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Abstract 

The aim of the study proposed in this thesis was to analyse and implement data pro-
cessing procedures and algorithms to try to overcome the criticalities present in the 
traditional identification and segmentation of cracks on road pavements and buildings. 

For this purpose, algorithms were implemented in Python in order to optimise, on 
the one hand, the point cloud and products from the photogrammetric process and, 
on the other hand, the crack segmentation methodology, which is currently the most 
accurate in the literature. 

Point clouds produced by photogrammetric software are not directly usable, as they 
must first be processed to remove outliers and noise. The first phase of the thesis pre-
sents an innovative approach that can assist survey methods by applying an AI algo-
rithm to improve the accuracy of point clouds generated from UAV images. 
Many studies on the semantic segmentation of cracks using Machine Learning and 
Deep Learning techniques can be found in the relevant literature. However, this task is 
very challenging due to the complexity of the background, as cracks are easily confused 
with objects not belonging to the surface, shadows, and background textures and are 
also inhomogeneous. 

The results obtained to date are quite good, but often the accuracy of the trained 
model and the results achieved are evaluated using traditional metrics only. In most 
cases, the goal is merely to detect the occurrence of cracks. Particular attention should 
be paid to the thickness of the segmented crack, as the width of the crack is the main 
parameter for maintenance and characterizes the severity levels. The aim of our study 
is to optimize the crack segmentation process through the implementation of a modi-
fied U-Net model-based architecture. U-Net is a network with two symmetrical 
branches (encoder-decoder structure). The encoder is replaced with a ResNet50 en-
coder pre-trained on the ImageNet dataset. Our focus was on crack segmentation, and 
for this purpose, we used the Crack500 Dataset and compared the results with those 
obtained from the algorithm currently considered the most accurate and performant 
in the literature. 

To demonstrate the generalization of the model, two real case studies were tested 
by performing a UAV survey to obtain the photogrammetric models of both.  

The results are promising and accurate, with the shape and width of the segmented 
cracks closely resembling reality. 
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Riassunto 

Lo scopo dello studio proposto in questa tesi è stato quello di analizzare e implemen-
tare particolari procedure e algoritmi di elaborazione dei dati per superare le criticità 
nella tradizionale identificazione e segmentazione delle fessure nelle pavimentazioni 
stradali ed edilizie. 

A tal fine, sono stati implementati algoritmi Python per ottimizzare la nuvola di punti 
e i prodotti del processo fotogrammetrico, nonché la metodologia di segmentazione 
delle fessure, la più accurata in letteratura. 

Le nuvole di punti prodotte dai software fotogrammetrici non sono direttamente 
utilizzabili, ma devono essere elaborate per rimuovere gli outlier e il rumore. La prima 
fase della tesi presenta un approccio innovativo per aiutare i metodi di rilievo utiliz-
zando un algoritmo di intelligenza artificiale che migliora l'accuratezza delle nuvole di 
punti generate da immagini UAV. 

In letteratura si trovano studi sulla segmentazione semantica delle fessure utiliz-
zando tecniche di Machine Learning e Deep Learning. Tuttavia, questo compito è diffi-
cile a causa della complessità dello sfondo, dove le fessure possono essere confuse con 
oggetti non appartenenti alla superficie, ombre e texture dello sfondo, oltre a non es-
sere omogenee. 

I risultati ottenuti finora sono ottimi, ma l'accuratezza del modello addestrato e i ri-
sultati sono valutati utilizzando metriche tradizionali. L'obiettivo è rilevare la presenza 
di fessure e fare attenzione allo spessore della fessura segmentata, poiché la sua lar-
ghezza è un parametro chiave per la manutenzione e i livelli di gravità. L'obiettivo del 
nostro studio è quello di ottimizzare il processo di segmentazione delle fessure attra-
verso l'implementazione di un'architettura basata sul modello U-Net modificato. U-Net 
è una rete con due rami simmetrici (struttura encoder-decoder). L'encoder è stato so-
stituito con un encoder ResNet50 pre-addestrato sul set di dati ImageNet. La nostra 
attenzione si è concentrata sulla segmentazione delle fessure e a tal fine abbiamo uti-
lizzato il dataset Crack500, confrontando i risultati con quelli ottenuti dall'algoritmo at-
tualmente considerato il più accurato e performante in letteratura. 

Per dimostrare la generalizzazione del modello, sono stati testati due casi di studio 
reali eseguendo un rilievo UAV per ottenere i modelli fotogrammetrici di entrambi.  

I risultati sono promettenti e accurati, con forma e larghezza delle fessure segmen-
tate molto simili alla realtà.
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Resumen 

El objetivo del estudio propuesto en esta tesis fue analizar e implementar procedimien-
tos y algoritmos particulares de procesamiento de datos con el fin de intentar superar 
las criticidades presentes en la tradicional identificación y segmentación de grietas en 
pavimentos de carreteras y edificios. 

Para ello, se implementaron algoritmos en Python para optimizar la nube de puntos 
y los productos del proceso fotogramétrico, así como la metodología de segmentación 
de grietas, la más precisa de la literatura. 

Las nubes de puntos producidas por el software fotogramétrico no son utilizables 
directamente, deben procesarse para eliminar valores atípicos y ruido. La primera fase 
de la tesis presenta un enfoque innovador para ayudar a los métodos de levantamiento 
mediante un algoritmo de IA que mejora la precisión de las nubes de puntos generadas 
desde imágenes de UAV. 

En la literatura se encuentran estudios sobre la segmentación semántica de grietas 
usando técnicas de Machine Learning y Deep Learning. Sin embargo, esta tarea es difícil 
debido a la complejidad del fondo, donde las grietas pueden confundirse con objetos 
ajenos a la superficie, sombras y texturas de fondo, y además no son homogéneas. 

Los resultados conseguidos hasta la fecha son óptimos, pero a menudo la precisión 
del modelo entrenado y los resultados obtenidos se evalúan utilizando únicamente mé-
tricas tradicionales. En la mayoría de los casos, el objetivo es simplemente detectar la 
aparición de grietas. Debe prestarse especial atención al grosor de la grieta segmen-
tada, ya que la anchura de la misma es el principal parámetro para el mantenimiento y 
caracteriza los niveles de gravedad. El objetivo de nuestro estudio es optimizar el pro-
ceso de segmentación de grietas mediante la aplicación de una arquitectura modificada 
basada en el modelo U-Net. U-Net es una red con dos ramas simétricas (estructura co-
dificador-decodificador). El codificador se sustituye por un codificador ResNet50 preen-
trenado en el conjunto de datos ImageNet. Nos centramos en la segmentación de grie-
tas y, para ello, utilizamos el conjunto de datos Crack500 y comparamos los resultados 
con los obtenidos con el algoritmo considerado actualmente el más preciso y eficaz de 
la bibliografía. 

Para demostrar la generalización del modelo, se probaron dos casos de estudio 
reales realizando un levantamiento con UAV para obtener modelos fotogramétricos. 

Los resultados son prometedores y precisos, mientras que la forma y la anchura de 
las grietas segmentadas se asemejan mucho a la realidad. 
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1. Introduction 

1.1 Motivation 

The detection of cracks in structures and infrastructures is a critical task in civil en-
gineering, as it plays a crucial role in ensuring the integrity and safety of various 
structures, such as buildings, bridges, tunnels, and roads, that may need to be 
closed off to public access.  

The assessment and examination involved in structural health monitoring (SHM) 
typically complement maintenance procedures. This is a critical step that takes into 
account the actual condition of structures and identifies any existing anomalies. 
Traditionally, visual inspection and manual interpretation have been employed for 
crack detection. However, these methods are time-consuming, subjective, and sus-
ceptible to errors. Moreover, this task can be laborious as it is often performed on-
site, sometimes in hazardous situations, and involves difficult-to-access structures. 
This may result in infrastructure downtime. The iden�fica�on of cracks can be car-
ried out on 3D or 2D data and is aimed at the assessment of their severity levels. 
Based on the severity levels, the management en�ty will be able to draw up an ef-
ficient maintenance plan [1].  
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The acquisi�on of 3D data has tradi�onally been a challenging and resource-in-
tensive process, relying on expensive and complex LiDAR technology. Processing 
these data sets can be �me-consuming and costly, especially when working with a 
large volume of data points [2]. In comparison, 2D data acquisi�on, such as images, 
leverages more affordable systems, leading to significantly reduced processing 
�mes [3]. This cost and �me efficiency has encouraged researchers to inves�gate 
high-performance algorithms to iden�fy and segment cracks from images, with a 
focus on improving accuracy and reducing computa�onal requirements [4]. 

In the last decade, the applica�on of photogrammetry in digital 3D recording has 
experienced significant growth. This surge can be atributed to advancements in 
computer vision technology and the emergence of new compu�ng capabili�es that 
have revolu�onized the field. As a result, photogrammetry technology has seen sub-
stan�al improvements in processing speed and the introduc�on of automa�on, ef-
fec�vely addressing a long-standing weakness that once plagued the field [5]. These 
enhancements have made photogrammetry a more viable and efficient alterna�ve 
for 3D data acquisi�on and analysis, expanding its poten�al applica�ons across var-
ious industries. 

With the use of automa�c Structure from Mo�on technology (SfM), the overall 
situa�on has gradually changed from the widespread use of scien�fic applica�ons 
of 3D measurement using laser scanner technology to the use of photogrammetry. 
Nowadays, photogrammetry technology has gained greater "robustness", possibly 
overcoming distance-based sensors in many applica�ons. Recently, the technologi-
cal development of Unmanned Aerial Vehicles (UAV) has become easier to pilot and 
more reliable, which indirectly promotes the growth of photogrammetric applica-
�ons, especially in medium and large applica�ons. 

In recent years, machine learning algorithms have been increasingly u�lized for 
crack segmenta�on in various materials. This approach has been shown to have 
several advantages over tradi�onal methods. Firstly, machine learning algorithms 
can handle large amounts of data quickly and accurately without the need for hu-
man interven�on. This is especially useful when dealing with complex structures or 
large datasets, as it reduces the �me and effort required for manual analysis. Addi-
�onally, machine learning models can learn from past experiences and improve 
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their performance over �me, which can further enhance their accuracy and effi-
ciency. 

Moreover, machine learning algorithms can adapt to different types of crack pat-
terns and surface textures, making them more versa�le than tradi�onal methods. 
They can also be trained on specific datasets, allowing them to accurately iden�fy 
different types of cracks in various materials, including concrete, steel, and asphalt. 

The use of machine learning algorithms can significantly reduce costs, as it elim-
inates the need for specialized equipment or manual labour. This makes crack seg-
mentation more accessible to researchers, engineers, and maintenance profession-
als, allowing them to perform more frequent and accurate inspections on struc-
tures. 

Overall, the integra�on of machine learning algorithms into crack segmenta�on 
is a promising approach that has the poten�al to revolu�onize the field of structural 
health monitoring, enabling more efficient, accurate, and cost-effec�ve evalua�on 
of structures' integrity. 

An advancement in the iden�fica�on of cracks was made thanks to deep learning 
techniques. Deep learning (DL), a branch of ar�ficial intelligence (AI), has been very 
successful in seman�c segmenta�on. The goals of crack segmenta�on can be met 
greatly by the seman�c segmenta�on technique, which predicts a classifica�on la-
bel for each pixel of the image. 

The proposed approach involves capturing high-resolu�on images of the surface 
of a structure, such as pavement or a building. These images, u�lizing photogram-
metry, are then used to generate orthophotos and 3D models. The images are also 
fed into a convolu�onal neural network (CNN). The CNNs, a key subfield in DL, pro-
vide promising results in the pixel-level detec�on of target objects in noisy images 
[6,7]. Another benefit of the CNN's end-to-end segmenta�on method is that it sig-
nificantly reduces the need for human involvement in the segmenta�on process. 
Compared to the manually created features u�lized in conven�onal approaches, the 
features obtained by convolu�onal neural networks offer beter rendering perfor-
mance. By using this deep learning capability, certain efforts are devoted to devel-
oping reliable feature representa�ons for segmen�ng images of cracks. Deep neural 
networks use characteris�cs to iden�fy whether or not there are cracks in the 
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patches of a picture by combining the pixel-level classifica�on confidence from sev-
eral frames with various ligh�ng condi�ons.  

This thesis suggests a technique for seman�c crack image segmenta�on based 
on the residual structure developed on the architecture of the U-Net model with a 
Res-Net50 encoder. Without first iden�fying the region of interest, this approach 
can automa�cally segment the cracks in images with a complex background, inde-
pendently learning the characteris�cs of the cracks and obtaining addi�onal feature 
informa�on.   

While identifying cracks in images is a crucial first step, this alone does not pro-
vide sufficient information about their severity. From the analysis, it can be inferred 
that a wide range of scientific articles focuses on crack detection only. However, 
calculating the dimensions of the crack was not performed in the majority of the 
studies. By using photogrammetry to create a three-dimensional model of the 
crack, we can accurately estimate its shape and size. This information can then be 
used to determine the appropriate maintenance required to address the crack. 

1.2 Objectives 

Deep learning techniques have proven to be effective in various applications, in-
cluding image crack segmentation. The workflow and objectives of this thesis can 
be summarised in several steps, starting with the selection of a suitable deep learn-
ing model, such as a UNet-based architecture. This model is specifically designed 
for crack segmentation using images. To improve the model's generalization and 
increase the size of the training dataset, data augmentation techniques can be em-
ployed. 

In parallel, we can conduct a survey data collection process to identify repre-
sentative surfaces that exhibit various types of cracks. Cameras mounted on drones 
can be used to capture high-resolution images of the surfaces. These images will 
then serve as input for photogrammetric analysis using Structure from Motion tech-
niques. The SfM approach allows for the reconstruction of the 3D geometry of the 
surfaces from the collected images. 

Once the 3D geometry is obtained, the next step involves optimizing the gener-
ated point clouds. This can be achieved by calculating photogrammetric accuracy 
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parameters, such as the reprojection error, the angle of intersection between ho-
mologous rays, the number of cameras used for each single tie point calculation, 
and the projection accuracy. Noise and outliers points can be removed from the 
point clouds using the accuracy parameters and K-Means, wich is a machine learn-
ing algorithm. 

After optimizing the point clouds, the trained deep learning model can be applied 
to segment cracks in real case studies. To assess the accuracy of the segmented 
cracks, the measurement between the predicted and actual cracks must be 
properly verified. This process involves performing image-to-point cloud associa-
tion, which matches corresponding features in a 2D image with points in a 3D point 
cloud. Relevant features and metrics can then be extracted from the detected 
cracks for further analysis and interpretation. 

By following these steps, researchers and engineers can develop a comprehen-
sive understanding of various types of cracks, ultimately informing more effective 
crack detection and prevention strategies. 

1.3 Outline 

The structure of this thesis is divided as follows. Chapter 1 is an introduction to the 
thesis, with motivation and proposed objectives to be achieved. 

Chapter 2 gives an overview of machine learning and deep learning and clarifies 
the terms used throughout this thesis. 

In Chapter 3, we review the literature concerning crack monitoring, with a focus 
on semantic segmentation using images. 

Chapter 4 presents the workflow of the proposed U-net-based model, employing 
ResNet50 as the encoder. Section 4.1 describes the dataset used, Section 4.2 out-
lines the network architecture, Section 4.3 explains the metrics used to evaluate 
the model, and Section 4.4 presents the results of the model on the dataset. 

Chapter 5 is divided into two major sections. Section 5.1 begins with an overview 
of the methods used and how they relate to the proposed CNN model (Chapter 4). 
Subsection 5.1.1 describes the use of K-Means as a machine learning algorithm for 
point cloud filtering and the accuracy parameters employed. Subsection 5.1.2 de-
tails the method for crack measurement, and Subsection 5.1.3 outlines the process 
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of associating crack images with the point cloud produced by photogrammetric 
software. Section 5.2, the second major part of Chapter 5, is further divided into 
several subsections. Subsection 5.2.1 introduces the case studies and presents the 
equipment used for photogrammetric surveying. Subsection 5.2.2 demonstrates 
the application of the proposed model to the images from these case studies. The 
use of K-Means for cloud filtering in the case studies is discussed in Subsection 
5.2.3. Subsection 5.2.4 validates the metrics of the cracks using measurements 
taken on-site with a calliper. Subsection 5.2.5 presents the results of associating the 
crack images with the point cloud as applied to the two case studies. 

Finally, the concluding chapter summarizes the observations and mentions the 
contributions made by the research and suggests a perspective of possible devel-
opments that could be addressed in the future. 
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2. Background: Machine Learning 
& Deep Learning 

Artificial intelligence (AI) has advanced rapidly in recent years, with machine learn-
ing (ML) and deep learning (DL) playing a critical role in driving these developments. 
Artificial intelligence, machine learning, and deep learning are interconnected fields 
that have demonstrated remarkable progress and have transformed various do-
mains, such as computer vision, natural language processing, and speech recogni-
tion [8]. 

AI is a branch of computer science that aims to create systems capable of per-
forming tasks that typically require human intelligence, such as reasoning, learning, 
problem-solving, and perception [9]. AI research encompasses various approaches, 
including knowledge representation, planning, robotics, natural language pro-
cessing, and ML. 

Machine learning (ML), depicted in Figure 2.1, is a subset of artificial intelligence 
(AI) that enables computers to learn from data and make predictions or decisions 
without specific programming. Instead, it relies on patterns and inference, which 
form the very basis of ML [10]. Algorithms build a model based on sample data, 
known as "training data", to make predictions and perform classifications. 
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The presence of more data eases the process of recognizing patterns and infer-
ences. Today, we are witnessing a surge in data volume and variety, accompanied 
by more affordable and powerful computational processes. This environment facil-
itates the creation of models capable of quickly processing large-scale data, thus 
providing more accurate results. This, in turn, is generating a growing interest in 
machine learning. The learning process in ML can be categorized into supervised, 
unsupervised, and reinforcement learning, each having its own set of techniques 
and applications [11]. 

 

Figure 2.1 Diagram - Subsets of AI 

Supervised learning is a common ML approach that involves learning a mapping 
between input features and target outputs based on labelled data. Training data, 
comprising a set of training examples, is fundamental to supervised learning. Each 
training example includes one or more inputs along with the desired output, also 
known as a supervisory signal [9]. Supervised learning is frequently used in applica-
tions where historical data is utilized to predict likely future events. For instance, it 
can be employed to anticipate fraudulent credit card transactions or to predict 
which insurance customer is likely to file a claim. Popular algorithms include linear 
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regression, support vector machines (SVM) [12], decision trees [13], and methods 
such as random forests [14] and gradient boosting machines (GBM) [15]. 

Unsupervised learning aims to discover underlying patterns or structures in un-
labeled data. In the learning process, the algorithm scans through datasets to find 
meaningful connections. However, acquiring labelled data can be both time-con-
suming and expensive, which is where unsupervised machine learning comes into 
play. Unsupervised learning is particularly effective with transactional data. For in-
stance, it can identify segments of customers with similar attributes who can then 
be targeted collectively in marketing campaigns. Alternatively, it can discern the 
main attributes that distinguish different customer segments from each other. 
Widely-used techniques include clustering algorithms, such as K-Means [16,17] and 
hierarchical clustering [18], as well as dimensionality reduction methods like princi-
pal component analysis (PCA) [19] and t-distributed stochastic neighbour embed-
ding (t-SNE) [20]. 

Reinforcement learning (RL) focuses on training agents to make decisions by in-
teracting with an environment and receiving feedback in the form of rewards or 
penalties. Unlike supervised learning, reinforcement learning doesn't require la-
belled input/output pairs, nor does it need explicit correction of sub-optimal ac-
tions. Instead, it focuses on striking a balance between exploration, which involves 
venturing into uncharted territory, and exploitation, which leverages current 
knowledge [21]. Q-learning [22] and policy gradients [23] are two popular RL algo-
rithms.  

Deep learning, a subset of ML (Figure 2.1), has emerged as a powerful tool for 
various tasks in computer vision, such as image classification, object detection, and 
image segmentation [8]. DL is distinguished by its utilization of multi-layered artifi-
cial neural networks (ANNs), which facilitate the extraction of intricate, hierarchical 
attributes from raw data.  

Artificial neural networks (ANNs) mimic the human brain's problem-solving abil-
ities by comprising a network of interconnected neurons. These networks draw in-
spiration from biological neurons, which process input signals and activate when 
the aggregated input surpasses a specific threshold, subsequently sending an 
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output signal from the axon to other neurons. Similarly, an artificial neuron accepts 
inputs from preceding neurons, integrates them, and routes the composite signal 
via an activation function, allowing the output to advance to the next neuron. 

It is worth noting that artificial neurons are not all directly interconnected. In-
stead, they are arranged into groups called layers, which typically establish sequen-
tial connections with subsequent layers (Figure 2.2). The input signal navigates 
through the network from the input layer to the output layer, crossing intermediate 
layers known as hidden layers. These hidden layers (Figure 2.2) contribute to the 
ANN's ability to learn complex patterns and representations, enabling the network 
to tackle intricate problem-solving tasks and adapt to various applications, such as 
image recognition, natural language processing, and reinforcement learning. Some 
popular deep learning architectures include recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs). 

RNNs, proposed by Rumelhart et al. in 1986 [24], are a class of ANNs specifically 
designed to model sequences and temporal dependencies. In contrast to feedfor-
ward networks, RNNs possess connections between hidden units that form di-
rected cycles, allowing them to maintain a hidden state capable of storing infor-
mation from previous time steps. 

This property renders RNNs well-suited for tasks involving sequential data, such 
as language modelling, speech recognition, and time-series prediction [25,26]. How-
ever, RNNs are prone to vanishing and exploding gradient issues, making it chal-
lenging to learn long-range dependencies [27,28]. 

 

Figure 2.2 3-layer Neural Network 
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CNNs, first introduced by LeCun et al. (1989)[29], are a specialized type of neural 
network designed to process grid-like data, particularly images. Over the years, 
CNNs have achieved remarkable results in various computer vision tasks, such as 
object recognition, segmentation, and detection [30-32], and have become a cor-
nerstone in the field of deep learning. To fully comprehend the architecture and 
functionality of this type of network, it is essential to identify its key properties and 
components. CNNs are comprised of three primary types of layers: convolutional 
layers, pooling layers, and fully connected layers. 

 

Figure 2.3 Example of a convolutional neural network 

Input Images 

The input image is represented as a matrix of pixels; therefore, it is necessary to 
define the size of these inputs. The size of an image is commonly determined by its 
height and width, which is known as resolution. However, since images are usually 
in colour, it is necessary to add another dimension: depth, also called channel size. 
A generic colour image is represented using the RGB convention (Figure 2.3). When 
processing RGB images with a CNN, the input layer typically has three channels, one 
for each colour (red, green, and blue). These channels are processed independently 
and in parallel by the convolutional layers, allowing the network to learn different 
features related to colour information. As the information flows through the net-
work, the convolutional and pooling layers extract features from increasingly higher 
levels, which are ultimately used by the fully connected layers to make predictions, 
such as image classification or object detection. 
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Convolutional Layers 

Convolutional layers are the foundation of CNNs and are responsible for extracting 
local features from input images (Figure 2.3). These layers use filters or convolu-
tional kernels to perform convolution operations on specific image regions, allow-
ing them to identify patterns such as edges, textures, and shapes. 

The convolution operation is a mathematical function that combines two func-
tions, in this case, an input image and a filter, to produce a third function that rep-
resents a modified version of the original image. Convolutional filters are matrices 
of weights that are applied to regions of the input image, allowing them to detect 
specific patterns. These filters can be learned automatically during the training pro-
cess, enabling the CNN to adjust its parameters to maximize performance on a 
given task [33]. 

Padding and stride are two key concepts in the application of convolutions. Pad-
ding refers to the process of adding zeros around the input image to maintain spa-
tial resolution after applying convolution (Figure 2.4). Stride, on the other hand, 
determines the distance between consecutive applications of the convolutional fil-
ter. These two parameters allow more precise control of the spatial resolution of 
the output and, consequently, the number of parameters and computational com-
plexity of the network [34]. 

 

 

Figure 2.4 Zero-padded 4 x 4 matrix becomes a 6 x 6 matrix. 
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Pooling Layers 

Pooling layers (Figure 2.3), also known as subsampling layers, aim to reduce the 
spatial dimensions of image representations, thereby decreasing the number of pa-
rameters and computational complexity of the network. Moreover, these layers 
provide some invariance to minor variations and transformations in images, en-
hancing the robustness of the CNN [35]. 

Several types of pooling operations exist, with max pooling and average pooling 
being the most prevalent. Max pooling selects the maximum value within a sliding 
window applied to the image representation (Figure 2.5), whereas average pooling 
computes the average of the values within the window. Both operations diminish 
the spatial dimensions of the representation; however, max pooling generally pre-
serves more distinctive features than average pooling [36]. 

 

Figure 2.5 Max pooling operation. 

Fully Connected Layers 

Fully connected layers (Figure 2.3), also known as dense layers, are commonly 
found at the end of CNN architectures and aim to consolidate the information ex-
tracted in convolutional and pooling layers to perform classification or regression 
on the specific task.  

These layers receive one-dimensional vectors, which are the result of flattening the 
multidimensional representations obtained in the previous layers. 

Fully connected layers consist of neurons that apply non-linear activation func-
tions to the inputs, allowing the CNN to learn complex relationships between the 
extracted features and target labels. Some of the most commonly used activation 
functions include ReLU (Rectified Linear Unit), sigmoid, and tanh (hyperbolic 
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tangent). ReLU is a simple and computationally efficient activation function intro-
duced by [37]. ReLu is a piecewise linear or nonlinear function with solid biological 
and mathematical foundations. Glorot et al. showed that ReLu enhances deep neu-
ral network training significantly [38]. The function is defined as: 

 𝑓𝑓(𝑥𝑥)  =  𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥) (1) 

ReLU outputs the input value itself when the input is positive and outputs 0 when 
the input is negative or zero. Figure 2.6a shows a visual representation of the ReLu 
function. 

The sigmoid function, also known as the logistic function, the graph of the sigmoid 
function is an S-shaped curve as shown in Figure 2.6b. The function is defined as: 

 
𝑠𝑠(𝑥𝑥)  =

1
1 + 𝑒𝑒−𝑥𝑥

 (2) 

The sigmoid function outputs values between 0 and 1, making it particularly suit-
able for binary classification problems where the goal is to distinguish between two 
classes [39]. 

The hyperbolic tangent function, or tanh, is a scaled and shifted version of the sig-
moid function [40]. It is defined as: 

 
𝑡𝑡(𝑥𝑥)  =  

(𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)
(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥)

 (3) 

The tanh function outputs values between -1 and 1, which is shown in Figure 
2.6c. It is often used in the hidden layers of neural networks because it is zero-cen-
tred, which can help improve convergence during training. 

Convolutional, pooling, and fully connected layers must work together well for 
CNNs to be effective in solving computer vision challenges. With this combination, 
the network can learn feature hierarchies that range from basic components like 
edges and textures to more complex ones like objects and scenes. 

These core elements have been improved and refined in more recent years by so-
phisticated CNN architectures. For instance, He et al. (2016) [32], Szegedy et al. 
(2015) [41], and Ronnberger et al. (2015) [42] used residual blocks, inception 
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modules, and skip connections. These developments have made it easier to create 
deeper, more effective CNNs, which has resulted in previously unheard-of perfor-
mance in tasks like object identification, semantic segmentation, and object detec-
tion. 

 

 
Figure 2.6 a) ReLu function; b) Sigmoid function; c) Tanh function 
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3. Literature review

Crack monitoring plays a crucial role in assessing the structural integrity and safety 
of civil engineering structures like roads, bridges, buildings, and pavements are fre-
quently under high levels of physical stress, which may be caused by everyday use 
or natural catastrophes like earthquakes. The cracks weaken the component, lower 
its capacity for loading, and cause surface discontinuities [3,43,44]. The detection of 
cracks at an early stage can significantly reduce the cost of maintenance and pre-
vent catastrophic failures [45]. 

There are several techniques utilized for crack monitoring. Destructive testing 
(DT) methods and non-destructive testing (NDT) methods are two major categories 
into which these techniques can be divided. 

In order to find and evaluate the cracks, DT techniques involve removing a sam-
ple from the concrete structure and evaluating it in a lab. NDT techniques are often 
utilized in civil engineering to find cracks in infrastructure and buildings and to char-
acterize them without endangering the building itself. 

In this instance, non-destructive testing, ranging from manual detection meth-
ods to automated deep learning methods, will be used to analyze the overview of 
crack detection. 
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A list of the topics to be covered is presented, with a major focus on image-
based techniques. 

─ Visual Inspection 
─ Ultrasonic Testing 
─ Acoustic Emission 
─ Ground-Penetrating Radar 
─ Terrestrial Laser Scanner 
─ Image-Based techniques 

Visual Inspection 

The most common method, manual visual inspection, is frequently used to detect 
cracks in civil engineering structures [46]. This technique involves a thorough in-
spection of the structure by an inspector equipped to detect any cracks that may 
be visible. However, it has many limitations, such as costly labour, subjectivity and 
accessibility, which are only available in some parts of the structure.  

 

Figure 3.1 Instruments used for visual inspection of cracks. On the left tell tale, and on 
the right a calliper. 

Ultrasonic Testing 

Ultrasonic testing (UT) is a well-established method that uses high-frequency sound 
waves to detect cracks in concrete structures [47]. The use of pulse, pitchcatch, or 
through echo transmission techniques may be used for the purpose of conducting 
UT. It is capable of detecting surface and internal cracks as well as giving infor-
mation on their depth and orientation [48]. 



Machine Learning for Crack Segmentation from Photogrammetric Imagery  

23 
 

 

Figure 3.2 Instrument used for ultrasonic testing. Three ways of transmission. 

Acoustic Emission 

Acoustic emission (AE) is a passive method that monitors the release of energy in 
the form of elastic waves generated by the growth of cracks in concrete structures 
[49]. Active cracks may be found and located using AE in real-time, giving infor-
mation on the damage's severity and the crack's growth [50]. AE is particularly sen-
sitive to defect activity when a structure is loaded over its service load in a proof 
test, unlike ultrasonic testing, which actively probes the structure. 

Ground-Penetrating Radar 

Ground-penetrating radar (GPR) is a method that uses the propagation and reflec-
tion of electromagnetic waves to detect and locate cracks [51].  

 

Figure 3.3 GPR System 
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GPR can be employed to detect and monitor surface and subsurface cracks in 
concrete structures [52]; also, GPR has been extensively used to identify and evalu-
ate cracks and other defects in asphalt and concrete pavements, which can help 
inform maintenance and rehabilitation strategies [53]. 

Terrestrial Laser Scanner 

Terrestrial Laser Scanning (TLS), also known as terrestrial LiDAR (Light Detection 
and Ranging) or topographic LiDAR, is an advanced remote sensing method that 
utilizes a laser source to project light pulses onto an object's surface [54]. This tech-
nique allows the XYZ coordinates of numerous points on the surface to be acquired 
[55]. The laser scanners used in civil engineering are those of the distance measure-
ment type or also known as 'Ranging Scanners'. There are two principles by which 
distance is measured: systems that are based on the measurement of time of flight 
(TOF, Time of Flight) and systems that are based on the measurement of the phase 
difference of the sent and reflected signal (PS, Phase Shift). 

The time it takes for a laser pulse to travel from the scanner to the item and back 
to the scanner is what is measured by the ToF technique. The scanner can utilize 
this knowledge to determine the object's distance because the speed of light is con-
stant. The accuracy of time of flight scanners can be affected by atmospheric con-
ditions and the reflectivity of the target surface, and they often have a slower ac-
quisition rate than phase shift scanners. However, they can estimate distances 
across extended distances (a few kilometres). By precisely calculating the time-of-
flight and considering the scanner's orientation, the three-dimensional (3D) coor-
dinates of the object's surface can be ascertained, resulting in a comprehensive 
point cloud that embodies the object's geometric features [56]. 

Phase shift scanners emit a continuous wave of light and measure the phase 
shift, or change in the wave's cycle, when the light wave returns to the scanner 
after being reflected off the object. The light's path distance can be determined 
from this phase change. At short to medium ranges (up to a few hundred meters), 
phase shift scanners are more precise than ToF scanners and can capture data at 
very high rates (millions of points per second). However, they could have trouble 
seeing farther out, and they might be more sensitive to interference from ambient 
light. Figure 3.4 shows the basic types of terrestrial 3D laser scanners. 
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Figure 3.4 Three TLS: a) Faro Focus X 330; b) Leica BLK360; c) Polaris Teledyne Optech 

This technology is in a phase of continuous development, and several improve-
ments are being made over time in order to achieve increasing measurement accu-
racy and acquisition speed. In addition to the 3D coordinates of the object points, 
the sensors allow the power of the reflected pulse to be determined. Some systems 
allow echo-digitalisation of the returning laser signal and automatic classification 
by means of 'full waveform' analysis [57].  

TLS has gained widespread acceptance for detecting cracks in a diverse array of 
civil structures, encompassing bridges [58], buildings [59], and roads [60]. Through 
the processing and examination of point cloud data acquired via TLS, experts can 
discern the existence, location, and dimensions of cracks, providing valuable in-
sights for assessment and repair. In most cases, inspections are based on a visual 
and highly subjective interpretation to classify surface conditions [61]. 

Terrestrial Mobile Laser Scanners, frequently referred to as Mobile Laser Scan-
ners (MLS), are particularly captivating due to their unique capabilities. These sys-
tems enable the capture of 3D data through one or more scanners mounted on 
various mobile platforms, such as vehicles, boats, and trains [62]. 
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Additionally, some market-available solutions incorporate cameras for enhanced 
functionality. When employed for pavement surface scanning, MLS systems typi-
cally offer 3D accuracies of 1 centimetre and a point density exceeding one thou-
sand points per square meter [1]. Guan et al. developed an evaluation methodology 
for crack characterisation based on MSTV (Multi-scale Tensor Voting) [63]. 

Despite its advantages, this technology also presents some limitations. In addi-
tion to higher operational costs, it also presents challenges related to technical per-
formance under specific conditions, including: 

─ Certain parts of the structure may be invisible to the laser scanner (e.g., the bot-
tom parts of the bridge deck) 

─ The texture of the examined structure components may not be accurately cap-
tured, potentially concealing any corrosion of the elements 

─ TLS can produce extensive amounts of data, much of which is redundant, which 
complicates the data processing task. 

Image-Based techniques 

Image-based techniques can be a powerful alternative for remotely monitoring and 
inspecting civil structures. By collecting pictures of a specific structure from various 
perspectives with cameras [64-66], robotic image acquisition systems [67], or un-
manned aerial vehicles (UAVs) equipped with high-resolution cameras, visual infor-
mation can be collected [68,69]. 

Robust autonomous image processing techniques are used to evaluate the col-
lected images and search for any cracks after acquiring the necessary visual data. 

A variety of approaches have been employed in the identification of image 
cracks. Initial investigations in this domain utilized methodologies that did not de-
pend on data-driven learning but rather hinged upon the application of bespoke 
computer vision attributes. Such studies encompassed the implementation of tech-
niques such as thresholding, mathematical morphology, Gabor filters, the Otsu 
method, wavelets, and edge detection methods, including the Canny technique. 

N. Tanaka and K. Uematsu (1998) suggested a technique with four steps—black 
pixel extraction, saddle point detection, linear feature extraction, and contouring 
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processing. While saddle point identification uses a top-hat transform operation to 
increase dark regions surrounded by light regions, which match the linear charac-
teristics of cracks, black pixel extraction uses local minima in the picture to discover 
black pixels. The technique requires specifying particular settings and presupposes 
that the cracks' area is not very vast in comparison to the background [70]. 

Iyer et al. (2005) developed a three-step method for crack detection in high-con-
trast images. Their approach combines curvature evaluation and mathematical 
morphology techniques to detect crack-like patterns in noisy environments. The 
segmentation process defines the crack-like pattern with respect to a precise geo-
metric model. After cross-curvature evaluation, linear filtering was performed to 
distinguish these patterns from similar background features. By using geometry-
based recognition systems, they were able to sequentially identify irregularities in 
the images related to crack features [71]. 

Yiyang et al. (2014) proposed a crack detection algorithm utilizing digital image 
processing technology. To extract information from images containing cracks, the 
researchers carried out preprocessing, image segmentation, and feature extrac-
tion. A threshold segmentation method was applied after smoothing the image. 
The authors calculated the images' area and perimeter, as well as a roundness in-
dex, to evaluate them. By comparing these indices, they were able to determine 
the presence of a crack in an image [72]. 

AMA Talab et al. (2016) used the Otsu method and multiple filtering in image 
processing techniques to find cracks in concrete structures. The Otsu method is a 
thresholding approach that effectively determines the best threshold value for dis-
tinguishing the crack from the background. It divides a picture into foreground and 
background. In order to find cracks in images of concrete buildings, the paper in-
troduces a novel image-processing technique [73]. 

Salman et al. (2013) proposed an automatic crack detection approach for digital 
images using Gabor filtering, which is highly effective in multidirectional crack de-
tection for pavement images with rich textures. The image analysis of the Gabor 
filter function directly relates to manual visual perception. The preprocessed pave-
ment image is convolved with the filter, and the real component of the resulting 
image is thresholded to generate a binary image. Next, binary images from 
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differently oriented filters are combined to produce an output image containing 
detected crack segments. After completing the filtering process, cracks aligned in 
various directions are detected. Their proposed methodology achieved a detection 
precision of 95% [74]. 

Huang et al. (2006) introduced a classification approach in which images are ini-
tially divided into 8x8 pixel cells, and the cells are then categorized as either crack 
or non-crack cells. To more effectively evaluate the method's accuracy, they di-
rectly processed each pixel, classifying it as a crack or non-crack seed based on the 
contrast between each element and its neighbouring pixels. They employed eight 
templates to gauge the contrast in various directions. If the contrast values sur-
passed a predetermined threshold, the pixel was recognized as a crack seed and 
labelled as diagonal, transverse, or longitudinal, depending on the highest contrast 
value. Following that, nearby crack seeds were linked together. Crack pixels shorter 
than a specific length were considered noise and removed. Although this method 
is relatively quick, determining universal thresholds that apply to images with di-
verse contrast, lighting, and shadow effects is difficult. Consequently, it might not 
be sufficiently robust for the quality of the images supplied [75]. 

Huili Zhao et al. (2010) present an improved Canny edge detection algorithm 
(Canny 1986) for pavement edge detection applications, addressing issues like 
weak edge detection and grayscale distinction. The algorithm employs the Mallat 
wavelet transform and quadratic optimization of the genetic algorithm to enhance 
edge detection. The new model meets real-time pavement edge detection require-
ments, compensating for Canny algorithm drawbacks, effectively detecting pave-
ment image edges, and reducing processing time while eliminating noise and pre-
serving unclear edges [76]. 

Abdel-Qader et al. (2013) discovered that the Haar Wavelet technique was the 
most reliable edge detection approach when comparing various edge detection al-
gorithms. However, the performance of edge detection algorithms, as well as mor-
phological operation-based methods, on noisy image data remains a matter of de-
bate [77]. 

Traditional computer vision (CV) techniques often struggle with weak generali-
zation and adaptation abilities, as well as a heavy reliance on the quality of the 
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images. Moreover, the complex environment of surfaces can lead to poor camera 
settings, resulting in issues such as low contrast, inconsistent lighting, and signifi-
cant noise. These factors make it challenging to build an efficient detection model 
using conventional CV approaches [78]. 

However, significant advancements in crack identification have been made 
thanks to ML and DL techniques, which have proven highly successful in semantic 
segmentation. The goals of crack segmentation align well with the semantic seg-
mentation technique, which predicts a classification label for each pixel. Convolu-
tional neural networks (CNNs), a key subfield in DL, have demonstrated promising 
results in pixel-level detection of target objects within noisy images [6,7]. 

The following paragraphs provide a comprehensive overview of various studies 
that utilize machine learning methods in conjunction with segmentation and fea-
ture extraction techniques. Additionally, it explores studies that specifically utilize 
CNNs. 

Lattanzi et al. (2014), to improve accuracy and speed in crack identification under 
diverse environmental circumstances, created an artificial clustering approach for 
segmentation based on Canny and K-Means. Their work is particularly significant as 
it contains images from several locations, as is often the case with real-world 
bridges. It is crucial to take into account the environmental variability caused by 
different lighting and shading conditions at different bridge locations. The study 
focused on the effectiveness of the image segmentation and feature extraction 
phases. They compared the Canny edge detector and Haar wavelet transformation 
to the K-Means strategy, which builds clusters in relation to the mean value of clus-
ters. Naive Bayes, decision trees, and k-NN were used to evaluate the segmentation 
results, while Bayesian networks, decision trees, neural networks, and k-NN were 
used to assess the overall classification performance. For the image variance test, 
Naive Bayes results and the Canny edge operator outperformed other classifier seg-
mentation. However, decision tree and k-NN scores outperformed Naive Bayes re-
sults in terms of segmentation effectiveness [79]. 

Zhang et al. (2014) used the k-NN, support vector machine, radial basis function 
neural network, and extreme learning machine in their 2014 study to classify cracks 
in subway tunnels. For image segmentation, they used a number of approaches, 
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including average smoothing, black top hat transformation, and thresholding. Ad-
ditionally, they used statistical feature extraction techniques, focusing on standard 
deviation from shape distance histograms. While the test accuracies of the classifi-
ers were comparable, the extreme learning machine achieved the top score of 
91.6%, followed by the support vector machine, radial basis function neural net-
work, and k-NN classifiers. The k-NN classifier scored 88.7% in this experiment [80]. 

Moussa and Hussain (2011) introduced a method for automatic crack detection, 
classification, and parameter estimation using machine learning. In order to distin-
guish between the background and crack pixels in an image, they used Graph Cut 
segmentation. A binary vector is made after segmentation. Seven features are ex-
tracted from the vector for classification purposes. The crack type is then classified 
as transverse cracking, longitudinal cracking, block cracking, or alligator cracking 
using a support vector machine. Additionally, Moussa and Hussain proposed a 
method for estimating the size and severity of a crack based on the crack's width 
and length in the image [81]. 

Prasanna et al. (2014) conducted crack detection on bridge images captured us-
ing robotic imaging and proposed a method called spatially tuned robust multi-fea-
ture (STRUM). SVM, Adaboost, and random forest were some of the machine learn-
ing techniques used to categorize pixels into crack and non-crack categories. De-
spite the noise in the images, they used robust curve fitting to find possible crack 
locations. When employing conventional image processing techniques, the accu-
racy was just 69%; however, the STRUM classification strategy reached 95% accu-
racy. The performance of this method on real bridge data showed that accuracy 
could be increased. The classifier could be built using training data from multiple 
locations on the bridge, and testing could be done using data from a different loca-
tion with a comparable structural composition [82]. 

Yang et al. (2008) employed wavelet transformation and the co-occurrence ma-
trix for image segmentation and feature extraction. A support vector machine 
(SVM) and two neural network-based classifiers, the back-propagation neural net-
work and the radial basis network, were used to train the obtained features. The 
SVM with a radial kernel was observed to perform better than the back-propaga-
tion neural network, radial basis network, and SVM with a polynomial kernel [83]. 
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Varadharajan et al. (2014) used a selective method for image-based analysis, 
concentrating on images taken during the day under mostly cloudy conditions to 
ensure good lighting. This approach has a disadvantage in that because of the labo-
rious selection procedure; all collected images must be stored before being picked 
out and analyzed, which results in a large amount of data storage. The researchers 
also used machine learning in their study, taking into consideration input images 
with background objects like vehicles, traffic signs, and buildings. The ground plane 
was separated from the rest of the picture in the first phase, and then feature de-
scriptors were computed using the colour and texture of the preprocessed pixels. 
Utilizing nine features and data collected from human annotators, a support vector 
machine was effectively trained to classify the images [84]. 

Li et al. (2014) divided images into crack regions and non-crack regions by calcu-
lating the difference between the maximum and minimum grayscale values within 
an image area. Subsequently, the foreground was distinguished from the back-
ground using Otsu's segmentation method. Finally, the images were classified using 
binary trees and back-propagation neural networks to achieve a comprehensive 
analysis [85]. 

Moon et al. (2011) employed a series of preprocessing methods, including me-
dian subtraction, Gaussian low-pass filtering, threshold segmentation, and mor-
phological operations for feature extraction. Cracks were differentiated from the 
background image through filtering, an improved subtraction method, and mor-
phological operations. A neural network was then utilized to automate image clas-
sification. The algorithm was tested on real surface images of a concrete bridge and 
demonstrated high accuracy in image classification. However, the test faced limita-
tions due to similar environmental conditions, indicating that the proposed algo-
rithm should be evaluated across various fields of application [86]. 

Recent developments based on deep convolutional neural networks have 
demonstrated a more effective approach to automated crack detection.  CNNs net-
works function differently from other machine learning classifiers, as the frame-
work inherently includes a feature extraction step and does not require image seg-
mentation as a preprocessing step. The benefit of CNNs is their end-to-end segmen-
tation method, which considerably reduces the need for human involvement in the 
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segmentation process. Compared to manually crafted features used in traditional 
approaches, the features obtained by CNNs offer superior performance. Leveraging 
this deep learning capability, several efforts have been devoted to developing reli-
able feature representations for segmenting crack images. Deep neural networks 
utilize characteristics to determine the presence of cracks in image patches by com-
bining pixel-level classification confidence from multiple frames with varying light-
ing conditions.  

Zhang et al. (2016) proposed a supervised deep CNN to classify each image patch 
(99x99x3) in the collected images, with features automatically learned from manu-
ally annotated patches obtained using a low-cost sensor, such as a smartphone. The 
proposed method demonstrates superior performance in accurately classifying 
crack patches from background ones when compared to existing handcrafted 
methods [3]. 

Allen Zhang et al. (2017) introduced CrackNet, a five-layer CNN architecture com-
posed of two convolutional, two fully connected and one output layer for pixel-
level crack identification on 3D asphalt surfaces. Although CrackNet was effective 
in accurately detecting pixel-level cracks, the processing time of the architecture 
proved to be significant [87]. 

Gopalakrishnan et al. (2017) proposed various image classifiers for detecting 
cracks in Hot-Mix Asphalt (HMA) and Portland Cement Concrete (PCC) by transfer-
ring features learned from ImageNet [30]. They concentrated on a transfer learning 
strategy and optimized pre-trained networks for the crack-detecting task. For pave-
ment distress detection, VGG-16, a pre-trained CNN, was used. Seven hundred sixty 
photos were used to train the network, while 212 images were used to test it. The 
classifier layers of CNN were swapped out for random forest, very randomized 
trees, SVM, and logistic regression classifiers in order to conduct a comparative 
study. The pre-trained network's original version received the highest score in the 
research with a claimed 90% accuracy, making it the best choice [88]. 

Haifeng Li et al. (2018) extracted potential cracks at each scale in the image using 
a technique based on the lowest intensity path of the window, evaluated the rela-
tionships between the cracks at various scales, and created a crack evaluation 
model based on multivariate statistical hypothesis [89]. 
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Tong et al. (2018) developed a two-stage CNN-based model also to detect as-
phalt pavement crack length. The results presented show that the training strategy 
used produces an increase in accuracy [90].  

Fan et al. (2018) trained a CNN model as a multi-label classifier for pavement 
crack detection, implementing a strategy that involved modifying the ratio of posi-
tive to negative samples. The researchers utilized CNN to detect pavement cracks 
from images captured by an iPhone on pavements in Beijing, China. The proposed 
methodology showcased a precision of approximately 92%, surpassing traditional 
machine learning techniques. The results indicated that the approach effectively 
managed varying pavement textures and successfully recognized different pave-
ment conditions [91]. 

Nguyen et al. (2018) used a U-Net-based architecture for semantic pixel-wise 
segmentation of road and pavement surface cracks. For model training and valida-
tion, the authors employed both publicly available and their own privately collected 
crack datasets; however, the model's crack detection accuracy needs improvement 
[92]. 

Lee et al. (2019) used as crack detection network a CNN with trainable up-sam-
pling layers for segmenting cracks. The network was built on pixel-wise classifica-
tion utilizing information from both full photos and patch images, as well as image 
segmentation using the MS-COCO [93] database and a pre-trained approach. The 
approach highlighted the lack of data available for semantic segmentation by using 
just 242 real images as a database. More pictures were produced utilizing a synthe-
sizing technique based on a 2D Gaussian kernel and Brownian motion to overcome 
this problem [94]. 

Baoxian Li et al. (2020) proposed a CNNs used to classify cracks patches into five 
categories based on 3D pavement images. They used WayLink's PaveVision3D Ultra 
to acquire 3D images [95]. 

Fan et al. (2020) demonstrated the use of Deep CNNs to detect and recognize 
cracks as defects with quantifiable properties in applications for crack detection on 
pavement surfaces (e.g., crack length and size). In a separate paper, the authors 
propose a modified version of U-Net in which two modules were added to the 
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overall architecture to increase the performance of crack segmentation: dilation, 
convolution and hierarchical feature learning module [96,97]. 

Guo et al. (2021) introduced BARNet, an encoder-decoder network developed 
for crack detection. Base Predictor Module, Edge Adaptation Module, and Refine-
ment Module are the three essential parts of this network. Crack localization's 
problem with erroneous borders is successfully resolved by BARNet [98]. 

Liu et al. (2021) proposed a crack transformer encoder-decoder structure called 
CrackFormer. It includes a self-attention block and a scaling-attention block for fine-
grained crack identification. By using a cascaded self-attention module to collect 
feature dependencies across large distances, these transformer-based approaches 
are able to gain better global information [99]. 

Gui Yu et al. (2022) proposed a U-shaped encoder–decoder semantic segmenta-
tion network combining U-Net with ResNet and used the scSE attention module to 
enhance the crack, which is called RUC-Net [100]. 

In conclusion, the development of crack detection algorithms is an ongoing pro-
cess driven by continuous technological advancements. While pixel-based image 
processing remains a prevalent technique, more sophisticated neural network im-
plementations are emerging as competitive and expedited alternatives. Each crack 
detection algorithm examined herein possesses certain limitations, with gaps at 
various stages and issues that warrant further attention. These areas of concern are 
identified as crucial avenues for subsequent research.  

The present thesis introduces a methodology for semantic crack image segmen-
tation predicated on the residual structure, which is constructed upon the U-Net 
model's architecture, utilizing a ResNet-50 encoder. This approach circumvents the 
necessity for pre-identification of the region of interest, facilitating the automatic 
segmentation of cracks in images with intricate backgrounds. Furthermore, it ena-
bles the independent learning of crack characteristics and the extraction of supple-
mentary feature information.
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4. U-Net-Based Crack Segmentation 

The methodology we proposed aims at the segmentation of cracks using Deep 
Learning CNN techniques from images acquired with commercial cameras and im-
plemented in a Python environment.  

The data set used is the one proposed by Yang et al. [101]; the model imple-
mented uses a modified U-Net to improve the automatic crack segmentation pro-
cess. The proposed methodology is based on the following steps: 

• Use of the Crack500 Dataset [101] 
• Data Augmentation on the Dataset 
• Implementation of the U-Net Model with ResNet50 encoder pretrained 

with ImageNet 
• Model training 
• Metrics analysis 

A comparison will be made with the main results reported in the literature, in 
particular with those obtained by Lau et al. [102]. 

Figure 4.1 shows the workflow of the proposed methodology. 
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Figure 4.1 Crack segmentation model WorkFlow 

4.1 Dataset 

The Crack500 dataset was proposed by Yang et al. [101] and contains images ac-
quired using mobile phones at the main campus of Temple University (Philadelphia, 
USA).  

It initially consisted of 500 images of diverse sizes, around 2000 × 1500 pixels. Each 
pavement crack image has a pixel-level annotated binary map. It was divided into 
250 training samples, 200 tests and 50 validation samples. 

To make the training process more efficient, a set of data augmentation proce-
dures was run on the data, a technique that has been developed to reduce the 
overfitting [103].  

Using Python, each image is cropped into six image regions overlapped by 80 
pixels, flipped horizontally and then rotated in 90-degree steps, starting from 0 de-
grees up to 270 degrees (Figure 4.2). As a result, all the images and the correspond-
ing masks with a size of 512 x 512 pixels were obtained. 
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Figure 4.2 Example of Dataset and Data Augmentation. 

4.2 Network architecture  

The network architecture proposed is a U-Net-based architecture with a ResNet50 
encoder. The U-Net was presented by Ronneberger et al. [42] at the International 
Conference on Medical Image Computing and Computer-Assisted Intervention 
(MICCAI) in 2015. In their work, Ronneberger et al. demonstrated that U-Net could 
outperform previous state-of-the-art techniques on a range of biomedical image 
segmentation tasks.  

The U-Net architecture is named after its characteristic U-shaped structure. This 
deep learning model consists of an encoding (downsampling) path and a decoding 
(upsampling) path. The encoding path uses convolutional layers to extract and con-
dense information about the input images, while the decoding path uses trans-
posed convolutions to output precise segmentation maps. A unique feature of U-
Net is the presence of skip connections between corresponding layers in the en-
coder and decoder parts, which helps in preserving spatial information lost during 
downsampling. The architecture of the U-net is explained in Figure 4.3. 

A ResNet50 encoder trained on the ImageNet dataset [30] is utilized in this en-
coder-decoder-based design. The model quickly converges thanks to the usage of a 
pre-trained encoder. The input image is passed into the pre-trained ResNet50 en-
coder, whose fundamental building block is a set of residual blocks (Figure 4.4). 
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Figure 4.3 U-net. 

 

Figure 4.4 Example of single residual block 

The relevant features from the input images are extracted by the encoder with 
the assistance of these residual blocks, and these characteristics are then sent to 
the decoder. A transpose convolution is started by the decoder to upscale the input 
feature maps into the proper form. The specified shape feature maps from the pre-
trained encoder are then concatenated with these upscaled feature maps using 
skip connections. By assisting the model in obtaining all the low-level semantic data 
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from the encoder, these skip connections enable the decoder to produce the nec-
essary feature maps. The two 3x3 convolution layers are then added after that, with 
a batch normalization layer and a ReLU non-linearity layer coming after each layer. 
The output of the final decoder block is sent into a 1x1 convolution layer, which is 
then fed into a sigmoid activation function to produce the appropriate binary mask. 
The architecture of the proposed algorithm is shown in Figure 4.5. 

 

Figure 4.5 Implemented model. 

The model uses Adam optimizer [104] with an initial learning rate set to 0.0001 
and reduced by a factor of 0.1 in every 4 epochs, and cross-entropy loss as its loss 
function. We implemented the network in Python using Tensorflow/Keras. The 
workstation specifications used to train the neural network are TITAN X GPU (12 GB 
VRAM), Intel Core i7 processor, and 32 GB RAM. 

In our work, the net was trained by using the training pair D = x(i), y(i), where x(i) 
is the i-th image patch and y(i) 0, 1 is the corresponding class label. 

4.3 Model Evaluation Metrics 

Two common evaluation metrics are utilized to assess the suggested approach in 
order to objectively estimate the performance of the network model. F1 score and 
Intersection over Union (IoU) are the conventional quantitative evaluation metrics 
utilized in our research. F1 is the combination of Precision and Recall and is com-
puted as the harmonic mean of the two quantities [105]. Precision (P) is the propor-
tion of correctly classified observations per predicted class, Recall (R) or Sensitivity 
is used to measure the percentage of actual positives which are correctly identified. 
Often, there is an inverse relationship between Precision and Recall: when preci-
sion increases, model sensitivity worsens and vice versa. For these reasons, it is 
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important to find the golden mean, meaning a balance between the two indicators, 
to obtain a model that best fits the input data. The formulas used are: 

 𝐹𝐹1 =
2𝑃𝑃𝑃𝑃
𝑃𝑃 + 𝑅𝑅

;𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
;𝑅𝑅 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 (1) 

where TP are the True Positive (samples correctly classified as positive), FP are 
the False Positive (samples incorrectly classified as positive) and FN are the False 
Negative (samples incorrectly classified as negative). We do not consider the tran-
sitional areas (0 pixels distance) between non-crack and crack pixels. A detected 
crack pixel is considered a true positive if it is located 0 pixels away from the man-
ually annotated crack. 

F1 score is a combination of Precision and Recall and is a robust indicator for 
both balanced and unbalanced data sets. In general, F1 values greater than 0.9 are 
indicative of a very accurate classification; below 0.5, the classification may be con-
sidered inaccurate and, therefore unsuitable. Analysis of F1 is necessary when a 
balance between Precision and Recall is desired. 

Intersection over Union (IoU) is a geometric type of evaluation metric. It de-
scribes the closeness of the predicted results to the ground truth bounding boxes 
and is expressed as: 

 
𝐼𝐼𝐼𝐼𝐼𝐼 =

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴�𝐵𝐵𝑝𝑝 ∩ 𝐵𝐵𝑔𝑔�
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟�𝐵𝐵𝑝𝑝 ∪ 𝐵𝐵𝑔𝑔�

 (2) 

Where Bp is the predicted bounding box, and Bg is the ground truth bounding 
box. In this case, the predicted bounding box represents the mask obtained with 
the proposed model (prediction output), and vice versa, the ground truth bounding 
box represents the mask used to train the implemented model (target mask).  

Thus, the overlap occurs between the two masks, the predicted mask (prediction 
output) and the original mask (target mask). This means that IoU is equal to the number 
of pixels that are common between the target mask and prediction output divided by 
the total number of pixels in both masks. The higher the overlap, the higher will be the 
score; values close to 1 indicate an excellent overlap, and values below 0.5 indicate a 
poor overlap. In other words, should the predicted mask be identical to the mask used 
for training, the IoU would be 1. These metrics are commonly used in crack detection, 
but do not consider the subjectivity of manually labelled ground truth [106]. 
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4.4 Results of U-Net Based Model 

The trained model was applied to the Crack500 dataset. The original dataset con-
sisted of 250 images of training data, 50 images of validation data, and 200 images 
of test data, and then the dataset was artificially increased with data augmentation 
technique to improve performance during the training phase. A total of 12000 im-
ages were used for training, 2400 images were used for validation and 9600 images 
for test. Figure 4.6 shows that both accuracy curves, the training and the validation 
set, increase and stabilize at high and similar values with a gap of 0.006, indicating 
that the model is learning correctly and generalizing well to unseen data. 

Our model has a total of 20.6 million parameters, and the number of FLOPS is 
236G; the inference speed on our hardware is 6.7 frames per second on images of 
512x512. As a result, this strategy might not be advantageous for real-time appli-
cations and looks more suited for batch processing. 

The metrics used for evaluating the proposed model are Precision (P), Recall (R), 
F1 and IoU, as described in Model Evaluation Metrics.  

Table 1 shows the results obtained by applying the model trained with the pro-
posed methodology and the results obtained by using the models re-implemented 
by both Lau et al. [102] and others [92,100] that achieve high enough and compara-
ble accuracies. 

 

Figure 4.6 The trend of the accuracy curve during training. The epochs are on the X-axis, 
and the Y-axis is the prediction accuracy. In blue is the training curve, and in orange is the 
validation curve. 



Chapter 4. U-Net-Based Crack Segmentation 

42 
 

Table 1. Testing results of our model compared with other U-Net-based models on the same 
crack500 dataset. 

Method P R F1 IoU 

U-Net by Nguyen 0.6954 0.6744 0.6895 0.5261 

U-Net by Yu 0.6988 0.7619 0.7290 0.5736 

U-Net by Lau 0.7426 0.7285 0.7327 0.5782 

Proposed U-Net 0.8534 0.6813 0.7577 0.6248 

It should be noted that the results listed in Table 1 are derived from the applica-
tion of the same U-Net architecture on the same training Dataset (Crack500). Com-
paring the results shown in the table, those of Lau et al. emerge as the most accu-
rate, resulting as the method working best at present and thus used by us as a 
benchmark. 

Compared to the results of Lau et al., our model produced an increase in Preci-
sion, a slight decrease in Recall and an increase in F1 and IoU. The increase in Pre-
cision means that our model is more reliable, i.e., there are few false positives. 
However, the model may not predict all events by being less selective or sensitive 
(low Recall), i.e., false negatives may be many even if the model is accurate. 

Lau et al. implemented a model with the goal of balancing Precision and Recall, 
since it is valuable that the model be precise, but it is also important to have ade-
quate sensitivity (Recall). For us, the increase in Precision and the slight decrease in 
Recall still produced a balanced result, as can be seen by looking at the F1 score, 
which is close to 0.76. 

The increase in IoU compared to the model of Lau et al. means that the predicted 
masks are more similar to the original ones (target masks). This is important when 
estimating crack widths; we assume that the masks used as training datasets are 
consistent with reality and, consequently, with crack width. Crack width is the main 
parameter used to derive severity levels [1]. 

Figure 4.7 shows examples of the results of the model trained on images refer-
ring to some major crack types. The images given as input to the model, shown in 
columns a, a1) belong to the test data set but are definitely not the ones used to 
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train the model, which are others not being shown. Columns c, c1) show the results 
we obtained on those input images, while columns b and b1) show the hand-drawn 
masks available in the dataset for visual comparison with our outputs. Please note 
that in all cases, our output is more accurate than the hand-drawn masks. In detail, 
panels in column “a” show: (1–3) transverse cracking, (4–6) longitudinal cracking, 
and (7–9) block cracking, while panels in column “a1” show: (1–3) portions of alli-
gator cracking, (4–5) edge cracking, and (7–9) portions of non-cracked pavement. 

It should be pointed out that the portions of the pavement shown in Figure 4.7 
belong to different types of wear layers, distinguished by different levels of adher-
ence. Indeed, the images display very heterogeneous colour scales, sometimes 
marked by the presence of very evident stains due to the presence of aggregates 
of different types. Columns b and b1 display the target masks used to train the 
model, and columns c and c1 display the masks obtained by applying the trained 
model, the predicted masks. 

In almost all cases, the masks predicted are better than those hand-drawn, in 
particular concerning the crack width, i.e., in row 5, panel c1(5), the crack was bet-
ter delineated than the target mask shown in panel b1(5), which is less compliant, 
in terms of width, than the real configuration, panel a1(5). This aspect is crucial 
since, in the design of the maintenance plans, the main parameter regulating the 
severity levels of the different cracks is their width, in addition to the linear devel-
opment and the area of extension [107]. 
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Figure 4.7 Output of the implemented model; (a, a1) Input images, (b, b1) Target 
masks, (c, c1) Predicted masks by our U-net
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5. Methods and Applications in
case studies

In this chapter, we begin by presenting a workflow of the methodology proposed 
in Section 5.1. This section explains the method used to filter a point cloud, measure 
and reconstruct cracks in 3D. 

In Section 5.2, we present the case studies and results of the U-Net-based model 
applied to the images of real cases. This includes the filtering of point clouds from 
these case studies, verification of crack measurements, and results from associating 
the image with the point cloud. 

5.1 Methods 

The overall methodology is illustrated in Figure 5.1 and consists of three macro-
phases, two of which make use of the U-Net-based model proposed in Chapter 4.  

The process begins with the photogrammetric phase, using two real case studies. 
The tie point cloud is then filtered by an innovative ML method to improve the accu-
racy of the camera parameters, and subsequently generate the dense point cloud. 

In the second phase, metric measurements of the cracks are carried out by ana-
lyzing the masks obtained as a result of crack segmentation of an orthophoto.  

Finally, the third phase involves associating the cracks with points in the dense 
cloud and adding a label to these points to facilitate analysis. 
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Figure 5.1 Methodology WorkFlow 
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5.1.1 Improvement of photogrammetric models: K-Means Clustering 

First of all, the proposed outlier detection method does not consider a single pa-
rameter related to accuracy but simultaneously all calculated parameters by apply-
ing a clustering machine learning algorithm, K-Means, to reach a compromise 
model between the data of points available and the noise reduction associated with 
the 3D definition. The purpose is to derive a tie point cloud (sparse point cloud) 
made up of only high-quality tie points and optimize the camera model. 

K-Means 

Unsupervised learning, also known as unsupervised machine learning [15], analyses 
and clusters unlabelled information using machine learning techniques. Without 
the need for human interaction, these algorithms uncover hidden patterns or data 
groupings. Unsupervised learning models are utilized for three fundamental tasks: 
clustering, association, and dimensionality reduction. Clustering is the most signifi-
cant unsupervised learning problem, and it deals with discovering a structure in a 
collection of unlabelled data. 

K-Means is a technique that divides a dataset into a set of groups based on the 
number of clusters supplied by the user [17]. The program examines the data to 
identify data points that are organically similar and assigns each point to a cluster 
of points with similar features. The data can then be labelled into different classes 
based on the features of each cluster. The algorithm converges when there is no 
further change in the assignment of instances to clusters. The whole process is im-
plemented using Scikit-learn [108], a free machine learning library for Python. 

Finding the optimal number of clusters is an important part of this algorithm. A 
commonly used method for finding the optimal K value is Elbow Method [109]. The 
Elbow method (Figure 5.2) is a technique that we use to determine the optimal 
number of centroids (K) to employ in a K-Means clustering algorithm by calculating 
the Within-Cluster Sum of Squares (WCSS) for each K value. 
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Figure 5.2 Example of Elbow method, clusters = 4. 

The sum of squared distances between each point in a cluster and its centroid is 
WCSS. 
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where   

 C = cluster centroids  

 d = data point in each cluster 

The WCSS value will begin to decrease as the number of clusters increases. When 
examining the graph, we can see that it shifts rapidly at one point, forming an el-
bow. At this point, the graph begins to move almost parallel to the X-axis. The op-
timal value of K, or the optimal number of clusters, corresponds to this point. Thus, 
in Figure 5.2, the optimal number of clusters for the data is 4. 

The goal is to derive a sparse point cloud made up of only high-quality tie points, 
filtering the sparse cloud by the points belonging to the noise cluster and optimizing 
the camera model. The choice of cluster membership in the High accuracy or Noise 
group was determined by evaluating the average angle values. This decision is 
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based on the study of the literature, particularly in the single feature analysis. Pre-
vious studies [110,111], have demonstrated that the angle value has the most sub-
stantial impact on noise. Clusters with larger average angles were placed in High 
accuracy, and the group called "Noise" includes the clusters with smaller average 
angular values. It can be noted that the High accuracy group turns out to be the 
best-fitting point set (set of points that closely matches the geometrical shape). The 
tie points of the Noise group are removed from the model, and then the camera 
model is optimised with the selected default coefficients [f, k1, k2, k3, cx, cy, p1, p2].  
• f: focal length (in pixels) 
• cx, cy: principal point offset (in pixels) 
• K1, K2, K3: radial distortion coefficients (dimensionless) 
• P1, P2: tangential distortion coefficients (dimensionless) 

The dense cloud from Multi-View Stereo (MVS) can then be generated, as it will 
use the estimated camera positions generated after the tie point filtering. 

Accuracy Parameters 

The evaluation of the quality of the photogrammetric design within SfM methods 
can be done using several features derived both in the acquisition phase (i.e., the 
number of images contributing to the 3D reconstruction of a tie point or the angle 
of intersection of homologous rays) and in the image processing phase (i.e., repro-
jection error) [112].  In this method, the images were processed in Agisoft 
Metashape [113], and the analysed features are reported below. 

Reprojection Error 

The reprojection error is a geometric error corresponding to the image distance 
between a projected point and a measured one [114,115]. It is used to quantify how 
closely an estimate of a 3D point recreates the point's true projection. 

For the computation of the 3D coordinates of a tie point, the parameters of the 
interior and exterior orientation of the camera and the image coordinates of the 
point are used. Once its coordinates are computed, the 3D point is reprojected on 
all the images where it appears. The distance between the image point and the 
reprojected point on a single image is the reprojection error. This error is also 
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referred to as RMS image residual [114]. Figure 5.3 is an example of how the repro-
jection error is obtained graphically. 

 
Figure 5.3 Reprojection error 

Mathematically, the reprojection error is obtained as follows: 
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where   

 fu,fv = focal lengths in the u and v directions 

 uc, vc = principal point offset 

 tc = position of the camera centre in the object space 

 Rc = rotation matrix 

 K = matrix of internal parameters 

 P = vector projected space coordinate pi 

 KPc = projection matrix 

Each tie point extracted is associated with a reprojection error value εi, which is 
the module of the sum of the reprojection errors computed for the number of cam-
eras that see the i-th tie point. 
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Angle Between Homologous Rays 

It is known that one of the parameters that most influence the accuracy of a pho-
togrammetric project is the base/height ratio [116]. 

In this thesis, by estimating the angle between the two projection lines (called 
the "intersection angle"), the Base/Height ratio is analysed. The photogrammetry 
software used does not give the value of this angle in the output, so we imple-
mented an algorithm in the Python environment. 

In order to extract and calculate the parameters of interest, two libraries are 
used: NumPy [117], which is used to add support for large multi-dimensional arrays 
and matrices, and a large collection of advanced mathematical functions for oper-
ations on these arrays; Pandas [118] is a BSD-licensed open source library that pro-
vides high-performance, easy-to-use data structures. 

Projection Centre (O) and tie point (k) are the input parameters used to calculate 
the angle of intersection. Given the k-th tie point seen from two images, i and j, the 
direction vectors ui and vj are given by the relations: 

 𝑢𝑢𝑖𝑖 = [𝐸𝐸𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑘𝑘;𝑁𝑁𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑘𝑘;ℎ𝑂𝑂𝑂𝑂 − ℎ𝑘𝑘] 

𝑣𝑣𝑗𝑗 = �𝐸𝐸𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑘𝑘;𝑁𝑁𝑂𝑂𝑂𝑂 − 𝐸𝐸𝑘𝑘;ℎ𝑂𝑂𝑂𝑂 − ℎ𝑘𝑘� 
(3) 

where the subscript Oi indicates the projection centre of the i-th frame and Oj of 
the j-th frame, E, N, and h is the elevation.  

The relation gives the intersection angle α: 

 cos𝛼𝛼 =
𝑢𝑢 ∙ 𝑣𝑣

|𝑢𝑢| ∙ |𝑣𝑣| (4) 

The intersection angle calculation was made using all the image pairs that see the 
i-th tie point, calculating the intersection angle for each pair and finally calculating 
the average intersection angle between the n frames that see the point (Figure 5.4). 
Finally, with each tie point extracted, the method associates the average angular 
value obtained. The whole process is implemented in Python. 
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Figure 5.4 Angle Between Homologous Rays 

Image redundancy 

This parameter is the number of input photogrammetric images within the SfM 
process for the reconstruction of the i-th TP in 3D space. With the same other pa-
rameters of photogrammetric accuracy, it is assumed that as the image redundancy 
increases, the metric quality of the TP point cloud improves. 

 𝑁𝑁𝑖𝑖 = �𝑛𝑛𝑗𝑗𝑇𝑇𝑇𝑇𝑇𝑇
𝑗𝑗

 (5) 

where   𝑛𝑛𝑗𝑗𝑇𝑇𝑇𝑇𝑇𝑇= camera for the reconstruction of the i-th TP. 

Projection Accuracy  

This parameter corresponds to the placement of points in relation to their local 
neighbours. The accuracy of Tie Point projections is dependent on the scale at 
which these points were identified. Metashape uses information about scale to 
weight Tie Point reprojection errors. It is also related to the key point size; key 
points with lower standard deviation values are located more precisely in the space 
where they were found [119]. The projection accuracy is computed as follows: 

 �
𝑠𝑠𝑖𝑖
𝑛𝑛𝑖𝑖

 (6) 
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where, 

─ 𝑠𝑠𝑖𝑖  is the image scale at which corresponding projections are measured on the ith 
image 

─ 𝑛𝑛 is the number of images where the tie point is measured. 

5.1.2 Crack metric measurements 

To quantify the width and area of the cracks, as well as to evaluate the sensitivity 
of the model in width segmentation, the trained model is applied to an orthophoto 
generated by the photogrammetric software Metashape with a known pixel size. 
The output of the model is a binary image, which is an orthophoto mask. 

Method for Determining Crack Area and Width Measurements 

The crack measurements are calculated using several functions implemented in 
MATLAB and applied to the model output mask. Specifically, the ‘bwmorph’ func-
tion [120] and the ’bwdist’ [121] function are used. 

The ‘bwmorph’ applies a specific morphological operation to the binary crack 
mask orthophoto. The first operation performed is the so-called 'remove' operation 
which removes pixels inside the cracks and keeps only the border pixels. The re-
moved pixels are used together with the known pixel size to calculate the crack area 
to be evaluated. Continuing with the calculation to obtain the crack width, the same 
function allows us to obtain the skeleton of the cracks using the 'skel' operation. 
The function reduces binary objects to 1-pixel wide representations. This can be 
useful for feature extraction and/or representing an object’s topology. This opera-
tion will be executed repeatedly until the image no longer changes.  

Afterwards, the function ‘bwdist’ computes the Euclidean distance (Formula) be-
tween the skeleton and the border pixels. In 2-D, the Euclidean distance between 
(x1, y1) and (x2, y2) is: 

 
�(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2 (1) 

The distance thus calculated was used to produce a raster containing the width 
of the cracks. 
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5.1.3 From the crack mask to the point cloud: Image2PointCloud 

3D crack analysis enables a more detailed and comprehensive visualization of 
cracks, allowing to observe them from different angles and perspectives. This ap-
proach enhances understanding of the spatial relationships between cracks and 
other structural elements. In addition, it enables the analysis of not only planimetric 
propagation but also crack propagation in 3D space, thereby facilitating a more ro-
bust evaluation. From the perspective of a scan-to-BIM methodology, and there-
fore of reality-based modelling from a point cloud, the opportunity to have the 
three-dimensional coordinates of the cracks affecting an infrastructure available 
ensures both an analysis of its state of health and proper management of the nec-
essary interventions. In this way, the BIM model is enriched with further infor-
mation on the state of health of the infrastructure, becoming a useful tool for the 
correct quantification of damage and support for the identification of the costs of 
the interventions to be carried out. 

Image2PointCloud 

The Image2PointCloud enables the transformation of object coordinates (3D) to 2D 
coordinates in the image plane (Figure 5.5). This process has as input the image 
crack mask, parameters of the camera, and the produced by the photogrammetric 
software. With these, each 3D point can be projected onto the image space given 
the exterior, interior orientation and distortion of the respective image obtained 
after improving the accuracy of 3D photogrammetric models (Subsection 5.1.1) 

 

Figure 5.5. Example of the Geometry of the image 
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The camera projection matrix can be expressed as: 

 𝑠𝑠 𝑝𝑝 = 𝐾𝐾[𝑅𝑅|𝑡𝑡]𝑃𝑃𝑤𝑤 (1) 

Putting together the equations for the interior and exterior orientation parame-
ters, we can write: 

 

𝑠𝑠 �
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

� �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13 𝑡𝑡𝑥𝑥
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23 𝑡𝑡𝑦𝑦
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33 𝑡𝑡𝑧𝑧

� �

𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤
1

� (2) 

Where,  

• s = if an image from the camera is scaled by a factor, all of these parameters 
should be scaled (multiplied/divided, respectively) by the same factor 

• p = image coordinates (u,v) 
• K = calibration matrix (intrinsic matrix). Composed of the focal lengths fx and 

fy, expressed in pixel units, and the principal point (cx,cy), usually near the cen-
tre of the image 

• R, t = 3D rotation and translation matrix, describing the transfer of coordinates 
from the external system to the camera system 

• Pw = 3D point coordinates (Xw, Yw, Zw) 
 

Real lenses usually have some distortion, radial distortion, and tangential distor-
tion. So, the above model is extended as: 

 
�𝑢𝑢𝑣𝑣� = �

𝑓𝑓𝑥𝑥𝑥𝑥′′ + 𝑐𝑐𝑥𝑥
𝑓𝑓𝑦𝑦𝑦𝑦′′+ 𝑐𝑐𝑦𝑦

� 

Where, 

�𝑥𝑥
′′

𝑦𝑦′′� = �𝑥𝑥
′(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6) + 2𝑝𝑝1𝑥𝑥′𝑦𝑦′ + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥′2)
𝑦𝑦′(1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6) + 2𝑝𝑝2𝑥𝑥′𝑦𝑦′ + 𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦′2)

� 

𝑟𝑟2 = 𝑥𝑥′2 + 𝑦𝑦′2   ,   �𝑥𝑥
′

𝑦𝑦′� = �𝑋𝑋𝑐𝑐 𝑍𝑍𝑐𝑐⁄
𝑌𝑌𝐶𝐶 𝑍𝑍𝑐𝑐⁄ �  

(3) 

• 𝑋𝑋𝑐𝑐 ,𝑌𝑌𝑐𝑐 ,𝑍𝑍𝑐𝑐 = point coordinates in the local camera coordinate system 
• 𝑘𝑘1,𝑘𝑘2,𝑘𝑘3 = radial distortion coefficients (dimensionless) 
• 𝑝𝑝1,𝑝𝑝2 = tangential distortion coefficients (dimensionless) 
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The algorithm performs the transformation knowing all the parameters of the 
camera extracted from Metashape. In this manner, the one-to-one relationship be-
tween the pixels belonging to the crack (u, v) on the image frame and the points in 
the 3D reference system of the object will be known. The following algorithm im-
plemented in Python is applied with the help of OpenCV. OpenCV is a Python library 
aimed at providing the tools needed to solve computer vision problems. It contains 
a mix of low-level image-processing functions and high-level algorithms [122].  

The result, Image2PointCloud, provides the capability to distinguish these points 
in the dense cloud by adding a label to them.  

5.2 Application of the Methods in case studies 

This chapter will start by presenting the application of the crack segmentation 
model proposed in Chapter 4 and the methods described in Section 5.1 through a 
series of real case studies. These case studies provide an overview of the applica-
bility and effectiveness of the proposed model and methods in crack segmentation 
and crack evaluation. 

Two case studies, serving as the main focus of this investigation, comprise a road 
pavement and a retaining wall. These environments are chosen due to their distinct 
structures, conditions, and exposure to various external stress factors, making 
them ideal candidates to demonstrate the versatility of the proposed model. 

5.2.1 Case studies 

Road pavement case study  

The case study consists of a single-carriageway provincial road (strada provinciale in 
Italy, abbreviation SP) with two lanes, each approximately 3.5 metres wide and one 
for each direction of traffic (Figure 5.6). The section was chosen to present an articu-
lated crack state; in fact, there are alligator, longitudinal, transverse and edge cracks. 

The UAV-based imagery of this study area was acquired using the DJI Matrice 300 
RTK UAV and DJI Zenmuse P1 camera, described in the last subsection of this chapter. 
The automatic flight plan for the acquisition of nadir photogrammetric images was 
programmed by DJI Pilot to achieve an 80% forward overlap rate and 80% side 
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overlap rate with a 30 m flight height above the relative take-off point. To ensure and 
maintain flight accuracy, the HxGN SmartNet GNSS reference stations in the Matrice 
300 RTK was configured and used to obtain highly accurate location information in 
both vertical and horizontal directions. 

The total number of acquired images is 452, planned with the project require-
ments in consideration – a Ground Sampling Distance (GSD) of about 0.3 cm – and, 
simultaneously, with the aim of ensuring a high level of automation in the subsequent 
steps of data processing. In order to process the photogrammetric data, Metashape 
Professional Edition by Agisoft (ver. 1.8.4 build 14671) has been used [123]. The fol-
lowing parameters were set to build the sparse cloud consisting of tie points: in the 
“Align Photos” phase, Accuracy = High (original photos), Key Point limit = 60000, tie 
point limit = no. The appropriate reference system for the coordinates is selected: 
RDN2008/UTM zone 33N, identified by code EPSG:7792 and ellipsoidal 
heights. 

 
Figure 5.6 Test area: a) location map; b) the red and yellow dot points out the test area 

(Southern Italy); c) photo taken the day of the survey. 

Retaining wall case study 

To test the robustness of the method, it was also applied to an elevated structure, 
specifically a concrete retaining wall adjacent to a building, characterized by a com-
plex crack pattern (Figure 5.7). The texture of the wall is fairly homogeneous but 
displays areas of deterioration due to dampness and rain. 
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In this case study, we used the same UAV and camera described in the next sub-
section of this chapter – the DJI Matrice 300 RTK UAV and the DJI Zenmuse P1 cam-
era. To obtain highly accurate location information, we used the HxGN SmartNet 
GNSS network. The flight was conducted in manual mode, and the portion used for 
the analysis consists of 20 images with a Ground Sampling Distance (GSD) of ap-
proximately 0.03 cm. The parameters used to process the photogrammetric data in 
Metashape Professional Edition were identical to those applied in the road pave-
ment case study, Accuracy = High, Key point limit = 60000, tie point limit = no limit 
and the reference system RDN2008/UTM zone 33N (EPSG:7792 and ellipsoidal 
heights). 

 

Figure 5.7 Test area: a) area under analysis; (b) the red and yellow dot points out the 
test area (Southern Italy). 

Equipment Utilized for Photogrammetric Surveys in Case Studies 

Both surveys were conducted using the DJI Matrice 300 RTK UAV (Figure 5.8) 
equipped with the DJI Zenmuse P1 camera (Figure 5.9) and a professional quadcop-
ter equipped with a GNSS RTK receiver. Table 2 lists the fundamental characteristics 
of this UAV in detail. 
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Figure 5.8 Matrice 300 RTK. 

 

For data acquisition intended for photogrammetric processing, we used the DJI 
Zenmuse P1 camera equipped with a 35mm lens, as shown in Figure 5.9. Camera 
characteristics are shown in Table 3. 

 

 

Figure 5.9 Zenmuse P1 Camera 
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Table 2. UAV DJI Matrice 300 specs. 

DJI Matrice 300 RTK 

Dimensions 810×670×430 mm (L×W×H) 

Weight (with single downward gimbal) Approx. 6.3 kg (with two TB60 bateries) 

Max Takeoff Weight 9 kg 

RTK Positioning Accuracy 

When RTK is enabled and fixed: 

1 cm + 1 ppm (Horizontal) 

1.5 cm + 1 ppm (Ver�cal) 

Max Flight Time 55 min 

GNSS GPS+GLONASS+BeiDou+Galileo 

Max Transmitting Distance 8 km 

Table 3. DJI Zenmuse P1 specs. 

DJI Zenmuse P1 

Dimensions 198×166×129 mm (L×W×H) 

Sensor size (Still) 35.9×24 mm (Full-frame) 

Effective Pixels 45MP 

Pixel size 4.4 μm 

Supported Lenses 

DJI DL 24mm F2.8 LS ASPH 

DJI DL 35mm F2.8 LS ASPH 

DJI DL 50mm F2.8 LS ASPH 

Photo Size 3:2 (8192×5460) 

Minimum photo interval 0.7 s 

Aperture Range f/2.8-f/16 
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5.2.2 U-Net-based Model: Case Studies Results 

The results of the U-Net-based crack segmentation model applied to the case stud-
ies described above are presented. This was done to test the model at an early 
stage, without having generated the photogrammetric clouds or orthophotos yet. 
In this way, we were able to assess the model robustness against data from real 
case studies in the initial phase. Using the images obtained from the road survey 
and obtaining the masks after applying the proposed model, some examples are 
shown in Figure 5.10, which contains cracks with different typologies. 

 

Figure 5.10 Model output in the road pavement case study; (a, a1) Input Road images, 
(b, b1) Predicted masks by our U-net. 
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The images given as input to the model, shown in Figure 5.10, columns (a), (a1) 
belong to the survey data. Columns (b), (b1) show the results obtained on those 
input images. In almost all cases, the predicted masks appear visually accurate, par-
ticularly regarding the crack width (metric assessments of the width are discussed 
in Subsection 5.2.4). This aspect is crucial, as in the design of maintenance plans, 
the primary parameter determining the severity levels of various cracks is their 
width, in addition to their linear development and the area of extension. 

Some cracks were not segmented due to the fact that the pixel size must be at 
least half the width of the crack to be segmented. Thus, with the application of this 
test case, it can be seen that the parameter affecting segmentation is the image 
resolution and not the pavement type. Therefore, when designing the survey, it is 
important to estimate the pixel size as a function of the camera parameters and the 
acquisition geometry in order to calibrate the photogrammetric survey to segment 
the cracks with a level of severity that is at least low. We can also highlight the 
model's ability to adapt to different contexts and surfaces makes it a highly versatile 
and scalable solution for crack segmentation in various infrastructures. 

To test how the model, which was trained with road images (Crack500 dataset), 
works, it was applied to the case study of the retaining wall using the images ob-
tained by the Zenmuse P1 camera. As a result, the masks of the cracks were ob-
tained. In Figure 5.11, columns (a) and (a1) display the input images provided to the 
model, which are sourced from the survey data. The results generated based on 
these input images are presented in columns (b) and (b1). 

This model has been trained on an extensive dataset that includes diversity in 
crack images on roads, which allows it to generalize efficiently and adapt to different 
contexts and surfaces. Thanks to its robustness and generaliza�on capability, this 
model obtains results that show accurate segmenta�on even on surfaces other than 
road pavements. It can be applied not only to rigid pavements but also to ver�cal 
structural elements such as bridges, viaducts, and concrete structures. No tests 
were performed on masonry structures, as joints between masonry could lead to 
false posi�ves; in fact, the model is designed for homogeneous textures. 
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Figure 5.11 Model output in the case study retaining wall; (a, a1) Input wall images, (b, 
b1) Predicted masks by our U-net. 
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5.2.3 K-Means Clustering Analysis 

The clustering algorithm was chosen to consider not only one accuracy variable but 
all measurable parameters at the same time. The software Metashape provides the 
option to extract the desired parameters from the tie points using Python scripting. 
Metashape estimates and optimizes the camera orientation parameters exclusively 
based on the tie point information. The accuracy parameters, including reprojec-
tion error, projection accuracy, number of pictures, and average angle, were uti-
lized as input data for K-Means analysis. 

Analyzing the clusters obtained from K-Means, it was decided to divide them into 
two groups: the High accuracy group and the Noise group. This division was based 
on checking the average angle values because it is known from the literature that 
the angle value is the one that most affects noise [110,111]. Clusters with larger 
angles were placed in High accuracy, averaged over the number of tie points be-
longing to the cluster, and the group called “Noise”, which includes the clusters 
with smaller average angular values. With the Scikit-learn library, all the data were 
clustered by the K-Means clustering algorithm. Using 10 as the number of times 
that the K-Means algorithm will be run with different centroid seeds and 300 as the 
maximum number of iterations of the K-Means algorithm for a single run.  

For the road case study, the number of clusters obtained after analysis of the 
elbow graph is 4. Figure 5.12 shows, with the black line, the number of clusters 
chosen for the analysis. Furthermore, by analysing Figure 5.13 belonging to the wall 
case study, it can be seen that the number of clusters equals 3. 

The average values of the various analysed features belonging to the High accu-
racy and Noise groups are shown in Table 4 for the road pavement case study and 
Table 5 for the retaining wall case study. The analysis of the various features by K-
Means made it possible to consider - in the process of filtering the cloud - all the 
parameters analysed individually. In particular, Table 4 and Table 5 show the mean 
values and standard deviations obtained in the clustering process categorised as 
High accuracy and Noise class. 

For the road pavement case study (Subsection 5.2.1), a standard section 1 meter 
wide was identified for the purposes of the analysis, visible in Figure 5.14 (S-S') in 
red. For the Retaining Wall case study (Subsection 5.2.1), a section 6 cm wide was 
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identified, visible in Figure 5.15 (S-S') in red.  Panel b of Figure 5.14 and Figure 5.15 
display the section of the point cloud before the filter was applied; as can be seen 
in both cases, the sections have much noise, and the geometry is not well-defined. 
Panel c of Figure 5.14 and Figure 5.15, on the other hand, shows the sections of the 
point clouds filtered using the proposed K-Means method; the clouds are much less 
noisy, and the geometry is significantly better defined. This improvement also oc-
curs in other parts of the point cloud. 

 
Figure 5.12 Elbow Method for Road pavement data. 

 
Figure 5.13 Elbow Method for retaining wall data. 
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Table 4. Road K-Means clustering: feature parameter analysis. 
K-
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t 
 E_Proj Acc_Pr N_Im Angle °  

Mean 0.77 6.11 5 23.61 

Hi
gh

 a
cc

ur
ac

y std 0.63 64.55 3 11.40 

min_value 0.01 0.00 2 1.24 

25% perc 0.48 0.88 3 15.20 

50% perc 0.67 2.01 4 22.41 

75% perc 0.82 4.21 6 29.64 

max_value 28.09 9468.70 26 105.33 

Mean 0.50 0.69 3 2.22 

N
oi

se
 

std 0.64 4.60 1 1.43 

min_value 0.00 0.00 2 0.05 

25% perc 0.17 0.03 2 0.96 

50% perc 0.37 0.14 2 1.99 

75% perc 0.66 0.61 3 3.39 

max_value 55.36 825.41 21 5.19 

Table 5. Wall K-Means clustering: feature parameter analysis. 
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 E_Proj Acc_Pr N_Im Angle °  

Mean 0.48 6.08 9.82 19.69 

Hi
gh

 a
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y std 0.62 43.91 2.94 3.06 

min_value 0.06 0.03 6.00 8.83 

25% perc 0.27 0.64 8.00 17.35 

50% perc 0.34 1.12 9.00 19.39 

75% perc 0.47 2.20 11.00 21.83 

max_value 19.04 3800.12 37.00 33.17 

Mean 0.19 0.22 2.19 6.55 

N
oi

se
 

std 0.24 2.46 0.45 1.87 

min_value 0.00 0.00 2.00 1.44 

25% perc 0.07 0.01 2.00 5.37 

50% perc 0.14 0.04 2.00 6.81 

75% perc 0.25 0.15 2.00 7.88 

max_value 17.55 615.72 8.00 10.22 
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Figure 5.14 Road pavement section. a) Section S-S’ (in red); b) Tie point cloud before 
the filter; c) Tie point cloud after the filter. 
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Figure 5.15 Retaining wall section. a) Section S-S’ (in red); b) Tie point cloud before the 
filter; c) Tie point cloud after the filter. 
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The filtering process was essential; it enabled the visualization of the displace-
ment (deformation) in the wall that caused the segmented cracks, as shown in Fig-
ure 5.15. Particularly noteworthy is the integration of the crack state with the 
deformation state identified in the 3D model. This integration enables the recon-
struction of the ongoing deformation and the potential propagation of the crack 
state. 

The camera model is optimised using the filtered tie point cloud through the 
software that calculates the coefficients [f, k1, k2, k3, cx, cy, p1, p2]. Following the tie 
point filtering, the estimated camera positions can be used to generate dense 
clouds. Generating a dense point cloud relies on depth maps derived from dense 
stereo matching. These maps are computed for overlapping image pairs, taking 
into account their respective exterior and interior orientation parameters, which 
are estimated through bundle adjustment.  

Each camera's multiple pairwise depth maps are combined, using the excess 
information in overlapping areas to remove inaccurate depth measurements.  
For each camera, the combined depth maps are converted into partial dense 
point clouds, which are then merged into a final dense point cloud. An additional 
noise filtering step is applied in the overlapping areas. The normals within the 
partial dense point clouds are determined using plane fitting in the pixel neigh-
bourhood of the combined depth maps, while colours are obtained from the im-
ages.  

Metashape often generates highly dense point clouds, with a density compa-
rable to or even greater than those from LiDAR. These dense point clouds can be 
modified within the Metashape interface and serve as a basis for further pro-
cessing steps, including Digital Elevation Model (DEM) creation and subsequent 
orthophoto generation. 
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5.2.4 Metric measurements verification 

Examining the first case study of the road (Subsection 5.2.1), which analyzes a short 
section of a provincial road with one carriageway and two lanes in each direction 
(Figure 5.16). The crack pattern visible in the figure primarily affects one lane. 

 

Figure 5.16 a) Orthorectified image of a distressed road pavement used to test our model. 
Reference system: UTM33/RDN2008; (b) Map of Italy, the red dot indicates the test site. 

To quantify the width of the cracks and to assess the sensitivity of the model on 
width segmentation, the trained model was applied to the orthophoto with a pixel 
size of 3 mm. 

Figure 5.17 shows the results of using the proposed model on the section of road 
pavement characterized by different types of cracking (mainly Block, Longitudinal 
and Fatigue Cracking) as well as a surface course with the wear layer being of a 
texture composition different from that of the Crack500 Dataset. The three boxes 
1), 2) and 3) show cracks of different severity levels, corresponding to High, Mod-
erate and Low, respectively. Again, in panels (a) are shown the predicted masks 
obtained in (b), the masks predicted and classified according to crack width in (c), 
and the measurements made with the calliper. 

The colours in Figure 5.17a are assigned according to the severity levels of the 
cracks as reported by the Distress Identification Manual of the Federal Highway Ad-
ministration Research and Technology [124]. The examples highlight the good 
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sensitivity of the model in estimating crack width, a key aspect for classification in 
terms of severity levels. 

Looking at Figure 5.17a, one can notice that our model does not segment cracks 
with severity levels lower than the low level, mainly because the resolution of the 
orthophoto does not allow the detection of cracks with amplitude less than or 
slightly greater than the pixel size. Some cracks characterized by a low severity level 
were not segmented because the colour difference between the crack and the 
pavement was not sharp enough, but this is plausible given that the images were 
taken at a flight height of about 30 m. Cracks with medium/high levels of severity 
were all segmented, as also observed by traditional surveys carried out in situ. The 
sample area is approximately 10 meters long and 3.5 meters wide; the methodol-
ogy employed to estimate the area yields a total area of 34.5m2 and a crack area of 
0.26m2 for the region analyzed with the orthophoto. 

In particular, a high severity level crack is shown in panel 1c, congruent with the 
crack width estimated from the mask (panels 1a-1b). In panel 2c, a Moderate se-
verity level crack is shown; again, the implemented model accurately segmented 
the crack as the severity level inferred from the mask (panels 2a - 2b) is congruent 
with that measured in situ. Finally, panel 3c shows a case halfway between Low and 
Moderate severity, the crack width being just over 6 mm. In panel 3b, the part con-
sidered falls in the Medium severity level (> 6 mm) at the node of the crack junction; 
as one moves away from the junction (toward the right), the severity level turns 
Low (< 6 mm). Again, the model was able to segment the crack width with sufficient 
accuracy; the severity level is congruent with that measured in situ.  
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Figure 5.17 Results of a test done on an orthorectified image of a distressed road pavement 
- pixels size 3 mm; a) Segmented cracks superimposed on the orthophoto; 1a-2a-3a) Excerpt 
of the output mask; 1b-2b-3b) Excerpt of the orthophoto with overlaid the raster containing 
the crack width, blue arrow points to the position of the calliper; 1c-2c-3c) In situ measure-
ments with a calliper. 
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The second case study focuses on a retaining wall (Subsection 5.2.1) and analyzes 
a cracked section of the wall (Figure 5.18). 

 

Figure 5.18 a) Orthorectified image of a distressed retaining wall used to test our 
model; (b) Map of Italy, the red dot indicates the test site. 

The trained model was used on an orthophoto with a pixel size of 0.27 mm. Fig-
ure 5.19 demonstrates the outcomes of employing the proposed model on a wall 
section featuring various crack types, surface textures, and colours that differ from 
those found in the Crack500 dataset. 

Boxes 1), 2), and 3) highlight cracks with varying severity levels, corresponding 
to High, Moderate, and Low, respectively. Panels (a) showcase the predicted masks 
obtained in (b), while (c) presents the masks predicted and categorized based on 
crack width, along with the calliper measurements. 

The colors in Figure 5.19a are assigned as follows: low severity cracks are less 
than or equal to 1mm, moderate severity cracks are between 1mm and 2.5mm, and 
high severity cracks are greater than 2.5mm. The examples emphasize the model's 
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strong ability to estimate crack width accurately, which is crucial for categorizing 
cracks according to their severity levels. 

It is clear that our model does not segment cracks with severity levels below the 
low level can be observed in Figure 5.19a. The resolution of the orthophoto, which 
limits the identification of cracks with an amplitude less or just slightly bigger than 
the pixel size, is the main cause of this. Some low-severity cracks could not be seg-
mented because there was not sufficient colour contrast between the surface and 
the crack. The segmentation of cracks with medium or high severity levels, how-
ever, was comparable with the findings of traditional on-site assessments. The sam-
ple area is approximately 1.3 meters long and 0.7 meters wide; the methodology 
employed to estimate the area yields a total area of 0.9m2 and a crack area of 
0.005m2 for the region analyzed with the orthophoto. 

In particular, panel 1c shows a crack with a high severity level that is compatible 
with the crack's predicted width according to the mask (panels 1a–1b). A moderate 
severity level crack is shown in panel 2c. Once more, the model segmented the 
crack properly, and the severity level inferred from the mask in panels 2a and 2b 
matched the in situ measurement. Finally, panel 3c shows a case with a crack width 
of just over 0.5 mm that is almost at the threshold between low and moderate se-
verity. Again, the model applied to a non-road surface proved to be effective and 
generalised well. It accurately segmented the crack width, and the degree of sever-
ity matched the in-situ measurements. 

In summary, the performance of segmentation is closely related to the resolu-
tion, quality, and to some extent, the exposure of the image. To segment cracks 
with low or lesser severity levels, it is advisable to use images taken very close to 
the pavement, preferably from a mobile system mounted on a car and using a me-
dium/high-quality camera capable of achieving a pixel size of at least half the width 
of the crack. The key point is that cracks with medium/high severity levels are iden-
tified and segmented in almost all cases, which is a crucial aspect in decision-making 
and drafting management plans. 
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Figure 5.19 Results of a test done on an orthorectified image of a crack retaining wall - pixels 
size 0.27mm; a) Segmented cracks superimposed on the orthophoto; 1a-2a-3a) Excerpt of 
the output mask; 1b-2b-3b) Excerpt of the orthophoto with overlaid the raster containing 
the crack width, blue arrow points to the position of the calliper; 1c-2c-3c) In situ measure-
ments with a calliper. 

  



Chapter 5. Methods and Applications in case studies 

76 
 

5.2.5 Image2PointCloud application 

To evaluate the performance of the Image2PointCloud method, an image taken by 
the DJI Zenmuse P1 containing the cracks analysed in Subsection 5.2.4 was used. In 
the case of the road pavement data (Subsection 5.2.1), the input image used covers 
a portion of the road. Additionally, are also used the camera parameters exported 
from Metashape (Table 6) and the respective dense cloud from MVS based on the 
calculated interior and exterior camera parameters previously mentioned. Figure 
5.20 displays the road pavement data results using the 3D point cloud processing 
software, CloudCompare. 

Table 6. Camera parameters obtained from Metashape for the Road pavement case study. 

Camera Parameters – Road Image 

Focal lengths (fx, fy) (8245.59, 8245.59) 

Principal point (cx,cy) (4063.41, 2767.26) 

3D rotation matrix �
0.85 −0.52 0.002
0.52 0.85 −0.013

0.005 0.013 0.99
� 

Translation Matrix �
1957377.14
−4139223.83
−62882.27

� 

3D point coordinates (Dense Cloud) 
𝑋𝑋𝑟𝑟
𝑌𝑌𝑟𝑟
𝑍𝑍𝑟𝑟

 

Image coordinates 𝑢𝑢𝑟𝑟
𝑣𝑣𝑟𝑟  

 

In detail, the values Xr Yr Zr in Table 6 are the points corresponding to the dense 
cloud produced. The values to be obtained, ur and vr, are the image pixel positions 
to which the analyzed point of the cloud corresponds. 
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Figure 5.20 a) Dense point cloud of the road, with crack points labelled in red, obtained 
from the image covering a portion of the road. At the top right of the image is the viewpoint 
of image b. b) Perspective of the dense point cloud for improved interpretation. 

From Figure 5.20, it is possible to observe that the cracks are well associated with 
the point cloud. As noted in the severity analysis (Subsection 5.2.4), some cracks, 
characterized by a low severity level, were not segmented due to the insufficient 
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colour difference between the crack and the pavement. However, this is plausible, 
given that the images were taken at a flight height of about 30 meters. 

As parameters, the dense cloud of the road we worked with has a density of 
about 25000 points per square meter and an average distance between points of 
approximately 6 millimetres. 

On the other hand, for the retaining wall data (Subsection 5.2.1), we used an 
image which covers a portion of the façade. We also utilized the camera parame-
ters, as shown in Table 7, exported from Metashape, along with the respective 
dense cloud created. Figure 5.21 displays the results using CloudCompare for better 
visualization of the crack labels. 

Table 7. Camera parameters obtained from Metashape for the retaining wall case study. 

Camera Parameters – Wall Image 

Focal lengths (fx, fy) (8245.59, 8245.59) 

Principal point (cx,cy) (4037.03, 2773.01) 

3D rotation matrix �
−0.99 −0.11 0.01
0.02 −0.08 0.99
−0.11 0.98 0.09

� 

Translation Matrix �
987192.87
383786.71

−4413875.28
� 

3D point coordinates (Dense Cloud) 
𝑋𝑋𝑤𝑤
𝑌𝑌𝑤𝑤
𝑍𝑍𝑤𝑤

 

Image coordinates 𝑢𝑢𝑤𝑤
𝑣𝑣𝑤𝑤  

 

In Table 7, the values Xw Yw Zw represent the points corresponding to the dense 
cloud. The values to be determined, uw and vw, indicate the image pixel positions 
associated with the analyzed point in the cloud. 
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Figure 5.21 a) Dense point cloud of the wall, with crack points labelled in red, obtained from 
the image covering a portion of the façade. At the top right of the image is the viewpoint of 
image b. b) Perspective of the dense point cloud for improved interpretation. 

Each point in the crack point cloud can be associated with the amplitude value 
(Subsection 5.2.4) for that section. The data can be imported into the BIM environ-
ment, allowing for amplitude information to be available in addition to the 3D ge-
ometry. 
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Conclusions and Outlook 

In this thesis, the results of an innovative crack segmentation model based on deep 
learning were presented. The proposed network structure is a U-Net with a Res-
Net50 encoder pre-trained with the ImageNet dataset. The encoder component 
has proven effective in extracting crack features from images, even when they have 
irregular shapes and intricate textures, thanks to the model's ability to accurately 
represent global context information. The model was trained with a diverse and 
comprehensive dataset, to which data augmentation was applied to make the da-
taset even larger and subsequently validated using typical image segmentation 
metrics. 

Even though the approach followed in this study performed well, there is still 
much work to be done before pavement cracks can be automatically detected. A 
drawback of our proposed approach is that it requires a large number of manually 
drawn pixel-level crack images to build effective and accurate models. This is gen-
erally a well-known issue in the literature and is true for almost all ML approaches. 
The model's performance is directly related to the dataset, and the manual anno-
tation process is time-consuming and subjective. Collecting and labelling data sam-
ples takes time and must be done accurately; synthetic data can be introduced in 
the model learning process. 
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The validation of the model's performance is generally done on images acquired 
in nearly optimal conditions, with no noise, obstacles, shadows, or overexposed ar-
eas; thus, applying the model to lower-quality images or images with noise could 
lead to inaccurate results.  

For these reasons, the proposed methodology, particularly the U-net-based 
model integrated with the K-Means clustering method in the cloud filtering process 
to generate accurate photogrammetric data, was applied to two case studies under 
real-world conditions. The approach has led to quite promising results, as the se-
verity levels obtained from crack calculations on the resulting masks are consistent 
with those calculated from traditional in-situ surveys. The improvements made in 
our model also affect the segmentation of crack width; this aspect is relevant be-
cause the width is the key parameter for estimating severity levels that mainly af-
fect the identification of stretches having a priority for interventions. 

The ability to adapt to different contexts and surfaces makes this model a highly 
versatile and scalable solution for the detection and segmentation of cracks in var-
ious infrastructures and structures. 

A proposal to also use the point cloud of cracks in BIM is the possibility of visual-
izing only the lesions on a three-dimensional model as a point cloud. Through a 
Dynamo script, it is possible to transform each crack into a Filled Region to obtain 
a quantification of the area affected by each lesion. It is also possible to create vis-
ual filters to discretize each lesion according to its severity in order to guide the 
proper planning of the interventions to be made. In this way, the BIM model is en-
riched with further information on the state of health of the structure, becoming a 
valid tool for the correct quantification of damage and support for the identification 
of the costs of the interventions to be carried out. 

Going forward, the intention is to optimize the proposed model and test its per-
formance on another dataset type. A more sophisticated crack dataset, including 
cracks in buildings or bridges, is expected to be built to improve the crack segmen-
tation algorithms.
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Appendix 

Table 8. Summary of the Proposed Model: U-Net-based Architecture with a ResNet50 En-
coder 

Column Name Type Shape 

0 input_1 InputLayer [(None, 512, 512, 3)] 

1 conv1_pad ZeroPadding2D (None, 518, 518, 3) 

2 conv1_conv Conv2D (None, 256, 256, 64) 

3 conv1_bn BatchNormalization (None, 256, 256, 64) 

4 conv1_relu Activation (None, 256, 256, 64) 

5 pool1_pad ZeroPadding2D (None, 258, 258, 64) 

6 pool1_pool MaxPooling2D (None, 128, 128, 64) 

7 conv2_block1_1_conv Conv2D (None, 128, 128, 64) 

8 conv2_block1_1_bn BatchNormalization (None, 128, 128, 64) 

9 conv2_block1_1_relu Activation (None, 128, 128, 64) 

10 conv2_block1_2_conv Conv2D (None, 128, 128, 64) 

11 conv2_block1_2_bn BatchNormalization (None, 128, 128, 64) 

12 conv2_block1_2_relu Activation (None, 128, 128, 64) 

13 conv2_block1_0_conv Conv2D (None, 128, 128, 256) 

14 conv2_block1_3_conv Conv2D (None, 128, 128, 256) 

15 conv2_block1_0_bn BatchNormalization (None, 128, 128, 256) 

16 conv2_block1_3_bn BatchNormalization (None, 128, 128, 256) 

17 conv2_block1_add Add (None, 128, 128, 256) 

18 conv2_block1_out Activation (None, 128, 128, 256) 

19 conv2_block2_1_conv Conv2D (None, 128, 128, 64) 

20 conv2_block2_1_bn BatchNormalization (None, 128, 128, 64) 

21 conv2_block2_1_relu Activation (None, 128, 128, 64) 

22 conv2_block2_2_conv Conv2D (None, 128, 128, 64) 

23 conv2_block2_2_bn BatchNormalization (None, 128, 128, 64) 

24 conv2_block2_2_relu Activation (None, 128, 128, 64) 

25 conv2_block2_3_conv Conv2D (None, 128, 128, 256) 

26 conv2_block2_3_bn BatchNormalization (None, 128, 128, 256) 

27 conv2_block2_add Add (None, 128, 128, 256) 

28 conv2_block2_out Activation (None, 128, 128, 256) 

29 conv2_block3_1_conv Conv2D (None, 128, 128, 64) 

30 conv2_block3_1_bn BatchNormalization (None, 128, 128, 64) 
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31 conv2_block3_1_relu Activation (None, 128, 128, 64) 

32 conv2_block3_2_conv Conv2D (None, 128, 128, 64) 

33 conv2_block3_2_bn BatchNormalization (None, 128, 128, 64) 

34 conv2_block3_2_relu Activation (None, 128, 128, 64) 

35 conv2_block3_3_conv Conv2D (None, 128, 128, 256) 

36 conv2_block3_3_bn BatchNormalization (None, 128, 128, 256) 

37 conv2_block3_add Add (None, 128, 128, 256) 

38 conv2_block3_out Activation (None, 128, 128, 256) 

39 conv3_block1_1_conv Conv2D (None, 64, 64, 128) 

40 conv3_block1_1_bn BatchNormalization (None, 64, 64, 128) 

41 conv3_block1_1_relu Activation (None, 64, 64, 128) 

42 conv3_block1_2_conv Conv2D (None, 64, 64, 128) 

43 conv3_block1_2_bn BatchNormalization (None, 64, 64, 128) 

44 conv3_block1_2_relu Activation (None, 64, 64, 128) 

45 conv3_block1_0_conv Conv2D (None, 64, 64, 512) 

46 conv3_block1_3_conv Conv2D (None, 64, 64, 512) 

47 conv3_block1_0_bn BatchNormalization (None, 64, 64, 512) 

48 conv3_block1_3_bn BatchNormalization (None, 64, 64, 512) 

49 conv3_block1_add Add (None, 64, 64, 512) 

50 conv3_block1_out Activation (None, 64, 64, 512) 

51 conv3_block2_1_conv Conv2D (None, 64, 64, 128) 

52 conv3_block2_1_bn BatchNormalization (None, 64, 64, 128) 

53 conv3_block2_1_relu Activation (None, 64, 64, 128) 

54 conv3_block2_2_conv Conv2D (None, 64, 64, 128) 

55 conv3_block2_2_bn BatchNormalization (None, 64, 64, 128) 

56 conv3_block2_2_relu Activation (None, 64, 64, 128) 

57 conv3_block2_3_conv Conv2D (None, 64, 64, 512) 

58 conv3_block2_3_bn BatchNormalization (None, 64, 64, 512) 

59 conv3_block2_add Add (None, 64, 64, 512) 

60 conv3_block2_out Activation (None, 64, 64, 512) 

61 conv3_block3_1_conv Conv2D (None, 64, 64, 128) 

62 conv3_block3_1_bn BatchNormalization (None, 64, 64, 128) 

63 conv3_block3_1_relu Activation (None, 64, 64, 128) 

64 conv3_block3_2_conv Conv2D (None, 64, 64, 128) 

65 conv3_block3_2_bn BatchNormalization (None, 64, 64, 128) 

66 conv3_block3_2_relu Activation (None, 64, 64, 128) 

67 conv3_block3_3_conv Conv2D (None, 64, 64, 512) 

68 conv3_block3_3_bn BatchNormalization (None, 64, 64, 512) 
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69 conv3_block3_add Add (None, 64, 64, 512) 

70 conv3_block3_out Activation (None, 64, 64, 512) 

71 conv3_block4_1_conv Conv2D (None, 64, 64, 128) 

72 conv3_block4_1_bn BatchNormalization (None, 64, 64, 128) 

73 conv3_block4_1_relu Activation (None, 64, 64, 128) 

74 conv3_block4_2_conv Conv2D (None, 64, 64, 128) 

75 conv3_block4_2_bn BatchNormalization (None, 64, 64, 128) 

76 conv3_block4_2_relu Activation (None, 64, 64, 128) 

77 conv3_block4_3_conv Conv2D (None, 64, 64, 512) 

78 conv3_block4_3_bn BatchNormalization (None, 64, 64, 512) 

79 conv3_block4_add Add (None, 64, 64, 512) 

80 conv3_block4_out Activation (None, 64, 64, 512) 

81 conv4_block1_1_conv Conv2D (None, 32, 32, 256) 

82 conv4_block1_1_bn BatchNormalization (None, 32, 32, 256) 

83 conv4_block1_1_relu Activation (None, 32, 32, 256) 

84 conv4_block1_2_conv Conv2D (None, 32, 32, 256) 

85 conv4_block1_2_bn BatchNormalization (None, 32, 32, 256) 

86 conv4_block1_2_relu Activation (None, 32, 32, 256) 

87 conv4_block1_0_conv Conv2D (None, 32, 32, 1024) 

88 conv4_block1_3_conv Conv2D (None, 32, 32, 1024) 

89 conv4_block1_0_bn BatchNormalization (None, 32, 32, 1024) 

90 conv4_block1_3_bn BatchNormalization (None, 32, 32, 1024) 

91 conv4_block1_add Add (None, 32, 32, 1024) 

92 conv4_block1_out Activation (None, 32, 32, 1024) 

93 conv4_block2_1_conv Conv2D (None, 32, 32, 256) 

94 conv4_block2_1_bn BatchNormalization (None, 32, 32, 256) 

95 conv4_block2_1_relu Activation (None, 32, 32, 256) 

96 conv4_block2_2_conv Conv2D (None, 32, 32, 256) 

97 conv4_block2_2_bn BatchNormalization (None, 32, 32, 256) 

98 conv4_block2_2_relu Activation (None, 32, 32, 256) 

99 conv4_block2_3_conv Conv2D (None, 32, 32, 1024) 

100 conv4_block2_3_bn BatchNormalization (None, 32, 32, 1024) 

101 conv4_block2_add Add (None, 32, 32, 1024) 

102 conv4_block2_out Activation (None, 32, 32, 1024) 

103 conv4_block3_1_conv Conv2D (None, 32, 32, 256) 

104 conv4_block3_1_bn BatchNormalization (None, 32, 32, 256) 

105 conv4_block3_1_relu Activation (None, 32, 32, 256) 

106 conv4_block3_2_conv Conv2D (None, 32, 32, 256) 
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107 conv4_block3_2_bn BatchNormalization (None, 32, 32, 256) 

108 conv4_block3_2_relu Activation (None, 32, 32, 256) 

109 conv4_block3_3_conv Conv2D (None, 32, 32, 1024) 

110 conv4_block3_3_bn BatchNormalization (None, 32, 32, 1024) 

111 conv4_block3_add Add (None, 32, 32, 1024) 

112 conv4_block3_out Activation (None, 32, 32, 1024) 

113 conv4_block4_1_conv Conv2D (None, 32, 32, 256) 

114 conv4_block4_1_bn BatchNormalization (None, 32, 32, 256) 

115 conv4_block4_1_relu Activation (None, 32, 32, 256) 

116 conv4_block4_2_conv Conv2D (None, 32, 32, 256) 

117 conv4_block4_2_bn BatchNormalization (None, 32, 32, 256) 

118 conv4_block4_2_relu Activation (None, 32, 32, 256) 

119 conv4_block4_3_conv Conv2D (None, 32, 32, 1024) 

120 conv4_block4_3_bn BatchNormalization (None, 32, 32, 1024) 

121 conv4_block4_add Add (None, 32, 32, 1024) 

122 conv4_block4_out Activation (None, 32, 32, 1024) 

123 conv4_block5_1_conv Conv2D (None, 32, 32, 256) 

124 conv4_block5_1_bn BatchNormalization (None, 32, 32, 256) 

125 conv4_block5_1_relu Activation (None, 32, 32, 256) 

126 conv4_block5_2_conv Conv2D (None, 32, 32, 256) 

127 conv4_block5_2_bn BatchNormalization (None, 32, 32, 256) 

128 conv4_block5_2_relu Activation (None, 32, 32, 256) 

129 conv4_block5_3_conv Conv2D (None, 32, 32, 1024) 

130 conv4_block5_3_bn BatchNormalization (None, 32, 32, 1024) 

131 conv4_block5_add Add (None, 32, 32, 1024) 

132 conv4_block5_out Activation (None, 32, 32, 1024) 

133 conv4_block6_1_conv Conv2D (None, 32, 32, 256) 

134 conv4_block6_1_bn BatchNormalization (None, 32, 32, 256) 

135 conv4_block6_1_relu Activation (None, 32, 32, 256) 

136 conv4_block6_2_conv Conv2D (None, 32, 32, 256) 

137 conv4_block6_2_bn BatchNormalization (None, 32, 32, 256) 

138 conv4_block6_2_relu Activation (None, 32, 32, 256) 

139 conv4_block6_3_conv Conv2D (None, 32, 32, 1024) 

140 conv4_block6_3_bn BatchNormalization (None, 32, 32, 1024) 

141 conv4_block6_add Add (None, 32, 32, 1024) 

142 conv4_block6_out Activation (None, 32, 32, 1024) 

143 conv2d_transpose Conv2DTranspose (None, 64, 64, 512) 

144 concatenate Concatenate (None, 64, 64, 1024) 
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145 conv2d Conv2D (None, 64, 64, 512) 

146 batch_normalization BatchNormalization (None, 64, 64, 512) 

147 activation Activation (None, 64, 64, 512) 

148 conv2d_1 Conv2D (None, 64, 64, 512) 

149 batch_normalization_1 BatchNormalization (None, 64, 64, 512) 

150 activation_1 Activation (None, 64, 64, 512) 

151 conv2d_transpose_1 Conv2DTranspose (None, 128, 128, 256) 

152 concatenate_1 Concatenate (None, 128, 128, 512) 

153 conv2d_2 Conv2D (None, 128, 128, 256) 

154 batch_normalization_2 BatchNormalization (None, 128, 128, 256) 

155 activation_2 Activation (None, 128, 128, 256) 

156 conv2d_3 Conv2D (None, 128, 128, 256) 

157 batch_normalization_3 BatchNormalization (None, 128, 128, 256) 

158 activation_3 Activation (None, 128, 128, 256) 

159 conv2d_transpose_2 Conv2DTranspose (None, 256, 256, 128) 

160 concatenate_2 Concatenate (None, 256, 256, 192) 

161 conv2d_4 Conv2D (None, 256, 256, 128) 

162 batch_normalization_4 BatchNormalization (None, 256, 256, 128) 

163 activation_4 Activation (None, 256, 256, 128) 

164 conv2d_5 Conv2D (None, 256, 256, 128) 

165 batch_normalization_5 BatchNormalization (None, 256, 256, 128) 

166 activation_5 Activation (None, 256, 256, 128) 

167 conv2d_transpose_3 Conv2DTranspose (None, 512, 512, 64) 

168 concatenate_3 Concatenate (None, 512, 512, 67) 

169 conv2d_6 Conv2D (None, 512, 512, 64) 

170 batch_normalization_6 BatchNormalization (None, 512, 512, 64) 

171 activation_6 Activation (None, 512, 512, 64) 

172 conv2d_7 Conv2D (None, 512, 512, 64) 

173 batch_normalization_7 BatchNormalization (None, 512, 512, 64) 

174 activation_7 Activation (None, 512, 512, 64) 

175 conv2d_8 Conv2D (None, 512, 512, 1) 
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Figure 5.22 Graph representation of the model 
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