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Introduction

The era of big data has produced extensive methodologies for extracting fea-
tures/patterns from complex time series data. From a data science perspec-
tive these methodologies have emerged from multiple disciplines, including
statistics, signal processing/engineering, and computer science. Clustering
is a solution for classifying enormous data when there is not any previous
knowledge about classes obtaining numerosity reduction for instance.

Considering time series as discrete objects, conventional clustering pro-
cedures can be used to cluster a set of individual time series with respect to
their similarity such that similar time series are grouped into the same cluster.
From this perspective time series clustering techniques have been developed,
most of them critically depend on the choice of distance (i.e., similarity) mea-
sure. In general, the literature defines three different approaches to cluster
time series: (i) Shape-based clustering, clustering is performed based on the
shape similarity, where shapes of two time series are matched using a non-
linear stretching and contracting of the time axes; (ii) Feature-based cluster-
ing, raw time series are transformed into the feature vector of lower dimension
where, for each time series, a fixed-length and an equal-length feature vec-
tor is created (usually a set of statistical characteristics); (iii) Model-based
clustering assumes a mathematical model for each cluster and attempts to
fit the data into the assumed model.

Choosing an appropriate representation method can be considered as the
key component which effects the efficiency and accuracy of the clustering
solution. High-dimensionality and noise are characteristics of the most time
series data, consequently, dimensionality reduction methods are used in time
series clustering in order to address this issues and promote the performance.
Time series trend composition is a very important topic in data analysis, es-
pecially in the more recent literature of clustering High-dimensional time
series. Checking trend composition is the first step for a further statistical
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analysis conducted on a time series. In fact, many of the clustering proce-
dures proposed in the literature are based on the assumption that all the
time series considered follow the same trend structure. The latter can be
absent, linear or nonlinear. Actually, the true structure of the trend is un-
known, therefore a procedure that allows this distinction is necessary before
any clustering analysis. With this in mind, the proposed thesis aims to fill
this gap.

In particular, the proposal discussed in this thesis regards an embryonic
analysis for carrying out a correct further clustering analysis on time series.
Precisely, it regards the classification of nonstationary time series, where the
nonstationarity is given by the presence of a deterministic trend, by looking
at the first derivative of the trend in a context of high-dimensionality and
without requiring a pre specified form for the trend. This is achieved by
means of a nonparametric estimator which has a very simple form. The idea
is to classify the time series by checking the trend first derivative. If the trend
is constant, then its first derivative is zero, if the trend is linear, then its first
derivative is constant. If none of the previous happens, then the trend is of
course nonlinear and then its first derivative will be not constant. In this
way the time series can be divided into three groups. This approach can be
included in the category of ”clustering of time series based on features”, since
the trend composition can be considered as a feature of the time series. Once
the time series are classified it will be possible to apply the most appropriate
clustering technique.

The chapters of the thesis will be organized as follows. The first Chapter
gives a multidisciplinary overview on the literature of clustering time series
with particular emphasis on the statistical point of view; the second Chapter
introduces the general setting for the idea behind the proposed procedure
together with the statistical tools that will be used in order to present the
statistics based on the proposed first derivative estimator; the third Chapter
focuses on the theoretical results of the proposed estimator and its statistics
in the context of high-dimensionality; the fourth Chapter illustrates simula-
tion studies which evaluate the performances of the proposed procedure for
classifying high-dimensional time series; the fifth Chapter presents an ap-
plication of the proposed procedure on electrical consumption data; finally
some concluding remarks and ideas for future works are presented in order
to conclude the thesis.
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Chapter 1

Time series Clustering

The era of big data has produced extensive methodologies for extracting fea-
tures/patterns from complex time series data. From a data science perspec-
tive these methodologies have emerged from multiple disciplines, including
statistics, signal processing/engineering, and computer science. Clustering
is a solution for classifying enormous data when there is not any previous
knowledge about classes obtaining numerosity reduction for instance.

The goal of clustering is to identify structure in an unlabelled data set
by organizing data into homogeneous groups where the within-group dissim-
ilarity is minimized and the between-group dissimilarity is maximized. Clus-
tering is necessary when no labelled data are available regardless of whether
the data are binary, categorical, numerical, interval, ordinal, relational, tex-
tual, spatial, temporal, spatio-temporal, image, multimedia, or mixtures of
the above data types. Data are called static if all their feature values do not
change with time, or the change negligible. The most of clustering analyses
has been performed on static data. Clustering methods developed for hand-
ing this type of data can be classified into five major categories: partitioning
methods, hierarchical methods, density based methods, grid-based methods,
and model-based methods. Furthermore, the most relevant key points in the
literature are: selecting a suitable clustering criterion, computational issues
(identifying a sensible search strategy for the latent allocations, choosing
sensible starting values) and selecting the number of clusters among others.

Just like static data clustering, time series clustering requires a cluster-
ing algorithm or procedure to form clusters given a set of unlabelled data
objects and the choice of clustering algorithm depends both on the type
of data available and on the particular purpose and application. As far as
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time series data are concerned, distinctions can be made as to whether the
data are discrete-valued or real-valued, uniformly or non-uniformly sampled,
univariate or multivariate, and whether data series are of equal or unequal
length.

From a mere multidisciplinary view point to statistics and statistical
learning literature, a further distinctions can be enlightened. The linear,
stationary paradigm which yields a mathematically elegant and powerful
framework for analyzing and interpreting time series data, may not be al-
ways suitable for modeling more complicated time series. While methods
have been developed for nonlinear and/or nonstationary time series, the lit-
erature on classification and clustering nonlinear, nonstationary series is rel-
atively more recent. Furthermore, while statistic tests may be seen as sim-
ilarity or distance metrics, a key point in the classical clustering literature,
the distinguishing characteristic of a time series may be seen as the defini-
tion of the clustering problem itself. For instance the notion of parallelism
may be a substitution for the membership criterion. Clustering techniques
have been proposed for both time and frequency domain. The main litera-
ture concentrates on multivariate approach and does not often refer to the
High-Dimensional frame.

1.1 General settings

Cluster Analysis and the time series represent the main ingredients compos-
ing the aim of this thesis. A multidisciplinary and general overview of this
key concepts will be presented.

1.1.1 Cluster and Clustering

Cluster analysis or Clustering is an important tool in a variety of scientific
areas including pattern recognition, information retrieval, micro-arrays and
data mining. In general, a family of exploratory data analysis methods can be
used to discover structures in data. These methods aim to obtain a reduced
representation of the initial data and, like principal components analysis,
factor analysis or multidimensional scaling, are one form of data reduction.
The aim of cluster analysis is the organization of the set into homogenous
classes or natural classes, in a way which ensures that objects within a class
are similar to one another.
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Sometimes some confusion about the use of the terms classification and
Clustering occurs. Classification, whose task is to assign objects to classes
or groups on the basis of measurements of the objects, is more general and
can be divided into Supervised, Semisupervised and Unsupervised.

Supervised classification (or discrimination) seeks to create a classifier
for the classification of future observations, starting from a set of labeled
objects (a training or learning set). More precisely, data are composed of
n individuals x = (x1, . . . ,xn) belonging to a space X of dimension p, and
also of an associated partition in K groups G1, . . . , GK . This partition is
denoted by z = (z1, . . . , zn), where zi = (zi1, . . . , ziK)′ is a vector of {0, 1}K
such that zik = 1 if individual xi belongs to the kth group Gk, and zik = 0
otherwise (i = 1, . . . , n; k = 1, . . . , K). The data set is thus composed of all
pairs D = (x, z) = ((x1, z1), . . . , (xn, zn)), generally denoted as the learning
data set. The aim is to estimate the group zn+1 of any new individual xn+1

in X for which the group would be unknown. This aim can be reformulated
as the estimation of an allocation rule r from D and defined as follows:

r :X → {1, . . . , K}
xn+1 7→ r(xn+1)

In Semisupervised classification, the aim is the same as in supervised
classification but the data set is composed of nl individuals (0 ≤ nl ≤ n)
xl = (x1, . . . ,xnl) for which group memberships zl = (z1, . . . , znl) are known,
whereas the nu = n − nl remaining individuals xu = (xnl+1, . . . ,xn) have
unknown labels zu = (znl+1, . . . , zn). Then, D = (Dl, Du) with Dl = (xl, zl)
and Du = xu. The main idea is thus that the unlabelled individuals may
be useful to learn an allocation rule. Usually, unlabelled individuals are
expected to be more numerous than the labelled ones since the latter are
clearly cheaper to obtain.

Finally, in Unsupervised classification, or Clustering, only individuals x
are known and thus observed data are restricted to D = x. The aim is
focused to estimating the partition z related to x and not to estimate a
partition of all the space X . However, in some cases a partition of all the
space X can be given as a simple by-product. In its more general, but also
more difficult, version, the number of groups K is unknown as the number
of individuals in a group, or Cluster.

In order to organize the objects of into homogenous clusters, the defi-
nition of homogenity is needed. Often similarity or dissimilarity measures
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can be used to such task. Many clustering methods require the data to be
presented as a set of proximities. This notion of proximity, which is a quanti-
tative measure of closeness, is a general term for similarity, dissimilarity and
distance: two objects are close when their dissimilarity or distance is small
or their similarity large. Formally, a dissimilarity on the set Ω can be defined
as a function d from Ω× Ω to R such that:

1. d(x, y) > 0 for all x 6= y belonging to Ω

2. d(x, x) = 0 for all x belonging to Ω

3. d(x, y) = d(y, x) for all x, y belonging to Ω.

A dissimilarity satisfying the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ Ω

is a distance. Sometimes these proximities are the form in which the data
naturally occur. In most clustering problems, however, each of the objects
under investigation will be described by a set of variables or attributes. The
first step in clustering, possibly the most important, is to define these prox-
imities. Different kinds of definitions depending on the type of variables
(continuous, binary, categorical or ordinal) are to be found in the literature.
For instance, in the absence of information allowing the appropriate distance
to be employed, the Euclidean distance between two vectors x = (x1, . . . , xp)
and y = (y1, . . . , yp) in Rp, defined by

d(x,y) = ||x− y|| =

√√√√ p∑
i=1

(xi − yi)2

is the most frequently used distance for continuous data. Moreover, before
computing these proximities, it is often necessary to consider scaling or trans-
forming the variables, since variables with large variances tend to impact the
resulting clusters more than those with small variances. Other transforma-
tions can be used according to the nature of data.

1.1.2 Time series

A time series is a set of observations xt, each one being recorded at a specified
time t. A discrete-time series, xt, is one which the set T0 of times at which
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observations are made is a discrete set. Continuous-time series, x(t), is one
which T0 = [0, 1] (Brockwell et al., 1991). Any observed data representing a
physical phenomenon can be broadly classified as being either deterministic
or nondeterministic (Bendat and Piersol, 2011). Deterministic data are those
that can be described by an explicit mathematical relationship. A classical
example consider a rigid body that is suspended from a fixed foundation by
a linear spring, it defines the exact location of the body at any instant of
time in the future. However, there are many other physical phenomena that
produce data that are nondeterministic. For example, the height of waves
in a confused sea, the acoustic pressures generated by air rushing through
a pipe, and the electrical output of a noise generator represent data that
cannot be described by explicit mathematical relationships. There is no way
to predict an exact value at a future instant of time. These data are random
in character and must be described in terms of probability statements and
statistical averages rather than by explicit equations.

While Deterministic data can be further divided into Periodic and Nonpe-
riodic, Nondeterministic (or stochastic) data can be classified into Stationary
and Nonstationary (Brockwell et al., 1991). In general, for all the aforemen-
tioned categories, time series may present different characteristics.

� Seasonality is a periodical pattern observed for a time series. It is the
effects of seasons such as months or fiscal year on the volatility and the
volume traded within a period of time.

� Cycle is a dynamic pattern observed over a period of time (e.g., year).
For instance, it is expected to observe some cyclic behaviour during
harvesting time (e.g., cotton harvesting time).

� Trend is a long-term movement in a given time series without consid-
ering time or some other external influential factors.

� Unpredictable components, often calculated or retrieved after trend-
cycle and seasonal components are removed from the time series. The
remaining parts are unpredictable, since it only represents non-cyclic
and the characteristics that are unique to the underlying time series.

Moreover, regardless the categories, due to the collection of several in-
formation, time series are characterized by High-Dimensionality. Given a
p-dimensional time series {xt, t ∈ T0}, p grows as the sample size t→∞. In
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particular the order at which p grows (as function of t) characterizes the dis-
tinction between High-Dimensional, p = O(tc), or Ultra-High-Dimensional
time series log(p) = O(tc), where c ∈ (0, 1). The serial or temporal depen-
dence gives additional complications for analysis purposes based on this type
of time series. In particular, Clustering High-dimensional Time series has
shown increasing interest in recent years as a means to undertake further
analysis.

1.2 The Time series Clustering Problem

Time series clustering has been shown effective in extracting useful informa-
tion from time series data in various application domains expecially from a
data mining point of view (Fu, 2011). Aghabozorgi et al. (2015) give a wide
multidisciplinary overview of time series clustering procedures.

Considering time series as discrete objects, conventional clustering pro-
cedures can be used to cluster a set of individual time series with respect
to their similarity such that similar time series are grouped into the same
cluster. From this perspective time series clustering techniques have been
developed, most of them critically depend on the choice of distance (i.e.,
similarity) measure. In general, there are three different approaches to clus-
ter time series (Liao, 2005).

1. In Shape-based approach, clustering is performed based on the shape
similarity, where shapes of two time series are matched using a non-
linear stretching and contracting of the time axes. An appropriate dis-
tance measure, specifically adapted for time series, and a convectional
clustering methods are used in the shape-based clustering. An example
is that proposed by Paparrizos and Gravano (2015) that present a novel
algorithm for time series clustering called k-Shape. k-Shape relies on
a scalable iterative refinement procedure, which creates homogeneous
and well-separated clusters. The algorithm uses a normalized version
of the cross-correlation measure in order to consider the shapes of time
series while comparing them. Based on the properties of that distance
measure, a method to compute cluster centroids is developed, which
are used in every iteration to update the assignment of time series to
clusters.

2. In Feature-based clustering, raw time series are transformed into the
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feature vector of lower dimension (i.e., for each time series a fixed-
length and an equal-length feature vector is created, usually a set of
statistical characteristics). Then, a standard measure and a conven-
tional clustering algorithm are applied on the lower dimension feature
vector. The extracted features are usually application dependent which
implies that one set of features that are useful for one application might
not be relevant and useful for another one. Guijo-Rubio et al. (2020)
propose a novel technique of time series clustering based on two clus-
tering stages. In a first step, a least squares polynomial segmentation
procedure is applied to each time series, which is based on a grow-
ing window technique that returns different-length segments. Then, all
the segments are projected into same dimensional space, based on the
coefficients of the model that approximates the segment and a set of
statistical features. After mapping, a first hierarchical clustering phase
is applied to all mapped segments, returning groups of segments for
each time series. These clusters are used to represent all time series
in the same dimensional space, after defining another specific mapping
process. In a second and final clustering stage, all the time series ob-
jects are grouped.

3. Model-based clustering assumes a model for each cluster and attempts
to fit the data into the assumed model. Then, each raw time series data
is transformed into either model parameters (one model for each time
series) or into a mixture of underlying probability distributions. An ex-
ample is proposed by McDowell et al. (2018) which address the problem
of clustering gene expression time series data uncertainty with infinite
mixture models using a Dirichlet process (DP) prior. This Bayesian
nonparametric approach is used in the Infinite Gaussian Mixture Model
(GIMM). One of the major problems of the model-based approaches
is the scalability problems, and its performance deteriorated when the
clusters are very similar (Mitsa, 2010).

There are also methods which combine the aforementioned approaches.
Asadi et al. (2016) employed Hidden Markov models (HMMs) for modeling
and analysis of sequence data. Besides, ensemble methods, which employ
multiple models to obtain the target model, revealed good performances in
experiments. All these facts are a high level of motivation to employ HMM
ensembles in the task of classification and clustering of time series data. The
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hybrid approach derives benefits from both similarity-based and model-based
methods.

Essentially, depending on the application, each of the aforementioned time
series clustering approaches may use some or all of five major components:
1) time series representation, 2) distance measurement (or similarity), 3) the
clustering algorithm, 4) prototype definition and 5) clusters’ evaluation. The
reason of having each component is as follows: the time series representation
is usually used to fit data in memory. Afterwards, a clustering algorithm is
performed on the data using a similarity (distance) measure, and as a result a
prototype is created which shows a summarization of the time series. Finally,
the created clusters are evaluated using different criteria.

1.2.1 Time series Representation Methods

The first major component of the time series clustering is time series rep-
resentation. The new representation transforms the time series to another
space such that if two time series are similar in the original space, their
representations are also similar too. Choosing an appropriate time series
representation method plays a significant role in the efficiency and accuracy
of the clustering. Ding et al. (2008) have provided a comprehensive study on
eight different representation methods which are performed on 38 datasets.

In particular, Model-based approaches give a special kind of time series
representation methods that are used to represent a time series in a stochas-
tic way such as HMM, statistical models and Auto-Regressive Moving Aver-
age (ARMA). In literature, a common distinction between models is that of
Parametric and Nonparametric, more specification about the argument will
be given in Section 1.3.

1.2.2 Time series Similarity/Distance Measures

Time series clustering are highly dependent on the choice of similarity and
distance metric. An appropriate choice for similarity/distance extremely
relies on representation methods, the length, the characteristic and the ob-
jective of clustering of the time series. In general, there are three objectives :

1. Finding Similar time series in Time, in this approach, similar time series
are discovered on each time step. Euclidean distance and correlation
based distances are appropriate distance measures for this method.
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However, these distance measures are calculated using raw time series
which is extremely expensive. Hence, the calculation is performed on
transformed time series such as Piece-wise Aggregate Approximation
(PAA), wavelets, or Fourier transformation.

2. Finding Similar time series in Shape, similar time series are identified
according to similar shape features regardless of time points. To do so,
similar trends occurring at different time or similar pattern of changes
in data are captured. Elastic methods, such as Dynamic Time Warping
(DTW), are used to measure distance for this approach. Note that,
similarity in time is a special case of similarity in shape.

3. Finding Similar time series in Change, also known as structural sim-
ilarity, in this approach the time series data is first modelled using
modeling methods such as Hidden Markov Models or ARMA process.
Then, similarity metric is measured based on global feature extracted
from the obtained models. This is an appropriate approach for long
time series, and usually may not be effective for short or modest time
series.

Then, depending on the objective and on the length of time series, the
distance measure can be roughly classified into 4 categories: Shape, Fea-
ture, Complexity and Model based measure. For each category, a further
distinction may be extended to Elastic or Non-elastic measure if comparison
between different length time series is allowed. Montero et al. (2014) provide
a detailed summary on the most used ones.

Shape-based similarity measure

Shape-based similarity measure is usually used to find the similar time series
in time and shape. It is a group of measures which are proper for short
time series and do not take into account the stochastic properties of the
time series. The most used is the Minkowski distance, a non-elastic measure
with the Euclidean one as particular case. Another example is the Frechet
distance (Fréchet, 1906) which measures the proximity between continuous
curves. Unlike the Minkowski distance, it does not just treat the series as
two points sets, but it takes into account the ordering of the observations,
then can be computed on series of different length.
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More recent Shape-based measures is the Minimal Variance Matching
(MVM) (Latecki et al., 2005), which represents a distance (more appropri-
ately an algorithm) for elastic matching of two time series of different lengths.
It outperforms both Dynamic Time Warping distance (DTW) (Sakoe and
Chiba, 1978) and Longest Common Sub-Sequence (LCSS) (Das et al., 1997)
in the sense that it computes the distance value between two time series di-
rectly based on the distances of corresponding elements, just as DTW does,
and it allows the query sequence to match to only a subsequence of the target
sequence, just as LCSS does. Considering each time series as a piecewise lin-
ear function, the Short time series distance (STS), (Möller-Levet et al., 2003)
can be defined as the sum of the squared differences of the slopes in two time
series being compared. To remove the effect of scale, the standardization of
the series is recommended.

The Adaptive dissimilarity index, (Chouakria and Nagabhushan, 2007),
introduces a dissimilarity measure addressed to cover both conventional mea-
sures for the proximity on observations and temporal correlation for the
behaviour proximity estimation. The proximity between the dynamic be-
haviours of the series is evaluated by means of the first order temporal corre-
lation coefficient, while an adaptive tuning function automatically modulates
a conventional raw-data distance. The modulating function should work in-
creasing (decreasing) the weight of the dissimilarity between observations as
the temporal correlation decreases from 0 to −1 (increases from 0 to +1).

Feature-based similarity measure

Feature-based similarity measures are proper for long time series and usually
are represented by time series’ statistics or coefficients that come from a pre-
vious time series’ transformation. Though most feature extraction methods
are generic in nature, the extracted features are usually application depen-
dent. That is, one set of features that work well on one application might not
be relevant to another. Some studies even take another feature selection step
to further reduce the number of feature dimensions after feature extraction.

An example is represented by the Pearson’s correlation coefficient (cc)
and related distances, such as the two cross-correlation-based distances used
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by Golay et al. (1998) in the fuzzy c-means algorithm

d1cc =

(
1− cc
1 + cc

)β
(1.1)

d2cc =2(1− cc) (1.2)

where β > 0 allows to regularize the decreasing of d1cc when cc = −1.
Autocorrelation-based distances, instead, allow to take into acoount the

dependence over time. Let ρ̂Xt = (ρ̂1,Xt , . . . , ρ̂L,Xt)
′ and ρ̂Yt = (ρ̂1,Yt , . . . , ρ̂L,Yt)

′

be the estimated autocorrelation vectors of Xt and Yt respectively, for some
L such that ρ̂i,Xt ≈ 0 and ρ̂i,Yt ≈ 0 for i > L. Galeano and Peña (2001)
define a distance between Xt and Yt as follows.

dACF (Xt,Xt) =
√

(ρ̂Xt − ρ̂Yt)′Ω(ρ̂Xt − ρ̂Yt) (1.3)

where Ω is a matrix of weights.
Periodogram-based distances. Let IXT (λk) = T−1|

∑T
t=1Xte

−iλkt|2 and

IYT (λk) = T−1|
∑T

t=1 Yte
−iλkt|2 be the periodograms of Xt and Yt, respec-

tively, at frequencies λk = 2πk/T , k = 1, . . . , n, with n = [(T − 1)/2] (in this
case [x] denotes the integer part of x). Three dissimilarity measures based
on periodograms were analyzed by Caiado et al. (2006). More precisely, all
of them use the Euclidean distance directly, on the normalized version or
on the log normalized version of the periodogram respectively. De Lucas
(2010) considers a distance measure based on the cumulative versions of the
periodograms, i.e., the integrated periodograms. The author argues that the
approaches based on the integrated periodogram present several advantages
over the ones based on periodograms. In particular, the periodogram is an
asymptotically unbiased but inconsistent estimator of the spectral density
while the integrated periodogram is a consistent estimator of the spectral
distribution; the spectral distribution always exists, but the spectral density
exists only under absolutely continuous distributions.

Nonparametric Spectral estimators distances. Kakizawa et al. (1998) pro-
posed a general spectral disparity measure between two series given by

dW (XT , YT ) =
1

4π

∫ π

−π
W

(
fXT (λ)

fYT (λ)

)
dλ, (1.4)

where fXT and fYT denote the spectral densities of XT and YT , respec-
tively, and W (·) is a divergence function satisfying appropriate regular con-
ditions to ensure that dW has the quasi-distance property. If, for example,
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W (x) = log(αx + (1 − α)) − αlogx, with 0 < α < 1, then dW corresponds
to the limiting spectral approximation of the Chernoff information in the
time domain (Shumway and Unger (1974)). dW is not a distance, it is not
symmetric and does not satisfy the triangle inequality. In order to obtain
the distance property, the divergence function can be modified by setting
W̃ (x) = W (x) +W (x−1).

In practice, the spectra fXT and fYT are unknown and must be previously
estimated. Vilar and Pértega (2004) studied the asymptotic properties of dW
when fXT and fYT are replaced by nonparametric estimators constructed via
local linear regression. These approximations can be done in three different
ways (Fan and Kreutzberger (1998)), thus resulting three different versions
of the dW dissimilarity measure. Specifically,

� dW (DLS), when the spectra are replaced by local lineal smoothers of the
periodograms, obtained via least squares.

� dW (LS), when the spectra are replaced by the exponential transforma-
tion of local linear smoothers of the log-periodograms, obtained via
least squares.

� dW (LK), when the spectra are replaced by the exponential transforma-
tion of local linear smoothers of the log-periodograms, here obtained
by using the maximum local likelihood criterion.

In particular, the default value of the bandwidth is an automatic plug-in
selector specifically designed for local linear Gaussian kernel regression (see
Ruppert et al. (1995))

Two alternative nonparametric spectral dissimilarity measures introduced
by Dı́az and Vilar (2010). The first alternative comes from the generalized
likelihood ratio test approach introduced by Fan and Zhang (2004) to check
whether the density of an observed time series belongs to a parametric family
while the second one evaluates the integrated squared differences between
nonparametric estimators of the log-spectra.

The Discrete wavelet transform (DWT) is a useful feature extraction tech-
nique often used to measure dissimilarity between time series. DWT performs
a scale-wise decomposing of the time series in such a way that most of the
energy of the time series can be represented by only a few coefficients. The
basic idea is to replace the original series by their wavelet approximation
coefficients in an appropriate scale, and then to measure the dissimilarity be-
tween the wavelet approximations. A detailed description of wavelet methods
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for time series analysis can be seen in Percival and Walden (2000). There is
indeed a key point when using the DWT technique for clustering: the choice
of an appropriate scale to obtain an accurate clustering. The algorithm was
proposed by Zhang et al. (2006) and it is aimed to select the scale by levering
two conflicting requirements: an efficient reduction of the dimensionality and
preserving as much information from the original data as possible.

Complexity-based similarity measure

Complexity-based similarity, suitable for short and long time series, repre-
sents a group of dissimilarity measures based on comparing levels of complex-
ity of time series. The similarity of two time series does not rely on specific
serial features or the knowledge of underlying models, but on measuring
the level of shared information by both time series. The mutual informa-
tion between two series can be formally established using the Kolmogorov
complexity concept, a measure of randomness of strings based on their infor-
mation content, proposed by Kolmogorov in 1965 to quantify the randomness
of strings and other objects in an objective and absolute manner. The Kol-
mogorov complexity K(x) of a string x is defined as the length of the shortest
program capable of producing x on a universal computer (i.e., a Turing ma-
chine). Intuitively, K(x) is the minimal quantity of information required
to generate x by an algorithm. In practice measure cannot be computed
and must be approximated. The most common Complexity-measure is the
Compression-based Dissimilarity Measures (CDM) Keogh et al. (2007).

Under many dissimilarity measures, pairs of time series with high levels
of complexity frequently tend to be further apart than pairs of simple se-
ries. This way, complex series are incorrectly assigned to classes with less
complexity. In order to mitigate this effect, Batista et al. (2011) propose to
use information about complexity difference between two series as a correc-
tion factor for existing dissimilarity measures, such as a Complexity-invariant
dissimilarity measure.

Permutation distribution clustering (PDC) represents an alternative complexity-
based approach to clustering time series. Dissimilarity between series is de-
scribed in terms of divergence between permutation distributions of order
patterns in m-embedding of the original series. Specifically, given Xt , an
m-dimensional embedding is constructed by considering

X ′m = {X ′m = (Xt, . . . , Xt+m), t = 1, . . . , T −m}

13



Then, for each X ′m ∈ X ′m, permutation Π(X ′m) obtained by sorting X ′m in
ascending order (so-called codeword of X ′m) is recorded, and the distribution
of these permutations on X ′m, P (Xt) (so-called codebook of Xt ), is used to
characterize the complexity of Xt. Furthermore, dissimilarity between two
time series Xt and Yt is measured in terms of the dissimilarity between their
codebooks P (Xt) and P (Yt), respectively. Brandmaier (2011) establishes
this dissimilarity as the α-divergence between codebooks. The α-divergence
concept (Amari, 2007) generalizes the Kullback-Leibler divergence and the
parameter α can be chosen to obtain a symmetric divergence.

Model-based similarity measure

Model-based similarity measure, for long time series. Model-based dissimilar-
ity measures assume that the underlying models are generated from specific
model or mixture of distribution structures. The main approach in the litera-
ture is to assume that the generating processes of Xt and Yt follow invertible
ARIMA models. In such a case, the idea is fitting an ARIMA model to each
series and then measuring the dissimilarity between the fitted models. First
step requires estimating the structure and the parameters of ARIMA models.
The structure is either assumed to be given or automatically estimated us-
ing, for example, the Akaike’s information criterion (AIC) or the Schawartz’s
Bayesian information criterion (BIC). The parameter values are commonly
fitted using generalized least squares estimators. Some of the most relevant
dissimilarity measures derived will be briefly described.

The Piccolo-Distance (Piccolo (1990)) defines a dissimilarity measure in
the class of invertible ARIMA processes as the Euclidean distance between
the AR(∞) operators approximating the corresponding ARIMA structures.
If the series are non-stationary, differencing is carried out to make them
stationary, and if the series possess seasonality, then it should be removed
before further analysis. Then, a definite criterion such as AIC or BIC is
used to truncated AR(∞) models of orders k1 and k2 that approximate
the generating processes of Xt and Yt, respectively. This approach allows
to overcome the problem of obtaining ad-hoc ARMA approximations for
each of the series subjected to clustering. If Π̂Xt = (π̂1,Xt , . . . , π̂k1,Xt)

′ and

Π̂Yt = (π̂1,Yt , . . . , π̂k2,Yt)
′ denote the vectors of AR(k1) and AR(k2) parameter
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estimations for Xt and Yt, respectively, then the distance takes the form

dPIC(Xt,Yt) =

√√√√ k∑
j=1

(
π̂′j,Xt − π̂

′
j,Yt

)2
, (1.5)

where k = max(k1, k2), π̂
′
j,Xt

= π̂j,Xt if j ≤ k1, and π̂′j,Xt = 0 otherwise, and
analogously π̂′j,Yt = π̂j,Yt if j ≤ k2, and π̂′j,Yt = 0 otherwise. Besides satisfying
the properties of a distance (non-negativity, symmetry and triangularity),
dPIC always exists for any invertible ARIMA process since

∑
πj,

∑
||πj||

and
∑
π2
j are well defined quantities.

The Piccolo-distance does not take into account the variance of the white
noise processes associated with the observed series, while the Maharaj-Distance
(Maharaj, 1996) involves these variances in its definition. For the class of in-
vertible and stationary ARMA processes, two discrepancy measures based on
hypotheses testing to determine whether or not two time series have signif-
icantly different generating processes are defined. The first of these metrics
is given by the test statistic

dMAH(Xt,Yt) =
(

Π̂′Xt − Π̂′Yt

)T
V̂−1

(
Π̂′Xt − Π̂′Yt

)
(1.6)

where are the AR(k) parameter estimations of Xt and Yt, respectively,
with k selected as in the Piccolo-distance, and V̂ is an estimator of V =
1/T (σ2

Xt
R−1Xt +σ2

Yt
R−1Yt ), with σ2

Xt
and σ2

Yt
denoting the variances of the white

noise processes associated with Xt and Yt, and RXt and RYt the sample k×k
covariance matrices of both series. dMAH is asymptotically χ2 distributed un-
der the null hypothesis of equality of generating processes, i.e., by assuming
that Π̂′Xt = Π̂′Yt . Therefore, the dissimilarity between Π̂′Xt and Π̂′Yt can also
be measured through the associated p value, i.e., by considering

dMAHp(Xt,Yt) = P (χ2
k > dMAH(Xt,Yt)) (1.7)

Both the test statistic dMAH and the associated p value dMAHp satisfy the
properties of non-negativity and symmetry so that any of them can be used
as dissimilarity measure between Xt and Yt.

Measures dMAH and dMAHp come from a hypothesis testing procedure de-
signed to compare two independent time series. To overcome this limitation,
Maharaj (2000) introduced a new testing procedure that can be applied to
time series that are not necessarily independent. In this case, a pooled model
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including collectively the models fitted to Xt and Yt is considered, and the
combined vector of 2k AR parameters Π = (ΠXt ,ΠYt)

′ is estimated by using
generalized least squares. Assuming that the two models are correlated at
the same points in time but uncorrelated across observations, the proposed
test statistic (say dMAHext) is also asymptotically distributed as χ2 with k
degrees of freedom. As before, a dissimilarity measure (say dMAHextp) based
on the p values associated with this new test can be constructed.

Kalpakis et al. (2001) propose the Cepstral-based distance which uses
the linear predictive coding (LPC) cepstrum for clustering ARIMA time
series. The cepstrum is defined as the inverse Fourier transform of the short-
time logarithmic amplitude spectrum. The cepstrum constructed by using
the autoregression coefficients from linear model of the signal is referred to
as the LPC Cepstrum, since it is derived from the linear predictive coding
of the signal. Only a few LPC cepstral coefficients retains high amount of
information on the underlying ARIMA model. Consider a time series Xt

following an AR(p) structure, the LPC cepstral coefficients can be derived
from the autoregressive coefficients φr as follows:

ψh =


φ1 if h = 1

φh +
∑h−1

m=1(φm − ψh−m) if 1 < h ≤ p∑p
m=1(1−

m
h

)φmψh−m if p < h

In order to measure the distance between two time series Xt and Yt , the
Euclidean distance between their corresponding estimated LPC cepstral co-
efficients is considered

dLPC,Cep(Xt, Yt) =

√√√√ T∑
i=1

(ψXt,i − ψYt,i)
2 (1.8)

Originally developed by Kumar et al. (2002) in their study of cluster-
ing seasonality patterns. They defined the similarity/distance between two
seasonalities, Ai and Aj , as the probability of accepting/rejecting the null
hypothesis H0 : Ai ∼ Aj . Assuming Ai and Aj , each comprised T indepen-
dent samples drawn from Gaussian distributions with means xit and xjt and
standard deviations σit and σjt , respectively, the statistic

T∑
t=1

(xit − xjt)2

σ2
it + σ2

jt

∼ χ2
T−1,
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consequently,

dij(Ai, Aj) = χ2
T−1

(
T∑
t=1

(xit − xjt)2

σ2
it + σ2

jt

)
(1.9)

The null hypothesis Ai ∼ Aj denotes µit = µjt (i.e., the true seasonalities)
for t = 1, . . . , T .

The Kullback-Liebler distance, Kullback (1997). Let P1 and P2 be matri-
ces of transition probabilities of two Markov chains (MCs) with s probabilities
each and p1ij and p2ij be the i→ j transition probability in P1 and P2. The
asymmetric Kullback–Liebler distance of two probabilities is

dKL(p1i , p2i) =
s∑
j=1

p1ij log

(
p1ij
p2ij

)
.

The symmetric version of Kullback–Liebler distance of two probabilities is

dKLs(p1i , p2i) =
1

2
[dKL(p1i , p2i) + dKL(p2i , p1i)] (1.10)

The average distance between P1 and P2 is then

dKLm(P1, P2) =
1

s

s∑
i=1

dKLs(p1i , p2i).

1.2.3 Time series Clustering Algorithms

According to the algorithm used, time series clustering can be classified into
six categories (Halkidi et al., 2001)

1. Hierarchical time series Clustering. In this approach, a hierarchy of
clusters is generated using either agglomerative (or bottom-up) or divi-
sive (or top-down) approaches. In agglomerative methods, each item is
considered as a cluster then appropriate clusters are merged together;
whereas, in divisive approach all the items are included in one clus-
ter, then the cluster is split into multiple clusters. Once the hierarchy
is generated, it cannot adjust with any further changes. There fore,
the quality of hierarchical clustering is weak and other clustering ap-
proaches are leveraged to remedy this issue.
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2. Partitioning time series Clustering. In this approach, k groups of clus-
ters are generated. One of the most common algorithms of partitioning
clustering is called k-mean clustering, where k clusters are generated
and the mean value of all the elements inside a cluster is considered as
a cluster prototype.

3. Density-based time series Clustering. In this approach, a cluster is
defined as a subspace of dense objects. One of the most common al-
gorithms of density-based clustering is called DBSCAN (Ester et al.,
1996), where a cluster is extended if its neighbors are dense.

4. Grid-based time series Clustering. In the grid-based clustering, the
space is divided into a finite number of cells which are called grids,
then clustering is done on the grids. STING (Wang et al., 1997) and
WaveCluster (Sheikholeslami et al., 1998) are two common grid-based
clustering algorithms.

5. Model-based time series Clustering. In this approach, a model is used
for each cluster, then the best fit of data for the model is discovered.
In model-based clustering approaches, either statistical approaches or
neural network methods can be used. One example is Self-Organizing
Maps (SOM) (Kohonen, 1990) which is a model-based clustering ap-
proach based on neural networks. While, another one is using Gaussian
Mixture Models (GMMs) (see Biernacki (2017), Malsiner-Walli et al.
(2016), Grün (2018)). The central assumption in model-based clus-
tering is that the N time series from H hidden classes. Within each
class, say h, all time series can be characterized by the same data gen-
erating mechanism (also called a clustering kernel), which is defined in
terms of a probability distribution for the entire time series, depending
on an unknown class-specific parameter ϑh. To address serial depen-
dence among the observations for each subject, model-based clustering
of time series data is often based on dynamic clustering kernels derived
from first order Markov processes. The clustering kernel is formulated
for the truncated time series yi = {yi,1, . . . , yi,Ti} conditional on the
first observation yi0, i.e.:

p(yi|ϑh) =

Ti∏
t=1

p(yit|yi,t−1,xit;ϑh), (1.11)
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where xit are unknown values conditioning yit. Other approaches deal-
ing with model-based clustering ignore serial dependence and assume
that the Ti observations are independent, given ϑh. In this case, the
clustering kernel formulated for the entire time series yi = {yi0, . . . , yi,T i}
is called a locally independent clustering kernel. A class assignment in-
dex Si taking a value in the set {1, . . . , H} is introduced for each time
series yi to indicate which class the time series belongs to

p(yi|Si,ϑ1, . . . ,ϑH) = p(yi|ϑSi) =


p(yi|ϑ1), if Si = 1,
...

...

p(yi|ϑH), if Si = H.

(1.12)

In model-based clustering it is assumed that the class assignment in-
dices S1, . . . , SN are random and independently distributed apriori,
with prior class assignment distribution Pr(Si = h|φ) = p(h|φ), h =
1, . . . , H, where φ is a model parameter. Then Pr(S1 = h1, . . . , SN =
hN |φ) = p(h1|φ) . . . p(hN |φ). This leads to a representation of the
marginal distribution p(yi|θH), given θH = (ϑ1, . . . ,ϑH ,φ), in terms
of a finite mixture distribution with H components:

p(yi|θH) =
H∑
h=1

p(h|φ)p(yi|ϑh). (1.13)

It is assumed that the time series are independent for a given parameter
value θH , meaning that the data generating mechanism is formulated
by defining the data generating mechanism independently for each yi.
Hence, to set up model-based clustering, two modeling assumptions
have to be made, choosing the clustering kernel p(yi|ϑh) and choosing
the prior class assignment distribution Pr(Si = h|φ), h = 1, . . . , H. A
example of Clustering kernels for real-valued time series observations
yit are typically based on dynamic regression models

yit = ζh + δhyi,t−1 + xitβh + σhεit, (1.14)

where εit is a random noise having zero expectation and variance equal
to one. All parameters of the clustering kernel (1.14) are class-specific,
however, it makes sense for specific applications to assume that certain
parameters are the same across the classes.
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6. Multi-step time series clustering. Multi-step time series clustering
refers to a combination of methods (also called a hybrid method), which
is used to improve the quality of cluster representation.

1.2.4 Time series Cluster Prototypes

One of the most significant and desired component in time series clustering
is cluster prototype or cluster representative. Cluster prototype refers to the
summarization of time series and is obtained using different methods. The
quality of clustering is highly dependent on the quality of cluster prototypes.
In literature there are three main methods to obtain the cluster prototype:
Medoids, Averaging and Local search.

Medoids

Using Medoid as Prototype. Medoid is defined as a member of cluster such
that its dissimilarity to all other members in the cluster is minimum. The
concept of medoid is similar to that of centroids (which is used in K-mean
clustering) and means. However, medoids are members of cluster; whereas,
centroids and means are not. Medoids are useful when centroids or means
cannot be defined as graphs.

Averaging

Using Averaging Prototype. In averaging prototype methods, mean of time
series at each point is calculated. Averaging prototype is used when the
time series have equal length and distance metric is a non-elastic metric
(e.g., Euclidean distance). Sometimes computing average of time series is
not trivial. For example, when the similarity between time series is based
on the shape, then finding the average shape is challenging so in this case
averaging prototype is evaded. In general, if the similarity of time series is
based on elastic approaches (such as DTW or LCSS), averaging prototype
is not trivial and is evaded. Two averaging methods using DTW and LCSS
are:

� Shape averaging using DTW, in this approach, one method to define
the prototype of a cluster is by combination of pairs of time series hier-
archically or sequentially. For example, shape averaging using Dynamic
Time Warping, until only one time series is left. The drawback of this
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method is its dependency on the ordering of choosing pairs which re-
sults in different final prototypes. Another method is the approach
mentioned by Abdulla et al. (2003), where the medoid is find as the
initial guess, then all sequences are aligned by DTW to the medoid,
and then the average time- series is computed. The resulting time se-
ries has the same length as the medoid, but the method is invariant
to the order of processing sequences. In another study, the authors
present a global averaging method for defining the prototypes (Petit-
jean et al., 2011). They use an averaging approach where the distance
method for clustering or classification is DTW. However, its accuracy
is dependent on the length of the initial averages equence and value of
its coordinates.

� Shape averaging using LCSS, the longest common subsequence gener-
ally permits to make a summary of a set of sequences. This approach
supports the elastic distances and unequal size time series. Usually,
a fuzzy clustering approach for time series clustering is used, and the
averaging method by LCSS as prototype is performed.

Local search

Using Local Search Prototype. In local search prototype, the medoid of
cluster is computed, then warping paths techniques are used to calculate av-
eraging prototype. Finally, for the obtained averaged prototype new warping
paths are calculated.

1.2.5 Time series Clustering Evaluation Measures

Evaluating the extracted clusters is not a trivial task and has been exten-
sively researched. Different clustering algorithms obtain different clusters
and different clustering structures, thus evaluating clustering results is quite
important, in order to evaluate clustering structures objectively and quanti-
tatively. There are two different testing criteria: external criteria and internal
criteria. External criteria uses class labels (also known as ground truth) for
evaluating the assigned labels. Note that the ground truth is not used during
the clustering algorithm. On the other hand, internal criteria evaluates the
goodness of a clustering structure without respect to external information.
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Internal metrics

Among the different internal criteria, the most important ones differ if the
cluster representative is needed or not.

The Sum of Squared Error index (SSE) measures the compactness of
a given clustering, independently of the distance to other clusters. Better
clusterings have lower values of SSE.

SSE =
1

T

k∑
i=1

∑
x∈Ci

dE(x, C̄i)
2

where C̄i is the representative of the ith cluster Ci, k is the number of clusters

and dE(x,y) =
√∑T

i=1(xi − yi)2 is the Euclidean distance between the time

series x and y. While the Normalized SSE index (NSSE) looks for well-
separated groups, maximizing the distance intra-clusters.

NSSE =
SSE

(T − 1)!
∑k

i=1

∑k
j=i+1 dE(C̄i, C̄j)2

where C̄i and C̄j are the representatives of the ith and jth cluster respectively.
The Silhouette index (SI) combines both cohesion and separation, so it

is based on the intra-cluster (a(x;Ci)) and inter-cluster (b(x;Ci)) distances
respectively. This distances are given as follows:

a(x;Ci) =
1

TCi

∑
y∈Ci

d(x,y)

b(x;Ci) = min
Cl,l 6=i
{a(x;Cl)}

where TCi is the cardinality of the cluster Ci and d(x,y) is a generic distance
between x and y time series, as defined before. Finally, SI index is defined
as:

SI =
1

T

k∑
i=1

∑
x∈Ci

s(x, Ci)

where s(x, Ci) = b(x,Ci)−a(x,Ci)
max{b(x,Ci),a(x,Ci)} .

For an extensive comparison of the other indices such as Calinski and
Harabasz (CH), Davies-Bouldin (DB), Dunn index (DU) and COP index
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(COP) see Arbelaitz et al. (2013). In particular, CH, SI, COP, DU and
variants have to be maximised. Conversely, DB, SSE and NSSE have to be
minimised. The most common measures in the literature are CH, DU and
SSE. Furthermore, Information Criteria such as AIC (Akaike, 1974), BIC
(Schwarz et al., 1978) and ICL (Biernacki et al., 2000) can be used as internal
metrics if a Mixture of Gaussian distribution approach (Model-based) is used.

External metrics

There is not a compromise and universally accepted technique to evaluate
clustering approaches, though there are many candidates which can be dis-
counted for a variety of reasons. External indices measure the similarity
between the cluster assignment and the ground truth, which has to be given
as a form of evaluation but should not be used during the clustering. There
are many metrics in the literature (Amigó et al., 2009).

One of the ways to measure the quality of a clustering solution is cluster
purity. Purity is a simple and transparent evaluation measure. Considering
G = {G1, . . . , GM} as ground truth clusters, and C = {C1, . . . , CM} as
the clusters made by a clustering algorithm under evaluations, in order to
compute the purity of cluster C with respect to G, each cluster is assigned to
the class which is most frequent in the cluster, and then the accuracy of this
assignment is measured by counting the number of correctly assigned objects
and dividing by number of objects in the cluster. A bad clustering has purity
value close to 0, and a perfect clustering has a purity of 1. However, high
purity is easy to achieve when the number of clusters is large, in particular,
purity is 1 if each objects gets its own cluster. Thus, one cannot only rely
on purity as the quality measure.

Assuming a one to one mapping between clusters C and categories G, and
relying on precision and recall concepts, other measures can be obtained. The
most popular measures for cluster evaluation are the afore mentioned Purity,
Inverse Purity and their harmonic mean such as the F-measure. This one is
a well-established measure for assessing the quality of any given clustering
solution with respect to ground truth. F-measure compares how closely each
cluster matches a set of categories of ground truth.

F =
∑
i

|Gi|
N

max
j
{F (Gi, Cj)}
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where

F (Gi, Cj) =
2× Recall(Gi, Cj)× Precision(Gi, Cj)

Recall(Gi, Cj) + Precision(Gi, Cj)

Recall(G,C) =Precision(C,G)

Precision(Ci, Gj) =
|Ci ∩Gj|
|Ci|

Another approach to define evaluation metrics for clustering is considering
statistics over pairs of time series. Let SS be the number of pairs, each
belongs to one cluster in G and are clustered together in C; DS be the number
of pairs that belong to one cluster in G, but are not clustered together in
C; SD be the number of pairs that are clustered together in C, but are not
belong to one cluster in G; DD be the number of pairs, each neither clustered
together in C, nor belongs to the same cluster in G. The most used is the
Rand index (RI), which measures the agreement between two partitions and
shows how much clustering results are close to the ground truth.

RI =
(SS +DD)

SS + SD +DS +DD
(1.15)

A drowback of RI is that it does not take a constant value (such as zero) for
two random clustering. Hence, Hubert and Arabie (1985) suggest a corrected-
for-chance version of the RI, such as the Adjusted Rand Index (ARI).

Other External metrics are Folkes and Mallow index (FM), (usually used
for time series clustering in multimedia domain)and the Jaccard Score (J).

The Entropy of a cluster shows, instead, how dispersed classes are with
a cluster (this should be low). Entropy is a function of the distribution of
classes in the resulting clusters.

Entropy = −
∑
j

nj
n

∑
i

p(i, j)× log2p(i, j)

being p(i, j) the probability of finding an element from the category i in
the cluster j, nj is the number of time series in cluster j and n is the total
number of time series in the distribution. Other metrics based on entropy
have also been defined, for instance, the Normalized Mutual Information
(NMI) (Studholme et al., 1999). High purity in the large number of clusters is
a drawback of purity measure. In order to make trade-off between the quality
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of the clustering against the number of clusters, NMI is utilized as quality
measure. Moreover, NMI can be used to compare clustering approaches with
different numbers of clusters, because this measure is normalized.

One of the most popular approaches for quality evaluation of clusters
is external indices to find how good the finding cluster results are (Halkidi
et al., 2001). However,it is not directly applicable in real-life unsupervised
tasks, because the ground truth is not available in many cases. Therefore, in
the case that ground truth is not available, internal index is used.

1.3 The Model-based Representation

As mentioned in Section 1.2.1, choosing an appropriate representation method
can be considered as the key component which effects the efficiency and ac-
curacy of the clustering solution. High-dimensionality and noise are charac-
teristics of the most time series data, consequently, dimensionality reduction
methods are used in time series clustering in order to address this issues and
promote the performance.

From a statistical prospective, it is natural to model time series as stochas-
tic processes and a further classification lies in the specification of the model.
A stochastic process is a family of random variables {Xt, t ∈ T} defined
on a probability space (Ω,F, P ) while its realizations (or sample-paths) are
the functions {X·(ω), ω ∈ Ω} on T. Due the unpredictable nature of future
observations, it is natural to suppose that each observation xt, is a realized
value of a certain random variable Xt. The time series {xt, t ∈ To} is then
a realization of the family of random variables {Xt, t ∈ To}. These consid-
erations suggest modeling the data as a realization (or part of a realization)
of a stochastic process {Xt, t ∈ T} where T ⊇ To (Brockwell et al., 1991).

In literature it is common to distinguish the class of Parametric stochas-
tic model from the class of Nonparametric one. There are infinitely many
stochastic processes that can generate the same observed data, as the num-
ber of observations is always finite. However, some of these processes are
more plausible and admit better interpretation than others. Without further
constraints on the underlying process, it is impossible to identify the process
from a finite number of observations. A popular approach is to confine the
probability law to a specified family and then to select a member in that
family that is most plausible. The former is called modeling and the latter is
called estimation, or more generally statistical inference. When the form of
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the probability laws in a family is specified except for some finite-dimensional
defining parameters, such a model is referred to as a parametric model. When
the defining parameters lie in a subset of an infinite dimensional space or the
form of probability laws is not completely specified, such a model is often
called a nonparametric model (Fan and Yao, 2008).

1.3.1 Parametric model specification

The class of Parametric models have been widely used to deal with both
linear and nonlinear time series. While examples of nonlinear parametric
models include, among others, the ARCH-modeling of fluctuating volatility
of financial data and the threshold modeling of biological and economic data,
the most popular linear time series models are the autoregressive moving
average (ARMA) models. ARMAmodels are frequently used to model linear
dynamic structures, to depict linear relationships among lagged variables,
and to serve as vehicles for linear forecasting (Fan and Yao, 2008). The
process {Xt, t = 0,±1,±2, . . . } is said to be an ARMA(p, q) process if for
every t,

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q (1.16)

where Zt ∼ WN(0, σ2). Moreover Xt is an ARMA(p, q) process with mean µ
if Xt − µ is an ARMA(p, q) process (Brockwell et al., 1991). ARMA process
can be easily extended to multivariate case. Let random vectors X1, . . . ,XT

be drawn from a stationary process {Xt}∞t=−∞, and X = [X1, . . . ,Xt, . . . ,XT ]′ ∈
RT×d, where Xt = (x1, . . . , xd)

′ ∈ Rd is a d-dimensional vector and each
column of X is a one-dimensional time series with T samples. In partic-
ular, each Xt can be modeled by a vector ARMA model of order p and q
(V ARMA(p, q))

Xt −A1Xt−1 − · · · −ApXt−p = Zt + B1Zt−1 + · · ·+ BqZt−q,

where A1, . . . ,Ap,B1, . . . ,Bq are real d × d matrices and Zt ∼ WN(0,Ψ).
Assuming p = 1 and q = 0, the latter equation can be rewritten as a first-
order vector autoregressive model V AR(1)

Xt = AXt−1 + Zt.

To secure the above process to be stationary, the transition matrix A must
have bounded spectral norm, i.e., ||A||2 < 1.
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1.3.2 Nonparametric model specification

Many data in applications exhibit nonlinear features such as nonnormality,
asymmetric cycles, bimodality, nonlinearity between lagged variables, and
heteroscedasticity. They require nonlinear models to describe the law that
generates the data. However, beyond the linear time series models, there are
infinitely many nonlinear forms that can be explored. Then the number of
parametric models that should be considered increases. A natural alternative
is to use nonparametric methods. The most flexible model is the saturated
(full) nonparametric model, which does not impose any particular form on
autoregression functions

Xt = f (Xt−1, . . . , Xt−p) + σ (Xt−1, . . . , Xt−p) εt.

Where f(·) and σ(·) are unknown functions, and {εt} ∼ IID(0, 1). Instead of
imposing concrete forms on functions f and σ, some qualitative assumptions
can be made, such as that the functions f and σ are smooth (Fan and Yao,
2008). A further generalization is the ”classical decomposition” model with
no periodic component,

Yt = µt +Xt (1.17)

which allows to represent {Yt} as the sum of a slowly varying trend compo-
nent µt and a zero-mean stationary stochastic component Xt (Fan and Yao,
2008).

1.4 Clustering High-dimensional time series

As mentioned so far, time series are characterized by High-Dimensionality
if, given a p-dimensional time series {xt, t ∈ T0}, p grows as the sample
size t → ∞. In particular the order at which p grows (as function of t)
characterizes the distinction between High-Dimensional, p = O(tc), or Ultra-
High-Dimensional time series log(p) = O(tc), where c ∈ (0, 1). Furthermore,
from a statistical prospective, it is natural to model time series as stochastic
processes i.e. a family of random variables {Xt, t ∈ T} defined on a prob-
ability space (Ω,F, P ) and the common distinction is given by the class of
Parametric stocastic model and the class of Nonparametric one. So, from
now on, the focus will be on the clustering procedure for high-dimensional
time series (HDTS) seen as realization of stochastic processes.

27



In this light, distance measurement, clustering algorithm, prototype def-
inition and clusters’ evaluation became the four HDTS clustering compo-
nents. Each one may characterize a deeper difference among various work
introduced so far. Examples can be formulated by means of the last two
works considered.

In the context of stationary d-dimensional time series Xt where d is al-
lowed to grow exponentially with t but under log d = o(t) and Xt follows
a vector autoregressive model of order 1, Hong et al. (2017) propose a new
pairwise similarity measure for high-dimensional time series called Cross-
Predictability (CP) which represents the degree to which a future value in
each time series is predicted by past values of the others. The setting is that
of Ultra-high-dimensionality with time series represented as parametric au-
toregressive model. Under the further assumptions that Zt ∼ N(0,Ψ) is i.i.d.
additive noise independent of Xt, and Xt has zero mean and a covariance
matrix Σ, i.e., Xt ∼ N(0,Σ), where Σ = E[Xt−1X

′
t−1] is the autocovariance

matrix, the lag-1 autocovariance matrix Σ1 = E[Xt−1X
′
t] can be rewritten

as
ΣA′ = Σ1. (1.18)

Furthermore, since {Xt}∞t=−∞ is stationary, the covariance matrix Σ depends
on A and Ψ, i.e., Σ = A′ΣA + Ψ. A non-zero entry Aij implies that the
jth time series is predictive for the ith time series, with the magnitude |Aij|
indicating how much the predictive power is. This is a measure of crosspre-
dictive relationship between time series. Given the numbero of clusters, the
clustering algorithm first estimates the cross-predictability among the time
series, and then identifies the clustering structure based on the estimated
relationship. Inspired by the relationship in (1.18), the main idea is to es-
timate A based on the relationship between A and the autocovariance and
lag-1 autocovariance matrices. This motivates the following Dantzig selector
type estimator (see Candes et al. (2007) and Han et al. (2015)),

Â = argmin
A
||A||1 s.t. ||Σ̂A′ − Σ̂1||∞,∞ ≤ µ (1.19)

where ||M||1 = max||v||1=1 ||Mv||1 and ||M||∞,∞ = maxij |Mij| are the matrix
norms l1 and l∞ of the matrix M respectively, µ > 0 is a tuning parameter,
Σ̂ = X′SXS/(T − 1), Σ̂1 = X′SXT /(T − 1), with XS = [X1, . . . ,XT−1]

′ ∈
R(T−1)×d, XT = [X2, . . . ,XT ]′ ∈ R(T−1)×d. The above optimization problem
can be decomposed into d independent sub-problems and solved individually
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as follows:

β̂i = argmin
βi
||βi||1 s.t. ||Σ̂β′i − γ̂i||∞,∞ ≤ µ (1.20)

where ||v||1 =
∑

i |vi| and ||v||∞,∞ = maxi |vi| are the vector norms l1 and

l∞ of the vector v respectively, γ̂i = (Σ̂1)∗i = X′S(XT )∗i/(T − 1), i.e., γ̂i
is the ith column of Σ̂1, and Â = [β̂1, . . . , β̂d]

′ ∈ Rd×d with each β̂i ∈ Rd.
Therefore, the β̂i in (1.20) is an estimation of the ith row of the transition
matrix A. Now, for each µ > 0, there always exists a λ > 0 such that (1.20)
is equivalent to the following regularized Dantzig selector type estimator:

β̂i = argmin
βi

λ||Σ̂β′i − γ̂i||∞,∞ + ||βi||1 (1.21)

where λ is a regularization parameter to determine the sparsity of the esti-
mation. After solving the problem in the last equation, an affinity matrix
W based on Â is constructed by symmetrization, and compute the corre-
sponding Laplacian to perform standard spectral clustering (Ng et al., 2002)
to recover the clusters in the input time series. Sparsity assumption is then
defined as only time series in the same cluster share significant CP (i.e. spar-
sity of the cross-predictability matrix assumption). The cluster recovery of
the algorithm is proved under the assumptions, 1) the individual time series
can be modelled by an Autoregressive model (AR), 2) the transition matrix
for the Vector Autoregressive model (VAR) is block-diagonal.

On the other hand, Zhang (2013) considers the problem of clustering
high-dimensional time series based on trend parallelism. The underling p-
dimensional time series Yt where p = O(T l), with l < 1/4, is modeled as a
nonparametric trend function with local stationary errors, i.e. in (1.17) each
component of Yt is assumed to be a nearly stationary processes (Draghicescu
et al., 2009). The setting is then that of high-dimensionality with time series
represented nonparametrically. For each group where the parallelism holds,
its representative trend function is estimated semiparametrically. Instead
of pairwise dissimilarity measure, an in-group one is considered using an
information criterion which takes into account for the number of clusters and
the estimated common trend functions can be seen as cluster prototypes.
More precisely, following Draghicescu et al. (2009), suppose to observe p
(which can grow to infinity) time series {yk,i}ni=1, k = 1, . . . , p, according to
the model

yk,i = µk(i/n) + ek,i, i = 1, . . . , n, (1.22)
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where µk : [0, 1]→ R are unknown smooth trend functions, and {ek,i}ni=1 are
locally stationary zero mean error processes and such that

ek,i = G(i/n,Fk,i), Fk,i = {. . . , εk,i−1, εk,i},

where εl,j, l, j ∈ Z, are independent and identically distributed (iid) random
variables, and G is a measurable function. The scaling device i/n in (1.22)
is useful in characterizing the smoothness and it is necessary for providing
asymptotic justification for any nonparametric smoothing estimators. The
objective in Zhang (2013) is to find a minimal number of nonoverlapping
subgroups S1 ∪ · · · ∪ SQ = {1, . . . , p} such that for each q = 1, . . . , Q and
k ∈ Sq,

µk(t) = µSq(t) + ck, t ∈ [0, 1], (1.23)

for some common trend function µSq : [0, 1]→ R and individual shifts ck ∈ R.
Furthermore, to ensure the identifiability∑

k∈Sq

ck = 0.

For each individual time series {yk,i}ni=1, its trend function (along with its
derivative) can be estimated nonparametrically by the local linear estimate
(Fan and Gijbels, 1996). Using Epanechnikov kernel K(·), the closed form
solution

µ̂k(t) =
n∑
i=1

yk,iwi(t) (1.24)

is obtained, where wi(t) = K{(i/n−t)/bn}{S2(t)−(t−i/n)S1(t)}/{S2(t)S0(t)−
S2
1(t)} are the local linear weights, Sj(t) =

∑n
i=1(t−i/n)jK{(i/n−t)/bn} and

bn is the bandwidth selected using the generalized cross-validation (GCV) se-
lector. Suppose that the parallelism assumption holds for the subgroup Sq.
Then its common trend function µSq(·) as in (1.23) can be estimated by

µ̂Sq(t) = |Sq|−1
∑
k∈Sq

µ̂k(t), t ∈ [0, 1], (1.25)

where |Sq| is the cardinality of Sq. By (1.23), the individual shifts ck, k ∈ Sq,
can be estimated by

ĉk = n−1
n∑
i=1

[
µ̂k(i/n)− µ̂Sq(i/n)

]
30



Instead of pairwise similarity measure, an in-group one is defined by

RSS(Sq) =
∑
k∈Sq

n∑
i=1

[
yk,i − µ̂Sq(i/n)− ĉk

]2
Since µ̂Sq(i/n) + ĉk is the semiparametric estimate of E(yk,i), k ∈ Sq, i =
1, . . . , n, the above statistic provides the residual sum of squares for the sub-
group Sq under the parallelism (1.23). Let P = {S1, . . . ,SQ} be the implied

partition with cardinality |P| = Q, and RSS(P) =
∑Q

q=1RSS(Sq) be the
residual sum of squares across all subgroups. The Extended Bayesian Infor-
mation criterion (EBIC) (Chen and Chen, 2008) is considered for clustering
high-dimensional time series data, which takes the form

EBIC(P) = (np) log [RSS(P)/(np)] + τn|P|. (1.26)

The criterion depends on a tuning parameter τn. If τn = log n, then (1.26)
becomes the traditional BIC. Larger τn leads to stronger penalization on the
number of clusters, and vice versa. The true partition P0 is estimated by
minimizing (1.26). This work not only generates prototypes but provides
also a special algorithm which make feasible the computation of the EBIC.
The Adjusted Rand Index remains the reference for simulation studies for
both works.
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Chapter 2

The proposal

In the Chapter 1, a large part of the literature on the topic of clustering
on time series was presented. Some of the aforementioned approaches can
be used in the presence of stationary time series, while others consider time
series whose nonstationarity is linked to the presence of a trend.

Time series trend composition is a very important topic in data anal-
ysis. Checking trend composition is the first step for a further statistical
analysis conducted on a time series. A very common question about the
trend concerns its existence and if it has a linear or a nonlinear composition.
The proposal that will be discussed in this thesis regards the classification
of nonstationary time series, where the nonstationarity is given by the pres-
ence of a deterministic trend, before undertaking a cluster analysis. This is
accomplished by looking at the first derivative of the trend in a context of
high-dimensionality and without requiring a pre specified form for the trend.

The idea is to classify the time series by checking the trend first derivative.
If the trend is constant, then its first derivative is zero, if the trend is linear,
then its first derivative is constant. If none of the previous happen, then the
trend is of course nonlinear and then its first derivative will be not constant.
In this way the time series can be divided into tree groups.

In the following, the first section gives a brief introduction to the most
recent literature on clustering time series based on the use of a statistical test
in the nonparametric trend estimation context; the second section introduces
the general setting for the idea behind the proposed procedure together with
the statistical instruments that will be used; finally, the third section con-
centrates on the explanation of the proposed procedure. More precisely, the
procedure can be included in the category of ”clustering of time series based
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on features”, since the trend composition can be considered as a feature of
the time series and can therefore be used before conducting a further and
more in-depth cluster analysis which can concern both stationary and non-
stationary time series (where the nonstationarity is linked to the presence of
the trend).

2.1 Recent works on testing for trends

Lyubchich and Gel (2016) propose a nonparametric test for synchronism of
trends exhibited by multiple linear time series where the number of time
series p can be large but fixed (i.e. p <∞). The core idea of the approach is
based on employing the local regression test statistic, which allows to detect
possibly non-monotonic nonlinear trends. The finite sample performance of
the new synchronism test statistic is enhanced by a nonparametric hybrid
bootstrap approach.

They argue that Degras et al. (2011) and Zhang (2013) extend the Inte-
gated Squared Error (ISE) based approach of Vilar-Fernández et al. (2007)
to a case of multiple time series with weakly dependent nonstationary errors
and then their methods involve the selection of multiple nuisance parame-
ters, such as bandwidth, level of smoothness, and window size for a longrun
variance function. Those peculiarities often lead to inadequate performance,
especially in samples of moderate size.

The previous criticism leads to the core idea of the approach of Lyubchich
and Gel (2016) which is based on generalizing the nonparametric local factor
(lf) test statistic (originally developed for detecting a trend in a single pro-
cess), which allows to assess whether p weakly dependent time series exhibit
a joint nonmonotonic nonlinear trend that belongs to a prespecified paramet-
ric family of functions. The test procedure employs: an artificial balanced
one-way analysis of variance, where each distinct time point is viewed as
a category, and an associated cell which includes all observations within a
surrounding local window. Each cell is choosen using the data-driven heuris-
tic m-out-of-n bootstrap selection algorithm of Bickel et al. (1997). The new
trend synchronism statistic is asymptotically normally distributed. However,
as convergence to the asymptotic distribution might be slow, the finite sample
properties of the test statistic is enhanced by a hybrid bootstrap procedure.
The proposed test yields noticeably more accurate estimates of the size of the
test, compared with the test of Degras et al. (2011), especially when there
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is either a small number of observed time series or when the autocorrelation
structure of an individual time series is allowed to include negative terms,
which is a frequent situation for economic and environmental studies.

Let observe p time series processes

Yit = mi(t/T ) + εit (i = 1, . . . , p; t = 1, . . . , T ), (2.1)

where mi(u) (0 < u ≤ 1) are unknown smooth trend functions, and the noise
εit satisfies the following assumptions:

(A) The noise is a finite order autoregressive process

εit = AR(di) =

di∑
k=1

φikεi,t−k + eit (i = 1, . . . , p; t = 1, . . . , T ),

where conditions on eit are specified in assumption (B), and the poly-
nomial φi(λ) has all its roots outside the closed unit disk.

(A’) The noise is an infinite order autoregressive process

εit = AR(∞) =
∞∑
k=1

φikεi,t−k + eit (i = 1, . . . , p; t = 1, . . . , T ),

where conditions on eit are specified in assumption (B), and the AR(∞)
does not degenerate to a finite dimensional autoregressive representa-
tion of order d.

(B) In assumptions (A) and (A’), eit (i = 1, . . . , p) are independent and
identically distributed random variables E(eit) = 0, E(e2it) = σ2

i , E(e4it) <
∞, and {eit}Tt=1 and {ejt}Tt=1 are independent if i 6= j.

Lyubchich and Gel (2016) are interested in testing whether p observed
time series have the same trend of some pre-specified smooth parametric form
f(θ, u):

H0 : mi(u) = ci + g(θ, u) (i = 1, . . . , p),
H1 : there exists i, such that mi(u) 6= ci + g(θ, u),

where the reference curve g(·, u) : (0, 1] → R belongs to a known family of
smooth parametric functions S = {g(θ, ·), θ ∈ Θ}, and Θ is a set of possible
parameter values and also is a subset of Euclidean space. For identifiability,

34



∑p
i=1 ci = 0 is assumed. Notice that the hypothesis include (but are not

limited to) three special cases: g(θ, u) ≡ 0, i.e. testing for no trend; g(θ, u) =
θ0 + θ1u, i.e. testing for a common linear trend; g(θ, u) = θ0 + θ1u+ θ2u

2, i.e.
testing for a common quadratic trend.

The Algorithm for testing H0 consists on the following steps:

Step 1 Estimate the joint hypothetical trend g(θ, ·) using the aggregated sam-
ple {Ȳ·t = 1/T

∑p
i=1 Yit}Tt=1 with a

√
T -consistent estimator (e.g. the

nonlinear least squares method).

Step 2 Apply the local factor test statistic to each de-trended and filtered series
of residuals êit, which under H0 behave asymptotically like independent
and identically distributed eit:

êit = ε̂it −
di(T )∑
j=1

φ̂ij ε̂i,t−j

= {Yit −
di(T )∑
j=1

φ̂ijYi,t−j} − {g(θ̂, ut)−
di(T )∑
j=1

φ̂ijg(θ̂, ut−j)}

with φ̂ij a
√
T -consistent estimator of φij (j = 1, . . . , di(T )) obtained

from {ε̂it}Tt=1 for the ith time series. Hence, the individual local factor
test statistic for each observed process takes the form of the classical
F-statistic as the ratio of mean square for treatments (mst) and mean
square for errors (mse) as in Wang et al. (2008) whose initials give the
statistic its name:

wavki(kiT ) = FT =
mst

mse

=
kiT
T − 1

T∑
t=1

(V̄t· − V̄··)2/
1

T (kiT − 1)

T∑
t=1

kit∑
j=1

(Vtj − V̄t·)2

where, kiT is the number of the nearest values of êit used to construct
a local window Wit around each t (this for each observed time series),
{Vt1, . . . , VtkiT } = {êij : j ∈ Wit}, V̄t· and V̄·· are the mean of the tth
group and the grand mean, respectively.

Step 3 Construct a sequence of p statistics {wavk1(k1T ), . . . , wavkp(kpT )}. Then,
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the new synchronism test statistic is

ST =

p∑
i=1

k
−1/2
iT wavki(kiT ).

Under assumptions (A)(or (A’)), (B)-(D), if di is finite but unknown,
or if εit follows (A’), then di(T ) = O(ln(T )). Then, under H0 for fixed

d, as T →∞, kiT →∞, k
3/2
iT /T → 0 and kiT/(ln(T ))m →∞, m > 1,

T 1/2ST ⇒ N

(
0,

4

3

p∑
i=1

σ4
i

)
.

As with other local factor methods, convergence of the test statistic ST to
its asymptotic distribution might be slow for small sample sizes. To enhance
the finite sample performance, they propose to employ a sieve bootstrap
procedure (Bühlmann et al., 1997) which provides an asymptotically correct
size of the test (i.e., α-level under H0) even when the linear noise does not
degenerate to a finite-dimensional representation.

Chen and Wu (2019) propose statistical inference for trends of high-
dimensional time series. Based on a modified L2 distance between para-
metric and nonparametric trend estimators, they propose a de-diagonalized
quadratic form test statistic (which takes into account both temporal and
spatial dependences) for testing patterns on trends, such as linear, quadratic,
or parallel forms. They develop an asymptotic theory for the test statistic. A
Gaussian multiplier bootstrap testing procedure is proposed for an improved
finite sample performance and a faster convergence rate. Additionally, they
consider estimation of long-run covariance matrices and propose normalized
Frobenius norm consistency.

Suppose to observe p-dimensional time series Xt = (Xt1, . . . , Xtp)
′, t =

1, . . . , T , p ≥ 1, based on the following model:

Xt = m(t/T ) + εt, (2.2)

where εt ∈ Rp is a zero-mean p-dimensional stationary process and m(·) =
(m1(·), . . . ,mp(·))′ : [0, 1] → Rp, is an unknown trend function. They are
interested in testing the null hypothesis that the trend function belongs to
some given parametric family

H0 : mj(u) = gj(θj, u), j = 1, . . . , p, (2.3)
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where θj is an unknown parameter vector and function gj(·, ·) : Rd+1 → R has
a known pre-specified form. They argue that in Degras et al. (2011) (and then
Zhang (2013)) and Lyubchich and Gel (2016) the process εt have independent
components. To incorporate both temporal and spatial dependencies, they
consider the widely used moving average (MA) process

εt =
∑
i≥0

Aiηt−i (2.4)

where ηt = (ηt1, . . . , ηtl)
′ and ηtj (with t, j ∈ Z), are independent and iden-

tically distributed (iid) random variables with zero mean and unit variance,
and Ai, i ≥ 0, are matrices in Rp×l such that εt is a proper random vector.
If Ai = 0 for all i ≥ 1, then the noise sequences are temporally independent;
if l = p and matrices Ai are diagonal, then the sequences are spatially inde-
pendent. In the latter case, {εtj}Tt=1 becomes a MA sequence independently
distributed with respect to different j.

In order to test (2.3), they define a modified ISE based test statistic

ÎMp,T =
∑
|i−j|≥M

ai,j ε̂
′
iε̂j, ε̂t = Xt − g(θ̂, t/T ), (2.5)

where ai,j =
∫ 1

0
ωb(i/T, u)ωb(j/T, u)du (with ωb(u, v) the local linear weights

as in Fan and Gijbels (1996)), ε̂t are estimates of εt and θ̂ = (θ̂1, . . . , θ̂p)
′ is

an estimate of θ = (θ1, . . . , θp)
′.

Under assumptions that the kernel function is Lipschitz continuous on
R with compact support [−2, 2] and mild restrictions on the dependence of
the noise sequence εt, they show the asymptotic normality of ÎMp,T . To en-
sure this result in the high-dimensional setting, they consider the restriction
p = o(h(β+1/2)/γT β/γ), where 0 < γ ≤ 1/2, h is the kernel bandwidth such
that h2T → ∞ and β > 1 such that for all k ≥ 0,

∑
|i|≥k tr|(Γi)|/tr(Σ) ≤

c(k ∨ 1)−β, with Γk := Eε0ε
′
k and Σ :=

∑+∞
t=−∞Eε0ε

′
t. This restriction on

p is a generalization of the case 1 ≤ % ≤ √p where % = tr(Σ)/|Σ|F . This
last equality come from the sufficient condition for boundedness of the noise
coefficients which, under p→∞ case, are supposed to be diagonal. Namely,
if % � 1 then no restriction on p is needed to ensure boundedness, on the
other hand, if % � pγ then a restriction needs to be imposed on the rate of
p. They show also that is possible to extend the test statistic to the case of
nonlinear time series.
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2.1.1 Common considerations

Note that in the cited works the central idea is to test if the time series belong
to the same predefined, hence known, family of parametric trend functions.
This implies that those tests are quite restrictive in the sense that one needs
to know in advance the parametric family before undertaking the test. It is
possible to achieve a more general result considering a procedure which does
not need this knowledge and that is able to distinguish such a characteristic.
This is the aim of this thesis, how to achieve this will be shown from here on
out.

2.2 Checking for Trends in High-Dimensional

Time Series

Suppose to observe p time series of the form

Yit = mi(t/T ) + εit, i = 1, . . . , p; t = 1, . . . , T (2.6)

where mi : [0, 1] → R are unknown trend functions and {εit}Tt=1 are zero
mean error processes. Suppose now to be interested in testing the following
hypothesis

H0 : mi(u) = g(θi, u), i = 1, . . . , p, (2.7)

where the function g(·, ·) has a known form and θi is a parameter vector of
g being identically zero, constant, and special cases g ≡ 0, g ≡ a constant
and g(θi, u) = θi0 + θi1u for some θi = (θi0, θi1) ∈ R2 correspond to testing
whether a signal exists, is time-varying and nonlinear, respectively.

In the context of grouping time series based on feature and using the
previous setting, of particular interest is to group the time series according
to whether their trend is constant, linear or nonlinear. In order to make this
partition, one can test the following

H0 : m
(1)
i (u) ≡ θi1 (2.8)

where m
(1)
i (u) is the trend first derivative at u of the ith time series and

θ∗i ∈ R represents the angular coefficient if mi(u) = θi0 + θi1u. Note also that
if the trend is a constant (i.e. mi(u) = θi0), then θi1 = 0 and

H0 : m
(1)
i (u) ≡ 0. (2.9)
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On the other hand, if the trend is not a linear function of u, one can always
define

H1 : m
(1)
i (u) 6≡ θi1. (2.10)

The use of the first derivative instead of the main function presents multiple
advantages: (i) on the mathematical point of view is quite intuitive the use
of the first derivative to highlight the linearity of a function; (ii) one can
assert if a trend is linear or not without imposing a predefined model for
trend but only looking if the angle coefficient is constant; (iii) this type
of test makes a partition of the set of the given time series which may be
used in a further analysis as starting point (i.e. it gives a useful previous
knowledge on the trend composition); (iv) it does not impose restrictions on
the trend composition such as those which are imposed when the presence of
parallelism is tested (Zhang, 2013).

A natural way to estimate the first derivative of an unknown function is
to use a nonparametric estimator which is able to estimate the underlying
function with very few assumptions. In particular, the Local Polynomial es-
timator has the appealing characteristic to include in its definition the first,
say d + 1, derivatives. Once the estimate of the function first derivative is
obtained, one needs to test it on the support of each trend function. A com-
mon choice is to use the Integrated Square Error (ISE) based test statistic.
With this setting in mind, one can test the trend first derivative of mul-
tiple time series together (see Degras et al. (2011)) even in the context of
high-dimensionality (see Chen and Wu (2019) also), namely when p goes to
infinity as function of T .

In the following subsections the Local Polynomial estimator for α-mixing
processes will be presented together with the testing procedure based on the
Integrated Squared Error proposed by the literature. The assumption on the
error to be α-mixing is due to the fact that one want to estimate the first
derivative of the trend by using a nonparametric estimator under one of the
least restrictive dependence conditions for the error term.

2.2.1 Local polynomial estimator for Mixing processes

Following the monographs of Wand and Jones (1994) and Fan and Gijbels
(1996), nonparametric regression is studied in both fixed design and random
design contexts. In the univariate fixed design case the design consists of
x1, . . . , xn which are ordered non-random numbers. An equally spaced fixed
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design is one for which xi+1 − xi is constant for all i. For the fixed design
case the response variables are assumed to satisfy

Yi = m(xi) + v(xi)εi, i = 1, . . . , n (2.11)

where ε1, . . . , εn are independent random variables with mean zero and vari-
ance σ2

ε . m is the mean regression function, or simply the regression func-
tion, since E(Yi) = m(xi), while v is called the variance function since
V ar(Yi) = v2(xi)σ

2
ε . The random design regression model arises when the

bivariate sample (X1, Y1), . . . , (Xn, Yn) of random pairs is observed, in which
case the model can be written as

Yi = m(Xi) + v(Xi)εi, i = 1, . . . , n (2.12)

where, conditional on X1, . . . , Xn the εi are independent random variables
with zero mean and finite variance. However, in the random design context

m(x) = E(Y |X = x) and σ2(x) = σ2
εv

2(x) = V ar(Y |X = x) (2.13)

are, respectively, the conditional mean and variance of Y given X = x.
Now, suppose one is interested in estimate the regression function m(x) =

E(Y |X = x) and its derivatives m(1)(x),m(2)(x), . . . ,m(d)(x). Suppose also
that the (d + 1)th derivative of m(x) at the point x0 exists. One can then
approximate the unknown regression function m(x) locally by a polynomial
of order d. A Taylor expansion gives, for x in a neighborhood of x0,

m(x) ≈
d∑
j=0

m(j)(x0)

j!
(x− x0)j. (2.14)

This polynomial is fitted locally by a weighted least squares regression prob-
lem

min
βj ,j=0,...,d

n∑
i=1

[
Yi −

d∑
j=0

βj(Xi − x0)j
]2
Kh(Xi − x0), (2.15)

where Kh(u) = 1
h
K
(
u
h

)
with h is a bandwidth controlling the size of the

neighborhood at x0 and K is a kernel function assigning weights to each
point. Given {β̂j, j = 0, . . . , d} the solution of (2.15), then the estimator of

m(ν)(x0), ν = 0, . . . , d, is m̂(ν)(x0) = ν!β̂ν . In order to estimate the entire
function m(ν)(·), one needs to solve (2.15) for all x0 in the domain of interest.
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Local Polynomial fitting is an attractive method both from theoretical
and practical point of view. Other commonly used kernel estimators, such as
the Nadaraya-Watson estimator and the Gasser-Miiller estimator suffer from
some drawbacks. The Nadaraya-Watson estimator leads to an undesirable
form of the bias, while the Gasser-Miiller estimator has to pay a price in vari-
ance when dealing with a random design model. Local polynomial fitting also
has other advantages. The method adapts to various types of designs such
as random and fixed designs, highly clustered and nearly uniform designs.
Furthermore, there is an absence of boundary effects: the bias at the bound-
ary stays automatically of the same order as in the interior, without use of
specific boundary kernels. This is remarkably different from the other meth-
ods. Another attractive characteristic is that, since the polynomial is fitted
locally, one does not need to know whether V ar(Y |X = x) remains constant
or not, because it is approximately the same in a local neighborhood.

Even if Local Polynomial fitting has quite useful characteristics, there are
several important issues which have to be discussed.

� The choice of the bandwidth parameter h, which plays a rather cru-
cial role. A too large bandwidth under-parametrizes the regression
function, causing a large modelling bias, while a too small bandwidth
over-parametrizes the unknown function and results in noisy estimates.
However this theoretical choice is not directly practically usable since
it depends on unknown quantities.

� Another issue in local polynomial fitting is the choice of the order d of
the local polynomial. Since the modelling bias is primarily controlled
by the bandwidth, this issue is less crucial however. For a given band-
width h, a large value of d would expectedly reduce the modelling bias,
but would cause a large variance and a considerable computational
cost. There is a general pattern of increasing variability: for estimat-
ing m(ν)(x0), there is no increase in variability when passing from an
even d = ν + 2q order fit to an odd d = ν + 2q + 1 order fit for any
q ∈ N, but when passing from an odd d = ν + 2q + 1 order fit to the
consecutive even d = v + 2q + 2 order fit there is a price to be paid in
terms of increased variability. Therefore, even order fits d = ν + 2q are
not recommended, but odd order fit of d = ν + 2q + 1 are.

� Another question concerns the choice of the kernel function K. Since
the estimate is based on the local regression (2.15) no negative weight
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K should be used. Theorem 3.4 in Fan and Gijbels (1996) shows that
for all choices of d and ν the optimal weight function is K(z) = 3

4
(1−

z2)+, the Epanechnikov kernel, which minimizes the Asymptotic Mean
Squared Error (AMSE) of the resulting local polynomial estimators.

In order to derive theoretical results for Local Polynomial estimator,
rewrite (2.15) in matrix form is more convenient

min
β

(y −Xβ)′W (y −Xβ) , (2.16)

where,

X =

1 (X1 − x0) · · · (X1 − x0)d
...

...
...

1 (Xn − x0) · · · (Xn − x0)d

 , y =

Y1...
Yn

 , β =

β0...
βd

 (2.17)

and W = diag [Kh(Xi − x0)]. The solution vector is then given by

β̂ = (X′WX)−1X′Wy. (2.18)

In particular the matrix (X′WX) is positive definite as long as there are at
least d + 1 local effective design points. This assumption is granted with
probability tending to one assuming nh → ∞. The (2.18) allows for a very
useful representation of the local estimate of the νth derivative

m̂(ν)(x0) = ν!e′ν+1β̂

= ν!β̂ν ,
(2.19)

where ej is the (d + 1) length vector with 1 in the jth position and zeros
elsewhere. The last equation highlights that the bias and variance of the
local polynomial derivatives estimator depend on those of β̂. More precisely,
under the assumption of i.i.d. (X1, Y1), . . . , (Xn, Yn), and XX = {X1, . . . , Xn}

E(β̂| XX) = (X′WX)−1X′Wm

= β + (X′WX)−1X′Wr

V ar(β̂| XX) = (X′WX)−1(X′ΣX)(X′WX)−1,

(2.20)
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where m = (m(X1), . . . ,m(Xn))′, r = m − Xβ and Σ = diag[K2
h(Xi −

x0)σ
2(Xi)]. Since r and Σ are unknown quantities, there is a need for ap-

proximating bias and variance. Let f(·) be the probability density function
of the generic Xj. Assuming f(x0) > 0, and that f(·), m(d+1)(·) and σ2(·)
are continuous in a neighborhood of x0, while h → 0 and nh → ∞. By
Theorem 3.1 in Fan and Gijbels (1996), the asymptotic conditional variance
of m̂(ν)(x0) is given by

V ar(m̂(ν)(x0)| XX) = e′ν+1S
−1S∗S−1eν+1

ν!2σ2(x0)

f(x0)nh1+2ν
+ oP

(
1

nh1+2ν

)
,

(2.21)

where S = (µj+l)0≤j,l≤d, S
∗ = (νj+l)0≤j,l≤d, µj =

∫
ujK(u)du and νj =∫

ujK2(u)du. On the other hand, its asymptotic conditional bias takes two
forms. If d− ν is odd, then

Bias(m̂(ν)(x0)| XX) = e′ν+1S
−1cd

ν!

(d+ 1)!
m(d+1)(x0)h

d+1−ν

+ oP
(
hd+1−ν) , (2.22)

if d− ν is even, then

Bias(m̂(ν)(x0)| XX) = e′ν+1S
−1c̃d

ν!

(d+ 2)!

{
m(d+2)(x0)

+ (d+ 2)m(d+1)(x0)
f (1)(x0)

f(x0)

}
hd+2−ν

+ oP
(
hd+2−ν) ,

(2.23)

where cd = (µd+1, . . . , µ2d+1)
′, c̃d = (µd+2, . . . , µ2d+2)

′ and provided that
f (1)(·) and m(d+2)(·) are continuous in a neighborhood of x0 and nh3 → ∞.
From these two last equations, it is clear that there is a theoretical difference
between the even and odd case. In the odd d − ν case, the bias has a sim-
pler form which does not depend on f (1)(x0). A more general result is that
polynomial fit with d − ν odd outperform those with d − ν even in terms
of increase of variability (see Section 3.3 in Fan and Gijbels (1996)). From
(2.22) and (2.23) one can see that, fixing ν, for higher order approximation
the bias reduces. Looking at (2.21) seems that d does not affect the variance.
This is not true if one explores the behaviour of the constant term: in moving
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from an even order to its consecutive odd order there is no loss in variability.
Noteworthy is the fact that the variance is non decreasing in d, which means
that a lower d will be preferred.

Masry and Fan (1997) highlight that local polynomial fitting can be ap-
plied to nonlinear time series modeling also. Namely, under assumption
of dependence, without requiring a Markovian structure, they established
joint asymptotic normality for derivative estimation when the processes are
strongly mixing (said also α-mixing). More precisely, let Fki be the σ-algebra
of events generated by the random variables {Xj, Yj, i ≤ j ≤ k}. The sta-
tionary processes {Xj, Yj} are called strongly mixing if

sup
A∈F0

−∞,B∈F∞k

|P (AB)− P (A)P (B)| = α(k)→ 0, as k →∞. (2.24)

The condition indicates the maximum dependence between two events k steps
apart. Local polynomial fitting techniques continue to apply under the weak
dependence in medium or long term, namely, when k is large. The short
term dependence does not have much effect on the local smoothing method.
The reason is that for any two given random variables Xi and Xj and a point
x, the random variables Kh(Xi− x) and Kh(Xj − x) are nearly uncorrelated
as h → 0. This property is, however, not shared by parametric estimators.
Note that the local polynomial fit has a quite general setup which allows to
estimate functions of the form

mψ(x) = E(ψ(Y )|X = x). (2.25)

Examples are ψ(Y ) = I{Y≤y}, which corresponds to the problem of estimating
the conditional distribution mψ(x) = P (Y ≤ y|X = x), and, in particular,
ψ(Y ) = Y 2 which corresponds to estimating the conditional second moment.
By Theorem 6 in Masry and Fan (1997) for (2.25), under conditions

(i) for some δ > 2 and a > 1 − 2δ, the kernel function K is a bounded
density satisfying u2δd+2K(u) → 0 as |u| → ∞ and with a compact
support [−1, 1];

(ii) the joint density of (X0, Xl), f(u, v; l) ≤ M1 < ∞ and E(ψ(Y1)
2 +

ψ(Yl)
2|X1 = u,Xl = v) ≤ M2 <∞, ∀l ≥ 1 and for u, v in a neighbor-

hood of x0;

(iii)
∑
la[α(l)]1−2δ < ∞, E(|ψ(Y0)|δ|X = x) ≤ M3 < ∞ for x in a neigh-

borhood of x0;
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(iv) for h → 0 and Th → ∞, there exists a sequence of positives integers
satisfying sT →∞ and sT = o((Th)1/2) such that (T/h)1/2α(sT )→ 0,
as T →∞;

(v) the conditional distribution of Y |X = x is continuous at point x = x0;

if h = O(T 1/(2d+3)), then as T →∞

Bias(m̂
(ν)
ψ (x0)) =

m
(d+1)
ψ (x0)ν!Bν

(d+ 1)!
hd+1−ν , (2.26)

V ar(m̂
(ν)
ψ (x0)) =

(ν!)2Vνσ
2
ψ(x0)

Th2ν+1f(x0)
, (2.27)

where Bν and Vν are the νth element of S−1cd and the νth diagonal element
of S−1S∗S−1 respectively and σ2

ψ = V ar(ψ(Y )|X = x0).
Note that, for the second point listed in the issues of Local Polynomial

estimator, the bandwidth depends on the order of the derivative ν. Hence,
also the Bias is function of the true derivative of order ν + 2 as one can see
from (2.26).

Following Masry and Fan (1997) and under mild assumptions on the
covariace structure, Francisco-Fernández and Vilar-Fernández (2001) show
very similar results for the case of fixed design

Bias(m̂
(ν)
ψ (x0)) =

m
(d+1)
ψ (x0)ν!Bν

(d+ 1)!
hd+1−ν , (2.28)

V ar(m̂
(ν)
ψ (x0)) =

(ν!)2Vνc(ε)

Th2ν+1
(1 + o(1)), (2.29)

where c(ε) represents the sum of all covariances.

2.2.1.1 The choice of h

In the i.i.d. setting of (X1, Y1), . . . , (Xn, Yn), a theoretical optimal local band-
width for estimating m(ν)(x0) is obtained by minimizing the conditional Mean
Squared Error (MSE) given by

[Bias(m̂(ν)(x0)| XX)]2 + V ar(m̂(ν)(x0)| XX).
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For the same reasons for (2.20), the MSE can be approximated by the asymp-
totic MSE (AMSE) which gives the asymptotic optimal local bandwidth via

hν,opt(x0) =
1

n1/(2d+3)
Cν,d(K)

[
σ2(x0)

[m(d+1)(x0)]2f(x0)

]1/(2d+3)

(2.30)

where

Cν,d(K) =

[
(d+ 1)!2(2ν + 1)

∫
K∗2ν (u)du

2(d+ 1− ν)(
∫
ud+1K∗ν (u)du)2

]1/(2d+3)

and K∗ν is the equivalent kernel (Fan and Gijbels, 1996). Note that the MSE
is a measure of local loss, then if one is not interested in local measures,
others need to be taken into account.

A commonly used, simple measure of global loss is the weighted Mean
Integrated Squared Error (MISE). Minimization of the conditional weighted
MISE ∫ (

[Bias(m̂(ν)(x)| XX)]2 + V ar(m̂(ν)(x)| XX)
)
ω(x)dx.

with ω > 0 some weight function, leads to a theoretical optimal constant
bandwidth

hν,opt =
1

n1/(2d+3)
Cν,d(K)

[∫
σ2(x)ω(x)/f(x)dx∫
[m

(d+1)
ψ (x)]2ω(x)dx

]
. (2.31)

In the dependence setting of α−mixing processes, by (2.26) and (2.27),
the optimal local bandwidth is

hν,opt(x0) =
1

T 1/(2d+3)

[
[(d+ 1)!]2Vνσ

2
ψ(x0)/f(x0)

2(d+ 1− ν)[m
(d+1)
ψ (x0)]2B2

ν

]1/(2d+3)

(2.32)

which, in the fixed design case (Francisco-Fernández and Vilar-Fernández,
2001) can be restated as

hν,opt(x0) =
1

T 1/(2d+3)
Cν,d(K)

[
c(ε)

[m
(d+1)
ψ (x0)]2

]1/(2d+3)

, (2.33)
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where c(ε) as in (2.29). The associated global optimal constant bandwidth
is then given by

hν,opt =
1

T 1/(2d+3)
Cν,d(K)

[
c(ε)∫

[m
(d+1)
ψ (x)]2dx

]1/(2d+3)

. (2.34)

These asymptotically optimal bandwidths depend on unknown quanti-
ties such as the design density f(·), the conditional variance σ2

ψ(·) and the

derivative function m
(d+1)
ψ (·), and hence further work is needed for achiev-

ing practical bandwidth selection procedures. For an exaustive review on
the different methods for bandwidths selection, see Fan and Gijbels (1996)
and Wand and Jones (1994). In particular various techniques have been
proposed: boostrap techniques, modified versions of cross-validation, plug-in
approaches and procedures based on correlation among others. A very pop-
ular method for bandwidth selection is the Leave-one-out Cross-validation
(see Chapter 5 of Härdle (1990)).

2.2.2 Testing trend first derivative

A natural way to check a nonparametric regression function defined on the
interval [0, 1], is to rely on the L2 distance between the regression function
m(·) and its linear estimate m̂(·) =

∑T
t=1 ωt(·)Yt, where ωt(·), t = 1, . . . , T are

weight functions which depend on the fixed design points x1, . . . , xT . Then,
one can define the quadratic form statistic

I =

∫ 1

0

[m̂(1)(u)−m(1)(u)]2du. (2.35)

Since one can define xt = t/T , the statistic can be used as a mean to test the
first derivative of the trend function estimated by Local Polynomial estima-
tor. Generalizations of (2.35) has been studied under different settings, see
for example Hall et al. (1984), Ioannides (1992) and Manteiga and Fernandez
(1995).

2.3 The proposed procedure

The proposal discussed in this thesis regards the classification of time series
by looking at the first derivative of the deterministic trend in a context of

47



high-dimensionality by means of a nonparametric estimator. If the trend is
constant, then its first derivative is zero, if the trend is linear, then its first
derivative is constant. If none of the previous happen, then the trend is of
course nonlinear and then its first derivative will be not constant. In this
way the time series can be divided into three groups. This approach can be
included in the category of ”clustering of time series based on features”, since
the trend composition can be considered as a feature of the time series.

Suppose to observe p (which may goes to infinity as function of the time
horizon) independent time series of the form

Yit = mi(t/T ) + εit, i = 1, . . . , p; t = 1, . . . , T (2.36)

where mi : [0, 1] → R are unknown trend functions and {εit}Tt=1 are zero
mean, strongly mixing error processes. In order to partitioning those time
series according to their trend composition (constant, linear or nonlinear),
one can estimate the first derivative of the trend by using a nonparametric
estimator under one of the least restrictive dependence conditions of the error
term. The proposed nonparametric estimator for the trend first derivative,
at point x ∈ [0, 1], has the form

β̂(x) =
1

Th2

T∑
t=1

Kh(t/T − x)(t/T − x)Yt, (2.37)

where Kh(u) = 1
h
K
(
u
h

)
with K(·) is a symmetric Lipshitz continuous kernel

function with bounded support, h = hT > 0 is the bandwidth such that
Th4 → ∞ as T → ∞. The proposed estimator, based on the guiding line
of Local Polynomial estimator with fixed design, has the appealing charac-
teristic that it is not only asymptotically normal distributed, as shown in
Proposition 2, but also its expected value is proportional to the true first
derivative by a known quantity as T →∞.

Under the reasonable assumption that the number of time series with
nonlinear trend is finite, the proposed partition procedure consists on two
stages. In the first one, the proposed estimator β̂(x) is tested to be zero or
not, by the following statistic

Îβ =
n4/7

µ∗2c(ε)

kT∑
j=1

β̂(xj)
2, (2.38)
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where µ∗2 =
∫ 1

−1 u
2K(u)2du, c(ε) = γε(0) + 2

∑∞
k=1 γε(k) and kT = O(T ).

Once c(ε) is substituted by the spectral density nonparametric consistent
estimator valued at frequency zero ĉ(ε), Îβ allows to distinguish the time
series with constant trend. Under the hypothesis that the time series has
a constant trend, it follows a chi-squared distribution. In the second one,
the difference between the estimator at different points is used in a screening
approach to make the further linear/non linear partition of the remaining
time series from the previous stage. More precisely, defining

D̂(x1, x2) = β̂(x1)− β̂(x2), (2.39)

where x1, x2 ∈ (h, 1− h), the statistic

ÎD(x) =
1

kT

kT∑
j=1

D(x, xj)
2, (2.40)

is used to rank the remaining time series. This ensures, with probability
tending to 1, that one can estimate the set which contains the true set of
time series with nonlinear trend under the sparsity assumption that the latter
has a finite number of elements. Furthermore, the consistency results for both
stages are guaranteed by Theorems 2 and 3 in the High-dimensional setting.
In particular, as it will be discussed in Chapter 3, Theorem 3 implies the
Sure Screening property (Fan and Lv, 2008).

In other words, the first stage is used to select the time series with con-
stant trend by using a testing procedure while the second is a screening
procedure which gives the set which contains, with probability tending to
1, the true set of time series with nonlinear trend. The Algorithm below
gives the details of the various steps. Setting the first type error α and the
bandwidth for each time series, the test statistic Îβ is calculated for each
time series and compared against a chi-squared random variable. If the test
holds, then the time series is labelled to belong to the set of time series with
constant trend C1. If the set of the remaining time series is not empty, then
the statistic ÎD is used to rank them and the first say s are labelled to belong
to the set C3, which contains with probability tending to one the time series
with nonlinear trend. The procedure ends by assigning all the others to the
set C2 of the time series with linear trend.

The use of the mentioned approach presents multiple advantages: (i) on
the mathematical point of view is quite intuitive the use of the first derivative
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Algorithm Classify HD Time Series by Trend

1: Set U := {1, . . . , p}, C1 = C2 = C3 = ∅
2: Set the parameters α, s and hi, i ∈ U
3: for i ∈ U do
4: Perform the ”Trend/NoTrend Test Statistic” Îβ,i
5: if Îβ,i < χ2

(1−α/p,kT ) then

6: Set C1 := C1 ∪ {i}
7: Set U := U\C1

8: if U = ∅ then
9: return C1, C2, C3

10: else Perform the ”Lin/NoLin Statistic” ÎD,i, i ∈ U , and sort them as

ÎD,σ(1) ≥ · · · ≥ ÎD,σ(p2)
11: Set C3 := {σ(1), . . . , σ(s)} and C2 := U\C3

12: return C1, C2, C3

to highlight the linearity of a function; (ii) one can assert if a trend is linear
or not without imposing a predefined mathematical model; (iii) this type of
procedure makes a partition of the set of the given time series which may
be used in a further analysis as starting point (i.e. it gives a useful previous
knowledge on the trend composition for a deeper clustering analysis); (iv) it
does not impose restrictions on the trend composition such as those which are
imposed when the presence of parallelism is tested; (v) it gives mathematical
guarantees in the high-dimensional setting since it is consistent in the case
of p = o

(
T 1/2/ log T

)
.
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Chapter 3

Theoretical results

For the sake of the reader, the setting will be restated. Suppose to observe
p independent time series of the form

Yit = mi(t/T ) + εit, i = 1, . . . , p; t = 1, . . . , T (3.1)

where mi : [0, 1] → R are unknown trend functions and {εit}Tt=1 are zero
mean, strongly mixing error processes. In order to partitioning those time
series according to their trend composition (constant, linear or nonlinear),
one can use the proposed nonparametric estimator for the first derivative
m(1)(·) of the signal m(·)

β̂(x) =
1

Th2

T∑
t=1

Kh(t/T − x)(t/T − x)Yt, (3.2)

together with the following statistics:

�

Îβ =
n4/7

µ∗2c(ε)

kT∑
j=1

β̂(xj)
2, (3.3)

where µ∗2 =
∫ 1

−1 u
2K(u)2du, c(ε) = γε(0)+2

∑∞
k=1 γε(k) and kT = O(T )

which represents the number of equally spaced points by which the
subinterval of the support has been divided, to evaluate the presence
of the trend;
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�

ÎD(x) =
1

kT

kT∑
j=1

D(x, xj)
2, (3.4)

with D̂(x, xj) = β̂(x)− β̂(xj), to evaluate the linearity of the trend.

In Section 3.2 and 3.3 the statistical properties of (3.2)-(3.4) will be given
under the assumptions described in Section 3.1. Section 3.4 will describe con-
sistency results obtained by the proposed procedure. Section 3.5 concludes
with theoretical extensions for the procedure.

3.1 Assumptions

In order to achieve the results in the following sections, a list of assumptions
will be presented.

(A1) K(·) is a symmetric Lipshitz continuous kernel function with bounded
support.

(A2) The sequence of bandwidths {hT}, satisfies h = hT > 0, h→ 0, Th4 →
∞ as T →∞.

(A3) Cov(εt, εt+k) = σ2c(k), k = 0,±1, . . . , such that
∑∞

k=1 k|c(k)| <∞.

(A4) E|εt|2+δ <∞ for some δ > 0.

(A5) {εt}t∈Z is a strictly stationary α-mixing process with mixing coefficients
α(k) such that

∑∞
k=1 α(k)δ/(2+δ) < ∞. Furthermore, there exists a

sequence of positive integers {sT}, sT → ∞ as T → ∞ with sT =
o
(
(Th3)1/2

)
and such that (Th−1)1/2

∑∞
k=sT

α(k)1−γ < ∞, with γ =
2/(2 + δ).

(A6) h = O
(
T−1/7

)
.

(A7) |NL| = O(1).

In particular, while (A1) and (A2) are common asumptions on the kernel
functon and on its bandwidth, (A3) assumes that the strength of correlation
between error terms is independent of the sample size, i.e. it depends only on
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the lag. (A5) requires that the random component is strong mixing which is
one of the least restrictive dependence conditions satisfied by many processes,
for example ARMA and GARCH processes. For more insights see Doukhan
(1994) and Zhengyan and Chuanrong (1997). (A7) assumes that the set of
time series with nonlinear trend (NL) has a finite number of elements. Since
p→∞, (A7) also represents a sparsity assumption for NL. The last one is a
key assumption for checking the Sure Screening property of ÎD.

3.2 The Beta Estimator and its properties

In this section will be showed, under (A1)-(A6), the theoretical results for
the first derivative trend estimator β̂(x) and for the D̂(x1, x2). The latter
constitute the building blocks for the theoretical results which will be shown
in the next section.

Starting with β̂(x), Proposition 1 is related to its bias and variance,
while Proposition 2 shows that this estimator is distributed asymptotically
as a multivariate normal random variable. In particular the mean vec-
tor is proportional to the true trend first derivative m(1)(x) by a quantity

µ2 =
∫ 1

−1K(z)z2dz (i.e. the second moment of the kernel) which is known.
This feature is the one with the greatest attraction since links, in an easy
way, the behaviour of the simple proposed estimator β̂(x) to that of m(1)(x).
Another surprising feature is that the proposed estimator, evaluated in dif-
ferent points of the support, is asymptotically independent. The latter allows
for a simplified treatment of this estimator in terms of theoretical results.

Proposition 1. Under (A1)-(A3), for every x ∈ (h, 1− h),

Bias[β̂(x)] = E[β̂(x)−m(1)(x)]

= m(1)(x) (µ2 − 1) +
m(3)(x)h2

6
µ4 +O(h4) +O

(
1

Th2

)
,

(3.5)

V ar[β̂(x)] =
c(ε)

Th3
µ∗2 + o

(
1

Th3

)
, (3.6)

where µj =
∫ 1

−1K(z)zjdz, µ∗2 =
∫ 1

−1K
2 (z) z2dz and c(ε) = σ2 (c(0) + 2

∑∞
k=1 c(k)).

The proof of the proposition is referred to in the appendix.
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Proposition 2. Let X =
[
β̂(xj)

]
j=1,...,kT

, under (A1)-(A6)

√
Th3 (X − µ)⇒ N (0, c(ε)µ∗2IkT ) , (3.7)

where µ is the kT -dimensional vector of expected values and in particular

√
Th3

[
β̂(x)−m(1)(x)µ2 −

m(3)(x)h2

6
µ4

]
⇒ N (0, µ∗2c(ε)) , (3.8)

where µj, with j = 2, 4, µ∗2 and c(ε) as in Proposition 1.

The proof of the proposition is referred to in the appendix.

Proposition 3 presents the expected value and variance of D̂(x1, x2).
These results are very useful as they constitute the milestones for the proof
of Theorem 3. Looking more carefully, it can be seen that it reflects the same
characteristics observed thanks to Proposition 1 for the estimator β̂(x). Its
expected value is proportional to the difference ∆(1)(x1, x2) = m(1)(x1) −
m(1)(x2) by the same known quantity µ2. Intuitively, if a time series has a
nonlinear trend then this difference is not zero, while if a time series has a
linear trend ∆(1)(x1, x2) ≡ 0. Again, a very simple statistic which has a very
desirable characteristic. Note that its variance is independent from the point
of the support. This feature is shared also by β̂(x) and is very helpful in the
proof of the next section results.

Proposition 3. Under (A1)-(A3), for every x1, x2 ∈ (h, 1− h)

E[D̂(x1, x2)] =E
[
β̂(x1)− β̂(x2)

]
=µ2∆

(1)(x1, x2) +
µ4h

2

6
∆(3)(x1, x2) +O(h4) +O

(
1

Th2

)
,

(3.9)

V ar[D̂(x1, x2)] =V ar
[
β̂(x1)− β̂(x2)

]
=2

c(ε)

Th3
µ∗2 + o

(
1

Th3

)
,

(3.10)

where µj =
∫ 1

−1K(z)zjdz, ∆(j)(x1, x2) = m(j)(x1)−m(j)(x2), µ∗2 and c(ε) as
in Proposition 1. Furthermore, for x1 6= x2

Cov(β̂(x1), β̂(x2)) = o

(
1

Th3

)
. (3.11)

The proof of the proposition is referred to in the appendix.
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3.3 Theoretical properties of the Test and Screen-

ing Statistics

In this section the theoretical results will be given for the statistics Îβ and

ÎD(x) based on the proposed first derivative trend estimator β̂(x).

Regarding the following theorems, c(ε) is assumed to be known. How its
estimate affects the theoretical results will be shown in Section 3.5.

Starting with Theorem 1, it highlights that Îβ is proportional to the
following quadratic form

Q =

kT∑
j=1

β̂(xj)
2, (3.12)

where kT = O(T ) and represents the number of equally spaced points by
which the subinterval of the support has been divided. In this way it is easy
to prove that it follows a noncentral chi-squared distribution. This result
remembers the ISE statistic discussed in section 2.2.2, since if one is interested
in testing if a trend has the same value over the support, one can evaluate the
squared error of the proposed estimator from the zero value over the support.
In this case, the Theorem 1 shows that Îβ follows a noncentral chi-squared
distribution whit noncentrality parameter µ∗ = 0 under the hypothesis that
the trend is constant (no trend).

Theorem 1. Let kT = k, under (A1)-(A6)

T 4/7

µ∗2c(ε)
Q⇒ χ2

k(µ
∗) (3.13)

where µ∗ = µ2
2

∑k
j=1m

(1)(xj)
2, µ∗2, µ2 and c(ε) as in Proposition 1.

The proof of the theorem is referred to in the appendix.

On the other hand, Theorem 2 shows that the proposed standardized
statistic Îβ is consistent in the sense that it is able to distinguish the time
series which has a constant trend from the others as the time horizon goes to
infinity. In this way one is able to select the time series with constant trend
under mathematical guarantee. Note that the standardized Îβ is considered
in order to take into account for kT = O(T ).
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Theorem 2. Let Îβ = T 4/7

µ∗2c(ε)
Q with kT = O(T ), under (A1)-(A6), where

(A4) holds for δ > 2 and

α(T ) ≤ c1e
−c2T , c1, c2 > 0,

then

P

 Îβ − EÎβ√
V arÎβ

>
√

2 log T

 = O
(
T−1/2 log T

)
if the time series has constant trend,

P

 Îβ − EÎβ√
V arÎβ

<
√

2 log T

 = O
(
T−4/7

)
otherwise.

The proof of the theorem is referred to in the appendix.

Finally, Theorem 3 gives the guarantee that the proposed statistic ÎD(x)
can be used for the screening procedure. Namely, it postulates the existence
of a threshold η which is able to reduce the probability to commit the error
of separating the time series between linear and nonlinear trend by ÎD(x).

Theorem 3. Under (A1)-(A3) and (A6), there exists η > 0 such that

P (ÎD > η) = O
(
T−4/7

)
if the time series has a linear trend

P (ÎD < η) = o(1) if the time series has a nonlinear trend.

The proof of the theorem is referred to in the appendix.

3.4 Consistency of the Proposed Procedure

in High-Dimensionality

In this section, the consistency of the proposed procedure in the case of high-
dimensionality will be showed by means of the results in Theorems 2 and 3
in conjunction with (A7). Precisely, (A7) assumes that the set of time series
with nonlinear trend (NL) has a finite number of elements, i.e. |NL| = O(1).

Let

p = o

(
T 1/2

log T

)
. (3.14)
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The proposed procedure is composed by two stages, the first is used to test if
a time series has constant trend while the second ranks in the first positions
a time series with nonlinear trend. In order to prove the consistency of the
whole procedure, it is necessary to prove this property for both parts.

Starting with the first stage, considering Theorem 2 and by Boole’s in-
equality

pP (E1,1) + pP (E1,2) =pO
(
T−1/2 log T

)
+ pO

(
T−4/7

)
=o(1),

(3.15)

where:

� E1,1 is the event

{
Îβ−EÎβ√
V arÎβ

>
√

2 log T

}
which represents the error of

not selecting a time series with constant trend given that it has;

� E1,2 is the event

{
Îβ−EÎβ√
V arÎβ

<
√

2 log T

}
represents the error of not se-

lecting a time series with no constant trend given that it has not a
constant trend.

The equation (3.15) shows the consistency of the first stage of the proposed
procedure if one considers as dimensionality (3.14).

For the second stage, considering Theorem 3, (A7) and again by Boole’s
inequality

pP (E2,1) + |NL|P (E2,2) =pO
(
T−4/7

)
+ |NL|o(1)

=o(1),
(3.16)

where:

� E2,1 is the event
{
ÎD > η

}
which represents the error when a time

series which has a linear trend is considered;

� E2,2 is the event
{
ÎD < η

}
which represents the error when a time

series whit a nonlinear trend is considered.

Equation (3.16) suggests that also the second stage of the proposed proce-
dure is consistent if one considers the dimensionality (3.14). Furthermore,
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Theorem 3, (3.14) and (A7) imply that the proposed procedure has the Sure
Screening property (Fan and Lv, 2008)

P (NL ⊂ N̂L)→ 1, (3.17)

where NL is the true set of time series with non linear trend and N̂L is the
estimated one. Namely, it is able to detect the set which contains the true
set of time series with nonlinear trend with probability tending to one as the
time horizon goes to infinity.

Remark 1. Note that, when a screening approach is used, the threshold does
not need to be estimated, see for example Fan and Lv (2008).

Remark 2. Both results, (3.15) and (3.16), highlight that the dimensionality
which ensures the consistency of the proposed procedure is p = o

(
T 1/2/ log T

)
.

This result is due by the use of Berry-Essen theorem for mixing processes (see
Proof of Theorem 2 in the Appendix) which gives a not so finer approxima-
tion result. As a future development a better approximation method could be
considered in order to increase the achievable dimensionality.

3.5 Extensions

In the proofs of Theorems 2 and 3 the crucial points are the rates at which
some quantities go to zero. More precisely, in all the proofs c(ε) is assumed
to be known, but in practice it needs to be estimated by the use of the
nonparametric Spectral Window estimator for each one of the p time series
considered. Furthermore, c(ε) is function of an unobservable quantity, ε. The
latter constitutes an added complication for the derivation of the theoretical
results.

Assuming for now that ε is observable so that one can focus on the rate
at which ĉ(ε) converges to the true c(ε). As in Priestley (1981) or Brockwell
et al. (1991), this rate depends on the window parameter

M = O(T 1/5), (3.18)

when a Daniell window is used for example. The last implies that

V ar[ĉ(ε)] = O
(
T−4/5

)
and Bias[ĉ(ε)] = O

(
T−2/5

)
(3.19)

58



which gives for every η > 0

P (|ĉ(ε)− c(ε)| > η) = O
(
T−4/5

)
. (3.20)

The equations (3.19) and (3.20) suggest that one can use the spectral window
estimator not afflicting the whole proposed procedure consistency.

On the other hand, assuming now that ε is unobservable, one may esti-
mates it by the use of Local Polynomial estimator

ε̂t = Yt − m̂(t/T ) (3.21)

with h = O
(
T−1/5

)
(see Section 2.2). Now,

[d2(F̂ , F )]2 ≤ 1

T

T∑
t=1

(ε̂t − εt)2 = OP

(
T−4/5

)
, (3.22)

where d2(F̂ , F ) is the Mallows distance of order 2 (Bickel and Freedman,
1981), F̂ and F represents the empirical distributions of ε̂t and εt, respec-
tively. The latter implies that

d2(F̂ , F ) = OP

(
T−2/5

)
. (3.23)

The last equation suggests that, by replacing εt with ε̂t for each time series
in the whole procedure, the consistency still holds.

Remark 3. In order to evaluate the consistency one has to consider this rate
in conjunction with that one obtained when ĉ(ε) is used. The impact must
therefore be assessed for the whole procedure. The last constitutes one of the
theoretical developments that this procedure will still have to evaluate.
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Chapter 4

Simulation studies

In the following sections the proposed procedure for classifying high-dimensional
time series by trend will be studied by means of Monte Carlo simulations. In
general, since the procedure is composed by two stages, they will be checked
separately. Precisely, Section 4.1 will show how the quantities hi and ci(ε),
i = 1, . . . , p, will be estimated, since they are fundamental components of the
whole procedure. Section 4.2 will give the general setting for the data gen-
eration. Sections 4.3 and 4.4 present the performance results for the testing
procedure and the screening stage, respectively. Finally, Section 4.5 reports
the results in case the whole procedure is employed.

4.1 Procedure implementation

In order to implement the testing procedure, one needs to choose the cutoff
value, estimate ci(ε) and select the bandwidth hi, i = 1, . . . , p.

Regarding the choice of the cutting value, Theorem 1 in Chapter 3 high-
lights that Îβ follows a chi-squared distribution under the null (i.e. the ith
time series has constant trend) with k degrees of freedom. Then the cutoff
value (i.e. the quantile of the chi-squared random variable) depends on the
definition of k. In the simulations the recommended formula is kT = 0.3T ,
more precisely it is used the [0.3T, 0.6T ] interval for the computation of each
statistic. It gives less computational burden respect to wider intervals, guar-
anteeing at the same time completely similar results.

Since Îβ depends on c(ε) = γε(0)+2
∑∞

k=1 γε(k), in practice it needs to be
estimated. The choice to use a nonparametric consistent estimator narrows
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the focus on the use of a spectral density estimator valued at zero frequency.
In particular, a Spectral Windows estimator is used with a Daniell window
(for more details see Chapter 6 of Priestley (1981)) which in practice gives
good results.

The last critical point is to estimate the bandwidth for each time se-
ries. Considering the results in Sections 4.3 and 4.4, since the estimation
of the bandwidth is not the aim of this thesis, it has been calculated by
using the (2.34) in Chapter 2 which gives the global optimal estimate. For
a more detailed description on the procedure see Francisco-Fernández and
Vilar-Fernández (2001). Considering instead the results of Section 4.5 a
FeedForward Neural Network (FFNN) estimator is used in order to obtain a
plug-in estimator for the optimal bandwidths (Giordano and Parrella, 2019)
in order to evaluate the performance of the whole proposed procedure.

4.2 The general setting

In this section the general setting used to generate the independent p time
series is presented. Consider the representation

Yi,t = m(t/T ) + εi,t. (4.1)

Since it includes the hypothesis of α-mixing errors, two classic cases are
considered for the generation of the errors {εi,t}:

� an ARMA(1,1) process

εi,t = φεi,t−1 + βai,t−1 + ai,t, (4.2)

with φ = 0.5 and β = 0.2;

� a GARCH(1,1) process

εi,t =vtai,t

vt =
√
ω + αε2i,t−1 + βv2t−1,

(4.3)

with ω = 0.5, α = 0.4 and β = 0.3.

For both the compositions of the error process, the ai,t follow an i.i.d. N(0, σ2
a)

with σa = 0.5. Note that Eεi,t = 0 in both cases, the long-run variance is
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γARMA = 1+2φβ+β2

1−φ2 σ2
a for the ARMA(1,1) case and γGARCH = ωσ2

a

1−(ασ2
a+β)

for

the GARCH(1,1) case. For both ARMA and GARCH cases, the following
structures of the signal are considered:

� m(t/T ) = 0, (NoTrend);

� m(t/T ) = at/T , (Lin);

� m(t/T ) = a sin(6πt/T ), (NoLin);

with a ∈ R fixed in order to obtain a Noise Proportion
(

NP = V ar(εi)
V ar(yi)

)
of:

10%, 20% e 30%. In this way it will be possible to evaluate with more preci-
sion the behavior of the proposed procedure considering different incidences
of the error respect to the signal.

Finally, in all the simulations conducted, the Epanechnikov kernel K(u) =
3
4

max(0, 1− u2) is used.

Remark 4. The fact that a sinusoidal signal has been used is due to the
need to use a signal structure which is intentionally more complicated than
a quadratic one, for example. The sinusoidal signal tends to have greater
persistence subjected to differentiation. Furthermore, the example could be
seen as a case linked to the deterministic part of the Wold’s decomposition,
in particular. This underlines the variety of application of the proposed ap-
proach even if the case in question may not be included as an example of a
nonstationary time series.

4.3 The testing stage performances

In this section the performances of the proposed Îβ test statistic will be
shown. For each structure of the signal presented in the previous section
(NoTrend, Lin, NoLin), 1000 realizations are generated with different combi-
nations of T (200, 500 and 1000) and error type (ARMA(1, 1) andGARCH(1, 1)).
Moreover, for each generated time series, the Îβ test statistic is performed
given α = 5% and for various levels of h. The following tables show the per-
centage for which the null hypothesis is accepted (i.e. H0 : the ith time series has no trend).
Note that for those simulations the Bonferroni correction (see line 5 in the
Algorithm) is not used since the aim is not to evaluate a family of null hy-
pothesis.
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NP h T = 200 T = 500 T = 1000
ARMA(1, 1)

100% 0.40 1.000 0.888 0.944
0.30 0.415 0.551 0.687
0.20 0.045 0.087 0.119

GARCH(1, 1)
100% 0.40 0.942 0.945 0.992

0.30 0.782 0.800 0.937
0.20 0.227 0.235 0.432

Table 4.1: Acceptance probability of 95% for the setting of m(u) = 0 and noise as
ARMA(1, 1) (upper part) and as GARCH(1, 1) (lower part). 1000 realizations of the
previous setting are generated with different combinations of T and h.

In general, the size of a test is the probability of incorrectly rejecting
the null hypothesis if it is true. The power of a test is the probability of
correctly rejecting the null hypothesis if it is false. For a given hypothesis
and test statistic, one constrains the size of the test to be small and attempts
to make the power of the test as large as possible. With this reminder,
Table 4.1 displays that the test statistic Îβ has a size which increases as h
shrinks especially for errors with an autoregressive linear structure. This
effect is reduced with the increasing of the length of the time series. On the
other hand, Tables 4.2 and 4.3 display that the power of the proposed Îβ is
very high for reasonable proportions of noise once the bandwidth moves in a
neighbourhood of the optimal global one. This last result is highlighted by
Table 4.3 in which a too wide deviation from the optimal bandwidth gives a
significant drop in power whatever the length of the time series.

The aim of this thesis is not to give a new type of estimator or a new
procedure to estimate the bandwidth. With this in mind, the performances
of the proposed test statistic Îβ are proved to be quite good and in line to
the theoretical results obtained in the previous chapter. It is then able to
select the time series with no trend.

63



NP h T = 200 T = 500 T = 1000
ARMA(1, 1)

10% 0.40 0.000 0.000 0.000
0.30 0.000 0.000 0.000
0.20 0.000 0.000 0.000

20% 0.40 0.000 0.000 0.000
0.30 0.000 0.000 0.000
0.20 0.000 0.000 0.000

30% 0.40 0.000 0.000 0.000
0.30 0.001 0.000 0.000
0.20 0.001 0.000 0.000

GARCH(1, 1)
10% 0.40 0.000 0.000 0.000

0.30 0.000 0.000 0.000
0.20 0.000 0.000 0.000

20% 0.40 0.000 0.000 0.000
0.30 0.000 0.000 0.000
0.20 0.000 0.000 0.000

30% 0.40 0.000 0.000 0.000
0.30 0.000 0.000 0.000
0.20 0.000 0.000 0.000

Table 4.2: Acceptance probability of 95% for the setting of m(u) = au and noise as
ARMA(1, 1) (upper part) and as GARCH(1, 1) (lower part). 1000 realizations of the
previous setting are generated with different combinations of T and h.
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NP h T = 200 T = 500 T = 1000
ARMA(1, 1)

10% 0.30 0.853 0.993 0.998
0.20 0.000 0.000 0.000
0.10 0.000 0.000 0.000

20% 0.30 0.830 0.972 1.000
0.20 0.000 0.000 0.000
0.10 0.000 0.000 0.000

30% 0.30 0.762 0.974 1.000
0.20 0.000 0.000 0.000
0.10 0.000 0.000 0.000

GARCH(1, 1)
10% 0.30 1.000 1.000 1.000

0.20 0.000 0.000 0.000
0.10 0.000 0.000 0.000

20% 0.30 1.000 1.000 1.000
0.20 0.000 0.000 0.000
0.10 0.000 0.000 0.000

30% 0.30 1.000 1.000 1.000
0.20 0.000 0.000 0.000
0.10 0.000 0.000 0.000

Table 4.3: Acceptance probability of 95% for the setting of m(u) = a sin(6πu) and
noise as ARMA(1, 1) (upper part) and as GARCH(1, 1) (lower part). 1000 realizations
of the previous setting are generated with different combinations of T and h. The last is
considered in a neighbourhood of the global optimal one hopt ≈ 0.10.
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4.4 The screening stage performances

In this section the screening stage performances will be analysed. In doing so,
a typical screening performance measure, the Minimum Model Size (MMS),
is used. This measure consists, for the case in use, of the highest position at
which a time series with a nonlinear trend has been assigned by the ranking
induced by the proposed statistic ÎD. Note that the results of this section
are obtained without following the whole procedure, this means to obtain
the number of time series with nonlinear trend those time series have not
been tested as time series with no trend from the previous stage. To avoid
ambiguities, for the time series with no nonlinear trend the bandwidth value
is fixed at 0.40. This is coherent not only with the results obtained in the
Table 4.1 and 4.2, but also to keep the focus on the second stage of the
proposed procedure.

Table 4.4 shows the median of the MMS, with standard deviation in
parenthesis, for 200 repetitions of the whole procedure using the various
composition of the signal together, divided for type of error. In other words,
in the p time series which constitute each repetition, some have no trend,
others have a linear trend and still others have a nonlinear trend. The rep-
etitions are performed for three different couples of T and p. Furthermore,
various settings of NP and h are considered. The number of time series with
nonlinear trend are 5, 8 and 10 for p = 20, 30, 50 respectively. The best
achievable result is to have all the time series with nonlinear trend in the
first top positions. In the neighbourhood of the global optimal bandwidth
the statistic ÎD is able to rank in the top positions the exact number of
time series with nonlinear trend. These results show the effectiveness of the
proposed procedure in the screening phase.
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NP h T = 200 T = 500 T = 1000
p = 20 p = 30 p = 50
ARMA(1, 1)

10% 0.30 0 (0) 0 (0) 0 (0)
0.20 5 (0) 8 (0) 10 (0)
0.10 5 (0) 8 (0) 10 (0)

20% 0.30 0 (0) 0 (0) 0 (0)
0.20 5 (0) 8 (0) 10 (0)
0.10 5 (0) 8 (0) 10 (0)

30% 0.30 0 (0.35) 0 (0) 0 (0)
0.20 5 (0) 8 (0) 10 (0)
0.10 5 (0) 8 (0) 10 (0)

GARCH(1, 1)
10% 0.30 5 (2.41) 8 (0.94) 10 (0)

0.20 5 (0) 8 (0) 10 (0)
0.10 5 (0) 8 (0) 10 (0)

20% 0.30 8 (3.85) 9 (3.68) 10 (3.30)
0.20 5 (0) 8 (0) 10 (0)
0.10 5 (0) 8 (0) 10 (0)

30% 0.30 10 (4.05) 12 (5.24) 11 (5.90)
0.20 5 (0) 8 (0) 10 (0)
0.10 5 (0) 8 (0) 10 (0)

Table 4.4: Median of MMS with standard deviation in parenthesis for 200 iterations
of the whole procedure over realizations which contains all the three types of signal for
the two type of errors and for various h. The last is considered in a neighbourhood of
the global optimal one hopt ≈ 0.10. The number of time series with nonlinear trend is
respectively 5, 8 and 10 for the three combination of T and p.
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4.5 The whole procedure performances

For the sake of the reader the Algorithm, which shows the whole procedure,
is restated. To improve the reading and understanding of what will be cov-
ered in this section, the sets listed in the first line of the Algorithm will be
reintroduced.

C1 represents the set in which the procedure assigns the time series with
no trend at the first stage;

C3 represents the set in which the procedure assigns the time series with
nonlinear trend at the second stage;

C2 represents the set in which the procedure assigns all the remaining time
series not listed in C1 and C3.

Algorithm Classify HD Time Series by Trend

1: Set U := {1, . . . , p}, C1 = C2 = C3 = ∅
2: Set the parameters α, s and hi, i ∈ U
3: for i ∈ U do
4: Perform the ”Trend/NoTrend Test Statistic” Îβ,i
5: if Îβ,i < χ2

(1−α/p,kT ) then

6: Set C1 := C1 ∪ {i}
7: Set U := U\C1

8: if U = ∅ then
9: return C1, C2, C3

10: else Perform the ”Lin/NoLin Statistic” ÎD,i, i ∈ U , and sort them as

ÎD,σ(1) ≥ · · · ≥ ÎD,σ(p2)
11: Set C3 := {σ(1), . . . , σ(s)} and C2 := U\C3

12: return C1, C2, C3

In this section the whole procedure is tested. Namely, given the true
number of time series with no trend P and its complement N = p − P , the
False Positive and False Negative Rates

FPR =
FP

N
, FNR =

FN

P
,
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are calculated for the ”Trend/NoTrend” stage, where FP and FN are the
number of time series incorrectly labelled to have no trend and to have
a trend, respectively. Subsequently, the MMS Ratio is computed for the
”Lin/NoLin” stage. In the latter, the MMS (computed in the same way as
Section 4.4) is divided by the number of true positives time series with non-
linear trend which is corrected to take into account that the procedure has
two stages in which the outcome of the second depends on the first. More
precisely, the true Positives of the second stage P2 are all those time series
which have a nonlinear trend that are not kept in C1 in the first stage. In
formulas

MMS

P2

≥ 1 where P2 = |NL ∩ C1|.

The simulated scenarios are very similar to those presented in Section 4.4.
In particular, 100 repetitions of the whole procedure using the various com-
position of the signal together, divided for type of error are created. In the
p time series which constitute each repetition, some have no trend, others
have a linear trend and still others have a nonlinear trend. The repetitions
are performed for three different couples of T and p. Various settings of
NP are considered. The number of time series with no trend are 8, 12 and
20 while those with nonlinear trend are 5, 8 and 10 for p = 20, 30, 50 cases
respectively. For all 100 repetitions, the previous described Ratios are calcu-
lated. The best achievable result is to have all the FPR and FNR as close as
possible to zero while the MMS Ratio as close as possible to 1. For this last
rate, a value greater than 1 means that the ÎD statistic ranks the remaining
true positives P2 time series not in the first P2 positions. Consequently the
smallest set which contains all the P2 time series with nonlinear trend has
cardinality (i.e. the MMS) greater than P2.

Table 4.5 reports the mean for the FPR and FNR calculated for the
various scenarios, Table 4.6 reports the median for the MMS Ratio. Both
tables gives the value of standard deviation in parenthesis.

The results in Table 4.5 suggest a very good performance of the proposed
procedure in terms of FPR. In all the scenarios considered the error made
by selecting a time series with a nonzero trend at the first stage is always
zero. On the other hand, the performance in terms of FNR improves when the
number of observations for each time series, increases. The best performances
are achieved when the error is generated by a GARCH process.

Table 4.6 highlights that the screening procedure at the second stage
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keeps all the time series with nonlinear trend in the first positions of the
ranking. Considering also the results in the previous table, since the only
error occurs when a time series without a trend is considered as one that has
a trend, this does not compromise the results obtained in the second phase.

Note that, in order to compute Îβ for each time series, two optimal band-
widths need to be estimated as showed by (2.34) in section 2.2.1. Namely,
one for ĉ(ε) since it requires the estimation of the trend function and the
other one for Îβ. Both are function of latent quantities: the integrated sec-
ond and third derivative of the trend function, respectively. To overcome this
issues the same approach used in Giordano and Parrella (2019) is used. More
precisely, an FFNN estimator is used in order to obtain a plug-in estimator
for the optimal bandwidths.

First stage: ”Trend/NoTrend”
NP T = 200 T = 500 T = 1000

p = 20 p = 30 p = 50
ARMA(1, 1)

FPR 30% 0.00 (0) 0.00 (0) 0.00 (0)
20% 0.00 (0) 0.00 (0) 0.00 (0)
10% 0.00 (0) 0.00 (0) 0.00 (0)

FNR 30% 0.17 (0.16) 0.14 (0.11) 0.09 (0.06)
20% 0.20 (0.16) 0.13 (0.11) 0.08 (0.06)
10% 0.22 (0.16) 0.14 (0.10) 0.08 (0.06)

GARCH(1, 1)
FPR 30% 0.00 (0) 0.00 (0) 0.00 (0)

20% 0.00 (0) 0.00 (0) 0.00 (0)
10% 0.00 (0) 0.00 (0) 0.00 (0)

FNR 30% 0.06 (0.08) 0.04 (0.05) 0.02 (0.03)
20% 0.06 (0.08) 0.04 (0.06) 0.02 (0.03)
10% 0.06 (0.08) 0.04 (0.06) 0.02 (0.03)

Table 4.5: Mean of False Positive and False Negative Rates for the ”Trend/NoTrend”
part with standard deviation in parenthesis. The results are obtained by running the
procedure over 100 simulated scenarios and considering α = 0.05.
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Second stage: ”Lin/NoLin”
NP T = 200 T = 500 T = 1000

p = 20 p = 30 p = 50
ARMA(1, 1)

30% 1.00 (0) 1.00 (0) 1.00 (0)
20% 1.00 (0) 1.00 (0) 1.00 (0)
10% 1.00 (0) 1.00 (0) 1.00 (0)

GARCH(1, 1)
30% 1.00 (0) 1.00 (0) 1.00 (0)
20% 1.00 (0) 1.00 (0) 1.00 (0)
10% 1.00 (0) 1.00 (0) 1.00 (0)

Table 4.6: Median of MMS Ratio for the ”Lin/NoLin” part with standard deviation
in parenthesis. The results are obtained by running the procedure over 100 simulated
scenarios.
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Chapter 5

Real data Application

In this chapter an example to illustrate the application of the proposed pro-
cedure to classify high-dimensional time series by trend on real data is pre-
sented. Before proceeding with the actual application, a summary of the
context in which the proposed procedure is applied will be introduced.

5.1 Data description

The problem of interest here is to classify the energy consumption, in kWh,
of some London Householders. The problem was proposed on Kaggle plat-
form (https://www.kaggle.com), an online community of data scientists
and machine learning practitioners which allows users to find and publish
data sets, explore and build models in a web-based data-science environ-
ment, work with other data scientists and machine learning engineers, and
enter competitions to solve data science challenges.

Among the many datasets, the one called ”Smart meter data from Lon-
don” was chosen. It is a reorganization of an existing dataset (https://old.
datahub.io/dataset/smartmeter-energy-use-data-in-london-households),
which contains the energy consumption readings for a sample of 5,567 Lon-
don Households that took part in the UK Power Networks led Low Carbon
London project between November 2011 and February 2014. The data con-
tains also infomations on the ACORN (a segmentation tool which categorises
the UK’s population into demographic types) classification details that can
be found in the website of CACI (https://acorn.caci.co.uk/downloads/
Acorn-User-guide.pdf).
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The descriptive report gives the following information:

”To better follow the energy consumption, the British government wants
energy suppliers to install smart meters in every home in England, Wales
and Scotland. There are more than 26 million homes for the energy suppli-
ers to get to, with the goal of every home having a smart meter by 2020. This
roll out of meter is lead by the European Union who asked all member gov-
ernments to look at smart meters as part of measures to upgrade the energy
supply and tackle climate change. After an initial study, the British govern-
ment decided to adopt smart meters as part of their plan to update the ageing
energy system. The daily dataset contains 112 block files with the daily in-
formation like the number of measures, minimum, maximum, mean, median,
sum and standard deviation of the dataset which contains the corresponding
block files with the half-hourly smart meter measurement.”

Figure 5.1 gives an example of the mentioned mean daily time series
belonging to block 107. Each time series refers to an id code reported on the
top-left which distinguishes the householders. This means that each time
series can be uniquely identified through this code. For example the code
”MAC000313” identify the first time series of the block 107. In particular, the
time series MAC000641 shows a non linear trend which looks like a sinusoid.
On the other hand, the time series MAC000635 seems to have no trend or at
most a slight linear downward trend.

5.2 Classification of energy consumption

Now, setting the error of the first type α = 0.05 for the first stage of selection,
the threshold s = 20, which is the cardinality of the set of time series with non
linear trend, and by using a FFNN estimator in order to obtain the optimal
bandwidths, the procedure is applied to all the 112 blocks by discarding in
advance those time series with a length less than 100.

Figure 5.2 gives a sketch of the output of the procedure applied to the first
5 time series of block 107. As previously stated, the time series MAC000635
is classified to have no trend, the MAC000313 seems to have a linear trend
while the remaining a non linear one. For completeness, Table 5.1 reports
the results obtained for all the time series of the block 107.

Considering now the results obtained for all the blocks, they are summa-
rized in Figure 5.2 which contains the cardinalities of the three classes. In
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particular, the first and last blocks are characterized, for example, by having
not only the absence of time series without a linear trend but also with a car-
dinality of the third group (of the time series with a non linear trend) lower
than that previously set (s = 20). This last peculiarity is due to the nature
of the proposed procedure, the screening phase is applied to the residual set
of the first selection phase (Trend/NoTrend). It is therefore logical to expect
that, in some blocks, the estimated set of time series with a non linear trend
could not only have cardinality lower than the predetermined threshold but
that it may also contain time series with a linear trend. While this may seem
like a disadvantage of the proposed procedure, it undoubtedly gives rise to
further improvements such as turning screening into selection.

In order to conclude the analysis, Figure 5.2 shows the distributions of
the cardinality of the sets which suggest that the time series with no trend
constitute the main part of each block and that the median cardinalities
among blocks are 23 for the No Trend, 7 for the Lin Trend and 20 for the No
Lin Trend. On the other hand, the total result is of 2526 time series with no
trend, 810 with a linear trend and 2219 with a non linear trend.

These results greatly confirm the importance of the proposed procedure.
It is now possible to apply one of the many clustering techniques on time
series seen in Chapter 1. For example, once the respective trends have been
removed from the Lin and No Lin sets, one could conduct a cluster analysis
based on the Piccolo-Distance applied to a K-means algorithm for the three
sets separately. Such an analysis would be somewhat misleading if conducted
without first using the proposed procedure. It could happen that time se-
ries with and without trends are included in the same group. In terms of
electricity consumption, it would mean including users with quite different
behaviours in the same cluster.
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Figure 5.1: First 5 time series belonging to block 107.
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Figure 5.2: First 5 time series belonging to block 107. Each time series is colored
according to the output of the proposed procedure: in ”green” those with ”No Trend”, in
”blue” those with ”Lin Trend” finally in ”red” those with ”No Lin Trend”.
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Block No Trend Lin Trend No Lin Trend
107 MAC000635 MAC000313 MAC001811

MAC001449 MAC002438 MAC001777
MAC001554 MAC001791 MAC001663
MAC001648 MAC002427 MAC001715
MAC001657 MAC002117 MAC000641
MAC001672 MAC001640 MAC001829
MAC001673 MAC001509 MAC000334
MAC001692 MAC002501
MAC001703 MAC002483
MAC001714 MAC001744
MAC001738 MAC001684
MAC001747 MAC005458
MAC001773 MAC002475
MAC001785 MAC005435
MAC001798 MAC001755
MAC001824 MAC001817
MAC001840 MAC001751
MAC001904 MAC000333
MAC002419 MAC002426
MAC002424 MAC001748
MAC002511
MAC005414
MAC005452

] 23 7 20

Table 5.1: Results of the proposed procedure for classify high-dimensional time series
by trend on block 107.
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Figure 5.3: Cardinality of the sets obtained by applying the proposed procedure for
classify high-dimensional time series by trend to all the blocks.
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Figure 5.4: Distributions of the cardinality of the sets obtained by applying the proposed
procedure for classify high-dimensional time series by trend to all the blocks.
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Conclusions

In this thesis a new procedure is presented as an embryonic analysis for
carrying out a correct further clustering analysis on time series. It regards the
classification of nonstationary time series, where the nonstationarity is given
by the presence of a deterministic trend, by looking at the first derivative
of the trend in a context of high-dimensionality and without requiring a
pre specified form for the trend. This is achieved by using the proposed
first derivative trend estimator β̂(x) which is based on the Local Polynomial
estimator for fixed design and also presents the desirable characteristic of a
simple form.

Under the reasonable assumption that the number of time series with
nonlinear trend is finite, the proposed partition procedure consists in two
stages. In the first one, the proposed estimator is tested to be zero or not,
which allows to distinguish the time series with constant trend (no trend).
In the second one, the difference between the estimator at different points is
used in a screening approach to make the further linear/nonlinear partition
of the remaining time series from the previous stage. In other words, the first
stage is used to select the time series with constant trend by using a testing
procedure while the second one is a screening procedure which gives the set
which contains, with probability tending to 1, the true set of time series with
nonlinear trend, i.e. it has the Sure Screening property. Furthermore, an
Algorithm is given in order to show the easy implementation of the whole
procedure.

The use of the mentioned approach presents multiple advantages: (i)
on the mathematical point of view, it is quite intuitive the use of the first
derivative to highlight the linearity of a function; (ii) one can assert if a
trend is linear or not without imposing a predefined mathematical model;
(iii) this type of procedure makes a partition of the set of the given time
series which may be used in a further analysis as starting point (i.e. it gives
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a useful previous knowledge on the trend composition for a deeper clustering
analysis); (iv) it does not impose restrictions on the trend composition such
as those which are imposed when the presence of parallelism is tested; (v)
it gives mathematical guarantees in the high-dimensional setting since it is
consistent in the case of p = o

(
T 1/2/ log T

)
, where p is the number of time

series.

The performances of the proposed procedure are studied by an extensive
use of Monte Carlo simulations with different scenarios. The performances
are checked not only for each part of the procedure but also for the whole
procedure. The results obtained highlight that the proposed procedure con-
firms the theoretical results. An example of application on real data has been
proposed to show the actual goodness and necessity of the procedure before
applying a cluster analysis on time series.

Future developments regarding the proposed procedure concern the trans-
formation of the second stage into a selection procedure which allows to iden-
tify with greater precision the true set of time series with nonlinear trend and
the increase of the achievable dimensionality reached by the procedure.
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Proof of Propositions 1, 2 and 3

Proof of Proposition 1. Sarting with the bias of β̂(x), for the linearity
of the expected value, it is sufficient to develop the following expected value
using: the Riemann sum, the change of variable z = u−x

h
, Taylor’s expansion

up to the fourth power, (A1) and finally (A2).

E[β̂(x)] =
1

Th2

T∑
t=1

Kh(t/T − x) (t/T − x) m(t/T )

=
1

h3

∫ 1

0

K

(
u− x
h

)
(u− x) m(u) du+O

(
1

Th2

)
=

1

h

∫ 1

−1
K (z) z m(x+ hz) dz +O

(
1

Th2

)
=m(1)(x)

∫ 1

−1
K (z) z2 dz +

m(3)(x)h2

6

∫ 1

−1
K (z) z4 dz +O(h4) +O

(
1

Th2

)
In order to derive the variance it is sufficient to use the Proposition

2 in Francisco-Fernández and Vilar-Fernández (2001) noting that β̂(x) −
E[β̂(x)] = 1

h
h−jt∗j with j = 1.

Proof of Proposition 2. The proof follows the approach of Francisco-Fernández
and Vilar-Fernández (2001) and Masry and Fan (1997) used to prove the
asymptotic normality. Let X0 = X − E[X], then

β̂0(x) =
1

Th2

T∑
t=1

Kh(t/T − x)(t/T − x)(Yt −m(t/T ))

=
1

Th2

T∑
t=1

Kh(t/T − x)(t/T − x)εt.

(1)

Let QT be an arbitrary linear combination of β̂0(x)

QT =

kT∑
j=1

ajβ̂0(xj) (2)
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where aj ∈ R, j = 1, . . . , kT . Now it remains to prove the asimptotic nor-

mality of
√
Th3QT and subsequently use the Cramer-Wold device. In or-

der to obtain the result it is sufficient to use the small-blocks large-blocks
method applying the same steps as in the proof of Proposition 3 of Francisco-
Fernández and Vilar-Fernández (2001) noting that, by (1), E[QT ] = 0, while

lim
T→∞

Th3V arQT = c(ε)

∫
C2(u)du = σ2

Q, (3)

and
√
Th3QT =

h√
T

T∑
t=1

Zt =
h√
T
ST , (4)

where

Zt =
√
hCh(t/T )εt,

with

C(u) =

kT∑
j=1

aj(u− xj)K
(
u− xj
h

)
and Ch(u) =

1

h
C(u).

Proof of Proposition 3. To prove the first part of the statement it is
sufficient to apply the first part of the Proposition 1 for β̂(x1) and β̂(x2),
with x1 6= x2.

To prove, instead, the second part of the statement, it is useful to proceed
first with the proof of the (3.11).

Let X0 = X − E[X], then it can be defined the following

β̂0(x) =
1

Th2

T∑
t=1

Kh(t/T − x)(t/T − x)(Yt −m(t/T ))

=
1

Th2

T∑
t=1

Kh(t/T − x)(t/T − x)εt.
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In this way Cov(β̂(x1), β̂(x2)) = E[β̂0(x1)β̂0(x2)] which gives the easiest form

E[β̂0(x1)β̂0(x2)] =
1

T 2h4

T∑
i,t=1

Kh(i/T − x1)(i/T − x1)Kh(t/T − x2)(t/T − x2)Eεiεt.

(5)

From the latter, by (A1)-(A3), it can be obtained, using the same arguments
as the proof of Proposition 2 in Francisco-Fernández and Vilar-Fernández
(2001) the following decomposition

E[β̂0(x1)β̂0(x2)] =
σ2

T 2h4

T∑
i,t=1

Kh(i/T − x1)(i/T − x1)Kh(t/T − x2)(t/T − x2)c(|i− t|)

=
σ2

T 2h4

T∑
i=1

Kh(i/T − x1)(i/T − x1)Kh(i/T − x2)(i/T − x2)
T∑
t=1

c(|i− t|)

+
σ2

T 3h5

T∑
i=1

Kh(i/T − x1)(i/T − x1)Kh(i/T − x2)
T∑
t=1

(t− i)c(|i− t|)

+
σ2

T 3h5

T∑
i=1

Kh(i/T − x1)(i/T − x1)(i/T − x2)
T∑
t=1

(t− i)K∗(i, t)c(|i− t|)

+
σ2

T 3h6

T∑
i=1

Kh(i/T − x1)(i/T − x1)
T∑
t=1

(t− i)2

T
K∗(i, t)c(|i− t|)

=∆1 + ∆2 + ∆3 + ∆4,

(6)

where K∗(i, t) =
∫ 1

0
K(1)

(
i/T−x2+y(t/T−i/T )

h

)
dy. Using the Riemann sum, the

chnge of variable z = u−x1
h

and remembering (A1) and (A3),

|∆1| ≤
σ2c1
Th3

∫ 1

−1
K(z)|z|K

(
x1 − x2

h
+ z

) ∣∣∣∣x1 − x2h
+ z

∣∣∣∣ dz +O

(
1

T 2h5

)
,

where c1 = 2
∑∞

k=1 |c(k)|. Noting that, given z ∈ [1−, 1],

K

(
x1 − x2

h
+ z

) ∣∣∣∣x1 − x2h
+ z

∣∣∣∣ = o(1)

and by using the same approach for ∆2, ∆3 and ∆4, the proof is completed.
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In order to prove the (3.10) it is sufficient to apply the second part of the
Proposition 1 for β̂(x) noting that it does not depend on a precise point of
the support and by using the (3.11).

Proof of Theorems 1, 2 and 3

Proof of Theorem 1. The proof is conducted noting that, by Proposi-
tion 2, it is possible to restate Q as a quadratic form

Q = X ′X, where X =
[
β̂(xj)

]
j=1,...,k

.

Applying the Continuous Mapping theorem to the quadratic form defined
above and by using the results in Section 3.5 of Serfling (2009), the proof is
concluded.

Proof of Theorem 2. In order to prove the theorem it is sufficient to con-
sider Z2

T = T 4/7

µ∗2c(ε)
β̂(x)2 and show that

P
(
Z2
T > 2 log T

)
= O

(
T−1/2 log T

)
if the time series has constant trend,

P
(
Z2
T < 2 log T

)
= O

(
T−4/7

)
otherwise.

The first part can be proved by using the Berry-Essen theorem for strong-
mixing processes (see Chapter 7 of Zhengyan and Chuanrong (1997)). Noting
that

P
(
|ZT | >

√
2 log T

)
≤2P

(
ZT >

√
2 log T

)
, (7)

and that, under the constant trend assumption, (i) E[ZT ] = 0 by (3.2) and
(A1). Furthermore, (ii) by (A4) there exists a δ > 2 such that E|εt|2+δ <∞,
(iii) by assumption the mixing coefficients decrease exponentially. With this
in mind and by Remark 7.1.1 in Zhengyan and Chuanrong (1997),

∆T = |FT (x)− Φ(x)| = O
(
T−1/2 log T

)
, (8)

where FT (x) = P (ZT < x). Now,

P (ZT > x) = |P (ZT > x)− (1− Φ(x)) + (1− Φ(x))|
≤ ∆T + |1− Φ(x)|
= O

(
T−1/2 log T

)
,
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since 1− Φ(x) = o (T−1).

For the second part, note that, under the non constant trend assumption,
Proposition 1 and (A6),

E[ZT ] = T 2/7c, with c 6= 0.

Since,

P
(
Z2
T < 2 log T

)
= P

(
−
√

2 log T − E[ZT ] < ZT − E[ZT ] <
√

2 log T − E[ZT ]
)
,

it is sufficient to prove that

P
(
|ZT − EZT | > |

√
2 log T − E[ZT ]|

)
= O

(
T−4/7

)
to complete the proof. Now, using Chebyshev’s inequality, Proposition 1 and
(A6),

P
(
|ZT − EZT | > |

√
2 log T − E[ZT ]|

)
≤ 1

c2T 4/7
T 4/7V ar[β̂(x)],

the latter is obtained.

Proof of Theorem 3. Using Markov’s inequality, Proposition 3 and (A6),
under the linear trend assumption

P
(
ÎD(x) > η

)
=P

(
1

kT

kT∑
j=1

D̂(x, xj)
2 > η

)

≤ 1

ηkT

kT∑
j=1

E[D̂(x, xj)
2] = O

(
T−4/7

)
,

the first part is proved.

For the second part, note that, under the nonlinear trend assumption and
by Proposition 3,

ÎD
P−→ c∗ > 0, where c∗ = µ2

2

∫ 1

0

∆(1)(x, y)2dy.

Now, choosing 0 < η < c∗, it follows that

P
(
ÎD < η

)
= o(1)

which completes the proof.
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