manned vehicles.

The platforms under evaluation are opensource, free to use and adapt, so

the costs of the projects should not be impacted by a supplementary licensing
fee, as it would affect significantly. That said, integration with robotic or re-
lated payment environments must be allowed in order to take advantage of the
previous developments of the industrial engineering department, its students,

CHAPTER II

43

and its clients or future partners when it comes to the formulation of projects.
The tools or platforms initially identified are Simulink-Mathlab, Solidworks,
X-plane.

One of the essential features of robotic platforms is the ability to incorpo-

rate conventional robots’ functions. In our case, we are interested in mobile
robotic standard functionalities, mainly for unmanned vehicles. Those general
functionalities are the ability to locate in the environment, to travel in indoors
and outdoors spaces, to get to get remote places in autonomous way, the ability
to build a map, or to move in it, the ability to recognize and avoid obstacles,
the ability to interact with other robots or objects in the environment.

Generally, in a robotic environment, especially mobile robots, have a com-

puting capacity that moves with them, this will vary in their processing and
communication capabilities, and decision-making autonomy, so it will go
from the small plates with microchips to laptops or other computers with es-
sential capabilities. Additionally, depending on the assigned mission, they will
need to communicate with external, usually centralized computing units that
offer better information processing capabilities. For this reason, we generally
talk of distributed environments, even when a mission is being carried out by
only one mobile robot. It is even more real when dealing with robots that per-
form collaborative tasks, which in some cases, could include various robotic
platforms.

The Gazebo-ROS Robotic middleware
In the robotics community, it is known that the heterogeneity of the con-

cepts in the field and the variability of the hardware makes the robotic appli-
cations development complex and fragile. In fact, for mobile robotics, devel-
opers must master the details related to the vehicles' locomotion medium, its
morphology, and its sensory components, as well as the physics. All those will
impact when coding and in kinematics and dynamics behavior during the sim-
ulation.

To respond to this observation of hardware variability, some robotic mid-

dleware such as ROS, MIRO, PyRO, and Player proposed abstractions of
hardware components concerning their technical details. Their applications
encapsulate specific data and provide those at a higher level. However, these
abstractions do not allow the isolation of some hardware components changes,
remaining at the end at a low level.

The framework, a robotic platform and work environment, has been built
mainly over the chosen middleware "GAZEBO-ROS," exploring its integra-
tion capabilities to expand its usage possibilities.

CHAPTER II

44

The other Robotics frameworks
On the other hand, for the UNISA-UVF users, it will be essential to know the

methods and techniques used by the functionalities offered on the base platform
in order to understand and analyze the behaviors observed during the simulation
or in real usage. Being mostly mechanical engineers, they will have a natural ten-
dency to look for answers in kinematic and dynamic models related to the physics
of the environment in which they are running their tests. Therefore, knowing what
the theoretical foundations and the techniques used are essential.

Also, it would be easier for the UNISA-UVF users to manipulate, through

tools of their daily interaction, the concepts, methods, and formulas of mobile
robots while modeling and controlling them. Unlike the professionals linked
to computer science or robotics per se who prefer to interact with high-level
functional modules already created and incorporated in middleware. That is,
the ability to manipulate kinematic and dynamic models through already made
algorithms.

The Product Proposed: UNISA-UVF

After evaluating the different alternatives, which are detailed in chapter one,
we have chosen Gazebo-ROS as our base middleware environment. Because
we need support for simulation and control of complex robotic missions, with
an excellent capacity for integration with tools such as Simulink, MATLAB,
and Solidworks used at UNISA Labs. Gazebo-ros handles hardware compo-
nents through low-level abstractions; that is, we could select existing hardware
and software modules for sensors and actuators most used in the market.

To work in a Gazebo-ROS basis, we create a workspace to organize the un-

manned vehicles under the latest ROS convention. This workspace is also called
UNISA-UVF, houses the custom packages designed to manage the needs de-
scribed so far. The designed and implemented packages are based on function-
alities, unmanned vehicle type, unmanned vehicle name, or mission names. This
delivered choice brings great flexibility, in order to reuse as much as possible,
the code of algorithms, scripts, configuration files, and other of the kind.

Thus, we think that the users of the UNISA-UVF framework, built based

on this Gazebo-ROS middleware, will be able to invoke the essential functions
available for mobile robots, which are presented as meta-packages, packages,
and plugins. They will also have the connectivity options with Simulink and
MATLAB when they want to model the kinematics or dynamics of the vehicle
on these platforms. If in the repertoire of functionalities, no package adapts to

CHAPTER II

45

the required needs, it can be easily incorporated. On the other hand, the crea-
tion of programs in C ++ and Python, through which new features are included
naturally in this platform, will always be available.

II.4.2 Technologies

 Figure II.5 represents the architecture of the UNISA-UVF framework. It
presents the stacks, packages, and tools of ROS configured adequately to sup-
port diverse missions of unmanned land and air vehicles for the moment, being
able to incorporate the amphibious vehicles easily. It also shows the Gazebo
environment, for which various useful plugins have been selected for mission
simulations with unmanned vehicles. It also shows the integration with other
robotic environments, whose configuration and implementation has been ver-
ified in some of the missions that will be presented in the next chapter. The
integrating element is communication through various types of messages,
managed by Gazebo-ROS.

Figure II.7 Architecture of the UNISA-UVF framework
(Source: Self-elaboration)

CHAPTER II

46

Table II.6 summarizes the technologies used in UNISA-UVF. Some of
them (like Catkin) are part of ROS and are generally required for a project
based on ROS. Others, such as Python, have been selected for their suitability
and ease of use.

Table II.6 Technologies Used in UNISA-UVF Platform
Yam Application Yam Application

ROS Robotics Framework XML The base for URDF and SDF
Formats

ros_control Controlling Custom Ro-
bot

 YAML Data Definition Format

Gazebo Simulator URDF Robot Definition Format

Python Primary Programming
Language

 SDF World Definition Format

CPP Primary Programming
Language

 xacro URDF Preprocessor

Catkin ROS Build System
Helper

 Keras Neural Network Library

CMake Build a System Genera-
tor

Source: Self-elaboration

II.4.3 General Design

This section shows the considerations, objectives, and priorities considered
for the creation of the UNISA-UVF Framework, from a technical-operational
perspective based on the requirements engineering previously carried out.

Focus
The thesis project for the creation of Framework UNISA-UVF follows a

sequenced approach of objectives that must be progressively reached, even if
some goals require to go back to previous steps when there is an incompati-
bility or low-performance behavior. However, we tried to fix the limits neces-
sary to make them independent and measurable regarding compliance and pro-
gress. The objectives sets are the following:

CHAPTER II

47

1. Select and prepare the servers and personal computers that will serve
as central and testing systems for the creation and simulation of un-
manned vehicles, for the industrial engineering department of
UNISA.

2. Prepare the equipment and install the operating systems required for
the various compatibility tests (diverse Ubuntu distributions)

3. Install Gazebo, ROS, and other required main packages, taking care
not to lose version compatibility.

4. Search and install ROS testing packages with functionalities like the
missions suggested for the unmanned vehicles of the laboratory.

5. Install the different available distributions of Ubuntu, ROS, and Ga-
zebo that can support the functional tests of different packages of the
previous point in the additional test computers.

6. Create a UNISA-UVF directory structure to serve as a framework for
autonomous vehicles in the current project portfolio of the depart-
ment.

7. Create empty ROS projects for the main functionalities to be devel-
oped within the work structure.

8. For each functionality, in the case bases, create empty ROS projects
for each type of unmanned vehicle (land, air, and aquatic) according
to the vehicle's capabilities.

9. Create or adapt the algorithms and scripts for the functionalities by
vehicle type. The added features can be:

• For UGV, implement a custom robot controlled by a standard
differential drive.

• Use ros_control to allow precise control over each of the actua-
tors of the robot.

• Implement several individuals and collective robotic functional-
ities to measure the performance of the robot.

• Implement sensors and actuators (fake ones for simulations).
• Add custom worlds in Gazebo.

10. Launch nodes and topics created in Gazebo and ROS, make them
communicate with each other, and correct the errors that will arise.

11. Create missions according to the types of unmanned vehicles.
12. Execute the missions created and document them.
13. Evaluate the performance of the packages created within the UNISA-

UVF framework, both in the Gazebo-ROS environment and with ex-
ternal robotic platforms.

The objectives and programmed tasks have been fulfilled. In the case of

the sensors, those with which they are counted in the mechanics' laboratory
have been simulated as far as possible, while in cases where the type of sensor
is not available, a generic configuration has been used or found on the web the
widely used by the community due to its characteristics.

CHAPTER II

48

A significant fraction of our time was devoted to studying the Gazebo-ROS
architecture, due to the number of available distributions, the functionalities
to be implemented and the compatibility restrictions with third-party pack-
ages. The successive reinstallations served to understand the limits of integra-
tion of the platform.

The implementation of several robots usually used by both the scientific

community and the robotics enthusiasts was used to perform the initial compat-
ibility tests of the Gazebo-ROS platform. Subsequently, the fundamental con-
cepts of mechanics were revised according to the modeled unmanned vehicle in
order to select or develop an ad-hoc algorithm. The concepts of kinematics and
dynamics of rigid bodies were also reviewed in detail to understand the imple-
mentation of these in various packages and functionalities of ROS and Gazebo.

It was also necessary to enter the understanding of the techniques and

methods used in robotics to understand the packages and stacks of ROS as
well as in the ODE physics engine of the Gazebo simulator to assign the cor-
rect values to the parameters, that govern the dynamics in said environments.

The complexity of the various disciplines involved and many packages

available in the community has been gradually incorporated, and then under-
stand that installing some dependencies caused the non-functioning of func-
tionality already tested previously on the same computer with the identical
versions of the base distributions (Ubuntu, ROS, Gazebo).

Structure Design
The following structure shows the implementation of the UNISA-UVF

framework (see Figure II.6). In the first level of the structure, there are the
functionalities that are available for unmanned vehicles. In the second level,
the work environments are separated by vehicle type; now, each first level
work environment has at least two directories, one for the UGV and another
for the UAV. The third level and subsequent ones have the structure of the
ROS package; that is, there are all the necessary elements to execute the Ga-
zebo-ROS packages created with each functionality.

It is in the third and subsequent levels where the necessary details are found

for the execution of the missions carried out so far, so in summary, these fold-
ers contain:

• Launch: stores the execution scripts that are XML type files, define
the nodes to be launched, and passes the parameters required by the
nodes for execution, if necessary. For some of our collaborative
missions, we use the ability to define groups with independent
namespaces.

CHAPTER II

49

• Src: stores the source files, meaning the programs in C ++ or phyton
created or adapted for our current or future missions

• Worlds: contains the configuration files of synthetic environments
used in the simulation with Gazebo-ROS

• Include: allows to point out to the catkin compiler, that the folders in
the package structure can be used to find the required resources at the
time of compilation and execution.

• Param: contains the .yaml or other files to pass the specific parameters
required for the execution of the algorithms, such as the identification
of active joints. It is mainly used by ros_control for the identification
of transmission mechanisms.

• Rviz: contains the configuration of the ROS visualization tool
• Maps: includes the maps that will be used for navigation if they are

configured.
• Nodes: they contain the configured files of the unmanned vehicles;

they can be of the .urdf type or .xacro files (macros in XML) that using
labels allows changing the configuration of the model and its charac-
teristics.

• Meshes: contain a detailed description of the 3D models of mobile ro-
bots and their components

• Models: are the models of vehicles for missions that only use Gazebo.
• Scripts: contain the files of various definitions related to the other in-

tegrated robotic platforms.

CHAPTER II

50

Figure II.8 Structure implementation of the UNISA-UVF framework ROS packages implemented

Figure II.8 Structure im
plem

entation of the U
NISA-U

VF fram
ework RO

S packages im
plem

ented

CHAPTER II

51

In the ROS environment, the functionalities are provided through packages
and stacks created to satisfy different purposes. The former permit to develop
and compile minimal collections of code for easy reuse, the latter to simplify
the process of code sharing employing distribution (collection of packages).
Thus, Stacks collect packages that collectively provide functionality, such as
a navigation stack or a manipulation stack.

Table II.7 summarizes the ROS packages implemented in UNISA-UVF.

All of them, as required, are configured in the various functionalities imple-
mented in the framework and described later. The configuration scripts con-
tain the execution commands and the .yaml or other parameters configuration
files used. These parameter configuration files allow us to limit the assigned
values and specify initial or default values that much help reusability.

Table II.7 ROS packages implemented in UNISA-UVF

Stack Brief Description
Navigation Takes in information from odometry and sensor streams and

outputs velocity commands to send to a mobile base. The
robot must be running ROS, have a tf transform tree in place,
and publish sensor data using the correct ROS Message types.
Also, the Navigation Stack needs to be configured for the
shape and dynamics of a robot to perform at a high level.

Robot model Packages that use XML to model robot’s information using
URDF describing format. The URDF files parsed are used to
constructs an object model (C++) of the robot12.

ROS control Joint state data from the robot's actuator's encoders and an input
setpoint are taken, using a PID controller typically to control the
output, like effort, sent to the actuators. ros_control gets more
complicated for physical mechanisms that do not have one-to-
one mappings of joint positions, and efforts. Nevertheless, these
scenarios are accounted for using transmissions.

Vision_opencv
(Open Source
Computer
Vision Library)

Provides packaging of the OpenCV library for ROS13, it
provides a common infrastructure for computer vision
applications. It can be used to detect and recognize faces,
identify objects, classify human actions in videos, track
camera movements, track moving objects, extract 3D models
of objects. Also, to produce 3D point clouds from stereo
cameras, stitch images together to create a high-resolution
image of an entire scene, find similar images from an image
database, remove red eyes from images taken using flash,
follow eye movements, recognize scenery and establish
markers to overlay it with augmented reality.

12 GitHub - ros/robot_model: https://github.com/ros/robot_model
13 vision_opencv - ROS Wiki. http://wiki.ros.org/vision_opencv

CHAPTER II

52

Package Brief Description
Teleop pkgs Joy a ROS driver for a generic Linux joystick, it contains

joy_node, a node that interfaces a generic Linux joystick to
ROS. This node publishes a "Joy" message, which includes
the current state of each one of the joystick's buttons and axes.

Robot
localization

A collection of state estimation nodes per-sensor basis. Each
node is an implementation of a nonlinear state estimator for
robots moving in 3D space. It contains two state estimation
nodes, ekf_localization_node, and ukf_localization_node.
Besides, robot_localization provides navsat_transform_node,
which aids in the integration of GPS data.

Robot pose ekf Estimates the robot's 3D pose based on pose measurements
coming from different sources, offering loosely coupled
integration of different sensors (signals received as ROS
messages). It uses an extended Kalman filter with a 6D model
(3D position and 3D orientation) to combine measurements
from wheel odometry, IMU sensor, and visual odometry 14.

Gmapping Provides a ROS node for laser-based SLAM (Simultaneous
Localization and Mapping), called slam_gmapping15. It
permits to create a 2-D occupancy grid map from a laser and
pose data collected by a mobile robot. A mobile robot with an
odometry data source is needed plus horizontally-mounted,
fixed, laser range-finder. The slam_gmapping node tried to
transform each incoming scan into the Odom (odometry) tf
frame. See the "Required tf transforms" for more on required
transforms.

Mavros Provides a communication driver for several autopilots with a
MAVLink communication protocol. Also, it provides the UDP
MAVLink bridge for ground control stations (i.e.,
QGroundControl).

Tf – Tf2 tf manage and track over time the relationships between
coordinate frames. It maintains a tree structure buffered in time
and enables the user to transform points and vectors. Between
any two coordinate frames at the desired point in time16.
tf2 is the newest coordinate frame transformation library to
track multiple coordinate frames over time. Operate in a
distributed system, all computers and ROS components in the
system get access to the information of the coordinate frames
of a robot17.

14 Robot_pose_ekf - ROS Wiki. http://wiki.ros.org/robot_pose_ekf
15 Cambridge Robotics RoboCup Virtual Rescue Simulation.

https://staff.fnwi.uva.nl/a.visser/activities/robocup/RoboCup2018/TDPs/TDP-
Cambridge-2018-draft.pdf

16 6 - ROS TF, Sensors.pdf - CSE 468/568 Robotic Algorithms
 https://www.coursehero.com/file/47074632/6-ROS-TF-Sensorspdf/
17 tf2 - ROS Wiki. http://wiki.ros.org/tf2

CHAPTER II

53

Robot state
publisher

Informs the state of a robot to tf, using a kinematic tree model
of the robot takes the joint angles as input and publishes the
3D poses of the links. Once published, it is available to all
components in the system that also use tf. The package can
both be used as a library and as a ROS node18.

cv_bridge Converts between ROS Image messages and OpenCV images.
image_geometry Different kinds of methods to treat the image geometry and

pixels19.

Source: self-constructed, based on the ROS website and other related documentation.

II.4.4 Functionalities

We created and implemented a series of packages to test our framework,
related to a series of unmanned land and air vehicles, for each of them; we
adhere as much as possible to the latest ROS name convention. As we showed
earlier in figure II.6, the high-level folders organize the functionalities, and
within these functionalities are the customized packages by type of unmanned
vehicle. To present them, summarized in this document, we choose to do so
by the name of the customized packaging, where the structure of the imple-
mentation file will be reported in the package description.

Bots_Description
For this functionality, we created three custom pack-

ages, one for unmanned ground vehicles call ugv_de-
scription and other ones for the aerial vehicles because
we are intended to test two aircraft, a fixed-wing drone,
and an airship. Thus, for unmanned aerial vehicles, we
created the packages rosmilvus and NAS10, respectively.
The number of ground vehicles we could manage is not
limited, because it was created and configured to accept
new models, either as a remap UGV name, with slight
differences, or completely different models with the only
restrictions that must be controlled as a differential
driver; by knowing we have three different models.

These packages contain all the files required to create ground or aerial un-

manned vehicle models. Those vehicles have the meshes, in STL and DAE,

18 robot_state_publisher - ROS Wiki. http://wiki.ros.org/robot_state_publisher
19 vision_opencv - ROS Wiki. http://wiki.ros.org/vision_opencv

CHAPTER II

54

the robot description in URDF (Kunze et al. 2011), and launch files to visual-
ize the vehicle in RVIZ. The STL and DAE files, along with the textures, are
stored under meshes folders according to their categories (wheels, bases, sen-
sors). Inside the URDF folder, the description filenames help to identify them
conveniently, along with ugv_$(arg model). urdf files, some macros were used
to organize and describe common characteristics. Thus this folder also con-
tains the XACRO files of the ground vehicles, for example, ugv_$(arg model).
gazebo.xacro. Finally, the launch files for visualizing the vehicle in R-viz is
saved under the launch folder.

We created the different models of UGVs for test purposes, so we must set

which model to use before using them in every respective functionality package
that makes a call to the ugv_description package. For this, a UGV model name
could be pass-through command line when launching the calling package; in
calling launch files, it is possible to pass the name as an argument _$(arg model).
Finally, as an environmental variable using an export command like this: export
MYUGV_MODEL=my2bot or by setting this permanently in the startup launch
file to use a specific one by default (.bashrc) in every user's session.

Bots_Simulation
The simulation functionality permits UNISA un-
manned vehicles to be simulated in the Gazebo-ROS
environment. The packages contain the files required
to create an environment in Gazebo for each type of
unmanned vehicle. Those have the STL/DAE, SDF,
WORLD, YAML (Sinha et al. 2000), and launch files
to launch the unmanned vehicles in their respective en-
vironments. The Models folder contains STL/DAE,
textures, colors, SDF, and config files for the worlds.
The Worlds folder contains the different custom
worlds created based on community models like the
turtlebot3 house, Watkins, and Cessna_demo. Finally,
all the launch files for getting the vehicle in different

worlds are in the Launch folder.

For UGVs, the ugv_gazebo is a calling package for bots’ description; thus,

the MYUGV_MODEL variable must be set before calling the vehicle model
configuration in one of the exposed manners discussed previously. The gazebo
models, characteristics, meaning the feature of unmanned vehicles, their com-
ponents, and payload related to simulation, like physical engine definitions,
plugins, and sensors/actuators. The xacro files used for those definitions are
ugv_$(arg model).gazebo.xacro, common_properties.xacro, and are hosted in a
ugv_definition folder to have all the vehicles’ configurations in only one place.

CHAPTER II

55

Bots_Navigation
The navigation stack in one of the powerful and com-

plete functionalities in ROS, it is presented as a stack
meaning that related package is assembled to make one
more complete task. It, combined with Gazebo, one with
full suits of the physics engine, gives to this merge such
high completeness for many mobile robotics tasks.

In our case, for ground and aerial navigation, we choose

to develop them entirely independently, because the space
dimensionality requires special treatment in each of these
environments. The package ugv_navigation, for un-
manned ground vehicles, permits to move the UGVs from
one location (designated goal pose) to the specified desti-
nation (goal pose) in a given world using a map, robot’s
encoder, IMU sensor, and distance sensor. The maps pre-
viously obtained contains geometry information of furniture, objects, and walls
of the given indoor environments we tested and are stored in the Map folder.

The Config folder contains the YAML file that includes ROS based control-

lers for the drive and steering of a vehicle in Gazebo. They Include folder con-
tains all the header files, and the “src” folder contains the C++ source codes.
The launch folder has the ROS launch files to launch the additional work.

For UGVs, the ugv_navigation is a calling package for bots’ description;

thus, the MYUGV_MODEL variable must be set before calling the vehicle
model configuration in one of the exposed manners discussed previously.

Bots_SLAM
Bots_SLAM is one of the complete functionalities in

our framework; it is implemented in a way that it is possible
to choose between different unmanned ground vehicle
models, also the number of bots for doing the job, as well
as the method of SLAM that must be carried out. Also, we
use configuration file .lua and .yaml files to set the parame-
ters needed based on the technique, the mission exigencies.

The SLAM (Simultaneous Localization and Map-
ping) technique draws a map by estimating ground vehi-
cles unmanned vehicle current location in an arbitrary
space. Some tests are done with one and two different
UGVs; for this reason, the package ugv_description is
called by passing the MYUGV_MODEL name.

CHAPTER II

56

The SLAM based in Gazebo-ROS is part of navigation stack, it uses the
distance measures that comes from the sensors and the robot' pose information
20. It is possible to choose the SLAM method, either from command line pass-
ing the argument name value or from launch file as we do for ugv models. In
our tests, we configured it in ugv_slam_gazebo.launch file in Launch direc-
tory, the piece of script that helps to personalize the execution looks like:

 <!-- Arguments -->
 <arg name="model" default="$(env MYUGV_MODEL)" doc="model

type [my2bot, my3bot, mybot05, burger]"/>
 <arg name="slam_methods" default="gmapping" doc="slam type

[gmapping, cartographer, hector, karto, frontier_exploration]"/>
 <arg name="configuration_basename" default="ugv_lds_2d_ga-

zebo.lua"/>
 <arg name="open_rviz" default="true"/>

The Gmapping has been configured as a default slam method; it has many pa-

rameters to change performances for different environments. Some of them, with a
significant impact, are maxUrange (maximum usable range of the lidar sensor),
map_update_interval (how often the map is updated in seconds), minimumScore
(for considering the result of the scan matching), linearUpdate and angularUpdate
(a scan processes each time the robot translates and rotate respectively).

Finally, the map is drawn based on the ugv’s odometry, tf information, and

scan information of the sensor when the mobile robot moves, the created files
map.pgm and map.yaml are conveniently renamed to be used later and stored
in the Map folder. The data generated with the map_server package can be
seen in the RViz visualization tool of ROS; thus, the conventional configura-
tion file is created in the Rviz folder.

Bots_Bringup

The bringup functionality permit to centralize communi-
cation, control, and visualization with real mobile robots.
As ROS works in a highly distributed environment, the
mobile robots communicate with each other through a
master node handling the communication and data passing.
The master system runs in a computer (a server, PC, or
Laptop) with significant computing resources to hold the
roscore, data processing, decision making, learning if it is
configured for doing so. In addition, to local functionalities
in a client (the real robot) carrying on a tinny computing

20 TurtleBot3 - ROBOTIS e-Manual. http://emanual.robotis.com/docs/en/plat-

form/turtlebot3/navigation/

CHAPTER II

57

system or a Laptop) depending on the applications chose to run over.
The configuration includes a varied number of launch files related to the

way it is expected to deal with the robot, its components, and payload (local
computing card/system, sensors, actuator, and tools). In our case, despite that
we do not make tests with real mobile robots, we configure the environment
for a future trial. Thus we use standard configurations for commonly robotics
components. We create the ugv_bringup package and make some tests simu-
lating fake robots, sensors, actuators, and parts over Gazebo-ROS.

Bots_Collaboration
Nowadays robotics field is moving to the robotics

mission that needs excellent collaborative tasks within
mobile robots in ever a large environment. The collabo-
ration could be between drones, and one or more ground
vehicles, unmanned or teleoperated. Thus, this function-
ality groups other functionalities closely related to the
missions they need to perform.

For this reason, we devoted an independent environ-
ment where it is possible to manage the configuration
files to manage collaborative work, calling all the other
packages already implemented in our UNISA-UVF
framework. For the test, we did a collaborative SLAM

with two slightly different UGVs, localizing, navigating and mapping an in-
door environment, one of these environments was the Watkins lab and Turtle-
bot3 house, going from relaxed to a more crowded place. We also test, a kind
of follower with two identical fixed-wing UAVs, flying one after the other
performing Dubins pathway in the Gazebo simulator.

This package has different launch and configuration files, structured to be
highly reusable using arguments, environmental variables, and namespaces.

Bots_Teleop
The Teleop functionality helps to control mobile robots

with some external control devices, like keyboard, joystick,
and gamepads. They could also be embedded in some
onboard black boxes, giving them the unmanned capabilities
as autopilots in UAVs.

In our framework, we implemented the well-known key-
board packages and algorithms. Instead, for Joystick used in
the tests, we start with the configuration of the device a Mi-
crosoft joystick over Ubuntu, then the joy ROS package, fi-

CHAPTER II

58

nally we decided to create a custom package writing an algorithm (ugv_tel-
eop_joy.cpp) to personalize the linear and angular velocities, then, for control
functionalities the ROS teleop_joy package is called. For collaborative tasks,
the simultaneous control of two UGVs, we created a launch file tel-
eop_onejoy_twobots that permit us to use only one joystick. For this reason,
the ugv_teleop has all the folders of a classical ROS node.

Bots_Messages
The message passing system of ROS is a critical ele-

ment of this distributed environment; with only three kinds
of communication configuration, it is possible to manage
large robotics environments. To be used, it is not necessary
to create a custom package to use it by subscribing and pub-
lishing topics, services, or actionlibs. The message passing
through this kind of channel is usually already available for
the common needs of robotics missions.

However, the possibility to create a personalized mes-
sage helps in many ways, from performance gains, to con-
trol robots and their components. The generated message
could be compiled as a plugin to use in Gazebo, Gazebo-

ROS, or ROS packages.
We created two message types to control a fixed-wing vehicle in the Ga-

zebo environment, one to manage the mobile components of the aircraft model
in the simulation environment and the other to control the graphics of this
environment.

59

Kinematic and Dynamic
Modeling of Unisa_bots

III.1 Introduction

The mathematical modeling of mobile robots, in general, is carried out in
order to understand their behavior in an established acting environment. Thus,
the kinematic and dynamic models are expressed mathematically and are the
basis for the design and control of robots in general (Inoue et al., 1997,
Lyshevski et al., 2000, O'Connor et al., 1996, Carlos, C. D. W et al., 1997,
Samson 1995). The aim, when designing mobile robots, is to achieve the levels
of reliability and maneuverability necessary to fulfill the desired functionalities,
such as precision and speed, while having stable mechanical structures.

The kinematics and dynamics are diverse in mobile robots, depending on their

morphology, the arrangement of their components, sensors, and actuators.
Kinematic and dynamic characteristics may or may not consider the geometry of
the robot. Several mathematical models could represent the same mobile robot,
each of them having a utility based on the functionality we want to achieve,
observe, or analyze. Based on these modeling, we could find the speeds at which
the mobile robot moves and its position in the environment, for example.

We start with a brief introduction of the coordinate system required to identify

and analyze the position and displacement of vehicles in typical environments
where our UNISA_bots are likely to perform. We continue with the description
of two unmanned vehicles used in our case studies. Then, the basic kinematics
and dynamics of each of them are presented according to the classification of their
respective categories. Finally, the Gazebo-ROS underlying parameters, models,
and techniques to deal with kinematic and dynamics are discussed.

III.2 Coordinate system (reference frames)

The missions of mobile robots are closely associated with the displace-
ment, the mobility required, and the space in which they can fulfill a specific
purpose. Therefore, it is essential to represent the positions and orientations of

CHAPTER III

60

these robots in the space and how those changes concerning time. The dis-
placement depends on the input commands received, which could be external
(remote control) or internal to the platform robotic (unmanned). We can also
appreciate that the environments in which they operate, or "worlds" as they
are usually called, are diverse so that the representation of the position and
orientation can occur in two or three dimensions (2D or 3D).

The position and orientation are also required for the objects in the "world,"

they are necessary besides one of the robots, their components, and payload.
Then, in robotics, any object included in the "world" for the real or simulated
activity with mobile robots need to have a defined position and orientation
concerning a fixed reference frame. Usually, the fixed frame is the "world
coordinate frame" or “inertial frame” as it is typically called to an of static
Cartesian coordinates defined in the center of the earth when dealing with 3D
spaces or a central or lateral point of an area delimited in 2D spaces. The axes
of the Cartesian coordinates of the static objects will remain constant for the
reference frame, while they will vary in time for the objects that move, in this
case, the mobile robots or the objects that in the activity are pushed, thrown,
released, and loaded.

A coordinate system defines a plane (2D) or space (3D) by axes from a

fixed point called the origin. This axis serves to identify the goal position to
achieve in the missions, the locations of the robots, and the obstacles. They
are located at some point along the axes of the coordinate systems established
in the work environment. All frames in the workspace are related to the world's
coordinate system, either directly or indirectly (i.e., through the main body in
the case of an embedded sensor). The axes of coordinates are described as
vectors; this allows making the position and orientation calculations of the
represented object concerning the fixed axe of reference coordinates.

A robot could use several coordinate systems (Cartesian, polar), each one

appropriate to the type of the robot, depending on the desired functionalities,
even it is possible to configure more than one coordinate system. In Gazebo-
ROS, the central coordinate system for the body or the chassis in UGVs are
called base_link (or base_footprint), it is located at the base of the robot, to
facilitate the movement of the robot from one position to another, or to facili-
tate the transformation calculations. Likewise, the moving parts of the robot
and the sensors and actuators on board will have an ad-hoc location of their
reference systems, generally for the vehicle frame. While the coordinate sys-
tem of the static or dynamic object in the workspace is related to the compo-
nent of the robot with which it interacts (a tool, actuator or sensor), or with the
inertial frame to facilitate the programming tasks.

CHAPTER III

61

III.3 Modeling UNISA-UGV

III.3.1 UNISA-UGV Description

UNISA-UGV is the prototype of an unmanned ground vehicle, created in
the laboratory of the faculty of industrial engineering at the University of Sa-
lerno-Italy. Because it has a conventional geometry, facilitates the study of
control systems, and other related research issues, according to the department
lines of research. In our case, we start with the creation of the 3D model for
the Gazebo-ROS environment (the detail of this initial activity is presented in
chapter 4). Then, we continue with the design and modeling of kinematic and
dynamic, characterizing the vehicle, meanly the topology, sensors, actuators,
and energy sources. Then, accordingly to the missions to fulfill, the configu-
ration of a workspace is done based on underlying hardware and software ca-
pabilities available.

The chassis of our wheeled mobile robot (Unisa-UGV) is made of metal-

acrylic, has a combination of ultrasonic sensors SRF05 and SRF06, four in-
stalled in the front of the vehicle, and three others on each remaining side (side
and rear) for the recognition of objects. These sensors have a range of distance
detection going from 2 cm to 450 cm for SRF05 and from 2 cm to 510 cm for
SRF06, with an accuracy of 2 mm. Our two fixed-axle wheels use electric DC
motor-reducers with incremental digital encoders. The integrated controller is
an Arduino-Galileo, a board based on the Intel Quark SoC X1000 application
processor. Our sensors, actuators, and microcontrollers work with a 12-volt
battery (see Figure III.1).

Figure III.1 UNISA-UGV 3D prototype
(Source: DIIN – UNISA Department of Industrial Engineering)

CHAPTER III

62

To give stability in a horizontal plane displacement to our UGV's structure
has a rigid platform carrying two conventional fixed front wheels and a castor
(rear-wheel). While doing a translational movement, the two front wheels ro-
tate on the same horizontal axis, and the plane of each wheel remains vertical.
For simulation purposes, the wheels' ground contacts have been ideally re-
duced to three individual points (see Figure III.2).

Figure III.2 UNISA-UGV Structure
(Source: self-elaboration)

The traction-steering system linked to our robot allows us to manage the

linear and angular speed independently. Added to the advantages derived from
their simple mechanical structure and conventional electronics. All together,
make a clean solution that can permit different laboratory tests. The ad-
vantages could be:

 It has a simple mechanical structure facilitating kinematic modeling
 It has a low manufacturing cost
 It facilitates calculations of safe space (free of obstacles) by using the

longest rigid platform side, for example, the radio of the Robot.
 It facilitates the calibration of various components that tend to present

systematic errors. Those could be the unequal wheel diameters, misa-
ligned wheel, invalid contact points of the wheel with the floor, loss of
efficiency of encoders.

While the disadvantages are:

 The moving on uneven surfaces is not easy.
 The ground contact loss of one of the active wheels can change the

orientation sharply.
 It is sensitivity to wheels’ sliding due to slippery floors, in both exter-

nal or internal forces. For example, when it collides with foreign bod-
ies or the rotating wheels are in some arrangement.

 Only bidirectional movement (forward and backward) is available.

CHAPTER III

63

III.3.2 Unisa-UGV Kinematics

In general, the kinematic modeling of a UGV depends on the physical char-
acteristics of the robot and its components (Muir et al., 1987; Campion et al.,
1996; Alexander et al., 1989). There is a straightforward relation between the
vehicle's structural peculiarities and the specific main task that needs to fulfill.
It means that the vehicle characteristics will make them suitable for a specific
task, and vice versa, the task itself will be the one that will determine in a first
stage the structural particularities of the vehicle. The UGV design needs to
take into account the required mobility for the vehicle to carry the assigned
tasks, the efficiency of energy, the ratio of weight/payload, the dimensions,
and maneuverability. In the same way, the environment characteristics for
ground operations.

The traction and steering systems of ground mobile robots are distributed

in their wheels axes in correspondence to speed demands, maneuverability,
and target terrain characteristics. The capacities required according to the mis-
sions they will fulfill will determine the more convenient wheels, the number
of them, the arrangement of these in the vehicle, as well as the traction and
direction system, and finally, the physical form of the robot.

Therefore, several mathematical models can be constructed to represent the

kinematic characteristics of the same UGV by incorporating properties that
will be of interest to achieve or observe specific behaviors. Based on these
models, the model determines the different positions in which it is located and
the speeds at which it moves. When modeling, certain mathematical assump-
tions that help to operate them could be made, such as the restriction of move-
ment of the wheels according to the type of vehicle, called holonomic con-
straint, and the assumption that the wheels do not slide on the ground (An-
tonelli G. et al., 2005) known as a non-holonomic restriction.

To get appropriate maneuverability of the UGV (degree of maneuverabil-

ity M), meaning the ability to move in the environment, are related to the
degree of mobility (m) and with the degree of steerability (S). Thus, the over-
all degree of maneuverability of the UGV is obtained by the degree of mobility
plus the degree of steerability. Generally, more kinematic constraints and
hence a less mobile system, and in the case of steerability, an increase in the
rank of implies more degrees of steering freedom and, therefore, more excel-
lent ultimate maneuverability.

For example, for a three-wheel UGV, many configurations are possible

(see Figure III.3), where each wheel contributes differently to the vehicle mo-
tion. It means that each wheel imposes zero or more constraints to the chassis,
which for kinematic modeling, there is a need to combine them appropriately.

CHAPTER III

64

Standard wheels could be fixed with an orientation configuration; some other
could be steerable with a steering angle; then, to have the rolling constraints
of all wheels, an aggregate matrix must be computed.

Figure III.3 Basic types of three-wheel configurations
(Source: Introduction to Autonomous Mobile Robots (p. 83))

It is common to find the unicycle type in mobile wheeled robots (Differen-

tial), as it is a simple configuration of wheels that at the same time develops
high speeds with high traction if it has pneumatic wheels. For this reason, this
configuration is most presented in UGV books and research literature. In the
same way, this configuration is observed in the UGV commercialized for the
home and the industry. In our case, we did not make any exceptions with the
typology, and we have used this configuration, that is, the UGV used in our
tests is a unicycle, so we have described the kinematics of unicycle-type UGV.

A differential drive robot can control both the rate of its change in orienta-

tion and its forward/reverse speed by merely manipulating wheel velocities.
In other words, its ICC is constrained to lie on the infinite line extending from
its wheels’ horizontal axles. The mobile platform of our UNISA-UGV uses
the mechanism of the differential drive; it allows calculating the position of
the robot from trigonometric equations with the information of the two fixed
front wheels arranged on the same axis of rotation.

Preliminary considerations
In UGVs, as in other ground mobile robots with wheels in general, it is

assumed that the wheel remains vertical to the plane during the motion and
that its orientation remains fixed or variable concerning the vehicle. Ideally,
it is also assumed that the contact is reduced to a single point in the plane. So,
for the three types of conventional wheels (fixed, steerable centered, steerable
not centered), it is assumed that there is pure rotation without sliding (not slip),
which means that the velocity at the point of contact is zero in both compo-
nents of the vector.

CHAPTER III

65

It is also assumed that the wheels are non-deformable and that they move
on a horizontal plane and are subject to the following restrictions:

 Movement is restricted to the axis of symmetry of the mobile robot:
the mobile robot only moves in the direction in which the traction
wheels are located, and the movement is due solely to these wheels.
There is a holonomic restriction (relations between coordinates).

𝑥ሶ ൌ 𝑢 cos 𝜃

𝑦ሶ ൌ 𝑢 sin 𝜃

Where:

 is the speed on the x-axis
 is the speed on the y-axis
 is the orientation of the vehicle
 is the component of the unit vector along its direction of

displacement

By operating, the holonomic restriction is obtained:

𝑦ሶ cos 𝜃 െ 𝑥ሶ sin 𝜃 ൌ 0

 The wheels do not slip, they do not lose adherence to the ground, so

there is a direct relationship between the rotation movement of the
wheels and the movement of the mobile robot. There is a non-ho-
lonomic restriction (non-integrable relations between differential co-
ordinates).

𝜑ሶ ൌ ሺ𝑟ሻሺ
𝜃ௗሶ െ 𝜃పሶ

2 𝑏
ሻ

𝑟 ሺ𝜃ௗሶ െ 𝜃పሶ ሻ ൌ 2 𝑏 𝜑ሶ

𝑢 ൌ ሺ𝑟ሻሺ
𝜃ௗሶ ൅ 𝜃పሶ

2
ሻ

𝑟 ൫𝜃ௗሶ ൅ 𝜃పሶ ൯ ൌ 2 𝑢 ൌ 2 ሺ𝑦ሶ sin 𝜑 ൅ 𝑥ሶ cos 𝜑ሻ

By operating, non-holonomic restrictions are obtained:

CHAPTER III

66

𝑟 ൫𝜃ௗሶ ൯ ൌ ሺ𝑦ሶ sin 𝜑 ൅ 𝑥ሶ cos 𝜑ሻ ൅ ሺ𝑏 𝜑ሻ

𝑟 ൫𝜃పሶ ൯ ൌ ሺ𝑦ሶ sin 𝜑 ൅ 𝑥ሶ cos 𝜑ሻ െ ሺ𝑏 𝜑ሻ

Differential Drive System

As we have previously described, our unmanned vehicle, UNISA_UGV,
considers two fixed wheels (frontal wheels), with a common rotation axis (a
differential mechanism) plus an omnidirectional wheel (rear wheel), caster
type.

The movement of our vehicle is controlled by the traction and steering of

the two front wheels, with steering controls on the front wheels and the speeds
provided by both, in the classic differential mechanism. We define standard
wheels that meet the three design conditions :

 The front wheels have no lateral variations, rotate in a common axis,
and are equidistant. The rear wheel is a castor providing a pure rota-
tion contact without causing slips in the vehicle when moving.

 The two front wheels "fixed" mechanical design confers a speed re-
striction in the driving direction (only forward and backward) while
the castor wheel has a free movement.

 The two front wheels have the movement controlled by actuators,
while the idler wheel (castor rear-wheel) is passively controlled,
meaning that it is influenced by the general flow of the chassis and
does not provide any additional speed restriction in the movement.

The front wheels of our UGV are more significant concerning the castor

wheel, so for the operations of sensing and controlling in the two instantane-
ous degrees of freedom of our vehicle, we need at least two actuators/sensors
conveniently arranged, i.e., located on each front fixed wheel. Since the front
wheels are commanded through angular velocities expressed in radians per
second, it is required to find the linear velocity associated with each wheel as
a result of the angular velocity performed in each unit of time.

The action on the two fixed wheels is done by a mechanism called differ-

ential drive, which guides the movement. In our vehicle, its frame origin has
been located at the midpoint of the line that links the two fixed wheels and an
axis orthogonal to this line.

In the vehicles that use a differential mechanism, it is possible to have three

types of movements, as relived in literature. The first, when the speeds of both
front wheels are the same, we have a straightforward move. The second when

CHAPTER III

67

the wheels speeds are identical, but in opposite directions, we have a rotation
in its central axis (the midpoint of the common axis). Third, when one of the
wheels has zero speed, we have a rotation around that wheel. No lateral move-
ment is possible, and this restriction is known as Singularity. Other singulari-
ties are related to errors in the relative speeds of the wheels, or the small
ground-level variations which usually are mitigated by the castor wheel.

Because the front wheels can act independently, by changing their speeds,

the mobile robot moves in linear trajectories or making turns, to the right or
the left, depending on the lower speed value of one of the corresponding
wheels. The movements are observed concerning the vehicle's frame. To have
a vehicle moving in circles, it must turn around a point, called ICC - Instanta-
neous Curve Center or ICR, which is along the common axis of the right and
left wheels (see figure III.4).

 When the front wheels vary their speeds, acting independently, the mobile

robot moves with linear trajectories or with turns, to the right or the left de-
pending on the lower speed value of one of the wheels.

Figure III.4 Differential Drive kinematics
(Source: Dudek and Jenkin, Computational Principles of Mobile Robotics)

From Figure III.4, we could appreciate that the angle of rotation of the ve-

hicle, w over the ICC needs to be the same for both wheels. For this reason,
we can write the following equations:

𝑤 ൬𝑅 ൅
𝑙
2

൰ ൌ 𝑉𝑟

𝑤 ൬𝑅 ൅
𝑙
2

൰ ൌ 𝑉𝑙

CHAPTER III

68

Where:
 is the angle of rotation with respect to ICC
 is the distance between the two wheels (from their centers)
 is the linear velocity of the right wheel
 is the linear velocity of the left wheel
is the distance from the ICC to the midpoint between the

wheels (signed).

For any moment during this movement, we can calculate the values of
R and w:

𝑅 ൌ

𝑙
2

൬
𝑉𝑙 ൅ 𝑉𝑟
𝑉𝑟 െ 𝑉𝑙

൰

𝑤 ൌ
𝑉𝑟 െ 𝑉𝑙

𝑙

Direct Kinematics in Differential Drive System

Until the previous equation, we have only found the radius R to the Instant
Curvature Center (ICC) and the angular velocity w of the robotic platform
based on the speeds of the right and left wheels. With this data, we can find
the positions of the robot in terms of time (𝛿𝑡). We can assume an initial po-
sition (x, y) in Figure III.4, pointing in the direction corresponding to the angle
𝜃 concerning the X-axis. When sending speeds to the wheels independently,
these will generate different translation and rotation movements and will place
the robot in a new position (x ', y') with an angle 𝜃'.

We use the above equation to find the Instant Curvature Center (ICC), which

will then serve to determine the new position at a time 𝑡 ൅ 𝛿𝑡 as shown below:

𝐼𝐶𝐶 ൌ ሾ𝑥 െ 𝑅𝑠𝑖𝑛ሺ𝜃ሻ, 𝑦 ൅ 𝑅𝑐𝑜𝑠ሺ𝜃ሻሿ

൥
𝑥ᇱ

𝑦ᇱ

𝜃ᇱ
൩ ൌ ൥

cosሺ𝑤𝛿𝑡ሻ െ sinሺ𝑤𝛿𝑡ሻ 0
sinሺ𝑤𝛿𝑡ሻ cosሺ𝑤𝛿𝑡ሻ 0

0 0 1
൩ ൥

𝑥 െ 𝐼𝐶𝐶𝑥
𝑦 െ 𝐼𝐶𝐶𝑦

𝜃
൩ ൅ ൥

𝐼𝐶𝐶𝑥
𝐼𝐶𝐶𝑦
𝑤𝛿𝑡

൩

This process is called Direct Kinematics; when we have the control param-

eters such as the speeds of the two wheels and the time, we can determine the
new position x and the new orientation 𝜃 reached by the robot.

CHAPTER III

69

Reverse Kinematics in Differential Drive System
Contrary to the previous case, the Reverse Kinematics tries to find the ap-

propriate control parameters to take the robot to the desired position (𝑥, 𝑦, 𝜃)
each time.

The formulas to achieve this are as follows:

𝑥ሺ𝑡ሻ ൌ
1
2

න ሾ𝑉𝑟ሺ𝑡ሻ
௧

଴
൅ Vlሺtሻሿcos ሾ𝜃ሺ𝑡ሻሿ𝛿𝑡

𝑦ሺ𝑡ሻ ൌ
1
2

න ሾ𝑉𝑟ሺ𝑡ሻ
௧

଴
൅ Vlሺtሻሿsin ሾ𝜃ሺ𝑡ሻሿ𝛿𝑡

𝜃ሺ𝑡ሻ ൌ
1
2

න ሾ𝑉𝑟ሺ𝑡ሻ
௧

଴
൅ Vlሺtሻሿ𝛿𝑡

We must remember that the UGV with a differential drive system has ho-

lonomic and non-holonomic constraints. For this reason, certain positions are
not easily reachable and require a series of previous maneuvers, such as when
it is desired to reach a position parallel to the starting position, as well for other
exceptional cases. The equations of movement that help to solve them are
those that follow.

When the speeds of the left and right wheels are equal, then the speed of the

robot will also be the same as these, and the robot will move in a straight line.
So, when 𝑉𝑙 ൌ 𝑉𝑟 ൌ 𝑉 we have:

൥
𝑥ᇱ

𝑦ᇱ

𝜃ᇱ
൩ ൌ ൥

x ൅ Vcosሺ𝜃ሻ 𝛿𝑡
y ൅ Vsinሺ𝜃ሻ 𝛿𝑡

𝜃
൩

When 𝑉𝑟 ൌ െ𝑉𝑙 ൌ 𝑉 the robot revolves around the central axis of the

front wheels, we have:

൥
𝑥ᇱ

𝑦ᇱ

𝜃ᇱ
൩ ൌ ൦

x
y

𝜃 ൅
2𝑉𝛿𝑡

𝑙

൪

As we have seen, the restrictions of the arrangement of the wheels lead to

a nonlinear formulation to solve the kinematics of this type of mobile robot,
with mathematical descriptions in terms of trigonometric functions. However,

CHAPTER III

70

its derivatives, as the speeds are not and it is for this reason that the computa-
tional platforms use these values (speed, acceleration, force or torque) instead
of finishing the position itself (quote).

III.3.3 Unisa-UGV Dynamics

UNISA-UGV dynamic model is based on the rigid body concept that does
not deform under the action of the applied forces. The main body is the chas-
sis, where the wheels are configured as independent rigid bodies, each one
placed conveniently as an articulated link through joints, in this case, revolute
ones. The forces acting in the relation of UGV (with all the components) with
the ground are modeled to understand the behavior in motion.

Rigid bodies can be joined through mechanical joints (modeled as kine-

matic restrictions) to build mechanisms (vehicles and other articulated bod-
ies). This reduced number of parameters that describes the system of several
bodies and the reference frames attached to each body helps in the formulation
and solution of the dynamics through a description of the position, movement,
and acceleration of the individual components and the system in general, as a
function of time.

There are powerful methods to formulate the equations of motion of me-

chanical systems; the dynamic approach of Lagrange is one of them. It uses the
equations of motion systematically considering the kinetic and potential ener-
gies of the given system. Another critical approach is Newton-Euler's ones, the
first and most crucial step in Newton-Euler's dynamic modeling, is to draw the
free-body diagram of the system and analyze the forces acting on it.

Behind the simulations of rigid bodies, different paradigms are taken by

the physics engines that support dynamics in virtual environments. Under-
standing how simulators incorporate these paradigms into their functionalities
could help explain some frequently strange behaviors in the robotic simula-
tion. Brogliato et al. (2002) present a state of the art of the interactions of rigid
bodies in numerical simulations, discussed the dynamics of extensible me-
chanical systems, making an interesting distinction between models of rigid
and compatible bodies and the simulation of their contacts.

CHAPTER III

71

III.4 Modeling UNISA-UAV

III.4.1 UNISA-UAV Description

It is a prototype of an unmanned aerial vehicle (Fig. III.5) with fixed-wing
electric motorization, created in collaboration with an aeronautical company
of the Campania region, in Salerno-Italy. The prototype of the real airplane is
in the company's facilities, while the 3D model had to be adapted to be able
to take it to the Gazebo-ROS and X-Plane simulation environments used in
this thesis work. It is an aerial that can be cataloged as LALE (Low Altitude
Long Endurance) according to the proposal of the international organization
UVS; based on the different parameters of the vehicles such as flight fee, flight
duration, operating range and maximum take-off weight (MTOW).

To date, various works have been carried out with different software with

this unmanned aerial, including preliminary dimensioning to determine the
main characteristics such as the aerodynamic profile, the opening, and wind-
ing, the power of the engine, and the capacity of the battery. Then, through
software such as DATCOM + and ADS, the aerodynamic characteristics were
analyzed. With all this information and the preliminary designs of the air, the
3D models and the characterization of it were generated to configure it in X-
Plane, a powerful flight simulator, certified by the FAA and with a commer-
cial license. Subsequently, connections were made with MatLab to receive
and send flight information in real-time, working together with X-Plane to
identify an initial dynamic model of the new flight. This model was used to
configure a PID-type flight controller, integrating it into the Ardupilot soft-
ware to perform Software-In-the-Loop (SIL) activities with X-Plane.

Within this series of activities, the work of this thesis is framed, with the

aim of modeling and controlling the air in a robust open-source environment
such as Gazebo-ROS. For this, it began with the adaptation of the 3D model,
having to go through the Solidworks to generate the air configuration files, its
components, and the first sensors, later the creation of control algorithms
through reuse, as far as possible. As much as possible, of packages available
in Gazebo-ROS, the detail of the activity is described in chapter four (lines
below). Now several tests are being made additions with different missions
using Mission Planner and X-Plane.

CHAPTER III

72

Figure III.5 UNISA Unmanned Aerial Vehicle Structure
(Source: self-elaboration)

III.4.2 Unisa-UAV Kinematics

Our UAV is an airplane with six degrees of freedom (DOF) that responds
to the possibilities of displacement in space. These are controlled through the
command inputs of the servos conveniently arranged in the moving parts of
the aerial (elevator, spoiler, rudder, and accelerator). Additionally, degrees of
freedom are conferred concerning the payload that one wishes to control,
among them, for example, some instruments that measure wind and other dis-
turbances.

The development of the design and model of the fixed-wing UAV required

the consideration of kinematic, dynamic characteristics, and energy sources as
inputs of the models performed, as well as the missions that must be fulfilled
and the necessary hardware and software capabilities available.

The control of the "pose" (position and orientation) of the aerial and its

sensors is a fundamental issue in the kinematics of any mobile robot. Conse-
quently, it is also the transformation between their coordinate systems. In gen-
eral, the coordinates of the UAVs start with three basic positions, namely:

 1st Coordinate System: How different bodies are oriented towards
each other.

 2nd coordinate systems: How the aerial is oriented with respect to the
earth.

 3rd coordinate systems: How the sensors (cameras, antennas, lidar) are
oriented with respect to the aerial.

CHAPTER III

73

In addition to these three coordinate systems, many more are added that
will facilitate the transformations, mainly because the measurements are made
in different frames. For example, the movement of air is more natural to de-
scribe in a coordinate system fixed to its structure (center of air mass).

Likewise, the aerodynamic and torques acting on the structure of the air,

making it easier to express them in their coordinate system, as well as all sen-
sors onboard (accelerometers, gyroscopes) take their measurements concern-
ing the coordinates of the body. On the other hand, the GPS measures the
position of the air and the angle of travel (course angle) concerning the earth
(inertial).

While, most of the missions that are assigned to the air as trajectories of

flights and overfly certain areas, are specified in the inertial reference systems.

These are many reasons for the various commonly used coordinates when

modeling and controlling an air vehicle. Also, it cannot be forgotten that New-
ton's equations of motion are expressed in the fixed inertial referential system;
usually, the chosen one is the referential system of the earth.

Figure III.6 Rotation in 2D
(Source: Small-Unmanned-Aircraft-Theory-and-Practice (p. 9))

Of the two coordinates shown in Figure III.6. The rotation matrices allow

𝑝 ൌ 𝑝௫
଴𝑖଴ ൅ 𝑝௬

଴𝑗଴ ൅ 𝑝௭
଴𝑘଴

𝑝 ൌ 𝑝௫

ଵ𝑖ଵ ൅ 𝑝௬
ଵ𝑗ଵ ൅ 𝑝௭

ଵ𝑘ଵ

CHAPTER III

74

𝑝ଵ ≜ ቎
𝑝௫

ଵ

𝑝௬
ଵ

𝑝௭
ଵ

቏ ൌ ൦
𝑖ଵ 𝑖଴ 𝑗ଵ 𝑗଴ 𝑖ଵ 𝑘
𝑗ଵ 𝑖଴ 𝑗ଵ 𝑗଴ 𝑗ଵ 𝑘଴

𝑘ଵ 𝑖଴ 𝑘ଵ 𝑗଴ 𝑘ଵ 𝑘଴

଴

൪ ቎
𝑝௫

଴

𝑝௬
଴

𝑝௭
଴

቏

𝑝ଵ ൌ 𝑅଴
ଵ𝑝଴

III.4.3 Unisa-UAV Dynamics

The dynamics in three-dimensional space are highly complex and are
usually model through different techniques that the main objective is to reduce
them by decomposition, loops, and others. Beard, R. W., & McLain, T. W.
(2012) in their book Small unmanned aircraft: Theory and practice, present in
chapter four the forces and moments acting in a Micro Aerial Vehicle (MAV)
due basically to gravity, aerodynamics, and propulsion sources. The formulas
of total forces 𝑓 and moments 𝑚 are the sums of these three sources:

𝑓 ൌ 𝑓𝑔 ൅ 𝑓𝑎 ൅ 𝑓𝑝

𝑚 ൌ 𝑚𝑎 ൅ 𝑚𝑝

Where:
 𝑓 is the total force acting on the airframe

 𝑓𝑔 is the force acting due to the gravity
 𝑓𝑎 is the force acting due to the aerodynamics
 𝑓𝑝 is the force acting due to the propulsion

 𝑚 is the moment acting on the airframe
 𝑚𝑎 is the moment acting due to the aerodynamics
 𝑚𝑝 is the moment acting due to the propulsion

The authors in the book use the standard approach that capture the effect

of the air pressure with a combination of forces and a moment applied at the
quarter-chord point (see Fig. III.7), also known as the aerodynamic center,
where it is possible to get enough stability despite changes in angle of attack
and lift coefficient. At this point, the forces are modeled using a lift force, a
drag force, and a moment.

CHAPTER III

75

Gravitational and Aerodynamic Forces and Moments

Beard, R. W., & McLain, T. W. (2012) model the earth’s gravitational field

effect as a proportional mass force acting at the Center of Mass, and hence
considered no moments produced by gravity in their mathematical
representation. This force represented its body-frame components follows:

𝑓 ௚
௕ ൌ 𝑅௩

௕ ൥
0
0

𝑚𝑔
൩ ൌ ቎

െ𝑚𝑔 𝑠𝑖𝑛𝜃
𝑚𝑔 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜙

𝑚𝑔 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙
቏

For aerodynamic analysis of fixed-wing airplanes, it is common to group

longitudinal forces causing motion in the body 𝑖௕ െ 𝑘௕ plane, by a lift in the
direction 𝑖௕ and drag in 𝑘௕, and pitching moment in the direction 𝑗௕. While
for the group of lateral forces causing translational motion in the lateral
direction along the 𝑗௕ axis and rotational motions in roll 𝑖௕ and yaw 𝑘௕ that
will result in directional changes in the flight path of the airplane (Beard, R.
W., & McLain, T. W. (2012)).

Longitudinal Aerodynamics

The longitudinal aerodynamic analysis to determine the forces of lift, drag,
and pitching moment are formulated as follows:

Figure III.7 Air pressure at aerodynamics center of MAVs
(source: Small unmanned aircraft: Theory and practice)

 𝑓𝑑𝑟𝑎𝑔 ൌ
ଵ

ଶ
𝜌𝑉௔

ଶ𝑆𝐶𝐷ሺ𝛼, 𝑞, 𝛿𝑒 ሻ

𝑓𝑙𝑖𝑓𝑡 ൌ

ଵ

ଶ
𝜌𝑉௔

ଶ𝑆𝐶𝐿ሺ𝛼, 𝑞, 𝛿𝑒 ሻ 𝑚 ൌ
ଵ

ଶ
𝜌𝑉௔

ଶ𝑆𝑐𝐶𝑚ሺ𝛼, 𝑞, 𝛿𝑒 ሻ

CHAPTER III

76

Where:
 𝜌 is the air density

𝑉௔ is the speed of the MAV through the surrounding air
mass

 𝑆 is the planform area of the MAV wing
 𝑐 is the mean chord

𝐶𝐿 𝐶𝐷 𝐶𝑚 are the nondimensional aerodynamic coefficients of
the MAV wing

 𝛼 is the angle of attack
 𝑞 is the pitch rate
 𝛿𝑒 is the elevator deflection

The longitudinal aerodynamic analysis also depends on the deflection of

control surfaces and their dispositions in the aircraft (usually the elevator, the
aileron, and the rudder, and others like spoilers, flaps, and canards), which are
used to modify the aerodynamic forces and moments. For example, a positive
aileron deflection 𝛿௔ is produced when the left aileron is trailing edge down,
and the right aileron is trailing edge up. In consequence, the longitudinal
forces and moments are heavily influenced by the angle of attack 𝛼 , the pitch
rate 𝑞, and the elevator deflection 𝛿𝑒 creates functional dependences.

The forces lift, drag, and pitching moment can be modeled with acceptable
accuracy using Taylor linear approximations, when the angle of attack is small,
because the shape of the flow field is predictable (laminar and attached to the
body) and changes in response to changes in the angle of attack, pitch rate,
and elevator deflection. However, the effects of wing stall must be
incorporated into the longitudinal aerodynamic model in order to design
appropriate control laws for real aircraft and simulate their performance
(Beard, R. W., & McLain, T. W. (2012)).

Lateral Aerodynamics

The lateral aerodynamics are most significantly influenced by the sideslip
angle 𝛽 . They are also influenced by the roll rate 𝑝 , the yaw rate 𝑟 , the
deflection of the aileron 𝛿𝑎, and the deflection of the rudder 𝛿𝑟. Denoting the
lateral force as 𝑓௬ and the roll and yaw moments as 𝑙 and 𝑛 respectively, we
have:

𝑓𝑦 ൌ
1
2

𝜌𝑉௔
ଶ𝑆𝐶𝑌ሺ𝛽, 𝑝, 𝑟, 𝛿𝑎, 𝛿𝑟ሻ

CHAPTER III

77

𝑙 ൌ
1
2

𝜌𝑉௔
ଶ𝑆𝑏𝐶𝑙ሺ𝛽, 𝑝, 𝑟, 𝛿𝑎, 𝛿𝑟ሻ

𝑛 ൌ
1
2

𝜌𝑉௔
ଶ𝑆𝑏𝐶𝑛ሺ𝛽, 𝑝, 𝑟, 𝛿𝑎, 𝛿𝑟ሻ

Where:
 𝑓௬ is the lateral force
 𝑛 is the roll moment
 𝑙 is the yaw moment
 𝜌 is the air density

𝑉௔ is the speed of the MAV through the surrounding air
mass

 𝑆 is the planform area of the MAV wing
 𝑏 is the wingspan of the aircraft

𝐶𝑌 𝐶𝑙 𝐶𝑛 are the nondimensional aerodynamic coefficients of
the lateral

 𝛽 is the angle of sideslip
 𝑝 is the roll rate
 𝑟 is the yaw rate
 𝛿𝑎 is the aileron deflection
 𝛿𝑟 is the rudder deflection

These forces and moments are aligned with the body axes of the aircraft

and do not require a rotational transformation to be implemented in the

equations of motion. Also, the coefficients the lateral force coefficient

𝐶𝑌0 𝐶𝑙0 𝐶𝑛0
when β = p = r = δa = δr = 0 are typically zero for symmetric

aircraft.

Aerodynamic Coefficients

The use of aerodynamic coefficients permits us to deal with perturbations

to tend to restore the aircraft to its nominal flight condition. The

𝐶𝑚𝛼 𝐶𝑙𝛽 𝐶𝑛𝛽
coefficients represent the change in the moment coefficients

concerning changes in the direction of the relative airspeed, as described by α

and β, behaving like torsional springs. While the 𝐶𝑚𝑞 𝐶𝑙𝑝 𝐶𝑛𝑟 coefficients

CHAPTER III

78

behave like torsional dampers, all these values are seen as stability derivatives

determining the MAV static and dynamic stability (Vidan, C., & Badea, S. I.

2016). The moments of inertia of the MAV body provide the mass.

The aerodynamic coefficients 𝐶𝑚𝛿𝑒 𝐶𝑙𝛿𝑎 𝐶𝑛𝛿𝑟 are associated with the

deflection of control surfaces and are referred to as the primary control

derivatives. They define the off-axis moments that occur when the control

surfaces are deflected; those can be thought of as gains.

Propulsion Forces and Moments

The propeller generates thrust and torque in the aircraft that has it in his
configuration. Usually, Bernoulli’s principle is used to calculate the pressure
ahead of and behind the propeller and then applying the pressure difference,
despite this approach considers an efficient propeller, it could be acceptable
for starts the simulations. Beard, R. W., & McLain, T. W. (2012) design
consider the thrust acts directly along the 𝑖௕ body-axis of the aircraft.
Therefore, the thrust does not produce any moments about the center of mass
of the MAV, then we have:

𝑓௣ ൌ
1
2

ሺ𝜌𝑆𝑝𝑟𝑜𝑝𝐶𝑝𝑟𝑜𝑝ሻ ൥
ሺ𝑘𝑚𝑜𝑡𝑜𝑟𝛿𝑡ሻ2 െ 𝑉௔

ଶ

0
0

൩

Where:

𝑓௣ is the force due to the propulsion system

 𝜌 is the air density

 𝑆𝑝𝑟𝑜𝑝 is the area swept out by the propeller

 𝐶𝑝𝑟𝑜𝑝 is the aerodynamic coefficient for the propeller
 𝑘𝑚𝑜𝑡𝑜𝑟 is the constant that specifies the efficiency of the motor

𝛿𝑡 pulse-width-modulation, it is the control signal denoting the

throttle deflection

𝑉௔ is the speed of the MAV through the surrounding air

mass

CHAPTER III

79

The torque applied by the motor to the propeller (and then to the air) results
in the same and opposite torque applied by the propeller to the engine that is
fixed to the MAV body. This torque is contrary to the direction of the propeller
rotation and proportional to the square of the propeller angular velocity. The
effects of this propeller torque are usually relatively minor, the slow rolling
motion that could cause is easily corrected by applying a small aileron
deflection, which generates a rolling moment to counteract the propeller
torque. The moments due to the propulsion system are, therefore:

𝑚௣ ൌ ൥
െ𝑘்௣

ሺ𝑘Ω𝛿𝑡ሻ2

0
0

൩

Where:
 𝑚௣ is the moment due to the propulsion system

 ሺ𝑘Ω𝛿𝑡ሻ is the speed of the propeller

𝑘்௣
 is a constant determined by experiment, it is opposite to the

propeller rotation direction

Atmospheric Disturbances

Usually, wind disturbances are considered when modeling aircraft dynamics.
The air mass relative to the ground (wind velocity Vw) added to the velocity of
the airframe relative to the surrounding air mass related (Va) equals the velocity
of the airframe relative to the ground (Vg). The wind velocity components
include steady ambient wind, wind gusts, and other atmospheric disturbances,
which are represented in different frames and directions. Approximation and
transfer functions are used to model them, as the von Karmen model with the
Dryden transfer functions. By the experiment’s results, suitable parameters into
the equations of motion for low and medium altitudes and light and moderate
turbulence are possible to find in the literature.

Linear Design Model

As we pointed out initially, linearization and decoupage of the equations
of motion to produce reduced-order transfer function and state-space models
that are more suitable for control system design are done regularly because
Low-level autopilot control loops for unmanned aircraft are designed based
on these linear design models, which capture the approximate dynamic
behavior of the system under specific conditions.

CHAPTER III

80

The lateral dynamics decomposition of the aircraft motion is given by the
following Laplace equation, which expresses the relationship between the
aileron deflection and the roll angle:

𝜙ሺ𝑠ሻ ൌ ቆ
𝑎థଶ

𝑠൫𝑠 ൅ 𝑎థଵ൯
ቇ ൭𝛿𝑎ሺ𝑠ሻ ൅ ቆ

1
𝑎థଶ

ቇ 𝑑థଶ
ሺ𝑠ሻ൱

Where:
 𝜙 is the roll angle
 𝑠 is the complex variable of Laplace
 𝑉௚ is the ground speed

 𝑎థଵ
 𝑎థଶ

 are the ailerons roll angle

 𝛿𝑎 Is the control signal denoting the aileron deflection

The relationship between the roll angle and the course angle is given by

the equation:

𝑥ሺ𝑠ሻ ൌ ሺ

𝑔
𝑉𝑔
𝑠

ሻሺ𝜙ሺ𝑠ሻ ൅ 𝑑𝑥ሺ𝑠ሻሻ

Where:
 𝑥 is the course angle
 𝜙 is the roll angle
 𝑠 is the complex variable of Laplace
 𝑔 is the gravity
 𝑉௚ is the ground speed

dx is the disturbance signal associated with reduced course model

For aircraft that have a rudder and the ability to measure the side slip angle,

the following equation expresses the relationship between the rudder
deflection and the sideslip angle.

𝛽ሺ𝑠ሻ ൌ ቆ
𝑎ఉଶ

൫𝑠 ൅ 𝑎ఉଵ൯
ቇ ቀ𝛿𝑟ሺ𝑠ሻ ൅ 𝑑ఉሺ𝑠ሻቁ

CHAPTER III

81

Where:
 𝛽 is the sideslip angle
 𝑠 is the complex variable of Laplace
 𝑉௚ is the ground speed

 𝑎ఉଵ
 𝑎ఉଶ

 is the ailerons side slip angle

 𝛿𝑟 Is the control signal denoting the rudder deflection

 𝛿𝛽 Is the control signal indicating the side slip deflection

The transfer functions for the longitudinal dynamics are given by the next
equations, which model the relationship between the elevator deflection and
the pitch angle:

𝜃ሺ𝑠ሻ ൌ ൬
𝑎ఏଷ

ሺ𝑠ଶ ൅ 𝑎ఏଵ𝑠 ൅ 𝑎ఏଶሻ
൰ ൭𝛿𝑒ሺ𝑠ሻ ൅ ൬

1
𝑎ఏଷ

൰ 𝑑ఏଶ
ሺ𝑠ሻ൱

The following equation expresses the relationship between the pitch angle

and the altitude:

ℎሺ𝑠ሻ ൌ ሺ
𝑉௔

𝑠
ሻሺ𝜃 ൅

1
𝑉௔

𝑑ℎሻ

The following equation expresses the relationship between the airspeed

and the altitude:

ℎሺ𝑠ሻ ൌ ሺ
𝜃
𝑠

ሻሺ𝑉௔ ൅
1
𝜃

𝑑ℎሻ

Finally, the following equation expresses the relationship between the

throttle and pitch angle to the airspeed, respectively:

𝑉௔ഥ ሺ𝑠ሻ ൌ ൬
1

ሺ𝑠 ൅ 𝑎௏ଵ
ሻ
൰ ቀ𝑎௩ଶ

𝛿̅𝑡ሺ𝑠ሻ െ 𝑎௩ଷ
𝜃̅ሺ𝑠ሻ ൅ 𝑑௩ሺ𝑠ሻቁ

CHAPTER III

82

III.5 Modeling in GAZEBO-ROS

III.5.1 Gazebo-ROS Kinematic - main characteristics

Kinematics is the study of a body motion without asking for forces or tor-
ques that are at their origin. It is used in robotics to understand the motion of
robots in order to design and control them using numerical tools and algo-
rithms. The Kinematics for robotics are highly studied since seminal works of
Denavit and Hartenberg (1955) coordinates into robotics, and it continues to
be a challenging problem the determination of the position kinematics, from
computational point of view, car nonlinearity of their mathematical formula-
tions and results, basically comes from joins and constraints descriptions in
terms of trigonometric functions (Roth et al., 1994).

Several methods, techniques, and tools had been created, as it is related in

a comprehensive and accurate kinematics state-of-art presented by Roth et al.
(1994). Some following conferences and assembly of papers continuous to
point out the challenging of Kinematics for sophisticated robots, especially
manipulators and humanoids and mobile robotics in off-road environments.

The general robot kinematics division falls on forward and inverse kine-

matics. Forward kinematics (angles respect to position) is a straightforward
position's calculation based on each link length and each joint angle related to
that link. While in inverse kinematics (position to angle), the length of each
link and the position of some point on the robot are given, and the calculation
is done to find the angles of each joint to obtain that goal position. Inverse
kinematics is a far more difficult problem because of singularities and nonlin-
earities, increasing the cost to have a complete analytical solution (Kucuk &
Bingul, 2004) and making it computationally expansive and time-consuming
for real-time control.

In kinematics modeling, there are mainly two different spaces used,

namely, Cartesian space and Quaternion space. Cartesian coordinates (x,y,z)
represent a smooth and natural means of representing a position in 3D space
if there is a translation, a new position of an object can be described as a new
Cartesian coordinate translated from the origin. If the object experiments a
rotation, an angular displacement in any of the Cartesian axes, there is a need
to calculate the new orientation of that object from its original unrotated ori-
entation.

Position and orientation are critical pieces in mobile robotics; because we

need to track the robot itself and their sensing and acting components and over
time while the robot is performing any mission. To manage these representa-

CHAPTER III

83

tions, roboticist in their numerical tools and algorithms, incorporate homoge-
nous transformations based on 4x4 real matrices (orthonormal matrices),
based on the theoretical robot kinematics representation of Denavit & Harten-
berg (1955) who showed that a global transformation between two joints re-
quires four parameters, known as DH parameter. Moreover, in the measure of,
they are getting access to better computational capabilities; the quaternions
are used for rotation representation.

There are many ways to represent rotation, Euler angles, Gibbs vector,

Cayley-Klein parameters, Pauli spin matrices, axis and angle, orthonormal
matrices, Hamilton's quaternions, and Dual quaternions. The select one de-
pends on the complexity of the robot configuration, in the environment where
it is acting and the mission it is performing, as well as on the computational
power and how to cope with some issues (numerical, storage, user interaction,
or interpolation). For example, Dual quaternion offers a considerable ad-
vantage in terms of computational robustness and storage efficiency for deal-
ing with the kinematics of robot chains, because it can present rotation and
translation in a compact form of transformation vector, simultaneously vs. the
nine elements in homogenous transformations (Funda et al., 1990).

As we see before, the 3D simulated mobile is represented as many bodies

or links attached through mechanical joints to build mechanisms. Those mech-
anisms have reference frames attached to each body that participated in the
formulation and solution of dynamics by a description of the position, the mo-
tion, and the acceleration of the individual components and, consequently, in
the overall system as a function of time.

For basic robots’ configurations, the preferred Kinematics methods are Ge-

ometric and Algebraic approaches; the latter involves coordinate transfor-
mations. With more than three joints and with kinematic chains that do not lay
on the plane, the geometric method is too difficult. Thus, a systematic ap-
proach is needed for each pair of consecutive joints; it usually includes alge-
braic solutions using homogeneous coordinates and Denavit-Hartenberg No-
tation. In this notation, to describe how a frame (i) relates to a previous frame
(i -1), four DH parameters are needing to align two axes based on displace-
ments and rotations.

Forward kinematics usually follows the following steps:
1) Identify the robot position in rest.
2) Assigns reference frames to joints and links.
3) Compute Denavit-Hartenberg parameters.
4) Compute transformation matrix Ai that allows passing from the refer-

ence frame of the i-th joint to the one of the (i+1)-th joint.

CHAPTER III

84

5) Multiply matrices Ai to get matrix T that allows moving from the
original reference frame position of the base XYZ to the one of the
XYZ in the final place.

6) Extract the coordinates of the current position from the matrix T, and
finally.

7) Look at the rotation sub-matrix and extract orientation components.

The solutions methods for Inverse Kinematics could be closed or iterative.

In the former, the geometric methods reduce the more significant problem to
a series of plane geometry problems, and algebraic methods through trigono-
metric equations. While in the latter, the iterative numerical solutions are m
equations with n unknowns, which represent an alternative nowadays. Behind
the scenes, the necessary tools for kinematics' numerical solutions are matrix
multiplication and scalar arithmetic simple algebra to manipulate equations
based on graphical constructions and the sine and cosine laws of triangles.

The system models represent key characteristics as their number of degrees

of freedom (DoF), based on the number of rigid bodies and the constraints
imposed by their joins, the mass distribution, and their expected behaviors and
functions in the selected physical or abstract system. To capture these charac-
teristics, we use methods, algorithms, and equations in the mathematical mod-
els. Then a simulation, the process of running a model, would reproduce the
outcomes of the mathematical models associated with the system.

The robot’s kinematics are closely related to the design of the robot itself

and the environment where it is subject to perform their missions De Simone
et al. (2017-2018). Thus, a robotic system typically has many 3D coordinate
frames that change over time. Those could be the world frame, base frame,
gripper frame in the case of a robotic arm attached to a mobile robot. In the
Gazebo-ROS platform, the tf package keeps track of all these frames over time
and allows, to know where a frame is relative to the other frame (world, map)
in a specific time, before or where it would be expected to be in a near-future
time to come.

The tf ROS-based package, and tf2, its' updated version, can operate in a

distributed system. It means that all information about a robot's coordinate
frames is available to all ROS components on any computer in the system.
Therefore, there is no central transformation information server, this is still
challenging due to the current trend of missions with cooperative robots work-
ing together, with sources of information on the transformations of their links
and joints between different sets of coordinates tables that vary dynamically,
acquiring greater complexity with the increase of robots in the mission (Kou-
bâa et al. 2017).

CHAPTER III

85

Tf2 gets in charge of all the details of transformation in the ROS-based
platforms, it is efficient (both at computational and bandwidth), and simple to
use. There are mostly two tasks, listening for transforms and broadcasting
transforms that the user invokes. The Listener, to receive and buffer all coor-
dinate frames that are broadcasted in the system, and query for specific trans-
forms between frames. The Broadcasting, to send out the relative pose of co-
ordinate frames to the rest of the system. Different parts of the robot broadcast
information about their relative pose to the system.

At the high level, the Design Goals provides developers and users a dis-

tance from the details of the specific coordinate frame data store for each one.
Everything is broadcast and reassembled at the end consumer points now there
is a need for a transformation (timestamped at times other than the current
time). It is possible to have many different data sources for tf information, and
data is not required to be synchronized by using interpolation when working
in a distributed environment can also arrive out of order. There is only the
need to know the name of the coordinate frame to work with using
“frame_ids” as unique identifiers.

When evaluating a transform, the tf2 uses a directed tree structure allowing

fast traversal (n depth tree). A link redefinition can serve ti reconfigure it. The
core tf2 library is C++ class, a second class provides ROS interface and in-
stantiates the core library. Moreover, Multi-Robot Support is allowed, in-
cluded those with the same or similar configuration using “tf_prefix” that lim-
its their scope of action.

The Developers of drivers, models, and libraries need a share convention

for coordinate frames in order to integrate better and re-use software compo-
nents. Shared conventions for coordinate frames provide a specification for
developers creating drivers and models for mobile bases.

III.5.2 Gazebo-ROS Dynamics - main characteristics

Gazebo-ROS uses articulated rigid body structure to simulate dynamics,
that is various shapes or bodies connected with joints of multiple types (ball-
and-socket, hinge, slider or prismatic, hinge-2, fixed, angular motor, univer-
sal). The Lagrange multiplier velocity base model of Trinkle/Stewart and
Anitescu/Potra serve to build the equations of motion (Cosmin Petra et al.
2009). Contact and friction model are based on the Dantzig LCP solver de-
scribed by Baraff, although ODE implements a faster approximation to the
Coulomb friction model.

It is possible to call functions to apply forces to the rigid body at each CPU

execution time (integrator step). These forces applied to push it around are the

CHAPTER III

86

sum of all forces, added into "force accumulators," in the rigid body object.
The force accumulators are set to zero after each integrator step.

The system models represent key characteristics as their number of degrees

of freedom (DoF), based on the number of rigid bodies and the constraints
imposed by their joins, the mass distribution, their expected behaviors and
functions in a selected physical or abstract system. To capture those charac-
teristics, methods, algorithms, and equations are used in these models. Then a
simulation, the process of running a model, would reproduce the outcomes of
mathematical models associated with the system.

In simulated virtual environments, these models and their representative

scenarios with several possible states could be represented alone or with other
static and dynamic models. The interaction between all the elements must be
considered to simulate the desired environment. In this context, dynamic sys-
tem simulation is the computing process, over a time span, of a system’s states
and outputs using the information provided by the system’s model.

The system’s states are represented by a mathematical model of a physical

system, usually by first-order differential equations (where functions are re-
lated to their derivatives) or difference equations (a type of recurrence rela-
tion). As a system, the value of external inputs variables impacts on state var-
iables (which evolve through time), and subsequently influencing output var-
iables values. The different changes experienced in the simulated environment
over a period (a span of time) responds to (usually changing) input signals and
an attempt to find a state in which the system is in equilibrium. There are
different external forces that affect the motion of rigid bodies such as gravity
or generated forces when contacts occurred (collisions).

In general, Newton’s equations of motion are the foundation of all types of

physics-based simulation. Since simulations often include multiple degrees of
freedom (DoFs), the computation of relation of forces acting on a body, with
constant mass, are expressed in vector notation. When the dynamical system
is linear, time-invariant, and finite-dimensional, then the differential and alge-
braic equations may be written in matrix form. Another common aspect of the
physics-based simulation is the methods and algorithms used for collision de-
tection and collision response.

Brogliato et al. (2002) present a state-of-art of the rigid body interactions

in numerical simulations, discussing the dynamics of mechanical systems ex-
tensible, and making an interesting distinction between a rigid body and com-
pliant models in their contacts’ simulation. From these other papers, we could
see that behind rigid body simulations are different programming paradigms,
among which three have been taken by most physics engines to supporting

CHAPTER III

87

dynamics simulation in virtual environments. Those three are event-driven,
time-stepping, and penalty-based (Taylor et al. 2016), a summarized differ-
ence is presented in Table III.1.

Dynamic solver libraries and simulation software are a tailor in mathemati-

cal models based on their expected domains of application (Robotics, Games).
Differential-Algebraic Equations (DAEs) defines a relationship between the
functions representing physical quantities and the derivatives representing their
rates of change. It usually involves expensive numerical methods; for this rea-
son, solvers generally prioritize accuracy over efficiency using specific and
strongly simplified mathematical formulations. A differential Variational Ine-
quality (DVI) is a system in which a function describes the time dependence of
a point in a geometrical space (infinite, continuous, and three-dimensional); the
dynamics, inequalities, and discontinuities are present. While arbitrary
integration schemes, used in penalty-based methods, put multiple springs and
damper models for multiple contact points and solves multiple contact forces at
once, depending on how contacts forces are calculated could give only approx-
imatively results (Baraff, 1989).

Table III.1 Dynamics Paradigms in Numeric Simulation

 Simulation Paradigm
 Event-driven Time stepping Penalty-based

Contacts
treatment

each impact
event modeled

all events in a time-
interval are collected
and modeled into a

single complementary
problem

virtual spring and
damper

Mathematica
l model

differential
algebraic
equation

differential variation
inequality

arbitrary integration
schemes

Recommend
ed

Integration
forward in time

Integration forward in
time

implicit integrators
to avoid “stiff”

equations

Source: Elaborated based on literature review

Steve Peters in a ROSCon2014 presentation talks make a comparison of the

physics engine used for rigid body dynamic simulators for robotic simulation,
the methods used by each of them for the most characteristic feature in simula-
tions are described in the following Tables III.2, III.3, and III.4.

CHAPTER III

88

Table III.2 Physics Engines for Simulation

Features DART ODE Bullet Simbody
Contact
Formulation Pure Rigid Pure Rigid Pure Rigid Compliant

Joint
Spring/Damping Implicit Implicit Implicit Implicit

Coordinate
representation Generalized Maximal Maximal Generalized

Most used in Robotics,
Animation

Robotics,
Gaming

Gaming,
Animation Biomechanics

Started In 2008 at
Georgia Tech

In 2001 by
Russell Smith

Sony,
AMD,
Google

Stanford

OpenSource
Providers

 Georgia
Institute of
Technology

ode.org
Sony,
AMD,
Google

SimTK

Sources
https://dartsim.
github.io/index

.html

https://sourcefo
rge.net/projects
/opende/files/

https://pybu
llet.org/wor

dpress/

https://simtk.
org/projects/s

imbody

Supported
Platforms

Linux, Mac
OSX, and
Windows

Linux and
Windows

Windows,
Linux, Mac
OSX, iOS,
Android

Linux, Mac
OSX, and
Windows

Source: ROSCon 2012 - The Gazebo Simulator as a Development Tool in ROS (John
Hsu and Nate Koenig Slides).

Table III.3 Coordinate Representation in Numeric Simulation

 Coordinate representation
 Maximal Generalized

Coordinate type Absolute Independent

Inter-penetrating
bodies

separated by constraint
stabilization ---

DOF 6*links links
Mass matrix sparse 6*links x 6*links dense links x links
Constrains to solve 6*links – links 0

Kinematics
Accuracy depends on a

constraint solver implicit in formulation

Source: ROSCon 2012 - The Gazebo Simulator as a Development Tool in ROS (John
Hsu and Nate Koenig Slides).

CHAPTER III

89

Table III.4 Spring-Damper Computation

 Spring / Damper numerics
 Explicit Implicit

Velocity of time (i+1) depends on state (i) depends on state (i+1)
Computation easier to compute numerically stable

Source: ROSCon 2012 - The Gazebo Simulator as a Development Tool in ROS (John
Hsu and Nate Koenig Slides).

In Gazebo, when two objects collide, like the wheels that roll on a surface

or try to move through it, a frictional force is generated; there are physical
motor systems defined in the simulator software to manage these forces. ODE
is the default physical engine in Gazebo, where the friction consists of two
parameters, '' 'mu' '' and '' 'mu2' '', which represent:

1. '' 'mu' '' is the coefficient of friction of Coulomb for the first di-
rection of friction.

2. '' 'mu2' '' is the coefficient of friction for the second direction of
friction (perpendicular to the first direction of friction).

ODE will automatically calculate the first and second friction direction for

us. However, we can manually specify the first friction direction in the model
description file ".sdf" or in ".urdf" if used in the Gazebo environment -ROS
The two objects in collision specify their own '' 'mu' '' and '' 'mu2' ''. The
gazebo will choose the smallest '' 'mu' '' and '' 'mu2' 'between the two colliding
objects. The valid range of values for '' 'mu' '' and '' 'mu2' '' is any non-negative
number, where 0 equals a contact without friction, and a significant value ap-
proaches a surface with infinite friction. Tables of the coefficient of friction
values for a variety of materials can be found in engineering manuals or the
online toolbox.

For a terrain-wheel interaction model, we consider non-deformable wheels

because our real WRV has solid plastic materials, and the weight load during
the simulation operation and the actual experiences would not be so important
that they would change the rigidity. The selected interior environments were
solid pavement. Therefore, the interaction between the wheel and the ground
can be reasonably approximated as a point contact. It allows the use of
classical Coulomb friction to describe the limits of available traction and lat-
eral forces for the load function (basically the power, motors, sensors, actua-
tors, and other components carried out) with a coefficient of friction (a param-
eter to be set in a simulated environment).

91

Mobile Robotics Techniques

used in Unisa_bots

IV.1 Introduction
The robotics techniques concretize several of the concepts reviewed so far

in this document. It is here that the different areas of knowledge are integrated,
each contributing its technologies in the broadest sense, namely the
knowledge of the specialists, the experiences of the developers, implementers
and the final users; thus, the techniques described below allow us to approach
the complex world of mobile robotics from a practical perspective.

"From mechanics to computing for unmanned mobile vehicles" defines

well the concept of robotic techniques that interest us in this study. Because
unmanned vehicles concentrate, to a great extent, both of the phrase’
disciplines, the former contributes to the design, locomotion mechanisms, and
control of vehicles, while the latter provides the computational power. The
combination of mechanical engineering with computer science, and related
engineering fields permits the development of systems that go beyond
hardware, algorithms or telecommunications to allow these vehicles to move
and behave "intelligently" in environments with large-extensions and through
various means, recognizing objects and places, sending and receiving
information in real-time and deploying their capabilities in a concerted manner.

The described capabilities require that mobile autonomous vehicles could

integrate different techniques to estimate their position and location, build or
use a map, navigate knowing or not the environment previously, identifying
trademarks, planning, and following routes. An abstract representation is
needed to deal with it; one way is to see the mobile robot as a point (x, y) in a
continuous or delimited space of two or three dimensions - generally, a
Cartesian plane. To describe the mobile robot state, also called pose (position
and orientation) at every timestamp. When the robot moves through free

CHAPTER IV

92

spaces, it changes its pose; each free space is called Cfree and houses the robot
in its trajectory.

A set of rigid bodies also represent the mobile robot, for example, the UGV

has the chassis, the wheels, the actuators, and sensors onboard. The same for
the UAV, it has the main body, ailerons, flaps, elevator, rudders, and propellers,
also carries onboard sensors, actuators, and communication equipment. When
a robot is seen as a point, the techniques can be applied to each component by
reducing them to their mass center.

The robotics techniques for path planning, location, perception or sensing,

mapping, and SLAM (simultaneous localization and mapping) are created
with three fundamental abstractions "space," "pose," and "free space," giving
the mobile robot a safe trip. Below we will describe how these techniques are
used in the various functionalities of mobile robots. What hardware
components or equipment are needed and how they are formulated in the
Gazebo-ROS platform. We start with 3D modeling techniques, necessary for
describing robots, their components, and onboard sensors/actuators, as well as
to create virtual environments that will later serve for simulations.

IV.2 Design Modeling Techniques (3D models)
We use a compatible XML-like language (Xacro, URDF, and SDF) to

create the virtual model of our unmanned vehicles, in order to work smoothly
in the Gazebo-ROS environment. Despite the primitive’s shapes of our UGV,
there was not easy to construct the model directly on Gazebo's building editor;
because of the limited building tools of the environment. Thus, we use two
strategies for modeling; in both, it was necessary to pay special attention to
geometry and the relationship of all the components. Also, we must adhere, as
much as possible, to the three most important ROS standards: the first related
to Standard Units of Measure (REP-103), the second to Coordinate
Conventions (REP-105, in robotics, the orthogonal coordinate systems are
commonly called frames) and the third to ROS Package Naming (REP-144).

Our Wheeled Mobile Robot (WMR) 3D model is made up of a rigid

platform equipped with two front and one back caster non-deformable wheels,
it moves on a horizontal plane. During motion, the plane of each wheel
remains vertical, and the wheel rotates around its horizontal axle, the
orientations concerning the cart platform are fixed. Also, the contact between
the wheels and the ground is reduced to three single points (see thin green line
in fig.3a).

CHAPTER IV

93

To design our ground mobile vehicle, we use different strategies in order
to choose the appropriate tools for the robotic frameworks we are building.
First, we tried adapting another similar wheeled mobile robot; we choose a
four-wheeled vehicle provided by the ROS community through the GitHub
platform. Then we use a SolidWorks to design our WMR model and import it
as a .dae file using a plugging to converts the resulting 3D model into a URDF
file. Comparatively (Fig. IV.1 and Fig. IV.2), both roads give as a virtual 3D
model, but the time expends to create a model from scratch and to export and
adequate the model from a CAD tool are both comparable time-consuming.

Figure IV.1 UNISA-UGV designed in ROS and presented on Gazebo
(Source: Self-elaboration)

Figure IV.2 UNISA-UGV designed in Solidworks and presented on Gazebo
(Source: Self-elaboration)

We come out with our UGV's virtual 3D model with both strategies. The

one that comes from Solidworks gives us the possibility to export with the

CHAPTER IV

94

information of links inertial calculated directly from the model, and the
characteristics of onboard sensors. In this way, the model is ready to use in
Gazebo-ROS; however, the available plugin to convert the 3D model to an
urdf or sdf file was not a straightforward task, we need to do many
workarounds in order to align the reference frames and the poses. The
following lines present the UNISA_UAV using the Solidworks model and the
process to get those.

3D CAD for Multi-Body advanced modeling – From Solidworks to

Gazebo
Because of the complete information of the robot and its components that

we get for the 3D model in Solidworks, it is vital to master the export process.
The Gazebo-ROS platform accepts two kinds of files for a robot description,
the Universal Robot Description Format (URDF) and the Simulation
Description Format (SDF). The former file type is used heavily in ROS for
robot visualization and control, while the latter, the SDF files, for simulation
in Gazebo.

It is advisable to have a simplified assembly of the 3D CAD model in

Solidworks to avoid errors during the export process. It is better to assemble
the bodies part if those will not act independently in any way, and separate if
they will participate in the motion. The resulting body elements are considered
as rigid bodies and must be identified correctly.

Once exported, it is essential to check if the resulting rigid bodies are

positioned in the right way by opening the robot in the Gazebo simulator. The
collision models need to be in the same place as the visual model; otherwise,
it could be an error in the origins of the SolidWorks model. It could also be
advisable to check the meshes in software as a Blender and move the part
origin to the exact position if necessary.

The flowchart shows the outcomes of the two processes to obtain the robot

description files from Solidworks (see Figure IV.3). The first uses a
SW2URDF plugin to get a kind of ROS package to be used by any application
in the Gazebo-ROS environment. The second is a procedure to follow called
"Gazebo Exporter," the result is a .sdf file with the robot description with all
the additional files needed to be launch in the Gazebo simulator.

CHAPTER IV

95

Figure IV.3 Flow chart of Solidworks to Gazebo
(Source: Self-elaboration)

SW2URDF
The sw2urdf plugin for Solidworks helps with the task of getting the

needed files to be used in the Gazebo-ROS environment. Thus it must be
installed and configured conveniently. The exporter button activates it,
showing the “Export to URDF” link in the File menu, as it is shown in Figure
IV.4.

CHAPTER IV

96

Figure IV.4 File->Export as URDF
(Source: Screenshot)

There are 3 phases of the exporter (see Figure IV.5); the first part appears

as a Property Manager on the left side of the screen. In this part, it is needed
to enter the file name for the STL associated with the link, the reference
geometry, and the joints types.

Figure IV.5 Exporter Property Manager
 (Source: Screenshot)

CHAPTER IV

97

The second page of the exporter is the joint properties windows (see Figure
IV.6), where coordinate reference settings for the joint can be changed, and
joint limits applied.

Figure IV.6 Exporter Joint Properties
(Source: Screenshot)

The third step of the exporter is the link properties Tab (see Figure IV.7).

The most important feature of this step is to check if the link has proper inertia;
if they are all 0, then there is a need to quit and re-export the model.

CHAPTER IV

98

Figure IV.7 Link Properties Tab
(Source: Screenshot)

The last step is to click “Preview and Export.” The exporter generates a

folder with the .urdf file, the meshes, and two launch files: the first to use in
ROS environment, for an immediate visualization the model could be open in
RVIZ, and the file with the scripts to launch the model in Gazebo (see Figure
IV.8).

Figure IV.8 Folder and files for Gazebo - sw2urdf plugin
(Source: Screenshot)

CHAPTER IV

99

Gazebo Exporter

In the Gazebo Export, a graphical scheme helps to choose the components
of the main body (see Figure IV.9) to generate the .sdf file. First, enter the
model name (without spaces), select the base plane and the axis directions.
Still, on the first screen, configure the various links to the base they are
attached to it. Each link needs to have a unique name, collision, and visual
component (selecting the element itself from the SolidWorks model), as well
as the mass and the inertia matrix. Still, it is also possible to configure sensors,
cameras, or motors attached to specific links.

Figure IV.9 Graphical interface for robot model assembling from Solidworks
(Source: Screenshot)

For each link attached to the base, the joint type, axes, and limits need to

be specified. The physical properties' values for each rigid body component
could be set up at this moment or later in a global configuration stage. While
the inertia values are generated directly by Solidworks, helping a lot in the
Gazebo-ROS simulation environment (see Figure IV.10).

CHAPTER IV

100

Figure IV.10 Link configuration Tab in Gazebo Exported procedure
(Source: Screenshot)

Once added all the data related to the robot, it can generate the SDF file by

simply clicking on the export button. A folder containing the SDF file of the
robot will be created with information related to mass, a matrix of inertia, the
position of the parts, and joint. A second folder will contain STL files with
meshes of all parts of the robot (see Figure IV.11).

Figure IV.11 Generated Folder from Gazebo Exported procedure
(Source: Screenshot)

CHAPTER IV

101

IV.3 Sensors and Sensing Techniques

The sensors and associated algorithms give the capability of sensing to ro-
bots, those most strongly associated with mobility measure the distance that
the vehicle has moved, the inertial changes, and external structure in their sur-
roundings. Two different classes of sensors exist to sense the environment:
visual sensors, which use light reflected from objects, and non-visual sensors,
which use various audio, inertial, and other methods.

Based on their typical usage; the proprioceptive (PC) or exteroceptive (EC)

meaning internal-state sensors that provide feedback on the internal parame-
ters or external-state sensors dealing with the observation of aspects of the
world outside the robot itself; active (A) o passive (P) characteristics related
to the energy direction exchange with the environment. Table IV.1 provides a
classification of the most useful sensors for mobile robot applications.

CHAPTER IV

102

Table IV.1 Classification of sensors for mobile robots

General classification
(typical use) Sensor/Sensor System

PC
or
EC

A
or
P

Tactile sensors
(detection of physical contact or
closeness; security switches)

Contact switches, bumpers EC P
Optical barriers EC A
Noncontact proximity sensors EC A

Wheel/motor sensors
(wheel/motor speed and position)

Brush encoders PC P
Potentiometers PC P
Synchros, resolvers PC A
Optical encoders PC A
Magnetic encoders PC A
Inductive encoders PC A
Capacitive encoders PC A

Heading sensors
(for orientation of the robot con-
cerning a fixed reference frame)

Compass EC P
Gyroscopes PC P
Inclinometers EC A

Acceleration sensor Accelerometer PC P

Ground beacons
(localization in a fixed reference
frame)

GPS EC A
Active optical or RF beacons EC A
Active ultrasonic beacons EC A
Reflective beacons EC A

Active ranging
(reflectivity, time-of-flight, and
geometric triangulation)

Reflectivity sensors EC A
Ultrasonic sensor EC A
Laser rangefinder EC A
Optical triangulation (1D) EC A
Structured light (2D) EC A

Motion/speed sensors
(speed relative to fixed or moving
objects)

Doppler radar EC A

Doppler sound EC A
Vision sensors
(visual ranging, whole-image
analysis, segmentation, object
recognition)

CCD/CMOS camera(s) EC P
Visual ranging packages

Object tracking packages
Legend: A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, extero-
ceptive.

Source: Introduction to Autonomous Mobile Robots (Siegwart et al. 2011 p.104)

The sensing techniques for vision sensors are based on the fields of com-

puter and robot vision in order to build computer representations of the envi-
ronment from light. Then to interpret this information, artificial intelligence
studies deals with the task of reasoning and motion planning based on the re-
sulting environmental representation.

CHAPTER IV

103

There are different visions’ techniques for the extraction of salient compo-
nents of the image and the scene when the active vision system is imple-
mented, like depth information, or to identify image points that are important
to the task at hand, corners, echoes in signals or other features by the use of
detectors algorithms; rather than processing the entire image blindly as it is
the case when images are captured by passive video cameras.

The reduction of the three-dimensional position of a point to its two-di-

mensional projection within a camera is a core process to determine the direc-
tion and the length of the environment objects; the most extensive technique
in computer vision and robotics use “pinhole camera model” described by a 3
× 4 matrix called the “projection matrix”, other methods uses “parallel projec-
tion”, “weak perspective” or “scaled orthographic camera”.

Another fundamental visual tasks in robot vision is matching two or more

views of the same object by its color histogram ((Swain, M. J., & Ballard, D.
H. (1991), Engelson, S. P., & McDermott, D. V. (1992)), or to use a patch or
window as the measurement rather than a single pixel correlation, trough the
cepstrum and cepstral analysis as a tool for detecting echoes in signals with
Fourier transform, feature detectors or interest operators which applies some
simple heuristic to identify image points that are important to use these points
to represent the image like corners, “Moravec interest operator” is one of most
famous (Moravec, (1977)), Harris corner detector (Harris, C., & Stephens, M.
(1988), SIFT Scale-invariant feature transforms (Lowe, D. G. (1999, 2004)),
SURF Speeded up robust features (Bay H. et al. (2008)).

The techniques are many for each type of feature detection, as “visual tar-

gets” by binary acquisition target (BAT) (Maitland, N., & Harris, C. (1994)),
“edge detection and extraction” by techniques identifying image locations that
are associated with a significant change in intensity, the edge detectors in-
cludes operators as Laplacian of the Gaussian, generalized Hough transform,
Line approximation and others to find and identify local maxima/minima
(known as zero-crossing, peaks) in the image. Finally, some other techniques
to match the convolved images directly (Jones, D. G., & Malik, J. (1992)) is
suggested rather than compare two images by convolving the images with fil-
ters, extracting the edges, and then comparing them.

Sensing and ROS perception - main features
To interact with the environment, it is necessary to have detection and ac-

tivation instruments, it will be the capabilities of the robot and the mission
(indoor or outdoor navigation, mapping, grip, facial recognition) or expecta-
tions of achievement of objectives (real-time or expected precision) that will

CHAPTER IV

104

guide the selection, the number, and the precision capabilities of sensors and
actuators.

In ROS, the support for computer vision is provided by means of camera

drivers for different kinds of cameras like FireWire, USB or Gigabit Ethernet
cameras; the integration of OpenCV libraries; tools to set the frame transform
(tf) of the optical camera frame with respect to the robot; and a number of
third-party drivers and tools, which comprise algorithms for visual odometry,
augmented reality, object detection, and perception.

ROS comes with an image pipeline that permits the conversion of RAW

images acquired by the camera into monochrome (grayscale) and color im-
ages; also uses the distortion coefficients computed during the calibration pro-
cess. The stereo vision capability lets to obtain depth information from the
world by computing the disparity image of the baseline between the left and
right cameras, up to some extent, and with certain conditions. It is also possi-
ble to inspect that information as a 3D point cloud once it has been fine-tuned
in order to get the best quality.

The ROS image_view package and the visualization nodes are available

for monocular and stereo vision; there are some new stacks like viso2_ros
wrapper of the libviso2 visual odometry library or fovis package. Visual
odometry requires good cameras; however, it is possible to improve the results
with RGB-D sensors, such as Kinect, or even sensor fusion in the case of mo-
nocular vision.

Gazebo and Ros have add-ons for most of the sensors and actuators used.

If a different type or brand of the sensors, motors, or other components is
needed, it is possible to modify an available complement, changing the char-
acteristics that are normally described in the card component. These defini-
tions are usually implemented in the call files ".launch" or. "World", or
".yaml".

In the vehicles tested in our framework, we use a lidar laser distance sensor

360 LDS-01 and IMU with three axes for gyroscope, accelerometer, and mag-
netometer. We define their geometries and the location using links and joints
characteristic of both in the files ".urdf.xacro" and ".gazebo.xacro" associated
with the complements "libgazebo_ros_laser.so" and "libgazebo_ros_imu.so"
respectively. We also use the differential driver add-on called "libga-
zebo_ros_diff_drive.so".

CHAPTER IV

105

IV.4 Positioning and Transformations Techniques
One of the primary and initial functionalities of a mobile robot is the ability

to estimate its position and orientation concerning a stable reference frame,
generally the inertial system because Newton's laws that are typically used in
control models are valid concerning the inertial system. In order to do this,
several techniques have been developed, the simplest being based on a series
of internal measurements obtained by orientation sensors.

Table IV.2 below shows a summary of the types of conventional position-

ing estimators, the means of measurements obtained, the methods, techniques,
and kind of sensors used. As we could see experimentally and in the literature,
there is no method, technique and/or sensor that can give an exact result or
absolute position, this will depend on several internal and external factors so
in general one or more of these techniques are used depending on the nature
of the mission and the type of mobile robot that is being modeled, simulated
or controlled. For applications in mobile robotics, it is necessary to consider
the characteristics of the sensor such as immunity to variations in environmen-
tal conditions, robustness to vibrations, size, consumption, wear and safety of
operation, as well as its main features such as resolution, precision, and reach.

Table IV.2 Positioning - Methods, Techniques, and Sensors

Types of Esti-
mators

Type of meas-
urement

Methods and Measure-
ment Techniques

Sensors

Explicit Internal measures Odometry Doppler sensors
Optical encoders

Inertial Navigation Gyroscopes
Accelerometers

Transmission sta-
tions

Fixed Triangulation
Trilateration

Ultrasound

Mobile GPS phones Infrared
Radiofrequency

Based on the
perception of
the environ-
ment

Brand-based Po-
sitioning

Artificial marks (conven-
iently added)

Inductive
Thermal
Chemicals
Infrared
Video-cameras

Natural marks (geometric) Video-cameras
Positioning based
on Maps

Construction of maps Ultrasonic systems

Data Comparison techniques Laser systems
Topological and geometric
maps

Video-cameras

Source: Una introducción a los robots móviles (p.31)

CHAPTER IV

106

The explicit estimators try to determine the location of the mobile robot
through various techniques that use internal measures, generally with equip-
ment shipped in the robot and through external measurements, located in the
environment. Among them, the odometry for the case of mobile robots that
use wheels, which estimates the position and orientation of the vehicle through
the number of turns of the wheels, through an integration of the movement in
time. This technique is simple, inexpensive and allows rapid sampling; how-
ever, there is an accumulation of measurement errors, due to the inaccuracies
related to the wheels, when they slip or when there is wear, so they need to be
calibrated; The inaccuracies are also due to irregularities in the terrain and
variations in the cargo transported.

Another essential group is the estimators based on the perception of the

environment, which uses active sensors, so-called because they have some en-
ergy such as ultrasound or laser, and passive sensors, which are limited to
capture the energy of the medium such as video cameras and infrared sensors.
Among the techniques used is the estimation by distinctive marks or beacons,
which are characteristics of the environment that can be recognized by the
mobile robot through its sensors. Two types of environment estimators are
used, the marks or beacons and the maps, the first ones are objects or charac-
teristics of the environment that facilitate the navigation of the robot, while
the maps that can be CAD models of the environment previously made or
constructed while navigating they allow to recognize the static objects of the
environment that will serve to identify the position of the robot.

The estimation by means of natural and artificial marks is made using the

techniques of triangulation with the objects identified in the environment,
from the measurements of distances, angles or both; thus the number of re-
quired marks will depend on the possibilities of triangulation from these, that
is, of the absolute reference angles, observed angles between marks, distances
observed between marks, and angle and distance to a mark. The distinction of
characteristic features of natural marks is one of the main problems of this
method.

The techniques used are Computer Vision, which identify natural objects

through vertical segments that stand out in the environment, such as columns,
doors, relevant light sources, etc.; while the artificial marks are conveniently
arranged in the environment, in a fixed position, and may include information
additional to that of their shape (usually geometric). The other technique is the
Navigation Line, which is a continuous mark, detected through sensors of
electromagnetic, optical (reflection), thermal or chemical type; the restriction
of the immediate vicinity between the robot and the line to be followed is still
observed, the sensors must be very close with the consequent problems of
limitation in the movement.

CHAPTER IV

107

The estimation by maps of the environment, known as "map matching" is a
technique that compares a previously created global map loaded in memory with
a local map that is acquired from the environment while the robot moves and ob-
tains information from it through its onboard sensors. Using data comparison
techniques, they search for and find direct correspondences or through a set of
similar characteristics, then the calculation of the position of the robot begins.

The information of the environment to generate the local map is obtained

from sensors with distance measurement capabilities with different methods,
among them, for example, flight time, phase displacements, and frequency. It
will be useful for navigation if the map is mostly static, there are few elements
or objects in the environment, and they are easily identifiable and characterized.
The precision of the position depends in the first instance on the quality of the
sensor or the sensors, the computational capacity for the census and information
processing, the fusion of data from various sensors and the automatic generation
of the model of the environment (degrees of abstraction), in the second instance
of the robot's autonomous exploration capacity, of the exploration strategy, with
movements that maximize the area covered and time; and finally of the com-
parison algorithms by feature extraction or iconic comparison.

Positioning in ROS - main techniques and modes of implementation
To correctly position the robot and its components in his working environ-

ment, and keep track of them, ROS uses the tf library, a core library in the ROS
ecosystem, which can provide the resulting transformation between different
coordinate frames, handling estimated errors in case of noise or other latencies.

The tf does the transformation in two stages, the first receiving and processing

information from different sources (sensors, actuators) at different frequencies
and with different frames of coordinates system at each time, call Stamp. The tf
can manage synchronous (continues data source) and asynchronous information
(latencies, delays, and packet drops), then the Stamp can process according to the
reference tree it builds in advance, which can remain fixed or change over time,
meaning that it can manage dynamically. The second receives the transformation
and stores it for further use, releasing it when requested.

Since the listener does not generate future values, he will use the Spherical

Linear Interpolation (SLERP) to approximate the movement of the joint be-
tween the two samples even if they are time-spaced, increasing the robustness
of the system even when there are lost packets. The tf achieves a compromise
between the precision achieved with higher stamp collection frequencies and
bandwidth consumptions (Foote T. 2013).

CHAPTER IV

108

IV.5 Path Planning Techniques

Path planning for a robot seen as a point
Planning a path from the current position to a goal position involves

identifying the starting position and the final position, or rather the "space"
and "position" of each. The pose would be represented by s = (x, y) and s'= (x',
y ') both in a plane (space R 2), also generally referred to as the initial state "q"
and "goal" for the final position, the latter must be a free space (Cfree).
Between both positions, there must be continuous free spaces (Cfree) that
allow tracing a continuous path from start to end position (Dudek, G., &
Jenkin, M. (2010)). Several solutions have been created with mechanisms that
allow finding possible paths through free spaces (Lozano-Pérez, T., & Wesley,
M. A. (1979), Laumond, J. P., Sekhavat, S., & Lamiraux, F. (1998), Hwang,
Y. K., & Ahuja, N. (1992)). among them, “the shortest path.”

C-space (Configuration space)
Although a mobile robot could be wholly represented and controlled as a

point moving in an infinite plane, there could be a need for a more general
representation to incorporate the complexity of those UVs whose acting sys-
tems are distributed among its components. Each component is identified by
a point, usually the center of mass of each, which will be used as a point of
reference of the body component (Dudek, G., & Jenkin, M. (2010)). All those
component bodies are added to the main body by joints with an appropriate
type. For example, the ailerons or the propeller in the aircraft, both have their
central points that are identified with a coordinate frame, then attached to the
main body by revolute joints with acceptable upper and bottom angle limits.

In this way, a vehicle that can move and rotate can entirely be represented

as q = [x, y, θ] concerning a fixed reference axis Fw (generally the world
frame), for a robot with several components the structure of q will be more
complicated. The configuration space (or C-space) represents all the possible
kinematic states of a robot; this space has a dimension for each of its degrees
of freedom (Kavraki, L., Svestka, P., & Overmars, M. H. (1994)). Since the
set of poses q = [x, y, θ] includes a rotation as the third dimension in its state
(θ), it is said that it could generate non-Euclidean spaces (the topological con-
nection of its points in space may not have the properties of flatness), for ex-
ample when it has the possibility of rotating 360° defining a cylindrical space.

The obstacles in the environment can limit the set of possible C-spaces of

the robot, that is, they will not allow specific configurations of the space of
the robot and instead give rise to the creation of C-obstacles, and the union of

CHAPTER IV

109

several of these spaces with obstacles give place to the so-called "C-obstacle
region". Thus, the intersection of this region with the potential position of the
robot will form the free space Cfree. It is also possible that semi-free spaces are
generated when the robot touches the limits of the obstacles without penetrat-
ing them (Dudek, G., & Jenkin, M. (2010)).

In addition to robots and obstacles spaces considerations, the robot itself

has holonomic and non-holonomic restrictions. The holonomic’s ones also re-
strict the possibilities while planning paths, since despite having the adjoining
free space, it can be given that the robot cannot reach it because it is mechan-
ically prevented from doing so (such as lateral displacement in vehicles with
conventionally fixed wheels).

It can be observed that finding free spaces to plan a route can become a

complicated task if the environment is saturated with obstacles or if the mobile
robot has significant restrictions, so it is usual to make simplifications to re-
duce this complexity of the representation of the C-space. The most classic
approach is to assume that the robot is a point, including real information
about its sizes and shapes and its non-holonomic restrictions in the process of
executing the path. For manage it, a mechanism is used by which the obstacles
are dilated or increased according to the radius of the robot (taking the largest
dimension of this), this process is known as "Minkowski sum" (Varadhan, G.,
& Manocha, D. (2004, October). However, it is not guaranteed that complex-
ity will be reduced since it will depend on other factors, such as representing
obstacles as primitive polygons.

The problem of path planning in mobile robots is summarized to find a

path "τ" that allows the robot to arrive at the "goal" state from an initial state
"q." The solutions to the problem of path planning are based on probabilistic
estimates, which emphasize certain aspects of interest and make simplifica-
tions and assumptions regarding other aspects of the environment. Thus, al-
gorithms are constructed based on different theoretical assumptions and re-
quirements. Those are based on the relationship between the structure of the
environment and the capabilities of the robot (form, means of locomotion),
the solidity, and the guarantee of the proposed path. All those guarantees to
have a path and being free of collisions; the cost of the path vs. an ideal path;
and other considerations such as storage space or computing time used to find
the solution.

Discrete search space
There are several approaches to constructing the path (Latombe, J. C.

(2012)); one of them is the representation of free space as a representation of

CHAPTER IV

110

"graph" networks with adjacent interconnected cells, the cells susceptible to
generating a robot-obstacle collision are removed from the graph. In this way,
the planning of the path has only to deal with the task of finding the most
efficient route between the initial position and the goal position through the
cells that were available in the graph. This method of representing the work-
space is called graph-based, and the technique that produces the least-length
path is called V-graph (Visibility graph planning). The techniques that gener-
ate the graphics are diverse and are also expensive in computational terms, so
there are several algorithms designed to improve them, including the tangent
graph algorithm.

Other approaches such as Retraction Methods try to reduce the dimension-

ality of Cfree to a one-dimensional subset of itself; among them is the general-
ized Voronoi diagram that has the useful property of maximizing the space
between points and obstacles; however, the routes are usually long.

Other than methods, there are several techniques and search algorithms for

C-space construction, as well as, many of them for C-space path planning de-
velopment. One mainly used is the general search algorithm "Graph search,"
which determines whether a path exists from the start node to the target node.
The algorithm works by maintaining a list of nodes that have been visited
(CLOSE) and a list of nodes that have been visited but can directly or indi-
rectly lead to the goal (OPEN) using the "state transition" function. The algo-
rithm continues to visit the directly adjacent nodes until the target is found (in
which case the variable "found" is true), or it remains empty then is set as
OPEN (in which case "found" is false). If it cannot find a solution, this method
starts an exhaustive search that takes a long time. Different variations to this
method try to improve the efficiency, among them, the techniques "depth-first
search," "Breadth-first search" including search costs according to the prox-
imity by the number of nodes visited or other types of metrics (Korf, R. E.
(1985)).

All mobile robots’ system has been incorporated some system to avoid ob-

stacles (local generator of trajectories). These vary in complexity, going from
the primitive algorithms that detected an obstacle and stopped the robot at a
short distance from it in order to avoid a collision until arriving at the algo-
rithms more sophisticated than, for example, allows the robot to surround the
obstacle to reach the destination point. The task gets complicated when it
comes to dealing with everyday external environments, not only for the exten-
sions, as we had already highlighted, but also for the dynamics they present.
For example, when it comes to UAV or UUV that must travel extensive areas
by air and water, the environment while traveling cannot be controlled; even
UGVs like rovers when moving outdoors can find holes, stones, or other ob-
jects that they should anticipate and avoid promptly.

CHAPTER IV

111

Path planning with Potential Fields
Another route planning alternative is through the simulation of the work

environment as if it were an electric field, in which the robots and obstacles
are assigned electrical charges and when they approach each other they must
be repelled, thus the search for free spaces goes faster, by not having to do it
exhaustively cell to cell. The robot sees as an electrical particle acting under
the influence of a potential field U that is modulated to represent the structure
of the free space. The resulting scalar potential field is used to represent the
free space. The attraction to the goal is modeled by an additive field, which in
the absence of obstacles, attracts the electrically charged robot towards the
goal (Kim, D. H., Wang, H., & Shin, S. (2006)).

Probabilistic route planning
For complex environments or robots with various degrees of freedom, the

described techniques of searching for C-space configuration spaces are not
practical and could be impossible given the vast areas to be mapped, and the
computational capabilities, so probabilistic methods are used for path plan-
ning. These techniques are heuristic by nature, so there is a need for
determining the frequency and the limit of the different random searches that
allow finding a path before surrendering and suppose that the goal is not at-
tainable. Consequently, it is expected that the path planning performed with
these techniques will be described at a high level, which is, starting from an
initial location of the robot and arriving at a goal location, with some interme-
diate points of reference.

One of these techniques is RPP (Randomized Path Planner), one of the

most sophisticated for the planning of probabilistic paths known as probabil-
istic route maps or PRM. The basic concept is the use of probabilistically tests,
instead of trying to sample the entire C space. This algorithm operates in two
phases, a learning phase, in which a roadmap is built inside space C, and a
consultation phase, in which probabilistic searches are carried out using the
roadmap to accelerate the search (Dudek & Jenkin, 2010).

Planning in ROS - main techniques and modes of implementation
Gazebo-ROS has various techniques in its multiple packages to deal with

the critical aspect of path planning; some of them are summarized here. One
of the search techniques implemented in Gazebo-ROS Dijkstra's algorithm for
keeping the path based on a metric. The metric, identified and selected previ-
ously, could be a distance, the lowest-cost for each identified node. This pro-
cess serves to classify the list of the set of OPEN nodes and to evaluate the

CHAPTER IV

112

nodes according to the length of the path defined based on the Cartesian axis.
This algorithm, together with the previous two, belongs to the strategy of un-
informed or blind search.

Other search techniques, also used in the Gazebo-ROS platform, are based

on heuristic models such as "Best first search." The simplest one, this tech-
nique selects the node closest to the goal first and go back until the node of
the initial position. It works fine in an environment with few obstacles, when
used in conjunction with the algorithm A*, an optimal cost estimator, this
model can also be used in slightly more demanding environments, through an
optimal cost function from start to finish, however in larger environments with
several degrees of freedom their computational cost is very high.

Dynamic programming is another general-purpose technique used by Ga-

zebo-ROS for path planning. It is a recursive (or iterative) procedure to eval-
uate the minimum cost path to any point in the environment from some start-
ing point, and the optimal path can be achieved by optimizing the intermediate
segments. Also, Bug 1 and Bug 2 algorithms, guarantee to find a route if the
objective position is accessible. To success, the algorithm must develop a ro-
bot's abilities to know when it has returned to a specific point in space or the
straight line to the goal, as well as, the ability to accurately following the limit
of an object. For example, when the robot is contouring an obstacle to know
when it has been returned to the intersecting point with the straight line to the
goal position. Failure to comply with these requirements leads to the collapse
of the path planning algorithm (Dudek & Jenkin, 2010).

Therefore, with the techniques described, we can see, for example, how

Gazebo-ROS implements them in one of its main macro-packages related to
our study, which is the stack Navigation. One of the packages included in the
stack is the planning one, in which he uses the cost-based approach with the
A * algorithm. The costmap in ROS is a two-dimensional grid of cells that
represent the map and the location of known obstacles. In each of these cells,
a value is registered that describes the condition of it, meanly: free (0), occu-
pied (1), or unknown (-) as we saw above.

Later, the global planner to plan an optimal path from the initial pose to the

goal pose uses this costmap. However, even though the generated route is
based on a known map with the static obstacles already identified in the
costmap, these objects could have been moved, or there may be dynamic ob-
jects in the environment that the robot can find along the route when executing
the path plan. Therefore, the local ROS planner will also use the costmap in
addition to the global path plan to generate instantaneous and reliable local

CHAPTER IV

113

path planning, so when the speed commands that move the robot through its
immediate vicinity are produced, it will avoid the obstacles.

The techniques used in global and local planning are completed in ROS

using the Dynamic Window Approach (DWA) in which the possible range of
velocity commands is sampled, and the robot's progress is simulated in time
(Fox, D., Burgard, W., & Thrun, S. (1997)). The results of the advanced sim-
ulations are compared with a cost function that has adjustable parameters
based on the distance of the obstacles, the progress towards the goal, and the
proximity of the plan. The set of speed commands that have the lowest cost is
selected and sent to the base of the mobile robot. Usually, the planner runs at
a speed of 30 Hz, which allows the robot to move towards a goal while safely
avoiding dynamic obstacles.

IV.6 Localization, Mapping and SLAM Techniques

Mobile robot’s navigation requires the components and algorithms to per-
ceive the environment, localize himself in it, and be able to navigate effec-
tively in this environment. Having a map and exact location on the map per-
mits to predict a path to a target and to navigate safety if onboard sensors are
precise enough. When neither of both is available, the robot needs to build a
map of an unknown environment while simultaneously keeping track of his
location within it, this method is known as SLAM (Simultaneous Localization
and Mapping). Then a map, the representation of the environment where the
mobile robot is acting, is a central component for an autonomous system be-
cause it is used during action planning and execution. For that reason, the map
needs to be available and as much accurate as possible.

Usually the 3D representation of the environment, discretize the area

mapped using a grid of cubic volumes of equal size, called voxels (Roth-
Tabak and Jain (1989), Moravec (1996)), the rigid grids this approach produce
are large in-memory requirement because needs to be available in advance,
making it prohibitive for large outdoor areas. To improve this, 3D range meas-
urements are stored directly by modeling 3D point clouds that return range
sensors, such as laser range finders or stereo cameras in the 3D SLAM systems
(Cole & Newman (2006), Nüchter, A., et al. (2007)), however the number of
measurements of this technique is still high with no upper limit. The models
in this approach do not include free spaces nor unknown areas, and it is not
possible to deal with sensor noise and dynamic objects directly. So, point
clouds are only suitable for high precision sensors in static environments (Hor-
nung, A. et al. 2013).

CHAPTER IV

114

Then, the 2.5D maps, which discretize the vertical dimension as a function
of the height of the robot, was used and proof that is enough for route planning
and outdoor terrain navigation with a fixed form of a robot ((Hebert et al.
(1989), Hadsell et al. (2009)). The map does not represent the real environ-
ment, since overhanging obstacles that are higher than the vehicle, such as
trees, bridges or underpasses are ignored and could be not enough for locali-
zation (Hornung et al. (2013)), To overcome this problem, different worka-
rounds were used as a list of occupied voxels for each cell in 2D grid (Ryde
and Hu (2010)), a Multi-Volume Occupancy Grid approach of Dryanovski et
al. (2010) and Douillard et al. (2010) combine a course elevation map for
background structures with object voxel maps at a higher resolution.

Another proposed technique uses octrees for mapping, proposed initially

by Meagher (1982), then Payeur et al. (1997), Fournier et al. (2007) and
Pathak et al. (2007) used octets to adapt the mapping of the occupation grid
from 2D to 3D with a probabilistic way of modeling occupied and free space.
Fairfield et al. (2007) presented a map structure, called Deferred Reference
Counting Octree, designed to allow efficient map updates, especially in the
context of SLAM particle filter. Recently, Hornung et al. (2013) propose a
general framework that stores clouds of unprocessed points, integrated into a
map of volumetric and memory-efficient occupation (compact), which uses a
tree-based representation, a probabilistic estimate of the occupation to guar-
antee the update and to deal with to the noise of the sensor.

An integrated approach was suggested by Darmanin, R., and Bugeja, M

(2016), see Figure IV.12, mainly because nowadays autonomy in mobile ro-
botics missions requires that different strategies need to be performed in real-
time, using just sensory data and appropriate algorithms. For example, in dan-
gerous situations, exploration strategies include map creation of as much as
possible of the unknown environment, and in the shortest time. This accurate
mapping requires exploitation actions, such as place revisiting actions
(Makarenko et al., 2002). Thus, it gives rise to Active SLAM strategies that
seek to improve the localization estimate of the robot rather than explore as
much of the environment as possible in the shortest time. Both exploration
and Active SLAM strategies provide a sequence of locations that the mobile
robot needs to visit in order to meet the specified exploration criteria.

CHAPTER IV

115

Figure IV.12 Integrated approach for Mapping, Localization and Path Planning
(Source: Autonomous Exploration and Mapping using a Mobile Robot Running ROS
(Darmanin, R. and Bugeja, M. 2008)).

The robot can use various sensors, like laser rangefinder, IMU-sensor, so-

nar, altimeter, a depth camera, or conventional RGB camera with appropriate
algorithms. Lately, more than ten years now, SLAM methods based on com-
puter vision algorithms are heavily implemented (Borenstein et al. (1996),
Boyen, X., & Koller, D. (1998), Dellaert et al (1999), Durrant-Whyte et al.
(2003), Fox, D., et al. (1999, 2000)). To generate a map many techniques are
available (see Table IV.3), as for example Lisa a mobile service robot, uses
the robot’s odometry data and the sensor readings of a laser range finder, then
the map building process uses a particle filter to match the current scan onto
the occupancy grid (Wirth, S., & Pellenz, J. (2007)).

SLAM (Simultaneous Localization and Mapping) is usually solved by a

probabilistic Bayes formulation, by a particle filter (Guivant, J. E., & Nebot,
E. M. (2001), Gutmann, J. S., & Fox, D. (2002)). Based on the position esti-
mate (from odometry or another estimator), the current laser scan is registered
against the global occupancy grid. The occupancy grid stores the occupation
probability for each cell and is used for path planning and navigation. The
distance transform holds the distance per cell to a given target Navigation
(Zelinsky’s path transform). On the other hand, the obstacle transform keeps
the distance to the closest obstacle for each cell. It enables the calculation of
short paths to target locations while at the same time maintaining a required
safety distance to nearby obstacles.

There are many combinations of techniques that could be used for the in-

tegrated approach, which is related to the environment to cover the available
time and priorities assigned to the mission activities. One very popular is
FastSLAM (Montemerlo et al. (2002)) that uses a grid map and odometry for
static objects in the environment; an extension method includes dynamic en-
vironments (Avots et al. (2002)). The last one was presented in the ROS con-
ference of 2002, it uses two occupancy grid maps, one map (S) to represent

CHAPTER IV

116

occupancy probabilities which correspond to the static parts of the environ-
ment and the other map (D) is used to represent occupancy probabilities of the
moving parts; also use landmarks features (corners) with the nearest neighbor
filter for localization that can be detected by the sensors of the robot.

Localization, Mapping, and SLAM in ROS
The amcl package is a probabilistic localization system for a robot moving

in 2D. It implements the adaptive (or KLD-sampling) Monte Carlo localiza-
tion approach, which uses a particle filter to track the pose of a robot against
a known map. To estimate the robot’s pose, it takes as inputs the laser-based
map, laser scans, and transform messages.

The map_server is the ROS node that provides offers map data as a ROS

Service. It also provides the map_saver command-line utility, which allows
dynamically generated maps to be saved to file. While octomap_server pro-
vides map building and serving capabilities, the mapping approach is based
on octrees and probabilistic occupancy estimation. The OctoMap library pro-
vides data structures and mapping algorithms in C++.

In ROS to perform SLAM, a ROS wrapper is available for OpenSlam's

Gmapping, which implements a Particle Filter (PF), a technique for model-
based estimation, with the slam-gmapping package it is possible to create a 2-
D occupancy grid map from a laser and pose data collected by a mobile robot.
GMapping Particle Filter (PF) is a technique for model-based estimation, in
SLAM, it estimates two things: the map and the robot's pose within this map,
meaning the probability of the map and the robot's pose given the control in-
puts (e.g., motor encoder counts) and sensor readings (i.e., LiDAR). Also,
there is a motion model and a sensor model involved in the calculation of the
probability distribution.

The particle filter could be adapted as it is the case of the Rao-Blackwel-

lized particle-filter based approach developed in map an environment accu-
rately and efficiently (Grisetti et al., 2007). In contrast to EKF-based SLAM
(Kalman, R. E. (1960)), this technique uses multiple hypotheses represented
by the particle set in the particle filter.

Another vital package is hector_mapping, which offers a SLAM approach

that can be used without odometry as well as on platforms that exhibit
roll/pitch motion (of the sensor, the platform, or both). It uses LIDAR systems
like the Hokuyo UTM-30LX and provides 2D pose estimates at a scan rate of
the laser sensors (40Hz for the UTM-30LX). While the system does not give
an explicit loop closing ability, it is sufficiently accurate for many real-world
scenarios.

CHAPTER IV

117

IV.7 Collision checking and Recovery Techniques

In mobile robotics, one of the fundamental functionalities is the collision
checking in order to make a path planning, obstacle avoidance, and safe nav-
igation. A geometric reasoning system serves to detect potential contacts and
prevent them by steering the robot away from these places. In cluttered and
dynamic environments, it could be difficult to avoid every possible contact
point in advance.

The collision detection methods look for determining the minimum Eu-

clidean distance between two objects, which is a measure of proximity or pen-
etration (Lin, M., & Gottschalk, S. (1998, May)). The solutions usually deter-
mine the minimum separation or maximum penetration.

The dimensions of the obstacles and their position in the environment can

be partially or entirely unknown, located on a map if they are static. Systems
to avoid obstacles are linked to the generator of local trajectories, and the al-
gorithms that manage them have different techniques that range from stopping
the march to evasion through various strategies such as surrounding the ob-
stacle, using a variety of sensors (ultrasonic, laser rangefinder, video camera)
and methods (see table IV.3).

Table IV.3 Sensors and Methods for Collision Checking

Method Input Description Advantage Disadvantage
Detection
of edges
or corners

Ultrasonic
sensor
Laser range-
finders

Determines the posi-
tion of vertical "visi-
ble" edges of obsta-
cles, joins two visible
edges to represent
their limits

Very used,
simple

The robot
must stop in
front of the
obstacle.
I roll sensors,
False edges
and obstacles
are very close
or very far

Grid of
certainty

Ultrasonic
sensor
The work
area in cells
or grids
(two-dimen-
sional)

Grid with degrees of
certainty, updated on
time.
It is a function that
projects probability
contour with high
values around the
acoustic axis of the
conical field of vi-
sion.

Incremental
cell value al-
lows inaccu-
rate sensors to
be used

It does not
specify the an-
gular position
of the object.
The robot
must stop in
front of the
obstacle.
computation-
ally intensive

CHAPTER IV

118

Field of
Potential

Predefined
geomet-
rical
shapes
Ultrasonic
sensors

A resultant force (ac-
celerator) is deter-
mined to the robot,
calculating repulsive
forces of the obsta-
cles and attractive
forces of the target
point.

many variants
to the method
that improves
the perfor-
mance of the
robot's speed

Speed varia-
tion near ob-
stacles.

Field of
virtual
forces
(VFF)

two-di-
mensional
cartesian
grid-histo-
gram (C)
Ultrasonic
sensors
Low pass
filter in
VFF con-
trol loop

Each grid has a cer-
tainty value; only one
cell is incremented in
the grid for each set
of readings.
Probabilistic distribu-
tion, an obstacle oc-
cupies an "active re-
gion" (C *)
Field of virtual
forces, filled cells ex-
ert the repellents of
magnitude propor-
tional to the value of
certain of the grid and
inversely propor-
tional to the distance

Avoid obsta-
cles in real-
time, control
of fast move-
ments in front
of unexpected
obstacles.
Computation-
ally efficient
by a rapid and
continuous
sampling of
each sensor

At lower visi-
bility between
two obstacles,
the repulsive
forces do not
let the robot
pass.
Considerable
fluctuations in
the direction
control, re-
quires filter in
VFF control.

Vector
field his-
togram
(VFH)

two-di-
mensional
cartesian
grid-histo-
gram (C)
Ultrasonic
sensors
Low pass
filter in
VFF con-
trol loop

three levels of data
representation in the
two-dimensional Car-
tesian grid-histogram
C:
. detailed description
updated in time
. a one-dimensional
polar histogram h,
around the robot,
each grid has a "polar
density of obstacles"
reference values for
the vehicle's steering
and speed controller

Avoid obsta-
cles in real-
time, increase
the detail of
information
regarding the
VFF method,
giving it more
reliability

Possible er-
rors in the se-
lection of the
reference ad-
dress
It requires a
large storage
capacity in the
robot.

CHAPTER IV

119

Imped-
ance-
based
control

Sensors
ultrasound
Motion
controller
Correction
function

Differentiated control
in free space and re-
stricted space, based
on extended imped-
ance (the relationship
between dummy
forces and modified
motion error).
Design of controllers
with stability analysis
of the control system
using the Lyapunov
theory of non-linear
systems.

Increase sys-
tem stability

Non-linear
systems
Due to the
change of po-
sition of the
moving target
to avoid the
obstacle, it can
move away
from the route
completely

Control
based on
optical
flow

A video
camera
Speed of
movement
Apparent
of the
brightness
patterns of
an image

Two discrete control-
lers are designed, one
controls the linear
speed and the other
the angular speed of
the robot.
The dynamics of the
mobile robot and the
nonlinear kinematics
of the video camera
must be known

Preventive
control strat-
egy.
The mobile ro-
bot adjusts its
speed

Sensitive to
changes in
lighting
Specially con-
ditioned envi-
ronment

Control
based on
a 2D½
vision

parameters
and data of
the video
camera

2D½ vision system
relates the depth co-
ordinate (distance)
between the linear la-
ser light emitter and
the position of the
projection of that
a point in the image
through geometric
equations
Control strategy to
generate the reference
direction, the orienta-
tion of the robot, the
desired speed

Preventive
control strat-
egy.
The mobile ro-
bot adjusts its
speed

Source: Based on “Una introducción a los robots móviles (p.46-56)”

CHAPTER IV

120

IV.8 Summary of ROS Methods and Techniques

As a summary, Table IV.4 shows the methods and techniques used in the
ROS stacks and packages used in the UNISA-UVF.

Table IV.4 Methods and Techniques for mobile robotics in ROS

Method
3-D
perc
epti
on

Planning

Path
Follo
wing

Ma
ppi
ng

Loc
aliz
atio

n

SL
A
M

Coll
isio
n

che
cki
ng

Reco
very
beha
vior

Glob
al
Plan
ner

Loc
al
Pla
nne
r

Moti
on
Plan
ning

Occupancy map monitor
(Octomap) x x
Dijkstra's algorithm x x
Carrot planner x x
A*, RA*, Anytime D*,
ANA* x x
Elastic Band x
Probabilistic Roadmap x
Sampling-based planner x
Rapidly-exploring Ran-
dom Trees (RRT) x
Kinematic Planning by
Interior-Exterior Cell Ex-
ploration (KPIECE)

x

Dynamic Window
Approach (DWA) x x
Trajectory Rollout x
Costmap _2d, Cost-
functions x x
Occupancy grid map
(Gmapping) x x
Point clouds x
Adaptive Monte Carlo
Localization (AMCL) x x x
Particle filters EKF x x x
Sequential Importance
Resampling (SIR) filter x x
Fast SLAM x
Graph-based SLAM x
Flexible Collision
Library (FLC) x x x x
Collision Matrix x
Conservative reset x
Aggressive reset x
Clearing rotation x
Aborted (infeasible
stuck) x

121

Case Studies using UNISA

Unmanned Vehicles

V.1 Introduction
In order to test the framework UNISA-UVF proposed, we test different

missions for unmanned vehicles, ground, and aerial ones. Some of these tests
are presented in this chapter; the selection is based on the different character-
istics and functionalities, having in mind to offer a wide variety of potentiali-
ties instead of which approach is more relevant for each case.

For UGVs, we selected three use cases, in the first one, the main function-
ality of mobile robotics is presented, meaning Navigation with all the compo-
nents as localization, path following, and so on. In the second use case, two
UGVs are simulated in order to do a SLAM (Simultaneous Localization and
Mapping) in order to cover an indoor environment while mapping this place
together, creating at the end only one map. Moreover, finally, a third one to
show the integration capabilities of GAZEBO-ROS with another robotics plat-
form like MATLAB.

For the UAVs, we selected a fixed-wing aircraft simulated and controlled
in two different ways. The first one launched the UAV milvus_dae only in the
Gazebo simulator in order to be controlled by the keyboard and a plugin to
control each joint (moving components like flaps and ailerons). The second
use case uses the same model of UAV, this time in the Gazebo-ROS environ-
ment, performing an unmanned path following.

V.2 UNISA-UGV Use Cases
As we already presented in the previous chapters, the 3-D model was ex-

ported from Solidworks, making all the necessary modifications to be used in
the Gazebo-ROS framework. The UGVs used in the use cases presented here
looks like in the simulator as in the following Figures V.1 and V.2, while the
structure of the components is represented as a frames tree (Figure V.3)

CHAPTER V

122

Figure V.1 UNISA UGV 3-D model joints disposition
(Source : Self-elaboration)

Figure V.2 UNISA UGV 3-D model contact points
(Source : Self-elaboration)

CHAPTER V

123

Figure V.4 UNISA UGV Frames Tree
(Source: Screenshot)

Fi
gu

re
 V

.3
 U

NI
SA

 U
G

V
Fr

am
es

 T
re

e
(S

ou
rc

e:
 S

cr
ee

ns
ho

t)

CHAPTER V

124

V.2.1 Use Case 1: One UGV Autonomous Navigation – from
MATLAB/Simulink

Mission:

The mission is to teleoperate the mybot05 unisa_ugv model in a virtual
environment. In this use-case, we choose to use a virtual Watkins laboratory
model provided by robotics inc., in a Gazebo simulator using specified
waypoints in MATLAB/Simulink.

A summary of the result for most interesting steps while modeling and
simulating in Matlab/Simulink and Gazebo-ROS are presented. We also
include the detailed screenshots of configuration files and plots of positions,
velocities, and acceleration of the UGV while performing at a specific stage.
Also, a brief video recording is saved in the documentation folder.

Packages:

Simulation: gazebo_ros
Gazebo 3D simulator wrapped as a ros package to permit the commu-
nication and control facilities

 Implemented physics engine: ODE
 Alternative physics engine: Bullet,
Teleoperation: ugv_teleop

Joystick configuration over Ubuntu is managed by the joy ROS package.
For teleoperation, an algorithm (ugv_teleop_joy) is created to personalize
the linear and angular velocities, then, for control functionalities, the ros
teleop_joy package is called.
 Called package: joy, ros_teleop_joy
 Alternative packages: teleop_twist_joy, turtlebot_teleop
Waypoints Teleoperation: From MatLab/Simulink

Matlab/Simulink installed over Ubuntu. For usage, it must be started
and active in the network. Then initialized as a ROS node.
 Called package: ROS Toolbox
 Alternative packages
Status_publisher: rosbot_state_publisher

This ROS package allows publishing the state of any robot in the
environment to tf packages. It uses kinematics tree model of the robot in
order to convert the following inputs to outputs.
◦ Inputs: joint angles of the robot
◦ Outputs: 3D poses of the robot links
Rviz: rviz (visualization)

This tool provides a visualization environment, the UGV
“understanding” of his environment, based on the topic subscribed
selection (configuration file .rviz). Called package: rviz

CHAPTER V

125

Input variables or configuration files:

Environment variable:
export MYUGV_MODEL=mybot05

Model: model variable chose based on MYUGV_MODEL and
MYUGV_WORLD environment variables
 <!-- arguments -->
 <arg name="model" default="$(env MYUGV_MODEL)" doc="model type
[my2bot, my3bot, mybot05, burger]"/>
 <arg name="sim_world" default="$(env MYUGV_WORLD)" doc="sim_world
type [empty, house, watkins, plaza, world]"/>
 The configuration files are:
 ugv_description/urdf/ugv_$(arg model).urdf.xacro
 ugv_gazebo)/worlds/ugv_$(arg sim_world).world

RVIZ:
 Visualization configuration file: ugv_gazebo/rviz/ugv_simulation.rviz

Execution commands:

In Ubuntu with ROS computer, define the environmental global variable
$ export MYUGV_MODEL=mybot05
$ export MYUGV_WORLD=watkins
$ roslaunch ugv_gazebo ugv_gazebo_rviz.launch

Here, two possible options to control the UGV, the first through the joystick

and the second by a connection of MATLAB/Simulink as a ROS node to send
and control the waypoints execution:

1. Run the following commands in another terminal
$ export MYUGV_MODEL=mybot05
$ roslaunch ugv_teleop ugv_teleop_joy.launch

2. From the desktop screen double click the Matlab R2018a icon, or
execute MatLab in any computer on the network
One started, initialize the rosnode and call the simulink
>> rosinit
>> simulink
From the MATLAB toolstrip, select HOME > Open > Simulink Model to

open a new Simulink model.
Select the filename “myugv05_waypointWatkins_PID.slx”
Once loaded, click the Run button to start simulation (green play sign). You

should see the XY plot that starts drawing the X-Y trajectory that the ugv
follows.

To see graphically if all nodes are well configured and interconnected, run:
$ rosrun rqt_graph rqt_graph

CHAPTER V

126

Complementary commands:

If you want to plot the current execution, you could use the plotjuggler
packages

$ roslaunch plotjuggler plotjuggler.launch

If you need to analyze the simulation behavior in another moment, you

need to create bag files, executing the following in another terminal:
$ roscd ugv_bag/data
$ export MYUGV_MODEL=mybot05
$ export MYUGV_WORLD=watkins
$ export MYUGV_NAVTYPE=wpSimulink (“joy” or “wpSimulink”)
$ rosbag record --all --output-

name=navigation_${MYUGV_MODEL}_${MYUGV_WORLD}_${MYUGV_NA
VTYPE}_${date}.bag

Results - Execution Images and Plots:

Simulation: gazebo_ros
Control: waypoints and PID from Matlab/Simulink

Follows the image of the UGV with a plot of the autonomous waypoints

path followed (Figure V.4 and V.5), it has a PID controlled. As we could see
in the plot, at the start, the velocity in X grows as well as the acceleration in
X and Z. During linear traveling, we get progressively to an excellent perfor-
mance either on velocities and straightness. The images show different PID
controller adjustments. The first image shows the configuration of the P (pro-
portional) component only P= -0.05; it gives us a very stable and straight path
following but runs too slowly.

Figure V.5 UNISA UGV in Gazebo_ROS – Waypoints Navigation and PID control
from MATLAB/Simulink at start
(Source: Screenshot)

CHAPTER V

127

Figure V.6 UNISA UGV Waypoints Navigation plot at the start
(Source: Screenshot)

The next image shows the second straight path traveling just after the left

turn (Figure V.6), the PID configured as P= -0.05, I=-0.001, and D=-0.01 per-
mits a better speed. Finally, the plot of all the paths followed by the autono-
mous waypoint navigation is presented in Figure V.7.

Figure V.7 UNISA UGV Waypoints Navigation plot at the turn
(Source: Screenshot)

CHAPTER V

128

Figure V.8 UNISA UGV Autonomous Waypoints Navigation – Path followed
(Source: Screenshot)

The PID configuration based on the linear distance to goal (dist) and

rotational distance (dhdg), influences in a significant manner to the stability
and performance of the UGV while performing the waypoints following. Thus,
there is a need to tune PID gains, the Proportional, Integral, and Derivative to
conceal a mid-point between stability and performance. Also, there is a need
to manage the overall velocities to control the stability by limiting the linear
and angular ones to 0.5 and angular velocity to 1.0, respectively. However, in
order to increase the performance, the linear velocity was limited while during
the turning by decreasing it by 10% or 20%. The maximum rate of velocity
change is around 0.10 - after this range, the robot fall-down; it gets increased
when the control program sends angular velocities.

V.2.1 Use Case 2: One UGV performing a SLAM

Mission

The mission is to create an indoor map using the my2bot unisa-ugv model
in a virtual environment. In this use-case, we choose to use a virtual house
model provided by Robotics Inc. in a Gazebo simulator and a Microsoft joy-
stick to teleoperate the unmanned ground vehicle (UGV).

A summary of the ROS packages used, the variables and files to configure
the simulated environment is presented, followed by the detailed script and
configuration files, and finally, the execution of the command console dis-
plays. The objective of this document is to repeat the experiment with the same
or other differential drive robot, in a kind of fully documented guide.

CHAPTER V

129

Packages:

Simulation: gazebo_ros
Gazebo 3D simulator wrapped as a ROS package to permit the commu-
nication and control facilities

 Implemented physics engine: ODE
 Alternative physics engine: Bullet
Teleoperation: ugv_teleop

Joystick configuration over Ubuntu is managed by the joy ROS pack-
age. For teleoperation, an algorithm (ugv_teleop_joy) is created to per-
sonalize the linear and angular velocities, then, for control
functionalities, the ros teleop_joy package is called.

 Called package: joy, ros_teleop_joy
 Alternative packages: teleop_twist_joy, turtlebot_teleop,
Slam: ugv_slam

This package provides laser-based SLAM (Simultaneous Localization
and Mapping), calls ROS nodes for gmapping method usage and to save
the created map.

 Called package: map_server, slam_gmapping
Alternative packages: Cartographer, Hector, Karto, Fron-
tier_exploration, RTAB-Map

Status_publisher: rosbot_state_publisher
This ROS package allows publishing the state of any robot in the envi-
ronment to tf packages (see Figure V.8). It uses kinematics tree model
of the robot in order to convert the following inputs to outputs

Inputs: joint angles of the robot
Outputs: 3D poses of the robot links

Inputs variables or configuration files :

Environment variable :
 export MYUGV_MODEL=my2bot
Model: model variable choosed based on MYUGV_MODEL environment

variable
 ugv_description/urdf/ugv_$(arg model).urdf.xacro
SLAM:
 Configuration file: ugv_slam/launch/ugv_$(arg slam_meth-

ods).launch
 Slam methods variable: name="slam_methods" default="gmapping"

Map and trajectory builder: name="configuration_basename" de-
fault="ugv_lds_2d_gazebo.lua"

Execution commands:

$ roslaunch ugv_collab teleop_mapping_gazebo.launch
$ roslaunch ugv_gazebo ugv_house.launch

CHAPTER V

130

$ roslaunch ugv_teleop ugv_teleop_joy.launch
$ rosrun map_server map_saver -f map_my2bot_house_ugv_teleop_joy

ROS nodes and topics:

Figure V.9 rosgraph Nodes and Topics
(Source: Screenshot)

Results - Execution Images and Plots:

For this use case, the velocities of the joystick are modulated by a scalar
coefficient, either for linear and angular velocities in order to decrease the
velocities, limiting them by scale_linear value="0.5" and scale_angular
value="0.2". These parameters are configurable in the launching file and are
tightly related to vehicle geometry. The ROS package move_base that we had
used has a PID controller and EKF (Extended Kalman Filter).

The UGV used in this case-use called my2bot in Gazebo simulator and
Rviz visualization (see Figure V.9), after some traveling (launching scripts and
teleoperated by a Joystick).

Figure V.10 One UGV performing SLAM and Obstacle Avoidance
(Source: Screenshot)

CHAPTER V

131

The next Figure V.10 shows the UGV facing an obstacle; the driver stops
slowly in order not to knock the table neither to fall. In the plot (Figure V.11),
the angular acceleration has been controlled despite the high quick variation,
as we could see in the plots.

Figure V.11 One UGV facing an Obstacle
(Source: Screenshot)

Figure V.12 One UGV facing an Obstacle – Plots of Position, Velocity, and
Acceleration
(Source: Screenshot)

In the Figure V.12 that follows, the UGV is facing a door, in order to pass
through it must do some stop and back driving, as the driver does not have
enough space to turn with the maximum velocities it could get. The variation
we could see in the plot graphic (Figure V.13) is due to the PID controller and

CHAPTER V

132

EKF gains. Despite the high variability, the UGV arrives to perform well as it
could be possible to see in the video registration.

Figure V.13 One UGV facing a door
(Source: Screenshot)

Figure V.14 One UGV facing a door – Plots of Position, Velocity, and Acceleration
(Source: Screenshot)

CHAPTER V

133

V.2.3 Use Case 3: Two UGV creating a single Map

Mission:
The mission is to create an indoor map using two bots my2bot and mybot05

unisa_ugv models in a virtual environment. We will be using several ROS
packages to implement, mapping, navigation, and path-planning in a collabo-
rative way. In this use-case, we choose to use a virtual Watkins model pro-
vided by robotics inc., in a Gazebo simulator and a Microsoft joystick to
teleoperate both unmanned ground vehicles (UGVs).

A summary of the ROS packages used, the variables and files to configure
the simulated environment is presented in this chapter, followed by the de-
tailed script and configuration files and finally the execution of the command
console displays. The objective of this document is to repeat the experiment
with the same or other differential drive robot, in a kind of fully documented
guide.

Frames:

A summary of the transformation tree of the frames running when two
Unisa UGVs are performing together building a map is shown in the following
Figure V.14. The root is the “global map frame” as it remains fixed during the
simulation period, follows the “map frame” of each UGV is creating. At this
point, two branches of the tree represent the components starting by their
“Odom frame,” followed by the “base_footprint frame,” the “base_link”
frame, and each of the vehicle links (meaning the wheels and sensors).

CHAPTER V

134

Figure V.15 Coordinate Frames Tree – two UGVs mapping together
(Source: Screenshot)

Packages:
Simulation: gazebo_ros

Gazebo 3D simulator wrapped as a ROS package to permit the commu-
nication and control facilities
We use the namespace concept to operate two simulated UGVs in the
same Gazebo world.
 Implemented physics engine: ODE
 Alternative physics engine: Bullet,

Teleoperation: ugv_teleop

Joystick configuration over Ubuntu is managed by the joy ROS pack-
age. For teleoperation, an algorithm (ugv_teleop_joy.cpp) is created to
personalize the linear and angular velocities. Then, for control
functionalities, the ROS teleop_joy package is called. To simultane-
ously control both robots, a launch file teleop_onejoy_twobots was cre-
ated.
 Called package: joy, ros_teleop_joy
 Alternative packages: teleop_twist_joy, turtlebot_teleop,

Slam in Simulation: ugv_gazebo (special launch script)
Permits to characterize Gazebo for each mission related to
UNISA_UGV
In this case, there are customized lunch files to:

CHAPTER V

135

• have two instances of gmapping with appropriate parameters for two
slightly different UGVs
• work in two different namespaces
 Called package: slam_gmapping, spawn_urdf

Slam: slam_gmapping
Provides laser-based SLAM (Simultaneous Localization and Mapping),
calls ROS nodes for gmapping method usage and to save the created
map.
 Called package: map_server, gmapping

 Alternative packages: Cartographer, Hector, Karto, Fron-
tier_exploration, RTAB-Map

Collaboration: ugv_collab
This package provides a Gazebo simulated environment with the Wat-
kins Lab world and spawns two bots in two different namespaces
Call Multi-map merge script to combine individual robot maps made
by each ugv spawned, into a single, consistent, global map

 Called package: multi_robot_map_merge, tf
 Alternative packages: Cartographer, Hector, Karto, Fron-
tier_exploration, RTAB-Map

Map Merge: multi_robot_map_merge
Permits to characterize the Map Merge to manage the number of
UNISA_UGV mapping

 Called package: ros-kinetic-multirobot-map-merge

Status_publisher: rosbot_state_publisher
This ROS package allows publishing the state of any robot in the envi-
ronment to tf packages. It uses kinematics tree model of the robot in
order to convert the following inputs to outputs (see Figure V.6)

 Inputs: joint angles of the robot
 Outputs: 3D poses of the robot links

Inputs variables or configuration files :
Environment variable :

export MYUGV_MODEL=my2bot (for all sessions)
export MYUGV_MODEL=mybot05 (only when launching
multi_ugv_slam for this ugv type)

Model: model variable chose based on the MYUGV_MODEL environ-
ment variable
 ugv_description/urdf/ugv_$(arg model).urdf.xacro

CHAPTER V

136

SLAM:
Configuration file: ugv_slam/launch/ugv_$(arg slam_methods).launch
Slam methods variable: name="slam_methods" default="gmapping"
Map and trajectory builder: name="configuration_basename" de-
fault="ugv_lds_2d_gazebo.lua"

Execution commands:

$ roslaunch ugv_collab watkins_multi.launch
$ roslaunch ugv_gazebo multi_ugv_slam.launch ns:=my2bot
$ roslaunch ugv_gazebo multi_ugv_slam.launch ns:=mybot05 (with
MYUGV_MODEL=mybot05)
$ roslaunch ugv_collab multi_map_merge.launch
$ roslaunch ugv_teleop teleop_onejoy_twobots.launch
$ rosrun rviz rviz -d `rospack find ugv_collab`/rviz/multi_map.rviz

Once the area to map was covered appropriately, create a common map
by running:
$ roscd ugv_slam/maps_created
$ rosrun map_server map_saver -f ./multi_map_watkins_$date

Run map_server twice for individual maps, changing the
MYUGV_MODEL with the ugv names (my2bot and mybot05) and
running:
$ export MYUGV_MODEL=my2bot (then mybot05)
$ rosrun map_server map_saver -f ./$MYUGV_MODEL_map_wat-
kins_$date map:=/$MYUGV_MODEL/map

ROS nodes and topics:

Figure V.15 shows the nodes and topics of two UGVs building a map of a
current environment together; the nodes are represented by ellipses while the
topics by rectangles. It is provided by the rosgraph tool.

CHAPTER V

137

Figure V.16 rosgraph nodes and topics
(Source: Screenshot)

Execution Images:

 Gazebo-ROS with two UGVs

The Gazebo-ROS environment starts with two UGVs, my2bot and
mybot05 (see Figure V.16) in a virtual environment. By the execution
of roslaunch call the configuration script watkins_multi.launch placed
in the launch folder of package ugv_collab
The two UGVs have a fake lidar configuration for mapping purpose;
they are launched at different initial positions in order to facilitate the
navigation and map creation performance.
The environment is a simple one, just for test purposes. The objective
in this use case is the collaboration while performing a single task.

CHAPTER V

138

Figure V.17 Two UGVs in Gazebo for Collaborative Work
(Source: Screenshot)

 Launching RVIZ to visualize all running nodes of these two
UGVs mapping mission

The ROS tool RVIZ permit visualization of the Gazebo environment,
meaning all it is launched and displayed in the simulator and all other
nodes that we launched so far in ROS. This tool is also highly configu-
rable. At some minutes after running, we could see the followed (Figure
V.17).

CHAPTER V

139

Figure V.18 Two UGVs in Gazebo and RVIZ Navigating and Mapping together
(Source: Screenshot)

 Doing SLAM for a moment, Gazebo and RVIZ visualization
The mapping progress is visualized in real-time in RVIZ, while at the
same time, we see in Gazebo simulator the two UGVs moving around
in concordance with the velocities send to /cmd_vel of each one. In this
case, we use the rqt_steering tool to show different options for teleoper-
ation.

 Generating the maps, one for each UGV and another merged

Figure V.19 Two Maps created by each UGVs Collaboratively
(Source: Screenshot)

The map_server package gives the possibility to get the individual map
of each mobile robot participating in the task and to get another merged.
The following figures show the singular maps (Figure V.18).

CHAPTER V

140

V.3 UNISA-UAV Use Cases

V.3.1 Use Case 1: fixed-wing UAV controlled by a Gazebo plugin

Mission:
The mission is to fly the fixed-wing UAV in order to do all the steps to

perform a safety flight, by the control of each mobile component using a
plugin, that sends the appropriate commands by teleoperation from a key-
board. For this purpose, Gazebo messages and a C++ program was modified.
Graphically we could summaries the general functionality and the steps
needed as follow Figure V.19.

Figure V.20 UAV Processes to bring and control a Model into Gazebo
(Source: Self-elaboration)

UAV Description:

Figure V.20 describes the mio_milvus fixed-wing UAV components
graphically, meaning the links and joints configurations. The mobile compo-
nents are the left and right ailerons, the left and right flaps, the left and right
rudders, the elevator, the wheels, and the propeller.

CHAPTER V

141

Figure V.21 UAV Description – links and joints
(Source: Self-elaboration)

Programs:
Simulation: gazebo

Gazebo 3D simulator to permit the communication and control fa-
cilities in the virtual world of the UAV

 Implemented physics engine: ODE
 Alternative physics engine: Bullet

Plugin: MioMilvusPlugin
We modify the CessnaPlugin slightly in order to be possible to use with

CessnaGUIPlugin in another fixed-wing UAV over Gazebo. The resulting
new C++ code call MioMilvusPlugin requires to be compiled, which in turn
asks for some code adaptation. We will explain the program elements and the
compilation process as an example (Figures V.21 to V.30).

CHAPTER V

142

Figure V.22 MioMilvusPlugin for Gazebo – initial definitions
(Source: Screenshot)

MioMilvusPlugin requires some gazebo, sdf, and other header files that are

included at the beginning of the C++ program (lines 18-26), the variable def-
initions. Using namespace gazebo (line 28) makes all members visible, then
we do not need to call gazebo:: all the time. The MioMilvusPlugin is registered
as a gazebo model plugin in the simulator (line 30), then this C++ library could
be loaded by Gazebo at runtime to has access to Gazebo's API, to perform a
wide variety of tasks including moving UAV mobile components (joints) and
accessing sensor data (cameras, lidar).

Plugin: MioMilvusPlugin - Class Constructor and Destructor

The lines 33 to 44 creates a plugin constructor and instantiates initial values
for cmd (array for control propeller speed and UAV mobile surfaces). It also
defines their default PID values. While the lines 47 to 50 create a destructor
to disconnect everything for a clear exit.

CHAPTER V

143

Figure V.23 MioMilvusPlugin for Gazebo – Class Constructor and Destructor
(Source: Screenshot)

Plugin: MioMilvusPlugin - FindJoint method

Lines 53 to 72 create the FindJoint method, which requires as input the

reference memory of sdf parameters and joints, provided at call time. The
method looks into the .world file to obtain the parameter name and assigned
value for each call, with those strings creates the working variables jointName
and _joint. It could throw error messages and abort the loading process if one
of the required parameters is not found.

Figure V.24 MioMilvusPlugin for Gazebo – FindJoint method
(Source: Screenshot)

CHAPTER V

144

Plugin: MioMilvusPlugin - Load method

The lines 75 to 150 define the Load method, requires as input the _model

and _sdf pointers. It asks for the values of the propeller_max_rpm and mobile
surface variables that must be passed as parameters; otherwise, abort the load
process if those are not found, then Call the FindJoint method to obtain the
values of each of them.

Figure V.25 MioMilvusPlugin for Gazebo – Load method 1of3
(Source: Screenshot)

The lines 105 to 130 overload the initial PID values if those are provided

in the world file. The PID values are obtained for the propeller and mobile
surfaces, for the last one uses the same values for all of them.

CHAPTER V

145

Figure V.26 MioMilvusPlugin for Gazebo – Load method 2of3
(Source: Screenshot)

The last lines of the load method control the simulation time to deal with

the update events. Initialize the gazebo node, which will be responsible for the
communication transport, then creates the publisher and subscriber to state
and control topics, both relay over the Cessna message type, which is part of
standard Gazebo messages.

Figure V.27 MioMilvusPlugin for Gazebo – Load method 3of3
(Source: Screenshot)

CHAPTER V

146

Plugin: MioMilvusPlugin. Update method

The lines 153 to 167 defines the Update method, uses mutex lock_guard to

be sure that the message to be published remains unchanged during the pro-
cess. It makes calls to UpdatePIDs and PublishState methods.

Figure V.28 MioMilvusPlugin for Gazebo – the Update method
(Source: Screenshot)

Plugin: MioMilvusPlugin - Control method

It is a callback method (lines 170 to 191), it is activated when the new

values for propeller and mobile surfaces comes from the keyboard through the
CessnaGUIPlugin employing control topic to which the UAV in gazebo sim-
ulation environment was previously subscribed. The new values are stored in
a Cessna message array, to be read at call time.

Figure V.29 MioMilvusPlugin for Gazebo – Control method
(Source: Screenshot)

CHAPTER V

147

Plugin: MioMilvusPlugin - UpdatePIDs method

This method (lines 194 to 212) uses the PID, proportional-integral-deriva-

tive controller, which is the most common type of controller used for UAV
stabilization and autonomous control. Here it is used to drive propeller and
mobile surfaces of the UAV flight in the simulation environment.

The specific update of propellerPID and controlSurfacesPID are called
passing the calculated errors.

Figure V.30 MioMilvusPlugin for Gazebo – UpdatePIDs method
(Source: Screenshot)

Plugin: MioMilvusPlugin - PublishState method

This method (lines 215 to 248) prepares the Cessna msg values for the ob-

served state (position and orientation) of the propeller and each mobile sur-
face, as well as for the target state values from keyboard interactions. This
method is called during the Update process, which publishes the message over
the state topic.

CHAPTER V

148

Figure V.31 MioMilvusPlugin for Gazebo – PublishState method
(Source: Screenshot)

Results:

MioMilvus control (Keyboard Teleoperation)

The teleoperation of an aircraft by a keyboard pressing is not an easy job;
however, it simulates a real flight controlling in the sense that the pilots use
the yoke, gears, pedals to “drive” a real aircraft, in the same way, changing
the values by endless variations. However, depending on the computational
resources, it could be very sensible or too slow to accumulate the commands
send to the simulated UAV.

As we could see in the execution images, it was possible to fly a 3D model

of the fixed-wing aircraft call MioMilvus using a plugin that runs only in Ga-
zebo. Doing in this way, the flight does not need a predefined path; it is up to
the pilot to choose the best way to perform the navigation.

CHAPTER V

149

Execution Images:

Figures V.31 and V.34 shows the different stage of the fixed-wing UAV
flight controlled by the increments and decrements of the angular positions of
the mobile components, send to Gazebo simulator from the keyboard pressing.

Figure V.32 MioMilvus in Gazebo – at launch (start)
(Source: Screenshot)

Figure V.33 MioMilvus in Gazebo – taking-off
(Source: Screenshot)

CHAPTER V

150

Figure V.34 MioMilvus in Gazebo – flying
(Source: Screenshot)

Figure V.35 MioMilvus in Gazebo – turning for landing
(Source: Screenshot)

V.3.2 Use Case 2: fixed-wing UAV in Dubins waypoint navigation

Mission:
The mission is to fly the fixed-wing UAV in order to perform a path fol-

lowing between waypoints using Dubins paths; that is, to be on the path with
no time dependency following an optimal path-planning, which for constant-
altitude, constant-velocity vehicles with turning constraints, are also time-op-
timal paths between two configurations (nodes) (Beard & Mc.Lain, 2012).

CHAPTER V

151

A summary of the ROS packages used, based on the Small Unmanned Air-
craft Theory and Practice book, are rosflight and rosplane. The physical pa-
rameters need for our aircraft configuration, like mass, geometry, propulsion,
and aerodynamic parameters.

Also, we presented the variables and files to configure the simulated envi-

ronment, followed by the detailed script and configuration files, and finally,
the execution of the commands console displays. Then a summary of the po-
sition, velocity, and acceleration over time and the results. The objective is to
repeat the experiment with the same or other fixed-wing UAV, in a kind of
fully documented guide.

Packages:

Simulation: gazebo_ros
Gazebo 3D simulator wrapped as a ROS package to permit the com-
munication and control facilities

We use the namespace concept to operate two simulated UGVs in the same
Gazebo world.

 Implemented physics engine: ODE
 Alternative physics engine: Bullet

Autopilot: rosflight_controller

The autopilot is a high-level design model for the guidance loops.
The initial test could be used to estimate the autopilot constants b∗
and to develop a reduced-order model. The guidance models are de-
rived from the six-degree-of-freedom model, kinematic relations,
and force balance equations that follow different kinematic design
models, for example (in equations (9.19) through (9.22)):
• kinematic design models in equations χ̈ = bχ. (χ.c − χ.) + bχ (χc − χ)

◦ Inputs: command inputs χc, hc, and Vac,
◦ Outputs: autopilot coefficients bVa, bh., bh, bχ., and bχ

• kinematic design models in equations ψ. = (g/Va) tan φ
◦ Inputs: command inputs θc, hc, and Vac,
◦ Outputs: autopilot coefficients bVa, bh., bh, bχ., and bχ

• dynamic design model utilizes relationships drawn from free-
body diagrams (see Fig.). The control variables are thrust, lift co-
efficient, and bank angle [Fthrust, CL, φ]T, resulting:
◦ h. = Vg sin γ
◦ h. = Va sin γ (in the absence of wind)

Estimator: rosflight_estimator

This package estimates the states required for the autopilot using the

CHAPTER V

152

onboard sensors and increases the precision using the following fil-
tering methods:
• low-pass filtering the rate gyros, for the angular rates in the body

frame p, q, and r
• low-pass filtering the absolute and differential pressure sensors

and inverting the sensor model, for the altitude h and airspeed Va
• extended Kalman filters, for the remaining states.

◦ two-state EKF that can be used to estimate the roll and pitch
angles (φ, θ).

◦ seven-state EKF based on GPS measurements can be used for
position, ground speed, course, wind, and heading to estimate
the pn, pe, h, Va, φ, θ, ψ, p, q, and r states.

Pathfollower: rosflight_path_follower

This package is related to the guidance laws for tracking straight-
line segments, constant-altitude circular orbits, or a combination of
those in more complex paths, developing strategies to deal with two
challenging disturbances in small UAVs as wind and turn radius. For
the former, the primary tracking issue is wind speeds, which are
commonly 20 to 60 percent of the desired airspeed; and for the latter
is the fundamental limit on the spatial frequency of paths that can be
tracked.
As Nelson, D. R. et al. (2007) suggests, the objective is “to be on the
path” rather than at a certain point at a time, meaning directing the
UAV onto the path. The following figures show the variables used
for developing the modeled strategies in the algorithms (see Fig.
V.38). These authors also say that “for straight-line paths,” the ap-
proach approximates PD control; “for curved paths,” an additional
anticipatory control element to improves the tracking capability
needs to be implemented. Moreover, finally, the approach that ac-
commodates the addition of an adaptive element to account for dis-
turbances such as wind is helpful (p.185).
• constant winds: wn, we

Pathmanager: rosflight_path_manager
Use guidance strategies can be used to follow a series of waypoints,
developing strategies to switch from one waypoint to another by the
definition of planes and corrected fillets to transit with confidence.
• series of waypoints
For Dubins paths, the objective is to transition from one configura-
tion (position and course) to another, uses turn-straight-turn paths
class, managing constant-altitude, constant-groundspeed scenarios.
• series of waypoints
• start configuration denoted as (p s, χ s)

CHAPTER V

153

• end configuration denoted as (p e, χ e),
The following figures show the variables used for developing the
path_manager algorithms (see Fig.)

Pathplanner: rosflight_path_planner

This package uses the deliberative path planning approach, where
the trajectories are planned explicitly; it is strongly dependent upon
the models used to describe the state of the world and the motion of
the vehicle. The package regularly executes an outer feedback loop.
Use simple low-order navigation models for the vehicle and con-
stant-wind models for the atmosphere (p.206).
The problems addressed are point-to-point problems, where the ob-
jective is to plan a waypoint path from one point to another through
an obstacle field; a coverage problem, where the aim is to plan a
waypoint path so that the small UAV covers all the areas, uniformly,
in a specific region. In both cases, given the constraints of the obsta-
cle field. It is configured for the use of the rapidly-exploring random
tree (RRT) algorithm, closely related to the probabilistic roadmap
technique, using Dubins paths between nodes.

Status_publisher: rostopic

This ROS package allows dynamic subscriptions and publications
of information (see figure II.3). It permits us to interact with ROS
communication for getting information about topics and for
interaction with them.

Input variables or configuration files:

Global variable:
 mav_name=milvus
Model: model configuration based on xacro files, calling meshes and con-

figuration files
~/catkin_ws/src/unisa_uvf/bots_simulation/uav_gazebo/rosmilvus/rosmil-

vus_sim/xacro/milvus.xacro

Milvus Config:
 robot name is: milvus
---------- Successfully Parsed XML ---------------
root Link: milvus/base_link has three child(ren)
 child(1): milvus/chase/camera_base_link
 child(2): milvus/gimbal/base_link
 child(2.1): milvus/gimbal/yaw_link
 child(2.1): milvus/gimbal/roll_link
 child(2.1): milvus/gimbal/pitch_link
 child(3): milvus_vero/laser_link

CHAPTER V

154

The xacro and configuration files for model description and gazebo
configuration are grouped in an original xacro file that calls the standard
properties for gazebo and configuration depending on the model name.

Milvus Params:
Configuration file for the UAV, onboard sensors and coefficients
• Mass and Inertial variables
• Components variables
• Trim conditions
• Plugin Parameters

Autopilot and configuration files:

Rosfligh Programs:

zandra@ROS:~/catkin_ws/src/unisa_uvf/bots_simula-

tion/uav_gazebo/rosmilvus/rosmilvus/src$ ls -l
-rw-rw-r-- 1 zandra zandra 6888 set 15 16:22 controller_base.cpp
-rw-rw-r-- 1 zandra zandra 7351 set 15 16:23 controller_example.cpp
-rw-rw-r-- 1 zandra zandra 6871 set 15 16:24 estimator_base.cpp
-rw-rw-r-- 1 zandra zandra 12482 set 15 16:24 estimator_example.cpp
-rw-rw-r-- 1 zandra zandra 2759 set 15 16:25 path_follower_base.cpp
-rw-rw-r-- 1 zandra zandra 2099 set 15 16:26 path_follower_example.cpp
-rwxrwxr-x 1 zandra zandra 3075 set 15 16:27 path_manager_base.cpp
-rwxrwxr-x 1 zandra zandra 13525 set 15 16:27 path_manager_example.cpp
-rw-rw-r-- 1 zandra zandra 1048 set 20 22:43 path_planner.cpp
-rw-rw-r-- 1 zandra zandra 1048 set 20 13:59 path_planner.cpp_test1

Rosflight Header Files:

zandra@ROS:~/catkin_ws/src/unisa_uvf/bots_simulation/uav_ga-

zebo/rosmilvus/rosmilvus/include$ ls -l
-rw-rw-r-- 1 zandra zandra 3529 set 15 16:30 controller_base.h
-rw-rw-r-- 1 zandra zandra 1543 set 15 16:30 controller_example.h
-rw-rw-r-- 1 zandra zandra 3062 set 15 16:31 estimator_base.h
-rw-rw-r-- 1 zandra zandra 1374 set 15 16:31 estimator_example.h
-rw-rw-r-- 1 zandra zandra 2223 set 15 23:56 path_follower_base.h
-rw-rw-r-- 1 zandra zandra 387 set 15 16:32 path_follower_example.h
-rwxrwxr-x 1 zandra zandra 2673 set 15 16:33 path_manager_base.h
-rwxrwxr-x 1 zandra zandra 2274 set 15 16:34 path_manager_example.h

CHAPTER V

155

Controller Configuration:

zandra@ROS:~/catkin_ws/src/unisa_uvf/bots_simulation/uav_gazebo/ro-

smilvus/rosmilvus/cfg$ cat Controller.cfg

#!/usr/bin/env python
PACKAGE = "rosmilvus"
from dynamic_reconfigure.parameter_generator_catkin import *
gen = ParameterGenerator()
trim
trim = gen.add_group("Trim")
trim.add("TRIM_E", double_t, 0, "Elevator trim", 0, -1, 1)
trim.add("TRIM_A", double_t, 0, "Aileron trim", 0, -1, 1)
trim.add("TRIM_R", double_t, 0, "Rudder trim", 0, -1, 1)
trim.add("TRIM_T", double_t, 0, "Throttle trim", 0.6, 0, 1)
course hold
course = gen.add_group("Course")
course.add("COURSE_KP", double_t, 0, "Course proportional gain", 0.7329, 0, 2)
course.add("COURSE_KD", double_t, 0, "Course derivative gain", 0, -1, 0)
course.add("COURSE_KI", double_t, 0, "Course integral gain", 0.0, 0, 0.2)
roll hold
roll = gen.add_group("Roll")
roll.add("ROLL_KP", double_t, 0, "Roll proportional gain", 1.17, 0, 3)
roll.add("ROLL_KD", double_t, 0, "Roll derivative gain", -0.13, -1, 0)
roll.add("ROLL_KI", double_t, 0, "Roll integral gain", 0, 0, 0.2)
pitch hold
pitch = gen.add_group("Pitch")
pitch.add("PITCH_KP", double_t, 0, "Pitch proportional gain", 1.0, 0, 3)
pitch.add("PITCH_KD", double_t, 0, "Pitch derivative gain", -0.17, -0.4, 0)
pitch.add("PITCH_KI", double_t, 0, "Pitch integral gain", 0, 0, 0.2)
pitch.add("PITCH_FF", double_t, 0, "Pitch feed forward value", 0, -1, 1)
airspeed with pitch hold
as_pitch = gen.add_group("Airspeed with Pitch")
as_pitch.add("AS_PITCH_KP", double_t, 0, "Airspeed with pitch proportional gain", -0.0713, 0, 0.2)
as_pitch.add("AS_PITCH_KD", double_t, 0, "Airspeed with pitch derivative gain", -0.0635, -0.2, 0)
as_pitch.add("AS_PITCH_KI", double_t, 0, "Airspeed with pitch integral gain", 0, 0, 0.2)
airspeed with throttle hold
as_thr = gen.add_group("Airspeed with Throttle")
as_thr.add("AS_THR_KP", double_t, 0, "Airspeed with throttle proportional gain", 3.2, 0, 10)
as_thr.add("AS_THR_KD", double_t, 0, "Airspeed with throttle derivative gain", 0, -5, 0)
as_thr.add("AS_THR_KI", double_t, 0, "Airspeed with throttle integral gain", 1.0, 0, 10)
altitude hold
alt = gen.add_group("Altitude")
alt.add("ALT_KP", double_t, 0, "Altitude proportional gain", 0.045, 0, 0.1)
alt.add("ALT_KD", double_t, 0, "Altitude derivative gain", 0, -0.05, 0)
alt.add("ALT_KI", double_t, 0, "Altitude integral gain", 0.01, 0, 0.05)
side-slip hold
sideslip = gen.add_group("Side Slip")
sideslip.add("BETA_KP", double_t, 0, "Side slip proportional gain", -0.1164, 0, 0.3)
sideslip.add("BETA_KD", double_t, 0, "Side slip derivative gain", 0, -0.15, 0)
sideslip.add("BETA_KI", double_t, 0, "Side slip integral gain", -0.0037111, 0, 0.05)
exit(gen.generate(PACKAGE, "rosmilvus", "Controller"))

CHAPTER V

156

Follower Configuration:

zandra@ROS:~/catkin_ws/src/unisa_uvf/bots_simulation/uav_ga-

zebo/rosmilvus/rosmilvus/cfg$ cat Follower.cfg

#!/usr/bin/env python
PACKAGE = "rosmilvus"
from dynamic_reconfigure.parameter_generator_catkin import *
gen = ParameterGenerator()
Chi Infinity
gen.add("CHI_INFTY", double_t, 0, "Chi Infinity", 1.0472, 0 , 1.5708)
K Path
gen.add("K_PATH", double_t, 0, "K Path", 0.025, 0, 1)
K Orbit
gen.add("K_ORBIT", double_t, 0, "K Orbit", 4.0, 0, 15)
exit(gen.generate(PACKAGE, "rosmilvus", "Follower"))

Rosmilvus configuration files:

zandra@ROS:~/catkin_ws/src/unisa_uvf/bots_simula-

tion/uav_gazebo/rosmilvus/rosmilvus_sim/xacro$

-rw-rw-r-- 1 zandra zandra 825 set 11 12:06 aircraft_forces_and_moments.xacro
-rw-rw-r-- 1 zandra zandra 472 set 11 12:06 aircraft_truth.xacro
-rw-rw-r-- 1 zandra zandra 3857 set 17 00:02 fixedwing.xacro
drwxrwxr-x 2 zandra zandra 4096 set 16 09:34 meshes
-rw-rw-r-- 1 zandra zandra 2257 set 16 23:15 milvus_sil.xacro
-rw-rw-r-- 1 zandra zandra 4159 set 18 13:16 milvus.xacro

ROS nodes and topics:
Figure V.35 shows the nodes and topics of the Milvus UAV performing a

Dubins path; the nodes are represented by ellipses while the topics by rectan-
gles. It is provided by the rosgraph tool.

CHAPTER V

157

Figure V.36 Nodes and topics in Gazebo-ROS
(Source: Screenshot)

Results:

Dubins Path Following (Plots)

The plot shows the (x,y) positions once the desired altitude has been
reached, the line in blue shows the ascension of the UAV (see Figure V.36
and V.37), then the plot of Dubins path-following (see Figure V.38).

Figure V.37 Milvus UAV ascension
(Source: Screenshot)

CHAPTER V

158

Figure V.38 Milvus UAV Plot while ascending
(Source: Screenshot)

Figure V.39 Milvus UAV Plot of the Dubins path followed
(Source: Screenshot)

CHAPTER V

159

Execution Images:

Launching Milvus in Gazebo-ROS

The Gazebo-ROS environment starts with Milvus UAVs in a virtual envi-

ronment, as we could see in Figure V.39. By the execution of roslaunch, call
the configuration script milvus.launch placed in the launch folder of package
rosmilvus_sim.

The Milvus UAV has a fake sensor configured for sensing, and navigation
through autopilot control means that it is entirely autonomous. The environ-
ment is usually used for aircraft. The objective in this use case is the autono-
mous navigation following Dubins path waypoints.

Figure V.40 Milvus UAV in Gazebo at launch
(Source: Screenshot)

Milvus following a path-planning

The Milvus UAV, based on the configuration at launch time and parameters
send, go along all the navigation steps. It starts armed: 'true,' and with an
established rosplane_msgs/Current_Path, then once arrived at the altitude
of 50m, start the path-planning programmed to follow a Dubins Path. The
Images (Figures V.40 to V.43) show different moments of the flight
<node name="status_publisher" pkg="rostopic" type="rostopic"

output="screen"
 args="pub status rosflight_msgs/Status '{header: {seq: 0, stamp: 0,

frame_id: 'none'},
 armed: 'true', failsafe: 'false', rc_override: 'false', offboard: 'false',
 control_mode: 0, error_code: 0, num_errors: 0, loop_time_us: 0}'"/>

CHAPTER V

160

Figure V.41 Milvus UAV in Gazebo at starting the execution
(Source: Screenshot)

Figure V.42 Milvus UAV in Gazebo at takeoff
(Source: Screenshot)

CHAPTER V

161

Figure V.43 Milvus UAV in Gazebo at turning in Dubins path
(Source: Screenshot)

Figure V.44 Milvus UAV in Gazebo straight flights in Dubins path
(Source: Screenshot)

Milvus fake cameras and lidar

Figure V.44 shows the Milvus UAV two onboard cameras images and lidar

projections while performing a path following.

CHAPTER V

162

Figure V.45 Milvus two onboard cameras images
(Source: Screenshot)

163

Conclusions

The unmanned vehicles, like other mobile robots, are expected to increase
in several units and complexity, enabling autonomous smart factories and
homes, intelligent transportation, and intelligent production systems
(agriculture, mining, fishing) and other civilian activities like rescue,
structural and environmental monitoring. Then, the research activities need to
encompass the continuously evolving and challenging end-user applications
and technologies, in their broad sense, involved in mobile robotics platforms.

Our UNISA-UVF framework, based on Gazebo-ROS, has the main

functionalities for unmanned vehicle’s end-to-end development. It facilitates
the modeling and simulation of UGV and UAV from scratch; also, it integrates
other popular frameworks, like Solidworks, MatLab, Simulink, and X-Plane.
Different UGVs and UAVs have been modeled and simulated successfully by
using a 3-D CAD modeler. All the vehicles we implement in the platform had
testing purposes of the selected software integration: either by using the model
editor of the platform, either by using converted and implemented designs
from other CAD tools. Furthermore, the kinematics and dynamics embedded
in the different packages were reviewed and selected accordingly to the needs
of vehicles’ mechanical systems behavior on tested use-cases with different
control packages. UNISA-UVF has been capable of coping successfully with
the simulated physical environments while performing the different missions
we tried. Even though Gazebo-ROS seems challenging to implement and use,
it shows all its potential as a collaborative environment to create missions that
extend the capabilities of X-Plane and other software by the addition of
sensing capabilities and cooperative work.

For these reasons, the UNISA-UVF framework needs to be enhanced

continuously as a testbed for unmanned vehicles for customized purposes,
with new integrated tools, methods, models, hardware, and software
components. From the end-user applications’ perspective, one future
development could be the incorporation of artificial intelligence to unisa-bots,
another future work would be the enhance testing of mobile robots working
collaboratively. From the UNISA-UVF framework evolution, one next

CONCLUSIONS

164

research project would be the migration to ROS2, which is still under a
massive development (releasing new versions every six months) but today are
getting stable to start testing the use-cases already did until now, incorporating
the highly distributed and real-time middleware capabilities. Another
significant improvement will be the creation of a user-friendly environment -
with a graphical interface in order to easily interact with the multiple files
needed to launch simulated robotic environments, including tools for dynamic
interaction with documented procedures of unmanned vehicles use-cases.

165

References

Alexander, R. M. (1989). Optimization and gaits in the locomotion of
vertebrates. Physiological reviews, 69(4), 1199-1227.

Antonelli, G., Chiaverini, S., & Fusco, G. (2005). A calibration method for
odometry of mobile robots based on the least-squares technique: theory
and experimental validation. IEEE Transactions on Robotics, 21(5), 994-
1004.

Arkin, R. C., & Arkin, R. C. (1998). Behavior-based robotics. MIT press.

Avots, D., Lim, E., Thibaux, R., & Thrun, S. (2002). A probabilistic technique
for simultaneous localization and door state estimation with mobile robots
in dynamic environments. In Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on (Vol. 1, pp. 521-526). IEEE.

Bambino, I. (2008). Una introducción a los robots móviles. AADECA, Buenos
Aires.

Baraff, D. (1989, July). Analytical methods for dynamic simulation of non-
penetrating rigid bodies. In ACM SIGGRAPH Computer Graphics (Vol.
23, No. 3, pp. 223-232). ACM.

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust
features (SURF). Computer vision and image understanding, 110(3), 346-359.

Brogliato, B., Ten Dam, A. A., Paoli, L., Genot, F., & Abadie, M. (2002).
Numerical simulation of finite dimensional multibody non-smooth
mechanical systems. Applied Mechanics Reviews, 55(2), 107-150.

Beard, R. W., & McLain, T. W. (2012). Small unmanned aircraft: Theory and
practice. Princeton university press.

Borenstein, J., Everett, H. R., & Feng, L. (1996). Navigating mobile robots:
Systems and techniques (pp. 1-225). Wellesley, MA: AK Peters.
Navigating mobile robots: Systems and techniques (pp. 1-225). Wellesley,
MA: AK Peters.

REFERENCES

166

Boyen, X., & Koller, D. (1998, July). Tractable inference for complex
stochastic processes. In Proceedings of the Fourteenth Conference on
Uncertainty in artificial intelligence (pp. 33-42). Morgan Kaufmann
Publishers Inc.

Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties
and classification of kinematic and dynamic models of wheeled mobile
robots. IEEE transactions on robotics and automation, 12(1), 47-62.

Carlos, C. D. W., Siciliano, B., & Bastin, G. (1997). Theory of Robot Control.

Crick, C., Jay, G., Osentoski, S., Pitzer, B., & Jenkins, O. C. (2017). Rosbridge:
Ros for non-ros users. In Robotics Research (pp. 493-504). Springer, Cham.

Cole, D. M., & Newman, P. M. (2006, May). Using laser range data for 3D
SLAM in outdoor environments. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on (pp. 1556-
1563). IEEE.

Cosmin Petra, Bogdan Gavrea, Mihai Anitescu & Florian Potra. (2009). A
computational study of the use of an optimization-based method for
simulating large multibody systems, Optimization Methods and Software,
24:6, 871-894, DOI: 10.1080/10556780902806094.

Darmanin, R. N., & Bugeja, M. K. (2016, July). Autonomous Exploration and
Mapping using a Mobile Robot Running ROS. In ICINCO (2) (pp. 208-
215).

Dellaert, F., Burgard, W., Fox, D., & Thrun, S. (1999). Using the condensation
algorithm for robust, vision-based mobile robot localization. In Computer
Vision and Pattern Recognition, 1999. IEEE Computer Society Conference
on. (Vol. 2, pp. 588-594). IEEE.

De Simone, M.C.; Russo, S.; Rivera, Z.B. & Guida, D. (2018). Multibody
Model of a UAV in Presence of Wind Fields. In: Proceedings - 2017
International Conference on Control, Artificial Intelligence, Robotics and
Optimization, ICCAIRO 2017, pp. 83-88. doi: 10.1109/ICCAIRO.2017.26.

De Simone, M.C. & Guida, D. (2017) On the development of a low-cost device
for retrofitting tracked vehicles for autonomous navigation. In: AIMETA
2017 - Proceedings of the 23rd Conference of the Italian Association of
Theoretical and Applied Mechanics, Vol. 4 (2017), pp. 71-82.

De Simone, M.C. & Guida, D. (2018). Control design for an under-actuated
UAV model. FME Transactions, 46(4), 443-452.

REFERENCES

167

De Simone, M.C.; Rivera, Z.B. & Guida, D. (2018). Obstacle avoidance
system for unmanned ground vehicles by using ultrasonic sensors.
Machines, Vol. 6, No. 2, 18 (2018). doi: 10.3390/machines6020018.

De Simone, M.C. & Guida, D.: Identification and control of an Unmanned
Ground Vehicle by using Arduino. UPB Scientific Bulletin, Series D:
Mechanical Engineering, Vol. 80, No. 1, (2018), pp. 141-154.

Denavit, J., & Hartenberg, R. S. (1955). Kinematic modeling for robot
calibration. Trans. ASME Journal of Applied Mechanics, 22, 215-221.

Douillard, B., Underwood, J., Melkumyan, N., Singh, S., Vasudevan, S.,
Brunner, C., & Quadros, A. (2010, October). Hybrid elevation maps: 3D
surface models for segmentation. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on (pp. 1532-1538).
IEEE.

Dryanovski, I., Morris, W., & Xiao, J. (2010, October). Multi-volume
occupancy grids: An efficient probabilistic 3D mapping model for micro
aerial vehicles. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on (pp. 1553-1559). IEEE.

Dudek, G., & Jenkin, M. (2010). Computational principles of mobile robotics.
Cambridge university press.

Einhorn, E., Langner, T., Stricker, R., Martin, C., & Gross, H. M. (2012,
October). Mira-middleware for robotic applications. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp. 2591-
2598). IEEE.

Engelson, S. P., & McDermott, D. V. (1992, April). Image signatures for place
recognition and map construction. In Sensor Fusion IV: Control Paradigms
and Data Structures (Vol. 1611, pp. 282-294). International Society for
Optics and Photonics.

Fankhauser, P., & Hutter, M. (2016). A universal grid map library:
Implementation and use case for rough terrain navigation. In Robot
Operating System (ROS) (pp. 99-120). Springer, Cham.

Fairfield, N., Kantor, G., & Wettergreen, D. (2007). Real‐time SLAM with
octree evidence grids for exploration in underwater tunnels. Journal of
Field Robotics, 24(1‐2), 03-21.

Flynn, A. M. (1985). Redundant sensors for mobile robot navigation.

REFERENCES

168

Foote, T. (2013, April). tf: The transform library. In 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA) (pp. 1-6). IEEE.

Fournier, J., Ricard, B., & Laurendeau, D. (2007, May). Mapping and
exploration of complex environments using persistent 3D model. In null
(pp. 403-410). IEEE.

Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (2000). A probabilistic
approach to collaborative multi-robot localization. Autonomous Robots,
8(3), 325-344.

Fox, D., Burgard, W., & Thrun, S. (1999). Markov localization for mobile
robots in dynamic environments. Journal of artificial intelligence research,
11, 391-427.

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to
collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23-33.

Funda, J., Taylor, R. H., & Paul, R. P. (1990). On homogeneous transforms,
quaternions, and computational efficiency. IEEE Transactions on Robotics
and Automation, 6(3), 382-388.

Gage, D. W. (1995). UGV history 101: A brief history of Unmanned Ground
Vehicle (UGV) development efforts. NAVAL COMMAND CONTROL
AND OCEAN SURVEILLANCE CENTER RDT AND E DIV SAN
DIEGO CA.

Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses,
G., ... & Satava, R. M. (2005). Virtual reality simulation for the operating
room: proficiency-based training as a paradigm shift in surgical skills
training. Annals of surgery, 241(2), 364.

Guivant, J. E., & Nebot, E. M. (2001). Optimization of the simultaneous
localization and map-building algorithm for real-time implementation.
IEEE transactions on robotics and automation, 17(3), 242-257.

Gutmann, J. S., & Fox, D. (2002). An experimental comparison of localization
methods continued. In Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on (Vol. 1, pp. 454-459). IEEE.

Hadsell, R., Bagnell, J. A., Huber, D. F., & Herbert, M. (2009, June). Accurate
rough terrain estimation with space-carving kernels. In Robotics: Science
and Systems (Vol. 2009).

Harris, C., & Stephens, M. (1988, August). A combined corner and edge
detector. In Alvey vision conference (Vol. 15, No. 50, pp. 10-5244).

REFERENCES

169

Herbert, M., Caillas, C., Krotkov, E., Kweon, I. S., & Kanade, T. (1989, May).
Terrain mapping for a roving planetary explorer. In Proceedings, 1989
International Conference on Robotics and Automation (pp. 997-1002). IEEE.

Hornung, A., Wurm, K. M., & Bennewitz, M. (2010, October). Humanoid robot
localization in complex indoor environments. In IROS (pp. 1690-1695).

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W.
(2013). OctoMap: An efficient probabilistic 3D mapping framework based
on octrees. Autonomous robots, 34(3), 189-206.

Howard, A., Koenig, N., Hsu, J., & Dolha, M. (2014). Gazebo simulator
website.

HSU, John M.; PETERS, Steven C. Extending open dynamics engine for the
DARPA virtual robotics challenge. En International Conference on
Simulation, Modeling, and Programming for Autonomous Robots.
Springer, Cham, 2014. p. 37-48.

Hwang, Y. K., & Ahuja, N. (1992). Gross motion planning—a survey. ACM
Computing Surveys (CSUR), 24(3), 219-291.

Inoue, K., Otsuka, K., Sugimoto, M., & Murakami, N. (1997, September).
Estimation of place of tractor and adaptive control method of autonomous
tractor using INS and GPS. In Preprints of the International Workshop on
Robotics and Automated Machinery for Bio-Productions (pp. 27-36).

Jones, D. G., & Malik, J. (1992). Computational framework for determining
stereo correspondence from a set of linear spatial filters. Image and Vision
Computing, 10(10), 699-708.

Kalman, R. E. (1960). A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1), 35-45.

Kramer, J., & Scheutz, M. (2007). Development environments for
autonomous mobile robots: A survey. Autonomous Robots, 22(2), 101-132.

Kavraki, L., Svestka, P., & Overmars, M. H. (1994). Probabilistic roadmaps
for path planning in high-dimensional configuration spaces (Vol. 1994).
Unknown Publisher.

Kim, D. H., Wang, H., & Shin, S. (2006). Decentralized control of
autonomous swarm systems using artificial potential functions: Analytical
design guidelines. Journal of Intelligent and Robotic Systems, 45(4), 369-
394.

REFERENCES

170

Koenig, N. P., & Howard, A. (2004, September). Design and use paradigms
for Gazebo, an open-source multi-robot simulator. In IROS (Vol. 4, pp.
2149-2154).

Koenig, Nate. et al. Gazebo. Retrieved, 2012, vol. 3, no 26, p. 2012.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree
search. Artificial intelligence, 27(1), 97-109.

Koubaa, A., Alajlan, M., & Qureshi, B. (2017). ROSLink: Bridging ROS with
the Internet-of-Things for Cloud Robotics. In Robot Operating System
(ROS) (pp. 265-283). Springer, Cham.

KPMG Global Automotive Executive Survey [Online] Available:
https://assets.kpmg.com/content/dam/kpmg/nl/pdf/2018/sector/automoti
ve/global-automotive-executive-survey-2018.pdf

KuCuk, S., & Bingul, Z. (2004). The inverse kinematics solutions of industrial
robot manipulators. IEEE Conference on Mechatronics, 274-279.

Kunze, L., Roehm, T., & Beetz, M. (2011, May). Towards semantic robot
description languages. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on (pp. 5589-5595). IEEE.

Latombe, J. C. (2012). Robot motion planning (Vol. 124). Springer Science &
Business Media.

Laumond, J. P., Sekhavat, S., & Lamiraux, F. (1998). Guidelines in
nonholonomic motion planning for mobile robots. In Robot motion
planning and control (pp. 1-53). Springer, Berlin, Heidelberg.

Lin, M., & Gottschalk, S. (1998, May). Collision detection between geometric
models: A survey. In Proc. of IMA conference on mathematics of surfaces
(Vol. 1, pp. 602-608).

Litman, T. (2017). Autonomous vehicle implementation predictions. Victoria,
Canada: Victoria Transport Policy Institute.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on (Vol. 2, pp. 1150-1157). Ieee.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2), 91-110.

REFERENCES

171

Lozano-Pérez, T., & Wesley, M. A. (1979). An algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the
ACM, 22(10), 560-570.

Lyshevski, S. E., & Nazarov, A. (2000, September). Lateral maneuvering of
ground vehicles: modeling and control. In American Control Conference,
2000. Proceedings of the 2000 (Vol. 1, No. 6, pp. 110-114). IEEE.

Maitland, N., & Harris, C. (1994, September). A Video Based Tracker for use
in Computer Aided Surgery. In BMVC (pp. 1-10).

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010,
May). The office marathon: Robust navigation in an indoor office
environment. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on (pp. 300-307). IEEE.

Martinez, A., & Fernández, E. (2013). Learning ROS for robotics
programming. Packt Publishing Ltd.

Meagher, D. (1982). Geometric modeling using octree encoding. Computer
graphics and image processing, 19(2), 129-147.

Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002). FastSLAM: A
factored solution to the simultaneous localization and mapping problem.
Aaai/iaai, 593598.

Moravec, H. P. (1977). Techniques towards automatic visual obstacle
avoidance.

Muir, P. F., & Neuman, C. P. (1987). Kinematic modeling of wheeled mobile
robots. Journal of robotic systems, 4(2), 281-340.

Murphy, R. R. (2014). Disaster robotics. MIT press.

Nelson, D. R., Barber, D. B., McLain, T. W., & Beard, R. W. (2007). Vector
field path following for miniature air vehicles. IEEE Transactions on
Robotics, 23(3), 519-529.

Nilsson, N. J. (1969). A mobile automaton: An application of artificial
intelligence techniques. SRI INTERNATIONAL MENLO PARK CA
ARTIFICIAL INTELLIGENCE CENTER.

Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2007). 6D
SLAM—3D mapping outdoor environments. Journal of Field Robotics, 24
(8-9), 699-722.

REFERENCES

172

O'Connor, M., Bell, T., Elkaim, G., & Parkinson, B. (1996). Automatic
steering of farm vehicles using GPS. Precision Agriculture,
(precisionagricu3), 767-777.

Pathak, K., Birk, A., Poppinga, J., & Schwertfeger, S. (2007, October). 3d
forward sensor modeling and application to occupancy grid based sensor
fusion. In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on (pp. 2059-2064). IEEE.

Payeur, P., Hébert, P., Laurendeau, D., & Gosselin, C. M. (1997, April).
Probabilistic octree modeling of a 3d dynamic environment. In Robotics
and Automation, 1997. Proceedings., 1997 IEEE International Conference
on (Vol. 2, pp. 1289-1296). IEEE.

Pyo, Y. S. (2015). ROS Robot Programming.

Qian, W., Xia, Z., Xiong, J., Gan, Y., Guo, Y., Weng, S., ... & Zhang, J. (2014,
December). Manipulation task simulation using ros and gazebo. In
Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference
on (pp. 2594-2598). IEEE.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... & Ng, A.
Y. (2009, May). ROS: an open-source Robot Operating System. In ICRA
workshop on open source software (Vol. 3, No. 3.2, p. 5).

Ryde, J., & Hu, H. (2010). 3D mapping with multi-resolution occupied voxel
lists. Autonomous Robots, 28(2), 169.

Rivera, Z.B.; De Simone, M.C.; Guida, D. (2016). Unmanned Ground Vehicle
Modelling in Gazebo/ROS-Based Environments. Machines, 2019, 7, 42.

Roth, B. (1994). Computational advances in robot kinematics. In Advances in
Robot Kinematics and Computational Geometry (pp. 7-16). Springer,
Dordrecht.

Roth-Tabak, Y., & Jain, R. (1989). Building an environment model using
depth information. Computer, 22(6), 85-90.

Samson, C., & Ait-Abderrahim, K. (1991, April). Feedback control of a
nonholonomic wheeled cart in cartesian space. In Robotics and
Automation, 1991. Proceedings., 1991 IEEE International Conference on
(pp. 1136-1141). IEEE.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to
autonomous mobile robots. MIT press.

REFERENCES

173

Sinha, V., Doucet, F., Siska, C., Gupta, R., Liao, S., & Ghosh, A. (2000,
September). YAML: a tool for hardware design visualization and capture.
In Proceedings of the 13th international symposium on System synthesis
(pp. 9-14). IEEE Computer Society.

Smith, Russell, et al. (2005). Open dynamics engine.

Swain, M. J., & Ballard, D. H. (1991). Color indexing. International journal
of computer vision, 7(1), 11-32.

Takaya, K., Asai, T., Kroumov, V., & Smarandache, F. (2016, October).
Simulation environment for mobile robots testing using ros and gazebo. In
System Theory, Control and Computing (ICSTCC), 2016 20th
International Conference on (pp. 96-101). IEEE.

Taylor, J. R., Drumwright, E. M., & Hsu, J. (2016, December). Analysis of
grasping failures in multi-rigid body simulations. In Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR), IEEE International
Conference on (pp. 295-301). IEEE.

Thomas, F., & Ros, L. (2005). Revisiting trilateration for robot localization.
IEEE Transactions on robotics, 21(1), 93-101.

Tsardoulias, E., & Mitkas, P. (2017). Robotic frameworks, architectures and
middleware comparison. arXiv preprint arXiv:1711.06842.

Varadhan, G., & Manocha, D. (2004, October). Accurate Minkowski sum
approximation of polyhedral models. In Computer Graphics and
Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on (pp.
392-401). IEEE.

Vidan, C., & Badea, S. I. (2016). Longitudinal automatic control system for a
light weight aircraft. INCAS Bulletin, 8(4), 157.

Wirth, S., & Pellenz, J. (2007, September). Exploration transform: A stable
exploring algorithm for robots in rescue environments. In Workshop on
Safety, Security, and Rescue Robotics (Vol. 9, pp. 1-5).

175

Acronyms and Abbreviations

ALV Autonomous Land Vehicles

API Application Program Interface

DARPA Defense Advanced Research Projects Agency

DART Dynamic Animation and Robotics Toolkit

DOF Degree of Freedom

DWA Dynamic Window Approach

EKF Extended Kalman Filter

FAA Federal Aviation Administration

GPS Global Positioning System

HMI Human–Machine Interface

ICC Instant Curvature Center

ICR Instantaneous Center of Rotation

IFR International Federation of Robotics

LADAR Laser Detection and Ranging

LiDAR Light Detection and Ranging

LAN Local Area Network

NASA National Aeronautics and Space Administration

NLP Natural Language Processing

MAV Micro Aerial Vehicle

ODE Open Dynamics Engine

ACRONYMS AND ABBREVIATIONS

176

OpenGL Open Graphics Library

PF Particle Filter

PID Proportional-Integral-Derivative feedback control

PRM Probabilistic Route Maps

RF Radio Frequency

RGB Red, Green, Blue

ROS Robotic Operating System

RPP Randomized Path Planner

RSTA Reconnaissance, Surveillance, and Target Acquisition

SDF Simulation Description Format

SIL Software-In-the-Loop

SLAM Simultaneous Localization and Mapping

S&T Science and Technology

TRL Technology Readiness Level

UAV Unmanned Air Vehicle

UGV Unmanned Ground Vehicle

UNISA Università degli Studi di Salerno

UNISA-UVF UNISA Unmanned Vehicle Framework

URDF Universal Robotic Description Format

UUV Unmanned Underwater Vehicle

UVs Unmanned Vehicles

VTOL Vertical Takeoff and Landing

