
 

Soft Biometrics: Periocular Features and 
applications on Humanoid Social Robots 

 
Lucia CASCONE 

Supervisor: Prof. Michele Nappi 

Ph.D. Program Director: Prof. Andrea De Lucia 

Tesi di Dottorato/Ph.D. Thesis 

AA 2021/2022 

Curriculum Internet of Things and Smart Technologies 

Università degli Studi di Salerno 
 

Dipartimento di Informatica 
 

Dottorato di Ricerca in Informatica – XXXV Ciclo 



Università Degli Studi di Salerno

Dipartimento di Informatica

Dottorato di Ricerca in Informatica
Curriculum Internet of Things and Smart Technologies

XXXV Ciclo

Tesi di Dottorato / Ph.D. Thesis

Soft Biometrics: Periocular Features
and applications on Humanoid Social

Robots

Lucia CASCONE

Supervisor: Michele NAPPI

Ph.D. Program Director: Prof. Andrea DE LUCIA

A.A 2021/2022





A Emanuele,

Ovunque tu sia spero che il mio amore possa arrivare fin lì.





A C K N O W L E D G M E N T S

I would like to express my profound appreciation to my advisor,
Professor Michele Nappi, for believing in me and allowing me to
work in the intriguing and challenging fields of pattern recogni-
tion and biometrics. His constant encouragement, unwavering
support, and infectious zeal have guided me through these three
years of research. My interactions with him were extraordinarily
useful in outlining my study objectives and determining how to
achieve them. His words of encouragement inspired me to do
my best, and his direct and unfiltered honesty helped me grow
personally and professionally.

I would like to express my sincerest affection and gratitude to
Professor Andrea Francesco Abate for being a guide and refer-
ence point for me, a source of inspiration, and a person towards
whom I have deep esteem.

I would like to express my gratitude to each and every lab
member. Thank you to all of you who continue to inspire and
encourage me. Special thoughts to Ignazio, brilliant man with dy-
namic, cross-cutting, and pragmatic knowledge. I had the honor
and pleasure of working with you, volcano of ideas, workaholic,
and last-minute man. You would have had so much more to say.

I would like to thank my mother, pillar and strength in all my
endeavors, what I am I owe to you.

Finally, I would like to thank you, the person to whom this
work is dedicated. You would have been here to celebrate my
accomplishments, but now they are ours.

v





A B S T R A C T

The market for biometric technology continues to grow. Biomet-
rics is used in the real world in a wide variety of fields, from
surveillance, health care, advertising, Human-Robot Interaction
to security and trust. Interest in this field is transversal.

Soft biometrics have emerged in recent years as a potential
alternative to and useful ally of primary biometrics (also known
as hard biometrics). Any anatomical or behavioral feature that
gives some information about a person’s identity but does not
provide sufficient evidence to accurately determine identity can
be called a "soft biometric trait." In addition to the evidence that
these characteristics can be used to improve the accuracy of a
recognition system, the study of soft biometrics has shown that
additional information about people, such as age, gender, eth-
nicity, and information about emotional and cognitive state, can
be inferred from these soft data, demonstrating their broader
potential.

Based on this, it is a study area that has garnered considerable
interest over the past decade but has never quite taken off. In
fact, there has been an absence of a more verticalized and system-
atic examination of certain characteristics and their purposeful
and widespread use in applications such as HRI. For this rea-
son, after a thorough examination of the literature, this thesis
focused on two aspects. First, the potential of soft biometrics
when integrated with the native capabilities of social humanoid
robots was studied to demonstrate how their application can
make this type of robot even more effective in the sectors of
elderly care, security, and also become a danger in the area of So-
cial Engineering. Then, periocular soft biometric features (blink,
eye-movements, fixations, and pupil) were studied in detail to
demonstrate their potential for the purposes of recognition, de-
mographic classification, emotion detection, and cognitive state
analysis.
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Part I

I N T R O D U C T I O N





1
B I O M E T R I C B A C K G R O U N D

Nemo liber est, qui corpori servit.

— Seneca, Epistulae, 92, 33

Biometrics (from Greek bos = "life" and métron = "measuring")
is the study of biophysical and behavioural properties using
mathematical and statistical models. The acquisition of biometric
information, whether the subject is aware of it or not, allows for
the extraction of latent knowledge. Biometrics exploits measur-
able physiological, physical, and behavioural traits of humans
for purposes of recognition and analysis [9]. Physical biometrics
are the physical characteristics of an individual [10]; behavioural
traits are the attributes describing the personality and behaviour
of a subject [11]; physiological biometrics, on the other hand,
record the unique pattern of a user’s automatic bodily func-
tions [12].

Humans have always used physical traits to differentiate them-
selves from one another; as soon as a person interacts with a
known person, the brain is able to recognise him or her based
on his or her voice or appearance. Similarly, a biometric system
recognises a person based on "who he or she is," regardless of "what
he or she has" or "what he or she knows"-this property has caused
biometrics to find particular success in the security industry: an
identifying object can be lost, stolen, or worse, duplicated; the
things one knows, such as passwords and codes, can be forgot-
ten; "what one is" remains. In the context of security, biometrics
employs a collection of technologies that enable the identification
and authentication of a person based on his or her physical (face,
fingerprints, iris, hand shape, etc.) and behavioural (gait, typ-
ing speed, handwriting, etc.) features. Biometric authentication
entails comparing the data collected from an individual with
the biometric template that was previously registered for that
individual. In this instance, the question posed is "are you really
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4 biometric background

Mr. X? "; hence, a "one-to-one" matching is performed. In contrast,
biometric identification is a "one-to-all" matching, consisting of
identifying a person by comparing his pattern to those in the
database. Therefore, the question is "who are you?" When neither
authentication nor identification is specified, the term "recogni-
tion" is used instead.

Human beings have always felt the need and had the need to
be both able to prove their identity, irrefutably, and to recognize
the identity of others without any shadow of a doubt, making
use of what makes a person different and unique.

As early as prehistoric times, man had already sensed that cer-
tain characteristics, such as the trace of his finger, were sufficient
to identify him and therefore used the imprint to "sign." Hand-
prints and footprints used to "sign" prehistoric paintings have
been found in a cave in Nova Scotia (Canada). In 2500 B.C.E., the
ancient Egyptians, faced with the problem of having to recognize
laborers to whom they would pay compensation for their work
in the construction of the pyramids, exploited a system of per-
son identification based on height and arm length. In 500 B.C.,
the Assyro-Babylonian civilization exploited fingerprints on clay
tablets to validate contracts. In the 2nd century B.C., Chinese
Emperor Ts’in She began using fingerprints to authenticate cer-
tain seals, and, also in China, in 1300 A.D., children’s hands and
footprints were acquired to distinguish them.

This primordial use of biometrics was later set aside only to be
rediscovered in the mid-19th century by William James Herschel,
an English official tasked with building roads in Bengal who
asked subcontractors to sign contracts with their fingerprints,
thus facilitating their identification in case of default. Also in
the 19th century, biometrics was first used in the judicial and
forensic spheres: Alphonse Bertillon, employed in the forensic
police, devised a method, later going down in history as Bertillon-
age, for identifying repeat criminals. He recorded signs such as
tattoos, scars, etc., and measurements of certain anatomical fea-
tures, estimating the infrequent probabilities of duplication if
many features were used (Figure 1.1). However, this technique,
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Figure 1.1: Alphonse Bertillon, the inventor of the criminal identifica-
tion system based on profile and full-face photographs and
crucial body measures, is depicted on this anthropometry
card (1892). These essential dimensions include body height,
body weight, build, complexion, head length, head width,
cheek width, right ear and left foot measures, and "unique
marks" such birthmarks, scars, and tattoos.

which often proved successful, offered no guarantees of reliabil-
ity: measurements taken by two different people using different
instruments were affected. This system showed all its vulnera-
bility in 1903, when a certain Will West was imprisoned because
he was confused with another William West, another African
American prisoner. This ambiguity simultaneously discredited
the three methods in use until then, such as personal name iden-
tification, mug shots, and Bertillon’s physical measurements. In
the meantime, a new system based on fingerprints started to gain
popularity as early as 1892. It was created by anthropologist Sir
Francis Galton, who figured that the chances of two fingerprints
being the same, even for twins, were so low that it was a reliable
way to measure.

Over the past century, the use of biometric technologies has
grown exponentially (Figure 1.2); in 2001, the MIT Technology
Review listed biometrics as one of the 10 technologies that will
change the world. Biometric technologies for the next-generation
biometric market are largely focusing on law enforcement solu-
tions and services. The U.S. is a highly lucrative market for the
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Figure 1.2: It is predicted that the global biometric systems market
will reach over 43 billion US dollars by 2022. It is expected
that the market will significantly grow in the following
years, reaching 83 billion US dollars by 2027. An increase of
over 120% is therefore estimated from 2020 to 2027 (Source:
www.statista.com).

development of biometric applications, pivoting precisely on the
presence of several prominent players meeting the demands for
biometric solutions in the defense and law enforcement sectors.

However, in the coming years, demand for biometric systems
is expected to grow steadily, not only in the military and defense
sectors but also, for example, in the automotive and healthcare
sectors. This increasingly pervasive use of biometrics in the gov-
ernment sector has given a major boost to research in the private
sector as well, thanks precisely to a sharp increase in demand.
Governments’ emphasis on supporting the digital transformation
of economies has led companies to increase their investments,
particularly in voice and facial biometrics. The market for civil
applications linked to this area has benefited from this: just think
of the widespread use of voice and facial biometric authentica-
tion systems that new generation smartphones and more are now
equipped with. The future market for biometric technology will
certainly also cover biometric applications in online shopping,
mobile banking, and e-commerce sites.



biometric background 7

The integration of biometrics with Artificial Intelligence (AI)
has opened a new avenue for stakeholders in this biometrics
market. State-of-the-art systems with AI capabilities are widely
marketed for user authentication in healthcare facilities and are
gaining momentum for the real-time interpretation of emotions
in patients as well.

But what are the biological measures that qualify as biometric
traits? Among the different biometrics which one to choose?
What makes one biometric perform better than another? In their
groundbreaking work, Jain and his colleagues figured out the
main things a biometric trait must have to some degree to be
considered one [13]:

1. Universality. Every individual possesses this trait.

2. Uniqueness. The feature must have a high discriminating
value.

3. Permanence. The characteristic must be sufficiently invari-
ant over a given period of time.

4. Collectability. The feature can be measured easily.

5. Performance. The operations required to achieve the goal
must be fast and not time- or memory-consuming.

6. Acceptability. It indicates the extent to which people are
willing to tolerate the biometric capture procedure.

7. Eludibility. It reflects the ease with which the system can
be circumvented.

No biometric feature, however, fully satisfies the properties
just described. Following is a brief introduction to some of the
most popular physical biometric characteristics:

• Face. Facial recognition is a noninvasive technique, and fa-
cial characteristics are likely the most widely used biometric
identifiers among humans. Face recognition applications
span from static, controlled "mugshot" authentication to
dynamic, uncontrolled face identification against a crowded
background. Popular facial recognition methods are based
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on the location and form of facial characteristics, such as
the eyes, eyebrows, nose, lips, and chin, and their spatial
relationships, or the overall (global) analysis of the face
image. While the authentication performance of commer-
cially available face recognition systems is adequate, they
impose a variety of restrictions on how facial photos are
acquired, sometimes requiring a fixed, simple background
with controlled illumination. In addition, these algorithms
struggle to match facial photos collected from two differ-
ent perspectives, under different lighting conditions, and
at separate times. It is debatable if the face alone, in the
absence of contextual information, is sufficient for recog-
nising a person among a vast number of identities with an
extraordinarily high degree of certainty. In order for a facial
recognition system to be effective in practice, it must auto-
matically detect whether a face is present in the recorded
image, locate the face if it is present, and recognise the
face from a general view point (i.e., from any stance) under
varying environmental conditions [14].

• Fingerprint. Humans have utilised fingerprints for identi-
fication purposes for decades. It has been demonstrated
that the matching (i.e., identification) accuracy of finger-
prints is very good [15]. The pattern of ridges and valleys
on the surface of a fingertip, whose construction is de-
cided during the first seven months of fetal development,
constitutes a fingerprint. It has been scientifically shown
that identical twin fingerprints are distinct, as are the fin-
gerprints on each finger of the same individual [16]. The
marginal cost of embedding a fingerprint-based biometric
within a system (e.g., a laptop computer) is now cheap for
a wide variety of applications. The precision of currently
available fingerprint recognition systems is sufficient for
authentication systems in a variety of applications, includ-
ing forensics. Multiple fingerprints of a person (e.g., ten
prints are used) provide additional information to enable
the identification of millions of individuals on a broad scale.
An issue with large-scale fingerprint recognition systems
is that they require an enormous amount of processing re-
sources, particularly when operating in identification mode.
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A tiny portion of the population may have fingerprints that
are unsuitable for automatic identification due to genetic,
age, environmental, or occupational factors (e.g., manual
laborers may have a huge number of cuts and bruises on
their fingerprints that are constantly changing) [14].

• Iris. The iris is the circular portion of the eye, limited on
either side by the pupil and the sclera (white of the eye).
The visual texture of the iris is generated during fetal de-
velopment and stabilizes throughout the first two years of
life (the pigmentation, however, continues to change for
a lengthy period of time). The intricate iris texture con-
tains information that can be used for identification. The
precision and speed of recently deployed iris-based recog-
nition systems are encouraging and suggest the viability of
large-scale iris-based identification systems. Even the iris
of identical twins has distinct characteristics. It is feasible
to identify contact lenses with a counterfeit iris. The eye’s
hippus movement may also be utilised as a measure of
liveliness for this biometric [14]. Although early iris-based
recognition systems required substantial human partici-
pation and were costly, modern systems are more user-
friendly and economical. Despite the fact that iris systems
have a relatively low False Acceptance Rate (FAR) compared
to other biometric features, their False Rejection Rate (FRR)
can be quite high (more details on these two metrics below).

The choice of which feature to use will depend almost entirely
on the requirements of the recognition system into which it is
to be integrated. A biometric recognition system is essentially a
system that acquires biometric data from an individual, extracts
a set of salient characteristics from the data, compares them with
information stored in a database, and performs an action based
on the result of the comparison. A common structure of the
functioning of different biometric systems has been described
in the aforementioned work by Jain et al. [13]. In particular, it
turns out that a typical system of biometric recognition consists
of two main phases: enrollment and recognition. Enrollment is
the step in which the system gathers the individual’s biometric
data, extracts the salient features, and stores them along with
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an identifier used to associate the collection of features with the
individual in the system database. Recognition, during this step,
the system takes the individual’s biometric data, extracts the set
of features, and compares them to the templates in the database
to identify a match, thereby proving the user’s identity.

As previously stated, biometric identification systems are far
more secure than systems based on conventional methods, pri-
marily because biometric qualities are not susceptible to the
common difficulties associated with passwords, PIN codes, ID
cards, etc. Specifically, biometric characteristics cannot be forgot-
ten, are more difficult to steal, and are more counterfeit-resistant.
However, biometric recognition systems are not entirely secure.
Complications may develop as early as the data gathering phase:
Bharadwaj et al. [17] noted that even the finest biometric algo-
rithms are badly impacted by overly noisy and low-quality data.
In addition, they highlighted the external elements that influence
the quality of biometric data, including the subject’s physical
condition (fatigue, distraction, injury, clothes, etc.), environmen-
tal circumstances (humidity, temperature, illumination, etc.), and
interaction with the sensors (cleanliness of the sensor, initial po-
sition of the subject, etc.).

Variability in the acquisition settings therefore explains why
two biometric samples from the same subject are virtually never
identical: even modest variations in the manner of data capture
can result in substantial modifications to the biometric character-
istic template. Specifically, intra-class variation refers to the rate
of change in the templates of the same biometric feature received
from the same user, and inter-class variation pertains to differ-
ent users. A biometric characteristic is advantageous when its
intra-class variance is low and its inter-class variation is high [14].

A successful biometric system must be able to handle the
following two kinds of errors [18]:

• False Rejection Rate (FRR). Attributing two biometric mea-
surements from the same individual to distinct individuals.
It is also referred to as a "Type I error." False rejections
frustrate authorised users, reduce productivity owing to
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poor access circumstances, and necessitate the spending of
resources to revalidate allowed users.

• False Acceptance Rate (FAR). Attributing the biometric mea-
sures of two distinct individuals to the same individual. If
an organization’s biometric control is creating a large num-
ber of erroneous rejections, the overall control may need to
reduce the system’s accuracy by collecting fewer data when
authenticating subjects. When the number of data points
decreases, the organisation runs the danger of seeing a rise
in the erroneous acceptance rate. The organisation faces the
danger of illegal entry. This issue is also known as a Type
II error. A false acceptance is worse than a false rejection
because the majority of organisations would rather reject
actual subjects than welcome impostors.

Both types of mistakes depend on the decision threshold
employed by the template matching and nearest neighbor ap-
proaches. Choosing a high acceptance threshold will result in
a high FRR (low FAR). Choosing a low threshold will also result
in a large FAR (low FRR). The value of the threshold is derived
using a Decision-Error Trade-of (DET) curve, which is a plot of
FAR and FRR. The FAR and FRR values of a verification system
define distinct DET curve points. When these rates are equal,
the threshold values for false acceptance and FRRs are selected.
This quantity is known as the Equal Error Rate (EER). It implies
that the proportion of false acceptances and false rejections is
identical.

In the presence of spoof attacks, [19] proposes the evaluation
of a third type of error, termed SFAR, namely the rate of accepted
spoof attacks. The spoofing attack, which is one of the adversarial
attacks [20] targeting the recognition system, is the process of
circumventing a biometric system by delivering a replica of a le-
gitimate user’s spoofed biometrics. Despite the fact that spoofing
approaches for biometric technology differ, they nonetheless en-
tail presenting a phony biometric sample to the sensor. Therefore,
it is important to collect a biometric sample from a legitimate
user. Consequently, the Spoof-False Acceptance Rate (SFAR) is a
helpful metric for determining the proportion of false acceptance
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when one or more modalities have been effectively spoofed. As
described in [19], SFAR should be separated from "standard" FAR

as it involves a non-zero effort to spoof the system.

This kind of threat is especially dangerous for uni-modal bio-
metric systems, which use only one biometric trait to identify a
person. In fact, once the biometric information has been stolen,
there is no other security measure that keeps someone from get-
ting into the system. Therefore, there is a strong belief in the
biometric community about the security of multi-modal systems
against spoofing attacks, i.e., those systems for which it would
be necessary for an intruder to spoof all the traits involved (or at
least more than one).

1.1 multi-biometric fusion

A uni-modal biometric system, which is based on a single bio-
metric trait, has several problems and limitations due to a lack of
data, the poor quality of the information obtained, or, in some
cases, low discriminatory power. In fact, biometric recognition
systems based on a single trait, such as facial recognition or fin-
gerprint recognition, can be accurate in many cases but can also
be subject to errors due to factors such as the inherent variability
of biometric signals or environmental conditions. For example,
facial recognition can be affected by age, gender, race, facial ex-
pression, and lighting conditions, while fingerprint recognition
can be affected by skin condition and the use of gloves.

A multi-biometric system, that is, a system that combines
different biometric traits, can help increase performance and
consolidate the information collected to overcome these obsta-
cles. Thus, one of the main challenges in multi-biometric fusion
concerns just that: achieving a good combination of the differ-
ent biometric modalities so as to maximize recognition accuracy.
Multi-biometric fusion can be complex to implement and require
a significant amount of computational resources. A crucial chal-
lenge in multi-biometric fusion concerns biometric data manage-
ment and privacy protection, as the fusion of different biometric
modalities may require the collection and processing of a sig-
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nificant amount of sensitive personal data. The availability of
multi-biometric data corresponding to multiple biometric traits
increases concerns about the compromise of subjects’ privacy.
Therefore, it is necessary to impart security and confidentiality to
stored templates. In real-world applications, archived templates
require periodic updating; thus, a pertinent issue is the modifica-
tion of an individual’s stored biometric data in order to account
for changes within the class. Aging and physical illness can
change an individual’s biometric trait. Updating an individual’s
multi-biometric templates over time can be a daunting task and
may inadvertently result in identity theft, where an impostor can
exploit the template update mechanism to assume the identity of
an enrolled individual. An adaptive fusion system should be able
to deter such attacks while accounting for the inevitable changes
in data distribution that occur over time.

The fusion might occur when multiple sources and levels are
considered. The most common questions are: what to merge [21],
when to merge, how to merge.

According to what to fuse, the systems can be described as
follows:

• Multi-sensor. These systems use several sensors to collect
data on a single biometric feature [22]. This strategy is
particularly suitable when the sensors needed to grab the
desired characteristic are all available and properly run-
ning.

• Multi-algorithm. Multiple feature extraction techniques are
applied to the same data acquired from a sensor, resulting
in distinct templates that provide alternative perspectives
on the same feature. The fundamental concept is to be able
to extract multiple properties from the same sample us-
ing different techniques [23]. If the properties derived by
two distinct algorithms are complementary, system perfor-
mance can be enhanced.

• Multi-instance. Multiple instances of the same biometric at-
tribute are acquired using a single sensor and an extraction
technique; for instance, instead of capturing the fingerprint
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of a single finger, all the fingers of the hand might be ex-
amined, both the left and right iris are employed for iris
recognition and so on [24]. The benefits of this method
include a decreased susceptibility to noise as a result of
the greater number of samples acquired, greater similarity
within a given class, and greater diversity between classes
[25].

• Multi-sample. The same sensor is utilised to record the
same biometric feature; but, rather than capturing data in-
stantly, numerous samples are collected over a defined time
interval. This is an especially advantageous mode for video
sensors, which may collect numerous consecutive frames
while minimising the "damage" caused by subject motion.
To develop a facial recognition system, for instance, you
can extract information from the same video by merging
the data gathered from a single sensor on numerous video
frames. [26].

• Multi-modal. In this method, numerous biometric charac-
teristics are evaluated. Physical and/or behavioural features
can be combined into a single system. This option may be
preferable when security is essential to protect sensitive
data [27]. The employment of multi-sensor, multi-instance,
and multi-sample modes aids in the management of noise
during data collection, thereby increasing the likelihood
of receiving high-quality data. Support for an additional
biometric feature, on the other hand, prevents spoofing and
brute-force attacks. The addition of even a single biometric
characteristic provides a "line of defense" because a hacker
would have to try an exponential number of input data
possibilities, whereas a spoofing assault requiring a greater
number of traits would take more time and resources.

Once the data has been collected, one may wonder when it is
convenient to merge them. Regarding this, it is therefore pos-
sible to define different levels of fusion based on the type of
information provided. These solutions can be separated into two
macro-areas: pre-classification with fusion prior to matching (sen-
sor level, characteristic level), and post-classification with fusion
subsequent to matching (score level, rank level, decision level).
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• Feature-level fusion. Feature-level fusion refers to tech-
niques that perform fusion on several extracted features
from the same or distinct input data. It combines differ-
ent representations to provide a single representation for
a given individual. Concatenation or summation [28] are
examples of this class of approaches. This strategy is fre-
quently employed by multi-biometric cryptosystems, which
combine characteristics from numerous biometric sources
to enhance security and anonymity. This could correspond
to numerous feature sets for the same biometric trait, such
as pupil size and number of blinks from the periocular
region, or different facial traits. It may also correspond to
characteristics extracted from several modalities, such as
palmprint and fingerprints.

• Sensor-level fusion. Typically, sensor-level or data-level fu-
sion applies to multi-sensor or multi-sample algorithms in
which data are integrated immediately following acquisi-
tion. Thus, data fusion is performed directly on the raw
data prior to feature extraction [21]. This corresponds to
the direct pixel-level combining of face images acquired
from a camera in the context of a face recognition module.
Pose variations such as frontal, left, and right can be cap-
tured to generate multiple instances of a face. A mosaicing
technique can be used to fuse samples together in order to
obtain a combined representation of the face [29].

• Score-level fusion. Score-level fusion refers to algorithms
in which the match scores generated by various matchers
are combined. Numerous score fusion approaches have
been proposed in the scientific literature. Transformation,
classification, and density fusion strategies are the three
basic categories of scoring combining rules. Transformation-
based score fusion is the most intuitive and widely used
score fusion technique, as it is simple to make. For a given
sample, it allows to combine the scores obtained from the
different algorithms and generate a new unique score, using
a function, to which these previously generated normalized
or standardized scores are given as input. So, it consists
of simple algebraic manipulation of the scores through a
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specific function. Common fusion methods at this level
include mean score fusion, maximum score fusion, and
minimum score fusion, where the mean, maximum, or min-
imum score of many matchers is considered the final result.
In classifier-based score fusion, score vectors obtained by
biometric algorithms are considered feature vectors that
are in turn discriminated as genuine or impostor scores.
Therefore, the classifiers learn the relationship between
the various score vectors, which are treated as the new
characteristics that are used to solve the classification task.
Density-based score fusion is based on the likelihood ratio
test and it requires explicit estimation of genuine and im-
postor match score densities.

Due to the ease with which scores generated by commercial
matchers can be accessed, score-level fusion is the most
frequently documented type of fusion in the literature. Most
commercial matchmakers do not provide straightforward
access to features or, at times, raw data.

• Rank-level fusion. A rank-level fusion is applied when a
ranked list of matching identities can be obtained from
each algorithm. In identification tasks where a given probe
image is compared against a gallery of images, the matcher
frequently generates a ranked list of matching identities.
The algorithm will assign a higher rating to a template
that more closely matches the query. Using techniques
such as Borda count, logistic regression, and the highest
rank method, researchers have combined the rank lists
of multiple matchers [30]. In situations where access to
features or match scores is limited, rank-level fusion is
frequently judged useful.

• Decision-level fusion. Fusion at the decision level corre-
sponds to algorithms that accomplish fusion at the decision
level [31]. Majority voting is one of the most prevalent
decision-level fusion methods. The ultimate decision is the
outcome of combining the decisions of n matchers or classi-
fiers based on a majority vote. Fusion at the decision level
has the benefit of working well with black-box systems, in
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which only the final decisions are available. In many com-
mercial systems, access to features, scores, and rankings
may not be possible.

In some applications, in addition to the match score or identity
decision provided by individual biometric matchers, researchers
have added other information to the typical biometric pipeline
to increase its performance. Examples of such ancillary informa-
tion include measures that indicate the quality of the captured
biometric sample or some additional user information known as
soft biometrics.

1.2 soft biometrics

Soft biometrics have emerged in recent years as a potential alter-
native and beneficial ally to primary biometrics (also known as
"hard biometrics"). Several things contribute to this, such as the
non-intrusive nature of features or traits [32], that they are inde-
pendent at the modality and feature level [33], that each trait has
a semantic description [34], and the fact that identification and
retrieval are done in a continuous way [35]. However, the field
is still facing several challenges, and there are a number of gaps
that need to be filled before it can be considered a replacement
for or a benchmark for traditional biometrics.

Soft biometrics refer to features that convey some information
about the individual but lack the distinctiveness and permanence
necessary to distinguish between them. Several characteristics
meet this description, such as gender, weight, height, age, eye
colour, ethnicity, etc. Soft biometrics appear to contain a huge
variety of possible attributes, which can be difficult to figure out
in the absence of further clarification. Dantcheva et al. provided,
in their work [34], a more exact description of the term "soft
biometrics" as well as an example of its possible applications.
In particular, they defined soft biometric characteristics as "The
human-specific physical, behavioral, or material accessories that are
associated with an individual and that can be useful for recognizing
that individual. These attributes are typically gleaned from primary
biometric data, are classifiable in pre-defined human understandable
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categories, and can be extracted in an automated manner."

Face, body, and accessories were the three categories estab-
lished by Dantcheva and her colleagues as part of an early clas-
sification system. In a subsequent study [32], Dantcheva et al.
enhanced this categorisation by suggesting a new, more schematic
classification model. Based on this and other research, we present
the following classification of soft attributes:

• Demographic. Age, gender, ethnicity, and hair color fall into
this category.

• Anthropometric and geometric. The geometry of the body
and face, and body measurements in general.

• Medical. Health conditions, BMI, weight, wrinkles, and skin
lesions are examples of this group.

• Materials. Hats, scarves, bags, and other general acces-
sories.

• Behavioral. Human language, facial expressions, and gait
fall into this category.

Features can be extracted in the form of labels, measurements,
and descriptors. In particular, it is interesting to note how the
nature of the above soft biometric traits can be binary (e.g., pres-
ence of hats), continuous (weight), or discrete (gender).

Soft biometric characteristics can also be related to a given
value for the attributes of uniqueness and permanence, where
distinctiveness evaluates the capacity of a trait to differentiate
subjects within a group and permanence refers to the duration
of the trait’s invariance. Regarding the latter attribute of perma-
nence, two kinds of biometrics can be differentiated: those that
are temporary (such as medical biometrics) and those that are
permanent (e.g., body measurements). Both characteristics are
also closely related to the trait’s continuous or discrete nature.
In particular, it turns out that continuous biometric traits exhibit
a higher amount of uniqueness than discrete traits, owing to
their greater range of possible values. The contrast between hard
and soft biometrics is made obvious by the analysis of these two
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properties. In actuality, both properties have a lower value for
soft biometric traits compared to traditional ones. Soft biometric
data subject to changes, such as a person’s hair color (either by
choice or because it is affected by time), can potentially affect the
accuracy of recognition systems. One way to handle this problem
is to use multiple types of biometric data to improve the overall
accuracy of the system. For example, a system that uses both
recognition of body geometries and identification of various parts
of the face may be less affected by a change in hair color than a
system that relies solely on this labile information. Extreme case
that is not implemented in a real-life scenario. Another approach
is to use machine learning algorithms that can adapt to changes
in the data they are processing. For example, if a facial recog-
nition system is trained on a dataset that includes people with
a wide range of hair colors, it may be able to handle hair color
changes more effectively than a system that was trained only on
a narrow range. It is also worth noting that some recognition sys-
tems are designed to be more resilient to changes in appearance
than others. In general, however, the impact of changes in soft
biometrics on recognition accuracy will depend on the specific
system and the methods used to handle those changes.

Subjectivity, in addition to these two properties of uniqueness
and permanence, can also be evaluated. It refers to a person’s ca-
pacity to recognise the biometric feature unambiguously. Indeed,
it is easy to understand how the very nature of soft biometric
features includes ambiguity not just for an automatic recogni-
tion system but even for humans: a simple example would be
hair colour, which has a wide range of tints but is typically cat-
egorised as blonde, brown, black, or red. The difficult step is
then determining how to classify the various details in a way
that everyone can agree on. For this type of difficulty, it may be
deduced that characteristics with high subjectivity have a lower
value of uniqueness.

In general, three different application scenarios can be outlined
in the literature for soft biometric traits when their purpose is to
be used in a recognition system:
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• Fusion-approach. In conjunction with hard biometrics, soft
biometrics are utilised to enhance system performance. The
very notion of combining them with primary characteristics
may be the reason why these traits are said to be soft. Soft
biometrics can be traced all the way back to the 18th century,
when the Bertillon system was used to identify criminals
based on how they looked. The attributes used to quantify
the physical description were defined as anthropometric
measures, including head length, head width, middle finger
length, left foot length, and cubit length. These character-
istics were put into two groups: body geometry and facial
geometry. Both of these were accompanied by a mug shot
of the person, since it was clear from the start that this
information was not enough on its own. Thus, the lack of
uniqueness capacity of these features, as well as the idea
of using them as additional decision support, were already
obvious.

• Search Space Reduction approach. Use information that
has been extracted, such as gender, race, skin color, or hair
color, to narrow down the search space for a given target
sample.

Using soft biometrics such as ethnicity and hair colour
with a facial recognition system can help reduce the FRR

of some individuals without significantly influencing the
FAR, as determined by Marcialis et al. [36]. On the basis of
the extracted set of biometric features and the existence of
specific soft biometric qualities, a probabilistic framework
was provided to determine if an input face image belonged
to a specific user. Due to the fact that certain soft biometric
traits (such as a specific hair colour) are associated with a
limited number of users (and not others), these attributes
can be leveraged to increase recognition accuracy. Specifi-
cally, the fundamental concept is that users having a given
high soft biometric discriminant can be identified more
accurately. Identification of such users could be important
for optimising the usage of soft biometrics by finding a
suitable method to combine soft biometric data into the
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score calculated by the hard biometric. It is simple to extract
hair colour and ethnicity information from facial photos,
but only a small number of people with highly discriminat-
ing hair colour or ethnicity should be associated with this
information.

• Stand-alone system. Long ago, the study of soft biometrics
was regarded as a subfield of hard biometrics, with research
concentrating on hybrid identification systems. The fusion
framework is capable of group identification and ongoing
authentication throughout an online session. In each in-
stance, the overall objective was to improve recognition
performance.

Heckathorn et al. [37] presented one of the first methods
for identifying people that only used soft biometrics. The
authors proposed using attributes such as scars, birthmarks,
tattoos, eye color, ethnicity, and gender, along with five bio-
metric measurements of height, forearm length, and wrist
width, to identify a given subject. The model has worked
well in situations where certain biometric hardware isn’t
available, and it’s important to keep people’s identities se-
cret by not storing biometric images. The model was built
on the concept of "indicator interchangeability," which is
based on the idea that combining traits with low discrimi-
natory power can result in a much more accurate system.

The research on soft biometrics is primarily focused on com-
puter vision and automatic learning, and it has been studied from
a variety of perspectives. Despite the fact that the primary use of
soft biometric traits in the literature has been for recognition, the
study of such features can be applied in a variety of contexts.

In fact, the study of soft biometrics is especially fascinating
since it can also aid in the semantic interpretation of a person’s
thoughts, emotions, behaviours, and mental effort, allowing for
the recognition of his or her emotions and cognitive state [38].
Their reflection can be seen through physical characteristics such
as pupil size change, behavioural characteristics such as gait or
touching, and physiological characteristics such as heartbeat.
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1.3 subject of the research

Soft biometrics is a research topic that has attracted a great deal
of attention over the past decade but that has, effectively, never
been fully explored or exploded. Any anatomical or behavioral
feature that provides some information about a person’s identity
but does not provide sufficient evidence to accurately determine
the identity of a person can be called a "soft biometric trait."
Although soft biometric traits may not possess sufficient distinc-
tiveness or uniqueness to enable highly accurate recognition, they
have been used extensively to filter large biometric databases, as
a way to improve the speed or search efficiency of the biometric
system, or combined and merged with other more discriminating
biometrics. Also of interest is the potential of their application
in health and cognitive fields for monitoring health status and
detecting fatigue, stress, etc.

Figure 1.3: This thesis examines the potential of soft biometrics. First,
when integrated with the native capabilities of social hu-
manoid robots, and then later with a focus on periocular
biometrics in terms of blinks, fixations, pupil size, and gaze,
to demonstrate its value.

Therefore, despite this wide range of possibilities, a thorough
study of certain soft features is lacking in the literature, and it
seems evident that, in general, they have very rarely been consid-
ered for applications of HRI. For these reasons, in this thesis, after
a careful review of the literature, we focused on two aspects (Fig.
1.3). The potential of soft biometrics when integrated with the
native capabilities of HSRs was investigated, and then a particular
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focus was made only on periocular ones to show their potential.

Indeed, some periocular characters showed rather primitive
research. Therefore, it was decided to conduct a more in-depth
study of what their potentials, limitations, and peculiarities are,
both individually and when combined. Their correlation with
certain situations of cognitive effort or association with a certain
gender or age group, rather than recognition potentials, is known
from the literature. However, soft periocular biometric informa-
tion has rarely been exploited to make inferences about these
aspects. Therefore, based on these studies that corroborated its
contribution, verticalized work was then carried out investigating
the use of these modalities for the above purposes.

1.3.1 Motivations

Faced with a digital transformation that permeates every aspect
of daily life, from accessing one’s smartphone to authorising an
online transaction to monitoring one’s health status, the use of
biometrics is expanding across a vast array of application do-
mains.

Traditionally, systems that utilise biometric characteristics do
so for recognition purposes and are generally uni-biometric, that
is, they utilise a single biometric characteristic. Problems asso-
ciated with this option include missing information (e.g., a face
masked by sunglasses), poor data quality (e.g., dry fingerprints),
identity overlap (e.g., pictures of twins’ faces), and low discrim-
inability (e.g., hand geometry).

Therefore, it often becomes necessary to use multiple biometric
traits to improve the accuracy of the system. In this setting, the
application and analysis of so-called soft biometric features are
getting popular.

In addition to the evidence that this information can be used
to improve the accuracy of a recognition system, the study of soft
biometrics has demonstrated how additional information about
an individual, such as age, gender, ethnicity, and information
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about his or her cognitive and emotional state, can be inferred
from these soft data, thereby demonstrating the potential of even
those that, if analysed for recognition purposes, would not be
the most suitable. Literature has also showed the potential of
calculating body mass index (BMI) from facial images, leading to
the possibility of assessing health condition based on biometric
data.

What are the additional benefits of using these soft biometric
traits? We summarize the main ones below:

• Explainability. Attributes have a semantic interpretation in
the sense that they can provide a description that humans
can understand; for example, "old, short, male." Thus, it
bridges the gap between machine and human descriptions
of a person. Because of this, they are especially useful for
applications like video surveillance, where they work well
with the way people see their surroundings. In other words,
when a human tries to verbally describe a person, obvious
features regarding the person’s appearance, such as gender,
age, height, and color of dress, are often used (e.g., in
police reports). This enables the use of soft biometrics in
contexts where traditional biometrics may be inadequate,
as Klontz and Jain [39] argued in the context of the 2013

Boston bombings.

• Robustness versus low data quality. Despite the poor qual-
ity of biometric data collection, it is possible to infer the
existence of certain soft biometric characteristics. If the
supplied iris image is of poor quality, for instance, the sur-
rounding periocular information could be employed for
recognition rather than the iris itself.

• Side cost. With the collection of the primary biometric trait,
it is frequently feasible to recognize the secondary soft
biometric as well. Then, it is possible to evaluate and study
as much information as possible for the same price and
with the same number of sensing devices.

• Non-cooperation. Soft biometrics can frequently be gath-
ered without the subject’s agreement or cooperation. For
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example, it is possible to remotely deduce a person’s eth-
nicity or gender.

• Privacy. Unlike hard biometric traits that can uniquely
identify a person and thus be a deterrent to users who
want to avoid being "tracked," soft biometrics simply apply
"labels" to the subject using features that are clearly visi-
ble to the naked eye. In addition, identification performed
using soft traits does not require the system to store infor-
mation about the user, as the data captured is compared
with predetermined values that are not directly related to
the particular person.

In spite of these observations, an examination of the appropri-
ate literature reveals a dearth of systematic investigations and
purposeful, effective integration of soft biometric features in HRI

applications. Scientists, philanthropists, educators, politicians,
leaders, and philosophers have been captivated by the function-
ing of the human brain throughout history. From Michelangelo
to Lomonosov, Da Vinci to Einstein, there have been various at-
tempts to decipher the mystery of the human mind and to mimic
its functioning, first with simple mechanical devices and then, in
the 20th century, with computers, software, and robots.

Our society is developing and deploying domestic and indus-
trial robots, intelligent software agents, virtual-world avatars,
and other artificial beings for a variety of tedious and dangerous
duties, as well as for entertainment and companionship. In par-
ticular, the use of so-called social robots has gained particular
attention in recent years. These robots may provide an alternative
to human social and emotional interaction. However, if scientific
and technical progress has demonstrated the use of robots capa-
ble of duplicating human strength and cognitive abilities, what
is the use of robots capable of replicating human social skills
and emotions? A plausible solution is to have the possibility
of replacing human beings with machines in those situations
where social interaction and emotional connection are crucial: for
example assistance to elderly or disabled people.
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Social robots, developed to socially interact with individuals,
are robotic technological platforms with audio, visual, and move-
ment capabilities that can also be used to assist and monitor the
management of the subjects’ physical and psychological well-
being. The biometric indicators of relaxation related to heart rate
and respiratory rate, as well as the ability to analyze facial ex-
pressions to intercept a stressful situation, are just some of the
possible soft biometrics that can be used in this area.

The analysis and study of biometric parameters enables robots
to also identify the emotional state of their subjects in order
to deliver an appropriate reaction to the mood of the person
with whom they are engaging. As a result of their humanoid
design, they are also able to recreate their essential emotional
characteristics. In these application sectors, the level of realism
is a crucial component that can be significantly enhanced by
the incorporation of biometrics, since this allows the robot to
modify its behaviour based on the observed characteristics of the
interacting individual.

The present issue in social robotics is therefore to enable robots
to interact with humans as naturally as possible in real-world
settings. Multiple studies have demonstrated that the capacity to
interpret human eye gaze is crucial to reaching this objective [40].
With a humanoid robot outfitted with gaze-tracking capabilities,
it has been demonstrated that collaborative construction projects
may be accomplished with human partners who are completely
unaware of the robot’s way of reacting. Nonetheless, this knowl-
edge has not yet been widely integrated. Certainly, the require-
ment for particular camera qualities is a factor in robots’ lack of
gaze tracking. In particular, high-resolution, narrow field-of-view
images are ideally required for such computation, whereas robots
are generally equipped with cameras with a wide field of view
to allow movement and interaction in a large environment [40].
Thus, in experimental settings, head-mounted systems worn by
the human partner are the prevalent solution. These are intrusive
and require anyone wishing to engage with a robot to wear a
specific pair of glasses or a helmet. In open contexts (e.g., airport
terminals, retail stores, universities, etc.) where robots may be
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required to interact with people without previous preparation of
human partners, this strategy frequently limits the usage of eye
tracking.

Eye tracking has been a potent inspection tool for decades
among scientists and engineers. In recent years, thanks to the de-
velopment of cheap and compact hardware devices, eye tracking
applications have risen and been accepted in numerous indus-
tries, including the military and marketing. It is a reliable and
user-friendly technology that has enabled novel ways to problem-
solving and data collection, but it is also interesting as a research
field.

In general, eye analysis is a well-known soft biometric. How-
ever, a necessary clarification must be made. Over the years, most
of the studies that have analyzed such biometrics have focused
on the visual features that can be extracted from the periocular
area, that is, the eye and the surrounding area, but the same
cannot be said of the features associated with it. According to
common belief, the eyes are the "windows to the soul." In modern
times, scientists have begun to wonder how much information
that can be gleaned from the eyes can tell us about the subject’s
identity or cognitive processes. Fixations, pupils, eye movements,
and blinks are periocular biometric traits that show clear evi-
dence in the literature to be considered interesting biomarkers
for detecting cognitive effort and emotional responses, but also
for obtaining useful information for subject recognition purposes.
Despite the fact that this connection is well-established in the
literature, it was found that there was a dearth or absence of
research developing a system that would learn the patterns of
this data and then make inferences.

1.3.2 Main Goals

Based on the motivations described in the preceding section, we
will now outline the major objectives of the following thesis:

• combine the native skills of Humanoid Social Robots with
their ability to collect soft biometric information for health-
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care support and assistance, emotion modeling, and subject
and action recognition;

• research and study the periocular soft biometric traits for
the purpose of recognition, demographic classification, and
as evidence of emotional and cognitive responses.

1.4 thesis outline

The thesis proposal is structured as follows. In this introductory
part, we discussed the principles of soft biometrics and our moti-
vations and contributions. The following three chapters outline
the core of the thesis:

• Chapter ii. We present an overview of the complex robotic
taxonomy and HRI, with particular attention to social re-
lationships. Through our research, we demonstrate how
the application of soft biometrics can make this type of
robot even more effective in the smart-home, healthcare,
and Social Engineering sectors.

• Chapter iii. It is focused on the study, analysis, and use
of soft periocular biometrics. In particular, after a careful
review of what may be the peculiarities of the modalities
being examined (pupils, blinks, fixations, and movements)
both as physical and behavioral biometrics, taking into ac-
count medical and other known evidence, we investigated
their use in 3 different fields of application to evaluate the
effectiveness.

• Chapter iv. We will draw our conclusions in this last Chap-
ter, in which we highlight the main challenges faced, the
problems still open and where we will propose possible
future directions.
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Helena: Will they be happier when they can feel pain?
Dr. Gall: On the contrary. But they will be technically more perfect.

— Karel Čapek, R.U.R. [41]

The robotics revolution is ongoing and is affecting all sectors:
industrial areas, healthcare, agriculture, autonomous vehicles,
entertainment, and home environments. The adoption of robotics
outside of industry will be mainly driven by an aging population
and the resulting difficulties in obtaining sufficient manpower.
The increasing trend is displayed in Figure 2.1. For professional
service, the installation of 121.000 robots in 2021 represents an
increase of 37% compared to the previous year, continuing a
trend already observable on the market after the significant in-
crease in sales in 2020. In 2021, the hospitality industry will have
installed 20.000 units, representing an increase of 85% from 2020.
This is followed by transport and logistics, which, with a 45%
increase over the previous year, confirm their status as the areas
in professional applications with the most units installed (49.500).
Also, robots placed in professional cleaning services (12.600 units,
+31% on 2020), medicine and personal care (14.800 units, + 23%
on 2020), and maintenance and inspection (5.500 units installed
in 2021, + 21% on 2020) will experience double-digit growth.

In agriculture, the expansion was 6%, with 8.000 new units
installed. In contrast, the market for robots for consumer applica-
tions has 19 million installed units, a 9% rise from 2020 (Figure
2.1).

Nowadays, the term "robot" is a familiar concept, increasingly
multidisciplinary terrain, where heterogeneous subjects fluidly
intersect. Thanks to such a multidisciplinary approach and the
development of actuators, sensors, and software, robots have be-
come increasingly useful not only in industry and commerce but
also in critical areas such as search and rescue, safety, entertain-

31
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Figure 2.1: On the left are the average predicted yearly growth rates
for industrial robot installations. On the right is the mar-
ket trend for professional service robots. Source: World
Robotics, October 2022.

ment, and hospital care, interacting proactively with humans and
gaining their trust as well. Indeed, autonomous and interacting
humanoid entities of all sizes and shapes have become extremely
pervasive in our daily lives as well. According to the American
Heritage Dictionary for Windows (1994) [42], a robot is "a mechani-
cal device that sometimes resembles a human and is capable of
performing a variety of often complex human tasks on command
or by being programmed." If the robot was previously intuitively
perceived as a metallic and mechanical component of the ma-
chine, nowadays its perception has totally changed. Robots are
no longer limited to manufacturing and industrial applications.
The necessity and desire for robots that share space with humans,
such as collaborative or assistive robots, are increasing.

2.1 what are robots?

Who was the first to imagine of robots?
In today’s technology-obsessed society, it may come as a sur-

prise to find that the first humanoid robot appeared in ancient
times. From ancient Egypt to Greece to China, including the
Golem of Hebrew mythology, the 18th-century "Turk" (a mock
chess-playing machine controlled by a human being hidden in-
side the device), and the friendly Japanese "Gakutensoku" mecha-
tronic puppets and automatons, have all fueled popular imagina-
tions in terms of what might be possible regarding autonomous
human-made agents interacting with us, almost on par. Ancient
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Greek mythology contains a fascinating collection of concepts
and imaginations. According to Greek tradition, Talos, an ani-
mated statue that cared for and defended Crete from invaders,
was not born but was either built by Zeus himself, by the crafts-
man Daidalos, or by Hephaestus, the deity of fire and iron, under
the command of Zeus. It is considered the first robot or automa-
ton in history, mentioned around 700 B.C. [43].

However, it may come as a surprise to learn that the inventor of
robots envisioned them as organic beings. The neologism "robot"
comes from the Czech term "robota," (forced labor, slavery) which
was popularised by the Czechoslovakian dramatist Karel Čapek
in his work Rossum’s Universal Robots [44], in 1921. It was coined
to refer to not machines made in the likeness of a human being
but rather a "second" humanity that was artificially produced.
According to a secret formula, Čapek’s robots are made from
something resembling flesh and blood. Their flesh is mingled in
kneading machines like bread, and their nerves and veins are
spun on spinners. By the end of the work, robots have conquered
the planet, but it is shown that they, too, experience feelings
such as love and are worthy heirs to humanity. According to
the Oxford English Dictionary, however, science fiction novelist
Isaac Asimov was the first to use the term in the 1940s. In his
narrative, Asimov outlined three guidelines for the behaviour of
autonomous robots and smart devices to protect humans from
interactions:

1. A robot may not injure a human being or, through inaction,
allow a human being to come to harm.

2. A robot must obey the orders given to it by human beings,
except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such
protection does not conflict with the First or Second Laws.

Robots today seem to be much more varied than those in Asi-
mov’s stories. We are not surprised to consider a threshold of
complexity below which rules may not be required. In fact, robots
have been part of our lives for decades now, so the very essence
of their concept has developed and changed with time. Robotics



34 humanoid social robots

Figure 2.2: Timeline of the main robotics milestones of the last century.

is classified as an exponential technology. Figure 2.2 reports the
main milestones in the history of robotics in the last century: in
1962, based on concepts from the 1950s, the first programmed
robot, Unimate, was developed to transport hot metal parts from
a die-casting machine; in the 1980s, robots were primarily used in
automated factories, where the machine essentially replaces the
human; in the same years Honda began research into two-legged
human robots [45].

Today, the conventional definition of a robot as a mechanical
arm operating in businesses and factories to replace humans in
dangerous and/or physically demanding professions, has been
questioned. In recent years, we have witnessed an incredible tech-
nological breakthrough, and so the mechanical arm has evolved
into a robot capable of collaborating with humans and operat-
ing safely in uncertain environments, thanks to structures with
advanced sensory capabilities. The new generation of robots at-
tempts to develop a more effective emotional relationship with
people, even to the extent of mimicking their physical charac-
teristics. Today, we speak of sophisticated robotics, which is
destined to incorporate and combine several professions and
specialties. For instance, in addition to the classic industrial one,
the concept of "service robotics" emerges, upon which so much of
our daily well-being depends: life assistance (fields of medicine,
surgery, and health, rehabilitation, and assistance for the elderly
and the disabled), security, home automation, and robots work-
ing in circumstances of imminent risk (exploration of oceanic
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Figure 2.3: Comparison of five generations of robots in terms of their
uses and attributes [1].

environments to prevent disasters, space exploration, uses for
defense, and civil protection). Five generations of robots are dis-
tinguishable: industrial robots, service robots, ubiquitous robots,
genetic robots, and biorobot (in Figure 2.3 we report the applica-
tion domain and the main characteristics). The most distinctive
characteristics of each of these generations are their technical
specifications and their purpose:

• Industrial robot. Industrial robots are robots "for use in
industrial automation applications." 1 There are four gen-
erations of robots in the industrial field, distinguished by
their adaptability to environmental conditions and their
ability to be reprogrammed for various tasks [46]:

1. The first generation of robots (1950–1967) utilises fixed-
sequence programmes. These robots are programmed
to perform only one or two tasks and cannot be mod-
ified. This diminishes their usefulness, as they can-
not be utilised for several applications. Due to the
absence of specialised sensors, they cannot communi-
cate with the external environment and are therefore
fully controlled by a control system. The hardware is
rudimentary. The operation of these machines must
be regularly monitored, since if they become out of

1 ISO 8373:2012 Robots and robotic devices Vocabulary;
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?cs
number=55890.
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alignment and are permitted to continue working, a
sequence of defective production units may occur.

2. The sensors installed in the second generation of robots
(1968–1977) determine their adaptive capability. In gen-
eral, they are simple programmable machines with lim-
ited self-adaptive behaviour options and fundamental
environmental recognition capabilities. These robots
are more capable of performing complex tasks than
those of the first generation. However, their adapt-
ability is limited due to the fact that each robot’s
software is dedicated to a certain task. As a result,
many robots have become application-specific devices,
which makes it extremely difficult to use the same
robot for different tasks, as this requires considerable
controller modifications and reprogramming of the
operating software. Second-generation robots may re-
main synced with one another without requiring reg-
ular human supervision. Obviously, periodic inspec-
tions are necessary for all machines since things can
always go wrong; the more complicated the system,
the greater the number of potential failure modes.

3. Third-generation industrial robots (1978–1999) are dis-
tinguished by increasing contact with the operator and
the surrounding environment via a complicated inter-
face (such as vision or voice). In addition, they have
some self-programming ability and can minimally re-
train themselves to accomplish different tasks. A form
of "intelligence" emerges, accompanied by certain (al-
though limited) adaptive capacities. Using data from
vision or perception systems to guide their actions
based on the task at hand, taking into consideration
the possibility of minute changes such as the posi-
tion of objects, these capabilities can be applied to
more complex tasks. They often have a controller and
are capable of operating mostly independently of an
external computer or human operator.

4. The fourth generation of robots includes more mod-
ern sensors and computers and can do more complex
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tasks without human involvement than the previous
three generations. They can be programmed to accom-
plish any task and are capable of executing a range of
tasks. The greatest advantage of robots of the fourth
generation is that they can be reprogrammed for any
purpose. In addition, their programming enables them
to accomplish multiple tasks simultaneously. However,
they are not yet capable of full autonomy because they
still require human intervention to fulfill their given
tasks.

• Service robot. Service robots "perform useful tasks for hu-
mans or equipment, excluding industrial automation ap-
plication"2. There are many types of service robots, such
as personal robots, guide robots, construction robots, and
surveillance robots. By assisting people with household
tasks, personal robots increase human productivity. The
change from industrial robots to service robots has changed
how people work at home and in the office. This is similar
to how the introduction of personal computers changed
how people work at home and in the office. In addition,
service robots assist people in public service places. Teach-
ing robots are used as guides in museums and exhibition
halls to show important information on a screen, and fire-
fighting robots put out fires on their own when they are
dangerous. Similarly, surveillance robots assist in the explo-
ration of hostile regions unsuitable for human expeditions.
Intelligence, Human-Robot Interaction (HRI), and move-
ment agility are key technologies for service robots.

ISO 8373 says that robots need "a degree of autonomy,"
which is "the ability to do the intended tasks based on cur-
rent conditions and sensing without human intervention."
This ranges from partial autonomy, where the human robot
can interact with it, to full autonomy, where the human
being can’t do anything to it. Thus, IFR statistics3 for ser-

2 ISO 8373:2012 Robots and robotic devices Vocabulary;
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?cs
number=55890.

3 https://ifr.org/service-robots
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vice robots include not only fully autonomous systems but
also systems based on some degree of HRI or even complete
teleoperation.

• Ubiquitous robot. The relationship between people and
technology has changed as computer technology has gotten
better. This has led to the rise of ubiquitous computing [1].
This innovative concept of ubiquity has spawned a new
generation of robotics, ubiquitous robotics [47]. Second-
generation service robots are distinguished by their au-
tonomous robotic platforms. Because of this, these service
robots could only work where they were at the time. Even
though there have been improvements in Internet network-
ing that have led to new architectures [48], these robots’
interfaces were limited by their physical size. In contrast,
ubiquitous robotics generates the concept of the ubiqui-
tous robot platform. Both the service and the interface
provided by pervasive robots are spatially unlimited. Brady
described robotics as the "intelligent connection between
perception and action." [49]. Ubiquitous robotics fits this
description by allowing us to redefine the relationship be-
tween the three components intelligence, perception, and
action and manifesting them separately as an intelligent
software robot (Sobot), an embedded perceptual robot (Em-
bot), and a physically active mobile robot (Mobot) [47], [50].

The main benefit of the ubiquitous robot system is that
it makes it possible to separate intelligence from the real
world by separating it from the ability to see and do things.
In other words, ubiquitous robots can be thought of as
networked cooperative robotic systems capable of provid-
ing quiet and continuous services. They are cognitive en-
tities capable of proactively moving, sensing, reasoning,
and executing activities, as well as adjusting to the cir-
cumstances they may encounter everywhere and at any
time. Not limited to physical robots but also capable of
integrating with any software agent running on everyday
objects such as smartphones, televisions, ovens, beds, of-
fices, etc., their studio is a valuable asset for creating a rich
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hybrid physical-digital space with a multitude of proac-
tive intelligent services that improve the quality of living
and working. These services are distinguished from con-
ventional centrally managed multi-agent systems by their
capacity to autonomously coordinate their operations with
other physical or logical entities in order to provide en-
hanced help and monitoring services. In addition, the rise
of cloud computing launches the widespread adoption of
a new generation of robots that enhance their cognitive
capabilities and share their knowledge by connecting to
cloud infrastructures [51].

• Genetic robot. Evolutionary robotics is an intriguing new
field of study that uses Darwinian evolutionary principles
to produce autonomous robots automatically. The concept
of evolution has expanded throughout the world since Dar-
win’s 1859 publication. Following Dawkins’ assertion that
"we and other creatures are machines built by our genes,"
it can be deduced that the genetic code must be the essence
of the origin of artificial species. The concept of artificial
chromosomes is the essence of a robot’s personality and
the genetic inheritance of its qualities. It is a necessary ele-
ment for simulating adaptation, which defines the origin
of artificial species. Considering the beginning in terms
of the artificial creature’s essence, the essence should be a
digital genetic code that determines a robot’s personality.
There are four major concerns regarding genetic robotics.
The initial factor is the robot- and application-dependent
representation of the genome. Evolution, development, and
adaptability are the last three. The purpose of evolution is
to produce a desired genome from generation to generation,
encoding a development mechanism and personality that
correspond to the user’s preferences. Development con-
sists of gradually accumulating predictive and anticipatory
capacities, and adaptation consists of ongoing optimiza-
tion to adjust to changing situations, respectively, during
the course of an organism’s existence through experiential
learning [1].
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In evolutionary robotics, an artificial "gene pool" is gener-
ated from which genomes encoding a robot’s control system
are extracted. Then, each robot is permitted to act and com-
plete tasks in accordance with its "genetically" specified
controller, and its fitness is graded based on how well it ac-
complishes a particular task. The robots are then permitted
to breed by exchanging genetic material, simulating biolog-
ical sexual reproduction. However, the genomes of living
organisms are also changed by development—activities
that occur during their lifetime and result in epigenetic
modifications.

• Biorobot. After humans and robots have figured out how to
coexist, the next stage is to use robots as biological species’
physical world assistants. Biologically inspired robotics is
distinguished by its multidisciplinary approach, which at-
tempts to enhance collaboration between roboticists and
biologists. Biorobotics is an interdisciplinary discipline that
merges biomedical engineering, cybernetics, and robotics
to develop new technologies that link biology with mechan-
ical systems in order to enhance communication, modify
genetic information, and make machines that mimic bio-
logical systems. Applications of biorobots include artificial
hearts, exoskeletons, prosthetics, diagnostics, and treatment
within the human body [52], [53]. Electromyography is one
of the most commonly employed biological signals in the
control methods of bio-robotics applications, as it can di-
rectly reflect the user’s motion intention or muscle activity
[54].

Biorobots can be applied to androids (robots that resem-
ble humans) to replicate living organisms or to cyborgs
(humans that resemble robots) to augment the physical
capabilities of humans. Bio-enabled technology is a new
field of study that aims to create robots or robotic com-
ponents that can coexist within a biological creature with-
out damaging the organism. Bioenabled and biocontrolled
technologies are required for numerous applications that
require biological entities for high-level implementation
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and control, respectively. Popular examples of this tech-
nology are artificial limbs for amputees. Activated by a
biological signal from the brain, the robotic limb replicates
the functionality of a genuine limb. Another subfield of
biorobotics, bio-embedded technology, focuses on living
organisms implanted in robots [1].

So, whether a robot is considered industrial, service, or other
depends on what it is used for. In the next section, we will try to
give an overview of the tangled robotic taxonomy with respect
to various aspects such as: design, interaction, etc.

2.1.1 Robotics taxonomy

In general, the literature lacks a clear and effective taxonomy for
robots. Indeed, it should be made clear that, depending on the
aspect considered, robots can be categorized differently. A clear
classification of a robot requires that its specifics be reported
for each of the aspects listed below. Some characteristics, in fact,
among the various aspects considered are cross-cutting and not
mutually exclusive. For example, non-stationary robots can have
both human and non-human features , this in fact depends on
the task for which they are to be employed, whether public inter-
action is required, such as at a reception [55], a home automation
context [56], or they are to be employed in a purely industrial
setting. Therefore, as much information as possible must be given
for clear classification. After a review of the literature, we believe
that the following are the main aspects to consider when wanting
to categorize a robot.

• Design. Regarding design, it is feasible to split robots into
three major groups (Figure 2.4):

Bio-inspired Robots. Humanoid, animaloid, and plantoid
robots emulate and simulate, respectively, human, animal,
and plant characteristics. Androids (if they possess male
physical features) or gynoids (if they possess female physi-
cal features) are a specific subclass of humanoid robots (the
terms are frequently used interchangeably) that not only
resemble humans but also copy their physical characteris-
tics, covering them with flesh- or skin-like materials. People
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Figure 2.4: A summary of the taxonomy of robot designs. List of robots
shown (left-to-right, top-to-bottom) Bio-inspired robots: HI-
4, ERICA, Kodomoroid, NAO, LOLA, Robotic Eyes, Elu-
motion, EMYS, AIBO, PARO, DragonBot, Keepon, GoQBot,
Meshworm, Robotic Flower, Lollipop Mushroom. Artifact-
shaped robots: Travelmate, AUR, Google self-driving car,
Greeting Machine, YOLO. Functional robots: CoBot, Quad-
copter, Beam, TurtleBot. Source: [2].

react differently to robots based on their appearance. The
form and structure of a robot are crucial because they help
develop social norms.

Artifact-shaped Robots. These robots appear to be creations
or innovations. They can be inspired by objects such as fur-
niture and commonplace appliances such as a toaster, wash-
ing machine, or desk lamp. Therefore, these robots show-
case how it is possible to transform objects into robotic sys-
tems while retaining their appearance. In addition, artifact-
shaped robots can be fictitious, translating the designer’s
creation idea, such as the Greeting Machine robot [57].

Functional Robots. The so-called functional robots, i.e., those
with neither a human nor an animal appearance, are ca-
pable of assuming a variety of physical forms, depending
on the task for which they are developed. Therefore, the
design is suitable for the task for which it is intended.
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• Locomotion system. If the emphasis is on mobility, two
groups are outlined: stationary robots and robots that can
move.

Stationary Robots. The term "stationary" refers to robots
that are anchored to the floor, ceiling, or other surfaces,
making them motionless. An example of a stationary robot
is an articulated robot arm, which is designed for tasks
such as selecting and putting, sorting, assembling, and
welding. In many ways, the motion of an articulated robotic
arm resembles that of a human arm. The conventionally
articulated arm has six axes, or joints. The more joints a
robot has, the less "robotic" and more "natural" its motion
becomes.

Non-Stationary Robots. There are four principal types of pos-
sible movement. Robots can move on ground, in water, in
the air, be wearable and therefore move with the user, or
none of the above, in the case of robots in orbit or in hybrid
mode [58]. AMRs AGVs are examples of "non-stationary"
robots. Autonomous Mobile Robots (AMRs) navigate envi-
ronments autonomously and make decisions in near real-
time, whereas Automated Guided Vehicles (AGVs) rely on
predefined tracks or routes and frequently require operator
supervision. In controlled locations such as warehouses
and factories, they are widely used to transport and deliver
materials. The former, instead, require the assistance of
other technologies, such as sensors and cameras, to col-
lect data about their surroundings. On-board processing
technology assists them in analyzing the environment and
making decisions, such as avoiding an approaching worker,
precisely picking up a certain object, selecting the appro-
priate target, etc. In general, these mobile systems require
minimal human intervention to perform their functions.

• Interaction. Recent and rapid advancements in robotic tech-
nology are bringing robots closer to jobs and applications
involving direct and indirect interaction with humans in
a range of settings, from the classroom to the workplace
to space. Research ranges from peer-to-peer collaboration
with anthropomorphic robots to how humans interact with
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Figure 2.5: Human Robot Interaction documents by subject area (source:
Scopus [3], keywords: Human Robot Interaction, accessed:
2022-09-20).

remote, remote-controlled, unmanned vehicles. The more
the man and the robot work together, the better the interac-
tion should be. This, together with communication, should
be intuitive to humans. More details on the concept of in-
teraction and the human-robot relationship can be found
in Section 2.2.

2.2 human-robot interaction

The study of HRI is currently a very broad and diverse field of
research and design that started to emerge in the mid-1990s and
early years of 2000. HRI is a multidisciplinary topic of research
that combines fields such as robotics, engineering, computer
science, human-computer interaction, cognitive science, and psy-
chology. The literature is quickly developing, with hundreds of
publications each year and activity by numerous professional
associations and ad hoc events, primarily in the technical fields
of engineering, computer science, and AI. The distribution of
HRI documents by topic is illustrated in Figure 2.5. It entails the
design and production of robotic hardware and software, the
analysis of human behaviour while engaging with robots in di-
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Figure 2.6: The keywords of the research articles of 2022 on HRI. The
node’s size represents the number of occurrences, while its
color indicates the relative cluster. Graph produced with the
VOSviewer program.

verse social contexts and how they affect each other, the design
of environments incorporating such interactions, and knowledge
of specialised applications. The keywords of the most recent re-
search articles on HRI are displayed in Fig. 2.6. It is evident from
the many research studies conducted that the main catalyst has
been a multidisciplinary approach.

The objective of HRI research is to construct models of human
interaction expectations with robots in order to inform the design
and development of algorithms for more natural and effective
interaction. Understanding in depth the dynamics of Human-
Robot Interaction is not, today, merely intellectual speculation,
but rather a necessity dictated by the constant increase, on a
global scale - in the workplace, in healthcare facilities, in the
home, and in rescue situations - of anthropomorphic and hu-
manoid robots, with whom we will be called upon to collaborate
in the future. It is useful to adopt the designer’s perspective,
breaking down the HRI problem into its constituent parts. Lit-
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erature study reveals that there are a number of challenges for
highly advanced HRI concepts that must be still solved [59]:

• Design. Depending on the context in which it will operate,
planning the design of a robot is not a trivial task and may
require the involvement of several professionals, such as
engineers, designers, user interface experts, etc. The robot
must be designed to optimize the quality of execution of
the actions for which it is created while also ensuring the
safety of the people who interact with it. It often needs
to be able to move efficiently in crowded environments
while dealing with unexpected events (obstacles, etc.). In
terms of design, however, there are some general guidelines
to follow and factors to consider. Defining the context of
the robot’s use and what its main functionalities will be
is critical to identifying the necessary design features and
requirements. It is also important to know the profile of
the robot’s users, their needs and preferences, to design
an appropriate design. Other choices include the type of
materials, possible geometric properties to be integrated,
and the creation of an intuitive and user-friendly interface.

• Security. One major issue is the potential for physical harm
to humans, either from direct contact with the robot or
from the robot’s actions [60]. For example, if a robot is
operating in a manufacturing setting, it should be designed
and programmed to avoid colliding with or hitting humans
[61]. Additionally, robots that are designed for use in homes
or other close proximity to humans should be designed to
be safe to be around, with appropriate safeguards in place
to prevent accidents. Another important issue is the risk
of cyber-attacks on robots. As robots become increasingly
connected to the internet and other networks, they may
be vulnerable to hacking and other types of cyber-attacks.
This can lead to a range of issues, including the theft of
sensitive data, the disruption of critical operations, and
the potential for physical harm if a hacked robot is used
to carry out malicious actions. To address these and other
safety and security issues in HRI, it is important to consider
the potential risks and take appropriate precautions, such
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as using robust security measures and conducting thorough
testing and evaluation of robot systems. It is also important
to consider the ethical implications of HRI and to ensure
that robots are used in a responsible and respectful manner.

• Programmability. Since robot systems can be used by un-
qualified and unskilled individuals who may have disabil-
ities, the interfaces designed to control or program them
should be natural and user-friendly. Reprogrammability,
scalability, and learning ability are key points in program-
ming: new features and new control algorithms should
be integrated without the need to modify those already
in place [62]. One of the main issues with HRI is the chal-
lenge of programming robots to behave in a way that is
appropriate and beneficial for humans. This can be a com-
plex task, as it involves designing and implementing algo-
rithms that enable the robot to perceive and understand its
environment, make decisions, and take actions based on
that understanding. Finally, programming robots for HRI

also requires careful consideration of ethical and social is-
sues, such as ensuring that the robot does not discriminate
against or harm humans and that it is used in a responsible
and respectful manner.

• Trustness. Because humans should coordinate with robots
to solve problems in a variety of settings, human confidence
in the machine is a crucial consideration. Team effective-
ness might be hindered if individuals do not trust robots
adequately, avoiding or misusing them due to insufficient
knowledge [63]. There is a need to ensure that the robot’s
actions are predictable and consistent so that humans can
understand and trust its behavior. This can be difficult to
achieve, as the robot may be required to perform a wide
range of tasks in a variety of environments, each with its
own unique challenges and constraints.

• Cognitive interaction. Humans interact with the environ-
ment using numerous resources at once. Therefore, they
should find it simpler to interact similarly with robotic
devices. In order to facilitate HRI in such systems, it is
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necessary to integrate many modalities with high-level in-
terfaces for robot programming and control. This can be
accomplished by combining vocal commands with gestures
and data derived through physical and tactile engagement.
Initially, systems must be able to detect the presence of
humans. However, the use of natural language to interact
with robots is still a matter of debate: robots must identify
the speaker, comprehend phrases, relate them effectively to
the real world, and recognise commands and instructions
in the voice stream [64]. The challenge of programming
robots to understand and respond appropriately to human
behavior and language often requires the development of
advanced AI algorithms that enable the robot to perceive
and interpret human actions and speech, as well as generate
adequate answers.

2.2.1 Classification of Interactions

Interaction, by definition, necessitates communication between
robots and people. This communication and consequently en-
gagement is influenced by the proximity or lack thereof between
the human and robot:

• Remote interaction. Humans and robots are separated in
space and/or time (e.g., the Mars Rovers are separated
from Earth in both space and time).

• Proximal interaction. Humans and robots are colocated
(e.g., service robots may be in the same room as humans),
and physical interaction may occur.

Understanding and modeling the interactions between one or
more people and one or more robots is the HRI challenge. Shared
contents between the robot and the human operator are identi-
fied as work space, direct contact, work activity, simultaneous
processing, and sequential processing. Shared space refers to
whether or not a person and a robot are operating in the same
area without any physical or virtual boundaries or separations.
Direct contact denotes a human and a robot having direct phys-
ical interaction. Shared work activity determines whether the
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Figure 2.7: The different ways a human worker and a robot can work
together: coexistence, cooperation, collaboration.

operator and robot are performing the same task for the same
work goal. A simultaneous procedure entails that the operator
and robot perform the same or separate tasks simultaneously. In
contrast, a sequential process entails the arrangement of human
and robot tasks in order, with no overlap in spatial scale. On
the basis of this summary, the classifications of the three types
of HRI (Figure 2.7) and the sharing of content in the production
environment are provided below:

• Coexistence. Humans and robots both work, but they do
not share a workspace or a shared goal. The interaction’s
objective is to avoid mutual obstructions and collisions.

• Cooperation. In a cooperative setting, both parties may be
working on separate but related tasks in the same (common)
workspace at once. Cooperative work involves the division
of labour between the robot and the human as an activity in
which each is responsible for a part of solving the problem.

• Collaboration. A human operator and a robot simultane-
ously work on the same product or component. It means
that there is direct contact and coordination, as far as inter-
action.

HRI requires evaluating the capabilities of humans and robots
and creating the right technology to achieve the required interac-
tions. Since, as we have seen, communication and interaction can
take many forms (strongly influenced by the proximity of the
human operator to the robot), it is possible, in general, to outline
four broad areas of application of the HRI concepts [65]:
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Table 2.1: Features of different Human-Robot Interactions.

Coexistence Cooperation Collaboration

Shared

Work space X X

Direct contact X X

Work activity X X

Simultaneous

process
X X

Sequential

process
X

• Routine tasks. Human surveillance of robots while per-
forming routine tasks [66].

• Non-routine tasks. For non-routine tasks, such as remote
control of space, air, ground, and submerged vehicles in
hazardous or inaccessible environments [67].

• Automated Driving Systems. Automated vehicles with hu-
man passengers, such as automated highway and rail vehi-
cles and commercial aircraft [68].

• Social interaction. Social interaction between humans and
robots, such as robotic devices that provide entertainment,
education, comfort, and assistance to the young, elderly,
autistic, and disabled [69].

Based on these considerations, we can distinguish three distinct
groups of robots: autonomous robots, telerobotic devices, and
interactive robots.

• Autonomous robots. Autonomous robots have the capacity to
do their tasks without direct human intervention. A robot is
really autonomous if it can perceive its environment, make
decisions based on what it senses and/or has been taught to
recognise, and then perform a movement or manipulation
within that environment. Therefore, autonomous robots,
like people, are capable of making independent decisions
and acting accordingly. True autonomous robots are smart
machines that are able to accomplish tasks and operate in
an environment without human interference. This level of
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autonomy enables the workforce to delegate tedious, haz-
ardous, or dirty activities to the robot, allowing humans to
devote more time to the fascinating, engaging, and valuable
aspects of their jobs. In recent years, however, the term "au-
tonomous robot" has been oversimplified and frequently
used interchangeably with pre-programmed machines, not
to mention automated actuators such as robotic arms and
motion control systems. Simply explained, an autonomous
robot is one that determines its own course of action based
on the data it has gathered. The Roomba is one of the most
well-known and prolific true autonomous robots on the
market today [70]. It can make judgments and take action
based on its perceptions of its surroundings. It can be set up
in a room and left alone to do its function without human
assistance or monitoring. A system of sensors enables him
to perceive his environment, decide on a course of action
based on his impressions, and then act accordingly.

• Telerobots. Sheridan, in his work [4], categorized a teleop-
erator as "a machine enabling a human operator to move
about, sense, and mechanically manipulate objects at a
distance" and identified a telerobot as a "subclass of a tele-
operator in which the machine acts as a robot for short
periods, but is monitored by a human supervisor and repro-
grammed from time to time." Telerobots are commonly em-
ployed to explore subsea and extraterrestrial environments,
disarm bombs, and clear up hazardous trash. They are
present in a variety of remote control applications, includ-
ing telemedicine, distance learning, industrial automation,
and the military. The primary challenges and constraints of
remote telecontrol include control network issues such as
insufficient bandwidth, transmission delays, and missing
packets. All of these restrictions hinder the performance of
remote-control telerobotics. On the basis of a sliding scale
of operator (human) engagement, existing telerobots can
be divided into two primary categories: direct and manual
control and supervisory control (Fig. 2.8). Manual control
(also referred to as "direct teleoperation") enables the oper-
ator to remotely command the robot’s actuators. Remotely
operating a vehicle using joysticks and remotely placing a
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Figure 2.8: A spectrum of telerobot control modes drawn from Sheri-
dan’s work [4]. On the left is a mechanical linkage in which
the human directly controls the robot from another room
via sliding mechanical bars, while on the right is a system
in which the person’s function is confined to observation
and monitoring. The dashed lines suggested that there may
be intermittent contact [5].

manipulator arm with a force-reflecting master/slave con-
troller are instances of manual control. Numerous potential
advantages of robotic manipulation over human manip-
ulation include agility, precision, repeatability, automatic
trajectory tracking, and the ability to satisfy constraints in
the position and velocity domains.

Through periodical monitoring and reprogramming, hu-
mans supervise some kinds of robots as they complete their
routine tasks. These are the telerobots with supervisory con-
trol, which are capable of performing a limited sequence of
tasks autonomously based on a program, as well as seeing
their environment and joint locations and communicating
that data to a human operator who updates his computer
instructions as needed. Therefore, in this case, a telerobot is
a computer that is periodically reprogrammed by a human
supervisor to do portions of an overall work. These tasks
may involve, for example, handling parts on production



2.2 human-robot interaction 53

assembly lines and gaining access to and delivering goods,
components, mail, and medications to warehouses, offices,
and hospitals. For supervisory control operations, includ-
ing planning, automatic control monitoring, repair, and
learning from experience, human operators are necessary.
Supervisory control is exemplified by the remote operation
of the Mars Exploration Rovers (MERs; Spirit and Oppor-
tunity) [71] via daily "uplink" of command sequences and
"downlink" of recorded data.

• Interactive robots. In some application areas, humans prefer
to interact with machines in the same way they interact
with other people, in an equal relationship that is as natural
as possible. So, we need to tell these robots apart from those
that have passive interactions where the machine serves the
person, like in teleoperation scenarios. Active interaction
and social skills are needed in several areas. This is the
case, for example, with robots that mediate human-human
interaction, such as in autism therapy or when used in
Social Engineering contexts. Social Engineering is the use
of psychological manipulation and persuasion techniques
to influence individuals to divulge sensitive information
or perform actions that may not be in their best interests.
These techniques can be used in person, over the phone,
or online, and can range from simple, seemingly innocent
requests for information to more sophisticated schemes
that exploit the trust and goodwill of the victim.

This class of robots is called interaction robots, and they
may or may not have social attitudes. The Rhino robot is a
mobile tour guide that can find its way around a museum
and play pre-recorded descriptions of the exhibits. It has
been used in real museums, where it has increased the
number of visitors by at least 50%. The development of
natural, human-like interaction has not taken into account
the emotional and cognitive states of the user with whom it
interacts. Active interactions can therefore be distinguished
into two groups: those that have a social and awareness
characterization those that do not. However, these latter
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three notions were referenced less frequently than the five
concepts that came before them.

2.3 the rise of humanoid social robots

In contemporary HRI research, the socio-emotional aspect of in-
teraction has assumed a major position. Observations were made
about the cognitive and emotional involvement of humans dur-
ing interaction. Multiple studies clearly support the notion that
interacting with robots is complicated and elicits profound social
and emotional responses, both positive and negative, exposing
the user to both benefits and risks. Is a robot that can initiate
contact and learn personal information about users on which to
rely to make decisions more of a problem for subject privacy or a
useful ally in everyday actions? Surely, a HRI system that can per-
ceive and respond to the emotional states of its users possesses a
number of potential advantages. For instance, it has been demon-
strated that HRI projects that include socio-emotional interactions
in aged care applications improve health outcomes by promoting
positive moods and lowering user feelings of loneliness. Individ-
uals have a natural predisposition to respond socially and apply
social rules to technologies, as demonstrated by research [72]. As
a technology, this is likewise to be expected when engaging with
robots.

Social robots, or robots purposefully built to interact with hu-
mans socially, enable humans to connect, interact, and associate
with robotic technology in a new way. To the current robotic
technology are added social capabilities to have more natural
interactions with people, making their use particularly effective
for specif application areas where the social factor is key and
it is beyond a simple interface. In the social robotics literature,
there isn’t a general definition of a social robot that everyone
agrees on. Kate Darling, a social scientist, offers a comprehensive
definition of these social robots: "A social robot is a physically
embodied, autonomous agent that communicates and interacts
with humans on an emotional level... Social robots also follow
social behavior patterns, have various states of mind, and adapt
to what they learn through their interactions" [73]. In general,
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there is a lack of broad agreement in terms of understanding
what these robots do and what, specifically, makes them social,
such as communicating, cooperating, and making decisions with
humans. Certainly, in the context of HRI, such robots take on a
special role and fall into the category of "proximal interaction,"
in which humans and machines interact and share the same
spaces. Based on a literature review of several relevant papers,
[74], [2] we report the following key social traits, defined by users
and academics, needed to classify robots as belonging to this
category:

• Communication. The capacity to interact with the expec-
tation of generating a human-like experience. According
to studies, individuals felt unsatisfied and disappointed
when robots failed to produce effective and fluid commu-
nication [74]. To achieve this, communication by natural
language alone is insufficient; several non-verbal modalities
must also be incorporated, such as movement [75] - pos-
sibly involving gaze [76], gestures, or facial expressions -,
lights [77], sounds [78], or a mix of these [79]. Mavridis [80]
offered an overview of verbal and non-verbal interactive
communication between people and robots, identifying ex-
isting communication kinds such as interaction grounding,
affective communications, speech with a goal, and planning,
among others.

• Feelings and emotions. Beyond the capability of simulating,
perceiving, and showing the five basic emotions such as
anger, disgust, fear, happiness, sadness, and surprise, more
profound affective responses such as empathy must be in-
cluded to produce a more effective and realistic interaction.
For instance, Paiva et al. [81] examined how robots and
other artificial agents might replicate and elicit empathy in
their interactions with humans [2].

• Stimulus adaptation. In addition to being programmed
with social skills, social robots must display autonomy and
environmental awareness, acquiring the ability to react and
adapt to stimuli while simultaneously learning from them.
The ability to hone one’s skills over time through adaptation
or even to develop new ones is therefore required. Modeling
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human agents enables robots to interpret features of human
communication or behaviour and respond appropriately
[82].

Communicating with humans on an emotional level involves
a form of interaction that is based on verbal communication as
much as on visual and tactile perception. For this reason, social
robots mainly resemble humans or animals in appearance. An-
thropomorphism and social affordances indicate the potential
to communicate with a user, which is a definitive function of
Humanoid Social Robots. Humanoid Social Robots (HSRs) are
technologies developed by humans that can adopt a physical or
digital form to mimic humans in shape or behaviour to some
degree. They are equipped with humanoid characteristics and
have been developed to communicate with humans. Examples
of HSRs include conversation agents (e.g., chatbots or voice as-
sistants like Siri and Alexa), built-in conversation agents (e.g.,
virtual coaches or healthcare professionals), consumer robots that
specialize in education and home care (e.g., Zora), and robots
designed primarily to interact with humans (e.g., Pepper). This
definition therefore excludes industrial robots, robotic appliances,
self-driving automobiles, and telepresence robots, which do not
interact socially and semi-autonomously with humans.

Although robots will undoubtedly grow more adaptable, so-
phisticated, and smart in the future, the HSRs that the typical
human customer will likely encounter in the next few years
will continue to have restricted capabilities due to their com-
plexity, cost, and technological limitations. Modern HSRs are
characterised by the ability to make decisions and behave in-
dependently, although they are not entirely autonomous: they
might necessitate that a human user initiate activities (e.g., by
pressing buttons, writing a script, or launching a program) or
engage, oversee, or interfere in the process. Humans are also
required to handle maintenance, such as recharging or cleaning,
and manage any obstacles or technological problems the robot
encounters. Social scientists seeking to understand and explain
HRI must consider the current state of HSRs and adopt a practical
perspective of the foreseeable future rather than relying on as-
sumptions that technological advances in AI and robotics will be
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so swift as to obviate the need for theorizing in the intervening
years or decades.

The degree to which contemporary HSRs resemble and are
viewed as human, or their anthropomorphic features, varies.
Form anthropomorphism involves also sensory signals, like voice,
that provide a robot a human-like appearance. Modern HSRs are
unlikely to be mistaken for humans due to their low levels of
behavioural anthropomorphism in terms of gestures, spoken
messages, and non-verbal expressions, despite their high levels
of morphological anthropomorphism. Modern HSRs are unable
to converse in a human-like manner due to their limited social af-
fordances and technological capabilities. The inability of modern
HSRs to attend to, recall, and exploit pertinent information from
previous interactions with a human user is a significant issue that
lowers social perceptions. Most robots do not retain a record of
earlier interactions, and if they do, retrieval is limited to a handful
of questions relevant to the activity they are scheduled for. Mod-
ern HSRs are unable to interpret interactional history in the same
way that humans do, and their capacity to apply this information
to novel social contexts is restricted. Due to the restricted func-
tions modern HSRs are intended to complete, interactivity might
be challenging to manage. The robot is limited to a small number
of replies, restricting responsiveness and contingency, which can
contradict user expectations and undermine emotions of close-
ness and trust. HSRs offer low conversational control due to their
human-centered design and limited interactivity. They lack the
autonomy to change topics or tasks, as well as to interrupt or end
interactions with human users. HSRs are designed to meet the
demands of human users, and humans do not require deviations
or rebellion. Personalization, or personalising an interaction to a
specific individual, is not possible for the robot since it lacks a
lasting memory and the ability to execute contingent actions. In
personal connections, individuals modify their communications
depending on their prior knowledge and experiences with a tar-
get, thereby fostering feelings of closeness. Similar customization
is desired and anticipated from HSRs. However, the majority of
HSRs are unable to identify or differentiate between users; they
treat all users identically, regardless of individual differences or
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previous encounters. Even for robots that can recall some criteria
for a particular user, this information does not help customise the
message in real time based on the recipient’s verbal and nonver-
bal cues. Collectively, these constraints show that contemporary
HSRs lack a significant number of the core social capabilities of
humans. Even if HSRs are capable of engaging in certain forms of
social interaction, these constraints have ramifications for how in-
teractions unfold over time and, more crucially, the sustainability
of building relationships with humans [83].

2.3.1 Interaction: the social consequences

How should robot programmers of the future behave?

The massive diffusion of technology and robotics imposes the
need to think about how one wants to decline the society of
the future and how one wants to set up the relationship with
technological and robotic tools. Technology and robotics raise
various moral, legal, and social concerns. Will the relationship
between people and robots, for instance, cause psychological and
social issues, particularly among children and the elderly? Sev-
eral questions remain unresolved. The legal concerns and issues
relating to the civil and criminal liability of robots should not
be disregarded (the example of autonomous machines is before
our eyes). Privacy and the protection of human liberty, the social
sphere, and medical and military robotics will be other crucial
topics. In order to prevent these tools from becoming a threat to
human safety, a global reflection involving experts from a vari-
ety of fields is required with the purpose of studying the risks
associated with the spread of these machines, regulating their
use in the various sectors, and minimizing the risk of technology
becoming a tool of abuse against humanity, as has happened
all too frequently in the past. Ethical reflection emerges from
the requirement for accountability in the development of these
technologies [84].

In the 2000s, in the wake of the International Symposium on
Robotics, the concern for ethical dilemmas, which frequently
encompass social, philosophical, and regulatory ramifications,
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began to consolidate in the field of robotics [85]. Insofar as it
affects human life, the programming of an autonomous robot
requires study of anthropological, sociological, psychological,
and other pertinent areas of the human sciences. In other words,
it necessitates ethical consideration, which falls under the realm
of the ethics of developing technologies, a hotly debated subject
in relation to AI in particular. Autonomous robotics involves a
necessary contribution from AI, which is essential to support the
functional autonomy of machines. In a situation where the robot
is supposed to interact with actions that are usually done by
humans, ethical issues cannot just be about technology. Ethical
work is to connect intentions with applications and to detect,
correct, or denounce activities that are regarded as inappropriate
or too risky for the maintenance of the same moral ideals that can
be associated with the many areas of operation in which robots
operate. There are two different paradigms on which it is neces-
sary to reflect: roboethics and machine ethics. Today, there are at
least three primary definitions of "roboethics": First, roboethics
is the ethics of humans who build and use robots [86]. Moral
responsibility covers the behavior of human agents who develop
and use robots [87]. Lastly, roboethics might be defined as the
desire to give robots rights and responsibilities, as if they were a
new intelligent species [88]. Machine ethics, on the other hand,
refers to a field of study that combines AI and robotics. [89]. In
this instance, moral responsibility pertains to the robot, which
is able to make judgments because of complicated control and
learning systems created by humans.

Security is one of the key values of ethical analysis. In robotics,
risk analysis generally focuses on threats to people’s physical
safety. But there are also risks to psychological safety, which
are more important than ever as robots get better at interacting
with people. As a result of a collision with a robot, a physical
hazard is the potential damage to a person’s body, such as injury,
crushing, or trauma. On the other hand, a psychological hazard
is the chance that a person’s mental health could be hurt by
interacting with a robot. The interaction can impact the cognitive,
social, and emotional-affective domains. According to Lasota,
Fong, and Shah’s study [90], "Psychological Safety" involves en-
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suring that the person perceives the interaction with the robot
as safe and that the interaction does not cause psychological
distress or stress due to movement, appearance, gaze, manner
of speaking, posture, social conduct, or any other attribute. Ac-
cording to the authors, to ensure psychological safety, the robot’s
behavior must be controlled, either by modifying certain param-
eters such as speed, acceleration, proxemics, or appearance, or
by implementing into the robot’s behavior the social conventions
used in interpersonal relationships and taking into account the
personality traits, experience, and culture of human users. Before
a few years ago, psychological safety in robotics was mainly
focused on risks from worry and stress. In industrial or collabo-
rative applications, factors such as ergonomic risks were taken
into account due to the position of the worker while using the
robot, cognitive load resulting from poor usability of interfaces,
boredom triggered by interaction perceived as too passive, etc.
Nowadays, psychological danger, on the other hand, is becoming
a more important topic of discussion, even in the field of service
robotics, especially when it comes to social robots.

The social effects of robotics depend a lot on how people use
robots and, even more importantly, on how robotics develops
technically. Through their design, social robots can have a so-
cial impact on humans [91]. The importance of proper design,
including aesthetic design, for robots is proving increasingly im-
portant, because this seems to affect our attitude toward them.
For example, it has been found that we tend to prefer robots
with anthropomorphic features because they make interaction
with them more natural and less disturbing. Beyond design, it
turns out that it is crucial not to ignore the human emotional
aspect. An interesting study, which came out in March 2021 in
the journal Frontiers in Psychology, looked at how a group of
people felt when they had to work with a robot to do some tasks.
The researchers saw how system errors or a lack of feedback trig-
gered negative emotions in the participants, such as frustration,
irritation, and annoyance. This made people less confident in
their ability to work with robots and less likely to accept them.
It has also been shown that when a robot has no particular use,
negative feelings are often expressed. The robot is perceived as
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useless, and its presence becomes annoying. An anthropomor-
phic design and the feedback of the operator thus seem to be
factors that should be considered in the developmental stages
of the robot in order to successfully foster interaction with people.

Psychology has extensively studied what behaviors involve
social impact. Peer pressure is a type of social influence that
comes in two forms: informational social pressure and normative
social pressure. When an individual makes a decision based on
what others say, this is known as "informational social pressure."
In a bar where the menu is in a foreign language, for example,
you are more likely to order the same drink as your fellow diners.
Faced with ambiguity, individuals tend to follow the actions of
others. People experience normative social pressure when they
follow others, not because of doubt but because they do not
wish to have a different perspective from others. Solomon Asch’s
results indicate that people readily conform [92]. Asch asked
for a group of volunteers to undertake a simple visual exercise.
The task is so simple that a participant makes no mistakes when
working alone. But when the task is done in the same room as
people who give wrong answers, the participant is more likely
to give a wrong answer as well. Normative social compliance is
the need to follow social rules even when you know that your
answer is wrong. This has been shown to occur with robots as
well. Volmer et al. showed in their study that 8-year-olds are
socially pressured by robots [93]. When they did the same visual
test that Asch did in his first study, the kids tended to pick the
wrong answers that the robot gave.

2.4 soft biometrics for humanoid social robots

The perception of humans by other humans remains a mystery,
as it is a complicated process that includes the examination of
natural (biometric) traits and the building (synthesis) of a model
that leads to conclusions or the identification of things and peo-
ple in the environment. In order to endow robots with social
intelligence, models of AI are incorporated.
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Social robots must be able to identify a person’s identity, feel-
ings, or group them according to their age, gender, or race. To be
credible, social robots must be socially intelligent and adaptable
in their behavior. To do this, they need a model of the environ-
ment and the user. This model may include the user’s profile,
feelings, personality, and how they have interacted with them in
the past. A social robot should be able to notice and understand
changes in its environment so that it can make decisions about
how to act in different social settings and operate based on the
information it has gathered. For instance, when a robot operates
as a receptionist in a public space, a first level of adaptation can
be applied to make the robot aware of the types of individuals
in its field of vision and modify its speech on the basis of their
"visible" features. For instance, the robot may adapt its behavior
to the situation. For social robots to be believable, they need to
be socially intelligent and change how they act based on what’s
going on. To do this, they need a model of the environment
and the user, which could include the user’s profile, emotions,
personality, and interactions with them in the past. Based on the
information it gathers, a social robot should be able to notice
and understand changes in its environment so it can make de-
cisions and act appropriately in different social situations and
according to its role. For example, when the robot acts as a re-
ceptionist in a public space, a first level of adaptation can be
implemented to make the robot aware of the types of people
present in its eyes and adapt communication to their "visible"
characteristics. For instance, the robot could change the level of
formality and vocabulary based on the age and gender of the
user. Integration of biometric solutions is therefore necessary [94].

Biometric applications in the field of robotics can be divided
into two distinct categories: those designed for cooperative sub-
jects and those designed for use in an uncontrolled environment.
For business applications, security robots could discriminate
between permitted people and intruders in limited regions. Uni-
versities could place them on exam room doors to verify that
students taking exams are who they claim to be. Convention
centers may monitor exhibit hall entrances and limit admission
to special events. The list of potential outcomes is vast. Obviously,
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when dealing with cooperative subjects, often those who wish to
obtain access to a location or receive a specific service, you can
select the biometric modality you deem most appropriate and
demand the subject position himself or herself as optimally as
possible for collection. However, many robot-based applications
will include uncooperative subjects. Non-cooperative subjects
are individuals who conduct themselves normally without in-
teracting with the robot. Their biometric information must be
obtained without their consent. In terms of data acquisition, this
means paying more attention to the hardware you use. As long
as a camera is positioned to collect an unobstructed front-facing
image and is strong enough to record it with at least 30 to 50

pixels between the subject’s eyes, a facial analysis engine has
enough data to perform its function. The National Institute of
Standards and Technology (NIST) did a study in 2015 that found
that when operational requirements are met, the accuracy of
facial recognition with non-cooperative subjects is close to the
accuracy with cooperative subjects. The same report also con-
cluded that achieving this goal is extremely difficult.

In general, in HRI, facial recognition is one of the most common
biometrics used. Unfortunately, capturing unobstructed facial im-
ages is not so easy. Approaches to facial recognition are sensitive
to the lighting and the quality (size, orientation, and segmenta-
tion) of the area of interest. In addition, there is no alternative
solution for people wearing hats, masks, or sunglasses, so occlu-
sions are a problem. As a solution, combining other vision-based
and non-vision-based soft biometrics can help make the robot’s
responses more reliable when it is in an unconstrained and dy-
namic environment. Soft biometrics can be used effectively in
interacting with a Social Robot to improve its awareness of its
surroundings and its perception of humans around it. This ability
is a key factor in increasing the success of the interaction as it
helps to improve the so-called "social credibility." For example, a
robot could change how it interacts with people based on what it
sees about them. Soft biometric traits that can be studied include,
for example, facial expressions, voice, heart rate, and the way a
person walks. These are things that people do unconsciously and
can’t always control, but they can be used to learn interesting
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things about the user: not just who he is, but also his emotional-
cognitive state and a rough estimation of his health status.

Despite the fact that soft biometric features for Humanoid
Social Robots are extensively studied in the literature for a wide
range of applications (health, emotion recognition, security, etc.),
there is neither a comprehensive collective study nor a single
reference collection text that highlights their potential and limita-
tions.

In our studies, we showed how adding biometric, emotional,
social, machine learning and other capabilities to the robot, while
enabling advanced functionality and additional tools for user
and environmental control, could still raise issues of security and,
of course, privacy.
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S TAT E - O F - T H E - A RT

In recent years, researchers have found a multitude of specific
challenges regarding Social Robots. The main concerns include
privacy [95], bias and discrimination, deceptive robots [96], phys-
ical security [97], discussions about robot ethics in different con-
texts, and robot morality [98]. How do we ensure the efficiency
of human-robot interaction and the assurance that it takes place
safely both physically and in terms of protecting the subject’s
personal and sensitive data? This was one of the main challenges
found in the literature and then highlighted by us and addressed
in several papers. Also interesting are the behavioral challenges:
what types of social cues can be inferred from human behavior,
and what types of behaviors should a robot exhibit to ensure the
friendliest and most fruitful interaction possible? Biometrics is
one of the most important technologies we’ve used to make this
happen. More details on the state-of-the-art literature in which
such issues were highlighted below.

In HRI, people’s trust in robots is influenced by their pleasant
and friendly look, their behaviour, and the interaction’s context.
Social engineers utilise safe contexts such as the job, the home,
and relaxing situations to make individuals feel at ease. Social
constructions such as authority, persuasion, and lying are the
foundation of Social Engineering attacks [99]. Such characteristics
can also be easily embedded in Social Robots. Several studies
have shown that people try to meet robot requests even if they
appear strange and sound not transparent [100]. Geiskkovitch
et al. [101] constructed a scenario in which a robot exhibited
authoritarian behaviour, compelling people to continue perform-
ing a task even if they found it tedious and were unwilling to
continue. The propensity to engage with robots [102] and follow
their ideas can also lead consumers to purchase merchandise
or an unnecessary extended warranty on a product or service,
for instance [103]. Persuasion uses the power of words, and its

65
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success is due to the ability of robots to interact effectively with
users. Tseng et al. [104] created a human awareness Decision
Network model in which robots may change their behaviour
to match user expectations. Multiple studies on online social
networks have demonstrated that people’s views and conduct
may be transformed and influenced by the information presented
[105]. Social Robots are an additional tool for communicating
information that can be used to psychologically manipulate in-
dividuals. Vollmer et al. [106] have demonstrated that especially
younger age groups are susceptible to their influence. Conse-
quently, issues such as information security and overconfidence
in robots are growing in importance. Different researches [107]
[108] tried to provide an understanding of how Social Engineer-
ing can be used to abuse trust in robots. Robots seek to obtain
personal information by asking a series of intimate questions,
first employing Social Engineering tactics to get closer to the
target anonymously and then exploiting the trust earned through
a natural and empathic relationship. Aroyo et al [109] employed
a humanoid robot to assist participants in a treasure hunt game
in which the objective was to locate concealed things (eggs) in a
room in order to win a monetary award. This activity provided a
compelling environment in which participants’ trust in the robot
could begin and increase throughout the engagement. The vast
majority of individuals answered all questions without hesitation.

We proposed the paper [6] that also integrated into HRI a
strategy that used emotion recognition to improve information
gathering by understanding subjects’ predispositions to reveal
them. This was done because the existing body of research on
Social Engineering in the robotic domain lacked a focused and
verticalized study investigating this paradigm. Compared to the
work that had been done up to that point that was considered to
be state-of-the-art, this study was especially interesting because it
consciously integrated different modules of emotion recognition
for the purposes of Social Engineering in the interaction between
a person and a social robot.

Emotions were also analyzed in a subsequent study [110],
where the robot was used as the fulcrum of a more complex
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IoT system of smart devices ranging from simple environmental
sensors up to Deep Learning (DL) enhanced smart cameras. Inno-
vative was the idea of examining the concepts of IoT, trust, and
robots in a comprehensive framework, where such a study ap-
peared to be lacking in the literature. This study focused on how
these components could work together to create an IoT-based
ecosystem that would grant or deny users permission to perform
specific actions based on the level of trust they’ve established
with the ecosystem. When a user performed an action, the entire
context detected by the smart object ecosystem was evaluated to
determine the level of trust.

IoT systems are able to incorporate several heterogeneous de-
vices with distinct components, attributes, and programming
languages for interoperability. IoT applications appear to have
endless potential and require only the most fundamental pre-
requisites. On the basis of these needs, it is feasible to establish
three categories: some systems are based on real-time monitor-
ing, others on data analysis, and still others on the interaction
between different devices [111]. It is essential to have real-time
information in a healthcare ecosystem. Continuous monitoring of
a patient’s health state and immediate notification of any urgent
difficulties are required. Wu et al. presented a heterogeneous
network of wearable Internet of Things sensors. The device may
monitor physiological and environmental data, including am-
bient temperature, relative humidity, CO2, body temperature,
and heart rate, among others [112]. The acquired data in smart
cities can be utilised to generate projections, make suggestions,
and enhance the quality of life for their inhabitants. In fact, it
is feasible to conceive of a system that optimises the use of en-
ergy between the business and residential sectors of a city, as
well as an intelligent traffic monitoring system that aims for eco-
efficiency [113]. In the context of home automation, the Internet
of Things connects a number of sensors with image processing
and decision-making units. The authors of [114] offered an IoT

framework that incorporated components such as a smart ther-
mostat, central air conditioning, connected lights, windows and
ventilation control, a smart refrigerator, etc.
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There are numerous trust models that function inside an
ecosystem of IoT devices. As in relationships, trust in IoT eco-
systems is built on humans, devices, or agents who act in a
manner that maintains positive future encounters, as opposed to
behaving based on personal interest. Rashmi and Vidya Raj [115]
defined Social Internet of Things as the social relationship in the
network of IoT devices, where nodes are connected by social ties
that define their interaction and have a shared objective. The trust
between various devices can be quantified, thereby determining
the trustworthiness of the overall network of devices. Bao and
Chen introduced a scalable trust management system for IoT in
2012 [116] that stressed the social ties between nodes with factors
such as honesty, cooperation, and community interest. Based on
these three factors, each node of this device network performed
an evaluation of its nearby nodes. Consequently, direct observa-
tions and indirect recommendations were used to evaluate the
trustworthiness of each node and, by extension, the network.
Changes in node trust were the most prevalent concern with this
type of trust mechanism. To tackle this issue, an intriguing dis-
covery was made in [117], which gave a reputation trust model
based on historical knowledge of the behaviour of the node and
used the centrality metrics of the network for this purpose. The
concept derives from the reality that one object could trust an-
other depending on the latter’s reputation. A similar model has
also been proposed in [118]. This study presented a guarantor
in addition to a trust-based model and employed two factors
for managing trust and detecting malicious nodes: credit (of a
device to allow communication as a guarantor) and reputation
(which measured the reliability of the device). Zero Trust Archi-
tecture (ZTA) [119] was an evolving collection of cyber-security
paradigms that changed security from a static and implicit nature,
based on network rules and areas, to a dynamic and contextual
state that needed to be examined continuously.

In [110], we offered a ZTA and combined numerous smart-
services using Pepper to undertake a continuous evaluation of
user behaviours in a smart home in order to determine their
relative level of trust. The home as a case study and the analysis
of human actions and behaviors through Pepper, who turned out
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to be an actor in a larger smart object system, were concepts also
explored in our work [120]. In this work, we chose to model the
Digital Twin (DT) of the robot and the smart devices around it in
order to simulate them.

The DT can be used in a plethora of ways and may be helpful
in a lot of different industries. The fields that would benefit from
greater use of this technology are those that do not need to be
connected to the physical system in real time. These include
perception and cognitive abilities that lead to more autonomous
and smart robotic systems. Industry 4.0 is based on the idea of
DT, which is an important part of it [121]. Advanced network
technology has made it possible for production equipment, smart
subsystems, and mobile devices to share enough information
with each other [122]. This assumption makes it possible for DT

approaches to be used in industrial fields.

Industrial robotics has used virtual simulations a lot in order
to improve the performance of industrial processes [123]. In [124],
the authors showed how DT helped with the design, development,
and management of systems that combined humans and robots
to make things. One of the most important parts of HRI is making
sure that movements keep people and the robot safe. Dröder et
al. [125] created a part of an experimental simulation platform
for Human-Robot Interaction that uses ML to find obstacles.

In recent years, the DT has expanded its research areas to in-
clude things like cybersecurity [126] and production planning
[127]. In [127], the authors explained how to apply the DT concept
to a body-in-white production system for conceptual and plan-
ning projects. The described system keeps the planning project
up to date by using information from the cybernetic system.
Instead, in [126], the authors tried to combine DT’s ideas about
productivity and security in order to make production environ-
ments safer. In a virtual world, cobotic production systems can
get better at defending themselves against attempts to stop pro-
duction or hurt other machines or people.
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Even in the healthcare sector, DT can be particularly interesting
for helping to understand what is normal and what is not, or for
working with IoT systems to keep track of a patient [128]. In [129],
the authors proposed a prototype DT system for remote surgery
that includes a robotic arm and an HTC Vive virtual reality sys-
tem connected over a 4G mobile network. The Universal Robots
UR3 robotic arm was used as a tool for surgery. Instead, in [130],
the authors described a Universal Robots UR10, an industrial
robot arm whose DT receives continuous and real-time informa-
tion about the status of robotic arm joints. In [131], the authors
combined DT technology with Deep Reinforcement Learning to
control the arms of humanoid robots, chosen because they can
move in many different ways and have a complex mechanical
structure. Their idea was a robot joint trajectory planning scheme
for situations where robots need to do more than one thing at
once.
The study of a robotic arm with the purpose of making people
learn how to touch people and objects safely in a broader context,
such as cooperation between digital and physical robots, is at the
heart of our work [120]. This has grafted itself into the literature
landscape as an early example of integrating concepts such as
health, robots, and DT. In the paper, we presented a case study
that made effective remote eldercare possible.



4
O U R C O N T R I B U T I O N T O L I T E R AT U R E

The evolution of robotics never ceases to amaze. Alongside the
development of increasingly advanced robots, both in terms of
software and hardware, there has been vivid research. In the com-
ing decades, robotics is destined to meet more and more with
other disciplines that today are seemingly distant from the world
of technology, giving rise to a hybrid future in which, thanks to
developments in Human-Computer Interaction, robots will enter
more pervasively into our lives, from factories to medicine, from
education to care for the frail.

Our laboratory’s research group for study and experimental
research relative to the field of robots has joined the trend of work
in the literature that appreciates the potential of this paradigm
in a wide variety of areas. Emotion recognition, healthcare, and
security are the three macroareas we have focused on in these 3

years of research. For our studies and applications we made use
of the robot Pepper.

Figure 4.1: Pepper robot and its characteristics.

71
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Pepper is a social human robot developed and released by the
French company Aldebaran Robotics SAS for SoftBank Robotics
Corp. Figure 4.1 outlines the principal technical specifications of
the robot.

About 25 embedded sensors enable the acquisition of infor-
mation using three of the five human senses: sight, touch, and
hearing. Specifically, they are incorporated in the head and the
legs. The head is outfitted with communication-critical sensors
and effectors, while the legs are supplied with movement-related
sensors. Pepper uses gyro sensors to maintain a straight course
and perform precise turns. The robot’s chest-mounted tablet pro-
vides another method of communication. It is feasible to achieve
a type of hybrid communication by combining the information
gathered from users who select a specific action by touching the
display with the information gathered from the other sensors.
Pepper is also fitted with an anti-collision system, making it not
only safe for humans but also able to withstand any hit.

It may connect to the Internet via WiFi or Ethernet, both of
which are included within the robot. Pepper is managed via
NAOqi’s operating system. Multiple software development kits,
which are visibly integrated in the program Choregraphe, allow
for the reading of on-board sensors and the control of robot activ-
ities via engine regulation. Therefore, Pepper has been supplied
with an open platform that enables developers to enhance its
capabilities and build a variety of beneficial functionalities for
people’s everyday tasks.

In addition, Pepper has been designed for usage with informa-
tion collection and cloud databases, allowing users to construct
new apps to expand its functionality. Pepper has limited com-
puter capacity for data processing. Therefore, cloud robotics is
required for a growing number of AI applications on Pepper,
such as face and language recognition. In reality, cloud robotics
enables Pepper to utilise a significant amount of computational
resources. The information acquired by the various sensors is
thus analysed in the cloud in order to formulate the response to
stimuli. Pepper may also collect and store content in the cloud,
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providing users with links to it.

In recent years, we have become intimately familiar with Pep-
per’s ability to recognise and analyse diverse environmental
signals. Regarding these, it is essential that he communicate with
people by consistently respecting the sensations obtained on
board, such as the touch-sensitive head’s "embedded" speed in
response to the user’s movements. Particularly, Pepper must be
able to track human traits, such as faces and bodies, as well as
facial expressions and movements, and the information must be
accessible in near-real time if we are to imagine its increasing use
in our daily lives.

In this regard, the three research strands examining its po-
tential are described in greater detail below (4.1, 4.2, 4.3). We
described and analysed the experience and how a proposed
semantic trust model mitigated the effects of weaknesses and
the risks related to cyber-attacks on smart homes. Then, insights
were provided into how interaction with social robots could be ex-
ploited for Social Engineering purposes. In particular, we focused
on the ability of robots to collect information during an interac-
tion or conversation with humans and on how this information
could be integrated and enriched with Emotion Recognition tech-
niques. Finally, a practical application of the DT concept to the
robot is also described in the reported case study inspired by
AAL in elderly care. For all these applications, an overview of
the soft biometrics used is therefore provided, highlighting their
benefits and limitations.

4.1 emotion modelling for social engineering

Since the 1990s, neuroscientist Antonio Damasio has affirmed
that the emotional process plays an essential role in perception,
information memorization, and human decision-making [132].
Emotions drive human decision-making; humans make decisions
based on their feelings and what they feel. Recognizing emotions
is an ancestral human skill. Numerous biometric characteristics,
such as voice, face, body gestures, and heartbeat, make it possible
to capture key information about a subject’s emotion and mental
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state, deciphering something irrational that sharply transforms
into something concrete, perceptible, and often visible, which
can last for hours as well as minutes. Humans are capable of
experiencing a variety of emotional states; nevertheless, many
feelings are merely a combination of basic emotions. According
to Paul Ekman, some emotions are innate in human beings and
not derived from social context [133], in agreement with Charles
Darwin, according to whom the concept of emotion has a place
in history and predates the birth of human beings. These innate

Table 4.1: Images explaining the six primary emotions. Pictures ex-
tracted from the CK+ database [8].

Anger Disgust Fear Happiness Sadness Surprise

emotions, i.e., those that are genetically determined, universal,
and distinct from each other, Paul Ekman identifies them as the
six primary expressions: happiness, sadness, anger, surprise, fear,
and disgust. For humans, it’s easy to pick up on these feelings.
For a machine, on the other hand, it’s a very complicated task
that’s hard to do. Affective computing intends to imbue machines
with emotional intelligence [134] with the purpose of enhancing
natural Human-Machine Interaction. This social intelligence is
essential for robots to successfully complete certain tasks for
which they were designed. Robots can be equipped with several
sensors to perceive their environment. The study of emotions in
the field of robotics must be conducted from two perspectives:
perception and expression. That is, one wants to both enable
robots to infer and interpret human emotional states and de-
sign them to exhibit recognizable emotional expressions. Thus,
more recent works have both integrated algorithms to classify
emotional states from different input modalities, such as facial ex-
pressions, body language, voice, and physiological signals [135],
and focused on determining which input modalities can convey
emotional information from robots to humans and how humans
perceive and recognise them most effectively [136]. The robots
designated to do this, as we have extensively discussed in section
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Figure 4.2: The four essential phases of a Social Engineering attack [6]:
1) Information gathering; 2) Developing a trusting relation-
ship; 3) Attack; 4) Covering tracks.

2.3, are Humanoid Social Robots: robots designed with the goal
of making users feel comfortable and characterized by a strong
social component. We can also consider them persuasive, able to
influence human behavior, feelings, or attitudes.

This persuasive feature becomes evident when manipulating
aspects of emotion perception and expression. We exploited this
concept in [6], where we shed light on the potential for Social
Engineering to take advantage of social robot interaction. Social
Engineering is the psychological manipulation that induces con-
sumers to provide personal information. Therefore, the term
Social Engineering is applied to all malevolent operations involv-
ing human interaction. Although Social Engineering attacks are
diverse, they share a basic structure and four phases 4.2: collect
sensitive information; establish trust; conduct the attack using
available information; and, finally, end the interaction without
leaving a trace. In fact, information collected by a robot can be
utilised to manipulate and affect the behaviour and decisions of
users. A conversation may be apparently kind while masking a
hostile purpose to obtain sensitive information. A psychological
manipulation that relies on first creating a relationship of trust
during which a user might naively release confidential informa-
tion. After establishing a relationship of trust between the robot
and the victim, the attacker employs manipulative techniques to
induce a specific emotional state. In accordance with the stated
objective, the discourse is focused on the chosen topic. After the
target has provided the desired information, the conversation
should continue in a friendly manner, focusing on additional
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things that are of interest to the victim. It is essential that the
victim not realize he or she has been defrauded, as the user will
likely not reflect too much on the dialogue if he or she is unaware
of this. Social Engineering is therefore a breach of trust, which
is the underpinning of the majority of security paradigms. The
intrinsic notion of sociability of robots, coupled with malicious
intent to extract information, is a critical issue that must not be
understated. The concepts of trust and privacy are inextricably
related, especially in contexts where secrecy and confidentiality
must be maintained. The suicide of Jacintha Saldanha is illustra-
tive of the social impact that this collection of approaches could
have [137]. Not only can Social Engineering exploit a conversa-
tion, but it can also obtain a vast array of information that may
be used to fool an unknowing user through the use of numerous
other tools and sensors. Thus, having robots capable of recording
video and audio, beginning a discussion, and more will provide
a significant advantage when launching a Social Engineering
attack.

So, in our work [6], we applied technologies and implemented
theories that promoted the understanding of emotional states
from the relationship between emotions and corporeality for
Social Engineering purposes. If this is the objective, it becomes
essential for a Humanoid Social Robot to collect data on the
victim’s physical and behavioural traits. To have a meaningful
and beneficial relationship, the robot must be able to respond ap-
propriately to stimuli. Importantly, it must be able to determine
whether or not the individual is inclined to provide information.
To make the user feel comfortable throughout the conversation,
the robot must also be aware of acceptable and inappropriate
topics. To accomplish this, we proposed an emotion recognition
module based on heart rate detection, facial expression analysis,
body movement comprehension, and speech emotion recogni-
tion. Specifically, we described a system that demonstrates how a
series of interactions can be created correctly to gather sensitive
data in order to uncover a user’s passwords and personal infor-
mation. Two emotion-adaptive methods were proposed: Short
Attempt at Sensitive Data Extraction (SASD) and Long Attempt at
Sensitive Data Extraction (LASD). Based on the observed emotion,
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the robot altered the nature of the questions posed to the user. In
the first scenario, the number and content of questions were pre-
determined, whereas in the second case, they were changeable,
resulting in a longer engagement.

4.1.1 SASD: Short Attempt to extract Sensitive Data

The goal of this strategy is to find out as much as possible in
a short, focused conversation. Appropriate questions must be
asked during a short-term contact in order to get precise infor-
mation. Therefore, in this methodology, "damaging" questions
are not concealed within a preliminary/generic discourse, as
Pepper’s inquiries directly address the objective to be attained.
The way questions were asked is by far the most important part
of SASD. In this method, the question structure is explicitly fixed.
Psychology gives tips on how to ask a series of questions to get
information in a roundabout way. This procedure may be very
useful when attempting to find passwords. Passwords are the
most prevalent and widespread authentication method. In this
first case, consider a X user who attempts to access a personal
social account with a forgotten password. Access control systems
typically allow you to retrieve a forgotten password using the
well-known "security question" approach. The number of these
questions can range from one to several. Let S represent the
collection of n security questions that an access control system
can utilise, and let k represent the minimal number of right an-
swers required to change the password (where k ≤ n). In order
to assume control of a user’s account, Pepper must obtain at
least k responses. In the first phase, Pepper must identify the
S sequence of security questions chosen by the user, as these
questions will comprise the conversation with the victim. Each
question in S will be sufficiently "camouflaged" within many
questions so as to avoid suspicion. The hiding method consists of
merely rephrasing them or incorporating them into apparently
innocent dialogues. Throughout the conversation, Pepper will
examine each response and attempt to determine the proper
response to at least k of n questions in S. The conversation will
conclude once the secret knowledge worth k has been acquired.
To better explain this strategy, consider the illustration in Table
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4.2 where n = k = 2. Even more so if the discourse is centered

Table 4.2: Illustration of a potential interaction. In the first column are
two instances of potential security questions, in the second
one the questions that Pepper could ask to extract informa-
tion regarding.

Security Question Proposed Question

Who was your I always remember my friendships, even

classmate? if it’s been years since I’ve seen them. Do you

remember your high school classmates?

What is your lucky I don’t believe a lot in fortune

number? but I consider my serial number my lucky

number. I have a serial number so long

that I’m certain your lucky number is

contained therein. Will we attempt??

on a superficial issue, it is evident that the proposed questions
presented are extremely harmless. To achieve the aim more effec-
tively with this strategy, we must divide the questions by topic,
introduce them naturally, and, above all, ensure that the subject
has not grown suspicious of or concerned by the issue. To achieve

Emotion
Module

Multi-biometric
Emotion Detection

Multi 
response

Single 
response

Figure 4.3: The methods inside the emotion module. It provides both
the prediction of emotions divided by biometric traits, and
the overall emotion.

this objective, we might utilise the emotion recognition module
(Fig. 4.3). This module will be helpful for understanding the emo-
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tion of a subject during a conversation so that you can change the
subject or ask the same questions in a different manner. The emo-
tion recognition module will identify the target’s emotions using
numerous biometric characteristics, including voice, face, body
gesture, and heart rate. As seen in Fig. 4.3, this module gives
both the emotions classified by biometric features and the overall
emotion. The entire emotion is obtained by combining multiple
biometric characteristics. The contribution of each biometric is
weighted based on the acknowledged precision of the methods
used. This module is employed to assess the user’s response
to the proposed questions. If the person exhibits a favourable
response, such as happiness, curiosity, or relaxation, the robot
will continue the conversation on the same topic. Alternatively, if
the subject appears agitated, furious, or annoyed, the robot will
change the subject. Figure 4.4 presents the SASD approach. In the

Robot
introduction

Ask to
interact

Ask about the 
Emotions

Emotion
Module

Ask about a 
topic

Positive
Reaction

Yes

No
No Change

topic

Yes

Ask more 
about the topic

A B

Figure 4.4: The SASD approach, with red lines representing negative
reactions and green ones representing favourable ones.

A portion of this diagram, Pepper attempts to initiate or continue
a conversation with the user. If the target does not choose to
continue interacting, a series of easy questions will be posed to
determine the reason for this decision. When the user is ready
to interact, the robot will begin asking questions about a specific
topic. The discourse on a subject might be conducted by posing
particular questions or by "hiding" harmless ones among harmful
ones. Depending on the victim’s reaction in the B section, Pepper
will shift the subject or ask for more information. When a topic’s
questions have been answered, Pepper will move on to the next
one until all questions have been asked. In the event of a topic
shift, Pepper can either avoid it during the entire conversation
or attempt to bring it up later if it is essential to its goals. Con-
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sequently, this choice depends on the type of information you
wish to acquire from the user. Pepper will avoid any unwelcome
topics for the duration of the conversation. Family, friends, a job,
school, social networks, hobbies, and personal connections are
examples of themes that can be investigated.

4.1.2 LASD: Long Attempt to extract Sensitive Data

In contrast to the SASD, the objective of this methodology is not to
acquire targeted information, but rather to capture a vast amount
of information during the same interaction. To achieve this objec-
tive, a huge number of questions are required. As demonstrated
in Table 4.2, the SASD method requires psychologists to manually
enter a set of questions into the system. Typically, no more than
25 to 30 questions are necessary to obtain the desired information.
However, in a more extensive effort to collect sensitive data, the
interaction time will be prolonged, making it unfeasible to com-
pose the necessary questions beforehand. Therefore, to handle
this issue, there are no fixed questions in the LASD technique.
Whenever necessary, questions to be asked will be generated
using semantic and grammatical rules. Similar to the SASD, the
questions are organised by topic. However, unlike SASD, we will
have more micro-arguments. For instance, if we have the topic
"friends" in SASD, we should have the subtopics "schoolmates,"
"free time," "hobbies," and "others" in LASD. This is required since
LASD does not have a specific objective and we must manage
negative responses to a particular topic, which could result in the
removal of numerous questions. The dialogue will begin with a
question that randomly combines subject matter, prediction, and
object. Imagine that the conversation begins with the following
question: What is the name of your father?, where What is is the
predicate, the name is the object, and of your father? is the subject
matter. As illustrated in Fig. 4.5, if the emotional reaction is good,
Pepper will inquire about the same subtopic (in this case, parents).
Otherwise, it will first modify the subject issue (for example,
What is the hobby of your father?) and then the object (for example,
What is the name of your mother?). This is helpful for determining
whether the issue with the topic relates to the subject matter
or the object. The robot will then avoid either one or the other
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Figure 4.5: The module B of LASD, with red lines representing negative
reactions and green ones representing favourable ones.

for the remainder of the interaction. Even though this method
may appear extreme, we believe it is vital to prevent users from
abruptly terminating interactions due to irritation. Since the ob-
jective of this method is to collect as much data as possible, the
engagement must be as lengthy as possible. For tests of this
nature, the first indicator of user cooperation is the duration
of the conversation. This index or marker can alternatively be
interpreted as the measure of the user’s confidence in the robot.
The overall architecture of LASD and SASD is identical except for
module A. The second section, designated B’ in LASD, is depicted
in Fig. 4.5. Pepper and the user will continue to communicate as
long as subject matters and objects become available.

4.1.3 Soft biometrics involved

Let’s examine the soft biometrics investigated in this research in
further depth.

• Body movements. In several academic fields, such as psy-
chology, health sciences, media and communication studies,
cultural and ethnic studies, gender and sexuality studies,
computer science, etc., the expressive and communicative
potential of motor movements is at the center of interest
[138]. Numerous psychological investigations have demon-
strated that human perception can distinguish between
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different affective states that are exclusively communicated
through body movements [139]. The analysis of a person’s
body motions might yield useful information regarding
their emotional state. Despite the fact that several research
investigations have been undertaken, a shared body of
empirical knowledge regarding the relationship between
body movement and cognitive, emotional, and interaction
processes has not progressed significantly. Information con-
cerning body movements is among the least investigated
modalities for emotion recognition, despite the fact that it
has the potential to be an essential indication of experienced
emotions. One of the reasons could be the lack of research
and knowledge sharing between the many disciplines, as
well as the fact that gestures are heavily influenced by gen-
der, culture, and other idiosyncrasies, hence reducing the
system’s robustness [140].

A benefit of this biometric characteristic is the possibility of
exploiting it for emotional recognition at a distance. Cog-
nitive processes are involved with not only the production
of body motions or explicit gestures, such as pointing the
finger at an interlocutor when angry, but also uncontrolled
and involuntary attitudes. A substantial portion of move-
ment behaviour occurs without the subject’s awareness.
Through segmenting the continuous flow of movement
behaviour into natural units, it is possible to do an anal-
ysis of the temporal dimension of motor behaviour. This
approach gives information on the time dimension of partic-
ular forms of movement as well as the cognitive, emotional,
and interaction processes linked with these movements. On
a single frame or a brief series of frames, the motion char-
acteristics such as trajectories and the geometric properties
of placements can be determined and examined. In [140],
in the walking and sitting settings, the authors presented
pertinent information regarding five perceived emotions
(happy, sadness, anger, fear, and neutral). Particularly, the
authors observed that the distribution of the characteristics
of happy and angry emotions, as well as those of sadness,
fear, and neutrality, were extremely comparable when walk-
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ing. Overall, it was simpler to recognise neutral emotions
during sitting than other emotions. Although elbow flexion
is the most significant characteristic, it can only distinguish
between neutral and angry emotions. However, the greatest
hand shift was able to distinguish between several emo-
tion groups due to the fact that the distribution of this
characteristic varies greatly between emotion groups. In
the majority of instances, these approaches are integrated
with face and voice emotion recognition [141]. According
to the current information, body movement understanding
approaches appear to be quite diverse [142], [143]. In the
field of humanoid robots, as well as in the general area of
human-computer interaction, the need to understand and
imitate the behavior of a human being is paramount. The
challenges still open in this domain are various and concern
for example the definition of well-defined human move-
ments, responsible for a specific emotion that the robot
could in turn replicate; the design of a gait-based emotion
recognition system that is accurate and robust and capable,
if necessary, of integrating run time other biometric traits
to obtain a more advantageous multimodal system.

• Facial expressions. Facial expressions play an important
role in social communication, which can be spoken or non-
verbal (also understood as body language and paralan-
guage). In addition to speaker recognition, the face aids
in a number of cognitive activities; for instance, the shape
and movement of the visemes that constitute the lips can
contribute significantly to speech understanding in a noisy
setting. Although instinct may say otherwise, social psy-
chology research has demonstrated that in meaningful dis-
cussions, facial expressions might be more important than
the words said. So facial expressions offer greater commu-
nication. They are one of the most potent, natural, and
universal signals that humans use to communicate their
emotional states and intentions. In the field of computer
vision and emotion recognition, facial expressions were
among the first and most popular biometrics explored and
coded to extract information. The face has a huge surface
area and is visible throughout nearly every interactional
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time interval.

One more benefit of using facial expressions to figure out
how someone feels is that the user doesn’t have to do much
to help. It has been demonstrated that particular facial mus-
cles are used to depict different emotions, and that these
traits are universal across race, age, and gender [144]. Hap-
piness is communicated by a smile; sadness look through
a frown and furrowed brows; anger through firmly drawn
eyebrows and thin, relaxed eyelids; disgust through low-
ered eyebrows and a frowning nose; eyes that are widened
and a wide-open mouth are immediately recognisable indi-
cators of surprise or shock; the expression of fear is similar
to that of astonishment, which is characterised by slanted
eyebrows that are raised; [145]. The increasing amount of
labelled datasets has contributed to the incorporation of ML

techniques into research on this area in recent years. Recent
techniques include Deep Neural Networks in particular
[146]. To address the issue with robot interactions, more
complex solutions have been developed, such as the condi-
tional Generative Adversarial Network (cGAN) to reduce
intra-class variations between expressions [147] or Adap-
tive Features selection to extract the features that contribute
the most to emotion recognition [148]. The frameworks
typically share the same pattern, initial face detection, ex-
traction and/or manipulation of detected facial informa-
tion, and final decision. In any case, efficient and precise
analysis of facial expressions in an uncontrolled real-world
setting remains challenging. Between the training and test-
ing phases of a system, factors such as occlusions, variations
in face position, illumination changes, differences in age,
gender, skin colour, and subject culture present a number
of obstacles. An ideal system should be capable of over-
coming all of these obstacles. Despite the fact that face
recognition and facial expression systems have methodi-
cally addressed the majority of these issues, occlusion is
frequently neglected [149].
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• Heart rate. The heart rate is an indicator of a person’s
health and emotional condition as it measures physiologi-
cal activity. Heart rate variability reflects relative changes
between the sympathetic and parasympathetic branches of
the autonomous nervous system. In a condition of muscle
relaxation, the analysis of its variability is regarded as a
noninvasive technique that is directly tied to emotional
changes. From the literature, it is clear that two emotions
in particular, fear and anger, seem to be the most recogniz-
able by a system based on this biometric trait. For example,
parameters such as a high heart rate can be associated with
the emotion of fear, while, on the contrary, an increase
in systolic and diastolic blood pressure is recorded for
anger. Classifying other emotions, such as sadness, turns
out to be more difficult. For measurements to be as accu-
rate as possible, it is vital to conceal this information from
users. Detection is performed in a non-intrusive manner
by putting individuals at ease who would otherwise feel
under observation, which would compromise the accuracy
of the measurements. This is the reason why the heart rate
is recorded in this study using pictures and contactless tech-
nology. Particularly, the research indicates that oxygenated
hemoglobin in the blood, absorbing green light, can lead to
measuring the change in heart rate from the changes in the
intensity of the green hue of a person’s face image [150],
with an error of less than 3 bpm. These methods are also
supported by actual robot implementations [151].

• Voice. Speech signals are the quickest and most natural
means of human communication. This characteristic has
inspired academics to view speech as a rapid and effective
way of human-machine connection [152]. Nonetheless, this
requires the machine to be smart enough to detect human
sounds. Since the late 1950s, voice recognition, which is the
process of converting human speech into a string of words,
has been the focus of extensive research. Nevertheless, de-
spite significant advances in speech recognition, we are still
a long way from establishing a natural human-machine
conversation because the machine does not comprehend
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the speaker’s emotional state.

This has given rise to a relatively new area of study, namely
speech emotion recognition, which is defined as the extrac-
tion of an individual’s emotional state from their speech.
Researchers believe voice emotion recognition can be used
to extract important semantics from speech and improve the
performance of speech recognition systems [153]. The pri-
mary objective of emotion recognition in speech is to mod-
ify the system’s reaction when it detects that the speaker
is frustrated or annoyed. The following factors make voice
emotion identification a tough task: First, it is unclear which
portions of language are most effective at differentiating
between emotions. The acoustic variability generated by the
existence of diverse phrases, speakers, speech styles, and
speech speeds adds another difficulty because these factors
directly influence the majority of the commonly retrieved
speech characteristics, such as tone and energy contours
[154]. Additionally, it is possible to feel multiple emotions
from a single utterance, and each emotion corresponds to
a distinct portion of the utterance. In addition, it is quite
challenging to define the boundaries between these compo-
nents.

The manner in which a particular emotion is expressed
typically depends on the interlocutor, his culture, and his
environment. The majority of research has focused on iden-
tifying emotions in a single language, assuming that there
are no cultural variations between speakers. Another issue
is that certain emotional states, such as grief, might last
for days, weeks, or even months. In such a scenario, the
other emotions will be fleeting and will not last longer than
a few minutes. Therefore, it is unclear whether the auto-
matic emotion detection will be triggered by a long-term
or short-term feeling. It is usually assumed that emotion
may be described in terms of two dimensions: activation
and valence. The quantity of energy necessary to exhibit
a particular emotion is referred to as "activation." Accord-
ing to physiological investigations conducted by Williams
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and Stevens [155] on the mechanism of emotion formation,
the emotions of happiness, wrath, and fear stimulate the
sympathetic nervous system. This results in an increase
in heart rate, blood pressure, breathing movements, sub-
glottic pressure, dry mouth, and occasional muscle tremors.
As a result, the speech is louder, faster, and possesses more
high-frequency energy, a higher middle tone, and a greater
variety of tones. In contrast, when the parasympathetic
nervous system is stimulated, like in the case of melan-
choly, the heart rate and blood pressure decline, and sali-
vation increases, resulting in low-energy, high-frequency
speech. Therefore, acoustic characteristics such as tone, tim-
ing, voice quality, and how the vocal signal is articulated
have a great deal to do with the underlying emotion [156].
However, activation alone cannot distinguish between emo-
tions. For instance, both rage and happiness correspond to
heightened arousal, yet their effects are distinct. The valence
dimension characterises this distinction. Researchers cannot
agree on whether or how auditory characteristics relate to
this dimension [157]. Therefore, while high-arousal emo-
tions (also known as high-arousal feelings) and low-arousal
emotions may be classified with great accuracy, the classifi-
cation of other emotions remains difficult. For this reason,
this biometric trait is particularly interesting in the context
of our paper when it is integrated into a multi-biometric
system. Until this work, Speech Emotion detection algo-
rithms were successfully integrated into Social Robots [158]
only to improve social interactions.

4.2 healthcare support and assistance

Ambient Assisted Living (AAL) generally refers to a series of tech-
nical product or service solutions that contribute in a coordinated
manner to improving our living environment. How? For instance,
make our home as active, intelligent, and helpful as is practical
to the individuals who live there so that they may carry out all
daily activities in the most effective and independent manner
possible. In general, AAL solutions aim to improve the well-being
and satisfaction of a space’s occupants, while ensuring the safety
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and ease of execution of daily tasks such as cooking, cleaning,
and moving. However, it is not only about technology: in each
phase evaluated by this field, what matters is the correlation
between various planning, analysis of societal demands, psychol-
ogy, medical, technique, and technological elements.

Evidently, the concepts of the AAL apply to benefit the daily
lives of all individuals, but they are particularly geared at ad-
dressing an issue that will become increasingly relevant in the
coming years: the ageing of the population. By increasing life
expectancy, it is important to be able to extend the time that peo-
ple can live independently, or with home care, in their preferred
environment; being able to perform daily tasks such as washing
or cooking meals in complete autonomy ensures greater safety,
keeps people’s network of relationships active, and protects the
health and functional capabilities of the elderly.

As previously said, AAL offers greater living comfort for all:
frequently, conditions of obstruction or difficulty are not caused
by age, disability, or disease, but rather by other variables. Ambi-
ent Assisted Living operates preventatively on places, attempting
to incorporate into the design all features that are effective for
preventing situations that limit individuals within the home. In
addition to passive monitoring of windows, doors, and appli-
ances, it is also possible to monitor specific circumstances. Passive
monitoring guarantees that assistants are notified instantly in the
event of an abnormal occurrence. For the safety of the elderly,
passive surveillance is critical. Atypical instances can be identi-
fied. For example, assuming that the resident typically awakens
at 8:00 a.m., it would be prudent to observe restroom activity at
10:00 a.m. If no motion is detected within that period, the motion
sensor will notify the event and a message will then be sent to
the person responsible for assistance.

By 2050, according to the World Health Organization (WHO),
the percentage of individuals aged 60 and older will reach 22%1.
The importance of sustainability in care and assistance is increas-
ing in this setting. In addition to the dearth of caregivers, the

1 https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
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expenses of care are increasing due to the prevalence of chronic
diseases among the elderly, which require specialised manage-
ment.

Empowering elders with technological solutions to enhance
their quality of life and permit active aging in the home is a
potential answer to this challenge. In this way, the help should be
provided by the intelligence embedded in the technology, which
should therefore not represent an additional obstacle for the user.
Therefore, attention must be placed on human-technology interac-
tion in order to make user access to services effective and suitable
[159]. Vocal assistants and social robots have been utilised as a
natural interface between the user and the smart home services.
However, social robots should assist older persons not only with
daily activities, while also contributing to their emotional health
by taking affective variables in everyday situations into account.
Numerous studies have focused on equipping robots with the
ability to recognise human emotions based on facial expressions,
body postures, voice, and physiological reactions [134], but the
emotional intelligence of robots rarely permits them to reason
about and react to emotional situations. Given data acquired by
a social robot and sensors in a smart environment over extended
periods of time, it is possible to determine the routines and habits
of people [160]. Then, by making the robot aware of the user’s
behaviours, routines, and affective characteristics, it would be
possible to reason about the user not just for personalising sup-
port, but also for inferring emotional circumstances [161].

Inspired by this paradigm, in [120] we used it as a case study
for applying the concepts of DT and virtual replica to the Pepper
robot. In this paper, we choose to model the Digital Twins of the
robot and its surrounding smart devices. The concept of DT has
been a major technology trend in recent years. Michael Grieves
first provided the definition for the concept in 2001. As a general
definition given in [162], we might state that "a DT is a compre-
hensive software representation of an individual physical object.
It includes the properties, conditions, and behavior(s) of the real-
life object through models and data. A DT is a set of realistic
models that can simulate an object’s behavior in the deployed



90 our contribution to literature

environment. It represents and reflects its physical twin and re-
mains its virtual counterpart across the object’s entire lifecycle"
[163]. DT incorporates several technologies, such as the Internet of
Things, AI, Augmented Reality interface, ML, and software-based
living digital simulation models.

The most significant aspect of these simulated models is that
they are constantly evolving, nearly in real time, as their real-
world counterparts change. Real-time synchronisation between
the virtual and physical components is a fundamental and vital
aspect of how DT operates. This project’s objective was to repli-
cate the Pepper robot using its DT, VPepper. The hands of the
Pepper robot can only make motions and cannot contact objects.
In this work, we utilised the DT paradigm to teach the robot how
to perform this activity securely. What is the advantage of using
a virtual counterpart instead of a physical robot? Training the
physical robot is a demanding and degrading operation for its
motors and actuators. In addition, it is feasible to conduct tests
with the actual robot so long as its motors are powered by a
sufficiently charged battery. In the case of Pepper, the battery has
a limited lifespan of approximately eight hours under intensive
use.

Through the DT method, we manage both challenges in our
paper. By creating a virtual replica of the real humanoid robot, it
is feasible to conduct extensive testing and training without hav-
ing to work on the original. This prevents the robot’s mechanical
components from wearing out too soon and allows us to conduct
concurrent experimentation sessions. In this instance, battery is
obviously not a concern.

4.2.1 Case study on Ambient-Assisted Living

Pepper can be employed as a personal home assistant for the el-
derly or those who are unable to accomplish everything on their
own if it can be demonstrated that it can be taught to interact
appropriately with the objects and people in its environment.
Due to the availability of VPepper, the physical robot does not
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need to conduct a variety of tests. Instead, it can experiment
with beneficial techniques that can be learned digitally and then
safely delivered to the physical twin when it is ready. Our case
study focuses on monitoring the elderly. This is accomplished by
training VPepper to recognise simulated abnormal circumstances
using wearable sensors and smart objects to monitor them. In
fact, wearable sensors can aid in patient monitoring by provid-
ing an overview of the patient’s health. The smart environment
comprises networked sensors that transmit data to the robot.
It also has its own DT, which facilitates interaction between the
actual and virtual worlds. In this case study on Ambient-Assisted
Living, the objective is to demonstrate the potential of combining
the robot’s native skills with those learned by softly touching
objects and people in the surrounding environment.

Virtually simulated environments as well as robots give the
opportunity to obtain a large collection of data, which is manda-
tory for ML training processes. Furthermore, in these simulations
it is also possible to recreate and therefore obtain information on
a whole series of situations that in real environments would be
dangerous for the subject.

In the suggested case study, VPepper intends to determine if
the elderly individual is in imminent danger and alert remote
carers if immediate assistance is required. It examines data from
smart devices and communicates with its physical duplicate to
determine the best approach to assist. Figure 4.6 depicts the data
flow for this case study, categorising the associated physical and
virtual components into three DT pairs: (i) DT 1, Pepper and its DT

VPepper, (ii) DT 2, the elder’s apartment and its virtual replica;
(iii) DT 3, the elder and its virtual replica. VPepper is the focal
point of the shown communication flow. It continuously updates
a 3D model of the house (Virtual House) and can locate and track
Pepper and the helped individual inside the living environment.
Due to the fact that the old person’s residence may vary over time
as a result of changing furniture and other barriers, Pepper gives
Virtual House frequent updates regarding the practicality of the
routes to be followed. The virtual duplicate of the apartment in
DT 2 contains all sensor and smart device data. A smartwatch
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Figure 4.6: The operational perspective of the proposed case study.

can be used for indoor localization of the caregiver when he or
she is outside of Pepper’s field of view, with the added benefit
of being able to capture extra data about the user, such as heart
rate, oxygenation level, number of steps, etc.

When VPepper receives a notification from the smart devices,
it instructs the real Pepper to go to the person receiving assis-
tance and record a brief video of the scene. Pepper can gain the
attention of the person being assisted by touching him or her
in a safe manner. Then, it can ask a few voice-based questions
to assess the individual’s physical and mental health. VPepper
employs DL models for person and pose detection and Speech-to-
Text and natural language processing algorithms for monitoring
the patient’s response to inquiries. So, VPepper takes notes on
the scene and observes whether or not the elder person reacts.
In this case, the configured emergency protocols will be acti-
vated. Simultaneously, Pepper will transmit an alarm with a brief
video of the fallen senior to the caregiver, who may view the
video and autonomously make the proper decision. With real
or synthesised data, the Virtual House can also be utilised as
a simulation environment for teaching the caregiver. Figure 4.7
depicts a simulated fall detection instance. The planned DT and
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Figure 4.7: Example of one of the emergency interventions of VPepper
simulated during the case study.

its surrounding ecosystem were empirically evaluated in a case
study involving 25 volunteers with skills acquired in the AAL

industry. The results support the great interest of users and the
positive evaluation of the suggested digital twinning experience.

4.2.2 Object Touching: Pepper vs VPepper

Pepper. Pepper is not designed to pick up random objects. This
is due to the fact that gripping an object requires multiple prior
procedures involving various sensors, including cameras and
pressure sensors. Real-time consideration must be given to the
location, orientation, mass, and shape of the objects by the robot.
In addition, for the task to be completed properly, the robot must
respect the degrees of freedom of its arm and hand when articu-
lating them.

Although Pepper’s hands are capable of partially completing
this task, it is anticipated that they are capable of human-like
interactions. However, his actuators and motors are capable of
applying dangerous forces when interacting with people and
nearby objects. Pepper may be trained to touch objects softly,
allowing it to securely interact with human subjects and fragile
objects.

Object recognition is the first task to be completed; it is a
three-step procedure consisting of (i) the training phase, (ii) the
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compilation of the dataset containing sampled photos of the ob-
ject, and (iii) object detection. During the storing phase, multiple
photos of the objects are captured and saved using cameras that
enable the robot to frame the object from various distances and
angles. This enhances the efficacy and quality of the newly in-
cluded photographs’ digital archive. Once an object is identified,
Pepper must activate its motors in order to reach out and grasp
it. The robot can either touch the object with both hands or it can
use just one arm and touch the object with the other. Pepper must
adjust the arm(s) and bend it at the proper angle in order to touch
the object. Pepper has multiple modules for carrying out these
actions. ALMotion for robot motion, ALVisionRecognition for
recognising various images, and ALSensor, which creates events
corresponding to Pepper’s sensors, are the most significant and
widely utilised.

Our research team has been focusing on object grasping tasks
with Pepper for around four years [164]. Several grabbing strate-
gies have been investigated in order to perform object grasping.
Nevertheless, based on the considerations derived from our inves-
tigations and simulated environments, we feel that robot-human
interaction would benefit more from the capacity to reduce la-
tency times than from an increase in the robots’ internal process-
ing power. Indeed, connectivity issues limit all tasks involving
gesture acquisition and recognition, attack and defense issues,
which make the system compatible with smart blockchain objects.
The delay in response to stimuli and information acquired should
be negligible. Specifically, we investigated the possibility of the
Internet Tactile paradigm in [164]. It would make it possible to
transport a large amount of computational work from Pepper
while allowing for a high level of responsiveness using real-time
communication protocols.

VPepper. The planned action involves bringing the robot’s
hand closer to the intended target. It is a common Inverse Kine-
matics (IK) problem because VPepper’s arm must rotate its six
joints, which control the six degrees of freedom of the hand, in
order for the hand to approach and touch the object (Figure 4.8).
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Figure 4.8: ArticulationBody joints used to model VPepper.

Despite the fact that this movement merely utilises the joints of
the arm, "object contacting" requires control of all the joints that
implement the VPepper arm save for the root joint. In virtual
simulations, the IK solution may be practicable. In this work, the
task is made more difficult by the need that VPepper’s perfor-
mance in the simulated environment is smoothly mirrored by
its physical equivalent. Consequently, while VPepper’s virtual
capabilities are limitless, the real robot’s movement amplitude
and velocity are restricted. In the face of impediments or when
the object is not optimally in front of the robot, VPepper’s actions
must take into account the Pepper robot’s physical limitations.
We built a solution based on Reinforcement Learning by imple-
menting the model as described in the Unity documentation2

while maximising the capabilities of the Nvidia PhysX 4.1 engine
and ML-Agents package. At the start of each training iteration,
the robot’s arm and body are extended downward, and the DT’s
hand is below the table being modelled. In this manner, the con-
trol should avoid trapping the hand on the shortest path to the
target by the table. A reinforcement-based Machine Learning (ML)
process was established. This study employs the Proximal Policy
Optimization learning technique [165] [166]. In Reinforcement
Learning, an agent that observes specific environmental variables

2 https://github.com/Unity-Technologies/articulations-robot-
demo/tree/mlagents
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and takes decisions to maximise rewards controls behaviour. In
the object contact training provided by VPepper, the reward at
each step is the decreasing distance between the DT hand and
the target item. Thus, manoeuvres that remove the hand from
the target or lock the arm in a vulnerable posture (e.g., under the
table or behind the head) are discouraged.

The network that controls the arm is comprised of six primary
channels that arrange the flow of 69 information sources gathered
from observations of joint angular values, spatial orientations,
and relative distances. On the basis of these observations, the
agent must either attain the objective (motivated by a reward
score of 1) or accrue minor negative penalties proportionate to
distance and delayed time. Notably, the huge issue size is typical
for multijoint controllers due to the enormous number of position
and orientation parameters that must be monitored. However,
the size of the search space is limited by the restrictions placed
on the real robot arm’s movement.

Figure 4.9: The cumulative reward and episode length for a 500K train-
ing session as reported by TensorBoard.

The TensorBoard report summarising the training session con-
ducted on randomly positioned objects is displayed in Figure
4.9. The image displays the Cumulative Reward for each Episode
(50.000 actions) on the left and the length in minutes on the right.
The entire course took roughly two hours on an Alienware 17

3.60GHz, 32 GB of RAM, and an 8 GB Nvidia RTX 2080. The
reward oscillates, but frequently with a favourable trend, as is
evident (it is important to remember the negative penalties that
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every step accumulates because of the distance from the target).
By looking at the final Epoch duration, it is possible to see how
the VPepper controller is progressing in its learning: although
the initial phase of 50.000 actions took 50 minutes to complete,
the last session only takes a few seconds longer than 3 minutes.
Given these circumstances, it is simple to comprehend one of
DT’s benefits over physical component training. The same goal
would initially require a somewhat longer training period with
a physical robot because to the restrictions of joint angular ve-
locities. Additionally, it can result in excessive use of the robot,
seriously harming its mechanical parts.

4.2.3 Soft biometrics involved

Let’s examine the soft biometrics involved in this research in
further depth.

• Photoplethysmographic biometrics. Photoplethysmography
(PPG) is an optical technology that detects a biological signal
to estimate blood flow within tissues in order to gather in-
formation on the user’s health state as well as relevant data
for fitness tracking applications [167]. Using light-emitting
diodes (LEDs), these systems emit green or red light that is
visible from a reasonable distance on the skin’s surface. Hu-
man blood (particularly hemoglobin) absorbs green light
well and reflects red light; hence, green light technology
is often utilised. A PPG sensor records the change in light
intensity based on the degree of absorption and reflection,
and then uses signal processing to refine the data [168]. This
technology is relevant to a wide variety of clinical tests, par-
ticularly those linked to cardiovascular systems, as well as
oxygen saturation measurements. Red-light signals, when
combined with infrared signals, enable oxygen saturation
estimation. The combination of these measurements and
arm movement permits also classification of the sleep cycle
into its three distinct phases: awake sleep, light sleep, and
deep sleep [169]. In recent years, the study of this sort of sig-
nal has attracted the interest of the research community due
to the possibility of performing continuous authentication
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with low-cost devices capable of capturing data without re-
quiring the users to take any action. Heart biometrics, also
known as cardiac biometrics, are becoming increasingly
popular. PPG sensors can be easily integrated into wearable
devices such as wrist smartwatches due to their compact
size. As the development of an effective remote health mon-
itoring system becomes an increasing requirement (see the
COVID-19 pandemic [169]), an increasing number of de-
vices are equipped with such technologies. Non-complex
analyses of PPG signals permit monitoring of parameters
such as heart rate; complex analyses of these waves yield
additional clinical information, including blood pressure,
respiratory information, sympathetic nervous system activ-
ity, and heart rate variability [170]. Continuous monitoring
of a patient’s blood pressure, heart rate, blood glucose, and
oxygen levels can assist in determining their health condi-
tion and if their current treatments are effective or should
be altered. Globally, cardiovascular disease is the leading
cause of death, accounting for an estimated 17.9 million
fatalities each year [171]. Individuals at risk may exhibit an
increase in these values; consequently, it is possible to inter-
cept them using PPG sensors. In addition, the capabilities
of PPG monitoring for health purposes can be expanded by
analyzing its potential for use in authentication systems
[172].

• Motion-based biometrics For the elderly, falls are the ma-
jor cause of serious injuries. Detecting falls as they occur
and, more significantly, preventing them by estimating the
likelihood of this happening, helps prevent adverse health
impacts that could otherwise result from the fall and, if
necessary, enables one to take the most suitable action
when it happens. To do this, a fall detector can be used.
The compact size, low cost, and ease of use of wearable
devices make them suitable for this purpose. In addition,
they permit continuous monitoring and the acquisition of
physiological data while the subject does his daily activi-
ties. However, these technologies are far from accurate, as
they generate a huge number of false alarms for every true
fall detected. The dependability of the fall detectors has
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been studied and continues to be investigated. In [173], the
efficacy of the information acquired by them in conjunction
with data from PPG-based biometrics to infer body location
was examined. Wearable systems commonly used for this
purpose are inertial measurement units, which acquire data
from accelerometers and gyroscopes [174]. Multiple 3-axis
sensors (mostly accelerometers and gyroscopes) are used
by an inertial sensor to measure linear acceleration and an-
gular velocity in its own three-dimensional local coordinate
system. Moreover, compared to other sensor technologies,
inertial sensors are a sensor unit that lends itself well to
the creation of a wearable monitoring system due to its ca-
pacity to measure motion-related characteristics with high
precision and accuracy. There are three important factors to
consider when designing an effective fall risk assessment
system based on inertial sensors: sensor placement, tasks to
be performed, and key features to extract and analyze. The
characteristics can be divided into different categories such
as spatial, temporal, frequency, linear acceleration, angular,
and non-linear characteristics. The linear acceleration char-
acteristics are related to postural stability during activities;
the spatial ones include, for example, the number of steps;
the temporal ones are related to time as the speed of the
gait; and the angular ones include joint range of motion
and rotation during gait and movements, etc. Since differ-
ent characteristics represent different gait and movement
characteristics, an appropriate combination is needed to
distinguish between those associated with a fall and those
that are not. There are also significant differences when
the analysis is performed retrospectively or prospectively
[175]. Therefore, as we have said, the parameters that de-
scribe the movement and also the position of the body are
indispensable in the diagnosis of the risk of falling, but, at
the same time, they also provide significant information on
the characteristics of gait. Changes in gait metrics may not
only be predictive of falls but may also precede cognitive
impairment, according to studies [176]. A great deal of
research has been conducted in the past on activity recog-
nition studies that employed acceleration and gyroscope
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data to determine the user’s identification based on their
physical activities (e.g., normal walking) [177].

4.3 trust and security in human-robot interaction

Pepper is a humanoid robot with limited computational capa-
bilities to handle its sensors and actuators, preventing it from
simultaneously processing vast amounts of data or performing
difficult tasks. To improve its operation and interaction with the
environment, the robot can be put in contact with a variety of
smart satellite objects and services, ranging from simple environ-
mental sensors to smart cameras with DL capabilities.

Interconnection between interconnected devices (referred to as
"smart objects"), uniquely identified with the ability to transfer
data into the information network without requiring human in-
teraction, is part of the Internet of Things (IoT) paradigm. The
architecture of the Internet of Things can be controlled as a
physical, virtual, or hybrid system. In the past decade, there
has been a growing interest in the usage of IoT systems in nu-
merous domains, and their applications are diverse: smart cities,
smart homes, Industry 4.0, etc. The study of smart homes is a
fast expanding subject of study. They derive from home automa-
tion, which enables remote and timed control of a wide range
of devices, from lighting to heating, with the goal of enhancing
comfort, energy efficiency, safety, and consequently, quality of
life.

In our [110] work, we examined the concept of using the hu-
manoid robot Pepper as an interface between the user and smart
home objects. Pepper, as the hub of a smart system, is connected
to external IoT devices with which it may share gathered data,
extract knowledge, and make global judgments.

The addition of biometric, emotional, social, ML, and other
capabilities to Pepper, which enable increased functionality and
extra tools for managing users and the environment, presents
security challenges and other challenges. Our ecosystem permits
the extraction of a variety of data, including highly personal
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and sensitive information, which raises privacy concerns. The
robot, its interaction with the environment, and any vulnerabili-
ties revealed by smart devices in its ecosystem can serve as an
entrance point for an attack on the smart home, posing a threat
to its security and privacy and diminishing users’ trust in the
system. Spread and acceptance, even among the most sceptics, of
the applications and services that the IoT can provide are highly
dependent on the reliability notion associated to these systems.
The difficulty is not only in preserving private information and
securing sensitive data, but also in managing the vast volume of
gathered information to generate the most effective and appro-
priate reaction.

In order to prevent assaults and enhance security, we match
each system activity with the total context seen by the entire
ecosystem of smart objects. The system determines what actions
to execute or to allow based on the confidence derived from user
actions and behaviours. This paper describes and analyses the
experience and how the selected semantic trust model mitigates
the vulnerabilities and threats posed by cyber-attacks on smart
homes.

The notion of trust is fundamental. It has been implemented
mostly in HRI, a direction typically followed when the human
must "trust" the robot. However, the concept of trust is expansive,
as it encompasses various factors that are dependent on both
people and the environment. In some Pepper applications, such
as [178], the concept of trust is tied to the robot’s capacity to
complete specific tasks as judged by the users. However, the
concept of trust in the architecture we wish to discuss in this
work is diametrically opposed to the conventional one. Instead of
saying, "Can I trust Pepper?" we would like the robot to be able
to trust or not trust certain subjects. If we begin with the work
in [179], which focuses on human-to-robot trust, we find several
interesting principles that can be applied to our system. In this
context, trust is defined as a collection of objective and subjective
characteristics that a robot must possess to be believed. For in-
stance, it may appear fastidious, reputable, reliable, truthful, etc.
The crux of our argument is that if a model can be developed to
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measure how much a human trusts a robot, even with a large
set of variables that can predict how the human’s impressions
change during the interaction [180], then the reverse process can
be implemented to measure human trustworthiness. Existing
literature is lacking in this aspect, but new works are emerging.
This is studied in particular in [181], which is motivated by the
desire to create a real HRI system in which trust is considered
in both directions. Based on the Theory of Mind and supported
by an artificial cognitive architecture, the robot can alter its level
of confidence in the human by using memories. Pepper’s per-
ceived trustworthiness is essential to our proposed trust-based
IoT ecosystem; hence, it is a vital component of our paradigm.

4.3.1 Semantics and trust: the proposed model

This study examines how IoT , trust, and robotics may collaborate
to create an IoT-based ecosystem that grants or refuses users
permission to execute specific tasks based on the level of trust
they develop while interacting with the ecosystem. When a user
takes an action, the full context identified by the smart object
ecosystem is evaluated to determine the level of trust. In an effort
to describe user and action trust in a manner not constrained to
a certain knowledge or operational context, we choose to employ
semantic instruments.

Figure 4.10: The generic model of trust with domain-specificization.

In fact, the ontological model proposed for this study is adapt-
able to several domains, as Domain ontologies can be used to
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model the specifics of each new domain or its evolution. Figure
4.10 depicts a potential "Knowledge Base" arrangement for the
IoT sector. As indicated, the "Internet of Things" layer shares
with the "Knowledge Base" the sensor- and actuator-organized
semantic representation of devices. We assign each sensor a level
of confidence proportional to the accuracy of its biometric or
behavioural identification. As for the level of trust offered by a
smart device, the reputation of an entity (mostly the users asking
a command) is not predetermined but instead connected with
the specific context obtained as shared information about the
entity’s conduct [182]. In the suggested approach, the Truster
(i.e., the smart device or Pepper) is the entity responsible for
judging the Trustee’s trustworthiness (the user that performs an
action). The model illustrated in Figure 4.10 also demonstrates
the incorporation of a number of domain-specific ontologies,
used for describing spatial and physical links and capable of
connecting individuals through their social network activities (as
depicted in the rounded box "Internet of Persons"). In the case of
commercial IoT devices, their back-end functionality is described
by the "service model" which describes all exposed features and
commands.

In a domotic apartment, using information from smart objects
to create a semantic ZTA is made possible by using an ontology.
The proposed semantic approach is based on the idea that if
a user wants to run a command or a chain of commands, the
requested operations can be easily classified as restricted by
semantic inference, and the trust needed for their execution can
be calculated accordingly. Automatic reasoning (Pellet3) is used
to classify user commands, and if a trust evaluation is needed
(for example, for unlocking commands), the information from all
smart devices is evaluated, and the user’s trust level is calculated
based on several identification criteria and an evaluation of how
the user acts. In more detail, for the automatic reasoner Pellet
to work, the class "state/trustEvaluation" is defined to be the
same as every other class with the property "requestSmartLock"
set to true. Every IoT command is set up as a separate part of
the ontology, with a list of all the steps needed to carry out the

3 https://www.w3.org/2001/sw/wiki/Pellet
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command as a whole. The automatic reasoning classifies it, and
if the property "requestSmartLock" is set to true, like in the case
of the smart-lock opening command, Pellet knows that it belongs
to the class "state/trustRequired." Figure 4.11 shows how the tool

Figure 4.11: The inferred class equivalence in IoTdomotics ontology.

Protegè4 shows the effect of Pellet reasoner on the classification
of the individual "IoTcommandTrust" as "trustRequired." Let’s
point out that the "IoTcommandTrust" individual doesn’t have a
"is_a" relationship without Pellet’s inference. Instead, it has an
"owl:Thing" relationship. In the case of a command chain, the
"follows" connection establishes an ordered list of commands,
and the "swrl:add" operator is used to calculate the total trust
value required by each command in the chain.

Figure 4.12 depicts, in the lower and right-hand frame, the
Protegè description of the inference utilised for the trust com-
putation of a command chain. The figure illustrates the three
classes inferred for the "command4" instance as a result of its
property "requestSmartLock" being set to true. These classes are
highlighted in yellow on the "Description" tab. As a result, and
because of the "follows" relation, the "needs trust sum property"
of command4 is 490, computed as the sum of all the trust re-
quirements (i.e., the property "needs trust") of the preceding
commands. When authorising an operation, the same approach

4 https://protege.stanford.edu/
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Figure 4.12: The computation of a command chain’s required level of
trust.

is used to compute the overall trust estimation of a user provided
by smart objects (Pepper included).

Figure 4.13: The classification of IoT state information with the associate
command.

For the sake of completeness, the IoT sensors’ state information
(e.g., illumination, temperature, humidity, etc.) is processed with
the same reasoning used for trust. As an illustration, the individ-
ual IoT state depicted in Figure 4.13 does not define any ""is_a""
relationship and is established by setting the sensor-read values
of its characteristics. The particular temperature ("hasCelsius") is
14 degrees, the user is present and awake ("isOccupantPresent"
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and "isOccupantUp" are both true), and the IoTState is classed as
"increaseTemperatureCommand," causing the central control to
activate the air conditioner and raise the air temperature.

4.3.2 The Smart Home case study

The smart home ecosystem was chosen to evaluate the quality of
the suggested model. It consists of a network of smart devices,
including the Pepper robot. This setting is utilised for ontology
specialisation and automatic trust evaluation. The smart home
is equipped with industrial IoT devices, such as sensors and
actuators, and smart cameras with AI built on Neural Compute
Sticks Movidius:

• A number of smart objects based on Movidius-Raspberry
plus cameras, inferring, based on the Deep Neural Net-
works loaded, user position, sex and age, room objects,
etc.

• Pepper robot, enhanced with Power-up capabilities and
capable of emotion identification (through user images and
speech), heart rate detection, user face following, and user
collaboration detection;

• A number of interconnected electrical and temperature
sensors.

• A network of switches capable of changing outdated objects
into smart devices.

• A number of actuators, ranging from RGB smart lamps
and air conditioners to door locks that may be operated
remotely.

As depicted in Figure 4.14, Pepper is the center of the system, get-
ting involved if requested by the domotic systems, as described
in greater detail below. For instance, a camera in a room can
detect suspicious behaviour, and as a result, the domotic system
will notify Pepper. Once Pepper is notified, it will proceed to
the given place using a navigation system based on home mod-
elization and obstacle avoidance. Once Pepper has located the
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Figure 4.14: The main involvement of Pepper in the proposed eco-
system.

individuals exhibiting suspicious behaviour, it will attempt face
recognition. It will detect the user’s desire not to be identified
based on head pose and movement estimation algorithms. If the
user attempts to evade Pepper or if he or she is unknown, an
alarm will be sent to warn the system owner. If the identifica-
tion is successful, Pepper will ask the user directly what he was
doing in the room. Simultaneously, an emotion module will be
engaged and will detect rapid shifts in the user’s mood, which
may indicate suspicious behaviour. To achieve this, the emotion
module will consist of:

• Face emotion recognition: face features will be analysed.

• Voice emotion recognition: peaks and intensities of the voice
signal will be evaluated.

• Heart rate detection: fast changes in heart rate will be
captured contactlessly from the face utilising successive
frames.

• Sentiment Text analysis: the user’s spoken utterances are
also transformed to text and analysed as such.

Each of these four elements is capable of eliciting a positive or
negative response. Positive expressions include those that are
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neutral or joyful, whereas negative expressions include those that
are astonished or angry. Every potential combination of emotions
recognised by these approaches will either increase or decrease
the user’s trustworthiness. After the trust upgrade, Pepper will
notify all ecosystem devices of their new identification and trust
value. As a result, the user will either be able to do additional
actions or will be observed more closely in his or her subsequent
interactions with the environment, depending on whether trust
has increased or decreased.

Table 4.3: Methods involved, devices, accuracy and the strength coeffi-
cient of the biometric trait.

Method Device Accuracy k

Face+Voice Emotion Pepper 74.38% 0.7

Heart Rate Pepper 5 bpm 0.6

Identity from Face Pepper 94.1% 1

Gender from Gait Camera 80.7% 0.3

Cooperativity from Gait Camera 97.58% 0.2

40 Facial Attributes Camera 91% 0.4

The proposed architecture for Pepper and Smart devices em-
ploys the aforementioned methods, which carry with them par-
ticular accuracy and limitations. In Table 4.3, the accuracy of the
algorithms on the corresponding devices is displayed. As can
be observed, if we evaluate each approach separately, there are
inherent uncertainties in each. Nevertheless, it is conceivable that
these procedures, which operate after getting information from
another device, from a different perspective, or utilising other
strategies, can enhance the total precision. If a camera recognises
a subject’s gender or some of his/her facial characteristics, for
instance, Pepper’s identity recognition will be more accurate
because the pool of potential subjects will be reduced. Some
biometric characteristics are more powerful than others, regard-
less of their accuracy, due to their nature. In light of this, we
shall refer to the coefficient of biometric trait i strength as ki.
These coefficients, reported in the rightmost column of Table 4.3,
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were assigned based on the discriminatory power and biometric
traits in the following ascending order: cooperativity from gait,
gender from gait, 40 facial attributes, heart rate, face with voice
emotion, and identity from the face. Each ki is between 0 and 1.
There are two distinct types of biometric information. Gender
from gait, 40 facial attributes, and identity from face all require
a priori knowledge to identify the incoming data as positive or
negative. Face with voice emotion, heart rate, and cooperativity
from gait do not require a priori information because they have
universally positive or negative properties. An increased heart
rate, greater than 100 beats per minute, is not typical for a subject
at rest; attempting to dodge the camera can be indicative of a
malicious purpose. All of these qualities, when discovered, have
a negative impact on the trust value; therefore, their esteem will
be removed from the total trust. Also, the values of the biometric
features that require a priori knowledge will be deleted if the
single biometric check does not produce the predicted result and
added if the result is positive. In conclusion, the model of trust
under consideration employs the following formula:

t = ±k1 ∗ a1 ± k2 ∗ a2 ± ... ± kn ∗ an (4.1)

where the sign determines whether the n biometric response
characteristics are positive or negative, ki represents the bio-
metric coefficients, and ai represents the biometric recognition
algorithm’s accuracy.

4.3.3 Soft biometrics involved

Let’s examine the soft biometrics investigated in this research in
further depth.

• Facial attributes. In order to compare two facial images,
forensic examiners must first perform a thorough visual
comparison of the two images before producing a morpho-
logical report. They pay close attention to each and every
feature of the face in addition to the complete face. They
specifically perform a thorough morphological compari-
son, studying the face region by region (such as the nose,
lips, eyebrows, etc.), as well as looking at traits like marks,
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moles, wrinkles, etc. These supplementary characteristics
are known as soft biometrics [183]. Even though partic-
ularly tiny traits are not sufficiently persistent, they are
nonetheless momentarily invariant, hence falling within
the category of soft biometrics. Due to the significance of
colour in a wide range of applications, including face de-
tection, picture recovery, etc., colour can also be regarded
as an interesting characteristic. Eye, skin, and hair colours
are examples of colour features [184].

In recent decades, a great deal of research has been done on
the face as a biometric trait. Due to its singularity, particu-
larity, and permanence, it is one of the biometric traits that
has been researched and shown to be the most dependable.

Despite the fact that good results have already been ob-
tained in controlled settings, there are still a number of
difficulties with facial recognition in realistic situations,
due to poses, occlusions, etc. Recent research has focused
on the potential benefits of adding soft biometric facial
traits to facial recognition algorithms. Investigating the pos-
sibilities of distinctive facial features like the nose, lips, hair,
and so on is seen as a prospective area of study.

In fact, soft facial biometrics have a number of important
advantages that enhance the functionality of traditional
facial recognition systems. Due to their simplicity in ex-
traction under various circumstances, it is also possible to
perform recognition simply based on these attributes or to
use them to enhance the performance of conventional facial
recognition systems.

These facial attributes become much more important and
offer more useful information for matching identities in
unrestricted circumstances, such as when the facial image
is recorded in a non-frontal or occlusion-limited pose. Nu-
merous privacy issues still exist because their automatic
extraction, as with other soft biometric attributes in general,
is possible without the user’s knowledge.

• Gait. A person’s gait is as distinctive as their voice. Gait
recognition is therefore possible. Taking this into account,
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ML-based algorithms for gait recognition were developed.
Systems based on this biometric characteristic are able to
recognise a person from an image even if their face is
obscured, turned away from the camera, or covered by a
mask. Gait recognition refers to verifying a person’s identity
based on how they walk.

The system examines walking patterns, height, speed, and
silhouette. The advantage of using such a trait is that it
is more convenient than retinal scanners or fingerprints
in public places because it is unobtrusive. Moreover, gait
recognition is unlikely to be deceived: each person’s gait
has no duplicates.

The gait of a person can be used by behavioural biometrics
as an interesting indicator for identification purposes from
a distance. About 24 distinct features and movements that
make up a person’s distinctive gait can be detected as they
walk [185].

With the development of CV techniques, there are many
approaches to human identification by motion on video,
using both natural biometric features (the human skele-
ton, silhouette, and changes while walking) and abstract
features.

A gait recognition system uses the shape and movement
of the human body to recognise it. The software locates a
person’s silhouette on a video using CV techniques and
examines their motion. This information helps develop a
model of human behaviour.

However, gait-based identification has taken on a new twist
with the increasing use of smartphones equipped with
accelerometers and gyroscopes. This is due to the special
capability of accelerometers and gyroscopes to record gait
patterns.

• Heart rate. Due to the strong (and literal) relationship be-
tween our heart and our emotions, the heart rate variation
not only represents our physiological state but also the de-
gree of emotional arousal we are experiencing, as we have
already discussed in Section 4.1.3. Nonetheless, this soft
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biometric is also of particular importance to the Liveness
Detection research field. In biometrics, Liveness Detection
refers to a computer’s capacity to distinguish between a
physically present human being and a spam bot, an inani-
mate spoof artifact, or phony video/data.

The most commonly used technique in access control and
security is facial recognition. Comparatively speaking, it
is easier to implement than other biometric methods. Al-
though it has the benefit of being a non-intrusive method
of access, a system like this might not be able to tell a real
person from a photograph of them, and it might be ma-
nipulated by showing a photo or playing a video of the
person to the camera. In such a situation where a cheater
can easily gain access to the system by presenting a copy of
the person’s image to the camera, face vividness detection
is important to detect whether the captured face is a live or
fake captured image.

Face vividness identification uses real-time analysis of spe-
cific facial traits to identify vividness. Studies in this area
have been a hot research focus recently. Particularly, a num-
ber of works have taken advantage of heart signal detection.
The two main methods for getting this kind of information
are the contact technique and the non-contact approach.
The most common techniques are contact-based ones, such
as electrocardiography or PPG . But there have been some
well-known recent initiatives to obtain the cardiac signal
from a distant camera [186]. Particularly, color-based tech-
niques make use of the minute colour variations that result
from blood flow. These techniques enable remote cardiac
signal acquisition through a common camera and no sensor
equipment.

• Voice. Already discussed, more details in Section 4.1.3.



Part III

P E R I O C U L A R S O F T B I O M E T R I C S





5
S O F T P E R I O C U L A R F E AT U R E S

Profecto in oculis animus habitat.

— Plinio il Vecchio, Naturalis historia, 11, 54, 145

Profecto in oculis animus habitat1, asserted Plinio as early as the
first century A.D. The eye has always been considered not only
an instrument capable of receiving and translating the external
world but also a glimpse into the inner dimension, capable of
shedding light on emotional experiences and reflecting cognitive
efforts. Our eyes, brains, and the world around us work together
in a complicated way to give us our personal visual experiences.
It gives us a sense of sight, color, stereopsis, distance, pattern
recognition, motor coordination, and more.

The eye, also called the eyeball, is a spheroidal organ that
is 24mm in length, weighs around 7.5g on average, and takes
up about 6.5cm3 of space. Internal, intermediate, and external
components make up the whole (Figure 5.1). There are three in-
dividual compartments within its three membranes (or "tunics").
The cornea is the curved and transparent front component, and
the sclera, which extends back to envelop the eye, maintains
the name. These two layers combine to produce the outermost
tunica fibrosa. The choroid, eye, and ciliary body make up the
intermediate tunic (vascular tunic), while the retina forms the in-
nermost (nerve) tunic. Aqueous humour is present in the anterior
chamber, which is located behind the cornea. Vitreous humour is
contained in the vitreous chamber, which is located behind the
lens.

There is a multi-step process that occurs between the eye and
the brain that determines what we see and how we see it. The
optical and physiological features of the human eye and their
connection to vision date back thousands of years. What we gaze

1 Surely the soul resides in the eyes.
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Figure 5.1: Diagram depicting both the external and internal structures
of the eye [7]

at demonstrates the complexity of our eyes through their range
of sizes and shapes. The increasing ubiquity of gaze-analysis
technology brings with it the ability to track gaze measurements
with increasing confidence. Such technology is used to measure
and collect eye characteristics by recording them as data. The
data provide unprecedented insights into human actions and en-
vironments, digitizing how people communicate with machines
and opening up new avenues for passive biometrics-based classi-
fication such as emotion prediction and beyond. Blink rate, blink
time, and blink latency are all metrics that can shed light on
the health of your eyes. Gaze distribution, fixation frequency,
fixation duration, saccadic duration, saccadic peak velocity, and
the number of saccades are some of the other metrics that can be
considered. Pupil size has been the topic of other investigations.
Researchers have examined eye size in relation to mental and
emotional stress as well as its utility as a biometric attribute
for identification and classification. Indeed, eyes, among other
biometric features, offer a variety of physical and behavioral
properties that make them particularly ideal for biometric iden-
tification purposes due to their high specificity and complex
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mechanical logistics of reproduction.

Eye features are highly resistant to counterfeiting because they
depend largely on brain activity and the properties of an individ-
ual’s extraocular muscles. So, based on what we know about the
human brain and the structure of the muscles around the eyes,
it is not possible to accurately copy eye-movements outside of
a living human being. In biometrics, identity fraud is an impor-
tant issue to mention. To date, most people do not have a clear
understanding of the potential risks in today’s technologically
advanced world. This is precisely why it is essential to explain
and emphasize one of the most troubling aspects of recent years:
deepfakes. This paradigm represents an example of a possible
threat to people’s digital identities. Since most deepfakes are
almost always facial transformations, this is where manipulation
can be easiest to detect. Often, facial features and expressions,
as well as the contour lines around the face, do not match when
looking closely at the image. Furthermore, the skin and aging
signs of the two people mixed in the deepfake are not generally
identical. Other features of manipulation within facial transfor-
mations include unnatural eye-movements or frequent blinks.
Using identity verification based on biometrics and liveness de-
tection can be a good way to stop these kinds of attacks. The
oculomotor one is very hard to copy mechanically and can be
a useful ally because of this. This makes systems based on eye
properties attractive strategies not only for biometric applications
but also for the built-in liveness detection capability.

The study of periocular biometrics is therefore interesting for:

• use them in a biometric fusion system to improve its overall
performance;

• provide integrated liveness detection capabilities of a sys-
tem;

• identifying behavioral patterns and information related to
the subject’s cognitive-emotional state;

• independent soft biometric modalities in the context of
demographic classification.
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More details on the four soft periocular features under con-
sideration (blinks, fixations, eye movements, and pupils) are
provided below.

5.1 blinks

Reflex contraction of the orbicularis muscle of the eyelids, re-
sulting in the closing of the eyes in response to an intense light
stimulus or a sudden visual stimulus. The afferent branch of
the reflex is represented by the optic nerve, which travels to the
visual cortex and from there to the facial motor nucleus, which
represents the efferent branch. Blinking is a continuous but ir-
regular reflex movement that occurs at a rate of about 10–20

episodes per minute, depending on the subject’s concentration
and emotional state. Normally, this reflex (bilateral) is evoked
by corneal contact, slight blinks on the forehead or around the
eyes, visual threats, or turning the eyes to one side; all these
stimulations are followed after a short time by adaptation, except
in the case of the evocation of the corneal reflex. Blinking be-
comes more frequent in cases of corneal or trigeminal irritation
or blepharospasm and becomes less frequent in parkinsonian or
patients with paralysis progressive supranuclear.

A blink thus consists of the simultaneous movement of the
eyelid and eyes. Two antagonistic muscles are involved: the
Orbicularis Oculi (OO) muscle and the Levator Palpebrae Superi-
oris (LPS) muscle. The OO muscle, a large flat elliptical spherical
muscle, induces eyelid closure. The LPS muscle serves to elevate
the upper eyelid. A third muscle is the Müller muscle, which can
adjust the width of the palpebral fissure and helps the LPS mus-
cle keep the eyelid open. Each region of the OO muscle contains
motor units of different sizes. During different types of beats,
the size of the motor unit determines how accurately the muscle
force can be increased or decreased.

The eyelids serve as a protective barrier between the cornea
and anything in the environment that could harm it. If the cornea
lost its opacity, vision would be compromised or lost entirely.
Blinking is a natural, easily observable, and easily accessible
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behaviour that displays the activation processes of the central
nervous system without intentional intervention since eyelid
movements require basic brain commands and low active forces.
Its analysis could reveal muscle or nerve abnormalities, which
makes blinking a very helpful source of information and high-
lights the need to examine its distinctive characteristics. There
are three distinct types of blinking:

• Spontaneous blinking. Spontaneous blinking happens with-
out the requirement for a stimulus. The objective is to
cover the cornea with a tear film to prevent the ocular
surface from drying out. The average blink rate appears
constant for a given individual; nevertheless, changes in
blink frequency are detected when blink frequency is anal-
ysed across shorter time intervals. Four blinks per minute
would be sufficient for maintaining the pre-ocular tear film,
which is roughly the blink rate of neonates [187]. Multiple
factors, such as time of day, environment, emotional state,
mental load, and activity, might influence blinking. Low
humidity and high temperature can cause the pre-ocular
tear film to rapidly dry, resulting in an increase in blink
rate [188]. In 1980, Von Cramon and Schuri discovered that
counting from one to one hundred caused participants to
blink more frequently than pronouncing the alphabet [189].
When there is a great demand for visual attention, such
as when youngsters play video games, blinking frequency
reduces [190].

• Voluntary blinking. Voluntary blinking is blinking that the
individual performs voluntarily. They are the blinks that
are triggered by conscious thought. Such blinks are used
to communicate, for example, to express innocence or to
imply that what was said was not particularly important.
The speech of individuals with profound motor paralysis is
also replaced by voluntary blinking [191]. Understanding
the normal variation in blink rate and the variables that
create this variation in order to make the blink rate a more
accurate and effective tool for studying neuropathological
diseases in which the blink rate is altered is the objective of
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[192]’s research. In this study, the scientists demonstrated
how men and women differ in their ability to control the
voluntary blinking rate. In their research, the mean blink
suppression time for men was substantially longer than for
women. Men also looked more capable of rapid blinking,
as their average rate of accelerated blinking significantly
exceeded that of women.

• Reflex blinking. Reflex blinking, also known as the corneal
reflex, is a short-lived rapid closing action caused by a vari-
ety of external stimuli, including bright lights, approaching
objects, loud sounds, etc. These are the fastest varieties
of blinking. The three basic sensory modalities that are
involved in this external stimulation are: a physical stimu-
lation, such as contact or a foreign body on the cornea; a
light stimulation, such as an intense light ("optical reflex");
and an auditory stimulation, such as sounds with inten-
sity greater than 50 dB. The reflex from optical stimulation
(optic reflex) is slower than that brought about by physi-
cal stimulation and is mediated by the cerebral cortex of
the occipital lobe. In general, regardless of stimulation, it
always occurs simultaneously in both eyes, even if stimula-
tion occurs in only one eye. Failure of the contralateral eye
to respond simultaneously, could indicate pathology.

5.1.1 Blinks and mental workload

The various parameters associated with blinks, such as duration
or frequency, speed, and latency, can be used to extract informa-
tion about subjects’ responses to different stimuli. It is known
that when a task requires visual stimulation, the person attempts
to reduce the amount of time spent with eyes closed, or the
number of blinks, by concentrating on the activity. The purpose
of different studies was to determine if this phenomena could
provide meaningful signals of mental workload for jobs requiring
intensive visual attention, such as reading, driving, etc.
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In a study conducted on an accurate car simulator, i.e., in a
very realistic driving environment, Lal and Craig [193] found that
the transition from normal driving to tiredness was marked by
an increase in blink rate and cessation of vertical and horizontal
eye-movements. This data, along with others in the literature,
appears to be consistent with the existence of a continuum be-
tween a very low blink rate, relative to tasks requiring high visual
attention, and a rise in blink rate just prior to drowsiness and
during monotonous tasks.

Significant sleep deprivation leads to an increase in the blink
rate, which researchers believe may be due to patients’ attempts
to maintain wakefulness through increased oculomotor activity
[194]. Additionally, these researchers found that loss of attention,
unrelated to a drowsy phase, similarly caused an increase in
the blink rate; this could be interpreted as an attempt, during a
monotonous task, to maintain wakefulness.

Some scholars believe that blinks may convey useful infor-
mation about central nervous system activation and exhaustion
levels; as fatigue in completing a task increases, so does the
frequency and duration of blinks, resulting in a decline in perfor-
mance [195].

In accordance with this idea, fatigue and tiredness have been
found to be associated with an increase in blink frequency [196];
for example, this index has also been used to get feedback on the
fatigue of pilots and co-pilots of military aircraft [197]. Luckiesh
and his colleagues tested blink frequency to see if it was a good
way to measure "visual fatigue" [196]. They found that this value
always goes up when a certain visual task takes longer or lasts
longer. In line with this, other tests with people doing tasks that
required them to pay attention for a long time also showed an
increase in blinking. Carpenter found that the number of blinks
increased by 43 percent over the course of a 2-hour vigilance task
[198]. After an extensive literature review, it can be concluded
that blink frequency measurements are a robust measure of task-
induced fatigue.
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In contrast, fewer blinks were associated with tasks requiring
greater concentration and focus [199]. Due to the fact that blink
inhibition is required to limit the loss of information caused
by the disruption of visual perception, the number of blinks
was significantly reduced under conditions requiring substantial
attentional commitment [200]. With increased work pressure, not
only does the frequency of blinking decrease, but so does the
duration of blinking.

5.2 eye-movements

Vision is one of the most fundamental cognitive actions that
each of us possesses to correlate with the external world, from
which we derive information of vital relevance for the goals of
knowledge and interrelationships between individuals, between
them and the environment, and ultimately survival. To attain
this objective, we must continuously move our eyes; this is a very
complex process as it is governed by extensive mechanisms for
highly fine motor regulation of the eyeballs. This process begins
with the activation of a distinct group of neurons and concludes
with the contraction of some eye muscles and the relaxation of
others. Eye-movements serve a well-defined purpose: they permit
visual perception, or the processing of visual information from
the environment. Vision occurs when light reflected from objects,
the surroundings, or writing enters the eye and modulates the
activity of the photoreceptors in the retina. The two functional
goals of eye-movements: orienting, stabilizing and maintaining
gaze, are achieved through two major classes of movements:
rapid movements, also called saccadic, and slow movements,
also called smooth pursuit.

There are four basic types of eye-movements:

• Saccades. A rapid eye movement that pulls an initially
peripheral region into the visual field’s center (the fovea).
The distance between the peripheral region of interest and
the fovea is known as the saccade’s amplitude. The direc-
tion and magnitude of saccades are mainly within volun-
tary control, although saccades in all other directions are
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strongly stereotyped. For instance, the duration and veloc-
ity of a saccade are unique to its magnitude and cannot be
altered or manipulated intentionally. The range of sporadic
reaction times is between 120 and 350 ms. Due to their
extreme speed (up to 900°/s), saccades cannot be guided
by visual feedback. There are four types of saccade classifi-
cations, which are predictive saccade, antisaccade, memory-
guided saccade, and visually-guided saccade [201].

• Slow pursuit movements. Slow pursuit movements are vol-
untary movements that fix a moving object on the retina so
that you can perceive its fine features. They are significantly
slower eye-movements meant to maintain a moving stimu-
lus on the fovea. The observer can choose whether or not to
track a moving stimulus with these motions. Saccades can
be deliberate, although they can also occur unconsciously.
Surprisingly, however, only highly skilled observers are ca-
pable of executing a pursuit movement without a moving
object. The majority of individuals who attempt to shift
their eyes smoothly without a moving target perform a
saccade.

• Vergence movements. Vergence motions allow the fovea to
keep up with visual stimuli that are approaching or reced-
ing. Vergence movements are associated with the process
of accommodation, or the change in lens curvature, which
maintains the stimulus in focus. In contrast to other forms
of eye-movements in which the two eyes move in the same
direction (conjugate eye-movements), vergence movements
are disconjugate (or disjunctive); they involve a convergence
or divergence of the lines of sight of each eye in order to
observe an object up close or far away. Convergence is one
of three visual reflexes triggered by an interest in a nearby
item. Lens accommodation, which brings the object into
focus, and pupillary constriction, which increases depth of
field and sharpens the image on the retina, are the other
components of the so-called near reflex trio.

• Vestibulo-ocular movements The oculo-vestibular reflex is
an eye reflex that stabilizes images on the retina during
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head movements by causing an opposite eye movement,
such that the stable image remains in the center of the visual
field (fovea, the point at which there is maximum visual res-
olution). The oculo-vestibular reflex does not require visual
stimulation (it occurs even in situations of complete dark-
ness or with eyes closed). The lag between head and eye-
movements is only 14 milliseconds. The oculo-vestibular
reflex alone does not provide adequate compensation for
head movements, particularly when slow, progressive mo-
tions are made; however, this mechanism is highly effective
when quick, transitory movements occur. When sustained
head rotation occurs, this reaction is inadequate and must
be supplemented by the optokinetic reflex.

5.2.1 Mental effort and emotions: evidence from eye-movements

According to neuroanatomical data, fear, anxiety, and vigilance
are associated with the brainstem motor nuclei that control eye-
movements. Since the early 1900s, they have been measured
and studied extensively to draw conclusions about perception,
cognition, and brain function in numerous fields of psychology,
cognitive science, etc.

Coordination between eye-movements and perceptual atten-
tion enables the selection of objects, characteristics, or regions
of interest, thereby providing vital insight into how humans ac-
quire information. In investigations of mind wandering, defined
as instances in which individuals are unaware that their cur-
rent cognitive aim has been momentarily supplanted by another
worry, participants who reported periods of mind wandering
had, on average, fewer sophisticated eye-movements [202].

On the other hand, saccadic speed appears to be a reliable
indicator of fatigue [203], whereas emotional and physiologi-
cal arousal appears to have a greater influence on the reaction
time (latency) of saccadic movements rather than their speed;
for instance, shorter reaction times have been recorded in re-
sponse to shock threats [204]. In [205], the authors observed that
when asked to evaluate the presence of a particular emotion on a
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face, participants focused on a common set of facial regions, but
also employed emotion-specific eye movement methods in both
emotional and neutral faces. These findings support the notion
that focusing attention on specific diagnostic areas is advanta-
geous for emotion processing and that these methods may be
influenced by both stimulus-driven and goal-driven factors. The
findings for goal-driven techniques are consistent with earlier
studies indicating that goals and perceiver traits may influence
the eye-movements used during facial emotion assessment [206].

In mental spatial transformation tasks, several cognitive pro-
cessing phases can be recognized in oculomotor behaviour. Eye-
movements were monitored while participants conducted a men-
tal folding activity in the work [207]. The relationship between
task difficulty, gaze proportion on each stimulus, gaze changes
between stimuli, and reaction times was examined by analysing
gaze behaviour. The authors discovered a monotonic decline in
switch frequency and reference object gaze proportions as diffi-
culty increased. [208] instead investigated the predictive role of
eye-movements in mental arithmetic. Mental arithmetic provides
a platform for investigating the cognitive processes underpinning
abstract thought. The authors noted that the predictive function
of horizontal eye-movements, in particular, is crucial for com-
prehending how attention narrows the range of feasible solutions.

The research in [209] proposes a method for objectively assess-
ing mental workload by evaluating the changes in eye movement
characteristics during various visual search activities. By altering
the difficulty of visual search activities, eye-movements were
examined to determine if they may be used to categorise mental
workload. Consequently, the five indices (saccades amplitude,
saccades velocity, fixation duration, blink duration, and pupil
diameter) differed significantly across visual search tasks with
moderate and high workload. Moreover, as task demand grew,
saccades amplitude, saccades velocity, and blink duration fell
dramatically, although fixation duration and pupil diameter grad-
ually increased.
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5.3 fixations

A fixation is typically defined in visual neuroscience as the du-
ration between two saccadic eye-movements during which no
eye-movements occur, with a duration of 100–400 ms [210]. A
scanpath is the resulting series of saccades and fixations. Eye
fixations are investigated within two distinct functional domains:
free-viewing where observers are needed to just view a visual tar-
get, and task-based where observers can read literature or explore
a static environment with a specific purpose. Eye fixations are
frequently referred to in this context as "inter-saccadic intervals"
to indicate that they were collected during a reading or visual
search task. Visual exploration activity consists of a series of
fixations interspersed with saccadic eye-movements that direct
the fovea to various portions of the image. Fixations capture a
person’s visual attention when they are focused on an attractive
object. Using multilabel classification, Vidyapu et al. [211] devel-
oped an attention prediction on webpage pictures. In a study
conducted by Roy et al. [212], instead, the authors devised a
cognitive approach for identifying ambiguous images.

5.3.1 Fixations: behavioral and emotional-cognitive process analysis

Antes and Kristjanson distinguished 15 artists from 15 non-artists
based on their eye fixation patterns as early as 1992 [213]. Fixation
density on the less significant features of familiar and unfamiliar
paintings greatly contributed to the investigation of discrimina-
tion.

Marcel Just and Patricia Carpenter provide a model of reading
comprehension based on an investigation of college students’ eye
fixations as they read scientific sections [214]. The model relates
to the cognitive processing of words, sentences, and text com-
ponents. Readers take longer pauses at areas with the highest
processing burdens. When readers use uncommon terms, the bur-
den increases. The model describes the duration of gaze on each
word of text as a function of the levels of processing involved.
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In forensic investigations, suspects will occasionally conceal
their recognition of a known individual for their own protec-
tion. Millen et al. [215] wanted to test if eye fixations could be
utilised to identify the memory of familiar persons when par-
ticipants were required to recognise faces. The eye-movements
of participants were recorded as they lied or spoke the truth
about recognising faces of varying familiarity (famous or per-
sonally known people). In conclusion, this research supports the
notion that several fixation metrics reveal memory cues during
the recognition of falsehoods. When participants falsely denied
recognition of personally recognised faces, fewer fixations were
recorded than when they correctly denied unfamiliar faces.

Eye area fixation may be an efficient indicator of a person’s
level of empathy. Moutinho et al. explored the hypothesis that
this sort of empathy measure may not be suitable for those with
high levels of social anxiety because attentional biases of avoid-
ance or hypervigilance toward emotional faces are common in
this condition [216]. Using eye-tracking, fixation times on the eye
region were examined in subjects with low versus high levels
of social anxiety, and these measurements were connected with
empathy levels. For subjects with considerable social anxiety, the
link between empathy and fixation time was nil.

It is usual in reading research to consider eye-fixation be-
haviour in order to examine underlying cognitive processes. In
numerical cognition research, however, eye-tracking is utilised
less frequently and less methodically. In numerical cognition
research, the behaviour of eye fixations ranges from investigat-
ing the basic perceptual aspects of non-symbolic and symbolic
number processing, to evaluating the common representational
space of numbers and space, to assessing the influence of the
positional value in base 10 of Arabic numerals, to exercising
executive control over number processing, according to a review
of the relevant literature. In addition to fundamental discoveries
such as the correlation between the size of a number and the time
required to read it, research has indicated that number processing
can influence general domain activities such as shifting attention,
but also in the opposite direction. It has been discovered that
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broad domain processes, including cognitive control, influence
number processing [217]. In conclusion, eye fixation behaviour
provides fresh insights into both domain-specific and generic
number processing mechanisms.

Sekiguchi [218] investigated the association between individ-
ual variability in face memory and eye fixation patterns when
viewing faces. Participants were split into high and low memory
groups based on their performance on a recognition memory
test after viewing short films of 20 faces. The distribution of eye
fixation did not differ qualitatively between the high and low
groups. Both groups were preoccupied with the inner regions
of faces, especially the eyes. The high groups moved their eyes
more frequently than the low groups, revealing a difference in
the pattern of eye fixation between the groups as measured by
the number of fixations and total fixation time. These findings
indicate that eye fixation plays a functional role in face memory.

5.4 pupils

The pupil is a circular opening in the center of the iris that per-
mits light to reach the retina. It is placed around 3 mm from the
cornea’s (the transparent layer that covers the entire front of the
eye) apex, which shields it. This little hole in the center of the
iris appears black to the observer because most of the light that
passes through the cornea and lens is absorbed by the tissues
within the eye. However, a small quantity of light manages to
reflect and, in certain circumstances, makes the pupil appear
"bright."

Under normal conditions, the size of the pupil can range from
2 to 5 mm and is not fixed but rather variable, as it is controlled
directly by the iris, which, through the pupil, is able to modulate
the amount of light entering the eye. In dim light, the pupil tends
to dilate to capture as much light as possible. In extremely strong
light, however, its constriction protects the photosensitive cells of
the retina from injury.
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Figure 5.2: From left to right is shown a pupil in the phase of miosis,
in normal conditions, and in the phase of mydriasis.

The sole purpose of the pupil, which is purely optical, is to
regulate the quantity of light that reaches the retina in order to
produce clear images under all circumstances. This amount is
proportionate to the pupil’s area, or its diameter squared. The
width of the pupil is controlled by the antagonistic actions of
the constrictor and dilator muscles found in the iris. Its role
is to maintain continuous retinal illumination by adjusting its
diameter in accordance with the amount of light falling on the
retina. The constrictor muscles contract in order to constrict the
pupil, while the dilator muscles contract in order to dilate it.
The constrictor muscle’s cells are grouped in concentric rings
around the pupil, whereas the dilator muscle is radially organ-
ised and innervated from the orthosympathetic. When the retina
is stimulated by shining light into the eye, the pupil instinctively
constricts (miosis), with the degree of constriction being propor-
tional to the intensity of the light and the size of the illuminated
retinal surface. The pupil instinctively dilates (mydriasis) as the
environment changes from bright to dark or when the intensity
of light decreases (Figure 5.2).

The term "mydriasis" is derived from the Greek word "amadros,"
which means "dark," and refers to pupil dilatation. Physiologi-
cally, the pupillary aperture expands momentarily for the eye’s
adaptation to darkness as well as during painful sensations and
emotional mental arousals such as worry, surprise, and panic.
Additionally, this may be suggestive of specific clinical disorders.
Pathologic mydriasis, for instance, occurs seconds after a heart
attack and can persist for hours after blood circulation has been
restored. Acute glaucoma also produces pupil dilatation and a
lack of pupillary response in the affected eye; this pathologic
occurrence is an ophthalmologic emergency requiring immedi-
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ate medical attention. Mydriasis is an indication that the third
cranial nerve (oculomotor) is being compressed due to a stroke.
Pupillary dilatation is also reported in the presence of ocular
injuries, brain trauma, viral conditions, and toxic states. In addi-
tion, antihistamines, barbiturates, estrogens, antidepressants, etc.
can induce it. In order for the ophthalmologist to examine the
ocular fundus, atropine and other mydriatic medications, such
as tropicamide and cyclopentolate, are administered to enlarge
the pupils.

Miosis is derived from the Greek term meiosis, which means
"reduction." It indicates that the diameter of the pupil is de-
creasing. Pupillary constriction happens physically during near
vision or in reaction to very bright light stimulation, but it can
also be observed when the eye accommodates for near vision,
when the eyeballs converge inward, and during deep sleep. It
is also observed in certain clinical situations, such as iridocycli-
tis, uveitis, corneal foreign bodies, and ocular or orbital trauma.
Pupil constriction may potentially suggest the existence of a brain
hemorrhage, encephalitis, or other neuropathological conditions.
Drugs such as pilocarpine, timolol, and reserpine can induce mio-
sis. Sometimes, punctiform pupils can indicate drug or chemical
poisoning, such as that caused by heroin, codeine, or morphine.

From an anatomical point of view, a normal, nonpathological
eye is known as an emmetropic eye and is, in general, studied
very little compared with myopic and hyperopic eyes. Normal
pupil size in adults ranges from 2 to 4 mm in diameter in bright
light and from 4 to 8 mm in darkness. Results in the literature
show that healthy emmetropic women have a larger pupil diam-
eter than men.

The maximum pupil size varies significantly among differ-
ent age groups: it changes as a function of an individual’s age.
Particularly at birth, pupil size is small (i.e., under 3 mm) and
gradually increases during the first few years of life, presumably
until puberty. With advancing age, the size gradually decreases
[219], [220], [221]. Not only does size decrease, but also the speed
of pupillary responses to a light stimulus decreases [222], [223]
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[224]. With age, the muscles that control pupil size and reaction
to light lose strength. This makes the pupil smaller and less
sensitive to changes in the amount of light around it.

5.4.1 Pupillary responses to emotional-cognitive stimuli

It is commonly believed that the eyes are the window to the
soul, but it is well-established that they are actually the window
to the brain. Our pupils do much more than simply respond
to light. The participation of the sympathetic nervous system
physiologically explains how and why pupillary fluctuations
occur. Clarifying why people have different pupillary reflexes
in response to the same emotional stimulus or mental activities
is more complex. The involvement of the sympathetic nervous
system explains physiologically why and how pupillary varia-
tions occur. It is challenging to explain why people have distinct
pupillary responses in response to the same emotional stimulus
or mental activity.

Pupillometry, or the investigation of the psychological origins
of pupillary reactions to external stimuli, dates back to an early
pilot research conducted by Hess and Poss (1965 [225]). The two
discovered a relationship between the emotional value of a vi-
sual stimulus and pupillary changes: when displaying different
images to a group of subjects, men exhibited a greater pupillary
response to images depicting female nudity, while women exhib-
ited a greater pupillary dilation in response to images depicting
male nudity, a child, or a mother with a child. This pupillary
dilatation was regarded by Hess and Poss as a sign of attention
in the visual stimuli. Other studies later report the same outcome
(Qu & Guo [226]).

Regarding pupillary responses to various types of emotional
stimuli, however, the literature has a number of conflicting find-
ings. In further studies, Hess and Poss observed the expected
pupil dilation in response to positively valued images as well
as miosis in response to negatively rated images. This outcome
was also discovered in subsequent studies. Ultimately, it appears
that emotional and psychological reactions to external stimuli
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are mirrored by fluctuations in pupillary size. Even though each
subject’s response to such stimuli is unique, there are still pat-
terns that can be seen based on the subject’s demographics. As
a result, pupillary responses to external stimuli should always
be analyzed with demographic variables such as the subject’s
gender and age in mind.



6
S TAT E - O F - T H E - A RT

The study of periocular characteristics is an important source
of information. There are various sectors that exploit its poten-
tial, from clinical and experimental psychology to the fields of
security and biometrics. In 2009, Park et al. [227] conducted the
earliest studies in periocular biometrics.

6.1 recognition system

Periocular recognition has emerged as a particularly interesting
area in difficult real-world situations, such as when there are
uncooperative subjects, the presence of occlusions, and other sim-
ilar situations, and yet it has demonstrated reliable performance.
In recent years, deep learning techniques have been favourably
embraced in computer vision and pattern recognition. Several
studies have utilised the advantages of deep learning or convo-
lutional neural networks to improve periocular biometric identi-
fication rates. Periocular area is represented by the sub-portion
of the face near an eye with eyebrows, eyelids, and eye folds.
In [228], the authors provided a framework for implementing a
periocular recognition system that was robust to variations in
image capture distances since the periocular region has recently
emerged as a promising biometric modality for unconstrained
human authentication. In [229], the authors offered a method
that examined the dynamics of the entire face using a geometric
descriptor organised in time series, with a special emphasis on
the periocular region, and achieved interesting results with high
identification accuracy.

Despite the fact that numerous studies in the literature use
the periocular area as a sub-part of the face, there are relatively
few that extract its soft properties in terms of pupil, fixations,
movements, and blinks. This is rather inconsistent with the avail-
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able scientific information on these features, both in terms of
the cognitive domain and their potential to contribute to the
recognition of a subject or group of people. For instance, there is
widespread agreement that eye movement data contains features
that can be utilised to uniquely identify individuals. One of the
most popular solutions is to extract or model the characteristics
of the oculomotor system that controls eye-movements [230].

Therefore, these soft periocular biometries are underutilised
and understudied, especially for biometric reasons. One of the
potential causes could be the widespread belief that in order
to obtain exact and reliable data, specialised hardware such as
high-end eye trackers with a high sample rate is required. How-
ever, in our work [231], we demonstrated that it was possible to
investigate and derive information on these characteristics even
using data collected without the use of specialised technology.

The eye tracker is a device that must be calibrated for each
individual user before each experiment; this could be regarded
as a limitation. In [232], the authors investigated the feasibility
of identifying individuals based on the calibration input they
provide to an eye tracker. Given the outputs of an uncalibrated
eye tracker compared to genuine gaze points, the mistakes will
be reproducible for the same individual; this was the focus of
this research. They analyzed the data from three datasets, with
an accuracy range of 49% to 71%.

Instead, a neuromorphic vision sensor with microsecond-level
temporal resolution was utilised in the [233] research. Existing
biometric identification methods based on explicit and static
properties are susceptible to impersonation attacks. For these
reasons, the authors presented a biometric authentication system
based on transitory blink signals. The neuromorphic vision sen-
sor only sends blink-induced local pixel-level changes as they
occur, resulting in advantageous characteristics such as ultra-low
response latency. Based on the microsecond temporal resolution
of the event density, the examined information is a collection
of effective biometric parameters describing the motion, speed,
energy, and blink frequency signal. These were inputs for two
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distinct models. The trials demonstrated a high degree of accu-
racy in identifying and verifying the subjects’ identities.

Eye-movements exhibit many of the favorable attributes fre-
quently encountered in other behavioral approaches to biomet-
rics, such as fundamental resistance to replication and the ability
to discretely record the sample. [234] was a pioneering work that
presented a study on the potential of eye-movement data for
biometric purposes. The eye-movements of twelve participants
were measured while standing still and viewing moving objects.
The measured data includes pupil sizes and their dynamics, gaze
speed, and the distances of the infrared reflections of the eyes.
The best dynamic feature was found to be pupil size.

Using approaches from the field of speech recognition, [235]
proposed a method for evaluating eye movement signals for per-
son authentication in a visual task-independent scenario. In [236],
subjects viewed images of faces while their eye-movements were
monitored, providing insight into each participant’s points of
attention. The authors proposed a graph-based framework. It
treated eye trajectories as 2D distributions of points on the image
plane. The focus was on the identification task.

Work [237] also includes an objective evaluation of numer-
ous biometric parameters based on eye-movements and their
capacity to properly and precisely distinguish unique persons.
Considered biometric candidates were associated with a number
of basic eye-movements and their aggregate scanpath character-
istics (acquired during the reading), including the number of
fixations, average fixation duration, average saccade amplitude,
average saccade velocity, average peak saccade velocity, velocity
waveform, scanpath length, scanpath area, regions of interest,
scanpath inflections, amplitude-duration relationship, main se-
quence relationship, and pairwise distance between fixations. To
combine these metrics into a single identification algorithm, a
fusion method was presented. With limited testing, a not particu-
larly competitive error rate of 27% was achieved. Also in [238] a
type of reading eye-movement biometric recognition technology
has been proposed. The authors built a Reading Eye-Movement
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Recognition computational model based on a multi-input deep
neural network and identified human subjects by comparing
predicted and actual fixation sequences. The experimental results
showed that the fixation sequence similarity recognition algo-
rithm obtained an equal error rate of 19.4% on the test set, and
the model obtained an 86.5% Rank-1 recognition rate on the test
set.

Cantoni et al. [239] presented a work on gaze analysis in which
the eye movement model was constructed using fixation time and
regression counts on different gaze points of different subjects,
and the similarity between the two records was determined using
the Frobenius norm of the density map. This article described a
technique that made use of a graphical depiction of the fixation
sites determined by an eye tracker during human-computer in-
teraction. The primary purpose was to prove the hypothesis that
the way an individual perceived an image could be a personal
distinguishing feature, i.e., a soft biometric application.

Since several works in the field, especially in the past, have
studied periocular features of the spectral domain or temporal
dynamics (speed, acceleration), little research has been conducted
using spatial features. For these reasons, [240] proposed a bio-
metric recognition system based on the fixation density map. The
idea was to develop a method capable of representing visual
scanning in the stimulus plane and extracting idiosyncratic fea-
tures for biometric identification of subjects under free-vision
conditions.

6.2 demographic classification

Demography is the study of the dynamics of populations. It
involves the study of the number, structure, and distribution of
populations, as well as the evolution of populations over time as
a result of births, deaths, migrations, and ageing. The scope of a
demographic analysis can range from entire societies to smaller
subgroups based on factors such as education, religion, ethnicity,
age, and gender.
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Applications of biometric demographic analysis are fairly di-
verse. Often, advertising is targeted. If the knowledge of clients
(such as age and gender) can be automatically assessed from
their faces or voices, customised products and services can be
suggested. Human-computer interface is another frequently stud-
ied application where automatic demographic analysis might
enhance social competence in interaction.

In the context of demographic classification by age and gender,
our eyes can also be a valuable source of data.

• Blinking. Spontaneous blinks. Gender and age affect blinking.
Sun et al. demonstrated in their study that the mean ampli-
tude and peak velocity of spontaneous blinks decrease with
age [241]. This reduction could be partially ascribed to a
peripheral phenomena, narrowing of the palpebral fissure
width. Age also decreased the spontaneous blink-down
phase main sequence slope. In contrast, neither the blink
rate nor the synchronisation of eyelid movements (blink
conjugacy) changed.

Voluntary blinks. The gender-related differences in voluntary
blinks were also highlighted in [242]’s studies. Fifty healthy
volunteers—10 women and 15 men under 40 years of age
(range: 22–38 years) and 20 women and 5 men above 60

years of age (range: 63–85 years)—were examined. Women
tended to make deeper and faster voluntary blinks. Age-
based differences were highlighted too. Voluntary blinks in
the younger subjects were more frequent than in the older
subjects. Additionally compatible with [241]’s findings. The
authors of this research studied the eyelid kinematics of
people with normal ageing in order to test the hypothesis
that eyelid movements undergo age-related changes and
that the blink abnormalities widespread among the elderly
are the result of normal ageing processes. The researchers
demonstrated that the average amplitude and peak blink
rate of spontaneous and, to a lesser extent, voluntary blinks
diminish with age. In [242], the authors discovered that the
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average amplitude and duration time of spontaneous blinks
were greater in younger subjects than in older subjects.
There was no difference in the frequency of spontaneous
blinking between younger and older participants. In both
age categories, women blink more frequently than men.

Reflex blinking. It is generally recognized that reflex action
is impaired with increasing age and so influenced by the
age of the sample [243]; in particular, complex reflexes tend
to have longer delays [244]. In [245] the authors suggested
that age and gender variation should be taken into consid-
eration in the interpretation of the brainstem reflexes in
basic and clinical studies. Taken in consideration healthy
subjects, the results represented true age-related changes:
the amplitude measures of the blink reflex component were
lower in older than in younger and lower in females than
in males.

• Eye-movement. Male and female brains have varied archi-
tecture, which may result in distinct eye movement patterns
between the gender. Based on this finding in [246], the au-
thors provided the findings of an eye tracking experiment
in which they analysed the eye-movements of 25 male and
20 female volunteers while passively viewing images. In
order to analyse gender variations in eye movement pat-
terns during image viewing, several characteristics, such as
scanpath length, number of saccades, spatial density, sac-
cade breadth, etc., were evaluated. Eye movement patterns
were shown to differ significantly by gender. In fact, an
eye-movement study revealed that females exhibit more
exploratory gaze behaviour, as evidenced by greater sac-
cade amplitudes and longer scanning routes. Additionally,
it is theorised that females inspect visuals more rapidly
than males. In [247], saccadic eye-movements were mea-
sured in 168 normal human volunteers aged 5 to 79 years
to determine any age-related alterations. Under varied fixa-
tion conditions, subjects were told to either stare toward (a
pro-saccade task) or away from (an anti-saccade task) an ec-
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centric object. Young children (5-8 years old) were found to
have slow saccadic reaction times and a large intra-subject
variance; young adults (20-30 years old) had the fastest sac-
cadic reaction times and the lowest intra-subject variance;
and finally, elderly subjects (60-79 years old) had slower
saccadic reaction times and longer duration saccades than
the other groups. These findings reveal very substantial
age-related impacts on the performance of the participants,
which may reflect various stages of normal growth and
degeneration of the neurological system.

• Fixations. Fixations were investigated in the study [226]
using 18 product photos as stimuli. This study examines
the relationship between eye-movements and the emotional
response of the user to the qualities of a certain product.
The stimuli included harsh, neutral, and pleasurable vi-
suals. Forty participants (20 males and 20 females, mean
age = 35.6, SD = 6.38, range: 21-48 years) participated in
an eye-tracking study in which they viewed randomly dis-
played product photographs. Participants’ eye-movements
while viewing product graphics were measured. Partici-
pants quickly rated their emotional response to the product
photographs on a seven-point scale after viewing the stim-
ulus. The results demonstrated that stimulus category and
gender differences resulted in distinct changes in fixation
number and duration. In terms of gender differences, the
results revealed that females had higher scores for fixation
count and duration. Age effects have not been fully ex-
plored, but the overall pattern suggests that differences in
fixation durations and fixation probabilities are quantitative
rather than qualitative [248].

• Pupils. Qu and Guo indicate that the pupillary size of
women in response to negative stimuli is significantly
smaller than that of men in response to the same type
of stimulus. However, numerous other studies [249], [250],
[251], [252], [253] have indicated that the pupil dilates in
response to both positive and negative valence images,
whereas neutral stimuli have no effect. In particular, Par-
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tala and Surakka (2003 [251]) observed that positive stimuli
generated more pupillary dilation in women than in men,
whereas negative stimuli caused larger dilation in males.
Although the finding appears similar to that of Qu and
Guo’s study, a lower pupillary response to negative stimuli
in women cannot be attributed to pupil constriction, as a
smaller response to neutral stimuli was seen. In contrast,
Yrttiaho et al. [253] conducted a study in which women
reported increased pupillary dilatation in reaction to nega-
tive visual stimuli depicting children in apparent emotional
distress. Current thought correlates pupil dilation more
with the subject’s emotional arousal than with the stimu-
lus’s positive or negative quality. Specifically, an individ-
ual’s emotional response to an external stimulus depends
heavily on whether or not the stimulus is perceived as stim-
ulating. Age, of course, also influences the effects of the
aforementioned emotional and cognitive factors: in particu-
lar, it has been shown that the combined effect of emotional
involvement and the advanced age of a subject produces
less pupillary dilation than the same level of arousal in a
younger subject [254].



7
O U R C O N T R I B U T I O N T O L I T E R AT U R E

Fixations, pupils, eye-movements, and blinks are periocular bio-
metric characteristics that have been demonstrated in the liter-
ature to be significant biomarkers for detecting cognitive effort
and emotional responses, as well as for getting useful informa-
tion for subject recognition. Despite the fact that this relationship
is well-established in the literature, it was noted that there was
a paucity or absence of study into constructing a system that
would learn the patterns of this data and then draw conclusions.

For this reason, we first investigated the use of the pupil as
a single soft biometric trait for the purposes of demographic
classification, particularly by age and gender, providing a criti-
cal comparison and extensive discussion of which ML technique
was most appropriate to the problem among a large pool of
classifiers and beyond. Subsequently, with the same purposes of
demographic classification, this biometric was also included and
evaluated in a broader context of fusion with two other biometric
traits, fixations and blinks. The performance achieved encourages
studies of the periocular area as a soft biometric to be detected
when the lower part of the face is not visible. For the develop-
ment of a web user identification model, features extracted from
the periocular area related to pupils, blinks, and fixations were
analyzed together with another behavioral biometric data source,
touch dynamics. The results obtained demonstrated the promise
of these two different biometric traits and, more importantly,
their fusion. Finally, with the aim of analyzing changes in peri-
ocular features in order to classify various cognitive processes,
two studies were conducted. In the first, a system capable of
measuring audience attention was implemented based on blinks
and fixations, among other features. In the second, however, to
investigate the effects on the periocular region of visual stimuli
that stimulate two different mental tasks: visual memory recall
and understanding the semantic complexity of an image, infor-

141
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mation from blinks, pupils and gaze movements were extracted
and analyzed.

Additional information on these studies is available below
(Sections 7.1, 7.2, 7.3).

7.1 demographic classification

In addition to referring to the measurable statistics of a popu-
lation, the term "demography" also refers to qualities such as
age, gender, ethnicity, and race that are commonly employed in
population statistics. Since early papers in [255] and [256], the
computer vision community has supported research on this class
of soft biometrics.

As described in the preceding sections, the biometric properties
of the eyes demonstrated a degree of discrimination for demo-
graphic classification purposes. Specifically, it was demonstrated
that these characteristics could provide useful information regard-
ing gender and age differences. Soft periocular features are of
particular interest for this type of purpose both when considered
physical (e.g., at the level of pupillary base size) and behav-
ioral (blink frequency, scanpath, etc.) characteristics by reacting
differently to stimuli depending on the category (male/female,
young/adult/old). Despite this evidence, the literature on demo-
graphic classification work based on these parameters and also
jointly using powerful ML principles has been relatively limited
or nonexistent.

Because of this, we first did a comparison study to find out
which periocular biometric trait seemed to be a good starting
point for this kind of classification [257]. Specifically, taking into
consideration the results obtained from a previous study [258] in
which gaze behavior data were analyzed in terms of fixation and
scanpath, replicating the same experimental conditions, we com-
pared pupil indicators with the results obtained and observed
how the mean pupil diameter has proved to be the best discrimi-
nating feature for both gender (male and female) and age (under
30 and over 30).
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Based on these results, therefore, as detailed in more detail
below, we decided to do a broad and deep analysis using the
most famous and popular ML techniques to analyze pupillary
size as a single feature, which was then fused and combined with
information from fixations and blinks to obtain a gender (male
and female) and age (under 30 and over 30) classification.

Table 7.1: Age range of participants in GANT dataset.

Age range # participants

a (17–18) 11

b (21–30) 57

c (31–40) 9

d (41–50) 16

e (51–60) 8

f (61–70) 9

g (71–80) 1

The dataset used for these studies is GANT (Gaze ANalysis
Technique), which is publicly available online and involves 112

subjects [239]. The participants are 72 males and 39 females with
an age range between 17 and 80 years (see Table 7.1). It defines
seven age groups: a (17–18), b (21–30), c (31–40), d (41–50), e
(51–60), f (61–70), and g (71–80). The acquisitions have been made
through the Tobii 1750 eye tracker (1280×1024 screen resolution,
50 Hz sampling frequency). Participants were shown 18 images
as experimental stimuli (examples in Figure 7.1), 16 human face
images (s1-s16), and 2 landscape ones (s17 and s18), interleaved
with blank white screens with a cross at the center. All images
were displayed for 10 s, while the empty ones 3 s, except the first
one which was displayed for 5 s. The order in which all images
were shown is random. The 16 images of the human face are of
eight males and eight females. Among these images, 4 images
of females and 4 ones of males are of famous people, while
the others are of persons unfamiliar for the participants. The
gray-level distributions are similar. The acquisition sessions are
two: one was made in 2012, and the other in 2013. In both, there
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Figure 7.1: Some examples of images shown to participants during the
data acquisition process in the GANT dataset. The first col-
umn shows images of two landscapes. The last two columns,
on the other hand, show images of women and men: in the
first row there are images of unknown people while in the
second row there are images of two famous actors.

are subjects that are acquired several times for a maximum of 3

per year. Each acquisition is carried out at a temporal distance
from the previous one, in a time interval between five and nine
days. The first session of 2012 involves 88 participants, 36 of
whom were also involved in a second session and 16 in a third.
A total of 140 acquisitions were made. In the second session
of 2013, instead, 34 subjects were involved, 10 of whom also
participated in the first session of 2012. 17 subjects participated
in a second session (9 of which participated in 2012), and 13 out
of 17 (6 of which participated in 2012) also performed the last
acquisition session. In total, 64 acquisitions were made in the
three sessions over a period of time ranging from a minimum of
one day to a maximum of 21 days. In this paper have been taken
into consideration all set of tests for gender and age classification.
The acquisitions in the GANT dataset have been carried out by
the Tobii 1750 eye tracker. This model assigns a validity code (0–4)
to the acquisitions relating to the right and left eye, respectively.
The lower the code, the more accurate the extraction of eye data
is. In the first phase, we filtered out the data whose code was
different from zero. If the data of one eye has been associated
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with a high confidence code, for example 0, and the data of the
other eye has been associated with a low confidence code, for
example 4, both have been deleted. As a result, only data deemed
relevant for both eyes was saved.

7.1.1 Pupil size for Age and Gender Classification

The pupil size is a soft biometric trait, but in-depth studies to
analyze it for biometric purposes are lacking in the literature,
as are datasets focused on this field of research. On the basis
of these observations, we presented in [11] an extensive study
with the objective of demonstrating that pupil size and dilation
over time can be potentially used to classify people by age and
by gender. To do this, 14 supervised classifiers were applied to
a dataset meant for gaze analysis. Measuring the right and left
pupil individually and also simultaneously, the performances
of the classifiers have been compared and the worst and best
performing selected to support potential fusion strategies.

Given a training set of N instances X = {X1, X2, ..., XN} and
a set of t possible classes C = {ci, ...ct} associated to X, the
corresponding class labels are y1, y2, ..., yN where yi ∈ C, (i =

1, ...N). The aim was to predict the correct class label for a new
set of points X∗. In this work, we mainly focused on the following
groups of ML algorithms:

• Decision Tree. Decision Tree Classifier (DTC) is based on a
tree structure where the inner nodes represent the features,
the leaves the outcomes and the branches the decision rules.

• Ensemble methods. The goal of ensemble methods is, in-
stead, to combine the responses of several learning estima-
tors in order to improve the predictive performance and ro-
bustness of a single algorithm. These kinds of methods can
be divided into two families: averaging and boosting meth-
ods. The former are Random Forests (RF) and Bagging (BG)
classifiers. The basic idea is to independently calculate the
average of the predictions of different estimators. This en-
sures that the variance of a single base estimator is reduced.
The second group of methods includes AdaBoost (ADA)
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and Gradient Boosting (GB) classifiers. The driving princi-
ple is to create a strong classifier from a combination of
weak ones. The base estimators are used sequentially to
correct the errors from the previous model.

• Instance-based learning strategy. Instance-based learning
strategy is a decision-making problem based on instances
seen in the training phase that are deemed important or
representative of the problem. These algorithms, called
winner-take-all methods, generate a database of sample
data stored in memory and compare the new data for
which you want to obtain a prediction through a similarity
measure in order to find the best match. Among the most
famous and widely used methods belonging to this class are
K-Nearest Neighbor (KNN) and Support Vector Machines
(SVM).

• Artificial neural networks. Artificial neural networks are
models whose structure or function is inspired by biologi-
cal neural networks. They are a type of pattern matching
that is often used for regression and classification issues,
but they are actually a vast subfield with hundreds of meth-
ods and variants for all sorts of problem types. The two
most famous algorithms for artificial neural networks are
Stochastic Gradient Descent Classifier (SGD) and Multilayer
Perception (MLP). SGD is an optimization algorithm that
implements a simple learning routine for the descent of the
stochastic gradient. MLP is based on one or more layers of
perceptrons. The former receives the input, and the latter
expects the class. Among these, there may be an arbitrary
number of hidden nodes that allow you to model the cor-
relation between input and output. During the training
phase, the various parameters are adjusted with a back-
propagation approach with the aim of minimizing the error.

• Probabilistic methods. Bayesian methods are those that
explicitly apply Bayes’ Theorem for problems such as classi-
fication and regression. Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Gaussian Naive
Bayes (GNB) are special instances of the Bayes classifier;
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Figure 7.2: (left) Distribution of PDM for under 30 and over 30. (right)
Distribution of PDM for males and females.

they all deal with continuous Gaussian predictors, and
their assumptions on the relationships among predictors
and across classes vary (i.e., the way they specify the covari-
ance matrices). Gaussian Processes (GP) is a generalization
of the Gaussian probability distribution and can be used as
the basis for sophisticated non-parametric ML algorithms
for classification and regression.

Table 2 of the [11] document provides more details on the
above classifiers, together with the parameters used to set up an
exhaustive search.

The pupil diameter mean (PDM) was calculated by exploiting
the data for each image and for each eye of the GANT dataset
(details in Section 7.1). Figure 7.2(top) shows the distribution of
PDM for the participants belonging to the under-30 and over-30

classes. It can be observed that the distributions are such that it
is feasible to properly separate the acquisitions into two classes.
On the bottom of the Figure 7.2 it is also evident how much
the distribution of males and females overlaps each other. This,
in turn, suggested that a binary classification of gender would
be more difficult to achieve. These average values were then
appropriately labeled with respect to both gender and age. The
analyzed samples are organized as follows:
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• average left pupil size (PL)

• average right pupil size (PR)

• average left and right pupil size (PLR)

• average left and right pupil size + code of the relative
image (PLRI)

Then, the feature vectors were scaled into a more appropriate rep-
resentation for estimators that maintains the original distribution.

PLRI has not been analyzed for both classification activities. In
fact, it is known in literature that the content of the images could
influence the pupillary response of men and women in different
ways. Therefore, for a complete analysis, we decided to integrate
this information content into our analysis just for gender classifi-
cation. This contribution was not relevant to the age classification.

The experiments have been performed on an empirical split-
ting of the dataset, consisting in a portion of the data for the
train-set and the remaining one composing the test-set. More
combinations have been considered. From the observation of
the boxplots in Figure 7.2 it was evident that setting a simple
threshold to separate both categories was not possible. Indeed, as
regards the gender classification, it was not possible to define a
separation line that allowed us to profitably divide the values of
the two categories under analysis (males and females). Instead,
for the age classification, it seemed possible to define a thresh-
old. However, looking carefully at the distribution of the data in
the various quartiles, we realized that, by setting a hypothetical
threshold, more than 25% of subjects would have been classified
incorrectly. The good separation of the two classes were such to
require just a little amount of samples to build the discriminating
model.
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The experimental design has been mainly organised in three
stages:

• Dataset split by acquisitions. The first round of experi-
mentation was performed on the dataset split into train:test
proportions of 80:20, 70:30, and 10:90, respectively, by the ac-
quisitions. The contribution of this experiment was limited
to the fact that when training and testing shared different
acquisitions from the same subjects, the classifiers sepa-
rated the samples into classes with the support of biometric
recognition of the users (who are seen at training time).
In fact, the overall mean accuracy achieved in all these ex-
periments, even when the train test was significantly less
populated than the test set, was about 75±2%. This result
was also motivated by the fact that the binary nature of
age classification in this study, combined with the simple
representation of the data, required a small number of sam-
ples at training time to build up the discriminating model.
On the other hand, it was more interesting to consider the
performance of the classifiers when unseen subjects are
acquired. The ability of the classifier to discriminate the
subject by age or gender gained more significance.

• Dataset split by subjects. Splitting the dataset in terms of
acquisitions is not a sufficient condition to assure that the
testing samples were from subjects that do not belong to the
train set too. For this reason, to prevent that samples in the
test-set would be used at training time, we split the dataset
also by subjects, ensuring that if at least one acquisition of
a subject is in the train-set then different acquisitions by the
same subject cannot be in the test-set. This partitioning of
the dataset has been performed with a proportion of 80:20

between the training and test sets, respectively. By remov-
ing the biometric contribution from the dataset splitting,
the goal was to effectively demonstrate the capability of
classifiers to separate the acquisitions into classes.

Age classification. The results achieved in terms of binary
age classification are summarised at Table 7.2. The Table
presents the results achieved with all classifiers and tech-
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niques separated by observed data. That is, the first part
presents the performance for left pupil dilation only, and
the middle part for right pupil dilation. The last part of
the Table considers the contributions of both pupils. It can
be observed that the MLP achieves the best accuracy on
the right pupil and when both pupils are considered. But,
on the contrary, on left pupil Linear Support Vector Ma-
chines (LinSVC) and GP outperform the others. This result
helped us to support the observation that pupils dilation
did not show the same behaviour in both eyes for all indi-
viduals. In some cases, it may happen that personal attitude
or poor eyesight can affect the speed and trend of dilation
of the pupils in a different way per eye. Therefore, with
this consideration in mind, the results reported at Table
7.2 did not suggest that MLP did not succeed with left eyes
but, rather, that the variability of dynamics in the dilation
of pupils in the dataset was such as to determine a (very
limited) decrease in performance. In fact, it can be observed
that MLP is also the most precise on average over the experi-
mental setting but, conversely, reports the lowest recall rate.
Moving the attention on the more compact result provided
by F1-score, it can be observed that performances exhibited
by the classifiers varied significantly from each other. But,
we could again notice that MLP was overall the one that
achieved the more stable result among the treatments. In
addition, even though the boxplot at Figure 7.2 suggested
a good separations in terms of age, linear approaches like
LinSVC, SVM with linear kernels or LDA did not provide in
general a good classification.

Gender classification. Concerning gender classification, the
performances were quite less promising. Such a result was
anticipated by the boxplot in Figure 7.2(bottom) and the
linked overlapping among the distributions of the two
classes. In fact, if we consider the results summarized at Ta-
ble 7.3, we can observe that none of the classifiers achieved
significantly high levels of accuracy. Table reports the best
accuracy achieved, but all classifiers showed comparable
levels of performance. This result was motivated by the
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Table 7.3: Comparative analysis among the classifiers in terms of gender
classification. The results are presented in terms of the best
accuracy for each sample achieved through an exhaustive
search of their hyperparameters.

CLASSIF. ACCUR. PRECIS. RECALL F1

GENDER PR MLP 0.5156 0.5310 0.2679 0.3561

GENDER PL MLP 0.4978 0.4989 0.9955 0.6647

GENDER PLR SGD 0.5848 0.6067 0.4821 0.5373

GENDER PLRI KNN 0.5379 0.5281 0.7143 0.6072

fact that, being the pupil dynamics a behavioural biomet-
ric trait, aimed acquisitions are necessary to provide those
stimuli that allow to stress the different behavioural pat-
terns among males and females. The experiments PLRI, i.e.,
the one which considers a specific image provided during
the acquisition session of GANT dataset, did not result
such to extract this kind of contribution from the data.

• Score-level fusion strategies. To also take into consideration
the computational demand of the classifiers, we performed
some tests to verify if score-level strategies of fusion could
improve the overall performance achieved. Not surpris-
ingly, MLP with a high number of nodes and layers can be
significantly more time-consuming than linear classifiers or
simpler classifiers. These last ones, on the contrary, achieved
lower performances in terms of accuracy, but they have a
very reduced training time as well as the ability to run in
real-time. On these premises, the third round of experi-
ments focused attention on a fusion strategy that could get
the best from the classifiers, thus achieving a higher overall
classification rate. To perform the fusion at score-level, the
behaviour of each classifier has been carefully inspected.
The goal was to look for a combination of classifiers whose
estimates were correct when aggregated. To achieve such
a goal, a fusion strategy based on the weighted sum (see
equation 7.2) of the classifiers’ responses has been imple-
mented. Proportionally to best performing algorithms, let
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Figure 7.3: The precision and recall measurements for the top three
best accuracy values.

m be the recognition method of a fusion of M classifiers
and am its accuracy, the weight wm was calculated as:

wm =
am

∑M
m=1 am

(7.1)

where 0 ≤ wm ≤ 1 and ΣM
m=1wm = 1. Once the weights have

been computed, the weighting fused score f was obtained
as:

f =
M

∑
m=1

wmsm (7.2)

where sm is original the score of m − th classifier.

Different combinations of classifiers have been considered,
according to the level of performance achieved in terms
of accuracy. In particular, they consisted of four different
fusions of classifiers: (1) the best classifiers, (2) the worst
classifiers, (3) the worst and the best classifiers, and (4)
the least computationally intensive classifiers (QDA - LDA

- GNB). The first two combinations, the best and the worst
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Table 7.4: The classifiers are combined according to the achieved accu-
racy.

Worst Best
Worst

+

Best

QDA - LDA

GNB

AGE PL 0.7957 0.8003 0.8003 0.7988

AGE PR 0.7698 0.8079 0.8079 0.7835

AGE PLR 0.7393 0.8003 0.7973 0.7988

GENDER PL 0.4531 0.4353 0.4643 0.4710

GENDER PR 0.4420 0.4754 0.4576 0.4844

GENDER PLR 0.4442 0.4688 0.4777 0.4755

GENDER PLRI 0.4442 0.4799 0.4688 0.4821

classifiers, have been chosen according to the accuracy re-
sults achieved in Table 7.2. The best-performing classifiers
have also been represented in terms of their curves of recall
and precision in Figure 7.3. In the case of equal accuracy,
all classifiers have been considered. The results of the com-
bination are shown in Table 7.4. It can be observed that
nor of the fusion improved the accuracy achieved by best
classifiers taken alone. Consequently, none of the fusions
really introduced a benefit deriving from the combination
of the responses of the single classifiers, suggesting that
the higher computational demand required to compute the
fused score was even counterproductive.

7.1.2 Periocular Data Fusion

A unimodal biometric system that is based on a single biometric
characteristic has several problems and limitations due to a lack
of data, the poor quality of the information collected, or, as in the
case of soft biometrics, a low discriminatory power. To overcome
these issues, a multi-biometric system, i.e., a system that merges
different biometric features, can help to improve performance
and consolidate the information obtained. Using only the infor-
mation provided by the periocular area, we investigated how
effectively fusion approaches that combine pupils, fixations, and
blinks can estimate the gender and age group of users [259]. The
implemented data fusion strategy is shown in Figure 7.4. First,
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Figure 7.4: The workflow of the proposed fusion strategy.

we adopted a concatenation scheme for fusion at the feature
level, while at the score level, we applied and then evaluated the
performance of transformation and classifier-based score fusion
methods. More details on these approaches are given in Section
1.1. This work employed the following ML algorithms: DTC, RF,
BG, ADA, GB, KNN, SVM, and SGD.

According to our knowledge, this was the first paper to com-
bine numerical data derived from the periocular area for the
purposes of demographic recognition. For this reason, an ad
hoc experiment designed to evaluate the combination of the two
investigated fusion techniques was conducted. Extensive tests on
the optimal configuration of the classifiers to be selected are also
reported. The dataset used is GANT (details in section 7.1).

For each image, the characteristics extracted from the pupil
were studied in terms of their diameter measurement, while
those relating to fixations and blinks were studied in terms of
duration and number. Specifically, for blinks, a counter of "fast"
blinks is also increased, i.e., those for which it is not possible to
actually calculate the duration. Since the samples obtained were
gender-unbalanced, a randomly selected subset was analyzed.
Feature vectors obtained were combined through the feature level
fusion by a concatenation strategy. This strategy was preferred
to a summarizing one that could reduce dimensionality because,
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Table 7.5: Spearman’s correlation coefficients with respect to the pairs
of the three modalities.

Spearman’s correlation

coefficients

Blink-pupil 0.1439

Blink-fixation -0.0992

Fixation-pupil 0.0644

in this case, compared to the three biometric modalities (pupil,
fixation, and blink), we had no redundant information. In fact,
applying the Spearman non-parametric test between the charac-
teristics of the three modality pairs (blink-pupil, fixation-pupil,
and blink-fixation), we observed that there is poor correlation
between them. For example, when we studied the pupil-blink
pair, we applied this test to all possible pairs of characteristics
that could be obtained by comparing these two biometric traits.
We reported in Table 7.5 the average of these values for each
pair analyzed. So, it was evident how the association between
these modalities was very poor. Then the feature vectors were
transformed by scaling each feature over a given interval. The ra-
tionale behind this choice is that this scaling included robustness
to very small standard deviations of features and the retention
of zero entries in the sparse data.

After these considerations and operations, the experimentation
was conducted by partitioning the available data into random
training and test subsets. To avoid strongly tying the results ob-
tained to the training-test random selection data and address the
issue of the impact of parameters on the final performance of
classification models, we used an exhaustive search. In particular,
we tested different parameter values, specific for each estimator,
with a k-fold cross-validation procedure with a variable "k" be-
tween 2 and 10. The basic idea behind this procedure is to divide
the training dataset into k parts and train the model on a subset
consisting only of k − 1. The resulting part was used to validate
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the model with a performance measure such as accuracy. The
measure of the performance obtained is the average of the k − 1
values derived individually. For each model trained, a confidence
score associated with each element of the test set was generated
with respect to each label (male/female or under 30/over 30),
i.e., the probability that that particular subject in the test belongs
to a category rather than to another. As we said, we focused on
two approaches: transformation-based score fusion and classifier-
based score fusion.

Transformation-based score fusion. For the first strategy, only those
classifier scores reporting an accuracy greater than an empirically
chosen threshold were selected. The transformation techniques
analyzed were:

• weighted sum: see equation 7.2;

• weighted product: the weighed product is obtained from
a variant of the classic arithmetic product. Let (s1, ..., sn)

score vectors obtained from n algorithms, its formula is:

S =
n

∏
i=1

swi
i

where wi is the weight of the algorithm i. It can be observed
how, in this case, the scores influence each other more than
the weighted sum. For example, if one of the scores is close
to 0, the score obtained from the fusion will also be close
to 0.

• Bayes fusion rule: Bayes’ rule is one of the fundamental
pillars in probabilistic theory. The definition of this rule for
the event x and y is:

p(x|y) = p(y|x)p(x)
p(y)

If we have a score matrix M and different classes i to which
our observations can belong, the Bayes’ rule can be rewrit-
ten as [260]:

p(i|M) =
p(M|i)p(i)

p(M)
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where p(i) is marginal probability of i, p(M|i) is the condi-
tional probability, p(M) = ∑n

i=1 p(M|i)p(i) is the evidence
and n is the number of classes. Assuming that the scores
are conditionally independent given the classes, p(M|i) can
be rewritten as:

p(M|i) =
n

∏
j=1

pj(sj|i)

where pj(sj|i) is the score of j-th algorithm related to the i-th
class. So, let ta and tb the scores obtained by two algorithms
for a binary classification problem, their fusion through the
Bayes function is given by [261][262]:

S =
ta ∗ tb

(1 − ta)(1 − tb) + (ta ∗ tb)

Also in this case, to give greater importance to one bio-
metric over another, we have assigned a weight (wi), to
be multiplied to the vector of the score which must have
a lower value for the final decision. This weight tends to
reflect the accuracy achieved by the algorithms involved.
If one algorithm tends to have a better performance than
another, the prediction of the first should have a greater
weight when making a choice.

These have been applied to the scores of the selected classi-
fiers by matching them in all possible combinations. The best
weights were calculated with brute-force combinations of weights
between 1 and 10 [259].

Classifier-based score fusion. The models chosen are the same
ones used to obtain the scores. These classifiers were trained on a
new training data set obtained by concatenating the scores relat-
ing to the two classifiers that reported the highest accuracy in the
first experimentation with concatenation only. The rate train:test
chosen was 70:30. Also in this case, an exhaustive research of the
best parameters was applied and different k-fold strategies for
the models were tested in order to obtain the best results.

The results of our tests showed that using a fusion strategy
improved the overall performance of the system. Score fusion
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based on transformation was found to be preferable to that based
on classification. Moreover, it was evident that the fusion of
these features resulted in a significant improvement in terms of
classification compared with the values obtained from the indi-
vidual analyses. For gender and age, the best accuracy was found
with both a sum and a weighted product (84.62% and 84.45%,
respectively). Based on the collected data, it was observed that
concatenation increased the accuracy of classification by about 4%
for age and a bit more for gender. The fusion technique based on
the transformation of scores versus sum and weighted product
achieved the best performance for both classification tasks while
adjusting the number of algorithms involved. To obtain the best
performance in gender classification, it was sufficient to exam-
ine only two classifiers and rely on the weighted product. For
figuring out a person’s gender, the proposed fusion technique,
which used feature-level concatenation and score-based fusion,
did better than the current best method by more than 25%. For
age classification, however, there was a slight increase.

7.2 biometric recognition

The advancement of information technology has caused a data
explosion. Companies collect and preserve more consumer infor-
mation than ever before. Similarly, the amount of recorded data
associated with individual users has exploded during the past
decade. This is especially true in the online environment. Online
registrations and surveys are used to acquire user information.
In addition, information about an online user’s activities is fre-
quently collected covertly, even as the person surfs the web. An
essential difficulty is efficiently summarising user-level informa-
tion so that it can be utilised successfully in electronic commerce.

User profiles can assist in summarising the vast quantities of in-
formation accessible from a user and achieving objectives such as
product recommendations and customised information delivery.
A user profile can include information explicitly submitted by in-
dividuals through registration and surveys. The name, telephone
number, and address of a user, as well as information about their
hobbies, are frequently provided by users. Explicit information
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also includes simple facts about the activity or transactions of the
user. Such information may include, for instance, the frequency
with which a user visits a website, the average amount spent
per purchase transaction, and the most popular product cate-
gory. In addition to explicit information, a user profile may also
contain implicit information derived from evaluating the user’s
activities, typically using more complex statistical or data mining
techniques.

Since smartphone usage has surpassed that of personal com-
puters, academics are focusing on mobile devices. In fact, modern
smartphones are equipped with a variety of sensors that may
be used to deduce the actions of the device’s owner and infer
relevant information such as position, rotation, acceleration, mag-
netic field, etc. All of this information may also be relevant to the
analysis of a user’s behaviour. In addition, nearly all smartphones
feature touchscreens as a means of user engagement. It is feasible
to evaluate touch dynamics to examine how people interact with
a touchscreen. These dynamics take into account a variety of
factors, such as the time between keystrokes, the pressure of
each touch, the movement of a user’s touch, the screen, etc. The
last ones are difficult to imitate and can therefore be considered
a distinguishing characteristic for identifying users.The benefit
of mining and utilising such biometric data is that it does not
interfere with the user’s activities (although it may be considered
"privacy mining") because it is fully transparent to the device’s
owner. Therefore, the usage of smartphones enables access to a
huge number of behavioural and physiological characteristics,
which is the optimum solution for a biometric technology-based
system.

Users touch their smartphones, but they also use their eyes
to interact with such devices. Together with the dynamics of
touch, it may be particularly fascinating to examine the eyes as
an additional biometric factor.

For this reason, the driving idea of our work [263] was to
merge together the eye data and the touch dynamics to further
improve the performance of the recognition systems by develop-



7.2 biometric recognition 161

Figure 7.5: Architecture of the proposed multi-modal biometric system.
After feature extraction, Feature-level fusion (FF) techniques
were applied.

ing efficient and effective methodologies that used both types
of biometrics. The approach adopted to improve the overall per-
formance of the multimodal biometric recognition system was
based on a fusion at the feature level, to which different distance
measurement techniques (Euclidean, Bray-Curtis, Manhattan,
Canberra, Chebyshev, Cosine) were applied to determine if the
test sample belonged to the target subject. To further improve the
system performance, we applied multi-data processing methods
such as Canonical Correlation Analysis (CCA) and Principal Com-
ponent Analysis (PCA). So, this approach also gave an additional
advantage: it allowed to gather data originating from various
sources and transform it into a unique representation.

The proposed work required a data set encompassing the
aforementioned biometric characteristics, namely a benchmark
of keystroke dynamics obtained using a touch screen phone and
eye data patterns such as pupil size, blinking, and fixation points.
A new one was formed because, to the best of our knowledge,
no database existed that simultaneously gave these two charac-
teristics of a human. The RHU KeyStroke Dynamics Benchmark
dataset [264] and the GANT dataset were integrated to create a
multi-modal database. Based on their age and gender, 19 individ-
uals were picked from the combined datasets. Each subject had
eighteen acquisitions.

The architecture of the proposed multi-modal biometric system
is shown in Figure 7.5. The input of each module was represented



162 our contribution to literature

by the data belonging to the corresponding dataset. Then, the
Feature-level fusion techniques were applied. Subsequently, 70%
of the resulting dataset was used to extract the identification
pattern for each user, and the remaining samples made up the
test set, ensuring that at least one acquisition per subject was
included. Finally, to evaluate the dissimilarity or similarity score
between the test samples and the training samples of the 19 sub-
jects, several distance measurement techniques were calculated.

In order to examine the performance of the system, a large
comparison experiment was conducted, using a variety of statis-
tical indices and combining different methodologies for fusing
characteristics, as well as analysing the application of CCA and
PCA. The performance was remarkable, and the results exceeded
90%.

7.3 cognitive processes

Cognitive processes are chemical and electrical signals in the
brain that help people understand and learn. Neurons emit sub-
stances that create electrical signals in adjacent neurons, which
are translated into conscious and unconscious thoughts. Cogni-
tion includes five-sense interpretation, procedural knowledge,
and emotional reactions. Sensation, attention, perception, mem-
ory, learning, language use, and problem solving are cognitive
activities.

7.3.1 Attention measure

Attention is the cognitive process through which certain aspects
of the world-environment are perceived, made present to con-
sciousness, and evaluated in their details and meanings in prefer-
ence to other aspects that are likewise present in the perceptual
field. It operates as a filter that, on the one hand, ignores certain
stimuli and, on the other, enables the selection and organization
of information to be analyzed in order to implement an appro-
priate response; it also turns out to be the basis of recognition
and perception. It is believed that attention is not a unitary pro-
cess but rather different information-processing mechanisms that
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operate at different levels, mediating different but complemen-
tary attentional aspects, concur in it. It is not a linear process; it
is characterized by slow, involuntary, physiologically regulated
changes that are influenced by various factors.

Blinking is a good indicator of attention status. When attention
levels are high, people tend to blink less so as not to lose eye
contact with the object of interest. An increase in the blink rate, in
contrast, is associated with fatigue. This can best be understood
as a cessation of attentional inhibition of blinking. The gaze can
detect how people acquire information, playing an important
role in human communication by reflecting cognitive processes
and also allowing one to recognize areas of interest. If the gaze
concentrates on a particular area for a prolonged period of time,
the interpretation is twofold: either a cognitive difficulty in un-
derstanding information or greater interest.

In our work [231] we proposed a software module that ana-
lyzed these features jointly with information from another mostly
involuntary reflex, the yawning. The goal was to develop a sys-
tem that could support the teacher during a distance lecture.

During a lesson, the teacher requires continuous feedback from
students to know if the audience is getting the topic and the ex-
planations provided. In other words, if the lesson is understood
and if it is held at an adequate pace. If this is a desirable re-
quirement in classroom education, in case of distance teaching
modalities it becomes crucial. The answers to these questions
are usually deduced by students by examining their expressions
and attitudes, listening to their questions, or simply asking them
directly. In the recent years, the COVID-19 pandemic outbreak
forced every level of educational institutes to adopt distance
learning as their first choice. In distance learning, the absence
of visual feedback makes the teacher unaware of the potential
effectiveness of their lesson. The full and wide adoption of this
learning modality has underlined the need for tools to reduce
the distance between teacher and students. With our system, we
wanted to offer a measurement of attention by tracing the blinks,
gaze, and student expressions. The tool aggregated information
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Figure 7.6: The deployment diagram of the proposed architecture.

on how the attendees’ visual attention was being distributed on
the projected slides in the form of heat-maps and provided other
aggregated information on the classroom. The teacher was so
helped by a useful tool to overcome the lack of visual feedback in
the classroom from the audience and was also able to understand
if a specific topic was confusing the entire audience or a signifi-
cantly high part of the class by observing the visual patterns that
tended to be spread out.

Figure 7.6 shows the architecture of the proposed didactic plat-
form. In the proposed setting, as it is possible to notice, both the
teacher and the students adopted a regular Video Conference
system for synchronous distance lectures (e.g., Microsoft Teams,
Zoom or others). The teacher shared the PowerPoint presentation
of the lecture, and the students just attended the video lecture.
Before starting the lecture, the students launched the "Attention
Prober" application, and the teacher his/her "Attention Monitor".
The "Attention Monitor" aggregated information for the teacher
and exposed the heat-map made at run-time with students’ gaze
directions and the distributions of classified expressions. In par-
ticular, the user expressions, shown in the center-low side of the
teacher GUI (Figure 7.7), were organised in an histogram labeled
with expression emoticons. This information quickly signaled
to the teacher useful hints on the flow of distance didactic ac-
tion. The applications were connected via Photon1 networking
engine, which, designed as a chatting and multiplayer facility

1 https://www.photonengine.com/pun
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Figure 7.7: The Attention Monitor GUI, set by side of teacher Video-
lecture software.

for gaming, supports distance lectures by ideally shifting the
"room" metaphor to the "classroom" one (Didactic Room). The
teacher arranged the applications on its main screen or put the
game "Attention Monitor" on its second monitor, if available.
During the controlled experiment, Microsoft Teams was adopted
as a distance lecture environment, also according to our teach-
ing habits. The lecture has been driven by PowerPoint, with the
presentation software set in reading mode. We did not use typ-
ical presentation or speaker modalities because these required
a full-screen presentation that covered the "Attention Monitor"
application. As it is possible to notice in Figure 7.7, the Teacher
GUI consisted of a predominant upper portion of the screen that
was reserved for the content of the lecture, while the bottom
was intended to provide instant feedback about the audience
attention in the form of the cumulative heat-map, a histogram
of user expressions, and measurements of blink and yawn rates.
From the student’s side, no GUI was required since the Attention
Prober worked in the background, accessing the webcam and
analysing the video-frames. Moreover, a GUI on student’s side
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could only have been a source of distraction from the lesson.

The support provided by this proposed approach to syn-
chronous distance learning was evaluated in two controlled
experiments: one performed with the voluntary participation
of 20 students attending the "Context Aware Security Analytics
in Computer Vision" (Computer Science Master Degree, Internet
of Things Curriculum of the University of Salerno, Italy, and the
other involving 30 computer scientists and engineers of Kineton,
an engineering company specialised in the automotive, media,
entertainment, and telecommunications sectors. It is important
to point out that the topics adopted for this assessment were
not part of the student course program (as well as not related to
working practices for Kineton employees) and that neither the
students nor the employees were evaluated during the experi-
ment. In addition, as it is possible to deduce from the system
description, the tool was specifically formulated for Distance
Education actions.

From the student’s point of view, the proposed software mod-
ule was considered non-intrusive, and they reported a sense of
trust due to the chance of not sharing personal recordings. From
the teacher’s side, instead, the proposed software was considered
a valid support tool to control the flow of the lecture. The teacher
was solicited to ask questions when indicators suggested a de-
crease of attention in the audience, thus filling that gap in the
communication that was often sensibly driven by body language
and natural attitudes or the experience.

After the tuning of the applications, the effectiveness of the
system was evaluated in two sessions: a Didactic session with stu-
dents and Industrial session with employees. Both sessions were
focused on the application of the proposed analysis to the video
captured during two oral presentations performed by the teacher
in a distance learning mode. In particular, the same two lectures
were adopted for both sessions and focused on the "History of
Video Games" and the "History of Typography". The idea be-
hind the choice of the two topics was to propose two lectures
that would evidently receive different attention from the partic-
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ipants. Indeed, because they were computer scientists in both
the Didactic and the Industrial sessions, the involved volunteers
clearly should prefer video games with respect to typography,
and we were expecting to detect this preference in the evaluation
results. The rationale behind this choice was that we expected
more interest in topics about the video games from an audience
of computer scientists, which should have reflected in their be-
haviours during the lessons in terms of gaze, blinks, and yawns.
We adopted a fully balanced design for the experiment in both
the evaluation sessions: half of the participants started with a
video game lecture, and the other subjects with a typography lec-
ture. This prevented from fatigue or boredom to bias the results.

Before the controlled experiment, a pre-evaluation question-
naire was submitted to participants to gauge their degree of
interest in the presented topics. The questionnaire assessed the
attitudes and practices of the participants by asking them directly
12 questions (6 per topic), but also in terms of purchase intentions.
The "Pre-Experiment questionnaire" established a classification
of user attitudes toward Video Games and Typography in gen-
eral. The twelve questions were organised as follows: 6 questions
from were focused on Video Games while their counterparts for
Typography. According to their nature, the questions required
different categorical answers.

After every presentation, the participants were asked to fill out
the "Post-Experiment Questionnaire" with answers anchored on
the 5-point Likert scale going from "Strongly Agree" (anchored
at 1) to "Strongly Disagree" (anchored at 5). The questionnaire
aimed at subjectively evaluating the expected interest toward the
two subjects and the concentration applied during the attended
distance lectures.

Both the controlled experiments were articulated in the same
two phases:

• the preliminary ethnographic survey aiming at assessing
the characteristics of the participants to the experiment
(Pre-Experiment Questionnaire);
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• the on-the-field evaluation performed between the two
different degrees of participant’s interest perceived and
measured during the two distance lectures (video games
and typography).

Both the presented lectures adopted in the last phases were made
of 14 content slides and one header slide: the oral presentations
performed by the teacher lasted both around 14 minutes, one
minute per slide. The contents were simple and minimalist: just
black text on white background.

The controlled experiment checked the participant’s interest
in the two topics proposed by asking him or her to answer a
questionnaire before starting the two didactic sessions (the first
phase) and by directly asking their opinions after both presenta-
tions. Objective measurement of user attention was performed,
off-line, by measuring gaze fixations expressed as a percentage
of the slide duration.

The controlled experiment provided two classes of results, with
respect to didactic and industrial users:

• a subjective evaluation of participants’ interest (before and
after the presentations) toward the two lectures, collected
via questionnaires.

• objective measurements were collected by analysing stu-
dents’ gaze direction (also in terms of fixations), their ex-
pressions, and counting detected blinks and yawns.

For the purposes of this evaluation, only gaze direction was taken
into consideration, utilising fixation times as a rough estimation
of student attention. The idea was to record participants’ gaze
fixations expressed as a percentage of the entire time the slide
was presented.

The experimental results on volunteers reported positive feed-
back, both in terms of gaze tracking and evaluation questionnaire.

The Pre-Experiment Questionnaire was answered by all the
participants (Didactic and Industrial) before starting the two lec-
ture sessions. Computer Science students participating in the
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(a) Students

(b) Employees

Figure 7.8: The fixations of participants’ gazes expressed as the percent-
age of slides’ duration.

experimental sessions confirmed the assumption that they were
more interested in video games than in a lecture on the history
of typography. The expectation about the propensity towards the
proposed topics was confirmed also for the employees partici-
pating in the industrial experimental sessions: because of their
technical skill and of their attitudes, also the second group of
participants appeared more interested in video games than to the
history of typography. This was even more evident, compared to
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the Didactic session participants.

After the Pre-Experiment questionnaire, we were expecting
to detect the same differences in the answers given to the Post-
Experiment questionnaire. In particular, we aimed at showing
the same differences underlined by the previous phase of the
evaluation, on objective indicators (fixation time) obtained by
Deep Learning techniques applied to the student videos.

Figure 7.8 depicts the histograms of collected fixation times
aggregated by session for students and employees. For the stu-
dents, the average fixation time collected during the Video Games
lecture was 19.31% and the one related to Typography was 13.1%.
As it is possible to graphically notice (Figure 7.8(a)), the differ-
ence in fixation times between the two topics presented was
evident. For the employees, the average fixation times collected
were 24.31% for Video Games lecture and and 16.1% for the one
related to Typography. As it is possible to graphically notice, the
difference in detected fixation times between the two topics is
evident in Figure 7.8(b) and it is higher than the one reported
in the Didactic Session. We believe that the students were more
accustomed to being concentrated on a presentation they were
not interested in than the employees were.

We adopted the non-parametric Wilcoxon Signed Rank and
Rank Sum tests2 to obtain the statistical analysis of the results
obtained from the questionnaires and fixations. We complied
with all requirements providing good statistical power for the
validity of the results.

The objective evaluation performed on the ML "raw" indicator
of participants’ attention (fixation time) has confirmed the results
obtained by the questionnaires answered by the participants after
the experiment. We believed this assonance as a good indicator

2 The Wilcoxon rank-sum test is used to compare two independent samples,
whereas the Wilcoxon signed-rank test is used to compare two related samples,
matched samples, or to conduct a paired difference test of repeated measure-
ments on a single sample to determine whether their population mean ranks
differ.
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of the efficacy of the proposed approach.

7.3.2 Perception and Memory

Perception can be defined as the ability to capture, process, and
make sense of information that reaches our senses. It is the men-
tal process that lets us figure out what’s going on around us
based on the information we get from our senses. Memory, on
the contrary, is the cognitive ability that permits us to encode,
store, and retrieve past information.

Numerous studies have shown that the eyes are a key source
of information about cognitive and emotional states. By assessing
the periocular area, such as pupils, blinks, and eye-movements,
it is possible to try to decipher the cognitive picture in which
the subject is placed. Based on the evidence in the literature and
using the data collected from these characteristics, we posed
the following questions: can we classify a subject based on pe-
riocular characteristics when he or she sees an image for the
first time but is already familiar with the visual stimulus? Can
we determine from the study of a subject’s periocular features if
he is viewing a picture with obvious semantic information or not?

We tried to answer the following questions in our work [265].
The purposes are set out below:

• Memory task. Classify whether a subject had previously
seen a particular image in terms of mnemonic processing;

• Perception task. Classify whether an image has clear se-
mantic content (such as images of natural and urban envi-
ronments) or unclear semantic content (such as noisy and
geometric images).

Creating an inference system on the interaction between input
from the periocular region and cognitive processes was the objec-
tive of this pioneering study.

Our research utilised the Memory I dataset [266]. The head-
mounted Eyelink II eye-tracking system with monocular sam-



172 our contribution to literature

pling at 500 Hz was used to gather gaze coordinates. 45 people
(aged 18 to 48, with a mean age of 21.68) participated in the trial.
They independently viewed 48 photos in a random order five
times. The subject was shown each image for six seconds. The
photographs spanned four distinct categories: natural, urban,
fractal, and pink noise. The first two categories (Natural and
Urban) were labelled as clear, immediately recognisable images.
The other two kinds of visual stimuli were classified as uncertain
because their content is either noisy (Pink Noise) or completely
geometric (Fractal).

We deleted all samples having a negative timestamp, which
matched the calibration procedure preceding the presentation
of each image. In addition, because the pupil size reduced in
the region of a blink, we deleted the samples below a particular
threshold value (700) while keeping the blink indicator values at
0. For the memory task, we extracted just the data pertinent to
the current investigation, namely those pertaining to the initial
and final iterations. This was because we intended to investigate
the differences in eye gazing behaviour induced by new images
presented in iteration 1 versus familiar images resubmitted in
iteration 5.

Memory task-Approach 1. In the scientific literature, the pupil
has been discussed in a handful of studies, such as [267], which
concluded that pupil diameter increases in response to previously
witnessed stimuli. Since the paper did not specify the features
to be extracted, we arbitrarily selected the statistical indices to
use. We developed the same statistical indices for blink duration,
which was seen to decrease with repeated stimulus presentation
[268], for the same reason. Since a number of studies in the litera-
ture evaluated the duration of the saccade, we opted to calculate
the information that performed the best: variance, as provided in
the article [269], mean, total, and standard deviation, as stated in
[270]. Moreover, the number of saccades cited in [271] and the
relative and absolute angles (in terms of mean, total, and stan-
dard deviation) calculated by [270] appeared to be discriminatory.
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Figure 7.9: Analysis of the fixation point for each of the four image
categories. A selection of images depicting natural, urban,
fractal, and pink-noise settings, from top to bottom and left
to right.

Perception task. For this classification problem, the computa-
tion was performed by coupling the elements of the subdivided
macro-categories: Natural vs Fractal; Natural vs Pink Noise; Ur-
ban vs Fractal; Urban vs Pink Noise. We utilised descriptive
statistical approaches (e.g. boxplot) and strategies of graphical
visualisation of features (as illustrated in Figure 7.9) in an early
stage of our research due to the paucity of relevant literature
for this sort of classification. Then, we chose the most promis-
ing characteristics for the fixations: standard deviation on the
x-axis, number of clusters (we used DBSCAN), and standard
deviation, mean, 30-th and 70-th percentiles for their length. We
have also estimated the standard deviation, mean, 30th and 70th
percentiles, as well as the number and length of saccades.

Memory task-Approach 2. After the considerations made and
the results obtained with respect to both Memory task-Approach 1
and Perception task, we decided to make a further study for Mem-
ory task but this time taking into account different characteristics:
information on the semantic content of the image (with respect to
the division in Perception task, i.e. clear and unclear labels), num-



174 our contribution to literature

Figure 7.10: Number of fixation clusters on a natural image that is
displayed for the first and fifth time.

ber and mean duration of fixations, number of clusters (we used
DBSCAN, an example in the Figure 7.10), number of noise points,
silhouette score [272]. Therefore, this study was conducted solely
by utilising information regarding each participant’s fixations.

After the extraction of the characteristics, we proceeded with
the application of different ML techniques. Although the results
were encouraging, it was clear that further investigation was
required to determine which features should be explored for
each task and which should not be included because they just
served as a source of noise for the model. Some considerations
were possible: for the Memory task, comparison of the two ap-
proaches revealed, however, that integrating the information of
the other periocular features did not improve the system’s overall
performance; on the other hand, for the Perception task, it was
observed that the Fractal class displayed similar behaviour to
that of images we labeled as "clear." This we assumed was due
to the type of images that allow the observer to have reference
lines to follow in space that guide him or her in scanning the
image, as may be the case with the lines delineating a stream or
a road in the images we labeled as "clear." In contrast, when the
individual was presented with a noisy image with no landmarks
or lines to follow, he tended to focus his attention primarily on
the image’s center (as shown in Figure 7.10).
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C O N C L U S I O N S





8
F I N A L D I S C U S S I O N

Pensino ora i miei venticinque lettori che impressione dovesse fare
sull’animo del poveretto, quello che s’è raccontato.

— Alessandro Manzoni, I promessi sposi [273]

In this thesis, we describe our idea in terms of soft biometric
applications developed over the past three years. Based on our
experience in this field, we can assert that soft biometric features
should not only be viewed as a substitute for hard biometrics
in circumstances where their usage is problematic but also as a
valuable source of additional or self-consistent information. Soft
biometrics is so flexible that it can be applied in contexts that may
also be completely unrelated to the classical goal of recognizing
a user’s identity. The two main alternatives to the recognition
task for applying this biometric are to provide a window into
cognitive processes and to gather information about users’ emo-
tional responses to stimuli.

Then, we examined the integration of various soft, physical,
behavioural, and physiological biometrics traits into a multi-
biometric system designed to enable human interaction with
HSRs as effective and realistic as possible. Particularly, in the pre-
sented investigations, they were mostly used as a single source
of information for detecting suspicious behaviour or the subject’s
health or emotional state.

In general, therefore, it has been shown that these characteris-
tics can be particularly interesting but also necessary for certain
purposes. The same feature can be employed in various ways to
gather diverse types of information. Being a rather vast area of
study, it has been found that the majority of studies have concen-
trated on a small subset of traits while assessing the effectiveness
of others just in passing. For this reason, in this study, we have
decided to vertically focus on soft periocular characteristics in
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terms of the information that may be derived from pupils, blinks,
eye movements, and fixations. After a thorough study of the liter-
ature, we found a variety of evidence of their potential in many
research areas, including biometric recognition, demographic
classification, and cognitive process detection. Nonetheless, we
discovered a noticeable paucity of research in all three areas with
regard to systems capable of making inferences from acquired
data. Due to this lack, we decided to investigate the study of
these traits through preliminary exploratory experiments that
have demonstrated their potential.

Attribute correlation, distance, permanence or stability, dis-
crimination, and feature or modality level fusion directly impact
the performance of any soft biometrics recognition or retrieval
system. Below is an overview of the most relevant issues and
challenges, open issues, and future directions.

8.1 open problems

Several unresolved problems must be addressed before the use
of soft biometrics can be successfully incorporated and become
an increasingly researched study area. In a real and articulated
application setting, such as the development of a robotics system
to make Human-Robot Interaction natural and effective, there
are numerous aspects that may be collected and handled in order
to optimise the user experience.

The precise extraction of such traits is one of the foremost
obstacles in designing systems based on soft biometrics. Auto-
matic and reliable extraction of soft biometric information in a
non-intrusive way without causing any inconvenience to users
is a crucial point. In applications where these soft features are
employed in a first stage as a rough filter to perform a first sort-
ing in big databases or as a tool to alter the parameters of a
biometric system, it is also acceptable for the characteristics of
the data extraction module to be less than 100 percent accurate.
Consequently, subsequent actions will serve as corrective steps.
In contrast, soft biometric features employed as unique character-
istics or merged in recognition systems with a primary biometric
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identifier to increase the system’s overall accuracy must be ex-
tracted with extreme precision. This becomes more challenging in
surveillance scenarios. Similar to other vision-based recognition
systems, distance affects the accuracy of estimating various soft
biometrics. In an open recognition environment, it becomes a
bigger challenge. Obviously, distance affects recognition, there-
fore it would be interesting to have a distance-based sensitivity
measurement for each soft biometric.

To develop an autonomous recognition system or soft biomet-
ric retrieval, it is necessary to identify a collection of permanent
and distinctive traits. In general, it is prudent for any recognition
system to employ a small but highly relevant collection of fea-
tures. Obviously, the same holds true for soft biometrics. In this
instance, the preferred traits are those with a higher permanence
score and more discriminatory power. Various mathematical and
statistical methodologies are used in a number of trials to calcu-
late the claimed features of a given soft set. This investigation
must be refined.

Benchmark datasets play a vital role in driving the goals of
ML communities and tracking progress within the field. The lack
of rigorous, standardized and shared datasets contributes to the
lack of full development of the paradigm of soft biometrics and,
in particular, of periocular ones.

In addition to the collection of biometric data, the secure stor-
age of biometric data has arisen as a major concern. The majority
of robotic equipment that uses biometrics relies on cloud-based
storage to maintain biometric data records. These databases can
be compromised, and biometric information can be stolen. When
this occurs, the repercussions are significantly more severe than
when a conventional account or password is compromised.

8.1.1 Challenges

The most difficult aspect of acquiring different types of soft
biometric data is determining how to combine them.



180 final discussion

It is not easy to create an information fusion system that im-
proves overall recognition accuracy despite imperfect extraction
of soft biometric parameters. In practice, there are a number of
factors to consider, both in terms of combining strategies and
finding the optimal balance between the various traits.

When deciding to apply fusion techniques to improve the accu-
racy of a system, it would be a good protocol to first investigate
the correlation between soft biometric data; only in this way can
meaningful input be obtained. Depending on the objective, it is
obvious that some correlations between two or more soft bio-
metric data are more significant than others. For example, if the
goal is to develop a system that discriminates on the basis of eth-
nicity, those with darker skin tend to have darker hair, whereas
gender may not help much for more accurate recognition. Associ-
ations also represent actual worldviews. Finding the correlation
between soft features will not only increase the efficiency of the
input, but will also reduce the size of the feature set, which has
significant computational benefits.

It is certain that both robotics and biometrics will have a grow-
ing influence in the future. Discovering how these two paradigms
can coexist, optimising their unique characteristics, will open the
door for a more extensive body of research. Obviously, identify-
ing and respecting the line between what is public and what is
effectively private will be essential to the success of their joint
implementation.

8.2 future directions

Regarding a particular classification goal, which soft biometric
modalities are the most discriminating? How precisely can a
soft biometric characteristic be derived automatically in an un-
controlled environment? How much can system efficiency be
enhanced by implementing fusion strategies? These are only a
few of the difficult and ambitious issues we hope to address in
the future.
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Even with regard to the outstanding problems and challenges,
it is clear and undeniable that there is still much to be done in
terms of research and development in soft biometrics and that
their future involvement will be of increasing interest in a wide
range of areas.

The main future contribution will be to develop an efficient,
scalable, robust, and, above all, adaptive system depending on
the situation under consideration for recognition purposes in an
IoT, real-world, and wild context such as industry.

In such a scenario, then, data can be collected from various
devices and under various conditions. Using a humanoid social
robot both as the fulcrum of this IoT system in an uncontrolled
environment and as a data acquisition tool, we will also analyse
the effect of distance on performance and determine which bio-
metric trait to favor based on the situation.

Therefore, first we will establish our case study and the biomet-
rics to be extracted and, based on this, the acquisition devices that
will be able to compete for the data acquisition. Then, we will
proceed with the creation of our large and heterogeneous dataset,
which will involve multiple acquisitions over an extended period
of time.

With the database ready, we will implement an adaptive system
based on multimodal biometric fusion techniques by evaluating
the best approach and configuration.

So that the combination of these paradigms can be used to its
fullest extent, it is first necessary to study the best techniques,
but also to extract the data by taking into account the hardware
and staging the most likely situations, while only looking at one
stream of information at a time to get the best performance. To
address the question of whether anti-cooperative behaviour is
related to a prior or subsequent detrimental action, for instance,
we intend to combine the idea of cooperativeness with action
recognition.
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Especially for periocular biometry, it will be important to do
extensive preliminary research using a consistent database with
samples extracted with respect to different conditions and from
heterogeneous sources. We have observed that cognitive pro-
cesses have an effect on performance. It would be interesting
to conduct a cross-sectional study in which the same individ-
ual performs a variety of activities, from reading to daily tasks.
We believe further work is needed to crystallize the accuracy
performance currently found in the literature, especially when
there is a significant time interval between training and testing
sessions. How much does the time gap affect the results? There
is no doubt that the different lighting conditions, emotional state,
and cognitive condition a subject is in have an impact on the
acquisitions. For this reason, it would also be of great interest to
create a specific dataset that is as complete and varied as possible.

Thus, the initial stage of the study will involve expressing the
full potential of each characteristic examined before taking it into
account in the group of those that the system, of which the robot
is the core, can acquire. Preliminary research will also focus on
expanding the understanding of and application of brain activity-
based features to close the gap with physical and behavioural
features.

HSRs will play a key role. For this reason, it is essential to
safeguard the data saved by in-house service robots, which, days,
months, or years later, will be aware of every user’s behaviour.
In this way, we should devise a method for efficiently storing
and protecting such data, possibly by integrating biometrics and
encryption techniques studied in other contexts.
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