University of Salerno

Department of Chemistry and Biology "Adolfo Zambelli"

PhD Thesis in Chemistry XXXIII Cycle

Study on Calixarene Threading: Towards Molecular Machines

Tutor:
PhD Student:
Prof. Placido Neri
Veronica Iuliano
8800100034
Co-Tutor:
Prof. Carmine Gaeta
Coordinator:
Prof.ssa Carmen Talotta
Prof. Claudio Pellecchia

Table of Contents

Table of Contents I
Abstract. V
CHAPTER I 1
Introduction. 1
1.1 Supramolecular Chemistry 2
1.2 Molecular Recognition 3
1.3 Interpenetrated and Interlocked Systems 4
1.3.1 Synthesis of rotaxanes 5
1.3.2 Synthesis of catenanes. 7
1.4 Artificial Molecular Machines 8
1.4.1 Rotational molecular machines 9
1.4.2 Translational molecular machines 12
2 CHAPTER II 17
Calix[n]arenes 17
2.1 Synthesis of Calix[n]arenes 18
2.1.1 One-pot procedure 19
2.1.2 Multi-step synthesis and fragment condensation. 21
2.2 Supramolecular systems based on calixarenes 22
2.2.1 Interpenetrated systems based on calix[6]arenes. 22
2.2.2 Interlocked systems based on calix[6]arenes 27
2.2.3 Interpenetrated systems based on calix[5]arenes. 31
CHAPTER III 34
Goals and Outline - Part I. 34
3.1 Goals and Outline - Part I 35
CHAPTER IV 36
Functionalization to improve the threading ability of calix[6]arene macrocycle 36
4.1 Chemical modification of calixarene macrocycle 37
4.2 Lower and Upper Rim Functionalization 37
4.3 Influence of exo-Adamantyl Groups and endo-OH Functions on the Threading of Calixarene 40
4.3.1 Synthesis of derivatives $\mathbf{1 5 f}$ and $\mathbf{1 5 g}$ 40
4.3.2 Threading of Derivatives $\mathbf{1 5 f}$ and $\mathbf{1 5 g}$ 44
4.3.3 Computational Studies 50
4.4 Methylene bridge functionalization 54
4.5 Conformationally stable calix[6]arenes. 57
4.5.1 Synthesis of conformationally stable derivatives 57
4.5.2 Threading Studies of derivatives $\mathbf{4 6}$,h \mathbf{h} and $\mathbf{4 7}$ g,h 58
4.6 Conclusion 64
4.7 Experimental Section 65
4.7.1 General comments 65
4.7.2 Influence of exo-Adamantyl Groups 65
4.7.2.1 Synthesis of derivatives $\mathbf{1 5 f}, \mathbf{1 5 g}, \mathbf{1 5 c}$. 65
4.7.2.2 Synthesis of pseudo[2]rotaxanes 78
4.7.2.3 $\quad{ }^{1} \mathrm{H}$ NMR determination of $\mathrm{K}_{\text {ass }}$ values. 90
4.7.2.4 Crystallographic information of derivatives $\mathbf{1 5 f}$ and $\mathbf{1 5 g}$. 97
4.7.2.5 Computational Details 101
4.7.3 Conformationally stable calix[6]arenes 123
4.7.3.1 Synthesis of Derivatives $\mathbf{4 6 g}$ and $\mathbf{4 7 g}$. 123
4.7.3.2 Synthesis of Derivatives 46h and 47h 127
4.7.3.3 Synthesis of pseudo[2]rotaxanes 130
4.7.3.4 $\quad{ }^{1} \mathrm{H}$ NMR analysis determination of $\mathrm{K}_{\text {ass }}$ values 147
4.7.3.5 Crystallographic information of derivatives 46h and 47h 154
4.7.3.6 Computational detail for pseudorotaxane $\mathbf{1 6} f^{+} \subset \mathbf{4 7 h}$. 157
CHAPTER V 160
Calixarenes with aromatic EDGs and EWGs 160
5.1 Introduction 161
5.2 Calixarene with Electron Donating Groups 161
5.2.1 Synthesis of a calixarene with electron donating groups 161
5.2.2 Threading of calixarene with EDGs 163
5.3 Calixarenes with Electron Withdrawing Groups 165
5.3.1 Synthesis of calixarenes with EWGs 165
5.3.2 Threading of calixarenes with EWGs 171
5.4 Interesting chromogenic properties of calixarenes with EWGs 174
5.4.1 Halochromism of derivatives $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{5 5}^{\mathbf{4 +}}$ 176
5.4.2 Solvatochromism of derivatives $\mathbf{5 4}^{2+}$ and $\mathbf{5 5}^{\mathbf{4 +}}$ 178
5.4.3 Chromogenic properties in calix[4]arene 180
5.4.4 Computational Studies 183
5.5 Conclusion 184
5.6 Experimental Section. 184
5.6.1 General comments 184
5.6.2 Calixarenes with Electron Donating Groups 185
5.6.2.1 \quad Synthesis of derivative 49. 185
5.6.2.2 Synthesis of pseudo[2]rotaxanes 190
5.6.3 Calixarenes with Electron Withdrawing Groups 193
5.6.3.1 Synthesis of derivatives with Electron Withdrawing Groups 193
5.6.3.2 UV/Vis characterization 205
5.6.3.3 Computational Details 205
CHAPTER VI 225
Goals and Outline - Part II. 225
6.1 Goals and Outline - Part II 226
CHAPTER VII 227
Multiple-Threading of a Tris-calix[6]arene 227
7.1 Multivalent hosts 228
7.2 Tris-calix[6]arene 230
7.2.1 Synthesis of triple-calix[6]arene 73 231
7.2.2 Threading studies of derivative $\mathbf{7 3}$ 232
7.3 Conclusions 239
7.4 Experimental Section 240
7.4.1 General Comments 240
7.4.2 Synthesis of derivative 73 240
7.4.3 Threading of derivative $\mathbf{7 3}$ 243
CHAPTER VIII 250
Self-sorting processes in pseudo[3]rotaxane systems. 250
8.1 Self-sorting processes 251
8.2 Self-sorting in supramolecular chemistry 253
8.3 Self-sorting in a heteropseudo[3]rotaxane system 255
8.3.1 Synthesis of linear system $\mathbf{8 5}^{2+}(\mathrm{TFPB})_{2}{ }^{-}$ 256
8.3.2 Threading of linear system $\mathbf{8 5}^{\mathbf{2 +}}$ (TFPB) $)_{2}$ 257
8.4 Conclusion 260
8.5 Experimental Section 260
8.5.1 General Comments 260
8.5.2 Synthesis of derivative $\mathbf{8 5}^{2+}(\mathrm{TFPB})_{2}{ }^{-}$ 260
8.5.3 Synthesis of pseudo[n]rotaxane systems 269
CHAPTER IX 274
Conclusion 274
9.1 Conclusions 275

Abstract

Over the past three decades, the use of calixarenes as macrocyclic hosts in supramolecular chemistry has gained an increasing relevance, especially for the construction of molecular devices. Therefore, it is important to understand how to modify the supramolecular abilities of these macrocycles. In this PhD thesis, the threading abilities of calix[n]arenes with ammonium axles have been studied by modifying the calixarene scaffold. Initially, new hosts were obtained by functionalizing the upper rim, the lower rim, and the methylene bridges (Figure A.1). From these studies, important information was gained to obtain increasingly stable interpenetrated systems.

Figure A.1. Sketched functionalization for the new calixarene hosts here studied.
Subsequently, a trivalent calixarene host (Figure A.2, left) was studied which led to the formation of multicomponent systems such as pseudo[3]- and -[4]rotaxanes. Finally, studies on self-sorting processes in pseudo[3]rotaxane systems (Figure A.2, right) have been carried out. Thus, the peculiar ability of some diammonium axles to select the calixarene partner in the presence of other macrocycles has been highlighted. Furthermore, the selection takes place in a stereocontrolled way leading to the formation of selected stereo-adducts over those theoretically possible.

Figure A.2. Studied multivalent systems.

CHAPTER I

Introduction

1.1 Supramolecular Chemistry

The importance of supramolecular chemistry has been recognized by awarding 2 Nobel prizes in this field. The first was awarded to Donald J. Cram, Jean-Marie Lehn, and Charles J. Pedersen in 1987 (Figure 1.1a), while the second was awarded to JeanPierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa in 2016 (Figure 1.1b).

Figure 1.1. Chemistry Nobel prize winners in 1987 (a) and 2016 (b) years.
This branch of chemistry is a highly interdisciplinary one, which not only attracts the interest of organic, inorganic, and analytical chemists but also of biochemists, biologists, environmental scientists, engineers, material physicists, and theorists, even mathematicians, and various other researchers. Supramolecular chemistry has been defined, by Nobel laureate Jean Marie Lehn, as "Chemistry beyond the molecule"1 and thus, a supramolecule is an organized, complex entity that is created from the association of two or more chemical species held together by secondary interactions.

Supramolecular structures are the result not only of additive but also cooperative interactions, including hydrogen bonding, hydrophobic interactions, and coordination. Their properties are different (often better) than the sum of the properties of each individual component. A well-known example of a cooperative supramolecular system, present in nature, is haemoglobin, a protein composed of four subunits appropriately assembled thanks to secondary interactions of supramolecular nature (Figure 1.2). In fact, in the active sites an allosteric regulation is imparted by the histidine 143 located proximally to the eme group. When O_{2} binds to the first eme

[^0]group, the distance between His and iron atom increases causing important conformational changes in the other three subunits.

Figure 1.2. Representation of haemoglobin.

1.2 Molecular Recognition

Supramolecular chemistry is based on a general phenomenon known as molecular recognition. In fact, two entities that compose a supramolecular system are generally called molecular receptor and substrate. For a receptor (host) to recognize a determinate substrate (guest) an elevate number of non-covalent interactions must be created and a high degree of stereoelectronic complementarity must be present.

A definition of a host/guest complex was given by Nobel laureate D. J. Cram in 1986: "The complexes are formed by two or more molecules or ions joined together in a single structural relationship by non-covalent forces. A molecular complex is composed of at least one host and one guest. A host-guest relationship implies a stereoelectronic complementarity between the link sites of the host and the guest ". ${ }^{2}$ The main molecular interactions involved in this type of process are of a secondary nature such as the ion-ion, dipole-dipole, dipole-hydrogen, hydrogen bonding, and van der Waals forces. ${ }^{3}$ Examples are given by species containing an intramolecular cavity in which the substrate is able to fit (Figure 1.3).

[^1]

Figure 1.3. Formation of Host/Guest complex.
The host can be represented by a large molecule or a molecular aggregate. A wellknown example are enzymes (Figure 1.4), ${ }^{4}$ which have a large central cavity with convergent bonding functions, for example Lewis bases or hydrogen bond donors. The guest, on the other hand, can be a monoatomic cation, a simple inorganic anion, or more complex molecules, such as hormones and neurotransmitters, that have divergent bonding functions such as Lewis acids or hydrogen bond acceptors. These molecular recognition phenomena are the basis of transport, regulation, enzymatic processes, translation and transcription of the genetic code, intramolecular, intermolecular, and cellular recognition. All these phenomena require an accurate manipulation of the energetic and stereochemical properties of non-covalent intermolecular forces to obtain highly efficient and selective receptor molecules. ${ }^{5}$

Figure 1.4. (a) The active site of the enzyme hexokinase (blue) and glucose (red) as substrate; (b) enzyme-substrate complex.

1.3 Interpenetrated and Interlocked Systems

From the initial studies on receptors, coordination chemistry, and molecular recognition through to pre-organization and self-assembly, supramolecular chemistry is now focusing on the complete control of increasingly complex molecules, supramolecules, and materials. Artificial systems possessing specific chemical-

[^2]physical and/or biological properties are designed. In the literature, there are a lot of examples of complex supramolecular architectures able to efficiently mimic biological systems or to perform specific movements following certain external stimuli. Recently, the interest has been focused on the study of interpenetrated and interlocked systems, such as pseudorotaxanes, rotaxanes, and catenanes (Figure 1.5) ${ }^{6}$.

Figure 1.5. Interpenetrated and/or interlocked systems. Structure of $[n]$ rotaxanes and [n]catenanes.

Rotaxanes are supramolecular systems consisting of a linear unit (axle) threaded through a cyclic one (wheel) and present at the ends of the linear system two bulky groups, called stoppers, that prevent the extraction of the two individual subunits. On the other hand, catenanes are made up of two cyclic components interpenetrating each other like in a chain.

A rotaxane without stoppers is called pseudorotaxane; in this case, you have an interpenetrated system in which the two supramolecular units that make it up are free to assemble and disassemble without any constraint.

1.3.1 Synthesis of rotaxanes

The synthesis of the first rotaxane was reported in 1967 by Harrison and Harrison ${ }^{7}$ who proposed a statistical approach for their construction. In the statistical threading method, the two halves of a molecule in the shape of a balance wheel react in the presence of a macrocycle. The process is purely statistical with no apparent attraction between linear species and cyclic molecules. In this pioneering work, Harrison and coworkers also introduced the concept of slipping (Figure 1.6), a process in which the blocking groups (BG) pass through the cyclic unit having similar size. In these

[^3]cases, the formation yield of the rotaxane species depends on the largeness of the macrocycle.

Figure 1.6. The slipping process.
Later, Schill and Zollenkopf introduced the chemical conversion method. ${ }^{8}$ The basic idea is described in Figure 1.7. In the first instance, a cyclic molecule is connected to a linear system suitably functionalized at the ends with X groups. Then the system is made to react with a molecule (BG) bearing a functional group suitable to react with the ends of the linear system. The cyclic system may be crossed by the linear system or not. The last step involves the splitting of the chemical bond between the linear units and the cyclic part, leading to the formation of the rotaxane species. This strategy, in which numerous synthetic steps are involved, is not effective either in terms of time or overall yield.

Figure 1.7. Chemical conversion method.
Subsequently, significant progress was made in this area when the threading of the linear species into the cyclic one was directed by control of enthalpic factors. This approach differs substantially from the statistical threading because in this case there are intermolecular interactions between linear and cyclic species. Therefore, it is usually more effective and gives higher yields. There are several types of attractive forces used in the synthesis of rotaxanes which include hydrogen bonds, metal-ligand interactions, hydrophilic or hydrophobic interactions, $\pi-\pi$ stacking, or a combination of them (Figure 1.8).

[^4]

Figure 1.8. Threading controlled by enthalpy factors.

1.3.2 Synthesis of catenanes

The synthesis of the first catenane system dates to $1960,{ }^{9}$ when Wasserman succeeded, with a statistical approach, to synthesize and characterize the first example of artificial [2] catenane (Figure 1.9). A cyclization by acyloin condensation was carried out on a di-ester with thirty-eight carbon atoms. The product was then reduced with a Clemmensen reaction. Wasserman's success encouraged other scholars to seek synthetic pathways that lead to interlocked adduct with much higher yields.

Figure 1.9. Synthesis of the first [2]catenane by Wasserman in 1960.
The first covalent template synthesis of a [2]catenane proposed by Schill and Lüttingraus ${ }^{10}$ dates to 1964 (Figure 1.10). The adopted strategy exploits the use of the acetal of di(12-chlorododecyl) ketone with a catechol bearing a cyclic system. The introduction of an amino group to give intramolecular nucleophilic substitution followed by the removal of the acetal and the subsequent oxidation of the phenol led to the desired architecture. The role of the acetal intermediate in this methodology is

[^5]crucial, as the intramolecular cyclization on nitrogen is forced by the tetrahedral geometry of the protected carbonyl carbon. This type of synthesis was subsequently exploited for the construction of the first [3]catenane. ${ }^{11}$

Figure 1.10. Synthesis of the "original [2]catenanes" by Schill and Lüttringhaus in 1964.
Finally, in 1987, Sauvage and coworkers ${ }^{12}$ developed an efficient template synthesis of a [2]catenane by exploiting the use of metals as coordination centers (Figure 1.11). This approach was then extended to the synthesis of other [n]catenane systems.

Figure 1.11. Sauvage's copper (I) template synthesis of an interlocked catenane in two sequential steps: (i) coordination of the disubstituted phenanthroline ligand to the metal; (ii) mechanical interlocking by a covalent bond forming reaction; (iii) Demetallation leads to a specific conformational change.

1.4 Artificial Molecular Machines

The haemoglobin, previously mentioned, is not only a complex supramolecular system but can be defined as a real molecular machine. Molecular machine is an assembly of a discrete number of molecular components designed to perform mechanical-like movements due to appropriate external stimuli. In detail, this protein can transport oxygen inside the cells and carbon dioxide out of them through the movement of its subunits. Drawing inspiration from nature, supramolecular chemists

[^6]for years have focused their attention on the creation of artificial molecular machines because they can have wide applications in the field of electronics, sensors, drug delivery and catalysis. These molecular devices can make movements that can be translational or rotational. Rotational molecular machines can be based, for example, on the cis/trans switch of double bonds thanks to photochemical stimuli or on the Hbond formation by a pH -responsive rotary switch. Instead, translational molecular machines include interpenetrated and/or interlocked systems such as pseudorotaxanes, rotaxanes, and catenanes.

1.4.1 Rotational molecular machines

Concerning rotational molecular machines, the Nobel prize winner Bernard L. Feringa, conducted an exhaustive study on the synthesis of molecular rotor systems. ${ }^{13}$ In particular, he developed unidirectional motors able to perform repetitive unidirectional rotary movement, using light and mild heating $\left(35-65^{\circ} \mathrm{C}\right)$ as the power input (Scheme 1.1).

Scheme 1.1. Mechanism of the Feringa molecular rotor system.
The work of Feringa has open the way to an entire research field devoted to the synthesis of rotational molecular machines. Subsequent studies ${ }^{14}$ reported the synthesis of nanocars consisting of a carbon core that is the Feringa's rotational system and 4 carborane units as wheels at the ends (Figure 1.12). When irradiated with UV light at 365 nm (or heating at $65^{\circ} \mathrm{C}$) the double bond isomerizes bringing the nanocar to make a real movement on the surface (Figure 1.13).

[^7]

Figure 1.12. (a) Structure of motorized nanocar 1. (b) The space-filling model of 1.

Figure 1.13. Proposed propulsion scheme for the motorized nanocar 1 where (a) 365 nm light would impinge upon the motor which in conjunction with a heated substrate (at least $65^{\circ} \mathrm{C}$) (b) affording motor rotation and (c) sweeping across the surface to (d) propel the nanocar forward.

At the same time, Ivan Aprahamian reported a new type of chemically induced rotary switch using a hydrazone block. ${ }^{15}$ In particular, the switching process is activated by a Lewis acid. Therefore, this molecular device is able to control the E / Z isomerization in hydrazones by the pH response. Furthermore, this isomerization is reversible thanks to heating as described in Scheme 1.2.

Scheme 1.2. Aprahamian's rotary system.

[^8]In 2016, ${ }^{16}$ a robotic arm capable of carrying a small molecule was reported David Leigh (Figure 1.14).

Figure 1.14. Leigh's robotic arm.
A pH-responsive, three-step rotary switch was realized, which steers a molecular robotic arm that can grip or release a cargo through disulfide bond formation. A dynamic hydrazone linkage was used to bind the cargo to the platform sites (Scheme 1.3).

Scheme 1.3. Mechanism of Leigh's robotic arm.

[^9]
1.4.2 Translational molecular machines

David Leigh has also conducted significant studies on translational molecular machines. In $2014{ }^{17}$ he reported an artificial molecular machine that can pick up and assemble reactive groups in sequence, by traveling along a track. In this case, the reacting groups are different amino acids. This molecular device is based on an interpenetrated system constituted by a cyclic unit and a linear system (Figure 1.15). The cyclic unit carries a thiolate group that iteratively removes amino acids from the strand and transfers them to a peptide-elongation site through native chemical ligation.

Figure 1.15. The ribosome-like translational machine by Leigh.
In 2017, ${ }^{18}$ Leigh has also synthesized an artificial translational molecular machine able to carry out the autonomous sequential synthesis of peptides containing $\beta 3$-amino acids (Figure 1.16).

[^10]

Figure 1.16. Translational molecular machine performing an autonomous sequential synthesis.

Other important contributions in the field of molecular machines are due to Nobel Prize winner Sir. Fraser Stoddart, who has synthesized and studied a huge number of supramolecular systems by exploiting mostly $\pi-\pi$ interactions between electron rich and electron poor aromatic units. Thanks to this secondary interaction Sir F. Stoddart has managed to synthesize highly complex interpenetrated and interlocked structures (Figure 1.17). ${ }^{19}$

Figure 1.17. [5]Rotaxane system of Stoddart.
In 2015, ${ }^{20}$ an interesting artificial molecular pump was reported by Stoddart. Its design was inspired by the $\mathrm{Na}^{+} / \mathrm{K}^{+}$pump present in living organisms. In detail, a dumbbellshaped molecular pump comprises a redox-switchable viologen recognition site, linked by bismethylene chains to a 3,5-dimethylpyridinium, and a tetracationic ring as cyclic unit (Figure 1.18). The threading of the macrocycle in the linear system occurs thanks to a reduction/oxidation cycle. The pump withstands up to two

[^11]oxidation reduction cycles and works against a local concentration gradient in order to accumulate potential energy.

Figure 1.18. Mechanism of artificial molecular pump.
Another example of molecular devices realized by Stoddart is the molecular elevator ${ }^{21}$ (Figure 1.19). This machine uses an acid-base stimulus and is based on a guest bearing three linear axles, each containing an ammonium and a viologen recognition site. The second component is a host platform made up by 3 crown ethers and having

[^12]a size of only $3.5 \times 2.5 \mathrm{~nm}$. The platform is initially located closest to the ammonium sites, thanks to H -bonding interactions between the crown oxygen atoms and the ammonium groups.

Figure 1.19. (a) Linear and cyclic units of Stoddart's molecular elevator; (b) Stoddart's molecular elevator.

Following the ammonium deprotonation by a base, the platform moves towards the electronic-poor viologen units of the linear system, thus carrying out a displacement of 0.7 nm . In the same vein of this work, in 2008, Stoddart devised an additional machine known as molecular muscle ${ }^{22}$ (Figure 1.20).

Figure 1.20. Stoddart's molecular muscle.

[^13]This system exploits the same approach previously seen, i.e. the movement of a cyclic unit from an ammonium site to a viologen unit by following a change in pH . Due to its structure, the interlocked system passes from an extended (3.1 nm) to a contracted $(2.2 \mathrm{~nm})$ form.

CHAPTER II

Calix[n]arenes

2.1 Synthesis of Calix[n]arenes

Among the macrocycles known in the literature for their ability to form interpenetrated and interlocked systems, there are cucurbituryls, ${ }^{23}$ crown ethers, ${ }^{24}$ cyclodextrins, ${ }^{25}$ and calixarenes. ${ }^{26}$ Calixarenes are a particular class of macrocycles that belong to the metacyclophane family. They are obtained by phenol/formaldehyde condensation and are widely used in supramolecular chemistry, where they have found many applications. Calix[n]arenes have the general structure $\mathbf{1}$ reported in Figure 2.1 in which the number n of phenolic units ranges from 4 to 20. In addition, these macrocycles have a three-dimensional structure with two distinct portions indicated as upper rim and lower rim (Figure 2.1). However, the most studied members are those constituted by 4-8 aromatic units.

a) $n=4 \quad$ i) $n=12$
b) $n=5 \quad$ j) $n=13$
c) $n=6 \quad$ k) $n=14$
d) $n=7 \quad$ l) $n=15$
e) $n=8 \quad$ m) $n=16$
f) $n=9$
n) $n=17$
g) $n=10$
o) $n=18$
h) $n=11$
p) $n=19$
q) $n=20$

Figure 2.1. The calix $[n]$ arene family $(n=4-20)$.
These macrocycles also have a high conformational freedom, which allows them to assume different conformations thanks to the free rotation around the $\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}$ bonds (Figure 2.2).

Figure 2.2. Conformational interconversion in p-tert-butylcalix $[n]$ arenes.

[^14]In particular, calix[6]arenes gives rise to eight discrete conformations (Figure 2.3): cone, partial-cone, 1,2-alternate, 1,3-alternate, 1,4-alternate, 1,2,3-alternate, 1,2,4alternate, and 1,3,5-alternate.

Partial-cone

1,2-Alternate

1,2,3-Alternate

1,4-Alternate

1,3-Alternate

1,2,4-Alternate

1,3,5-Alternate

Figure 2.3. The possible 8 discrete conformations of a calix[6]arene macrocycle.
Their three-dimensional structure, the possibility of being easily functionalized at both the lower and upper rim, their conformational flexibility, and the presence of the central cavity which gives them complexing properties explain the extensive studies and use of these molecules. A classic type of functionalization of calixarenes at the lower rim exploits the acidity of the phenolic groups, which, once deprotonated by suitable bases, can behave as nucleophiles in alkylation/acylation reactions in the presence of alkyl or acyl halides.

The basic calixarene macrocycles can be obtained using two different synthetic strategies:
$>$ One-pot procedure
> Multi-step synthesis and fragment condensation

2.1.1 One-pot procedure

Through the one-pot procedure, calixarene macrocycles are obtained by direct reaction between the p-tert-butylphenol and formaldehyde in basic or acid
conditions. ${ }^{27}$ The one-pot procedure has been optimized for p-tert-butylphenol as starting material and gives rise to the p-tert-butylcalix[n]arene macrocycle. By varying the reaction conditions, as the source of formaldehyde, solvent, temperature, and base, the individual members of the calix[$n]$ arene family (Figure 2.1) can be selectively obtained as shown in Scheme 2.1.

In detail, p-tert-butylcalix[4]arene $\mathbf{1 a}$ is obtained by reaction between p-tertbutylphenol and a commercial solution of formaldehyde in water in the presence of sodium hydroxide (45 equiv.). The reaction mixture is heated for 2 h at $110-120{ }^{\circ} \mathrm{C}$ leading to the formation of a viscous paste called "the precursor". Subsequently, the mixture is refluxed in diphenyl ether for 2 h . In these conditions, the cyclic tetramer $\mathbf{1 a}$ is recovered by precipitation from ethyl acetate and recrystallized from toluene. The amount of hydroxide ion and the nature of its cation plays an important role in addressing the synthesis toward a specific macrocycle. In particular, the presence of NaOH as base allows the synthesis in high yields of the cyclic octamer $\mathbf{1 e}$ in xylene as solvent and tetramer 1a in diphenyl ether as solvent, while using KOH in xylene as solvent, high yields ($80-85 \%$) of the cyclic hexamer $\mathbf{1 c}$ can be obtained.

Scheme 2.1. One-pot procedure for calix[n]arenes.

[^15]
2.1.2 Multi-step synthesis and fragment condensation

Historically, the main advantage of the multistep synthesis is that it makes available calixarene derivatives bearing differently p-substituted phenol units. The first example of multi-step synthesis of calixarenes was reported by Hayes and Hunter, that synthesized the p-methylcalix[4]arene $\mathbf{8}$ by a 10 -steps procedure (Scheme 2.2).

Scheme 2.2. Synthesis of p-methylcalix[4]arene with a non-convergent stepwise approach.
The multi-step syntheses were long and tedious so many efforts were devoted to improving this strategy. ${ }^{28}$ Thus, Böhmer and coworkers ${ }^{29}$ developed convergent syntheses that require fewer reaction steps. In detail, this method is identified in four different ways as: $3+1,2+2,2+1+1$, and $1+1+1+1$ fragment condensation (Scheme 2.3).

Scheme 2.3. Examples of $3+1$ and $2+2$ fragment condensation.

[^16]
2.2 Supramolecular systems based on calixarenes

2.2.1 Interpenetrated systems based on calix[6]arenes

The first example of a calixarene-based pseudorotaxane was reported by Arduini et al. in $2000 .{ }^{30}$ In detail, a pseudo[2]rotaxane $\mathbf{1 3} \subset \mathbf{1 4}$ was obtained by exploiting the presence of ureido groups at the upper rim of the macrocycle that dissociate the ion pair of the linear system (Figure 2.4). This approach, however, limits the functionalization of the upper rim.

Figure 2.4. Self-assembly in toluene of calix[6]arene-based wheel 13 and viologen-based axle 14.

In 2010, the threading of dialkylammonium axles through the cavity of calix[6- or 7]arene was studied by Gaeta et al. ${ }^{31}$ This threading is possible by exploiting the poorly coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate anion (TFPB) (Figure 2.5), known in the literature as "superweak anion". ${ }^{32}$

[^17]

Figure 2.5. Structure of tetrakis[3,5-bis(trifluoromethyl)phenyl]borate anion.
The use of the superweak anion allows to dialkylammonium species to be present in solution as a weakly associated ion pair and drastically improve the hydrogen bonding interactions with the calixarene oxygens leading to the formation of interpenetrated systems (Figure 2.6).

Figure 2.6. Anion influence on the through-the-annulus threading of calix[6]arene macrocycle

The formation of interpenetrated species, related to the threading of dipentylammonium and dibenzylammonium TFPB salts through the cavity of hexamethoxy-p-terz-butylcalix[6]arene (Scheme 2.4), was deduced from the analysis of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. In both cases, an AX system related to $\mathrm{ArCH}_{2} \mathrm{Ar}$ bridges was observed in the $3-4 \mathrm{ppm}$ region, which is indicative of the presence of a cone conformation of the calix[6]arene. Furthermore, the high-field signals of the spectrum attributable to the aliphatic protons strongly shielded by the calixarene aromatic walls (the protons $\alpha, \beta, \gamma, \delta$, and ε resonating between 0.5 and -1.2 ppm) are particularly diagnostic (Figure 2.7b). In a similar way, the high-field shift of the benzyl protons shielded by the calixarene cavity (o, m, and p), was a clear evidence of the presence of the aromatic system inside the calixarene cavity (Figure 2.7a).

Scheme 2.4. Threading of symmetric salts in the calixarene cavity.

Figure 2.7. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of (a) 15a, b) equimolar solution (3 mM) of 15a and di-n-pentylammonium TFPB-, 16a, (c) equimolar solution (3 mM) of 15a and dibenzylammonium TFPB-, 16b.

The threading of non-symmetrical alkyl-benzyl-ammonium axles was also studied. In this case, given the natural directionality of the calixarene macrocycle, two isomeric pseudorotaxane species will be possible, namely the endo-alkyl or endo-benzyl one, in which the alkyl or benzyl group, respectively, is included inside the macrocycle cavity (Scheme 2.4). The study proved that the endo-alkyl adduct is usually preferred (Figure 2.8), leading to the so-called "endo-alkyl rule".

$\mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{13}$
15b

(endo-benzyl) $-16 c^{+} \subset$ 15b

Scheme 2.5. Threading of asymmetric salt in the calixarene cavity.

Figure 2.8. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right.$) of equimolar solution (3 mM) of $\mathbf{1 5 b}$ and n-hexylbenzylammonium $\mathbf{1 6 c}^{+}$TFPB $^{-}$.

This phenomenon has laid the foundations for further threading studies with dicationic axles, carrying a different sequence of the alkylbenzyl unit. In this way, the first examples of calixarene-based pseudo[3]rotaxanes were obtained. ${ }^{33}$ In addition, an efficient and rational control of the "sequential stereoisomerism" was developed by playing on the nature of the linear system. Several different stereosequences have been obtained by using the alkylbenzylammonium unit as the coding language (Figure 2.9).

[^18]

Figure 2.9. Sequential isomers by threading between bis-ammonium axles and pHcalix[6]arene hexametoxy.

The study of calixarene threading has allowed the creation of increasingly complex supramolecular architectures such as the first examples of calixarene-based handcuff pseudorotaxane ${ }^{34}$ (Figure 2.10). Thanks to possibility to control the threading directionality by exploiting the "endo-alkyl rule" a predefined orientational isomer was obtained.

Figure 2.10. Handcuff interpenetrated system.

[^19]
2.2.2 Interlocked systems based on calix[6]arenes

Thanks to the possibility of threading calixarene macrocycle with viologen-based axles, over the years, it has been possible to synthesize different interlocked systems as rotaxanes and catenanes. To this end, a linear system bearing terminal hydroxyl functions was used. Subsequently at the formation of pseudorotaxane system, the introduction at the ends of the axle of two sufficiently bulky groups (threading/stoppering approach) led to the formation of rotaxane system 21^{35} (Figure 2.11).

Figure 2.11. Rotaxane formed by calixarene and viologen axles 21.
In the case of calix[6]arene catenane, after the threading of tris(N phenylureido)calix[6]arene a subsequent cyclization by metathesis reaction led to the interlocked system ${ }^{36}$ (Figure 2.12a).

Catenane 22 was studied by UV-visible absorption spectroscopy in acetonitrile. The absorption spectrum (Figure 2.12b) shows an intense band in the UV region $(\lambda \max =$ $260 \mathrm{~nm}, \varepsilon=86000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) and a weaker band in the visible region ($\lambda \max =470$ $\mathrm{nm}, \varepsilon=600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$). In particular, the latter band is attributed to the interaction of the charge transfer between the viologen unit and the calixarene rings.

[^20](a)

(b)

Figure 2.12. (a) Catenane formed by Calixarene and Viologen Axles 22. (b) Absorption spectrum of catenane 22 in acetonitrile.

The "superweak anion" approach has also allowed the synthesis of interlocked systems. In 2011, Neri and coworkers ${ }^{37}$ synthesized a calix[2]rotaxane by using a similar threading/stoppering approach (Scheme 2.5).

Scheme 2.6. Synthesis of calix[2]rotaxane 25.

[^21]Further studies conducted on calix[2]rotaxane 25 have shown that by changing the protonation state of the ammonium site, the cyclic unit can carry out translational movements along the linear system acting as a nanosized molecular shuttle. In detail, by mixing calix[2]rotaxane 25 with 1,5 equiv of phosphazene base P1-t-Bu (N-tert-butyl- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}, N^{\prime \prime \prime}, N^{\prime \prime \prime}$-hexamethylphosphorimidic triamide important changes in the proton spectrum were observed indicating the displacement of the calixarene macrocycle from the initial central dibenzylammonium station to a new position where an aliphatic chain is inside the calixarene cavity. Because of the unsymmetrical nature of the macrocycle, there are two different (no equivalent) aliphatic sites on the linear component. Therefore, two possible translational isomers can be formed where the wheel can be found on the upper station $\mathbf{2 6 U}$ or on the lower station 26L (Scheme 2.6).

Scheme 2.7. Formation of 25U and 25L derivatives following the use of the P1-t-Bu base on derivative 12.

DFT studies indicated that $\mathbf{2 5 L}$ is the preferred isomer thanks to H -bonding interactions between calix[6]arene oxygen atoms and the NH urethane at the lower station (Figure 2.13).

26L

26U

Figure 2.13. Low energy structures of isomers 25U (right) and 25L (left).
Afterwards, in 2013, the same group synthesized the first examples of calix[2]catenanes ${ }^{38}$ (Figure 2.14) using a threading/cyclization approach. In detail, after the threading of linear system inside the cavity of hexamethoxycalix[6]arene, a urethane macrocyclization reaction was performed.

27

28

Figure 2.14. Calix[2]catenanes through-the-annulus threaded, 27 and 28.
The interlocked systems described so far are all made up by 2 units, but further studies have reported the formation of calixarene-based [3]rotaxane systems. ${ }^{39}$ In fact, the sequential stereoisomerism observed for the [3]pseudorotaxanes previously described, led to the synthesis of the first examples of [3]rotaxanes in a stereoprogrammed way (Figure 2.15).

[^22]

Figure 2.15. Stereoprogrammed [3]rotaxane systems.
Finally, an interlocked system was also obtained using a double calixarene. By mixing the host with a bis-ammonium linear axle having terminal hydroxyl sites, the interpenetrated system was initially obtained, which was stoppered to give a handcuff rotaxane (Figure 2.16)

31

Figure 2.16. Handcuff interlocked system.

2.2.3 Interpenetrated systems based on calix[5]arenes

Interpenetrated systems based on the smaller calix[5]arene macrocycle have been largely less studied. In a very recent joint work by the Neri and Parisi groups, the "superweak anion approach" was extended to calix[5]arenes.

Initially, the threading of calix[5]arene $\mathbf{3 3}$ with a dipentyl ammonium axle was studied. The typical shielded signals related to the aliphatic chain within the calixarene cavity clearly evidenced the pseudorotaxane formation (Figure 2.17).

Figure 2.17. High-field regions of the ${ }^{1} \mathrm{H}$ NMR spectra ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of (a) $\mathbf{3 3}$ and (b) an equimolar solution (4.5 mM) of $\mathbf{3 3}$ and $\mathbf{1 6 a}^{+} \mathbf{T F P B}^{-}$after 18 h at rt.

Subsequently, the study was extended to non-symmetrical alkylbenzylammonium axles. As previously described, it is well known that calix[6]arenes follows the socalled "endo-alkyl rule"; therefore it was of some interest to investigate the behavior of the smaller calix[5]arene analogues. ${ }^{40}$

In detail, the threading study of penta-penta- O-(4-methylpentyl)-p-tertbutylcalix[5]arene $\mathbf{3 3}$ with pentylbenzylammonium $\mathbf{1 6 d}{ }^{+}$evidenced the selective formation of endo-alkyl pseudorotaxane $\mathbf{1 6 d}{ }^{+} \subset \mathbf{3 3}$ (Figure 2.18), confirming that the above rule also applies to calix[5]arene macrocycle.

Figure 2.18. Endo-pentyl-/endo-benzyl pseudorotaxane stereoisomers, potentially obtainable by directional threading of the pentylbenzylammonium axle through the calix[5]arene wheels.

[^23]From the study of dibenzylammonium axle, it was understood that the calix[5]arene lower rim, being narrower than the calix[6]arene one, cannot be crossed by the benzyl portion, while it is easily accessible to thin aliphatic chains (Figure 2.19).

Figure 2.19. Unidirectional threading mode of $\mathbf{1 6} \mathbf{d}^{+}$through the narrow rim of $\mathbf{3 3}$.
This is the first example of unidirectional threading observed for calix[5]arenes. This important information can be considered as an additional rule, which could contribute to enriching the molecular code previously introduced. The application of this code could lead to more complex architectures mimicking those observed in biological systems.

CHAPTER III

Goals and Outline - Part I

3.1 Goals and Outline - Part I

Given the extensive studies conducted on the threading of calix[n]arenes and given the importance of interpenetrated supramolecular systems in various fields, the aim of the present PhD thesis was to further investigate the threading abilities of this family of macrocycles in order to provide useful information for the future construction of mechanically interlocked molecular machines (MIMs) based on these macrocycles.

On this basis, this thesis will describe the synthesis of various calixarene derivatives specifically functionalized at the lower and upper rims and at methylene bridges (Figure 3.1). How these functionalization affect the threading ability of the macrocycles is also reported.

Figure 3.1. Calixarene derivatives functionalized.
All the new derivatives were characterized through NMR spectroscopy, mass spectrometry and, where necessary, also with UV/vis studies. Preliminary threading studies were also carried out by exploiting the "superweak anion approach".

CHAPTER IV

Functionalization to improve the threading ability of calix[6]arene macrocycle

4.1 Chemical modification of calixarene macrocycle

Calixarenes have been extensively studied in the literature thanks to their high synthetic versatility. In fact, these macrocycles can be easily functionalized (Figure 4.1) at:
> Lower rim, with alkylation or acylation reactions.
$>$ Upper rim, by aromatic electrophilic substitutions (halogenation, nitration, sulfonation, etc.).
$>$ Methylene bridge, through nucleophilic substitution reactions.
$>$ Aromatic walls, by reduction or oxidation of the phenol rings.
Thus, by introducing specific functional groups, it is possible to get hosts for anion or cation recognition or to obtain useful building blocks for self-assembly processes.

Figure 4.1. Functionalization of calixarene macrocycle.

4.2 Lower and Upper Rim Functionalization

The most popular and widely studied functionalization concerns the alkylation of the lower rim of calix [n]arenes by Williamson ether synthesis.

Using appropriate reaction conditions, partially and/or totally O-alkylated derivatives can be obtained directly from the native calix[n]arenes. The reaction outcome is dependent on several factors, such as the nature of the p-substituent at the upper rim, solvent, temperature, and base.

Totally O-alkylated calix[n]arene derivatives are obtained in the presence of a strong base with an excess of alkylating agent. ${ }^{41}$ Instead, partial alkylation of calixarenes can be carried out in the presence of a weak base. In case of calix[6]arene, potassium trimethylsilanolate is used as a weak base. After the first alkylation, the second

[^24]deprotonation preferentially involves the distal OH group, to give an anion stabilized by two H -bonds with the proximal OH groups (Scheme 4.1). In addition to the pKa of the hydroxyl groups, the bulky effect of the base is also exploited.

Scheme 4.1. Mechanism of weak-base-promoted regioselective 1,4-dialkylation of calix[6]arenes.

It is also possible to introduce substituents on the upper rim of the calixarene macrocycles. Luckily, it is possible to replace the tert-butyl with other groups. For this kind of approach, in a first instance, the p-tert-butyl group can be easily removed by a complete or selective reaction of de-tert-butylation, using a Lewis acid catalyst such as AlCl_{3} (reverse Friedel-Crafts reaction) in the presence of phenol (Scheme 4.2). Subsequent electrophilic substitution reactions allow the introduction of new groups at the para-position. New functionalities can be introduced by acylation, bromination, formylation, diazo coupling, nitration, sulfonation, Claisen rearrangement, and Mannich reaction. ${ }^{42}$

[^25]

Scheme 4.2. Examples of upper rim functionalization.
An interesting substituent that can be introduced on the upper rim of the calixarene is the adamantane group. Introduction of a bulky lipophilic group increase the size of the hydrophobic cavity, and functional groups present in the adamantane fragment provide the possibility for further modification and conformational organization of the molecule. To obtain this substitution, a convenient synthesis is the direct adamantylation of an unsubstituted calix[n]arene with 1-hydroxyadamantanes in trifluoroacetic acid (Scheme 4.3). ${ }^{43}$

Scheme 4.3. Synthesis of derivative 39.

[^26]
4.3 Influence of exo-Adamantyl Groups and endo-OH Functions on the Threading of Calixarene ${ }^{\mathbf{4 4}}$

From previous studies it is known that calixarene derivatives bearing the p-tert-butyl groups at the upper rim (derivatives $\mathbf{1 5 a - c}$) give rise to more stable pseudorotaxane complexes than those formed by the corresponding p-H-macrocycles (derivatives 15d,e) due to more favourable van der Waals interactions with the cationic axle. Based on these observations, it was decided to expand the previous knowledge by evaluating how a different substitution at the lower/upper rim of the macrocycle affects the threading of ammonium axles.

In particular, it was decided to study the threading of calix[6]arenes (Figure 4.2) bearing p-adamantyl units at the upper rim, derivatives $\mathbf{1 5 f} \mathbf{g}$. In addition, it was evaluated if the substitution of a few of the OR groups at the lower rim with the OH ones could also lead to thermodynamically stable pseudorotaxane complexes.

15a) $R 1=R 2=$ Methyl
15b) R1 = R2 = Hexyl
15c) R1=H; R2= Hexyl

15d) R=Methyl
15e) R=Hexyl
Figure 4.2. Structures of calix[6]arene wheels 15a-g.

4.3.1 Synthesis of derivatives $15 f$ and 15 g

The synthesis of hexamethoxy- p-adamantylcalixarene $\mathbf{1 5 f}$ was obtained by exhaustive methylation with MeI, promoted by NaH in DMF (Scheme 4.4) of the corresponding hexol.

[^27]

Scheme 4.4. Synthesis of derivative $\mathbf{1 5 f}$.
The new derivative was fully characterized by NMR spectroscopy and mass spectrometry. Furthermore, its structure was also confirmed by X-ray diffraction studies which also evidenced its preferential conformation. In fact, in accordance with other calix[6]arene examples, $\mathbf{1 5 f}$ adopts a centrosymmetric 1,2,3-alternate conformation in the solid state (Figure 4.3).

Figure 4.3. X-Ray structure of derivative $\mathbf{1 5 f}$.
In a similar way, derivative $\mathbf{1 5 g}$ was synthesized by a selective alkylation at the 1,2,4,5-positions by using NaH in DMF (Scheme 4.5).

Scheme 4.5. Synthesis of derivative $\mathbf{1 5 g}$.
The characterization of derivative $\mathbf{1 5 g}$ was made less easy by the broad appearance of its ${ }^{1} \mathrm{H}$ NMR signals at room temperature, due to a conformational mobility close to the NMR time scale. During these studies, unusual signals were observed in the negative region of the ${ }^{1} \mathrm{H}$ NMR spectrum, which could be attributed to one of the hexyl chain self-included within the calix[6]arene cavity (Figure 4.4a). Consequently, we can anticipate that $\mathbf{1 5 g}$ must assume a particular conformation in solution. To determine this conformation, an NMR study was performed at 243 K (Figure 4.4b-e). From a detailed analysis, it was found that 15g adopts a partial-cone
conformation with a hexyl chain self-included inside the cavity (corresponding to a pseudo[1]rotaxane complex).

Figure 4.4. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of pseudo[1]rotaxane derivative $\mathbf{1 5 g}$ at 298 K (a) and $243 \mathrm{~K}(\mathrm{~b})$; c,d) different portions of its HSQC spectrum ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 243 \mathrm{~K}\right)$; e) portion of its COSY- 45 spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 243 \mathrm{~K}\right)$.

A conclusive confirmation of the peculiar conformation adopted by $\mathbf{1 5 g}$ was obtained by X-ray studies. In fact, $\mathbf{1 5 g}$ exhibits an asymmetric partial-cone conformation, with just one of the phenyl rings with inverted orientation with respect to the other five in the solid state (Figure 4.5). This phenyl is opposite to a phenyl group bearing a selfincluded hexyloxy chain in the macrocycle. The partial-cone conformation, combined with the mixed hydroxy/hexyloxy substitution pattern at the lower rim (1,2,4,5-
tetrahexyloxy) results in an asymmetric C_{1} molecular point symmetry. Since it crystallized in the P-1 space group, the structure is therefore composed by racemic pairs of inherently chiral $\mathbf{1 5 g}$ molecules.

Figure 4.5. X-Ray structure of derivative $\mathbf{1 5 g}$.
Finally, in order to make a comparative threading study, the p-tert-butyl-calix[6]arene analogue $\mathbf{1 5}$ c was also synthesized.

1,2,4,5-tetrahexyloxy-p-tert-butylcalix[6]arene-diol 15c was obtained (Scheme 4.6) starting from p-tert-butilcalix[6]arene, 2 out of 6 hydroxyl groups were protected by benzylation at the 1,4-positions (90% yield).

Scheme 4.6. Synthesis of derivative 15c.
Subsequently, the known 1,4-dibenzyl derivative 41, ${ }^{45}$ was first tetralkylated with hexyl iodide (84% yield) and then debenzylated with $\mathrm{H}_{2} \mathrm{Pd} / \mathrm{C}$ (87% yield). The characterization of $\mathbf{1 5 c}$ was very similar to that of $\mathbf{1 5 g}$ for what concerns the broad

[^28]appearance of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals at room temperature, due to a conformational mobility close to the NMR time scale. The similarity was also extended to the unusual signals in the negative region of the spectrum due to the selfincluded hexyl chain. Also, in this case, a low temperature NMR study confirmed the peculiar partial-cone conformation (Figure 4.6). This result leads to suppose that this conformational feature could be characteristic of calix[6]arenes 1,2,4,5tetrasubstituted with long alkyl chains.

Figure 4.6. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of pseudo[1]rotaxane derivative $\mathbf{1 5 c}$ at 298 K (a) and 243 K (b)

4.3.2 Threading of Derivatives $\mathbf{1 5 f}$ and $\mathbf{1 5 g}$

Initially, the threading properties of derivative $\mathbf{1 5 f}$ were studied by using three types of linear systems: an axle with two aliphatic chains ($\mathbf{1 6 a}^{+}$) or two benzyl groups $\left(\mathbf{1 6 b}^{+}\right)$, and a mixed alkylbenzylammonium one (16e ${ }^{+}$) (Figure 4.7).

$16 \mathbf{a}^{+}$TFPB ${ }^{-}$

$16 b^{+}$TFPB ${ }^{-}$

$16 \mathbf{e}^{+}$TFPB ${ }^{-}$

Figure 4.7. Linear systems.
By mixing host $\mathbf{1 5 f}$ with axle 16b, drastic changes in the proton spectrum are observed, which confirmed the $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 f}$ psuedorotaxane formation. In detail, the appearance of a well-spaced AX system (at $3.46 / 4.39 \mathrm{ppm}, \Delta \delta=0.93 \mathrm{ppm}$) for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ groups of the calix wheel indicates that the latter has a cone shape in the supramolecular system $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}$ (Figure 4.8).

Figure 4.8. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.
The most important proof of the formation of the interpenetrated system is the presence of the guest signal to unusual chemical shifts for aromatic protons due to the shielding of the calixarene cavity (at $4.44,5.26$, and 6.00 ppm ; ortho-, meta- and paraBnH , respectively) while the other outside the calix cavity resonated at more typical values (7.90, 7.64, and 7.50 ppm , ortho-, meta-, and para- BnH , respectively). Once the characterization of the new supramolecular system was complete, it was possible to determine the association constant by means of a competition experiment with the native hexahexyloxy-p-tert-butylcalix[6]arene $\mathbf{1 5 b}$. The NMR spectrum of the mixture $1: 1: 1$ of $\mathbf{1 5 f} / \mathbf{1 5 b} / \mathbf{1 6} \mathbf{b}^{+}$indicated that pseudorotaxane $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 b}$ was favoured over $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 f}$ in a 1:0.8 ratio (Figure 4.9). An apparent association constant value of $7.4 \pm 0.2 \times 10^{4} \mathrm{M}^{-1}$ was calculated from this competition experiment for the $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}$ complex, which is significantly higher than that previously observed for $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 a}\left(2.5 \times 10^{3} \mathrm{M}^{-1}\right)$.

Figure 4.9. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of (a) $1: 1$ solution of $\mathbf{1 5 f}$ and $\mathbf{1 6 b}^{+} \mathrm{TFPB}^{-}$, (b) 1:1:1 solution of $\mathbf{1 5 f}, \mathbf{1 5 b}$ and $\mathbf{1 6 b}^{+} \mathrm{TFPB}^{-}$, (c) $1: 1$ solution of $\mathbf{1 5 b}$ and $\mathbf{1 6 b}^{+} \mathrm{TFPB}^{-}$.

Subsequently, the threading study of $\mathbf{1 5 f}$ was extended to the dipentylammonium axle $16 \mathbf{a}^{+}$by using similar experimental conditions. The formation of pseudorotaxane $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 a}$ was confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.10), which shows shielded signals related to the aliphatic chain inside the calixarene cavity between 0.6 and -1.0 ppm .

Figure 4.10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 f}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.
Also, in this case, the association constant was calculated by a competition experiment with $\mathbf{1 5 b}$ (Figure 4.11). The value of the constant is $5.0 \pm 0.2 \times 10^{4} \mathrm{M}^{-1}$, which was again higher than that of $\mathbf{1 6 a} \mathbf{a}^{+} \subset \mathbf{1 5 a}\left(4.4 \pm 0.2 \times 10^{2} \mathrm{M}^{-1}\right)$.

Figure 4.11. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of (a) $1: 1$ solution of $\mathbf{1 5 f}$ and $\mathbf{1 6 a}^{+} \mathrm{TFPB}^{-}$, (b) $1: 1: 1$ solution of $\mathbf{1 5 f}, \mathbf{1 5 b}$ and $\mathbf{1 6 a}^{+} \mathrm{TFPB}^{-}$, (c) $1: 1$ solution of $\mathbf{1 5 b}$ and $\mathbf{1 6 a}^{+}{ }^{\text {TFPB }}$.

Finally, to verify if the "endo-alkyl rule" mentioned in Chapter 1 is also valid for p adamantylcalix[6]arenes, it was studied the threading of $\mathbf{1 5 f}$ with butylbenzylammonium axle $\mathbf{1 6}^{+}$. The presence of up-field shifted resonances in the negative region of the proton spectrum demonstrated the preferential formation of the endo-alkyl $16 \mathbf{e}^{+} \subset \mathbf{1 5 f}$ pseudorotaxane. Furthermore, once again the association constant (Figure 4.15) of $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 f}$ (determined by a competition experiment) was higher than that of $\mathbf{1 6} \mathrm{e}^{+} \subset \mathbf{1 5 a}$ (Figure 4.12).

Figure 4.12. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of (a) $1: 1$ solution of $\mathbf{1 5 f}$ and $\mathbf{1 6 a}^{+} \mathrm{TFPB}^{-}$, (b) $1: 1: 1$ solution of $\mathbf{1 5 f}, \mathbf{1 5 b}$ and $\mathbf{1 6 a}^{+} \mathrm{TFPB}^{-}$, (c) $1: 1$ solution of $\mathbf{1 5 b}$ and $\mathbf{1 6 a}^{+}{ }^{\text {TFPPB }}$.

The threading study with the above three axles was then extended to 1,2,4,5-tetrahexyloxy-p-adamantyl-calix[6]arene-diol 15g (Figure 4.13). The formation of a pseudo[2]rotaxane system was observed in all the three instances. It is noteworthy that the free host has a partial cone conformation with one of the hexyl chains shielded inside the macrocycle cavity (Figure 4.13a) while when the axis penetrates the macrocycle and the host-guest complex is formed, the calixarene assumes a cone conformation (Figure 4.13b-d). Also, in this case, the threading with the asymmetric linear system confirmed the endo-alkyl rule (Figure 4.13d). Subsequently, the apparent association constants (Figure 4.15) were determined also by competition experiments.

Figure 4.13. Portions of ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of $\mathbf{1 5 g}$ (a), $\mathbf{1 6 \mathbf { b } ^ { + } \subset \mathbf { 1 5 g }}$ (b), $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 g}$ (c), and $16 \mathrm{e}^{+} \subset \mathbf{1 5 g}$ (d).

The effect of the adamantyl group on the threading of derivative $\mathbf{1 5 g}$ was also studied. As for the previous macrocycle, threading was observed with all the above three linear axles and once again the endo-alkyl rule was respected. Association constant values were calculated by quantitative ${ }^{1} \mathrm{H}$ NMR experiments using TCE as the internal standard for $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 g}$ and $\mathbf{1 6} \mathbf{e}^{+} \subset \mathbf{1 5 g}$. In this case, the following equation was used to obtain the moles of the complex:

$$
\frac{G_{a}}{G_{b}}=\frac{F_{a}}{F_{b}} \times \frac{N_{b}}{N_{a}} \times \frac{M_{a}}{M_{b}}
$$

Instead for $\mathbf{1 6} \mathbf{a}^{+} \subset \mathbf{1 5} \mathbf{g}$, the association constant was determined by a competition experiment.

Preliminary threading tests with the ammonium axes used previously were also carried out for derivative 15c (Figure 4.14).

Figure 4.14. Portions of ${ }^{1} \mathrm{H}$ NMR spectra of (a) $\mathbf{1 5 c}$, (b) $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 c}$, (c) $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 c}$ and (d) $\mathbf{1 6} \mathrm{e}^{+} \subset \mathbf{1 5 c}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Comparing the association constants (Figure 4.15) obtained for derivative $\mathbf{1 5 g}$ with those of $\mathbf{1 5 c}$ it was confirmed that the adamantyl group leads to higher constants than the tert-butyl one. In detail, association constant of 8.5×10^{4} was found for $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 g}$, which is higher than that of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5} \mathbf{c}\left(2.5 \times 10^{3}\right)$. Similar results were found by
comparing $\mathbf{1 6 a} \mathbf{a}^{+} \subset \mathbf{1 5 g}\left(3.4 \times 10^{5}\right)$ with $\mathbf{1 6 \mathbf { a } ^ { + }} \subset \mathbf{1 5 c}\left(7.1 \times 10^{3}\right)$ and $\mathbf{1 6} \mathbf{e}^{+} \subset \mathbf{1 5 g}\left(9.3 \times 10^{4}\right)$ with $\mathbf{1 6} \mathrm{e}^{+} \subset \mathbf{1 5 c}\left(1.2 \times 10^{3}\right)$.

15a) R1 = R2 $=$ Methy 15b) R1 = R2= Hexyl 15c) R1 $=\mathrm{H} ;$ R2 $=$ Hexyl

15f) R1 = R2 $=$ Methyl 15g) R1 $=\mathrm{H} ;$ R2 $=$ Hexyl
$16 \mathrm{a}^{+}, 16 \mathrm{~b}^{+}, 16 \mathrm{e}^{+}$
$16 a^{+}, 16 b^{+}, 16 e^{+} \subset 15 a, 15 b, 15 c$

$K_{\text {app }}$					
c	$15 a$	$15 b$	$15 f$	$15 g$	$15 c$
$16 \mathbf{b}^{+}$	$2.5 \pm 0.2 \times 10^{3}$	$1.2 \pm 0.2 \times 10^{5}$	$7.4 \pm 0.2 \times 10^{4}$	$8.5 \pm 0.2 \times 10^{4}$	$2.5 \pm 0.2 \times 10^{3}$
$16 \mathbf{a}^{+}$	$4.4 \pm 0.2 \times 10^{2}$	$3.5 \pm 0.1 \times 10^{4}$	$5.0 \pm 0.2 \times 10^{4}$	$3.4 \pm 0.2 \times 10^{5}$	$7.1 \pm 0.2 \times 10^{3}$
$16 \mathbf{e}^{+}$	$6.5 \pm 0.2 \times 10^{4}$	$5.1 \pm 0.2 \times 10^{5}$	$1.4 \pm 0.2 \times 10^{5}$	$9.3 \pm 0.2 \times 10^{4}$	$1.0 \pm 0.2 \times 10^{3}$

Figure 4.15. Threading of calix[6]-wheels and $\mathrm{K}_{\text {app }}$ values measured for the formation of the corresponding pseudorotaxanes.

At this point, attention was paid to the effect on the threading efficiency of the substitution of a few of the OR groups at the endo-rim of the calix[6]-wheel with the OH ones. The threading ability of 1,2,4,5-tetrahexyloxycalix[6]arene-diol 15c was compared with that of the corresponding hexahexyloxy-ether 15b, both bearing exo-tert-butyl groups (Figure 4.15). An apparent association constant of 2.5×10^{3} was found for $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 c}$ which is significantly less stable with respect to $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 b}$ $\left(1.2 \times 10^{5}\right)$. As expected, this can be attributed to the less favourable interactions between the OH groups and the guest in comparison with the OR ones. A similar result was observed for the complexation of dipentylammonium axle $\mathbf{1 6 a}^{+}$with 1,2,4,5-tetrahexyloxycalix[6]arene-diol 15c, which gave an apparent association constant of 7.1×10^{3} for $\mathbf{1 6 a} \mathbf{a}^{+} \subset \mathbf{1 5 c}$ with respect to the value of 3.5×10^{4} for $\mathbf{1 6} \mathbf{a}^{+} \subset \mathbf{1 5 b}$.

4.3.3 Computational Studies

Further insights on the higher stability of pseudorotaxanes $\mathbf{1 6 b} b^{+} \subset \mathbf{1 5 f}$ and $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}$ were obtained by DFT calculations at the B3LYP/6-31G(d,p) level of theory using Grimme's dispersion corrections ($\operatorname{IOp}(3 / 124=3)$. As can be seen from the energy-
minimized structures (Figure 4.16) the p-adamantyl groups of host $\mathbf{1 5 f}$ are all welldisposed around the endo-cavity portion of the guest $\mathbf{1 6} \mathbf{b}^{+}$or $\mathbf{1 6 a}{ }^{+}$.

$16 b^{+} \subset 15 f$

$16 a^{+} \subset 15 f$

	$\mathbf{1 6 b} \mathbf{b}^{+} \subset \mathbf{1 5 f}$	$\mathbf{1 6 a} \subset \mathbf{1 5 f}$
$\mathbf{A}\left({ }^{\circ}\right)$	$51.6(1)$	$53.4(1)$
$\mathbf{B}\left({ }^{\circ}\right)$	$84.9(1)$	$85.4(1)$
$\mathrm{C}\left({ }^{\circ}\right)$	$42.1(1)$	$39.3(1)$
$\mathrm{D}\left({ }^{\circ}\right)$	$80.3(1)$	$88.8(1)$
$\mathrm{E}\left({ }^{\circ}\right)$	$56.0(1)$	$47.2(1)$
$\mathrm{F}\left({ }^{\circ}\right)$	$51.0(1)$	$62.8(1)$

Figure 4.16. DFT-optimized structure of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 f}$ and $\mathbf{1 6} \mathbf{a}^{+} \subset \mathbf{1 5 f}$ pseudorotaxanes at the B3LYP/6-31G(d,p)-IOp $(3 / 124=3)$ level of theory.

In detail, pseudo[2]rotaxane $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}$ is stabilized by two H -bonding interactions between the ammonium group and the calixarene oxygen atoms with an average $\mathrm{N} \cdots \mathrm{O}$ distance of $2.05 \AA$ and an average $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle of 158.05°. Additional C$H \cdots \pi$ interactions were identified between the α and β methylene groups of the benzyl unit of $\mathbf{1 6} \mathbf{b}^{+}$inside the calix cavity and the aromatic rings of 15 f with an average $\mathrm{C}-\mathrm{H} \cdots \pi$ centroid distance of $3.16 \AA$ and an average $\mathrm{C}-\mathrm{H} \cdots \pi$ centroid angle of 155°. As a result of these contributions, the calix[6]arene macrocycle is fixed in a cone conformation. In particular, two of the six Ar rings (B and D) are almost orthogonally ori-ented with respect to the average plane defined by the six bridging methylene carbon atoms (canting angles ${ }^{46}$ of $84.9^{\circ}(1)$ and $80.3^{\circ}(1)$, respectively, while the other A, C, E, F rings are more outwards tilted (canting angles of $51.6^{\circ}(1)$, $42.1^{\circ}(1), 56.0^{\circ}(1)$, and $51.0^{\circ}(1)$, respectively). As concerns the DFT-optimized structure of $\mathbf{1 6} \mathbf{a}^{+} \subset \mathbf{1 5 f}$ pseudorotaxane, two H -bonding interactions were identified between the $\mathrm{NH}_{2}{ }^{+}$group of $\mathbf{1 6 \mathbf { a } ^ { + }}$ and the oxygen atoms of calix-wheel $\mathbf{1 5 f}$, with a longer average distance of $1.98 \AA$ and an average angle of 161.45°. Also in this case, the calix[6]arene macrocycle is fixed in a cone conformation with D and E rings almost orthogonal with respect to the mean plane de-fined by all bridging methylenes

[^29](canting angle $85.4^{\circ}(1)$ and $88.8^{\circ}(1)$, respectively), while the other $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}$ rings are more opened with canting angle values of $47.2^{\circ}(1), 62.8^{\circ}(1), 53.4^{\circ}(1)$, and $39.3^{\circ}(1)$, respectively.

To further investigate the energy contribution due to non-covalent interactions $(\mathrm{NCI})^{47}$, a SOPT analysis ${ }^{48}$ of the Fock matrix in the NBO basis was carried out. Interestingly, the SOPT analysis conducted on $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}$ pseudo[2]rotaxane (Figure 4.17) indicates that there is an articulate network of hydrogen bonding, $\mathrm{C}-\mathrm{H} \cdots \pi$, and $\pi \cdots \pi$ interactions.

Figure 4.17. Non-covalent interaction plot by the sign of the second Hessian eigenvalue (gradient isosurfaces ($s=0.6$ a.u.) for $\mathbf{1 6} b^{+} \subset \mathbf{1 5 f}(a), \mathbf{1 6} b^{+} \subset \mathbf{1 5 a}$ (b) and $\mathbf{1 6} \mathbf{a}^{+} \subset \mathbf{1 5 f}$ (c). In the coloring isosurface blue and green colors represent strong and medium interactions ($\mathrm{H}-$ bonding and van der Waals).

The overall energy analysis indicates that the total energetic contribution due to secondary non-covalent interactions (NCI) is $34.09 \mathrm{kcal} / \mathrm{mol}$. Very interestingly, a similar analysis for the corresponding tert-butylated $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 a}$ pseudo[2]rotaxane gives a lower total energy contribution of $26.66 \mathrm{Kcal} / \mathrm{mol}$. Instead, in the case of $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}$, the SOPT analysis indicated an energy contribution of $30.18 \mathrm{Kcal} / \mathrm{mol}$ for the secondary interactions.

DFT calculations at the B3LYP/6-31G(d,p) level of theory using Grimme's dispersion corrections $(\operatorname{IOp}(3 / 124=3))$ were also performed on pseudorotaxanes $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 g}$ and $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 g}$ and the corresponding energy-minimized structure are reported in Figure 4.18. For both the two supramolecular adducts, it is possible to observe the typical

[^30]network of H -bonding interactions between the am-monium group and the oxygen atoms of the calixarene macrocycle $\left(\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 g}\right.$: average $\mathrm{N} \cdots \mathrm{O}$ distance $1.73 \AA$, average $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle $166.45^{\circ} ; \mathbf{1 6 a}^{+} \subset \mathbf{1 5 g}$: average $\mathrm{N} \cdots \mathrm{O}$ distance $1.91 \AA$, average N $\mathrm{H} \cdots \mathrm{O}$ angle 166.15°). Several non-covalent interactions were identified between the endo-cavity benzyl unit of $\mathbf{1 6 b}^{+}$(or the endo-cavity alkyl chain of $\mathbf{1 6 a}{ }^{+}$) and the aromatic rings of $\mathbf{1 5 g}$. All these interac-tions contributes to fix the calix[6]arene macrocycle in the cone conformation. An interesting observation was found for the two distal unsubstituted phenolic rings A and D of both pseudorotaxanes. These ArOH units are more tilted outwards the cavity with a canting angles 18 in the range 25.9° 29.7° (Figure 4.18).

Figure 4.18. DFT-optimized structure of $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 g}$ and $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 g}$ pseudorotaxanes at the B3LYP/6-31G(d,p)-IOp(3/124) level of theory.

In conclusion, these studies demonstrated that exo-adamantyl groups give rise to a more efficient threading with respect to the exo-tert-butyl ones leading to apparent association constants more than one order of magnitude higher. This higher thermodynamic stability can be ascribed to the more favorable van der Waals interactions of exo-adamantyls versus exo-tert-butyls with the cationic axle. In addition, it was also demonstrated that endo- OH functions give rise to a less efficient threading with respect to the endo-OR ones, in line with what was known from the complexation of alkali metal cations.

4.4 Methylene bridge functionalization

In the previous paragraph, it was observed how the introduction of a bulky group to the upper rim and the complete alkylation of the lower rim leads to a higher association constant with ammonium axles. On this basis it was then decided to investigate the influence of substituents at the methylene bridges.

The introduction of substituents at the methylene bridges is an interesting method for reducing the conformation flexibility of calixarene macrocycle. Macrocycles with a higher pre-organization are particularly interesting for their higher selectivity and efficiency in molecular recognition.

For the preparation of methylene-functionalized calixarenes, several synthetic strategies have been developed. The "fragment condensation" method ${ }^{49}$ introduced by Böhmer et al. requires the use of fragments specifically functionalized, that subsequently are cyclocondensed to give substituted calixarenes. Generally, this reaction involves a Friedel-Crafts alkylation which is conducted in the presence of a Lewis acid (Scheme 4.7).

Scheme 4.7. "Fragment condensation" method.
Unlike calix[4]arenes, which can adopt a thermodynamically stable and fixed cone conformation, calix[6]arenes are more flexible and therefore present greater difficulties concerning the substitution of the methylene bridge. In 2015, Singh 50 described the first example of a symmetrical substitution of the methylene bridges of a calix[6]arene. This work shows that such alkylation leads to two different conformationally stable calix[6]arene isomers which have been isolated and characterized by VT NMR spectroscopy and by X-ray analysis. The implemented

[^31]synthesis consists of two steps. The first step involves alkylation at the lower rim with MeI in the presence of NaH as a base. Subsequently, an alkylation step is carried out on the methylene bridge by deprotonating the latter with a mixture of $n \mathrm{BuLi}$-TMEDA (Scheme 4.8). This approach leads to the preferential formation of two conformers showing a high degree of conformational stability: a distorted cone and a 1,2,3alternate isomer.

$$
\mathrm{R}=(\mathrm{a}) \mathrm{Et} \text {; (b) } n \text {-pentyl; (c) } n \text {-decyl; (d) } \mathrm{Bn} \text {; (e) } \mathrm{CH}_{2} \mathrm{COOEt} \text {; (f) allyl }
$$

Scheme 4.8. Synthesis of hexamethoxycalix[6]arene 15a and disubstituted calix[6]arenes 46a-f (distorted cone) and 47a-f (1,2,3-alternate) conformers.

These derivatives can be isolated by chromatography and it is possible to distinguish them by observing the AX system of the methylene bridge in the proton spectrum (Figure 4.19).

Figure 4.19. Comparison of ${ }^{1} \mathrm{H}$ NMR spectra of two stable conformers, distorted cone and 1,2,3-alternate.

Furthermore, the structures of these isomers were also confirmed by single-crystal Xray analysis (Figure 4.20).

Figure 4.20. Stereo views of 46a (distorted cone conformation) (A) and 47a (1,2,3-alternate conformation) (B) as deduced from single crystal X-ray structures
In a similar way, Biali ${ }^{51}$ also investigated the alkylation of the bridge of calix[6]arenes. In fact, by using a comparable approach, he was able to synthesize several calix[6]arenes having different groups on the methylene bridge such as OH , Cl , etc ... (Scheme 4.9).

Scheme 4.9. Synthesis of derivative 48.
Also, in this case, two conformationally stable isomers were obtained which can be identified both by NMR spectroscopy (Figure 4.21) and by X-ray analysis.

[^32]

Figure 4.21. ${ }^{1} \mathrm{H}$ NMR spectrum of the methylene region of the crude mixture of dihydroxycalix[6]arene derivative 48a.

In conclusion, both these works show the versatility of this synthetic approach for the synthesis of conformationally stable calix[6]arene macrocycles.

Therefore, with the aim to evaluate the threading ability of this conformationally stable calixarenes in comparison with the mobile ones, it was decided to investigate this synthetic approach to obtain calix[6]arenes in a cone and 1,2,3-alternate conformation.

4.5 Conformationally stable calix[6]arenes ${ }^{52}$

4.5.1 Synthesis of conformationally stable derivatives

Our attention was focused on derivatives $\mathbf{4 6 g}$ and $\mathbf{4 7}$ g bearing a p-methylbenzyl substituent and derivatives 46h and 47h bearing a butyl chain at the methylene bridge (Figure 4.22).

46g) $\mathrm{R}=p$-methylbenzyl
46h) $\mathrm{R}=n$-butyl

47g) $\mathrm{R}=p$-methylbenzyl
47h) $\mathrm{R}=n$-butyl

Figure 4.22. Derivatives 46g,h and $\mathbf{4 7 g}$,h.
Derivatives $\mathbf{4 6 g} / \mathbf{4 7} \mathrm{g}$ and $\mathbf{4 6 h} / \mathbf{4 7 h}$ were synthesized by following the procedure reported by Singh and co-workers. In detail, p-tert-butylcalix[6]arene hexamethyl ether 15a was first treated with $n-\mathrm{BuLi} / \mathrm{TMEDA}$ and the anion was then reacted with

[^33]the corresponding alkyl halide electrophile, leading to derivatives $\mathbf{4 6 g}, \mathrm{h}$ and $\mathbf{4 7 g}, \mathrm{h}$ fixed in the cone or 1,2,3-alternate conformation, respectively (Scheme 4.10).

Scheme 4.10. Synthesis of derivatives $\mathbf{4 6 g} / \mathbf{4 6 h}$ and $\mathbf{4 7 g} / \mathbf{4 7 h}$.
Also, in this case, the two cis/trans isomers blocked in a different conformation were separated by chromatography and fully characterized by NMR spectroscopy and by mass spectrometry. Furthermore, the X-ray structures were also obtained for derivatives $\mathbf{4 7 h}$ and 46h, confirming their conformation (Figure 4.23).

cone conformer
d)

1,2,3-alternate conformer

Figure 4.23. (a) ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{4 7 h}$ (b) and 46h. (c) X-ray structures of $\mathbf{4 7 h}$ (d) and $\mathbf{4 6 h}$.

4.5.2 Threading Studies of derivatives $\mathbf{4 6 g}, \mathrm{h}$ and $\mathbf{4 7} \mathrm{g}$,h

Initially, threading studies on derivatives $\mathbf{4 6 g}, \mathrm{h}$ and $\mathbf{4 7} \mathrm{g}, \mathrm{h}$ were carried out by using ammonium axles having TFPB as counteranion (Figure 4.24).

16a'TFPB ${ }^{-}$

$16 b^{+}$TFPB ${ }^{-}$

$16 f^{+}$TFPB ${ }^{-}$

Figure 4.24. Ammonium linear systems.
Initially, it was studied the threading ability of cone derivative $\mathbf{4 6 g}$ with dibenzylammonium axle $\mathbf{1 6 b}^{+}$. TFPB^{-}. When host and guest were mixed ($1: 1$ ratio) in
chloroform, important changes appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4.25) indicative of the formation of pseudorotaxane $\mathbf{1 6 b}{ }^{+} \subset \mathbf{4 6 g}$.

Figure 4.25. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum of mixture $1: 1$ of $\mathbf{4 6 g}$ and $\mathbf{1 6 b}{ }^{+}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$, 298 K).

The complex $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{4 6 g}$ was completely characterized by 1D and 2D NMR. The presence of shielded signals in the proton spectrum related to the portion of the axle inside the calixarene cavity at $4.48,5.27$, and 5.95 ppm (ortho-, meta-, and para- BnH , respectively), was easily evidenced. Furthermore, the other benzyl resonances were seen at regular chemical shift values ($7.43,7.58$, and $7.81 \mathrm{ppm}, \mathrm{o}^{\prime}, \mathrm{p}^{\prime}, \mathrm{m}^{\prime}$, respectively). An apparent association constant of $2.6 \pm 0.2 \times 10^{5} \mathrm{M}^{-1}$ was determined for pseudorotaxane $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{4 6} \mathbf{g}$ by integration of the free and complexed ${ }^{1} \mathrm{H}$ NMR signals of the host (Figure 4.26).

Figure 4.26. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of $\mathbf{4 6 g}$ $\left(3.2 \times 10^{-3} \mathrm{M}\right)$ and $\mathbf{1 6} \mathbf{b}^{+} \mathrm{TFPB}^{-}\left(3.2 \times 10^{-3} \mathrm{M}\right)$. Complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\mathbf{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \mathrm{Ar}(\bullet)$ signals of host $\mathbf{4 6 g}$.

This value is significantly higher than that observed for $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 a}\left(2.5 \times 10^{3} \mathrm{M}^{-1}\right)$. Subsequently, $\mathbf{4 6 g}$ was tested with dibenzyl axles $\mathbf{1 6 f}$ and $\mathbf{1 6 g}$ bearing electron withdrawing groups in para (Figure 4.27).

Figure 4.27. Portion of ${ }^{1} \mathrm{H}$ NMR spectra of (a) mixture $1: 1$ of $\mathbf{4 6 g}$ and $\mathbf{1 6 f}^{+}$, (b) mixture $1: 1$ of $\mathbf{4 6 g}$ and $\mathbf{1 6 9}{ }^{+}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

In both cases, clear evidence of pseudorotaxane formation were observed. For $\mathbf{1 6 f}{ }^{+} \subset \mathbf{4 6 g}$, shielded signals related to the portion of the axle inside the calixarene cavity were observed at 4.73 and 5.50 ppm (ortho- and meta- BnH , respectively). Instead, for $\mathbf{1 6 9} \mathbf{g}^{+} \subset \mathbf{4 6 g}$, they resonated at 4.44 and 5.24 ppm (ortho- and meta-BnH, respectively). Association constant values were determined by quantitative ${ }^{1} \mathrm{H}$ NMR experiments using 1,1,2,2-tetrachloroethane as the internal standard (Figure 4.28).

Figure 4.28. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of an equimolar solution (3.2 mM) of $\mathbf{4 6 g}$ and $\mathbf{1 6 g} \mathbf{g}^{+}$TFPB ${ }^{-}$in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2$-Tetrachloroethane. Complex $\mathbf{1 6 g}{ }^{+} \subset \mathbf{4 6 g}(\mathbf{\Delta})$ and 1,1,2,2-tetrachloroethane ($\mathbf{\square}$).

Finally, the proton NMR spectrum of a $1: 1$ mixture of derivatives $\mathbf{4 6 g}$ and $\mathbf{3}$ in chloroform also indicated the formation of the corresponding interpenetrated system
(Figure 4.29). Particularly diagnostic was the presence of shielded aliphatic signals between 0.6 and -1.0 ppm .

Figure 4.29. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum of mixture $1: 1$ of $\mathbf{4 6 g}$ and $\mathbf{1 6 a}^{+}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right.$, 298 K).

Also, for this supramolecular system, the apparent association constant was determined by integration of free and complexed ${ }^{1} \mathrm{H}$ NMR signals of host (Figure 4.30).

Figure 4.30. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of $\mathbf{4 6 g}$ $\left(3.2 \times 10^{-3} \mathbf{M}\right)$ and $\mathbf{1 6 a}^{+}$TFPB $^{-}\left(3.2 \times 10^{-3} \mathbf{M}\right)$. Complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\mathbf{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \mathrm{Ar}(\bullet)$ signals of host $\mathbf{4 6 g}$.

The threading study was then extended to host $\mathbf{4 6 h}$ and to the other ammonium guests. All the apparent association constants are collected in the table reported in Figure 4.31 .

46g) $\mathrm{R}=p$-methylbenzyl \quad 16(a,b,f,g) ${ }^{+}$
46h) $\mathrm{R}=n$-butyl

$K_{\text {app }}$					
C	$\mathbf{4 6 g}$	$\mathbf{4 6 h}$	$\mathbf{4 7 g}$	$\mathbf{4 7 h}$	$\mathbf{1 5 a}$
$\mathbf{1 6 \mathbf { a } ^ { + }}$	$6.2 \pm 0.2 \times 10^{4}$	$6.2 \pm 0.2 \times 10^{3}$	<10	<10	$4.4 \pm 0.2 \times 10^{2}$
$\mathbf{1 6 \mathbf { b } ^ { + }}$	$2.6 \pm 0.2 \times 10^{5}$	$9.3 \pm 0.1 \times 10^{3}$	<10	<10	$2.5 \pm 0.2 \times 10^{3}$
$\mathbf{1 6 \mathbf { f } ^ { + }}$	$1.7 \pm 0.2 \times 10^{3}$	$3.5 \pm 0.2 \times 10^{2}$	$8.0 \pm 0.2 \times 10^{2}$	$1.2 \pm 0.2 \times 10^{3}$	
$\mathbf{1 6 \mathbf { g } ^ { + }}$	$2.3 \pm 0.2 \times 10^{4}$	$1.8 \pm 0.2 \times 10^{4}$	$2.2 \pm 0.2 \times 10^{2}$	$4.5 \pm 0.2 \times 10^{2}$	

Figure 4.31. Threading of calix[6]-wheels substituted at the methylene bridges and $\mathrm{K}_{\text {app }}$ values measured for the formation of the corresponding pseudorotaxanes.

By comparing the corresponding values, we can state that the more preorganized cone conformers have higher constants than the mobile native hexamethoxycalix[6]arene. Moreover, derivative 46g, with the bigger p-methylbenzyl substituent, gives pseudorotaxane adducts 10-100 times more stable than derivative 46h, bearing the smaller n-butyl group.

The threading studies on conformationally stable 1,2,3-alternate calix[6]arene derivatives $47 \mathrm{~g}, \mathrm{c}$ gave unexpected results. In fact, no significant threading was observed with the common axles $\mathbf{1 6 b}$ and 16a, but interesting spectral changes were observed with linear systems 16f,f (Figure 4.32).

Figure 4.32. Portion of ${ }^{1} \mathrm{H}$ NMR spectra of (a) mixture $1: 1$ of $\mathbf{4 7} \mathbf{g}$ and $\mathbf{1 6 f}^{+}$, (b) mixture $1: 1$ of $\mathbf{4 7 g}$ and $\mathbf{1 6 g}{ }^{+}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

This behaviour can be ascribed to a positive cooperativity between the H -bonds, established by ammonium group with calix[6]arene oxygen atoms, and $\pi-\pi$ interactions between the aromatic electron-poor ring of the axle and the electron-rich calixarene rings. These observations were confirmed by DFT studies (at the B3LYP/6-31G(d,p) IOp(3/124=3) level of theory Figure 4.33).

Figure 4.33. Different views of the DFT-optimized structure of $\mathbf{1 6 f}^{+} \subset \mathbf{4 7 h}$ pseudorotaxane
Finally, another noteworthy feature concerns the signals of the axle. In fact, only one pattern of benzyl signals is observed in the proton spectrum of the complex $\mathbf{1 6 f}^{+} \subset \mathbf{4 7 h}$, whereas two distinct patterns were expected on a structural basis. This can be explained by a fast rototranslational motion of the dibenzylammonium axles $\mathbf{1 6 f}^{+}$ inside the cavity of the calix[6]-wheel 47 h in 1,2,3-alternate conformation. This
observation clearly implies than in the $\mathbf{1 6 f}^{+} \subset \mathbf{4 7 h}$ pseudorotaxane the two $3 / 4$-cone subcavities (red and blue in Figure 4.34) became equivalent.

Figure 4.34. Rototranslation motion of the dibenzylammonium axles $\mathbf{1 6 f}^{+}$inside the cavity of the calix[6]-wheel 47h in 1,2,3-alternate conformation.

4.6 Conclusion

In conclusion, a careful study on the threading properties of specific calix[6]arene derivatives has been reported in this chapter.

Initially, the attention was focused on calixarene derivatives bearing adamantyl groups at the upper rim. It was observed that such large group as leads to an increase in the association constant by one order of magnitude. This higher thermodynamic stability has been ascribed to the more favourable van der Waals interactions of adamantyls with respect to tert-butyls groups at upper rim with the ammonium axle. Subsequently, it was noted that OH functions at the calixarene lower rim give rise to a less efficient threading with respect to the OR ones.

Finally, an in-depth study was carried out on calixarenes alkylated at the methylene bridges. In particular, the first examples of pseudorotaxanes constituted by calix[6]arene-wheels substituted at the methylene bridges, were obtained. Furthermore, it was observed that the greater preorganization of the macrocycle in the cone conformation leads to higher threading constants with ammonium axles. Afterwards, the NMR features of the threading process between ammonium axles bearing an electron poor ring and calix-wheels in the stable 1,2,3-alternate conformation, have been described in detail. An unusual rototraslation motion of the axle was evidenced, which could be blocked at low temperatures.

4.7 Experimental Section

4.7.1 General comments

Reactions under anhydrous conditions were conducted under an inert atmosphere (nitrogen) using dry solvents. The commercial reagents were purchased by Aldrich and TCIchemicals and were used without further purification. The reactions were controlled by thin-layer chromatography (TLC) with Macherey-Nagel plates coated with silica gel (0.25 mm) with fluorescence indicator UV254 and visualized using UV light and nebulisation with an indicator solution of $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$. The reaction temperatures were measured externally using electronic thermometers. The reaction products were purified by Macherey-Nagel silica gel chromatography (60, 70-230 mesh). NMR spectra were recorded on Bruker Avance-600 spectrometer [600 (${ }^{1} \mathrm{H}$) and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$], Bruker Avance- 400 spectrometer [$400\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$]. Chemical shifts are reported relative to the residual solvent peak $\left(\mathrm{CHCl}_{3}: \delta 7.26\right.$, $\mathrm{CDCl}_{3}: \delta 77.16$) Standard pulse programs, provided by the manufacturer, were used for 2D NMR experiments. High-resolution Mass spectra were acquired with a Bruker Solarix spectrometer equipped with a Tesla magnet. It was used a MALDI as methods of sample ionization. DHB was used as matrix. Samples were prepared in CHCl_{3} (1 $\mathrm{mg} / \mathrm{mL}$).

4.7.2 Influence of exo-Adamantyl Groups

4.7.2.1 Synthesis of derivatives $15 \mathrm{f}, 15 \mathrm{~g}, 15 \mathrm{c}$.

Derivative 15f

To a stirred suspension of p -adamantylcalix[6]arene $40(0.432 \mathrm{~g}, 0.30 \mathrm{mmol})$ in DMF (50 mL) sodium hydride (60% in mineral oil, $0.720 \mathrm{~g}, 18.0 \mathrm{mmol}$) was added. The mixture was stirred for 15 min at room temperature. Dimethylsulfate ($2.72 \mathrm{~mL}, 28.8$ mmol) was added and the reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 20 h . After cooling, the reaction was quenched by addition of methanol $(10 \mathrm{~mL})$. The solvents were evaporated under reduced pressure, and the residue was parted between dichloromethane and 2 M HCl . The organic phase was washed with water, dried with MgSO_{4}, and concentrated to almost dryness. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient from hexane to hexane/THF (25:1)). Yield $0.214 \mathrm{~g}(47 \%)$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ 7.02 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{ArH}$), 3.91 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 2.92 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{OCH}_{3}$), 2.02 ($\mathrm{bs}, 18 \mathrm{H}, \mathrm{Ad)}$, 1.83-1.62 (m, 72H; Ad). ${ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 154.2,145.9,133.5$,
125.7, 59.9, 43.4, 36.8, 35.7, 31.4, 29.0. HRMS (m/z) calcd for $\mathrm{C}_{108} \mathrm{H}_{132} \mathrm{KO}_{6}$ 1564.9689 found 1564.9690 .

Figure 4.35. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.36. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{1 5 f}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.37. 2D HSQC spectrum of derivative $\mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.38. HR-MS spectrum of derivative $\mathbf{1 5 f}$.

Derivative 15g

To a stirred suspension of padamantylcalix[6]arene $40(0.432 \mathrm{~g}, 0.30 \mathrm{mmol})$ in DMF (15 mL) sodium hydride (60% in mineral oil, $0.288 \mathrm{~g}, 7.2 \mathrm{mmol}$) was added. The mixture was stirred for 15 min at room temperature. 1-Bromohexane ($1.01 \mathrm{~mL}, 7.2$ mmol) was added and the reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 20 h . After cooling, the reaction was quenched by addition of methanol (30 mL). The solid formed was collected, washed with methanol, dried, and dissolved in dichloromethane. The solution was washed with 2 M HCl , water, dried with MgSO_{4}, and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (SiO_{2}, 1st column: gradient from hexane to hexane/THF (50:1), 2nd column: gradient from hexane to hexane/chloroform (3:2). Yield $0.177 \mathrm{~g}(33 \%) .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K}$): $\delta 7.54$ (bs, 2H, ArOH) 6.98-6.83 (overlapped, 12H, ArH), 3.75-3.49 (overlapped, $20 \mathrm{H}, \mathrm{ArCH} 2 \mathrm{Ar},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$), 1.91-0.69 (overlapped, $\left.134 \mathrm{H}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}, \mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}, \mathrm{Ad}\right) .{ }^{13} \mathbf{C}$ NMR $(150 \mathrm{MHz}$, TCDE, 373 K): $\delta 150.8,148.3,144.2,140.1,131.2,130.8,125.4,124.2,122.4,72.4$, $41.8,41.6,35.3,34.0,33.8,30.0,29.4,27.7,27.6,27.5,23.4,20.5,12.1$. HRMS (m/z) clcd for $\mathrm{C}_{126} \mathrm{H}_{168} \mathrm{NaO}_{6} 1801.2757$ found 1801.2725.

Figure 4.39. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.40. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 5 g}$ (600 MHz, TCDE, 373 K).

Figure 4.41. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 5 g}$ ($600 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K}$).

Figure 4.42. HR-MS spectrum of derivative $\mathbf{1 5 g}$.

Figure 4.43. ${ }^{1} \mathrm{H}$ NMR spectra of derivative $\mathbf{1 5 g}$ at different temperature: (a) 293 K , (b) 273 K , (c) 263 K , (d) 253 K , (e) $243 \mathrm{~K}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 4.44. 2D COSY spectrum of derivative $\mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 243 \mathrm{~K}\right)$.

Figure 4.45. 2D HSQC spectrum of derivative $\mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 243 \mathrm{~K}\right)$.

Derivative 42

In a dry round flask, derivative $41(1.05 \mathrm{~g}, 1.29$ mmol) was dissolved in Acetone dry $(70 \mathrm{~mL})$. Subsequently, $\mathrm{Cs}_{2} \mathrm{CO}_{3}(12.65 \mathrm{~g}, 38.8 \mathrm{mmol})$ were added at room temperature. Afterwards, Hexyl iodide ($9.55 \mathrm{~mL}, 64.7 \mathrm{mmol}$) was added to the reaction mixture. Stirring was continued for 24 hours at reflux. After the reaction was stopped by addition of 1 N HCl and the solution was extracted with chloroform. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated of the solvent. The raw was purified through precipitation by methanol. Derivative $\mathbf{4 2}$ was obtained with 90% yield. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K}$): $\delta 7.27$ (bd, 4H, Ar’H), 7.03 (bd, 4H, Ar'H), 6.92 (bs, 4H, ArH), 6.89 (bs, 4H, ArH), 6.81 (bs, 4H, ArH), 4.65 (s, 4H, $\mathrm{CH}_{2} \mathrm{PhCH}_{3}$), 3.77 (overlapped, $12 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 3.19 (bt, $8 \mathrm{H},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$), 2.23 (s, $6 \mathrm{H},-\mathrm{OBnCH}_{3}$), 1.31-0.97 (overlapped, $86 \mathrm{H},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$,), 0.74 (bt, $\left.12 \mathrm{H},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K}$): $\delta 151.8,151.1$, $143.5,143.1,135.3,133.6,131.3,131.2,131.1,127.1,126.6,124.2,123.9,72.9,72.4$, 32.1, 30.1, 29.7, 28.0, 24.2, 20.7, 19.2, 12.1. HRMS (m/z) clcd for $\mathrm{C}_{106} \mathrm{H}_{148} \mathrm{KO}_{6}$ 1557.0941 found 1557.0962 .

Figure 4.46. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 42 (600 MHz, TCDE, 373K).

Figure 4.47. ${ }^{1} \mathrm{H}$ NMR Spectrum of derivative $\mathbf{4 2}(600 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K})$.

Figure 4.48. HR-MS spectrum of derivative 42.

Derivative 15c

In a round flask, derivative $44(0.50 \mathrm{~g}, 0.45 \mathrm{mmol})$ was dissolved in chloroform (50 mL). Subsequently, Pd / c was added. Stirring was continued for 18 hours at room temperature under H_{2}. After this time, the reaction was stopped by filtration on celite. The solvent was evaporated under reduced pressure. Derivative 15c was obtained with 95% yield. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, TCDE, 373 K): δ 6.97-6.62 (overlapped, 14 H , $\mathrm{ArH}, \mathrm{ArOH}$), 3-73-3.60 (overlapped, $20 \mathrm{H}, \mathrm{ArCH} 2 \mathrm{Ar},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$), 1.15-0.74 (overlapped, $98 \mathrm{H},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$,). 13C NMR (150 $\mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K}): ~ \delta 151.2,150.4,146.2,142.0,132.9,132.5,126.8,126.1,125.2$, $33.8,33.6,31.5,31.2,29.8,29.5,25.4,22.3,13.8$. HRMS (m/z) clcd for $\mathrm{C}_{90} \mathrm{H}_{132} \mathrm{KO}_{6}$ 1347.9655 found 1347.9635 .

Figure 4.49. ${ }^{1} \mathrm{H}$ NMR spectra of derivative $\mathbf{1 5 c}(600 \mathrm{MHz}, \mathrm{TCDE})$.

Figure 4.50. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{1 5 c}(600 \mathrm{MHz}$, TCDE, 373 K$)$.

Figure 4.51. 2D HSQC spectrum of derivative $\mathbf{1 5 c}(600 \mathrm{MHz}, \mathrm{TCDE}, 373 \mathrm{~K})$.

Figure 4.52. HR-MS spectrum of derivative 15c.

Figure 4.53. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 5 c}$ at different temperature: (a) 293 K , (b) 283
K, (c) 273 K , (d) 263 K , (e) 253 K , (f) 243 K ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Figure 4.54. 2D COSY spectrum of derivative $\mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 243 \mathrm{~K}\right)$.

Figure 4.55. 2D HSQC spectrum of derivative $\mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 243 \mathrm{~K}\right)$.

4.7.2.2 Synthesis of pseudo[2]rotaxanes

A 1:1 mixture of calix[6]arene derivative and TFPB linear system was dissolved in 0.5 mL of CDCl_{3}.In detail, in Table 4.1 we reported concentration using for calix[6]arene derivative and for axles. Then, the solution was transferred in an NMR tube for 1D and 2D NMR spectra acquisition.

Table 4.1. Amount of hosts and guests for complexation experiments.

Pseudo[2]rotaxanes	Calix[6]arenes		Axles		CDCl_{3}
	(mg)	(mmol)	(mg)	(mmol)	(ml)
$16 \mathrm{e}^{+} \subset 15 \mathrm{~b}$	4.02	$2.7 \cdot 10^{-3}$	2.78	$2.7 \cdot 10^{-3}$	0.5
$16{ }^{+} \subset 15 f$	4.01	$2.6 \cdot 10^{-3}$	2.78	$2.6 \cdot 10^{-3}$	0.5
$16 \mathrm{a}^{+} \subset 15 \mathrm{f}$	4.00	$2.6 \cdot 10^{-3}$	2.68	$2.6 \cdot 10^{-3}$	0.5
$16 \mathrm{e}^{+} \subset 15 \mathrm{f}$	4.01	$2.6 \cdot 10^{-3}$	2.70	$2.6 \cdot 10^{-3}$	0.5
$16 b^{+} \subset 15 \mathrm{~g}$	4.00	$2.2 \cdot 10^{-3}$	2.38	$2.2 \cdot 10^{-3}$	0.5
$16 \mathrm{a}^{+} \subset 15 \mathrm{~g}$	4.02	$2.2 \cdot 10^{-3}$	2.30	$2.2 \cdot 10^{-3}$	0.5
$16 \mathrm{e}^{+} \subset 15 \mathrm{~g}$	4.01	$2.2 \cdot 10^{-3}$	2.32	$2.2 \cdot 10^{-3}$	0.5
$16{ }^{+} \subset 15 \mathrm{c}$	4.02	$3.0 \cdot 10^{-3}$	3.24	$3.0 \cdot 10^{-3}$	0.5
$16 \mathbf{a}^{+} \subset 15 \mathrm{c}$	4.01	$3.0 \cdot 10^{-3}$	3.12	$3.0 \cdot 10^{-3}$	0.5
$16 \mathrm{e}^{+} \subset 15 \mathrm{c}$	4.03	$3.0 \cdot 10^{-3}$	3.14	$3.0 \cdot 10^{-3}$	0.5

Figure 4.56. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 b}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.57. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.58. 2D COSY spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.59. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.60. 2D COSY spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.61. 2D HSQC spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.62. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.63. 2D COSY spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 f}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.64. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.65. 2D COSY spectrum of derivative $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 g}\left(600 \mathbf{M H z}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.66. 2D HSQC spectrum of derivative $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.67. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.68. 2D COSY spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.69. 2D HSQC spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.70. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.71. 2D COSY spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.72. 2D HSQC spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.73. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.74. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.75. 2D COSY spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.76. 2D HSQC spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 c}\left(600 \mathbf{M H z}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.77. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.78. 2D COSY spectrum of derivative $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

4.7.2.3 $\quad{ }^{1} \mathrm{H}$ NMR determination of $\mathrm{K}_{\text {ass }}$ values

The association constant values of complexes were calculated by means of three methods:
a) ${ }^{1} \mathrm{H}$ NMR competition experiments. In this case, was performed an analysis of a 1:1:1 mixture of host, and two guests (or two host and one guest) in an NMR tube using 0.5 mL of CDCl_{3} as solvent. The following equation was used to obtain $\mathrm{K}_{\text {ass }}$ value.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{A} C \mathrm{H}}=\frac{\left[\mathrm{HG}_{\mathrm{A}}\right]}{[\mathrm{H}]\left[\mathrm{G}_{\mathrm{A}}\right]} \text { and } \mathrm{K}_{\mathrm{B} \subset \mathrm{H}}=\frac{\left[\mathrm{HGB}_{\mathrm{B}}\right]}{[\mathrm{H}]\left[\mathrm{G}_{\mathrm{B}}\right]} \rightarrow \mathrm{K}_{\mathrm{rel}}=\frac{\mathrm{K}_{\mathrm{A} \subset \mathrm{H}}}{\mathrm{~K}_{\mathrm{B} \subset \mathrm{H}}}=\frac{\left[\mathrm{HG}_{\mathrm{A}}\right][\mathrm{H}]\left[\mathrm{G}_{\mathrm{B}}\right]}{[\mathrm{HGB}][\mathrm{H}]\left[\mathrm{G}_{\mathrm{A}}\right]} \rightarrow \\
& \begin{array}{l}
{\left[\mathrm{HG}_{\mathrm{A}}\right]=\left[\mathrm{G}_{\mathrm{B}}\right]} \\
{\left[\mathrm{HGB}_{\mathrm{B}}\right]=\left[\mathrm{G}_{\mathrm{A}}\right]}
\end{array} \quad \underset{e}{\mathrm{e}} \mathrm{~K}_{r}=\frac{\mathrm{K}_{\mathrm{ACH}}}{\mathrm{~K}_{\mathrm{B} \subset \mathrm{H}}}=\frac{\left[\mathrm{HG}_{\mathrm{A}}\right]^{2}}{[\mathrm{HGB}]^{2}}
\end{aligned}
$$

b) Quantitative ${ }^{1} \mathrm{H}$ NMR experiments using TCE as the internal standard. In this case, ${ }^{1} \mathrm{H}$ NMR experiments were carried out on a $1: 1$ mixture of host and guest in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of 1,1,2,2-tetrachloroethane ($\mathrm{d}=$ $1.586 \mathrm{~g} / \mathrm{mL}$) as internal standard.
c) Integration of free and complexed ${ }^{1} \mathrm{H}$ NMR signals of host or guest. In this case, an equimolar solution of host and guest was solubilized in CDCl_{3} and equilibrated in a NMR tube.

Table 4.2. $\mathrm{K}_{\text {rel }}$ calculated by ${ }^{1} \mathrm{H}$ NMR competition experiments.

	$\begin{gathered} K_{4^{+} \subset 1 \mathrm{a}} \\ \left(6.5 \times 10^{4}\right. \\ \left.\mathrm{M}^{-1}\right) \end{gathered}$	$\begin{gathered} K_{4^{+} \subset 1 b} \\ \left(5.1 \times 10^{5}\right. \\ \left.M^{-1}\right) \end{gathered}$	$\begin{aligned} & K_{2^{+} \subset 1 \mathrm{f}} \\ & \left(7.4 \times 10^{4}\right. \\ & \left.\mathbf{M}^{-1}\right) \end{aligned}$	$\begin{aligned} & K_{3^{+} \subset 1 f} \\ & \left(5.0 \times 10^{4}\right. \\ & \left.M^{-1}\right) \end{aligned}$	$\begin{aligned} & K_{2^{+} \subset 1 \mathrm{~g}} \\ & \left(8.5 \times 10^{4}\right. \\ & \left.M^{-1}\right) \end{aligned}$	$\begin{gathered} K_{3^{+} \subset 1 h} \\ \left(7.1 \times 10^{3}\right. \\ \left.\mathbf{M}^{-1}\right) \end{gathered}$
$\begin{gathered} K_{2^{+}} \subset 1 \mathrm{~b} \\ \left(1.2 \times 10^{5}\right. \\ \left.\mathbf{M}^{-1}\right)^{a} \end{gathered}$			$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{2^{+}} @ 1 f}{K_{2^{+} @ 1 b}} \\ & =0.62 \end{aligned}$		$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{2^{+} @ 1 g}}{K_{2^{+} @ 1 b}} \\ & =0.71 \end{aligned}$	
$\begin{gathered} K_{3^{+} \subset 1 b} \\ \left(3.5 \times 10^{4}\right. \\ \left.M^{-1}\right)^{\mathbf{a}} \end{gathered}$				$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{3^{+}} @ 1 f}{K_{3^{+} @ 1 b}} \\ & =1.43 \end{aligned}$		$\begin{aligned} & \boldsymbol{K}_{\text {rel }} \\ & =\frac{\boldsymbol{K}_{2^{+} @ 1 g}}{\boldsymbol{K}_{3^{+} @ 1 g}} \\ & =\mathbf{0 . 2 0} \end{aligned}$
$\begin{gathered} K_{4^{+} \subset 1 f} \\ \left(1.4 \times 10^{5}\right. \\ \left.M^{-1}\right) \end{gathered}$		$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{4^{+}} @ 1 f}{K_{4^{+}} @ 1 b} \\ & =3.64 \end{aligned}$				
$\begin{gathered} K_{3^{+} \subset 1 g} \\ \left(3.4 \times 10^{5}\right. \\ \left.\mathbf{M}^{-1}\right) \end{gathered}$					$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{2^{+}} @ 1 g}{K_{3^{+} @ 1 g}} \\ & =\mathbf{0 . 2 5} \end{aligned}$	
$\begin{aligned} & K_{4^{+}} \subset 1 \mathrm{~g} \\ & \left(9.3 \times 10^{4}\right. \\ & \left.\mathbf{M}^{-1}\right) \end{aligned}$		$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{4^{+}} @ 1 b}{K_{4}+@ 1 g} \\ & =5.48 \end{aligned}$			$\begin{aligned} & K_{\text {rel }} \\ & =\frac{K_{2^{+}} @ 1 g}{K_{3^{+}} @ 1 g} \\ & =0.91 \end{aligned}$	
$\begin{gathered} K_{7^{+} \subset 1 \mathrm{a}} \\ \left(\mathbf{3 . 4 \times 1 0 ^ { 2 }}\right. \\ \left.\mathbf{M}^{-1}\right)^{\mathrm{b}} \end{gathered}$	$\begin{aligned} & \begin{array}{c} K_{\text {rel }} \\ K_{4^{+}} @ 1 b \end{array} \\ = & \frac{K_{4^{+} @ 1 g}}{=} \end{aligned}$					

$K_{\text {ass }}$ value of $\mathbf{1 6 h}{ }^{+} \subset \mathbf{1 5 a}$

Figure 4.79. ${ }^{1} \mathrm{H}$ NMR spectrum of equimolar solution $\left(3 \cdot 8 \cdot 10^{-3} \mathbf{~ M}\right)$ of $\mathbf{1 5 a}$ and $\mathbf{1 6} \mathbf{h}^{+}$. TFPB .
The association constant $K_{\text {ass }}$ value was calculated by integration of complexed (\triangle) and free derivative $\mathbf{1 5 a}(\bullet)\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.
$K_{\text {ass }}$ value of $16 \mathrm{e}^{+} \subset \mathbf{1 5 b}$

Figure 4.80. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $16 \mathrm{e}^{+}$and 15 b in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathrm{e}^{+}, \mathbf{1 5 g}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}. (c) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathrm{e}^{+}$and $\mathbf{1 5 g}$ in 0.5 mL of CDCl_{3}.The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 \mathbf { e } ^ { + }} \subset \mathbf{1 5 b}$ ($\mathbf{\Delta}$) and complex $\mathbf{1 6 e}{ }^{+} \subset \mathbf{1 5 g}(■)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $\mathbf{1 6} b^{+} \subset \mathbf{1 5 f}$

Figure 4.81. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 f}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{b}^{+}, \mathbf{1 5 f}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.
(c) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 \mathbf { b } ^ { + } \subset \mathbf { 1 5 f } (\mathbf { \Delta }) \text { and }}$ complex $\mathbf{1 6 b} \mathbf{b}^{+} \subset \mathbf{1 5 b}(■)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 \mathbf{a}^{+} \subset \mathbf{1 5 f}$

Figure 4.82. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $\mathbf{1 6 a}{ }^{+}$and $\mathbf{1 5 f}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{a}^{+}, \mathbf{1 5 f}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.
(c) an equimolar solution (4.5 mM) of $\mathbf{1 6 \mathbf { a } ^ { + }}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}. The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}(\boldsymbol{\Delta})$ and complex $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 b}(■)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 \mathrm{e}^{+} \subset \mathbf{1 5 f}$

Figure 4.83. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution $(4.5 \mathrm{mM})$ of $\mathbf{1 6 e ^ { + }}$ and $\mathbf{1 5 f}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{e}^{+}, \mathbf{1 5 f}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.
(c) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{e}^{+}$and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 e}^{+} \subset \mathbf{1 5 f}(\boldsymbol{\Delta})$ and complex $\mathbf{1 6 e}{ }^{+} \subset \mathbf{1 5 b}(■)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $\mathbf{1 6} b^{+} \subset \mathbf{1 5 g}$

Figure 4.84. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 g}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6 b} \mathbf{b}^{+} \mathbf{1 5 g}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}. (c) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}. The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 g}(\mathbf{\Delta})$ and complex $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 b}(■)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 a^{+} \subset \mathbf{1 5 g}$

(c)

(b)

(a)

Figure 4.85. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{a}^{+}$and $\mathbf{1 5 g}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6 a}{ }^{+}, \mathbf{1 5 g}$ and $\mathbf{1 6} \mathbf{b}^{+}$in 0.5 mL of CDCl_{3}. (c) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 g}$ in 0.5 mL of CDCl_{3}.The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 g}(\Delta)$ and complex $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 g}(\mathbf{\square})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 \mathrm{e}^{+} \subset \mathbf{1 5 g}$

Figure 4.86. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathrm{e}^{+}$and $\mathbf{1 5 g}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6} \mathrm{e}^{+}, \mathbf{1 5 g}$ and $\mathbf{1 6} \mathbf{b}^{+}$in 0.5 mL of CDCl_{3}.
(c) an equimolar solution (4.5 mM) of $16 \mathrm{~b}^{+}$and 15 g in 0.5 mL of CDCl_{3}.The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6} \mathrm{e}^{+} \subset \mathbf{1 5 g}(\triangle)$ and complex $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 g}(■)\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 a^{+} \subset \mathbf{1 5 c}$

Figure 4.87. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) an equimolar solution (4.5 mM) of $\mathbf{1 6 a}{ }^{+}$and $\mathbf{1 5 c}$ in 0.5 mL of CDCl_{3}; (b) an equimolar solution (4.5 mM) of $\mathbf{1 6 \mathbf { a } ^ { + }}, \mathbf{1 5 c}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.
(c) an equimolar solution (4.5 mM) of $\mathbf{1 6 \mathbf { a } ^ { + }}$ and $\mathbf{1 5 b}$ in 0.5 mL of CDCl_{3}.The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 c}(\triangle)$ and complex $\mathbf{1 6 a} \mathbf{a}^{+} \subset \mathbf{1 5 b}(\mathbf{■})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 \mathrm{e}^{+} \subset \mathbf{1 5 a}$

Figure 4.88. ${ }^{1} \mathrm{H}$ NMR spectrum of an equimolar solution $(4.5 \mathrm{mM})$ of $\mathbf{1 6} \mathrm{e}^{+}, \mathbf{1 5 a}$ and $\mathbf{1 6} \mathbf{h}^{+}$in 0.5 mL of CDCl_{3}. The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6} \mathbf{e}^{+} \subset \mathbf{1 5 a}(\mathbf{\Delta})$ and complex $\mathbf{1 6 h ^ { + }} \subset \mathbf{1 5 a}(\mathbf{\square})\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 b^{+} \subset \mathbf{1 5 c}$

Figure 4.89. ${ }^{1} \mathrm{H}$ NMR spectrum of an equimolar solution (6.1 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 c}$ in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of TCE. The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6 b} \mathbf{b}^{+} \subset \mathbf{1 5 c}(\mathbf{\Delta})$ and $\operatorname{TCE}(\mathbf{\square})\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

$K_{\text {ass }}$ value of $16 \mathrm{e}^{+} \subset \mathbf{1 5 c}$

Figure 4.90. ${ }^{1} \mathrm{H}$ NMR spectrum of an equimolar solution (6.1 mM) of $\mathbf{1 6} \mathbf{b}^{+}$and $\mathbf{1 5 c}$ in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of TCE. The association constant K_{a} value was calculated by integration of signal of complex $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 c}(\mathbf{\Delta})$ and TCE (■) ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

4.7.2.4 Crystallographic information of derivatives $15 f$ and 15 g

Colourless single crystals suitable for X-ray investigation were obtained by slow evaporation of $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solutions containing $\mathbf{1 5 f}$ or $\mathbf{1 5 g}$. Data collections were carried out at the Macromolecular crystallography XRD1 beamline of the Elettra Synchrotron (Trieste, Italy), employing the rotating-crystal method with a Dectris Pilatus 2 M area detector. Single crystals investigated were dipped in a cryo-protectant (PEG200 for $\mathbf{1 5 f}$ and Paratone for $\mathbf{1 5 g}$), mounted on a loop, and flash-frozen under a liquid nitrogen stream at 100 K . Diffraction data were indexed and integrated using the XDS package, ${ }^{53}$ while scaling was carried out with XSCALE. ${ }^{54}$ The structures were solved using the SHELXT package, ${ }^{55}$ and structure refinement was performed with SHELXL-14, ${ }^{56}$ operating through the WinGX GUI, ${ }^{57}$ by full-matrix least-squares methods on F2. Both molecules crystallized in the P1 space group. The $\mathbf{1 5 f}$ molecule exhibits a 1,2,3-alternate conformation; while the $\mathbf{1 5 g}$ molecule has a partial-cone formation, with one of the hexyloxy substituted inverted with respect to the other five aryl groups in the macrocycle. Details of the refinement of the thermal parameters of non-hydrogen atoms are outlined below. All hydrogen atoms were placed at the

[^34]geometrically calculated positions and refined using the riding model. Crystal data and final refinement details for the structures are reported in Table 4.3 and Table 4.4.

Crystal Structure of 15f: The triclinic (space group P $\overline{1}$) asymmetric unit contains a $1 / 2$ molecule of $\mathbf{1 5 f}$ which lies on a centre of inversion and two co-crystallized CHCl_{3} solvent molecules encapsulated in the calixarene ring. The structure exhibits no appreciable disorder and all non-hydrogen atoms were refined anisotropically at full occupancy.

Crystal Structure of $\mathbf{1 5 g}$: The triclinic (space group $\mathrm{P} \overline{1}$) asymmetric unit contains one molecule of $\mathbf{1 5 g}$ and four CHCl_{3} molecules modelled with partial occupancy. The $\mathbf{1 5 g}$ molecule shows several types of disorder. The most significant disorder is attributed to the superimposition on the same site of the two enantiomeric forms of $\mathbf{1 5 g}$, which results in a partial occupation of the hexyloxy groups $(2,3$ and 5,6$)$ located on each side of a plane containing the inverted phenyl group and its facing phenyl group with self-included hexyl chain. Each of the four affected positions (2, 3, 5, and 6) was refined with a hydrogen atom and a hexyl group at 50% of occupancy factors, with the overlapped oxygen atoms at full occupation. In addition, two of these hexyl substituents show two-position disorder for all six carbon atoms, which were refined at 30 and 20% of occupancy factors in both cases. A similar two-position disorder is present for all six carbon atoms of the hexyloxy group bonded to the inverted phenyl group; as well as all six hexyloxy carbon atoms of its facing phenyl group. These were refined at 50% of occupancy factors in both cases. Finally, one of the adamantyl groups shows a two-position disorder of all its carbon atoms (except for the atom bonded to the phenyl ring) which was refined at 60 and 40% of occupancy factors. Significant disorder and partial occupancy are also observed for the solvent molecules. One fully occupied CHCl_{3} molecule site shows a three-position disorder, modelled at 40,40 , and 20% of occupancy factors; while a second, partially occupied site shows a two-position disorder modelled at 50 and 40% of occupancy factors. Finally, two further CHCl_{3} sites were modelled at 20 and 15% of occupancy factors. These two partially occupied sites are superimposed on sites of the partially occupied hexyl groups discussed above. To maintain a regular geometry, DFIX and DANG were applied to all partially occupied atoms discussed above. In addition, the thermal parameters of all partially occupied carbon atoms were refined isotropically, while all other non-hydrogen atoms were refined anisotropically.

Table 4.3. Dihedral angles, θ, between the mean plane of the bridging methylene groups and the mean planes of the six aryl rings for 15 f and 15 g . Absolute angle value greater/smaller than 90° indicates outward/inward orientation of the adamantly group, while a negative sign indicates an inverted orientation of the adamantly group with respect to a given orientation of the macrocycle.

Crystal	Dihedral angles, $\boldsymbol{\theta}\left[{ }^{\circ}{ }^{\circ}\right]$					
$\mathbf{1 5 f}{ }^{[\text {a] }}$	1	2	3	1^{\prime}	2^{\prime}	3^{\prime}
	96	132	72	-96	-132	-72
$\mathbf{1 5 g}$	1	2	3	4	5	6
	-46	94	98	158	96	98

[a] 1', 2', and 3' are generated by inversion of 1,2 , and 3 , respectively. See the main text and Figure 1 for full details on the designation of the six aryl rings.

Table 4.4. Crystal data and structure refinement for $\mathbf{1 5 f}$ and $\mathbf{1 5 g}$.

	15 f	15g
Empirical formula	$\mathrm{C}_{108} \mathrm{H}_{136} \mathrm{O}_{6}, 4\left(\mathrm{CHCl}_{3}\right)$	$\begin{gathered} \mathrm{C}_{126} \mathrm{H}_{168} \mathrm{O}_{6}, \\ 2.25\left(\mathrm{CHCl}_{3}\right) \end{gathered}$
Formula weight	2003.6	2047.17
Temperature (K)	100(2)	100(2)
Wavelength (̊)	0.7	0.7
Crystal system	Triclinic	Triclinic
Space group	P-1	P-1
Unit cell dimensions ($\mathrm{A},{ }^{\circ}$)	$a=12.338$ (2)	$a=12.959$ (4)
	$b=15.813$ (3)	$b=15.165$ (3)
	$c=15.8860$ (6)	$c=29.378$ (7)
	$\alpha=62.331$ (11)	$\alpha=75.80$ (3)
	$\beta=80.881$ (10)	$\beta=86.69$ (2)
	$\gamma=68.02$ (3)	$\gamma=86.896$ (10)
Volume (A 3)	2544.9 (9)	5583 (3)
Z	1	2
$\rho_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.307	1.218
$\mu\left(\mathrm{mm}^{-1}\right)$	0.361	0.216
F(000)	1060	2205
Reflections collected	48310	45006
Independent reflections	13952	12925
Data / restraints / parameters	13952 / 0 / 590	12925/1496/
GooF	1.038	1.042
R1 / wR2 [İ2 $\sigma(\mathrm{I})$]	$0.042 / 0.0436$	0.1007/0.1598
R1 / wR2 all data	0.1192 / 0.1208	$0.2737 / 0.3254$
Largest. Diff. peak/hole (e $\AA^{\text {® }}$)	0.798 /-1.035	0.666 / -0.413
CCDC code	1988954	1988955

(a)

(b)

Figure 4.91. ORTEP drawing of $\mathbf{1 5 f}$ (a) and $\mathbf{1 5 g}$ (b) (ellipsoids at 50% probability).

Figure 4.92. Stereo view of $\mathbf{1 5 f}$ (a) and $\mathbf{1 5 g}$ (b).

4.7.2.5 Computational Details

Atomic coordinates of $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 f}$

Figure 4.93. (a) Side view and (b) top view of complex $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}$.

H	5.27900700	2.64117300	0.82603500	H	7.26425700	2.90764000	-0.08403100
C	2.26902700	-4.15475900	4.62345800	H	8.57117900	0.95056900	0.89294800
H	3.34000700	-4.11023800	4.85497600	H	8.26889100	-0.69248100	0.34131800
H	1.69921100	-3.75731200	5.46579500	H	6.44789600	-1.11329800	-1.46860600
C	-6.56674500	0.03697700	0.91529200	H	5.54603000	0.25315500	-2.11742400
H	-7.14180900	0.90609900	0.60820900	C	-10.03760100	-0.04849300	-2.41960400
C	-3.39923400	3.30831000	-0.39142000	C	-8.69761800	-0.50519000	-3.03191300
C	-6.83497700	-1.20951500	0.32798400	C	-8.82721300	-1.95781100	-3.52946700
C	5.84672000	0.58152200	0.61417700	C	-9.19020400	-2.87111100	-2.34216400
C	-6.06916300	-2.29515200	0.76697400	C	-10.53402300	-2.42072500	-1.73667100
H	-6.23471000	-3.28021400	0.34498100	C	-10.40499100	-0.96865500	-1.23746800
C	-3.89444600	3.94814200	4.49679500	H	-10.82825100	-0.07760200	-3.17986500
H	-4.96235200	3.89241700	4.25576800	H	-9.96260700	0.99281200	-2.07922800
H	-3.53108400	4.95537600	4.26085400	C	-7.59092500	-0.42623900	-1.96068100
C	3.52818400	2.62611400	2.90489800	H	-8.43159500	0.15133200	-3.87012200
H	4.33449100	3.29766600	3.22717300	H	-7.88464000	-2.28683900	-3.98660500
H	3.04818600	2.25624700	3.80566900	H	-9.59861200	-2.02461000	-4.30693800
C	0.88624600	3.27896400	4.90929100	H	-9.26999900	-3.90962800	-2.68650600
H	1.93333500	3.53226500	5.10502900	C	-8.08529900	-2.78635500	-1.26868800
H	0.28264900	4.18694300	5.00977500	H	-11.33020700	-2.49417300	-2.48815300
C	-2.46914200	-5.83946100	3.66451600	H	-10.81659600	-3.08222200	-0.90744400
H	-3.49727000	-5.96018000	3.30386200	C	-9.30165800	-0.89073700	-0.16259400
H	-1.84828500	-6.63385800	3.23320100	H	-11.35553600	-0.64234300	-0.79750700
H	-1.43277700	5.62152300	2.48759700	H	-9.55760800	-1.52916900	0.69272700
H	0.35653000	-6.32793600	1.71015100	C	-7.92644600	-1.33679300	-0.74236500
C	9.43331800	1.99809800	-1.51814800	H	-9.23299200	0.13442100	0.22061900
C	9.35781400	0.51828500	-1.09514400	H	-7.47363600	0.61311800	-1.62995600
C	8.96774100	-0.34571800	-2.31168300	H	-6.62610800	-0.73316300	-2.38646500
C	7.59520300	0.10921900	-2.84863800	H	-7.13577600	-3.13558000	-1.69553600
C	7.67171600	1.58933200	-3.27015400	H	-8.33111700	-3.46027600	-0.43785600
C	8.05706700	2.44593600	-2.04841900	H	5.32045700	-3.56325100	0.42536900
H	10.19827100	2.13238000	-2.29317300	C	-4.94207200	4.22551300	-2.16667000
H	9.73166700	2.62084800	-0.66481200	C	-5.18504400	4.40974700	-3.67801900
C	8.29825700	0.35354000	0.01332800	C	-5.21245900	3.02916600	-4.36427800
H	10.33179700	0.19348600	-0.70876700	C	-3.86094000	2.31857600	-4.14695300
H	8.92991600	-1.40560200	-2.02667300	C	-3.61280500	2.13039600	-2.63600100
H	9.72805700	-0.25581500	-3.09756400	C	-3.58683500	3.50210700	-1.90195200
H	7.31300100	-0.50765000	-3.71109500	H	-5.76409000	3.64757700	-1.72755700
C	6.53156200	-0.05479700	-1.74408800	H	-4.93710900	5.19915800	-1.65984700
H	8.41152700	1.71798800	-4.07011000	C	-4.05122900	5.26147100	-4.28115000
H	6.70513800	1.91811800	-3.67441900	H	-6.14711000	4.91574500	-3.82657100
C	6.99720400	2.27481700	-0.94023200	H	-5.40893600	3.14491200	-5.43767100
H	8.09915100	3.50339800	-2.33738800	H	-6.02956100	2.41994500	-3.95541900
H	6.02261500	2.62360300	-1.30712200	H	-3.88187400	1.33424600	-4.63130900
C	6.89133600	0.79507000	-0.48999800	C	-2.72847200	3.17112300	-4.75102400

H	-4.39617900	1.49077100	-2.21270700	H	5.46391100	6.89179500	-2.30912600
H	-2.65944700	1.61280700	-2.46761200	H	3.73347200	5.76017300	-3.71231000
C	-2.46624500	4.35938400	-2.54391400	H	3.85253700	7.46583300	-4.14247500
H	-1.49120000	3.88056200	-2.38224800	H	1.45444800	6.77540100	-3.89219600
C	-2.70412800	4.54666800	-4.05681000	C	1.66184900	5.97364100	-1.89250400
H	-2.42521000	5.34396300	-2.06019200	H	2.08823800	9.12466700	-3.29927900
H	-4.03523700	6.25507800	-3.81459400	H	0.76336700	8.56140600	-2.28267300
H	-4.22236500	5.41607600	-5.35393700	C	2.27750700	7.68404000	-0.13984200
H	-2.88121600	3.29579400	-5.83051800	H	2.50953700	9.69739800	-0.89770700
H	-1.76298100	2.66412900	-4.62183200	H	1.22661500	7.84335700	0.12954000
H	-1.89026200	5.15524600	-4.47074400	C	2.49486300	6.21088500	-0.59830500
C	6.69902100	-5.45703900	-3.16827000	H	2.86605300	7.87050600	0.76765600
C	5.35181700	-4.82761600	-3.57830900	H	4.61587900	6.22349800	-0.08071200
C	4.63158100	-4.29431300	-2.32325000	H	4.18577400	5.02231400	-1.30158900
C	4.36533400	-5.44074200	-1.30303200	H	1.81542400	4.94180000	-2.23605300
C	5.73006400	-6.09391900	-0.93239000	H	0.59197300	6.07862700	-1.67509300
C	6.44782200	-6.62325600	-2.19067900	C	-3.10158900	-2.15355200	-4.65580300
H	7.34212300	-4.70102900	-2.69804800	C	-1.96313200	-1.37640900	-3.96423300
H	7.23193400	-5.81807000	-4.05680600	C	-0.61350100	-1.76902200	-4.59533700
C	4.47217900	-5.89310900	-4.26065200	C	-0.39025400	-3.28243500	-4.41179600
H	5.52861600	-3.99448100	-4.27024800	C	-1.52289000	-4.06083900	-5.10929800
H	3.67648500	-3.82908700	-2.60150200	C	-2.87278200	-3.66833500	-4.47794900
H	5.23971300	-3.51033100	-1.85502800	H	-3.13803900	-1.90067400	-5.72320100
C	3.50785600	-6.51640100	-2.01798900	H	-4.07097100	-1.86542800	-4.22704000
H	6.37082900	-5.36352400	-0.42374900	C	-1.94704400	-1.71503800	-2.45935900
H	5.55844500	-6.91083600	-0.21978700	H	-2.12571000	-0.29847800	-4.08567500
C	5.56801800	-7.68745800	-2.87463300	H	0.20131900	-1.20553800	-4.12198600
H	7.40533300	-7.06907300	-1.89416000	H	-0.60424100	-1.51196900	-5.66235700
H	5.40025300	-8.53319600	-2.19528300	H	0.57601600	-3.56900000	-4.84635900
C	4.22240200	-7.05223300	-3.27611400	C	-0.37985100	-3.62174700	-2.90723900
H	6.07632800	-8.08700400	-3.76112300	H	-1.52802600	-3.83902500	-6.18405600
H	4.96441500	-6.26605800	-5.16719500	H	-1.35823000	-5.14147500	-5.00773600
H	3.51774400	-5.45072100	-4.57551700	C	-2.85766300	-4.01245100	-2.97477300
H	2.53705400	-6.09100400	-2.30467000	H	-3.68407100	-4.22439800	-4.96421700
H	3.30451600	-7.34886400	-1.33200800	H	-2.71205300	-5.09116800	-2.83308200
H	3.58420600	-7.80803300	-3.75018000	C	-1.72458900	-3.23937900	-2.23611100
C	4.17143200	8.48364600	-1.59334300	H	-3.82930000	-3.76602100	-2.52984200
C	4.40147600	7.03901000	-2.07867400	H	-2.89355000	-1.40299500	-2.00172800
C	3.55612500	6.77810100	-3.34061600	H	-1.15116500	-1.15404800	-1.95321800
C	2.06505400	6.96737700	-3.00093200	H	0.44494800	-3.08747800	-2.41800100
C	1.82702200	8.40968700	-2.50911000	H	-0.19122600	-4.69567700	-2.77884000
C	2.68087300	8.67344700	-1.25207300	H	-3.75104000	-2.81353600	-0.44610800
H	4.47639100	9.19587400	-2.37026000	H	-2.45839500	-5.92470300	4.75314200
H	4.79099500	8.69017500	-0.71099400	H	0.54468100	2.53507800	5.62771400
C	3.99202800	6.05026500	-0.96715100	H	-3.75620900	3.75555500	5.56303600

H	1.98862500	-5.20202900	4.46711100
C	3.64013600	-0.01442600	5.03910600
C	-4.53410300	-0.99586700	4.66946400
H	-3.73396400	-0.87275000	5.40095900
H	-5.32909200	-0.26955900	4.87498700
H	-4.95275600	-2.00514600	4.75330200
H	4.38181000	-0.80352000	5.20304800
H	4.11956000	0.95622700	5.20298200
H	2.81396800	-0.13493500	5.74110100
C	-0.64483400	-0.96304600	4.05705900
N	0.20816500	-0.22437900	3.03556800
C	-0.21293800	-0.63275900	1.62800600
H	0.13453000	0.80059800	3.16289000
C	1.68466500	-0.78639300	-0.02158000
C	2.41078600	-0.28356300	-1.10070500
C	2.08104200	0.95799200	-1.64693600
C	1.02372000	1.69605100	-1.11213900
C	0.29300800	1.19233100	-0.03665400
C	0.62183900	-0.05087600	0.51999800
H	1.93399200	-1.76010000	0.38816600
H	3.22919200	-0.86422100	-1.51325100
H	2.64268000	1.34690700	-2.49123700
H	0.76215000	2.66127400	-1.53321500

H	-0.54430700	1.76145500	0.35651000
C	0.29902300	-0.47302600	7.71937200
C	0.27437000	-0.96284100	6.41278000
C	-0.56850000	-0.39198800	5.45008700
C	-1.39755500	0.67886000	5.81869300
C	-1.37478100	1.16524700	7.12757800
C	-0.52778900	0.59277200	8.07895800
H	0.95005600	-0.93108600	8.45772600
H	0.90164000	-1.80589200	6.13859100
H	-2.05957800	1.13371800	5.08525500
H	-2.02538900	1.98866500	7.40667700
H	-0.51935600	0.96823500	9.09759200
H	-1.25736300	-0.32567900	1.54198500
H	-0.17753200	-1.72364700	1.61745300
H	-0.30645800	-2.00035800	4.02220800
H	-1.66940100	-0.91900300	3.67946700
H	1.21123400	-0.42708500	3.20197000

Energy $=-5244.36186$ a.u.
0 imaginary frequency

Atomic coordinates of $16 \mathbf{a}^{+} \subset \mathbf{1 5 f}$

Figure 4.94. (a) Side view and (b) top view of complex $16 \mathbf{a}^{+} \subset \mathbf{1 5 f}$.

O	-4.00373000	-0.83691400	3.14430300				
				H	5.82665400	-1.77667400	0.59250700
O	-2.64973200	2.92111300	3.86896100				
				C	-1.68288900	3.73937000	1.81062300
O	-2.56792600	-3.89509300	3.38674500				
				C	-6.53099200	0.67526700	0.93051900
O	1.70487800	-2.62620100	3.58958300				
				H	-6.92893400	1.66310100	0.72591000
O	3.60713800	0.23939300	4.01544900				
				C	4.75972600	-0.92122000	2.23030400
O	1.48086500	2.79660800	3.76555200				
				C	-1.75169100	3.82956300	0.41853300
C	-2.71889600	3.06163500	2.48321100				
				C	4.34356400	0.28191300	2.82906400
C	5.48703600	-0.84875800	1.04021300				
				C	-3.79191900	2.49036200	1.78296000

C	2.21726200	-3.38333800	2.52229400	C	3.45555100	4.49460600	1.16174400
C	-3.54230100	-3.46408200	1.21763300	H	4.48791600	4.53516800	0.82875900
C	-3.81718100	2.61895900	0.38921900	C	5.81674900	0.36710400	0.42341000
H	-4.64803500	2.17307400	-0.14150100	C	2.50525400	5.32305500	0.54639300
C	0.82198700	4.42163900	2.09429400	C	-2.14979500	-3.64332900	-0.79465500
C	-5.48895700	-1.84368200	1.53495800	C	1.19860800	5.27024300	1.04290800
C	4.05560300	-4.01757800	1.11355800	H	0.44170300	5.92696100	0.63108500
H	5.10349800	-3.91767600	0.84908200	C	4.40861500	0.26079700	5.20247100
C	-0.59816700	4.43912800	2.62932900	H	5.01335600	1.17312800	5.26172800
H	-0.89512700	5.49080300	2.74445100	H	5.07982200	-0.60458700	5.25077500
H	-0.61729500	4.00194300	3.62603300	C	-0.04442900	-4.54390100	2.32538500
C	-5.49942900	0.57254700	1.87634800	H	-0.16367200	-5.62707600	2.47026600
C	-5.00220000	-0.69768600	2.18559300	H	-0.20695100	-4.09337800	3.30388500
C	-7.05900800	-0.43923400	0.27084000	C	1.85600600	-3.27491700	4.86247500
C	1.81346400	3.62144300	2.67941600	H	1.33610100	-4.23804400	4.87548200
C	-6.50584000	-1.69005800	0.59117600	H	2.91213300	-3.43952500	5.10049300
C	3.56381000	-3.22157400	2.15136800	C	-3.33070000	3.94095200	4.60710500
C	-3.37429700	-3.38423600	-0.16602700	H	-2.91078600	4.93232500	4.39934200
H	-4.23979500	-3.11662500	-0.76475700	H	-4.40187900	3.95537100	4.37653200
C	4.63586800	1.52140200	2.24051000	H	5.45364800	-2.77735600	3.02566500
C	3.26879400	-4.96402900	0.44077200	H	-5.74590000	2.54026400	2.65968900
C	4.49153400	-2.26858800	2.89396200	C	-1.57931100	-5.00526900	-4.94211000
H	4.08842700	-2.08539800	3.88699200	C	-3.00606200	-4.69198100	-4.45173700
C	-2.81904800	3.29420800	-0.32007600	C	-3.43625800	-3.30251800	-4.96425300
C	-2.43557900	-3.82080500	2.00262700	C	-2.46052600	-2.23322300	-4.43218500
C	1.38460600	-4.30934500	1.87737800	C	-1.03576800	-2.54934200	-4.92670000
C	3.14397000	3.64450300	2.22592600	C	-0.61091700	-3.93462000	-4.40210300
C	5.36702900	1.53588300	1.04570200	H	-1.54918000	-5.02215200	-6.03891900
H	5.60555100	2.49901300	0.61141800	H	-1.27244600	-6.00206800	-4.59938700
C	-4.93278300	1.81207900	2.53832900	C	-3.03145400	-4.69922900	-2.91047600
H	-4.57403500	1.57013000	3.53857200	H	-3.70125700	-5.45447800	-4.82459500
C	-1.18102600	-4.07243700	1.41831400	H	-4.45934700	-3.07866800	-4.63455400
C	4.24022900	2.83417800	2.90776700	H	-3.44611800	-3.29084700	-6.06151300
H	3.94139100	2.62334200	3.93177900	H	-2.76615400	-1.24296600	-4.79417200
H	5.13398200	3.46649100	2.95822600	C	-2.48358800	-2.23453200	-2.88951600
C	1.93811600	-5.09011800	0.85174500	H	-1.00307100	-2.53542400	-6.02355300
H	1.30048900	-5.83456200	0.38971700	H	-0.33552900	-1.77905700	-4.57851300
C	-4.91039200	-3.21362400	1.83781400	C	-0.64284400	-3.93877700	-2.85905000
H	-4.83397800	-3.36000500	2.91526600	H	0.41023300	-4.15869000	-4.73611900
H	-5.60930400	-3.97038100	1.46258300	H	0.07373100	-3.20047300	-2.47468300
C	-1.05972700	-3.96436000	0.02731300	C	-2.06418000	-3.62418900	-2.32733700
H	-0.09168000	-4.15423600	-0.41686800	H	-0.31691300	-4.92109500	-2.49271000
C	-4.51383000	-1.08587100	4.45634500	H	-2.74370600	-5.68754400	-2.52928800
H	-5.22174100	-1.92195800	4.46397600	H	-4.05239200	-4.51259000	-2.55746100
H	-3.66047200	-1.34008600	5.08620100	H	-3.48781400	-1.97290500	-2.53590600

H	-1.80394900	-1.46537200	-2.49911600	C	6.88729200	-0.49835800	-3.23714500
C	5.06581400	7.29824600	-2.40131700	H	5.81161500	-1.47854100	-1.62563500
C	3.97354100	6.34269100	-2.92422200	H	8.10629700	-2.16519500	-2.53980900
C	2.77813700	7.16331200	-3.44573500	H	8.87713500	-1.19112800	-3.79017200
C	2.20913600	8.01856000	-2.29699000	H	7.71656400	0.92065500	-4.66778400
C	3.29763900	8.97998900	-1.78083700	H	6.14301700	1.39086300	-4.02591000
C	4.49291400	8.16019200	-1.25789300	H	6.38327000	-1.09793400	-4.00554200
H	5.42422600	7.94138100	-3.21474800	C	-10.04784100	-1.70073200	-2.66647500
H	5.93176200	6.72444100	-2.04537400	C	-8.85929400	-0.85624200	-3.16994300
C	3.50447600	5.42252400	-1.77884100	C	-7.71972800	-0.90292700	-2.13176500
H	4.38036600	5.72475400	-3.73447800	C	-8.19256900	-0.34191800	-0.75788000
H	2.00243000	6.49354400	-3.84035800	C	-9.41908000	-1.17738800	-0.28433400
H	3.09400500	7.80776600	-4.27560600	C	-10.55501000	-1.13008300	-1.32636100
H	1.34793200	8.59481500	-2.65684500	H	-9.74113900	-2.74745800	-2.53987800
C	1.74673200	7.09890400	-1.14782800	H	-10.85571800	-1.69431700	-3.40903400
H	3.62144300	9.65092100	-2.58630600	C	-9.31264800	0.60300700	-3.36900000
H	2.89458800	9.61427400	-0.98067900	H	-8.49373400	-1.26351200	-4.12108800
C	4.02533900	7.24437600	-0.10830600	H	-6.85959200	-0.31805600	-2.48393800
H	5.26959000	8.83693700	-0.88077600	H	-7.37084800	-1.93610200	-2.01482600
H	3.62947400	7.84548300	0.72036500	C	-8.67479300	1.11366000	-0.98551900
C	2.92507600	6.25550100	-0.59706900	H	-9.11976700	-2.21818900	-0.11234000
H	4.88222000	6.68730100	0.28924500	H	-9.77063500	-0.78848800	0.68000800
H	4.34571100	4.81122200	-1.42974400	C	-11.00729000	0.32925300	-1.52682300
H	2.73748400	4.72494500	-2.14046100	H	-11.39747000	-1.73233400	-0.96406100
H	0.94960900	6.43579000	-1.50995500	H	-11.39052000	0.73949300	-0.58343900
H	1.31634700	7.71067900	-0.34441900	C	-9.81353200	1.16731900	-2.02512700
H	-6.88550800	-2.58396400	0.10402000	H	-11.82977300	0.37554600	-2.25175300
C	8.07128900	-0.25429100	-0.53986200	H	-10.11050200	0.65309200	-4.12068800
C	8.95032700	-0.29410600	-1.80628000	H	-8.47935300	1.20969300	-3.74778300
C	9.16749300	1.14009100	-2.32651500	H	-7.83745700	1.73518300	-1.32971300
C	7.80207300	1.77055300	-2.66468900	H	-9.02578700	1.54325200	-0.03830500
C	6.92262000	1.80492100	-1.39726200	H	-10.12461000	2.21122800	-2.15611800
C	6.67925200	0.37642400	-0.84609300	C	4.74063700	-8.44843100	-1.82275600
H	8.56604700	0.32676600	0.24902300	C	3.53126200	-7.67826400	-2.38782600
H	7.94325900	-1.27039900	-0.14735700	C	3.99836800	-6.74291900	-3.52012900
C	8.24901900	-1.13492400	-2.89228100	C	5.02232000	-5.73706900	-2.95893000
H	9.91738800	-0.74718000	-1.55517900	C	6.23391500	-6.50055000	-2.38632000
H	9.80815700	1.12737500	-3.21714900	C	5.76416200	-7.44357800	-1.25987200
H	9.68617700	1.74266100	-1.56958600	H	5.20119900	-9.05809500	-2.61015700
H	7.94826600	2.79751900	-3.02176200	H	4.41544700	-9.13925100	-1.03407900
C	7.10536600	0.93579700	-3.75668300	C	2.87874300	-6.84391900	-1.26590700
H	7.41462500	2.42137400	-0.63380600	H	2.79063500	-8.38775600	-2.77688100
H	5.96181100	2.28387000	-1.62910000	H	3.14012900	-6.20933000	-3.94960600
C	6.00313200	-0.45636900	-1.97416800	H	4.44807300	-7.32811000	-4.33200100
H	5.02609100	-0.01709600	-2.21161400	H	5.35456800	-5.06206400	-3.75760600

C	4.36435900	-4.90463300	-1.83969200
H	6.72540600	-7.07710700	-3.17990700
H	6.97939200	-5.79229000	-2.00065700
C	5.10719900	-6.61585100	-0.13642100
H	6.62530400	-7.98368800	-0.84736800
H	5.84656100	-5.92788600	0.29073100
C	3.88154700	-5.81972800	-0.67535400
H	4.78139900	-7.27326500	0.67991100
H	2.51883800	-7.51398400	-0.47434200
H	2.00153200	-6.31971900	-1.66755100
H	3.50945100	-4.34126700	-2.23581600
H	5.08020900	-4.16450000	-1.46074800
C	-1.68981900	4.66566300	-4.32292700
C	-1.65702100	3.14746300	-4.05353400
C	-2.91278900	2.49069400	-4.65861600
C	-4.16865800	3.10166600	-4.00736700
C	-4.20686300	4.61727100	-4.28485700
C	-2.95185300	5.27594900	-3.68008100
H	-1.68597000	4.85684300	-5.40342800
H	-0.78867900	5.14190100	-3.91295400
C	-1.62838500	2.89436200	-2.53209000
H	-0.75719800	2.71203900	-4.50706100
H	-2.88913500	1.40551300	-4.49117700
H	-2.93605900	2.64566600	-5.74468400
H	-5.06705200	2.62787200	-4.42234600
C	-4.13447300	2.85510700	-2.48463900
H	-4.24938700	4.80275000	-5.36555200
H	-5.11247600	5.05937200	-3.84970800
C	-2.92363000	5.02785100	-2.15840800
H	-2.97505900	6.35698500	-3.86595500
H	-3.80796600	5.47173500	-1.68353300
C	-2.88176600	3.50292300	-1.83999900
H	-2.04987700	5.52551400	-1.72033700
H	-0.71533100	3.32616600	-2.10380000
H	-1.59467500	1.81578900	-2.33012700
H	-4.14013500	1.77521700	-2.28741500
H	-5.04362400	3.26896000	-2.02989900
H	-0.95507700	4.34734600	-0.10264500
H	-3.19435100	3.70634000	5.66509100
H	1.41382800	-2.61739700	5.61320500
H	3.71926700	0.22962500	6.04953200
H	-5.02065300	-0.20146900	4.86376900
C	-2.94342600	-5.18412000	3.88037200
C	1.64419800	3.44021100	5.03920400
H	1.49723700	2.67828700	5.80637200

H	2.64823500	3.86376400	5.13960200
H	0.90821100	4.24012300	5.17317500
H	-3.01852500	-5.09393000	4.96632600
H	-3.91280400	-5.50021400	3.47699100
H	-2.19581800	-5.94723800	3.63374800
C	1.66859000	0.34147500	-2.96855000
H	1.23781900	-0.62311400	-3.25825300
H	2.55452800	0.50673700	-3.59004100
C	2.02201300	0.36516500	-1.47973400
H	0.93849200	1.11894900	-3.21836500
H	2.49313700	1.32450600	-1.22798100
C	0.81360300	0.14744800	-0.55987100
H	2.77471200	-0.40481900	-1.26842600
C	1.21334100	0.16465500	0.92090500
H	0.06444600	0.92775000	-0.74550700
H	0.33262900	-0.81085900	-0.79843800
C	0.01529300	-0.00837200	1.84645900
H	1.94202100	-0.63245400	1.10991200
H	1.71543900	1.11274100	1.14734500
N	0.43888500	0.03800900	3.29493000
H	-0.72154600	0.78754000	1.71087800
H	-0.48161800	-0.97049400	1.69555200
C	-0.70143100	-0.16648800	4.25757700
C	-0.25393500	0.04661600	5.70167600
H	-1.49024300	0.53730800	3.98232700
H	-1.07421500	-1.17995700	4.08766000
C	-1.34961100	-0.30954300	6.71499600
H	0.64387600	-0.55130600	5.90776100
H	0.03095400	1.09643800	5.83554000
C	-0.92496700	-0.06674700	8.16924100
H	-2.24937700	0.27999300	6.49542600
H	-1.63190300	-1.36401900	6.59035700
C	-2.01735600	-0.42619400	9.18015800
H	-0.01944300	-0.65012700	8.38452100
H	-0.64391500	0.98786300	8.29198300
H	-1.68466100	-0.24113800	10.20563000
H	-2.92356400	0.16623000	9.01300200
H	-2.29431700	-1.48359700	9.10675400
H	1.14326700	-0.70320900	3.45354400
H	0.89955000	0.94743000	3.48556800

Energy $=-5096.78470$ a.u.
0 imaginary frequency

Atomic coordinates of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 g}$

Figure 4.95. (a) Side view and (b) top view of complex $\mathbf{1 6 b}{ }^{+} \subset \mathbf{1 5 g}$.

o	-2.93958800	2.86748200	-2.22744000	C	3.34104900	2.85249200	0.74342200
o	0.81715800	4.19662500	-1.54954800	C	-2.50745400	-0.69735600	-3.00410500
o	-3.62773400	-0.55038100	0.91983600	C	-0.88171500	-3.04849300	3.35689700
0	-2.75495000	-1.49205700	3.46595000	C	-5.55812300	-1.71433300	-1.95427800
0	0.42874700	0.54486000	3.75862500	H	-5.85300600	-1.31477000	-2.92098300
O	1.96381200	2.99592300	0.65247500	C	2.75214900	0.15021500	3.16539200
C	1.58237800	3.67442700	-2.60399100	C	-1.13123400	-5.08978200	1.99661100
C	2.40311800	-2.55453000	3.80616000	C	-0.06379500	-2.20906200	4.34127600
H	2.26553100	-3.58578100	4.10675100	H	-0.66787500	-1.35466300	4.63677400
C	2.98118000	3.70337600	-2.49368300	C	3.15042900	2.63222700	-4.69481300
C	-0.70834900	0.52787100	-3.99869600	C	-4.38770500	-1.38221700	0.12705900
H	0.21168800	0.56356300	-4.56585400	C	-2.99996800	-3.52412100	2.21545500
C	1.29576000	-1.69731600	3.87914000	C	3.85863000	2.15292700	1.84992300
C	3.73675700	3.16055500	-3.53551300	C	3.80345400	-0.76217200	3.06112800
C	1.50279100	-0.33850400	3.59623100	H	4.76579700	-0.39830400	2.72312800
C	0.94262200	3.12878300	-3.72620700	C	-0.57170800	3.07668700	-3.84243500
C	-2.20493200	-2.70138100	3.02630300	H	-1.02329300	3.83000700	-3.19854200
C	-4.76760800	-0.90064900	-1.13902600	C	-4.78921600	-2.66189800	0.54513400
C	1.75169500	2.64277500	-4.76367500	C	2.94999700	1.65627300	2.96268700
H	1.25674300	2.27140400	-5.65325100	H	1.97167200	2.11872600	2.84350400
C	4.19577000	3.44158100	-0.20074600	H	3.34857100	2.05653800	3.90553500
C	-3.05991300	0.47284800	-2.48322200	C	-2.44203000	-4.70069100	1.70394900
C	-0.38123700	-4.24334200	2.82919400	H	-3.06903800	-5.32311300	1.07582200
H	0.63069900	-4.53055500	3.09008600	C	-4.33405700	0.46117600	-1.63761600
C	3.67963400	4.35505300	-1.30631700	H	-4.20474200	1.15134000	-0.80029900
H	4.53822700	4.91215700	-1.69169800	H	-5.15347300	0.87828100	-2.23738700
H	3.01949400	5.10763600	-0.86259500	C	-5.56761400	-3.44174500	-0.31985800
C	-1.22859900	1.73586100	-3.51174700	H	-5.87037900	-4.42161100	0.03223600
C	-2.41551000	1.69554600	-2.76267600	C	-3.90571800	3.53810400	-3.06166100
C	-1.33436700	-0.70135900	-3.77637000	H	-3.41515300	3.89115700	-3.97967900

C	-4.49790700	4.70125500	-2.28137200	H	-5.09280300	-0.35822300	3.97634400
H	-4.69037600	2.83045300	-3.35964900	C	-6.13384200	0.87724600	6.25043800
C	5.24821400	2.05417500	1.96967900	H	-5.76025200	-1.25100000	6.24172800
H	5.64396900	1.57487200	2.85961000	H	-4.48184600	-0.30571100	6.98747500
C	3.67000200	-2.11589900	3.40873200	C	-6.92671000	0.91017100	7.56232800
C	6.14157500	2.57890700	1.02555400	H	-5.55532100	1.80702000	6.15212200
C	-5.97476800	-2.99971400	-1.58195000	H	-6.83338900	0.86231300	5.40277400
C	5.57754400	3.27271900	-0.04830300	C	-7.87854300	2.10769000	7.67257800
H	6.21997700	3.74025100	-0.78584600	H	-7.50284300	-0.02060500	7.66178000
C	0.47597400	1.33737800	4.98022100	H	-6.22673800	0.92515000	8.40986900
H	1.17457800	0.85366500	5.67120700	C	-8.66992200	2.13105300	8.98341300
C	-0.90192000	1.46331500	5.61021700	H	-7.30136300	3.03775100	7.57654300
H	0.87157200	2.33024600	4.73842000	H	-8.57562000	2.09456000	6.82372000
C	-4.46211500	-3.19601600	1.93141700	H	-9.33830300	2.99634300	9.03102300
H	-5.04128100	-4.11328600	2.07417200	H	-9.28457700	1.23048100	9.09133500
H	-4.83439700	-2.49360800	2.68277000	H	-8.00102600	2.17974800	9.84994100
C	-3.47619700	-1.55433800	4.72228000	C	-5.54961800	5.47563800	-3.08637800
H	-4.04713400	-2.48969400	4.76536600	H	-4.94144800	4.31411500	-1.35560100
C	-4.39564000	-0.34739200	4.82464800	H	-3.68649400	5.37703400	-1.98132500
H	-2.75108800	-1.57117600	5.54601000	C	-6.15273900	6.65599400	-2.31436400
C	0.44670700	5.59304500	-1.72353400	H	-5.09956500	5.84493900	-4.01848400
H	0.01938400	5.71446600	-2.72497100	H	-6.35505400	4.79189900	-3.38838400
C	-0.55505800	5.98450300	-0.65187000	C	-7.20395000	7.43477900	-3.11397500
H	1.35103300	6.21317200	-1.67281200	H	-6.60404700	6.28648500	-1.38274600
H	0.09518200	-2.82005700	5.23925300	H	-5.34707300	7.33980600	-2.01058700
H	-0.83834300	3.34218300	-4.87400500	C	-7.80867900	8.61565700	-2.34447800
H	-3.49686800	-0.91004500	1.81924000	H	-6.75236700	7.80316100	-4.04613300
H	1.68854500	3.55766500	-0.10617300	H	-8.00889700	6.75071500	-3.41811800
C	-0.86367900	2.35654200	6.85929200	C	-8.85690500	9.38807600	-3.15057600
H	-1.59819200	1.87978000	4.87480800	H	-8.26075900	8.24677400	-1.41372700
H	-1.27158500	0.46691500	5.87975800	H	-7.00389400	9.29882000	-2.04016300
C	-2.22387700	2.48822600	7.55483400	H	-9.26867900	10.22264300	-2.57457600
H	-0.13061500	1.95713600	7.57421300	H	-8.42603900	9.79972300	-4.07015400
H	-0.50410600	3.35583100	6.57855100	H	-9.69182700	8.73983000	-3.43924100
C	-2.18821900	3.38140400	8.80114400	H	-1.43113800	5.32941800	-0.73185800
H	-2.95700600	2.88915800	6.84078200	H	-0.11669200	5.80724900	0.33761000
H	-2.58635100	1.48928900	7.83689400	C	-0.98314100	7.45435900	-0.77017900
C	-3.54827000	3.50659900	9.49363700	C	-2.01773500	7.86551900	0.28530800
H	-1.45142500	2.98189600	9.51073200	H	-0.09931500	8.10145500	-0.68415300
H	-1.82647100	4.37974700	8.51986800	H	-1.39632000	7.63667000	-1.77210800
H	-4.29926500	3.93609000	8.82068600	C	-2.43512400	9.33754900	0.18629500
H	-3.91838700	2.52826600	9.82059500	H	-2.90695400	7.22707400	0.18743000
H	-3.48883900	4.14965900	10.37699800	H	-1.61279900	7.66640800	1.28737300
C	-5.18300400	-0.32145100	6.14165300	C	-3.47216400	9.75191800	1.23758400
H	-3.79601400	0.56516100	4.72601100	H	-2.83887600	9.53449900	-0.81717100

H	-1.54540300	9.97568500	0.28409100	C	8.47385400	3.05908900	0.06591300
C	-3.88385300	11.22316600	1.13209800	H	11.47172200	3.47633100	1.77886300
H	-4.36122700	9.11429400	1.13864600	H	10.17840000	4.65362800	1.55643000
H	-3.06820000	9.55525800	2.24011200	C	8.09808100	3.11975200	2.54535700
H	-4.62319700	11.48688400	1.89473000	H	9.88724100	3.43613800	3.72173300
H	-3.02167100	11.88678300	1.26182100	H	7.84163700	4.18599000	2.49930700
H	-4.32418400	11.44257800	0.15299900	C	7.65548500	2.42819500	1.22172300
C	-9.37102700	-5.31269700	-3.16591800	H	7.54224000	2.69975600	3.39255300
C	-9.07860200	-3.92266900	-3.76394900	H	7.48323000	0.43874500	2.11787200
C	-8.33501800	-4.08630600	-5.10519300	H	7.74070500	0.41924900	0.37599100
C	-7.00853700	-4.83807300	-4.87142800	H	8.19158500	2.59408500	-0.88798100
C	-7.30248400	-6.22714900	-4.27280700	H	8.24139000	4.12875400	-0.01601400
C	-8.04110200	-6.05579400	-2.93110600	H	-3.01316900	-1.63284200	-2.79656400
H	-10.01140500	-5.89028400	-3.84453700	C	5.94428300	-2.50320300	4.44084100
H	-9.91948800	-5.21001800	-2.22046400	C	7.21330300	-3.37937500	4.44716500
C	-8.20116000	-3.11597100	-2.78511900	C	7.85239000	-3.36760300	3.04381800
H	-10.02068900	-3.38447200	-3.92739400	C	6.84865500	-3.92863000	2.01623800
H	-8.13817700	-3.10224700	-5.55094900	C	5.57763200	-3.05497700	2.00544400
H	-8.96022000	-4.63852500	-5.81821300	C	4.90334700	-3.03189300	3.40759900
H	-6.47528500	-4.95046100	-5.82386800	H	6.21181900	-1.46663400	4.20205200
C	-6.12780600	-4.03441500	-3.89319100	H	5.48725300	-2.48729900	5.43871000
H	-7.91308400	-6.81818600	-4.96712100	C	6.83843900	-4.82457500	4.82869600
H	-6.36589600	-6.78002600	-4.12205000	H	7.92271400	-2.97523300	5.18004200
C	-7.16352700	-5.24435200	-1.95557200	H	8.76998400	-3.96932200	3.04199700
H	-8.24171300	-7.04094200	-2.49181400	H	8.14253900	-2.34465600	2.76880500
H	-6.22932400	-5.78816000	-1.76223300	H	7.29928500	-3.91541000	1.01572400
C	-6.84582200	-3.83805300	-2.52528800	C	6.47429100	-5.37361000	2.39844100
H	-7.68479500	-5.14903800	-0.99421700	H	5.83326000	-2.03624900	1.69130000
H	-8.72471400	-2.97633100	-1.83053400	H	4.86239700	-3.43853000	1.26783800
H	-8.01814000	-2.11385400	-3.19185300	C	4.56661900	-4.49564600	3.79309200
H	-5.88632500	-3.05951300	-4.33360100	H	3.83469200	-4.90956900	3.08609000
H	-5.17287600	-4.55156400	-3.72889900	C	5.83287300	-5.37720700	3.79941500
C	9.94739600	1.43996600	2.86561600	H	4.10428200	-4.52431500	4.78808900
C	9.55372700	0.74850100	1.54427100	H	6.40207100	-4.84927300	5.83567600
C	10.33254000	1.38524900	0.37710500	H	7.73620600	-5.45482300	4.85513200
C	9.98939500	2.88555700	0.29664200	H	7.36648900	-6.01225800	2.38990300
C	10.39181400	3.57831200	1.61346100	H	5.77646800	-5.79168800	1.66080400
C	9.61209800	2.94307500	2.78108000	H	5.54971800	-6.40103300	4.07359000
H	11.01894600	1.30293000	3.05781800	C	-1.16438200	-4.95360100	-4.80542600
H	9.41253100	0.97984400	3.70713600	C	-0.10874700	-4.41498000	-3.81872800
C	8.04010800	0.92160800	1.30517100	C	-0.58771600	-3.07122700	-3.23263700
H	9.78664100	-0.32236300	1.60419300	C	-0.80773700	-2.01951200	-4.35926100
H	10.07532100	0.88619000	-0.56644400	C	-1.84581400	-2.59524200	-5.36864100
H	11.41174200	1.25212600	0.52391800	C	-1.36252500	-3.93952900	-5.95035900
H	10.52975000	3.34328100	-0.54120300	H	-2.11573100	-5.12512700	-4.28426600

H	-0.84414600	-5.92204800	-5.21061400	C	5.00005200	-0.12918100	-7.58467000
C	1.22829900	-4.20603500	-4.55533000	C	4.14972100	1.02961600	-8.14090600
H	0.02952900	-5.13241300	-2.99888400	C	5.07542000	2.16038700	-8.63058000
H	0.14800400	-2.68729900	-2.51585800	C	5.91950400	2.67369100	-7.44816700
H	-1.51939600	-3.22794300	-2.67657200	H	7.45684200	1.14418500	-7.65298400
C	0.53649300	-1.84773000	-5.11209200	H	7.39212600	1.87766600	-6.05173600
H	-2.81290900	-2.73280700	-4.87001100	C	4.91121100	0.91519400	-5.29580200
H	-2.00819300	-1.86857800	-6.17528400	H	6.44837800	-0.43862500	-5.99491500
C	-0.02523700	-3.73102300	-6.68756700	H	4.35123500	-0.95279200	-7.25816400
H	-2.11668700	-4.31744100	-6.65195600	H	5.65230700	-0.53004600	-8.37060800
H	-0.15790100	-3.02712900	-7.51955200	H	3.53440700	0.66908100	-8.97435600
C	1.02354800	-3.19013900	-5.69579900	C	3.21990800	1.56585400	-7.03238000
H	0.31930000	-4.67757700	-7.12313000	H	5.72898200	1.79272500	-9.43153500
H	1.59342100	-5.15901500	-4.95929800	H	4.48104700	2.97972200	-9.05531700
H	1.99049500	-3.84036600	-3.85480500	C	4.98535700	3.21154100	-6.34519600
H	1.29564400	-1.44381800	-4.42956900	H	6.57595200	3.48504500	-7.78611000
H	0.41692100	-1.12379900	-5.92887700	H	4.38382400	4.04556600	-6.72895200
H	1.97457800	-3.02534400	-6.21842500	C	4.03671400	2.09111500	-5.82397400
C	-0.49291800	-9.38916500	1.28876900	H	5.58493500	3.61118200	-5.51860300
C	-0.83373000	-8.50368100	0.07399000	H	5.50924500	1.24899900	-4.43888200
C	0.45395100	-8.18716800	-0.71087600	H	4.25604400	0.11261700	-4.93151300
C	1.43548600	-7.43359000	0.20711300	H	2.54275200	0.76497700	-6.70725100
C	1.77810300	-8.31181300	1.42785700	H	2.59475200	2.37114500	-7.43952700
C	0.48786900	-8.63580200	2.20828300	H	4.81871300	3.18487500	-3.44302400
H	-0.04819200	-10.33474400	0.95402500	C	-1.51242800	2.11019700	0.86314300
H	-1.40738300	-9.64459300	1.83961900	N	-0.29166500	1.22159800	0.99154500
C	-1.48073700	-7.18986400	0.55918600	C	-0.35143800	0.09010400	-0.02962900
H	-1.54359400	-9.02817100	-0.57739400	H	0.57034800	1.77937200	0.84063800
H	0.21944700	-7.57896600	-1.59465100	C	1.21467900	-1.87960400	0.15714700
H	0.91243500	-9.11501000	-1.07545700	C	2.39543900	-2.53634800	-0.19217200
H	2.35288500	-7.19711900	-0.34686400	C	3.34326100	-1.89914900	-0.99345900
C	0.78487900	-6.11996400	0.68654200	C	3.10728300	-0.60091600	-1.45103000
H	2.26369500	-9.23953300	1.10006000	C	1.92059300	0.04826900	-1.11762100
H	2.49369200	-7.79189900	2.07905700	C	0.96783600	-0.58182800	-0.30371000
C	-0.16402700	-7.32420500	2.69144300	H	0.47920800	-2.38589200	0.77464400
H	0.72955800	-9.25662100	3.07989400	H	2.56863500	-3.54789400	0.15941600
H	0.51798800	-6.80227200	3.37373100	H	4.26095400	-2.41274600	-1.26374500
C	-0.52016100	-6.40220100	1.48704200	H	3.83591200	-0.09760400	-2.07847300
H	-1.07554200	-7.54023200	3.26330200	H	1.72723400	1.04163300	-1.50970300
H	-2.41011600	-7.42167100	1.09489600	C	-3.32845700	3.98780200	3.61498700
H	-1.75378600	-6.57221000	-0.30642300	C	-3.02817600	3.07834900	2.59920000
H	0.55257500	-5.47420900	-0.17054500	C	-1.74837500	3.04001500	2.02953500
H	1.49580400	-5.56887500	1.31505700	C	-0.76532500	3.91937200	2.50721600
C	6.77082300	1.51847300	-6.88286200	C	-1.06209800	4.81667800	3.53444200
C	5.84487800	0.38246300	-6.40184900	C	-2.34510100	4.85904500	4.08556800

H	-4.32857900	4.01382700	4.03676400
H	-3.79267100	2.39598100	2.23787700
H	0.23190800	3.90975300	2.07689500
H	-0.29287900	5.49265800	3.89610000
H	-2.57625700	5.56828500	4.87433200
H	-0.73521900	0.54960300	-0.94181900
H	-1.10730100	-0.60482800	0.33714200

H	-2.36050300	1.43462100	0.74526800
H	-1.38506800	2.66017000	-0.07360200
H	-0.21877500	0.86077000	1.96019800

Energy $=-6070.07984$ a.u.

0 imaginary frequency

Atomic coordinates of $16 \mathbf{a}^{+} \subset \mathbf{1 5 g}$

Figure 4.96. (a) Side view and (b) top view of complex $16 \mathrm{a}^{+} \subset 15 \mathrm{~g}$.

O	-1.08033400	-3.49913700	1.12055800	C			
					4.81366600	-1.39386200	2.91405800
O	2.55843800	-3.07442700	2.37696500	H			
					5.52901400	-1.25984600	3.73132300
O	-2.65013300	-1.36732500	-2.11363200	H			
					4.88779900	-2.44735500	2.62702600
O	-1.46851600	-0.10852500	-4.24865800	C			
					-1.39466200	-2.41496400	3.25352400
O	2.44932600	0.02846700	-3.95335900	C			
					-1.89480900	-2.76073300	1.98743200
O	3.52759200	-1.35961900	0.27467100	C			
					-3.51731400	-1.28098400	3.74674900
C	2.34972100	-1.99610700	3.24478400	C			
					4.63188600	-0.56977700	0.50438000
C	1.55127700	3.34458100	-2.62956500	C			
					-3.93467800	-1.57691300	2.43958300
H	0.82810700	4.12865700	-2.82132200	C			
					-0.97431300	2.27814100	-4.23844800
C	3.41910800	-1.11154300	3.46195600	C			
					-5.82780400	-1.44925700	-0.29393700
C	-2.24040300	-1.70866600	4.12179600	H			
					-6.24922500	-1.99028600	0.54797300
H	-1.88665900	-1.51788300	5.12731200	C			
					3.40601900	1.31027700	-2.14854600
C	1.49443700	2.18504000	-3.40982500	C			
					-2.81690400	3.86628700	-3.83849000
C	3.18969100	0.02627400	4.23482700	C			
					0.49366400	2.03169100	-4.55505500
C	2.45581000	1.18408000	-3.17656300				
				H	0.61314100	1.02638400	-4.95393100
C	1.08591900	-1.78028300	3.81675400	C			
					1.94036600	0.30366500	4.80783600
C	-1.89740900	1.22375900	-4.12713500	C			
					-3.95711700	-1.07009700	-1.76053800
C	-4.49076900	-1.69838300	-0.61947900	C			
					-3.25668200	1.45710400	-3.88589700
	0.91154400	-0.61997300	4.58435300	C			
					5.11143200	0.20515700	-0.56621500
C	-0.05981900	-0.44445100	5.02563500	C	3.41595800	2.48966400	-1.39645300
HC	5.27449500	-0.52866700	1.75203900	H			
					4.15968500	2.58210300	-0.61649500
C	-3.16147100	-2.32255600	1.54790200	C			
					-0.00513500	-2.84716800	3.69773300
C	-1.47015300	3.57995600	-4.11400700	H			
H	-0.77741400	4.40201600	-4.26272300	H			
				C	-4.75304500	-0.22277100	-2.54793400

C	4.42941000	0.19769600	-1.91733400	H	5.12697700	-1.06540700	-6.85305800
H	3.94437300	-0.76519800	-2.09067500	C	4.87025900	-2.66827900	-9.12211900
H	5.20817700	0.28222000	-2.68715800	H	4.32198300	-3.42757800	-7.17387400
C	-3.68790600	2.77912800	-3.72209100	H	2.96389300	-2.83512700	-8.11727400
H	-4.74214500	2.94469300	-3.53172900	C	4.79052300	-4.01017600	-9.85551900
C	-3.68955700	-2.72240700	0.16624800	H	4.55962100	-1.86115000	-9.79911300
H	-2.85332600	-3.05579500	-0.44778300	H	5.91489500	-2.45656600	-8.85759900
H	-4.33376000	-3.60250400	0.29889500	H	5.12926800	-4.83303000	-9.21597900
C	-6.07294900	0.01978200	-2.14810500	H	3.76306800	-4.23336600	-10.16476400
H	-6.66962400	0.67164900	-2.77595600	H	5.41438800	-4.01078000	-10.75448900
C	-1.43816900	-4.89576100	0.94144700	C	-1.19868400	-2.75517900	-6.96063800
H	-2.52215500	-4.97552100	0.81215600	H	-0.22963600	-2.28975600	-5.07644300
C	-0.98000700	-5.80882200	2.07309400	H	-1.95875100	-2.60513300	-4.93466900
H	-0.96763200	-5.18769800	-0.00211900	C	-0.94362200	-4.26753000	-6.93608000
C	6.25118800	0.98782100	-0.36403000	H	-2.16164000	-2.55862800	-7.45151200
H	6.62003200	1.56022700	-1.21106800	H	-0.43486700	-2.26827700	-7.58272000
C	2.52012800	3.53944400	-1.63544800	C	-0.93418300	-4.90785500	-8.32932800
C	6.92709200	1.05682700	0.86219700	H	0.01756500	-4.46470400	-6.43997800
C	-6.64670300	-0.57564000	-1.02169700	H	-1.71142300	-4.75358500	-6.31757900
C	6.40381900	0.28534800	1.90436800	C	-0.68374100	-6.42077200	-8.30514700
H	6.88664100	0.28975300	2.87533700	H	-1.89292500	-4.70722600	-8.82796100
C	3.28699100	0.09275600	-5.12488600	H	-0.16465800	-4.42297700	-8.94684700
H	2.94065500	0.90535100	-5.77880400	C	-0.67334300	-7.05293900	-9.69992500
C	3.22122000	-1.24537400	-5.84407900	H	0.27380900	-6.62043500	-7.80487800
H	4.31846400	0.32490500	-4.82948500	H	-1.45426500	-6.90431200	-7.68936200
C	-4.27903500	0.32649800	-3.88717400	H	-0.49293700	-8.13107300	-9.64806900
H	-5.16507500	0.68919100	-4.41587900	H	-1.63019500	-6.90060400	-10.21146200
H	-3.90297700	-0.50611500	-4.49045100	H	0.11013300	-6.61494600	-10.32837900
C	-1.47060600	-0.62690400	-5.60568700	C	-1.39916800	-7.26603100	1.82760300
H	-2.44081400	-0.41345500	-6.07052900	H	0.11102400	-5.75058300	2.16946100
C	-1.19863100	-2.12138200	-5.56242900	H	-1.40699400	-5.45856100	3.02045300
H	-0.70304300	-0.10120400	-6.18516900	C	-0.93649800	-8.22137200	2.93514700
C	3.01672300	-4.30222300	2.99086700	H	-2.49279000	-7.32060100	1.73607700
H	2.22057000	-4.69843000	3.63373600	H	-0.99589900	-7.60737600	0.86363600
C	3.37371300	-5.28856900	1.89013900	C	-1.35593000	-9.67729000	2.69952900
H	3.88354100	-4.09180500	3.62981500	H	0.15810000	-8.16862300	3.02486200
H	0.78135000	2.72755700	-5.35406600	H	-1.33673500	-7.87846100	3.89945400
H	-0.10075600	-3.32702300	4.68116300	C	-0.88924900	-10.63458300	3.80325000
H	-2.38122300	-0.94301700	-2.95955600	H	-2.45046800	-9.73030100	2.61311100
H	3.38785700	-2.00881700	0.98925500	H	-0.95935100	-10.01838700	1.73252800
C	4.08144500	-1.27970600	-7.11397700	C	-1.31286400	-12.08621000	3.56154900
H	3.54392700	-2.03302800	-5.15188900	H	0.20471000	-10.58132000	3.88893700
H	2.17423800	-1.45854100	-6.09813700	H	-1.28554500	-10.29298500	4.76900400
C	4.00997300	-2.62155900	-7.85341000	H	-0.96485000	-12.74243500	4.36519200
H	3.76646100	-0.47496900	-7.79280500	H	-2.40343400	-12.17732700	3.50737700

H	-0.90273700	-12.46796500	2.61981600	C	9.11342700	4.29533100	0.78004600
H	2.49674700	-5.43014400	1.24505600	C	9.67542300	4.22644100	2.21323100
H	4.15774000	-4.84985100	1.25932900	C	10.03707000	2.76599800	2.54734800
C	3.84310100	-6.64114800	2.44227100	C	11.10608000	2.26063800	1.55857000
C	4.22155600	-7.64263200	1.34377400	C	10.54489300	2.32799800	0.12490000
H	4.70662800	-6.48627700	3.10360100	H	11.06997200	4.42186700	-0.16955500
H	3.05262300	-7.07395700	3.07147300	H	9.79344900	3.85011400	-1.24237800
C	4.68772000	-8.99776800	1.88909900	C	7.85233800	3.41288700	0.68031100
H	3.35914400	-7.79505200	0.67904600	H	8.84592100	5.33142000	0.53669300
H	5.01450700	-7.21010100	0.71766900	H	8.93445000	4.60661300	2.92880500
C	5.06939700	-10.00039100	0.79304200	H	10.56288600	4.86552600	2.30383400
H	3.89442200	-9.43021900	2.51552000	H	10.42493800	2.70702900	3.57194600
H	5.54857000	-8.84435500	2.55508800	C	8.77645000	1.88297400	2.43989800
C	5.53418600	-11.35072100	1.34597500	H	12.01416800	2.87139900	1.63966500
H	4.20883300	-10.15332000	0.12738700	H	11.39233100	1.22973400	1.80458700
H	5.86245600	-9.56767100	0.16824500	C	9.28622500	1.44260300	0.02356300
H	5.79890200	-12.04228900	0.54015500	H	11.29779700	1.96261500	-0.58472700
H	6.41535300	-11.23470200	1.98674300	H	9.53669700	0.39754100	0.24706300
H	4.74989100	-11.82499600	1.94656200	C	8.18155400	1.92677200	1.00906000
C	-11.05062100	-0.49785400	-1.11994200	H	8.90418600	1.46041900	-1.00438100
C	-10.34845100	-1.49137400	-0.17414500	H	7.43071000	3.48794200	-0.32953500
C	-10.36385400	-0.93178600	1.26302800	H	7.07984400	3.77361100	1.37230100
C	-9.62722400	0.42289400	1.29702600	H	8.02706600	2.22474000	3.16611000
C	-10.32901700	1.41536500	0.34992200	H	9.03349900	0.84939400	2.70573400
C	-10.30604800	0.85122500	-1.08411600	H	-4.90240900	-1.22445900	2.10478300
H	-12.09613100	-0.36017300	-0.81675000	C	2.92001400	6.01586500	-1.92555000
H	-11.06535100	-0.89537000	-2.14311300	C	2.98788800	7.39098200	-1.23110000
C	-8.88944500	-1.69344600	-0.63162400	C	4.10333800	7.37495800	-0.16798000
H	-10.86798600	-2.45733200	-0.19976800	C	3.79587900	6.28253800	0.87521400
H	-9.88338600	-1.64091700	1.95021900	C	3.72316700	4.90816000	0.17778600
H	-11.39798000	-0.80702000	1.60792500	C	2.60808300	4.88472800	-0.89932800
H	-9.63265300	0.82065100	2.31993800	H	3.87054700	5.79574900	-2.42821300
C	-8.16712700	0.22505300	0.84163200	H	2.14963200	6.03348400	-2.70615700
H	-11.36416800	1.58101600	0.67389800	C	1.63566600	7.69140700	-0.55316200
H	-9.82499100	2.39021500	0.38213700	H	3.20360800	8.16096600	-1.98238100
C	-8.84533100	0.64597400	-1.53647000	H	4.17561400	8.35485600	0.32072700
H	-10.79186400	1.55915800	-1.76694400	H	5.07456500	7.18279600	-0.64210200
H	-8.32375400	1.61220100	-1.54130900	H	4.59441800	6.25591000	1.62719900
C	-8.10512200	-0.34793000	-0.60480700	C	2.44944600	6.58901700	1.55895000
H	-8.83510700	0.26940800	-2.56754600	H	4.69367400	4.68517700	-0.28262300
H	-8.86268000	-2.10716100	-1.64791100	H	3.53730100	4.12549900	0.92494400
H	-8.39881700	-2.42764100	0.01895800	C	1.26511400	5.22522200	-0.19342200
H	-7.65583500	-0.45541900	1.53411500	H	1.03931300	4.44600000	0.54423600
H	-7.62419800	1.17869900	0.87714200	C	1.33328000	6.60295000	0.49666700
C	10.17635600	3.78656200	-0.21513700	H	0.44340500	5.21943900	-0.91999100

H	0.83513000	7.72477300	-1.30451200	H	-1.56616300	8.20601500	-4.03155000
H	1.66373700	8.67897700	-0.07552000	C	-3.01701300	6.08178300	-5.05178600
H	2.49709400	7.55776900	2.07236900	H	-3.23406700	8.06453200	-5.89057600
H	2.23277800	5.83193100	2.32475200	H	-1.95330900	6.02280200	-5.31217000
H	0.36831600	6.81061900	0.97647700	C	-3.28359500	5.32288200	-3.71766300
C	-7.12224500	0.72135400	5.21897700	H	-3.56701600	5.58950100	-5.86409600
C	-5.84567900	1.57216800	5.06114300	H	-5.38288500	4.95571500	-4.19133400
C	-4.85435600	0.84608300	4.12855300	H	-5.02475300	4.92206900	-2.46263400
C	-4.46430600	-0.54618500	4.70579200	H	-2.68647700	5.52607000	-1.62924700
C	-5.76805700	-1.37789600	4.89893000	H	-1.42507400	5.98642300	-2.76888800
C	-6.75739800	-0.64719900	5.82916300	C	2.95270600	3.99123900	6.93428700
H	-7.60724000	0.58342000	4.24337300	C	1.98753400	4.09953500	5.73590500
H	-7.84405200	1.24038300	5.86210900	C	0.54099800	4.22931300	6.25056300
C	-5.19358400	1.78147200	6.44161300	C	0.18577400	2.98436500	7.08642500
H	-6.10203600	2.54422800	4.62143100	C	1.14368100	2.88117000	8.28963300
H	-3.94774500	1.45041600	3.99754600	C	2.59099700	2.75119500	7.77696700
H	-5.30137200	0.73057500	3.13393700	H	2.89113600	4.89712900	7.55037100
C	-3.84219500	-0.31836400	6.10754900	H	3.98918100	3.91807400	6.57953900
H	-6.24215400	-1.56026700	3.92693000	C	2.11036100	2.83528900	4.86085000
H	-5.51201100	-2.36172000	5.31302300	H	2.24628100	4.97872900	5.13201600
C	-6.10494400	-0.43717000	7.20917000	H	-0.15410400	4.32997900	5.40644200
H	-7.66291200	-1.25723800	5.93672100	H	0.43499400	5.13573400	6.85985700
H	-5.86012300	-1.40597400	7.66366300	H	-0.84867900	3.06249000	7.44392400
C	-4.82855400	0.41065100	7.04361200	C	0.31656800	1.71850700	6.21356100
H	-6.80610800	0.06473000	7.88765700	H	1.04519700	3.76865400	8.92732700
H	-5.88132400	2.31598900	7.10887600	H	0.88226300	2.01322100	8.90886200
H	-4.29454500	2.40451200	6.34509500	C	2.71613100	1.48456600	6.90631800
H	-2.92155700	0.27330700	6.01672500	H	3.27905200	2.66927200	8.62746700
H	-3.56341700	-1.28163400	6.55418400	H	2.47789900	0.59085800	7.49733900
H	-4.35002400	0.55173100	8.02060500	C	1.76148300	1.55579800	5.67671200
C	-4.94662400	7.64136200	-4.62253900	H	3.75298900	1.37004600	6.56864500
C	-5.22573400	6.92097000	-3.28880700	H	3.12875300	2.76131100	4.46171800
C	-4.43384800	7.60443000	-2.15702000	H	1.43848800	2.90576400	3.99486000
C	-2.92757600	7.52408400	-2.47148600	H	-0.38940000	1.77646000	5.37405000
C	-2.64070300	8.23928900	-3.80763300	H	0.03778000	0.83912000	6.80863900
C	-3.44050900	7.56055300	-4.93830500	H	4.02163600	0.70574900	4.39597900
H	-5.26486100	8.68949500	-4.55929600	C	-1.64699400	3.99182500	2.23232900
H	-5.52816500	7.18009500	-5.43130000	H	-0.70091300	4.18984300	2.74868600
C	-4.79667000	5.44327400	-3.40168900	H	-2.45750600	4.33723600	2.88191200
H	-6.29889800	6.96136000	-3.06497000	C	-1.79992800	2.50595300	1.89746400
H	-4.64684400	7.11633300	-1.19686400	H	-1.66287000	4.60729000	1.32612300
H	-4.74488100	8.65195500	-2.05783300	H	-2.76779700	2.34027900	1.40613100
H	-2.35468900	8.00157700	-1.66651200	C	-0.68187000	1.96170700	0.99898500
C	-2.50390000	6.04513000	-2.57949200	H	-1.82813400	1.91915900	2.82495100
H	-2.91656000	9.29871000	-3.73441800	C	-0.90100000	0.48854000	0.63142900

H	-0.62084300	2.56128400	0.08177100
H	0.28537900	2.07400000	1.50737700
C	0.20905900	-0.05398100	-0.26354500
H	-0.96613600	-0.11135700	1.54552700
H	-1.86473400	0.38875600	0.11660900
N	-0.10855300	-1.44586700	-0.75420300
H	0.33822000	0.56189200	-1.15742900
H	1.17187800	-0.11362200	0.24912800
C	0.90943800	-1.99286000	-1.72216700
C	0.63413400	-3.45624600	-2.05660100
H	0.87934800	-1.35882800	-2.61093100
H	1.88503600	-1.86992700	-1.24755000
C	1.68968700	-4.02988300	-3.01207900
H	0.63312700	-4.04393200	-1.12995500
H	-0.36545900	-3.55669700	-2.49992700

C	1.44578200	-5.50257200	-3.36456700
H	1.71292800	-3.43278500	-3.93297600
H	2.68326400	-3.92346600	-2.55597500
C	2.51024200	-6.07743000	-4.30337400
H	1.41432200	-6.09540000	-2.44024600
H	0.45478900	-5.60482000	-3.82667500
H	2.30866400	-7.12693500	-4.53768600
H	2.54423500	-5.52644700	-5.25007900
H	3.50772800	-6.02269500	-3.85359100
H	-0.20811100	-2.10493800	0.03531600
H	-1.04430800	-1.42881200	-1.20426700
Energy $=-5922.50258$ a.u.			
0 imaginary frequency			

Atomic coordinates of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 a}$

Figure 4.97. (a) Side view and (b) top view of complex $\mathbf{1 6 b}{ }^{+} \subset 15 a$.

O	2.10354300	-4.25711300	2.20165200				
				C	-1.65720800	-4.60850700	0.41986700
O	-1.81854600	-3.24451700	2.40789200				
				C	2.94847000	3.34766800	0.96651900
O	3.90857900	-0.42692100	2.12990900				
				C	5.17805500	-1.80803300	0.61064300
O	2.90749100	3.39136700	2.35844800				
				C	-2.26589800	-5.10828900	-0.73363200
O	-0.88652500	2.93951600	2.27744800				
				H	-1.70940200	-5.82561700	-1.32997600
O	-3.08435800	-0.00604400	2.59311500				
				C	-4.78929200	-0.98510300	1.18589400
C	-2.39402300	-3.72098000	1.22834300				
				C	3.14541600	-3.32609900	0.23458100
C	-1.13915000	5.30341500	-0.53504700				
				C	2.00965900	3.94577900	-1.16765000
H	-0.49925200	6.01861200	-1.03956400				
				H	1.24217500	4.46355500	-1.73412000
C	-3.68707800	-3.31365800	0.86757300				
				C	-4.50373400	-2.37409500	1.75064400
C	0.85023500	-3.92905200	-1.24081400				
				H	-5.46786800	-2.85514800	1.95346700
H	-0.04707600	-4.16368800	-1.80261800				
				H	-3.98898200	-2.27092000	2.70281100
C	-0.58531600	4.56581500	0.52022400				
				C	0.88986600	-4.27291900	0.11320000
C	-4.24086400	-3.83333300	-0.31228100				
				C	2.05452700	-3.96649900	0.84314800
H	-5.24643300	-3.52963200	-0.57475400				
				C	1.92531200	-3.30587500	-1.89264800
C	-1.42103500	3.67660100	1.21272000				
				C	-4.09061000	0.15105700	1.63021000

C	3.05622200	-3.00664900	-1.12565600	H	0.70580600	-1.14864400	-3.19192000
H	3.90329300	-2.51191300	-1.58316200	C	3.64911700	4.47181400	2.93512100
C	1.93869800	3.99274000	0.22712000	H	4.71322500	4.40845900	2.68058100
C	6.20210300	-1.90588900	-0.34233700	H	3.26297600	5.44251000	2.60219500
H	6.44780800	-2.89423300	-0.71500500	C	1.69094800	-4.34946300	-4.16853000
C	-2.77875100	3.52287800	0.87719500	H	2.54300500	-5.01032000	-3.97943300
C	3.03706800	3.27567800	-1.84946700	H	1.63541100	-4.16724900	-5.24729500
C	0.85796700	4.80016200	0.94170600	H	0.78221600	-4.88344900	-3.87463400
H	0.96266900	4.61025900	2.00815300	C	-3.74637700	5.09845200	-3.10275100
C	-3.56116300	-4.74009200	-1.12952900	H	-4.22099700	5.69479100	-3.88910200
C	4.86737700	-0.54344500	1.12450400	H	-4.51285100	4.44632700	-2.67383400
C	3.98121500	2.64499100	0.32637900	H	-2.99039600	4.46185400	-3.57416300
C	-4.38139600	1.43592000	1.14689200	C	-2.07689100	-4.08829100	3.53794000
C	-3.27281400	4.28229000	-0.18700600	H	-3.14507900	-4.10769000	3.78459300
H	-4.32566300	4.19649400	-0.43202000	H	-1.74090300	-5.11495100	3.35587700
C	-0.24900800	-5.03563800	0.79011500	C	-5.59784900	-4.81544600	-2.67733900
H	-0.10246100	-4.95245900	1.86597500	H	-6.29074400	-5.05840100	-1.86517300
C	5.51046000	0.61203800	0.65304700	H	-5.99157500	-5.27235400	-3.59014700
C	-3.70724300	2.67020500	1.74095800	H	-5.60567300	-3.73004400	-2.82479500
H	-3.14447000	2.35108300	2.61309900	C	-3.29152200	-5.00571700	-3.62274500
H	-4.50601100	3.33093100	2.10199100	H	-3.21070100	-3.92209400	-3.75954500
C	3.99710500	2.61787700	-1.07367200	H	-3.72099500	-5.43071100	-4.53613000
H	4.79484700	2.06824500	-1.55673600	H	-2.27925800	-5.40744400	-3.51783700
C	-4.17904800	-5.34825300	-2.40260700	C	3.10540900	-2.30195000	-3.92984000
C	6.52798100	0.46100000	-0.29331300	H	2.99868600	-2.11041400	-5.00197800
H	7.04605300	1.35538700	-0.62855600	H	4.00530600	-2.91024400	-3.79337000
C	2.65973000	-5.53595200	2.52230200	H	3.26589300	-1.33777700	-3.43567400
H	2.64239100	-5.61938400	3.61093500	C	3.10856900	3.32992200	-3.38822700
H	2.06841200	-6.35071000	2.08734600	C	-4.26330900	-6.88555200	-2.24630700
C	-5.40416000	1.55991800	0.19685100	H	-3.27803900	-7.33532800	-2.09275300
H	-5.65577900	2.55313200	-0.15173600	H	-4.69633000	-7.33523200	-3.14612200
C	-2.47979000	5.17954500	-0.91637800	H	-4.89305000	-7.15955400	-1.39385200
C	-6.13370200	0.46442900	-0.27340000	C	-4.20756500	6.93462800	-1.43576800
C	6.90924300	-0.79002600	-0.80293700	H	-3.78785800	7.60598200	-0.67987800
C	-5.80529100	-0.79621000	0.24641400	H	-5.00395500	6.35328000	-0.96167000
H	-6.37946600	-1.66252300	-0.06656700	H	-4.66555400	7.54907000	-2.21822200
C	-1.00879700	3.59835800	3.55064700	C	-2.07809000	6.92365900	-2.74716300
H	-0.56244800	2.93837000	4.29327500	H	-1.63084700	7.65169600	-2.06287600
H	-2.05989700	3.77950300	3.79859700	H	-2.56778200	7.48697400	-3.54712700
C	1.84389700	-3.01244300	-3.40360500	H	-1.27159300	6.33941200	-3.20295400
C	-7.28777700	0.60170400	-1.28512600	C	-8.60370700	0.11546900	-0.63193500
C	-3.11050600	6.02513600	-2.04023200	H	-8.84615600	0.71204300	0.25328300
C	0.62453500	-2.11170100	-3.70579500	H	-8.54450100	-0.93234200	-0.32307200
H	-0.31628300	-2.57377700	-3.39427900	H	-9.43477700	0.20569000	-1.33948000
H	0.55676600	-1.91690700	-4.78169900	C	-7.49125300	2.05652400	-1.74859200

H	-7.75633700	2.71798600	-0.91741100
H	-8.30958100	2.10022300	-2.47348900
H	-6.59714200	2.45761100	-2.23783400
C	4.23856200	2.44850800	-3.95315300
H	4.23794500	2.50620000	-5.04589200
H	4.11238300	1.39638600	-3.67672300
H	5.22498400	2.77633900	-3.61051500
C	1.77545500	2.85151900	-4.00666700
H	0.93485500	3.48382900	-3.70596700
H	1.54524800	1.82345500	-3.71003300
H	1.83346900	2.88414000	-5.09984400
C	-6.98731700	-0.26119600	-2.53346600
H	-7.80298400	-0.17690600	-3.25934500
H	-6.87861400	-1.32050500	-2.28187600
H	-6.06402300	0.06600500	-3.02288000
C	3.37208700	4.79258300	-3.82178400
H	2.57698700	5.46396800	-3.48320400
H	3.42734100	4.86330700	-4.91357800
H	4.31740900	5.15996700	-3.40981700
H	1.07443000	5.86518200	0.78834000
C	8.06278400	-0.89003900	-1.81864600
C	7.72440600	-0.04996900	-3.07289400
C	9.35987600	-0.34635000	-1.17317100
C	8.32140000	-2.34017300	-2.26886100
H	9.14688800	-2.36027900	-2.98676200
H	8.60115600	-2.98514300	-1.42963000
H	7.44700700	-2.77753400	-2.76217400
H	8.53838000	-0.11279400	-3.80300900
H	6.80981500	-0.41246300	-3.55373900
H	7.58028200	1.00718900	-2.83055100
H	10.19152000	-0.40564600	-1.88344400
H	9.25725700	0.69959800	-0.86928300
H	9.63006400	-0.92767600	-0.28577300
H	-0.14275300	-6.09929600	0.53878800
H	-1.51780800	-3.67586400	4.38027700
H	3.69413100	-5.62414600	2.17062800
H	3.53311900	4.38942100	4.01795000
H	-0.47995800	4.55684100	3.54756100
C	-3.55363200	0.08116600	3.94867900
H	-2.67715400	0.00230300	4.59273700
H	-4.05497000	1.03791300	4.12784100
H	-4.25354800	-0.72984000	4.17605400
C	4.47199600	-0.55729500	3.44338400
H	5.20901700	0.23097400	3.63668400

H	3.64938500	-0.46540700	4.15375000
H	4.95896900	-1.53043700	3.57227800
C	5.09686200	1.98774700	1.13865700
H	5.97709300	2.64299500	1.11108100
H	4.77104900	1.93730500	2.17733400
C	4.41108200	-3.04143800	1.04156300
H	5.08023700	-3.90791000	0.95731200
H	4.12597100	-2.97322100	2.09221900
C	0.65364100	-0.66735800	2.78357500
N	-0.27596000	0.01398700	1.79107100
C	0.09918500	-0.39220100	0.37016800
H	-1.26099700	-0.23170200	2.00469200
C	-0.66426100	1.29994000	-1.33742600
C	-1.51521100	1.69504600	-2.36905400
C	-2.56257400	0.86536400	-2.77087400
C	-2.75884700	-0.36215800	-2.13707100
C	-1.90996400	-0.75843700	-1.10491500
C	-0.85883700	0.07163000	-0.69349200
H	0.16151900	1.94160700	-1.04619500
H	-1.35334100	2.64763100	-2.86127000
H	-3.21724700	1.17113400	-3.58163000
H	-3.56766500	-1.01610200	-2.44573900
H	-2.05436700	-1.72382000	-0.63223600
C	1.30738900	1.53644900	5.82056800
C	1.31935400	1.05154700	4.51095400
C	0.5861000	-0.09853200	4.17823200
C	-0.14627600	-0.75108900	5.17841700
C	-0.15900700	-0.26395000	6.48637100
C	0.56870900	0.88245700	6.80919600
H	1.88439300	2.42157700	6.07130300
H	1.90320900	1.56671000	3.75113800
H	-0.69565000	-1.65463400	4.93069900
H	-0.72377800	-0.78516100	7.25329800
H	0.56951000	1.25773300	7.82790400
H	0.17003200	-1.48148100	0.38675300
H	1.10139800	0.01162200	0.21102800
H	1.66148900	-0.56569300	2.37310000
H	0.37600700	-1.72303300	2.76506300
H	-0.24507800	1.04311800	1.90015000

Energy $=-3850.69576$ a.u.

0 imaginary frequency.

Non-covalent interactions

NBO second-order perturbation theory analysis was performed via single point energy calculations using the M06-2X/dgdzvp//M06-2X/dgdzvp:PM6 method. The noncovalent interaction (NCI) index was analyzed with the Multiwfn program ${ }^{58}$ and its plot was graphed with VMD program. ${ }^{59}$ The reduced density gradient (RDG) analysisbased NCI results for $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 f}$, and $\mathbf{1 6 a} \mathbf{a}^{+} \subset \mathbf{1 5 f}$. are reported in Figure S60. The strongest interactions associated with the many hydrogen bonds existing between phenolic oxygen and ammonium site.

Figure 4.98. Non-covalent interaction plot and plot of the reduced density gradient (RDG) versus the electron density multiplied by the sign of the second Hessian eigenvalue (gradient isosurfaces ($s=0.6$ a.u.) for $\mathbf{1 6 b}^{+} \subset \mathbf{1 5 f}$ (a) and $\mathbf{1 6 a}{ }^{+} \subset \mathbf{1 5 f}$ (b). In the coloring scheme blue and green colors represent strong and medium interactions (H -bonding and van der Waals).

Figure 4.99. Minimized Structure with labels of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 f}$.

[^35]Table 4.5. Secondary orbital interactions for $\mathbf{1 6} b^{+} \subset \mathbf{1 5 f}$.

n	Type Donor	Type Acceptor	E Kcal/mol
1	BD(2) C 7-C 16	/***. BD* ${ }^{\text {(1) C }}$ 249-H274	0.56
2	BD(2) C 8-C 64	/***. BD* (1) C 255 -H261	0.41
3	BD (2) C 13-C 15	/***. BD* ${ }^{\text {(1) C }}$ 255-H261	0.08
4	BD (2) C 17-C 33	/***. BD* ${ }^{\text {(2) C } 254-C 255}$	0.21
5	BD (2) C 17-C 33	/***. BD* ${ }^{\text {(1) C } 255-H 261 ~}$	0.08
6	BD (2) C 18-C 34	/***. BD* ${ }^{\text {(} 2 \text {) } \mathrm{C} 251-\mathrm{C} 256}$	0.09
7	BD (2) C 18-C 34	/***. BD*(2) C 252 -C 253	0.05
8	BD (2) C 19-C 40	/***. BD* ${ }^{\text {(1) C } 249-H 274 ~}$	0.09
9	BD (2) C 22 -C 32	/***. BD*(1) C $251-\mathrm{H} 257$	0.22
10	BD (2) C 28 -C 29	/***. BD^{*} (1) C 251 - H 257	0.30
11	BD (1) C 59-H 61	/***. BD*(1) C 263 - H 269	0.61
12	BD (1) C 59-H238	/***. BD*(1) C 263 - H 269	0.08
13	BD (1) C 150-H 151	/***. BD*(1) C 254 - H 260	0.11
14	BD (1) C 197-H207	/***. BD* ${ }^{\text {(1) C } 254-H 260 ~}$	0.15
15	BD (1) C 239 - H 246	/***. BD*(2) C 263 -C 264	0.17
16	BD (1) C 240-H241	/***. BD* ${ }^{\text {(} 2 \text {) C } 265-\mathrm{C} 266}$	0.15
17	$\mathrm{CR}(1) \mathrm{O} 3$	/***. BD* (1) N 248 -H277	0.14
18	LP(1) O 1	/***. BD*(1) C 247 - H 275	0.54
19	LP(1) O 1	/***. BD* ${ }^{\text {(1) N } 248-H 277}$	0.17
20	LP(2) O 1	/***. BD*(1) C 247 - H 275	0.25
21	LP(1) O 2	/***. BD*(1) C 247 - H 275	0.07
22	LP (1) 03	/***. BD*(1) N 248 - H 277	0.09
23	LP(2) O 3	/***. BD* ${ }^{\text {(1) N } 248-H 277 ~}$	10.36
24	LP(1) O 4	/***. ${ }^{\text {B }}{ }^{*}(1) \mathrm{N} 248-\mathrm{H} 250$	0.27
25	LP (2) O 4	/***. BD* ${ }^{\text {(1) N } 248-H 250}$	8.34

26	LP(1) O 5	/***. BD* ${ }^{*}$ (1) C 265 -H 270	1.76
27	LP (2) O 5	/***. BD** 1) C 265 - H 270	0.11
28	LP(1) 06	/***. BD* (1) C 247 - H 276	2.62
29	LP(2) 06	/***. BD** (1) C 247 - H 276	0.95
30	BD* ${ }^{(2)}$ C $8-\mathrm{C} 64$	/***. BD* (1) C $255-\mathrm{H} 261$	0.12
	unit 2 to unit 1		
31	BD (1) N 248 - H 277	/***. BD* (1) O 3-C 41	0.08
32	BD (1) N 248 - H 277	/***. BD^{*} (1) O 3-C 239	0.11
33	BD (2) C 251 - C 256	$1 * * *$. $\mathrm{BD}^{*}(2) \mathrm{C} 41-\mathrm{C} 48$	0.05
34	BD (2) C 251 - C 256	/***. BD* (1) C 217 - H 231	0.12
35	BD (2) C 252 - C 253	/***. BD^{*} (1) C 211 - H 219	0.06
36	BD (1) C 252 - H 258	/***. BD* (1) C 96-H107	0.06
37	BD (1) C 254-H 260	/***. BD* (1) C 150-H 151	0.10
38	BD (1) C 254-H260	/**** BD* (1) C 197-H207	0.09
39	BD (1) C 255-H261	1***. $\mathrm{BD}^{*}(2) \mathrm{C} 8-\mathrm{C} 64$	0.07
40	BD (2) C 263 -C 264	/***. BD* (1) C 239 - H 246	0.47
41	BD (1) C 263-H269	/***. BD^{*} (1) C 59-H 61	0.41
42	BD (1) C 263 - H 269	/***. BD* (1) C $239-\mathrm{H} 246$	0.14
43	BD (1) C 264 - C 265	/**** RY* (1) H 236	0.07
44	BD (2) C 265 -C 266	/***. BD^{*} (1) C $75-\mathrm{H} 236$	1.16
45	BD (2) C 265 -C 266	/***. BD* (1) C $240-\mathrm{H} 241$	0.32
46	BD (1) C 265 - H 270	/***. BD* (1) C $240-\mathrm{H} 241$	0.07
47	BD* ${ }^{*}$ (2) C $251-\mathrm{C} 256$	/***. BD^{*} (2) C $18-\mathrm{C} 34$	0.70
48	BD* (2) C 251 - C 256	/**** BD^{*} (2) C $19-\mathrm{C} 40$	0.12
49	$\mathrm{BD}^{*}(2) \mathrm{C} 252-\mathrm{C} 253$	/***. $\mathrm{BD}^{*}\left(\begin{array}{l}\text { 2) C } \\ \text { 57-C } 66\end{array}\right.$	0.26
50	$\mathrm{BD}^{*}(2) \mathrm{C} 263-\mathrm{C} 264$	/***. BD* (1) C 239 - H 246	0.31
51	BD* ${ }^{*}$ 2) C $2655-\mathrm{C} 266$	/***. BD* (1) C $240-\mathrm{H} 241$	0.17

Figure 4.100. Minimized Structure with labels of $\mathbf{1 6 a}^{+} \subset \mathbf{1 5 f}$.

Table 4.6. Secondary orbital interactions for $\mathbf{1 6} \mathbf{a}^{+} \subset \mathbf{1 5 f}$

n	Type Donor	Type Acceptor	$\begin{gathered} E \\ \mathrm{Kcal} / \mathrm{mol} \end{gathered}$
1	BD(2) C 7-C 16	***. BD*(1) C $258-\mathrm{H} 262$	0,13
2	BD(2) C 8-C 13	***. BD* (1) C $255-\mathrm{H} 259$	0,16
3	BD(2) C 10-C 14	***. BD* (1) C 258 - H 262	0,16
4	BD(2) C 15-C 36	***. BD*(1) C 255 - H 260	0,15
5	BD(2) C 17-C 42	***. BD* (1) C 255-H259	0,07
6	BD(2) C 21-C 31	***. BD* (1) C $255-\mathrm{H} 260$	0,17
7	BD(2) C 41 - C 48	${ }^{* * *}$. BD* ${ }^{\text {(1) C }} 258$ - H 263	0,22
8	BD(2) C 57-C 66	***. BD*(1) C 253 - H 257	0,09
9	BD(1) C 75-H 76	***. BD* (1) C $265-\mathrm{H} 269$	0,06
10	BD(1) C 75-H236	***. BD*(1) C 265 - H 269	0,45
11	BD(1) C 87-H 98	***. BD*(1) C 247 -H248	0,37
12	BD(1) C 96-H 107	***. BD* (1) C $253-\mathrm{H} 257$	0,06
13	BD (1) C 150-H151	***. BD*(1) C $250-\mathrm{H} 254$	0,1
14	BD (1) C 210-H218	***. BD* (1) C 247 -H 251	0,09
15	BD (1) C 217-H231	***. BD* ${ }^{\text {(}) ~ C ~} 253-\mathrm{H} 256$	0,22
16	BD (1) C 240-H241	***. BD* (1) C 265-H 270	0,66
17	BD (1) C 240-H242	***. BD*(1) C 265 - H 270	0,09
18	CR(1) 04	***. BD* ${ }^{\text {(}}$ 1) N $261-\mathrm{H} 280$	0,11
19	CR(1) 06	${ }^{* * *}$. BD* ${ }^{\text {(1) }}$ N $261-\mathrm{H} 281$	0,15

20	LP(1) 01	***. BD*(1) C 264-H266	0,08
21	LP(1) 02	***. BD*(1) C 264 -H266	0,66
22	LP(2) 02	***. BD*(1) C 264-H266	0,09
23	LP(1) 03	***. BD*(1) C 264-H267	0,08
24	LP(1) 04	***. BD*(1) N $261-\mathrm{H} 280$	1,69
25	LP(2) 04	***. BD*(1) N $261-\mathrm{H} 280$	8,68
26	LP(1) 05	***. BD* ${ }^{\text {(1) N } 261-H 280}$	0,48
27	LP(1) 05	***. BD*(1) N $261-\mathrm{H} 281$	0,25
28	LP(2) 05	***. BD*(1) N $261-\mathrm{H} 280$	0,2
29	LP(2) 06	***. BD*(1) N $261-\mathrm{H} 281$	11,61
30	BD* ${ }^{\text {(} 2) ~ C ~ 8-C ~} 13$	***. BD*(1) C 255-H259	0,07
31	BD*(2) C 17-C 42	***. BD*(1) C $255-\mathrm{H} 259$	0,07
32	BD*(2) C 21-C 31	***. BD*(1) C 255-H260	0,11
	unit 2 to unit 1		
33	BD (1) C 247-H 248	***. BD*(1) C $87-\mathrm{H} 98$	0,41
34	BD(1) C 247-H249	***. BD*(1) C $87-\mathrm{H} 98$	0,05
35	BD(1) C 247-H251	***. BD*(1) C $210-\mathrm{H} 218$	0,09
36	BD (1) C 250-H254	***. BD*(1) C 150-H 151	0,13
37	BD (1) C 253-H256	***. BD*(1) C 217 -H231	0,13
38	BD (1) C 253-H257	***. BD*(1) C 96-H107	0,07
39	BD (1) C 255-H260	***. BD*(2) C 21-C 31	0,07
40	BD (1) N 261-H 280	***. BD*(1) O 4-C 17	0,07

41	BD(1) N 261 - 280		0,07
42	BD(1) N 261 - 281	${ }^{* * *}$. ${ }^{\text {d }}$ (1) 0 6-C 31	0,08
43	BD (1) N 261-H 281	***. BD^{*} (1) 0 6-C240	0,1
44	BD(1) C 265-H269	${ }^{* * *}$. BD* ${ }^{*}$ 1) C $75-\mathrm{H} 236$	0,5
45	BD(1) C 265-H270	***. BD* ${ }^{\text {(1) C } 75-H 236}$	0,06

46	BD (1) C 265-H270	***. BD*(1) C 240-H241	0,49
47	BD (1) C 268-H 272	${ }^{* * *}$ BD** 1) C 59-H 61	0,07
48	BD (1) C 268-H 273	***. BD*(1) C 59-H 61	0,21

Figure 4.101. Minimized Structure with labels of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 a}$.

Table 4.7. Secondary orbital interactions for $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{1 5 a}$.

n°	Type Donor	Type Acceptor	
1	BD(2) C 13-C 16	/***. BD*(2) C 179-C 184	0,26
2	BD(2) C $13-\mathrm{C} 16$	/***. BD*(1) C 179-H 185	0,11
3	BD(2) C 24-C 35	/***. BD*(1) C 179-H 185	1,11
4	BD(2) C $32-\mathrm{C} 45$	/***. BD*(2) C 182-C 183	0,08
5	BD(2) C 38-C 46	/***. BD*(2) C 180-C 181	0,08
6	BD(2) C 62-C 65	/***. BD*(2) C 182-C 183	0,07
7	BD(1) C $86-\mathrm{H} 89$	/***. BD* (1) C 180-H 186	0,17
8	BD(1) C 90-H 92	/***. BD* (1) C 193-H 198	0,07
9	BD(1) C 90-H 157	/***. BD*(1) C 193-H 198	0,54
10	BD(1) C 130-H 131	/***. BD*(1) C 180-H 186	0,14
11	BD(1) C 134-H 137	/***. BD*(1) C 182-H188	0,05
12	BD(1) C 161-H 162	/***. BD* ${ }^{\text {(2) C } 192-C 193}$	0,19

13	BD (1) C 165-H 167	/***. BD*(2) C 190-C 191	0,16
14	CR(1) 05	/***. BD* ${ }^{\text {(}}$ 1) N 176-H 205	0,09
15	CR(1) 06	/***. BD*(1) N 176-H 178	0,17
16	LP(1) 01	/***. BD*(1) C 175-H 204	0,06
17	LP(1) 02	/***. BD*(1) C 175-H 204	0,59
18	LP(1) 02	/***. BD*(1) N 176-H 178	0,12
19	LP(2) 02	/***. BD*(1) C 175-H 204	0,21
20	LP(2) 03	/***. BD*(1) C 175-H 203	0,95
21	LP(1) 04	/***. BD * (1) C 191-H 197	1,55
22	LP(2) 04	/***. BD*(1) C 191-H 197	0,21
23	LP(1) 05	/***. BD*(1) N 176-H 205	0,76
24	LP(2) 05	/***. BD*(1) N 176-H 205	6,16
25	LP(2) 06	/***. BD** (1) N 176-H 178	9,08
26	BD* ${ }^{\text {(} 2) ~ C ~} 24-\mathrm{C} 35$	/***. BD*(1) C 179-H 185	0,09
	unit 2 to unit 1		
27	BD(1) C 175-H203	/***. BD*(1) O 3-C 43	0,07

28	BD(1) N 176-H 178	/*** BD* (1) O 6-C 32	0,1
29	BD(1) N 176-H 178	$/^{* * *}$. $\mathrm{BD}^{+(}$(1) O 6-C161	0,13
30	BD(1) N 176-H205	/*** BD*(1)O 5-C 16	0,07
31	BD(1) N 176-H205	/*** BD* (1) O 5-C 69	0,08
32	BD(2) C 179 - C 184	$/^{* * *}$ BD*(2) C 13-C 16	0,07
33	BD(2) C 179 - C 184	$/^{* * *}$. $\mathrm{BD}^{*}(2) \mathrm{C} 38-\mathrm{C} 46$	0,05
34	BD(2) C 179-C184		0,18
35	BD(1) C 179-H185	$/^{* * *}$ BD**(2) C $24-\mathrm{C} 35$	0,06

36	BD (1) C 180-H 186	/***. BD*(1) C 86-H 89	0,13
37	BD (1) C 180-H 186	/***. BD*(1) C 130-H 131	0,09
38	BD(2) C 182-C 183	/***. BD*(1)C $75-\mathrm{H} 76$	0,09
39	BD(2) C 190-C191	/***. BD*(1) C 165-H 167	0,33
40	BD(2) C 192-C 193	/***. BD*(1) C 161-H 162	0,61
41	BD(2) C 182-C183	/***. BD*(1)C $75-$ H 76	0,09
42	BD(2) C 190-C191	/***. BD*(1) C 69-H 70	1,44

4.7.3 Conformationally stable calix[6]arenes

4.7.3.1 Synthesis of Derivatives 46 g and 47 g

In a dry round flask, under N_{2}, hexamethoxycalix[6] arene $1(0.502 \mathrm{~g}, 0.45 \mathrm{mmol})$ was dissolved in freshly distilled THF (50 mL). Subsequently, TMEDA ($0.57 \mathrm{~mL}, 3.59$ $\mathrm{mmol})$ and $n-\mathrm{BuLi}(1.50 \mathrm{~mL}$ of a solution 2.5 M in hexane, 3.59 mmol) were added at room temperature. A persistent blood red colored anion was generated. Afterwards, a solution of p-methylbenzyl bromide $(0.724 \mathrm{~g}, 3.59 \mathrm{mmol})$ in THF dry $(20 \mathrm{~mL})$ was added dropwise to the reaction mixture. It is observed a gradually change color of mixture, first to green and later to pale yellow. Stirring was continued for an hour at room temperature. After the reaction was stopped by addition of 1 N HCl and the solution was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated of the solvent. The raw was purified through chromatography column on silica gel and using solvent mixture 74% hexane / 21% chloroform / 5% ethyl acetate as eluens. cone $\mathbf{4 6 g}$ was isolated with 25% yield, and 1,2,3-alternate $\mathbf{4 7 g}$ conformer with 22% yield.

Derivative 46g

${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta: 7.16$ (s, 4H, ArH), $7.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H)$, 7.02 (s, 4H, ArH), 6.96 (d, $J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 6.86 (s, 4H, $\mathrm{Ar} H$), 5.13 (bt, 2H, $\mathrm{ArCH}(p-\mathrm{MeBn}) \mathrm{Ar}), 4.41$ and 3.45 (AX system, $J=15.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 3.233.19 (overlapped, $-\mathrm{CH}_{2} \mathrm{Ph}, 16 \mathrm{H},-\mathrm{OCH}_{3}$), $2.70\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.23\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{BnCH}_{3}\right), 1.16\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $), 1.07(\mathrm{~s}, 36 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 154.0,153.6,145.7,145.2,137.9$, $136.5,135.0,133.1,133.1,128.9,128.7,126.3,125.3,123.9,60.2,60.0,41.9,34.2$,
34.1, 31.4, 31.4, 29.9, 20.9. HRMS $(\mathrm{m} / \mathrm{z})$ clcd for $\mathrm{C}_{88} \mathrm{H}_{112} \mathrm{NaO}_{6} 1287.8351$ found 1287.8379 .

Derivative 47g

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.12$ (s, $4 \mathrm{H}, \mathrm{ArH}$), 7.02-7.02 (overlapped, $8 \mathrm{H}, \mathrm{ArH}$), 6.96-6.94 (overlapped, $8 \mathrm{H}, \mathrm{ArH}$), 4.89 (bt, 2 H , $\mathrm{ArCH}(p-\mathrm{MeBn}) \mathrm{Ar}), 4.05$ and 3.64 (AX system, J $=14.8 \mathrm{~Hz}, 8 \mathrm{H}$, , $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}\right), 2.96\left(\mathrm{~s}, 12 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.80(\mathrm{~s}, 6 \mathrm{H}$, $\left.-\mathrm{OCH}_{3}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{BnCH}_{3}\right), 1.17(\mathrm{~s}, 18 \mathrm{H},-$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.15\left(\mathrm{~s}, 36 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 154.2$, $154.1,145.7,145.3,137.9,136.7,135.0,133.5,133.1,128.9,128.7,126.3,125.8$, 124.4, 69.0, 60.1, 59.6, 40.9, 34.2, 34.1, 31.4, 20.9. Elemental Analysis: Calcd for $\mathrm{C}_{88} \mathrm{H}_{122} \mathrm{O}_{6} \mathrm{C}, 83.50 ; \mathrm{H}, 8.92$; O, 7.58, Found: C, 83.48; H, 8.93; O, 7.59.

Figure 4.102. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{4 6 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.103. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{4 6 g}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.104. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{4 7 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.105. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{4 7 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.106. MALDI-MS spectrum of derivative $\mathbf{4 6 g}$.

4.7.3.2 Synthesis of Derivatives 46 h and 47 h

In a dry round flask, under N_{2}, hexamethoxycalix[6]arene $1(1.575 \mathrm{~g}, 0.94 \mathrm{mmol})$ was dissolved in freshly distilled THF (150 mL). Subsequently, TMEDA ($1.73 \mathrm{~mL}, 7.52$ mmol) and $n-\mathrm{BuLi}(4.50 \mathrm{~mL}$ of a solution 2.5 M in hexane, 7.52 mmol) were added at room temperature. A persistent blood red coloured anion was generated. Afterwards, a solution of 1-bromobutane ($1.23 \mathrm{~mL}, 7.60 \mathrm{mmol}$) in THF dry (60 mL) was added dropwise to the reaction mixture. It was observed a gradually change colour of mixture, first to green and later to pale yellow. Stirring was continued for an hour at room temperature. After the reaction was stopped by addition of 1 N HCl and the solution was extracted with ethyl acetate. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated of the solvent. The raw was purified through chromatography column on silica gel and using solvent mixture 74:21:5 hexane/chloroform/ethyl acetate as eluents., cone 46h was isolated with 27% yield and 1,2,3-alternate $\mathbf{4 7 h}$ conformer with 10% yield.

Derivative 46h

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ 7.06 (s, 4H, ArH), 7.01 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{ArH}$), 6.92 (s, $4 \mathrm{H}, \mathrm{Ar} H), 4.78$ (t, $J_{a b}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\operatorname{ArCH}(n \mathrm{Bu}) \mathrm{Ar}), \quad 4.51$ and 3.46 (AX system, $\left.J=15.3 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.28$ $\left(\mathrm{s}, 12 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.92$ $\left(\mathrm{q}, J_{b a}=7.6 \mathrm{~Hz}, J_{b c}=14.7,4 \mathrm{H},-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.34-1.28 (m, $\left.8 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.06\left(\mathrm{~s}, 36 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86\left(\mathrm{t},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 153.8,153.5,145.7,145.4,137.4,133.2,133.1,126.1,125.2$, 123.4, 69.0, 60.3, 60.1, 36.9, 36.4, 34.2, 34.1, 31.4, 30.5, 29.8, 22.7, 14.0. HRMS $(\mathrm{m} / \mathrm{z})$ clcd for $\mathrm{C}_{80} \mathrm{H}_{112} \mathrm{O}_{6} \mathrm{Na} 1191.8351$ found 1191.8399 .

Derivative 47h

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.08-$ 7.02 (overlapped, $12 \mathrm{H}, \mathrm{Ar} H$), 4.58 ($\mathrm{t}, J_{a b}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}, \operatorname{ArCH}(n \mathrm{Bu}) \mathrm{Ar}), 4.11$ and 3.66 (AX system, $J=15.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}$), 3.00 (s, $\left.12 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.93\left(\mathrm{q}, J_{b a}\right.$ $\left.=7.6 \mathrm{~Hz}, J_{b c}=14.9,4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.34-1.28 (m, 8H, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.19$ (s, $\left.54 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 154.5,154.3,145.8,145.6,137.5,133.7,133.4,126.6,126.0,124.0$,
60.3, 59.8, 38.0, 35.7, 34.4, 34.3, 32.2, 31.6, 30.7, 22.9, 14.2. Elemental Analysis:

Calcd for $\mathrm{C}_{80} \mathrm{H}_{112} \mathrm{O}_{6} \mathrm{C}, 82.14 ; \mathrm{H}, 9.65$; O, 8.21, Found: C, 82.13; H, 9.67; O, 8.20.

Figure 4.107. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{4 6 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.108. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{4 6 h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.109. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{4 7 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.110. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{4 7 h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.111. MALDI-MS Spectrum of derivative 46h.

4.7.3.3 Synthesis of pseudo[2]rotaxanes

A 1:1 mixture of calix[6]arene derivative and TFPB linear system was dissolved in 0.5 mL of CDCl_{3}.In detail, in Table 4.8 we reported concentration using for calix[6]arene derivative and for axles. Then, the solution was transferred in an NMR tube for 1D and 2D NMR spectra acquisition.

Table 4.8. Amount of hosts and guests for complexation experiments.

Pseudo[2]rotaxanes	Calix[6]arenes		Axles		$\mathbf{C D C l}_{\mathbf{3}}$
	$(\mathbf{m g})$	$(\mathbf{m m o l})$	$(\mathbf{m g})$	$(\mathbf{m m o l})$	$(\mathbf{m l})$
$\mathbf{1 6 b}^{+} \subset \mathbf{4 6 g}$	2.09	$1.6 \cdot 10^{-3}$	1.87	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 f}^{+} \subset \mathbf{4 6 g}$	2.09	$1.6 \cdot 10^{-3}$	2.04	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 g}^{+} \subset \mathbf{4 6 g}$	2.01	$1.6 \cdot 10^{-3}$	1.78	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 a}^{+} \subset \mathbf{4 6 g}$	2.08	$1.6 \cdot 10^{-3}$	1.77	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 b}^{+} \subset \mathbf{4 7 g}$	2.08	$1.6 \cdot 10^{-3}$	1.84	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 f}^{+} \subset \mathbf{4 7 g}$	2.08	$1.6 \cdot 10^{-3}$	2.06	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 g}^{+} \subset \mathbf{4 7 g}$	2.00	$1.6 \cdot 10^{-3}$	1.77	$1.6 \cdot 10^{-3}$	0.5

$\mathbf{1 6 a}{ }^{+} \subset \mathbf{4 7 g}$	2.08	$1.6 \cdot 10^{-3}$	1.74	$1.6 \cdot 10^{-3}$	0.5
$\mathbf{1 6 b}^{+} \subset \mathbf{4 6 h}$	2.01	$1.7 \cdot 10^{-3}$	1.84	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 f}^{+} \subset \mathbf{4 6 h}$	2.01	$1.7 \cdot 10^{-3}$	2.05	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 g}^{+} \subset \mathbf{4 6 h}$	2.01	$1.7 \cdot 10^{-3}$	1.93	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 a}^{+} \subset \mathbf{4 6 h}$	2.03	$1.7 \cdot 10^{-3}$	1.74	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 b}^{+} \subset \mathbf{4 7 h}$	2.02	$1.7 \cdot 10^{-3}$	1.84	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 f}^{+} \subset \mathbf{4 7 h}$	2.02	$1.7 \cdot 10^{-3}$	2.06	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 g}^{+} \subset \mathbf{4 7 h}$	2.01	$1.7 \cdot 10^{-3}$	1.93	$1.7 \cdot 10^{-3}$	0.5
$\mathbf{1 6 a}^{+} \subset \mathbf{4 7 h}$	2.03	$1.7 \cdot 10^{-3}$	1.78	$1.7 \cdot 10^{-3}$	0.5

Figure 4.112. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 b}^{+} \mathrm{TFPB}^{-}(3.2 \mathrm{mM})$.

Figure 4.113. 2D COSY spectrum of derivative $\mathbf{1 6 \mathbf { b } ^ { + }} \subset \mathbf{4 6 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.114. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 f}^{+}{ }^{+}$TFPB $^{-}(3.2 \mathrm{mM})$.

Figure 4.115. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 g}^{+}{ }^{\text {TFPPB }}{ }^{-}(3.2 \mathrm{mM})$.

Figure 4.116. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 g}(3.2 \mathrm{mM})$ and 16a ${ }^{+}$TFPB ${ }^{-}(3.2 \mathrm{mM})$.

Figure 4.117. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{4 6 g}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right.$).

Figure 4.118. 2D COSY spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{4 6 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.119. 2D HSQC spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{4 6 g}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.120. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 b}^{+}{ }^{+} \mathrm{TFPB}^{-}(3.2 \mathrm{mM})$.

Figure 4.121. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 f}^{+}{ }^{\text {TFPB }}{ }^{-}(3.2 \mathrm{mM})$.

Figure 4.122. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 g}^{+}{ }^{\text {TFPBB }}{ }^{-}(3.2 \mathrm{mM})$.

Figure 4.123. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 g}(3.2 \mathrm{mM})$ and $\mathbf{1 6 a}^{+}{ }^{+}{ }^{\text {TFPB }}{ }^{-}(3.2 \mathrm{mM})$.

Figure 4.124. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $1: 1$ solution of $\mathbf{4 6 h}(3.4 \mathrm{mM})$ and $\mathbf{1 6 b}^{+}{ }^{\text {TFPB }}$ (3.4 mM).

Figure 4.125. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{4 6 h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.126. 2D COSY spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{4 6 h}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 4.127. 2D HSQC spectrum of derivative $\mathbf{1 6 b}^{+} \subset \mathbf{4 6 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.128. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 g}(3.4 \mathrm{mM})$ and $\mathbf{1 6 f}^{+}{ }^{+}$TFPB $^{-}(3.4 \mathrm{mM})$.

Figure 4.129. ${ }^{1} \mathrm{H}$ NMR Spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 g}(3.4 \mathrm{mM})$ and $\mathbf{1 6 f}^{+} \mathrm{TFPB}^{-}(3.4 \mathrm{mM})$.

Figure 4.130. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 6 h}(3.4 \mathrm{mM})$ and 16a ${ }^{+}$TFPB ${ }^{-}(3.4 \mathrm{mM})$.

Figure 4.131. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{4 6 h}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.132. 2D COSY spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{4 6 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.133. 2D HSQC spectrum of derivative $\mathbf{1 6 a}^{+} \subset \mathbf{4 6 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.134. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 h}(3.4 \mathrm{mM})$ and $\mathbf{1 6 b}^{+}{ }^{+}{ }^{\text {TFPB }}$ (3.4 mM).

Figure 4.135. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 h}(3.4 \mathrm{mM})$ and $\mathbf{1 6 f}^{+}{ }^{+}$TFPB $^{-}(3.4 \mathrm{mM})$.

Figure 4.136. 2D COSY spectrum of derivative $\mathbf{1 6 f}^{+} \subset \mathbf{4 7 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 4.137. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$). of 1:1 solution of $\mathbf{4 7 h}(3.4 \mathrm{mM})$ and $\mathbf{1 6 g}^{\mathbf{+}} \mathrm{TFPB}^{-}(3.4 \mathrm{mM})$.

Figure4.138. 2D COSY spectrum of derivative $\mathbf{1 6 g}^{+} \subset \mathbf{4 7 h}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.
\qquad

(g)
(f)
\qquad

Figure 4.139. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 6 f}{ }^{+} \subset \mathbf{4 7 h}$ at different temperature: (a) 298 K , (b) 273 K , (c) 263 K , (d) 253 K , (e) 243 K , (f) 233 K , (g) $223 \mathrm{~K}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 4.140. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 6 g}{ }^{+} \subset \mathbf{4 7} \mathbf{h}$ at different temperature: (a) 298 K , (b) 273 K , (c) 263 K , (d) 253 K , (e) 243 K , (f) 233 K , (g) $223 \mathrm{~K}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.

Figure 4.141. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of $1: 1$ solution of $\mathbf{4 7 h}(3.4 \mathrm{mM})$ and $\mathbf{1 6 a}^{+}{ }^{+}$TFPB ${ }^{-}(3.4 \mathrm{mM})$.

4.7.3.4 $\quad^{1} H$ NMR analysis determination of $K_{\text {ass }}$ values

The association constant values of complexes were calculated by means of two methods:
a) Integration of free and complexed ${ }^{1} \mathrm{H}$ NMR signals of host or guest. In this case, an equimolar solution of host and guest was solubilized in CDCl_{3} and equilibrated in a NMR tube.
b) Quantitative ${ }^{1} \mathrm{H}$ NMR experiments using TCE as the internal standard. In this case, ${ }^{1} \mathrm{H}$ NMR experiments were carried out on a $1: 1$ mixture of host and guest in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of 1,1,2,2-tetrachloroethane ($\mathrm{d}=$ $1.586 \mathrm{~g} / \mathrm{mL}$) as internal standard. The following equation was used to obtain the moles of the complex:

$$
\frac{G_{a}}{G_{b}}=\frac{F_{a}}{F_{b}} \times \frac{N_{b}}{N_{a}} \times \frac{M_{a}}{M_{b}}
$$

Where:
$G_{\mathrm{a}}=$ grams of 1,1,2,2-Tetrachloroethane; $G_{\mathrm{b}}=$ grams of pseudorotaxane.
F_{a} and $F_{\mathrm{b}}=$ areas of the signal related of 1,1,2,2-tetrachloroethane and pseudorotaxane.
N_{a} and $N_{\mathrm{b}}=$ numbers of nuclei which cause the signals $\left(N_{\mathrm{a}}\right.$ for 1,1,2,2tetrachloroethane; N_{b} for pseudorotaxane)
M_{a} and $M_{\mathrm{b}}=$ molecular masses of 1,1,2,2-tetrachloroethane (a) and pseudorotaxane (b).

Derivative 16b ${ }^{+} \subset \mathbf{4 6 g}$

Figure 4.142. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of $\mathbf{4 6 g}\left(3.2 \times 10^{-3} \mathbf{M}\right)$ and $\mathbf{1 6} \mathbf{b}^{+}$TFPB $^{-}\left(3.2 \times 10^{-3} \mathbf{M}\right)$. The association constant K_{a} value was calculated by integration of complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\boldsymbol{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \mathrm{Ar}(\bullet)$ signals of host 46 g .

Derivative $16 \mathbf{a}^{+} \subset \mathbf{4 6 g}$

Figure 4.143. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of $\mathbf{4 6 g}\left(3.2 \times 10^{-3} \mathbf{M}\right)$ and $\mathbf{1 6 a}^{+}$TFPB $^{-}\left(3.2 \times 10^{-3} \mathrm{M}\right)$. The association constant K_{a} value was calculated by integration of complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\boldsymbol{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \mathrm{Ar}(\bullet)$ signals of host $\mathbf{4 6 g}$.

Derivative $\mathbf{1 6 f}^{+} \subset \mathbf{4 7 g}$

Figure 4.144. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of $\mathbf{4 7 g}\left(3.2 \times 10^{-3} \mathbf{M}\right)$ and $\mathbf{1 6 f}^{+}$TFPB $^{-}\left(3.2 \times 10^{-3} \mathrm{M}\right)$. The association constant K_{a} value was calculated by integration of complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\boldsymbol{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \mathrm{Ar}(\bullet)$ signals of host 47 g .

Derivative $\mathbf{1 6 b}^{+} \subset \mathbf{4 6 h}$

Figure 4.145. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of $\mathbf{4 6 h}\left(3.4 \times 10^{-3} \mathrm{M}\right)$ and $\mathbf{1 6} \mathbf{b}^{+}$TFPB $\left(3.4 \times 10^{-3} \mathrm{M}\right)$. The association constant K_{a} value was calculated by integration of complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\boldsymbol{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\bullet)$ signals of host 46h.

Derivative $\mathbf{1 6 g}^{+} \subset \mathbf{4 6 h}$

Figure 4.146. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of 46h $\left(3.4 \times 10^{-3} \mathbf{M}\right)$ and $\mathbf{1 6 b} \mathbf{b}^{+}$TFPB $\left(3.4 \times 10^{-3} \mathbf{M}\right)$. The association constant K_{a} value was calculated by integration of complexed $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\boldsymbol{\Delta})$ and free $\operatorname{ArCH}(\mathrm{R}) \operatorname{Ar}(\bullet)$ signals of host 46h.

Derivative 16a ${ }^{+} \subset$ 46h

Figure 4.147. Portion of ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of a $1: 1$ mixture of 46h $\left(3.4 \times 10^{-3} \mathrm{M}\right)$ and $16 \mathbf{a}^{+}$TFPB $^{-}\left(3.4 \times 10^{-3} \mathrm{M}\right)$. The association constant K_{a} value was calculated by integration of complexed $\mathrm{CH}_{2} \mathrm{NH}_{2}(\boldsymbol{\Delta})$ and free $\mathrm{CH}_{2} \mathrm{NH}_{2}(\bullet)$ signals of guest $\mathbf{1 6 a}^{+}{ }^{+}{ }^{\text {TFPB }}$.

Derivative $\mathbf{1 6 f}^{+} \subset \mathbf{4 6 g}$

Figure 4.148. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of an equimolar solution (3.2 mM) of $\mathbf{4 6 g}$ and $\mathbf{1 6 f}^{+}$TFPB in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2$-Tetrachloroethane. The association constant K_{a} values was calculated by integration of signal of complex $\mathbf{4 6 g}(\triangle)$ and 1,1,2,2-Tetrachloroethane (\quad).

Derivative $\mathbf{1 6 g}^{+} \subset \mathbf{4 6 g}$

Figure 4.149. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of an equimolar solution (3.2 mM) of $\mathbf{4 6} \mathbf{g}$ and $\mathbf{1 6} \mathbf{g}^{+}$TFPB ${ }^{-}$in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2$-Tetrachloroethane. The association constant K_{a} values was calculated by integration of signal of complex $\mathbf{4 6 g}$
(\triangle) and 1,1,2,2-Tetrachloroethane ($\mathbf{\square}$).

Derivative $\mathbf{1 6 g}^{+} \subset \mathbf{4 7}$ g

Figure 4.150. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of: (a) an equimolar solution (3.2 mM) of $\mathbf{4 7} \mathbf{g}$ and $\mathbf{1 6} \mathbf{g}^{+}$TFPB ${ }^{-}$in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2-$
Tetrachloroethane. The association constant K_{a} values were calculated by integration of signal of complex $\mathbf{4 7 g}(\boldsymbol{\Delta})$ and 1,1,2,2-Tetrachloroethane ($\mathbf{\square}$).

Derivative $16 f^{+} \subset$ 46h

Figure 4.151. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of an equimolar solution (3.2 mM) of $\mathbf{4 6 h}$ and $\mathbf{1 6 f}^{+}{ }^{\text {TFPB }}$ - in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2-$ Tetrachloroethane. The association constant K_{a} values were calculated by integration of signal of complex $\mathbf{4 6 h}(\boldsymbol{\Delta})$ and 1,1,2,2-Tetrachloroethane (\quad).

Derivative 16f $^{+} \subset$ 47h

Figure 4.152. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of an equimolar solution (3.2 mM) of $\mathbf{4 7 h}$ and $\mathbf{1 6 f}^{+}$TFPB ${ }^{-}$in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2$-Tetrachloroethane. The association constant K_{a} values were calculated by integration of signal of complex $\mathbf{4 7 h}$ (Δ) and 1,1,2,2-Tetrachloroethane (\quad).

Derivative $\mathbf{1 6 g}^{+} \subset \mathbf{4 7 h}$

Figure 4.153. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of an equimolar solution (3.2 mM) of $\mathbf{4 7 h}$ and $\mathbf{1 6} \mathbf{g}^{+}$TFPB ${ }^{-}$in 0.5 mL of CDCl_{3} containing $1 \mu \mathrm{~L}$ of $1,1,2,2-\mathrm{Tetrachloroethane}$. association constant K_{a} values were calculated by integration of signal of complex $\mathbf{4 7 h}$ (\triangle) and 1,1,2,2-Tetrachloroethane (\quad).

4.7.3.5 Crystallographic information of derivatives 46h and 47h

Derivative 46h

Colourless single crystals suitable for X-ray investigation were obtained by slow evaporation of CHCl_{3} solution containing derivative 46h. Data collection was carried out at the Macromolecular crystallography XRD1 beamline of the Elettra synchrotron (Trieste, Italy), employing the rotating-crystal method and the cryo-cooling technique. A single crystal of 46h was dipped in PEG200 (cryoprotectant), mounted on a loop and flash-frozen under a liquid nitrogen stream at 100 K . Diffraction data were indexed and integrated using the XDS package. ${ }^{53}$ Scaling was carried out with XSCALE. ${ }^{54}$ The structure was solved by VLD methods using the SHELXT package; ${ }^{55}$ while structure refinement was performed with SHELXL-14, ${ }^{56}$ operating through the WinGX GUI, ${ }^{57}$ by full-matrix least-squares (FMLS) methods on F^{2}. The asymmetric unit contains one molecule of derivative 46 h . The thermal parameters of all nonhydrogen atoms were refined anisotropically with exclusion of one tert-butyl group found disordered in two positions (position A: 0.8 occupancy factor, anisotropically refined with ISOR Card; position B: 0.2 occupancy factor isotropically refined). All hydrogen atoms were placed at the geometrically calculated positions and refined using the riding model. Crystal data and final refinement details for the complex are reported in Table 4.9.

Derivative 47h

Colourless single crystals suitable for X-ray investigation were obtained by slow evaporation of $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$ solution containing derivative $\mathbf{4 7 h}$. Data collection was carried out at the Macromolecular crystallography XRD1 beamline of the Elettra synchrotron (Trieste, Italy), employing the rotating-crystal method and the cryocooling technique. A single crystal of 47h was dipped in glycerol (cryoprotectant), mounted on a loop and flash-frozen under a liquid nitrogen stream at 100 K . Diffraction data were indexed and integrated using the XDS package. ${ }^{53}$ Scaling was carried out with XSCALE. ${ }^{54}$ The structure was solved by VLD methods using the SIR 2014 package, ${ }^{55}$ while structure refinement was performed with SHELXL-14, ${ }^{56}$ operating through the WinGX GUI, ${ }^{57}$ by full-matrix least-squares (FMLS) methods on F^{2}. The asymmetric unit contains half molecule of derivative 47h. The thermal parameters of all non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at the geometrically calculated positions and refined using the riding model. Crystal data and final refinement details for the complex are reported in Table 4.10.

Table 4.9. Crystallographic data for $\mathbf{4 6 h}$.

CCDC code	1906652
Formula	$\mathrm{C}_{80} \mathrm{H}_{112} \mathrm{O}_{6}$
Formula weight	1169.69
Temperature (K)	100(2)
Wavelength (Å)	0.7
Crystal system	monoclinic
Space group	P 21/c
a (Å)	31.797(2)
b (A)	11.539(1)
c (A)	19.088(2)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	94.402(8)
$\gamma\left({ }^{\circ}\right.$	90
$\mathrm{V}\left(\AA^{3}\right)$	6982.8(10)
Z	4
$\rho_{\text {calc }}\left(\mathrm{g} . \mathrm{mm}^{-3}\right)$	1.113
$\mu\left(\mathrm{mm}^{-1}\right)$	0.065
F (000)	2560
Data collection θ range	1.85-28.794
Refl. Collected / unique	118778 / 18965
$\mathrm{R}_{\text {int }}$	0.0266
Completeness (\%)	99.5\%
Refinement method	FMLS on F^{2}.
Data/Restraints/Parameters	18965 / 18 / 814
GooF	1.017
$\mathrm{R}_{1} / \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.0535 / 0.1418
$\mathrm{R}_{1} / \mathrm{wR}_{2}$ all data	0.0585 / 0.146
ls shift su max/mean	$0.001 / 0.000$
Largest. Diff. peak/hole (e. \AA^{3})	0.6/-0.4

Table 4.10. Crystallographic data for $\mathbf{4 7 h}$.

CCDC code	1906651
Formula	$\mathrm{C}_{80} \mathrm{H}_{112} \mathrm{O}_{6}$
Formula weight	1169.69
Temperature (K)	100(2)
Wavelength (Å)	0.7
Crystal system	monoclinic
Space group	P 21/a
a (A)	13.341(6)
b (Å)	16.117(4)
c (A)	17.567(6)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	108.21(2)
$\gamma\left({ }^{\circ}\right.$	90
$\mathrm{V}\left(\AA^{3}\right)$	3588(2)
Z	2
$\rho_{\text {calc }}\left(\mathrm{g} . \mathrm{mm}^{-3}\right)$	1.083
$\mu\left(\mathrm{mm}^{-1}\right)$	0.063
F (000)	1280
Data collection θ range	1.202-33.165
Refl. Collected / unique	74695 / 11803
$\mathrm{R}_{\text {int }}$	0.0389
Completeness (\%)	82.2\%
Refinement method	FMLS on F^{2}.
Data/Restraints/Parameters	11803 / 0 / 402
GooF	1.049
$\mathrm{R}_{1} / \mathrm{wR}_{2}[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.0500 / 0.1314$
$\mathrm{R}_{1} / \mathrm{wR}_{2}$ all data	0.0642 / 0.1427
1s shift su max/mean	$0.001 / 0.000$
Largest. Diff. peak/hole (e. \AA^{3})	0.6/-0.3

4.7.3.6 Computational detail for pseudorotaxane $\mathbf{1 6 f}^{+} \subset \mathbf{4 7 h}$

Preliminary conformational searches have been performed by molecular mechanics calculations (Spartan 02). The minimized structures were optimized by DFT calculations (Gaussian 09) at B3LYP/6-31G(d,p) level of theory using Grimme's dispersion corrections $(\operatorname{IOp}(3 / 124=3))$.

Cartesian Coordinates of the DFT-optimized structure of $\mathbf{2 b}^{+} \subset \mathbf{6} \mathbf{c}$ pseudorotaxane

O	-0.133000	1.200800	-3.367900
O	2.809000	3.707900	-0.929800
O	2.940000	1.203200	1.933700
C	5.209200	0.988100	1.141000
C	5.018800	2.225800	0.258700
H	4.294400	2.872500	0.757500
C	3.383500	2.673900	-1.657500
C	0.450300	3.524200	-3.047900
C	2.868600	2.403500	-2.939500
C	4.477400	0.558200	-3.170900
C	5.526600	-1.282800	2.745200
H	5.635300	-2.152400	3.387600
C	-1.857900	2.763700	-2.678300
C	6.613900	-0.852800	1.973300
C	-0.522200	2.509000	-3.029900
C	4.154600	0.524600	1.944500
C	4.291800	-0.627300	2.737600
C	4.409000	1.887200	-1.105300
C	1.856400	3.326200	-3.609200
H	1.766600	2.996000	-4.650000
H	2.303300	4.324100	-3.672600
C	3.429900	1.351000	-3.668000
H	3.062300	1.179200	-4.676000
C	6.418700	0.278000	1.172200
H	7.240100	0.638600	0.567600
C	0.046700	4.809400	-2.680300
H	0.788500	5.601300	-2.719100
C	5.140900	-0.506500	-4.067500
C	-2.198900	4.076500	-2.320900
H	-3.228200	4.283200	-2.062600
C	6.318800	3.053200	0.068100
H	7.093300	2.434900	-0.401700
H	6.113500	3.844900	-0.661700
C	4.928000	0.838300	-1.877700
H	5.720900	0.243100	-1.442700
C	-1.271700	5.121900	-2.316200

C	-2.930200	1.686300	-2.857800
H	-3.575000	2.020400	-3.681900
H	-2.432100	0.783800	-3.200400
C	7.957100	-1.60410	2.047500
C	-1.659400	6.584000	-2.013900
C	6.860500	3.686000	1.355900
H	6.083900	4.329000	1.796600
H	7.061600	2.903900	2.098300
C	2.821800	2.210300	2.947800
H	2.892300	1.776000	3.951500
H	1.841100	2.669100	2.817200
H	3.601200	2.973900	2.842400
C	-0.267500	0.872900	-4.760400
H	0.424100	1.460100	-5.371600
H	-1.289400	1.049900	-5.109300
H	-0.031300	-0.187500	-4.859400
C	3.434200	4.992100	-1.020100
H	4.326600	5.050000	-0.388800
H	2.701000	5.720100	-0.666600
H	3.715200	5.232000	-2.051600
C	6.229700	-1.303900	-3.324400
H	7.049000	-0.661000	-2.988300
H	6.658700	-2.054700	-3.995100
H	5.828200	-1.829900	-2.451600
C	-1.375100	7.444900	-3.269200
H	-0.315400	7.438100	-3.541400
H	-1.663600	8.485400	-3.087000
H	-1.944300	7.081400	-4.130800
C	8.496800	-1.539900	3.496600
H	8.661500	-0.503500	3.808200
H	9.451000	-2.072400	3.571100
H	7.804900	-1.997300	4.209800
C	8.133000	4.513600	1.132800
H	8.907100	3.872300	0.689900
H	7.931600	5.298700	0.391200
C	9.021400	-1.000100	1.111800

H	8.712200	-1.037100	0.061700	C	-1.125000	-3.889400	3.580100
H	9.952200	-1.568500	1.199300	H	-1.058800	-3.996600	4.667900
H	9.248500	0.039900	1.367200	H	-1.438500	-4.867200	3.203700
C	7.749900	-3.083500	1.645800	C	-2.637800	-2.003700	4.310500
H	7.042500	-3.591500	2.308200	H	-2.139300	-2.074100	5.270700
H	8.698800	-3.627800	1.698400	C	-5.672100	0.521500	0.265000
H	7.370600	-3.163500	0.621600	H	-6.402800	0.209900	1.002600
C	4.089300	-1.511800	-4.587000	C	0.848200	-4.491600	2.106900
H	3.633500	-2.065000	-3.758500	H	0.258200	-5.343500	1.783400
H	4.557300	-2.243200	-5.254200	C	-4.110400	-0.184800	5.315700
H	3.293500	-1.016300	-5.152900	C	2.873600	-3.214800	2.084600
C	5.800100	0.203100	-5.275700	H	3.880100	-3.036900	1.729200
H	5.065800	0.745800	-5.878500	C	-6.019700	-2.474700	0.601400
H	6.292700	-0.527900	-5.925900	H	-6.652500	-1.877100	1.268600
H	6.554400	0.922400	-4.942200	H	-5.888900	-3.432900	1.118800
C	-0.828600	7.127600	-0.827700	C	-4.275100	-1.024500	2.876100
H	-1.082700	6.612200	0.103500	H	-5.074000	-0.316700	2.697800
H	-1.037000	8.192600	-0.680100	C	2.162600	-4.337500	1.637800
H	0.247700	7.023800	-0.997000	C	3.151400	-1.148000	3.588600
C	-3.150100	6.734300	-1.656300	H	3.575000	-1.464000	4.551200
H	-3.801200	6.424000	-2.480200	H	2.446500	-0.348400	3.818100
H	-3.370900	7.785200	-1.446100	C	-6.942500	2.727800	0.157700
H	-3.414700	6.158100	-0.765400	C	2.823200	-5.436000	0.778100
C	8.670500	5.149800	2.417800	C	-6.748700	-2.715300	-0.725600
H	7.931900	5.823500	2.866800	H	-6.129100	-3.358000	-1.369300
H	9.576500	5.732400	2.225200	H	-6.866200	-1.765800	-1.263100
H	8.918300	4.387200	3.164600	C	-3.338800	-1.645300	-2.752800
O	0.511500	-1.700900	4.467100	H	-2.496900	-2.199000	-3.164500
O	-2.441400	-3.655000	1.037200	H	-4.120100	-2.345300	-2.441000
O	-2.847400	-0.891900	-1.627100	H	-3.750200	-0.976800	-3.515500
C	-4.695700	-0.397300	-0.135100	C	0.859100	-2.022300	5.817500
C	-4.622800	-1.807500	0.467100	H	0.322200	-1.314500	6.452200
H	-4.029600	-2.416400	-0.216900	H	0.558600	-3.044400	6.078400
C	-2.862800	-2.790800	2.048500	H	1.934500	-1.917800	5.998900
C	0.270200	-3.616000	3.031700	C	-3.161500	-4.890800	0.963100
C	-2.214600	-2.862400	3.296200	H	-3.267000	-5.353800	1.950300
C	-3.675800	-1.077800	4.137300	H	-4.158900	-4.750800	0.532200
C	-4.853700	2.173900	-1.256600	H	-2.583000	-5.556200	0.317600
H	-4.934100	3.145000	-1.727600	C	-5.308700	0.716600	4.962700
C	2.346000	-2.316800	3.021100	H	-6.183500	0.132700	4.657700
C	-5.784600	1.809000	-0.280500	H	-5.596400	1.304300	5.839700
C	1.049000	-2.548500	3.510700	H	-5.070800	1.426700	4.163900
C	-3.798500	0.017600	-1.137900	C	3.116800	-6.646700	1.699100
C	-3.847300	1.304100	-1.699000	H	2.196800	-7.048200	2.134700
C	-3.889400	-1.858700	1.814600	H	3.601600	-7.450000	1.133200

$\begin{array}{llll}\text { C } & 0.079900 & 2.530800 & 0.540800\end{array}$
$\begin{array}{llll}\text { C } & -0.724300 & 3.551600 & 1.042600\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.255400 & 1.666200 & 2.316700\end{array}$
$\begin{array}{llll}\mathrm{H} & -1.807400 & -0.138800 & 1.500500\end{array}$
$\begin{array}{llll}\mathrm{H} & 1.018500 & 2.784300 & 0.060900\end{array}$
$\begin{array}{llll}\text { H } & -0.409500 & 4.582800 & 0.943200\end{array}$
$\begin{array}{llll}\text { C } & 0.575400 & 0.084600 & 0.188700\end{array}$
$\begin{array}{llll}\text { H } & 1.576500 & 0.448200 & -0.042600\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.664300 & -0.706100 & 0.937200\end{array}$
$\begin{array}{lllll}\mathrm{N} & 0.051300 & -0.596300 & -1.070500\end{array}$
$\begin{array}{llll}\mathrm{H} & 0.029800 & 0.073100 & -1.867400\end{array}$
$\begin{array}{lllll}\mathrm{H} & -0.937100 & -0.886500 & -0.959900\end{array}$
$\begin{array}{lllll}\text { C } & 0.921900 & -1.783300 & -1.442500\end{array}$
H $\quad 1.831400 \quad-1.364800 \quad-1.878900$
$\begin{array}{lllll}\mathrm{H} & 1.186500 & -2.274000 & -0.502700\end{array}$
C $\quad-0.962000 \quad-4.633700 \quad-4.063400$
$\begin{array}{lllll}\text { C } & -0.067500 & -3.699800 & -4.588300\end{array}$
$\begin{array}{lllll}\text { C } & 0.535700 & -2.770200 & -3.741500\end{array}$
$\begin{array}{lllll}\text { C } & 0.245800 & -2.759600 & -2.371700\end{array}$
$\begin{array}{llll}\text { C } & -0.647800 & -3.708400 & -1.851900\end{array}$
C $\quad-1.247700 \quad-4.640100 \quad-2.695300$
$\begin{array}{lllll}\mathrm{H} & 0.167800 & -3.712600 & -5.646600\end{array}$
$\begin{array}{lllll}\text { H } & 1.256700 & -2.067100 & -4.145700\end{array}$
$\begin{array}{llll}\mathrm{H} & -0.878300 & -3.717300 & -0.789800\end{array}$
H $\quad-1.931100 \quad-5.380500 \quad-2.294200$
C $\quad-1.674900 \quad-5.599500 \quad-4.977300$
$\begin{array}{llll}\text { F } & -0.972100 & -5.839200 & -6.101300\end{array}$
F $\quad-1.903400-6.780800-4.368400$
F $\quad-2.877600 \quad-5.105100 \quad-5.351700$
$\begin{array}{llll}\text { C } & -2.836100 & 4.341400 & 2.155200\end{array}$
F $\quad-3.767800 \quad 4.666800 \quad 1.216000$
F $\quad-3.522300 \quad 3.981300 \quad 3.262500$
F $\quad-2.161200 \quad 5.474900 \quad 2.437600$
\qquad
Energy $=-4839.28065$ a.u.

0 imaginary frequency

CHAPTER V

Calixarenes with aromatic EDGs and EWGs

5.1 Introduction

In the previous chapters the possibilities of functionalizing the calixarene scaffold at the methylene bridges and with adamantyl groups have been explored, revealing interesting threading abilities. Hence, in this chapter, it was decided to study the influence of aromatic electron-poor or electron-rich groups towards the calixarene threading. Furthermore, it is interesting to observe that the introduction of an aromatic group on the calixarene scaffold can determine a new recognition site thanks to the formation of $\pi-\pi$ interactions and for this reason these macrocycles can be defined as bifunctional calixarenes.

5.2 Calixarene with Electron Donating Groups

5.2.1 Synthesis of a calixarene with electron donating groups

Thanks to the results shown in the previous chapter, it was decided to focus the attention on bifunctional macrocycles with electron donating groups (EDG). Therefore, we planned to synthesize a derivative bearing an extended electron-rich aromatic substituent to the upper rim and completely alkylated at the lower rim (Figure 5.1).

Figure 5.1. Bifunctional calix[6]arene with EDGs at the upper rim.
The synthetic strategy developed for the synthesis of such bifunctional derivative 49 is shown in Scheme 5.1. Starting from p-tert-butilcalix[6]arene, 2 out of 6 hydroxyl groups were protected by benzylation at the 1,4 -positions. Then the remaining phenolic units were methylated to give derivative $\mathbf{5 0}$. The previously protected sites were then freed by hydrogenolysis with Pd / C to obtain derivative 51. This latter was then brominated (derivative 52) at the upper rim and alkylated at the lower rim with MeI (derivative 53). As described in chapter 3, the complete alkylation of the lower rim leads to interpenetrated complexes with a higher association constant in comparison to the partial-alkylation.

(64\%)

Scheme 5.1. Synthesis of derivative 49.
Finally, electron rich aromatic substituents were introduced at the upper rim of derivative 53, thanks to a Suzuki reaction. Given the complexity of the calixarene substrate, it was necessary to resort to a palladium-based catalyst, XPhos Pd G3 (Figure 5.2), which has been successfully used with other macrocycles of a similar complexity. ${ }^{60}$

[^36]

Figure 5.2. Structures of XPhos Pd G3.
The new derivative 49 was completely characterized by NMR spectroscopy and mass spectrometry. In the proton spectrum (Figure 5.3) it is possible to observe singlets related to the methoxy groups of the pyrogallol substituents. Furthermore, from the broad $\mathrm{ArCH}_{2} \mathrm{Ar}$ singlets at about 4 ppm , it can be deduced that this new derivative has a high conformational mobility.

Figure 5.3. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $49\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

5.2.2 Threading of calixarene with EDGs

Initially, a threading study of host 53 was carried out with dibenzyl ammonium axle (Scheme 5.2). The proton NMR spectrum confirmed the pseudorotaxane formation driven by hydrogen bonding interactions between the calixarene oxygens and the ammonium group.

Scheme 5.2. Threading experiment between derivative 49 and derivative $16 \mathbf{b}^{+}$.
In fact, in the region between 4 and 6 ppm , the typical shielded signals of the axle (o , m , and p at $4.88,5.74$, and 6.24 ppm , respectively) can be easily seen (Figure 5.4). Furthermore, the calix-wheel shows a cone conformation highlighted by two $\mathrm{ArCH}_{2} \mathrm{Ar}$ AX systems (4.48/3.84 ppm and 4.36/3.52 ppm).

Figure 5.4. ${ }^{1} \mathrm{H}$ NMR spectra of mixture of derivative $\mathbf{4 9}$ and $\mathbf{1 6 b}{ }^{+} 1: 1\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298\right.$ $\mathrm{K})$.

Subsequently, the threading ability of derivative 49 was extended to a non-symmetric axle, butylbenzylammonium TFPB 16e ${ }^{+}$(Scheme 5.3). As in previous instances, two different stereoisomers, (endo-alkyl)-16e ${ }^{+} \subset 49$ and (endo-benzyl)-16e ${ }^{+} \subset 53$, can be formed.

Scheme 5.3. Threading experiment between derivative 49 and derivative $16 e^{+}$.
In the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture, the presence of shielded alkyl signals at negative chemical shift values and the absence of shielded benzyl resonances were
clearly visible. This confirms, that also in this case, the endo-alkyl rule, discussed in chapter 1 , is valid. In addition, it is also clear that calixarene 49 assumes a cone conformation, as evidenced by the $\mathrm{ArCH}_{2} \mathrm{Ar}$ AX systems present between 4.5 and 3.5 ppm, when complexed by the ammonium salt (Figure 5.5).

Figure 5.5. ${ }^{1} \mathrm{H}$ NMR spectrum of mixture of derivative 49 and $\mathbf{1 6 e}^{+}$TFPB ${ }^{-1: 1}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

5.3 Calixarenes with Electron Withdrawing Groups

5.3.1 Synthesis of calixarenes with EWGs

Initially, the study was focused on bifunctional calixarenes with electron withdrawing groups (EWGs) and, therefore, three different macrocycles were designed for this purpose. In detail, as EWGs were chosen pyridinium rings, viologen units, and fluorobenzyl substituents to give derivatives $\mathbf{5 4}^{\mathbf{2 +}}, \mathbf{5 5}^{\mathbf{4 +}}$, and 56, respectively (Figure 5.6).

$54^{2+}(\mathrm{Cl})_{2}{ }^{-}$

$55^{4+}(\mathrm{X})_{4}^{-}$

56

Figure 5.6. Bifunctional Calixarenes with EWGs.

The introduction of pyridinium and viologen units of derivatives $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{5 5}^{\mathbf{4 +}}$ could be possible by means of the Zincke's reaction (Scheme 5.4), which allows the direct $\mathrm{N}-\mathrm{C}$ linkage between a nitrogenous heterocycle and an aromatic nucleus.

Scheme 5.4. Synthetic procedure of Zincke reaction.
Therefore, in order to obtain derivative $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{5 5}^{\mathbf{4 +}}$, two different Zincke's salts ${ }^{61}$ are necessary (Figure 5.7) which should be reacted with calix[6]arene $\mathbf{6 0}$ bearing two 4 -aminophenol units in distal $(1,4)$ positions.

57

58

Figure 5.7. Zincke's salts 57 and 58.
Scheme 5.5 shows the synthetic strategy developed for the synthesis of the precursor 60 obtainable from the previously described derivative 51. In particular, two nitro groups were introduced at the 1,4 positions by ipsonitration to give $\mathbf{5 9}$. This latter was subsequently reduced by Nickel/Raney in H_{2} atmosphere to give $\mathbf{6 0}$.

Scheme 5.5. Synthesis of derivative $\mathbf{6 0}$.
The Zincke 57 was obtained by reaction of pyridine $\mathbf{6 1}$ with 2,4-dinitrochlorobenzene 62 (Scheme 5.6a). Instead, its analogue 58 was obtained by reacting 4,4'-bipyridine 63 with 2,4-dinitrochlorobenzene 62 to obtain monocation 64 . This latter was then methylated with iodomethane to obtain 59 (Scheme 5.6b).

[^37]

Scheme 5.6. (a) Synthesis of Zincke's salt 57; (b) Synthesis of Zincke's salt 58.
The reaction between derivative 60 and Zincke salt 57 (Scheme 5.7) under microwave irradiation, at $100^{\circ} \mathrm{C}$ and using as a solvent a mixture of $\mathrm{CHCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}$ (4:10:0.5), allowed the synthesis of derivative 54, a bifunctional calix[6] arene bearing two pyridinio units at the upper rim,

MW, $100^{\circ} \mathrm{C}, 3 \mathrm{~h}$

$54^{2+}(\mathrm{Cl})_{2}{ }^{-}$
(26\%)

Scheme 5.7. Synthesis of derivative $\mathbf{5 4}^{\mathbf{2 +}}(\mathrm{Cl})_{2}{ }^{-}$.
The Zincke reaction follows a complex mechanism whereby two molecules of the amino derivative react with the Zincke salt by connecting its NH_{2} group to position 2 on the pyridine ring. Subsequently, there is a rearrangement and the complete opening of the nitrogenous ring. Then the breaking of the bond with the nitrobenzene group is observed, after the attack of a second amine group. Finally, the closure of a new pyridine ring occurs, which includes the nitrogen of the amino derivative (Scheme 5.8).

R=alkyl, benzyl, phenyl, ecc...
Scheme 5.8. Zincke reaction mechanism.
The new pyridinio-calix[6]arene $\mathbf{5 4}^{\mathbf{2 +}}$ was completely characterized by NMR spectroscopy and mass spectrometry. It is important to highlight that this compound is present in solution in a preferential 1,3,5-alternate conformation, as deduced by the pattern of its $\mathrm{ArCH}_{2} \mathrm{Ar}$ signals including one tight AB system and one singlet (Figure 5.8).

Figure 5.8. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{5 4}^{\mathbf{2 +}}(\mathrm{Cl}) 2^{-}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

The synthesis of bis-viologen-calix[6]arene 55 ${ }^{\mathbf{4 +}}$ was performed in EtOH/THF 4/1 at $70^{\circ} \mathrm{C}$, under conditions like reported by Bucher ${ }^{62}$ in 2015 (Scheme 5.9).

Scheme 5.9. Synthesis of derivative $\mathbf{5 5}^{\mathbf{4 +}}$.
Compound $\mathbf{5 5}^{\mathbf{4 +}}$ was also fully characterized by NMR spectroscopy and mass spectrometry. In this case, it is conformationally mobile (Figure 5.9) as testified by the broad signals in its ${ }^{1} \mathrm{H}$ NMR spectrum corresponding to interconversions occurring on the NMR timescale (Figure 5.10).

Figure 5.9. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{5 5}^{4+}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

[^38]The formation of 55 is confirmed by the mass spectrum due to the presence of the molecular peak at $1255.7243\left(\mathrm{~m} / \mathrm{z}:[\mathrm{M}]^{+}\right.$Calcd for $\mathrm{C}_{84} \mathrm{H}_{95} \mathrm{~N}_{4} \mathrm{O}_{6}$ 1255.7246), and of the peak at $1358.6359\left(\mathrm{~m} / \mathrm{z}:\left[\mathrm{M}^{+} \mathrm{I}\right]^{+}\right.$Calcd for $\left.\mathrm{C}_{84} \mathrm{H}_{96} \mathrm{IN}_{4} \mathrm{O}_{6} 1358.6369\right)$, related to the molecule 55 carrying an iodide ion. These peaks are mono-charged because the viologen units are reduced in the MS source, as reported in the literature. ${ }^{63}$

Figure 5.10. MALDI-MS spectrum of derivative $\mathbf{5 5}^{\mathbf{4 +}}$.
Calix[6]arene 56, bearing two tetrafluorobenzyl EWGs, was obtained by alkylation with tetrafluorobenzyl bromide of the free phenolic groups of the known derivative 50, in the presence cesium carbonate (Scheme 5.10). ${ }^{64}$

Scheme 5.10. Synthesis of derivative 56.
56 was obtained in good yields and was exhaustively characterized by NMR spectroscopy and mass spectrometry. Figure $\mathbf{5 . 1 1}$ shows its proton NMR spectrum from which one AX system and one singlet can be clearly seen for $\mathrm{ArCH}_{2} \mathrm{Ar}$ groups, indicating the presence of a preferred 1,2,3-alternate conformation.

[^39]

Figure 5.11. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $56\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

5.3.2 Threading of calixarenes with EWGs

The threading abilities of the above calixarenes with EWGs were studied by using two known axles having TFPB as a counterion (Figure 5.12). As aforementioned, this anion forms a weakly coordinating ion pair facilitating the insertion of the axle into the cavity of the macrocycle. The complexation tests were performed by mixing host and guest in a $1: 1$ ratio in deuterated chloroform.

16a'TFPB-

TFPB ${ }^{-}$

$16 b^{+}$TFPB ${ }^{-}$

Figure 5.12. Linear ammonium systems.
Derivative 54 was initially tested with both ammonium axles (Figure 5.13). From the ${ }^{1} \mathrm{H}$ NMR spectra, some changes in the host signals can be observed, but there are no typical shielded signals. This indicate that no pseudorotaxanes are formed, whereas anion exchanges between host and guest are occurring.

Figure 5.13. ${ }^{1} \mathrm{H}$ NMR spectra ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of (a) derivative $\mathbf{5 4}^{\mathbf{2 +}}$, (b) mixture derivative $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{1 6} \mathbf{b}^{+}$, (c) mixture derivative $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{1 6} \mathbf{a}^{+}$.

To confirm this data, the counterion exchange on derivative $\mathbf{5 4}^{\mathbf{2 +}}(\mathbf{C l})_{2}{ }^{-}$was carried out to obtain derivative $\mathbf{5 4}^{\mathbf{2 +}}(\mathbf{T F P B}) 2^{-}$(Scheme 5.11).

$54^{2+}(\mathrm{Cl})_{2}{ }^{-}$

$54^{2+}(\text { TFPB })_{2}{ }^{-}$
(80%)

Scheme 5.11. Synthesis of derivative $\mathbf{5 4}^{\mathbf{2 +}}(\mathrm{TFPB}) 2^{-}$.
The proton spectrum (Figure 5.14) of the new derivative $\left.\mathbf{5 4}^{\mathbf{2 +}} \mathbf{(T F P B}\right)_{2}{ }^{-}$confirms the previous hypothesis. Therefore, derivative $\mathbf{5 4}^{\mathbf{2 +}}$ does not form pseudorotaxane systems.

Figure 5.14. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{5 4}^{2+}(\mathrm{TFPB}) 2^{-}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.
Unfortunately, derivative $\mathbf{5 5}^{\mathbf{4 +}}$ is insoluble in all solvents commonly used for threading experiment. For this reason, its threading abilities remains untested.

Finally, derivative 56 was tested. When it was mixed with $\mathbf{1 6 b}^{+}$(1:1 ratio) in chloroform, interesting changes appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 5.15b) indicative of the formation of pseudorotaxane $\mathbf{1 6 b}^{+} \subset 56$. Shielded benzyl signals related to the endo-cavity axle, were seen in the $6.5-4.5 \mathrm{ppm}$ region.

In a similar way, the mixture of $\mathbf{5 6}$ and $\mathbf{1 6 a}^{+}$($1: 1$ ratio), led to shielded alkyl signals, related to the endo-cavity axle, in the negative region of the spectrum (Figure 5.15c).

Usually, the threading of derivatives with π-conjugated system is also studied by UV spectroscopy. Therefore, the UV absorption properties of above derivatives were explored. Although derivatives $\mathbf{5 4}$ and $\mathbf{5 5}$ did not show appreciable threading abilities, the latter exhibited interesting chromogenic properties, which will be discussed in the next paragraph.

Figure 5.15. ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) of (a) derivative 56, (b) mixture derivative 56 and $\mathbf{1 6} \mathbf{b}^{+}$, (c) mixture derivative 56 and $\mathbf{1 6 a}^{+}$.

5.4 Interesting chromogenic properties of calixarenes with EWGs

Chromogenic materials are compounds that are able to respond to one or more external stimuli by varying their optical properties. This peculiar characteristic has led, in recent years, to a growing interest in the synthesis and study of new materials with such properties. The possibility to respond to various factors leads to the possible application of these materials in various fields. The most emblematic examples are photochromic materials, i.e. those materials capable of responding to a variation on the received electromagnetic radiation, and thermochromic materials, that respond to the variation in temperature.

Chromogenic substances are given by molecules capable of absorbing in the UV/visible region, as they are made up in most cases by π-conjugated structures. The presence of N -heteroaromatic or N -heterobiaryl systems coupled to electron density donor and acceptor groups gives rise to interesting structures known as "push-pull" systems (Figure 5.16).

Figure 5.16. Push-Pull system.
The push-pull chromophore ensures that after the absorption of the light, the charge is transferred from the donor group to the acceptor group, thus defining an excited state with a strong variation of the dipole moment and therefore a high absorption intensity. Among the most well-known scientist in the literature for the study of these properties, Cristian Reichardt stands out, who has focused his studies on compounds having an N-phenoxide pyridinium group. These derivatives have shown to have different chromogenic properties, such as piezochromism, thermochromism, and halochromism (Figure 5.17).

Solvatochromism is one of the most studied chromogenic properties. This phenomenon carries out a change in absorption and/or emission spectra of a chromophore by changing the solvent polarity. ${ }^{65}$ It is a complex phenomenon in which the secondary interactions between solvent and chromophore play a crucial role. In addition to solvatochromism, another noteworthy chromogenic property is halochromism, which was introduced for the first time in 1902 by Baeyer and Villiger. This phenomenon is based on the change in the colour of the solution following the change in its pH . Therefore, a chromatic response to an acid/base reaction is noticed. In detail, a variation of the electron absorption bands is observed because of the degree of protonation of the chromophore, unlike the solvatochromism, which is based on the different stabilization of the electronic states.

Figure 5.17. Reichardt Betaine's

[^40]Given the chromogenic properties of the N-phenoxide unit studied by Reichardt, it has been observed that the previously synthesized calixarene derivatives $\mathbf{5 4}$ and $\mathbf{5 5}$ have similar chromogenic units incorporated in the macrocycle scaffold (Figure 5.18).

54^{2+}

55^{4+}

Figure 5.18. Derivatives $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{5 5}^{\mathbf{4 +}}$ with chromogenic units.

5.4.1 Halochromism of derivatives $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{5 5}{ }^{4+}$

To determine whether the calixarene macrocycle bearing two pyridinium units could have halochromic properties, a titration was carried out by gradually adding a solution of tetrabutylammonium hydroxide (TBAOH) as a base to the solution of $\mathbf{5 4}^{\mathbf{2 +}}$ in acetonitrile (Scheme 5.12).

54^{2+}

54^{+}

Scheme 5.12. Deprotonation of derivative $\mathbf{5 4}^{2+}$ with tetrabutylammonium hydroxide in acetonitrile to give $\mathbf{5 4}^{+}$.

What has been observed, by increasing pH , is a change in colour of the solution from colourless to pink with relative appearance of the absorption band at 487 nm (Figure 5.19).

Figure 5.19. UV/vis titration of derivative $\mathbf{5 4}^{\mathbf{2 +}}$ with $(n \mathrm{Bu})_{4} \mathrm{NOH}$ in acetonitrile.
Subsequently, a similar study was conducted on derivative 55 ${ }^{\mathbf{4 +}}$ (Scheme 5.13). In this case, by increasing pH , a change in colour of the solution from yellow to blue (Figure 5.20) was observed, with relative shifting of the absorption band respectively from 386 nm to 583 nm (Figure 5.21). These results clearly indicate that derivatives $\mathbf{5 4}^{\mathbf{2 +}}$ and $\mathbf{5 5}^{\mathbf{4 +}}$ have interesting halochromic properties.

Scheme 5.13. Deprotonation of derivative $\mathbf{5 5}^{\mathbf{4 +}}$ with tetrabutylammonium hydroxide in acetonitrile to give $\mathbf{5 5}^{\mathbf{3 +}}$.

Figure 5.20. UV/vis titration of derivative $\mathbf{5 5}^{\mathbf{4 +}}$ with $(n \mathrm{Bu})_{4} \mathrm{NOH}$ in acetonitrile.

The further addition of base leads to a hypsochromic shift of the absorption band with consequent chromatic variation from blue (at 583 nm) to red (at 484 nm). This variation is given by the formation of the radical viologen as shown in figure 5.21 and as previously reported in the literature. ${ }^{66}$

Figure 5.21. addition of a further base at derivative 55.

5.4.2 Solvatochromism of derivatives 54^{2+} and 55^{4+}

To study the dependence of the absorption properties of $\mathbf{5 4}^{\mathbf{2 +}}$ on the nature of the medium, solutions of equal title in solvents of different polarity, were prepared. In Figure 5.22, the solvatochromic behaviour of $\mathbf{5 4}^{\mathbf{2 +}}$ is shown. In fact, a chromatic variation is evident as the polarity of the solvent changes. The solutions change from yellow to pink when the polarity of the medium decreases. By analysing the UV/vis spectra, this phenomenon can be defined as negative solvatochromism. A hypsochromic shift of the band is observed when polarity of the solvent increases. The absorption band moves from 514 nm for DMSO up to 432 nm for methanol.

[^41]

Figure 5.22. UV/V is spectra of derivative $\mathbf{5 4}^{\mathbf{2 +}}$ in different solvents.
The study on solvatochromic properties was then extended to derivative $\mathbf{5 5}^{\mathbf{4 +}}$. In this case, a very strong chromatic variation is evident as the polarity of the solvent changes. The solutions change from pink to light blue when the polarity of the medium decreases. Also, in this case, it is possible observe a negative solvatochromism. In fact, as the polarity of the solvent increases, a hypsochromic shift of the band is observed (Figure 5.23) going from 700 nm for DMSO up to 510 nm for water.

Figure 5.23. UV/Vis spectra of derivative $\mathbf{5 5}^{\mathbf{4 +}}$ in different solvents.

5.4.3 Chromogenic properties in calix[4]arene

Given the interesting properties previously shown, it was decided to further investigate these properties on a calixarene of smaller size. ${ }^{67}$ These derivatives were obtained in analogy to calix[6]arene macrocycle, as described in the previous paragraph (Scheme 5.14).

67

MW, $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$

(44\%)

(44\%)

Scheme 5.14. Synthesis of derivatives $\mathbf{6 8}^{2+}$ and $\mathbf{6 9}^{4+}$.
Once derivative $\mathbf{6 8}^{\mathbf{2 +}}$ was obtained, deprotonation of the hydroxyl groups was carried out by using $n-\mathrm{Bu}_{4} \mathrm{NOH}$ as a base (Scheme 5.15). This step led to the formation of the N-phenoxide pyridinium unit embedded into the calix[4]arene scaffold.

Scheme 5.15. Deprotonation of derivative $\mathbf{6 8}^{\mathbf{2 +}}$ with tetrabutylammonium hydroxide in methanol to give $\mathbf{6 8}^{+}$.

[^42]This deprotonation was followed through UV/vis spectrophotometry and, from the basic titration conducted in methanol (Figure 5.24), the appearance of a new absorption band at 480 nm related to the formation of the chromogenic unit, was observed. In fact, as the amount of added base increases, the intensity of the new band relative to the deprotonated species increases.

Figure 5.24. UV/vis titration of derivative $\mathbf{6 8}^{\mathbf{2 +}}$ with $(n-\mathrm{BU})_{4} \mathrm{NOH}$ in methanol.
Subsequently, derivative $\mathbf{6 8}^{+}$was dissolved in water and from the comparison with the spectrum recorded in methanol, a negative solvatochromic effect was observed. In fact, the absorption band related to the phenoxide unit undergoes a hypsochromic shift from 515 nm to 420 nm as the polarity of the medium increases (Figure 5.25).

Figure 5.25. Solvatochromism of derivative $\mathbf{6 8}^{+}$.
Subsequently, derivative 69^{4+} was also studied (Scheme 5.16) which, like the previous one, had never been subjected to UV / vis studies to date.

Scheme 5.16. Deprotonation of derivative $\mathbf{6 9 4 +}$ with tetrabutylammonium hydroxide in acetonitrile to give $\mathbf{6 9}^{3+}$.

Initially, a new 610 nm band was observed which increases as the 366 nm band decreases following the gradual addition of $(\mathrm{n}-\mathrm{Bu})_{4} \mathrm{NOH}$ (Figure 5.26).

Figure 5.26. UV/vis titration of derivative $\mathbf{6 9 4 +}$ with $(n-\mathrm{BU})_{4} \mathrm{NOH}$ in acetonitrile.
However, this band does not grow high, as the subsequent addition of base leads to a drastic change in the UV spectrum and the solution turns from yellow to green and finally to brown (Figure 5.27).

Figure 5.27. Addition of a further base at derivative 69.

5.4.4 Computational Studies

The experimental investigation has been accompanied to and integrated with quantum chemical calculations using Density Functional Theory (DFT), and its time-dependent (TD-DFT) extension, in combination with the Polarizable Continuum Model (PCM) ${ }^{17}$ to confirm that the colour change is due to deprotonation of the macrocycles under examination. The D3 correction proposed by Grimme ${ }^{18}$ has been also included to account for dispersion effects. All calculations have been performed using the B3lyp functional in combination with the $6-31 \mathrm{G}(\mathrm{d})$ basis set for the geometry optimizations and the $6-31+G(d)$ for the electronic excitations. The excitation energies have been finally corrected for the effects of the relaxation of the solvent polarization through the corrected Linear Response model. ${ }^{19}$ The G09 software has been used for all the calculations. ${ }^{20}$ When the mono-deprotonated structure $\mathbf{5 4}^{+}$was used to simulate the absorption spectrum, it was observed the appearance of a new low-energy excitation at 437 nm instead of 288 nm as for the protonated derivative $\mathbf{5 4}^{2+}$ (Figure 5.28). This feature leads the whole picture in much better agreement with the measured spectra.

Figure 5.28. Simulated UV/vis spectra of (a) derivative $\mathbf{5 4}^{\mathbf{2 +}}$ and (b) derivative $\mathbf{5 4}^{+}$.
Furthermore, the HOMO and the LUMO orbitals of the transition (S1 $\leftarrow \mathrm{S} 0$) were obtained (Figure 5.29).

Figure 5.29. The molecular orbitals involved in the lowest excitation for the monodeprotonated betainic form $\mathbf{5 4}^{+}$.

Similarly, the UV spectra of the protonated and deprotonated derivatives $\mathbf{5 5}^{\mathbf{4 +}} / \mathbf{5 5}^{\mathbf{3 +}}$, $68{ }^{2+} / 68^{+}$and $69^{4+} / 69^{3+}$ were simulated and, also, in these cases the calculations confirmed the experimental data. Furthermore, for the derivative $\mathbf{6 8}^{+}$the solvatochromism was also analysed by simulating the UV spectrum in the two different solvents, water, and methanol. The obtained results show that the low-energy excitation ($\mathrm{S} 1 \leftarrow \mathrm{~S} 0$) moves from 481 nm to 463 nm when we include the H -bonded water molecule; the latter, in fact, stabilizes the HOMO orbital thus explaining the observed blue-shift. If now we compare this value with the one obtained in methanol, we observe that this band is characterized by a negative solvatochromism in agreement with experiments. This effect is mainly due to the larger stabilization of the HOMO orbital by hydrogen-bonding.

5.5 Conclusion

In conclusion, an efficient synthesis of four new bifunctional calixarene derivatives was reported in this chapter. These derivatives were fully characterized by NMR spectroscopy and mass spectrometry. Subsequently, the new synthesized hosts were subjected to preliminary threading studies with known monoammonium axles. The complexation tests carried out showed that a bifunctional calixarene derivative bearing EDGs has interesting complexing ability towards linear ammonium axles. Instead, derivative 56 showed only weak interactions. It has been noted that derivative 56 changes its conformation from 1,2,3-alternate to cone upon threading. Finally, derivatives 54 and 55 have shown peculiar chromogenic properties such as halochromism and solvatochromism.

5.6 Experimental Section

5.6.1 General comments

Reactions under anhydrous conditions were conducted under an inert atmosphere (nitrogen) using dry solvents. The commercial reagents were purchased by Aldrich and TCIchemicals and were used without further purification. The reactions were controlled by thin-layer chromatography (TLC) with Macherey-Nagel plates coated with silica gel (0.25 mm) with fluorescence indicator UV254 and visualized using UV light and nebulization with an indicator solution of $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$. The reaction temperatures were measured externally using electronic thermometers. The reaction products were purified by Macherey-Nagel silica gel chromatography (60, 70-230 mesh). NMR spectra were recorded on Bruker Avance-600 spectrometer [600 $\left({ }^{1} \mathrm{H}\right)$
and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$], Bruker Avance-400 spectrometer [400 $\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$]. Chemical shifts are reported relative to the residual solvent peak $\left(\mathrm{CHCl}_{3}: \delta 7.26\right.$, $\left.\mathrm{CDCl}_{3}: \delta 77.16\right)$ Standard pulse programs, provided by the manufacturer, were used for 2D NMR experiments. High-resolution Mass spectra were acquired with a Bruker Solarix spectrometer equipped with a Tesla magnet. It was used a MALDI as methods of sample ionization. DHB was used as matrix. Samples were prepared in CHCl_{3} (1 $\mathrm{mg} / \mathrm{mL}$).

5.6.2 Calixarenes with Electron Donating Groups

5.6.2.1 Synthesis of derivative 49

Derivative 52

52

Derivative $\mathbf{5 1}$ was dissolved in dry DCM and, drop by drop, a solution of bromine in dry DCM was added. The reaction was carried out in the dark for 3 hours, after which the reaction mixture was evaporated, and the crude was purified by precipitation with methanol. Derivative $\mathbf{5 2}$ was obtained with a yield of 90 \%. ${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.46$ (s, -OH, 2H), $\delta 7.00$ (m, ArH-OCH3, $8 \mathrm{H}), \delta 6.85(\mathrm{~s}, \mathrm{Br}-\mathrm{ArH}-\mathrm{OH}, 4 \mathrm{H}), \delta 3.95$ (s, $\left.-\mathrm{ArCH}_{2} \mathrm{Ar}-, 4 \mathrm{H}\right), \delta 3.80\left(\mathrm{~s},-\mathrm{ArCH}_{2} \mathrm{Ar}-\right.$, $8 \mathrm{H}), \delta 3.22\left(\mathrm{~s},-\mathrm{OCH}_{3}, 12 \mathrm{H}\right), \delta 1.17\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}): \delta 152.9,151.1,147.1,133.9,131.2,130.1,129.9,126.9,126.2,111.6,61.3$, 34.2, 31.3, 31.0. MALDI-MS (m/z) calcd for $[\mathrm{M}]^{+}=1074.3832$ found 1074.3850. calcd for $\left[\mathrm{M}^{+} \mathrm{Na}\right]^{+}=1097.3724$ found 1097.3758 . calcd for $\left[\mathrm{M}^{+} \mathrm{K}\right]^{+}=1113.3463$ found 1113.3495.

Figure 5.30. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $52\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.31. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative 52 ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure 5.32. MALDI-MS spectrum of derivative 52.

Derivative 53

53

Derivative 52 was dissolved in acetone. Subsequently, Cesium carbonate was added to the reaction. After 30 minutes methyl iodide was added, and the reaction was carried out under reflux for about 24 hours. The reaction mixture was evaporated, and the crude was extracted with chloroform and 1 N HCl . The organic phases were evaporated and subsequently purified by precipitation in methanol. Derivative $\mathbf{5 3}$ as a white solid was obtained with an overall yield of 98%. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}): \delta 7.00\left(\mathrm{~m}, \mathrm{ArH}-\mathrm{OCH}_{3}, 8 \mathrm{H}\right), \delta 6.95\left(\mathrm{~m}, \mathrm{ArH}-\mathrm{OCH}_{3}, 4 \mathrm{H}\right) \delta 3.94\left(\mathrm{~s},-\mathrm{ArCH}_{2} \mathrm{Ar}-\right.$, 12H), $\delta 3.26\left(\mathrm{~s},-\mathrm{OCH}_{3}, 6 \mathrm{H}\right), \delta 3.03\left(\mathrm{~s},-\mathrm{OCH}_{3}, 12 \mathrm{H}\right), \delta 1.17\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right)$. ${ }^{13} \mathbf{C}$ NMR ($100.61 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 155.1,153.8,152.4,146.2,137.1,133.7$, 132.7, 131.2, 126.5, 125.8, 116.3, 60.3, 60.0, 34.2, 30.2. MALDI-MS (m/z) calcd for $[\mathrm{M}]^{+}=1102.4145$ found 1102.4114. calcd for $\left[\mathrm{M}^{+} \mathrm{Na}\right]^{+}=1125.4037$ found 1125.4103. calcd for $\left[\mathrm{M}^{+} \mathrm{K}\right]^{+}=1141.3776$ found 1141.3798 .

Figure 5.33. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{5 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.34. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative 53 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure 5.35. MALDI-MS spectrum of derivative 53.

Derivative 49

49

Derivative 53 was dissolved in 1,2dimethoxyethane and water. After that, boric acid, XPhos Pd G3 palladium catalyst and potassium carbonate were added to the mixture reaction. The reaction was carried out at 80 degrees for 3 hours under magnetic stirring. Subsequently, the reaction mixture was cooled to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the mixture was washed with water and a saturated solution of NaCl . The organic phases were collected, dried, and filtered. Purification was carried out by chromatography with eluents $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} 90: 10$. Derivative 49 as a white solid was obtained with yield of $21 \% .{ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 7.14$ (s, ArH $\left.\mathrm{OCH}_{3}, 4 \mathrm{H}\right), \delta 7.12\left(\mathrm{~s}, \mathrm{ArH}-\mathrm{OCH}_{3}, 4 \mathrm{H}\right), \delta 6.90\left(\mathrm{~s}, \mathrm{ArH}-\mathrm{OCH}_{3}, 4 \mathrm{H}\right) \delta 6.56(\mathrm{~s}, \mathrm{ArH}-$ $\left.\left(\mathrm{OCH}_{3}\right)_{3}, 4 \mathrm{H}\right) \delta 3.97-3.92\left(\mathrm{~d}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}, 12 \mathrm{H}\right), \delta 3.86-3.83(\mathrm{~s}, \mathrm{OCH}, 18 \mathrm{H}), \delta 3.40$ $\left(\mathrm{s}, \mathrm{Ar}-\mathrm{OCH}_{3}, 6 \mathrm{H}\right), \delta 2.91\left(\mathrm{~s}, \mathrm{Ar}^{2}-\mathrm{OCH}_{3}, 12 \mathrm{H}\right) \delta 1.08\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 155.5,154.0,153.3,145.9,137.2,136.9,136.0$ 135.1, $133.8,133.3,126.2,126.0,103.9,60.9,60.3,59.8,56.3,55.9,34.0,31.3,31.3,30.7$, 30.6, 29.7. HRMS: $(\mathrm{m} / \mathrm{z})$ calcd for $\left[\mathrm{M}^{+} \mathrm{Na}\right]^{+}=1276.72093$ found 1276.72134 .

Figure 5.36. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{4 9}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.37. MALDI-MS spectrum of derivative 49.

5.6.2.2 Synthesis of pseudo[2]rotaxanes

A 1:1 mixture of calix[6]arene derivative and TFPB linear system was dissolved in 0.5 mL of CDCl_{3}. In detail, in Table 5.1 we reported concentration using for calix[6] arene derivative and for axles. Then, the solution was transferred in an NMR tube for 1D and 2D NMR spectra acquisition.

Table 5.1. Amount of hosts and guests for complexation experiments.

Pseudo[2]rotaxanes	Derivative 49		Axle (16b ${ }^{+}$or 16e ${ }^{+}$)		CDCl_{3}
	(mg)	(mmol)	(mg)	(mmol)	(ml)
$16 b^{+} \subset 49$	2.01	$1.56 \cdot 10^{-3}$	1.66	$1.56 \cdot 10^{-3}$	0.5
$16 \mathrm{e}^{+} \subset 49$	2.00	$1.56 \cdot 10^{-3}$	1.61	$1.56 \cdot 10^{-3}$	0.5

Pseudo[2]rotaxane $16 b^{+} \subset 49$

Figure 5.38. 2D COSY spectrum of $\mathbf{1 6 b}^{+} \subset \mathbf{4 9}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.39. 2D HSQC spectrum of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{4 9}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Pseudo[2]rotaxane $16 b^{+} \subset 49$

Figure 5.40. 2D COSY spectrum of $\mathbf{1 6 b}^{+} \subset \mathbf{4 9}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

5.6.3 Calixarenes with Electron Withdrawing Groups

5.6.3.1 Synthesis of derivatives with Electron Withdrawing Groups

Derivative 60

60

Derivative 59 ($0.13 \mathrm{~g}, 0.129 \mathrm{mmol}$) was dissolved in 200 ml of DMF. Subsequently, $\mathrm{Ni} /$ Raney (previous activation) was added to the reaction mixture. Finally, vacuum / H_{2} cycles have been carried out. Stirring was continued overnight at room temperature. Afterwards, reaction was stopped by filtration of solution reaction on celite and solvent was evaporated. Derivative 60 was obtained with 96% yield ($0.12 \mathrm{~g}, 0,124$ mmol). ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 8.03$ (s, -OH, 2H), 7.02 (overlapped, $\mathrm{ArH}, 8 \mathrm{H}$), 6.08 (s, $\mathrm{ArH}, 4 \mathrm{H}$), 3.96-3.80 (overlapped, $-\mathrm{ArCH}_{2} \mathrm{Ar}-, 12 \mathrm{H}$), 3.19 (s, $\left.\mathrm{OCH}_{3}, 12 \mathrm{H}\right), 1.21\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta$ $153.7,147.0,145.2,138.8,134.5,132.4,129.2,127.0,126.7,115.6,61.7,34.6,31.8$, 31.8, 31.3, 30.1. MALDI-MS: m / z calcd $\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}=947.5933, \mathrm{~m} / \mathrm{z}$ found $\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}=$ 947.5971.

¢ ¢ ¢	§
$0 \sim$	N

*
 1

Figure 5.41. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{6 0}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.42. $1^{13} \mathrm{C}$ NMR Spectrum of derivative $\mathbf{6 0}\left(75.48 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.43. ESI-MS spectrum of derivative $\mathbf{6 0}$.

In a vessel for microwave, $31.2 \mathrm{mg}(0.033$ $\mathrm{mmol})$ of derivative $\mathbf{6 0}$ and $66.9 \mathrm{mg}(0.24$ mmol) of Zincke's salt 57 were dissolved in a mixture of 4 mL of chloroform, 10 ml of acetonitrile and 0.5 ml of water. The reaction was carried out at MW (300 W) under stirring for three hours at $100{ }^{\circ} \mathrm{C}$. After 3 hours, solvent was evaporated. The raw product was purified by chromatography column using as eluens $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} 8: 2$ ratio, 9.2 mg of derivative $\mathbf{5 4}^{\mathbf{2 +}}$ were obtained (0.0087 mmol). Yield of $26 \%{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ $\mathrm{K}): \delta 7.76-9.01\left(\mathrm{~m},-\mathrm{N}^{+} \mathrm{ArH}, 5 \mathrm{H}\right), \delta 5.91-7.33(\mathrm{~s}, \operatorname{ArH}, 12 \mathrm{H}), \delta 3.70-4.22(\mathrm{~m},-$ $\left.\mathrm{ArCH}_{2} \mathrm{Ar}-, 12 \mathrm{H}\right), \delta 3.56\left(\mathrm{~s},-\mathrm{OCH}_{3}, 12 \mathrm{H}\right), \delta 1.25\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 156.1,155.0,147.9,147.4,140.4,132.3,130.7,128.2$, 127.4, $126.8,119.7,60.0,39.4,34.4,31.6,29.8,22.8,14.3$. HRMS (m/z) clcd for $\left.\mathrm{M}^{+} \mathrm{H}\right]^{+}=1071.6245$ found 1071.6234.

O.

Figure 5.44. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{5 4}^{\mathbf{2 +}}$ (75.48 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.45. HR-MS spectrum of derivative $\mathbf{5 4}^{\mathbf{2 +}}$.
Derivative 55

$0.05 \mathrm{~g}(0.053 \mathrm{mmol})$ of derivative $\mathbf{6 0}$ were dissolved in 20.0 ml of ethanol and 10 ml of tetrahydrofuran. Subsequently, 0.13 g (0.27 mmol) of the Zincke 58 salt were added at reaction mixture. The reaction was carried out for 24 h under reflux at $70^{\circ} \mathrm{C}$. After this time, raw was dried and purified by washing with water. 0.068 g of final product $\mathbf{5 5}^{\mathbf{4 +}}$ were obtained, with an overall yield of 96%. ${ }^{13}$ C NMR (150 MHz , DMSO, 298 K): δ 155.1, 149.9, 146.5, 135.2, 132.2, 129.4, $128.8,125.7,123.5,119.9,69.9,59.8,48.1$, 31.2. DEPT 135 (150 MHz DMSO, 298 K): δ 129.45, 125.73, 123.47, 119.88, 69.91, 59.81, 48.11, 31.23. HRMS (m/z) clcd for $\mathrm{C}_{84} \mathrm{H}_{95} \mathrm{~N}_{4} \mathrm{O}_{6}{ }^{16 a+}=1255.7235$; found 1255.7243; clcd for $\mathrm{C}_{84} \mathrm{H}_{96} \mathrm{IN}_{4} \mathrm{O}_{6}{ }^{16 \mathrm{at}}=1358.6358$ found $=1358.6359$.

Figure 5.46. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{5 5}^{4+}$.

Figure 5.47. DEPT135 NMR spectrum of derivative $\mathbf{5 5}^{\mathbf{4 +}}$.

Derivative 56

Derivative 51 ($49.7 \mathrm{mg}, 0.048 \mathrm{mmol}$) was dissolved in 10.0 ml of acetone. Subsequently, 2,3,5,6-tetrafluoro-benzyl bromide $(58.7 \mathrm{mg}$, 0.242 mmol) and cesium carbonate (475 mg , 1.46 mmol) were added to the reaction mixture. Stirring was continued at reflux for 48 h . After solvent was evaporated and 1 N HCl was added to the reaction mixture. Afterwards, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated of the solvent. The raw was purified through precipitated by hexane. Derivative 56 was isolated with 74% yield ($48 \mathrm{mg}, 0.035 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 7.24\left(\mathrm{~s},-\mathrm{OBn}(\mathrm{F})_{4} \mathrm{H}, 2 \mathrm{H}\right), \delta 6.98\left(\mathrm{~s}, \mathrm{ArH}-\mathrm{OCH}_{3}, 8 \mathrm{H}\right), \delta 6.86$ (s, $\left.\mathrm{ArH}-\mathrm{OBn}(\mathrm{F})_{4}, 4 \mathrm{H}\right), \delta 5.02\left(\mathrm{~s},-\mathrm{OCH}_{16 \mathrm{br}}(\mathrm{F})_{4}, 4 \mathrm{H}\right), \delta 3.60-4.32\left(\mathrm{~m},-\mathrm{ArCH}_{2} \mathrm{Ar}-, 12 \mathrm{H}\right)$, $\delta 2.61\left(\mathrm{~s},-\mathrm{OCH}_{3}, 12 \mathrm{H}\right), \delta 1.15\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right), \delta 1.02\left(\mathrm{~s},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 18 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 154.3,151.6,146.7,145.8,133.9,133.6,133.4$, 127.1, 126.0, 125.2, 106.6, 61.7, 59.6, 34.2, 34.2, 31.5, 31.3, 30.9, 30.4. MALDI-MS: calcd $\mathrm{m} / \mathrm{z}\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}=1353.7152$, found $\mathrm{m} / \mathrm{z}\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}=1353.7137$.

Figure 5.48. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{5 6}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 5.49. MALDI-MS spectrum of derivative 56. a) found mass for $\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}$ $\mathrm{m} / \mathrm{z}=1353.7137,\left[\mathrm{M}^{+} \mathrm{Na}\right]^{+} \mathrm{m} / \mathrm{z}=1375.6978,\left[\mathrm{M}^{+} \mathrm{K}\right]^{+} \mathrm{m} / \mathrm{z}=1391.6723$; b) calcd mass for $\left[\mathrm{M}^{+} \mathrm{H}\right]^{+}$ $\mathrm{m} / \mathrm{z}=1353.7152$; c) calcd mass for $\left[\mathrm{M}^{+} \mathrm{Na}\right]^{+} \mathrm{m} / \mathrm{z}=1375.6971$; d) calcd mass for $\left[\mathrm{M}^{+} \mathrm{K}\right]^{+}$ $\mathrm{m} / \mathrm{z}=1391.6711$.

Derivative 68 ${ }^{\mathbf{2 +}}$

Derivative 67 ($64 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the Zincke's salt 57 ($133 \mathrm{mg}, 0.48 \mathrm{mmol}$) were dissolved in an ethanol/water mixture ($4 / 1,10 \mathrm{~mL}$). The solution was stirred for 2 h under microwave irradiation (300 W) at $100^{\circ} \mathrm{C}$. After cooling the solvent was evaporated. The crude product was purified by precipitation from acetone, to give $\mathbf{6 8}^{\mathbf{2 +} .}\left(\mathbf{C l}^{-}\right)_{2}$ as a pink solid in 46% of yield ($41 \mathrm{mg}, 0.06 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , $\mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$): $\delta 9.15$ (bd, 4H, $\mathrm{H} \alpha$), 8.70 (bt, 2H, H γ), 8.22 (bdd, 4H, Hß), 7.66 (s, 4H, H ϕ), 7.10 (d, J = 7.0 $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{H} \mathrm{\varepsilon}), 6.83(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} \delta), 4.41$ and 3.64 (AX system, $\mathrm{J}=13.0 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}$), $4.07(\mathrm{t}, \mathrm{J}=$ $\left.5.5 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.11(\mathrm{~m}, 4 \mathrm{H},-$ $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.38\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right): \delta 157.4,153.3,146.9,145.9,136.0$, 133.7, 131.5, 130.7, 129.4, 126.7, 125.2, 79.9, 31.8, 24.6, 11.5. HRMS (m/z) clcd for $\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}=663.3217$ found. 663.3273.

Figure 5.50. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{6 8}^{\mathbf{2 +} .}\left(\mathrm{Cl}^{-}\right)_{2}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

Figure 5.51. ${ }^{13} \mathrm{C}$ NMR Spectrum of derivative $\mathbf{6 8}^{2+} .\left(\mathrm{Cl}^{-}\right)_{2}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

Figure 5.52. 2D COSY Spectrum of derivative $\mathbf{6 8}^{2+} .\left(\mathrm{Cl}^{-}\right)_{2}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

Figure 5.53. HR MALDI-FT-ICR mass spectrum of the monodeprotonated betainic form $\mathbf{6 8}^{+}$

Derivative 69 ${ }^{4+}$

Derivative 67 ($0.050 \mathrm{~g}, 0.09 \mathrm{mmol}$) and the Zincke's salt 58 $(0.28 \mathrm{~g}, \quad 0.55 \mathrm{mmol})$ were dissolved in an ethanol/methanol/THF mixture (3:1:2, 60 mL). The solution was stirred for 24 h at $70^{\circ} \mathrm{C}$. After cooling the solvent was evaporated. The crude was purified by precipitation from water, to give $\mathbf{6 9}^{4+} \cdot\left(\mathrm{Cl}^{-} \cdot \mathrm{I}^{-}\right)_{2}$ as a pink solid in 44% of yield ($0.030 \mathrm{~g}, 0.06 \mathrm{mmol}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta 9.30$ ($\mathrm{s},-\mathrm{OH}, 2 \mathrm{H}$) $8.99-8.98$ (d, J=5.41 Hz, Bipy-H, 4H), 8.75-8.74 (d, J=5.60 Hz, Bipy-H, 4H), 8.42-8.41 (d. J=8.43 Hz, Bipy-H, 4H), 8.36-8.35 (d, J=5.41 Hz, Bipy-H, 4H), 7.53 (s, ArH, 4H), 7.07 (d, J=7.55, ArH, 4H), 6.77 (t, J=7.55, ArH, 2 H), 4.26 ($\mathrm{s},-\mathrm{NCH}_{3}, 6 \mathrm{H}$), 4.24 (overlapped, $-\mathrm{ArCH}_{2} \mathrm{Ar}$-, 4H), 3.94-3.92 (t, J=7 Hz, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 4 \mathrm{H}\right), 3.54-3.52(\mathrm{~d}$, $\left.\mathrm{J}=13 \mathrm{~Hz},-\mathrm{ArCH}_{2} \mathrm{Ar}-, 4 \mathrm{H}\right), 1.89-1.87\left(\mathrm{~m},-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $4 \mathrm{H}), 1.22-1.19\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, 6 \mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K): $\delta 151.0,148.1,146.7,133.6,131.7,130.90,130.3,128.4,128.3,128.2,128.0$, $126.8,125.3,124.5,120.4,79.9,49.6,31.8,24.6,11.5$. MALDI-MS (m/z) calcd for $[M]^{+}=848.4296$ found 848.4318 .

Figure 5.54. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $\mathbf{6 9}^{4+}\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$.

Figure 5.55. 2D COSY spectrum of derivative $\mathbf{6 9}^{4+}\left(\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right)$.

Figure 5.56. 2D HSQC spectrum of derivative $\mathbf{6 9}^{\mathbf{4 +}}\left(\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right)$.

Figure 5.57. HR-MS spectrum of derivative $\mathbf{6 9}^{4+}$.

5.6.3.2 UV/Vis characterization

The Uv-Vis measurements carried out on the $\mathbf{5 4}^{\mathbf{2 +}}, \mathbf{5 5}^{\mathbf{4 +}}, \mathbf{6 8}^{\mathbf{2 +}}$ and $\mathbf{6 9}^{\mathbf{4 +}}$ derivatives were recorded by first measuring the solution of the macrocyclic derivative dissolved in the appropriate solvent. subsequently UV-Vis measurements were recorded by adding from time to time a base aliquot $(n \mathrm{Bu})_{4} \mathrm{NOH}$ to the prepared solution. The spectra were recorded using the Cary Uv-Vis spectrophotometer.

- Derivatives $\mathbf{5 4}^{\mathbf{2 +}} \mathbf{5 4}^{+}$: Solution was prepared dissolving 0.02 mg of derivative $\mathbf{5 4}^{\mathbf{2 +}}$ in 2.5 ml of acetonitrile (0.007 mM). With each addition of 5 $\mu \mathrm{l}$ of $(n \mathrm{Bu})_{4} \mathrm{NOH}(0.4 \mathrm{mM})$, a UV/vis spectrum is recorded.
- Derivatives $\mathbf{5 5}^{\mathbf{4 +} / \mathbf{5 5}}{ }^{\mathbf{3 +}}$: Solution was prepared dissolving 0.02 mg of derivative $\mathbf{5 5}^{\mathbf{4 +}}$ in 2.5 ml of acetonitrile $(0.004 \mathrm{mM})$. With each addition of 1 $\mu \mathrm{l}$ of $(n \mathrm{Bu})_{4} \mathrm{NOH}(0.02 \mathrm{M})$, a UV/vis spectrum is recorded.
 derivative $\mathbf{6 8}^{\mathbf{2 +}}$ in 2.5 ml of methanol $(0.007 \mathrm{mM})$. With each addition of 5 $\mu \mathrm{l}$ of $(n \mathrm{Bu})_{4} \mathrm{NOH}(0.02 \mathrm{M})$, a UV/vis spectrum is recorded.
 derivative $\mathbf{6 9 4 +}$ in 2.5 ml of acetonitrile $(0.04 \mathrm{mM})$. With each addition of 5 $\mu \mathrm{l}$ of $(n \mathrm{Bu})_{4} \mathrm{NOH}(0.4 \mathrm{mM})$, a UV/vis spectrum is recorded.

5.6.3.3 Computational Details

Derivatives 54 ${ }^{\mathbf{2 +} / 54^{+}}$

Atomic coordinate of derivative 5^{2+} in acetonitrile

N	0.10573400	2.83202200	3.51885600
C	0.96552200	3.50881700	4.31203900
C	-0.02105700	5.57538500	3.63395400
C	-0.81734000	3.48980300	2.78330800
C	-0.90721100	4.86314700	2.83441100
C	0.92933500	4.88399800	4.37554200
O	-0.48439400	2.12952000	-4.64784100
O	-4.41546700	-0.94513600	-2.35181500
O	4.34042500	-0.27212400	-2.76853400
O	4.22507700	0.77904000	2.16543600
O	0.36249900	-2.71992700	3.36876300
O	-3.92435600	0.45685700	2.43858800
C	-4.24951000	0.38125100	-1.99101600
C	1.38698100	0.74782000	3.38549300
C	-4.79101600	0.83615800	-0.78916300

C	-1.27081900	-1.01939900	-3.06253400
C	1.45301300	-0.63948200	3.38458400
C	-4.62817300	2.18199400	-0.45548200
C	0.24978600	-1.36447000	3.41896900
C	-3.50857200	1.23219200	-2.81716400
C	4.25694200	-0.47772200	1.58346300
C	3.02193900	1.73474900	-2.86369900
C	-3.37739600	2.56636500	-2.44873800
C	-3.13597600	-1.81034800	2.55806800
C	1.01729900	0.46126300	-3.73151600
C	3.69459200	-2.80934200	1.62364600
C	-1.41719200	0.19006500	-3.72535600
C	-0.26792000	0.93533400	-4.03797800
C	-0.00263300	-1.46687400	-2.73015400
C	-3.92664300	-0.83609400	1.94412500
C	1.13452300	-0.75434200	-3.06087800
C	3.57936100	-1.53661800	2.18869100
C	2.69450100	2.96759900	-2.30960700
C	-0.99485400	-0.72397300	3.54473100

C	4.45477500	-3.04771400	0.48000300	H	0.01851400	-6.01041100	-2.45808100
C	-3.94665200	3.07639600	-1.27898100	H	-0.11660900	-3.83782700	-3.69793000
C	4.00358500	0.96081200	-2.23813600	H	0.51584000	-3.72246400	1.17227400
C	4.96447000	-0.65926700	0.39071100	H	0.34917000	2.57309600	-4.84408800
C	-4.71804700	-1.14602800	0.83273100	H	-0.49740100	-3.13858200	3.50020600
C	-1.01920000	0.66534700	3.57278600	H	2.30833300	1.31065400	3.30064200
C	4.60909800	1.38654000	-1.05603000	H	-2.15392100	-1.58575200	-2.78625200
C	5.05338600	-1.94407500	-0.13209600	H	-5.06424200	2.52269400	0.47556600
C	-3.81825400	4.57090000	-0.96007800	H	-2.80902500	3.21775900	-3.10540700
C	4.24893900	2.62910400	-0.53490000	H	3.19359500	-3.62825600	2.12666500
C	-4.74052200	-2.46402900	0.38919900	H	2.12088300	-1.12941100	-2.80791600
C	0.15911900	1.38514900	3.47262500	H	1.93703800	3.56698600	-2.80623400
C	-3.99961500	-3.47850100	0.99737500	H	-1.97043700	1.16788000	3.69365500
C	3.30353200	3.44858400	-1.14796600	H	5.62218800	-2.07788100	-1.04560000
C	-3.18784700	-3.11729800	2.07039500	H	4.72733900	2.94290200	0.38387800
C	-4.13632900	-4.92203400	0.49805200	H	-5.37426400	-2.69784500	-0.45868500
C	5.31302900	1.02712200	3.05542500	H	-2.60204000	-3.87522100	2.57865100
C	-5.55915200	-1.18554700	-3.16897000	H	5.18653700	2.04247000	3.43208500
C	-4.45025200	4.93407000	0.38840800	H	5.30966800	0.32527200	3.89555900
C	-2.33303200	4.96955600	-0.92422700	H	6.27546100	0.94975300	2.54069300
C	4.68128900	-4.44832100	-0.10339300	H	-5.59549800	-2.25968600	-3.35304100
C	-4.53021200	5.38243300	-2.05773000	H	-6.47960400	-0.87261100	-2.66620900
C	-5.59196900	-5.38459300	0.69272200	H	-5.48603800	-0.65632800	-4.12471500
C	-3.78181100	-4.99225800	-0.99724300	H	-4.32078200	6.00320700	0.57794100
C	4.14917500	-4.50558200	-1.54576800	H	-5.52334100	4.72430000	0.40396300
C	6.19120100	-4.75099100	-0.11335800	H	-3.98828700	4.38908400	1.21698100
C	-3.22285300	-5.88908800	1.25937700	H	-2.22974300	6.03067600	-0.67693200
C	3.98833200	-5.54059000	0.71851900	H	-1.78813200	4.38867400	-0.17466600
C	2.91505500	4.82478800	-0.59427000	H	-1.84319300	4.80606300	-1.88722500
C	1.40414900	4.85223000	-0.30774800	H	-4.44381800	6.45430700	-1.85390400
C	3.65376100	5.15737500	0.70729300	H	-4.09746900	5.19256500	-3.04317300
C	3.25585300	5.90694400	-1.63410900	H	-5.59347000	5.12959100	-2.10217800
C	-4.94463100	0.71127800	3.40457700	H	-5.71198400	-6.41387700	0.34074500
C	5.41021300	-0.23255300	-3.71125200	H	-5.87426000	-5.35151000	1.74898100
H	1.65200600	2.91067600	4.89416500	H	-6.29295600	-4.75698100	0.13681400
H	-1.65893500	5.36366600	2.23834000	H	-3.88345800	-6.01884600	-1.36209400
H	-1.45569700	2.87679900	2.16185800	H	-4.43574900	-4.35861900	-1.60126800
H	1.63086300	5.39816900	5.01913900	H	-2.75143800	-4.67172600	-1.17109500
N	0.12121800	-2.70785700	-1.98275100	H	4.32611300	-5.49581100	-1.97666000
C	0.30026800	-2.64901600	-0.64696500	H	3.07365300	-4.31246800	-1.5753830
C	0.27634200	-5.03203400	-0.54511200	H	4.63895300	-3.76950400	-2.18812400
C	0.02197700	-3.88939000	-2.62654500	H	6.37306700	-5.74989100	-0.52178600
C	0.09912600	-5.07261600	-1.92440200	H	6.74509900	-4.03471000	-0.72491300
C	0.38032900	-3.80419800	0.10037900	H	6.60233400	-4.71831800	0.89974200
H	0.36481200	-1.65777900	-0.21893900	H	-3.34155900	-6.89869800	0.85723200

Atomic coordinate of derivative 54 ${ }^{+}$ in acetonitrile

C	-4.49539300	-3.06892800	-0.40148300	H	-0.22914100	-5.89885900	2.18389300
C	3.99127700	3.06844600	1.22826100	H	-0.07465200	-3.76758800	3.49232500
C	-4.03774600	0.98755100	2.20840400	H	-0.33456400	-3.48765200	-1.42142500
C	-5.00895900	-0.68291900	-0.37236200	H	-0.36178500	2.55434300	4.90420200
C	4.77645600	-1.18585900	-0.79068300	H	-2.31097400	1.22452000	-3.25058000
C	1.02915300	0.60936300	-3.48442500	H	2.14864600	-1.49613200	2.64649400
C	-4.65084700	1.39398100	1.02307000	H	5.13712900	2.48701500	-0.49910600
C	-5.10691700	-1.95518200	0.17815600	H	2.81998900	3.23756800	3.03090800
C	3.85973400	4.55599300	0.87910400	H	-3.19490500	-3.67777700	-2.00625300
C	-4.28756200	2.62462000	0.47656200	H	-2.12327200	-1.03700400	2.66851400
C	4.79174000	-2.49721300	-0.32808800	H	-1.94668100	3.58801400	2.70748200
C	-0.15885800	1.33683600	-3.39745700	H	1.97809200	1.11863800	-3.61147700
C	4.02793300	-3.50850600	-0.91369300	H	-5.68951600	-2.06984300	1.08574400
C	-3.33137800	3.44936700	1.06606600	H	-4.76944300	2.92260600	-0.44560300
C	3.20129200	-3.15019600	-1.97675000	H	5.43157800	-2.72642800	0.51693300
C	4.15123600	-4.94642200	-0.39355900	H	2.56810400	-3.88910700	-2.45267300
C	-5.32208600	0.92698900	-3.09016500	H	-5.20655200	1.93737500	-3.48432500
C	5.57809000	-1.15975500	3.21544100	H	-5.27735900	0.20940600	-3.91587500
C	4.51047400	4.89748100	-0.46626400	H	-6.29949900	0.83906100	-2.60446000
C	2.37294300	4.94587100	0.81316300	H	5.61154100	-2.23083200	3.41759800
C	-4.72900300	-4.45787700	0.20687300	H	6.50673800	-0.85522800	2.72237400
C	4.55054900	5.39210700	1.97180000	H	5.49007000	-0.61515200	4.16149800
C	5.60729000	-5.41941800	-0.55796300	H	4.37861100	5.96232700	-0.67752100
C	3.77232000	-4.99756400	1.09664700	H	5.58476700	4.69317200	-0.46147100
C	-4.23263900	-4.48261000	1.66289000	H	4.06428300	4.33478600	-1.29159300
C	-6.23717400	-4.76862100	0.18642100	H	2.26862200	6.00124700	0.54244300
C	3.24822000	-5.92039900	-1.15825800	H	1.84154000	4.34733600	0.06803800
C	-4.01005100	-5.56377200	-0.57319700	H	1.87045800	4.80011300	1.77246900
C	-2.93886500	4.81290200	0.48424300	H	4.46105000	6.45962100	1.74717800
C	-1.42760400	4.83368400	0.19744700	H	4.10425500	5.21760800	2.95408500
C	-3.67715100	5.12026600	-0.82371600	H	5.61454400	5.14666400	2.03677300
C	-3.27811200	5.91609400	1.50238900	H	5.71604100	-6.44580000	-0.19343300
C	4.99272000	0.62061800	-3.40145500	H	5.90752900	-5.39912800	-1.60970400
C	-5.43556800	-0.17173000	3.71512100	H	6.30319700	-4.79038600	0.00261000
H	-1.79692500	2.86632000	-4.65170300	H	3.87408600	-6.01771600	1.48004300
H	1.78568100	5.31190500	-2.38273000	H	4.41229300	-4.34899400	1.70022900
H	1.57491700	2.83476500	-2.25758800	H	2.73697900	-4.68105100	1.24842700
H	-1.80626200	5.34770100	-4.75506300	H	-4.41562200	-5.46472000	2.11009900
N	-0.12604000	-2.58604500	1.79584400	H	-3.15923400	-4.28256500	1.71527600
C	-0.20011900	-2.48718500	0.45205300	H	-4.74193900	-3.73601100	2.27744800
C	-0.29472800	-4.85909700	0.28539200	H	-6.42541700	-5.75906500	0.61263100
C	-0.13697400	-3.78606800	2.41280500	H	-6.80907700	-4.04097500	0.76738600
C	-0.22208800	-4.94489100	1.67291600	H	-6.62320700	-4.76059600	-0.83709100
C	-0.28614800	-3.61511500	-0.33756500	H	3.36643300	-6.92824600	-0.75072200
H	-0.18150700	-1.48355900	0.04852000	H	2.19279900	-5.64946000	-1.07312200

H	3.50346100	-5.95962800	-2.22090300
H	-4.20788100	-6.53186200	-0.10476500
H	-4.35650700	-5.61850100	-1.60902600
H	-2.92737700	-5.41693900	-0.58508600
H	-1.13626100	5.79681700	-0.23299900
H	-0.83712400	4.68333500	1.10435500
H	-1.15588700	4.04789400	-0.51309900
H	-3.36157100	6.09734400	-1.19985600
H	-3.45594700	4.37968000	-1.59792100
H	-4.76089500	5.15502100	-0.68162300
H	-2.99500800	6.89696400	1.10789900
H	-4.35065600	5.93307200	1.71692800
H	-2.74819500	5.77023100	2.44719700
H	5.99766700	0.42807800	-3.01188400
H	4.83088900	-0.01894800	-4.27518300
H	4.91974900	1.66616400	-3.70347500
H	-5.62636200	-1.19426600	4.04201600
H	-5.16125300	0.44074600	4.58059700
H	-6.34516600	0.24202200	3.26854500
H	0.04445600	6.61427400	-3.63011800

H	-0.35793300	-5.76457300	-0.30770800
C	-5.65514500	0.50445300	0.31564600
H	-6.20024400	1.11407600	-0.40783600
H	-6.39279700	0.12756100	1.02762900
C	-2.77261600	-1.43012800	-3.40207500
H	-3.38747200	-0.91690500	-4.14827800
H	-2.55915000	-2.42824600	-3.78902900
C	2.29493300	-1.54448100	-3.69874600
H	2.89440100	-0.99817400	-4.43285600
H	2.01155800	-2.49585300	-4.15347500
C	5.62237800	-0.12690500	-0.10695100
H	6.14845600	0.47216300	-0.85275600
H	6.39262300	-0.63865900	0.47594300
C	2.79699000	0.74027300	4.01329500
H	2.71763200	1.53906700	4.74984400
H	3.35290000	-0.07774400	4.47415200
C	-2.29549500	1.26438100	4.02857100
H	-2.92980400	0.59241300	4.60851600
H	-2.09380700	2.11355300	4.68701300

Derivatives $\mathbf{5 5}^{\mathbf{4 +} / 55^{3+}}$

The UV simulation calculations performed on the protonated derivative showed the presence of a single band at $\mathbf{3 5 7} \mathbf{~ n m}$ (experimental data $=\mathbf{3 8 6} \mathbf{~ n m}$).

Figure 5.58. UV simulated spectrum of derivative $\mathbf{6 9}^{4+}$ in acetonitrile.

The analogous calculations on the monodeprotonated calixarene derivative were subsequently carried out. The presence of a band at $\mathbf{6 0 7} \mathbf{~ n m}$ was observed $($ experimental data $=\mathbf{5 8 3} \mathbf{~ n m})$.

Figure 5.59. UV simulated spectrum of derivative $\mathbf{5 5}^{\mathbf{3 +}}$ in acetonitrile.

Atomic coordinate of derivative 55^{4+} in acetonitrile				\bigcirc	-3.08539600 -0.51422600	-3.44134600	
N	5.31095300	1.48888400	-2.13305500	\bigcirc	2.711	-3.37118800	-0.07900000
c	5.70813800	2.29563900	-3.13994900	\bigcirc	0.05758300	3.09115500	-4.2144600
c	6.73684600	3.78754600	-1.56937900	\bigcirc	2.59223300	-3.19042800	3.37662000
c	5.60998500	1.79945950	-0.85330200	\bigcirc	2.27061800	-.55447500	900
c	6.32536800	2.93012000	-0.54813800	c	0.15576700	-2.43835100	3.64918600
c	6.41044000	3.45068900	-2.88373700	c	3.47115400	0.35527700	28105300
c	7.50140300	5.01891500	-1.26487600	c	1.40575600	-2.45222900	3.03039900
c	7.21401200	5.77731100	-0.12887400	c	-3.49706600	0.18385000	3.34794700
c	7.94184600	6.91565000	0.13268400	c	2.76727300	-0.79539000	-3.61070200
N	8.93067100	7.30691200	-0.69192500	c	2.03734300	-1.23028500	2.81162700
c	9.22917200	6.59462600	-1.79312900	c	3.18408000	-2.02519600	3.06477000
c	8.53029800	5.44932900	-2.10289600	c	-0.47199300	-1.25029900	4.01723800
c	9.66672600	8.55408200	-0.40228300	c	-0.49904000	-1.89531200	-3.76517700
H	9.76150800	8.66493900	0.67523500	c	-5.09801200	300	-0.18414300
H	10.65380300	8.49336700	-0.85388400	c	0.1999330	-0.05422600	3.78270000
H	9.11322600	9.39453100	-0.82034700	c	3.33919600	-3.69619500	1.89422300

C	-4.58817700	-2.03066000	2.02658200
C	-0.32487600	0.46233600	-3.42497800
C	2.00651400	-3.77910400	2.59768700
C	-2.97419500	-1.07738900	3.60140800
C	-3.51940300	-2.18645900	2.92698500
C	-4.54018300	0.33379700	2.44610500
C	3.42445600	-3.61045400	0.50220900
C	-5.08722300	-0.75912900	1.78861800
C	0.23051000	-0.71761300	-3.91282600
C	-6.24828700	-3.00725000	-0.95595900
C	4.29086700	-2.09089900	-2.19861100
C	-1.57390700	0.49241900	-2.80414500
C	1.59810300	-0.70945700	-4.57260900
C	1.45992700	-0.01590400	3.18544200
C	-3.86332000	-3.26223300	-0.83047400
C	-1.73771200	-1.92267900	-3.12468400
C	4.66475300	-3.52579800	-0.13491700
C	4.97494300	-0.92542300	-1.88831700
C	-1.86405900	-1.24030900	4.62173000
C	-3.77667700	-3.18316700	-2.22260800
C	4.76301700	-3.41866400	-1.64238500
C	-2.25589900	-0.71687300	-2.65976500
C	2.15601000	1.33284100	2.96485700
C	-4.95081500	-3.01780800	-2.95288600
c	5.82048100	-3.52671800	0.64602600
C	4.56549300	0.28418900	-2.43126400
C	5.77908800	-3.60981500	2.03766800
C	-6.20569900	-2.92870600	-2.34778500
c	4.51964200	-3.69403200	2.63350100
C	7.04030300	-3.61101000	2.91025800
C	-0.28888500	-3.45775300	-5.55743100
C	-0.23748300	-4.28892600	5.10230500
C	3.50840700	1.17494700	2.26050000
C	1.26610800	2.23718000	2.09355200
C	-2.14176300	1.82274600	-2.29308300
C	2.39554800	2.01127400	4.32534700
C	7.09778100	-4.91445100	3.72665900
C	8.32332500	-3.51080600	2.07726500
C	-3.56290800	1.67041400	-1.73876800
C	-1.23759100	2.35872700	-1.16858300
C	6.99643900	-2.41025300	3.87234300
C	-2.18668400	2.84480100	-3.44268400
C	-7.46037500	-2.74888400	-3.21129100
C	-7.33830000	-1.44833900	-4.02538200
C	-7.59377200	-3.94101500	-4.17549400

-8.73853100	-2.66844300	-2.36888700
1.79145400	-4.81360000	-0.71441800
-2.31766500	-4.70509400	0.23010300
-2.44700400	-3.25252300	-2.93223200
-5.19081400	-3.23041800	1.32532700
5.45823600	1.97449100	-4.14130900
6.55940500	3.12828400	0.48974100
5.24481800	1.11491500	-0.09750200
6.69194700	4.07824800	-3.71930100
6.41622700	5.50647000	0.55038100
7.75424500	7.53939600	0.99638800
8.81657200	4.89264800	-2.98550700
10.03891500	6.96407700	-2.40763600
-5.08013300	1.65360100	2.20011800
-6.41268300	1.85633300	2.27575300
-6.11372100	4.16827700	1.71500300
-4.24826200	2.67217700	1.89486300
-4.73838400	3.93659700	1.66191500
-6.95223000	3.09697600	2.02581500
-6.66796400	5.51466100	1.44318800
-6.01411200	6.66267600	1.89168400
-6.54980400	7.90187700	1.62153400
-7.69579300	8.02034400	0.92693900
-8.34704800	6.92979100	0.48335900
-7.85658500	5.66713100	0.72830800
-8.22328100	9.36287800	0.61015500
-9.30808300	9.31284200	0.55976100
-7.92428800	10.05291600	1.39512900
-7.81610200	9.68357100	-0.34848400
-7.01333400	1.00362600	2.55944000
-4.03971500	4.72162500	1.40322300
-3.19733100	2.42927700	1.82316800
-8.02365400	3.22082500	2.11449500
-5.10167000	6.60817700	2.47096300
-6.08364200	8.82045200	1.95155100
-8.40003200	4.81659100	0.33794700
-9.25997800	7.10058800	-0.07129700
-2.15499400	-3.48002200	3.46744100
1.69431000	-3.09635100	-3.76829200
3.15604800	1.30940200	-3.68997500
-3.11515200	1.04204500	3.89096500
3.00700000	-1.24468800	2.33313400
-0.28371400	0.87046700	4.08230500
0.24088900	1.38142700	-3.54403600
1.27426100	-4.28496600	1.96528800

H	2.12860500	-4.41797800	3.47738300	H	-1.19420100	3.04185800	-3.85468000
H	-5.88612400	-0.62516300	1.06631400	H	-2.82511500	2.48942900	-4.25662500
H	-7.19776300	-2.94378700	-0.43710000	H	-8.22586500	-1.30805900	-4.65003300
H	1.67379400	-1.52504500	-5.29549000	H	-7.24782700	-0.58123100	-3.36433800
H	1.69803500	0.21468600	-5.14570600	H	-6.46626500	-1.46197600	-4.68383300
H	5.84853000	-0.97501900	-1.24634400	H	-8.48251300	-3.82235500	-4.80293000
H	-1.92734200	-0.41151000	5.33006500	H	-6.72802100	-4.02691900	-4.83681600
H	-2.03831300	-2.15155400	5.19790700	H	-7.69073100	-4.88050400	-3.62368300
H	5.80922300	-3.56306900	-1.92756400	H	-9.60212300	-2.54017900	-3.02706300
H	4.19403100	-4.21404200	-2.12131600	H	-8.89945400	-3.57952900	-1.78570700
H	-3.22013800	-0.73886800	-2.17074400	H	-8.71847700	-1.81926800	-1.67983400
H	-4.86935200	-2.95865600	-4.03436300	H	0.95629800	-4.60463500	-1.38264500
H	6.77391100	-3.46502100	0.13430800	H	2.56134000	-5.35757400	-1.26872600
H	4.43913600	-3.76312700	3.71449100	H	1.44795200	-5.43843000	0.11726900
H	0.04339000	-2.69650000	-6.26836300	H	-3.12591300	-5.26078700	0.71367900
H	0.21621900	-4.40088900	-5.76201100	H	-2.00683200	-5.24638000	-0.67014500
H	-1.36824200	-3.59076100	-5.65318900	H	-1.47674500	-4.63192800	0.91992600
H	-0.51851900	-3.64691600	5.94145900	H	-1.76528500	-3.91841100	-2.39845800
H	-0.83117000	-5.20203800	5.11921300	H	-2.60785900	-3.71751900	-3.90897600
H	0.82228700	-4.53892100	5.17988200	H	-4.70530900	-4.12814700	1.70549100
H	3.96023000	2.16019900	2.11459400	H	-6.24687300	-3.30232100	1.60215300
H	4.20750900	0.57177700	2.84644500				
H	3.38932600	0.70759600	1.27818000	Atomic coordinate of derivative 55^{3+} in acetonitrile			
H	1.75410400	3.20320100	1.93104200				
H	1.08169100	1.78037500	1.11689900				
H	0.29821800	2.42965100	2.56298400			S	
H	2.88913100	2.97787900	4.18495400				
H	1.45857100	2.18945300	4.85892800				
H	3.03388900	1.39312500	4.96314700				
H	7.99084100	-4.92551100	4.35906600				
H	6.22709000	-5.02464400	4.37781300				
H	7.13792900	-5.78637700	3.06737000			2.06233300	
H	9.19128900	-3.51405800	2.74214600	N	-3.13779300		2.78381100
H	8.42959800	-4.35541000	1.39064100	C	-2.73034000	2.91953600	3.75947300
H	8.35784900	-2.58700100	1.49266300	C	-3.10730400	4.82626000	2.33994600
H	-3.93451500	2.64675300	-1.41562500	C	-3.51950200	2.57825700	1.58401300
H	-4.25437200	1.28601700	-2.49403900	c	-3.52781900	3.93094900	1.35161900
H	-3.59383900	0.99968500	-0.87530800	C	-2.69271800	4.27632100	3.55631300
H	-1.62823000	3.30721900	-0.78603300	C	-3.11145500	6.28138500	2.11387500
H	-1.18891400	1.64984900	-0.33661200	C	-2.90294500	6.82090100	0.84084900
H	-0.21745000	2.53405600	-1.52021700	C	-2.92295700	8.18398800	0.65728900
H	7.88901800	-2.39951000	4.50545300	N	-3.14265600	9.01829700	1.68963200
H	6.96197600	-1.46723000	3.31848200	C	-3.34374600	8.52996000	2.92991500
H	6.12319900	-2.44719100	4.52835600	C	-3.33177400	7.17759600	3.16748100
H	-2.59145800	3.79629100	-3.08453500	c	-3.15264300	10.47884600	1.48282300

H	-3.11446700	10.68458600	0.41653400	C	-6.84682000	-1.80941900	0.17630600
H	-4.06911000	10.88952600	1.90276400	C	-3.17939400	0.66817100	3.02288300
H	-2.28414800	10.91440300	1.97564000	C	-7.11518200	-1.71163300	-1.18911800
0	1.33490500	-3.34388100	-4.09330700	C	5.44762800	-4.46800200	0.61384400
0	-1.31498100	-2.99195200	-4.09142100	C	-6.07680600	-2.02890500	-2.06506400
0	1.58681700	-3.78985800	-0.87080400	C	-8.47703100	-1.27461400	-1.74321600
0	-0.63640100	-3.93040100	3.10566800	C	-0.77524900	-5.10352100	3.89638400
0	-3.53749900	-3.28025700	4.04770900	C	-1.86850100	-3.62279300	-5.25705400
0	-3.34182200	-2.87582300	0.21473100	C	-4.57160800	2.39532600	-2.54730800
C	-1.77886900	-1.69733000	-3.85745300	C	-2.19220300	3.13451600	-2.40427200
C	-2.22887800	0.06945800	3.86849900	C	3.48697400	-0.21534800	4.45453600
C	-2.96191600	-1.51296800	-3.14067700	C	-3.35418000	3.00594600	-4.62386400
C	2.23422900	0.18092200	-3.80154500	C	-9.05648300	-2.39649200	-2.62324800
C	-2.28987300	-1.26484700	4.17499500	C	-9.48668200	-0.96909200	-0.63085900
C	-3.40276800	-0.20535900	-2.94013400	C	4.79463600	-0.44815600	3.68897800
C	-3.37901300	-2.09041700	3.68049500	C	2.98272700	1.19992900	4.12000300
C	-1.02302300	-0.62057900	-4.32154400	C	-8.29957200	-0.00369800	-2.59348000
C	0.38364300	-3.07651500	3.47141300	c	3.79099100	-0.30188300	5.96089400
C	3.94374100	-3.97518700	-1.24528000	C	6.84585300	-4.72546600	1.18946100
C	-1.50626200	0.66474000	-4.09736700	C	7.13792700	-3.70862700	2.30730100
C	-4.81630200	-2.42205200	-1.61947300	C	6.90370000	-6.14913400	1.77155200
C	3.20166900	-2.34410900	-3.06534800	C	7.94380500	-4.59650900	0.12734800
C	1.14721800	-1.16575500	4.69104100	C	-3.16739900	-4.26231200	0.49270600
C	-3.72347500	-2.72190700	-2.61753000	C	0.88742000	-4.94541600	-1.32538900
C	1.51521900	-0.95032800	-4.16712500	C	1.85917000	-4.38330300	1.92878900
C	1.99166900	-2.21175300	-3.76741800	C	3.74730300	-3.71351400	-2.72248800
C	3.40719000	0.04777800	-3.07330300	H	-2.47935200	2.47486900	4.71012900
C	-4.59335300	-2.52044600	-0.24329000	H	-3.87041100	4.27425900	0.38379800
C	3.89934700	-1.19902600	-2.71313200	H	-3.78926400	1.86166100	0.82355400
C	0.12156200	-2.05830300	4.39428600	H	-2.34460800	4.89734600	4.37178100
C	5.22353400	-4.18470400	-0.73335800	H	-2.70235400	6.19255800	-0.01653200
C	-4.28959700	-1.45868000	2.73664400	H	-2.76128900	8.64021600	-0.30964300
C	2.40729100	-1.24342400	4.09128600	H	-3.52398500	6.83279100	4.17462500
C	-1.23853700	-1.91497500	5.04779700	H	-3.52106700	9.25670400	3.71175200
C	-2.70492000	0.90077700	-3.42322000	N	4.15358700	1.23382800	-2.71066200
C	2.85207800	-4.03367700	-0.37535600	C	5.46834500	1.31167200	-3.00671500
C	1.63617900	-3.20800200	2.86776900	C	5.58225500	3.49287800	-2.01811100
C	-5.60669100	-2.21357600	0.67213100	C	3.53068600	2.25241200	-2.08128300
C	-4.18909200	-0.12504800	2.44395400	C	4.21900500	3.39292500	-1.73669600
C	0.29002800	-0.82124900	-5.05453100	C	6.20373600	2.42189800	-2.66163000
C	3.03323400	-4.29964000	0.98482600	C	6.34923800	4.70337700	-1.64411400
C	-5.38722500	-2.32515800	2.16364700	C	5.77358700	5.97036700	-1.72881800
C	2.62616100	-2.27618500	3.18090300	C	6.50964700	7.08028500	-1.37548000
C	-3.20717500	2.33889900	-3.24410200	N	7.77714700	6.95683000	-0.94537700
C	4.32932400	-4.52474900	1.44677600	C	8.35688900	5.74499800	-0.85227300

c	7.66811100	4.60514800	-1.19555900
C	8.56372600	8.15438500	-0.58616200
H	9.33865600	8.30455500	-1.33674800
H	7.90227600	9.01574600	-0.55784000
H	9.01118400	8.00117700	0.39402600
H	5.89170900	0.47230500	-3.54048400
H	3.68754500	4.17885200	-1.21622100
H	2.48424300	2.10736200	-1.85188900
H	7.25037700	2.45107000	-2.93498800
H	4.76263900	6.11354700	-2.08730900
H	6.10798200	8.08272200	-1.43080400
H	8.16372400	3.64916500	-1.08782600
H	9.37750900	5.72260400	-0.49418200
H	0.36098300	-3.19373100	-4.11316400
H	-1.39583300	0.65750200	4.24472600
H	1.90224300	1.16051300	-4.12908200
H	-4.32506800	-0.06498100	-2.39384200
H	-0.92961100	1.50073200	-4.48111600
H	0.94556300	-0.38447800	5.41839100
H	-2.99830700	-3.41539700	-2.18925200
H	-4.17796100	-3.24468400	-3.46595300
H	4.81252900	-1.28571200	-2.13292400
H	6.05664200	-4.13648900	-1.42476700
H	-1.63209300	-2.89130300	5.33165800
H	-1.10994100	-1.33083300	5.96496900
H	-4.93467100	0.32730100	1.79614300
H	0.44208800	0.03567600	-5.71438600
H	0.23372500	-1.70006800	-5.70117200
H	-6.33700700	-2.10170500	2.66372400
H	-5.13921000	-3.35083800	2.44630600
H	3.58805100	-2.37353600	2.69595100
H	4.45611400	-4.75733900	2.50011400
H	-7.62008600	-1.57326700	0.89809000
H	-6.23828700	-1.96764600	-3.13757700
H	-0.78416500	-4.86589500	4.96416000
H	-1.73164200	-5.54921500	3.62619900
H	0.03353100	-5.81573200	3.69908300
H	-1.65868900	-3.03159900	-6.15246300
H	-1.39259900	-4.59961400	-5.33726200
H	-2.94691600	-3.75040400	-5.15185400
H	-4.88574700	3.43747500	-2.44301100
H	-5.34172900	1.87198100	-3.12116000

H	-2.53656300	4.16541900	-2.27230700
H	-2.06276300	2.68745800	-1.41425000
H	-1.21106100	3.17054100	-2.88480100
H	-3.71576500	4.03241000	-4.50937300
H	-2.40366600	3.04670500	-5.16105600
H	-4.07008900	2.46154400	-5.24619400
H	-10.02627400	-2.09525400	-3.03141200
H	-8.39989000	-2.63264600	-3.46434800
H	-9.20230800	-3.31200500	-2.04257400
H	-10.43806600	-0.66334200	-1.07478500
H	-9.67957700	-1.84512900	-0.00522600
H	-9.14607500	-0.15508500	0.01537000
H	5.52772300	0.31005400	3.97834200
H	5.22725100	-1.42791500	3.90998100
H	4.65038000	-0.37504600	2.60714100
H	3.74169700	1.94454200	4.38014500
H	2.76633500	1.29415900	3.05170500
H	2.07159100	1.44680100	4.67058900
H	-9.26353200	0.31968500	-2.99855300
H	-7.89261700	0.81466400	-1.99188100
H	-7.62340000	-0.17046300	-3.43592000
H	4.55613000	0.43061400	6.23683600
H	2.90327500	-0.10103400	6.56580500
H	4.16140300	-1.29612100	6.22722800
H	8.13442200	-3.88163700	2.72534300
H	7.10393900	-2.68464300	1.92338100
H	6.41680700	-3.78580500	3.12495500
H	7.89442900	-6.34622700	2.19268400
H	6.16855800	-6.29145000	2.56757100
H	6.70963100	-6.89596400	0.99622300
H	8.91889300	-4.78222900	0.58580400
H	7.81543800	-5.32174100	-0.68110400
H	7.96910800	-3.59481600	-0.31134600
H	-3.95163900	-4.63989500	1.15450200
H	-3.16819500	-4.85422900	-0.43011000
H	-2.20428700	-4.35994400	0.99503300
H	1.46019500	-5.48956700	-2.08137800
H	0.66042200	-5.62380600	-0.49595100
H	-0.04227900	-4.59277700	-1.77265200
H	0.93777300	-4.53052400	1.36704100
H	1.98493800	-5.28436400	2.54096700
H	3.08078500	-4.46072100	-3.15223800
H	4.71374600	-3.83362200	-3.22153200

Derivatives $\mathbf{6 8}^{\mathbf{2 +} / 68}{ }^{+}$

The UV simulation calculations performed on the protonated derivative showed the presence of a single band at $\mathbf{3 0 0} \mathbf{~ n m}$ (experimental data $=\mathbf{3 3 0} \mathbf{n m}$).

Figure 5.60. UV simulated spectrum of derivative $\mathbf{6 8}^{2+}$ in methanol.
The analogous calculations on the monodeprotonated calixarene derivative were subsequently carried out. The presence of a band at 465 nm was observed (experimental data $=\mathbf{5 1 5} \mathbf{~ n m}$). The Homo / Lumo orbitals related to the transition in question are also reported.

Figure 5.61. Comparison between the optimized structures in methanol and water. The distance d between the two carbon atoms linked to the pyridinium groups is here used to quantify the aperture of the cone.

Atomic coordinate of derivative $\mathbf{6 8}^{\mathbf{2 +}}$ in methanol

-2.307686	5.427041	-10.424611
-4.157170	3.719651	-9.163396
-2.811724	3.322968	-9.345364
-2.329502	2.147421	-8.888958
-5.176722	2.803295	-8.501644

-0.466631	3.70025	-10.264904
-0.579825	-0.503556	-13.1577.
-5.053750	-1.658276	-10.978565
-1.598527	6.106848	-10.886394
-4.704333	2.270571	-7.6715
-5.968451	3.420628	-8.067049
-0.152071	3.017299	-9.476755
0.208288	4.562516	-10.251280
-0.101268	-1.006599	-12.312744
-0.051086	-0.83175	-1
-4.444821	-1.985752	-10.136680
-5.820850	-2.4198	-11.154175
-0.379274	3.0244	-11.628529
-0.363036	3.7	-12.795063
-0.383256	3.20648	-14.056466
-0.437898	1.817510	-14.171623
-0.443260	1.007756	-13.031384
-0.392509	1.62	-11.774035
-0.424479	0.821158	-10.644073
-0.365590	3.82590	-14.948496
-0.342911	4.8832	-12.709669
-0.475167	1.353	-15
-2.608699	-1.141580	-14.514013
-4.181313	-1.538198	-12.218637
-2.826726	-1.150718	-12.106635
-2.031112	-0.95098	-13.258
-2.340260	-1.027390	-10.8534
-2.020251	-0.964098	-15.409155
-6.846922	0.07887	-11.414529
-5.802232	1.822285	-9.483965
-5.250077	0.548015	-9.687252
-5.737387	-0.33219	-10.664645
-4.140442	0.188920	-8.932130
-7.250001	-0.588072	-12.172165
-3.017933	1.438422	-8.845711
-1.586416	-0.390208	-10.791083
-3.938564	-1.541798	-14.618887
-4.722360	-1.746517	-13.484170
-5.749283	-2.083504	-13.584684
-7.432434	1.32781	-11.21202
-8.295405	1.62496	-11.80081
-6.902465	2.19936	-10.26066
-7.345312	3.181421	-10.115380
-4.391370	-0.573357	-7.727538
-5.002833	0.02423	-7.

-4.957233	-1.475178	-7.990
-3.038218	-0.918964	-7.128109
-2.455397	-1.454401	-7.886700
-2.500708	0.013764	-6.913827
-3.171561	-1.757217	-5.85
-2.185264	-1.991378	-5.440398
-3.740413	-1.222768	-5.083767
-3.685456	-2.704675	-6.054591
0.853684	0.472089	-10.06
1.396186	1.393894	-9.818995
1.447452	-0.090458	-10.793970
0.568540	-0.350043	-8.815125
-0.078313	0.240596	-8.155870
-0.002063	-1.241629	-9.105498
1.854228	-0.757724	-8.090295
1.624055	-1.349610	-7.198585
2.500881	-1.362264	-8.737248
2.425491	0.122137	-7.771578
-3.636241	5.812664	-10.252050
-4.557326	4.969878	-9.634599
-5.593368	5.277178	-9.529419
-5.640062	-2.124750	-18.425966
-6.284952	-1.329819	-17.476556
-5.700996	-1.142603	-16.23736
-4.521496	-1.74384	-15.929
-3.885904	-2.52903	-16.83870
-4.422292	-2.723826	-18.098380
-6.079689	-2.274567	-19.405851
-7.226203	-0.838	-17.69
-6.126514	-0.510053	-15.47003
-2.966295	-2.992104	-16.507350
-3.892632	-3.354331	-18.802119
-4.879481	9.58425	-11.651328
-5.180128	9.18060	-10.349203
-4.752508	7.942735	-9.905086
-4.065329	7.11097	-10.731005
-3.775252	7.483202	-12.005774
-4.162853	8.721640	-12.482947
-5.198800	10.555639	-12.012567
-5.726394	9.821870	-9.668237
-4.918251	7.584015	-8.898261
-3.251062	6.752687	-12.607228
916	8.9910	

6	-4.436247	7.036916	-13.858339
1	-5.951947	8.558534	-14.119567
1	-6.720554	8.369151	-11.728934
1	-5.550537	6.793393	-10.204531
1	-3.105965	5.429240	-13.279399
1	-4.068946	7.067627	-14.877664

Atomic coordinate of derivative $\mathbf{6 8}^{\mathbf{2 +}}$ in water

-1.999721	4.270064	-9.836181
-2.249620	5.633797	-9.948439
-4.328573	3.917925	-9.121135
-3.040542	3.421597	-9.402996
-2.712100	2.111745	-9.287205
-5.463070	2.993694	-8.707911
-0.670239	3.667677	-10.244101
-0.841962	-0.709100	-12.848977
-5.630766	-1.419955	-11.283241
-1.452560	6.306284	-10.250303
-5.133648	2.356792	-7.881444
-6.279493	3.602979	-8.309941
-0.314508	2.987172	-9.467793
0.071567	4.466563	-10.350736
-0.432076	-1.078227	-11.906815
-0.170717	-1.037278	-13.649750
-5.281213	-1.841422	-10.336221
-6.494651	-2.021260	-11.580199
-0.827537	2.910616	-11.557282
-1.295190	3.582717	-12.691956
-1.552887	2.897128	-13.877953
-1.386156	1.514219	-13.922358
-0.913976	0.810769	-12.808753
-0.603052	1.526052	-11.641071
-0.083469	0.844637	-10.553505
-1.909564	3.433376	-14.752768
-1.478100	4.652903	-12.633603
-1.638639	0.964652	-14.825830
-2.563580	-1.844189	-14.320958
-4.548502	-1.575578	-12.340072
-3.220032	-1.172525	-12.100737
-2.221934	-1.289337	-13.091432
-2.818936	-0.636743	-10.918835
-1.817483	-1.914081	-15.106275
-6.954833	0.618390	-12.016273

-6.004860	2.148201	-9.854527
-5.631997	0.809627	-10.029166
-6.086690	0.022431	-11.095158
-4.683709	0.258143	-9.153786
-7.319931	0.032549	-12.855591
-3.467028	1.532803	-9.042882
-3.553321	-0.483584	-10.283377
-3.873679	-2.262367	-14.555927
-4.860483	-2.128285	-13.583450
-5.868321	-2.482555	-13.775253
-7.347129	1.948846	-11.869619
-8.023499	2.396085	-12.591828
-6.873942	2.706556	-10.798512
-7.175895	3.744864	-10.690787
-5.195601	-0.438094	-7.971899
-5.712073	0.293838	-7.341532
-5.925657	-1.184736	-8.302223
-4.010116	-1.066945	-7.264815
-3.521818	-1.775023	-7.945023
-3.268034	-0.290657	-7.044545
-4.441441	-1.779413	-5.978640
-3.575368	-2.228306	-5.482010
-4.907966	-1.080806	-5.274170
-5.161629	-2.579596	-6.186513
1.355306	0.944684	-10.475266
1.637977	1.997126	-10.329899
1.794710	0.610829	-11.425973
1.850247	0.097429	-9.314452
1.252327	0.343040	-8.430284
1.677435	-0.961841	-9.547703
3.342034	0.320224	-9.046868
3.689567	-0.315197	-8.225678
3.946260	0.085192	-9.931461
3.540943	1.363077	-8.772589
-3.519528	6.131791	-9.653559
-4.553542	5.289259	-9.254910
-5.542926	5.693432	-9.064807
-4.853991	-3.922750	-18.298398
-5.632667	-2.899976	-17.753468
-5.287512	-2.362634	-16.527117
-4.214635	-2.837559	-15.841152
-3.453588	-3.841350	-16.351197
-3.748863	-4.390735	-17.585107
-5.104218	-4.348274	-19.263910
-6.493314	-2.501379	-18.276586

1	-3.648792	-2.933228	-6.048643
6	0.772243	0.433521	-9.841352
1	1.413336	1.315973	-9.736362
1	1.321216	-0.315416	-10.428735
6	0.347461	-0.098900	-8.486396
1	-0.280786	0.664845	-8.015463
1	-0.277500	-0.986945	-8.634311
6	1.549838	-0.448842	-7.605235
1	1.217728	-0.839190	-6.637407
1	2.182838	-1.211537	-8.074870
1	2.172836	0.433498	-7.415326
6	-3.671965	5.160836	-10.820349
6	-4.464454	4.471960	-9.891027
1	-5.543218	4.605534	-9.907486
6	-6.026840	-0.238876	-18.160254
6	-6.505590	0.385475	-17.006946
6	-5.834857	0.209234	-15.810729
7	-4.732123	-0.582132	-15.746215
6	-4.259188	-1.206001	-16.856442
6	-4.885546	-1.038736	-18.077968

| -6.535265 | -0.104009 | -19.108554 |
| :--- | :--- | :--- | :--- |
| -7.382420 | 1.021128 | -17.027738 |
| -6.128816 | 0.691830 | -14.888363 |
| -3.393703 | -1.839140 | -16.714906 |
| -4.485435 | -1.547784 | -18.946373 |
| -5.440829 | 7.929466 | -13.462723 |
| -5.845051 | 7.857220 | -12.128202 |
| -5.236154 | 6.959020 | -11.272237 |
| -4.269396 | 6.104129 | -11.717072 |
| -3.882757 | 6.150629 | -13.025990 |
| -4.436263 | 7.064343 | -13.902182 |
| -5.896542 | 8.640500 | -14.142553 |
| -6.611166 | 8.513706 | -11.732621 |
| -5.465709 | 6.905528 | -10.217332 |
| -3.150864 | 5.415763 | -13.330479 |
| -4.095465 | 7.068947 | -14.930907 |
| -2.648072 | 1.629391 | -5.690859 |
| -2.426079 | 1.945653 | -6.605520 |
| -3.039704 | 2.414587 | -5.278954 |
| -1 | | |

Derivatives $\mathbf{6 9}^{4+} / \mathbf{6 9}^{3+}$

The UV simulation calculations performed on the protonated derivative showed the presence of a single band at $\mathbf{3 5 5} \mathbf{~ m m}$ (experimental data $=\mathbf{3 6 7} \mathbf{~ n m}$).

Figure 5.62. UV simulated spectrum of derivative $\mathbf{6 9}^{4+}$ in acetonitrile.
The analogous calculations on the monodeprotonated calixarene derivative were subsequently carried out. The presence of a band at $\mathbf{5 9 4} \mathbf{~ n m}$ was observed (experimental data $=\mathbf{6 1 0} \mathbf{~ n m})$.

Figure 5.63. UV simulated spectrum of derivative $\mathbf{6 9}^{3+}$ in acetonitrile.
$\left.\begin{array}{llll}\text { Atomic coordinate of derivative 694+ } & & & \text { C } \\ \text { O } & 7.1725 & 7.8151 & 8.8095\end{array}\right)$

C	-1.16061400	-0.99230900	-2.94606600	H	6.88458900	-0.41067400	-1.57357000
C	-4.37005800	-0.84170700	0.99554100	C	6.20584000	1.48861700	1.03476200
H	-4.81120200	-0.58238800	1.95238400	H	5.39158600	1.60175700	1.73401800
C	3.17269400	-1.48874100	1.25001100	C	-5.99543500	1.76542500	-0.73345300
C	-0.04988000	-3.93947100	-3.63427000	H	-5.07071000	2.02147500	-1.23120100
H	0.89780400	-3.78004400	-4.16132900	C	-0.08886000	-3.94863400	3.88109600
H	-0.86474500	-3.68507800	-4.32395700	H	-1.01995700	-3.64486100	4.38008300
C	3.22789500	-1.48152300	-1.22648500	H	0.74761700	-3.58046500	4.49139900
C	-1.31993500	-1.35948600	2.49315600	C	-0.02538800	-5.45594700	3.74059800
C	4.28036000	-0.68216600	1.25641500	H	0.89777400	-5.71936600	3.21361500
H	4.71825000	-0.39343400	2.20794900	H	-0.85562900	-5.78364200	3.10590200
C	1.32989900	0.25783900	-3.04037500	C	-7.07780400	2.61333200	-0.69228900
H	2.29699900	0.75165800	-3.05979700	H	-7.01133200	3.56259100	-1.20772300
C	-3.25880800	-1.66733900	0.95267200	C	-8.24217200	0.98928900	0.62899400
C	1.11436600	-1.25946600	2.63905200	H	-9.10151700	0.64688900	1.19072900
C	4.89302100	-0.28245600	0.05117700	C	-0.12240900	-6.36702800	-4.30108200
C	-1.06702200	0.37517700	-3.19307400	H	-0.94047400	-6.19755100	-5.00758400
H	-1.97477900	0.95371300	-3.33784800	H	-0.20894300	-7.39104100	-3.93113800
C	-2.59140400	-2.14852600	2.22174200	H	0.81821700	-6.29091700	-4.85462500
H	-2.33631000	-3.20431100	2.13259700	C	7.32014000	2.28872700	1.07797100
H	-3.29150700	-2.03930500	3.05553700	H	7.39079300	3.01326200	1.87923000
C	-0.07570000	-1.99562000	2.57907000	C	-0.08282900	-6.16122000	5.09184300
C	2.47428300	-1.92400000	2.51623800	H	0.75315800	-5.86243100	5.73164100
H	2.33154100	-3.00553900	2.49870900	H	-0.03647000	-7.24583700	4.96953200
H	3.09289600	-1.67238200	3.38397000	H	-1.00957700	-5.92559400	5.62397200
C	-4.88201600	-0.30873400	-0.18198200	C	-9.39718200	3.14058500	0.07972300
C	1.02829900	0.12826700	2.72712500	C	-9.22403800	4.51550500	0.23625000
H	1.94585200	0.70792900	2.77466400	C	-10.32601100	5.33834200	0.30902400
C	0.17324300	0.99721000	-3.25091300	N	-11.56900200	4.83246900	0.22446000
H	0.23810200	2.06172000	-3.45062500	C	-11.76448300	3.50936300	0.07086300
C	-1.36416900	0.03094600	2.58608200	C	-10.69872400	2.64209100	-0.00073100
H	-2.32373100	0.53606900	2.52741100	H	-8.24026300	4.95791900	0.32302000
C	8.31969100	2.16881700	0.10831700	H	-10.24324500	6.40886200	0.43771000
C	-0.20104300	0.77398900	2.73179600	C	-12.74018300	5.72504600	0.33905600
H	-0.25069900	1.85498800	2.81416900	H	-12.79180800	3.17653800	0.00664400
C	8.13652300	1.19260700	-0.87457100	H	-10.89696100	1.58780200	-0.14265000
H	8.86122200	1.03977300	-1.66404300	C	9.44082300	4.35267400	0.58791700
C	-0.16905700	-5.36856600	-3.14874800	C	9.50916500	3.03756500	0.11756800
H	-1.10725400	-5.47515600	-2.59345600	C	10.74627900	2.58032800	-0.35103500
H	0.64247200	-5.56427200	-2.44068500	C	11.83731600	3.41524500	-0.33949300
C	-3.18075600	-1.40651400	-1.48386900	N	11.73803500	4.67913300	0.11695300
C	-7.14055700	0.16894300	0.54550100	C	10.56281200	5.14771900	0.57605000
H	-7.10810100	-0.81554000	0.99069500	H	8.51204600	4.78182800	0.93975100
C	-8.22728600	2.23620000	0.00297700	H	10.87778300	1.56812000	-0.70965300
C	7.02325500	0.38915200	-0.86219400	H	12.81331200	3.10134300	-0.68551400

C	12.93880100	5.53577100	0.14454600	H	-12.42901700	6.74445300	0.12672500
H	10.55051200	6.17245700	0.92154900	H	12.62892400	6.57599800	0.20183000
H	-13.49297700	5.41317900	-0.38144600	H	13.53992200	5.27667600	1.01596600
H	-13.13637900	5.65758500	1.35186300	H	13.50983600	5.37415900	-0.76724100

CHAPTER VI

Goals and Outline - Part II

6.1 Goals and Outline - Part II

In the context of the study of calixarene derivatives for the possible construction of molecular machines, it was decided to extend our investigation to multivalent systems, which could give rise to more complex supramolecular behaviours. These systems are characterized by the presence of more recognition sites that can interact with more guest molecules (Figure 6.1).

Figure 6.1. Schematic multivalent system.
In the following chapters, two different multivalent systems will be described (Figure 6.2). The first is a trivalent host, while the second is a bivalent axle. In the first instance, the multiple threading will be examined, while in the latter case, the selfsorting properties will be considered.

Figure 6.2. Multivalent systems.

CHAPTER VII

Multiple-Threading of a Tris-calix[6]arene

7.1 Multivalent hosts

Macrocyclic hosts with multiple cavities and/or multiple recognition sites have attracted increasing attention thanks to their usefulness for developing nontrivial interlocked architectures. At this regard, interpenetrated systems in which two rings are linked to one another in a handcuff-like fashion have represented a significant synthetic challenge. Based on the template-directed threading ${ }^{68}$ of linear axles through such double-macrocycles, beautiful handcuff-like architectures have been reported, which shows interesting properties and functions (Figure 7.1).

Figure 7.1. Schematic representation of the currently known prototypical examples of handcuff-derived architectures.

An interesting example of handcuff catenane is that reported by Beer in 2011 (Figure 7.2), whose synthesis exploited a chloride anion templated.

Figure 7.2. Crystal structure of handcuff catenane 70.
The synthetic strategy undertaken to prepare such handcuff catenane is illustrated in Figure 7.3. Two identical N-methylpyridinium molecules thread, by anion templated, through a handcuff-like bis-macrocycle. Each macrocycle contains an isophthalamide group able to hydrogen bonding to the chloride anion. Pseudorotaxane formation is also supported by $\pi-\pi$ stacking between the electron-rich hydroquinone groups of the bis-macrocycle and electron-poor pyridinium rings of the threading components. Subsequent cyclization led to the formation of the desired handcuff catenane.

[^43]

Figure 7.3. Synthesis of "handcuff" catenane.
In addition to the chain handcuff systems just described, there are also numerous examples of handcuff rotaxane in the literature and among them a recent example was reported by Champness in 2019. ${ }^{69}$ In particular, such "handcuff" rotaxane includes two pillar[5]arenes linked together by an aromatic bridge as cyclic system and a molecule with two imidazole groups as a linear system (Figure 7.4). The formation of the supramolecular system occurs thanks to the robust interaction between pillararenes and imidazole units. The interaction between these moieties provides a reliable method for the formation of the two pseudorotaxane moieties, which can be readily locked in place through reaction with appropriate plug sets.

Figure 7.4. "handcuff" rotaxane 71.
Other examples calixarene-based handcuff systems were described in chapter 2.

[^44]Regarding double-calixarene systems, their threading with dialkylammonium axles was explored. Initially, the study was conducted with symmetric axles leading to the formation of the expected symmetrical pseudo[3]rotaxane (Figure 7.5).

$\left(16 b^{+}\right)_{2} \subset 72$

$\left(16 \mathrm{a}^{+}\right)_{2} \subset 72$

Figure 7.5. Double-calixarene based pseudo[3]rotaxanes
Instead, when the study was extended to the non-symmetrical alkylbenzyl ammonium axle, only one supramolecular system was formed out of the three possible ones (Figure 7.6).

Figure 7.6. Double-calixarene based pseudo[3]rotaxanes with a non-symmetric axle.

7.2 Tris-calix[6]arene ${ }^{70}$

With the aim of forming more complex supramolecular systems, we decided to synthesize a homotritopic host 73 (Figure 7.7), bearing three calix[6]arene wheels linked to a central benzene unit and resembling the host component of molecular elevator synthesized by Stoddart (see Chapter 1).

[^45]

Figure 7.7. Multivalent host 73.

7.2.1 Synthesis of triple-calix[6]arene 73

Scheme 7.1 shows the synthetic strategy developed for the synthesis of derivative 73 . In detail, mono-ol 75, previously obtained according to the procedure reported in literature, ${ }^{71}$ was reacted with $1,3,5$-tris(bromomethyl)benzene in the presence of NaH as base, in a mixture of dry THF/DMF ($7 / 3 \mathrm{v} / \mathrm{v}$) for 12 h at reflux.

Scheme 7.1. Synthesis of derivative 73.
The ${ }^{1} \mathrm{H}$ NMR spectrum confirms the formation of multivalent host 73 (Figure 7.8a). In fact, three $\mathrm{ArCH}_{2} \mathrm{Ar} \mathrm{AX}$ systems can be seen in the $4.5-3.5 \mathrm{ppm}$ region, while one

[^46]$\mathrm{OCH}_{2}(6 \mathrm{H})$ singlet resonates at 5 ppm . A further confirmation is given by the HR-ESI-FT-ICR mass spectrum (m / z calcd for $\mathrm{C}_{222} \mathrm{H}_{288} \mathrm{KO}_{18}{ }^{+} 3283.1319$ found 3283.1748, Figure 7.8b).

Figure 7.8. ${ }^{1} \mathrm{H}$ NMR and HR-ESI-FT-ICR mass spectra of derivative 73.

7.2.2 Threading studies of derivative 73

Initially, the threading of $\mathbf{7 3}$ with a symmetrical dibenzylammonium axle $\mathbf{1 6 b}^{+}$was studied. Given the presence of three cavities, the study was carried out with different guest/host ratios, namely 1:1, 2:1, and 3:1, to form pseudo[2]-, -[3]-, and -[4]rotaxanes (Scheme 7.2).

Scheme 7.2. Formation of the $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{7 3},\left(\mathbf{1 6} \mathbf{b}^{+}\right)_{2} \subset \mathbf{7 3},\left(\mathbf{1 6} \mathbf{b}^{+}\right)_{3} \subset \mathbf{7 3}$ pseudorotaxane architectures by multiple-threading of $\mathbf{7 3}$ with $\mathbf{1 6} \mathbf{b}^{+}$as TFPB^{-}salt.

The formation of pseudo[n]rotaxanes by threading of 73 with dibenzylammonium axle $\mathbf{1 6 b}^{+}$was studied by HR-ESI-FT-ICR mass spectrometry and 1D/2D NMR (Figure 7.9). The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 7.9b) of a $1: 1$ mixture of 73 and $\mathbf{1 6} \mathbf{b}^{+} \cdot \mathbf{T F P B}^{-}$in CDCl_{3} at 298 K , shows the formation of the $\mathbf{1 6 b}^{+} \subset \mathbf{7 3}$ pseudo[2]rotaxane in CDCl_{3} solution. In details, a set of shielded benzyl resonances was observed in the $4.5-6.5$ region of the ${ }^{1} \mathrm{H}$ NMR spectrum, at $5.99(\mathrm{t}, 1 \mathrm{H}), 5.34(\mathrm{dd}$, $2 \mathrm{H})$, and $4.77 \mathrm{ppm}(\mathrm{d}, 2 \mathrm{H})$, corresponding to its endo-cavity disposition and consequently indicative of the formation of the $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{7 3}$ pseudo[2]rotaxane. Further confirmation comes from the ESI FT ICR MS spectrometry (Figure 7.9c). In fact, the presence of a molecular ion peak at $3442.2979 \mathrm{~m} / \mathrm{z}$ attributable to $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{7 3}$ pseudo[2]rotaxane was observed.

Figure 7.9. (a) Portion of ${ }^{1} \mathrm{H}$ NMR spectrum of $73\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right.$; (b) Portion of ${ }^{1} \mathrm{H}$ NMR spectrum of a $1: 1$ mixture of 73 and $\mathbf{1 6 b}^{+} \cdot \mathrm{TFPB}^{-}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right)$; (c) Portion of the ESI FT-ICR mass spectrum of $\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{7 3}$.

By adding 1 equivalent of salt to the previously analysed $1: 1$ mixture, we observed the appearance of further shielded aromatic signals in agreement with the formation of pseudo[3]rotaxane $\left(\mathbf{1 6} \mathbf{b}^{+}\right)_{2} \subset \mathbf{7 3}$. Confirmation of the formation of this supramolecular system comes from ESI FT-ICR mass spectrometry. In fact, the doubly charged molecular peak at $1820.2282 \mathrm{~m} / \mathrm{z}$ relative to the pseudo[3]rotaxane is clearly evident. An ESI-CID MS/MS experiment was then carried out which showed the appearance of a singly charged peak at $3442.2979 \mathrm{~m} / \mathrm{z}$ related to the formation of the pseudo[2]rotaxane following the extraction of an ammonium axle from the pseudo[3]rotaxane system previously formed (Figure 7.10).

Figure 7.10. HR ESI-FT-ICR-CID mass spectrum of $\left(\mathbf{1 6 b} \mathbf{b}^{+}\right)_{2} \subset 73$.

Subsequently, the guest/host ratio was increased to $3: 1$. From analysis of the NMR spectra, it was observed that pseudo[3]rotaxane was the specie most abundant as evidenced by the presence of two singlet in $1: 2$ ratio at 5.08 and 5.06 ppm attributable to the benzylic methylene groups of the central benzene core of $\mathbf{7 3}$ in $\left(\mathbf{1 6 b}^{+}\right)_{\mathbf{2}} \subset 71$ pseudo[3]rotaxane. A close inspection of the region between 4.8 and 5.2 ppm in the 1 D and 2D NMR spectra, revealed the presence of the $\left(\mathbf{1 6 b}^{+}\right)_{3} \subset \mathbf{7 3}$ pseudo[4]rotaxane as a less abundant species. These data suggested that in a $1: 3$ mixture of 73 and $\mathbf{1 6} \mathbf{b}^{+} \cdot \mathbf{T F P B}{ }^{-}$in CDCl_{3} (Figure 7.11b), the $\left(\mathbf{1 6 b}^{+}\right)_{\mathbf{2}} \subset \mathbf{7 3}$ and $\left(\mathbf{1 6 b}^{+}\right)_{3} \subset \mathbf{7 3}$ pseudorotaxanes were present.

Finally, increasing the guest/host ratio to 6:1, we observed the intensification of the signals related to the pseudo[4]rotaxane system at the expense of the pseudo[3]rotaxane (Figure 7.11g).
(g)

(f)

(e)
(d)

(b)
(a)

Figure 7.11. ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{7 3}$ with $\mathbf{1 6 b}^{+}$. TFPB- $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right)$. Significant portions of the ${ }^{1} \mathrm{H}$ NMR spectra of: (a) 6; (b) 1:1, (c) 1:2, (d) 1:3, (e) 1:4, (f) $1: 5$ and $(\mathrm{g}) 1: 6$ mixture of $\mathbf{7 3}$ and $\mathbf{1 6} \mathbf{b}^{+} \cdot$ TFPB - . Marked: red diamond $=\mathbf{1 6} \mathbf{b}^{+} \subset \mathbf{6}$; purple circle $=$ $\left(\mathbf{1 6} \mathbf{b}^{+}\right)_{2} \subset \mathbf{7 3}$; green triangle $=\left(\mathbf{1 6} \mathbf{b}^{+}\right)_{3} \subset \mathbf{7 3}$.

Then, a similar study was conducted using dipentylammonium as the linear axle, in different host/guest ratios (Scheme 7.3). Initially, the $1: 1$ mixture showed the formation of the pseudo[2]rotaxane system as confirmed by mass spectrometry and NMR spectroscopy.

Scheme 7.3. Formation of the $16 \mathbf{a}^{+} \subset \mathbf{7 3},\left(16 \mathbf{a}^{+}\right)_{2} \subset \mathbf{7 3},\left(16 \mathrm{a}^{+}\right)_{3} \subset \mathbf{7 3}$ pseudorotaxane architectures by multiple-threading of $\mathbf{7 3}$ with $\mathbf{1 6 a}{ }^{+}$as TFPB ${ }^{-}$salt.

In detail, HR ESI FT-ICR mass spectrum (Figure 7.12e) of the 1:1 mixture of 73 and $\mathbf{1 6 a}{ }^{+} \cdot \mathbf{T F P B}^{-}$clearly evidenced the presence of a molecular ion peak at $3402.3809 \mathrm{~m} / \mathrm{z}$. Moreover, the analysis of NMR spectrum showed shielded signals at negative values of chemical shifts at $-0.99,-0.88,-0.57,-0.40$, and 0.64 ppm attributable, respectively, to the $\beta, \gamma, \delta, \varepsilon$, and $\alpha \mathrm{H}$-atoms of the pentyl chain of linear system in the calix-cavity of $\mathbf{6}$. By bringing the mixture to a $1: 2$ ratio between host and guest, it is possible to observe the presence of the molecular peak related to the 3-component supramolecular system by using ESI FT-ICR MS (Figure 7.12f). At the end, with an excess of $\mathbf{1 6 a}^{+} \cdot \mathbf{T F P B}^{-}$, the formation of the $\left(\mathbf{1 6 a}^{+}\right)_{3} \subset 71$ pseudo[4]rotaxane was evidenced by ${ }^{1} \mathrm{H}$ NMR (Figure 7.12d).

Figure 7.12. (a-d) ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{7 3}$ with $\mathbf{1 6 a}^{+} \cdot \mathrm{TFPB}^{-}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right)$. Significant portions of the ${ }^{1} \mathrm{H}$ NMR spectra of: (a) 73; (b) 1:1, (c) 1:2, (d) 1:3, mixture of 73 and $\mathbf{1 6} \mathbf{a}^{+} \cdot$ TFPB $^{-}$. (e) HR ESI-FT-ICR mass spectrum of $\mathbf{1 6 a} \mathbf{a}^{+} \subset$ 73. (f) HR ESI-FT-ICR-CID mass spectrum of $\left(\mathbf{1 6} \mathbf{a}^{+}\right)_{2} \subset \mathbf{7 3}$.

Subsequently, the threading of the multivalent host with the directional butylbenzyl ammonium axle $\mathbf{1 6} \mathbf{e}^{+}$was studied. In this case, given the non-symmetry of the linear system, the endo-alkyl and the endo-benzyl adducts can be formed for each calixarene cavity and this implies that up to 4 supramolecular pseudo[4]rotaxane stereoisomers can be formed (Figure 7.13).

By mixing derivative 73 with 1 equiv. of butylbenzylammonium cation $\mathbf{1 6 e}^{+}$as TFPB^{-} salt in CDCl_{3}, the formation of the (endo-alkyl)- $\mathbf{1 6} \mathrm{e}^{+} \subset \mathbf{7 3}$ pseudo[2]rotaxane was observed by the presence in the ${ }^{1} \mathrm{H}$ NMR spectrum of shielded signals related to alkyl chain at negative value of chemical shift between -0.73 to -0.82 ppm . No evidence of the (endo-benzyl)- $\mathbf{1 6} \mathbf{e}^{+} \subset \mathbf{7 3}$ pseudo[2]rotaxane stereoisomer was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the $1: 1$ mixture of $\mathbf{1 6} \mathrm{e}^{+}$and $\mathbf{7 3}$.

endo-benzyl

(endo-alkyl) ${ }_{3}$

endo-alkyl

Figure 7.13. (top) Possible endo-benzyl and endo-alkyl stereoisomer obtainable by directional threading of calix[6]arene-wheel with alkylbenzylammonium axles. (Bottom) Sketch of the possible pseudo[4]rotaxane stereoisomers obtainable by triple-threading of $\mathbf{7 3}$ with 16e ${ }^{+}$.

MS analysis of this mixture confirmed the formation of $\mathbf{1 6} \mathbf{e}^{+} \subset \mathbf{7 3}$ pseudo[2]rotaxane. In fact, a molecular ion peak was present at $3408.3230 \mathrm{~m} / \mathrm{z}$ (Figure 7.14). Afterwards, a mass spectrum of the $1: 2$ mixture of $\mathbf{7 3 / 1 6} \mathbf{e}^{+} \cdot \mathbf{T F P B}^{-}$revealed the presence of singlycharged $\mathbf{1 6} \mathrm{e}^{+} \subset \mathbf{7 3}$ and doubly-charged $\left(16 \mathrm{e}^{+}\right)_{2} \subset \mathbf{7 3}$ pseudorotaxanes. ESI-CID MS/MS experiment revealed that $\left(\mathbf{1 6 e}^{+}\right)_{2} \subset \mathbf{7 3}$ pseudo[3]rotaxane was collisionally dissociated to $16 \mathbf{e}^{+} \subset 73$ pseudo[2]rotaxane by de-threading of one ammonium axle.

Finally, a ${ }^{1} \mathrm{H}$ NMR spectrum of the $1: 3$ mixture of $\mathbf{1 6 e}^{+} \cdot \mathbf{T F P B}^{-}$and $\mathbf{7 3}$ was recorded and, again, no shielded benzylic resonances in the $4-6 \mathrm{ppm}$ region could be evidenced. This is a clear proof that endo-butyl pseud[n]rotaxanes were selectively formed.

Figure 7.14. (a-d) ${ }^{1} \mathrm{H}$ NMR titration of $\mathbf{7 3}$ with $\mathbf{1 6 e}^{+} . \mathrm{TFPB}^{-}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 600 \mathrm{MHz}\right)$. Significant portions of the ${ }^{1} \mathrm{H}$ NMR spectra of: (a) 6; (b) $1: 1$, (c) $1: 2$, (d) $1: 3$, mixture of 73 and $\mathbf{1 6} \mathrm{e}^{+} \cdot$ TFPB $^{-}$. (e) HR ESI-FT-ICR mass spectrum of $\mathbf{1 6 e ^ { + } \subset \mathbf { 7 3 }}$. (f) HR ESI-FT-ICR-CID mass spectrum of $\left(\mathbf{1 6 e}{ }^{+}\right)_{2} \subset \mathbf{7 3}$.

7.3 Conclusions

In this chapter, the synthesis of an interesting multivalent host is shown. The threading ability of triple-calix[6]arene derivative $\mathbf{7 3}$ was tested with classical ammonium salt used for calixarene threading. It was demonstrated that derivative $\mathbf{7 3}$ is able to give a multiple-threading process with each axle used. The formation of pseudo[2]rotaxane, pseudo[3]rotaxane, and pseudo[4]rotaxane in CDCl_{3} solution was ascertained by 1D and 2D NMR, and ESI FT-ICR MS/MS experiments. Furthermore, in the presence of a directional butylbenzylammonium axle, the stereoselective formation of endo-alkyl pseudorotaxane stereoisomers was observed.

7.4 Experimental Section

7.4.1 General Comments

Reactions under anhydrous conditions were conducted under an inert atmosphere (nitrogen) using dry solvents. The commercial reagents were purchased by Aldrich and TCIchemicals and were used without further purification. The reactions were controlled by thin-layer chromatography (TLC) with Macherey-Nagel plates coated with silica gel (0.25 mm) with fluorescence indicator UV254 and visualized using UV light and nebulization with an indicator solution of $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$. The reaction temperatures were measured externally using electronic thermometers. The reaction products were purified by Macherey-Nagel silica gel chromatography (60, 70-230 mesh). NMR spectra were recorded on Bruker Avance-600 spectrometer [600 $\left({ }^{1} \mathrm{H}\right)$ and $\left.150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)\right]$, Bruker Avance- 400 spectrometer [400 $\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$]. Chemical shifts are reported relative to the residual solvent peak $\left(\mathrm{CHCl}_{3}: \delta 7.26\right.$, $\left.C \mathrm{DCl}_{3}: \delta 77.16\right)$ Standard pulse programs, provided by the manufacturer, were used for 2D NMR experiments. High-resolution Mass spectra were acquired with a Bruker Solarix spectrometer equipped with a Tesla magnet. It was used a MALDI as methods of sample ionization. DHB was used as matrix. Samples were prepared in CHCl_{3} (1 $\mathrm{mg} / \mathrm{mL}$).

7.4.2 Synthesis of derivative 73

In a dry round flask, under N_{2}, derivative 76 ($3.11 \mathrm{~g}, 2.98 \mathrm{mmol}$) was dissolved in dry THF/DMF (180 mL, 7:3 v/v). Subsequently, $\mathrm{NaH}(1.05 \mathrm{~g}, 43.86 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After 15 minutes, $1,3,5-$ tris(bromomethyl)benzene $(0.36 \mathrm{~g}, 1.00$ mmol) was added to the reaction mixture at room temperature. The reaction was stirred at reflux for 24 h under a nitrogen atmosphere. Afterwards the reaction was stopped by addition of 1 N HCl and the solution was extracted with chloroform. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated of the solvent. The raw was purified through chromatography column on silica gel and using solvent mixture dichloromethane/diethyl ether 96:4 as eluents. Derivative 73 was isolated with 68 \% yield ($2.20 \mathrm{~g}, 0.67 \mathrm{mmol}$). ${ }^{1} \mathbf{H N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 7.78(\mathrm{~s}, \mathrm{ArH}, 3 \mathrm{H})$, 7.28-7.26 (overlapped, $\mathrm{ArH}_{\text {calix }}, 6 \mathrm{H}$), 7.11-7.06 (overlapped, $\mathrm{Ar} H_{\text {calix }}, 12 \mathrm{H}$), 6.94 6.87 (overlapped, $\mathrm{ArH} \mathrm{H}_{\text {calix }}, 18 \mathrm{H}$), 5.06 (s, $\mathrm{OCH}_{2} \mathrm{Ar}, 6 \mathrm{H}$), 4.50 and 3.58 (AX system,
$\mathrm{ArCH}_{2} \mathrm{Ar}, J=14.7 \mathrm{~Hz}, 12 \mathrm{H}$), 4.17 and 4.04 (AX system, $\mathrm{ArCH}_{2} \mathrm{Ar}, J=14.5 \mathrm{~Hz}, 12 \mathrm{H}$), 3.83 and $3.68\left(\mathrm{AX}\right.$ system, $\left.\mathrm{ArCH}_{2} \mathrm{Ar}, J=15.1 \mathrm{~Hz}, 12 \mathrm{H}\right), 3.15\left(\mathrm{~s}, \mathrm{OCH}_{3}, 18 \mathrm{H}\right), 2.82$ $\left(\mathrm{s}, \mathrm{OCH}_{3}, 9 \mathrm{H}\right), 2.58\left(\mathrm{~s}, \mathrm{OCH}_{3}, 18 \mathrm{H}\right), 1.24-1.22$ (overlapped, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 81 \mathrm{H}\right), 1.07(\mathrm{~s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 54 \mathrm{H}\right), 0.97\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 26 \mathrm{H}\right) .{ }^{13} \mathbf{C N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 154.5$, 154.4, 153.9, 152.4, 145.9, 145.7, 138.8, 134.1, 133.9, 133.7, 133.6, 133.4, 127.5, $126.9,125.5,125.3,124.8,77.5,75.9,74.8,60.2,60.0,34.3$ (2), 31.8, 31.7(2), 31.5 (2),30.8, 30.6, 22.7, 14.4. HRMS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{222} \mathrm{H}_{288} \mathrm{KO}_{18}{ }^{+} 3283.1319$ found 3283.1748 .

Figure 7.15. ${ }^{13} \mathrm{C}$ NMR spectrum of derivative $73\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 7.16. 2D COSY spectrum of derivative $73\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 7.17. 2D HSQC spectrum of derivative 73 ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

7.4.3 Threading of derivative $\mathbf{7 3}$

Mixtures of calix[6]arene derivative and TFPB linear system were dissolved in 0.5 mL of CDCl_{3}. Then, solutions were transferred in an NMR tube for 1D and 2D NMR spectra acquisition.

Table 7.1. Amount of hosts and guests for complexation experiments.

Pseudo[n]rotaxanes	Calix[6]arene		Axles		CDCl_{3}
	(mg)	(mmol)	(mg)	(mmol)	(ml)
$16{ }^{+} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	1.63	$1.5 \cdot 10^{-3}$	0.5
$\left(16 b^{+}\right)_{2} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	3.26	$3.0 \cdot 10^{-3}$	0.5
$\left(16 b^{+}\right)_{3} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	4.89	$4.5 \cdot 10^{-3}$	0.5
$16 \mathrm{a}^{+} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	1.57	$1.5 \cdot 10^{-3}$	0.5
$\left(16 a^{+}\right)_{2} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	3.14	$3.0 \cdot 10^{-3}$	0.5
$\left(16 \mathrm{a}^{+}\right)_{3} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	4.71	$4.5 \cdot 10^{-3}$	0.5
$16 \mathrm{e}^{+} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	1.58	$1.5 \cdot 10^{-3}$	0.5
$\left(16 \mathrm{e}^{+}\right)_{2} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	3.16	$3.0 \cdot 10^{-3}$	0.5
$\left(16 \mathrm{e}^{+}\right)_{3} \subset 73$	5.00	$1.5 \cdot 10^{-3}$	4.74	$4.5 \cdot 10^{-3}$	0.5

(d)

(c)

(b)

(a)

Figure 7.18. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73; (b) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73 and $\mathbf{1 6} \mathbf{b}^{+}$TFPB $^{-}$in mixture $1: 1$; (c) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{7 3}$ and $\mathbf{1 6 b}^{+} \mathrm{TFPB}^{-}$in mixture 1:2; (d) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{7 3}$ and $\mathbf{1 6 b}^{+} \mathrm{TFPB}^{-}$in mixture $1: 3(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 7.19. 2D COSY spectrum of derivative $\left(\mathbf{1 6 b}^{+}\right)_{3} \subset 73\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 7.20. 2D HSQC spectrum of derivative $\left(\mathbf{1 6 b}^{+}\right)_{3} \subset \mathbf{7 3}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.
(d)

\qquad
(c)

(b)

Figure 7.21. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73; (b) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73 and $\mathbf{1 6 a}{ }^{+}$TFPB $^{-}$in mixture $1: 1$; (c) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{7 3}$ and $\mathbf{1 6 a}{ }^{+} \mathrm{TFPB}^{-}$in mixture 1:2; (d) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{7 3}$ and $\mathbf{1 6 a}^{+} \mathrm{TFPB}^{-}$in mixture $1: 3(600 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$).

Figure 7.22. 2D COSY spectrum of derivative $\left(\mathbf{1 6 a}^{+}\right)_{3} \subset \mathbf{7 3}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

(c)

(b)

Figure 7.23. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73; (b) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73 and $\mathbf{1 6} \mathrm{e}^{+}$TFPB ${ }^{-}$in mixture $1: 1$; (c) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{7 3}$ and $\mathbf{1 6 e}^{+} \mathrm{TFPB}^{-}$in mixture 1:2; (d) ${ }^{1} \mathrm{H}$ NMR spectrum of derivative 73 and $\mathbf{1 6} \mathrm{e}^{+}$TFPB ${ }^{-}$in mixture $1: 3(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

Figure 7.24. 2D COSY spectrum of derivative $\left(\mathbf{1 6 e}^{+}\right)_{3} \subset \mathbf{7 3}(600 \mathrm{MHz}, \mathrm{CDCl} 3,298 \mathrm{~K})$.

Figure 7.25. 2D HSQC spectrum of derivative $\left(\mathbf{1 6 e}^{+}\right)_{3} \subset \mathbf{7 3}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$.

CHAPTER VIII

Self-sorting processes in pseudo[3]rotaxane

systems

8.1 Self-sorting processes

A new frontier of supramolecular chemistry is the realization of complex molecular devices that are based on self-sorting processes. Through these processes, it is possible to observe in multicomponent mixtures molecular recognition phenomena that lead to the formation of a small number of supramolecular aggregates compared to a higher number of possibilities. Therefore, self-sorting refers to supramolecular systems that can self-select.

The concept behind self-sorting processes originates from nature itself, which controls the organization of complex biological systems, such as proteins, nucleic acids, and lipids within larger functional assemblies. Such organized biological systems must have specific characteristics that lead to their functions (e.g., DNA, ribosomes, or membranes). The most emblematic example in nature is represented by the 4 nitrogenous bases of DNA, because to form the double helix structure, the selective complementary pairing between adenine and thymine, cytosine and guanine (Figure 8.1) is necessary.

Figure 8.1. Double Helix of DNA.
From a synthetic point of view, these phenomena can be observed thanks to the construction of specific "molecular codes". By this term, it is meant the intrinsic structural information of a given interacting species on which depend the strength and selectivity of the interactions with the components of the system. The molecules, therefore, will tend to bind establishing the maximum number of possible interactions, otherwise, discrimination events will be observed. There are different "molecular codes" (Figure 8.2), both in synthetic and biological systems, including geometric complementarity (due to the size and shape of the interacting species) and interactional complementarity (between donors and acceptors of hydrogen-bonds, opposite charges, metal-ligand coordination, etc.).

Figure 8.2. Molecular codes in self sorting systems.
The main differentiations processes can be classified as narcissistic self-sorting ${ }^{72}$ or social self-sorting. ${ }^{73}$ In the first instance, the molecule or ion manifests the affinity only towards itself, while in the second case it is able to selectively discriminate one constituent among many others.

Figure 8.3. Schematic representation of narcissistic and social self-sorting
A further classification can be that of non-integrative and integrative self-sorting (Figure 8.4). Through the first type of process, it is possible to obtain more supramolecular systems each consisting of a subunit able to interact in a specific and selective way. Instead, in the second type all the subunits are connected leading to a single integrative supramolecular complex.

[^47]

Figure 8.4. nonintegrative and integrative self-sorting.

8.2 Self-sorting in supramolecular chemistry

One of the most significant examples of synthetic self-sorting processes was reported in 2008 by Schalley and coll. ${ }^{74}$ In detail, a hetero[3]rotaxane system was formed by integrative self-sorting (Scheme 8.1) exploiting two crown ethers, 77 and 78, of different size and an axle bearing two different ammonium sites, 79 .

Integrative Self-Sorting
Hetero[3]pseudorotaxane
Scheme 8.1. Sequence-specific formation of hetero[3]pseudorotaxane $\mathbf{8 0}$ based on an integrative self-sorting process and the synthesis of "cascade-stoppered" hetero[3]rotaxane 81.

[^48]The benzo-21-crown-7 wheel 78 has a very small cavity which cannot be crossed by benzyl groups. Therefore, this macrocycle can only integrate the ammonium site B of the axle 79. Instead, the larger dibenzo-24-crown-8 unit 77 is able to reach site A of the axle 79.

Other examples of interesting self-sorting based on calixarene pseudorotaxanes were reported in 2013. ${ }^{75}$ In detail, by mixing very similar calix[6]arene macrocycles with bis-ammonium axles, it was observed that each calixarene is able to select its own axle leading to the formation of only two pseudorotaxanes out of twenty possible ones (Scheme 8.2).

Scheme 8.2. Nonintegrative Self-sorting of calixarene pseudo[3]rotaxane systems.
The experiment described in Scheme 8.2 led to the writing of the following molecular code:
$>$ Rule 1 (social behavior): benzylalkylammonium sites on bis-ammonium axles select non-tert-butylated calix[6]arene wheels in preference to tert-butylated ones, which thus remain uncomplexed.
$>$ Rule 2 (stereochemistry): threading of a directional alkylbenzylammonium station through a non-tert-butylated hexaalkoxycalix[6]arene occurs with preference for the endo-alkyl orientation.
$>$ Rule 3 (social behavior): benzyl-p-alkoxybenzylammonium sites on a bisammonium axle select tert-butylated calix[6]arenes over non-tert-butylated ones, which remain uncomplexed.
$>$ Rule 4 (stereochemistry): threading of a benzyl- p-alkoxybenzylammonium site through a tert-butylated hexaalkoxycalix[6]arene occurs with preference for the endo-benzyl configuration.

The definition of the above molecular code led to the design of a directional bisammonium axle $\mathbf{8 4}^{\mathbf{2 +}}$, which is constitutionally non-symmetric (Figure 8.5).

[^49]

Figure 8.5. Derivative $\mathbf{8 4}^{2+}(\mathrm{TFPB})_{2}{ }^{-}$.
The mixing of axle $\mathbf{8 4}^{\mathbf{2 +}}$ with the two calix[6]arene wheels $\mathbf{1 5 d}$ and $\mathbf{1 5 a}$ led to the sorting of only one interpenetrate system out of 16 stereo-adducts potentially possible. (Figure 8.6). This is the first example in the literature in which an integrative selfsorting process is able to discriminate at the same time both sequence and stereochemistry of the wheels.

Figure 8.6. ${ }^{1} \mathrm{H}$ NMR spectrum of pseudo[3]rotaxane self-sorted ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$).

8.3 Self-sorting in a heteropseudo[3]rotaxane system

On the basis of the above information, it was decided to study the stereoselective integrative self-sorting of a heteropseudo[3]rotaxane (Figure 8.7) by exploiting two calixarene wheels of different size and a specifically designed axle. The nonsymmetrical bis-ammonium axle $\mathbf{8 5}^{\mathbf{2 +}}$ was designed by including an alkylbenzyl and a bis-benzyl site (Figure 8.7) counterbalanced by TFPB- "superweak anion". This system was designed by integrating the previously described molecular code with the additional information obtained from threading studies on calix[5]arene wheels. In fact, it was observed that the smaller calix[5]arene annulus does not allow the passage of a benzyl group. Therefore, in the presence of an alkylbenzylammonium axle it only gives the endo-alkyl adduct.

Figure 8.7. Components for Heteropseudo[3]rotaxane.

8.3.1 Synthesis of linear system $\mathbf{8 5}^{2+}$ (TFPB) 2^{-}

Linear system 85 was obtained with the synthetic procedure shown in Scheme 8.3.

Scheme 8.3. Synthesis of derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathrm{TFPB}) 2^{-}$.

Initially, a reductive amination reaction was performed between butylamine and aldehyde 86. Subsequently, the cyano group was transformed into an aldehyde 88, which in turn was reacted in a second amination reaction with benzylamine. Once the non-symmetric diamine was obtained, a salification step was carried out $\mathbf{8 5}^{2+}(\mathbf{C l})_{2}$. Finally, an anion exchange with NaTFPB led to the desired axle $\mathbf{8 5}^{2+}(\mathbf{T F P B}) 2^{-}$.The linear system was characterized by NMR spectroscopy. In detail, an analysis of the proton spectrum evidenced three $\mathrm{N}-\mathrm{CH}_{2}$-Ar singlets (4.11, 4.16, and 4.20 ppm) and one $\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ triplet at 3.0 ppm . Finally, in the $7.0-7.5 \mathrm{ppm}$ aromatic zone, there are signals related to benzyl rings and to the TFPB anion.

Figure 8.8. ${ }^{1} \mathrm{H}$ NMR spectrum of derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

8.3.2 Threading of linear system 85^{2+} TFPB) 2^{-}

With the bis-ammonium axle in hand, its threading abilities were studied with the two calix[5 and 6]arenes previously mentioned. Given the directionality of both axle and wheels, by their combination 16 different pseudo[3]rotaxanes can be obtained. These include the three possible head-to-head (H - H), tail-to-tail ($(\mathrm{T}-\mathrm{T}$), and head-to-tail (H T) relative orientations of the wheels (Figure 8.9).

Figure 8.9. 16 possible interpenetrated systems.
Initially, preliminary tests were carried out by mixing axle $\mathbf{8 5}^{\mathbf{2 +}}$ with calix[6]-wheel 15a in a 1:2 ratio. An inspection of the proton spectrum revealed the formation of one pseudo[3]rotaxane system (Figure 8.10). In fact, only the $T-T$ adduct was obtained with respect to the four possible ones, which differ only by the spatial relative orientation of the wheels along the axle.

Figure 8.10. ${ }^{1} \mathrm{H}$ NMR spectrum of mixture $1: 2$ between derivatives $\mathbf{8 5}^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-}$and $\mathbf{1 5 a}$ $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Subsequently, the NMR study was extended to the $1: 2$ mixture of axle $\mathbf{8 5}^{\mathbf{2 +}}$ and calix[5]-wheel 33. Also, in this case, only one supramolecular system was formed. In fact, since the benzyl groups are too big to thread the calix[5]arene annulus, only the endo-alkyl pseudo[2]rotaxane can be obtained (Figure 8.11).

Figure 8.11. ${ }^{1} \mathrm{H}$ NMR spectrum of mixture 1:2 between derivatives $\mathbf{8 5}^{\mathbf{2 +}}$ (TFPB) 2^{-}and $\mathbf{3 3}$ ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}$).

Given these good results, a sorting experiment was carried out by mixing bisammonium axle $\mathbf{8 5}^{\mathbf{2 +}}$ ($\left.\mathbf{T F P B}\right)_{2}{ }^{-}$with the two wheels $\mathbf{1 5 a}$ and $\mathbf{3 3}$ in a 1:1:1 ratio. The ${ }^{1} \mathrm{H}$ NMR spectrum revealed again the formation of only one pseudo[3]rotaxane out of the 16 possible ones. In particular, the ($T-T$)-heteropseudo[3]rotaxane depicted in Figure 8.12 was obtained, in which the calix[5] and calix[6] wheels are resident in the alkylbenzyl and bis-benzyl site, respectively.

Figure 8.12. ${ }^{1} \mathrm{H}$ NMR spectrum of mixture 1:1:1 between derivatives $\mathbf{8 5}^{\mathbf{2 +}}$ (TFPB) $2^{-}, \mathbf{1 5 a}$ and $33\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

8.4 Conclusion

In conclusion, this chapter describes a self-sorting pseudo[3]rotaxane system based on a non-symmetric bis-ammonium axle and two different calixarene macrocycles that differ in the size of their cavity. The two different sites of the axle are able to discriminate the two different macrocycles. In addition, their binding is also stereoselective in terms of their relative spatial orientation.

8.5 Experimental Section

8.5.1 General Comments

Reactions under anhydrous conditions were conducted under an inert atmosphere (nitrogen) using dry solvents. The commercial reagents were purchased by Aldrich and TCIchemicals and were used without further purification. The reactions were controlled by thin-layer chromatography (TLC) with Macherey-Nagel plates coated with silica gel (0.25 mm) with fluorescence indicator UV254 and visualized using UV light and nebulization with an indicator solution of $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$. The reaction temperatures were measured externally using electronic thermometers. The reaction products were purified by Macherey-Nagel silica gel chromatography (60, 70-230 mesh). NMR spectra were recorded on Bruker Avance-600 spectrometer [600 $\left({ }^{1} \mathrm{H}\right)$ and $150 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$], Bruker Avance- 400 spectrometer [400 $\left({ }^{1} \mathrm{H}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$]. Chemical shifts are reported relative to the residual solvent peak $\left(\mathrm{CHCl}_{3}: \delta 7.26\right.$, $\left.C \mathrm{DCl}_{3}: \delta 77.16\right)$ Standard pulse programs, provided by the manufacturer, were used for 2D NMR experiments. High-resolution Mass spectra were acquired with a Bruker Solarix spectrometer equipped with a Tesla magnet. It was used a MALDI as methods of sample ionization. DHB was used as matrix. Samples were prepared in CHCl_{3} (1 $\mathrm{mg} / \mathrm{mL}$).

8.5.2 Synthesis of derivative $\mathbf{8 5}^{2+}(\mathrm{TFPB})_{2}{ }^{-}$

Derivative 89

A mixture of derivative $88(0.50 \mathrm{~g}, 1.55 \mathrm{mmol})$ and butylamine $(0.11 \mathrm{~g}, 1.55 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was stirred at room temperature for 2 h . The solvent was evaporated under reduced pressure to give the imine intermediate as a yellow oil in a quantitative yield. The imine intermediate was used for the next step without further purification. The imine was dissolved in THF (5 mL), and $\mathrm{NaBH}_{4}(0.58 \mathrm{~g}, 15.46 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and then the mixture was allowed to warm at room temperature. The solution was kept under stirring for 2 h . The solvent was removed under reduced pressure and the residue partitioned between $\mathrm{AcOEt}(50 \mathrm{~mL})$ and an aqueous saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic layer was dried over NaSO_{4} and the solvent was removed under reduced pressure, to give derivative $\mathbf{8 9}$ as a yellow oil $92 \%(0.54 \mathrm{~g}$, $1.42 \mathrm{mmol}) .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 7.57\left(\mathrm{~d}, \mathrm{H}_{\mathrm{l}}, 2 \mathrm{H}, \mathrm{J}=8.7\right)$, $7.22(\mathrm{~d}$, $\mathrm{H}_{\mathrm{a}}, 2 \mathrm{H}, \mathrm{J}=8.2$), $6.92\left(\mathrm{~d}, \mathrm{H}_{\mathrm{b}}, 2 \mathrm{H}, \mathrm{J}=8.2\right), 6.85\left(\mathrm{~d}, \mathrm{H}_{\mathrm{i}}, 2 \mathrm{H}, \mathrm{J}=8.7\right), 3.98$ (overlapped, $\mathrm{H}_{\mathrm{c}, \mathrm{h}}$, $4 \mathrm{H}), 3.72\left(\mathrm{~s}, \mathrm{H}_{\mathrm{m}}, 2 \mathrm{H}\right), 2.61\left(\mathrm{t}, \mathrm{H}_{\mathrm{n}}, 2 \mathrm{H}, \mathrm{J}=7.2\right.$), 1.82 (overlapped, $\left.\mathrm{H}_{\mathrm{d}, \mathrm{g}}, 4 \mathrm{H}\right), 1.50$ (overlapped, $\left.\mathrm{H}_{\mathrm{e}, \mathrm{f}, \mathrm{o}}, 6 \mathrm{H}\right), 1.32\left(\mathrm{~m}, \mathrm{H}_{\mathrm{p}}, 2 \mathrm{H}\right), 0.93\left(\mathrm{t}, \mathrm{H}_{\mathrm{q}}, 3 \mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}, 298 \mathrm{~K}): ~ \delta 162.6,158.2,134.1,132.9,129.4,119.5,115.3,114.5,103.9,68.4$, 67.9, 53.7, 49.3, 32.4, 29.4, 29.1, 26.0, 25.9, 20.7, 14.2. MALDI-MS (m/z) calcd for $[\mathrm{M}+\mathrm{H}]^{+}=381.2537$ found 381.2557 .

Figure 8.13. ${ }^{1} \mathrm{H}$ NMR of derivative $\mathbf{8 9}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.14. ${ }^{13} \mathrm{C} \mathrm{NMR}$ of derivative $89\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.15. MALDI-MS spectrum of derivative $\mathbf{8 9}$.

Derivative 90

To a solution of derivative $\mathbf{8 9}(0.52 \mathrm{~g}, 1.37 \mathrm{mmol})$ and $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O}(80 \% \mathrm{w} / \mathrm{w} 8 \mathrm{ml}$ $+2 \mathrm{ml})$; was added $(0.03 \mathrm{~g}, 0.14 \mathrm{mmol})$ and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 12 h . The solution was cooled at room temperature and the catalyst was filtered. The crude product was extracted with AcOEt and the organic layer was dried over NaSO_{4} and the solvent was removed under reduced pressure. Subsequently, raw was treated with $\mathrm{HCl}(37 \%)$ in methanol at room temperature for 1 hour. The solvent was removed under reduced pressure and the crude was precipitated in acetonitrile to give derivative $90(0.14 \mathrm{~g}, 28 \%)$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 250 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta 9.82$ (s, $\left.\mathrm{H}_{\mathrm{r}}, 1 \mathrm{H},\right), 7.85\left(\mathrm{~d}, \mathrm{H}_{\mathrm{l}}, 2 \mathrm{H}, \mathrm{J}=8.7\right), 7.36\left(\mathrm{~d}, \mathrm{H}_{\mathrm{a}}, 2 \mathrm{H}, \mathrm{J}=8.2\right), .7 .06\left(\mathrm{~d}, \mathrm{H}_{\mathrm{b}}, 2 \mathrm{H}, \mathrm{J}=8.2\right), 6.97$ $\left(\mathrm{d}, \mathrm{H}_{\mathrm{i}}, 2 \mathrm{H}, \mathrm{J}=8.7\right), 4.05$ (overlapped, $\mathrm{H}_{\mathrm{c}, \mathrm{h}, \mathrm{m}}, 6 \mathrm{H}$), $2.96\left(\mathrm{t}, \mathrm{H}_{\mathrm{n}}, 2 \mathrm{H}, \mathrm{J}=7.2\right)$, 1.57 (overlapped, $\mathrm{H}_{\mathrm{d}, \mathrm{g}, \mathrm{e}, \mathrm{f}, \mathrm{o}, \mathrm{p}}, 12 \mathrm{H}$), $1.00\left(\mathrm{t}, \mathrm{H}_{\mathrm{q}}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 62.5 \mathrm{MHz}, 298 \mathrm{~K}\right)$: $\delta 191.3,159.9,131.6,130.8,114.5,114.4,67.9,67.4,50.5,28.7,27.9,25.3,19.4$, 12.4. MALDI-MS $(\mathrm{m} / \mathrm{z})$ calcd for $[\mathrm{M}]^{+}=384.2533$ found 384.2565 .

Figure 8.16. ${ }^{1} \mathrm{H}$ NMR of derivative $90\left(\mathrm{CD}_{3} \mathrm{OD}, 250 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.17. ${ }^{13} \mathrm{C}$ NMR of derivative $90\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.18. MALDI-MS spectrum of derivative 90 .

Derivative $\mathbf{8 5}^{2+}(\mathrm{Cl})_{2}{ }^{-}$

A mixture of derivative $90(0.50 \mathrm{~g}, 1.55 \mathrm{mmol})$ and benzylamine $(0.11 \mathrm{~g}, 1.55 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was stirred at room temperature for 2 h . The solvent was evaporated under reduced pressure to give the imine intermediate as a yellow oil in a quantitative yield. The imine intermediate was used for the next step without further purification. The imine was dissolved in THF (5 mL), and $\mathrm{NaBH}_{4}(0.58 \mathrm{~g}, 15.46 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and then the mixture was allowed to warm at room temperature. The solution was kept under stirring for 2 h . The solvent was removed under reduced pressure and the residue partitioned between $\mathrm{AcOEt}(50 \mathrm{~mL})$ and an aqueous saturated solution of $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic layer was dried over NaSO_{4} and the solvent was removed under reduced pressure, to give derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathbf{C l})_{2}{ }^{-}$as a yellow oil. The amine was treated with $\mathrm{HCl} 37 \%(2 \mathrm{ml})$ in methanol. (5 ml). Reaction was stirred at room temperature for 30 min . Solvent was evaporated. Raw was triturated in acetonitrile. The product was obtained as white solid, $92 \%(0.54 \mathrm{~g}, 1.42 \mathrm{mmol}) .{ }^{1} \mathbf{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta 7.46$ (overlapped, $\mathrm{H}_{\mathrm{t}, \mathrm{u}, \mathrm{v}}, 5 \mathrm{H}$),), 7.39 (overlapped, $\mathrm{H}_{\mathrm{a}, \mathrm{l}}, 4 \mathrm{H}$), 6.99 (overlapped, $\mathrm{H}_{\mathrm{b}, \mathrm{i}}, 4 \mathrm{H}$), 4.16 (overlapped, $\mathrm{H}_{\mathrm{m}, \mathrm{r}, \mathrm{s}}, 6 \mathrm{H}$), 4.01 (overlapped, $\left.\mathrm{H}_{\mathrm{c}, \mathrm{h}}, 4 \mathrm{H}\right), 3.00\left(\mathrm{t}, \mathrm{H}_{\mathrm{n}}, 2 \mathrm{H}\right), 1.82$ (overlapped, $\left.\mathrm{H}_{\mathrm{d}, \mathrm{g}}, 4 \mathrm{H}\right), 1.67\left(\mathrm{~m}, \mathrm{H}_{\mathrm{o}}, 2 \mathrm{H}\right), 1.56$ (overlapped, $\left.\mathrm{H}_{\mathrm{e}, \mathrm{f}}, 4 \mathrm{H}\right), 1.42\left(\mathrm{~m}, \mathrm{H}_{\mathrm{p}}, 2 \mathrm{H}\right), 0.98\left(\mathrm{t}, \mathrm{H}_{\mathrm{q}}, 3 \mathrm{H}\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100\right.$ MHz, 298 K$): \delta 161.6,132.6,132.5,131.0,130.7,130.4,124.2,124.0,116.1,116.1$, 69.1, 51.9, 51.8, 51.7, 48.1, 30.3, 29.2, 27.0, 20.9, 13.8

Figure 8.19. ${ }^{1} \mathrm{H}$ NMR of derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathrm{Cl})_{2}{ }^{-}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.20. ${ }^{13} \mathrm{C}$ NMR of derivative $\mathbf{8 5}^{2+}(\mathrm{Cl})_{2}{ }^{-}\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathbf{T F P B})_{2}{ }^{-}$

Derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathbf{C l}) 2^{-}(0.08 \mathrm{~g}, 0.17 \mathrm{mmol}$ was dissolved in methanol $(5 \mathrm{~mL})$, then sodium tetrakis[3,5- bis(trifluoromethyl)phenyl]borate4 ($0.30 \mathrm{~g}, 0.34 \mathrm{mmol}$) was added. The mixture was kept under stirring overnight in the dark. The solvent was removed and deionized water was added, obtaining a brown precipitate that was filtered off and dried under vacuum for 48 h to give derivative $\mathbf{8 5}^{\mathbf{2 +}}$ (TFPB) 2^{-}as a brown solid ($0.32 \mathrm{~g}, 0.14 \mathrm{mmol}, 84 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 8.46$ (s, -OH, 2H), $\delta 7.00\left(\mathrm{~m}, \mathrm{ArH}-\mathrm{OCH}_{3}, 8 \mathrm{H}\right), \delta 6.85$ ($\left.\mathrm{s}, \mathrm{Br}-\mathrm{ArH}-\mathrm{OH}, 4 \mathrm{H}\right), \delta 3.95$ (s , $\left.\mathrm{ArCH}_{2} \mathrm{Ar}-, 4 \mathrm{H}\right), \delta 3.80\left(\mathrm{~s},-\mathrm{ArCH}_{2} \mathrm{Ar}-, 8 \mathrm{H}\right), \delta 3.22\left(\mathrm{~s},-\mathrm{OCH}_{3}, 12 \mathrm{H}\right), \delta 1.17$ (s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 161.6,135.8,132.6$, 132.4, $130.3,128.5,126.7,124.9,123.1,118.5,116.1,116.1,69.1,51.9,51.8,51.7,48.1$, 30.3, 29.1, 27.0, 20.8, 13.8. MALDI-MS (m/z) calcd for $[M]^{+}=475.3319$ found 475.3334. calcd for $\left[\mathrm{M}^{+} \text {TFPB }\right]^{+}=1339.4046$ found 1339.4090.

Figure 8.21. ${ }^{13} \mathrm{C}$ NMR of derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.22. 2D HSQC of derivative $\mathbf{8 5}^{2+}(\mathrm{TFPB})_{2}{ }^{-}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.23. MALDI-MS spectrum of derivative $\mathbf{8 5}^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-}$.

8.5.3 Synthesis of pseudo[n]rotaxane systems

A mixture of host and guest was dissolved in CDCl_{3} and was transferred in a NMR tube. In detail, in Table 8.1 it was reported concentration using for calixarenes derivative and for axle. Then, the solution was transferred in an NMR tube for 1D and 2D NMR spectra acquisition.

Table 8.1. Amount of host and guests for complexation experiments.

		Pseudo[n]rotaxanes		
		$\mathbf{8 5}^{2+} \subset \mathbf{1 5 a}$		
	$\mathbf{8 5}^{2+} \subset(\mathbf{1 5 a} \cdot \mathbf{3 3})$			
$\mathbf{3} \mathbf{3 3}$	$(\mathbf{m g})$	5.44		2.24
	$(\mathbf{m m o l})$	$5.2 \cdot 10^{-3}$		$2.1 \cdot 10^{-3}$
	$(\mathbf{m g})$		6.00	2.60
$\mathbf{8 5}^{\mathbf{2 +}}(\mathbf{T F P B})_{2}{ }_{2}$	$(\mathbf{m m o l})$		$4.8 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$
	$(\mathbf{m g})$	5.67	5.37	4.66
	$(\mathbf{m m o l})$	$2.6 \cdot 10^{-3}$	$2.4 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$

Figure 8.24. 2D COSY of mixture $\mathbf{1 5 a} / \mathbf{8 5}^{2+}(\mathrm{TFPB})_{2}{ }^{-} 2: 1\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.25. 2D HSQC of mixture 15a/85 ${ }^{2+}$ (TFPB) $2^{-2} 2: 1\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.26. 2D COSY of mixture $\mathbf{3 3 / 8 5}{ }^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-2}: 1\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.27. 2D HSQC of mixture $\mathbf{3 3 / 8 5}{ }^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-2}: 1\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.28. 2D COSY of mixture $\mathbf{1 5 a} / \mathbf{3 3} / \mathbf{8 5}^{\mathbf{2 +}}$ (TFPB) 2^{-}1:1:1 ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

Figure 8.29. 2D HSQC of mixture $\mathbf{1 5 a} / \mathbf{3 3} / \mathbf{8 5}^{\mathbf{2 +}}(\mathrm{TFPB})_{2}{ }^{-} 1: 1: 1\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}, 298 \mathrm{~K}\right)$.

CHAPTER IX

Conclusion

9.1 Conclusions

In conclusion, in this PhD project the attention was focused on the threading abilities of calixarene macrocycles to provide useful information for the future construction of mechanically interlocked molecular machines.

Initially, the threading abilities of calix[6]arenes specifically functionalized at the upper rim, lower rim, or methylene bridges have been investigated. This study demonstrated that a better association with ammonium axles is obtained when the calix[6]arene macrocycle bears bulky groups, such as adamantyls, at the upper rim and when it is totally alkylated at the lower rim. Furthermore, it was observed that alkylation of the methylene bridges leads to a greater preorganization of the cavity and, consequently, to higher association constants.

The threading study was then extended to bifunctional calixarenes bearing electron rich or electron poor aromatic groups. It was observed that threading occurs with EDGs while EWGs do not lead to the formation of interpenetrated systems. On the other hand, calixarenes bearing EWGs have shown interesting chromogenic properties, such as halochromism and solvatochromism.

The possible application of multivalent systems for the future construction of molecular machines was then evaluated by studying the threading abilities of a triple-calix[6]arene host. It was demonstrated that this triple-host can give multiple-threading processes when mixed with various ammonium axles. Furthermore, in the presence of a directional alkylbenzylammonium axle, the stereoselective formation of multiple endoalkyl pseudorotaxane stereoisomers was observed.

Finally, a self-sorting interpenetrated system was obtained, which is based on a nonsymmetric bis-ammonium linear axle and two different calixarene macrocycles that differ in the size of their cavity. The two different recognition sites of the axle can selectively bind each own specific macrocycle. Interestingly, the relative spatial orientation of the two macrocycles is also stereoselectively fixed during the self-sorting binding process.

[^0]: ${ }^{1}$ (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives: A Personal Account; VCH: Weinheim ; New York, 1995. (b) Ariga, K.;-Kunitake, T. Supramolecular Chemistry: Fundamentals and Applications; Springer-Verlag: Berlin/Heidelberg, 2006.

[^1]: ${ }^{2}$ Cram, D.J., Angew. Chem. Int. Ed. Engl., 1986, 25, 1039.
 ${ }^{3}$ Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W., Supramolecular Chemistry in Water, in Angew. Chem. Int. Ed., 2007.

[^2]: ${ }^{4}$ Campbell, N. A.; Reece, J. B. Biology, 7th ed.; Pearson, Benjamin Cummings: San Francisco, 2005.
 ${ }^{5}$. Lehn, J. Supramolecular Chemistry. Science 1993, 260 (5115), 1762-1763.

[^3]: ${ }^{6}$ Sauvage, J.-P.; Dietrich-Buchecker, C.; Molecular Catenanes, Rotaxanes and Knots: A Journey Through the World of Molecular Topology; Wiley-VCH: Weinheim, 1999.
 ${ }^{7}$ Harrison, I. Thomas.; Harrison, Shuyen. J. Am. Chem. Soc. 1967, 89 (22), 5723-5724.

[^4]: ${ }^{8}$ Schill, G.; Zollenkopf, H. Nachr. Chem. Tech. 1967, 15, 149-152.

[^5]: ${ }^{9}$ Wasserman, E. J. Am. Chem. Soc. 1960, 82 (16), 4433-4434.
 ${ }^{10}$ Schill, G.; Lüttringhaus, A. Angew. Chem. Int. Ed. Engl. 1964, 3 (8), 546-547.

[^6]: ${ }^{11}$ Schill, G.; Rissler, K.; Fritz, H.; Vetter, W. Angew. Chem. Int. Ed. Engl. 1981, 20 (2), 187-189.
 ${ }^{12}$ Dietrich-Buchecker, C. O.; Sauvage, J. Pierre. Chem. Rev. 1987, 87 (4), 795-810.

[^7]: ${ }^{13}$ Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124 (18), 5037-5051.
 ${ }^{14}$ Morin, J.-F.; Shirai, Y.; Tour, J. M. Org. Lett. 2006, 8 (8), 1713-1716.

[^8]: ${ }^{15}$ Landge, S. M.; Aprahamian, I. J. Am. Chem. Soc. 2009, 131 (51), 18269-18271.

[^9]: ${ }^{16}$ Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Markevicius, A.; Solà, J. Nat. Chem. 2016, 8 (2), 138-143.

[^10]: ${ }^{17}$ De Bo, G.; Kuschel, S.; Leigh, D. A.; Lewandowski, B.; Papmeyer, M.; Ward, J. W. J. Am. Chem. Soc. 2014, 136 (15), 5811-5814.
 ${ }^{18}$ De Bo, G.; Gall, M. A. Y.; Kitching, M. O.; Kuschel, S.; Leigh, D. A.; Tetlow, D. J.; Ward, J. W. J. Am. Chem. Soc. 2017, 139 (31), 10875-10879.

[^11]: ${ }^{19}$ Sluysmans, D.; Hubert, S.; Bruns, C. J.; Zhu, Z.; Stoddart, J. F.; Duwez, A.-S. Nat. Nanotechnol. 2018, 13 (3), 209-213.
 ${ }^{20}$ Cheng, C.; McGonigal, P. R.; Schneebeli, S. T.; Li, H.; Vermeulen, N. A.; Ke, C.; Stoddart, J. F. Nat. Nanotechnol. 2015, 10 (6), 547-553.

[^12]: ${ }^{21}$ Badjić, J. D., Balzani, V., Credi, A., Silvi, S., \& Stoddart, J. F.. Science 2004, 303(5665), 1845.

[^13]: ${ }^{22}$. Wu, J.; Leung, K. C.-F.; Benítez, D.; Han, J.-Y.; Cantrill, S. J.; Fang, L.; Stoddart, J. F. Angew. Chem. Int. Ed. 2008, 47 (39), 7470.

[^14]: ${ }^{23}$ Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem. Int. Ed. 2005, 44, 4844.
 ${ }^{24}$ Gokel, G. W. Crown Ethers and Cryptands Royal Society of Chemistry, Cambridge, 1991
 ${ }^{25}$ Szejtli, J. Cyclodextrin Technology in Topics in Inclusion Science; (Ed: Davies, J. E.), Kluwer, Dordecht, 1988.
 ${ }^{26}$ a) Gutsche, C. D. Calixarenes (Ed.: J. F. Stoddart), Royal Society of Chemistry, Cambridge, 1989; b) Gutsche, C. D. Calixarenes Revisited (Ed.: J. F. Stoddart), Royal Society of Chemistry, Cambridge, 1998; c) Bunzli J.-C. G.; Harrowfield, J.; Calixarenes: A Versatile Class of Macrocyclic Compounds (Eds.: Vicens, J.; Böhmer, V.), Kluwer, Dordrecht, 1991; d) Gutsche, C. D. Calixarenes - An Introduction, 2nd ed., Royal Society of Chemistry, Cambridge, 2008; e) Neri, P.; Sessler, J. L.; Wang, M.-X.; Calixarenes and Beyond; Springer Verlag, 2016.

[^15]: ${ }^{27}$ a) Gutsche, C. D.; Iqbal, M., p-tert-Butylcalix[4]arene, Org. Synth. 68 (1990) 234-237. (b) Gutsche, C. D.; Dhawan, B.; Leonis, M., p-tert-Butylcalix[6]arene, Org. Synth. 68 (1990) 238-242. c) Munch J. H.; Gutsche, C. D., p-tert-butylcalix[8]arene, Org. Synth. 68 (1990) 243-246. (d) Stewart, D. R.; Gutsche, C. D., The one-step Synthesis of p-tert-butylcalix[5]arene. Organic Preparations and Procedures International 25 (1993) 137-139. e) Stewart, D. R.; Gutsche, C. D., Isolation, characterization, and conformational characteristics of p-tert-butylcalix[9-20]arenes, J. Am. Chem. Soc. 121 (1999) 4136-4146. f) Bew, S. P.; Sharma, S. V., An expedient one-pot synthesis of para-tert-butylcalix[8]- and [9]arene, Chem. Commun. (2007) 975-977. g) Dumazet, I.; Regnouf De-Vains, J.-B.; Lamartine, R., Synthesis and characterization of p-tert-butylcalix[9]arene, p-tert-butylcalix[10]arene, p-tert-butylcalix[11]arene and p-tertbutylcalix[12]arene, Synthetic Commun. 27 (1997) 2547-2555.

[^16]: ${ }^{28}$ No, K. H.; Gutsche, C. D., Calixarenes. 8. Short, stepwise synthesis of p-phenylcalix[4]arene, p-phenyl-p-tert -butylcalix[4]arene, and derived products, J. Org. Chem. 47 (1982) 2713-2719.
 ${ }^{29}$ Böhmer, V., Special calixarenes by directed syntheses, Liebigx Ann./Recueil (1997) 2019-2030. Böhmer, V.; Chhim, P.; Kämmerer, H., A new synthetic access to cyclic oligonuclear phenolic compounds Makromol. Chem. 180 (1979) 2503-2506. Goldmann, H.; Vogt, W.; Paulus, E.; Böhmer, V., A series of calix[4]arenes, having two opposite para positions connected by an aliphatic chain, J. Am. Chem. Soc. 110 (1988) 6811-6817.

[^17]: ${ }^{30}$ Arduini, A.; Ferdani, R.; Pochini, A.; Secchi, A.; Ugozzoli, F. Angew. Chem. Int. Ed. 2000, 39, 34533456.
 ${ }^{31}$ Gaeta, C.; Troisi, F.; Neri, P. Org. Lett. 2010, 12 (9), 2092-2095.
 ${ }^{32}$ a) Strauss, S. H.; Chem. Rev., 1993, 93, 927; b) Hirochika, N.; Suzuki, H.; Norob, J.; Kimura, T.; Chem. Commun., 2005, 2963; c) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H.; Bull. Chem. Soc. Jpn., 1984, 57, 2600; d) Blight, B. A.; Camara-Campos, A.; Djurdjevic, S.; Kaller, M.; Leigh, D. A.; McMillan, F. M.; McNab, H.; Slawin, A. M.; J. Am. Chem. Soc., 2009, 131, 14116.

[^18]: ${ }^{33}$ Talotta, C.; Gaeta, C.; Pierro, T.; Neri, P. Org. Lett. 2011, 13 (8), 2098-2101.

[^19]: ${ }^{34}$ Ciao, R.; Talotta, C.; Gaeta, C.; Margarucci, L.; Casapullo, A.; Neri, P. Org. Lett. 2013, 15 (22), 56945697.

[^20]: ${ }^{35}$ Arduini, A.; Calzavacca, F.; Pochini, A.; Secchi, A. Chem. - Eur. J. 2003, 9 (3), 793-799.
 ${ }^{36}$ Orlandini, G.; Zanichelli, V.; Secchi, A.; Arduini, A.; Ragazzon, G.; Credi, A.; Venturi, M.; Silvi, S. Supramol. Chem. 2016, 28, 427-435.

[^21]: ${ }^{37}$ Pierro, T.; Gaeta, C.; Talotta, C.; Casapullo, A.; Neri, P. Org. Lett. 2011, 13 (10), 2650-2653.

[^22]: ${ }^{38}$ Gaeta, C.; Talotta, C.; Mirra, S.; Margarucci, L.; Casapullo, A.; Neri, P. Org. Lett. 2013, 15 (1), 116-119
 ${ }^{39}$ Talotta, C.; Gaeta, C.; Neri, P. Org. Lett. 2012, 14 (12), 3104-3107.

[^23]: ${ }^{40}$ De Rosa, M.; Talotta, C.; Gaeta, C.; Soriente, A.; Neri, P.; Pappalardo, S.; Gattuso, G.; Notti, A.; Parisi, M. F.; Pisagatti, I. J. Org. Chem. 2017, 82 (10), 5162-5168.

[^24]: ${ }^{41}$ (a) Van Loon, J. D.; Arduini, A.; Coppi, L.; Verboom, W.; Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N., J. Org. Chem. 1990, 55, 5639-5646. (b) Iwamoto, K.; Araki, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4955-4962. (c) Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T., Chem. Lett. 1989 17471750. (d) Kelderman, E.; Derhaeg, L.; Heesink, G. J. T.; Verboom, W.; Engbersen J. F. J.; Van Hulst, N. F.; Persoons, A.; Reinhoudt, D. N., Angew. Chem., Int. Ed. Engl. 1992, 31, 1075-1077.

[^25]: ${ }^{42}$ (a) Gutsche, C. D.; Levine, J. A. J. Am. Chem. Soc. 1982, 104, 2652-2653. (b) Gutsche, C. D.; Pagoria, P. F. J. Org. Chem. 1985, 50, 5795-5802. (c) Shinkai, S.; Tsubaki, T.; Sone, T.; Manabe, O. Tetrahedron Lett. 1985, 26, 3343-3344. (d) Morzherin, Y.; Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem 1993 58, 7602-7605. (e) Gutsche, C. D.; Lin, L.-G. Tetrahedron 1986 42, 1633-1640. (f) Arduini, A.; Fanni, S.; Manfredi, G.; Pochini, A.; Ungaro, R.; Sicuri, A. R.; Ugozzoli, F. J. Org. Chem. 1995, 60, 1448-1453. (g) Shinkai, S.; Araki, K.; Shibata, J.; Tsugawa, D.; Manabe, O. J. Chem. Soc., Perkin Trans. 1990, 1, 3333-3337.(h) Verboom, W.; Durie, A.; Egberink, R. J. M.; Asfari, Z.; Reinhoudt, D. N. J. Org. Chem. 1992, 57 1313-1316. (i) Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O. J. Am. Chem. Soc. 1987, 109, 6371-6376. (1) Almi, M.; Arduini, A.; Casnati, A.; Pochini, A.; Ungaro, R. Tetrahedron 1989,45, 2177-2182. (m) Gutsche, C. D.; Nam, K. C. J. Am. Chem. Soc. 1988, 110 6153-6162. (n) Gutsche, C. D.; Levine, J. A.; Sujeeth, P. K. J. Org. Chem. 1985, 50 5802-5806.

[^26]: ${ }^{43}$ (a) Lubitov, I. E.; Shokova, E. A.; Kovalev, V. V. Synlett 1993, 647-648. (b) Shokova, E. A.; Motornaya, A. E.; Shestakova, A. K.; Kovalev, V. V. Tetrahedron Letters 2004, 45 (34), 6465-6469. (c) Shokova, E. A.; Khomich, E. V.; Akhmetov, N. N.; Vatsuro, I. M.; Luzikov, Y. N.; Kovalev, V. V. Russ. J. Org. Chem. 2003, 39, 368-383.

[^27]: ${ }^{44}$ Iuliano, V.; Talotta, C.; Gaeta, C.; Hickey, N.; Geremia, S.; Vatsouro, I.; Kovalev, V.; Neri, P. J. Org. Chem. 2020, 85 (19), 12585-12593.

[^28]: ${ }^{45}$ Kanamathareddy, S.; Gutsche, C. D. J. Org. Chem. 1992, 57 (11), 3160-3166.

[^29]: ${ }^{46}$ Lipkowitz, K. B.; Pearl, G. Structural features of solid-state calix[4]arene in the cone conformation. J. Org. Chem. 1993, 58, 6729-6736.

[^30]: ${ }^{47}$ Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, 1st ed.; Cambridge University Press, 2005.
 ${ }^{48}$ Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498-6506.

[^31]: ${ }^{49}$ (a) Tabatabai, M.; Vogt, W.; Böhmer, V. Tet. Lett. 1990, 31, 3295. (b) Sartori, G.; Maggi, R.; Bigi, F.; Arduini, A.; Pastorio, A.; Porta, C. J. Chem. Soc., Perkin Trans. 1, 1994, 1657. (c) Biali, S. E.; Böhmer, V.; Cohen, S.; Ferguson, G.; Grüttner, C.; Grynszpan, F.; Paulus, E. F.; Thondorf, I.; Vogt, W. J. Am. Chem. Soc. 1996, 118, 12938. (d) Bergamaschi, M.; Bigi, F.; Lanfranchi, M.; Maggi, R.; Pastorio, A.; Pellinghelli, M. A.; Peri, F.; Porta, C.; Sartori, G. Tetrahedron 1997, 53, 13037. (e) For a review on the synthesis of calixarenes via the stepwise and fragment condensation methods see: Böhmer, V. Liebigs Ann./Recueil 1997, 2019.
 ${ }^{50}$ Arora, S.; Sharma, S.; Mithu, V. S.; Hee-Lee, C.; Singh, K. Chem. Commun. 2015, 51 (20), 4227-4230.

[^32]: ${ }^{51}$ Shalev, O.; Biali, S. E. Org. Lett. 2018, 20 (8), 2324-2327.

[^33]: ${ }^{52}$ Tranfić Bakić, M.; Iuliano, V.; Talotta, C.; Geremia, S.; Hickey, N.; Spinella, A.; De Rosa, M.; Soriente, A.; Gaeta, C.; Neri, P. J. Org. Chem. 2019, 84 (18), 11922-11927.

[^34]: ${ }^{53}$ Kabsch, W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 125-132.
 ${ }^{54}$ Kabsch, W. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 133-144.
 ${ }^{55}$ Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
 ${ }^{56}$ Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
 ${ }^{57}$ Farrugia, L.J. J. Appl. Cryst. 2012, 45, 849-854.

[^35]: ${ }^{58}$ Lu, T.; Chen, F. W. J. Comput. Chem. 2012, 33, 580-592.
 ${ }^{59}$ Humphrey, W. ; Dalke, A.; Schulten, K.; J. Mol. Graph. 1996, 14, 33-38.

[^36]: ${ }^{60}$ Demay-Drouhard, P.; Du, K.; Samanta, K.; Wan, X.; Yang, W.; Srinivasan, R.; Sue, A. C.-H.; Zuilhof, H. Org. Lett. 2019, 21 (11), 3976-3980.

[^37]: ${ }^{61}$ (a) L. Robertson, R. C. Hartley, Tetrahedron, 2009, 65, 5284; (b) V. A. Constantin; L. Cao, S. Sadaf, L. Walder, Phys. Status Solidi B, 2012, 249, 2395-2398.

[^38]: ${ }^{62}$ C. Kahlfuss, A. Mileta, J. Wytko, J. Weiss, E. Saint-Aman, C. Bucher, Org. Lett., 2015, 17, 4058.

[^39]: ${ }^{63}$ Svoboda, M.; Kodıcek, M. Rapid Commun. Mass Spectrom. 2010, 24, 3351.
 ${ }^{64}$ Janssen, R. G.; Verboom, W.; Reinhoudt, D. N.; Casnati, A.; Freriks, M.; Pochini, A.; Ugozzoli, F.; Ungaro, R.; Nieto, P. M.; Carramolino, M.; Cuevas, F.; Prados, P.; Synthesis, 1992, 4, 384.

[^40]: ${ }^{65}$ (a) Marini, A.; Mun oz-Losa, A.; Biancardi, A.; Mennucci, B. J. Phys. Chem. B 2010, 114, 17128-17135. (b) Reichardt, C. Solvent and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Weinheim, 2002. (c) Suppan, P.; Ghoneim, N. Solvatochromism; Royal Society of Chemistry: Cambridge, 1997.

[^41]: ${ }^{66}$ Shi, W.; Xing, F.; Bai, Y.-L.; Hu, M.; Zhao, Y.; Li, M.-X.; Zhu, S. ACS Appl. Mater. Interfaces 2015, 7 (26), 14493-14500.

[^42]: ${ }^{67}$ Iuliano, V.; Talotta, C.; Gaeta, C.; Soriente, A.; De Rosa, M.; Geremia, S.; Hickey, N.; Mennucci, B.; Neri, P. Org. Lett. 2019, 21 (8), 2704-2707.

[^43]: ${ }^{68}$ (a) Badjić, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science 2004, 303, 1845. 89 (b)Evans, N. H.; Serpell, C. J.; Beer, P. D., Angew. Chem. Int. Ed. 2011, 50, 2507. (c) Zhang, Z.-J.; Han M.; Zhang, H.-Y.; Liu, Y. Org. Lett. 2013, 15, 1698;

[^44]: ${ }^{69}$ Yang, L.; Langer, P.; Davies, E. S.; Baldoni, M.; Wickham, K.; Besley, N. A.; Besley, E.; Champness, N. R. Chem. Sci. 2019, 10 (13), 3723-3732.

[^45]: ${ }^{70}$ Iuliano, V.; Ciao, R.; Vignola, E.; Talotta, C.; Iannece, P.; De Rosa, M.; Soriente, A.; Gaeta, C.; Neri, P. Beilstein J. Org. Chem. 2019, 15, 2092-2104.

[^46]: ${ }^{71}$ (a) de Mendoza, J.; Carramolino, M.; Cuevas, F.; Nieto, P. M.; Prados, P.; Reinhoudt, D. N.; Verboom, W.; Ungaro, R.; Casnati, A. Synthesis 1994, 47-50. (b) De Rosa, M.; Soriente, A.; Concilio, G.; Talotta, C.; Gaeta, C.; Neri, P. J. Org. Chem. 2015, 80, 7295-7300.

[^47]: ${ }^{72}$ A. Wu, L. Isaacs; J. Am. Chem. Soc.; 2003, 125, 4831.
 ${ }^{73}$ A. Shivanyuk, J. Jr. Rebek; J. Am. Chem. Soc.; 2002, 124, 12074.

[^48]: ${ }^{74}$ Jiang, W.; Winkler, H. D. F.; Schalley, C. A. J. Am. Chem. Soc. 2008, 130 (42), 13852-13853.

[^49]: ${ }^{75}$ Talotta, C.; Gaeta, C.; Qi, Z.; Schalley, C. A.; Neri, P. Angew. Chem. Int. Ed. 2013, 52 (29), 7437-7441.

