
Università degli Studi di Salerno

Dipartimento di Informatica

Dottorato di Ricerca in Informatica
XXXIV Ciclo

TESI DI DOTTORATO / PH.D. THESIS

Data Stream Profiling:
Evolutionary and Incremental

Algorithms for Dependency Discovery

STEFANO CIRILLO

SUPERVISOR: PROF. GIUSEPPE POLESE

PHD PROGRAM DIRECTOR: PROF. ANDREA DE LUCIA

A.A 2020/2021

Stefano Cirillo
Data Stream Profiling: Evolutionary and Incremental algorithms for
Dependency Discovery
Ph.D. Thesis
Reviewers: Prof. Felix Naumann and Prof. Domenico Beneventano
Supervisor: Prof. Giuseppe Polese
Co-Advisors: Prof. Vincenzo Deufemia and Prof.ssa Loredana Caruccio
Ph.D. Program Director: Prof. Andrea De Lucia

Università degli Studi di Salerno
Data Science and Technologies Laboratory
Department of Computer Science
Via Giovanni Paolo II, 132

84084 Fisciano (SA), Italy
© October 2021

A B S T R A C T

Data Profiling represents one of the most crucial processes in data quality
assessment. It includes a set of activities to efficiently analyze datasets
and provide insights from them. Such activities rely on the identification
of metadata to capture semantic relationships within data, and can be
exploited for several purposes, such as optimizing queries, cleaning data,
evaluating feasibility of machine learning models, and so forth. The
types of metadata range from simple counters of attribute values or null
values, to complex integrity constraints, such as functional dependencies
(fds), relaxed functional dependencies (rfds), and inclusion dependencies
(inds). However, the discovery of these metadata represents an important
challenge for data profiling tasks, since the number of possible metadata
can be exponential with respect to the number of attributes, and requires
analyzing a huge number of attribute combinations. To this end, several
discovery algorithms have been proposed in the literature, with the aim
of providing solutions in which the complexity of the search space is
reduced by exploiting some theoretical properties of the different types
of metadata. Although some of the discovery algorithms described in the
literature achieve good performances, most of them are not suitable in
dynamic scenarios, in which new data are frequently added and updated
into the datasets. This need is widely growning with the proliferation of
the Internet of Things (IoT) technologies, since it is necessary to define
new algorithms capable of dynamically analyzing the streams of data
they produce.

In this scenario, after reviewing basic data profiling tasks and applica-
tions, as well as basic notations for representing profiling metadata, this
thesis starts presenting an innovative tool that extracts metadata from
unstructured web data sources, aiming to derive a focused crawler. Then,
the thesis focuses on the discovery problem of fds and rfds in static and
dynamic scenarios, by analyzing their complexities and by introducing
several new incremental methodologies and algorithms for discovering

iii

fds and rfds, aiming to avoid the re-execution of the discovery process
from scratch upon update operations on datasets. In particular, a first
proposal is an evolutionary discovery algorithm for hybrid rfds named
REDEVO (RElaxed fD EVOlutionary discovery algorithm), which uses
naturally inspired operations to iteratively browse candidates over the
search space, few of which survive the evolution process. It identifies a
broad class of rfds, by evaluating each candidate by means of support
and confidence quality measures as a fitness function.

Then, this thesis presents four new discovery algorithms for fds and
rfds in dynamic scenarios. The first algorithm is named Incremental-
FD, which is able to update the set of holding fds upon insertions of
new tuples to the data instance, without having to restart the discovery
process from scratch. It exploits a bit-vector representation of fds, and an
upward/downward search strategy, aiming to reduce the overall search
space. The algorithm represents the baseline for the definition of a second
incremental algorithm for discovering fds, named REXY (RegEX-based
incremental discoverY). The latter adopts a new validation method that
exploits Regular Expressions (RegExs) to improve the validation process
for each fd candidate, by restricting the search to a subset of data. The
third algorithm is named COD3, an efficient and incremental algorithm
for discovering fds holding on data streams. To the best of our knowledge,
COD3 represents the first proposal to use a non-blocking architectural
model to face the problem of fd discovery from data streams. It relies
on a novel data structure, named Validation Graph, which enables a fast
exploration of the search space according to the discovered fds, leading
to a new fast fd validation process. The last algorithm presented in this
thesis is BIRD (Bit-vector based Incremental rfde Discoverer), which
tackles the problem of the incremental discovery of rfds. BIRD analyzes
how new inserted tuples impact on candidate rfds, checking whether
they invalidate some previously holding ones, and possibly generating
new candidates. Moreover, BIRD is able to split the discovery process
into level-wise parallel executions.

Finally, the thesis describes three new tools designed and developed
for monitoring incremental discovery algorithms during their executions.
These tools enable users to properly visualize the trend of fds and

iv

rfds discovered over time, provide an overview at each time instant
of the correlation between attributes included in the discovery results,
compare fds and rfds resulting from different executions of the discovery
algorithms, and directly manipulate discovery results through visual
metaphors.

v

A B S T R A C T

I processi di Data Profiling rappresentano uno strumento chiave per
supportare la valutazione della qualità dei dati. Questi si articolano in
attività rivolte all’analisi efficiente di insiemi di dati al fine di estrarre
informazioni utili dagli stessi. Tali attività permettono di catturare rela-
zioni semantiche all’interno dei dati attraverso l’estrazione di metadati,
i quali possono essere sfruttati per diversi scopi, come l’ottimizzazione
delle query, la pulizia dei dati e la valutazione dei modelli di machine
learning. I tipi di metadati possono variare da semplici contatori sul nu-
mero di valori nulli o di valori distinti in un dataset, a vincoli di integrità,
come dipendenze funzionali (Functional Dependency - fd), dipendenze
funzionali rilassate (Relaxed Functional Dependency - rfd) e dipendenze
di inclusione (Inclusion Dependency - ind). Tuttavia, la complessità del
problema di discovery automatico di questi metadati rappresenta una
delle principali sfide per le attività di data profiling, poiché il numero
di possibili metadati potrebbe essere esponenziale rispetto al numero di
attributi dei dataset, considerando la quantità di combinazioni di attributi
da analizzare. A tal fine, sono stati proposti in letteratura diversi algoritmi
per il loro discovery automatico dai dati, con l’obiettivo di fornire solu-
zioni in cui la complessità dello spazio di ricerca viene ridotta sfruttando
alcune proprietà teoriche dei diversi tipi di metadati. Sebbene alcuni di
questi algoritmi di discovery raggiungano buone prestazioni, la maggior
parte di essi non è in grado di effettuare processi di discovery automatico
in scenari dinamici, in cui si considera la possibilità che i dati vengano
frequentemente aggiornati. Questa esigenza è ampiamente cresciuta con
la diffusione dell’Internet of Things (IoT), poiché gli algoritmi dovrebbero
essere in grado di analizzare dinamicamente i flussi di dati che questi
strumenti intelligenti producono.

In questo scenario, dopo aver esaminato le attività e le applicazioni del
data profiling, e dopo aver introdotto le notazioni di base per la rappre-
sentazione dei metadati, questa tesi presenta uno strumento innovativo

vi

che estrae i metadati da sorgenti di dati Web non strutturati, con l’obietti-
vo di derivare un crawler mirato. Successivamente, la tesi si concentra sul
problema del discovery di fd e rfd in scenari statici e dinamici, analiz-
zando la complessità del problema di discovery e introducendo diverse
nuove metodologie e algoritmi incrementali per l’estrazione automatica
di fd e rfd, con l’obiettivo di evitare la riesecuzione del processo di
discovery dall’inizio dopo le operazioni di aggiornamento dei dati. In
particolare, una prima proposta presentata è un algoritmo di discovery
evoluzionistico per rfd ibride chiamato REDEVO (RElaxed fD EVOlutio-
nary discovery algorithm), che utilizza operazioni ispirate alla selezione
naturale delle specie per analizzare iterativamente insiemi di dipendenze
candidate che evolvono, poche delle quali sopravviveranno al processo
di evoluzione. REDEVO permette di identificare un’ampia classe di rfd,
effettuando la validazione di ciascuna candidata mediante le misure di
support e confidence, le quali definiscono la funzione di fitness.

Successivamente, questa tesi presenta quattro nuovi algoritmi di disco-
very di fd e rfd in scenari dinamici. Il primo algoritmo è denominato
Incremental-FD, il quale è in grado di aggiornare l’insieme di fd valide
dopo l’inserimento di nuove tuple nei dati, senza dover rieseguire comple-
tamente il processo di discovey. L’algoritmo sfrutta una rappresentazione
vettoriale binaria delle fd e una strategia di ricerca in discesa/salita,
con l’obiettivo di ridurre lo spazio di ricerca da analizzare. L’algoritmo
Incremental-FD rappresenta la baseline per la definizione di un secondo
algoritmo incrementale per il discovery di fd, chiamato REXY (RegEX-
based incremental discoverY). Quest’ultimo adotta un nuovo metodo di
validazione che sfrutta le espressioni regolari (RegEx) per migliorare il
processo di validazione di ogni fd candidata, limitando la validazione
al sottoinsieme di dati interessato dalle modifiche. Il terzo algoritmo
incrementale, denominato COD3, permette di effettuare il discovery di fd

su data stream. Al meglio della nostra conoscenza, COD3 rappresenta la
prima proposta in letteratura che utilizza un modello architetturale non
bloccante per affrontare il problema di discovery di fd dai flussi di dati.
Esso pone le sua fondamenta su una nuova struttura dati, denominata
Validation Graph, che consente una rapida esplorazione dello spazio
di ricerca in base alle fd precedentemente inferite dai dati, e attaver-

vii

so la quale è stato possibile definire un nuovo ed efficente processo di
validazione di fd. L’ultimo algoritmo presentato in questa tesi è BIRD
(Bit-vector based Incremental rfde Discoverer), che affronta il problema
del discovery incrementale di rfd. BIRD analizza come le nuove tuple
inserite impattano sulle rfd, verificando se tali tuple comportano l’invali-
dazione di alcune rfd già presenti ed eventualmente generando nuove
rfd candidate. Inoltre, BIRD è in grado di suddividere il processo di
discovery in esecuzioni parallele per ogni livello dello spazio di ricerca.

Infine, la tesi presenta tre nuovi tool progettati e sviluppati per mo-
nitorare i processi di discovery incrementali durante l’esecuzione degli
algoritmi. Questi strumenti consentono agli utenti di visualizzare conti-
nuamente l’andamento e l’evoluzione delle fd e rfd estratte dai dati nel
corso del tempo, di analizzare in ogni istante temporale la correlazione
tra gli attributi inclusi nei risultati di discovery, e di confrontare fd e rfd

estratte in diverse esecuzioni degli algoritmi e di manipolarle mediante
nuove metafore visuali.

viii

C O N T E N T S

1 introduction 1

i context & background

2 data profiling 9

2.1 Profiling Tasks and Applications 9

2.2 Profiling Metadata 13

2.2.1 Unique Column Combinations (ucc) 14

2.2.2 Functional Dependencies (fd) 15

2.2.3 Relaxed Functional Dependencies (rfd) 17

2.2.4 Inclusion Dependencies (ind) 22

2.3 Open Challenges 23

2.3.1 Profiling Heterogeneous Data 25

2.3.2 Incremental Data Profiling 27

2.3.3 Interactive Data Profiling 28

3 profiling unstructured web data sources 31

3.1 Problem Description 31

3.2 Literature Review 33

3.3 CAIMANS: Crawling Artifacts of Interest and Matching
them Against Enterprise Sources 34

3.3.1 Extraction and Profiling of artifacts from the web 35

3.3.2 Experimental Results 47

ii discovery algorithms for data profiling

4 discovery algorithms in static scenarios 61

4.1 Problem Description 61

4.2 Literature Review 64

4.3 A Genetic Approach for Discovering Hybrid RFDs 67

4.3.1 Methodology 68

4.3.2 Generation of the Initial Population 71

4.3.3 Fitness Function 73

4.3.4 Crossover 75

ix

x contents

4.3.5 Mutation 77

4.3.6 The REDEVO Algorithm 79

4.3.7 Experimental Evaluation 87

4.3.8 Evaluation on configuration settings 92

5 discovery algorithms in dynamic scenarios 97

5.1 Problem Description 97

5.1.1 Incremental Discovery of fds 98

5.1.2 Continuous Discovery of fds from dynamic sources 101

5.1.3 Incremental Discovery of rfdes 104

5.2 Literature Review 107

5.3 Incremental-FD: Incremental discovery algorithm of fds 110

5.3.1 Methodology 110

5.3.2 Experimental Evaluation 116

5.4 REXY: An Incremental discovery algorithm of fds 122

5.4.1 Methodology 122

5.4.2 The REXY Algorithm 126

5.4.3 Experimental Evaluation 129

5.5 COD3: Continuous Discovery of fd from Data Streams 133

5.5.1 Methodology 134

5.5.2 Graph-based fd Validation 140

5.5.3 The COD3 Algorithm 147

5.5.4 Experimental Evaluation 152

5.6 BIRD: An Incremental discovery algorithm of rfdes 164

5.6.1 Methodology 164

5.6.2 The BIRD Algorithm 170

5.6.3 Theoretical Evaluation 178

5.6.4 Experimental Evaluation 180

iii tools for visualizing profiling metadata

6 visualization and monitoring tools for incremen-
tal discovery algorithms 191

6.1 Problem Description 191

6.2 Literature Review 193

6.3 DEVICE: A tool for monitoring the evolution of results of
rfd discovery algorithms 194

contents xi

6.3.1 System Overview 194

6.3.2 rfd Visualization 197

6.3.3 Interaction in depth 198

6.3.4 Case Studies 201

6.4 STRADYVAR: Dependency Visualization in Data Stream
Profiling 209

6.4.1 System Overview 210

6.4.2 rfd visualization 212

6.4.3 Interaction in depth 214

6.4.4 User Study 220

6.5 INDITIO: Real-time validation of profiling metadata in a
data management system 224

6.5.1 System Overview 225

6.5.2 Interaction in depth 226

6.5.3 User Study 230

iv conclusion

7 conclusion and future work 241

bibliography 245

L I S T O F F I G U R E S

Figure 2.1 Classification of traditional data profiling tasks
[1]. 11

Figure 2.2 Relaxation criteria for rfds [32]. 19

Figure 2.3 New directions of data profiling [118]. 24

Figure 3.1 The architecture of CAIMANS. 37

Figure 3.2 Flowchart of the Crawler module. 38

Figure 3.3 Flowchart of the Semantic Module. 44

Figure 3.4 Elbow diagram. 46

Figure 3.5 Silhouette diagram. 47

Figure 3.6 Results produced by CAIMANS for the e-procurement
case study. 48

Figure 3.7 Displaying the result of the clustering phase. 49

Figure 3.8 Semantic Search form - results. 49

Figure 3.9 Precision evaluation for Google and CAIMANS. 54

Figure 3.10 Recall evaluation for Google and CAIMANS. 55

Figure 4.1 Flowchart of REDEVO. 70

Figure 4.2 Creating a pattern map from a snippet of the
Breast-Cancer dataset. 71

Figure 4.3 Encoding of attributes yielding the representation
of candidate rfds. 72

Figure 4.4 An example of crossover for candidate rfds. 76

Figure 4.5 An example of mutation for two candidate rfds. 78

Figure 4.6 Time performances by varying tuple comparison
and extent thresholds. 90

Figure 4.7 Number of rfds by varying tuple comparison and
extent thresholds. 91

Figure 4.8 Variation of genetic configuration parameters. 93

Figure 4.9 Comparative evaluation on Fd-Reduced dataset by
varying the number of attributes. 94

xii

list of figures xiii

Figure 4.10 Comparative evaluation on Fd-Reduced dataset by
varying the number of tuples. 95

Figure 5.1 Binary vector representation of a functional de-
pendency. 111

Figure 5.2 The lattice search space representation for the at-
tribute set {A,B,C,D,E}. 111

Figure 5.3 Discovery steps on the lattice search space repre-
sentation. 112

Figure 5.4 The linked map related to Example 1. 115

Figure 5.5 A comparison between execution times of TANE
with respect to our proposal by varying the per-
centage of inserted tuples at time τ + 1. 119

Figure 5.6 A comparison between execution times of TANE
with respect to our proposal by varying the num-
ber of tuples. 120

Figure 5.7 An example of RegexHashMap data structure. 125

Figure 5.8 An example of RegEx creation for Cars dataset. 126

Figure 5.9 Validation times for each dataset. 132

Figure 5.10 Validation times of REXY and Incremental-FD. 132

Figure 5.11 Memory consumption of REXY and Incremental-
FD. 133

Figure 5.12 Binary vector representation of the fd ADE→ BC.
133

Figure 5.13 Overview of the incremental discovery strategy of
COD3. 135

Figure 5.14 An example of lattice for Iris dataset. 137

Figure 5.15 The COD3 pipeline. 138

Figure 5.16 An example of validation graph. 140

Figure 5.17 Performances of COD3 over real-world dataset. 155

Figure 5.18 Number of validations for each case defined in
Algorithm 12. 156

Figure 5.19 Time performances and memory load of COD3 by
considering the variation of fds at any time. 158

Figure 5.20 Number of fds discovered by COD3 considering
five time intervals. 160

xiv list of figures

Figure 5.21 An overview of BIRD. 165

Figure 5.22 An overview of the proposed discovery process by
considering ε = 0.1. 166

Figure 5.23 Binary representation of candidate rfdes. 169

Figure 5.24 The compressed linked map related to the Example
in Figure 5.22. 170

Figure 5.25 Time performances of TANE, BIRD, and BIRDp. 183

Figure 5.26 Time performances with Pτ+1 = 60% and g3-error
threshold in the range [0.1, 1]. 184

Figure 5.27 Time performances of BIRD with g3-error thresh-
old ε = 0.2 and Pτ+1 in the range [10%, 90%].
186

Figure 5.28 Scale-up performances of BIRDp. 187

Figure 6.1 The system architecture of DEVICE. 195

Figure 6.2 The visual interface of DEVICE. 197

Figure 6.3 DEVICE gadgets to interact with the lattice graph. 199

Figure 6.4 The visual interface of DEVICE after filtering out
the attribute A. 200

Figure 6.4 Monitoring COD3 and REDEVO algorithm during
its executions. 205

Figure 6.5 Resulting fds from the executions of COD3 on real
streams. 207

Figure 6.6 Monitoring COD3 executions on real data streams. 208

Figure 6.7 STRADYVAR architecture. 211

Figure 6.8 Real-time monitoring interface. 213

Figure 6.9 Interacting with the dependency table. 214

Figure 6.10 Comparing discovery results between two differ-
ent executions. 216

Figure 6.11 Analyzing the correlation among attributes ac-
cording to holding rfds. 218

Figure 6.12 Overview of the Playground visual editor. 219

Figure 6.13 An example of the Statistics block usage. 221

Figure 6.14 Distribution of user answers to quantitative ques-
tions. 224

Figure 6.15 The MySQL Workbench SQL Editor. 225

Figure 6.16 The INDITIO visual interface. 226

Figure 6.17 Visualization of uccs. 227

Figure 6.18 Validation statistics provided by INDITIO. 228

Figure 6.19 Violation details of INDITIO. 231

Figure 6.20 Statistics concerning involved participants. 233

Figure 6.21 Distributing scores achieved by participants for
each analyzed scenario (with and without INDI-
TIO). 234

Figure 6.22 Comparative boxplots showing distribution of user
answers to the quantitative questionnaire. 235

Figure 6.23 Distributing participant answers to the quantita-
tive questions in the final questionnaire. 236

L I S T O F TA B L E S

Table 2.1 A snippet of Michelin-starred restaurants dataset. 16

Table 3.1 Results obtained from the queries used in the ex-
perimental evaluation. 52

Table 3.2 Details of the topics and seed URLs used for the
comparative evaluation on e-procurement domain. 56

Table 3.3 Results of the comparative evaluation on general
topics. 58

Table 4.1 Fitness values of the candidate rfds considered in
Example 2. 77

Table 4.2 Characteristics of the considered real-world datasets. 88

Table 5.1 An example of a relation instance updated at time
τ + 1. 114

Table 5.2 Characteristics of the used datasets and discovery
results. 118

xv

xvi list of tables

Table 5.3 A comparison between execution times of TANE
with respect to our proposal by varying the num-
ber of attributes. 120

Table 5.4 Snippet of the Cars dataset to illustrate validation
and discovery strategies of REXY algorithm. 124

Table 5.5 Characteristics of the considered real-world datasets
and REXY performances on them. 131

Table 5.6 Snippet of iris to illustrate the discovery strat-
egy. 136

Table 5.7 The path matrix after the insertion of the tuple
reported in Example 2. 144

Table 5.8 Snippet of the dataset iris for some candidate
fds. 145

Table 5.9 Characteristics of the considered real-world datasets. 154

Table 5.10 Summarized results obtained by COD3 across dif-
ferent execution sessions on real streams. 163

Table 5.11 Snippet of the echocardiogram dataset. 167

Table 5.12 Statistics of the considered public datasets [12]. 181

Table 6.1 Questions proposed to participants. 222

Table 6.2 Questions proposed to participants. 232

1
I N T R O D U C T I O N

If we just have a bunch of datasets in a repository,
it is unlikely anyone will ever be able to find,

let alone reuse, any of this data. With adequate metadata,
there is some hope, but even so, challenges will remain . . .

— Agrawal, Divyakant, et al. [7]

In the current era, there is the possibility to exploit a huge quantity
of data to enhance data analysis processes. Both industry and research
communities have manifested a tremendous interest in methodologies
capable of treating raw data and extracting information and correlations
from them. This need has been further manifested in the last few years
with the spread of the Internet of Things (IoT), in which every object has
taken on its own identity in the digital world. For this reason, the amount
of available data has significantly increased, yielding data analysis pro-
cesses involving data coming from objects ever closer to people. This has
triggered several new research activities, among which data profiling
tasks acquired a fundamental role.

Data profiling represents an important set of activities that have been
conducted at least once by any IT professional and researcher. Every data
scientist has implicitly performed data profiling tasks for his/her research
activities, such as when using spreadsheets, database tables, and XML
files for sorting, writing structured queries, or searching keywords in
collections of data. Data profiling activities have found room in different
contexts, such as sentiment analysis, anomaly detection, and Machine
Learning (ML for short). In fact, several studies have recently highlighted
the importance of these activities to support machine learning processes
for improving the effectiveness of ML models [4, 99, 106], performing ad-
vanced feature selection activities [152, 159], and estimating the feasibility
of a ML task on a given dataset [103].

1

2 introduction

Data profiling activities base their effectiveness on the adoption of
metadata extracted from the data, which represent properties that should
be valid on data. There are several types of metadata. Simpler metadata
are per-column statistics, such as the number of null and distinct values
in a column, its data type, or the most frequent patterns of its data
values [2]. However, there exist several more complex metadata that
might involve multiple columns of a dataset or multiple datasets. Among
them, Functional Dependencies (fds) play a fundamental role, since
they capture important semantic relationships among data, which can
be exploited for several purposes, such as data cleaning [45, 60], query
rewriting [34, 102, 130, 131], query relaxation [116], record matching
[61], data preparation [44, 137, 151], feature engineering [68], and so
forth. However, sometimes the definition of fd is too rigid to be used in
several practical settings. For this reason, the canonical definition of fd

has been extended in order to introduce new approximations, yielding
the definition of Relaxed Functional Dependency (rfd) [32]. The latter
introduces two main relaxation criteria into the canonical fd definition,
such as the possibility to have approximate methods (similarity operators,
order relations, and so forth) to compare attribute values (relaxation
on the attribute comparison), or the possibility to have fds holding on a
subset of tuples (relaxation on the extent). rfds are particularly useful in
contexts in which the presence of outliers in the data should be tolerated,
or in cases in which there are few valid fds. In fact, rfds could intercept
correlations among data that cannot be caught by canonical fds, allowing
to consider similarity thresholds to compare data and admitting some
exceptions in their validation. fds were originally specified at database
design time, as properties of a schema that should hold on every instance
of it. However, with the advent of Big Data it has arisen the necessity
to develop techniques to automatically detect fds and rfds from data
instances, aiming to reduce the design effort and monitor their evolution
in several application domains. However, the number of fds and rfds
holding on a given database instance could be exponential with respect
to the number of its columns. This makes the discovery problem an
extremely complex one. For this reason, most of the discovery algorithms
described in the literature provide solutions to reduce the search space

introduction 3

complexity by exploiting theoretical properties of fds and rfds. Although
several existing discovery algorithms achieved good performances [126],
most of them are not suitable in dynamic scenarios, in which data are
frequently updated (i.e., inserted and/or removed). This entailed the
definition of new incremental fd and rfd discovery algorithms, capable
of updating the set of metadata holding on a dataset upon data update
operations, without having to re-execute the discovery process from
scratch on the entire dataset. Recently, the advent of Internet of Things
(IoT) and the consequent spreading of sensors capable of continuously
producing data, has triggered new challenges for data profiling tasks and
discovery algorithms. While for incremental data profiling algorithms
we consider periodic updates, in continuous data profiling a further
challenge concerns the definition of algorithms and methodologies for
continuously handling profiling metadata whenever data are created
or updated. To this end, this thesis presents several new data profiling
algorithms and tools for discovering and analyzing metadata in both
static and dynamic scenarios.

The whole thesis is composed of four main parts. The first part pro-
vides an overview of data profiling tasks and applications, introducing
preliminaries and basic notations concerning some of the most relevant
data profiling metadata, such as Unique Column Combinations (uccs),
Inclusion Dependencies (inds), Functional Dependencies (fds) and their
extension Relaxed Functional Dependencies (rfds). Then, it focuses the
discussion on the problem of profiling unstructured data in real-world
applications, by introducing CAIMANS [17], an intelligent tool to sup-
port organizations in the focused analysis of artifacts of interest from
the web (e.g., calls for tender, BIMs, equipment, policies, market trends,
and so on). CAIMANS extracts metadata from unstructured web data
sources, aiming to derive a focused crawler enabling company analysts
to make better strategic decisions for improving the productivity and
competitiveness of their company.

The second part of the thesis describes a new algorithm for discovering
hybrid rfds (i.e., rfds relaxing on both the extent and attribute comparison)
from data, based on a heuristic search strategy. In particular, a new
genetic algorithm named REDEVO is presented, which is inspired by the

4 introduction

process of natural selection belonging to the larger class of Evolutionary
Algorithms (EAs). The algorithm exploits natural evolution operations
of species, such as natural selection, crossover, and mutation, to perform
the discovery step and evaluate candidate rfds.

The third part of the thesis shows four new incremental discovery
algorithms, conceived for discovering fds and rfds in dynamic scenarios.
In particular, the first incremental algorithm for discovering fds is named
Incremental-FD [27]. It relies on a lattice to perform a level-by-level
generation of candidate fds to be successively validated through the
refinement property [85]. Such a strategy permits the adoption of several
pruning rules, in order to reduce the search space of the discovery process.
The second incremental algorithm for discovering fds is named REXY
(RegeX-based incremental discoverY) [28, 29]. It introduces a new valida-
tion method exploiting regular expressions (RegExs) to extract the subset
of data affecting discovery results, and it employs a compressed data
representation limiting the memory load and optimizing the discovery
process. The third algorithm is named COD3, and is the first algorithm
optimized to continuously discover fds from data streams. It adopts a
new data structure, named Validation Graph, to efficiently handle the
validation process and to provide a light representation to store data. The
last proposal is an incremental discovery algorithm for rfds relaxing on
the extent named BIRD (Bit-vector based Incremental rfds Discoverer)
[25]. It performs a thorough analysis of initial candidate rfds to reduce
the number of candidates to be analyzed, and it adopts a new discovery
process to explore and validate multiple rfds at the same time.

Finally, the last part of this thesis is devoted to the description of
tools for visualizing profiling metadata. In particular, we present three
new visualization tools to monitor the results of incremental discovery
algorithms and analyze the resulting metadata after running them on dif-
ferent datasets. The first tool is DEVICE [26], and is used for continuously
monitoring resulting rfds during the execution of discovery processes.
In particular, it permits to analyze the evolution of results during the
execution of discovery algorithms through a lattice representation of the
search space. The second tool is STRADYVAR [22], a tool for visualizing
rfds discovered from a data stream. It permits to explore the results

introduction 5

of different types of rfds and it uses quantitative measures to monitor
the evolution of discovery results. Moreover, STRADYVAR enables the
comparison among rfds discovered across several execution sessions,
also proving visual manipulation operators to dynamically compose and
filter results. The third tool is named INDITIO [30]. It has been imple-
mented within the MySQL Workbench client, and it is able to intercept
queries and validate metadata before the execution of insertion opera-
tions. Its integration as MySQL Workbench plugin permits to verify in
real-time whether the data to be inserted into a database instance will
produce some violations on specific metadata, such as unique column
combinations (uccs) and/or functional dependencies (fds).

Thesis Outline.

This thesis is structured in the following four main Parts:
• Part I Context & Background: concerning the state of the art and

the open challenges of the data profiling research area. In partic-
ular, Chapter 2 first provides an overview of the research area by
discussing its application contexts and open challenges. Then, it
focuses on the definition of Unique Column Combination (ucc),
Functional Dependency (fd), their extension Relaxed Functional
Dependency (rfd), and Inclusion Dependency (ind). Chapter 3

describes a real-world scenario of metadata extraction, focusing the
discussion on a new tool named CAIMANS, for extracting artifacts
from unstructured web sources, based on an article published in
[17].

• Part II Discovery Algorithms for Data Profiling: concerning the prob-
lem of discovering fds and rfds from data in static and dynamic
scenarios. In particular, Chapter 4 motivates the necessity to infer
fds and rfds from data and formulates the discovery problem
for them. Moreover, it describes the REDEVO discovery algorithm,
based on an article under review on the Information Sciences Jour-
nal, Elsevier. Chapter 5 first discusses the necessity to define incre-
mental fd and rfd discovery algorithms, and then it describes four

6 introduction

discovery algorithms: Incremental-FD, REXY, and BIRD, based
on the articles published in [27], [28, 29], and [25], respectively, and
COD3, currently under review on IEEE Transactions on Knowledge
and Data Engineering (TKDE).

• Part III Tools for Visualizing Profiling Metadata: presents three visual
tools for monitoring and analyzing the results of fd and rfd dis-
covery algorithms. More specifically, Chapter 6 describes INDITIO,
DEVICE, and STRADYVAR tools, based on the articles published
in [30], [26], and [22], respectively.

• Part IV Conclusion: discusses the final remarks and future directions
of this research.

Part I

C O N T E X T & B A C K G R O U N D

2
D ATA P R O F I L I N G

Data profiling is a set of activities and processes to determine the meta-
data about a given set of data [118]. It includes a large amount of metadata
that can be valid on a single column/attribute, such as statistics on the
number of null values and distinct values in a column, the type of data,
and so forth; or on multiple columns/attributes, such as unique column
combinations (uccs), functional dependencies (fds), relaxed functional
dependencies (rfds), and inclusion dependencies (inds). These meta-
data allow data scientists to capture important semantic relationships
within data, which can be exploited for several purposes, such as query
optimization, data cleaning, and so forth.

In this chapter we first describe data profiling tasks and applications,
then we introduce basic notations concerning several multiple columns
metadata (e.g., ucc, fd, rfd, and ind). Finally, we provide an overview
of the open challenges in the data profiling research area.

2.1 profiling tasks and applications

The amount of data and sources nowadays available has motivated IT
professionals and companies to adopt techniques and tools capable of
managing large sets of data, by combining innovative technologies and
methodologies previously proposed in the state-of-the-art across several
research areas. This has led to the consolidation of the connection be-
tween the worlds of research and industry, aiming to exploit theoretical
knowledge in real-world application scenarios. Nevertheless, managing
such large sets of data is an extremely complex task for both researchers
and companies, which have to deal not only with the development of
processes for the efficient management of data, but also with processes
for solving data preparation and data quality issues. In fact, data is often

9

10 data profiling

riddled with errors, inconsistencies, or duplicates, slowing down business
processes. In this scenario, data profiling includes a set of tasks that can
be applied to different application domains, and represents a fundamen-
tal means for identifying and solving these above mentioned problems.
In particular, data profiling tasks aim to examine datasets and produce
metadata of several dimensional complexity, and can be classified into
single-column and multi-column [1]. Figure 2.1 shows a classification of
profiling tasks. In particular, single-column profiling refers to the analysis
of values in a single column and ranges from simple counts of values
and the application of aggregation functions, to the analysis of value
distributions and the discovery of patterns and data types. Among the
possible metadata, there are descriptive statistics (e.g., min, max, count,
and number of null values), value distributions (e.g., distinct values),
domain classifications, and syntactic structures (i.e., patterns). Such meta-
data can be applied to many application domains, such as suggesting
key candidates by considering columns with only unique values, or sup-
porting query optimizers in database management systems (DBMS) to
estimate the cost of an execution plan.

On the other hand, multi-column profiling refers to the set of tasks that
can be applied to multiple columns for the analysis of inter-value depen-
dencies across columns. These types of tasks generalize the profiling tasks
on a single column and are mainly adopted to identify correlations be-
tween values. Among the metadata, there are correlations and association
rules, clusters and outliers, and summaries and sketches. Such metadata
can be applied to many application domains, such as data exploration,
data analytics, machine learning, and data cleaning.

Other than the previous groups of tasks, Figure 2.1 shows a third
group of tasks, namely those aiming to discover dependencies, which
represent metadata describing relationships among multiple columns. As
we would expect, this task might be classified as multi-column profiling.
However, it has been assigned to a separate profiling category, since it
contains a large and complex set of tasks for analyzing data, detecting
dependencies, and applying them in advanced operations [118]. Among
the metadata in this category there are unique column combinations
(uccs), inclusion dependencies (inds), and functional dependencies (fds)

2.1 profiling tasks and applications 11

Single

Column

Cardinalities

Value
Distributions

D
at

a
Pr

of
ili

ng

Domain
Classification

Patterns &
Data Types

Dependencies

Uniqueness

Key Discovery

Conditional

Approximate

Inclusion
Dependencies

Foreign Key
Discovery

Conditional

Approximate

Functional

Dependencies

Conditional

Approximate

Matching

Multiple

Columns

Correlation &
Association Rules

Cluster &

Outliers

Summaries &
Sketches

R
elaxed Functional

D

ependencies

Figure 2.1: Classification of traditional data profiling tasks [1].

that will be further discussed in the next section. Such metadata can
be applied to many application domains, such as the identification of
suitable keys for a given table (e.g., ucc), the definition of foreign keys
(e.g., ind), or the support to schema normalization tasks (e.g, fd).

12 data profiling

In what follows, we report an overview of the main applications of data
profiling metadata and tasks, in order to support advanced operations
on data [1].

• Database management: The typical application of profiling tasks in
this context is to analyze individual columns in a dataset, such
as the number of unique and non-null values. In this scenario,
profiling metadata can be used to extract such statistics and support
optimizers for improving query performances [1, 133, 145].

• Data cleaning: The typical application of the profiling tasks in this
context is to reveal errors, such as inconsistent formatting of values
within a column, and detection of outliers and/or missing values.
In this scenario, profiling metadata can be used to evaluate the
general quality of a dataset and to solve quality issues [1].

• Data exploration: The typical application of the profiling tasks in this
context is to determine the structure of datasets when they do not
have a known schema or have an obsolete documentation (e.g., data
files downloaded from the Web, old database dumps, etc.). In other
cases, the schema might be incomplete, requiring the adoption of
profiling metadata for identifying primary keys, foreign keys, or
other metadata to reconstruct the structure and the history behind
these data [1, 113].

• Data integration: The typical application of the profiling tasks in this
context is to explore characteristics of the data, such as the semantics
of columns and tables, and the types of data. A practical example
in which data profiling tasks and metadata can support experts
is schema matching, which aims to find semantically consistent
correspondences between constructs of schemas under analysis [58].
More specifically, profiling metadata permits to create attribute
features, such as the data type, average value length, and patterns,
in order to compare schema constructs and align those attributes
with the best matching ones [1, 110].

• Database reverse engineering: The typical application of the profiling
tasks in this context is to identify relationships, attributes, and
domain semantics of “bare” databases, aiming to reconstruct their

2.2 profiling metadata 13

characteristics [132]. In this scenario, profiling metadata, namely
“implicit constructs” [76], represent information of the dataset that
are not explicitly specified by DDL statements [1].

• Data analytics: The typical application of the profiling tasks in this
context is to prepare datasets for statistical analysis and data mining
processes. In this scenario, profiling metadata can help analysts to
understand the data with the aim of appropriately configuring tools
for advance data analysis processes [1].

All of the above applications represent a general overview of use-
cases where data profiling tasks provide significant support for advanced
operations over data. Nevertheless, in the last few years, data profiling
tasks have been adopted to support other application domains, such as
machine learning [103] and data governance systems [51].

2.2 profiling metadata

As introduced above, other than the single- and multi-column tasks,
a third group of tasks has been identified, namely dependencies, which
contains all the tasks for examining the datasets and discovering differ-
ent types of dependencies. The latter represent metadata that describe
relationships among attributes of a dataset, and their detection is an
extremely complex problem. In fact, the difficulty of automatically ex-
tracting these dependencies from a given dataset is twofold: the need to
develop efficient techniques to analyze large sets of data, and to evaluate
them for identifying the most significant ones. Nevertheless, many re-
searchers are focusing only on the first challenge, leaving out the problem
of semantically interpreting the profiling results [1].

In this section, we describe preliminaries and basic notations concern-
ing the definition of unique column combinations (uccs), functional
dependencies (fds), a new generalized class of fds, namely relaxed func-
tional dependencies (rfds) [32], and inclusion dependencies (inds) that
represent the most relevant classes of dependencies. The whole discussion
is supported by several real-world examples.

14 data profiling

2.2.1 Unique Column Combinations (ucc)

One of the main properties in the context of relational databases, is repre-
sented by candidate keys. They permit the definition of possible tuple
identifiers of a relation instance, since no repetition in value combinations
is allowed. They represent sets of columns whose projections have no
duplicates, which can be identified by exploiting unique column com-
binations (uccs) metadata. Before introducing the general definition for
uccs, let us recall the definition of a relational database schema.

Definition 2.2.1 (Relational database schema). A relational database
schema R is defined as a collection of relation schemas (R1,. . ., Rp),
where each Ri is defined over a set attr(Ri) of attributes (A1,. . ., AM).
Each attribute Ak has associated a domain dom(Ak), which can be finite
or infinite. A relation instance (or simply a relation) ri of Ri is a set
of tuples (t1, . . . , tn) such that ∀ Ak ∈ attr(Ri) tj[Ak] ∈ dom(Ak), where
tj[Ak] denotes the projection of tj onto Ak. A database instance r of R is
a collection of relations (r1,. . .,rp), where ri is a relation instance of Ri, for
i ∈ [1, p].

Starting from this definition, we can now introduce the general defini-
tion of ucc.

Definition 2.2.2 (Unique Column Combination (ucc)). A ucc over a
relation schema R is a sets of attributes K ⊆ attr(R) such that given an
instance r of R, for every pair of tuples (t1, t2) in r then t1[K] ̸= t2[K].

An important property of unique column combinations concerns their
minimality.

Definition 2.2.3 (ucc Minimality). A ucc K over a relation schema R is
minimal if and only if ∀K′ ⊂ K : (∃t1, t2 ∈ r : (t1[K′] = t2[K′])∧ (t1 ̸= t2))

Let us consider the relation instance r shown in Table 2.1. The unique
column combination (ucc) {Latitude, Longitude} holding on r specifies
that there are no restaurants located in the same geographical position for
the tuples of the Michelin-starred restaurants dataset. Similarly, the ucc

2.2 profiling metadata 15

{Name} holding on r, indicates that there are no two starred restaurants
with the same name.

The uccs are widely adopted in several areas of data management,
such as anomaly detection, data integration, duplicate detection, and
query optimization [80]. To this end, the discovery of uccs from data
represents one of the most important data profiling tasks. Although this
operation seems to be a simple task even in large datasets, it is necessary
to consider that the number of possible candidate uccs is exponential
in the number of attributes M of a dataset, i.e., 2M − 1. For instance, let
us consider a dataset with 85 attributes, a naive approach must consider
285 − 1 column combinations to find all uccs holding on the dataset.

This operation is infeasible in practice, especially when we consider
datasets with hundreds of attributes. In fact, it has been demonstrated
that the discovery of all unique and non-unique column combinations in
a given dataset is an NP-hard problem [80]. Nonetheless, industries are
making little investiments in this sector, since they rely on professional
tools, which search for uccs with few columns and/or limit the validation
process with user-specified candidate uccs. However, this can lead to a
significant loss of information provided by the complete set of holding
uccs. For this reason, researchers are continuing to investigate effective
solutions for discovering the entire set of uccs on both small and large
datasets.

2.2.2 Functional Dependencies (fd)

The concept of functional dependency has been first introduced in 1970
with the theory of normalization of the relational databases [46]. Among
several other scopes, fds were used to evaluate whether a relation is
normalized according to specific normal forms [47]. However, although
fds are traditionally viewed as properties of the database schema to be
specified at design time, in several modern application domains there is
the need to discover them from data, especially in the Big Data context
[32]. Before discussing the problem of discovering fds, let us first recall
the definition of the canonical fd.

16 data profiling

Restaurants

Name Latitude Longitude City Region ZipCode Stars Cuisine IDChef

t1 Acadia 41.859 -87.625 Chicago Chicago 60616 2 Contemporary Chef2

t2 Acquerello 37.791 -122.421 San Francisco California 94109 2 Italian Chef1

t3 Alinea 41.913 -87.647 Chicago Chicago 60614 3 Contemporary Chef2

t4 Amador 48.254 16.359 Wien Austria 1190 3 Creative Chef5

t5 Aquavit 40.760 -73.972 New York New York C. 10022 2 Scandinavian Chef6

t6 Aska 40.760 -73.966 New York New York C. 10049 2 Scandinavian Chef3

t7 Atelier C. 37.798 -122.435 San Francisco California 94123 3 Contemporary Chef4

t8 Atera 40.716 -74.005 New York New York C. 10013 2 Contemporary Chef5

t9 Benu 37.785 -122.398 San Francisco California 94105 3 Asian Chef7

t10 Blanca 40.704 -73.933 New York New York C. 10013 2 Contemporary Chef9

t11 Californios 37.755 -122.417 San Francisco California 94110 2 Mexican Chef11

t12 Campton P. 37.789 -122.406 San Francisco California 94108 2 Indian Chef10

t13 Coi 37.798 -122.403 San Francisco California 94133 2 Contemporary Chef8

t14 Commis 37.824 -122.255 San Francisco California 94601 2 Contemporary Chef1

t15 D.O.M. -23.566 -46.667 Sao Paulo Sao Paulo 01411 2 Creative Chef3

t16 Daniel 40.766 -73.967 New York New York C. 10065 2 French Chef9

Chef

IDChef Firstname LastName Place of Birth State

t1 Chef1 Suzette Gresham San Carlos California

t2 Chef2 Ryan McCaskey Saigon Vietnam

t3 Chef3 Fredrik Berselius Stockholm Sweden

t4 Chef4 Dominique Crenn Brittany France

t5 Chef5 Juan Amador Waiblingen Spain

t6 Chef6 Emma Bengtsson Falkenberg Sweden

t7 Chef7 Corey Lee Seoul South Korea

t8 Chef8 Daniel Patterson Lynn Massachusetts

t9 Chef9 Carlo Mirarchi Jamaica Queens

t10 Chef10 Srijith Gopinathan Kerala South India

t11 Chef11 David Yoshimura Houston Texas

Table 2.1: A snippet of Michelin-starred restaurants dataset.

Definition 2.2.4 (Functional Dependency (fd)). Given a relational database
schema R, defined over a set of attributes attr(R), derived as the union

2.2 profiling metadata 17

of attributes from relation schemas R composing R, assuming that they
all have unique names. For each attribute A ∈ attr(R), its domain is
denoted by dom(A). Moreover, given an instance r of R and a tuple t ∈ r,
we use t[A] to denote the projection of t onto A; similarly, for a set X of
attributes in attr(R), t[X] denotes the projection of t onto X. An fd over
R is a statement X → Y (X implies Y) with X, Y ⊆ attr(R), such that,
given an instance r over R, X → Y is satisfied in r if and only if for every
pair of tuples (t1, t2) in r, whenever t1[X] = t2[X], then t1[Y] = t2[Y].
X and Y are also named Left-Hand-Side (LHS) and Right-Hand-Side
(RHS) of the fd, respectively. In particular, given Z = {A1, . . . , Ak},
t[Z] ∈ dom(A1)× dom(A2)× · · · × dom(Ak) denotes the projection of ti
onto Z, i.e., the combination of values defined by t over the attributes
{A1, . . . , Ak}, also denoted with ΠA1,...,Ak(t) or ΠZ(t).

Definition 2.2.5 (fd Minimality). Given two sets of attributes X and Y
with X, Y ⊆ attr(R), an fd X → Y over a relation schema R is minimal if
and only if ∀X′ ⊂ X, ∃ (t1, t2) on an instance r of R : (t1[X′] = t2[X′]) ∧
(t1[Y] ̸= t2[Y]) with (t1 ̸= t2)

Let us consider the example relation instance r shown in Table 2.1.
A functional dependency φ : City → Region holding on r specifies that
for any two tuples of the Michelin-starred restaurants dataset, if they
are located in the same city, then their region values must be equal. For
instance, tuples t2, t7, t11, t12, t13, and t14 in Table 2.1, having the same
value for city, i.e., “San Francisco”, also have equal values for region, i.e.,
“California”. Similarly, tuples t5, t6, t8, t10, and t16 having equal values for
city, i.e., “New York C.”, also having equal values for region, i.e., “New
York”. We can notice that this property is also valid for all other tuple
pairs sharing the same value for the attribute city.

2.2.3 Relaxed Functional Dependencies (rfd)

As the relational data model has evolved in different directions, also the
theory behind functional dependencies underwent several extensions to
enable the definition of new approximate relationships to be adopted
in new application scenarios. As described in [150], the strict equality

18 data profiling

criteria imposed by the canonical definition of fds limits the detection of
semantic relationships in the data.

For example, for the Michelin-starred restaurants dataset in Table 2.1,
we can intuitively affirm there should be a certain relationship between
Region, and geographic coordinates, such as Latitude and Longitude. How-
ever, as we expect, a region could cover a very large portion of territory
that identifies different areas with different geographic coordinates.

Another example could concern large systems that daily use geographic
information for the prediction of atmospheric or natural phenomena
by studying historical data. In this case, rfds could extract anomalous
patterns in the data for the immediate identification of unexpected atmo-
spheric events in various countries or cities.

For this reason, new dependencies have been introduced to cope with
approximate comparisons and have been named Relaxed Functional
Dependencies (rfds), i.e., dependencies that relax one or more constraints
of the canonical fd. In particular, there are over 30 different types of
fds under the definition of rfds, and each of them represents a means
for overcoming the limits imposed by the fds [32]. Figure 2.2 shows
an overview of the relaxation criteria used to categorize the different
types of rfd. The first criterion is the tuple comparison method used
on the Left-Hand-Side (LHS) and Right-Hand-Side (RHS) of the rfd,
and we will refer to it by using the term attribute comparison. Thus, rfds
applying only this relaxation criterion are named rfd relaxing on the
attribute comparison (rfdc). The second criterion is the extent, which
groups all the rfds that permit a dependency to hold on a subset of
tuples. Thus, rfds applying only this relaxation criterion are named rfd

relaxing on the extent (rfde). Both criteria have been further detailed
in order to provide parameters and functions to classify the different
types of rfds. The attribute comparison criterion has been divided in
two categories, approximate match and ordering criteria, respectively.
In particular, the approximate match category is used to measure the
similarity and/or the diversity of attribute values, whereas the ordering
criteria compares the attributes based on a given order relation. Similarly
to the attribute comparison, also the extent criterion has been divided into
two categories, namely coverage measure and condition, respectively. The

2.2 profiling metadata 19

Coverage
Measure

Condition

R
el
ax
at
io
n

C
rit
er
ia

Extent

Domain Cardinality

Information Dependency

Percentage

Probability

Confidence

Disparity

Error

Impurity

 Association

Information Dependency

Percentage

Ordering
Criteria

Approximate
Match

Attribute
Comparison

Order Relation

Temporal Constraint

Domain Cardinality

Information Dependency

Percentage

Disparity

Error

Impurity

Figure 2.2: Relaxation criteria for rfds [32].

former includes all categories of rfds in which a coverage measure should
be applied to quantify the degree of satisfiability of the rfd, whereas in
the second category a condition should be specified to identify the subset
of tuples on which a dependency holds.

20 data profiling

Before introducing the general formalization for the rfds, we recall
some definitions that will allow us to describe the general semantics of
rfds and establish relationships among them [32].

Definition 2.2.6 (Constraint). A constraint ϕ is a predicate evaluating
whether the similarity/distance, or the order relation, between two values
of an attribute A falls within a predefined interval.

Thus, a constraint depends on a similarity/distance function, or an
order relation, defined on an attribute domain, plus one or more com-
parison operators with associated threshold values defining the feasible
intervals of values.

Definition 2.2.7 (Set of constraints). Given a set of attributes X =

{A1, . . . , Ak}, a set of constraints Φ = {ϕ1, . . . , ϕk} on them represents a
collection of constraints that are applied to {A1, . . . , Ak}, respectively.

Definition 2.2.8 (Coverage measure). Given two sets of attributes X and
Y, a coverage measure Ψ, Ψ : dom(X)× dom(Y) → R+, quantifies the
amount of tuple pairs in r satisfying the dependency.

Several coverage measures can be used to define the satisfiability degree
of an rfd, but usually they return a value normalized on the total number
of tuples n, so producing a value v ∈ [0, 1]. Among the most commonly
used coverage measures, there are the confidence, the g3-error, and the
probability.

For instance, the g3-error calculates the minimum fraction of tuples
that must be removed from a relation instance r in order to make a
dependency valid (see Formula 2.1).

g3(X → A, r) = 1− max{|s| | s ⊆ r |= X → A}
|r| (2.1)

As discussed above, an rfd is a functional dependency that involves
sets of constraints to evaluate the distance or similarity between attribute
values (i.e., rfds relaxing on the tuple comparison), and/or uses a cover-
age measure to indicate the minimum number or percentage of tuples on

2.2 profiling metadata 21

which the rfd must hold (i.e., rfds relaxing on the extent). Most of the
rfds defined in the literature relax on one of these two dimensions and
only some of them relax on both dimensions (i.e., hybrid rfds). In what
follows, we recall a formal definition of rfd extracted from [37] which
covers all these cases.

Definition 2.2.9 (Relaxed functional dependency (rfd)). Given a relation
schema R = (A1, . . . , Am), an rfd φ on R is denoted by

XΦ1

Ψ≤ε−−→ YΦ2 (2.2)

where
• X = X1, . . . , Xh and Y = Y1, . . . , Yk, with X, Y ⊆ attr(R) and X ∩

Y = ∅;
• Φ1 =

∧
Xi∈X

ϕi[Xi] (Φ2 =
∧

Yj∈Y
ϕj[Yj], resp.), where ϕi (ϕj, resp.) is a

conjunction of predicates on Xi (Yj, resp.) with i = 1, . . . , h (j =

1, . . . , k, resp.). For any pair of tuples (t1, t2)∈ dom(R), the constraint
Φ1 (Φ2, resp.) is true if t1[Xi] and t2[Xi] (t1[Yj] and t2[Yj], resp.)
satisfy the set of constraint ϕi (ϕj, resp.) ∀ i ∈ [1, h] (j ∈ [1, k], resp.).

• Ψ is a coverage measure defined on dom(R), quantifying the amount
of tuples violating or satisfying φ.

• ε is a threshold indicating the upper bound (or lower bound in
case the comparison operator is ≥) for the result of the coverage
measure.

Given r ⊆ dom(R) a relation instance on R, r satisfies the rfd φ, denoted
by r |= φ, if and only if: ∀ t1, t2 ∈ r, if Φ1 indicates true, then almost always
Φ2 indicates true. Here, almost always is expressed by the constraint Ψ ≤ ε.

For rfds relaxing on the tuple comparison only, when no pair of tuples
yields an rfd violation, the expression Ψ(X, Y) = 0 is omitted from the
rfd expression. Moreover, when the equality constraint is used as a tuple
comparison method, the set of constraints Φ is also omitted from the
expression. Thus, the canonical fd can also be written in terms of (2.2) as:
X −→ Y.

Let us consider the example relation instance r shown in Table 2.1,
it is likely to have the same region and zip code for restaurants in the

22 data profiling

same city. Thus, an fd City→ ZipCode, Region might hold. However, these
attributes might have been stored using different abbreviations and/or
there may be several zip codes in a city that identify different areas or
districts, hence the following rfd might hold:

Cityϕ1
−→ ZipCodeϕ2

, Regionϕ3

where ϕ1, ϕ2, and ϕ3 are constraints using a string similarity function.
Moreover, since cities might change zip code after the updating of the
territorial topologies, or there might be multiple cities with the same
name but located in different regions, the previous rfd should tolerate
possible exceptions. This can be modeled by introducing a coverage
measure into the rfd:

Cityϕ1

ψ(City,ZipCode,Region)≤0.2−−−−−−−−−−−−−−−→ ZipCodeϕ2
, Regionϕ3

2.2.4 Inclusion Dependencies (ind)

In the context of relational databases, other than the candidate keys, one
of the main properties is represented by foreign keys. The latter permit
to define the relationships between tables of a relational database. In
particular, they allow to maintain referential integrity across tables of
a database, supporting researchers and IT professionals in preventing
errors, and improving the performance of any operation that extracts
data from tables that are linked by foreign keys. This relationship can be
identified by exploiting the concept of inclusion dependency (ind) [158].

Definition 2.2.10 (Inclusion Dependency (ind)). Let R = R1, R2, . . . , Rp

be a database schema, and r = r1, r2, . . . , rp be the database instance of R,
where each rj corresponds to the relation instance of Rj, with j ∈ [1, p].
Let ΠX(rj) be the projection of rj on attribute X from Rj, and t[X] the
restriction of tuple t to X so that ΠX(rj) = {t[X] s.t. t ∈ rj}. The ind

Ri[X] ⊆ Rj[Y] between the two attribute sets X and Y is satisfied by an
instance r over dom(R) if and only if ΠX(ri) ⊆ ΠY(rj).

2.3 open challenges 23

The attributes on X represent the Left-Hand-Side (LHS) of an ind and
are defined as dependent attributes. On the other hand, the attributes on
Y represent the right-hand side (RHS) of an ind and are defined as the
referenced attributes.

Definition 2.2.11 (ind Maximality). Given two relations Ri and Rj the
ind Ri[X] ⊆ Rj[Y] between the two attribute sets X and Y is maximal if
Ri[XA] ⊆ Rj[YB] is invalid for any A ∈ attr(Ri) and B ∈ attr(Rj).

The set of all maximal inds is a complete set of inds, because all
non-maximal inds can be derived from it.

Let us consider the example instances r shown in Table 2.1. An inclu-
sion dependency (ind) Restaurants.IDChef→ Chef.IDChef over r specifies
that the set of values appearing in the attribute IDChef of the relation
Restaurants must be is a subset of the values appearing in the attribute
IDChef of the relation Chef.

inds are widely adopted in several areas of data management, such
as anomaly detection, schema (re-)design, query optimization, or data
integration. When such dependencies are not defined at design time,
scalable and efficient algorithms allow to discover and validate them
from a given database instance [143]. In particular, the validation process
of inds requires checking if each record of the projection on X is contained
in the projection on Y. Nevertheless, the discovery of all non-trivial inds
(i.e., candidates in the form Ri[X] ⊆ Rj[X]) on a database schema with
M attributes is an extremely complex problem, since the candidate space
grows exponentially when searching inds by considering many relations
with high cardinality [127]. To this end, several algorithms for discovering
inds have been defined [13, 53, 94, 158], but industries continue to invest
in this area with the aim to develop effective solutions for discovering
inds and applying them in commercial solutions.

2.3 open challenges

In the last few years, research in data profiling has proliferated, due to
the necessity to exploit profiling metadata to support several activities
related to data science. Figure 2.3 shows an overview of the different

24 data profiling

Traditional

Interactive

D
at

a
Pr

of
ili

ng
D

ire
ct

io
ns

Online Profiling

Profiling on queries and views

Incremental

Profiling
Heterogeneous

Data

Incremental Profiling

Continuous Profiling

Data profiling for Integration

Topical Profiling

Degrees of Heterogeneity

Multi-measure profiling

Single Column

Multiple Columns

Dependency Discovery

Figure 2.3: New directions of data profiling [118].

types of data profiling directions, ranging from traditional profiling to
the most recent profiling scenarios.

Traditional data profiling represents the classical form of data profiling,
which includes single- and multiple- column metadata and the tasks for
discovering them. As discussed in the previous section, these tasks are
generally applied to single relations or complete databases. However,
the definition of new technologies that enable users to interact with
the data and update its values, and the spreading of data sources that
continuously produce data, have required the adaptation of traditional
data profiling tasks to new directions. Among these, incremental data
profiling represents all the tasks capable of efficiently handling the in-
cremental update of metadata, without having to re-execute profiling
tasks upon updated versions of the datasets. Another important challenge
concerns the spreading of new data sources, since data profiling tasks

2.3 open challenges 25

generally consider homogeneous datasets or single relations, but there
are many scenarios in which data are collected and analyzed even though
they originate from different and heterogeneous sources. To this end,
data profiling tasks are evolving towards the profiling of heterogeneous
datasets.

All the new directions introduced above only concern activities and
tasks directly performed on the datasets. For this reason, research has
hardly recognized that data profiling is an inherently user-oriented ac-
tivity. However, it is important to notice that metadata is consumed
and analyzed directly from users before adopting them for advanced
operations. Thus, the necessity to further involve users in data profiling
activities has led to the definition of visual metaphors and tools to enable
users to interact with data profiling tasks. This new direction of data
profiling is named interactive data profiling.

In general, data profiling tasks should manage the above-described
challenges by also considering the following issues: i) the problem of
discovering profiling metadata is computationally complex, especially
when considering large datasets; ii) the validation of profiling metadata
requires the verification of complex constraints on all columns and/or
combinations of columns in a dataset; iii) the complexity of the problem
and the size of datasets could lead to memory load issues during the
execution of data profiling tasks [118].

In the following sections, we discuss the directions for data profiling
and give a brief overview of well-known approaches.

2.3.1 Profiling Heterogeneous Data

While researchers are deeply investigating data profiling techniques, also
business leaders are taking in consideration investments in technologies
to effectively profile data. As we know, data can be produced from sev-
eral huge data sources, and generally these are stored in homogeneous
databases, in which data with the same format are considered. However,
there might be cases in which data are produced from heterogeneous
sources, and this still necessary to collect and analyze them together. For

26 data profiling

these reasons, data profiling tasks should be adapted to work with data
regardless of their format. In this scenario, data profiling tasks focus
their activities on the definition of approaches for integrating these data,
and for computing their degrees of heterogeneity [118]. In particular,
the heterogeneity of data can be defined at many levels and degrees of
severity, divided into syntactic, structural, and semantic heterogeneity
[123]. Traditional data profiling tasks enable the evaluation of the syntac-
tic heterogeneity of the data, by means of single- and multiple- column
metadata. In fact, through metadata we can identify inconsistencies in
data formatting and define approaches to solve them. Instead, structural
heterogeneity can be identified in the form of unmatched patterns, i.e.,
they are represented and/or stored with differently structured informa-
tion. However, this type of heterogeneity can be partially addressed by
traditional data profiling through metadata such as keys and foreign
keys, and it requires more advanced approaches exploiting them. Con-
cerning semantic heterogeneity, it can be interpreted as a set of data in
which there is a low correlation of meanings. In data profiling it can be
addressed as the problem of discovering semantic overlaps of the data
and their domains [118].

Although the identification and the resolution of the previous hetero-
geneity issues is an important challenge for data profiling tasks, another
challenge addressed by data profiling is the integration of heterogeneous
data. To this end, it is possible to exploit structural profiling for extracting
information about the schema of the data, and semantic profiling for
interpreting and extracting information about them. Moreover, metadata
can also provide additional information useful for integrating the data.
For instance, inclusion dependencies can suggest ways to join two tables
that are not yet related, whereas relaxed functional dependencies can sup-
port the identification of similar data among schemas. The combination of
these tasks and of metadata permits to support data integration activities
for identifying schematic and data overlaps, assessing the possibility of
integrating data, and indicating the effort required for it.

Data profiling supports another fundamental activity for heterogeneous
data: the identification of topics or domains covered by different data
sources. In fact, working with a large amount of heterogeneous data

2.3 open challenges 27

also requires checking if they all belong to the same or similar domains
in order to perform proper activities on them. To this end, topical data
profiling should be able to extract semantic information, topics, and/or
domains from given sets of data, aiming to determine topical overlap
between them.

2.3.2 Incremental Data Profiling

The advent of the Internet of Things (IoT) and the consequent spreading
of hardware and software sources, has led to the necessity to adapt data
profiling tasks towards new scenarios. In fact, traditional data profil-
ing tasks have been originally designed to work with fixed (i.e., static)
datasets, requiring to be re-executed when datasets were updated. This
is not always an efficient solution, especially for data profiling tasks that
are extremely complex. To this end, researchers and IT professionals paid
close attention to this problem and started defining new incremental
methodologies capable of extending traditional data profiling tasks, and
to adapt them to incremental scenarios. In particular, incremental data
profiling tasks should be able to start from the results obtained from the
execution of a task on a dataset before it receives updates, and dynami-
cally profiling metadata upon updates, without having to re-profiling the
entire dataset. Starting from this strategy, two new types of tasks have
been defined, incremental and continuous data profiling tasks [118].

Incremental profiling activities rely on the idea of reusing both the
profiling results and the historical information of the datasets. In fact, by
keeping track of changes in a dataset it is possible to increase the perfor-
mances of incremental data profiling tasks, by focusing the computation
only on the updated part of the dataset. For instance, in the discovery of
metadata like functional dependencies or unique column combinations,
by keeping track of the updated values it is possible to re-validate only a
portion of the metadata on the updated dataset. With simpler metadata,
such as sum, count, and equi-width histograms, the process to update the
metadata is implicitly incremental and it does not require the definition
of particular methodologies, since they can be associatively calculated.

28 data profiling

However, although incremental profiling methodologies aim to improve
the effectiveness of data profiling tasks, it is necessary to explore how
to perform such tasks when considering more complex scenarios, such
as the continuous updating of the data. In fact, the spread of the IoT
has led to the necessity to adopt data profiling tasks on continuous
data streams generated from data providers and sensors, such as traffic
sensors, health sensors, transaction logs, activity logs, etc. Typically, these
data providers send many data in extremely short time intervals, creating
a continuous data stream that must be rapidly and correctly managed,
without having the possibility to store all the data to analyze in memory.
Thus, incremental data profiling tasks need to be extended to efficiently
manage these data.

Existing data stream management systems (DSMS) tend to perform
operations only on a temporal window by means of queries, or by storing
an aggregate representation of the data [118]. This could be useful for
simple metadata, such as count, sum, and avg, but not for more complex
ones, such as functional dependencies and inclusion dependencies, in
which it is necessary to store part of the data already processed to cor-
rectly validate them. Similarly, also for more advanced tasks, such as data
integration and data imputation, the execution of tasks on data streams
is extremely more complex, since the tasks must be performed in short
time, by continuously ensuring the correctness of results. For this reason,
continuous data profiling tasks aim to find a good tradeoff between
accuracy and resource consumption, without affecting the correctness of
the performed operations.

2.3.3 Interactive Data Profiling

Research on data profiling seems to consider tasks that do not directly
involve users. In fact, most tasks seem to require no interaction with users,
since they work in batches on the data. However, the role that users play is
fundamental in data profiling tasks. In most cases, metadata is analyzed
directly by the user before being used in some applications, such as
schema design or data cleaning. To this end, several data profiling tasks

2.3 open challenges 29

have focused on the definition of tools and visual metaphors that involve
users in the profiling processes. In particular, online profiling aims to
provide intermediate results of profiling tasks that allow users to perform
their analysis even when the profiling processes are working. However,
the simple connection of a graphical interface to existing algorithms is
not enough. In fact, data and metadata generated by data profiling tasks
could be misleading for users, even due to confusing representations. For
these reasons, visual tools should provide approximate or sampling-based
methods, whose results gracefully improve when more computations are
performed [118], and include visual languages and metaphors ensuring
the user interaction with both processes and results. For instance, for
metadata discovery, one of the main problems is the possibly high number
of metadata that might hold on a given dataset, which might make it
difficult for a user to get insights from them. Whereas for data cleaning
and data integration tasks one of the main problems is to allow users to
perform operations on a large number of tables and to virtually interact
with them for re-computing profiling results. Addressing all of these
problems requires a considerable effort, which is even greater when
considering incremental data profiling tasks. In this case, the difficulty to
design visual tools for analyzing and interacting with algorithms further
increases, since it is necessary to devise tools that continuously interact
with processes, without affecting their performances.

3
P R O F I L I N G U N S T R U C T U R E D W E B D ATA S O U R C E S

Profiling heterogeneous data still represents an open challenge for re-
searchers and IT professionals, since it is necessary to define method-
ologies capable of analyzing data regardless of their format. To this end,
companies and public administrations are investing in developing tools
to automatically profile data and extract useful information from them,
aiming to support their decision-making processes.

In this chapter, we first provide an overview of the issues of data
profiling on heterogeneous data in real-world applications, and then we
show an innovative tool that combines AI and data profiling techniques
for crawling and analyzing unstructured artifacts from the web.

3.1 problem description

Data profiling comprises a broad range of activities and tasks to efficiently
analyze sets of data, and extract useful information from them. Among
them, the profiling of heterogeneous data represents an open challenge
for researchers and IT professionals, since it requires the definition of
methodologies and tools for reviewing the quality of the data and ex-
tracting metadata from different types of data sources. In general, data
can be represented in different ways, yielding three main categories of
data representations:

• Structured data is a standardized format for providing information
and classifying the content of data sources [160]. This type of data
depends on the existence of a schema that determines how the
data can be stored, processed, and accessed. Each field is discrete
and it can be accessed separately or jointly together with other
fields, making structured data extremely powerful for querying and
aggregating data in the whole database. The fixed schema typically

31

32 profiling unstructured web data sources

organizes data in tables with rows and columns, by also enabling
the representation of relationships among data collected in different
tables. Some examples of structured data include spreadsheets
and/or relational databases.

• Semi-structured data is a form of structured data that does not
follow a formal structure of data models associated with relational
databases or other forms of data models [138]. Nevertheless, it
contains tags or other markers to separate semantic elements, in
order to enforce hierarchies of records and fields within the data.
Some examples of semi-structured data include JSON and XML.

• Unstructured data is a form of data that does not follow a prede-
fined data model [114]. This type of data is typically text-heavy but
it may contain dates, numbers, and facts as well. This results in
irregularities and ambiguities that make it difficult to understand
the representation and the meaning of data by using traditional
processes. Some examples of unstructured data include documents,
No-SQL databases, and web pages.

The proper management of unstructured data, and the consequent
definition of tools that exploit data profiling techniques, is becoming a
key business goal for companies and public administrations. In fact, the
profiling of unstructured data represents a set of fundamental processes
that combines business rules and analytical algorithms to discover, under-
stand, and extract information from the data. Thus, the need for efficient
data profiling processes and platforms is growing, both in companies and
public administrations that produce huge volumes of data during their
ordinary activities. In fact, companies manage massive amounts of data
extracted from different sources that are stored within their servers. For
example these data can include previously offered services, proposals,
bids, and so on. However, companies rely on expert managers to manu-
ally analyse them in order to make strategic decisions. On the other hand,
also public administrations suffer from similar problems, mainly due to
the digitization of thousands of documents that were previously collected
in paper format, and the daily publication of hundreds of new documents
on the web. Similar to companies, they rely on public employees for man-

3.2 literature review 33

ually crawling documents of different nature. Thus, both companies and
public administrations need to adopt data profiling processes with the
aim to develop technologies capable of automatically analyzing such data,
in order to infer new knowledge and use it to improve their efficiency,
productivity, and competitiveness. To this end, in the following sections,
we propose an innovative tool, named CAIMANS (Crawling Artifacts of
Interest and Matching them Against eNterprise Sources), which exploits
AI and data profiling techniques to support organizations in crawling
and analyzing artifacts of interest from the web.

3.2 literature review

Data profiling consists of several tasks and activities to determine meta-
data about a given set of data (see Section 2.1). Among them, several
recent proposals have focused on the definition of methodologies and
tools for profiling unstructured data [51]. In [115] authors propose a tool,
namely jHound, for profiling collections of JSON documents. It tackles
problems regarding data quality for both own and open hosted data.
Moreover, jHound gives insights on how data looks like, and points out
typical pitfalls which must be solved before processing data in subsequent
data cleaning steps.

Another important issue addressed by researchers and IT professionals
concerns the necessity of defining methodologies for profiling Linked
Open Data (LOD), also due to the availability of many RDF data sources
[18]. To this end, several research communities are fostering the ap-
plication of data profiling techniques on open RDF datasets, such as
SwetoDBLP [8] and LinkedMDB [78]. Recently, a tool has been pro-
posed that can infer the actual schema, gather corresponding statistics,
and present a UML-based visualization for the RDF data sources like
SPARQL endpoints and RDF dumps [105]. Other researches are limited
to treating RDF data statistics and summaries, such as Semantic sitemaps
[50], RDFStats [101], and SCOVO vocabularies [79].

Other studies focus on the development of algorithms to profile specific
topics from web pages and identify relationships between them, such as

34 profiling unstructured web data sources

commercial trends, people, and environmental situations. For instance,
in [6] authors propose a methodology to represent students using data
extracted from their home page, whereas other works use data extracted
from multiple pages to profile entities [134].

The advent of IoT technologies and the spread of sensors that continu-
ously produce data has further made data profiling a key activity for data
analysis. In [154] authors adopt data profiling techniques for determining
records useful for the identification of unknown gas samples. In [155]
authors adopt data profiling methodologies for detecting sprint intervals
of runners by using data from high-resolution sensors, and for computing
the ground contact times in order to evaluate sprint performances.

Other theoretical studies address the problem of extracting relation-
ships between unstructured data [9, 32]. A recent study proposes an
algorithm for discovering Temporal Graph Functional Dependencies
(TGFDs) [120]. These are a class of data quality rules imposing topologi-
cal, attribute dependency constraints that hold for a period of time. In
[48, 49] authors define approaches for discovering Temporal Functional
Dependencies (ATFDs) from clinical databases. In [77] authors propose a
new approach for extracting functional dependencies in XML documents
based on homomorphisms between XML data trees and schema graphs.

As discussed above, data profiling tasks can support public or business
processes in different application scenarios. To this end, companies and
public administrations make increasing use of these methodologies and
tools, with the aim of maximizing the extraction of knowledge from data.

In the next section, we propose a new tool for extracting and profiling
artifacts from the web, capable of analyzing their content and classifying
those most relevant to specific search criteria.

3.3 caimans : crawling artifacts of interest and matching

them against enterprise sources

This section presents the tool CAIMANS, developed in cooperation with
industry in the context of a project funded by the Italian Minister of
Economic Development, aiming to crawl web sources. In particular,

3.3 caimans tool 35

CAIMANS aims to i) crawl artifacts from the web whose informative
content matches specific topics of interest, trying to overcome possible
linguistic ambiguities of contents written in natural language, and ii)
match the characteristics of crawled artifacts against data and knowledge
stored within enterprise local sources. To this end, we have combined
several data profiling, machine learning, and natural language processing
techniques by also extending and adapting some of them in order to solve
some of the previously mentioned problems. In particular, we face the
K-means clustering algorithm problem of converging to local minimum
by relying on multiple random starting points [16], and have defined
several new modules to effectively gather, manage, and process data.

The first module is a novel web crawler capable to extract and pre-
process unstructured data from the web. The output of such component
is formatted in a suitable way to enable further analysis against a set
of query terms, so as to find the artifacts that are more pertinent to the
enterprise goals and capabilities. The second module relies on enterprise
data and knowledge sources. A third CAIMANS’ module aims to find
metadata and semantic matches between the crawled artifacts and the
knowledge stored within the enterprise sources. Finally, the last module
is responsible for visualizing the crawled artifacts. All the approaches
underlying CAIMANS have also been conceived to work off-line, by
running the analysis in batch mode and visualizing the results at the
most convenient time for the user. In the following sections, we describe
the methodologies behind each module of CAIMANS and prove its effec-
tiveness by comparing its crawling component against similar crawlers,
by plugging them within our system.

3.3.1 Extraction and Profiling of artifacts from the web

Current Web search engines require users to search for artifacts of interest
by mainly entering query strings. Generally, this limits the search and
does not guarantee that correct results will be immediately obtained.
Human experts must carry out many manual searches in order to obtain
useful results. In fact, often within the Search Engine Results Page (SERP)

36 profiling unstructured web data sources

there are many pages outside the search scope. To this end, CAIMANS
can reduce the overall search time, by increasing the number of correct
results with respect to manual search methodologies. In particular, thanks
to the advanced management of search parameters and URLs to avoid,
CAIMANS can guarantee a faster convergence of the search engine
towards a set of artifacts of interest. For instance, in the call for tenders
domain, CAIMANS enables a company to extract call for tenders from
the Web and classify them according to the company’s needs and past
experiences. At the same time, CAIMANS can search the company’s data
and knowledge sources to retrieve artifacts related to past calls for tender,
focusing on the proposed solutions and achieved evaluations, so as to
have a starting point for writing a proposal for the current calls for tender.
This will potentially reduce the effort for preparing bids, yielding cost
reduction, and increasing the chances of a company to gain contracts
than relying only on the manual work of human experts.

CAIMANS has been conceived as a modular platform, in which each
component can be singularly used and interact with other ones by defin-
ing a proper workflow. Each component was developed independently
from the others, by formally specifying its RESTful interface. Figure 3.1
shows the system architecture of CAIMANS, in which the interactions
between its modules are shown. The following sections describe the char-
acteristics and techniques used for the development of the individual
components.

3.3.1.1 Crawler Module

This module has been engineered based on the call for tender domain,
and then it has been adapted to be used in similar domains. Such a
module has the duty of traversing the web and returning the artifacts
pertinent to a given query, by following exploration and priority rules,
and abiding by search limits. In particular, this module represents a
focused crawler, which is based on the Linkage Locality criteria [95].
In other words, starting from a set of user-defined web pages that are
pertinent to the searched topic, the exploration begins by retrieving all the
pages related to them. This is based on the assumption that the web pages

3.3 caimans tool 37

⟨⟨Web Browser⟩⟩

⟨⟨DB API⟩⟩

Alfresco API

⟨⟨DB API⟩⟩

MySQL API

⟨⟨protocol⟩⟩

HTTP

⟨⟨protocol⟩⟩

HTTP

⟨⟨device⟩⟩

:UserClient

⟨⟨protocol⟩⟩

HTTP

INTERNET

:CAIMANS

⟨⟨web brobser⟩⟩

⟨⟨database⟩⟩

 Alfresco

⟨⟨device⟩⟩

:CMS Server

Crawler

Module

Semantic

Module

⟨⟨execution environment⟩⟩

:WebServer

Scheduler
Module

⟨⟨scheduler⟩⟩

:Quartz Server

Visualization

Module

⟨⟨database⟩⟩

 MySQL

⟨⟨device⟩⟩

:DB Server

Figure 3.1: The architecture of CAIMANS.

on a given topic are more likely linked to those concerning the same topic.
For example, if the crawler analyses the content of the Italian government
gazette website, most linked pages contain information about calls for
tender. These links are placed in the exploration queue one after the other,
in order to be analyzed by different semantic levels. To specify the priority
order in which URLs have to be visited during the crawling phase, a
navigation queue has been defined. Furthermore, to define search limits,
the crawler uses a customized URL blacklist that excludes out-of-context
sub-domains from scanning. The crawler module requires the following
further functional components:

- A component to download web pages from the absolute URLs,
using the HTTP protocol;

- A component for extracting content and links from HTML docu-
ments;

- A component to validate the syntax and the existence of a URL;

38 profiling unstructured web data sources

Crawler

Initialization

Enqueue

URLs Extract URL Extract Web

Page Information
Semantic Page

Validation
Valid
Page?

Extraction and
Validation of

URLs
Storage of

Web Page

No

Yes

Start Crawl

Figure 3.2: Flowchart of the Crawler module.

- A component for determining whether a URL has been encountered
before;

- A component for extracting content and links from RSS Feed;
- A component to avoid the exploration of blacklisted domains/-

pages.

Moreover, the whole crawler module has been realized by extending
the web crawler Mercator architecture [81]. The latter enables a focused
search, ensuring that all components are independent from each other
and cooperate in a single system by taking input data from the previous
component, processing it, and returning the output to the next component.
All the components can be maintained and updated separately from each
other, reducing the impact of changes in the other modules. Crawling is
accomplished through a scheduled sequential process managed by the
Quartz Scheduler [38], through a CRON expression1. The latter is a string
composed of 7 space-separated fields, representing seconds, minutes,
hours, day, month, weekday, and year, respectively.

Example 1. If we consider the CRON string “0 15 10 ? * MON-FRI”, the
schedule fires at 10:15 AM every Monday, Tuesday, Wednesday, Thursday,

1 http://www.quartz-scheduler.org

3.3 caimans tool 39

and Friday. The value “*” is used to select all values within a field,
whereas the value “?” is useful when it is not necessary to specify the
day.

The scheduled search job is automatically started at a given time, or
based on a recurring schedule. These kinds of tasks can be easily per-
formed on external servers or cloud machines. The scalable architecture
of Mercator enables CAIMANS to parallelize the single components ac-
cording to the search engine execution platform. The execution steps of
the crawling module are shown in Figure 3.1.

Execution steps. The first step corresponds to the crawler initialization,
consisting in the definition of the query string, the keywords, and the
maximum number of pages that the crawler must explore in order to
reduce the number of incorrect results and to increase the search accuracy.
The next crawling phase starts when an absolute URL is extracted from
the URL queue. In order to avoid that the crawler only analyses pages
from the same domain, the elements in the queue are shuffled after n
loops. The parameter n is an integer randomly generated in the range
K/2 and K, where K is the maximum limit of pages to be explored. Next,
the frontier component of Mercator extracts the URL, checking whether
it is not contained in a blacklist. Each web page is analyzed by using
an HTML analyzer, based on the XPath syntax. The latter enables fast
access to the content of the HTML tags. Thus, it avoids processing a
complex HTML parser. A stemming algorithm is used to process all
words in the text, reducing those with the same root to a common format,
by stripping the derivational and inflectional suffixes from each word.
More specifically, we have employed a stemming algorithm for the Italian
language [55], that allows the module to quickly analyze the text extracted
from the given web page by means of Natural Language Processing (NLP)
techniques. To this end, we have used basic NLP techniques, since the
volume of artifacts to be processed is quite large, and using complex
techniques would not allow having fast processing. Furthermore, we
have extended this algorithm with a module capable of using a set of
keywords to be involved in the analysis of web pages. Once the keywords

40 profiling unstructured web data sources

have been processed, each word and its synonyms are searched in the
text of the web page to verify the correctness of the results.

Example 2. If we consider the keyword “fixtures”, by using the stem-
ming algorithm its root “fixtur-" is extracted. Starting from the singular
form of the word, all of its related synonyms are searched, i.e., “doors”,
“windows”, “shutters”, and so on. Then, for each synonym, its root is
extracted, i.e., “door-”, “window-”, “shutter-”, and searched within the
text.

The extraction module uses accurate regular expressions to extract the
contents. For instance, in the calls for tender domain, these correspond to
prices, opening date, closing date, SOA categories, and other information
useful for classifying the results. Furthermore, in addition to the regular
expressions already defined, it is possible to define new expressions to
be involved in the search. This type of strategy ensures that each module
is fully customizable during the initialization phase. Towards the end
of the cycle of phases, a test is performed to verify whether the page is
valid. If so, then the crawler stores the results in a database, extracts the
links contained in it, by storing them in the exploration queue, and goes
back to its second phase. During this process, dynamic URLs related to
servers or main pages of generic portals are discarded, in order to avoid
the insertion in the exploration queue of pages that are out of context.
Moreover, in the validation phase the crawler checks whether a link is an
absolute URL and if it does not refer to a website already visited before
and inserted in the blacklist. The validation component has a single crawl
method that takes in input a URL and returns a boolean value indicating
whether or not the URL should be added to the queue. On the other
hand, if the page is not valid, the crawler goes back to its third phase.
The process stops when the crawler exceeds the time limit or the number
of pages to be visited.

3.3.1.2 CMS Module

This module needs to process several types of artifacts. For instance, civil
engineering projects include technical artifacts, describing the design

3.3 caimans tool 41

of a building or its maintenance plan, but also administrative ones,
stating the financial planning and the project schedule. Such a volume
of data is characterized by having multiple kinds of formats, ranging
from PDF to DOCS, or a level of structure and formalization spanning
from unstructured material (such as images from scanned documents)
to more structured ones (such as XML rendering of architectural plans).
Traditionally, such a set of materials is poorly managed by the companies,
which usually maintain flat storage within the folders of their servers
or employees’ computers. Although such a strategy does not require a
considerable computer science background (motivating its large usage) is
not efficient due to its intrinsic difficulty in retrieving a specific artifact
of interest within the set. The traditional approach of using relational
databases can help having more effective retrievals, thanks to queries
expressed in a SQL-like language. However, such a solution is viable
for storing properties, but it is less effective when dealing with files. A
Content Management System (CMS) [124] represents a trade-off between
folder storage using the operating system and a relational database, so
that the artifacts of interest are in the file system, and the CMS manages
pointers to them within certain tables coupled with metadata supporting
queries for their retrieval. Such pointers are transparent to the users, and
the CMS guarantees their consistency concerning artifact mobility within
the file system.

In our project, we have adopted the Alfresco CMS platform2 for storing
and retrieving the artifacts of interest. For instance, in the e-procurement
domain, the file system can be structured by considering the different
parts of any civil project, each of which can contain artifacts related to a
call for tender or a bid for it. This type of strategy allows CAIMANS to
quickly interact with company artifacts, aiming to characterize the search
by involving information extracted from the company’s knowledge base.
We have built a set of RESTful web services on top of Alfresco, in order
to enable the storage and retrieval of artifacts. The API used to interact
with Alfresco has been the one provided within the Content Management

2 https://www.alfresco.com/

42 profiling unstructured web data sources

Interoperability Services (CMIS) [43] (and the Apache Chemistry3 library
for .NET), so that we can use any possible CMIS-compliant CMS and
replace Alfresco based on the customer needs. Such services have been
made secure by using the standard JSON Web Token (JWT) [86], for
stateless authentication and authorization. The retrieval of artifacts is
made possible by using the CMIS Query Language, which is based on
the SQL-92 SELECT statement. Such a language has a syntax particularly
troublesome for a user with a poor computer science background, and it
requires knowledge on the right term to look for, because if the query
contains a synonym of a term contained in the artifact the match is not
detected. In order to simplify the query, it is possible to exploit a different
approach based on faceted search, which involves augmenting traditional
search techniques with means to enable users narrow down search results,
thanks to the faceted classification of items.

The similarity between an artifact and the provided query can be
detected by using Solr4, a library based on the Apache Lucene, thanks
to a term indexing process. Thus, we have used the API provided by the
SearchService of Alfresco to let a user retrieve artifacts employing the
term-matching provided by CMIS and the faceted search of Solr. The
extraction and analysis phases are performed by the semantic module
which will be discussed in the next section.

3.3.1.3 Semantic Module

The purpose of this module is to analyze the results extracted from the
crawler module and the artifacts saved in the corporate CMS to define
those that are closest to the search parameters and the query string. This
can be described as an Information Retrieval problem [69], in which it is
necessary to exploit Query Expansion techniques [24, 35] for minimizing
the query-results mismatch, therefore improving retrieval performances.
In order to realise an effective artifact search, techniques from the NLP
literature are usually exploited [5, 65, 74, 153]. They permit to overcome
the limits of basic text-matching realized by traditional query languages

3 https://chemistry.apache.org/
4 https://lucene.apache.org/solr/

3.3 caimans tool 43

(such as SQL), returning more pertinent results thanks to stemming and
similarity operations. Thus, this module benefits not only from the user’s
query, but also from keywords and their synonyms. In fact, thanks to
the interaction with the CMS module, the semantic module exploits the
historical knowledge of a company to include several new related terms
for analysis.

Figure 3.3 shows the workflow of the semantic module. As we can see,
it accomplishes its analysis by considering several phases and techniques.
Initially, to determine the artifacts containing the query keywords, the
frequency of the keywords contained within each artifact (e.g., a call for
tender) is calculated through the TF-IDF weighting scheme [98]. Moreover,
other than calculating the keyword frequency, the TF-IDF algorithm [135]
also calculates a value that is directly proportional to the frequency of
the term in the document, but inversely proportional to the frequency
of the term in the entire collection of documents. In this way, common
keywords will have a lower value than those appearing less frequently
within the artifacts. Although the use of TF-IDF allows the semantic
module to efficiently evaluate the results obtained by the crawler module
with respect to the performed search, there are some cases in which this
technique is not suitable. Indeed, if there are no common terms between a
web page and a given topic, we cannot achieve a proper similarity for the
web page. As described in [57], this problem can lead to ignoring some
links to pages that are pertinent to the search query, since there must also
be common terms among the topics of the hyperlinks in order to achieve a
fair similarity value of the artifacts. For this reason, the semantic module
combines TF-IDF and cosine similarity in order to evaluate results, by
also using the anchor text of hyperlinks as its artifacts.

Experimental results demonstrate that the combination of these tech-
niques improves the performance of focused crawlers, outperforming
other focused crawlers relying on different metrics and techniques [57].
Nevertheless, in the experimental evaluation proposed in this thesis, we
have demonstrated the effectiveness of TF-IDF and cosine similarity with
respect to other well-known techniques used in semantic search engines,
such as Dice and Jaccard similarities.

44 profiling unstructured web data sources

Artifacts Keywords

Text
Preprocessing

TF-IDF
Algorithm

Cosine
Similarity

Subdivision in
Lists

Figure 3.3: Flowchart of the Semantic Module.

Thus, we used the cosine similarity to determine the artifacts that are
more similar to the query parameters, based on the frequency calculated
in the previous phase. This similarity metric has been chosen for its
independence from the length of the artifact, whereby artifacts with the
same composition but different word counts will be treated identically.
Thus, based on the cosine similarity, the retrieved artifacts have been
sorted and divided into the following three lists:

1. White list: the subset of artifacts of interest to the user;
2. Black list: the subset of artifacts that have been selected by the

search engine but have no relevance to the context of the search;
3. Gray list: the subset of artifacts whose relevance to the user is

uncertain.

To derive the threshold values and distribute the artifacts among the
three lists mentioned above, an empirical study has been carried out,
aiming to minimize the overlap between artifacts.

3.3.1.4 Visualisation Module

This module clusters similar artifacts contained in White and Gray lists,
in order to let the user gain immediate insights from retrieved artifacts.
The goal of cluster analysis is to group the results based on information
found in the data describing artifacts and their relationships, so that
artifacts belonging to the same cluster will be related to one another and
unrelated to those in other clusters. The greater the similarity within

3.3 caimans tool 45

a group and the greater the difference between groups, the better the
clustering.

This type of analysis plays an important role in several areas, such as
social sciences [100], documents classification [10, 82, 107], statistics, pat-
tern recognition, information retrieval, data mining, and so on. However,
in some cases cluster analysis is only a useful starting point for other
purposes, such as data summarization or data visualization. Among
the available clustering algorithms, one of the most used and studied is
K-means [88], which is an unsupervised learning algorithm able to easily
adapt itself to several contexts and to quickly analyze large datasets. In
particular, it is a popular cluster analysis method, which partitions a
dataset D into K disjoint clusters, such that each element belongs to the
cluster with the nearest mean.

Clustering Optimization. One of the drawbacks of the K-means algorithm
is that it often convergences to local minima. To tackle this problem, in
this thesis we propose an empirical solution to extend the search out
of the local minimum, aiming to reach a minimum closer to the global
one. In particular, the solution relies on multiple executions of the K-
means algorithm with different random starting points. All the obtained
solutions are saved and displayed to compare the achieved results. We
have tested the proposed extension in the e-procurement domain by
using a dataset of calls for tender consisting of 150 calls concerning all
the Italian regions, each consisting of 17 features. In order to search
the appropriate number of clusters, we used the Elbow method [73].
The latter looks at the percentage of variance expressed as a function of
the number of clusters. The method relies on the idea that one should
choose a number of clusters so that adding another cluster will not yield
improved modeling of the data. The percentage of variance expressed by
the clusters is plotted against the number of clusters as shown in Figure
3.4. Notice that, at the same point, the curve drops drastically forming an
angle in the graph, which means that the most suitable number of clusters
to choose is between 3 and 4. Thus, further tests are necessary to decide
whether the optimal number of clusters is 3 or 4. To this end, we exploit
the Silhouette method [104], which defines how similar a point is to its
own cluster (cohesion) compared to other clusters (separation). Figure 3.5

46 profiling unstructured web data sources

1 2 3 4 5 6 7 8 9 10
Number of clusters

0

10

20

30

40

50

60

70

80

90

100
Pe

rc
en

ta
ge

 o
f v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure 3.4: Elbow diagram.

shows the average silhouette scores achieved in our tests. Notice that the
silhouette score reaches its global maximum at the optimal K. Thus, we
have chosen K = 3 as the number of clusters for the K-means algorithm.

Each time the clustering algorithm runs, it picks K random seeds to
determine the starting centroids of each cluster. In order to guarantee
different random seed values, they were generated by using a timestamp
with microsecond precision. The algorithm stops the iteration when the
distances between consecutive points are less than the given tolerance
value, which in our case has been experimentally set to 0.1. The outputs
of each algorithm execution are the coordinates, the labels, and the inertia
value of the K cluster centers. In order to visualize the obtained clusters
and reduce the problem dimensions, the Multidimensional Scaling (MDS)
algorithm has been used [20].

The visualization module groups the extracted data into a given num-
ber K of clusters, according to features describing the artifacts of interest.
In particular, in the e-procurement domain we have selected the following
features of calls for tender: amounts, opening dates, closing dates, and SOA

3.3 caimans tool 47

2 3 4 5 6 7 8 9 10
Number of clusters

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Av
er

ag
e

sil
ho

ue
tte

 sc
or

es

Figure 3.5: Silhouette diagram.

category5. As said above, according to the Elbow and Silhouette methods
we have selected K = 3. Moreover, in order to improve the quality of the
final classification and to remove possible false-positive results, the visu-
alization module exploits a dynamic page removal module. For instance,
the following are examples of pages considered as dynamic: homepages,
pages with a clear IP in the URL, and pages with frequent updates. In
this way, all the identified groups are disjointed and their intersection is
empty.

3.3.2 Experimental Results

The prototype of the proposed system has been developed in C# .NET
framework 4.7.16, based on the Model-View-Controller (MVC) architec-
tural pattern. Each module has been developed standalone and combined
into a single .NET solution connected by project references. A RESTful

5 https://www.attestazionesoa.it/
6 https://dotnet.microsoft.com/

48 profiling unstructured web data sources

Figure 3.6: Results produced by CAIMANS for the e-procurement case study.

API service has been integrated into the solution to simplify inquires to
both the crawler and the CMS.

The screenshot in Figure 3.6 shows the results produced by CAIMANS
for the e-procurement case study. It shows the extracted calls for tender,
sorted by the similarity values of results, according to the search param-
eters. For each result, the table shows the title, a short preview of the
artifact, and the referring URL. The background color is one of the lists
to which the document has been assigned. Figure 3.7 shows the three
clusters that the visualization module has identified for each extracted
call for tender. Each cluster is represented by a different color, and the
size of the individual circles indicates the similarity value of the retrieved
artifact with respect to the query parameters.

3.3.2.1 Evaluation Criteria

The most important measure for evaluating a search engine is the rel-
evance of the retrieved results with respect to the search parameters.
Generally, the algorithms underlying web search engines analyze page
semantics and the number of references to the page, aiming to reduce the
number of retrieved results and increase their quality.

In this study, before comparing the performances of CAIMANS with
those of similar systems, we have first compared it with Google by using
precision and recall metrics computed on the set of the retrieved artifacts.
To this end, in order to construct the confusion matrix, a domain expert

3.3 caimans tool 49

Figure 3.7: Displaying the result of the clustering phase.

Figure 3.8: Semantic Search form - results.

needs to be involved in the evaluation phase, in order to define true
positives, false positives, and false negatives, whereas true negatives
were automatically determined by CAIMANS through the blacklist. Since
Google does not divide results like CAIMANS, rather it retrieves the list
of one hundred artifacts more pertinent to the search query, we have
derived two different formulations of the precision measure. In particular,
based on the metrics used in [83], the precision measure for Google has
been defined as follows:

50 profiling unstructured web data sources

PGoogle =

|White|

∑
i=1

ri

|White ∪ Gray ∪ Google| (3.1)

Where White and Gray are the lists retrieved by CAIMANS, whereas
Google are the results retrieved by Google, and the rank ri is a number
between 0 and 1 representing the semantic similarity of the i-th artifact
in White with respect to the search query.

Similarly, the precision measure for CAIMANS has been defined has
follows:

PCAIMANS =

|White|+|Gray|

∑
i=1

ri

|White ∪ Gray ∪ Google| (3.2)

In addition to 3.2, other than the ranks of the artifacts in White, 3.2
also considers the ranks of the artifacts in Gray. As said above, the ranks
are calculated by the semantic module. The domain expert determined
the true positives among the retrieved artifacts. Analogously, the recall
measures for the two compared systems have been defined according to
the following formulas:

RGoogle =

∣∣TPGoogle
∣∣

|White|+ |Google| (3.3)

RCAIMANS =
|TPWhite|

|White|+ |Google| (3.4)

where TPGoogle and TPWhite are the true positive results extracted from
Google and CAIMANS, respectively, according to the selections made by
the domain expert.

3.3 caimans tool 51

In order to express the accuracy of the proposed search engine through
a unique measure, the F-measure was used to combine the precision and
recall metrics. Starting from the definitions of precision and recall given
in 3.2-3.4, we have derived the following formula for the F1-measure:

(F1)Google = 2 ∗
PGoogle ∗ RCAIMANS

PGoogle + RCAIMANS
(3.5)

(F1)CAIMANS = 2 ∗ PCAIMANS ∗ RCAIMANS

PCAIMANS + RCAIMANS
(3.6)

3.3.2.2 Semantic Web Search evaluation

In this section, we experimentally show how the cooperation between
the semantic and the crawling modules improves search effectiveness
with respect to traditional search engines. To this end, we compared the
results achieved by CAIMANS with those achieved by Google in the
e-procurement domain. In particular, in order to evaluate the correctness
of the results of each search session, we involved a user with expertise
in the domain of e-procurement, focusing on the selection of findings
related to the search target.

Tests were performed on a virtual machine running on a Mac with
an Intel Xeon 3.20 GHz processor and 64GB of RAM. More specifically,
8GB of RAM and 250GB of local disks were dedicated to the virtual
machine. The search session was accomplished using a fast connection at
340 Mbps/sec.

During the tests, we defined a single search configuration, with a
unique set of keywords, URL seeds, and stopwords, aiming to carry
out a peer analysis of all search sessions. As known, among millions of
analyzed pages, Google only shows the best 100 results, which contain
all true and false positives, depending on the performed search. For
this reason, and also because of the burden of the manual evaluation by
the domain expert, the number of search sessions accomplished during
the tests was limited to 175. Table 3.1 shows a part of the query strings

52 profiling unstructured web data sources

ID Query String #Words
Time of

CAIMANS
(s)

1 Bandi di gara Bologna 3 2047

2 Onlus e gare d’appalto 3 1922

3 Autostrade gare appalto 3 2279

4 Bandi di gara Bolzano 3 2106

5 Bandi di gara Salerno provincia 4 249

6 Bandi di gara regione Sardegna 4 2230

7 Bandi di gara regione Calabria 4 2238

8 Gare d’appalto Banca d’Italia 4 256

9 Bandi di gara distributori automatici 2019 5 225

10 Bandi di gara beni culturali Puglia 2019 5 243

ID Google
Results TPGoogle

CAIMANS
Results

Common
Results |Black| |Gray| |White| TPCAIMANS

1 100 18 544 11 2 55 487 538

2 100 4 478 2 24 70 384 435

3 100 3 621 2 22 164 435 563

4 100 8 621 5 22 126 473 594

5 100 1 67 0 22 22 23 27

6 100 18 505 13 24 131 350 474

7 100 25 475 18 34 105 336 393

8 100 1 75 1 43 15 17 25

9 100 1 77 1 43 17 17 26

10 100 0 80 0 46 18 16 27

ID
Rate of
Dynamic
Pages

PGoogle PCAIMANS RGoogle RCAIMANS (F1)Google (F1)CAIMANS

1 0,74 0,46 0,93 0,03 0,82 0,59 0,87

2 4,19 0,41 0,83 0,01 0,78 0,54 0,80

3 6,01 0,40 0,79 0,01 0,79 0,53 0,79

4 0,83 0,38 0,75 0,01 0,82 0,52 0,79

5 35,56 0,37 0,75 0,01 0,11 0,16 0,19

6 1,46 0,36 0,72 0,04 0,77 0,49 0,75

7 10,88 0,38 0,76 0,06 0,72 0,50 0,74

8 15,63 0,34 0,68 0,01 0,12 0,18 0,20

9 14,71 0,31 0,63 0,01 0,13 0,18 0,21

10 14,71 0,31 0,62 0,00 0,13 0,18 0,21

Table 3.1: Results obtained from the queries used in the experimental evaluation.

used in our experiments. In particular, we evaluated different generated
queries, such as two, three, four, and five word queries.

3.3 caimans tool 53

The first type of query involved four to five words, such as “bandi
di gara beni culturali Puglia 2019” (public procurements for cultural
heritage Puglia region year 2019) or “bandi di gara Salerno provincia”
(public procurements in the province of Salerno). However, based on the
results extracted by Google for these types of queries, the domain expert
considered only a few of them as pertinent, filtering 0 calls in many cases.
Vice versa, CAIMANS always retrieved a high number of valid results,
even when Google’s true positive results were few. The second type of
query involved two to three words, such as “gare d’appalto Basilicata”
(public procurements in Basilicata region) or “gare d’appalto Bologna”
(public procurements in the city of Bologna). Even though the domain
expert filtered a conspicuous number of results among those returned by
Google for these types of queries, with CAIMANS we could considerably
increase the size of the result set. Successively, the domain expert was
asked to perform a further filtering phase, in which only the results
classified in the White and the Gray lists were re-examined. Table 3.1
shows some results of the evaluation phase, in which a set of query
strings with different numbers of words were submitted. We can observe
that the number of artifacts that Google extracted and classified as true
positive (TPGoogle) is always lower than CAIMANS (TPCAIMANS). We can
notice that even when Google did not find useful results, CAIMANS
often extracted several pages related to the search target.

The semantic module plays a fundamental role within CAIMANS,
since it discards all uninteresting results and is able to identify pages
related to the search criteria, increasing the quality of extracted pages.
Figure 3.9 shows the precision values computed for CAIMANS, according
to the formulas (3.1) and (3.2). In particular, the average value is higher
when considering all the true positives of the White and the Gray lists.
Moreover, the second filtering activity accomplished by the domain expert
has further refined search results. The achieved precision values show
that the CAIMANS provides a high number of relevant results in the
focus centered search.

By using formulas (3.3) and (3.4), it was possible to define the values
of the recall, i.e. the probability that a pertinent artifact is retrieved in
the focused centred search. Figure 3.10 compares the recall achieved by

54 profiling unstructured web data sources

Figure 3.9: Precision evaluation for Google and CAIMANS.

CAIMANS to that of Google. The results show that the average recall of
CAIMANS is higher than the one achieved by Google. However, when
generic strings were used, such as “bandi di gara” (public procurements)
or its synonym “gare d’appalto” (calls for tender), the values of the recall
for the two compared systems turn out to be similar.

The main goal of this evaluation was to show the effectiveness of
CAIMANS for focused search by considering different types of search op-
erations. Although time performances of CAIMANS are quite good (see
Table 3.1), we cannot compare them with Google, since the latter is able
to browse a large part of the web in few seconds by exploiting efficient
algorithms and scalable architectures. For this reason, we have chosen to
design CAIMANS as a batch system, which is able to explore the web
through multiple scheduled searches. Experimental results show that the
performances are quite similar for queries with a different number of
words.

3.3 caimans tool 55

Figure 3.10: Recall evaluation for Google and CAIMANS.

3.3.2.3 Comparative evaluation

In this section, we show the results of a comparative evaluation among
CAIMANS and similar systems, on multiple domains. Since to the best of
our knowledge, in the literature there is no system similar to CAIMANS,
we performed such comparison on its main module, i.e., the crawler. To
this end, we selected two focused crawlers, one based on Breadth-First
Search (BFS) and the other on Depth First Search (DFS)7, and plugged
them in turn within the CAIMANS’s architecture.

A BFS crawler relies on the Breadth-First Search of a tree or chart
[23]. The exploration starts with the seed URLs associated to the current
domain, and for each of them, the crawler saves all the links whose depth
is one more than the analysed URL. After exploring all the URLs in one
level, the crawler scans the pages at the next level by exploiting the same
strategy. On the contrary, a DFS crawler relies on the Depth-First Search
of a tree or graph [156]. The exploration starts with the seed URLs, and

7 https://github.com/ethanZHY/Crawler_BFS_DFS_Python3

56 profiling unstructured web data sources

ID Domain Seed URLs

1
Gare d’appalto
(“Calls for tender”)

www.gazzettaufficiale.it
www.ooppcampania-appalti.maggiolicloud.it
www.ansa.it

2
Robot Programmabili
(“Programmable Robot”)

www.robot-advance.com
www.wiki.ezvid.com
www.softbankrobotics.com

3
Equipaggiamento per Hockey
(“Hockey equipment supply”)

www.decathlon.it
www.skatepro.it
it.hockeyoffice.com

4
Forniture per uffici
(“Office supplies”)

www.visualcapitalist.com
www.oknoplast.it
www.prontopro.it

5
Giochi da tavolo
(“Table Games supplies”)

www.boardgamesofferte.it
www.boardgameitalia.it
it.wikipedia.org

6
Cloud Provider
(“Cloud providing”)

www.zerounoweb.it
www.meteo.it
www.techcompany360.it

Table 3.2: Details of the topics and seed URLs used for the comparative evalua-
tion on e-procurement domain.

for each of them, it performs a deep scan until all URLs on that path are
retrieved. Then, it goes back to scan other branches of the tree.

All the three configurations of CAIMANS with the different compared
crawlers were run on the same application domains, and for each of them,
we configured the semantic module to evaluate the resulting pages by
means of the Cosine Similarity, the Dice Similarity [146], and the Jaccard
Similarity [119] metrics.

Table 3.2 shows the domains and the corresponding seed URLs used
in our evaluation. In particular, 6 domains were divided into two cate-
gories based on their seed URLs: the first category containing domains
in which the seed URLs are closely related to the target topic: “Gare
d’appalto” (“Calls for tender”), “Robot programmabili” (“Programmable
Robot”), and “Equipaggiamento per Hockey” (“Hockey equipment sup-

3.3 caimans tool 57

ply”), whereas the second one contains domains not directly related to
the target topic: “Forniture per uffici” (“Office supplies”), “Giochi da
tavolo” (“Table games supplies”), and “Cloud Provider”. Notice that, all
the tests with the three system configurations have been accomplished by
considering common keywords and stopwords for each target topic.

Table 3.3 shows the results of the comparative evaluation on selected
domains, highlighting the number of web pages retrieved and the results
of the semantic module for each execution. Each crawler was run assum-
ing that the maximum number of pages to browse was 1000. However,
if all URLs within the queue were crawled, i.e., if the URL queue was
empty during execution, the crawler would stop its crawling process.
Results show that the number of web pages extracted by CAIMANS is
greater than those extracted by the configuration with the DFS and BFS
crawlers. This is probably due to the fact that such crawlers mainly focus
their exploration on the subdomains of the seed URLs (Table 3.2). Vice
versa, CAIMANS is able to prioritize searches in web domains beyond
the subdomains of the seed URLs, by exploiting a search strategy in
which the order of the links within the URL queue changes continuously
(Section 3.3.1.1).

Concerning the comparative evaluation of similarity metrics, results
show that the number of pages of interest extracted by CAIMANS and
BFS crawlers using an evaluation based on the Cosine Similarity is always
greater than the one achieved with other similarity metrics. Moreover, it
is important to notice that several results classified as not relevant (i.e.,
black list) from the semantic modules with Dice and Jaccard metrics
have been evaluated as uncertain relevant results (i.e., grey list) with
the Cosine Similarity metrics. For this reason, these results have been
individually assessed, and all of them have been classified as artifacts of
interest.

Although these results show the effectiveness of the Cosine Similarity,
results in Table 3.3 show that there are some exceptions for the DFS
crawler, in which the number of pages of interest evaluated with Dice
and Jaccard similarity metrics is greater than the one achieved with the
Cosine Similarity. In particular, the semantic module configured with
the Jaccard Similirarity for the DFS crawler outperforms the results of

58 profiling unstructured web data sources

Topic
CAIMANS Cosine Similarity Dice Similarity Jaccard Similarity

Results Time (s) |Black| |Gray| |White| |Black| |Gray| |White| |Black| |Gray| |White|
1 882 1541 377 250 255 494 265 123 597 198 87

2 241 1289 101 119 21 152 76 13 150 82 9

3 134 1276 59 47 28 76 37 21 85 45 4

4 859 1541 298 303 258 421 234 204 476 214 169

5 47 97 9 11 27 18 3 26 11 27 9

6 241 261 51 68 122 130 53 78 72 77 112

Topic
DFS Cosine Similarity Dice Similarity Jaccard Similarity

Results Time (s) |Black| |Gray| |White| |Black| |Gray| |White| |Black| |Gray| |White|
1 31 10520 8 17 6 12 17 2 16 11 4

2 68 5546 25 38 5 37 25 3 42 7 19

3 22 8854 7 11 4 15 6 1 10 8 4

4 33 11201 22 8 3 17 13 3 25 6 2

5 37 9476 20 9 8 22 10 5 14 13 10

6 60 2272 34 18 8 31 21 8 17 37 6

Topic
BFS Cosine Similarity Dice Similarity Jaccard Similarity

Results Time (s) |Black| |Gray| |White| |Black| |Gray| |White| |Black| |Gray| |White|
1 20 135 20 0 0 17 3 0 19 1 0

2 4 4437 3 0 1 4 0 0 3 0 1

3 18 1404 12 1 5 10 5 3 12 4 2

4 149 2625 39 98 12 72 69 8 71 73 5

5 29 240 10 13 6 16 7 6 15 9 5

6 9 186 6 3 0 8 1 0 9 0 0

Table 3.3: Results of the comparative evaluation on general topics.

other modules for the topics “Programmable Robot” and “Table Games
supplies” (i.e., Topic 2 and 5). However, several results in the white list
have been included in the grey lists of the other two semantic modules
configured with Dice and Cosine Similarity, respectively.

Part II

D I S C O V E RY A L G O R I T H M S F O R D ATA P R O F I L I N G

4
D I S C O V E RY A L G O R I T H M S I N S TAT I C S C E N A R I O S

The availability of massive quantities of data yields the possibility to
enhance data-intensive processes such as data analytics, data fusion,
predictive model training, and so forth. Nevertheless, such processes
not only to be robust with respect to errors or dirty representations
of data but also to collect metadata capable of characterizing statistics
and relationships among data. As discussed in the previous sections,
one such type of relationship is represented by rfds, since due to the
use of approximate matching paradigms, and the possibility of admit
exceptions, they exhibit a suitable level of robustness. However, it is
difficult to specify rfds together with their thresholds, so it is vital to
develop algorithms that can automatically discover them from large
amounts of data, minimizing the amount the information to be provided
by the user.

In this chapter, we first introduce the discovery problem for rfds in a
static scenario, and then we will discuss a discovery algorithm for hybrid
rfds relying on evolutionary approaches.

4.1 problem description

The main goal of rfd discovery algorithms is to find rfds holding to one
or more collections of data. However, although the availability of big data
collections stimulates the exploitation of rfds, the large data volumes
and the necessity to derive proper settings of rfd thresholds make the
discovery process computationally expensive [37].

The definition of algorithms and methodologies capable of efficiently
discovering rfds has aroused interest since the early ’80s [84, 85, 111,
144]. However, it is still an open challenge for research communities
[108], since there are many rfds for which efficient algorithms have not

61

62 discovery algorithms in static scenarios

been defined yet [32]. As described in [1], the discovery of rfds is more
complex than the discovery of fds, even though the number of potential
fds can be exponential and their discovery might require to analyzing a
huge number of attribute combinations. In fact, rfd discovery algorithms
adopt some relaxation criteria to validate rfds that might cause an in-
crease in complexity. In particular, the rfds relaxing on the extent based
on a coverage measure prevent the exploitation of properties simplifying
the validation phase, since they admit exceptions to their validity. This
type of rfd might admit restrictions on the validity domain specified by
means of conditions, requiring the identification of the set of attributes
on which to specify such conditions [37]. Similar consideration apply
to the rfds relaxing on the attribute comparison method. In particular,
for this type of rfds it is not possible to exploit the disjointness prop-
erty of equivalence classes induced by the equality comparison method,
since they yield intersecting similarity sets, which do not guarantee the
transitivity property useful to simplify the validation phase. Moreover,
this complexity becomes even worse when no thresholds are defined as
input, since it is also necessary to identify patterns of value similarity
representing valid rfds. This causes the size of the search space to be
related to the distribution of value similarities [37].

Starting from these notions, we can now provide the general definition
and the complexity for the fd and the rfd discovery problems.

Definition 4.1.1 (fd Discovery Problem). Given a relation instance r of a
relation R, an fd discovery algorithm aims to find the set of all minimal
fds holding in r, having the property that tuples equal on the LHS must
be equal also on the RHS.

Definition 4.1.2 (rfd Discovery Problem). Given a relation instance r
of a relation R, an rfd discovery algorithm aims to find the set of all
minimal rfds holding in r, having the property that tuples similar on the
LHS must be similar also on the RHS. This must be true for a subset of
tuples, based on the threshold specified for the coverage measure, and/or
on the conditions defining valid patterns of values.

The complexity for discovering rfds relaxing on the extent (rfdes) by
using a coverage measure is equal to the complexity for discovering fds.

4.1 problem description 63

In particular, discovering rfdes (fds) over a relation instance r entails
finding all the possible column combinations, and for each of them find
all the possible partitions forming the LHS and the RHS of candidate
rfdes (fds). Without loss of generality, we can consider only candidates
with a single attribute on the RHS. Given this, the rfdes (fds) discovery
problem has an extremely large search space. In fact, given a relation
R with M attributes and a relation instance r with n tuples, we need to
consider all the possible attribute combinations with size k from 2 to M,
counting each of them as many times as the number of attributes in R,
in order to account for the number of different candidates with a single
RHS attribute. This complexity is synthesized by the following formula:

M

∑
k=2

(
M
k

)
k (4.1)

Since this complexity represents only the number of candidate fds that
could be potentially checked, discovery algorithms need to tackle several
other issues, such as the validation of each candidate fd. More specifically,
for the fd discovery problem, candidate fd validation is linear in the
number of tuples. Such complexity is the same when discovering rfds
relaxing on the extent only through a coverage measure. However, the
fact that these rfds can also be valid for a subset of tuples prevents the
possibility of exploiting several pruning strategies typical of fd discovery
algorithms. This is not true when discovering rfds relaxing on the extent
only through a condition rather than a coverage measure. In this case,
the necessity to generate candidate conditions considerably increases the
size of the search space. This also depends on the types of conditions
that could be generated. In general, the problem of generating an optimal
pattern of conditions that could be associated to a candidate rfd is NP-
Complete [71]. Vice versa, the number of candidate rfds can considerably
increase when considering rfds relaxing on the attribute comparison
(rfdcs). To this end, it is necessary to consider two different cases, de-
pending on whether or not a discovery algorithm considers pre-defined
similarity thresholds associated with the attributes of the dataset. In the

64 discovery algorithms in static scenarios

first case, the complexity corresponds to that already defined in Formula
4.1, whereas the validation problem becomes quadratic in the number of
tuples, since the transitivity property is not satisfied for value similarities
[37]. In the second case, the search space is far more complex since for
each candidate, it is necessary to consider dk possible dispositions with
repetitions of thresholds for the selected attributes, where d represents
the number of possible distance values between tuple pairs. For this
reasons, starting from the Formula 4.1, we can synthesize the overall
complexity for discovering rfdcs as:

M

∑
k=2

(
M
k

)
k dk (4.2)

Moreover, also in this case the rfd validation is quadratic in the number
of tuples.

4.2 literature review

The problem of discovering data dependencies was initially addressed
with the automatic discovery of canonical fds. In fact, the discovery al-
gorithms for fds have set the basic concepts and the main strategies to
tackle an extremely complex problem (i.e., exponential in the number
of attributes) with acceptable execution times [126]. However, the rfd

discovery problem is even more complex, due to the necessity of consid-
ering a generalized data property, which permits to restrict the validity
of a dependency over subsets of data (i.e., relaxation on the extent), and/or
to compare data in terms of their similarity rather than equality (i.e.,
relaxation on the attribute comparison).

Although recent surveys listed many different types of rfds [32, 149],
few of them are equipped with algorithms for discovering them from
data [108]. The rfds relaxing on the extent (i.e., rfde) are also known in
the literature with the name Approximate Functional Dependencies (afds)
or Partial Dependencies. rfdes measure the amount of data satisfying the

4.2 literature review 65

dependency, namely satisfiability degree, through a coverage measure [70],
among which the g3-error measure is the most frequently used [90].

Another strategy to determine the validity of a rfd for a subset of tu-
ples is to filter input data by specifying conditions, in order to derive the
domain on which the rfd holds [19], yielding the concept of Conditional
Functional Dependency. Among the approaches for this class of rfds, the
algorithm proposed in [42] generates rfd candidates by exploiting the
attribute lattice derived from the partitions of attribute values. Alterna-
tively, the greedy algorithm proposed in [71] tries to derive valid rfds by
finding a close-to-optimal tableau, where the closeness is measured by us-
ing support and confidence measures. Indeed, the method proposed in [89]
exploits the g3-error measure of super keys to determine the approximate
satisfiability degree. In [63] authors adapted three algorithms introduced
for fd discovery, namely TANE [85], FD_Mine [164], and FastFD [162], to
tackle the problem of discovering rfdes.

A novel and efficient algorithm for rfde discovery is Pyro [93]. It aims
to find minimal rfdes by exploiting both samples of agree sets, and a
lattice traversal strategy, which uses efficient data structures to estimate
and calculate the error of rfde candidates. Pyro also uses parallelism
in order to speed up the runtime. Instead, the method proposed in [89]
exploits the error measure of super keys to determine the extent of rfdes.
Finally, to cope with the complexity of the rfde discovery problem, there
are some approaches limiting the discovery only to meaningful rfdes,
yielding the loss of some minimal rfdes holding on the database instance
[139].

The rfds relaxing only on the attribute comparison (i.e. rfdcs) differ in
the way they manage similarity predicates to accommodate errors, and
different representations in unreliable data sources [62]. Thus, discov-
ery algorithms have to evaluate rfds by means of similarity/difference
constraints that are composed of similarity/difference functions, oper-
ators, and thresholds. The latter could be set as input parameters or
automatically inferred from data [31, 37]. One of the most recent discov-
ery algorithms for this class of rfds evaluates the utility of a candidate
rfd for a given database instance by determining the corresponding
similarity threshold pattern [148]. The utility is measured by means of

66 discovery algorithms in static scenarios

support and confidence, whereas thresholds are determined by analyzing
the statistical distribution of data. Another approach for discovering rfds
relaxing on the attribute comparison has been proposed in [147]. It uses
differential functions to evaluate the similarity between tuple values,
and it exploits reduction algorithms to detect valid rfds by first fixing
the Right-Hand-Side (RHS) differential function for each attribute in the
database schema, and then finding the set of differential functions that
reduce the Left-Hand-Side (LHS). The performances of the algorithm are
improved through pruning strategies based on the subsumption order
of differential functions, implication property, and instance exclusion.
Domino is a recent proposal for the discovery of rfds relaxing on the
attribute comparison [31]. It is able to infer rfds together with difference
thresholds by exploiting the concept of multi-attribute dominance. After
analyzing difference patterns between tuple pairs, the dominance permits
to reduce the number of patterns to be considered, and to define threshold
boundaries above which a candidate rfd does not hold. Instead, another
discovery algorithm for the same class of rfds is defined in [96], which
tries to reduce the problem search space by assuming a user-specified
distance threshold as an upper limit for the distance intervals of the LHS.
The algorithm is based on a distance-based subspace clustering model,
and exploits pruning strategies to efficiently discover rfds when high
threshold values are specified. As opposed to these discovery algorithms,
which focus each on a specific class of rfds, the discovery algorithm
proposed in [33, 37] aims to identify rfds relaxing on both the extent
and the attribute comparison, namely hybrid rfds [32]. In particular, the
algorithm proposed in [37], namely DiMε, relies on a lattice-based algo-
rithm conceived for fd discovery, which is fed with similar subsets of
tuples derived from previously computed differential matrices. In this
work, the authors also demonstrate the NP-hardness of the rfd discovery
problem for hybrid rfds, yielding the necessity of designing approximate
solutions.

As we have seen, several research communities have tried to design
and develop efficient techniques for extracting and using this type of
metadata, but there are still many challenges to be faced. Nevertheless,
fds and rfds have been widely used for different purposes, among

4.3 a genetic approach for discovering hybrid rfds 67

which data cleaning and machine learning tasks, such as for feature
selection and for the evaluation of the correlation between the dependent
attribute and the predictive ones. In particular, authors in [159] combine
fds and the K-Nearest Neighbourhood (KNN) to propose an innovative
feature selection algorithm KNN-FD, claiming that it avoids the overfit-
ting problem during the prediction phase. In [99] the authors use fds to
build decision trees, aiming to derive more a compact structure in order
to improve accuracy. In [4] authors present a framework for training
and evaluating a class of statistical learning models inside a relational
database. In particular, they exploit fds holding on a relation instance
to reduce the dimensionality of the underlying optimization problem.
In fact, the experimental evaluation demonstrates that the usage of fds
permits to obtain the best results by optimizing some parameters that
functionally determine others. A recent study exploits rfds to tackle the
problem of evaluating the feasibility of classification in machine learning
models [103]. In particular, the authors show that the usage of rfds in
this domain can provide fundamental contributions to data scientists. In
fact, experimental results show evidence that rfds provide a tight up-
per bound for the accuracy of classification tasks on real-world datasets.
Furthermore, a careful experimental evaluation shows that rfds provide
excellent results in deriving classification models for synthetic datasets,
which represent an extremely challenging task on this type of data.

4.3 a genetic approach for discovering hybrid rfds

In this section, we present a rfd discovery algorithm, named REDEVO
(RElaxed fD EVOlutionary discovery algorithm), which relies on a genetic
algorithm. The latter is usually adopted for providing efficient global
searches for problems with large search spaces, even though it does
not always guarantee an optimal solution. More specifically, genetic
algorithms exploit operations inspired by the evolution of natural species,
such as natural selection, crossover, and mutation [136]. According to
these principles, REDEVO adopts these evolutionary operations to the
rfd discovery process.

68 discovery algorithms in static scenarios

4.3.1 Methodology

REDEVO is able to discover hybrid rfds, i.e., rfds which relax on both
extent and attribute comparison. Before presenting it, we need to introduce
some basic notions underlying it. As mentioned in the fd definition
described in Section 2.2.2, the projections of two tuples over a subset of
attributes are compared by means of the equality constraint. This is one
of the two fd dimensions that have been modified in order to define rfds,
by enabling the use of tuple comparisons based on constraints. In these
types of algorithms, we focus on the concept of difference constraint, which
is a predicate evaluating whether the distance between two values is less
or equal to a predefined threshold.

Definition 4.3.1 (Difference Constraint). Let r be a relation instance of
a relation schema R, D a set of distance functions defined over each
attribute domain. A difference constraint ϕ is a logic expression of the
form (ϕ1 ∧ . . . ∧ ϕm), where ϕk is a predicate δ(ti[A], tj[A]) ≤ ck, with
ti and tj tuples of r, ti[A] and tj[A], respectively, their projections, on
A ∈ attr(R), δ ∈ D, and ck a threshold.

In other words, a predicate of a difference constraint depends on a
distance function defined on an attribute domain, plus the ≤ comparison
operators with associated threshold values defining the feasible distance
between attribute values. As an example, let us consider the snippet of the
Michelin-starred restaurants dataset shown in Table 2.1. Let latitude1 and
latitude2 be the values of attribute Latitude for two different tuples in the
dataset. Then, the constraint abs(latitude1, latitude2) ≤ 1 is satisfied if the
absolute difference between the two values is below the threshold value
1. Thus, for instance, the values latitude1 = 41.85904 and latitude2 =

41.91328 of the attribute Latitude satisfy the above defined difference
constraint.

In what follows, we will introduce the concept of minimal rfd based on
the observation that once an rfd φ is found from it, many more rfds can
be derived from φ by varying its threshold values or adding attributes to
its LHS.

4.3 a genetic approach for discovering hybrid rfds 69

Definition 4.3.2 (Minimal rfd). An rfd X1(≤α1) . . . Xn(≤αn)
Ψ≥ε−−→ A(≤β)

holding on a relation instance r is said to be minimal iff

1. X1(≤α1+ε1) . . . Xn(≤αn+εn)
Ψ≥ε−−→ A(≤β−εn+1) does not hold on r, where

ε i ≥ 0 and ∃ j such that ε j > 0, with 1 ≤ i, j ≤ n + 1; and

2. X1(≤α1) . . . Xi−1(≤αi−1)
Xi+1(≤αi+1)

. . . Xn(≤αn)
Ψ≥ε−−→ A(≤β) does not hold

on r, for any 1 ≤ i ≤ n.

In other words, a minimal rfd no longer holds if we increase its
LHS thresholds or decrease its RHS threshold. The same happens when
removing one of its LHS attributes.

Starting from these brief notions behind the rfds discovery process,
we can describe the REDEVO algorithm. Figure 4.1 provides an overview
of its underlying discovery process, introducing the interactions between
its main phases.

In following sections, we first introduce the preprocessing operations
performed to effectively evaluate difference constraints, and then describe
the encoding technique used for each individual of the population, and
the strategies adopted for the selection, the crossover, and the mutation
steps. Finally, we analyze the termination strategies adopted to make the
algorithm stop its exploration when reaching a satisfactory solution.

4.3.1.1 Difference dataset

As said above, the rfd discovery process needs to evaluate the similarity
of tuples on subsets of attributes. To this end, in this dissertation we
consider difference constraints defined through difference functions and
user-specified difference thresholds. Moreover, we use a coverage measure
to determine the satisfiability degree for each candidate rfd. Also in this
case, the evaluation of candidate rfds is performed according to a user
specified threshold, i.e., the extent threshold. Based on these parameters,
REDEVO creates a set of pattern tuples from an input dataset by evaluating
the difference constraints between the attribute values of each tuple pair.

Definition 4.3.3 (Pattern tuple). Let R be a relational database schema
over a set of attributes attr(R), R = {A1, . . . , Am} a relation schema of

70 discovery algorithms in static scenarios

Definition of
the Difference

Dataset

Generation of
the Initial

Population

Crossover Mutation

no

Genetic Algorithm

yes

Reading the
Dataset

A B ... L

In
it

ia
l d

at
as

et

t2

tn

t1 1 10 ... 4
3 10 ... 2

3 1 ... 2
...

2 4 3 1

3 42 1

...

2 1

3 1

3 4

......

population after
Crossover

new population

3 22 3
...

are termination

criteria

satisfied?

initial population after encoding

resulting

RFDs

2 1

3 4
...

selected

individuals

...

1000100011 9
1111111111 7

1000110011 1
...

Selection &

Evaluation

pattern m
ap

Figure 4.1: Flowchart of REDEVO.

R, and r a relation instance of R. A pattern tuple pi,j = {s1, . . . , sm} for a
tuple pair (ti, tj) of r encodes the similarity between the attribute values of
t1 and t2. In particular, sk contains the value 1 if ti[Ak] is similar to tj[Ak]

according to the difference constraint for the attribute Ak, considering
the difference threshold provided in input, 0 otherwise.

Since the number of pattern tuples is extremely large with respect to the
input dataset, we define a compression technique to remove redundancies.
Thus, we defined a compressed map P, called pattern map, which contains
each distinct pattern tuple p as key, and the frequency by which it occurs.

Figure 4.2 shows the process for creating a pattern map, starting from
a snippet of the Breast-Cancer dataset (Figure 4.2a), and by considering a
difference threshold equal to 2 for all attributes. In particular, we calculate
the differences between the attribute values of each tuple pair, enabling
the mapping into pattern tuples (Figure 4.2b). Then, we obtain the final
compressed representation in terms of pattern map (Figure 4.2c).

4.3 a genetic approach for discovering hybrid rfds 71

(t1,t3)
(t1,t4)
(t1,t5)
(t1,t6)

(t1,t2) 2 9 9 4 2 4 3 3 0 2
4 0 0 2 3 2 4 6 1 0
1 9 9 4 2 4 3 3 0 2
3 2 4 1 1 1 6 2 0 0
2 9 9 4 2 4 2 3 1 2
1 2 2 0 0 0 6 0 0 0
2 9 9 4 1 3 3 3 0 2

1 7 7 4 2 4 8 3 1 2
0 0 0 0 1 1 1 0 1 0
1 7 7 4 1 3 9 3 0 2

(t6,t7)
(t6,t8)
(t7,t8)

1000100011 9
1111111111 7

1001010011 3
1111010011 1
0000100011 1
1101110111 1
1000101011 1
1111110111 1
0001010011 1
1101011011 1
1111011011 1
1000110011 1

 Item Occurences

(b) (c)

1 10
 10 5 4 5 4 4 1 4
3 1 1 1 2 1 1 1 1 2
5 10 10 3 7 3 8 10 2 4
2 1 1 1 2 1 1 1 1 2
4 8 6 4 3 4 10 6 1 4
3 1 1 1 2 1 2 1 2 2
4 8 8 5 4 5 10 4 1 4
3 1 1 1 3 2 1 1 1 2

t2
t3
t4
t5
t6

t1

t7
t8

A B C D E F G H I L

(t1,t7)
(t1,t8)

...

(t1,t3)
(t1,t4)
(t1,t5)
(t1,t6)

(t1,t2) 1 0 0 0 1 0 0 0 1 1
1 1 1 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 1
1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 1 0 1 1
1 1 1 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 1

1 0 0 0 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1
1 0 0 0 1 0 0 0 1 1

(t6,t7)
(t6,t8)
(t7,t8)

(t1,t7)
(t1,t8)

...

pattern m
ap

difference dataset

pattern tuples

initial dataset

(a)

Figure 4.2: Creating a pattern map from a snippet of the Breast-Cancer dataset.

4.3.2 Generation of the Initial Population

In the context of Genetic Algorithms, each chromosome (a.k.a. individual)
encodes a candidate solution of the optimization problem, in terms of a
sequence of genes, each representing a characteristic of the solution itself.
Generally, the encoding of a solution for a given problem is represented
by an array of bits or a string. REDEVO uses an array V of integers
to represent each individual of the population, such that each gene
corresponds to the index of an attribute Ai involved into a candidate rfd.

In particular, let XΦ1

Ψ≥ϵ−−→ Aϕ2 be a candidate rfd, then the corresponding
individual contains the index of the attribute on the RHS as the first
gene, followed by the indices of the attributes on the LHS. Figure 4.3
shows possible candidate rfds defined as individuals in a population for
the Breast-Cancer dataset, where each attribute of the dataset has been
encoded by means of a unique integer value (ID). The chromosomes
shown in Figure 4.3 represent the following rfds:

φ1 : Epithelial Size≤2
Ψ≥ϵ−−→ Clump Thickness≤2

72 discovery algorithms in static scenarios

Clump
Thickness
Uniformity

Size
Uniformity

Shape
Marginal
Adhesion
Epithelial

Size
Bare

Nuclei
Bland

Chromatin
Normal
Nucleoli

Mitoses

Class

4 2 6

1 5

6 1 3 7

2 3 4

1

2

3

4

5

6

7

8

9

10

Figure 4.3: Encoding of attributes yielding the representation of candidate rfds.

φ2 : Uniformity Shape≤2, Marginal Adhesion≤2
Ψ≥ϵ−−→ Uniformity Size≤2

φ3 : Uniformity Size≤2, Bare Nuclei≤2
Ψ≥ϵ−−→ Marginal Adhesion≤2

φ4 : Clump Thickness≤2, Uniformity Shape≤2, Bland Chromatin≤2
Ψ≥ϵ−−→ Bare

Nuclei≤2

According to the encoding strategy and the consequent representation
of candidate rfds as individuals, the generation of the initial population
aims to define a set of individuals according to the dimensionality of the
dataset under analysis. In particular, in the initial population, all individ-
uals are defined over a specific lattice level of the search space, i.e., they
contain the same number of genes. In particular, we have experimentally
verified that a better convergence of the algorithm is ensured starting
from the median lattice level when the number of attributes M of the
pattern tuples in P is less than or equal to 15 (e.g., individuals with M

2
attributes on the LHS are generated), otherwise, the initial population is
formed starting from the lattice level with three attributes for each node
(e.g., individuals with 2 attributes on the LHS are generated). In both
cases, since the number of possible candidate rfds in a lattice level can be

4.3 a genetic approach for discovering hybrid rfds 73

huge, the dimension of the initial population might be reduced according
to an input percentage determining the expected number of candidate
rfds (i.e., individuals) to be randomly selected.

4.3.3 Fitness Function

The fitness function evaluates how a given individual is close to the
optimal solution, enabling genetic algorithms to converge towards an
optimal solution and determine the speed of convergence. In our pro-
posal, we exploit well-known measures in the context of association rule
mining, namely support and confidence [97], to define the fitness function
of REDEVO. In fact, it has been proven that such measures also permit
to efficiently evaluate candidate fds and rfds [85].

Formally, let X be an itemset in a transaction database r, the support
of a set X, denoted with sup(X), represents the ratio of the tuples in
R containing X. An association rule is an implication X → Y, in which
X ∩ Y = ∅. The support of the association rule is the support of X ∪ Y,
which is the union of X and Y. The confidence of the association rule is
the ratio sup(X ∪Y)/sup(X). In other words, the support represents the
statistic relevance of occurring patterns, whereas confidence represents
the strength of implication. In order to compute support and confidence
measures over the pattern map, it is necessary to introduce the compliance
property of pattern tuples.

Definition 4.3.4 (Pattern tuple compliance). Given a relational database
schema R defined over a set of attributes attr(R), R = {A1, . . . , Am} a
relation schema, r a relation instance of R, p = {s1, . . . , sm} a pattern tuple,
X a set of attributes, and Φ the set of difference constraints associated
to X. Then, p complies with Φ if and only if for each attribute Ai ∈ X
p[Ai] = 1.

Thus, given the pattern map P computed over a database instance r,
sup(X) represents the ratio of tuple pairs that are similar on all attributes
in X. More formally, given a pattern map P containing a collection of
key-values (< p1, o1 >, . . . ,< pl , ol >), where each p represents a pattern
tuple and o the number of tuple pairs yielding p, and let X be a set of

74 discovery algorithms in static scenarios

attributes, with Φ the set of difference constraints associated to it, then
the support of X can be defined as:

sup(X) =
∑l

k=1 ok s.t. < pk, ok > in P ∧ pk complies with Φ

∑l
k=1 ok s.t. < pk, ok > in P

(4.3)

Consequently, it is possible to state that a candidate rfd φ : XΦ1

Ψ≥ϵ−−→ Aϕ2

is satisfied by all tuples of a relation instance r if and only if sup(X) =

sup(X ∪ A). Moreover, to admit the possibility that an rfd φ : XΦ1

Ψ≥ϵ−−→
Aϕ2 holds on a subset of tuples (relaxation on the extent), then we can
have sup(X) > sup(X ∪ A). Thus, it is possible to define a coverage
measure by computing the ratio between tuple pairs in r that are similar
on the sets X ∪ A and X, respectively. This corresponds to the confidence
value of φ:

con f (φ) =
sup(X ∪ A)

sup(X)
(4.4)

This confidence measure is used by REDEVO as fitness function.

Example 1. Let us consider the dataset in Figure 4.2a, and the following
rfd:

φ : Epithelial Size≤2, Mitoses≤2
Ψ≥ϵ−−→ Normal Nucleoli≤2

We can calculate the associated support and confidence values as follows:

sup(X) = sup(Epithelial Size, Mitoses) =
21
28
≃ 0.75

sup(X ∪ A) = sup(Epithelial Size, Mitoses, Normal Nucleoli) =
9

28
≃ 0.32

con f (φ) =
9

28
· 28

21
=

9
21
≃ 0.43

4.3 a genetic approach for discovering hybrid rfds 75

This candidate rfd will not be considered as valid by REDEVO unless
the confidence measure threshold specified in input is less than or equal
to 0.43.

4.3.4 Crossover

The evolution of the population occurs through the application of crossover
and mutation operations. These are applied with specific probabilities on
individuals of the population, which represent input parameters of the
algorithm.

The crossover operation permits REDEVO to define a set of new candi-
date rfds to be considered in the evolution step. In particular, REDEVO
uses a crossover strategy that considers two candidate rfds with the same

attribute on the RHS, i.e., φ1 : WΦ1

Ψ≥ϵ−−→ Aϕ2 and φ2 : XΦ1

Ψ≥ϵ−−→ Aϕ2 , and
constructs a new candidate rfd φ f inal , as follows:

1) randomly selects a cut point for the LHSs of φ1 and φ2, i.e., W and
X, which permits to split them in four new subsets of attributes,
i.e., W1, W2, X1, and X2;

2) evaluates the candidate rfds obtained by using the fitness function

defined above (i.e., φ11 : W1Φ1

Ψ≥ϵ−−→ Aϕ2 , φ12 : W2Φ1

Ψ≥ϵ−−→ Aϕ2 for φ1,

and φ21 : X1Φ1

Ψ≥ϵ−−→ Aϕ2 , φ22 : X2Φ1

Ψ≥ϵ−−→ Aϕ2 for φ2);

3) compares φ11 and φ12 (φ21 and φ22 , respectively), selecting the one
having the LHS with a higher confidence value;

4) among the candidate rfds selected in 3), adds to the population
those satisfying the fitness function. On the contrary, if none of the
candidate rfds selected in 3) satisfy the fitness function, then their
LHSs are combined to derive the LHS of a new rfd φ f inal with
attribute Y as RHS. Consequently, the resulting rfd φ f inal will be
added to the population. Notice that, if even one of the rfds from
which φ f inal is derived satisfied the fitness function, it would not

76 discovery algorithms in static scenarios

make sense to add φ f inal to the population, since it would not be
minimal.

3 2 5 7 9

3 2 5 3 7 93 5 7

4 5 7

3 4 5 7

2 5 7 9

3 2 5 7

3 4

Figure 4.4: An example of crossover for candidate rfds.

Example 2. Figure 4.4 shows an example of crossover operation from
REDEVO. Let us consider the dataset in Figure 4.2a, a fitness value ε

equals to 0.9, and the following two candidate rfds:

φ1 : Marginal Adhesion≤2,Epithelial Size≤2,Bland Chromatin≤2
Ψ≥ϵ−−→

Uniformity Shape≤2

φ2 : Uniformity Size≤2,Epithelial Size≤2,Bland Chromatin≤2,Mitoses≤2
Ψ≥ϵ−−→

Uniformity Shape≤2

The crossover function randomly selected two cut points (red lines) on
the LHS attribute sets W and X, respectively, and for each subset W1 =

Marginal Adhesion with ID 4, W2 = Epithelial Size≤2, Bland Chromatin≤2

with IDs 5 and 7, X1 = Bland Chromatin≤2,Mitoses≤2 with IDs 2 and 5,
and X2 = Uniformity Size≤2,Epithelial Size≤2 with IDs 7 and 9, defines new
candidate rfds as follows:

φ11 : Marginal Adhesion≤2
Ψ≥ϵ−−→ Uniformity Shape≤2

4.3 a genetic approach for discovering hybrid rfds 77

sup(X) sup(X ∪ A) Fitness

φ11 ∼ 0.57 ∼ 0.35 0.625

φ12 ∼ 0.28 ∼ 0.25 0.875

φ21 ∼ 0.35 ∼ 0.28 0.88

φ22 ∼ 0.32 ∼ 0.28 0.8

Table 4.1: Fitness values of the candidate rfds considered in Example 2.

φ12 : Epithelial Size≤2,Bland Chromatin≤2
Ψ≥ϵ−−→ Uniformity Shape≤2

φ21 : Bland Chromatin≤2,Mitoses≤2
Ψ≥ϵ−−→ Uniformity Shape≤2

φ22 : Uniformity Size≤2,Epithelial Size≤2
Ψ≥ϵ−−→ Uniformity Shape≤2

REDEVO selects one rfd between φ11 and φ12 , and one between φ21

and φ22 , each time selecting the one with a higher fitness value. Table
4.1 shows the fitness values of each rfd considered in this step. None of
them satisfy the fitness function ε = 0.9. Consequently, φ12 and φ21 are
combined to derive the following new candidate rfd:

φ f inal : Uniformity Size≤2,Epithelial Size≤2,Bland Chromatin≤2
Ψ≥ϵ−−→Uniformity

Shape≤2

4.3.5 Mutation

Similarly to the crossover operation, a random probability value is gener-
ated for each new candidate rfd, and only those with a probability value
below the input threshold undergo the mutation step. The latter starts

with a candidate rfd φ : XΦ1

Ψ≥ϵ−−→ Aϕ2 and returns a new candidate
rfd, which might be mutated in some attributes. More specifically, the
mutation step of REDEVO works in two different ways depending on
whether the confidence value of φ is or is not greater than an input
threshold:

78 discovery algorithms in static scenarios

1 3 4 3 1 2

1 3 4 3 1 4

Figure 4.5: An example of mutation for two candidate rfds.

• Case 1: randomly removes one attribute B from X, and returns the

new rfd φ2 : X\BΦ1

Ψ≥ϵ−−→ Aϕ2 iff |X\B| ≥ 1;

• Case 2: randomly selects an attribute of X and replaces it with a
randomly selected new attribute B, such that B ̸∈ X and B ̸= A.

In Case 1, REDEVO generates a new candidate rfds that is minimal
with respect to the one from which is derived, whereas in Case 2 it
explores a new part of the search space by considering new attributes on
the LHS of the original rfd φ. In both cases, resulting rfds will be added
to the population and will be analyzed in the next iterations according to
the search strategies behind each step.

Example 3. Figure 4.5 shows an example of application of the mutation
operation on two candidate rfds for the dataset in Figure 4.2a and a
fitness value of 0.9:

φ4 : Uniformity Shape≤2,Marginal Adhesion≤2
Ψ≥ϵ−−→ Clump Thickness≤2

φ5 : Clump Thickness≤2,Uniformity Size≤2
Ψ≥ϵ−−→ Uniformity Shape≤2

The mutation function first calculates the confidence values of φ4 and
φ5, and then it chooses the strategy to be adopted. In particular, since the
confidence value of φ4 is equal to 1, the mutation process tries to remove
an attribute from the LHS of φ4 (Case 1). On the other hand, since the
confidence value of φ5 is equal to ∼ 0.83, the mutation function replaces
an attribute from the LHS of φ5 (Case 2). Thus, the resulting rfds

4.3 a genetic approach for discovering hybrid rfds 79

φ4 : Uniformity Shape≤2
Ψ≥ϵ−−→ Clump Thickness≤2

φ5 : Clump Thickness≤2,Marginal Adhesion≤2
Ψ≥ϵ−−→ Uniformity Shape≤2

are added into the population as new individuals, in order to be analyzed
in the next generation steps of REDEVO.

4.3.6 The REDEVO Algorithm

In order to explain how the discovery problem has been encoded in a
genetic algorithm, in this section we describe the main procedure behind
REDEVO, and the procedures of each step described in Section 4.3.1.

4.3.6.1 Main procedure of REDEVO

The main procedure of REDEVO is shown in Algorithm 1. It first defines
the initial population (line 1) by considering the number of attributes of
pattern tuples in P and the percentage of individuals to be considered in
the initial population. Then, it starts the discovery process by setting the
maximum number of generations to be performed to MaxIter (lines 3-9).
For each generation, REDEVO selects the best candidate rfds from the
initial population, which are those with a fitness value greater than or
equal to the object fitness value ε, together with a percentage of individ-
uals whose fitness value is below ε (line 4). Then, among those having
a randomly generated crossover probability below the input pC value,
it performs the crossover operation on a percentage of them given by
the input percentage qC of individuals to cross (line 5). The population
resulting from the previous step is passed to the mutation procedure,
which performs the mutation operation on the candidate rfds having
a mutation probability below pm (line 6). At the end of each generation
step, REDEVO checks whether the last populations obtained from the
previous T generations returned a percentage of candidates satisfying
the percentage limit defined by qT (lines 7-8). If so, the algorithm stops
the discovery process and removes from the resulting population the can-
didate rfds that are not minimal with respect to others in the population

80 discovery algorithms in static scenarios

Algorithm 1 REDEVO

INPUT:
P → Similarity pattern map
M → Number of attributes of patterns tuples in P
MaxIter→ Maximum number of iterations for REDEVO
ε → Fitness value objective
pC → Crossover probability
pm → Mutation probability
qI → Percentage of individuals in the initial population to be
considered
qC → Percentage of individuals to cross
qS → Percentage of individuals with lowest fitness values to
extract
qT → Percentage of stabilization of the results
T → Number of generations to be considered for the calcula-
tion of pT

OUTPUT: Pop→ Final Population
1: Pop← initialize(k, qI)
2: g← 0

3: while g < MaxIter do
4: Selected_Pop← selection(Pop, ε, P, qS)
5: Pop← crossover(Selected_Pop, ε, pC, qC, P, M)
6: Pop← mutation(Pop, ε, pm, P, M)
7: if termination(Pop, T, qT) is True then
8: break
9: g← g + 1

10: Final_Pop← minimality(Pop)
11: return Final_Pop

(line 10). Finally, the procedure returns the minimal set of final rfds (line
11). Further details of each step are described in following sections.

4.3 a genetic approach for discovering hybrid rfds 81

Algorithm 2 initialize

INPUT:
M → Number of attributes of pattern tuples in P
qI → Percentage of individuals to be considered in the initial
population

OUTPUT: Pop→ Initial Population
1: LHScard ← 0
2: if k ≤ 15 then
3: LHScard ← ⌊M

2 ⌋
4: else
5: LHScard ← 2

6: Init_Pop← combine([1, 2, . . . , m], LHScard)
7: Pop← extract(Init_Pop, qI)
8: return Pop

4.3.6.2 Initialize procedure

The initialize procedure is shown in Algorithm 2. It starts by defining the
LHS cardinalities of the individuals in the initial population. In particular,
if the number of attributes M of pattern tuples in P is less than or equal
to 15, the procedure starts candidate rfds with M

2 attributes on the LHS;
otherwise, it start with those having 2 attributes on the LHS (lines 1-5).
This strategy allows REDEVO to consider initial candidate rfds with an
average number of attributes on the LHS for datasets with few attributes,
and candidate rfds with 2 attributes for greater datasets, preventing in
both cases the possibility to have a huge initial population of candidates
to evolve, which would tremendously lengthen the convergence of the
algorithm. Successively, the procedure combines the attributes of pattern
tuples in P in order to define a new population Init_Pop of candidate
rfds with LHScard attributes on the LHS (line 6). Finally, the procedure
randomly extracts some candidates from Init_Pop, according to the
percentage qI and returns the initial population (lines 7-8).

82 discovery algorithms in static scenarios

4.3.6.3 Selection procedure

The selection procedure shown in Algorithm 3 creates a new population
of individuals by selecting the best ones from the initial population, i.e.,
the candidate rfds having a fitness value above the input fitness value
(lines 3-4). Successively, for each individual φ in the initial population
Init_Pop, if its fitness value is greater than or equal to the objective
fitness value ε, then φ is added to the set Pop_High of best candidate rfds
(lines 5-6). Otherwise, φ is added to the set Pop_Low of individuals with
confidence values lower than the fitness value objective (lines 7-8). At the
end of the selection step, if the set of candidate rfds with a confidence
of at least ε contains few elements, then REDEVO randomly extracts
a percentage qS of candidates from Pop_Low (lines 9-11). This strategy
allows REDEVO to consider more candidate rfds in the search space,
increasing the possibility that some candidates with higher confidence
values may be generated by individuals with lower confidence values. It
is important to notice that a high percentage of individuals with lower
confidence values could lead to a slower convergence of REDEVO. Thus,
a suitable percentage value qS should be set in the configuration step. At
the end of procedure selection, a new population Pop of individuals is
returned (line 12).

4.3.6.4 Crossover procedure

The crossover procedure shown in Algorithm 4 creates a new population
of individuals by crossing individual pairs. The procedure starts by
considering, for each attribute, the set of individuals from the initial
population Init_Pop with the same attribute on the RHS, and randomly
extracting some of them, according to the percentage qC of individuals to
cross (line 4). Then, the procedure checks if the set of selected candidate
rfds to cross contains at least one pair of individuals (line 5). If so, it
is possible to perform a crossover operation according to the strategy
defined in Section 4.3.4 (lines 6-34). More in detail, the procedure first
verifies the possibility to cross between pairs of individuals randomly
selected among those sharing the same RHS, by verifying whether their

4.3 a genetic approach for discovering hybrid rfds 83

Algorithm 3 selection

INPUT:
Init_Pop→ Population of individuals to be selected
ε → Fitness value
P → Compressed version of difference dataset
qS → Percentage of individuals with lowest fitness values to
extract

OUTPUT: Pop→ Population of selected individuals
1: Pop_High← ∅
2: Pop_Low← ∅
3: for each φ ∈ Init_Pop do
4: ε1 ← evaluate_fitness(φ, P)
5: if ε1 ≥ ε then
6: Pop_High← Pop_High ∪ {φ}
7: else
8: Pop_Low← Pop_Low ∪ {φ}
9: Pop← Pop_High

10: if |Pop| ≤ 2 then
11: Pop← Pop ∪ extract(Pop_Low, qS)

12: return Pop

randomly generated number is not greater than the crossover probability
pC (line 9-10). For each of them, the procedure defines a random cut
point among the attributes on the LHS (lines 11-12). Then, the procedure
defines four new individuals, i.e., φ11 , φ12 , φ21 , and φ22 , according to the
approach defined in Section 4.3.4, comparing φ11 with φ12 , and φ21 with
φ22 , selecting for each pair the candidate rfds with higher confidence
value, which will be used to define new individuals. In particular, each
φij with i, j ∈ {1, 2} is added to the new population (lines 23-26) iff it has
a confidence value greater than or equal to the fitness value objective ε.
On the contrary, if none of such four individuals can be added, then the
procedure constructs the new individual φ f inal according to the approach
defined in Section 4.3.4, and adds it to the new population (lines 27-32). At
the end of the crossover, the procedure checks the minimality between

84 discovery algorithms in static scenarios

Algorithm 4 crossover

INPUT:
Init_Pop→ Initial population
ε → Fitness value
pC → Crossover probability
qC → Percentage of individuals to cross
P → Compressed version of difference dataset
M → Number of attributes of pattern tuples in P

OUTPUT: Pop→ Final Population
1: RHS← 1

2: Final_Pop← ∅
3: while RHS ≤ m do
4: CHRs_TO_CROSS← extract(Init_Pop.get(RHS), qC)
5: if |CHRs_TO_CROSS| ≥ 2 then
6: i← 0
7: for i < ⌊ |CHRs_TO_CROSS|2 ⌋ do
8: P ← randomValue(0, 1)
9: if P ≤ pC then

10: φ1, φ2 ← randomSelection(CHRs_TO_CROSS)
11: Cp1 ← randomValue(1, |φ1|)
12: Cp2 ← randomValue(1, |φ2|)
13: φ11 ← RHS ∪ {φ1[1 : Cp1]}
14: φ12 ← RHS ∪ {φ1[Cp1 + 1 : |φ1| − 1]}
15: ε11 ← evaluate_fitness(φ11 ,P)
16: ε12 ← evaluate_fitness(φ12 ,P)
17: φ21 ← RHS ∪ {φ2[1 : Cp2]}
18: φ22 ← RHS ∪ {φ2[Cp2 + 1 : |φ2| − 1]}
19: ε21 ← evaluate_fitness(φ21 ,P)
20: ε22 ← evaluate_fitness(φ22 ,P)
21: φ f inal ← RHS ▷ Creation of the new chromosome
22: Pop← ∅
23: if ε11 ≥ ε then Pop← Pop∪ {φ11} end if
24: if ε12 ≥ ε then Pop← Pop∪ {φ12} end if
25: if ε21 ≥ ε then Pop← Pop∪ {φ21} end if
26: if ε22 ≥ ε then Pop← Pop∪ {φ22} end if
27: if Pop is empty then
28: if ε11 > ε12 then φ f inal ← φ f inal ∪ {φ11\RHS}
29: else φ f inal ← φ f inal ∪ {φ12\RHS}
30: if ε21 > ε22 then φ f inal ← φ f inal ∪ {φ21\RHS}
31: else φ f inal ← φ f inal ∪ {φ22\RHS}
32: Pop← Pop∪ {φ f inal}
33: Final_Pop← Final_Pop ∪ {Pop}
34: i← i + 1
35: RHS← RHS +1
36: Final_Pop← minimality(Final_Pop)
37: return Final_Pop

4.3 a genetic approach for discovering hybrid rfds 85

the candidate rfds in Final_Pop and it returns the new population (lines
36-37).

4.3.6.5 Mutation procedure

The mutation procedure shown in Algorithm 5 creates a new population
of individuals by mutating a gene in some individuals. For each indi-
vidual into the initial population, the procedure verifies the possibility
to perform a mutation on it, according to the mutation probability pm

(lines 3-4). For those having a randomly generated value not greater than
pm, the procedure evaluates their fitness value of a candidate rfd φ (line
5) in order to define the mutation strategy to be performed, according
to the approach defined in Section 4.3.5. More in detail, if their fitness
value of φ is greater than the objective fitness value ε, then the procedure
randomly removes an attribute from their LHS (lines 7-10). Otherwise,
the procedure checks if there exists at least one attribute that is not al-
ready considered in their LHS (line 12). In this case, the procedure tries to
randomly select a new attribute to replace a randomly selected attribute
from the LHS (lines 13-17). The so derived candidate rfd φ will be added
to the final population at the end of each iteration (line 21). Finally, the
procedure returns the new population of individuals resulting from the
mutation step (line 19).

4.3.6.6 Termination procedure

The termination procedure shown in Algorithm 6 allows REDEVO to
monitor the number of individuals of each generation step for verifying
if it remains stable for multiple generation steps. In particular, given a
number of generations T, this procedure allows REDEVO to automatically
stop the discovery process if there exist at least T populations with a
similar number of individuals. Thus, the termination procedure starts
by including the size of the new population together with the already
stored ones in a set E (lines 1-2). Then, it checks if there are at least T
populations already stored in E (line 3), and if so the procedure calculates
the ratio between the sum of the sizes of the population in E and the

86 discovery algorithms in static scenarios

Algorithm 5 mutation

INPUT:
Init_Pop→ Initial population
ε → Fitness value
pm → Mutation probability
P → Compressed version of difference dataset
M → Number of attributes of P

OUTPUT: Pop→ Final Population
1: Pop← ∅
2: for each φ ∈ Init_Pop do
3: P ← randomValue(0, 1)
4: if P ≤ pm then
5: ε1 ← evaluate_fitness(φ,P)
6: RHS← φ[0]
7: if ε1 > ε then
8: ▷ Remove an attribute from the LHS
9: Cp ← randomValue(1,|φ|)

10: φ ← {RHS} ∪ {φ[1 : Cp]} ∪ {φ[Cp + 2 : |φ|]}
11: else
12: if |φ| ̸= m then
13: i← randomValue(1, |φ|)
14: New_Gene← φ[i]
15: while New_Gene in φ do
16: New_Gene← randomValue(1,|φ|)
17: φ[i]← New_Gene

18: Pop← Pop ∪ {φ}
19: return Pop

maximum size of the populations added to E in the latest T generation
steps (lines 4-7). If the resulting threshold tE is greater than or equal
to the percentage of stabilization qT provided in input, the procedure
returns True, leading REDEVO to stop its execution (lines 8-9); otherwise,
REDEVO continues the discovery process (line 10) (see Algorithm 1).

4.3 a genetic approach for discovering hybrid rfds 87

Algorithm 6 termination

INPUT:
Pop→ Resulting population from one generation
T → Number of generations to be considered for the calcula-
tion of pT
qT → Percentage of stabilization of the results

OUTPUT:
True→ If the termination criterion is met
False→ Otherwise

1: E← get_last_executions(T − 1)
2: E← E ∪ |Pop|
3: if |E| == T then
4: sum← 0

5: for each e ∈ E[:T] do
6: sum← sum + e
7: tE ← sum

max(E)· T
8: if tE ≥ qT then
9: return True

10: return False

4.3.7 Experimental Evaluation

In this section, we show the results obtained from the execution of
REDEVO on several real-world datasets, by varying its configuration
parameters. We also present a comparative evaluation of the execution
performances of REDEVO with the only existing algorithm for discover-
ing hybrid rfds DiMε [37].

All the experiments have been executed on an iMac Pro with an Intel
Xeon CPU at 3.20GHz, 18-core, and 128GB of memory, running macOS
Mojave 6.4 and Python 3.9. In particular, to compute difference values, we
used the absolute difference for numerical attributes, and the Levenshtein
distance for textual attributes [165]. Moreover, in order to make REDEVO
comparable to other discovery algorithms, we used the g3-error coverage
measure for relaxing the extent criterion, which corresponds to 1 −

88 discovery algorithms in static scenarios

Dataset Cols [#] Rows [#] FDs [#] Size [KB]

Iris 5 150 5 5

Balance-Scale 5 625 1 7

Abalone 9 4177 137 192

Breast-cancer 11 699 46 21

Bridges 13 108 142 7

Echocardiogram 13 132 538 7

Fd-reduced 15 8000 1122 109

Lymphography 19 148 2730 6

Parkinsons 24 195 1724 40

Ionosphere 34 351 1122 149

Sonar 60 208 97750 86

Movement-Libras 91 360 2473105 251

Table 4.2: Characteristics of the considered real-world datasets.

con f (X → A), with XΦ1

Ψ≥ϵ−−→ Aϕ2 candidate rfd. All the considered
real-world datasets have been previously used for evaluating other rfd

discovery algorithms, whose characteristics are shown in Table 4.2.

4.3.7.1 Discovery Performances

Our first experiment measured the execution times and the number of
rfds discovered by REDEVO on the different real-world datasets. The
latter have been mapped to a pattern map, according to the strategy
described in Section 4.3.1.1, by varying difference thresholds from 0
to 9 (named C0, . . . , C9, resp.), and the g3-error thresholds from 0.0 to
0.9 (named E0.0, . . . , E0.9, resp.). Other configuration settings have been
fixed to 500 for the maximum number of iterations admitted, 0.4 for the
probability of both crossover and mutation, and 10% for the percentage of
individuals to be considered in the initial population (see Section 4.3.6.2).

Analysis of Results. Figure 4.6 summarizes the execution times of RE-
DEVO for each dataset in terms of line plots, according to the considered
difference thresholds, whereby each line represents one of the considered
g3-error thresholds.

4.3 a genetic approach for discovering hybrid rfds 89

As we can notice, the execution times are almost always less than 20
seconds, except for some of the biggest datasets. In fact, as expected,
when the number of columns is high also the execution times increase,
as occurred for the Sonar and the Movement-libras datasets. The execution
times resulting from the Lymphography dataset show unexpected peaks
when the difference threshold is set to 0 (i.e., C0). This could be due to
the fact that the discovered rfds almost always present a high number
of attributes on the LHS, yielding a difficult convergence to the optimal
solution. Moreover, among the different extent thresholds, we can notice
that lower error thresholds require higher execution times since they
constraint the discovery process to manage a higher number of possible
invalidations than when the error threshold is higher.

Concerning the number of rfds (see Figure 4.7), we can notice different
trends according to the size of the datasets. In particular, datasets with
a high number of attributes registered a similar number of discovered
rfds among the different g3-error thresholds. More specifically, Sonar
and Movement-libras datasets often provide a higher number of rfds
with g3-error threshold equal to 0. This could be due to the fact that by
admitting errors in the validation of candidate rfds through increased
g3-error thresholds, the discovery process could extract many valid rfds
that are minimal with respect to the ones discovered with a threshold
equal to 0, yielding a lower number of discovered rfds. On the contrary,
by considering datasets with a lower number of attributes, as we expected,
a higher extent threshold potentially increases the number of valid rfds.
Obviously, some exceptions can be noticed, but these are included within
a small range of variability, typically related to the nature of the dataset
itself, as occurred for Breast-Cancer and Balance-Scale. Instead, concerning
the variation of tuple comparison thresholds, in most cases the number of
discovered rfds drastically drops when increasing thresholds from 0 to 1.
This is mainly due to the presence of many key dependencies, which are
likely to be invalidated when the tuple comparison thresholds become
greater than 0 (e.g., Abalone, Echocardiogram, Lymphography, Movement-
Libras, Parkinsons, and Sonar datasets). On the other hand, this trend does
not appear for datasets containing a small set of key dependencies.

90 discovery algorithms in static scenarios

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

4

6

E0.0 E0.1 E0.2 E0.3 E0.4 E0.5 E0.6 E0.7 E0.8 E0.9

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

0.5

1.0

1.5

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) Abalone

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0.00

0.05

0.10

0.15

Ex
ec

ut
io

n
Ti

m
e

(s
)

(b) Balance-scale

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

10

20

Ex
ec

ut
io

n
Ti

m
e

(s
)

(c) Breast-Cancer

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(s
)

(d) Bridges

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

5

10

15

Ex
ec

ut
io

n
Ti

m
e

(s
)

(e) Echocardiogram

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0.00

0.05

0.10

0.15

Ex
ec

ut
io

n
Ti

m
e

(s
)

(f) Iris

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

2K

4K

6K

Ex
ec

ut
io

n
Ti

m
e

(s
)

(g) Lymphography

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

2.5K

5K

7.5K

10K

Ex
ec

ut
io

n
Ti

m
e

(s
)

(h) Movement-Libras

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(s
)

(i) Parkinsons

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

1K

2K

3K

Ex
ec

ut
io

n
Ti

m
e

(s
)

(j) Sonar

Figure 4.6: Time performances by varying tuple comparison and extent thresh-
olds.

4.3 a genetic approach for discovering hybrid rfds 91

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

4

6

E0.0 E0.1 E0.2 E0.3 E0.4 E0.5 E0.6 E0.7 E0.8 E0.9

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

50

100

Nu
m

be
r o

f R
FD

s

(a) Abalone

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

5

10

15

20

Nu
m

be
r o

f R
FD

s

(b) Balance-scale

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

50

100

150

200

Nu
m

be
r o

f R
FD

s

(c) Breast-Cancer

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
50

100

150

200

Nu
m

be
r o

f R
FD

s

(d) Bridges

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

200

400

Nu
m

be
r o

f R
FD

s

(e) Echocardiogram

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

5

10

15

Nu
m

be
r o

f R
FD

s

(f) Iris

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

1K

2K

Nu
m

be
r o

f R
FD

s

(g) Lymphography

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

200K

400K

Nu
m

be
r o

f R
FD

s

(h) Movement-Libras

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

500

1K

1.5K

Nu
m

be
r o

f R
FD

s

(i) Parkinsons

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9
0

25K

50K

75K

100K

Nu
m

be
r o

f R
FD

s

(j) Sonar

Figure 4.7: Number of rfds by varying tuple comparison and extent thresholds.

92 discovery algorithms in static scenarios

4.3.8 Evaluation on configuration settings

In this section, we show the performances of REDEVO in terms of execu-
tion times and number of discovered rfds, by evaluating the impact of
evolutionary configuration settings (see Figure 4.8). In particular, we eval-
uated the performances of REDEVO on the Ionosphere dataset (charac-
terized by 34 attributes and 351 tuples), and by considering the following
baseline configuration: 10% as the size of the initial population, 100 as
the number of iterations, and 0.4 as the probability of both crossover and
mutation operations. Therefore, we varied one of the above-described
configuration parameters, yielding four different experimental sessions
by considering: 1) the variation in the size of the initial population; 2)
the variation in the number of maximum iterations; 3) the variation in
the crossover probability; and 4) the variation in the mutation probability.
Furthermore, in order to analyze how REDEVO performs independently
from a specific generation of individuals, for each experimental session
we run it five times and compared the average results based on the exe-
cution times and the number of discovered rfds. In particular, in Figure
4.8 we report the average values by means of lines, by also showing the
variability range of execution times.

The size of the initial population is computed in terms of percentage
on all possible candidate rfds in a lattice level, according to the strat-
egy defined in Section 4.3.6.2. As expected, Figure 4.8a shows that the
execution times increase when the size of the initial population grows.
However, we can notice that after the value 20% in the size of the popula-
tion, the number of discovered rfds remains stable. This means that it
is not useful to consider high percentages of initial populations, since it
will not improve the capability of the evolutionary strategy to converge
towards holding rfds.

Concerning the variation in the number of iterations (see Figure 4.8b),
we can notice that the execution times show an increasing trend by
varying the number of iterations. Nevertheless, this is not related to
the number of discovered rfds, since the number is quite similar, i.e.,
ranging from 705 to 720, across the variation of the maximum number of
iterations, and follows a non-monotonic trend.

4.3 a genetic approach for discovering hybrid rfds 93

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Crossover Probability

225

250

275

300

325

350

375

400
Ex

ec
ut

io
n

Ti
m

e
(s

)
Execution Time (s)

685

690

695

700

705

710

Nu
m

be
r o

f R
FD

s

Number of RFDs

0.1 0.2 0.5 1.0
Percentage of Initial Population

1K

10K

Ex
ec

ut
io

n
Ti

m
e

(s
)

700

800

900

1K

1.1K

Nu
m

be
r o

f R
FD

s

0.01

(a)

100 200 300 400 500
Number of Iterations

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(s
)

710

715

720

Nu
m

be
r o

f R
FD

s

(b)

0.1 0.2 0.3 0.4 0.5
Crossover Probability

250

300

350

400

Ex
ec

ut
io

n
Ti

m
e

(s
)

690

700

710

720
Nu

m
be

r o
f R

FD
s

(c)

0.1 0.2 0.3 0.4 0.5
Mutation Probability

340

360

Ex
ec

ut
io

n
Ti

m
e

(s
)

690

700

710

720

Nu
m

be
r o

f R
FD

s

(d)

Figure 4.8: Variation of genetic configuration parameters.

Figures 4.8c and 4.8d show the results obtained by varying the probabil-
ity of crossover and mutation operations, respectively. In particular, both
the execution times and the number of rfds generally grow when the
probability of crossover increases. Instead, the execution times concerning
the variation on the mutation probability registered two peaks, i.e., for
0.2 and 0.5, which seems to be related to the number of discovered rfds.

4.3.8.1 Comparative Evaluation

In this section, we show the results of a comparative evaluation between
REDEVO and the only existing discovery algorithm for hybrid rfds
proposed in the literature, i.e., DiMε [37]. The latter is one of the first
proposals for discovering rfds capable of validating them according to
the differences between tuple pairs. In particular, we evaluated the per-
formances of both algorithms on the Fd-Reduced dataset (characterized
by 15 attributes and 8K tuples), by accomplishing two different types

94 discovery algorithms in static scenarios

0

2000

4000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Extent: 0.4

0

2000

4000

6000

8000
Extent: 0.6

0

2000

4000

6000

Extent: 0.8

5000

10000

M
em

or
y

(M
B) 10000 10000

2K 4K 6K 8K
0

1000

2000

3000

N
um

be
r o

f R
FD

s

RedEvo DiMεE0.6E0.4 E0.8 E0.6E0.4 E0.8

0

2K

4K

Ex
ec

ut
io

n
Ti

m
e

(s
)

Comparison: 2

0

2K

4K

Comparison: 4

0

10

20

30
Comparison: 6

2K

4K

6K

M
em

or
y

(M
B)

0

5K

10K

0

5K

10K

3 6 9 12 15
0

1K

2K

3K

Nu
m

be
r o

f R
FD

s

3 6 9 12 15
Attributes

0

200

400

3 6 9 12 15
0

200

400

Figure 4.9: Comparative evaluation on Fd-Reduced dataset by varying the num-
ber of attributes.

of experimental sessions: 1) by varying the number of attributes in the
range [3− 15] with step 3, and 2) by varying the number of tuples in the
range [2K− 8K] with step 2K. Moreover, for each experimental session,
we varied the extent thresholds in the range 0.4− 0.8 with step 0.2, and
the tuple comparison thresholds in the range [2− 6] with step 2. Finally,
we set a time limit of 2 hours, after which the algorithm execution is
stopped.

Figures 4.9 and 4.10 show the obtained results, in which the red and the
blue lines represent the performances of REDEVO and DiMε algorithms,
respectively. More specifically, Figure 4.9 shows performances of both
algorithms in terms of execution times, memory requirements, and the
number of discovered rfds, which are obtained by varying the number
of attributes. As we can see, the execution times of REDEVO are always
lower than DiMε when the number of attributes increases, except with a

4.3 a genetic approach for discovering hybrid rfds 95

0

2000

4000
Ex

ec
ut

io
n

Ti
m

e
(s

)

Extent: 0.4

0

2000

4000

6000

8000
Extent: 0.6

0

2000

4000

6000

Extent: 0.8

5000

10000

M
em

or
y

(M
B) 10000 10000

2K 4K 6K 8K
0

1000

2000

3000

N
um

be
r o

f R
FD

s

RedEvo DiMεE0.6E0.4 E0.8 E0.6E0.4 E0.8

0

2K

4K

Ex
ec

ut
io

n
Ti

m
e

(s
)

Comparison: 2

0

2K

4K

6K
Comparison: 4

0

10

20

30
Comparison: 6

2K

4K

6K

M
em

or
y

(M
B)

0

5K

10K

0

5K

10K

2K 4K 6K 8K

1K

2K

3K

Nu
m

be
r o

f R
FD

s

2K 4K 6K 8K
Rows

40

60

80

100

2K 4K 6K 8K

40

60

80

100

Figure 4.10: Comparative evaluation on Fd-Reduced dataset by varying the
number of tuples.

comparison threshold equal to 6 for the dataset containing 12 attributes.
This exception is probably due to the higher number of discovered rfds,
even if the difference in execution times is quite low, i.e., maximum 5
seconds worse for REDEVO. In general, the higher execution times of
DiMε are probably due to the deterministic nature of DiMε, which yields
an exponential growth of possible candidate rfds to be evaluated when
the number of attributes increases. In fact, it is possible to notice that
some DiMε execution performances exceed the time limit defined in the
configuration settings. On the contrary, the execution times of REDEVO
tend to remain stable in almost all executions and to slightly grow when
the number of attributes increases. Concerning the extent thresholds, we
can notice that both DiMε and REDEVO achieve similar performances
for all thresholds, except for performances of DiMε executions with com-
parison threshold equals to 2, where a lower extent threshold registered
better performances on both execution times and memory load.

96 discovery algorithms in static scenarios

In general, concerning the memory load, DiMε requires the use of
much more memory than REDEVO, probably due to compressed repre-
sentations of similarities in terms of pattern map introduced in REDEVO,
and the exploitation of several caches that avoid the re-computation of
support and confidence values, so reducing the waste of temporary mem-
ory. Additionally, the memory requirements of REDEVO remain stable
even when the number of discovered rfds increases. In fact, the high
dimensionality of a dataset causes a growth in the number of discovered
rfds, regardless of extent and comparison thresholds.

Figure 4.10 shows performances of both algorithms in terms of execu-
tion times, memory requirements, and the number of discovered rfds,
which are obtained by varying the number of tuples. Similarly to the
previous experimental session (see Figure 4.9), REDEVO achieves better
performances in terms of execution times and memory requirements
than DiMε also when varying the number of tuples. In particular, the
execution times of REDEVO are extremely low for all comparison and
extent thresholds, regardless of the number of considered tuples, and the
gap grows when the number of tuples increases. Also in this case, DiMε

exceeded the time limit on the dataset with the highest number of tuples,
a comparison threshold equal to 2, and extent thresholds greater than
0.4. Instead, execution times and memory requirements remain stable for
REDEVO, since the latter exploits the pattern map, which permits to ag-
gregate similar tuples according to the strategy defined in Section 4.3.1.1.
In fact, this strategy allows to speed up the computation of support and
confidence values for validating rfds.

Concerning the number of rfds, this experimental session highlights
the possible differences in the result sets, due to the different natures
of the two compared algorithms. In fact, as expected, being REDEVO
an evolutionary algorithm, it could not guarantee the minimality of all
the rfds it discovers. Nevertheless, the rfds discovered by REDEVO
are always correct, but for a minimal rfd discovered by DiMε could be
several rfds discovered by REDEVO generalizing it.

5
D I S C O V E RY A L G O R I T H M S I N D Y N A M I C S C E N A R I O S

The discovery of functional dependencies (fds) and relaxed functional
dependencies (rfds) from data is facing novel challenges, among which
there is the necessity of monitoring sets of data that are produced and
updated over time. For instance, the proliferation of IoT sensors and
technologies is leading to an increasing need to define methodologies to
continuously discover metadata from data streams, which represent a
kind of dynamic datasets. In this context, incremental fd (rfd) discovery
algorithms have to efficiently verify which of the previously discovered
fds (rfds) still hold on upon the updates on the dataset, and also infer
possible new valid fds (rfds). In this chapter, we first formalize the issues
related to the problem of discovering fds (rfds) in dynamic scenarios, by
also discussing differences with static discovery processes, and then we
describe several novel search strategies and validation methods compos-
ing new incremental (continuous) discovery algorithms for fds (rfds). In
particular, the first algorithm addresses the problem of discovering fds
in incremental scenarios without having to restart the discovery process
from scratch, when new data are inserted. It represents the baseline of the
second algorithm, which offers a novel and efficient validation method
relying on Regular Expressions (RegExs). The last two algorithms deal
with two specific problems more complex than the incremental discovery
of fds, i.e., continuous discovery of fds and incremental discovery of
rfdes, respectively.

5.1 problem description

This section presents the fundamentals of incremental discovery method-
ologies for fds and rfds, by also describing the data representation,
search strategies, and properties behind them. Moreover, the theoretical

97

98 discovery algorithms in dynamic scenarios

evaluation of the minimality and completeness of a discovery algorithm
in an incremental scenario is provided in Section 5.6.3. Other method-
ologies presented in this thesis exploits well-known proofs concerning
validation and pruning properties that can be found in [84, 163].

5.1.1 Incremental Discovery of fds

The fd discovery problem aims at finding the set of all minimal fds
holding on an instance r of a database schema R. It entails searching fds
whose LHSs (RHSs) yielding tuple partitions of data sharing the same
values on RHS attributes whenever they share the same values on LHS
ones [37, 85]. Most of the fd discovery algorithms defined in the literature
[140] operate on static sets of data, and require to be re-executed from
scratch whenever the data are updated.

In general, the discovery of fds is a computationally expensive pro-
cess, especially for database instances with a large number of rows and
columns. In particular, to perform the discovery process, it is possible to
first generate fd candidates, and then verify their validity and minimality,
yielding a column-based strategy. More specifically, column-based strate-
gies model the search space as a graph representation of a lattice, which
contains a collection of attribute sets, where level zero maps the empty
set level one singleton sets (e.g., one for each attribute), level two the pair
sets (e.g., one for each possible combination of two attributes), and so
forth. Finally, the last level, namely level M, will contain a single set of all
attributes from R. It permits to consider a specific attribute set Z at a level
l, and then to formulate all the possible fds X → A, with X = Z\{A} and
A ∈ Z, to be successively validated. Moreover, the validation relies on the
tuple partitions of attributes in X and Z, and verifies the satisfiability of
a specific property on the cardinalities of partitions, namely refinement
property [85]. This validation process is particularly useful when it is
possible to follow a level-by-level search strategy from level one to level
M, and to gradually construct partitions over the ever-increasing attribute
set sizes. This could not be guaranteed when the discovery process has
to work in dynamic scenarios. In fact, one of the main problems with the

5.1 problem description 99

dynamic updating of database instances is that fds found at a specific
time instant τ could be invalidated at the time τ + 1. To this end, it is
necessary to implement incremental methodologies that consider fds
holding at time τ as starting points for (re-)validating previously holding
fds and searching possible new fds holding at τ + 1.

In other words, dynamic scenarios require to update a set of minimal
fds Στ discovered over data collected until time τ according to the set of
tuple updates Dτ+1 at time τ + 1. This yields the necessity to (re)-consider
all fds in Στ, and possibly generate new candidate fds according to
validation results. For instance, the insertion of a new tuple can yield the
invalidation of a previously holding fd, or the confirmation of its minimality,
whereas the deletion of a tuple can yield the loss of minimality for a
previously holding fd. Notice that, updates of tuple values can always be
managed as a deletion and a consequent insertion of a tuple containing
the modified values [140]. More formally, let X → A be a minimal fd

holding at time τ on an instance r of R, with X, A ⊆ attr(R), we need to
consider the following possible effects whenever the instance is updated.

• Invalidation of functional dependencies. If X → A holds at time
τ, then for each tuple pair (t1, t2) of r t1[A] = t2[A] whenever
t1[X] = t2[X]. Thus, X → A is invalidated at time τ + 1 if and only
if at least one of the following two cases occur:

– A tuple t3 is inserted at time τ + 1, and

t1[X] = t3[X] ∧ t1[A] ̸= t3[A]

– Tuples t4 and t5 are inserted at time τ + 1, and

t4[X] = t5[X] ∧ t4[A] ̸= t5[A]

• Refutation of minimality. If X → A is minimal at time τ, then
any X \ B → A with B ∈ X is not valid at time τ. In other words,
there exists at least one tuple pair (t1, t2) such that t1[X \ B] =

t2[X \ B]∧ t1[A] ̸= t2[A]. Let us suppose that there is only one tuple
pair (t1, t2) invalidating X \ B→ A at time τ, and that t1 is deleted

100 discovery algorithms in dynamic scenarios

from r at time τ + 1, denoted as t−1 . Consequently, X → A is no
longer minimal, since X \ B→ A is valid at time τ + 1.

Thus, if a minimal fd X → A holding on r at time τ is invalidated
at time τ + 1, then new candidate fds need to be analysed, i.e., it is
necessary to check the validation of all non-trivial fds XB→ A for each
B ∈ attr(R) \ (X ∪ A). This means that a higher level in the lattice search
strategy is considered. In fact, only candidates of higher levels with
respect to the holding fds at time τ can hold at time τ + 1. Moreover, it is
not necessary to analyze candidate fds like X \ B→ A, with B ∈ X, since
such fds were not valid at time τ, and could not be valid at time τ + 1.
On the contrary, if a minimal fd X → A at time τ is no longer minimal
at time τ + 1, then new candidate fds like X \ B→ A, with B ∈ X, need
to be checked. Moreover, it is not necessary to check fds like XB → A,
with B ∈ attr(R) \ (X ∪ A), since they were not minimal at time τ, and
cannot be minimal at time τ + 1, given that X → A is not minimal.

For each fd that becomes valid or potentially minimal at time τ + 1,
it is necessary to check its minimality compared with candidate fds
that can be minimal with respect to it, that is fds generalizing it. More
formally, let X → A be an fd valid on an instance r of R at time τ + 1,
with X, A ⊆ attr(R), we need to consider the following possible effect
whenever a candidate fd becomes valid or potentially minimal at time
τ + 1.

• Inference. Let X → A be an fd becoming valid at time τ + 1 on an
instance r of a database schema R, has become valid at time τ + 1,
it is necessary to check that no X \ Z → A, with Z ⊂ X is valid at
time τ + 1.

In other words, if an fd X → A becomes valid or potentially minimal
at time τ + 1, then all possible candidate fds X \ B → A, with B ∈ X,
need to be analysed to verify that no X \ B → A is valid at time τ + 1.
On the contrary, if at least one X \ B→ A is valid, this becomes the new
potentially minimal fd to be checked.

Invalidation, refutation, and inference allow the incremental search
strategy to determine how candidate fds should be generated and man-

5.1 problem description 101

aged throughout the search space, according to previously holding fds
and validation results. This entails moving the focus on different parts of
the search space, by promptly considering ever changing data partitions
for validating new candidate fds.

5.1.2 Continuous Discovery of fds from dynamic sources

Nowadays there are many data stream sources whose data are generated
from traffic or health sensors, transaction logs, and so on. Typically, such
sources keep sending data in extremely short time intervals, creating a
continuous stream of data that must be rapidly processed, without the
possibility to entirely store them, and with no control over the order
in which data elements arrive [72]. For this reason, there is an increas-
ing necessity to dynamically extract information from streams of data
originating from sensors and other devices. To this end, several research
communities are trying to develop efficient methodologies to continu-
ously monitor the quality of the data read from data streams [52, 66,
91]. Such methodologies need to handle real-time analysis processes,
without creating information queues, and guaranteeing information in-
tegrity in order to avoid data loss on the stream. Furthermore, each model
must view a data stream as a sequence of single tuples to simplify the
information management.

fds represent fundamental metadata to detect quality problems in
dynamic data sources, such as data streams. However, techniques using
this type of metadata require methodologies to automatically discover
them. As introduced in Section 2, discovering fds from data is per se a
complex problem, since candidate fds can be exponential in the number
of attributes, and their detection requires analyzing a huge number of
attribute combinations [1]. With respect to this scenario, the continuous
discovery of fds from data streams entails the continuous update of
the set of discovered fds as new data are read from the stream. Differ-
ently from the incremental discovery problem, the continuous profiling
requires to design of extremely fast discovery processes, which should
also manage considerably long, possibly infinite, executions. Moreover,

102 discovery algorithms in dynamic scenarios

while in traditional databases it is important to manage insertion, update,
and deletion operations, even if they occur less frequently than queries,
in a data stream context only the insertion of new tuples matters [72].
Nevertheless, although the focus is mainly placed on fast and continuous
insertion operations, it would be useful to give the possibility to forget
information related to tuples processed less recently, leading to the neces-
sity of performing the discovery process only on a temporal window of
the data [1].

A data stream considers a sequence of data items, also known as
tuples, ⟨ t1, . . . , tN , . . . ⟩, which need to be processed while minimizing
the usage of memory space and the average time for processing each
stream element, having the possibility to scan the stream only once [11].
The typical approach is to maintain a light summary of the processed
information by building a data structure capable of guaranteeing reduced
memory usage with the respect the stream size. More formally, given an
ordered and infinite set T of discrete time instants in which data items
are read from the stream, forming an infinite set r of data items, a data
stream S is a mapping S : T → 2|r| that at each instant τ ∈ T returns a
finite subset of data items from r, all sharing a common schema R [129].
Moreover, each data item t is related to a specific timestamp t.λ, which
continuously increases as new data items are read from the stream.

Given a data stream S, we need to consider the stream contents, which
can vary according to the specific stream settings. In particular, by default
the current stream contents S(τ) of a data stream S at time τ is the set
S(τ) = {t ∈ S : t.λ ≤ τ} [129]. Moreover, in order to limit the data
items to the most recent ones, in the context of data stream management
sliding windows are usually applied. Thus, when the collection of items
is limited by a sliding window with size w, then the current stream contents
S(τ)w of S at time τ is the set S(τ)w = {t ∈ S : (τ − w) < t.λ ≤ τ}.
Consequently, a data item t− is said to be expired if and only if t /∈ S(τ)w.
Furthermore, we can define the expired stream contents after the last sliding
of the window over a stream S from time τ to time τ + 1 as the set
S−(τ + 1)w = {t ∈ S : t ∈ S(τ)w ∧ t /∈ S(τ + 1)w}.

In the context of fd discovery, sliding windows can be used to forget
extremely old data items possibly causing the invalidation of some fds.

5.1 problem description 103

To this end, before evaluating novel data items in the new time instant
τ + 1, when a sliding window with size w is considered, it is necessary
to evaluate new potential fds becoming valid because of the deleted data
items included in S−(τ + 1)w. More formally, let X → A be a minimal
fd holding on the set of data items S(τ)w with common schema R,
with X, A ⊆ attr(R), we need to consider the following possible effects
whenever a data item is managed (inserted or deleted) at time τ + 1.

• Refutation of minimality. Since X → A is minimal at time τ, then
any X \ B → A, with B ∈ X, is not valid at time τ also known as
maximal non-fd. In other words, there exists at least a pair of data
items (t1, t2) in S−(τ)w such that t1[X \ B] = t2[X \ B] ∧ t1[A] ̸=
t2[A]. Let us suppose that (t1, t2) is the only pair of data items in
S(τ)w invalidating X \ B → A, and that t1 expires at time τ + 1,
that is t1 ∈ S−(τ + 1)w, denoted as t−1 . Consequently, X → A is no
longer minimal, since X \ B→ A has becoming valid at time τ + 1.

• Invalidation of functional dependencies. Since X → A holds at
time τ, then for each pair of data items (t1, t2) in S(τ)w, t1[A] = t2[A]

whenever t1[X] = t2[X]. Thus, X → A is invalidated at time τ + 1
if and only if at least one of the following two cases occur:

– A new data item t3 is read at time τ + 1, and

t1[X] = t3[X] ∧ t1[A] ̸= t3[A]

– New data items t4 and t5 are read at time τ + 1, and

t4[X] = t5[X] ∧ t4[A] ̸= t5[A]

By considering the above discussed effects that have to be managed
during the fd discovery over data streams, it is possible to follow the
candidate generation strategies introduced in Section 5.1.1. Moreover,
for each candidate fd that becomes potentially minimal at time τ + 1,
also the inference issue has to be considered in order to guarantee the
minimality of resulting fds. This issue does not depend on the type of

104 discovery algorithms in dynamic scenarios

data sources and on how the latter are dynamically updated, and it can
be treated as described in Section 5.1.1.

The exponential complexity of the fd discovery problem becomes
particularly challenging in the context of data streams. In fact, new tuples
read from the stream can make existing minimal fds no longer valid,
possibly yielding new candidate fds. Thus, even if reading of tuples
from the data streams requires high processing speed, in the worst case
even one tuple can require a complete exploration of the search space,
entailing the same asymptotic complexity of the general problem (Section
2). Moreover, another important challenge for the fd discovery over data
streams concerns the necessity of efficiently validating each candidate fd,
without considering the complete set of not expired data items.

In Section 5.5, we will discuss a new fd discovery algorithm that allows
to continuously infer and update fds holding on a data stream, as the
data are read from it. The algorithm relies on new data structures and
a new validation method to handle a dynamic discovery process and
reduce the data load inbound stream.

5.1.3 Incremental Discovery of rfdes

As discussed in Section 2, rfde discovery is a complex problem even
in static scenarios. Moreover, if we consider an incremental scenario in
which new tuples could be inserted between consecutive time instants, i.e.,
from τ to τ + 1, then the rfdes detected at time τ might be invalidated.
Thus, it is necessary to re-execute discovery algorithms on the data
instance updated at time τ + 1. To this end, incremental rfde discovery
algorithms aim to update the set of rfdes without requiring the complete
re-execution of the discovery algorithm.

Given a set Στ of all minimal rfdes holding at time τ on an instance r of
a database schema R, the discovery algorithm must update Στ whenever
one or more tuples are added from time τ to time τ + 1. In particular, for
each minimal rfde in Στ the validation process must be re-executed, since
the g3-error e of an rfde φ holding at time τ might increase or decrease
upon the insertion of new tuples. More specifically, when the g3-error

5.1 problem description 105

increases, it might exceed the extent threshold, yielding the invalidation
of φ. On the contrary, when the error decreases, it might also decrease
for previous candidate rfdes generalizing φ, then the minimality of φ

might be refuted.

More formally, let φ : X Ψ≤ε−−→ A be a minimal rfde holding at time
τ on an instance r of R, with X, A ⊆ attr(R), we need to consider the
following possible effects whenever new tuples are added.

• Invalidation of rfdes. If X Ψ≤ε−−→ A holds at time τ, then the g3-error

eτ is below the threshold ε. Thus, X Ψ≤ε−−→ A is invalidated at time
τ + 1 if and only if the error eτ+1 is greater then eτ and exceeds the
threshold ε, i.e., eτ+1 > ε ≥ eτ.

• Refutation of minimality. If X Ψ≤ε−−→ A is minimal at time τ, then

any X \ B Ψ≤ε−−→ A with B ∈ X is not valid at time τ. In other words,

the g3-error e computed at time τ on each X \ B Ψ≤ε−−→ A is always
greater than ε. Let us suppose that among them there exists at least

one candidate rfde X \ B Ψ≤ε−−→ A whose g3-error eτ+1 is lower than

or equal to ε, then X Ψ≤ε−−→ A is no longer minimal at time τ + 1.

Thus, if a minimal rfde X Ψ≤ε−−→ A is invalidated at time τ + 1, then
new candidate rfdes need to be analysed, by considering all possible

candidate rfdes XB Ψ≤ε−−→ A, such that B /∈ (X ∪ A). On the contrary,

if a rfde X Ψ≤ε−−→ A is minimal at time τ but not at time τ + 1, then
it is necessary to check the validation of all possible rfde candidates

X \ B Ψ≤ε−−→ A, with B ∈ X. Notice that, the verification of minimality
also needs to be iterated starting from the new validated rfdes (see the
inference issue in Section 5.1.1).

The necessity to perform validation and the consequent effects de-
scribed above primarily refers to all minimal rfdes detected at time τ. In
general, an incremental discovery strategy aims to reduce the possible
navigation steps over the search space, even if it requires the generation
of new candidate rfdes 1) by using previously holding rfdes, and 2) by
exploring the parts of the search space that are not reachable from them.

106 discovery algorithms in dynamic scenarios

In the first case, starting from rfdes holding at time τ, it is possible
to limit the search space to their neighbors, which represent the new

candidate rfdes at time τ + 1. Here, given an rfde φ : X Ψ≤ε−−→ A holding at

time τ, its neighbors can have one of the following forms φ′ : XB Ψ≤ε−−→ A

with B ∈ attr(R)\(X ∪ A), or φ′′ : X\B Ψ≤ε−−→ A, with B ∈ X.
Instead, since the second case would catch candidate rfdes that are

not neighbors of any rfde holding at time τ, it is necessary to consider
possible additional candidate rfdes, according to the three following
properties:

Property 1. Let Στ be the set of all rfde holding at time τ, and let

Zτ =

 ⋃
A∈attr(R)

A | ∃ X Ψ≤ε−−→ A ∈ Στ


if |Zτ| ̸= |attr(R)|, then for each attribute A /∈ Zτ it is necessary to

add all possible rfde candidates B Ψ≤ε−−→ A, with B ̸= A.

Property 2. Let Στ be the set of all rfde holding at time τ, and for each
A ∈ attr(R) let

Sτ =

 ⋃
B∈attr(R)

B | ∃ (X Ψ≤ε−−→ A ∈ Στ) ∧ (B ∈ X)


if |Sτ| ̸= |attr(R)|, then for each attribute B /∈ Sτ it is necessary to

add a candidate rfde B Ψ≤ε−−→ A.

Property 3. Let Στ be the set of all rfde holding at time τ, for each A, B ∈
attr(R), B ̸= A, let l = min{|X| | X Ψ≤ε−−→ A ∈ Στ ∧ B ∈ X}, and
let

Nl
B =

 ⋃
Xwith|X|=l

X | (X Ψ≤ε−−→ A /∈ Στ) ∧ (B ∈ X)



5.2 literature review 107

then for each candidate LHS X ∈ Nl
B it is necessary to add a

candidate rfde X Ψ≤ε−−→ A if and only if there is no X′ ⊂ attr(R)

such that X′ Ψ≤ε−−→ A ∈ Στ and X ⊆ X′.

In other words, the exploration of the search space starts from all rfdes
holding at time τ, and from those generated through Properties 1, 2, and
3. In Section 5.6, we describe a new incremental discovery algorithm for
rfdes, which exploits these properties to perform an efficient validation
process.

5.2 literature review

While in the previous chapter we reviewed methodologies and algo-
rithms for rfd discovery on static datasets, in this section we review
the literature concerning fd discovery algorithms, including incremental
ones, and incremental rfde discovery algorithms. Since to the best of our
knowledge there are no incremental rfdc discovery algorithms, we will
focus on incremental rfde discovery algorithms. The reviewed incremen-
tal algorithms and their theoretical foundations represent the seeds for
defining new discovery processes and applying them in new domains,
such as data stream scenarios.

fd discovery. The fd discovery problem dates back to the ’80s, when
the first discovery algorithm was defined [111], from which other well-
known proposals were derived [84, 85]. As seen in the previous section, fd

discovery is an extremely complex problem, since the number of potential
fds can be exponential, and their detection might requires analyzing a
huge number of column combinations [1].

In the literature there are two main categories of automatic methods for
discovering fd from data, namely column-based and row-based algorithms.
Column-based algorithms model the search space as an attribute lattice,
which permits to consider candidate fds at each lattice level in terms
of edges. Such candidates need be validated, which entails evaluating
value combinations or efficient representations of them. The whole pro-
cess is made efficient by exploiting fds already validated, in order to

108 discovery algorithms in dynamic scenarios

prune the search space for the generation of new candidates. Examples of
column-based algorithms, also known as top-down algorithms, include
the algorithms TANE [85], FD_Mine [164], FUN [121], and DFD [3]. On
the other hand, row-based algorithms derive candidate fds by analyz-
ing the cross product between all possible combinations of tuple pairs,
aiming to derive two attribute subsets, namely agree-set and difference-set.
In particular, they search for attribute sets that agree on the values of
certain tuple pairs, since they can functionally determine other attributes
agreeing on the same tuple pairs. Once all the agree sets are computed,
it is possible to derive all valid fds from them. Examples of row-based
algorithms, also known as bottom-up algorithms, include the algorithms
DepMiner [109], FastFD [162], and FDep [64].

Column-based algorithms usually outperform row-based ones on
datasets with many rows and few columns, whereas on datasets with few
rows and many columns the row-based algorithms usually perform better,
as demonstrated in extensive experimental results [126]. In order to obtain
better performances in all cases, a hybrid algorithm has recently been
proposed, namely HyFD [128]. It combines row- and column-efficient
discovery techniques by managing two separated phases, one in which
it calculates fds on a randomly selected small subset of tuples (column-
efficiency), and the other in which it validates the discovered fds on the
entire dataset.

Incremental discovery. The discovery algorithms presented above need to
process the whole dataset. Thus, whenever the datasets are updated, they
need to be re-executed from scratch, whereas it would be desirable to have
some incremental discovery strategies. One of the first theoretical propos-
als of an incremental algorithm for fd discovery has been provided in
[161]. It exploits the concepts of tuple partitions and monotonicity of fds
to avoid the re-scanning of the entire database. Another proposal is based
on the concept of functional independency through which the set of fds
updated over time is maintained [14]. A recent algorithm, named DynFD
has been proposed in [140], which permits to discover and maintain fds
in dynamic datasets. It continuously adapts the validation structures
of fds in order to evolve them with batches of insertions, updates, and
deletions of data. Moreover, another approach for discovering Order De-

5.2 literature review 109

pendencies (ods) after the insertion of new tuples is defined in [166]. It is
based on a strategy enabling an intelligent traversal process and reduced
access to the whole dataset. Furthermore, the only incremental algorithm
for the discovery of rfdes proposed in the literature is AD-Miner [59]. It
permits to incrementally updating dependency information exploiting
several logical operations.

The problem of automatically inferring metadata over incremental sce-
narios has also been addressed in the context of association rule mining
[117], which is somehow related to rfdes discovery. In particular, an asso-
ciation rule holding on a given dataset is defined in terms of support and
confidence measures. In the literature, there exist two different types of
incremental algorithms for association rule mining: single-objective [41]
and multi-objective [56]; they both use confidence as the main measure
to be optimized. However, multi-objective algorithms also attempt to
optimize other measures, such as comprehensibility and interestingness.
Similarly to those for incremental rfdes discovery, incremental algorithms
for association rule mining start using information gathered from previ-
ous executions, trying to reduce the search space. In general, the main
strategy prescribes to verify how rules change after updating the data,
and when it is necessary to re-scan the entire dataset in order to find new
valid rules. More specifically, if a rule is valid on the old dataset, and it is
still valid on the new increment, then it is not necessary to re-scan the
entire dataset. Instead, if a rule is no longer valid, then it is necessary to
execute a scan process on the entire dataset.

Some of the methodologies surveyed above (i.e., [14, 161]) are not
implemented, whereas others need to store data structures produced
during the discovery process. Thus, new efficient approaches need to
be designed in order to tackle the discovery of metadata in incremental
scenarios. To this end, several new incremental discovery algorithms for
fds and rfdes are discussed in the next sections, by also describing new
efficient validation and pruning approaches that allow the proposed al-
gorithms to perform an efficient discovery process. Moreover, we discuss
a new fd discovery algorithm, which allows to continuously infer and
update fds holding on a data stream, as data are read from it. Finally,
we present an incremental discovery algorithm for rfds relaxing on the

110 discovery algorithms in dynamic scenarios

extent (rfdes) that is able to manage the validation of candidate rfds and
the generation of possibly new rfd candidates upon the insertion of new
tuples, while limiting the size of the overall search space.

5.3 incremental-fd : an incremental discovery algorithm

for fds

This section presents the first incremental approach we propose for fds
discovery, named Incremental-FD, which is able to update the set of
holding fds upon the insertion of new tuples to a relation instance,
without having to restart the discovery process from scratch. In particular,
we introduce the data representation and the search strategies underlying
Incremental-FD, and then detail data structures, pruning, and validation
processes for discovering fds.

5.3.1 Methodology

The methodology behind the proposed incremental discovery algorithm
reads in input the fds associated to an instance r of a relation schema R
with M attributes, and represents them by using a binary vector of M
elements, aiming to perform an efficient strategy for traversing the search
space. Figure 5.1 shows the binary representation of an fd. In particular,
each fd X → A is represented by means of two binary vectors vX and vA
of M elements, such that the vX contains all the LHS attributes, whereas
the vA contains the RHS attribute of the fd. Each location of such vectors
represents an attribute of the relation schema R. In particular, given an
fd X → A on r, if vX[i] = 1 then the i-th attribute in r belongs to X. In
this way, it is possible to represent fds with hundreds of attributes in a
compact and lightweight data structure.

In order to provide an efficient way to store fds in incremental scenarios,
we propose a new data structure, named linked map, which allows the
proposed algorithm to ensure that fds are quickly saved and retrieved.
In particular, the map uses the binary vector representation of fds as
keys, and the pointer to the next fd according to an ordering criterion,

5.3 incremental-fd : incremental discovery algorithm of fds 111

LHS Bit Array

1 1 0 ... 0
1 20 M-1

0 0 1 ... 0
1 20 M-1

RHS Bit Array

(A B) (C)

dependency

Figure 5.1: Binary vector representation of a functional dependency.

based on the LHS cardinalities. Moreover, the linked map exploits two
arrays to store the first and the last entries of the map, aiming to reduce
the time for insertion operations. This strategy allows to easily perform
a level-wise discovery strategy based on a lattice representation of the
search space.

Incremental-FD algorithm follows the well-known APRIORI strategy
for the generation of candidate fds [84]. It models the search space as a
graph representation of a lattice, which is partitioned into levels, where
level Li contains all attribute combinations of size i (see Section 5.1.1).

Figure 5.2 shows an example of lattice in which 5 attributes have been
considered. Each node in the lattice represents a unique set of attributes,
and it is linked to nodes that contain a direct superset or subset of

BA EDC

ACAB BCAEAD BEBD DECECD

ABDABC ACEACDABE BCDADE CDEBDEBCE

ABCEABCD ACDEABDE BCDE

ABCDE

Figure 5.2: The lattice search space representation for the attribute set
{A,B,C,D,E}.

112 discovery algorithms in dynamic scenarios

A EDC

AC AEAD DECECD

ABC ACEACDABE ADE CDEBCE

ABCEABCD ACDEABDE BCDE

ABCDE

B

BDAB BC

ABD BCD

BE

BDE

(a) Upward discovery

BA EDC

ACAB AEAD BE DECE

ACEABE ADE CDEBDEBCE

ABCE ACDEABDE BCDE

ABCDE

BCD

ABCD

BC BD CD

ABDABC ACD

(b) Downward discovery

Figure 5.3: Discovery steps on the lattice search space representation.

attributes. In other words, each edge refers to the inclusion relation
between two attribute sets. Thus, a lattice permits to consider candidate
fds at each level in terms of lattice’s edges, allowing to represent the
LHS and the RHS of an fd [126]. Based on the APRIORI search strategy,
Incremental-FD algorithm starts from the candidate fds at the lowest
lattice level, i.e., candidate fds with one attribute on the LHS, and it
performs upward and/or downward discovery processes to explore the
search space. More specifically, given a candidate fd φ, if it is not valid at
time τ + 1, then Incremental-FD performs an upward discovery step to
consider possible new candidate fds; otherwise it performs a downward
discovery to check the minimality of φ. The upward discovery step consists
of the specialization of φ accomplished by adding a new attribute on
its LHS. As an example, let us consider the lattice in Figure 5.3(a). If
the candidate fd B → D (highlighted in blue) does not hold at time
τ + 1, then the upward discovery step identifies the following three
candidate fds (highlighted in orange): AB→ D, BC → D, and BE→ D.
Conversely, the downward discovery step consists of the generalization of
φ accomplished by iteratively removing one attribute from its LHS. As an
example, let us consider the fd BCD → A highlighted in blue in Figure
5.3(b); to check its minimality, the downward discovery step verifies the
following three candidate fds (highlighted in orange): BC → A, BD → A,
and CD → A.

5.3 incremental-fd : incremental discovery algorithm of fds 113

After defining the discovery strategy, it is necessary to focus the dis-
cussion on the approach adopted for representing and storing data.
Incremental-FD uses partitions to store a lightweight reference of the tu-
ples. To this end, let us review the formal definition of partitions extracted
from [85]:

Definition 5.3.1 (Partitions). Let u and w be two tuples of a relation r,
then u and w are equivalent with respect to a given set X of attributes
if u[A] = w[A] for all A in X. Any attribute set X partitions the tuples
of the relation into equivalence classes. We denote the equivalence class
of a tuple u ∈ r with respect to a given set X ⊆ R by [u]X, i.e., [u]X =

{u ∈ r | u[A] = w[A] for all A ∈ X}. The set πX = {[u]X | u ∈ r} of
equivalence classes is a partition of r under X. That is, πX is a collection
of disjoint sets of tuples, namely equivalence classes, such that each set
has a unique value for the attribute set X and the union of the sets equals
the relation r. The rank |π| of a partition π is the number of equivalence
classes in π.

The use of tuple partitions avoids accessing data during the discovery
process and it allows to quickly update the set of data, by inserting o
removing one or more items from the partitions. Thanks to this data
representation, Incremental-FD performs an efficient validation of fds
through the refinement property [85]:

Definition 5.3.2 (Refinement). A functional dependency X → A holds
on r iff |πX| = |π(X∪A)|, where πX and π(X∪A) are the sets of equivalence
classes, partitioning r on X and X ∪ A, respectively.

Example 1. Table 5.1 shows a relation instance r in which three new tuples
have been inserted at time τ + 1. Starting from the partitions of the in-
stance r at time τ, that is, πA = {[0, 1], [3, 4], [2]}, πB = {[3, 4], [0], [1, 2]},
πC = {[0, 2], [4], [1, 3]}, πD = {[0, 3], [4], [2], [1]}, the incremental algo-
rithm computes the updated partitions at time τ + 1, that is, π′A =

{[0, 1], [3, 4, 7], [2, 5, 6]}, π′B = {[3, 4], [0], [6, 7], [1, 2, 5]}, π′C = {[0, 2, 5, 7],
[4], [1, 3, 6]}, π′D = {[0, 3, 5], [7], [4], [2], [6], [1]}, and loads the minimal fds
holding at time τ. The latter are represented in terms of binary vectors
and inserted into the linked map.

114 discovery algorithms in dynamic scenarios

ID A B C D

t0 Andorra 1 French French

t1 Andorra 2 English Russian

t2 San Marino 2 French Italian

t3 Cipro 4 English French

t4 Cipro 4 Greek Spanish

+ t5 San Marino 2 French French

+ t6 San Marino 3 English German

+ t7 Cipro 3 French Arabic

Table 5.1: An example of a relation instance updated at time τ + 1.

Figure 5.4 shows the linked map obtained at time τ + 1 for the new
instance of Table 5.1. It visualizes all the considered candidate fds. In
particular, each binary vector in Figure 5.4 represents: 1) a minimal fd

holding at time τ + 1, 2) a candidate fd that has been invalidated at time
τ + 1, or 3) a candidate fd that is not minimal at time τ + 1.

Discovery Process. As said above, the linked map contains a fast array
to directly link the first fd of each LHS cardinality. Thus, the algorithm
starts by considering the fd with the lowest LHS cardinality, which
is selected by using the fast array, as shown in Figure 5.4 for the fd

(0110) → (0001). Consequently, using the refinement property, this fd

is removed because |πX| ̸= |π(X∪A)|. Starting from this, the algorithm
calculates the next candidate fds, by considering LHS supersets (i.e.,
according to the upward search strategy), and verifying if there are no
other minimal fds with respect to them. Thus, only the candidate fds that
cannot be inferred from any other one are added to the map. Therefore,
in the Figure 5.4, the candidate fd (1110) → (0001) is added to the
map, since it is generated from the invalidation of (0110)→ (0001) and

5.3 incremental-fd : incremental discovery algorithm of fds 115

0 1 0 1
1 2 30

1 0 0 0
1 2 30

1 0 1 0
1 2 30

0 0 0 1
1 2 30

0 1 1 0
1 2 30

1 0 0 0
1 2 30

1 0 0 1
1 2 30

0 0 1 0
1 2 30

1 0 0 1
1 2 30

0 1 0 0
1 2 30

1 0 1 0
1 2 30

0 1 0 0
1 2 30

1 1 1 0
1 2 30

0 0 0 1
1 2 30

0 1 1 1
1 2 30

1 0 0 0
1 2 30

0 0 1 1
1 2 30

0 1 0 0
1 2 30

0 0 1 1
1 2 30

1 0 0 0
1 2 30

0 1 0 1
1 2 30

0 0 1 0
1 2 30

1 0 1 0
1 2 30

0 0 0 1
1 2 30

0 1 1 0
1 2 30

1 0 0 0
1 2 30

1 0 0 1
1 2 30

0 0 1 0
1 2 30

1 0 0 1
1 2 30

0 1 0 0
1 2 30

1 0 1 0
1 2 30

0 1 0 0
1 2 30

0 1 1 0
1 2 30

0 0 0 1
1 2 30

1 1 1 0
1 2 30

0 0 0 1
1 2 30

0 1 1 1
1 2 30

1 0 0 0
1 2 30

0 0 1 1
1 2 30

0 1 0 0
1 2 30

0 0 1 1
1 2 30

1 0 0 0
1 2 30

0 1 0 1
1 2 30

0 0 1 0
1 2 30

0 1 0 1
1 2 30

1 0 0 0
1 2 30

0 1 1 1
1 2 30

0 0 0 1
1 2 30

0 1 1 0
1 2 30

0 0 0 1
1 2 30

1 1 1 0
1 2 30

0 0 0 1
1 2 30

0 0 1 1
1 2 30

0 1 0 0
1 2 30

FirstInsertedDependencies

LastInsertedDependencies

Linked Map
K = Dependency V = Next Dependency

Figure 5.4: The linked map related to Example 1.

(1010)→ (0001). Vice versa, the candidate fd (0111)→ (1000) (deleted
with a blue line) generated from the invalidation of (0011) → (1000),
is not added to the map, since there are the fds (0110) → (1000) and
(0101) → (1000) that are minimal with respect to it. The algorithm
proceeds until all fds are explored. In fact, the fd (1110)→ (0001) is not
valid at time τ + 1, and consequently it is removed from the map. Finally,
the algorithm returns the new minimal set of fds holding on the relation
instance at time τ + 1.

The complete discovery process defined according to the proposed
methodology is described in Algorithm 7. In particular, for each fd

holding at time τ (line 1), it verifies if X → A also holds at time τ + 1
through the REFINEMENT function (line 2). Next, if X → A is not valid, the
algorithm generates new candidate fds at a higher level, by excluding
those that can be inferred (lines 3-6). Instead, if X → A is valid, the latter
is added to the result set if and only if it cannot be inferred by other
holding fds at a lower level (lines 8-11).

116 discovery algorithms in dynamic scenarios

Algorithm 7 Incremental Discovery Algorithm

INPUT:
Στ → a set of valid and minimal fds at time τ

OUTPUT: Στ+1 → a set of valid and minimal fds at time τ + 1
1: for all X → A ∈ Στ do
2: if REFINEMENT(X → A) is not valid then
3: Ll+1 ← NEXTLEVEL(X → A)
4: for all Xl+1 ∈ Ll+1 do
5: if not INFERENCE(Xl+1 → A then)
6: Στ ← Στ ∪ {Xl+1 → A}
7: else
8: Ll−1 ← PREVLEVEL(X → A)
9: for all Xl−1 ∈ Ll−1 do

10: if not INFERENCE(Xl−1 → A) then
11: Στ ← Στ \ {X → A}
12: Στ+1 ← Στ

13: return Στ

5.3.2 Experimental Evaluation

In what follows, we present experimental results concerning the perfor-
mance of the proposed approach in discovering fds. In particular, the
performed tests show how the new proposed approach can improve
time performances with respect to the complete re-execution of the fd

discovery algorithm upon updates to the relation instance.
Implementation details. The algorithm has been developed in Java 11.0.2.

In particular, in order to improve the performance of the algorithm and
avoid the re-calculation of partitions, we also introduced a methodology
for caching partitions, since the latter are widely used for the validation
of candidate fds.

Hardware and datasets. Tests have been accomplished on a Mac with an
Intel Xeon processor at 3.20 GHz 8-core and 64GB of RAM. Moreover, to
ensure a proper execution on the considered datasets, the Java memory

5.3 incremental-fd : incremental discovery algorithm of fds 117

heap size allocation has been set to 40GB to permit a proper execution
on datasets with a high number of tuples/attributes.

We evaluated the proposed approach on several real-world datasets1,
previously used for testing fd discovery algorithms [126]. Statistics on
the characteristics of the considered datasets are shown in Table 5.2. Such
datasets are composed of one relation, since fd discovery algorithms
always consider de-normalized databases.

Evaluation process. We carried out different tests by using the minimal
fds extracted through the TANE algorithm [85] as a starting point. All
the tests were performed on datasets split into two parts. The first part
represents the relation instance at time τ, and it has been given in input to
TANE. The complete dataset represents the relation instance at time τ + 1
analyzed by the proposed incremental discovery algorithm. Moreover, we
re-executed the TANE algorithm on the complete dataset. This allowed
us to analyze the resulting fds, and to compare execution times of our
approach with respect to a complete re-execution of TANE. Moreover,
we executed other two experiments: 1) by varying the number of tuples
inserted at time τ + 1; 2) by varying the number of rows/columns of the
dataset.

Analysis of the results. The first test has been conducted by simulating
the insertion of 50% of tuples in the complete dataset. The results are
reported in Table 5.2, where comparisons between the times of TANE
and Incremental-FD are shown. We can notice that Incremental-FD
is, in general, more efficient, despite the variability of the number of
rows/columns. This is mainly due to the pruning strategies introduced
by the incremental approach. However, there are few cases in which the
execution times are equivalent to those of TANE. This happens when
there is a huge number of fds holding at time τ.

The second test aimed to evaluate the relationship between the execu-
tion times and the sizes of the datasets. In particular, we selected datasets
by varying the number of tuples inserted at time τ + 1 in the range
5%-40% with respect to the complete dataset. Results are shown in Figure
5.5. In particular, the results for Nursey (Figure 5.5d) and Citeseer (Figure

1 https://github.com/DastLab/TestDataset

118 discovery algorithms in dynamic scenarios

Dataset Rows Cols %Inserts #fds
TANE

Time (ms)
Incremental-FD

Time (ms)

Abalone 4148 9 50 % 137 308 183
Adult 32561 15 50 % 78 43033 1085
Balance-scale 624 5 50 % 1 130 6
Breast-cancer W. 699 11 50 % 46 316 284
Breast-cancer 285 10 50 % 1 230 132
Bridges 108 13 50 % 142 218 195
Bupa 344 7 50 % 25 134 19
CalIt 10081 3 50 % 1 176 30
Cars 407 9 50 % 67 162 48
Car_data 1727 7 50 % 1 197 7
Chess 1999 7 50 % 6 184 7
Citations 1000 9 50 % 76 203 182
Citeseer 10000 7 50 % 10 456 116
Citeseer 20000 6 50 % 4 721 816
Cmc 1472 10 50 % 1 477 15
DBLP 20000 8 50 % 28 364 172
Echocardiogram 132 13 50 % 538 191 363
Ecoli 335 9 50 % 54 139 24
Haberman 305 4 50 % 0 110 1
Hayes-roth 132 6 50 % 5 119 2
Iris 149 5 50 % 4 116 6
Letter 20000 17 50 % 61 177087 6203
Mammography 960 6 50 % 0 150 1
Nursery 12960 9 50 % 1 1065 45
Servo 166 5 50 % 1 115 3
Tae 150 6 50 % 2 122 14
Tax 100000 15 50 % 364 29368 28598
Wine 178 14 50 % 1374 209 131

Table 5.2: Characteristics of the used datasets and discovery results.

5.5b) datasets show a considerable reduction of the execution times when
considering the incremental approach. This is probably due to the fact
that there were few minimal fds holding at time τ. Moreover, although

5.3 incremental-fd : incremental discovery algorithm of fds 119

(a) Citations dataset. (b) Citeseer dataset.

(c) Letter dataset. (d) Nursery dataset.

Figure 5.5: A comparison between execution times of TANE with respect to our
proposal by varying the percentage of inserted tuples at time τ + 1.

this number is higher for Citations and Letter, the time performances of
our approach are still better than those of TANE (Figures 5.5a and 5.5c).

The last test allowed us to evaluate the discovery time of Incremental-
FD on datasets with a fixed number of tuples, but with a variable number
of columns (first session), and with a fixed number of attributes, but
a variable number of tuples within an interval range of [2000− 20000]
tuples, with step 2000 (second session). For these experimental evalua-
tions DBLP and Citeseer datasets have been selected. Table 5.3 contains
the characteristics of the datasets and the results of the experiments with
a variable number of attributes. Instead, the results of the second session

120 discovery algorithms in dynamic scenarios

Dataset Tuples Attributes %Inserts
TANE

Time (ms)

Incremental-FD

Time (ms)

DBLP 20000 2 3% 220 32
DBLP 20000 3 3% 277 78
DBLP 20000 4 3% 293 126
DBLP 20000 5 3% 366 162
DBLP 20000 6 3% 418 232
DBLP 20000 7 3% 490 245
Citeseer 20000 2 3% 175 2
Citeseer 20000 3 3% 203 2
Citeseer 20000 4 3% 360 3
Citeseer 20000 5 3% 376 45
Citeseer 20000 6 3% 435 73
Citeseer 20000 7 3% 456 89

Table 5.3: A comparison between execution times of TANE with respect to our
proposal by varying the number of attributes.

(a) Citeseer dataset. (b) DBLP dataset.

Figure 5.6: A comparison between execution times of TANE with respect to our
proposal by varying the number of tuples.

are shown in Figure 5.6. By analyzing Table 5.3, we can notice that the
execution times of the proposed approach are always lower than the
execution times of TANE.

5.3 incremental-fd : incremental discovery algorithm of fds 121

Moreover, we noticed that for Incremental-FD the DBLP dataset is
more critical than Citeseer when the number of attributes increases. Also
in this case, this is probably due to the higher number of fds holding
at time τ + 1. Different results have been achieved when considering
the variation in the number of tuples (Figure 5.6), since although this is
non-monotonic, the time trend grows faster for TANE.

122 discovery algorithms in dynamic scenarios

5.4 rexy : an incremental fd discovery algorithm based on

an efficient regex validation process

This section presents a new incremental discovery algorithm for fds
named REXY (RegEX-based incremental discoverY), which represents an
extension of the Incremental-FD algorithm introduced in Section 5.3. It
includes a new validation method exploiting regular expressions (RegExs)
to extract the subset of data affecting discovery results. In particular, we
first describe the new compressed data structures used to optimize time
and space usage of the discovery algorithm. Then, we introduce the
validation method, by discussing how it can be adopted within an incre-
mental fd discovery process. Finally, we demonstrate the effectiveness of
the proposed algorithm on real-world datasets adapted for incremental
scenarios, also by comparing it with the previously described algorithm
Incremental-FD.

5.4.1 Methodology

The methodology underlying REXY represents a dataset by using lightweight
references to its tuples, without losing significance. To this end, we map
each attribute value to a unique numeric value, which represents an ID
in the context of that attribute and it allows us to efficiently identify data
updates and support the validation process. In particular, whenever new
tuples are added to the dataset, the mapping of their values must be
accomplished consistently with the previous attribute mappings. This
representation yields a fast tuple comparison during the fd discovery
process, and permits to create the RegEx, avoiding encoding issues over
textual attribute values.

Example 1. Let us consider the snippet of the Cars dataset in Table 5.4a
containing 9 attributes. As shown in Table 5.4b, after the mapping phase,
each value has been mapped to a unique value for each attribute. For
instance, let us suppose that the following two tuples are inserted in the
dataset:

5.4 rexy : an incremental discovery algorithm of fds 123

t7 Ford Torino 17.0 8 302.0 140.0 3449. 10.5 70 US
t8 BMW 26.0 4 121.0 113.0 2234. 12.5 70 EU

their values are parsed according to the previous values of the dataset,
and mapped to the following two tuples:

t7 7 7 3 7 7 7 6 1 3

t8 3 3 1 3 3 3 3 1 1

We can notice that, after the mapping step, the tuple t8 has become
equal to t3. Thus, it is not necessary to store t8, whereas t7 is stored
because it represents a new value combination for the considered dataset.

The mapping step permits to lighten the representation of data, but
it is necessary to define a novel data structure enabling a fast retrieval
of candidate fds to support the validation process. To this end, the
latter exploits a hashmap, namely RegExHashMap (see Figure 5.7), which
contains keys representing unique value combinations of tuples, and
values representing the number of occurrences of them. In this way, it
is possible to avoid duplicate entries and to quickly perform insertion
and/or removal operations.

An efficient discovery methodology should permit to quickly validate
candidate fds on the relation instance under analysis, and ensure high
adaptability to possible data changes. The proposed validation method
relies on RegExs and exploits the RegExHashMap for fast retrieval op-
erations. In other words, the RegExHashMap provides a compact string
representation of data. Thus, a validation method relying on RegExs per-
mits to efficiently discover possible violations according to the candidate
fds under analysis. More specifically, let φ : X → A be a candidate fd

on a relation instance r of a relation schema R, the proposed approach
creates a RegEx ρ to validate φ r of R. For sake of clarity, we describe the
creation of ρ by considering a single change operation, consisting in the
insertion of a single new tuple t. However, the strategy could be easily
adapted to consider multiple new tuples by chaining different RegExs.
In particular, the validation approach considers the projections t[X] and

124 discovery algorithms in dynamic scenarios

Car

(A)

MPG

(B)

Cylinders

(C)

Displacement

(D)

Horsepower

(E)

Weight

(F)

Acceleration

(G)

Model

(H)

Origin

(I)

t1 Peugeot 504 25.0 4 110.0 87.00 2672 17.5 70 EU

t2 Audi LS 24.0 4 107.0 90.00 2430 14.5 70 EU

t3 BMW 26.0 4 121.0 113.0 2234 12.5 70 EU

t4 Toyota C. 31.0 4 71.00 65.00 1773 19.0 71 JPN

t5 Fiat 124B 30.0 4 88.00 76.00 2065 14.5 71 EU

t6 Ford M. 21.0 6 200.0 85.00 2587 16.0 70 US

t7 Ford Torino 17.0 8 302.0 140.0 3449 10.5 70 US

(a) Before the mapping step.

Car

(A)

MPG

(B)

Cylinders

(C)

Displacement

(D)

Horsepower

(E)

Weight

(F)

Acceleration

(G)

Model

(H)

Origin

(I)

t1 1 1 1 1 1 1 1 1 1

t2 2 2 1 2 2 2 2 1 1

t3 3 3 1 3 3 3 3 1 1

t4 4 4 1 4 4 4 4 2 2

t5 5 5 1 5 5 5 2 2 1

t6 6 6 2 6 6 6 5 1 3

t7 7 7 3 7 7 7 6 1 3

(b) After the mapping step.

Table 5.4: Snippet of the Cars dataset to illustrate validation and discovery strate-
gies of REXY algorithm.

t[A] of the tuple t on the attributes of X and on A, respectively, to select
value combinations that must be involved in the validation process.

Formally, to validate φ it is necessary to create a RegEx for the attribute
set X = B1, B2, . . . , Bk and the attribute A, by considering t[B1], t[B2], . . . ,
t[Bk], and t[A] in the following way:

ρLHS = t[B1][,]([0-9]+[,])+t[B2][,]([0-9]+[,])+. . . ([0-9]+[,])+t[Bk]
ρRHS = (?!.+t[A]).+ We can notice that ρLHS contains the comma character

5.4 rexy : an incremental discovery algorithm of fds 125

...

...

...

...

...

...

...

...

7 7 3 7 7 7 6 1 3 28392277

5 5 1 5 5 5 2 2 1 35620476

2 2 1 2 2 2 2 1 1 41754206

1 1 1 1 1 1 1 1 1 42318064

6 6 2 6 6 6 5 1 3 45963648

3 3 1 3 3 3 3 1 1 51963419

4 4 1 4 4 4 4 2 2 62772830

1

1

1

1

1

1

2

...

...

...

...

...

...

...

...

1 1 1 1 1 1 1 1 1 42318064

Keys

hash

Values

Tuples

Figure 5.7: An example of RegexHashMap data structure.

as a separator between numerical values. The latter can represent t[Bi],
with i = 1, . . . , k, or a sequence of numeric characters, i.e., [0 − 9]+,
representing all the possible values for the attributes that are not in φ.
In fact, one of the strengths of this approach is that it avoids to consider
specific values for attributes not included in the candidate fds under
analysis. Similarly to the LHS, it is necessary to define a RegEx for the
RHS, i.e., ρRHS. To this end, ρRHS represents the negative look ahead of
t[A] [15], enabling to consider only the tuples in which the value t[A]

does not appear. The combination of ρLHS and ρRHS yields a new RegEx
ρφ, which is used to validate the candidate φ after the insertion of the
tuple t.

Example 2. Let us consider the snippet of the Cars dataset after the
mapping step (Table 5.4b), a candidate fd φ : {A, C, F} → H, and the
new inserted tuple t7 defined in Example 1. The validation algorithm

126 discovery algorithms in dynamic scenarios

[0-9.]+

Car
(A)

MPG
(B)

Cylinders

(C)

Displacement
(D)

Horsepower

(E)

Weight
(F)

Acceleration
(G)

Model

(H)

Origin
(I)

Ford Torino 17.0 8 302.0 140.0 3449.0 10.5 70 US

[7][7] [3]

[0-9.]+ [0-9.]+ [0-9.]+ [0-9.]+

Car
(A)

MPG
(B)

Cylinders

(C)

Displacement

(D)

Horsepower

(E)

Weight

(F)

Acceleration
(G)

Model

(H)

Origin
(I)

7 7 3 7 7 7 6 1 3

 = [7][,][0-9.]+[,][3][,][0-9.]+[,][0-9.]+[,][7]

 = (?!.*1).+

[1]

Figure 5.8: An example of RegEx creation for Cars dataset.

should check if this new tuple yields the invalidation of φ, according
to the validation approach defined above. To this end, it is necessary to
define the RegEx ρφ to validate φ, as shown in Figure 5.8. We can observe
that the validation approach permits to construct ρLHS according to the
new values 7, 3, and 7, projected by means of t7[A], t7[C], and t7[F] for
all the attributes included in the LHS of φ, and by considering a generic
numeric value (i.e., [0− 9]∗) for the remaining attributes (see Figure 5.8).
Moreover, it is necessary to define the regex ρRHS for the attribute H, by
considering the negative look ahead of t7[H], in order to check if there
exists at least one combination of values that is equal to the projection of
the new tuple on the attributes A, C, and F, but with a different value for
attribute H.

5.4.2 The REXY Algorithm

Algorithm 8 describes the main procedure of REXY. It takes in input
a set of minimal fds Στ holding at time τ on a relation instance r, the

5.4 rexy : an incremental discovery algorithm of fds 127

Algorithm 8 The REXY algorithm

INPUT:
Στ → a set of minimal fds at time τ
Dτ+1 → the set of new tuples for the dataset D at time τ + 1
D−τ+1 → the set of removed tuples for the dataset D at time
τ + 1
Γτ → an instance of the RegExHashMap at time τ

OUTPUT: Στ+1 → a set of new valid and minimal fds at time τ + 1

1: Γτ+1 ← Γτ+1 \ D−τ+1 ▷ RegExHashMap update
2: Γτ+1 ← Γτ+1 ∪ Dτ+1
3: for each φ : {X → A} ∈ Στ in ascending order of X do
4: if validation_regex(φ, Γτ, Dτ+1) is True then
5: Στ+1 ← Στ+1 ∪ φ
6: Σd ← do downward_discovery(φ) as long as possible
7: Στ ← Στ ∪ select all valid candidates from Σd
8: else
9: Στ ← Στ\φ

10: Σu ← upward_discovery(φ)
11: Στ ← Στ∪ select_minimal_fds(Σu)

12: Στ+1 ← Στ+1∪ select_minimal_fds(Στ)
13: return Στ+1

sets Dτ+1 and D−τ+1 updating r at time τ + 1, and an instance of the
RegExHashMap Γτ at time τ.

REXY starts updating the RegExHashMap by removing all tuples
contained in D−τ+1 (line 1), and by inserting those contained in Dτ+1

(line 2). Then, it starts the discovery process by considering Στ as the
set of candidate fds. In particular, REXY performs a discovery step in
ascending order of the LHS cardinalities in Στ, by selecting at each step
from Στ all the candidate fds φ : X → A from Στ with a specific LHS
cardinality (line 3). For each φ, REXY checks if it is still valid at time
τ + 1, according to the validation approach defined in Section 5.4.1 (line
4). If this is the case, REXY looks for other fds on a lower lattice level,

128 discovery algorithms in dynamic scenarios

by performing a downward discovery step (lines 5-7). Otherwise, REXY
removes φ from the set of analyzed candidate fds (line 9), and then it
generates new candidate fds on a higher lattice level, by performing an
upward discovery step (line 10), filtering out the non-minimal candidate
fds (line 11). At the end, REXY returns all the fds that are not minimal
at time τ + 1 with respect to the fds already validated in the previous
iteration step (lines 12 and 13).

Algorithm 9 provides the validation procedure of REXY. Let us consider
a candidate fd φ : X → A at time τ+ 1, an instance of the RegExHashMap
Στ at time τ, and the set of the new tuples Dτ+1 at time τ + 1. The
procedure allows REXY to create a new regular expression (RegEx) for
each tuple t received at time τ + 1, and to check the validity of each
candidate fd on the updated instance. The validation procedure starts
by considering each new tuple in Dτ+1 (line 2). Then, for each of them,
REXY defines a new RegEx according to the validation approach defined
in Section 5.4.1. In particular, for each attribute, B ∈ attr(R), if B does
not belong to the attributes of X and it differs from attribute A, then
the procedure adds a generic value to the final regex ρφ (lines 7-10).
Otherwise, if B belongs to the attributes of X, then the procedure adds
the corresponding value for the analyzed tuple t[B] to the final RegEx
ρφ (lines 12-13). However, if none of the previous cases occurs, it means
that the attribute B is equal to A, so the procedure adds the negative
look ahead of this value to ρφ (lines 14-15). After the creation of ρφ,
REXY checks if there exists at least a tuple in the RegExHashMap Γτ

that matches this RegEx. If so, φ is not valid on the updated instance at
time τ + 1, since there exists at least one pair of tuples that invalidates φ

(lines 19-20). Otherwise, if no regex matches after updating the instance,
it means that the candidate φ is valid at time τ + 1 (line 21).

It is worth notice that, while the implementation of REXY considers
several code optimizations and takes advantage of the efficient data struc-
tures defined above, for sake of clarity the pseudo-codes of Algorithms 8

and 9 do not provide details on such optimizations.

5.4 rexy : an incremental discovery algorithm of fds 129

Algorithm 9 validation_regex

INPUT:
φ : X → A → a candidate fd to validate
Dτ+1 → the set of new tuples for the dataset D at time τ + 1
Γτ → an instance of the RegExHashMap at time τ

OUTPUT:
True→ If the fd is valid
False→ Otherwise

1: ρφ ← ∅
2: for each t ∈ Dτ+1 do
3: ATTRS← attr(R)
4: i← 0
5: for each B ∈ attr(R) do ▷ RegEx creation
6: if B ̸∈ X ∧ B ̸= A then
7: if i ̸= 0 then
8: ρφ ← ρφ ∪ ([,][0− 9]+)∗

9: else
10: ρφ ← ρφ ∪ ([0− 9] + [,])∗

11: else
12: if B ∈ X then
13: ρφ ← ρφ ∪ t[B]
14: else if B == A then
15: ρφ ← ρφ ∪ (?!.∗t[B]).+
16: if i < |attr(R)| − 1 then
17: ρφ ← ρφ ∪ [,]
18: i← i + 1
19: if Γτ.EXIST_MATCHING(ρφ) is True then
20: return False

21: return True

5.4.3 Experimental Evaluation

In the following, we present experimental results concerning the per-
formance of REXY in discovering fds. In particular, the performed tests

130 discovery algorithms in dynamic scenarios

show how the new proposed approach can improve time performances
with respect to the incremental discovery algorithm Incremental-FD.

Implementation details. REXY algorithm has been developed in Java 15

and evaluated on an iMac Pro, with an Intel Xeon processor at 3.40 GHz,
36-core, and 128GB of RAM.

Datasets. Table 5.5 reports statistics on the real-world datasets2 consid-
ered for the evaluation of REXY, including the corresponding execution
times and memory consumption.

Evaluation process. For each dataset D we simulated an incremental
scenario by executing REXY on the datasets Di, 0 ≤ i ≤ |D|, each derived
by adding the i-th tuple of D to the dataset Di−1, where D0 is the empty
dataset. This allowed us to analyze the performances of the validation
process on each candidate fd. To this end, Table 5.5 reports the minimum,
maximum, and average times of the validation process for each dataset.
It also reports the number of resulting fds, the number of performed
validations, and the memory peaks registered at the end of the last
execution of REXY on each dataset.

Analysis of the results. The results highlight that the average execution
times are almost always less than 1 second, except for the Zoo, Letter,
Lymphography, Hepatitis, and Parkinson datasets. The higher execution
times are probably due to the large number of fds invalidated during the
discovery process, which leads to a large number of new candidate fds
to be validated. In fact, regarding the number of validations that REXY
performed, we can observe that often it is high, and it tends to increase
when the number of columns and/or rows increases. Nevertheless, the
memory peaks were low, except for the Hepatitis dataset. This could
be due to the high number of different numeric values of some of its
attributes, yielding a big number of value combinations.

Concerning the validation process, the average times of this process are
almost always less than 30 milliseconds per extracted fd, and the maxi-
mum time almost never exceeds 500 milliseconds, except for the Credit
Screening, Letter, and Parkinson datasets. Despite these time peaks, the

2 All datasets adopted for this experimental evaluation are available on a GitHub repository:
https://github.com/DastLab/TestDataset

https://github.com/DastLab/TestDataset

5.4 rexy : an incremental discovery algorithm of fds 131

Dataset
Cols
[#]

Rows
[#]

FDs
[#]

Execution
(Avg)
[ms]

Validations
Memory

[MB][#]
(Min) (Max) (Avg)

[ms] [ms] [ms]

1 Hayes-roth 5 132 4 1 648 0.88 9.71 0.61 103

2 Iris 5 150 4 1 777 0.64 13.51 0.63 95

3 Balance-scale 5 625 1 1 1343 0.39 12.63 0.47 100

4 Bupa 6 345 16 1 7006 0.18 7.29 0.14 40

5 Appendicitis 7 107 72 4 7891 0.39 12 0.46 40

6 Chess 7 28056 1 0.88 47257 0.21 9.16 0.85 66

7 Ecoli 8 336 37 16 13360 0.27 16.81 0.43 128

8 Cars 9 406 67 10 26080 0.48 10.38 0.87 43

9 Tic-tac-toe 9 958 9 2 14652 0.37 11.43 0.60 42

10 Yeast 9 1484 37 4 69618 0.36 10.76 0.37 44

11 Abalone 9 4148 137 164 710156 0.42 213 11.12 114

12 Nursey 9 12960 1 7 59160 0.35 49 9.43 51

13 Glass 10 214 124 23 28950 0.51 28.16 1.57 42

14 Cmc 10 1473 1 2.97 17832 0.66 13.51 0.81 43

15 Breast-cancer 11 699 46 11 57336 0.32 14.12 0.66 66

16 Fraud-detection 11 28000 48 332 1723242 0.17 483 49.28 168

17 Poker-hand 11 264000 1 19 2401240 0.93 96.67 6.21 206

18 Heart-failure 12 299 463 68 139463 0.13 6.65 2.04 169

19 Echocardiogram 13 132 538 142 66115 0.31 86 1.98 59

20 Bridges 13 108 142 80 34111 0.46 45 1.23 75

21 Wine 14 178 1374 25 171074 0.69 126 25.86 137

22 Australian 14 690 535 331 503115 0.53 199 3.06 124

23 Credit-screening 15 690 761 550 622360 0.76 561.37 7.77 686

24 Adult 15 32560 60 281 3747386 0.83 23 12.53 803

25 Tax 15 6848 310 680 2378734 0.76 427 16.12 127

26 Zoo 17 101 231 4848 592278 0.66 358 4.13 2010

27 Letter 17 20000 61 3799 592278 0.82 1049 7.81 2592

28 Lymphography 19 147 2730 71844 5156312 14.26 34 20.34 4921

29 Hepatitis 20 155 8250 194553 4528681 11.58 170 126.57 48878

30 Parkinson 24 195 1724 524195 874789 16.28 16470 10492.83 127

Table 5.5: Characteristics of the considered real-world datasets and REXY per-
formances on them.

average validation times demonstrate that such values can be considered
as outliers (except for Parkinson). Figure 5.9 shows the variability of the
validation times for each dataset considered in our evaluation. It is worth
noting that, the number of rows and columns in a dataset does not affect

132 discovery algorithms in dynamic scenarios

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Dataset ID

10 1

100

101

102

103

104
Va

lid
at

io
n

Ti
m

es
 [m

s]
Attributes Minimum Time Maximum Time Average Time

6
8
10
12
14
16
18
20
22

Nu
m

be
r o

f A
ttr

ib
ut

es

Figure 5.9: Validation times for each dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Dataset ID

104

103

102

101

100
0

100

101

102

103

104

105

Av
g

Va
lid

at
io

n
Ti

m
es

 [m
s]

0.6 0.6 0.5 0.1 0.5 0.8 0.4 0.9 0.6 0.4

11.0 9.0
1.6

0.8 0.7

49.0
6.0

2.0 2.0
1.2

25.0
3.1

7.8 12.016.1
4.0 7.8

20.0
126.0

10492.0

1.7 1.5

16.4
2.5

8.6
43.4

2.4 2.7
9.1 9.6

71.4 107.2

2.0
15.3 7.8

112.6

1337.1

2.6 5.0 7.1
38.563.348.7

166.078.9
9.9 15.823.8

132.1

2049.0

REXY Incremental-FD

Figure 5.10: Validation times of REXY and Incremental-FD.

the average execution time for validating the candidate fds, although
the complete execution times increase on average when the number of
attributes increases.

Finally, we performed a comparative evaluation of REXY with respect
to the algorithm Incremental-FD presented in Section 5.3. Since both
the algorithms use the same search strategy, the comparison allowed us
to highlight the improvements in terms of execution times and mem-
ory consumption of the validation strategy proposed in REXY. Figure
5.10 shows the average validation times of both algorithms on the 30
considered datasets. We can notice that REXY outperforms Incremental-
FD by several orders of magnitude, ranging from 2 to 7, except for the

5.5 cod3 : continuous discovery of fd from data streams 133

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Dataset ID

102

103

104

M
em

or
y

Co
ns

um
pt

io
n

[M
B] REXY Incremental-FD

Figure 5.11: Memory consumption of REXY and Incremental-FD.

Parkinson dataset (number 30) for which Incremental-FD takes advan-
tage of its caching strategy that enables it to reuse the computational
results performed in previous iterations. Concerning memory consump-
tion, Figure 5.11 highlights that REXY requires less memory with respect
to Incremental-FD, even though this gap is less for most of the datasets
with a high number of columns. In particular, for Hepatitis (number 29)
the two algorithms require almost the same amount of memory.

5.5 cod3 : continuous discovery of fd from data streams

This section presents a new fd discovery algorithm, named COD3 (Con-
tinuous Discovery of fd from Data Streams), which allows to continuously
infer and update fds holding on a data stream, as the data are read from
it. To the best of our knowledge, COD3 represents the first proposal to
use a non-blocking architectural model for this problem. In what follows,
we first provide an overview of the discovery strategy underlying COD3,
its architecture, and its new validation methodology.

1 0 0 1 1 0 1 1 0 0

A B C D E A B C D E

Figure 5.12: Binary vector representation of the fd ADE→ BC.

134 discovery algorithms in dynamic scenarios

5.5.1 Methodology

The proposed algorithm follows the column-based strategy, which con-
siders the search space as an attribute lattice, where each node contains
a unique set of attributes directly connected to supersets or subsets of
them (Figure 5.2).

Similarly to the algorithm Incremental-FD, COD3 uses a binary vector
representation that permits to encode fds in a compact way (see Figure
5.12). It consists of two binary vectors vX and vY, representing the LHS
and RHS, respectively, of an fd. Such binary vectors contain as many
elements as the number of attributes in a relation schema R, so that if an
attribute appears in the LHS (resp. RHS) of an fd the element of vX (resp.
vY) associated to it will contain a 1. In this way, all the candidate fds
X → A sharing the same LHS are compressed in a single pair of vectors
(vX, vY), where vY contains a 1 for all the attributes determined by X.

Figure 5.13 provides an overview of the discovery strategy underlying
COD3. It starts by considering a tuple read from the stream and the set
Στ of all minimal fds holding at time τ. Notice that, Στ becomes the
set of candidate fds, and will be processed through a linked map (see
Section 5.3), which permits to perform a discovery process in ascending
or descending order of the LHS cardinality.

As discussed in Section 5.1.2, when a sliding window is enabled, the
algorithm can read a novel tuple or an expired one according to the sliding
window mechanism. COD3 manages this type of mechanism through
the Negative Tuple Approach (NTA) [67], which yields the tuple expiration
notification on the stream. Thus, expired tuples will be read from the
stream as particular tuples, i.e., t−. Nevertheless, from a theoretical point
of view, no novel issue might be considered with expired tuples. However,
the above described issues must be taken into account in an alternative
way, i.e., by also considering the set of maximal non-fds, Qτ, which can
be always determined by using the set of minimal fds Στ at time τ [140].
Thus, when COD3 receives an expired tuple t−, its underlying strategy
firstly calculates the set Qτ of maximal non-fds at time τ, which is in turn

5.5 cod3 : continuous discovery of fd from data streams 135

Downward

Discovery

Upward

Discovery

Is

valid?

The set of
candidate FDs at level

l+1 derivable from

The set of
candidate FDs at level l-1

derivable from

Tuple

Path Matrix

at time

was

minimal

at time ?

True

True

True

False

Any candidate

FD in ?

False

(a)

(b)

Add minimal
candidate FDs

to the set

Initialization

Selection of a candidate FD

from the set of candidates at

level L of the lattice

Selection of
minimal candidate
FDs from

Selection of
minimal FDs

from

False

False

L = L + 1

True

Is

minimal w.r.t.

 ?

False

True

True

The Level L is
initially set to 0

TrueIs tuple
new?

False

Updated Set of
minimal FDs at time

Set of minimal

FDs at time

Set of minimal

FDs at time

(c)

Selection of a candidate FD

from the set at level L FROM

Downward

Discovery

The set of
candidate FDs at level l-1

derivable from

Add the set

to the set

EXTRACTION OF MAXIMAL NON-FDs
at time

IS

valid?

Add candidate

FDs to the set

Remove from
 FDs to the set

L = L - 1

Any

candidate

FD left on

?

Any candidate

FD left in ?

True

False

False

True

True False

Add minimal FDs

to the set

Any candidate

FD left?

Figure 5.13: Overview of the incremental discovery strategy of COD3.

processed to a linked map3. Thus, COD3 performs a discovery step by
processing the non-fds in descending order of their LHS cardinality. It is
important to notice that, when a tuple expires no fds will be invalidated
but some non-fds can become valid. To this end, the strategy underlying
COD3 first checks if there exists at least one non-fd that has become
valid after the window sliding step. More formally, for each candidate fd

φ : X → A, if φ is valid after the window sliding step, then COD3 checks
its minimality with respect to the already validated fds in the set Στ,
and removes those that have become not minimal, i.e., those that can be
inferred by the newly validated one (Figure 5.13c). Then, COD3 performs

3 A procedure to compute the set of maximal non-fds is shown in [140].

136 discovery algorithms in dynamic scenarios

Sepal
Length

Sepal
Width

Petal
Length

Petal
Width

Class
Label

(A) (B) (C) (D) (E)

4.8 3.0 1.4 0.1 Iris-setosa
4.8 3.0 1.4 0.3 Iris-setosa
5.0 2.0 3.5 1.0 Iris-versicolor
5.0 2.3 3.3 1.0 Iris-versicolor

Table 5.6: Snippet of iris to illustrate the discovery strategy.

a downward discovery to verify if there exist other non-fds at lowest
lattice levels that are minimal with respect to the already considered ones.
The output of this step is the updated set Στ of minimal and valid fds at
time τ, after processing a window sliding step.

In the case of a novel tuple t read from the stream, the strategy un-
derlying COD3 also considers a path matrix evaluating the impact of the
new tuple on the already processed ones, as discussed in the following.
COD3 considers the set Στ of minimal fds at time τ as candidates at
time τ + 1, and it performs the discovery step by processing them in
ascending order of their LHS cardinality. Only for the first tuple t read
from the stream at time 0, the set of candidates Στ will include all the
fds associated to the edges connecting lattice level 1 nodes to level 2
ones, that is, those connecting nodes with one attribute to those with two
attributes. In particular, for each candidate fd φ at time τ + 1, the process
tries to validate it, and if it does not hold (Figure 5.13a), it generates new
candidate fds by considering the direct supersets of its LHS. This step
is named upward discovery (Figure 5.3a). Vice versa, if φ is valid (Figure
5.13b), and it is not contained in Στ (i.e., it was not minimal at time τ),
then it undergoes the minimality check, in which COD3 evaluates all
the direct subsets of its LHS on the previous lattice level. Such a step is
named downward discovery (Figure 5.3a).

At each subsequent iteration, the process verifies the invalidation and
refutation of minimality issues defined in Section 5.1.2. In particular, let φ:

5.5 cod3 : continuous discovery of fd from data streams 137

B EDCA

ABCD ACDE BCDEABCE ABDE

ABCDE

BCDADE CDEBDEBCEABEABD ACEACDABC

BD CDAC BC BE DECEAD AEAB

candidate-fd new candidate-fds

(a) An example of upward discovery.

ABCD ACDE BCDEABCE ABDE

ABCDE

candidate-fd new candidate-fds

BCDADE CDEBDEBCEABEABD ACEACDABC

BD CDAC BC BE DECEAD AEAB

B EDCA

(b) An example of downward discovery.

Figure 5.14: An example of lattice for Iris dataset.

X → A be the analyzed candidate fd, based on the result of validation,
COD3 generates the set of candidate fds by performing the following
steps: for each attribute B of the dataset not contained in the LHS of
φ, generate a candidate fd X ∪ B → A (upward discovery step), and
for attribute B ∈ X generates a candidate fd X \ B → A (downward
discovery step). However, both steps exploit a refutation of minimality
check strategy in order to discard new candidates that are not minimal.
The output of this step is a new set Στ+1 of minimal and valid fds at time
τ + 1.

Example 1. Let us consider the snippet of the Iris dataset4 shown in Table
5.6. If the fd B→ C is not valid at time τ + 1, then one or more candidate
fds on the next lattice level could be valid (e.g., AB→ C, AD → C, and
AE→ C) as shown in Figure 5.14a. Vice versa, if the fd AB→ E is valid
at time τ + 1, then it is necessary to check if one or more valid fds on the
previous lattice level have not already been validated (e.g., A→ E and
B→ E). If so, the fd AB→ E is valid but not minimal (Figure 5.14b).

4 https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris

138 discovery algorithms in dynamic scenarios

Static
Source

Stream

Source

static

reader

component

dynamic
reader

component

graph
validation

component

COD3

INPUT
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 1 1 0 0
1 0 1 1 0
1 1 0 1 0
0 1 1 0 0
0 0 0 0 0

PATHS MATRICES

INPUT NTA

window

component
Stream

Source

[ID=1, A=5.0, B=2.3, C=3.3, D=1.0, E=Iris-Versicolor][ID=1, A=5.0, B=2.3, C=3.3, D=1.0, E=Iris-Versicolor][Time=1613121132615, A=5.0, B=2.3, C=3.3, ..., Expired=False]

[Time=1613121132615, A=50, B=10,...] [Time=1613121132615, A=50, B=10,...] [Time=1613121132615, A=50, B=10,...]

[Time=1613121130015, A=50, B=10, ..., Expired=True] [Time=1613121130015, A=50, B=10, ..., Expired=True] [Time=1613121130015, A=47, B=8, ..., Expired=True]

[Time=1613121132615, A=50, B=10, ..., Expired=False] [Time=1613121132615, A=50, B=10, ..., Expired=False] [Time=1613121132615, A=50, B=10, ..., Expired=False]

SPOUT BOLT

OUTPUT

dependencies

X1 A1
X2 A2

Xn An
. . .

VALIDATION

GRAPH

Figure 5.15: The COD3 pipeline.

5.5.1.1 The pipeline of COD3

COD3 is a novel algorithm conceived to enable an fd discovery process
suitable for data streams. It relies on a non-blocking strategy (also known
as pipeline processing), in which it is not necessary to wait for the
complete execution of the process on a tuple to start processing the next
tuple.

Figure 5.15 shows the components of the COD3 pipeline. It consists of
two components representing data stream sources enabling the reading of
data from static or dynamic sources: Static Reader Component and Dynamic
Reader Component, respectively. The former reads data from any database
instance (e.g. a real-world dataset), whereas the latter reads data from
external data providers (e.g. Sensors, Social Networks, Streaming APIs,
and so forth). Both these components contain a mapping mechanism
transforming information into a stream of tuples, by splitting each tuple
into a list of values, where each value is assigned a name.

In general, COD3 uses a single stream source type at a time whenever
it considers heterogeneous sources. Each component reads the data and
sends them to the next component devoted to the execution of the pre-
processing steps in order to start the discovery process. In particular, in
case of a dynamic source, upon reading a new tuple from the stream

5.5 cod3 : continuous discovery of fd from data streams 139

COD3 exploits a negative tuple approach (NTA) to check for expired
tuples, also integrating a sliding window mechanism within an NTA
Window Component, which is responsible for reading new tuples from the
source. As described above, this mechanism allows COD3 to define a time
interval within which the validity and minimality of the discovered fds
are guaranteed. Thus, the window scrolls according to the time interval,
possibly causing the expiration of some tuples (denoted by t−), which
will be sent on the stream before processing the new ones, since their
expiration might make valid previously invalidated fds. Notice that, the
sliding window mechanism is activated according to the COD3 execution
settings. By default, COD3 will perform the discovery process by only
considering tuple insertions. The NTA Window Component sends both
new and expired tuples to the Graph Validation Component, which in turn
updates the data structures (e.g., the validation graph) based on their
values. The Graph Validation Component can also receive tuples from static
sources (e.g., real-world datasets), by means of a Static Reader Component,
but in this case no expired tuple is considered.

At the end of the process, the Graph Validation Component outputs the
updated data structures and sends the read tuples to the next component
that is responsible for executing the discovery process. The latter executes
the discovery process according to the strategy described in Figure 5.13,
and extracts all the fds holding at time τ + 1. Notice that, while the
discovery algorithm updates the set of minimal fds, all the previous
components continue to perform their tasks by processing the new tuples
received from the stream.

The pipeline behind COD3 relies on the Apache Storm framework5,
which is one of the most widely used technologies for managing data
streams, mainly due to its adaptability. Apache Storm manages sequences
of raw tuples continuously received from data providers as a collection
of key-value items, and uses several control mechanisms to minimize
the loss of tuples by automatically reintroducing them in the stream.
The architecture of an application based on Storm is modeled as a di-
rected acyclic graph (DAG), named topology, which represents a graph

5 https://storm.apache.org/

140 discovery algorithms in dynamic scenarios

of independent execution modules, where nodes are some individual
components, and edges represent the data passing through nodes. The
components can be of type spout or bolt. A spout normally reads data
from an external data source (e.g. messages, database updates, and any
other static or dynamic data source), and inserts tuples into the topology.
Instead, a bolt receives a set of tuples from its input stream, performs
some computations on them, and then optionally inserts a new set of
tuples into its output stream. A bolt processes tuples in order to send
them to other bolts for further processing steps.

5.5.2 Graph-based fd Validation

The validation process underlying COD3 relies on a new graph structure,
named validation graph, which stores lightweight references to the tuples
that continuously arrive from the stream. More formally, let M be the
number of attributes of a relation schema R, a validation graph G is a

1-1-1-1-1 | #1
1-1-1-2-1 | #1
3-2-1-2-1 | #1

l1 = A

l3 = C

l5 = E

l2 = B

l4 = D

1 | #2

 4.81

2 | #2

 5.02

3 | #1

 4.53

1-1 | #2

 3.01
2-2 | #1
3-2 | #1

 2.02

2-3 | #1

 2.33

1-1-1 | #2
3-2-1 | #1

 1.41

2-2-2 | #1

 3.52

2-3-3 | #1

 3.33

1-1-1-1 | #1

 0.11

2-2-2-3-2 | #1
2-3-3-3-2 | #1

2 VERSI.

2-3-3-3 | #1
2-3-2-3 | #1

 1.03

1-1-1-2 | #1
3-2-1-2 | #1

 0.32

1 SETOSA

(a) A new tuple t is read from the
stream.

1 | #1

 4.81

2 | #2

 5.02

3 | #1

 4.53

1-1 | #1

 3.01
2-2 | #1
3-2 | #1

 2.02

2-3 | #1

 2.33

1-1-1 | #1
3-2-1 | #1

 1.41

2-2-2 | #1

 3.52

2-3-3 | #1

 3.33

1-1-1-1 | #0

 0.11

2-2-2-3-2 | #1
2-3-3-3-2 | #1

2 VERSI.

 1.03

2-3-3-3 | #1
2-3-2-3 | #1

1-1-1-2 | #1
3-2-1-2 | #1

 0.32

1-1-1-1-1 | #0
1-1-1-2-1 | #1
3-2-1-2-1 | #1

1 SETOSA

l1 = A

l3 = C

l5 = E

l2 = B

l4 = D

(b) An expired tuple t− is read from
the stream.

Figure 5.16: An example of validation graph.

5.5 cod3 : continuous discovery of fd from data streams 141

structure with M levels, where each node at level li is associated to a
value for attribute Ai that is instantiated in the stream, whereas each
edge connects nodes on adjacent levels only if they represent attribute
values appearing at least once in the same tuple read from the stream.
Thus, the nodes at level li in G contain the value distribution of attribute
Ai in a stream of tuples instantiating R.

A node g of G can be defined as a quintuple g = (Ai, ai, id, li, Γ), where
Ai is an attribute of R, ai one of its values instantiated in the stream, id
is an identifier to distinguish ai from all other values instantiated in the
stream for attribute Ai, li the level of Ai, and Γ the set of all distinct paths
connecting g to a node at level 1. More specifically, an element of the set
Γ is a pair containing a path and a counter, which states that the path has
occurred that number of times. Clearly, for a node at the li-th level, Γ will
contain paths of length i.

In what follows, we explain how the validation graph is modified
according to the type of tuple read from the stream, i.e., a new tuple or
an expired one, t and t−, respectively.

When a new tuple t is read from the stream, the existing validation
graph can be updated as follows:

1) for each level li, 1 ≤ i ≤ M, a new vertex might be added to li if
ΠAi(t) has never occurred before in the stream;

2) for each level li, 1 < i ≤ M, a new edge might be added between
node idij at level li and node idi−1k at level li−1 only if the projection
ΠAi−1,Ai(t) has never occurred in the stream.

3) for each level li, 1 < i ≤ M, and for each of its nodes idij , a new
path of length i might be added to its Γ set only if the projection
ΠA1,...,Ai(t) has never occurred in the stream.

Example 2. Let us consider the validation graph derived after reading
the tuples shown in Table 5.6 from a stream, and let us suppose that the
following tuple is successively read:

t = [A=“4.5”, B=“2.0”, C=“1.4”, D=“0.3”, E=“Iris-setosa”, Expired=“False”]

142 discovery algorithms in dynamic scenarios

The resulting graph is shown in Figure 5.16a. Since only the value 4.5
for attribute A has never occurred before in the stream, only a new node
(A, 4.5, 3, 1, {3| #1}) is added at level 1; since the values of ΠA,B(t) have
never occurred before, such new node is connected to node with id = 2 at
level 2, which is in turn connected to node with id = 1 at level 3, because
also the values of ΠB,C(t) have never occurred. Finally, the new paths
added to the Γ sets of some nodes are highlighted in green.

When an expired tuple t− is read from the stream, the existing validation
graph can be updated as follows:

1) for each level li, 1 ≤ i ≤ M, a vertex might be removed from li if
ΠAi(t

−) has at most one occurrence, i.e., it is no longer valid in the
stream;

2) for each level li, 1 < i ≤ M, an edge might be removed between
node idij at level li and node idi−1k at level li−1 only if the projection
ΠAi−1,Ai(t

−) has at least one occurrence, i.e., it is no longer valid in
the stream;

3) for each level li, 1 < i ≤ M, and for each of its nodes idij , a path
of length i might be removed from its Γ set only if the projection
ΠA1,...,Ai(t

−) has at least one occurrence, i.e., it is no longer valid in
the stream.

Example 3. Let us consider the validation graph derived after reading
the tuples of Table 5.6 and the one of Example 2 from the stream (Figure
5.16a), and suppose that before processing new tuples the window scrolls
and the following tuple is no longer valid:

t− = [A=“4.8”, B=“3.0”, C=“1.4”, D=“0.1”, E=“Iris-setosa”, Expired=“True”]

The resulting graph is shown in Figure 5.16b, whose updates are
highlighted in red. Starting from the bottom of the validation graph,
since the values of ΠA,B,C,D,E(t−) had one occurrence in the stream,
the path {1 − 1 − 1 − 1 − 1| #0} is removed from the Γ of the node
with id = 1 at level 5. Moreover, given that only the node with id = 1
and value 0.1 at level 4 had one path in Γ with one occurrence, the
node (D, 0.1, 1, 4, {1− 1− 1− 1| #0}) is removed from level 4. Instead,

5.5 cod3 : continuous discovery of fd from data streams 143

since the values of t− have occurred more than ones on the previous
levels by means of other tuples read from the stream, it is necessary to
only decrease the number of occurrences on the correspondent nodes in
those levels. In particular, the expiration of t− entails a decrease of the
counter for: i) ΠA,B,C(t−), i.e., (C, 1.4, 1, 3, {1− 1− 1| #1}); ii) ΠA,B(t−),
i.e., (B, 3.0, 1, 2, {1− 1| #1}); and iii) ΠA(t−), i.e., (A, 4.8, 1, 1, {1| #1}).

As mentioned above, in the case of reading a new tuple from the
stream, COD3 exploits an additional structure, named path matrix, to
further optimize the validation process. The path matrix is a lightweight
data structure containing information related to the new nodes and edges
that are added to the validation graph after the insertion of a new tuple.
It is used by COD3 to isolate cases in which the validation of an fd can be
performed instantly. More specifically, when a new tuple t is read from a
stream, COD3 creates a binary matrix of paths for each of its attribute
values before updating the validation graph G.

Formally, let us consider a stream whose tuples contain M attributes.
Upon reading a new tuple t from the stream, a path matrix H(M + 1, M +

1) with the following properties will be built for t:

1) H[0][0] = 0;

2) H[0][i] = H[i][0]; H[0][i] = 1 if and only if t[Ai] has never occurred
in the stream for attribute Ai, 0 otherwise;

3) H[i][j] = 1 if and only if ΠAi ,Aj(t) has never occurred in the stream
for attributes Ai and Aj, 0 otherwise.

The path matrix allows the validation process to prune the search space
by catching borderline cases. In what follows, we provide more details
on the use of the path matrix for the validation process.

5.5.2.1 Validation Process

The validation process of COD3 exploits the validation graph to check
the validity of candidate fds both in case of insertion of new tuples and
in case of expired ones. More specifically, let φ : X → A be a candidate

144 discovery algorithms in dynamic scenarios

fd after the insertion of a new tuple t at time τ + 1, the validation process
considers the following four different cases:

• Case 1. φ is valid at time τ + 1 if at least one node or an edge linking
a pair of attributes in X has been created on G. As an example, let
us consider the fd AC → E holding on the sample dataset shown
in Table 5.6. Since the insertion of the tuple of Example 2 yields
the creation of a new node for the attribute value A = 4.5, H[1][A]

(H[A][1], respectively) will be set to 1 as shown in Table 5.7, and the
candidate fd AC → E remains valid. The validation process for this
fd is also shown in Table 5.8a, which represents a snippet of the
dataset iris for the attributes A, C, and E, where the bottom tuple is
the newly inserted tuple. Thus, since the value for the attribute A,
e.g. 4.5, is new, the added tuple does not invalidate the fd AC → E.

• Case 2. φ is not valid at time τ + 1 if no new path has been added
across attributes in X, and a new node for attribute A has been
added to G. As an example, let C → A be an fd holding on the
sample dataset shown in Table 5.6. Since the insertion of the tuple
of Example 2 yields the creation of a new node for the attribute
value A = 4.5, and a path from A to C, then the values of H[1][A]

(H[A][1], respectively), and H[A][C] (H[C][A], respectively) are set
to 1 (as shown in Table 5.7), invalidating the fd C → A (Table 5.8b).

A B C D E

0 1 0 0 0 0

A 1 0 1 1 1 1

B 0 1 0 1 1 1

C 0 1 1 0 0 0

D 0 1 1 0 0 0

E 0 1 1 0 0 0

Table 5.7: The path matrix after the insertion of the tuple reported in Example 2.

5.5 cod3 : continuous discovery of fd from data streams 145

Sepal L. Petal L. Class
(A) (C) (E)

4.8 1.4 Iris-setosa

4.8 1.4 Iris-setosa

5.0 3.5 Iris-versicolor

5.0 3.3 Iris-versicolor

4.5 1.4 Iris-setosa

(a) AC → E

Sepal L. Petal L.
(A) (C)

4.8 1.4

4.8 1.4

5.0 3.5

5.0 3.3

4.5 1.4

(b) C → A

Sepal W. Class
(B) (E)

3.0 Iris-setosa

3.0 Iris-setosa

2.0 Iris-versicolor

2.3 Iris-versicolor

2.0 Iris-setosa

(c) B→ E

Petal L. Petal W. Class
(C) (D) (E)

1.4 0.1 Iris-setosa

1.4 0.3 Iris-setosa

3.5 1.0 Iris-versicolor

3.3 1.0 Iris-versicolor

1.4 0.3 Iris-setosa

(d) CD → E

Table 5.8: Snippet of the dataset iris for some candidate fds.

• Case 3. φ is not valid at time τ + 1 if no new node or edge has been
added for attributes in X, and no new node has been added for A,
but at least one edge linking a node for an attribute in X to a node
on A has been added to G. As an example, let us consider the fd

B→ E holding on the sample dataset shown in Table 5.6. Since the
insertion of the tuple of Example 2 yields the creation of a new edge
between the existing attribute values B = 2.0 and E = Iris-setosa,
the value H[B][E] (H[E][B], respectively) will be set to 1, as shown
in Table 5.7, invalidating the fd, as also highlighted in Table 5.8c.

• Case 4. If none of the above cases occurs, then it is necessary to
check how the value paths of all the attributes in a candidate fd

are linked to each other. The goal of this case is to verify if a path

146 discovery algorithms in dynamic scenarios

connecting attributes represent values of at least one previously
analyzed tuple. This is due to the fact that the way in which the
tuple values are linked does not comply with the transitive property,
which could not otherwise be verified if the validation graph does
not store value paths on the attribute nodes. For these reasons, when
all other cases do not occur, the candidate fd φ is valid at time τ + 1
if and only if the projection of t on X ∪ A (i.e., ΠX,A(t)) forms a
path contained into the Γ set associated to the deepest node among
those related to the attributes in X ∪ A. As an example, let CD → E
be an fd holding on the sample dataset of Table 5.6, then after the
insertion of the tuple of Example 2 it is not necessary to generate
any new edge connecting the nodes associated to the attributes of
the fd (see sub-matrix composed of C, D, E in Table 5.7). Thus, let
gC, gD, and gE be the nodes associated to the attributes C, D, and
E, respectively, then it is necessary to check if there exists at least
one path in ΓE, e.g., the set of paths at time τ of the deepest node
among those associated to the attributes in CD → E. In particular,
since Γ contains paths of id values, it will be necessary to satisfy
the pattern {?-?-1-2-1}, where the ? represents any possible value,
and 1− 2− 1 are the ids obtained from the projection ΠC,D,E(t) of
t on the attributes C, D, E. Therefore, since there exists an item in
ΓE = [{1-1-1-1-1}, {1-1-1-2-1}] satisfying the pattern {?-?-1-2-1}, then
CD → E is valid, as also highlighted in Table 5.8d.

Notice that, cases 1, 2, and 3 permit to perform the validation process
by simply checking the path matrix. Instead, for case 4 it is necessary
to analyze the paths of id values contained in the nodes. However, the
validation process is restricted to the analysis of the set Γ of a single node.
This strategy permits to quickly validate each candidate fd.

The above described validation process represents the case in which a
new tuple is read from the stream. Nevertheless, when a sliding window
is set according to a time interval, COD3 also manages a proper validation
process when the tuple read from the stream is an expired one, i.e., t−.
In particular, let φ : X → A be a candidate fd, similarly to Case 4,
the validation process requires to check how the value paths of all the

5.5 cod3 : continuous discovery of fd from data streams 147

attributes in a candidate fd are linked to each other. However, in this case,
it is necessary to explore all the nodes at level li of G, where i represents
the index of the deepest level among those involved in X ∪ A. Since
possible violations of φ can reside in multiple nodes, it is necessary to
check if there exist at least two distinct paths (t1, t2) within all paths Γ of
all nodes in li, such that ΠX(t1) = ΠX(t2) and ΠA(t1) ̸= ΠA(t2). As an
example, let B→ A be a candidate fd for the sample dataset of Table 5.6,
after the expiration of the tuple of Example 3 it is necessary to check the
validation of φ. Thus, let l2 = B be the deepest level involved in φ, it is
possible to verify that there exist the two paths [{2− 2}, {3− 2}], among
the paths ΓB of all nodes in l2, which invalidate φ.

5.5.3 The COD3 Algorithm

COD3 permits not only to update fds when a new tuple is read from
the stream, but also when a tuple expires as a consequence of a scrolling
step of a sliding window. Thus, for sake of simplicity, we present the
general procedure of COD3 in two parts, on the basis of the type of tuple
read from the stream: a novel tuple or an expired one. Both the general
procedures follow the strategy presented in Section 5.5.1.

The procedure of COD3 for processing a new tuple read from the
stream is shown in Algorithm 10. Given Στ the set of all fds holding at
time τ, a tuple t, a path matrix H related to t, and a validation graph
G at time τ, COD3 starts by analyzing the candidate fds with lowest
LHS cardinality (line 1). Then, for each fd X → A holding at time τ,
COD3 uses the INSERTION_VALIDATION process (line 3) to verify whether
X → A still holds at time τ + 1. This process is performed according to
the validation process described in Section 5.5.2. Thus, if the analyzed
fd is valid at time τ + 1, the algorithm checks if there exist other fds in
the previous lattice level that have been already validated at time τ + 1
(lines 4-8). In particular, for each candidate fd on the previous lattice
level (PREVCANDIDATES), if none of them have already been validated, i.e.
each of them cannot infer the analyzed fd (INFERENCE), then this is also
minimal at time τ + 1 (lines 6-8). Vice versa, if the analyzed fd is not

148 discovery algorithms in dynamic scenarios

Algorithm 10 COD3 Algorithm

INPUT:
Στ → A set of minimal fds at time τ
t → A new tuple t
H → A path matrix related to the tuple t
G → A validation graph holding at time τ

OUTPUT: Στ+1 → A set of new valid and minimal fds at time τ + 1
1: Σ← Pτ

2: for each X → A ∈ Σ do
3: if INSERTION_VALIDATION(X → A, t, H, G) is valid then
4: if X → A /∈ Pτ then
5: Ll−1 ← PREVCANDIDATES(X → A)
6: for each Z → A ∈ Ll−1 do
7: if not INFERENCE(Z → A) then
8: Σ ← Σ \ {X → A}
9: else

10: Ll+1 ← NEXTCANDIDATES(X → A)
11: for each W → A ∈ Ll+1 do
12: if not INFERENCE(W → A) then
13: Σ ← Σ ∪ {W → A}
14: Στ+1 ← Σ
15: return Στ+1

valid at time τ + 1, COD3 generates new candidate fds at a higher lattice
level (NEXTCANDIDATES), by discarding those that can be inferred from
other fds (INFERENCE) already validated at time τ + 1 (lines 10-13). Notice
that, the ordered discovery of the fds allows COD3 to avoid multiple
validations of some candidate fds.

The procedure of COD3 for updating the set of candidate fds Στ

whenever at least one expired tuple is read from the stream is shown
in Algorithm 11. Given Qτ the set of all non-fds at time τ, a tuple t,
and a validation graph G at time τ, COD3 starts by analyzing the new
candidate fds from Qτ in descending order of their LHS cardinalities
(line 1-2). Then, for each candidate fd, the algorithm checks if it is valid
after the expiration of t, by means of the EXPIRATION_VALIDATION process

5.5 cod3 : continuous discovery of fd from data streams 149

(line 3). Thus, if the candidate fd is valid, COD3 first removes it from
the set Qτ, and then removes all the fds on the next level from Στ

(NEXTCANDIDATES), i.e., those that can be inferred from the new validated
one (lines 5-8), in order to ensure the minimality of the fds in Στ. The
new fd is then added to Στ (line 9). Successively, COD3 calculates the
candidate fds at the next lower level (PREVCANDIDATES), which will be
added to the set of candidate fds to be processed (lines 10). Vice versa,
if the candidate fd is not valid, COD3 simply removes it from the set of
candidate fds (lines 11-12).

Similarly to the general procedure of COD3, and according to the vali-
dation strategies described in Section 5.5.2, also the validation procedure
is divided into two strategies with respect to either the insertion or the
expiration of a tuple, described in Algorithm 12 and 13, respectively.

Algorithm 11 COD3 Algorithm for an expired tuple

INPUT:
Qτ → A set Qτ of non-fds at time τ
t → A new tuple
G → A validation graph holding at time τ

OUTPUT: Στ → Updated set of minimal fds at time τ

1: Σ← Qτ

2: for each W → A ∈ Σ do
3: if EXPIRATION_VALIDATION(W → A, G) is valid then
4: Qτ ← Qτ \ {W → A}
5: LL+1 ← NEXTCANDIDATES(W → A)
6: for each Z → A ∈ Ll+1 do
7: if Z → A ∈ Pτ then
8: Στ ← Pτ \ {Z → A}
9: Στ ← Pτ ∪ {W → A}

10: Σ ← Σ ∪ PREVCANDIDATES(W → A)
11: else
12: Σ ← Σ \ {W → A}
13: return Στ

150 discovery algorithms in dynamic scenarios

Algorithm 12 INSERTION_VALIDATION

INPUT:
X → A → An fd holding at time τ + 1
t → A new tuple
H → A path matrix related to the tuple t
G → A validation graph holding at time τ

OUTPUT:
True→ If the fd is valid
False→ Otherwise

1: if M.containsNewEdges() then
2: for each Z ∈ X do ▷ Case 1

3: if H[0][Z] = 1 then
4: return true
5: for each W ∈ X do
6: if Z ̸= W ∧ H[Z][W] = 1 then
7: return true
8: if H[0][A] = 1 then ▷ Case 2

9: return false
10: for each Z ∈ X do ▷ Case 3

11: if H[Z][A] = 1 then
12: return false

13: W ← ∅, d← -1
14: for each Z ∈ (X ∪ A) do
15: if Z.depth() < d then
16: W ← Z
17: d← Z.depth()
18: g← G.getNode(W, t(W)) ▷ Case 4

19: for each p ∈ Γv do
20: if p.contains(t[X ∪ A]) then
21: return true

22: return false

In particular, in case of tuple insertion, given an fd X → A, a new
tuple t, a path matrix M related to the tuple t, and a validation graph G,
Algorithm 12 implements the fd validation method by exploiting the path

5.5 cod3 : continuous discovery of fd from data streams 151

Algorithm 13 EXPIRATION_VALIDATION

INPUT:
X → A → An fd holding at time τ
G → A validation graph holding at time τ

OUTPUT:
True→ If the fd is valid
False→ Otherwise

1: i← -1
2: for each Z ∈ (X ∪ A) do
3: if Z.depth() < i then
4: i← Z.depth()
5: V ← G.getNodesByDepth(i)
6: for each g ∈ V do
7: if |Γv| > 1 then
8: for each p ∈ Γv do
9: for each h ∈ Γv do

10: if p ̸= h then
11: if ΠX(p) == ΠX(h) ∧ΠA(p) ̸= ΠA(h) then
12: return false

13: return true

matrix and the validation graph. First of all, it is necessary to check if the
path matrix related to the tuple t contains at least one new node/edge
(line 1). If this is the case, it is possible to apply one of the cases 1, 2,
or 3 defined above. More specifically, if the new tuple t has generated
at least one node/edge according to Case 1, then X → A is valid at
time τ + 1 (lines 2-7). However, if Case 1 does not occur and attribute
A generates a new node, then X → A is not valid according to Case 2
(lines 8-9). Otherwise, the algorithm checks whether the values in X are
already linked to the values in the RHS of the analyzed fd, according
to Case 3 (lines 10-12), yielding the invalidation of the candidate fd. If
none of the above cases occurs, the algorithm checks whether ΠX,A(t)
already exists on the validation graph, and only in this case the candidate
fd remains valid (lines 13-21). More specifically, it identifies the deepest

152 discovery algorithms in dynamic scenarios

node g between the attributes in X ∪ A (lines 13-17), which allows the
algorithm to validate the candidate fd by searching for a path in Γg

containing the values in X ∪ A, according to Case 4 (lines 18-21).
On the other hand, in case of tuple expiration, given an fd X → A and

a validation graph G, Algorithm 13 implements the fd validation method
by exploiting the validation graph. First of all, it is necessary to find the
level li of the deepest node g between the attributes in X ∪ A (lines 1-4).
Then, COD3 extracts all the nodes at level li from the validation graph
G (line 5), and for each of them it checks if the node contains at least
two distinct paths (line 7). If true, COD3 compares each pair of distinct
paths, and checks whether there exists at least a pair of paths p and
h, respectively, such that ΠX(p) equals ΠX(h), and ΠA(p) differs from
ΠA(h) (lines 8-12), which yields X → A not to be valid at time τ (line 12).
If none of the nodes at level i invalidate X → A, then the fd continues to
be valid at time τ (line 13).

5.5.4 Experimental Evaluation

In this section, we describe the evaluation of COD3 on several real-world
datasets and real-time streams, by also providing a qualitative analysis of
the metadata extracted from a sensor-based data stream, with the aim of
analyzing how metadata evolve over time.

Implementation details. COD3 has been developed in Java 12, and it has
been integrated into Apache Storm 2.1.0. Furthermore, COD3 exploits
the pipeline programming model of Apache Storm in order to guarantee
suitable performances, continuous processing, and a trade-off among
consistency, speed, and durability.

Hardware and Datasets. The experiments have been executed on an
iMac Pro with an Intel Xeon CPU at 3.20 GHz, 18-core, and 128GB
of memory, running macOS Mojave 6.4 and OpenJDK 12.0.2 as Java
environment. The experiments were performed on several real-world
datasets6, previously used for evaluating fd discovery algorithms. Table
5.9 shows the characteristics of the evaluation datasets.

6 https://archive.ics.uci.edu/ml/datasets.php

https://archive.ics.uci.edu/ml/datasets.php

5.5 cod3 : continuous discovery of fd from data streams 153

Evaluation process. In our experimental session, we performed two
different types of tests to evaluate COD3 on static and dynamic sources.
In the first experiment, we simulated a scenario of continuous tuple
insertions by transforming datasets into dynamic sources through the
COD3 pipeline components. Although in this kind of experiment COD3 is
not used for the purpose it has been conceived, we considered it in order
to perform a sort of comparative evaluation with respect to well-known
fd discovery algorithms, since to the best of our knowledge there is no
similar algorithm capable of directly extracting fds from data streams. In
particular, we compared COD3 with the fd discovery algorithms HyFD
[128] and DynFD [140], which focus on the discovery of fds from static
and dynamic datasets, respectively. Instead, in the second experiment, we
evaluated the effectiveness of COD3 on a data stream of sensors provided
by the AQICN portal7.

5.5.4.1 Performances of COD3 on real-world datasets

Our first experiment measured the execution times of COD3 on different
real-world datasets, which are mapped into a continuous stream of data
by following the strategy described in Section 5.5.1.1. The considered
datasets have a different number of rows and columns in order to high-
light how the COD3 execution times vary according to such parameters.
In our test, we evaluated the execution times of COD3 by considering the
first tuple and the initial runs of the algorithm, up to the last run on the
last tuple.

Analysis of Results. Figure 5.17 summarizes the time performances of
COD3 for each dataset, by means of boxplots built on the distribution
of execution times per tuple. The figure also reports the memory peaks
reached by COD3 on each execution. As we can see, the median values
of the execution times are almost always less than 10 milliseconds per
tuple, except for some of the biggest datasets. In particular, for Sonar
and Gas-sensors the median values fall in the range [1 − 10] seconds,
whereas on the Movement-libras dataset exceeds other execution times,
mainly due to the thousands of fds to be validated in many executions.

7 https://aqicn.org/

https://aqicn.org/

154 discovery algorithms in dynamic scenarios

Dataset Cols [#] Rows [#] FDs [#]

Chess 7 28056 1

Abalone 9 4148 137

Electricity 9 45312 61

Poker-hand 11 264027 1

Echocardiogram 13 132 538

Tsa-claims 13 25023 129

Adult 14 32562 60

Fd-reduced 15 250000 4908

Ncvoter 19 1001 3179

Lymphography 19 148 2730

Parkinsons 24 195 1724

MoCap Postures 38 78095 4094

Sonar 60 208 97750

Movement-libras 91 360 2473105

Gas-sensors 128 4000 302705

Table 5.9: Characteristics of the considered real-world datasets.

In general, we notice that the execution times of COD3 present small
distributions (upper and lower quartiles), even though some outliers
occurred, especially with datasets containing many tuples.

With respect to memory peaks, the results show that no relationship
can be derived between the memory load and the dataset characteristics
in terms of the number of rows and columns. However, we can observe
that the memory peaks slightly depend on the amount of discovered fds.
For instance, the worst memory loads occur for datasets exceeding two
thousand of holding fds. More specifically, the memory bound is related
to the number of invalidations caused by the arrival of new tuples, which
more likely occur as the number of holding fds increases.

In general, COD3 works extremely well when the insertion of new
tuples yields few invalidations. In fact, since the discovery process is
performed level-by-level, when one or more fds are invalidated, COD3

considers new fd candidates from the next level of the invalidated ones.

5.5 cod3 : continuous discovery of fd from data streams 155

Ch
es

s

Ab
al

on
e

El
ec

tri
cit

y

Po
ke

r-h
an

d

Ec
ho

ca
rd

io
gr

am

Ts
a-

cla
im

Ad
ul

t

Fd
-re

du
ce

d

Nc
vo

te
r

Ly
m

ph
og

ra
ph

y

Pa
rk

in
so

ns

M
oC

ap
 P

os
tu

re
s

So
na

r

M
ov

em
en

t-l
ib

ra
s

Ga
s-

se
ns

or
s

100

101

102

103

104

105

106

107

Ti
m

es
 (m

s)

103

104

m
em

or
y-

pe
ak

 [M
B]

Memory peaks

Figure 5.17: Performances of COD3 over real-world dataset.

Figure 5.18 reports the average execution times of the validation process
for each fd upon the insertion of a tuple (green line), also compared to
the average number of validations performed for each of the four cases
(colored bars). The results highlight that the average time is always
less than 1 millisecond per fd, but in most cases it does not exceed 0.2
milliseconds. The only exceptions are for Poker-hand, Tsa-claims, and Sonar
datasets.

Concerning the number of times a specific case is executed during all
validations, we can notice that for each dataset the majority of validations
only exploit path matrices (Cases 1, 2, and 3), which makes the process
faster. Particularly interesting are the results achieved on the two biggest
datasets, i.e., Sonar and Gas-sensors, where the validation process instanti-

156 discovery algorithms in dynamic scenarios

Ch
es

s

Ab
al

on
e

El
ec

tri
cit

y

Po
ke

r-h
an

d

Ec
ho

ca
rd

io
gr

am

Ts
a-

cla
im

s

Ad
ul

t

Fd
-re

du
ce

d

Nc
vo

te
r

Ly
m

ph
og

ra
ph

y

Pa
rk

in
so

ns

M
oC

ap
 P

os
tu

re
s

So
na

r

M
ov

em
en

t-l
ib

ra
s

Ga
s-

Se
ns

or
s

102

103

104

105

106
Va

lid
at

io
ns

 [#
]

Case 1 Case 2 Case 3 Case 4

0.0

0.2

0.4

0.6

0.8

Av
g

Ti
m

e
[m

s]

Figure 5.18: Number of validations for each case defined in Algorithm 12.

ates Case 4 only a few times, yielding extremely low average execution
times, despite a huge number of holding fds.

5.5.4.2 Comparative evaluation

As a further experiment, we compared the execution performances of
COD3 to those of one of the best-performing non-incremental discov-
ery algorithm, namely HyFD [128], and an analogous incremental one,
namely DynFD [140]. In particular, HyFD is a static fd discovery algo-
rithm that combines approximation techniques with several validation
strategies, in order to discover the set of all minimal fds holding on a
static dataset. In particular, we analyzed all the conditions in which COD3

under- or out-performs such a static discovery algorithm. To this end, we
gradually scaled up the size of the dataset, starting with a dataset contain-
ing one tuple and adding one tuple at a time, each time executing HyFD

5.5 cod3 : continuous discovery of fd from data streams 157

on the augmented dataset. Instead, DynFD is an incremental discovery
algorithm, which extends HyFD with the possibility of updating the set
of holding fds in accordance with insert, delete, and update operations
collected in batch mode. In order to compare COD3 and DynFD, we
set up an insertion operation in the batch file for each tuple inserted in
the dataset. More specifically, we started with a dataset containing only
one tuple, and simulated the insertion of one tuple at a time. To execute
COD3 over static datasets, we transformed the considered datasets into a
continuous data flow, according to the pipeline components in Section
5.5.1.1.

Figure 5.19 shows the results of the comparative evaluation in terms
of the variability of average execution times (plot at the top) and the
memory load (plot at the bottom). In particular, the results show that
COD3 is almost always faster than HyFD as the number of processed
tuples grows, especially on the Poker-hand, Fd-reduced, and MoCap Postures
datasets. Furthermore, we can notice that COD3 has poor performances
during the first runs on Echocardiogram, Ncvoter, Parkinsons, Lymphography,
and Sonar datasets. This is probably due to the fact that the number of
validations and invalidations is quite high when the datasets contain few
tuples. Moreover, COD3’s poor performances on the Movement-libras and
the Gas-sensors datasets are probably due to the fact that these datasets
have a high number of columns and many fds are discovered during early
initial runs. An exception is the Sonar dataset, in which the execution
times of both algorithms appear similar as the number of tuples increases,
even though Sonar represents one of the biggest datasets.

158 discovery algorithms in dynamic scenarios

100

101
Ti

m
e

(m
s)

101

102

103

M
em

or
y

(M
B)

(a) Chess

100

101

102

Ti
m

e
(m

s)

101

102

103

M
em

or
y

(M
B)

(b) Abalone

101

103

Ti
m

e
(m

s)

102

103

M
em

or
y

(M
B)

(c) Electricity

101

103

Ti
m

e
(m

s)

102

103

M
em

or
y

(M
B)

(d) Poker-hand

100

101

Ti
m

e
(m

s)

101

102

103
M

em
or

y
(M

B)

(e) Echocardiogram

101

103

Ti
m

e
(m

s)

102

M
em

or
y

(M
B)

(f) Tsa-Claims

101

103

Ti
m

e
(m

s)

102

103

M
em

or
y

(M
B)

(g) Adult

101

103

Ti
m

e
(m

s)

103

104

M
em

or
y

(M
B)

(h) Fd-reduced

101

102

Ti
m

e
(m

s)

101

102

103

M
em

or
y

(M
B)

(i) Ncvoter

101

103

Ti
m

e
(m

s)

101

102

103

M
em

or
y

(M
B)

(j) Lymphography

101

102

Ti
m

e
(m

s)

101

102

103

M
em

or
y

(M
B)

(k) Parkinsons

101

102

103

Ti
m

e
(m

s)

102

103

104

M
em

or
y

(M
B)

(l) MoCap Postures

102

103

Ti
m

e
(m

s)

102

104

M
em

or
y

(M
B)

(m) Sonar

103

105

Ti
m

e
(m

s)

102

104

M
em

or
y

(M
B)

(n) Movement-libras

101

102

103

Ti
m

e
(m

s)

103

M
em

or
y

(M
B)

(o) Gas-sensors

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

COD3 HyFD DynFD

Figure 5.19: Time performances and memory load of COD3 by considering the
variation of fds at any time.

5.5 cod3 : continuous discovery of fd from data streams 159

Concerning the comparison between COD3 and DynFD, the results
show that COD3 always outperforms DynFD in terms of execution
times, except for the Gas-sensors dataset. Similarly to HyFD, DynFD
often achieves lower execution times during the first runs. This is mainly
due to the fact that DynFD integrates the HyFD algorithm during initial
steps to define all the underlying configurations, in order to successively
work in a dynamic scenario.

It is worth noting that for the Movement-libras and Sonar datasets no
results can be discussed for DynFD, since its executions exceeded the
memory limit, which has been set to 50GB. As expected, the incremental
discovery algorithms (i.e., COD3 and DynFD) always require a greater
amount of memory with respect to HyFD, due to the information of
the previous executions that they manage. Nevertheless, COD3 almost
always outperforms DynFD in terms of memory load, except for the
Parkinsons and MoCap Postures datasets.

In general, time performances show that COD3 can process a huge
number of rows with suitable execution times, without raising any mem-
ory issues. This makes COD3 particularly useful for the data stream
context, where the number of rows can be extremely large. Moreover, the
number of attributes considered in the data stream context is generally
not large, unlike the number of rows.

5.5.4.3 Discovery results of COD3 over data streams

In this experiment we measured the effectiveness of COD3 on a real-
world data stream. More specifically, this experiment exploits the data
of over 200 real sensors spread throughout Italy, made available by the
AQICN portal, which monitors and shares the air quality information
during the day. In particular, we selected the following 13 attributes from
the data stream:

• Particles PM2.5 and PM10: atmospheric aerosol particles, also known
as “floating dust” or particulate matter (PM) with a diameter of 2.5
(PM2.5), or 10 (PM10) micrometers;

• Nitrogen dioxide (NO2): the nitrogen dioxide concentration;
• Sulfur dioxide (SO2): the sulfur dioxide concentration;

160 discovery algorithms in dynamic scenarios

11AM 2PM 5PM 8PM 11PM 1AM
0

100

200

300

400

500

600
1 minute 2 minutes 6 minutes 10 minutes 20 minutes

2:10PM 2:20PM 2:30PM 2:40PM 2:50PM 3PM
0

100

200

300

400

500

600

9:15PM 9:25PM 9:35PM 9:45PM 9:55PM 10:05PM
0

50

100

150

200

250

300

11AM 2PM 5PM 8PM 11PM 1AM
0

100

200

300

400

500

600
1 minute 2 minutes 6 minutes 10 minutes 20 minutes

2:10PM 2:20PM 2:30PM 2:40PM 2:50PM 3PM
0

100

200

300

400

500

600

9:15PM 9:25PM 9:35PM 9:45PM 9:55PM 10:05PM
0

50

100

150

200

250

300

Figure 5.20: Number of fds discovered by COD3 considering five time intervals.

• Dew point (dew): the temperature to which air must be cooled to
become saturated with water vapour;

• Ozone (O3): the ozone concentration;
• Temperature (t): the temperature in centigrade degrees;
• Humidity (h): the rate of humidity;
• Wind direction (w) and Wind speed (wg): the information on wind

direction and speed, respectively;
• Pressure (p): the value of the atmospheric pressure;
• Rain (r): the amount of rain that fallen at the time of measurement;
• Carbon monoxide (CO): a colorless, odorless, and tasteless flammable

gas that is slightly less dense than air.

We considered execution sessions of COD3 on the air quality data
streams, lasting about 13 hours. In particular, we set up five parallel
executions by considering five sliding windows, i.e., 1, 2, 6, 10, and 20
minutes, which determine the expiration times of the tuples.

The curves shown at the top of Figure 5.20 highlight the variability of
holding fds discovered with the different sliding windows, whereas the

5.5 cod3 : continuous discovery of fd from data streams 161

zooms at the bottom provide more details in two different time windows.
In particular, the line of each sliding window shows the standard devia-
tion in the number of fds with respect to the average number of holding
fds computed up to that time instant. As expected, the results show that
the trend undertakes a bigger variability at the beginning of the discovery
process, and tends to converge throughout the execution. This is particu-
larly true for larger sliding windows. In fact, with sliding windows of
1 and 2 minutes the trends remain almost stable right after processing
the initial tuples. This can be due to the fact that fd invalidations do not
significantly impact on the number of holding fds, since each analyzed
tuple expires in a short time. Larger sliding windows obtain their peaks
afterwards, due to the fact that the sliding windows start to move later,
entailing a cold start of the expiration discovery process.

To extract different information from air quality sensor data, and
to describe the existing relations among the analyzed parameters, we
compared the set of fds discovered during each execution. The results are
summarized in Table 5.10, where for each sliding window we grouped
the results into time periods representing the two different halves of the
execution period, i.e., 13 hours, and the whole period. For each of them,
we report the most frequent attribute on the left- and right-hand-side,
and the average LHS cardinality, among all fds holding in a specific
time period. Top-5 fds in such periods are also shown, representing the
most validated fds across the different time instants. From the results
of Table 5.10 we can notice that Particles (PM10) appears as the most
frequent attribute on the LHS when the sliding window is set to 1 or 2
minutes. Instead, with the larger sliding windows the attribute Particles
(PM10) disappears, and the attribute Pressure (p) is the most frequent
LHS. On the contrary, the attribute Rain (r) represents the most frequent
RHS attribute (e.g., the most implied) with all sliding windows. As we
expected, the cardinality of LHSs increases in average with larger sliding
windows. This is mainly due to the fact that more tuples possibly induce
more violations, yielding the inclusion of more attributes on the LHS of
holding fds.

162 discovery algorithms in dynamic scenarios

Sliding
Window

Time
Period

Most common
attribute |LHS| Top 5 FDs

LHS RHS

1

(min)

11 AM-
5 PM

Particles
(PM10)

Rain
(r) 3

(p, dew, h)→(r)
(PM10, p, h)→(r)
(p, t, h)→(r)
(p, h, w)→(r)
(p, O3, h)→(r)

5 PM
-

12 AM

Pressure
(p)

Rain
(r) 4

(p, t, h)→(r)
(PM10, t, h)→(r)
(PM2.5, p, h)→(r)
(p, t, dew, SO2)→(r)
(PM10, p, h)→(r)

13 h
Particles
(PM10)

Rain
(r) 5

(p, t, h)→(r)
(p, dew, h)→(r)
(PM10, p, h)→(r)
(NO2, p, t, w)→(r)
(p, t, CO, w)→(r)

2

(min)

11 AM-
5 PM

Particles
(PM10)

Rain
(r) 3

(p, CO, h)→(r)
(PM2.5, p, h)→(r)
(p, t, h)→(r)
(p, SO2, w)→(r)
(p, O3, h)→(r)

5 PM
-

12 AM

Pressure
(p)

Rain
(r) 6

(PM10, p, dew, h, w)→(r)
(p, O3, dew, h, w)→(r)
(p, dew, SO2, h, w)→(r)
(PM10, PM2.5, NO2, p, O3, h, w)→(SO2)
(PM2.5, p, dew, h, w)→(r)

13 h
Particles
(PM10)

Rain
(r) 5

(p, dew, h)→(r)
(PM2.5, p, h)→(r)
(NO2, p, t, dew)→(r)
(p, t, h)→(r)
(p, CO, w)→(r)

6

(min)

11 AM-
5 PM

Wind
(w)

Rain
(r) 5

(PM2.5, p, h, w)→(r)
(PM10, t, dew, SO2, w)→(r)
(p, dew, SO2, h, w)→(r)
(p, O3, h, w)→(r)
(PM10, PM2.5, p, O3)→(SO2)

5 PM
-

12 AM

Particles
(PM2.5)

Rain
(r) 5

(PM10, PM2.5, NO2, t, SO2)→(CO)
(PM10, t, h)→(r)
(p, h, t)→(r)
(PM2.5, dew, w)→(r)
(dew, p, t)→(r)

13 h
Pressure

(p)
Rain
(r) 6

(p, dew, h, w)→(r)
(p, dew, SO2, w)→(r)
(p, O3, dew, h)→(r)
(NO2, p, O3, h, w, wg)→(dew)
(PM2.5, t, h)→(r)

5.5 cod3 : continuous discovery of fd from data streams 163

Sliding
Window

Time
Period

Most common
attribute |LHS| Top 5 FDs

LHS RHS

10

(min)

11 AM-
5 PM

Dew point
(dew)

Rain
(r) 5

(PM10, p, t, dew)→(r)
(SO2, dew, PM10, w)→(r)
(p, SO2, h)→(r)
(PM2.5, t, CO)→(h)

5 PM
-

12 AM

Particles
(PM2.5)

Rain
(r) 4

(PM2.5, NO2, w)→(CO)
(PM10, t, h)→(r)
(p, SO2, h, t)→(r)
(PM2.5, dew, w)→(r)
(PM2.5, dew, p, t)→(r)

13 h
Pressure

(p)
Rain
(r) 6

(p, PM2.5, t, w)→(r)
(p, dew, w)→(r)
(p, CO, dew, t)→(r)
(NO2, p, O3, h, t)→(dew)
(PM2.5, t, h, dew)→(r)

20

(min)

11 AM-
5 PM

Pressure
(p)

Rain
(r) 3

(p, dew, h, NO2)→(r)
(p, dew, w, O3)→(r)
(PM10, p, h)→(r)
(p, SO2, h, t)→(r)
(p, NO2, O3, h, t)→(r)

5 PM
-

12 AM

Pressure
(p)

Rain
(r) 4

(p, dew, SO2, h, NO2)→(r)
(p, NO2 h)→(r)
(PM10, t, h, dew)→(r)
(PM2.5, p, h, NO2)→(r)
(PM2.5, t, h, SO2)→(r)

13 h
Pressure

(p)
Rain
(r) 5

(p, CO, t, h)→(r)
(p, dew, h, SO2)→(r)
(PM10, p, NO2, t)→(r)
(NO2, h, dew)→(r)
(PM2.5, t, h, SO2, w)→(r)

Table 5.10: Summarized results obtained by COD3 across different execution
sessions on real streams.

In what follows, we list some of the most frequently holding fds with
the sliding window of 1 minute, which are shared among the different
time periods:

Pressure (p), Dew Point (dew), Humidity (h)→ Rain (r),
Pressure (p), Temperature (t), Humidity (h)→ Rain (r),
Pressure (p), Particles (PM10), Humidity (h)→ Rain (r).

These fds highlight a strong relationship between humidity, pressure,
and rainfall. In particular, the humidity and the pressure with another

164 discovery algorithms in dynamic scenarios

attribute can imply the rainfall. In general, Rain (r) always appears as the
RHS of the most frequent fds across all considered time periods. Instead,
with the other sliding windows, not only different periods seem to include
different fds among the most frequent ones, but the latter typically have a
greater LHS and sometimes imply a RHS attribute different from Rain (r)
(e.g., Sulfur dioxide (SO2), Dew Point (dew), and Carbon monoxide (CO)).

5.6 bird : an incremental discovery algorithm for rfde s

relaxing on the extent

This section presents a new incremental discovery algorithm for rfdes,
named BIRD (Bit-vector based Incremental rfde Discoverer). In particular,
we present its main steps by introducing the data structures, the search
strategies, the pruning techniques, and the validation process. More-
over, we describe the procedures behind BIRD and provide experimental
results on real-world datasets.

5.6.1 Methodology

BIRD is an incremental rfde discovery algorithm that performs a discov-
ery process by traversing a lattice representation of the search space with
a column-based strategy. It stores data using partitions [85], which repre-
sent a light and compact data structure that allows an efficient validation
process of candidate rfdes by means of the g3-error coverage measure
[37]. Partitions were originally defined for a static discovery scenario,
in which they were be defined during the pre-processing steps, before
executing the discovery process. However, such data structure requires
to be updated whenever at least one tuple is inserted, aiming to make it
suitable for an incremental scenario.

Example 1. Starting from the example introduced in Figure 5.22, the par-
titions at time τ for the attribute periodical effusion of the echocardiogram
dataset are πD(τ) = {[0, 4, 5, 6, 7, 9], [1, 2, 3, 8]}. However, the new parti-
tions at time τ + 1 are πD(τ + 1) = {[0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16,
17, 19], [1, 2, 3, 8, 18]}.

5.6 bird : an incremental discovery algorithm of rfde s 165

Initialization Downward
discovery

RFDe
is Valid?

Next RFDe
at level L

RFDe candidates at level L - 1

True

Inference
True

All RFDe
are not

inferred?

Any previous
RFDes left?

False

Minimal RFDes
at time t

New Tuples
True

New TuplesNew Tuples Stripped
Partition

Generate
Stripped

Partitions

Update
Stripped

Partition

END

False

Any
RFDes left?

True
(a)

(b)

Update
RFDes

(c)

Next RFDe
at level L+1

False

Upward
discovery

False
RFDe candidates at level L + 1

Inference

Add to the
RFDs to be

validate

Discard
Candidate

True

False

Any
RFDes left?

True

False

Update RFDe

Figure 5.21: An overview of BIRD.

An overview of the BIRD’s discovery process is provided in Figure
5.21. Given an instance r of a relation schema R at time τ, BIRD first
performs a pre-processing step (Figure 5.21a), in which it pre-computes
the partitions, updating all the partitions generated at time τ, according
to the new inserted tuples. In order to avoid a long pre-processing phase,
only partitions associated with the first lattice level are updated, i.e.,
those concerning individual attributes. The pre-processing phase also
defines the starting point rfdes according to the properties defined in

166 discovery algorithms in dynamic scenarios

+

 A B C D E G

B E G

C A B D E F G

D A C E F

E A B C D F G
F A B C D E G

G A B C D E F

A B F

 A B C D E F G

B A C D E F G

C A B D E F G

D A B C E F G

E A B C D F G
F A B C D E G

G A B C D E F

A B F
B D C

RFDe candidates

RFDe at time t+1

 B A C D
D B G

e=0.19

e=0.09

A

AB

ABF

BFAF

B

e=0.12

e=
0.0
9e=0.09

ABF

ABAF BF

A B C D E F G
36 0 55 1 0.210 4.2 4.160
1 1 65 0 0.150 ? 5.050
1 1 52 1 0.170 17.20 5.320
3 1 ? 0 ? 12 ?
...

A B C D E F G
31 0 80 0 0.410 5.400 4.360
13 0 66 0 0.24 13.6 4.38
36 0 61 0 0.27 9.0 4.06
25 0 59 1 0.40 9.20 5.36
...

DB

D

CD

BDCADB BDE BDF BDG

Figure 5.22: An overview of the proposed discovery process by considering
ε = 0.1.

Section 5.1.3, and stores them in a data structure named linked map.
Similarly to the linked map described in Section 5.3.1, this data structure
allows performing an ordered discovery phase, on the basis of the LHS
cardinalities of rfdes, according to the APRIORI strategy [84]. Moreover,
the linked map also stores all the candidate rfdes generated during the
discovery process.

Example 2. Let us consider the small snippet of the echocardiogram
dataset shown in Table 5.11. Figure 5.22 shows a simulation on how
new rfde candidates could be generated according to properties defined
is Section 5.1.3, to the relation of Table 5.11, and to an error threshold
ε = 0.1. In particular, in the middle of Figure 5.22 a compressed rep-
resentation of the following minimal rfdes holding at time τ is shown:

A Ψ≤ε−−→ BCDEG, B Ψ≤ε−−→ EG, C Ψ≤ε−−→ ABDEFG, D Ψ≤ε−−→ ACEF, E Ψ≤ε−−→
ABCDFG, F Ψ≤ε−−→ ABCDEG, G Ψ≤ε−−→ ABCDEF, AB Ψ≤ε−−→ F. As said
above, all these rfdes become rfde candidates at time τ + 1, and accord-

5.6 bird : an incremental discovery algorithm of rfde s 167

Survival
Still
alive

Age at
heart attack

Pericardial
effusion

Fractional
shortening

Epss Lvdd

(A) (B) (C) (D) (E) (F) (G)

36 0 55 1 0.210 4.2 4.160

1 1 65 0 0.150 ? 5.050

1 1 52 1 0.170 17.200 5.320

3 1 ? 0 ? 12 ?
27 0 47 0 0.400 5.120 3.100

35 0 63 0 ? 10 ?
26 0 61 0 0.610 13.100 4.070

16 0 63 1 ? ? 5.310

1 1 65 0 0.060 23.600 ?
19 0 68 0 0.510 ? 3.880

Table 5.11: Snippet of the echocardiogram dataset.

ing to Property 2, it is necessary to add B Ψ≤ε−−→ ACD and D Ψ≤ε−−→ BG as
new rfde candidates. Moreover, Figure 5.22a shows what happens when
an rfde is invalidated at time τ + 1. In particular, it shows that D → C

is invalidated at time τ + 1, and the new rfde candidates AD Ψ≤ε−−→ C,
BD Ψ≤ε−−→ C, DE Ψ≤ε−−→ C, DF Ψ≤ε−−→ C, DG Ψ≤ε−−→ C are generated. Then,
after the rfde discovery algorithm performs the validation of such new

rfde candidates, only the rfde candidate BD Ψ≤ε−−→ C holds according
to the input threshold [85]. Figure 5.22b shows what happens when
an rfde is valid at time τ + 1, but it is no longer minimal. In partic-

ular, although AB Ψ≤ε−−→ F is still valid after the insertion of new tu-

ples, it is no longer minimal because A Ψ≤ε−−→ F and B Ψ≤ε−−→ F have
been validated at time τ + 1. Consequently, after the insertion of the
new tuples (Figure 5.22), the rfdes valid at time τ + 1 are the follow-

ing ones: A Ψ≤ε−−→ BCDEG, B Ψ≤ε−−→ ACDEG, C Ψ≤ε−−→ ABDEFG, D Ψ≤ε−−→
ABCEFG, E Ψ≤ε−−→ ABCDFG, F Ψ≤ε−−→ ABCDEG, G Ψ≤ε−−→ ABCDEF.

When the process starts, the first candidate rfde extracted from the
linked map is validated by using the validation method implementing

168 discovery algorithms in dynamic scenarios

the g3-error described in equation 2.1. If the rfde is valid (Figure 5.21b),
then BIRD performs downward discovery, since new added tuples could
reduce the error of candidate rfdes that are minimal with respect to the
considered one, but were not valid before. However, if an rfde is not
valid, an upward discovery is accomplished (see Figure 5.21c) in order
to find the possible new holding rfdes. In both downward and upward
search strategies, BIRD incrementally performs a minimality check on
each rfde. This ensures that all the rfdes in the linked map that have
already been analyzed are minimal. Such a minimality check strategy
is much more efficient than checking the minimality after executing the
discovery algorithm. At the end of each iteration, BIRD checks if there are
other rfdes to analyze, and if not, it returns the minimal rfdes holding at
time τ + 1.

5.6.1.1 Data Structures of BIRD

BIRD uses fast and lightweight data structures, avoiding high memory
usage. Similarly to the representation defined for fds in the algorithm
Incremental-FD (Section 5.3.1), rfdes have been represented by using
a compressed structure based on binary vectors, i.e. (0|1)+, and each of
them has been associated a value e corresponding to its g3-error coverage
measure. More specifically, let vX be the vector representing the LHS of
an rfde φ, and vA the vector representing its RHS, a binary representation
of φ : (vX, vA, e), has the following properties:

• If vX[i] = 1 (or vA[j] = 1) then the i-th attribute is included in the
LHS (or the j-th one is included in the RHS);

• vX ∧ vA = (0)+, e.g. only non-trivial rfdes are considered;

• Each binary rfde’s side must contain at least one bit equal to 1, i.e.
vX = (0|1)∗1(0|1)∗ and vA = (0|1)∗1(0|1)∗;

• Each binary rfde has associated the value e representing its associ-
ated g3-error;

• LHS and RHS vectors have a dynamic size adapted to the number
of dataset’s attributes.

5.6 bird : an incremental discovery algorithm of rfde s 169

 A B C D E G
B E G
C A B D E F G
D A C E F

...

1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 1 1 0 1 1 1 1

0 0 0 1 0 0 0 1 0 1 0 1 1 0

Figure 5.23: Binary representation of candidate rfdes.

Figure 5.23 shows an example of the representation of the candidate
rfdes from the example shown in Figure 5.22.

Moreover, let Στ be the set of rfdes holding on a relation instance r, and
assuming the rfde representation in terms of binary vectors described
above, then the compressed linked ordered map has the following properties:

• Each rfde is inserted in the linked map according to an ordering
criterion based on the number of attributes on X, i.e., by considering
the number of 1s in the binary representation vX of X.

• For each rfde there is a link to the next rfde, except for the last one;
• In order to guarantee the quick insertion of each rfde in the linked

map, a support vector contains the references of the last inserted
rfde for each vX sharing the same number of 1s;

• For each pair of rfdes, φ : (vX, vA, e) and φ′ : (v′X, v′A, e′) ∈ Σ, then
vX ̸= v′X.

Figure 5.24 shows the linked map for the rfdes described in the example
shown in Figure 5.22. As we can see, all rfdes have been mapped by
using binary vectors with seven bits, which represent the number of
attributes in R. The proper size of binary vectors is one of the most
important properties that allows to reduce memory usage. The left-side
of Figure 5.24 contains the support vector linking to the last inserted
rfde among the rfdes having the same number of attributes on the LHS.
The right-side of the figure shows the value of each item in the map,
representing a pointer to the next rfde. The discovery process starts from

170 discovery algorithms in dynamic scenarios

0 0 0 0 1 0 0 1 1 1 1 0 1 1

0 0 0 0 0 1 0 1 1 1 1 1 0 1

0 0 1 0 0 0 0 1 1 0 1 1 1 1

0 0 1 1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 1 1 1 1 0 1

0 1 0 0 0 0 0 1 0 1 1 1 0 1

0 0 1 0 0 0 0 1 1 0 1 1 1 1

0 0 0 1 0 0 0 1 1 1 0 1 1 1

NULL

1

2

3

4

5

6

7

 0
 1

 2
 3

 4
 5

 6
 7

Key ValueLast
Items

Figure 5.24: The compressed linked map related to the Example in Figure 5.22.

the first rfde, i.e. that with pointer 1, and proceeds until it reaches the
null pointer.

5.6.2 The BIRD Algorithm

The rfde candidate generation process is one of the main steps of the

rfde discovery process. Given a candidate rfde X Ψ≤ε−−→ A, the generation
candidate follows the properties defined in Section 5.1.3. Therefore, we
consider two main cases in which the generation of new candidates is
necessary, namely when the invalidation of rfdes and/or the refutation
of minimality occur. According to the first one, Algorithm 14 permits to
generate candidate rfdes by evaluating not valid rfdes. In particular,
it considers a candidate rfde not valid at time τ + 1, together with
the binary representation of its LHS, and it uses bit-wise operations to
generate candidate rfdes for the next lattice level. Algorithm 14 first
checks whether it is possible to search candidate rfdes at the next higher
level (line 2), then it processes them an attribute at a time among those

5.6 bird : an incremental discovery algorithm of rfde s 171

Algorithm 14 NEXTCANDIDATES

INPUT: X Ψ≤ε−−→ A → An rfde not valid at time τ + 1, with vX
binary representation of the LHS
OUTPUT: Σnext → The set of new candidate rfdes at time τ + 1

1: Σnext ← ∅
2: if |X| < (|attr(R)| − 1) then
3: while Bi ∈ attr(R) with i ≤ |attr(R)| do
4: vXnext ← vX
5: if Bi ̸= A then
6: if vXnext [i] ̸= 1 then
7: vXnext [i]← 1
8: Σnext ← Σnext ∪{Xnext

Ψ≤ε−−→ A}
9: return Σnext

not already in their LHS or RHS. This avoids the inclusion of trivial rfde

in the linked map of candidates (lines 3-6). If these conditions are verified,
then the algorithm generates a new candidate rfde, composed of the
new LHS Xnext and the same RHS A. In particular, this is accomplished
through an bit-wise OR operation between vX and vXnext (lines 7-8). Finally,
it returns a new set of generated candidate rfdes (line 9).

Example 3. Figure 5.22a shows an example of this operation. The rfde

D Ψ≤ε−−→ C is not valid at time τ + 1. Using this strategy the set of candi-

dates will contain the following rfdes: AD Ψ≤ε−−→ C, BD Ψ≤ε−−→ C, ED Ψ≤ε−−→
C, FD Ψ≤ε−−→ C, GD Ψ≤ε−−→ C, which are all non trivial ones.

Concerning the verification of the minimality property, as said above,
Algorithm 15 computes possible candidate rfdes on the previous lattice

level. Similarly to the Algorithm 14, given an rfde X Ψ≤ε−−→ A, together
with the binary representation of its LHS vX, it first checks whether it
is possible to search candidate rfdes at the previous lower level (line 2),
and if so, it considers each Bi ∈ X at a time, removing it from the LHS
(lines 5-6). Next, the algorithm adds the new candidate rfdes to the set of
candidate rfdes (line 7).

172 discovery algorithms in dynamic scenarios

Algorithm 15 PREVIOUSCANDIDATES

INPUT: X Ψ≤ε−−→ A → An rfde not valid at time τ + 1, with vX
binary representation of the LHS
OUTPUT: Σprev → The set of new candidate rfdes at time τ + 1

1: Σprev ← ∅
2: if |X| > 1 then
3: while Bi ∈ attr(R) with i ≤ |attr(R)| do
4: vXprev ← vX

5: if vXprev [i] = 1 then
6: vXprev [i]←0

7: Σprev ← Σprev ∪{Xprev
Ψ≤ε−−→ A}

8: return Σprev

Example 4. Figure 5.22b shows an example of this operation. The rfde

AB Ψ≤ε−−→ F is still valid a time τ + 1. However, following the proposed
discovery strategy, we check if there are rfdes in the previous lattice level
with associated g3-error e ≤ ε. Thus, the following new candidate rfdes

need to be considered: A Ψ≤ε−−→ F, B Ψ≤ε−−→ F.

5.6.2.1 Inference

During the discovery process, as new candidate rfdes are validated, it
is necessary to check whether they are minimal. Thus, in the proposed
search process the minimality check (that we call Inference) is accom-
plished by exploiting a new compressed linked map.

More formally, given a relation instance r of a relation schema R and

X, Z ⊆ attr(R), such that Z ⊂ X, then for each rfde X Ψ≤ε−−→ A validated

at time τ + 1 it is necessary to verify that there exists no rfde Z Ψ≤ε−−→ A,
among those already validated at time τ + 1.

The inference process requires complex analysis steps to be performed
on validated rfdes. For this reason, we use a linked map to group rfdes

5.6 bird : an incremental discovery algorithm of rfde s 173

Algorithm 16 IS_INFERRED

INPUT:
φ : X Ψ≤ε−−→ A → An rfde holding at time τ + 1
Στ → A set of candidate rfdes

OUTPUT:
True→ If the φ is not minimal
False→ Otherwise

1: if Στ is empty then
2: return false
3: else
4: for each Z Ψ≤ε−−→ A ∈ Στ do
5: if |Z| ≤ |X| then
6: v(X∧Z) ← vX ∧ vZ

7: if v(X∧Z) = vZ then
8: return false

9: return true

sharing the same RHS and already validated at time τ + 1. This allows
us to reduce the number of rfdes to be checked.

Algorithm 16 shows the proposed inference process. It considers an

rfde X Ψ≤ε−−→ A holding at time τ + 1, and a linked map containing all
already validated minimal rfdes and grouped by each possible RHS, and
checks if it is minimal. Algorithm 16 first checks if there exists at least one
rfde holding at time τ + 1 (lines 1-3), and if so, then for each candidate

rfde Z Ψ≤ε−−→ A checks if the cardinality of Z is lower than the one of X
(lines 4-5), and it performs a bit-wise AND operation between the binary
vector representations of X and Z (lines 6-7). If the result is equal to the

binary vector of Z, then this means that Z ⊂ X, i.e., X Ψ≤ε−−→ A is not
minimal (line 8).

5.6.2.2 Main procedure of BIRD algorithm

Algorithm 17 presents the proposed BIRD discovery algorithm. Given Στ

the set of all rfdes holding at time τ and of all rfdes generated as starting

174 discovery algorithms in dynamic scenarios

Algorithm 17 BIRD Algorithm

INPUT: Στ → A set of candidate rfdes as starting points from time
τ
OUTPUT: Στ+1 → A set of new valid and minimal fds at time τ + 1

1: for each X Ψ≤ε−−→ A ∈ Στ in ascending ordering by LHSs do
2: if VALIDATION(X Ψ≤ε−−→ A) is not valid then
3: Ll+1 ← NEXTCANDIDATES(X Ψ≤ε−−→ A)
4: for each W Ψ≤ε−−→ A ∈ Ll+1 do
5: if IS_MINIMAL(W Ψ≤ε−−→ A) then
6: Στ ← Στ ∪ {W

Ψ≤ε−−→ A}
7: else
8: Ll−1 ← PREVIOUSCANDIDATES(X Ψ≤ε−−→ A)
9: for each Z Ψ≤ε−−→ A ∈ Ll−1 do

10: if VALIDATION(Z Ψ≤ε−−→ A) is valid then
11: Ll−1 ← Ll−1∪ PREVIOUSCANDIDATES(Z Ψ≤ε−−→ A)
12: else
13: Ll−1 ← Ll−1 \ {Z

Ψ≤ε−−→ A}
14: if |Ll−1| > 0 then
15: Στ ← Στ \ {X

Ψ≤ε−−→ A}
16: for each Z Ψ≤ε−−→ A ∈ Ll−1 do
17: if IS_MINIMAL(Z Ψ≤ε−−→ A) then
18: Στ ← Στ ∪ Z Ψ≤ε−−→ A
19: Στ+1 ← Στ

points according to the Properties 1, 2 and 3 (see Section 5.1.3), BIRD
starts by analyzing the candidate rfdes with lower cardinality (line 1). In
particular, we use the compressed linked map to facilitate a level-wise
discovery, so as to avoid the sorting of all rfdes. Thus, for each rfde

holding at time τ, BIRD uses the VALIDATION process (line 2) to verify

whether X Ψ≤ε−−→ A still holds at time τ + 1. This process is performed
according to the g3-error computation described in Equation (2.1). Thus,

5.6 bird : an incremental discovery algorithm of rfde s 175

if the analyzed rfde is not valid, BIRD generates new candidate rfdes
at the next lattice level (Algorithm 14), by discarding those that can be
inferred from other rfdes, according to Algorithm 16 (lines 3-6). Notice
that the ordering criterion of the rfdes permits to avoid the re-validation
of some candidate rfdes.

Example 5. As mentioned in the example shown in Figure 5.22, if we

consider the rfde D Ψ≤ε−−→ C, it is not valid at time τ + 1. Thus, the rfdes
AD Ψ≤ε−−→ C, BD Ψ≤ε−−→ C, DE Ψ≤ε−−→ C, FD Ψ≤ε−−→ C, GD Ψ≤ε−−→ C become new
candidate rfdes at time τ + 1. Moreover, let suppose that there exists

another rfde E Ψ≤ε−−→ C that is not valid a time τ + 1, then we should
also consider all the rfdes AE Ψ≤ε−−→ C, BE Ψ≤ε−−→ C, DE Ψ≤ε−−→ C, EF Ψ≤ε−−→
C, EG Ψ≤ε−−→ C as new candidates. However, the rfde DE Ψ≤ε−−→ C appears
twice, but it will be validated only once, thanks to the defined compressed

linked map. However, if X Ψ≤ε−−→ A is a valid rfde, the algorithm checks

if other rfdes in the previous lattice level have been already validated at
time τ + 1 (lines 8-18). For each rfde φ holding at time τ + 1 the process
tries to validate its neighbours on the previous lattice level, and φ is
not removed from Στ+1 if and only if none of its neighbours are valid.
Moreover, in this last case the iterations on previous candidate rfdes are
stopped due to the analyzed rfde. Notice that the minimality of candidate
rfdes on previous lattice levels is always locally checked (lines 16-18).

It is worth to notice that, while the implementation of BIRD considers
several code optimizations and takes advantage of the defined data
structures, for sake of clarity, the pseudo-codes described above do not
show such optimizations. They mainly guarantee that each possible
candidate rfde is validated at most once. Thus, in the worst case, the
exploration of the search space is equivalent to the one of non-incremental
rfde discovery algorithms.

5.6.2.3 Parallelism in BIRD

As mentioned above, the rfde discovery problem is a complex one,
especially with datasets having high cardinality and dimensionality. To

176 discovery algorithms in dynamic scenarios

Algorithm 18 BIRD Parallel Version

INPUT: Στ → A set of candidate rfdes as starting points from time
τ
OUTPUT: Στ+1 → A set of new valid and minimal fds at time τ + 1

1: nCPU ← number of available CPUs
2: Στ+1 ← ∅
3: l ← 0
4: while l ≤ |attr(R)| do
5: Γ← CREATEPOOL(nCPU)
6: Ll ← GETRFDS(l)
7: for all γ ∈ Γ do
8: φ← Ll .NEXTDEPENDENCY()
9: γ.execute(WORKERDISCOVERY(φ,Στ, Στ+1))

10: WAITWORKERS()
11: l ← l + 1

12: return Στ+1

tackle this problem, we defined a parallel version of BIRD (named BIRDp),
which differs from the sequential version in that the generation and the
validation of candidate rfdes are accomplished level-wise, i.e. one level
at a time, by also using thread-safe collections. Thus, the linked map
has been defined as a thread-safe data structure. Moreover, BIRDp splits
the space of candidate rfdes, assigning them to several workers. More
specifically, a pool of thread-workers is allocated for each level in order to
continuously monitor its status, enabling the execution of each work only
when necessary. In particular, let l be the selected lattice level, then Ll is
the set of all candidate rfdes at time τ + 1 having LHS cardinality equal
to l. More specifically, the workload, i.e. the number of candidate rfdes to
be validated, is distributed among all workers, assigning a validation task
to each worker whenever it becomes available. The results of each worker
are merged into a thread-safe set, which is updated by each thread after
performing the assigned task.

Algorithms 18 and 19 implement BIRDp. In particular, Algorithm
18 shows the initialization phase of the thread pool. Let l be the LHS

5.6 bird : an incremental discovery algorithm of rfde s 177

Algorithm 19 BIRD Worker

1: function WORKERDISCOVERY(X Ψ≤ε−−→ A, Στ, Στ+1)
2: if VALIDATION(X Ψ≤ε−−→ A) is not valid then
3: Ll+1 ← NEXTCANDIDATES(X Ψ≤ε−−→ A)
4: for each W Ψ≤ε−−→ A ∈ Ll+1 do
5: if IS_MINIMAL(W Ψ≤ε−−→ A then)
6: Στ ← Στ ∪ {W

Ψ≤ε−−→ A}
7: else
8: Ll−1 ← PREVIOUSCANDIDATES(X Ψ≤ε−−→ A)
9: for each Z Ψ≤ε−−→ A ∈ Ll−1 do

10: if VALIDATION(Z Ψ≤ε−−→ A) is valid then
11: Ll−1 ← Ll−1∪ PREVIOUSCANDIDATES(Z Ψ≤ε−−→ A)
12: else
13: Ll−1 ← Ll−1 \ {Z

Ψ≤ε−−→ A}
14: if |Ll−1| > 0 then
15: Στ ← Στ \ {X

Ψ≤ε−−→ A}
16: for each Z Ψ≤ε−−→ A ∈ Ll−1 do
17: if IS_MINIMAL(Z Ψ≤ε−−→ A) then
18: Στ ← Στ ∪ Z Ψ≤ε−−→ A
19: Στ+1 ← Στ+1 ∪ Στ

cardinality of the rfdes to be analyzed at level l, then the algorithm selects
only the rfdes to be checked by using a custom filter (line 6). The latter is
a stream filter based on lambda expressions that selects the rfdes from
the map having a specific LHS cardinality defined by l (line 3). Next, for
each candidate rfde, it assigns an asynchronous task to a worker so that
the discovery phase can start through the procedure WORKERDISCOVERY

(lines 7-9). Moreover, for each iteration, it waits for the termination of
each thread before moving to the next level.

Finally, each worker stores the rfdes discovered at time τ + 1 in a
shared set Στ+1 that is returned after the complete execution of BIRDp.

178 discovery algorithms in dynamic scenarios

Instead, Algorithm 19 receives a candidate rfde as input and tries to
validate it by also checking the minimality property. Notice that, this
procedure follows in part the same discovery and validation process of
the sequential version (Algorithm 17) described above.

5.6.3 Theoretical Evaluation

From a theoretical point of view, it is necessary to guarantee that BIRD is
able to find all and only the minimal rfdes holding on a given relation
instance r. Thus, it is necessary to prove the correctness of discovered
rfdes. To this end, the correctness of rfdes discovered with BIRD can
be assessed through well-known methods and properties proposed in
the literature. In particular, BIRD implements the one proposed in [85].
Notice that, all the proofs provided below refer to the basic version of
BIRD (Algorithm 17), even though they can be easily generalized to the
parallel one.

Minimality. One of the evaluation dimensions of a rfde discovery al-
gorithm is minimality, which guarantees that the discovered rfdes no
longer hold upon removing an LHS attribute.

Theorem 1. Each rfde discovered by BIRD is minimal according to the
minimality property defined in Section 5.1.3.

Proof. BIRD starts with the set of all candidate rfdes Στ, and updates
it according to validation results in ascending order by LHS cardinality
(Line 1). Thus, if the first candidate rfde φ0 ∈ Στ is valid, then it is
also minimal, since no PREVIOUSCANDIDATES exist. Now, assuming that
all minimal rfdes with LHS cardinality k have been added to Στ, then
we prove by induction that if a generic rfde φk+1 ∈ Στ, having LHS
cardinality k + 1, is valid, then it is also minimal.

In Algorithm 17, when φk+1 is validated, then BIRD executes Lines
8− 18. Thus, PREVIOUSCANDIDATES are collected and explored (Lines 8-9),
and if there exists at least one valid rfde in the previous lattice level,
then it is necessary to explore the previous levels in order to assess
the minimality property more in depth. However, if there are no valid

5.6 bird : an incremental discovery algorithm of rfde s 179

rfdes in a previous level, then BIRD stops the exploration process, since
according to the refinement property [85], no candidate from the previous
levels can be valid. During the exploration of previous levels, if there
exists at least one rfde that is minimal with respect to φk+1, then the latter
is removed (Line 15). As a consequence, all valid rfdes discovered by
PREVIOUSCANDIDATES in previous levels will be added to Σ after assessing
their minimality (Line 17-18). Thus, if a valid rfde φk+1 with cardinality
k + 1 is maintained into Στ after the exploration by PREVIOUSCANDIDATES

on those with cardinality k, then it is also minimal.

Completeness. Another important evaluation dimension of a rfde

discovery algorithm is completeness, which guarantees that the algorithm
discovers all minimal rfdes.

Theorem 2. BIRD discovers all minimal rfdes.

Proof. At each time instant, BIRD proceeds incrementally by considering
an initial set Στ of candidate rfdes. Let us first consider the candidate
rfdes appearing in Στ at the beginning of the discovery process, at a
given time τ + 1, and then in order:

• all the rfdes holding at the previous time instant (τ);

• all the candidate rfdes B Ψ≤ε−−→ A such that there is no minimal rfde

X Ψ≤ε−−→ A holding at time τ, for any attribute B ̸= A (Property 1);

• all the candidate rfdes B Ψ≤ε−−→ A such that there is no minimal rfde

X Ψ≤ε−−→ A holding at time τ, with B ∈ X (Property 2); and

• all the candidate rfdes X Ψ≤ε−−→ A such that for each B ∈ X, B
belongs to the LHS of some rfdes holding at time τ, but at time

τ there exists neither a minimal rfde X′ Ψ≤ε−−→ A, with X′ ⊆ X and
B ∈ X′, nor a minimal rfde X′′ Ψ≤ε−−→ A, such that X ⊆ X′′ and
B ∈ X′′ (Property 3).

Notice that Property 1 guarantees the fact that at the first time instant

(τ = 0), for each attribute A in attr(R), any candidate B Ψ≤ε−−→ A, with
B ̸= A, is added to Στ.

Let us now prove by contradiction the completeness of the proposed
search strategy. Let us assume that BIRD misses a minimal rfde φ :

180 discovery algorithms in dynamic scenarios

X Ψ≤ε−−→ A holding on an input instance r. Then, 1) X cannot be superset

of any candidate rfdes X′ Ψ≤ε−−→ A, with X′ ⊂ X, since if the latter has
already been validated (Algorithm 17 processes candidates in increasing
order of their LHS cardinality), φ would not be minimal; instead, if

X′ Ψ≤ε−−→ A does not hold on r, then φ is analyzed by BIRD (Line 3), unless

some X′′ Ψ≤ε−−→ A, with X′ ⊂ X′′ ⊂ X, has already been validated; 2) X

cannot be subset of any rfde X′ Ψ≤ε−−→ A validated during the discovery
process (Line 8-18), according to the aforesaid minimality proof.

Consequently, since all rfdes holding at time τ represent candidate
rfdes holding at time τ + 1, then points 1) and 2) prove that for each

X′ Ψ≤ε−−→ A holding at time τ, X ̸= X∪X′ ̸= X′, that is, neither X ⊆ X′ nor
X′ ⊆ X. However, according to Property 3, for each B ∈ X, if there exists

at least an rfde X′ Ψ≤ε−−→ A, such that B ∈ X′, then all possible candidate
rfdes at the lowest possible level are added to the set of candidate rfdes.
This means that for all B ∈ X no rfde valid at time τ can contain B in its
LHS. Thus, according to Property 2, B is not included in Sτ and B Ψ≤ε−−→ A
would be added as a candidate rfde at time τ + 1. We can deduce that
no minimal rfde X′ Ψ≤ε−−→ A holds at time τ for any possible attribute set
X′ ⊂ attr(R), i.e. attribute A is never determined at time τ. Moreover,
according to Property 1, A would never be included into Zτ, and then

for each B ̸= A an rfde B Ψ≤ε−−→ A is included as candidate at time τ + 1.
Consequently, X Ψ≤ε−−→ A is always considered as candidate during the

discovery process, unless some X′ Ψ≤ε−−→ A, with X′ ⊆ X, has already been

validated. In this case, X Ψ≤ε−−→ A cannot be considered as minimal, which
contradicts the original assumption.

5.6.4 Experimental Evaluation

In what follows, we present the experimental evaluation of BIRD on
several public datasets, comparing results with those of the TANE algo-

5.6 bird : an incremental discovery algorithm of rfde s 181

Statistics

ID Dataset Columns [#] Rows [#] Size [KB] fds [#] rfdes [#]

1 Iris 5 150 5 4 13

2 Balance-scale 5 625 7 1 5

3 Chess 7 1999 519 1 7026

4 Abalone 9 4176 187 137 88

5 Nursery 9 12960 1024 1 4457

6 Breast-cancer-wisconsin 11 699 20 46 95

7 Bridges 13 108 6 142 340

8 Echocardiogram 13 132 6 538 172

9 Tsa-claims 13 145143 25608 28 355

10 Adult 14 32561 3528 78 2289

11 Ncvoter 19 1001 151 758 3191

12 Hepatitis 20 155 8 8250 14973

Table 5.12: Statistics of the considered public datasets [12].

rithm8. In particular, for BIRD we split a given dataset into two portions,
where the first one is used to obtain the rfdes holding at time τ, and the
second portion to run BIRD. This permits to simulate the insertion of new
tuples in an incremental scenario. Instead, for TANE, we ran its discovery
process on the entire dataset. The comparative analysis aims to show
the advantages of an incremental discovery algorithm with respect to a
complete re-execution from scratch. Among the different rfde discovery
algorithm proposed in literature, we chose TANE for the comparative
evaluation because BIRD relies on its validation strategy.

Implementation details. BIRD has been developed in Java 11. Moreover,
to avoid the re-computation of partitions, which are widely used for the
validation of candidate rfdes, we introduced a strategy to store them
in cache memory. Finally, as said above, we implemented two versions
of BIRD, the sequential and parallel versions (named BIRDp). The latter
exploits functional programming techniques to properly manage parallel
executions.

8 We used the implementation available at: https://github.com/HPI-Information-
Systems/metanome-algorithms

182 discovery algorithms in dynamic scenarios

Hardware and Datasets. All experiments have been executed on a Mac
with an Intel Xeon W 3.2GHz 32-core CPU with 128GB of RAM, running
MacOS Mojave and OpenJDK 64-Bit 12.0.2 as Java environment. We eval-
uated BIRD on twelve public datasets, whose details on the considered
datasets are shown in Table 5.12.

Evaluation process. For evaluating BIRD we simulated the tuple insertion
by splitting each original dataset r in two portions, based on a given
percentage value. The first portion, indicated as rτ, represents the instance
at time τ, whereas the second one, indicated as rτ+1, refers to the instance
resulting from the insertion of tuples from time τ to time τ + 1. In
particular, BIRD uses the rfdes extracted by TANE on rτ as starting
points. Moreover, we analyzed the time performances of BIRD on rτ+1

by varying i) the percentage of tuples inserted from time τ to time
τ + 1, denoted as Pτ+1, ii) the g3-error threshold, and iii) the number of
execution threads.

5.6.4.1 Comparative evaluation

We performed a comparative evaluation of BIRD versus the TANE
algorithm. In particular, BIRD and BIRDp have been executed with
Pτ+1 = 10%, and all three algorithms used a g3-error threshold ε = 0.3.
More specifically, we analyze the average times for BIRD and BIRDp, since
for each dataset we performed 10 executions by considering different cut
points.

Figure 5.25 reports the execution times achieved by the different algo-
rithms. They highlight that BIRD and BIRDp outperform TANE on all
datasets with one or more order of magnitude, despite the variability of
the dataset in terms of the number of rows/columns. In particular, the
execution times of BIRD are always almost an order of magnitude lower
than those of TANE. The lowest performance gap is obtained with the
datasets Chess, Tsa-claims, Ncvoter, and Hepatitis, for which BIRD still gets
better performances. They represent the most complex datasets due to
the high number of holding rfdes, which require BIRD to manage a high
number of starting points. Moreover, as expected, BIRDp improves the
execution times of BIRD.

5.6 bird : an incremental discovery algorithm of rfde s 183

1 2 3 4 5 6 7 8 9 10 11 12
Dataset ID

101

102

103

104

105

106

107

Ru
nt

im
e

(m
s)

TANE
BIRDp

BIRD

Figure 5.25: Time performances of TANE, BIRD, and BIRDp.

Another experimental session aimed to analyze the time efficiency of
BIRDp, by using a configuration with Pτ+1 = 60%, and by varying the g3-
error thresholds in the range [0.1, 1] with step 0.1. The average execution
times of BIRDp are shown based on 10 executions, in which we used
random cut-points to split the data into two portions according to Pτ+1.
Moreover, results are always compared with a complete execution from
scratch with TANE (red bars). Figure 5.26 highlights the execution times
achieved by BIRDp (blue bars). We can notice that the execution times
of BIRDp have a decreasing trend when the g3-error threshold increases.
This is due to the fact that the number of holding rfdes decreases as the g3-
error threshold increases, and they typically have small LHS cardinalities,
which enable the application of pruning strategies to discard lattice paths
yielding non-minimal rfdes. Non-monotonic and quite constant trends
are followed by the execution times on Abalone, Tsa-claims, and the Iris
datasets. From the analysis of the discovered rfdes we observed that on
these datasets BIRDp validates almost always the set of rfdes received
as starting points. Results of Breast-cancer-wisconsin represent the only
particular case, in which we can notice a high variability on execution

184 discovery algorithms in dynamic scenarios

3

0.1
0.1

0.2
0.2

0.3
0.3

0.4
0.4

0.5
0.5

0.6
0.6

0.7
0.7

0.8
0.8

0.9
0.9

1
1

TANE
BIRDp

Abalone0

250

500

750

Adult

105

106

107

Balance-scale

101

102

Breast-cancer-wisconsin0

200

400

Ru
nt

im
e

(m
s)

Bridges
101

102

Chess

102

103

104

Echocardiogram
101

102

Hepatitis

102

104

Iris

101

102

Ncvoter
102

103

104

Nursery
102

103

104

Tsa-claims0K

200K

400K

600K

Figure 5.26: Time performances with Pτ+1 = 60% and g3-error threshold in the
range [0.1, 1].

times when considering smaller thresholds, whereas the trend became
decreasing starting from ε ≥ 0.4.

Figure 5.26 also shows the error bars computed on the different exe-
cutions performed by considering random cut-points on data. It can be
notice that, in most cases, the variation in times is tiny. The error bars
show a slightly bigger variability when average execution times present a

5.6 bird : an incremental discovery algorithm of rfde s 185

significant gap with respect to those obtained with the previous smaller
threshold. Only few exceptions are highlighted into results of Abalone
and Bridges.

With respect to the comparison of results, it is clear that BIRDp out-
performs TANE. As opposed to BIRDp, the latter often presents quite
constant and extremely high execution times. In general, the gap among
the performances between the two algorithms is big, mainly with higher
thresholds. However, the only cases in which similar time performances
are observed for the two algorithms occur with ε = 1 in Abalone, and
ε ≤ 0.2 in Hepatitis.

We also evaluated BIRDp performances with a fixed g3-error threshold,
and by varying the Pτ+1 values. We varied Pτ+1 in the range [10%, 90%]

with step 10%, and set the g3-error threshold to ε = 0.2. Also in this
case, we show the average execution times of BIRDp resulting from 10

executions, in which we used random cut-points to split the data in two
portions according to Pτ+1. Moreover, results are always compared to
those of a complete execution from scratch with TANE.

Figure 5.27 summarizes the obtained results. As opposed to the results
achieved by varying the g3-error threshold, in this case it is not possible
to infer a general trend. In fact, we can notice a non-monotonic trend on
the Abalone, Balance-scale, Breast-cancer-wisconsin, Chess, and Iris datasets,
a quite constant trend on Echocardiogram, Nursery, and Tsa-claim, and an
increasing trend on Adult, Bridges, Hepatitis, and Ncvoter. The latter trend
is the one we expected, since when Pτ+1 increases, the number of new
tuples added from time τ to time τ + 1 is bigger. Thus, BIRDp could
invalidate a high number of rfdes. Usually, this occurs on datasets with
high cardinality, since possible introduced violations could lead to a big
variation on holding rfdes. In general, the achieved results highlight that
when Pτ+1 increases, the execution times depend on the dataset.

According to the error bars, we can notice that in general there is a
small variability in execution times. Exceptions can be found for Balance-
scale, Breast-cancer-wisconsin, and Iris. The latter are the datasets with a
smaller number of holding rfdes, and also present a non-monotonic trend.
This could be due to the fact that the different cut-points can induce the

186 discovery algorithms in dynamic scenarios

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Abalone0

250

500

750

Adult

106

107

Balance-scale

101

102

Breast-cancer-wisconsin0

200

400

Ru
nt

im
e

(m
s)

Bridges0

200

400

Chess0K

10K

20K

30K

Echocardiogram0

200

400

Hepatitis0K

50K

100K

Iris

101

102

Ncvoter0K

5K

10K

Nursery0K
5K

10K
15K
20K
24K

Tsa-claims0K

200K

400K

Figure 5.27: Time performances of BIRD with g3-error threshold ε = 0.2 and
Pτ+1 in the range [10%, 90%].

invalidation of all or none rfdes holding at time τ, since rfdes are few in
general.

Finally, with respect to the times observed from the execution of TANE
(red bars) on the complete datasets, we notice that in most cases BIRDp

outperforms TANE by a different order of magnitude. The only exception
is highlighted for the Hepatitis dataset, on which BIRDp obtains worse

5.6 bird : an incremental discovery algorithm of rfde s 187

performances with respect to TANE when the number of tuple insertions
is greater than 60%. In this case, TANE better exploited the pruning
strategies. In particular, the Hepatitis dataset is the one containing the
highest number of rfdes. Thus, we expected that with many inserted new
tuples BIRDp has to consider a large variation of holding rfdes.

1 2 4 8 16 32
Threads

101

102

103

104

105

106

Ru
nt

im
e

(m
s)

19
9 8 8 10

18

3529
20851400 1102 1180 1117

3273945
1763357

1043180
561526 363071 306983

Echocardiogram Adult Ncvoter

Figure 5.28: Scale-up performances of BIRDp.

5.6.4.2 Scale-up evaluation

We performed a further experimental session to evaluate the communi-
cation overhead introduced by the parallelism used by BIRDp. To this
end, we considered a configuration of the algorithm with 2i available
CPUs, varying i in the range [0, 5], Pτ+1 = 50%, and ε = 0.4. We analyzed
the time performances on Echocardiogram, Adult, and Ncvoter datasets to

188 discovery algorithms in dynamic scenarios

understand how datasets with different number of rows and columns
impact on the parallelism performances.

Figure 5.28 shows the execution times observed for BIRDp in this
experiment. We can notice a decreasing trend when the number of worker
threads increases from 1 to 8, especially for Adult and Ncvoter. This is
due to the fact that worker threads are lock-free and they need to be
synchronized at the end of their computation life-cycle, i.e., when the
results are included into the final set of rfdes. This synchronization
process represents the biggest BIRDp overhead, which can degrade time
performances when the number of threads exceeds a given value, as
depicted in Figure 5.28 for the Echocardiogram dataset. For the other two
datasets we can notice that the execution times reduced the sequential
performances by two-thirds for Ncvoter and one-tenth for Adult.

Part III

T O O L S F O R V I S UA L I Z I N G P R O F I L I N G
M E TA D ATA

6
V I S UA L I Z AT I O N A N D M O N I T O R I N G T O O L S F O R
I N C R E M E N TA L D I S C O V E RY A L G O R I T H M S

As discussed in previous Chapters, the problem of discovering fds and
rfds from data is an extremely complex one, and has challenged many
researchers to investigate efficient algorithms enabling their discovery
from “big” data collections in both static and dynamic scenarios. In this
chapter, we focus on dynamic scenarios, where the goal is to get holding
fds/rfds even when the input data dynamically change over time, such
as with data streams. In this scenario, a proper analysis of how rfds
change over time cannot be accomplished by looking at a possibly huge
number of holding rfds over millions of time instants. Thus, this problem
yields the necessity to provide novel tools and/or visual metaphors to
graphically visualize them so as to facilitate their analysis. To this end,
in this chapter we present three tools for visualizing the evolution of
discovered rfds during continuous discovery processes. These tools also
enable the comparison among rfds discovered across several executions,
by means of visual manipulation operators that permit to dynamically
compose and filter results.

6.1 problem description

Other than several proposals of algorithms for automatically discovering
fd and rfds from data, some recent algorithms deal with their discovery
from dynamic datasets (see Section 5.1). Although the discovery problem
is per se an open challenge, it is important to consider that not only the
computational complexity represents one of the main issues to tackle,
but a proper visualization of results should be addressed [36]. In fact,
as discussed in previous Chapters, the discovery of fds is an extremely
complex, especially when the number of attributes increases (see Section

191

192 visualization and monitoring tools

4), and it considerably grows when introducing some relaxation criteria
on the canonical definition of fds, yielding rfds (Section 5). On the other
hand, the problem of visualizing results has to consider their quantity
and complexity. In fact, fd and rfd discovery algorithms often output a
huge set of dependencies, with many different combinations of thresh-
olds, which makes it difficult for a user to grasp useful insights from
them. However, while the research community is focusing on improving
the efficiency of fd and rfd discovery algorithms, few efforts have been
devoted to devise effective visualization metaphors, capable of summa-
rizing the characteristics of the most relevant dependencies holding on
a given dataset. To this end, in this chapter, we focus our discussion on
three new tools for monitoring and visualizing metadata extracted from
discovery algorithms, and on managing them in real-world application
scenarios.

The first tool, namely DEVICE [26], permits to monitor the set of rfds
extracted from static and incremental discovery algorithms through a
lattice representation. Moreover, it enables the user to interact with the
discovery results by zooming on the search space and/or filtering results
according to specific attributes or threshold settings.

The second tool, namely STRADYVAR [21, 22], permits to analyze and
compare rfds dynamically extracted from data streams, enabling users to
monitor their evolution over time. In particular, with STRADYVAR users
can i) visualize the trend related to the number of rfds holding on a data
stream over time, ii) visualize an overview of the correlations between
attributes included in the discovery results over time, iii) compare the
rfds resulting from different executions of a discovery process on the
same or different data streams, and iv) directly manipulate discovery
results by composing those across different executions and/or grouping
rfds according to specific Right-Hand-Side (RHS) attributes.

Finally, the third tool, namely INDITIO [30], permits to monitor and
validate in real-time specific profiling metadata upon data insertion
operations. It has been conceived as a plugin of the graphical client
MySQL Workbench, and it enables the user to intercept data insertion
queries, in order to validate specified (or uploaded) metadata before the
insertion is committed. It also provides different statistical counters and

6.2 literature review 193

visual components enabling users to have an overview of the general
impact of data insertions on the considered metadata.

6.2 literature review

Although recent algorithms are becoming capable to scale over big data
collections, there are only a few solutions in the literature for handling
the complexity related to the visualization of a possibly huge number
of discovered rfds. The first proposal for visualizing large sets of rfds
is described in [36]. It presents several metaphors for representing rfds
at different levels of detail. Starting from a high-level visualization of
attribute correlations, details are interactively revealed, also including
details on the relaxation criteria. Moreover, among the recent proposals,
two of the most effective platforms for data profiling are the Metanome
project [125] and Metacrate [92]. The former embeds several algorithms
to automatically discover complex metadata and various result manage-
ment techniques, such as list-based ranking techniques, and interactive
diagrams of discovery results. The latter permits the storage of different
metadata and their integrations, enabling users to perform several ad-hoc
analysis. However, none of the previous platforms allow users to mon-
itor the results of the discovery algorithms. Moreover, they are mainly
designed for domain experts, and not for users who are not familiar with
advanced database technologies.

A related research context is represented by visual data mining, for
which in the literature there are several approaches and tools aim to
improve the understanding of data mining algorithms and their results
(see [54] for a survey). Among these, it is worth mentioning Association
Rules (ARs) visualization approaches, since the concept of AR is some-
how related to that of rfd. For instance, several tools/packages have been
designed to visually inspect the set of ARs [75, 142]. Moreover, ad-hoc
visualization techniques have been introduced, such as the hierarchical
matrix-based [39], or the hybrid matrix- and graph-based [157]. They
typically show summarized representations of result sets, and provide
mechanisms to filter results. On the other hand, due to the huge quantity

194 visualization and monitoring tools

of possible rules, in [40] a visual tool for searching rules has been intro-
duced. It interactively guides users in the definition of the target rule by
drawing details of minimum, current, and potential support/confidence
measures, based on already or potentially selected attributes. Finally,
also in the context of ARs, an enhanced visualization technique has been
defined in order to highlight changes among different sets of ARs [122].

Although all of these proposals represent effective tools to visualize
and explore properties and metadata after the execution of mining/dis-
covery algorithms, they do not enable users to monitor the discovery
processes during their executions. Moreover, even if in the literature sev-
eral time-related visualization approaches/tools have been proposed [87,
112, 141], they only focus on static scenarios, not meeting the recent need
of researchers to explore the evolution of metadata in dynamic scenarios
(see Section 2). To this end, the new tools presented in the following
sections provide users the possibility to monitor the evolution of rfd over
time and to perform result comparisons across different executions.

6.3 device : a tool for monitoring the evolution of rfd

discovery algorithms

In this section, we present DEVICE (DEpendency VIsualizer on lattiCE)
a visual tool that permits monitoring the set of rfds extracted during
the execution of a discovery algorithm through a lattice representation.
DEVICE enables the user to interact with the discovery results by zooming
on the search space and/or filtering results according to specific attributes.
In particular, we first present the system architecture and then provide
details on the visual interface and the interactions that a user can perform.

6.3.1 System Overview

Monitoring the results of rfd discovery algorithms is a complex problem.
In fact, it is necessary to deal with several issues that affect the choices
of the system architecture: i) the existing discovery algorithms rely on
different technologies and frameworks, so requiring the integration of

6.3 device tool 195

<<DB Driver>>

RethinkDB.JS

<<protocol>>

HTTP

<<exec environment>>

:WebServer {Node.JS}

View

Controller

Model

<<device>>

:RethinkDB

<<device>>

:RethinkDB Server

<<database>>

 Realtime DB

<<device>>

:RethinkDB Brokers Container

RethinkDB

Broker 1

RethinkDB

Broker 2

RethinkDB

Broker 3

<<device>>

:Python Server

Lattice
Generator

<<device>>

:UserClient

<<Web Browser>> <<protocol>>

HTTP

RealTime

Visualization

Manager

Figure 6.1: The system architecture of DEVICE.

at least one module to adapt the system to the different algorithms;
ii) the presence of multiple visualization components requires frequent
updates in a short time, and iii) the number of resulting rfds can be large
at any instant of time. For these reasons, we propose a modular client-
server architecture for enabling users to monitor rfd discovery algorithms
during their executions, letting them to interact with the results through
a responsive visual interface. The architecture of DEVICE is shown in
Figure 6.1. In detail, it is composed of several standalone modules, which
share information with other ones by exploiting the JSON standard. This
type of solution allows DEVICE to ensure high component modularity
and maintainability, aiming to facilitate the upgrade or replacement of
any back-end module by simply adapting its output, according to the
JSON standard defined for the interaction.

196 visualization and monitoring tools

The interface module on the client-side communicates with two differ-
ent back-end subsystems. The first one allows DEVICE to automatically
generate a lattice representation in JSON format by only considering the
number of attributes. Lattice nodes contain all the possible combinations
of attributes, whereas edges contain all the existing links between two
nodes of consecutive lattice levels. The Lattice Generator Server receives
a request containing the number of attributes for the lattice, creates the
JSON, and returns its representation to DEVICE.

The second subsystem allows DEVICE to communicate with the dis-
covery algorithms by exploiting a set of distributed message brokers. In
particular, DEVICE is a web application distributed on multiple Node.JS
server instances, which exploits the scalability of this technology com-
bined with the speed of the RethinkDB1 real-time database, in order
to create a low latency and a high-performance application. Although
the architecture ensures flexibility, to make DEVICE compatible with
most fd and rfd discovery algorithms it has been necessary to integrate
several communication modules to adapt the syntax of the dependencies
produced by each algorithm, and to continuously monitor the results
of each execution. To this end, the Input Driver Connector receives the
dependencies from an algorithm, manipulates their syntax, and extracts
a JSON version so as to store it in RethinkDB. The latter provides an in-
ternal set of message brokers that continuously store and send messages
to the instance of Node.JS servers. The Real-Time Visualization Manager
listens for messages from brokers and decides which visual component to
manipulate in the interface. As said before, the proposed tool is also able
to handle continuous discovery algorithms [118] and therefore it requires
to maximize fluidity and minimize processing times within the visual
interface. Thus, all selected technologies for both client- and server-side
support real-time update of data.

1 https://rethinkdb.com

6.3 device tool 197

Figure 6.2: The visual interface of DEVICE.

6.3.2 rfd Visualization

Due to the possible huge number of holding rfds on a given set of
processed data, tools for their visualization should enable users to quickly
analyze results, also providing the possibility to directly manipulate
them. For this reason, a static representation of discovery results after the
execution of algorithms limits the analysis of how dependencies evolve
over time, which is particularly interesting in dynamic scenarios, like in
the case of data streams.

The dynamic representation of a large amount of metadata requires the
application of interactive graphs, capable of highlighting how information
evolve over time. To this end, a dynamic visual representation of the
search space has been implemented through a lattice graph representation.
It enables a compact visualization on how holding rfds converge into
the search space (see Figure 6.2). As said before, the lattice permits to
show candidate rfds through the lattice edges, which connect attribute
combinations so to represent the LHS and the RHS of a candidate rfd in
a compact way. Moreover, the lattice graph is responsible for displaying

198 visualization and monitoring tools

information about the candidate rfds that have been validated during a
discovery process. As shown in Figure 6.2, the lattice graph uses different
colors during the execution of a discovery algorithm. In particular, an
edge is green when the corresponding candidate rfd has been evaluated
and validated by the discovery algorithm. Instead, it assumes a red color
when the rfd has been evaluated, but it is not valid. Finally, yellow edges
represent candidate rfds that are being analyzed. Aiming to emphasize
the current validation results, DEVICE also uses colors for lattice nodes.
In fact, two linked nodes assume the same color of the edge connecting
them, which represents the last analyzed candidate rfd. It is worth to
notice that, although we expect that different algorithms produce the
same resulting set of discovered rfds when they analyze the same data,
they could browse the search space in a different way. Thus, DEVICE
enables the comparison among different discovery algorithms and the
analysis of possible bottlenecks during their execution on a given dataset.
The visual interface of DEVICE also provides different gadgets enabling
users to directly manipulate the lattice graph. Moreover, the vectorial
representation of the graph also permits zooming on or moving each
lattice component without losing the quality of the representation. Details
on how users can manipulate with the lattice graph are provided in the
following section.

6.3.3 Interaction in depth

As introduced in the previous section, users can directly manipulate the
lattice graph by simply zooming a specific part of the search space, or by
moving its components into the visual interface, aiming to highlight the
discovery results on a specific part of the search space. To this end, the
user can place the mouse pointer in correspondence with a lattice node
and drag it to another place. Consequently, also edges linked to it are
deformed by following the movement. Moreover, it is possible to filter out
some nodes, so reducing the visual representation of the search space, by
using the button list on the top-right corner of the visual interface (also
shown in Figure 6.3a). In particular, each button represents an attribute

6.3 device tool 199

(a) Button list for filtering of nodes in the
lattice. (b) Storing and execution icons.

(c) Slider to define the range the the compar-
ison thresholds.

(d) Slider to define the range for the extent
threshold.

Figure 6.3: DEVICE gadgets to interact with the lattice graph.

of the analyzed dataset, and the user can select/deselect each of them
to be included/excluded during the monitoring process. By default, all
attributes appear in the search space. As an example, Figure 6.4 shows
the representation of a lattice graph with 5 attributes after the exclusion
of attribute A.

Concerning the rfd settings, DEVICE permits to visualize discovered
rfds by filtering results according to specific relaxation parameters. Figure
6.3d highlights a slider that can be used for defining a specific range
for the coverage measure threshold. In this way, the colors of the lattice
components appear in accordance with the validation of rfds having
a satisfiability degree that meets the specified range bounds. Similarly,
it is possible to filter out validation results in accordance with a range
of thresholds composing distance constraints for the relaxation on the
attribute comparison (see Figure 6.3c). In particular, the bounds defined
through the slider represent the range of possible thresholds that must
appear on each attribute involved in candidate rfds. However, for sake
of simplicity, a lattice edge is colored when at least one candidate rfd

satisfies difference thresholds bounded by the range, without showing
all possible dispositions of thresholds.

Sliders are particularly useful for the analysis of rfd discovery results.
In fact, with simple interactions, the user can evaluate how the set of
holding rfds can change as the relaxation settings are modified. Moreover,

200 visualization and monitoring tools

Figure 6.4: The visual interface of DEVICE after filtering out the attribute A.

it is worth to notice that the interaction with sliders is enabled on the
basis of the monitored algorithm. For instance, when a fd discovery
algorithm is monitored, sliders are set to [0, 0] and cannot be modified.
In general, the same ranges are also used by default on both sliders, and
it is possible to interact with them in accordance with the rfd category
to which a discovery algorithm is devoted to.

Finally, the icons in Figure 6.3b enable the interaction with the moni-
tored execution and the download of the lattice graph in several formats.
In particular, the first two icons permit to upload or download the dis-
covery results in a JSON file, respectively. The third and fourth icons
enable the user to interact with results of the monitored discovery pro-
cess. More specifically, the third icon permits to refresh the monitored
results, by cleaning the lattice representation, whereas fourth one gives
the possibility to reload the lattice representation of the last execution
of a discovery algorithm. Moreover, the colored lattice representation
can be downloaded as an image in the .png or .svg format by using the
second-last and the last icon, respectively.

6.3 device tool 201

6.3.4 Case Studies

In what follows, we analyze the effectiveness of DEVICE in monitoring
different algorithms, aiming to analyze how metadata evolve over time. In
particular, we performed two different case studies on real-world datasets
and real sensor-based streams, respectively. A demonstration video of
DEVICE2 allows us to show how the users can interact with the tool
during the monitoring of results produced by rfd discovery processes.

6.3.4.1 Case study on a real-world dataset

In order to analyze the effectiveness of DEVICE on a real-world dataset,
we selected two different discovery algorithms to evaluate how their
discovery strategy browses the search space.

The first algorithm involved in our evaluation is REDEVO, the genetic
algorithms presented in Section 4.3. Instead, the second one is the in-
cremental discovery algorithm COD3, which was presented in Section
5.3.

According to the characteristics of the considered algorithms, and to
enable a proper comparison of different executions, we set parameters of
REDEVO to discover canonical fds. In particular, we choose the above-
mentioned types of algorithms since they both use several iterations to
get results. Nevertheless, their nature is quite different since REDEVO
analyzes new candidate fds at each iteration by always considering
the complete set of tuples; instead, COD3 analyzes new tuples at each
iteration by considering the fds holding at the previous iteration (time-
instant). Our aim is to show the usefulness of DEVICE in helping users
to get insights on how algorithms explore the search space.

Although these algorithms have been created with two different tech-
nologies, the Input Driver Connector allowed us to quickly adapt their
output modules to DEVICE. In fact, this enabled us to monitor their
executions on the same dataset, and compare how they browse the search
space. In order to perform our evaluation, we ran each algorithm on the

2 https://youtu.be/QC2FjF50A60

202 visualization and monitoring tools

(a) 25% execution of COD3

(b) 25% execution of REDEVO

Iris dataset, by automatically storing the screen of the lattice approxi-
mately every 1 second. Each screen represents the status of the lattice
at any instant of executions. For the sake of clarity, we only report the
screens at 25%, 50%, 75%, and 100% of their executions (Figure 6.4).
More specifically, Figures 6.4a and 6.4b show the evolution of the discov-
ery process for the incremental and genetic algorithm, respectively, at the

6.3 device tool 203

(c) 50% execution of COD3

(d) 50% execution of REDEVO

25% of their executions. They highlight the difference between the two
discovery strategies. In fact, REDEVO starts by considering candidates in
the middle of the lattice, and then performs an evolutionary discovery
step throughout the search space. However, COD3 first considers can-
didates from the lowest lattice level, and then goes up by performing
a targeted search. Another relevant difference between the two search

204 visualization and monitoring tools

(e) 75% execution of COD3

(f) 75% execution of REDEVO

strategies concerns the validation strategy of the candidates. In fact, RE-
DEVO exploits an a posteriori validation strategy of the candidate fds,
which allows to define the first valid and invalid fds only after 50% of the
execution (Figures 6.4d, 6.4f, and 6.4h). On the contrary, COD3 updates
the fds validated at the earliest executions, according to the dynamic
change of the dataset, and exploits this information to browse the search

6.3 device tool 205

(g) 100% execution of COD3

(h) 100% execution of REDEVO

Figure 6.4: Monitoring COD3 and REDEVO algorithm during its executions.

space (Figures 6.4c, 6.4e, and 6.4g). However, as expected, when algo-
rithms end their execution (Figures 6.4g and 6.4h) they obtain the same
set of resulting fds.

DEVICE provides a concrete representation of the discovery algorithms,
allowing users and domain experts to easily monitor each execution step,

206 visualization and monitoring tools

and to concretely compare the search strategies of different discovery
algorithms.

6.3.4.2 Case study on a real-world data stream

In our last experiment, we show the usefulness of DEVICE on a real-
world data stream. In particular, we executed the algorithm COD3 on
data from 1, 000 real sensors spread throughout Italy, made available by
the Openweathermap portal3, without configuring any sliding window.
These types of sensors share information about the weather forecast
during the day. The data are frequently updated based on global and
local weather models, satellites, radars, and a vast network of weather
stations. In particular, we selected the following 8 attributes from the
data stream:

• Temperature represents the temperature value in the Kelvin scale
(K);

• Feels_like represents the human perception of weather in Kelvin
scale (K);

• Sea_level represents the atmospheric pressure on the sea level
(hPa);

• Ground_level represents the atmospheric pressure on the ground
level (hPa);

• Humidity represents the rate of humidity;
• Date represents the date of the weather forecast;
• Weather represents the weather condition (e.g. Rain, Snow, Extreme,

etc.);
• Clouds_percentage represents the rate of cloud cover.

We considered a single execution of the algorithm on weather data
streams lasting 4 days. The execution involved over 40, 000 tuples, shared
by over 1, 000 sensors. During the test, DEVICE continuously monitored
the progress of the discovery algorithm, also storing the results and its
status for different time intervals. Figure 6.5 shows the resulting fds for
each time interval. We can notice that the number of resulting fds has a

3 https://openweathermap.org/

6.3 device tool 207

3 6 12 24 48 96
Time (hours)

15

20

25

30

35

40

45

Nu
m

be
r o

f R
FD

s

Figure 6.5: Resulting fds from the executions of COD3 on real streams.

negative trend, since the continuous insertion of new tuples has led to
many invalidations. Moreover, since COD3 has been executed without
any sliding window, it validates fds by considering all data previously
read from the stream. This means that the initial number of fds, i.e. fds
involving few attributes, probably evolve when the algorithm considers
new tuples. To get some insights on the fd validation trend, DEVICE
permits to interact with its interface and explore the search space to
concretely analyze how fds evolve over time.

Figure 6.6 shows the details of the discovery process, by considering
three different time intervals, 3, 48, and 96 hours, respectively. As ex-
pected, DEVICE shows that the algorithm has a large variation in the
number of fds after 3 hours, and a small number of invalid fds (Figure
6.6a). Moreover, as we can see, a relevant part of the search space has
not been analyzed. This is due to the fact that the discovery strategy has
already validated some minimal fds, avoiding the analysis of candidate
fds that can be directly inferred. Figure 6.6b and 6.6c show that many of
the fds validated after 3 hours have been invalidated. Moreover, Figure
6.6c shows that the algorithm also analyzed many candidate fds in the
search space that had not analyzed before. This is due to the invalidation
of many fds on the right side of the search space. In fact, after 96 hours
only 14 fds have been validated.

208 visualization and monitoring tools

(a) Monitoring interface after 3 hours.

(b) Monitoring interface after 48 hours.

(c) Monitoring interface after 96 hours.

(d) Monitoring interface after zooming. (e) Monitoring interface after filtering.

Figure 6.6: Monitoring COD3 executions on real data streams.

6.4 stradyvar : dependency visualization in data stream profiling 209

The evaluation performed on these real-world streams permits to
understand how this kind of tool is able to support users and domain
experts in the analysis and the evolution of fds holding on a data stream.
In fact, at each time instant, an expert can concretely visualize and
evaluate discovery results, and s/he can also monitor the evolution of
holding rfds, by configuring an rfd discovery algorithm working on
data streams. Moreover, the different gadgets embedded in DEVICE
let users to directly manipulate results during the monitoring process.
For instance, the zoom feature (see Figure 6.6d) permits to focus the
monitoring only on a specific part of the search space; whereas, the
filter feature (see Figure 6.6e) permits to isolate a specific set of rfd

candidates. These two features enable to perform detailed analysis in
order to consider the possibility to re-execute discovery processes on
the same stream configurations, but with a reduced set of attributes. In
general, these kinds of interactions allow users to reduce the complexity
of the visualization of discovery results, especially when they have to
monitor big datasets and/or data streams.

Notice that there could be several other scenarios in which this kind of
visualization tool could be applied, such as user behavior analysis in web
browsing, social networks analysis, and anomaly detection. In particular,
in the anomaly detection context, we can assume that a set of initial rfds
constitutes the normal functioning of a system. Therefore, by monitoring
the evolution of rfds over time, it could be possible to detect anomalies
on the system under analysis when rfd violations are identified.

6.4 stradyvar : dependency visualization in data stream

profiling

In this section, we present STRADYVAR (STReAm DependencY VisuAl-
izeR), a tool for analyzing and comparing rfds extracted from dynamic
data sources, enabling users to monitor their evolution over time. In
particular, we first show an overview of the STRADYVAR tool, also de-
tailing the architecture underlying it; then we detail the functionalities of
STRADYVAR and the types of interactions it enables. Finally, we discuss

210 visualization and monitoring tools

the results of a user study to assess the effectiveness of STRADYVAR and
its functionalities.

6.4.1 System Overview

Analyzing dynamic rfd discovery results is an extremely complex prob-
lem. In fact, it is necessary to deal with several issues that lead to specific
choices for designing the system architecture: i) the amount of rfds
processed at each time instant can be huge, ii) the presence of several
visualization components could require frequent updates in a short time,
and iii) discovery algorithms rely on different implementation technolo-
gies. To this end, STRADYVAR is based on a client-server architecture,
and it has been designed to enable users to monitor results during the
execution of fd and rfd discovery algorithms through a responsive visual
interface. Moreover, the modules of STRADYVAR are standalone and
share information with each other by using the JSON standard. This
design choice ensures high modularity and maintainability, by enabling
the substitution of any back-end component, provided that its output is
formatted according to the JSON standard defined for the interaction.

Figure 6.7 shows the architecture of STRADYVAR. The client com-
municates with the back-end modules through live queries, and it is
implemented as a web application consisting of three different interfaces:
the first one enables the real-time monitoring of discovery processes; the
second one enables users to compare the results of two executions of
the same discovery algorithm, or of two different ones; finally, the third
interface enables users to visually manipulate results across different
executions.

In general, STRADYVAR permits to load either a dataset or a configu-
ration file connecting a data stream, and consequently select a discovery
algorithm for datasets or data streams. The back-end of STRADYVAR is
based on a microservice architecture, exploiting the power and the flexi-
bility of Docker4 containers in order to create a highly scalable platform.
In particular, the core of STRADYVAR is a long-lived Node.js application,

4 https://www.docker.com/

6.4 stradyvar tool 211

Log

Manager

Zookepeer

Cluster

Kafka Broker Kafka Broker Kafka Broker

Zookepeer Zookepeer Zookepeer

N
ode.js Cluster

Node Server

Node Server

...

Real Time

Visualization

Manager

Playground

Manager

docker ecosystem

data parser

discovery
algorithm 1

multi-platform

connector

storage manager

...

server-side
client-side

discovery
algorithm n

...

API Service

API Gateway
discovery

algorithm n

discovery
algorithm 1

multi-platform

connector

storage manager

Zookepeer Zookepeer Zookepeer

ResultingRFDs

Resulting

RFDs

Local Archive

Resulting
RFDs

Resulting
RFDs

Algorithm

Executor
Manager

Node Server

Configuration Data

Configuration Data

Configuration Data

Kafka

Cluster

Algorithm and dataset
configuration

kafka

container

algorithm

container

node.js

container

API

service

node.js
Cluster

Kafka

Cluster

Zookeper

Cluster

User
Interface

comparison playground

http://localhost:3000/index.html

results

home

RUN

algorithm

home comparison playground

http://localhost:3000/comparison.html

results results

home comparison playground

http://localhost:3000/playground.html

RFDs

statistics

operation

User Interface

Node Server

Node Server

N
ode.js Cluster

API Service

API Gateway

discovery
algorithm 1

discovery
algorithm n

multi-platform

connector

storage

manager

Zookepeer Zookepeer

Kafka BrokerKafka Producers

Kafka Consum
ers

topic 1
topic n

Figure 6.7: STRADYVAR architecture.

running distributed containers, while keeping a live connection with
other services. Although the architecture is flexible and scalable, in order
to quickly process a large number of messages, we integrated the broker
Apache Kafka5, which is a high-throughput and low-latency platform
for handling real-time data feeds. In particular, Kafka temporarily stores
key-value messages originating from several processes called producers.

Kafka requires the use of Zookeeper6 servers to coordinate several pro-
ducers and consumers. In fact, the architecture of STRADYVAR integrates
these services into multiple docker containers, which directly communi-
cate with the Node.JS instances through Kafka consumers. Moreover, to
make STRADYVAR compatible with most of the fd and rfd discovery
algorithms, it is necessary to uniform the syntax of the rfds, regardless
of possible thresholds. In particular, a parser module receives in input an

5 https://kafka.apache.org/
6 https://zookeeper.apache.org/

212 visualization and monitoring tools

rfd, manipulates its syntax to extract its JSON version, so as to store it
in a local file and in a Kafka topic. All the selected technologies for both
client- and server-side support real-time updating of data.

6.4.2 rfd visualization

Most of the different solutions for handling the complexity related to the
visualization of the discovery results, are not intended for the dynamic
processing of data, since thwy focus on a static representation of resulting
metadata. However, in the context of continuous data profiling useful
insights can be gained by monitoring how fds and rfds evolve over time.
In general, the dynamic representation of a large portion of data requires
the application of interactive graphs, capable of highlighting the arrival
of new information, without missing any pre-existing information.

Figure 6.8 shows the real-time monitoring interface of STRADYVAR,
which permits the execution of an incremental discovery algorithm, and
to monitor the trend and the details of validated rfds in real-time during
the execution process. In particular, the top-left corner contains the line
plot, which is responsible for displaying information about the evolution
of valid rfds discovered over time. It can reveal stability or variability
in the number of discovered rfds, possibly highlighting variability in
the correlation among data. Moreover, it becomes particularly useful
comparing trends across different executions and/or filtering results
according to specific time periods. More specifically, for each time instant
the line plot contains a black line, a blue line, and possibly an orange line,
showing the number of holding rfds (black line), invalidated rfds (blue
line), and holding rfds selected according to searching and/or filtering
criteria (orange line). The plot is divided into two sections, the upper one
is the main line plot, showing the evolution of the number of valid rfds
on its y-axis and the timestamp on its x-axis; whereas the bottom line
plot enables the interaction with the user, allowing him/her to select a
time interval through a brush operation, in order to visualize details on
how the number of discovered rfds evolved during the selected period.
Both these line plots are continuously updated so that at any time instant

6.4 stradyvar tool 213

Figure 6.8: Real-time monitoring interface.

the user can see how the trend changes as the rfd discovery process
progresses.

The dependency table displayed at the bottom of Figure 6.8 details the
discovered rfds. Each row represents an rfd, whereas each column
represents an attribute of the dataset. In particular, the column labeled
“RHS” contains the indices of the RHS attribute of each rfd. Instead, the
other columns display details on all the attributes appearing in an rfd,
followed by the time instant in which the rfd was discovered. Moreover,
the whole table is continuously updated. In other words, the dependency

214 visualization and monitoring tools

table is able to describe the implication property of an rfd and it also
shows the difference thresholds, which specifically characterize each rfd.

Finally, the real-time monitoring interface also provides statistical coun-
ters (see the top of Figure 6.8) displaying the number of valid, invalid,
and minimal rfds, at a given time instant.

6.4.3 Interaction in depth

As mentioned above, the user can interact with the interface through the
bottom line plot by selecting time intervals. The selection is highlighted
with a light blue rectangle on the bottom line plot. During the monitoring
process the top line plot reacts consequently, reducing the scale on the
x-axis, in order to adapt the range boundaries specified by the user and
zoom on the line plot (see Figure 6.8). At any time instant the user can
verify whether the discovery process is still in progress, by stopping the
brushing process. Moreover, as shown in Figure 6.8, the user has the
possibility to annotate the line plot with several visual components. In
fact, on the top of the line plot there is a toolbar through which the user
can i) draw lines, arrows, polygons, and so on, ii) add some textual notes,
and/or iii) modify the color of the plot (see the last two buttons on the
toolbar). Finally, the toolbar offers the possibility to select some attributes.

Figure 6.9: Interacting with the dependency table.

6.4 stradyvar tool 215

When an attribute is selected, a novel line plot is added at the bottom of
the general plot, showing the number of holding rfds that contain the
selected attribute as RHS.

Concerning the dependency table, Figure 6.9 highlights all the interac-
tion functionalities offered by STRADYVAR. In order to allow the user to
reduce the table content, we added a search text field (Figure 6.9, yellow
rectangle) enabling a global search over the attributes of the table, or a
data filter, by searching on a specific column of the table. Based on the
text the user inserts in the search text field, the table content is adapted,
showing only the rows satisfying all enabled selection criteria. Moreover,
a new line is added to the line plot, showing the number of holding rfds
for each time instant, also satisfying the selected criteria. Users can also
define column-based sorting criteria by clicking on the chosen column
and selecting either an ascending or descending order. We also added
a paging functionality (Figure 6.9, green rectangle), allowing the user
to decide the number of rows to be displayed in a single table page.
Moreover, the buttons below the table allow the user to decide which
column to hide or show in the table (Figure 6.9, orange rectangle). By
pressing one of such buttons, the user can hide the corresponding column
and make the associated rectangle turn black. By clicking on it again, it
reverses this process.

Finally, at any time instant it is possible to copy and/or export the data
contained into the dependency table to an external file (Figure 6.9, red
rectangle). The export function supports several formats, such as Excel,
CSV, and PDF. The exported file will include all the data that have not
been filtered out, according to the user interactions. When interacting
with the dependency table also the line plot is updated. In fact, it is
possible to visualize a proper line that shows the trend in the number of
rfds, according to searching/filtering criteria specified by the user. It is
worth noting that some searching/filtering criteria are specific of rfds,
such as those involving different thresholds.

216 visualization and monitoring tools

Figure 6.10: Comparing discovery results between two different executions.

6.4.3.1 Comparing rfds

An important feature of STRADYVAR is the possibility to compare rfds
extracted across two different executions. It can involve different data,
analyzed in different time periods, or results produced by different
incremental discovery algorithms, which is made possible by loading
log files from different executions. Figure 6.10 shows the visual interface
devoted to the comparison of discovery results. As we can see, both
the line plot and the dependency table are duplicated. They contain the
evolution of the number of rfds (line plot), and details on rfds holding
during the execution loaded from a specific log file. In particular, each line

6.4 stradyvar tool 217

plot shows lines concerning the evolution in the number of holding rfds,
and for each attribute, the evolution of the subset of holding rfds having
it as their RHS. Finally, by interacting with the bottom line plots, the user
can select specific time intervals to be analyzed from each execution. This
enables the user to verify commonalities across different executions of
discovery algorithms, comparing them in terms of both the changes in
the number of discovered rfds and the rfds validated at a specific time
interval of the execution.

6.4.3.2 Correlation analysis

The monitoring interface (Figure 6.8) permits to show holding or inval-
idated rfds according to the time variable and user-defined selection
criteria. STRADYVAR also provides an additional overview of discovery
results in terms of correlations among attributes.

Figure 6.11 shows the visual interface providing a general overview of
attribute correlations. It represents each attribute as a circle, which in turn
contains circles according to its characteristics and those of holding rfds.
In particular, the hierarchical chain of the circle containment, ranging
from the general to the most specific rfd attribute, is defined as: i) RHS
attribute, ii) RHS difference threshold, iii) LHS attribute, and iv) LHS
difference threshold. The correlation plot interactively responds to mouse
clicks by zooming the circle the user would like to analyze (see Figure
6.11 at the bottom). Several sliders on the left permit the user to filter
out results according to an RHS difference threshold range (i.e., the
difference thresholds bounding attributes on the RHS) or a satisfiability
degree threshold (i.e., the upper bound of the percentage of admitted
errors), which represent specific properties of rfds. Moreover, the user
can move the time interval to change the analyzed resulting set according
to the time instant producing it.

6.4.3.3 Playground

The real-time monitoring and the possibility to compare discovery results
with respect to the execution of possibly different discovery algorithms

218 visualization and monitoring tools

Figure 6.11: Analyzing the correlation among attributes according to holding
rfds.

represent valid means through which users can effectively explore result
details and peculiarities. One of the main issues in analyzing results
of rfd discovery algorithms is the possibly huge quantity of resulting
rfds. To this end, STRADYVAR provides interactive features enabling

6.4 stradyvar tool 219

Figure 6.12: Overview of the Playground visual editor.

users to reduce the set of discovered rfds by removing columns from
the dependency table, filtering results, and exporting extracted rfds.
The playground module provides additional functionalities to support
post-execution analysis of discovered rfds. This is made possible through
a visual editor equipped with several visual components named blocks,
which enable transformations, and comparative/statistical analysis of
rfds discovered during one or multiple executions.

Figure 6.12 provides an overview of the playground module, whose
aim is to enable users to link different blocks to form a sequence of
operations, so as to determine a data flow (composed of rfds) that is
gradually updated on the basis of involved operations. Multiple flows
can be created at the same time; the only constraint is that each flow has
to start with one or more sets of discovered rfds as input, and it has to
terminate in one of the blocks enabling the visualization of some outputs.
Blocks show both the number of required inputs (on the left) and the
expected outputs (on the right), if any, by means of tiny circles, named
input and output connectors, respectively. The user can require to insert
a specific block and connect it to other blocks by simply clicking on the
playground. More specifically, the playground integrates different types

220 visualization and monitoring tools

of blocks, each representing a specific operation that can be applied to
one (or more) set(s) of rfds. Details on the blocks are provided in the
following:

1. The block RFDs permits to consider a set of rfds as input, enabling
the selection of the execution results, and giving the possibility to
forward the set of holding rfds.

2. The block Intersection permits to forward only the rfds shared
between two sets. Consequently, it contains two inputs and one
output connector.

3. The block Merge permits to forward all rfds included in at least
one of the sets provided in input, like with a union operation.
Consequently, it contains two inputs and one output connector.

4. The block Filter permits to specify an attribute used to filter and
forward only the rfds having it on their RHS. Consequently, it
contains one input and one output connector.

5. The block Statistics permits to visualize the number of rfds linked
to its input connector, grouped by each RHS attribute by means of
a bar plot. An example of results that can be obtained by using this
block is shown in Figure 6.13.

6. The block Output permits to visualize the rfds linked to its input
connector, by means of a dependency table, and on which the user
can apply all types of interactions described above. An example of
results that can be obtained by using this block is shown in Figure
6.13.

6.4.4 User Study

The user study presented in this section aims to show the effectiveness of
STRADYVAR in enabling the analysis of discovered rfds over time. In
particular, we evaluated STRADYVAR with ten users (6 computer science
students (2 MS students and 4 Ph.D. students) and 4 company’s DBAs)
who performed different tasks involving the execution of two discovery
algorithms [27, 33], on both public datasets, i.e., Abalone and Bridges7,

7 https://archive.ics.uci.edu/ml/datasets.php

https://archive.ics.uci.edu/ml/datasets.php

6.4 stradyvar tool 221

Figure 6.13: An example of the Statistics block usage.

and two sessions over the Twitter data streams lasting 8 hours. Statistics
about participants have been collected through a background survey, as
shown in Table 6.1(Q1-Q5). In particular, about 70% of recruited people
were men, most of which graduated, and they declared a medium level
of knowledge on data profiling, fds, and rfds by means of a Likert scale
(see Figure 6.14, Q3-Q5). Prior the evaluation, they underwent a 30-min
tutorial on data profiling and STRADYVAR. After performing a baseline
task that required to run several discovery algorithms considering both
data stream API configurations and real-world datasets, we requested
participants to perform the following tasks:

T1 Monitoring: Select a time interval of one hour ending with a negative
peak, search for an attribute on the RHS, filter rfds with threshold 0
on another attribute, and order the set of rfds by the RHS threshold.

T2 Comparing: Visualize rfds resulting from different executions over
Twitter data streams, and highlight (by using annotation visual
components) at least two commonalities/differences on both the
analyzed trends.

222 visualization and monitoring tools

Survey Alias Question

B
ac

kg
ro

un
d Q1 Gender

Q2 Qualification
Q3 Level of knowledge of Data Profiling and metadata
Q4 Level of knowledge of fds
Q5 Level of knowledge of rfds

Ev
al

ua
ti

on

Q6 I quickly and easily executed discovery algorithms over several types of datasets
Q7 I completed the task T1 quickly and easily
Q8 I completed the task T2 quickly and easily
Q9 I completed the task T3 quickly and easily
Q10 I completed the task T4 quickly and easily
Q11 The tool is simple to use
Q12 The tool is simple to learn
Q13 I was able to retrieve back the process, whenever I made a mistake
Q14 The user interface is pleasant and informative
Q15 The tool made transparent the execution of the underlying discovery algorithms
Q16 I understood the rfd syntax
Q17 By using the tool, I can analyze the correlation among different attributes
Q18 By using the tool, I can analyze the differences among different discovery results
Q19 The tool presents all the features I expected
Q20 I am in general satisfied about the tool
Q21 In the future, I would like to use the tool
Q22 What is your general impression about the tool?
Q23 Do you have any improvements to suggest?
Q24 Which feature of the tool did you like the least?
Q25 Which feature of the tool did you like the most?

Table 6.1: Questions proposed to participants.

T3 Correlating: Analyze how the correlation between two attributes
changes in the last 30 minutes, by also setting an RHS threshold
upper bound to 3.

T4 Exploring: Consider two sets of discovered rfds over Twitter data
streams, find rfds with a specific RHS attribute, occurring on both
sets, and graphically show common rfds.

In particular, to rule out learning and tiring effects that otherwise may
compound the execution of later tasks, we carried out a random assign-
ment of tasks for each participant. After completing the assigned tasks,
we interviewed participants for receiving some feedbacks. In particular,

visualization and monitoring tools 223

participants were requested to fill the questionnaire of Table 6.1 (Q6-Q25)
to highlight the strengths and weaknesses of STRADYVAR. More specifi-
cally, the quantitative questions from Q6 to Q21 have been measured by
means of a Likert scale ranging from 1 (Strongly disagree) to 5 (Strongly
agree).

6.4.4.1 Results and Discussion

Figure 6.14 depicts the box plots derived from the answers of participants.
A boxplot shows the median (horizontal lines), the interquartile ranges
(boxes), the largest and the smallest observations (whiskers). Concerning
the quantitative questions from Q6 to Q21 in the questionnaire, STRADY-
VAR obtained the general agreement of participants, while evaluating its
usability and effectiveness. In particular, according to answers for Q9, the
analysis of attribute correlations has been considered the most simple
task. Moreover, according to answers to Q18, the capability of analyz-
ing differences among discovery results has been positively evaluated.
STRADYVAR has turned out to be pleasant and informative according to
answers to Q13 and Q14. However, different opinions have been provided
on the algorithm execution transparency (see answers to Q15). In fact,
the answers to Q15 appeared to be strongly influenced by the different
outcomes participants expected from STRADYVAR, probably due to their
working/studying environments.

The open questions in the final questionnaire (see Q21-Q25 in Table
6.1) aimed at highlighting the strengths and weakness of STRADYVAR.
In general, they revealed that some participants remarked the necessity
to better integrate the different visual interfaces and features, in order to
enable the analysis to be performed. Conversely, they welcomed the ef-
fectiveness of STRADYVAR in working with discovery results even when
they change over time. Moreover, they positively judged the intuitiveness
and the interaction capabilities of all the visual components.

224 visualization and monitoring tools

Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Background Quantitative Evaluation

Figure 6.14: Distribution of user answers to quantitative questions.

6.5 inditio : real-time validation of profiling metadata in

a data management system

Data-intensive processes must deal with the problem of monitoring the
quality of data. In this context, metadata can be exploited in order to
highlight errors and support the cleaning of data. However, the use of
raw approaches through algorithms mainly allows domain experts to
use these techniques without considering users and developers that daily
work with database technologies. To this end, we present a novel Database
Management System (DBMS) plugin, namely INDITIO (INteracting with
metaData during data InserTIOns), for validating profiling metadata
during data insertions, and assisting users in checking a priori the quality
of data being inserted into a database.

In this section, we first provide details about the INDITIO’s visual
interface, and then we show how users can interact with it. Finally, we
discuss the results obtained from a user study aiming to highlight the
effectiveness of the proposed plugin, and emphasize its strengths and
weaknesses.

6.5 inditio tool 225

Figure 6.15: The MySQL Workbench SQL Editor.

6.5.1 System Overview

INDITIO has been implemented within the MySQL Workbench client8,
and it is able to intercept and verify in real-time whether the data to be
inserted into a database instance will produce some violations on specific
metadata, such as Unique Column Combinations (ucc) or Functional
Dependencies (fds). In particular, INDITIO is able to intercept data
insertion queries provided by users into the SQL Editor (Figure 6.15).
Due to the possible big number of errors that can be introduced during
the insertion of new tuples, DBMSs should enable users to visualize
profiling metadata that could possibly invalidate newly inserted data, by
also giving them the possibility to interact with them. For this reason, it
is necessary to evaluate such metadata upon data insertion operations. To
this end, INDITIO extends MySQL Workbench functionalities by enabling
users to validate uccs and fds upon the insertion of new tuples.

Figure 6.16 shows the general visual interface of INDITIO. In general, it
permits to evaluate the impact of new data on a set of holding metadata.
Thus, it enables users to visualize the new tuples being inserted (Figure
6.16(a)), the metadata to validate (Figure 6.16(b-d)), and the results of the
metadata validation process (Figure 6.16(e-h)). Moreover, INDITIO also
provides several functionalities enabling users to interact with both SQL

8 https://www.mysql.com/it/products/workbench/

226 visualization and monitoring tools

Figure 6.16: The INDITIO visual interface.

statements and metadata, as described below. A demonstration video of
INDITIO is available on YouTube9.

6.5.2 Interaction in depth

The main novelty introduced by INDITIO is the possibility to evaluate
some metadata directly into the MySQL Workbench. A user can analyze
uccs or fds by selecting the type of metadata s/he plans to monitor, and
uploading a file containing them (Figure 6.16(b)).

The uploaded metadata is shown in the middle form (Figure 6.16(d)),
which is customized according to the type of metadata the user selects.
For instance, fds are divided into LHS and RHS, each containing some
attributes, in order to graphically visualize the implication property. In-
stead, the ucc customized form visualizes each metadata by considering
a single group of attributes (Figure 6.17). Aside from the metadata up-
loaded via file, a user can always add new metadata. Moreover, through

9 https://youtu.be/u03Vftge8pA

6.5 inditio tool 227

Figure 6.17: Visualization of uccs.

this form, it is possible to select which metadata must be considered
during the validation. Indeed, each metadata can be selected by means
of the check box, and/or by using the “Select All” or “Unselect All”
buttons. Finally, it is always possible to “Copy Selected Metadata” as text
by means of a specific button. Notice that metadata is described through
letters or numbers, e.g., alias, in order to identify attributes. This facili-
tates users in focusing on attributes and/or in defining new metadata. In
fact, possible long (or inappropriate) attribute names could confuse the
user. However, INDITIO provides a suitable form to show the mapping
between attribute names and their associated alias (see Figure 6.16(c)).

All selected metadata can be validated by clicking on “Run Validation”,
which triggers the execution of a validation module whose aim is to
check if the new tuples violate the selected metadata. According to the
validation process, each metadata can be classified in one of the following
categories:

• Valid Metadata, when the new tuples do not produce any violation;
• Invalid Metadata, when the new tuples produce at least one violation;

or
• Impossible to validate, when the metadata cannot be validated. This

occurs when the user introduces errors in the metadata, such as
when the attribute names do not exist in the considered database.

Example 1. Let us consider a database storing smartphone characteristics.
Figure 6.16(e-g) shows validation results of the considered fds (Figure

228 visualization and monitoring tools

(a) A form showing validation statistics after the fd validation process.

(b) A form showing validation statistics after the ucc validation process.

Figure 6.18: Validation statistics provided by INDITIO.

6.5 inditio tool 229

6.16(d)) according to the new tuples the user is planning to insert (see
Figure 6.16(a)). In particular, three out of six fds are valid, two are invalid,
and one cannot be validated. In fact, K,M→ D includes the attribute M
that does not appear in the considered database. Instead, C→ E, i.e., ram
→ display_ppi, is invalidated if the new tuples are inserted.

In general, the impact of the new tuples on the considered metadata
is summarized by INDITIO in a new form, named report form, shown
in Figure 6.18. This form graphically shows the percentage of valida-
tion/invalidation produced on the selected metadata by the tuples that
the user is planning to insert. Moreover, the report form ranks database
attributes in descending order according to the number of invalidated
metadata containing them. More specifically, the form represents this
kind of information according to the type of metadata, i.e., by splitting
the information about invalidation on LHS and RHS when considering
fds (see Figure 6.18a).

Example 2. Figure 6.18a shows the fd validation report for the validation
results represented in Figure 6.16. In particular, the form shows that
the impact of invalidations is 33% of the analyzed metadata. Moreover,
among the attributes involved in the invalidated metadata, attribute C
(e.g., ram) is involved in two invalidated fds; whereas attributes E (e.g.,
cpu) and D (e.g., display_ppi) are involved in one invalidated fd. This
could suggest to verify the values of attributes ram, cpu, and display_ppi
on the new tuples.

6.5.2.1 Interacting with data insertions

INDITIO not only enables users to visualize the impact of new tuples on
holding metadata, but it also permits them to interact with the new data.
First of all, INSERT INTO statements can always be modified within the
INDITIO interface (see Figure 6.16(a)), triggering subsequent validation
processes with modified tuples. As said above, INDITIO freezes the execu-
tion of INSERT INTO statements while verifying the possibility to correct
values being inserted so as not to invalidate holding metadata. Never-
theless, INDITIO always gives users the possibility to overlook possible

230 visualization and monitoring tools

violations of metadata, and to force the execution of data insertion opera-
tions by means of the “Execute Statements” button (see Figure 6.16(a)).
On the other hand, one of the main goals of INDITIO is to help users in
correcting possible errors. To this end, after a validation process (i.e., by
clicking “Run Validation”), a user can visualize data yielding violations,
by interacting with the “Invalid Metadata” form (see Figure 6.16(f)). More
specifically, by clicking on any metadata in such form, INDITIO shows
a violation detail form, as shown in Figure 6.19. In particular, concerning
fds, apart from the details of the selected metadata, the violation form
describes for each LHS value combination involved in a violation: i) the
value combination of the LHS, ii) the corresponding distinct values found
on the RHS, and iii) their total number of occurrences (see Figure 6.19a).
Instead, concerning uccs, apart from the details of the selected metadata,
the violation form describes for each value combination involved in value
duplication: i) the value combination involved in a duplication, and ii)
the number of duplications (see Figure 6.19b). The latter should represent
the functionality that drives users in accomplishing the best possible
correction of errors.

Example 3. Figure 6.19a shows the violation details of the fd C → E
(e.g. ram→ display_ppi) according to the validation results represented
in Figure 6.16. In particular, the form shows four specific values on
attribute C (e.g. ram), i.e. 1Gb, 2Gb, 3Gb, 512mb, each implying different
values of attribute E (e.g. display_ppi). Moreover, it is also possible to see
that the value 2Gb is the one implying the highest number of distinct
values. Instead, Figure 6.19a shows that for the ucc K,E,L (e.g. id_brand,
display_ppi, id_os) there are six specific value combinations inducing
duplicate values. In general, this form could suggest correcting on the
new tuples the values of attributes involved in the considered violated
metadata, or to exclude the metadata from the validation process.

6.5.3 User Study

The user study presented in this section aims to show that INDITIO
makes metadata validation a simple and effective process for improving

6.5 inditio tool 231

(a) A form showing validation statistics after the fd validation process.

(b) A form showing validation statistics after the ucc validation process.

Figure 6.19: Violation details of INDITIO.

data quality. We recruited 86 students majoring in Computer Science
who just attended the Fundamentals of databases course. We also recruited
3 Ph.D. students and 1 Ph.D., all of which were familiar with the given
domain. Statistics about participants have been collected through a back-
ground survey, as shown in Table 6.2(Q1-Q4), and whose results are
reported in Figure 6.20. In particular, about 85% of recruited people
were men, 15% women, and most of them were undergraduate students.
Moreover, on average they declared, through a Likert scale, a medium
level of knowledge concerning MySQL and MySQL Workbench. Before

232 visualization and monitoring tools

the evaluation started, participants underwent a 45-min tutorial on the
theoretical foundations of data profiling and INDITIO.

Survey Alias Question
B

ac
kg

ro
un

d Q1 Gender
Q2 Qualification
Q3 Level of knowledge of MySQL
Q4 Level of knowledge of MySQL Workbench

C
om

pa
ra

ti
ve Q5 I completed the tasks quickly and easily

Q6 The instructions for completing the tasks are clear and easy to read
Q7 The metadata validation process has been simple
Q8 The values that invalidated the metadata have been easy to find

Fi
na

l

Q9 The tool is simple to use
Q10 The tool is simple to learn
Q11 I was able to retrieve back the process, whenever I made a mistake
Q12 The tool shows the information very clearly
Q13 The tool is pleasant to use
Q14 The user interface is pleasant and informative
Q15 The tool made transparent the execution of the validation processes
Q16 It was simple to understand the metadata syntax
Q17 The tool presents all the features I expected
Q18 I am in general satisfied about the tool
Q19 In the future, I would like to use the tool
Q20 The tool simplified the validation process w.r.t the manual process
Q21 What is your general impression about the tool?
Q22 Do you have any improvements to suggest?
Q23 Which feature of the tool did you like the least?
Q24 Which feature of the tool did you like the most?

Table 6.2: Questions proposed to participants.

Each of the 90 participants was given a database concerning personal
data, three data insertion statements, and two sets of uccs and fds meta-
data, respectively. Moreover, we requested them to check the correctness
of data insertion statements according to the provided metadata, and if
necessary, to correct statements aiming to guarantee the validity of the
provided metadata. More specifically, we conducted a within-subjects

6.5 inditio tool 233

Q2 81 5 4 1

High School Diploma Bachelor Degree Master Degree Ph.D.

Q3

Q4

5

5

8

16

49

47

23

19

5

3

1 = Sufficient 2 3 4 5 = Very Good

Figure 6.20: Statistics concerning involved participants.

study by considering two scenarios: with and without INDITIO, and
requested to accomplish the task in one scenario first, and then with
the other one. Half participants considered first the scenario without
INDITIO, while the remaining ones used INDITIO first. Notice that, the
provided data insertion statements were different but equivalent in com-
plexity. In particular, in the case participants performed the tasks without
the tool, they were able to validate the metadata by directly analyzing the
data source or by using the SQL language to compose specific queries.
To this end, they could interact only with the tools already integrated
into MySQL Workbench, both to validate the metadata and to correct the
values within the data.

After completing the assigned tasks, participants were requested to
fill some questionnaires, aiming to highlight advantages and drawbacks
of INDITIO (see Table 6.2 (Q4-Q20)). More specifically, questions from
Q4 to Q8 have been filled after participants performed each task (with
and without INDITIO, or vice versa), whereas the remaining ones have
been included in a final survey. Moreover, questions from Q4 to Q20

are quantitative, and they have been measured through a Likert scale,
ranging from 1, mapping “Strongly disagree” response, to 5, mapping
“Strongly agree” response. Finally, to further evaluate the effectiveness
of both processes (with and without INDITIO) we measured the time
required for completing the task and the number of errors.

234 visualization and monitoring tools

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Person ID

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Im

pr
ov

em
en

t
With INDITIO Without INDITIO

Figure 6.21: Distributing scores achieved by participants for each analyzed sce-
nario (with and without INDITIO).

6.5.3.1 Results and Discussion

Figure 6.21 shows the results achieved from each participant while ex-
ecuting the assigned tasks with both the compared scenarios (without
and with the tool). The results achieved in the tasks performed without
the tool have been considered as the comparative baseline (purple line),
while the results obtained with the proposed tool were described by
the bars. In particular, the plot highlights the improvement obtained by
using INDITIO, e.g., a value of 2 indicates that the results achieved with
INDITIO are 2 times better than those achieved without it, whereas a
value less than 1 indicates the opposite case. In general, it can be observed
that most of the participants performed better with INDITIO, even if
satisfactory results have been achieved also without the use of the plugin.

Concerning the time employed to complete the assigned tasks, on
average participants took 30 minutes with INDITIO, ranging from 5 to
67 minutes, and 45 minutes without it, ranging from 5 to 84 minutes.
In general, we noticed that the times for performing manual validation
tasks were particularly long, especially for users with less knowledge of

6.5 inditio tool 235

MySQL. On the contrary, with INDITIO almost all users have reduced
the time of the validation processes by more than 50%.

Q5 Q6 Q7 Q8 Q5 Q6 Q7 Q8
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Without INDITIO With INDITIO

Figure 6.22: Comparative boxplots showing distribution of user answers to the
quantitative questionnaire.

Figure 6.22 depicts the box plots derived from the answers (on a Likert
scale from 1 to 5) to questions ranging from Q5 to Q8. In particular, users
answered the same questions after performing tasks for each considered
scenario (with and without the tool). By comparing the results achieved
without the plugin (the first four box plots in Figure 6.22) against those
with the plugin (the remaining box plots), we can conclude that partici-
pants felt more comfortable and effective when working with INDITIO.

Concerning the quantitative questions in the final questionnaire, INDI-
TIO obtained the general agreement of participants while evaluating its
usability and effectiveness (see Figure 6.23). In particular, according to
answers for Q20, the capability of simplifying the metadata validation
process has been widely recognized to INDITIO. The latter has turned

236 visualization and monitoring tools

out to be comfortable and useful according to answers to questions Q18

and Q19, simple to learn and pleasant to use accordint to answers to
questions Q10 and Q13 (see Figure 6.23). Nevertheless, some work should
be made to further improve the general usability of the plugin and the
transparency of the validation process, according to answers to questions
Q11, Q12, and Q15.

Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q20

1

2
2
2
1
3

1

1
1

1
1

13
7

2
7

7
5
8

1
3

18
13

23
11

13
26

27
22
18

11
5

5

34
27

32
36

36
33
26

39
37

49
37

21

32
45

16
30

33
19

23
19

23
25

40
59

1 = Strongly disagree 2 3 4 5 = Strongly agree

Figure 6.23: Distributing participant answers to the quantitative questions in the
final questionnaire.

The open questions in the final questionnaire (Q21-Q24 in Table 6.2)
aimed at highlighting the strengths and the weaknesses of INDITIO.
In particular, concerning the general impressions about the plugin (see
Q21 in Table 6.2), many participants said that INDITIO shows a simple
and intuitive interface, in which the components appear well organized
in the frame. Another group of them expressed their opinion on the
usefulness and efficiency of the plugin, claiming that “The tool has certainly
been successful in its intent, significantly speeding up the time for validating
metadata”. Moreover, some of the most interesting comments have been

6.5 inditio tool 237

provided from users that are less familiar with the research context
and with the MySQL Workbench. In fact, they report that INDITIO
is able to improve the understanding of MySQL Workbench and to
show that metadata potentially allows them to extract further knowledge
from data, which often is not clearly visible. Only a small group of
inexperienced users affirmed that the plugin interface might be initially
unclear, claiming that “Initially the tool seems difficult to understand. Then,
once I understand how to use it, it is very useful for checking the validity of fds
and uccs”. However, by practicing with it, INDITIO allowed them to easily
understand its features and to become familiar with its environment.

In addition, concerning the specific features that participants liked the
most and the least (see Q22-Q23 in Table 6.2), experienced users have
greatly appreciated the functionality of identifying values yielding the
invalidation of metadata. In fact, some of them claimed that “One of
the most interesting features is the identification of the values that invalidate
the metadata. This functionality could be directly integrated into the MySql
Workbench suite.” Instead, inexperienced users showed interest in the
report forms (see Figure 6.19) and in the simplicity through which the
plugin could be integrated within the MySQL Workbench suite as a
simple plugin. Although most of the comments were positive, we also
investigated the features they liked the least. Among them, many users
have highlighted that the Query Editor component appears small and
does not clearly show statements. However, this is limited by graphics
components included in the MySQL Workbench. For these reasons, we
allow users to directly interact with the SQL editor of MySQL Workbench,
and to import their statements. Other participants suggested adding
further reports in the interface, in order to enhance their understanding
of how data insertion statements affect metadata. Only a few users
have proposed to extend the interface of INDITIO with new graphical
components to improve the interaction with both the plugin and the
MySQL Workbench.

Finally, we have asked users for some suggestions to enhance INDITIO
(see Q24 in Table 6.2). To this end, some users have suggested integrating
new metadata, also allowing them to simultaneously validate multiple
metadata. Other users have suggested improving the integration with

238 visualization and monitoring tools

systems based on the Linux architecture. In fact, it has been found that
some of the users using these operating systems tend to view some
reports differently from users who use Windows systems. However, this
is due to the compatibility problems between the technologies underlying
MySQL Workbench and different operating systems. In the future, these
compatibility issues might be solved with new software versions.

In summary, the four open questions of the final questionnaire revealed
that some participants remarked some limitations of the INDITIO user
interface. Moreover, they would like to receive more hints during the state-
ment modification process, according to validation results. Conversely,
they positively judged the intuitiveness of the metadata validation and
the error detection processes. Moreover, they welcomed the tool and
recognized its usefulness.

Part IV

C O N C L U S I O N

7
C O N C L U S I O N A N D F U T U R E W O R K

This section presents the conclusion and the future direction of this thesis.
Thesis Summary. In this thesis we have presented an overview of data

profiling tasks and applications, with the aim to highlight the importance
of data profiling activities as part of the processes for data quality as-
sessment. In particular, we presented tasks and challenges in the data
profiling research area, classifying them and reviewing the state-of-the-art
of data profiling systems and techniques. Among such challenges, we
first focused on the problem of profiling unstructured data, discussing
the necessity to design and develop efficient tools to support companies
and researchers in the analysis of unstructured artifacts from the web.
Successively, we presented the tool CAIMANS, which extracts metadata
from unstructured web data sources, aiming to derive a focused crawler
enabling company analysts to make better strategic decisions for improv-
ing the productivity and competitiveness of their company. Then, we have
focused the discussion on the discovery problem of fds and rfds in static
and dynamic scenarios, by analyzing its complexities and by introducing
several new incremental methodologies and algorithms for discovering
fds and rfds, aiming to avoid the re-execution of the discovery process
from scratch upon update operations on datasets.

The first proposed algorithm, named REDEVO, is a new genetic algo-
rithm for discovering hybrid rfds, i.e., rfds relaxing on both the extent
and attribute comparison from data, which is inspired by the process of nat-
ural selection belonging to the larger class of evolutionary algorithms. It
exploits natural evolution operations of species, such as natural selection,
crossover, and mutation, to perform the discovery step and to validate
candidate rfds.

The second proposed algorithm, named Incremental-FD, is an in-
cremental discovery algorithm of fds from data. It is a column-based
algorithm relying on a lattice representation of the search space to per-

241

242 conclusion and future work

form a level-wise discovery process of fds. The algorithm considers data
as partitions and adopts refinement property to validate each candidate
fd. Such a strategy permits to consider previously holding fds and to
efficiently update them upon the insertion of new tuples.

The third proposed algorithm, named REXY, represents an extension of
the algorithm Incremental-FD. It is an incremental discovery algorithm
of fds that introduces a new efficient validation method exploiting regular
expressions (RegExs), which permits to validate fds by focusing only
on the subset of data affected by updates. Moreover, REXY adopts a
compressed data representation that allows to limit the memory load and
optimize the discovery process.

The fourth proposed algorithm, named COD3, is an incremental discov-
ery algorithm optimized to continuously discover fds from data streams.
It adopts a new data structure that permits to efficiently validate fds
and to store data using a lightweight representation. Moreover, COD3

relies on a non-blocking architectural model, which enables continuous
processing of data whenever they are read from the stream. To the best
of our knowledge, COD3 represents the first algorithm enabling the fd

discovery from data streams.
The last proposed algorithm, named BIRD, is an incremental discovery

algorithm for rfds relaxing on the extent (rfdes). It performs a thorough
analysis of the initial candidate rfdes for incrementally updating the set of
holding rfdes whenever new tuples are inserted into the data. Moreover,
BIRD exploits effective data structures and an efficient execution strategy,
which permit to split the discovery process into a level-wise parallel
execution.

For each algorithm, we have performed several experimental sessions,
which have shown that the proposed algorithms are able to efficiently dis-
cover fds and rfds in both static and dynamic scenarios, achieving good
performances with respect to problem complexities. Each algorithm has
also been compared with some of the most efficient discovery algorithms
by demonstrating the effectiveness of the proposed algorithms. Moreover,
for evaluating COD3 performances, we conducted experiments focusing
on the discovery of fds from a real-world data stream.

conclusion and future work 243

In the last part of this thesis, we have presented three new tools for
monitoring results of incremental discovery algorithms. These tools have
been designed to involve users in the analysis of metadata and in the
evaluation of discovery processes.

The first proposed tool, named DEVICE, has been designed for monitor-
ing fds and rfds extracted during the execution of discovery algorithms
through a lattice representation of the search space. It enables users to
perform filtering and zooming operations over a graphical lattice rep-
resentation of the search space, in order to analyze the evolution of
discovery results during algorithm executions.

The second proposed tool, named STRADYVAR, visualizes fds and
rfds discovered from data streams. It enables users to monitor discovery
results and their evolution over time, to compare fds and rfds discovered
across several execution sessions, and to dynamically analyze results by
means of visual manipulation operators.

The third proposed tool, named INDITIO, is a MySQL Workbench
plugin capable to intercept queries and validate metadata before the
execution of insertion operations. It permits to verify in real-time whether
the data to be inserted into a database produce some violations on specific
metadata, such as unique column combinations (uccs) and/or functional
dependencies (fds).

For each tool, we have conducted several experimental sessions, by also
involving users with different levels of knowledge on the given domain.
Experimental results have demonstrated the effectiveness and usefulness
of these tools.

Perspectives. Data profiling includes many activities and tasks for ana-
lyzing data and extracting insights from them. However, the continuous
diffusion of new data sources, leading to the consequent growth of infor-
mation, requires that existing algorithms and methodologies be extended
to support new application domains. For these reasons, starting from the
methodologies presented in this thesis, in the future we would like to
define new algorithms capable of incremental discovering different types
of metadata from data streams, such as unique column combinations and
relaxed functional dependencies relaxing on both extent and attribute
comparison. Moreover, we plan to define new frameworks for executing

244 conclusion and future work

discovery algorithms on non-blocking distributed architectures, aiming
to guarantee high performances, also when they analyze large datasets.

Concerning the profiling of unstructured data in the e-procurement
domain, we would like to extend the semantic search engine CAIMANS
adopting metadata, such as functional dependencies, on web data sources.
In this way, it could be possible to improve the matching between the
search criteria defined by the users and the artifacts extracted from the
web. Consequently, also the discovery algorithms should be extended in
order to detect correlations between raw texts within unstructured data.

Another direction that we would like to investigate concerns the in-
volvement of users in the processes of discovery and analysis of metadata.
In fact, users could support discovery algorithms by sharing useful infor-
mation on data, enabling the definition of focused discovery strategies
targeted on them. Furthermore, the combination of users and domain
experts could lead to the definition of new methodologies for evaluating
and ranking metadata, which is still one of the biggest challenges for
several data profiling tasks.

Moreover, we would like to further investigate the applicability of
data profiling metadata to evaluate the feasibility of machine learning
and deep learning models, and to improve their performances with the
definition of new advanced techniques for preprocessing data.

Finally, we would like to define new visual tools capable of integrating
data profiling algorithms in existing systems that manage relational and
non-relational databases, such as Improvado, Postgres, Redis, and so on.
Moreover, we aim to extend existing tools by introducing new modules
capable of visualizing and analyzing different types of metadata at the
same time.

B I B L I O G R A P H Y

[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. “Profiling
relational data: a survey.” In: The VLDB Journal 24.4 (2015), pp. 557–
581.

[2] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. “Data
profiling: A tutorial.” In: Proceedings of the 2017 ACM International
Conference on Management of Data. 2017, pp. 1747–1751.

[3] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. “DFD:
Efficient Functional Dependency Discovery.” In: Proceedings of the
23rd ACM International Conference on Information and Knowledge
Management. CIKM ’14. 2014, pp. 949–958.

[4] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan
Olteanu, and Maximilian Schleich. “In-database learning with
sparse tensors.” In: Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems. PODS ’18. 2018,
pp. 325–340.

[5] Sandigdha Acharya and S Parija. “The process of information
extraction through natural language processing.” In: International
Journal of Logic and Computation (IJLP) 1.1 (2010), pp. 40–51.

[6] Lada A Adamic and Eytan Adar. “Friends and neighbors on the
web.” In: Social networks 25.3 (2003), pp. 211–230.

[7] Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan David-
son, Umeshwar Dayal, Michael Franklin, Johannes Gehrke, Laura
Haas, Alon Halevy, Jiawei Han, et al. “Challenges and opportuni-
ties with big data.” In: A community white paper developed by leading
researchers across the United States 5 (2012), pp. 34–43.

[8] Boanerges Aleman-Meza, Farshad Hakimpour, I Budak Arpinar,
and Amit P Sheth. “Swetodblp ontology of computer science
publications.” In: Journal of Web Semantics 5.3 (2007), pp. 151–155.

245

246 bibliography

[9] Morteza Alipourlangouri, Adam Mansfield, Fei Chiang, and Yinghui
Wu. “Temporal Graph Functional Dependencies–Technical Re-
port.” In: arXiv preprint arXiv:2108.08719 (2021).

[10] Hasitha Indika Arumawadu, RM Rathnayaka, and SK Illangarathne.
K-Means Clustering For Segment Web Search Results. Kambohwell
Publisher Enterprises, 2015.

[11] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and
Jennifer Widom. “Models and issues in data stream systems.” In:
Proceedings of the 21st ACM Symposium on Principles of Database
Systems. PODS ’02. ACM. 2002, pp. 1–16.

[12] K Bache and M Lichman. UCI Machine Learning Repository. Univer-
sity of California, School of Information and Computer Science, Irvine,
CA (2013). 2017.

[13] Jana Bauckmann, Ulf Leser, Felix Naumann, and Véronique Tietz.
“Efficiently detecting inclusion dependencies.” In: 2007 IEEE 23rd
International Conference on Data Engineering. IEEE. 2007, pp. 1448–
1450.

[14] Siegfried Bell. “Discovery and Maintenance of Functional Depen-
dencies by Independencies.” In: Proceedings of the 1st International
Conference on Knowledge Discovery and Data Mining (KDD ’95). 1995,
pp. 27–32.

[15] Martin Berglund, Brink van der Merwe, and Steyn van Litsen-
borgh. “Regular Expressions with Lookahead.” In: JUCS-Journal of
Universal Computer Science 27 (2021), p. 324.

[16] Ida Bifulco and Stefano Cirillo. “Discovery Multiple Data Struc-
tures in Big Data through Global Optimization and Clustering
Methods.” In: Proceedinfs of the 22nd International Conference Infor-
mation Visualisation (IV). 2018, pp. 117–121.

[17] Ida Bifulco, Stefano Cirillo, Christian Esposito, Roberta Guadagni,
and Giuseppe Polese. “An intelligent system for focused crawling
from Big Data sources.” In: Expert Systems with Applications 184

(2021), p. 115560.

bibliography 247

[18] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data:
The story so far.” In: Semantic services, interoperability and web
applications: emerging concepts. IGI global, 2011, pp. 205–227.

[19] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anasta-
sios Kementsietsidis. “Conditional Functional Dependencies for
Data Cleaning.” In: Proceedings of the 25th International Conference
on Data Engineering. ICDE ’07. 2007, pp. 746–755.

[20] Ingwer Borg and Patrick Groenen. “Modern multidimensional
scaling: Theory and applications.” In: Journal of Educational Mea-
surement 40.3 (2003), pp. 277–280.

[21] Bernardo Breve, Loredana Caruccio, Stefano Cirillo, Vincenzo
Deufemia, and Giuseppe Polese. “Visualizing Dependencies dur-
ing Incremental Discovery Processes.” In: EDBT/ICDT Workshops.
2020.

[22] Bernardo Breve, Loredana Caruccio, Stefano Cirillo, Vincenzo
Deufemia, and Giuseppe Polese. “Dependency Visualization in
Data Stream Profiling.” In: Big Data Research 25 (2021), p. 100240.

[23] Alan Bundy and Lincoln Wallen. “Breadth-first search.” In: Cata-
logue of artificial intelligence tools. 1984, pp. 13–13.

[24] Claudio Carpineto and Giovanni Romano. “A survey of automatic
query expansion in information retrieval.” In: ACM Computing
Surveys 44.1 (2012), pp. 1–50.

[25] Loredana Caruccio and Stefano Cirillo. “Incremental discovery
of imprecise functional dependencies.” In: Journal of Data and
Information Quality (JDIQ) 12.4 (2020), pp. 1–25.

[26] Loredana Caruccio and Stefano Cirillo. “Monitoring Evolution of
Dependency Discovery Results.” In: Journal of Visual Language and
Computing (JVLC) 2 (2020).

[27] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe
Polese. “Incremental Discovery of Functional Dependencies with a
Bit-vector Algorithm.” In: Proceedings of the 27th Italian Symposium
on Advanced Database Systems. 2019.

248 bibliography

[28] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe
Polese. “Efficient Discovery of Functional Dependencies from In-
cremental Databases.” In: 23rd International Conference on Informa-
tion Integration and Web Intelligence (iiWAS2021). Association for
Computing Machinery (ACM). 2021.

[29] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe
Polese. “Efficient Validation of Functional Dependencies during
Incremental Discovery.” In: Proceedings of the 29th Italian Symposium
on Advanced Database Systems. 2021.

[30] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe
Polese. “Real-time visualization of profiling metadata upon data
insertions.” In: EDBT/ICDT Workshops. 2021.

[31] Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and
Giuseppe Polese. “Discovering relaxed functional dependencies
based on multi-attribute dominance.” In: IEEE Transactions on
Knowledge and Data Engineering 33.09 (2021), pp. 3212–3228.

[32] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese.
“Relaxed Functional Dependencies – A Survey of Approaches.”
In: IEEE Transactions on Knowledge and Data Engineering 28.1 (2016),
pp. 147–165.

[33] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese.
“Evolutionary mining of relaxed dependencies from big data col-
lections.” In: Proceedings of the 7th International Conference on Web
Intelligence, Mining and Semantics (WIMS ’17). ACM. 2017, p. 5.

[34] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese.
“Learning Effective Query Management Strategies from Big Data.”
In: 16th IEEE International Conference on Machine Learning and Ap-
plications. 2017, pp. 643–648.

[35] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese.
“Learning effective query management strategies from big data.”
In: 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE. 2017, pp. 643–648.

bibliography 249

[36] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese.
“Visualization of (multimedia) dependencies from big data.” In:
Multimedia Tools and Applications 78.23 (2019), pp. 33151–33167.

[37] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese.
“Mining relaxed functional dependencies from data.” In: Data
Mining and Knowledge Discovery 34.2 (2020), pp. 443–477.

[38] Chuck Cavaness. Quartz Job Scheduling Framework: Building Open
Source Enterprise Applications. Pearson Education, 2006.

[39] Wei Chen, Cong Xie, Pingping Shang, and Qunsheng Peng. “Vi-
sual analysis of user-driven association rule mining.” In: Journal of
Visual Language and Computing 42 (2017), pp. 76–85.

[40] Chih-Wen Cheng, Ying Sha, and May D Wang. “Intervisar: An in-
teractive visualization for association rule search.” In: Proc. of ACM
International Conference on Bioinformatics, Computational Biology, and
Health Informatics. BCB ’16. 2016, pp. 175–184.

[41] David W Cheung, Jiawei Han, Vincent T Ng, and CY Wong. “Main-
tenance of discovered association rules in large databases: An
incremental updating technique.” In: Proceedings of the twelfth in-
ternational conference on data engineering. IEEE. 1996, pp. 106–114.

[42] Fei Chiang and Renée J. Miller. “Discovering data quality rules.”
In: Proceedings of the VLDB Endowment 1.1 (2008), pp. 1166–1177.

[43] David Choy, A Brown, E Gur-Esh, R McVeigh, and F Muller.
"Content management interoperability services (CMIS), version 1.0".
OASIS Standard. Accessed: 2021-01-07. 2010.

[44] X. Chu, I. F. Ilyas, and P. Papotti. “Holistic data cleaning: Putting
violations into context.” In: Proceedings of IEEE 29th International
Conference on Data Engineering (ICDE ’13). 2013, pp. 458–469.

[45] Xu Chu, Ihab F Ilyas, and Paolo Papotti. “Holistic data cleaning:
Putting violations into context.” In: 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE. 2013, pp. 458–469.

[46] EF Codd. “A Relational Model of Data for Large Shared Data
Banks. Comm. of ACM, vol. 13, N 6.” In: (1970).

250 bibliography

[47] EF Codd. “Further Normalization of the Data Base relational
Model. IBM Research.” In: Journal RJ909 15857 (1971).

[48] Carlo Combi, Matteo Mantovani, Alberto Sabaini, Pietro Sala,
Francesco Amaddeo, Ugo Moretti, and Giuseppe Pozzi. “Mining
approximate temporal functional dependencies with pure tempo-
ral grouping in clinical databases.” In: Computers in biology and
medicine 62 (2015), pp. 306–324.

[49] Carlo Combi, Matteo Mantovani, and Pietro Sala. “Discovering
quantitative temporal functional dependencies on clinical data.” In:
2017 IEEE International Conference on Healthcare Informatics (ICHI).
IEEE. 2017, pp. 248–257.

[50] Richard Cyganiak, Holger Stenzhorn, Renaud Delbru, Stefan
Decker, and Giovanni Tummarello. “Semantic sitemaps: Efficient
and flexible access to datasets on the semantic web.” In: European
Semantic Web Conference. Springer. 2008, pp. 690–704.

[51] Wei Dai, Isaac Wardlaw, Yu Cui, Kashif Mehdi, Yanyan Li, and Jun
Long. “Data profiling technology of data governance regarding
big data: review and rethinking.” In: Information Technology: New
Generations (2016), pp. 439–450.

[52] Michael Daum, Frank Lauterwald, Martin Fischer, Mario Kiefer,
and Klaus Meyer-Wegener. “Integration of heterogeneous sen-
sor nodes by data stream management.” In: Wireless Sensor Net-
work Technologies for the Information Explosion Era. Springer, 2010,
pp. 139–172.

[53] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. “Effi-
cient algorithms for mining inclusion dependencies.” In: Interna-
tional Conference on Extending Database Technology. Springer. 2002,
pp. 464–476.

[54] MC Ferreira De Oliveira and Haim Levkowitz. “From visual data
exploration to visual data mining: a survey.” In: IEEE Transactions
on Visualization and Computer Graphics 9.3 (2003), pp. 378–394.

bibliography 251

[55] César Roberto De Souza. “A tutorial on principal component anal-
ysis with the accord. net framework.” In: arXiv preprint arXiv:1210.7463
(2012).

[56] Pedro G DeLima and Gary G Yen. “Multiple objective evolution-
ary algorithm for temporal linguistic rule extraction.” In: ISA
transactions 44.2 (2005), pp. 315–327.

[57] Yajun Du, Wenjun Liu, Xianjing Lv, and Guoli Peng. “An im-
proved focused crawler based on semantic similarity vector space
model.” In: Applied Soft Computing 36 (2015), pp. 392–407.

[58] Jérôme Euzenat, Pavel Shvaiko, et al. Ontology matching. Vol. 18.
Springer, 2007.

[59] Seyed Mostafa Fakhrahmad, MH Sadreddini, and M Zolghadri
Jahromi. “AD-Miner: A new incremental method for discovery of
minimal approximate dependencies using logical operations.” In:
Intelligent Data Analysis 12.6 (2008), pp. 607–619.

[60] Wenfei Fan, Philip Bohannon, Floris Geerts, Xibei Jia, and Anasta-
sios Kementsiets. “Conditional functional dependencies for data
cleaning.” In: Data Engineering, 2007, IEEE 23rd International Con-
ference on. 746-755. IEEE. 2007.

[61] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma.
“Dynamic constraints for record matching.” In: The VLDB Journal
20.4 (2011), pp. 495–520.

[62] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma.
“Dynamic constraints for record matching.” In: The VLDB Journal
20 (2011), pp. 495–520.

[63] Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, and Ming
Xiong. “Discovering Conditional Functional Dependencies.” In:
Proceedings of the 25th International Conference on Data Engineering,
ICDE’09. 2009, pp. 1231–1234.

[64] Peter A. Flach and Iztok Savnik. “Database Dependency Discovery:
A Machine Learning Approach.” In: AI Communications 12.3 (1999),
pp. 139–160. issn: 0921-7126.

252 bibliography

[65] Nicolas Foucault, Gilles Adda, and Sophie Rosset. “Language
modeling for document selection in question answering.” In: Pro-
ceedings of the International Conference Recent Advances in Natural
Language Processing 2011. 2011, pp. 716–720.

[66] Sandra Geisler. “Data stream management systems.” In: Dagstuhl
Follow-Ups. Vol. 5. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 2013.

[67] Thanaa M Ghanem, Moustafa A Hammad, Mohamed F Mokbel,
Walid G Aref, and Ahmed K Elmagarmid. “Incremental eval-
uation of sliding-window queries over data streams.” In: IEEE
Transactions on Knowledge and Data Engineering 19.1 (2006), pp. 57–
72.

[68] Luca M. Ghiringhelli, Jan Vybiral, Sergey V. Levchenko, Clau-
dia Draxl, and Matthias Scheffler. “Big data of materials science:
Critical role of the descriptor.” In: Phys. Rev. Lett. 114.4105503

(2015).

[69] M Rami Ghorab, Dong Zhou, Alexander O’connor, and Vincent
Wade. “Personalised information retrieval: survey and classifica-
tion.” In: User Modeling and User-Adapted Interaction 23.4 (2013),
pp. 381–443.

[70] Chris Giannella and Edward Robertson. “On approximation mea-
sures for functional dependencies.” In: Inform. Syst. 29.6 (2004),
pp. 483–507.

[71] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and
Bei Yu. “On generating near-optimal tableaux for conditional
functional dependencies.” In: PVLDB 1.1 (2008), pp. 376–390.

[72] Lukasz Golab and M Tamer Özsu. “Issues in data stream manage-
ment.” In: ACM Sigmod Record 32.2 (2003), pp. 5–14.

[73] Robert Gove. Using the elbow method to determine the optimal number
of clusters for k-means clustering. Accessed: 2021-01-07. 2015.

bibliography 253

[74] Jonatas S Grosman, Pedro HT Furtado, Ariane MB Rodrigues,
Guilherme G Schardong, Simone DJ Barbosa, and Helio CV Lopes.
“Eras: Improving the quality control in the annotation process
for Natural Language Processing tasks.” In: Information Systems
(2020), p. 101553.

[75] Michael Hahsler. “arulesViz: Interactive Visualization of Associa-
tion Rules with R.” In: The R Journal 9.2 (2017), p. 163.

[76] Jean-Luc Hainaut, Jean Henrard, Didier Roland, Jean-Marc Hick,
and Vincent Englebert. “Database reverse engineering.” In: Hand-
book of Research on Innovations in Database Technologies and Applica-
tions: Current and Future Trends. IGI Global, 2009, pp. 181–189.

[77] Sven Hartmann and Sebastian Link. “More functional dependen-
cies for XML.” In: East European Conference on Advances in Databases
and Information Systems. Springer. 2003, pp. 355–369.

[78] Oktie Hassanzadeh and Mariano P Consens. “Linked movie data
base.” In: LDOW. 2009.

[79] Michael Hausenblas, Wolfgang Halb, Yves Raimond, Lee Feigen-
baum, and Danny Ayers. “Scovo: Using statistics on the web
of data.” In: European Semantic Web Conference. Springer. 2009,
pp. 708–722.

[80] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja
Jentzsch, and Felix Naumann. “Scalable discovery of unique col-
umn combinations.” In: Proceedings of the VLDB Endowment 7.4
(2013), pp. 301–312.

[81] Allan Heydon and Marc Najork. “Mercator: A scalable, extensible
web crawler.” In: World Wide Web 2.4 (1999), pp. 219–229.

[82] Guobiao Hu, Shuigeng Zhou, Jihong Guan, and Xiaohua Hu.
“Towards effective document clustering: A constrained K-means
based approach.” In: Information Processing & Management 44.4
(2008), pp. 1397–1409.

254 bibliography

[83] Anna Huang. “Similarity measures for text document clustering.”
In: Proceedings of the sixth new zealand computer science research
student conference (NZCSRSC). Vol. 4. 2008, pp. 9–56.

[84] Ykä Huhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen.
“Efficient discovery of functional and approximate dependencies
using partitions.” In: Proceedings 14th International Conference on
Data Engineering. IEEE. 1998, pp. 392–401.

[85] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen.
“TANE: An Efficient Algorithm for Discovering Functional and
Approximate Dependencies.” In: The Computer Journal 42.2 (1999),
pp. 100–111.

[86] Michael Jones, Brain Campbell, and Chuck Mortimore. JSON Web
Token (JWT), profile for OAuth 2.0 client authentication and authoriza-
tion Grants. Accessed: 2021-01-07. 2015.

[87] Daniel A Keim, Jorn Schneidewind, and Mike Sips. “CircleView: A
new approach for visualizing time-related multidimensional data
sets.” In: Proc. of Working Conference on Advanced Visual Interfaces.
AVI ’04. 2004, pp. 179–182.

[88] Hyunjoong Kim, Han Kyul Kim, and Sungzoon Cho. “Improving
spherical k-means for document clustering: Fast initialization,
sparse centroid projection, and efficient cluster labeling.” In: Expert
Systems with Applications 150 (2020), p. 113288.

[89] R.S. King and J. Oil. “Discovery of Functional and Approximate
Functional Dependencies in Relational Databases.” In: J. Applied
Math. and Decision Sciences 7.1 (2003), pp. 49–59.

[90] Jyrki Kivinen and Heikki Mannila. “Approximate inference of
functional dependencies from relations.” In: Theor. Comput. Sci.
149.1 (1995), pp. 129–149.

[91] Anja Klein and Wolfgang Lehner. “Representing data quality
in sensor data streaming environments.” In: Journal of Data and
Information Quality (JDIQ) 1.2 (2009), pp. 1–28.

bibliography 255

[92] Sebastian Kruse, David Hahn, Marius Walter, and Felix Naumann.
“Metacrate: Organize and analyze millions of data profiles.” In:
Proceedings of the 2017 ACM on Conference on Information and Knowl-
edge Management. ACM. 2017, pp. 2483–2486.

[93] Sebastian Kruse and Felix Naumann. “Efficient discovery of ap-
proximate dependencies.” In: Proceedings of the VLDB Endowment
11.7 (2018), pp. 759–772.

[94] Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz
Finke, Manuel Hegner, Martin Zabel, Christian Zöllner, and Felix
Naumann. “Fast approximate discovery of inclusion dependen-
cies.” In: Datenbanksysteme für Business, Technologie und Web (BTW
2017) (2017).

[95] Manish Kumar, Rajesh Bhatia, and Dhavleesh Rattan. “A survey of
Web crawlers for information retrieval.” In: Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 7.6 (2017), e1218.

[96] Selasi Kwashie, Jixue Liu, Jiuyong Li, and Feiyue Ye. “Mining
Differential Dependencies: A Subspace Clustering Approach.”
In: Proceedings of Australasian Database Conference. ADC ’14. 2014,
pp. 50–61.

[97] Kenneth Lai and Narciso Cerpa. “Support vs. confidence in asso-
ciation rule algorithms.” In: Proceedings of the OPTIMA Conference,
Curico. 2001, pp. 1–14.

[98] R Lakshmi and S Baskar. “Novel term weighting schemes for
document representation based on ranking of terms and fuzzy
logic with semantic relationship of terms.” In: Expert Systems with
Applications 137 (2019), pp. 493–503.

[99] Kwok-Wa Lam and Victor CS Lee. “Building decision trees using
functional dependencies.” In: Proceedings of International Conference
on Information Technology: Coding and Computing. Vol. 2. ITCC 2004.
IEEE. 2004, pp. 470–473.

256 bibliography

[100] Rohulla Kosari Langari, Soheila Sardar, Seyed Abdollah Amin
Mousavi, and Reza Radfar. “Combined fuzzy clustering and firefly
algorithm for privacy preserving in social networks.” In: Expert
Systems with Applications 141 (2020), p. 112968.

[101] Andreas Langegger and Wolfram Woss. “RDFStats-an extensible
RDF statistics generator and library.” In: 2009 20th International
Workshop on Database and Expert Systems Application. IEEE. 2009,
pp. 79–83.

[102] Dominique Laurent and Nicolas Spyratos. “Rewriting aggregate
queries using functional dependencies.” In: Proceedings of the Inter-
national Conference on Management of Emergent Digital EcoSystems.
2011, pp. 40–47.

[103] Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici.
“Evaluating Classification Feasibility Using Functional Dependen-
cies.” In: Transactions on Large-Scale Data-and Knowledge-Centered
Systems XLIV. Springer, 2020, pp. 132–159.

[104] Andrew Lensen, Bing Xue, and Mengjie Zhang. “Using particle
swarm optimisation and the silhouette metric to estimate the
number of clusters, select features, and perform clustering.” In:
Proceedings of the European Conference on the Applications of Evolu-
tionary Computation. 2017, pp. 538–554.

[105] Huiying Li. “Data profiling for semantic web data.” In: Interna-
tional Conference on Web Information Systems and Mining. Springer.
2012, pp. 472–479.

[106] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang.
“CleanML: A Study for Evaluating the Impact of Data Cleaning on
ML Classification Tasks.” In: Proceedings of 37th IEEE International
Conference on Data Engineering, to Appear. ICDE 2021.

[107] Chien-Liang Liu, Wen-Hoar Hsaio, Chia-Hoang Lee, and Chun-
Hsien Chen. “Clustering tagged documents with labeled and
unlabeled documents.” In: Information Processing & Management
49.3 (2013), pp. 596–606.

bibliography 257

[108] Jixue Liu, Jiuyong Li, Chengfei Liu, and Yongfeng Chen. “Discover
Dependencies from Data - A Review.” In: IEEE Transactions on
Knowledge and Data Engineering 24.2 (2012), pp. 251–264.

[109] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. “Efficient Dis-
covery of Functional Dependencies and Armstrong Relations.” In:
Proceedings of the 7th International Conference on Extending Database
Technology. EDBT ’00. 2000, pp. 350–364.

[110] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. “Generic
schema matching with cupid.” In: vldb. Vol. 1. Citeseer. 2001,
pp. 49–58.

[111] Heikki Mannila and Kari-Jouko Raiha. “Dependency inference.”
In: Proceedings of the 13th International Conference on Very Large Data
Bases. VLDB ’87. 1987, pp. 155–158.

[112] Adam Marcus, Michael S Bernstein, Osama Badar, David R Karger,
Samuel Madden, and Robert C Miller. “Processing and visualizing
the data in tweets.” In: ACM SIGMOD Record 40.4 (2012), pp. 21–
27.

[113] Arkady Maydanchik. Data quality assessment. Technics publications,
2007.

[114] Suyash Mishra and Anuranjan Misra. “Structured and Unstruc-
tured Big Data Analytics.” In: 2017 International Conference on
Current Trends in Computer, Electrical, Electronics and Communication
(CTCEEC). IEEE. 2017, pp. 740–746.

[115] Mark Lukas Möller, Nicolas Berton, Meike Klettke, Stefanie Scherzinger,
and Uta Störl. “jhound: Large-scale profiling of open JSON data.”
In: BTW 2019 (2019).

[116] Ullas Nambiar and Subbarao Kambhampati. “Mining approxi-
mate functional dependencies and concept similarities to answer
imprecise queries.” In: Proceedings of the 7th International Workshop
on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004.
2004, pp. 73–78.

258 bibliography

[117] B Nath, DK Bhattacharyya, and A Ghosh. “Incremental association
rule mining: a survey.” In: Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 3.3 (2013), pp. 157–169.

[118] Felix Naumann. “Data profiling revisited.” In: ACM SIGMOD
Record 42.4 (2014), pp. 40–49.

[119] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn,
and Supachanun Wanapu. “Using of Jaccard coefficient for key-
words similarity.” In: Proceedings of the international multiconference
of engineers and computer scientists. Vol. 1. 6. 2013, pp. 380–384.

[120] Levin Noronha and Fei Chiang. “Discovery of Temporal Graph
Functional Dependencies.” In: Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management. 2021,
pp. 3348–3352.

[121] Noel Novelli and Rosine Cicchetti. “FUN: An Efficient Algorithm
for Mining Functional and Embedded Dependencies.” In: Proceed-
ings of 8th International Conference Database Theory. ICDT ’01. 2001,
pp. 189–203.

[122] Hian-Huat Ong, Kok-Leong Ong, Wee-Keong Ng, and Ee Peng
Lim. “CrystalClear: Active visualization of association rules.” In:
Proc. Workshop on Active Mining. 2002, pp. 1–6.

[123] M Tamer Özsu and Patrick Valduriez. Principles of distributed
database systems. Vol. 2. Springer, 1999.

[124] Tero Paivarinta and Bjørn Erik Munkvold. “Enterprise content
management: an integrated perspective on information manage-
ment.” In: Proceedings of the 38th Annual Hawaii International Con-
ference on System Sciences (2005), pp. 96–96.

[125] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener,
and Felix Naumann. “Data profiling with Metanome.” In: Proceed-
ings of the VLDB Endowment 8.12 (2015), pp. 1860–1863.

bibliography 259

[126] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neu-
bert, Jan-Peer Rudolph, Martin Schönberg, Jakob Zwiener, and
Felix Naumann. “Functional Dependency Discovery: An Exper-
imental Evaluation of Seven Algorithms.” In: Proceedings of the
VLDB Endowment 8.10 (2015), pp. 1082–1093.

[127] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-
Ruiz, and Felix Naumann. “Divide & conquer-based inclusion
dependency discovery.” In: Proceedings of the VLDB Endowment 8.7
(2015), pp. 774–785.

[128] Thorsten Papenbrock and Felix Naumann. “A hybrid approach to
functional dependency discovery.” In: Proceedings of the 2016 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’16). ACM. 2016, pp. 821–833.

[129] Kostas Patroumpas and Timos Sellis. “Window specification over
data streams.” In: International Conference on Extending Database
Technology. Springer. 2006, pp. 445–464.

[130] Eduardo Pena, Eduardo HM Pena, Erik Falk, Jorge Augusto Meira,
and Eduardo Cunha de Almeida. “Mind your dependencies for
semantic query optimization.” In: Journal of Information and Data
Management 9.1 (2018), pp. 3–3.

[131] Romain Perriot, Laurent d’Orazio, Dominique Laurent, and Nico-
las Spyratos. “Rewriting aggregate queries using functional depen-
dencies within the cloud.” In: International Workshop on Information
Search, Integration, and Personalization. Springer. 2013, pp. 31–42.

[132] J-M Petit, Jacques Kouloumdjian, J-F Boulicaut, and Farouk Toumani.
“Using queries to improve database reverse engineering.” In: Inter-
national Conference on Conceptual Modeling. Springer. 1994, pp. 369–
386.

[133] Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J
Shekita. “Improved histograms for selectivity estimation of range
predicates.” In: ACM Sigmod Record 25.2 (1996), pp. 294–305.

260 bibliography

[134] Hema Raghavan, James Allan, and Andrew McCallum. “An ex-
ploration of entity models, collective classification and relation
description.” In: KDD Workshop on Link Analysis and Group Detec-
tion. Citeseer. 2004, pp. 1–10.

[135] Juan Ramos et al. “Using tf-idf to determine word relevance in
document queries.” In: Proceedings of the first instructional conference
on machine learning. Vol. 242. 2003, pp. 133–142.

[136] Colin R Reeves. “Genetic algorithms.” In: Handbook of metaheuris-
tics. Springer, 2010, pp. 109–139.

[137] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré.
“HoloClean: Holistic Data Repairs with Probabilistic Inference.”
In: Proc. VLDB Endow. 10.11 (Aug. 2017), pp. 1190–1201. issn:
2150-8097.

[138] Octavian Rusu, Ionela Halcu, Oana Grigoriu, Giorgian Neculoiu,
Virginia Sandulescu, Mariana Marinescu, and Viorel Marinescu.
“Converting unstructured and semi-structured data into knowl-
edge.” In: 2013 11th RoEduNet International Conference. IEEE. 2013,
pp. 1–4.

[139] Daniel Sánchez, Jose Maria Serrano, Ignacio Blanco, Maria Jose
Martin-Bautista, and Maria-Amparo Vila. “Using association rules
to mine for strong approximate dependencies.” In: Data Mining
and Knowledge Discovery 16.3 (2008), pp. 313–348.

[140] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Dennis
Hempfing, Torben Meyer, Daniel Neuschafer-Rube, and Felix Nau-
mann. “DynFD: Functional Dependency Discovery in Dynamic
Datasets.” In: Proceedings of the 22nd International Conference on
Extending Database Technology (EDBT ’19). 2019, pp. 253–264.

[141] Vinicius Segura and Simone DJ Barbosa. “Historyviewer: Instru-
menting a visual analytics application to support revisiting a
session of interactive data analysis.” In: Proc. of the ACM on Human-
Computer Interaction (2017), p. 11.

bibliography 261

[142] Yoones A. Sekhavat and Orland Hoeber. “Visualizing Associa-
tion Rules Using Linked Matrix, Graph, and Detail Views.” In:
International Journal of Intelligence Science 3 (2013), pp. 34–49.

[143] Nuhad Shaabani and Christoph Meinel. “Scalable inclusion depen-
dency discovery.” In: International Conference on Database Systems
for Advanced Applications. Springer. 2015, pp. 425–440.

[144] Antonio M Silva and Michael A Melkanoff. “A method for helping
discover the dependencies of a relation.” In: Advances in Data Base
Theory. Springer, 1981, pp. 115–133.

[145] Yannis Sismanis, Paul Brown, Peter J Haas, and Berthold Reinwald.
“Gordian: efficient and scalable discovery of composite keys.” In:
Proceedings of the 32nd international conference on Very large data bases.
2006, pp. 691–702.

[146] Jieun Son and Seoung Bum Kim. “Content-based filtering for rec-
ommendation systems using multiattribute networks.” In: Expert
Systems with Applications 89 (2017), pp. 404–412.

[147] Shaoxu Song and Lei Chen. “Differential dependencies: Reasoning
and discovery.” In: ACM Transactions on Database Systems 36 (3
2011), p. 16.

[148] Shaoxu Song and Lei Chen. “Efficient discovery of similarity
constraints for matching dependencies.” In: Data & Knowledge
Engineering 87 (2013), pp. 146–166.

[149] Shaoxu Song, Fei Gao, Ruihong Huang, and Chaokun Wang.
“Data Dependencies over Big Data: A Family Tree.” In: IEEE
Transactions on Knowledge and Data Engineering (2020).

[150] Shaoxu Song, Aoqian Zhang, Lei Chen, and Jianmin Wang. “En-
riching data imputation with extensive similarity neighbors.” In:
Proceedings of the VLDB Endowment 8.11 (2015), pp. 1286–1297.

[151] Shaoxu Song, Aoqian Zhang, Jianmin Wang, and Philip S Yu.
“Screen: Stream data cleaning under speed constraints.” In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data. 2015, pp. 827–841.

262 bibliography

[152] Hyontai Sug. “Making Use of Functional Dependencies Based on
Data to Find Better Classification Trees.” In: International Journal of
Circuits, Systems and Signal Processing (2021).

[153] Zhen Sun, Ee-Peng Lim, Kuiyu Chang, Teng-Kwee Ong, and
Rohan Kumar Gunaratna. “Event-driven document selection for
terrorism information extraction.” In: Proceedings of the International
conference on intelligence and security informatics. 2005, pp. 37–48.

[154] A Szczurek, M Maciejewska, et al. “Sensor array data profiling for
gas identification.” In: Talanta 78.3 (2009), pp. 840–845.

[155] Salman Taherian, Marcelo Pias, R Harle, George Coulouris, Si-
mon Hay, Jonathan Cameron, Joan Lasenby, Gregor Kuntze, Ian
Bezodis, Gareth Irwin, et al. “Profiling sprints using on-body
sensors.” In: 2010 8th IEEE International Conference on Pervasive
Computing and Communications Workshops (PERCOM Workshops).
IEEE. 2010, pp. 444–449.

[156] Robert Tarjan. “Depth-first search and linear graph algorithms.”
In: SIAM journal on computing 1.2 (1972), pp. 146–160.

[157] Kesaraporn Techapichetvanich and Amitava Datta. “VisAR: A
new technique for visualizing mined association rules.” In: Proc.
of International Conference on Advanced Data Mining and Applications.
ADMA ’05. Springer. 2005, pp. 88–95.

[158] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann.
“Detecting inclusion dependencies on very many tables.” In: ACM
Transactions on Database Systems (TODS) 42.3 (2017), pp. 1–29.

[159] Ozge Uncu and IB Turksen. “Two step feature selection: approxi-
mate functional dependency approach using membership values.”
In: Proceedings of IEEE International Conference on Fuzzy Systems.
Vol. 3. IEEE. 2004, pp. 1643–1648.

[160] Courtney Cox Wakefield. “Achieving position 0: Optimising your
content to rank in Google’s answer box.” In: Journal of Brand
Strategy 7.4 (2019), pp. 326–336.

bibliography 263

[161] Shyue-Liang Wang, Ju-Wen Shen, and Tzung-Pei Hong. “Incre-
mental discovery of functional dependencies using partitions.” In:
Proceedings Joint 9th IFSA World Congress and 20th NAFIPS Interna-
tional Conference (Cat. No. 01TH8569). Vol. 3. IEEE. 2001, pp. 1322–
1326.

[162] Catharine Wyss, Chris Giannella, and Edward Robertson. “FastFDs:
A Heuristic-Driven, Depth-First Algorithm for Mining Functional
Dependencies from Relation Instances.” In: Proceedings of Interna-
tional Conference on Data Warehousing and Knowl. Disc. DaWaK ’01.
2001, pp. 101–110.

[163] Hong Yao and Howard J Hamilton. “Mining functional depen-
dencies from data.” In: Data Mining and Knowledge Discovery 16.2
(2008), pp. 197–219.

[164] Hong Yao, Howard J. Hamilton, and Cory J. Butz. “FD_Mine:
Discovering Functional Dependencies in a Database Using Equiv-
alences.” In: Proceedings of IEEE International Conference on Data
Mining. ICDM ’02. 2002, pp. 729–732.

[165] Li Yujian and Liu Bo. “A normalized Levenshtein distance metric.”
In: IEEE transactions on pattern analysis and machine intelligence 29.6
(2007), pp. 1091–1095.

[166] Lin Zhu, Xu Sun, Zijing Tan, Kejia Yang, Weidong Yang, Xiang-
dong Zhou, and Yingjie Tian. “Incremental Discovery of Order
Dependencies on Tuple Insertions.” In: Proceedings of the 24th In-
ternational Conference on Database Systems for Advanced Applications
(DASFAA ’19). Springer. 2019, pp. 157–174.

	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	 Context & Background
	2 Data Profiling
	2.1 Profiling Tasks and Applications
	2.2 Profiling Metadata
	2.2.1 Unique Column Combinations (ucc)
	2.2.2 Functional Dependencies (fd)
	2.2.3 Relaxed Functional Dependencies (rfd)
	2.2.4 Inclusion Dependencies (ind)

	2.3 Open Challenges
	2.3.1 Profiling Heterogeneous Data
	2.3.2 Incremental Data Profiling
	2.3.3 Interactive Data Profiling

	3 Profiling unstructured web data sources
	3.1 Problem Description
	3.2 Literature Review
	3.3 CAIMANS: Crawling Artifacts of Interest and Matching them Against Enterprise Sources
	3.3.1 Extraction and Profiling of artifacts from the web
	3.3.2 Experimental Results

	 Discovery algorithms for Data Profiling
	4 Discovery Algorithms in Static Scenarios
	4.1 Problem Description
	4.2 Literature Review
	4.3 A Genetic Approach for Discovering Hybrid RFDs
	4.3.1 Methodology
	4.3.2 Generation of the Initial Population
	4.3.3 Fitness Function
	4.3.4 Crossover
	4.3.5 Mutation
	4.3.6 The REDEVO Algorithm
	4.3.7 Experimental Evaluation
	4.3.8 Evaluation on configuration settings

	5 Discovery Algorithms in Dynamic Scenarios
	5.1 Problem Description
	5.1.1 Incremental Discovery of fds
	5.1.2 Continuous Discovery of fds from dynamic sources
	5.1.3 Incremental Discovery of rfdes

	5.2 Literature Review
	5.3 Incremental-FD: Incremental discovery algorithm of fds
	5.3.1 Methodology
	5.3.2 Experimental Evaluation

	5.4 REXY: An Incremental discovery algorithm of fds
	5.4.1 Methodology
	5.4.2 The REXY Algorithm
	5.4.3 Experimental Evaluation

	5.5 COD3: Continuous Discovery of fd from Data Streams
	5.5.1 Methodology
	5.5.2 Graph-based fd Validation
	5.5.3 The COD3 Algorithm
	5.5.4 Experimental Evaluation

	5.6 BIRD: An Incremental discovery algorithm of rfdes
	5.6.1 Methodology
	5.6.2 The BIRD Algorithm
	5.6.3 Theoretical Evaluation
	5.6.4 Experimental Evaluation

	 Tools for Visualizing Profiling Metadata
	6 Visualization and Monitoring Tools for Incremental Discovery Algorithms
	6.1 Problem Description
	6.2 Literature Review
	6.3 DEVICE: A tool for monitoring the evolution of results of rfd discovery algorithms
	6.3.1 System Overview
	6.3.2 rfd Visualization
	6.3.3 Interaction in depth
	6.3.4 Case Studies

	6.4 STRADYVAR: Dependency Visualization in Data Stream Profiling
	6.4.1 System Overview
	6.4.2 rfd visualization
	6.4.3 Interaction in depth
	6.4.4 User Study

	6.5 INDITIO: Real-time validation of profiling metadata in a data management system
	6.5.1 System Overview
	6.5.2 Interaction in depth
	6.5.3 User Study

	 Conclusion
	7 Conclusion and Future Work
	 Bibliography
	Acknowledgments

