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Chapter 1

Introduction

The use of Artificial Intelligence for document management is one of the most

interesting topics of digital transformation, which has attracted interest in a

wide variety of fields in recent years. The availability and increasing diffusion

of IT platforms capable of processing large amounts of data allow the complete

or partial automation of the flow of information, ranging from the acquisition,

classification, archiving and analysis of documents, to opening up solutions

that were impossible until a few years ago. In the context of archives of his-

torical material, this digitisation process represents a radical revolution and

offers solutions that are fundamental to the future of humanistic studies. This

new vision makes it possible to access historical material of interest quickly

and easily through the online publication of the contents of the collections held

in the institutions. Moreover, when the digitisation process is structured and

technologies are well integrated, libraries can offer innovative forms of analysis

and interaction with manuscripts that were difficult or impossible before the

advent of these new technologies. On the other hand, digitisation processes can

also be helpful in the internal management of library documents by simplifying

research, indexing and collection handling processes, leading to a significant

reduction in time.

In this context, the concept of the "digital library" is now a solid and es-
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Chapter 1. Introduction

tablished one. According to the Digital Libraries Federation (DLF) [140]:

«digital libraries are organizations that provide the resources, in-

cluding the specialized staff, to select, structure, offer intellectual

access to, interpret, distribute, preserve the integrity of, and ensure

the persistence over time of collections of digital works so that they

are readily and economically available for use by a defined commu-

nity or set of communities.»

It is interesting to note that the digital library concept thus encompasses not

only the technologies that enable the shift to the digital library but also the

institution’s hardware resources, personnel and proprietary knowledge. It is

therefore important that not only paper documents are digitised, but that the

entire structure is prepared to deal with the new data format and that the staff

is trained to handle the data in order to fully exploit the potential of this new

architectural and organisational form.

This generational shift certainly affects large institutions and organisations,

but small businesses attracted by the promise of making the work product

more efficient and powerful are also rapidly gaining interest. While for large

organisations hardware and human resources are not a problem for the digital

crossroads, for small organisations and archives this could be an insurmount-

able problem. Hardware resources of small organisations are often limited and

processing large amounts of data can be difficult. Furthermore, modern image

processing techniques based on artificial intelligence or deep learning technolo-

gies not only sometimes require special and specific hardware, but also special

skills and thus the presence of highly qualified and trained staff to fully exploit

the potential of the technologies used. A further limitation arises from the size

of the collections of interest to small institutions. Often these institutions keep

collections of documents and manuscripts consisting of a few dozen to a few

hundred pages at most, but despite their size, they can be of great interest to

the community of scholars. Data limitation is one of the biggest obstacles to

the application of techniques based on artificial intelligence, and this fact can
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limit and hinder the digitisation process of these special collections, which in

the case of collections of historical documents are anything but rare.

Under these conditions, it is obvious that systems that can adapt to small

collections and therefore work satisfactorily with limited amounts of data, that

do not require expensive and specific hardware, and that are easy to use even

by non-highly qualified staff, could be of great interest and prove to be the

necessary weapon for the digital conversion of small institutions, archives and

libraries. The process should integrate the solutions by providing a simple,

intuitive user experience with a quick learning curve. This could encourage

organisations to choose one system over another, regardless of the quality and

performance of the individual technology used. The whole process needs to

be designed and conceptualised around the user experience, with the aim of

making digital transition management processes simple and applicable to dif-

ferent, even very heterogeneous, document collections, always bearing in mind

that an institution’s goal is to simplify and speed up information management

processes.

In this work, we will try to address problems related to the treatment of

handwritten documents of historical and cultural interest, taking into account

the considerations presented in this short introduction, and thus try to present

solutions that can be applied in a simple way and provide valid and meaningful

results to the user. We begin the discussion by presenting a model for evaluating

the performance of a document transcription system based on the KeyWord

Spotting (KWS) technique, focusing on the time required to obtain an error-free

transcription of the entire document. Measuring performance in terms of time,

or better in terms of time saved by using assisted transcription technologies

compared to fully manual transcription, is entirely in the interest of institutions.

A library that needs to provide the correct transcription of an ancient text may

find it difficult to assess the effectiveness of an automated transcription system

if it is rated on precision/recall or WER or CER indices. On the other hand,

evaluating performance in terms of the time saved by using this system can
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Chapter 1. Introduction

provide an immediate and simple interpretation.

Continuing the discussion, we present a semi-automatic procedure for creat-

ing a reference dataset that can be used to train ML models useful for processing

small collections of handwritten documents. Small collections of historical doc-

uments often have characteristics typical of the collection itself, which can mean

that stable solutions in other domains do not apply very well to the collection

itself. A classic example of this behaviour is the poor performance of OCR

solutions applied to cursive handwritten documents of historical interest. Al-

though the OCR problem is considered solved for modern printed texts, this is

absolutely not true in the case of handwritten texts and especially for historical

documents. Historical handwritten documents can have very different charac-

teristics depending on the time in which they were written or the language of

the document, and the characteristics of the handwriting can make segmenta-

tion into characters an extremely complicated process. These problems make

the use of OCR impossible and lead to the need for other technologies to solve

the problem of handwriting recognition. In order to find solutions to such prob-

lems, it is often necessary to create reference data sets that are representative

of the collection to be analysed, starting from the transcription of part of the

collection itself. The process of labelling such data can be complicated and

extremely time-consuming. We, therefore, propose a procedure that guides the

user through the entire process of data labelling in order to obtain a correctly

labelled dataset while minimising human effort.

Finally, we present a keyword spotting system designed for small collections

of handwritten documents. KWS systems usually suffer from the problem of

"Out-Of-Vocabulary" (OOV) words, i.e. query words that the system cannot

spot because it does not know a representation for them. The problem of

OOV words presents itself as overwhelming when managing collections with

small dimensions, as there are few data available to create a set of reference

words large enough to limit the probability of encountering OOV words. The

advanced idea is to present a word spotting system that uses sequences of
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two or three characters as recognition primitives instead of whole words or

single characters. Compared to whole words, the use of character sequences

reduces the probability of obtaining sequences outside the dictionary, assuming

the same number of labelled pages for the construction of the reference set,

while the consideration of sequences compared to single characters simplifies the

problem of segmentation, which in some cases can be very complex when done

at the character level. Moreover, the decomposition of words into sequences can

allow the system to retrieve words that would have been OOV in a classical

word-based system.

Below we summarize the main contributions that will be presented in detail

in the next chapters:

• Chapter 3 - Performance Model

This chapter presents a mathematical model that aims to estimate the

time needed to obtain a complete and correct transcription of a collec-

tion of handwritten documents when a KWS system is used to support

the process. The model makes it possible to calculate the time gain a

user can expect when using an automatic system to support transcrip-

tion compared to a completely manual process.

• Chapter 4 - Tools and Methodologies to Speed up the Labelling Data

Process

Labelling images of handwritten words with their transcription is a very

time-consuming process for the user. Speeding up the process can be

crucial for the application of automatic techniques in transcription. This

chapter presents some methods aimed at speeding up the process, pre-

senting following methods:

– Line-Segmentation method:

the proposed line segmentation method is a learning-free algorithm

that allows us to manage lines of text with a curvilinear trend and

is able to label all ink traces detected on the document.
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– Transcript alignment algorithm:

automatically aligning a transcript to images of individual words

on a page of a handwritten document can speed up the process of

word segmentation and correct annotation. The alignment algorithm

described in this section allows us to align the transcription of entire

lines of text.

• Chapter 5 - KWS by N-gram Retrieval

in this chapter, we describe a keyword spotting system based on an N-

gram retrieval procedure. N-gram retrieval can help alleviate the problem

of Out-Of-Vocabulary word recognition and improve the performance of

word spotting in small collections of handwritten documents.

Finally, in Chapter 6 the experimental evaluations for the methods presented

are reported, and Chapter 7 is dedicated to some discussions, conclusions, and

future expansions.
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Chapter 2

Historical Document Processing

- An Overview

2.1 The Writing and the Digitization

Of all the achievements of mankind, writing is undoubtedly one of the most

important, if not the most important. Without writing there would be no

history, there would be no knowledge, and there would be no progress. We

call "history" all the events and changes in the past that took place after the

invention of writing and of which we have testimony through documents and

engravings.

Writing is the representation of linguistic expressions by graphic signs. Ac-

cording to many scholars, the invention of writing lies precisely in the need to

"store" purely linguistic expressions. A common opinion is that writing arose

from the need to keep track of accounts, as evidenced by preserved examples

of writing from ancient Egypt, China, and Central America. It is not possible,

however, to fix an exact date for the invention of writing; rather, it must be

seen as the result of a development over a long period of time. One theory

that is particularly accepted by the community is that writing came into being
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to replace a counting system that was based on clay "tokens". Following this

idea, the earliest forms of writing replaced real objects with representations

of those objects [98]. The transition from pictographic writing to complete

writing begins with the introduction of ideograms , in this way the signs are

no longer pictographic representations of objects but become ideograms that

represent an identifying feature of the object or of the concept. Another step

forward occurred thanks to the discovery of the "rebus principle", which en-

visages using a pictogram or an ideogram for its phonetic value and grouping

different signs to obtain a representation of a complex sound. Based on this

idea, the first alphabetic and syllabic symbols representing specific sounds are

introduced [99].

Although the earliest examples of writing date back to the Sumerians around

3000 BC, the majority of scholars believe that the authorship of writing cannot

be attributed to one population but that the idea of writing developed inde-

pendently in the different civilisations wide spread across the planet. Despite

the fact that the continuous development of writing enables it to adapt to every

historical, cultural and social context that characterises each epoch and popu-

lation, on the other hand, it limits its interpretability over time. It is therefore

not surprising if ancient writings are completely incomprehensible, while others

can be understood only by a small circle of scholars and experts.

The long history of writing goes hand in hand with the long history of

writing media [89]. In the course of time, we find writings on stones and clay

from the second millennium BC, stone slabs and wood were used from the third

millennium BC until the tenth century, and finally fabrics, papyri, and papers

were chosen over millennia. The transition from one material to another is slow

and varies depending on the civilisation. In most cases, evolution is the result

of economic and practical needs. For example, parchment replaces papyrus,

which had to be imported from Egypt because it could be easily made almost

anywhere. Then paper replaces parchment because it simplifies the printing

process and allows books to be distributed more easily. Today, we are witnessing
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a new development of the carrier material, in which paper is increasingly being

reduced in favor of digital support.

The replacement of paper with digital support makes it possible not only

to reduce the amount of paper used but also brings several advantages. The

paper suffers from natural degradation processes, and as the paper deterio-

rates, the information stored is also lost. The digital format of information

overcomes this problem by allowing more effective and efficient processes for

securing and storing information. In addition, the paper medium limits access

to information; to access the content of the document, the paper must be ma-

nipulated, thus inducing further deterioration and alterations that may hamper

access to the content. Digital information, on the other hand, is designed to

overcome transport barriers, does not interact physically with the individuals

accessing them, and copies of a digital document can travel enormous distances

in a few seconds. The use of digital documents has thus reduced the physical

space needed to store documents and makes it easier to search for a particular

document and, more generally, to access information.

The benefits of representing information digitally are obvious and justify

the decision to create new information in digital form. However, humanity has

been engaged in collecting information for thousands of years, and most of this

knowledge is still kept on paper. Thus, the need arises to obtain a representa-

tion of this knowledge in a digital format to reap all the benefits it offers. In

this view, the field of document processing and analysis acquires considerable

importance, and the need for documents in digital format is becoming more

and more widespread. Digitization, however, has a broader definition, it does

not simply aim to photograph or scan a document to obtain a digital image

but pushes itself to obtain a representation of the document that is digitally

understandable and interpretable. The problems to be addressed involve layout

analysis, semantic segmentation and object recognition, optical character recog-

nition (OCR) or handwritten text recognition (HTR), and generally automatic

or assisted transcription.
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Libraries, museums, monasteries, and various archives have been engaged in

scanning more and more historical documents over the last twenty years. The

massive presence of document images has increased the need to perform docu-

ment analysis and transcription in digital format, increasing the importance of

document processing in the field of historical document analysis [34]. Ancient

document images represent an extraordinary class of document images. These

documents are characterized by certain aspects dictated by the times. These

aspects affect specific issues that make the analysis and study of this class of

documents a far more complex process than the analysis of modern documents.

As a result, the processing of historical documents presents special challenges

that are not usually present in processing other types of documents. A strong

influence is dictated by the quality of the original documents, which is often far

from optimal. The deterioration of the document, the ink or the support ma-

terial, or the presence of holes in the paper make it difficult or even impossible

to interpret part of the document. The historical nature of documents often

manifests itself in extremely complex layouts, vocabulary, or rare languages.

Moreover, the typical handwriting of archaic scripts is challenging to interpret

due to rare fonts, specific symbols, irregular spacing, and lack of spaces between

words and ligatures. A remarkably topical problem is the extreme variability

that is typical of historical documents. Documents written at different times or

in different geographical regions may have extremely different characteristics.

This leads to a lack of annotated and validated data. The goal remains to get

the transcription of even relatively small collections of documents from which

little labelled data is available, and the only way to increase the labelled data

is to obtain the transcription, and the circle keeps turning.

Automatic document processing is based on Artificial Intelligence and Ma-

chine Learning technologies and it is acquiring increasing popularity. The appli-

cability of these techniques, mainly due to the increase in computing capacity,

has made it possible to obtain exciting results even on types of documents that

seemed highly complex until a few years ago. Towards the end of the first
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decade of the 2000s, the term Deep Learning (DL) concealed the third wave of

artificial intelligence, still ongoing today. This wave has also impacted the field

of text recognition in printed or handwritten text. Lombardi and Marinai in [63]

point out that since 2013, the number of scientific papers published in this field

using DL approaches has steadily increased, reaching over 80% of published

papers in recent years. The productive use of DL technique is based on the

possibility of having large amounts of data on which to train its models. The

impossibility of creating large datasets limits the application of these promising

techniques to the field of transcription of small collections of historical docu-

ments. Specific solutions for dealing with collections of documents consisting

of a few dozen pages then take on an important weight. Working with a small

collection means that one needs to use methods capable of managing and cop-

ing with the scarcity of data while guaranteeing the success of operations. In

this context, it is important never to forget a basic but extremely important

rule: If we have to work with a few dozen documents, manually transcribing the

contents of the entire collection can still be the cheapest and fastest solution

to most of the problems.

2.2 A Classification of Historical Documents

Since man began to record his exploits, an enormous amount of documents has

been collected. The first traces of writing can be dated back to around 3000

BC and from that time onwards the various civilisations that followed have

always made writing a fundamental aspect. Over time, different techniques

and media have developed and today we can benefit from a huge number of

documents. The civilisations of different eras and geographical regions have

produced very different written documents, and the differences are not only due

to the use of different languages but also to different styles, rules, techniques,

technologies and materials. To this day, all documents created on media or

techniques that are no longer used are considered historical. The analysis of
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these types of documents is therefore more difficult than that of contemporary

documents [63]. Below is an overview of the main types of historical documents

studied by scholars and researchers today.

Source: https://en.wikipedia.org/wiki/Vindolanda_tablet

Figure 2.1: Roman wooden writing tablet from the Roman fort of Vindolanda of
Hadrian’s Wall, Northumberland (1st-2nd century AD).

2.2.1 Earlier Documents

The first documents were produced on media different from paper. Various

materials were used, such as dried leaves, stone tablets, bamboo scrolls, and

papyrus. Among the oldest writings on leaves, we now find manuscripts from

the 9th and 5th centuries BC from Southeast Asia and the Indian peninsula

[53, 136]. The earliest records on wooden or bamboo scrolls were produced

between the 5th and 3rd centuries BC in eastern China [124]. In Egypt, papyrus

was widely used from the 4th century B.C. Among the oldest and best-preserved

collections on papyrus, we find the Diary of Merer, dated 2550 B.C. [72].
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2.2. A Classification of Historical Documents

2.2.2 Inscriptions

The intention of the text is often to pass on the memory of a historical event,

figure or action. Media such as paper, parchment or papyrus were not suitable

for this purpose because they are not very durable. Inscriptions made it possi-

ble to overcome this limitation by using durable materials such as marble, stone

or metal. In Southeast Asia in the first millennium, important documents were

engraved on soft metal sheets such as copper plates, which were softened by

fire and engraved with a metal stylus. In Burma, the Kammavaca, the Bud-

dhist manuscripts, were engraved on sheets of brass, copper or ivory. In Italy,

some important Etruscan texts were similarly engraved on thin gold plates, and

similar sheets were discovered in Bulgaria. Classical Greek and Roman civili-

sations made extensive use of inscriptions, typically to publicly display a text

important to society. As a rule, inscriptions were made in capital letters and

were characterised by the use of special linguistic registers that were embossed

and solemn. In the Middle Ages, the use of inscriptions began to decline and

gradually diminished until they disappeared.

2.2.3 Manuscripts

The term manuscript refers to handwritten texts that may be written in a book,

on parchment or in codex format. Over time, different materials have been

used as carriers. Commonly, vellum or other types of parchment, papyrus and

paper were used, but there is much evidence of other materials. In Russia, for

example, documents made of birch bark from the 11th century have survived, or

in India manuscripts made of palm leaf can still be found, dating from antiquity

to the 19th century. In the 14th century, paper spread from China to Europe

via the Islamic world [6], and by the end of the 15th century, it had largely

replaced parchment for many purposes, becoming over time the main medium

for writing in all civilisations.

The golden age of manuscripts is typically the Middle Ages, but the pro-
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Source: https://en.wikipedia.org/

Figure 2.2: The Nora Stone, the most ancient Phoenician inscription ever found (in
1773) outside Phoenicia proper.

liferation of manuscripts extended into the early modern period. In the West-

ern world, from the classical period to the first centuries of the Christian

era, manuscripts were written without spaces between words (scriptio con-

tinua), often using a very difficult-to-understand style of writing, making these

documents particularly difficult to read for untrained people. The fact that

the pages contain very complex and structured ornaments and decorations

also makes them difficult to understand. Various studies have analysed the

structure of these documents, some of them to discern the text they con-

tain [2, 45, 90, 134, 145]. Existing copies of these early manuscripts, written

in Greek or Latin and usually dating from the fourth to eighth centuries, are

classified according to their use of upper or lower case letters. There is no such

distinction for Hebrew manuscripts, such as the Dead Sea Scrolls. Manuscripts

18
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Source: https://en.wikipedia.org/

Figure 2.3: Manuscript of the medieval period with examples of rubrication.

that use only upper case letters are called majuscule letters, and manuscripts

that use only lower case letters are called minuscule [80]. Majuscule, such as

in the uncial script, are usually written much more carefully. The scribe raised

his pen between strokes, creating a distinctive effect of regularity and formality.

On the other hand, while lowercase letters may be written with the nib raised,

they may also be italicised, which means that the nib is raised only slightly or

not at all.

Even after the invention and spread of printing, handwritten documents

continued to be very important. Private documents, letters or government

documents remained handwritten until the invention of the typewriter in the

late 19th century.
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Source: http://commons.wikimedia.org/

Figure 2.4: Image of a page from Gutenberg’s bible printed in the 1450s.

2.2.4 Incunabula

After the introduction of printing with movable type by Gutenberg in Europe,

the first printed books began to spread and the first works printed with movable

metal type until 1500 were called incunabula.

The first real book printed by Gutenberg was the Bible, and this was no

accidental choice. European manuscripts were produced for religious purposes,

and most of the books copied were in some way connected to the Catholic

religion. Such works were not simply meant to be read, they also had spiritual
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value. For this reason, the pages of the manuscripts were often decorated with

complex decorative elements. For this reason, the "42-line Bible" printed by

Gutenberg is not actually a fully printed work, but was designed so that the

decorations could be added by hand after the text printing was completed.

With this technique, the first printed books were produced in exactly the same

style as the manuscripts, but printing made it possible to do the work more

quickly, which led to a drastic reduction in the price of books. [47]

Since the incunabula were initially printed in exactly the same style as the

manuscripts, they have all the typical features of earlier manuscripts. The

use of different typographical signs depending on genre and region, the use of

contractions and abbreviations in sentences, the frequent use of columns and

marginal notes and the rubrication at the beginning of the chapter can thus be

traced.

2.3 The Workflow of the Historical Document

Processing

The workflow for processing historical documents involves several steps, which

are shown in Figure 2.5. The first step shown in the figure refers to the image

acquisition phase. This often requires special hardware and procedures and can

be considered a separate topic before the actual document processing phase.

The figure shows the process at a general level, but it should be noted that

there is no single flow that applies to all types of documents. The architecture

of a specific analysis system depends heavily on the intended application and

the type of documents under consideration.

The first phase of the process is that of ’pre-processing’, which involves

improvement and enhancement techniques that can also be very demanding,

as in the treatment of severely degraded documents. Degradation is one of

the main obstacles to accurate analysis, and sometimes pre-processing can only

improve the situation without being able to completely eliminate the problem.

21



Chapter 2. Historical Document Processing - An Overview
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Figure 2.5: Typical Historical Document Processing Workflow.

For example, if there are large holes in the document, it may be impossible to

recover the original information. In most historical documents, the writing is

produced by depositing the ink on paper, so it seems natural to convert them

into black-and-white before further processing to reduce their complexity. In

the pre-processing phase, it may then be necessary to convert an image in a

general colour space into a black-and-white image. To this end, binarization

techniques allow black-and-white images to be obtained by stretching between

background pixels and text pixels.

The pre-processing phase is followed by the layout analysis step, which con-

sists of analysing the pages of the documents to obtain a description of the

structure of the manuscript that allows the identification of regions of interest.

An important aspect of this stage is the separation of text from non-text areas

(such as ornaments, images or large initials). Once the textual areas are iden-

tified, it may be useful to divide the blocks into lines of text and again into

individual words. Finally, the different areas identified can be related to each

other by establishing the links that can connect them, defining, for example,

the natural reading order or the alignment properties of complex layouts. For

historical documents, layout analysis is much more challenging than for con-

temporary documents. In the Middle Age, for example, the text content is

often mixed with ornaments and decorations that can take up a large part of

the page. Many technologies focus their application on individual pieces of text

or images of individual words. For this reason, once the text areas have been

identified, only the images of the lines or words of interest need to be extracted.

Segmentation methods aim to do just that, and can output images containing
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a single line or word.

Once the images of text lines or words have been extracted, it is possible to

apply text recognition techniques. At this point, it is important to distinguish

between printed text and handwritten text. For the first case, OCR (Optical

Character Recognition) technologies have proven their worth. These technolo-

gies are based on the ability to identify and recognise individual characters

and then combine the results to obtain the interpretation of whole words or

sentences. Printed text is characterised by a constant division of space and a

low variability of the symbols of the alphabet, and it is mainly these charac-

teristics that make the use of OCR effective. The recognition of handwritten

text is a much more complex process and, despite the progress made in recent

years, it is not yet ready for widespread use. One of the main reasons for the

problems is that it is difficult to recognise and isolate characters to be able

to recognise them, which is especially the case with cursive handwriting. Spe-

cial techniques have been developed for recognising handwritten text, known

as HTR (Handwritten Text Recognition) techniques, which are usually applied

to whole words or to sequences of words. This leads to a significant increase

in complexity and often requires contextual knowledge provided by linguistic

models, dictionaries of reference terms or semantic knowledge such as domain-

specific ontologies. For some applications, transcription of the whole test is not

strictly necessary. In these cases, an interesting alternative to text recognition

is the word spotting approach. In this case, the goal is to find the position of

some keywords in the text without the need for explicit recognition. In this

way, the complexity of the task is reduced, which can allow for an automated

application. These techniques are known in the literature under the acronym

KWS (KeyWord Spotting) systems.

The final phase of the document processing workflow is document under-

standing, although this is sometimes an optional stage. This phase usually uses

both the results of layout analysis and text recognition. The aim is to analyse

the document from the point of view of its logical structure and thus iden-
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tify the different logical areas such as titles, headings, annotations, captions,

images, paragraphs or chapters.

As mentioned earlier, machine learning (ML) and deep learning (DL) tech-

niques are becoming increasingly important to solve problems at every stage of

the document processing flow. In this perspective, great importance is given to

data and the possibility of accessing databases with truth annotations. In this

way, it is possible to quantitatively evaluate algorithms and ML or DL models.

Obtaining high-quality annotated data is often a delicate and complicated task,

often documents have to be annotated completely manually, and the historical

nature of the documents makes this process possible only by a small number

of experts. For this reason, several tools and solutions exist to automate the

process of creating records and generating ground-truth as much as possible.

However, today there are several publicly available datasets that can be used

to test and implement techniques for each stage of the workflow.

In the remains of the chapter, we discuss some of the solutions available in

the literature for each step of the workflow, Finally, the main datasets available

are described later in this chapter.

2.4 Pre-Processing Techniques

The purpose of the pre-processing stage is to improve the quality of the doc-

ument in order to facilitate processing and interpretation, and in the case of

processing historical documents, this stage is crucial. Documents of historical

interest may be in a poor state of preservation, which can make the process-

ing of the document more challenging. Figure 2.6 shows examples of typical

characteristics of the poor state of preservation of historical documents. There

may be noticeable stains or damage to the paper or parchment, the ink may be

faded or, on the contrary, it may be so pronounced that it is visible even on the

opposite side of the page. In addition, it is possible that the scanning or photo-

scanning process was not performed optimally. The most important operations
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in the pre-processing phase are image enhancement, greyscale thresholding and

binarization.

Source: Rasyidi and Khan [93]

Figure 2.6: Historical documents affected by a variety of degradations.

2.4.1 Enhancement

Historical documents usually show damage, such as tears, scratches or holes in

the paper or parchment. Many documents are in a poor state of preservation,

and many are characterized by areas no longer legible or parts of the page being

torn or damaged. It is often important to recognise such damage and correct

it if possible. Cleaning techniques such as denoising can often help to improve
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the condition of the images. Neji et al. [75] propose an end-to-end adversarial

autoencoder (AAE) to clean documents from noise capable of cleaning the

document from small damages. The proposed AAE uses a GAN (generative

adversarial networks) so as to suit the aggregated posterior of the hidden code

vector of the autoencoder with an arbitrary prior.

Lu and Dooms in [64] propose a damage detection system for document

images that exploits information about the homogeneity patterns of the text

both globally and allows the identification of image pixels associated with a

damaged physical document. Nguyen et al. [76] propose a character atten-

tion generative adversarial network (CAGAN) to restore degraded characters

in historical documents. The network is based on a U-Net architecture [102]

and uses a loss function that considers common adversarial loss as a global loss

and hierarchical character attentive loss as a local loss. The same problem is

addressed in [135], where authors present a method to reconstruct the broken

letters using an autoregressive generative model designed for image restoring

called PixelCNN++ [105].

In the pre-processing stage, another important aspect regards the correction

of distortion introduced during the image acquisition. Dewarping and skew

reduction techniques allow to reduce or eliminate distortions that occur during

the digitization of the document. Dewarping and skew reduction methods are

usually applied to well-defined areas of the text. However, they have also been

proposed in studies that apply corrections at the level of the entire document,

allowing the correction of documents that are also characterized by non-textual

content [92, 139]. Xi et al. [143] propose a framework based on the use of a

convolutive neural network (CNN) for both the rectification of the distorted

image of the document and the fine removal of the background. The network is

trained with synthetically distorted documents, and experiments are conducted

to test how the method can handle different types of distortions. Li et al. [62]

propose a CNN-based method that can correct different types of distortions

from a single input image. The method applies different corrections to different
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areas of the image, performing a kind of local correction of distortions.

2.4.2 Binarization and Grayscale Thresholding

Binarization is the conversion of a colour or grayscale image to a black and

white image. The importance of the binarization process in documents of his-

torical interest lies in the fact that it is possible to minimize the impact of

degradation and non-uniformity of the image background with this technique.

An important approach to binarization is to classify at the pixel level. In [130],

Tensmeyer and Martinez apply a Fully Convolutional Network to classify each

pixel of an image. This approach has proven remarkably accurate leading to

results with high performance. In [138], the authors propose a supervised bina-

rization method based on a hierarchical Deep Supervised Network (DSN). Pixel

classification is performed at different feature levels, this allows higher levels to

distinguish text pixels from background noise so that it is possible to handle the

severe degradation that occurs in document images. In binarization, the use of

approaches based on deep networks has shown significant advantages, not only

in terms of results but also in terms of processing speed. The classic solutions

were based typically on sliding window approaches, and the sliding operation

is an expensive operation, with deep approaches, it is possible to use a single

network to process the entire document speeding up the entire process [63].

Among the notable classical methods, the Otsu threshold method [81] is

worth mentioning. This type of thresholding uses techniques for analysing im-

age histograms and is particularly suitable for bimodal images, i.e. images

whose histograms show a clear separation between two main peaks. The ac-

quisition of images of historical documents is not a standardised process and

therefore the bimodal format of the images is not guaranteed. For this reason,

in the cases we are interested in, it is better to use local thresholding techniques

such as the methods of Niblack [77] and Sauvola [108]. These techniques are

useful for images where the background is irregular and especially for images

containing text. The classical methods were not developed with any particular
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interest in documents of historical interest, but they can still be acceptable

solutions in many cases.

2.5 Layout Analysis

Document layout analysis is an important task when creating collections of digi-

tised documents. In the case of historical documents, this can be particularly

challenging due to the complexity and variability of the layout, the intermin-

gling of different elements and the decay of the documents. Typical layout

analysis tasks include page segmentation, line segmentation and baseline detec-

tion. Page segmentation makes it possible to recognise within the images of a

document the different regions, as for example the background, parts of text

blocks, comments, embellishments, images, etc. Line segmentation consists of

extracting only the text lines of the main text from the document. In the case

of handwritten cursive writing, this process could be challenging because of the

extremely skewed and curved trend of the text and inconsistent spacing be-

tween lines. Finally, baseline detection is the process by which we can identify

the baselines of the text lines on the image of the document. By the baseline,

we mean the ideal line on which the text line was written.

2.5.1 Page Segmentation

Layout analysis often refers to the task of dividing pages into the different

sections that make them up. This involves dividing the document into semantic

areas such as text areas, titles, paragraphs, annotations, images, and so on.

Page segmentation is an active area of research and several competitions have

been held recently [14,37,114].

2.5.2 Text Line Segmentation

Text line segmentation aims to identify the area corresponding to each line of

text. While identifying lines of text is a relatively simple process in modern
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printed documents, it is a highly complex task in handwritten documents. The

complexity, especially in historical documents, lies in the irregular alignment

of text lines, the complex management of space, and the presence of margin

illustrations or notes. Chen and Seuret [12] propose a CNN with a single con-

volutional layer. Segmentation of text lines is achieved by super-pixel labelling,

where each pixel is classified as background, main text, decoration, or comment.

The authors report results characterized by an accuracy up to 90%. In [85],

Pastor-Pellicer et al. use the Main Body Area (MBA), i.e., the area between

the main idea and the line of continuous text, to detect lines of text. First, each

image pixel is classified as background, text, or decoration using a CNN. Then,

a second CNN classifies the pixels into text blocks by detecting the different

MBAs. The method is among the few that use Deep Learning techniques and

shows improvement over other techniques compared to it. Renton et al. [96] use

a deep approach based on Fully Connected Networks that work on the entire

document and avoid the approaches based on sliding windows. The compari-

son with the results obtained with classical methods highlights the goodness of

the method and emphasises the improvement in computation time. Alberti et

al [3] propose a segmentation method which utilises a pixel-level semantic seg-

mentation step followed by a text-line extraction phase. The method achieves

state-of-the-art performance in various datasets, proving particularly suitable

for segmenting medieval documents.

2.5.3 Baseline Detection

Recently, the baseline detection method has been preferred to line segmentation

[22,24]. In this case, the task is to recognise the baselines of the text, which is

a trade-off between the cost of annotation and descriptive performance.

Fink et al. [29][45] present a U-net based convolutional neural network for

baseline detection in historical documents performing a sliding window dense

prediction. In [44], Grüning et al. also use a U-net based architecture and focus

on recognising even lines of text with a very pronounced curvature, adding an
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attention mechanism and developing a sophisticated post-processing phase.

2.5.4 Multi-Purpose Solutions

The typical tasks of layout analysis vary, as we have seen so far. In recent years,

some architectures have been introduced that allow several of these tasks to be

handled simultaneously, thus simplifying the whole process and reducing the

number of tools required.

In [144], Xu et al. propose a segmentation method for historical manuscript

documents that allows the different areas of the document to be segmented

by classifying each pixel of the image and distinguishing between background,

main text, comments and embellishments. The method is based on a fully

convolutional neural network (FCNN) architecture. After the pixel classifica-

tion performed by the network, some post-processing steps allow for improving

the results by reducing noise and correcting segmentation errors. Oliveria et

al. [79] present dhSegment, a pixel-wise predictor based on CNN that allows us

to handle different activities such as text area extraction, baseline identifica-

tion or image extraction. The network architecture used an encoder-decoder

approach that exploits the description capability of ResNet [46] and the local-

isation capability of U-net [102]. Monnier and Aubry present in [73] the tool

docExtractor, which is presented as a generic approach to extract lines of text

and embellishments without the need for annotation of real data. The tool is

based on a neural network architecture very similar to that of dhSegment [79]

but advances the idea of being able to perform the initial training with a fast

methodology for synthetically generating correctly annotated documents.

While the methods also show interesting results by training architectures on

general or synthetically generated datasets, they often require a phase of fine-

tuning on the collections of interest to achieve optimal performance, which could

be an obstacle for some processes when dealing with collections of documents

of limited size.
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2.6 Text Recognition

The text recognition phase attempts to obtain a literal transcription of the

document content, or of part of it. The main techniques used for this pur-

pose are optical character recognition (OCR) and handwriting text recognition

(HTR). Optical character recognition is based on the possibility of subdivid-

ing words into characters and the following classification for their recognition.

The character is then used as a fundamental recognition unit. Typically, cur-

sive handwriting cannot rely on regular spacing because of the variability of

handwriting. Therefore, handwriting recognition usually relies on recognition

methodologies that are free from character-level segmentation.

2.6.1 Historical OCR

Different techniques allow the optical recognition of historical characters, how-

ever, techniques based on neural networks are currently the most used. Optical

character recognition is applicable when it is possible to obtain a good segmen-

tation at the character level. For that reason, this technique is widely used

with incunabula documents (i.e., a document printed with the movable type

technique between the 15th and 16th centuries.). These documents have been

modelled on manuscripts and are characterized by extensive use of ligatures,

complex layouts, and often typographical abbreviations that do not have a

corresponding equivalent in Unicode [104]. For all these reasons, optical recog-

nition of historical characters is drastically more complex than modern optical

character recognition [120].

2.6.2 HTR Techniques

With the introduction of hidden Markov models (HMM) in the field of text

recognition, there has been a breakthrough in offline recognition techniques [87].

With these models, it was possible to focus not on single characters but on

strings and then on words or whole sentences. In the last decades, neural net-
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works have attracted more and more attention and over the years different

techniques and solutions have been proposed [63]. Among the first promis-

ing deep approaches, methods based on Connectionist Temporal Classification

(CTC) [40] have been proposed. CTC is a type of neural network output with

an associated scoring function, typically used for training recurrent neural net-

works (RNNs) such as LSTM networks. Graves et al. were among the first to

propose this approach for handwritten text recognition. With the works [41,42],

they propose a BLSTM recurrent network followed by CTC to recognise hand-

written text in English, which shows an improvement over HMM-based ap-

proaches. The same idea is further developed in several subsequent works.

Pham et al. [86] present a multimodal LSTM (MDLSTM), followed by CTC.

Shi et al. [113] combine CNN and BLSTM, followed by CTC, and introduce the

CRNN model. Bluche et al. [8] propose a variation of this model by introducing

a gated version, GCRNN, which is used for multilingual recognition.

An alternative approach is based on the use of seq2seq models with the

attention mechanism. Sueiras et al. [127] present a seq2seq model that uses a

sliding window for text recognition. Bluche et al. [7, 15] present an attention-

based end-to-end model using an MDLSTM network. Similarly, Ly et al. [65,67]

propose an attention-based seq2seq model using a residual LSTM network for

text recognition in Japanese historical documents. Zhang et al. [146] present

an attention-based seq2seq model with a CNN encoder and a GRU decoder.

With the success of the self-attention and transformer [137] architecture,

researchers have recently started to evaluate this architecture for text recogni-

tion problems. In this direction, Kang et al. [52] presented a CNN transformer

model for handwritten text recognition. Finally, Ly et al. [66] propose a re-

current network with a self-attention mechanism for recognising handwritten

Japanese text.
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2.6.3 Keyword Spotting - An alternative to the HTR

An alternative to full-text recognition is to identify some keywords within one

or more documents. By keyword spotting (KWS) we mean the task of finding

the positions in the images of documents that correspond to a word in the

search query. Keyword identification provides a less restrictive framework than

traditional handwritten text recognition, so this technique has good potential

in cases with less reliable or smaller data. With the KWS technique, it is

possible to index, search and analyse historical documents, even if normal text

recognition techniques are not very effective.

Among the first works to explore the KWS in the context of historical doc-

uments, we find the works of Rath and Manmatha [94], where they used a dy-

namic time-warping algorithm to compute image similarity and compared the

performance of Ward linkage and k-means algorithms on the George Washing-

ton dataset. Fischer et al. [32] present a word-spotting system based on charac-

ter Hidden Markov Models. The proposed system is tested on several datasets:

the IAM database for modern writing, the George Washington database, and

the Parzival database for historical writing. The method outperforms the pre-

vious KWSs, suggesting that the improvement is due to the use of HMM.

Figure 2.7: Categorization for KWS systems.
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From these first simple applications, the KWS systems have evolved, with

different variants and features. In Figure 2.7 we show the possible categorization

for a KWS system. The first differentiation concerns the level of segmentation

required by the spotting method. Systems that do not include a segmentation

phase are referred to as segmentation-free systems. On the contrary, when a

segmentation phase is envisaged, which aims to detect areas of interest to search

for keywords. In this case, these systems are referred to as segmentation-based.

Segmentation can be done at the text line level or the word level. The first

involves extracting every single line of text present in the document, while the

second extracts all the words. A further grouping of KWS systems can take

into account how the system is queried. The query can consist of a word image

or a text string representing the transcription of the word to search. When the

query is in the form of an image, it is referred to as Query-by-Example (QbE)

system. These systems search within the document for zones that have visual

features similar to the features of the query image. If the query is in the form

of a text string, it is referred to as Query-by-String (QbS) system. In this case,

a region is searched within the document containing the query word’s image.

In this case, it is necessary to link the space of representation of the images

with that of the textual transcriptions. A further distinction is made between

lexicon-based and lexicon-free systems. The former relies on the presence of a

predefined keyword list, fixed during the training phase, while the latter does

not rely on such a list and it can search for a generic word.

A problem with the KWS technique is that it can only recognize words

for which at least one reference image is known. Words that are contained

in a document but not known by the KWS system, called Out Of Vocabu-

lary (OOV) words, cannot be identified and transcribed. To overcome this

limitation Fisher et al. [33] apply a character-based recognition with hidden

Markov models to the KWS. Authors compare the character-based system to

the dynamic time-warping system, founding that the Hidden Markov models

outperform the Dynamic Time Warping system in terms of the mean aver-
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age precision. Frinken et al. [36] use a Recurrent Neural Network (RNN) as

the basis for the KWS system. In this way, they demonstrate that the use

of RNN surpasses a classic dynamic approach based on time warping and a

system based on hidden Markov models. In [126], Sudholt and Fink present

a KWS system based on a CNN network. By taking a probabilistic perspec-

tive on training CNNs, the authors derive two loss functions for binary and

real-valued word string embeddings. They also propose two different CNN ar-

chitectures designed explicitly for word spotting. Granell et al. [39] evaluate

the use of deep techniques such as Bi-directional Long-Short Term Memory

(BLSTM) and Convolutional Recurrent Neural Nets (CRNN). Results on the

Rodrigo dataset show that CRNN outperforms HMM and BLSTM, achieving

the lowest Word Error Rate (WER) and Character Error Rate (CER) for this

dataset, significantly improving OOV recognition. The trade-off underlined is

that for deep neural network architectures to be competitive in time efficiency

with other techniques, they require significant computing power.

CNN networks, due to performance, are the networks that are most es-

tablishing themselves in the field of document analysis. These networks work

by producing in their output a suitable descriptor of the image of the word

query. In [4], Almazan et al. propose an attributes-based approach that leads

to a low-dimensional, fixed-length representation of the word images. The ap-

proach proposes to embed the feature of a word encoding the word strings as a

Pyramidal Histogram of Characters PHOC. The histogram encodes whether a

character appears in the word or not. The spatial pyramid adds a rough local-

ization, defining in which part of the word the character appears. The PHOC

representation is computed for each level of the pyramid, and the final PHOC

histogram is the concatenation of these partial histograms. In [125], Sudholt

and Fink present a CNN architecture trained with PHOC descriptors known

as PHOCNet. The network is a CNN architecture designed for word spotting.

PHOCNet can process images with generic dimensions and it can predict the

PHOC representation of the word image. The authors show the proposed archi-
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tecture is capable of surpassing cutting-edge results by exhibiting short training

and testing times.

2.7 Dataset

This paragraph gives an overview of the datasets of historical documents avail-

able in the literature. Figure 2.8 shows a diagram in which the different datasets

are ordered on the basis of the historical reference period and the main use case.

Distinguishing the different datasets based on the use case is important because

the annotated truth needs to be provided in different ways depending on the

problem to address. For example, if the goal is layout analysis, we need to

know the structure of the document. On the other hand, if we are interested

in text recognition, we need to know the transcription of the words contained

in the images. The importance of truth annotations is reflected both in the

fact that ground truth is necessary to provide learning samples for machine

learning algorithms and in the fact that truth enables the performance of pro-

posed algorithms to be automatically evaluated. In this discussion, we focus on

collections of Western historical documents in various languages such as medi-

aeval Latin, mediaeval German and Spanish, various early modern European

languages, and eighteenth-century English.

2.7.1 The IAM-HistDB

The IAM-HistDB comprises three different databases, each with a different style

and language. The three databases are the Saint Gall database, the Parzival

database and the George Washington database. The collection was created as

part of the HisDoc project at the IAM Institute of the University of Bern in

Switzerland and is one of the collections first made available to the research

community [34].
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Figure 2.8: Main data sets of historical documents organized by use case and time
period.

2.7.2 Saint Gall

The Saint Gall dataset1 contains images of a 9th-century Latin manuscript

written by a single scribe in the Carolingian script. The original manuscript, a

hagiography of Saint Gall, comes from the Abbey of Saint Gall in Switzerland,

where the original version of the documents is still preserved.

In addition to the page images and the transcript, the record contains ex-

tensive ground truth. The lines of text are annotated by drawing their position

on the pages as closed polygons, and there is a corresponding transcription for

each line. The transcription is provided in two ways: The first faithfully repro-

duces the content of the pages, while an adapted version of the modern text

edition is also available, often deviating from the manuscript text by slightly

changing abbreviations and punctuation for better readability. The St. Gall

database is characterised by a particularly regular page layout. All pages have

a single-column text with 24 lines for each page. However, the pages have

marginal notes, coloured and decorated initial letters, holes in the parchment,

ink smears and missing spaces between words. First, the dataset was proposed

1https://fki.tic.heia-fr.ch/databases/saint-gall-database

37

https://fki.tic.heia-fr.ch/databases/saint-gall-database


Chapter 2. Historical Document Processing - An Overview

with the aim of matching the transcription with the images of the words with

the work of Fischer et al. [31].

Figure 2.9: Some examples of the Saint Gall dataset.

2.7.3 Parzival

The Parzival dataset2 contains handwritten pages of an Arthurian epic in Old

German from the 13th and 15th centuries. The forty-seven images of the Parzi-

val come from three different manuscripts, created by three scribes using a tiny

Gothic script in a multi-column layout. The Parzival has a two-column lay-

out with rhymed lines in pairs. The presence of ornaments surrounding and

embellishing the areas with the main text is striking. The signs of decay are

very present on the parchment, and stains, holes and faded ink are visible.

The Parzival collection contains pre-processed page illustrations and associ-

2https://fki.tic.heia-fr.ch/databases/parzival-database
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ated transcripts at the line and word level. There are no annotations on the

positions of text zones or lines of text, let alone decorations. Pre-processing

consists of a binarisation step and the removal of distortions.

Figure 2.10: Some examples of the Parzival database.

The database was introduced by Fischer et al. in [35] with the aim of

transcribing the lines and images of words.

2.7.4 George Washington

The George Washington database3 was one of the first collections shared with

the community. It consists of 20 handwritten page images of letters written by

George Washington and his associates during the American Revolutionary War.

The original letters are stored at the United States Library of Congress. Writing

is a continuous cursive script in English used in the 18th century. The dataset

3https://fki.tic.heia-fr.ch/databases/washington-database

39

https://fki.tic.heia-fr.ch/databases/washington-database


Chapter 2. Historical Document Processing - An Overview

was provided by Rath et al. [94] to be then used mainly for text recognition and

keyword identification. Truthful annotations include transcriptions of images

of lines of text and individual words. The layout of the documents is not very

regular and there are often page numbers, lines, stamps and signatures next to

the main text. In addition, the suboptimal state of preservation manifests itself

in faded ink and stains on the paper, which makes the task of the recognition

systems more difficult.

Figure 2.11: Some examples of the George Washington dataset.

2.7.5 The HisIR19

The HisIR19 dataset4 [13] is the data set used in the ICDAR 2019 Competi-

tion on Image Retrieval for Historical Handwritten Documents. The dataset

focuses on writers from the European Middle Ages, from the 9th to the 15th

4https://tc11.cvc.uab.es/datasets/HisIR19_1
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centuries. Most of the material is anonymous. It is made up of 1200 images

by 520 different writers. Three hundred authors contribute with one page, 100

authors with three pages, and finally, 120 contribute with five pages. The test

dataset contains 20,000 images: approximately 7,500 pages are from isolated

documents, and approximately 12,500 are from authors who contributed three

or five pages.

Figure 2.12: Some examples of the HisIR19 dataset.

2.7.6 Bentham Collection

Bentham collection5 is a large set of documents that were written by the English

philosopher and economist Jeremy Bentham (1748-1832). The transcription of

this collection is currently being carried out by amateur volunteers participating

in the award-winning crowd-sourced initiative Transcribe Bentham. Currently,

5https://zenodo.org/record/44519
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more than 6,000 documents have been transcribed. The dataset was proposed

in the ICFHR competition in 2014 [107]. The dataset provides images of whole

pages, and the ground truth includes information about the layout and the

transcription at the line level of each image. The Bentham dataset is part

of the tranScriptorium project [106]. This project aims to develop innovative

solutions for the transcription of images of historical handwritten documents.

The project focuses on the English, Spanish, German and Dutch languages,

and the Bentham collection is the dataset relating to the English language.

Figure 2.13: Some examples of the Bentham Collection dataset.

2.7.7 Germana

Germana [91] was obtained by digitizing and annotating a 764-page Spanish

manuscript entitled "Noticias y documentos relativos a Doña Germana de Foix,

ultima Reina de Aragon", written in 1891 by Vicent Salvador. It contains about
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21,000 lines of text manually transcribed by paleographers. Most of the pages

consist of only cursive text written on sheets with well-separated lines. Due

to its sequential book structure, this dataset is particularly suitable for the

realistic evaluation of interactive handwriting recognition systems.

2.7.8 Rodrigo

The Rodrigo corpus6 is an old Spanish dataset, and it is composed of 853

pages. Created like the preceding datasets for handwriting recognition and

line extraction research, the researchers based at the Universitat Politecnica de

Valencia used the digitized images of an Old Spanish historical chronicle, the

"Historia de España del arçobispo Don Rodrigo." The layout of the documents

is quite linear, with most pages containing a single block of almost calligraphic

script on well-separated lines. However, the old Gothic style of writing can

make recognition difficult.

2.7.9 Cristo-Salvador Corpus

The CS Corpus ("Cristo-Salvador") is a database derived from the 19th-century

manuscript known as "Cristo-Salvador", made available by the Biblioteca Va-

lenciana Digital (BIVALDI). The manuscript entitled "Noticia histórica de las

fiestas con que Valencia celebró el siglo sexto de la venida a esta capital de la

milagrosa imagen del Salvador" by Vicente Boix is a small document consisting

of 53 coloured images of pages compiled by a single author. The corpus is a

single book by one author with a single column layout and pictures in the text.

Some of the pages show smudging, background variations and differences in

brightness.

6https://zenodo.org/record/1490009
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Figure 2.14: Some examples of the Rodrigo dataset.

2.7.10 Esposalles

The Esposalles dataset7 [100] consists of handwritten pages of marriage license

books kept in the archives of the Barcelona Cathedral. These documents span

around 500 years, up to the beginning of the 20th century. The dataset consists

of a volume that collects the licenses comprising 173 pages, 1,747 registers,

5,447 lines. The whole image of each page is available, as well as the images

of the page lines. The full transcript is also available. There is another set

consisting of indexes of two volumes. It consists of 29 pages. Each page is

divided vertically into columns, and each column is divided into rows, for a

total of 1,563 rows. For each column of the page, there is an image for each

row together with its transcription.

7http://dag.cvc.uab.es/the-esposalles-database/
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Figure 2.15: Some examples of the Esposalles dataset.

2.7.11 Diva-HistDB

As a benchmark for evaluating pre-processing performance on mediaeval doc-

uments, the HistDoc project has created Diva-HistDB8. This dataset contains

150 pages of images from three different manuscripts with associated back-

ground truths for binarization, layout analysis and line segmentation [115].

The three manuscripts were selected for their complexity in layout. Two of

the manuscripts are written in Carolingian characters and date from the 11th

century while the other one is from the 14th century. All three manuscripts

consist of a single column of text surrounded by very large marginal notes,

furthermore, some pages have decorative initials. The ground truth focuses

on the identification of spatial and colour-based features and consists of four

different annotated classes that may overlap: Main Text, Decorations, Notes

8https://www.unifr.ch/inf/diva/en/research/software-data/diva-hisdb.html
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and Background. Ground Truth is encoded in the format PAGE XML. The

dataset is available free of charge on the HistDoc project website.

Figure 2.16: Some examples of the Diva-HisDB dataset.

2.7.12 IMPACT

While the preceding datasets for medieval handwriting recognition were lim-

ited to a handful of manuscripts written in Latin and early vernacular languages

from only a few countries, researchers and archivists working with early mod-

ern optical character recognition have a much more comprehensive resource in

the IMPACT9 dataset [82]. Created by a consortium of European libraries, the

IMPACT dataset provides a genuinely diverse, pan-European collection that

includes texts from the fifteenth through the twentieth centuries in eighteen

different European languages and a variety of distinct scripts. Printed books

9https://www.digitisation.eu/resources/impact-dataset/
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comprise the majority of the collection, including newspaper pages, legal doc-

uments, journals, and an assortment of miscellaneous documents. In addition

to document metadata, the extensive set of ground truth for this collection

includes both the full document text in Unicode along with layout analysis

annotation and reading order specified with the XML-based PAGE format.

2.7.13 Codice Ratio

The Codice Ratio10 is a research project that aims to propose new methods

and tools for document processing. The project focuses on the collections of

the Vatican Secret Archives, one of the world’s largest and most important

historical archives. Researchers built their dataset to train their classifier for the

recognition of handwritten medieval documents [30]. The dataset is composed

of single characters and the corresponding annotation. The characters were

chosen from several manuscripts, and synthetically generated data was added.

In total, the dataset contains examples of 1,000 characters for each character

class. Character images are included in a dataset, while the ground truth

consisting of PNG images of words and transcripts of text files are included in

a separate dataset.

2.8 Tools and Software Platforms

In this section, we will give a quick overview of the main tools and software plat-

forms available in the field of handwriting recognition useful for the application

of the processing of documents of historical and cultural interest.

2.8.1 Tools

The most important tools for historical optical recognition are Abbey FineReader,

Tesseract, OCRopus and AnyOCR. There are also a few other generic tools

for the historical recognition of handwriting. Tesseract was initially proposed

10http://www.inf.uniroma3.it/db/icr/index.html
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for the recognition and transcription of present-day documents. It was later

broadly utilized also with historical documents [43, 71, 78]. Tesseract does not

include any built-in pre-processing tools. The tool at first recognizes the lines

of text, also handling slatted or skewed lines. Later it performs the recognition

of words by separating the characters [117]. In this way, a segmentation stage

is then performed. Next, a list of potential character matches is made, comput-

ing the similitude of the bit vector between the unknown character and every

possible match. OCRopus, recently renamed OCRopy, was also created for

text recognition in modern documents and subsequently applied to historical

ones [121]. The pre-processing step involves binarization, noise removal, skew

correction, page segmentation, and layout analysis to detect columnar layouts.

Finally, the tool identifies the lines of text, and segments them at the character

level [112]. Individual characters are classified, and hypothetical interpreta-

tions are represented in the form of graphs. The classifier bases its decision on

traversing the graph with the lowest cost. Thanks to this method, the OCRo-

pus classification is very accurate in the case of anomalous instances and can

better distinguish upper- and lower-case characters. The software includes the

integration of linguistic models. These can improve the classification of charac-

ters. However, few linguistic models are available for ancient languages [121].

OCRoRACT aims to improve accuracy by incorporating Tesseract and OCRo-

pus into one system. A significant limitation of these systems is the need to

use a massive amount of data for the training that experts must generate with

a manual transcript [88]. Furthermore, the collections of documents are often

not very large. A small set of training is used to train Tesseract. Using the

data trained with Tesseract, the OCRopus classifier is then trained. This pro-

cess is repeated until the improvement rate between iterations is less than 1%.

Following this approach, Ul-Hasan et al. [88] obtained a character error rate

(CER) on par with that obtained using OCRopus trained on a huge training

set. AnyOCR follows the same hybrid approach as OCRoRact [10, 49]. How-

ever, the Tesseract classifier is not used and is replaced with an unsupervised
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segmentation-based classifier. The idea of the unsupervised classifier was taken

because, in this way, the manual annotation step is not necessary. The classifier

uses a variant of the k-means clustering algorithm and groups images based on

a "blurriness" metric. The results in terms of error rate on a printed Latin text

of the fifteenth century are little better than the results obtained by OCRopus.

However, there is a considerable advantage in the interaction time required by

expert users.

2.8.2 Software Platforms

A few important software systems include several features, such as preprocess-

ing, machine learning training, and transcription. Among these systems, there

are DIVA-Services [142], Transkribus [50], and eScriptorium [54]. DIVA-Service

is a web-based service built on a RESTful architecture that provides an API for

each stage of historical document processing. The service provides document

image analysis algorithms, machine learning algorithms, and text recognition

tools. The choice of a RESTful architecture is justified by the desire to create

a service that is easy to use and manage, allowing simply the integration of

DIVA services in different software and tools. DIVA-Services offers a suite of

standard tools. There are layout analysis methods that allow the extraction

of points of interest, lines of text, and images. Moreover, it has extraction

techniques such as scale-invariant transformation (SIFT), or Gabor filters for

features extraction are available. DIVA-Services also integrates the OCRo-

pus and Tesseract libraries for optical character recognition. Finally, different

machine learning classification algorithms are implemented, such as support

vector machine (SVM), Gaussian mixture methods, and K-Nearest Neighbours

(KNN). DIVA-Services is an open-source project, which is why it is very suit-

able and used in research projects involving customized software. Transkribus

provides all the functionalities of the document transcription process. The soft-

ware has a client-server architecture. A software client communicates with a

central server via a RESTful API. The software allows the user to work with
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document images or with pre-existing layouts or transcription data that have

been stored in PAGE XML or ALTO formats. It allows handling document

segmentation manually or with the application of layout analysis techniques.

It is possible to use both HTR and OCR capabilities. ABBY Fine Reader SDK

is used for OCR, and two methods are available for HTR. The first is based on

HMM and allows to incorporate a linguistic model, while the second is a tool

based on RNN, which allows facing the problem of OOV words. eScriptorium

is an open-source web-based platform for the analysis and annotation of histor-

ical documents. It allows you to upload document collections, segment them

and transcribe them manually or automatically with the help of an OCR en-

gine. The purpose of eScriptorium is to provide a framework for organizing and

transcribing handwritten documents and make transcription results available

for academic and research use. The platform aims to serve as an open-source

alternative to Transkribus, and its web-based nature makes it easier to use

than a RESTful solution. DIVA-Services, Transkribus, and eScriptorium offer

similar functionality, but they better suit different needs. Transkribus offers

a complete toolchain for the transcription process, and it allows to handle ev-

erything via the client interface. Furthermore, it uses different important used

standards. These features make Transkribus the tool preferred by researchers

and users looking for comprehensive document processing software. The most

significant limitation of Transkribus is its open-source hybrid nature, which can

result in severe usage limitations. eScriptorium wants to overcome this limi-

tation and provides an entirely open-source framework with a simply usable

web-based interface. DIVA-Services is instead focused on a RESTful architec-

ture. This makes it perfect for users who want to integrate the services offered

within customizable software. Furthermore, DIVA-service can boast a com-

pletely open-source approach. Therefore, the approaches of these software can

be considered complementary, as they are addressed to different use cases and

different target users.
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Digital libraries have evolved from a way to store and preserve documents to

an integrated information processing platform and web applications that enable

the storage, creation and manipulation of information and knowledge. This has

required the development of specialised software tools for processing the digital

images of the document to extract its textual content into a machine-readable

format.

Much of the cultural heritage is in the form of small collections of handwrit-

ten documents, usually consisting of up to a few hundred pages written by a

few different scribes and these collections are of particular interest to scholars.

The accessibility of their contents has become an increasingly urgent require-

ment, and so librarians and public administrators have turned their attention

to computer-assisted transcription because it promises to be faster and cheaper

than classical methods involving only humans.

Assisted transcription systems are based at their core on handwriting recog-

nition techniques. Since these tools have to deal with the enormous variability

of handwriting found in the different collections of many scribes, they rely on

complex tools that draw heavily on the techniques ML and DL [38]. However,

to achieve high accuracy they require huge training sets, usually in the order

of thousands of pages, and have been used successfully for large collections, of-
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ten using crowd-sourcing for the training set labelling to make the overall cost

acceptable. The technique of keyword spotting (KWS) promises to circumvent

some of the disadvantages of explicit recognition by allowing a transcript of

a word to be obtained without the need for recognition. This is essentially a

match between the images of a training set, of which the transcription is also

known, and the images of the document to be transcribed. Because of these

features, KWS-based systems are better suited for processing small collections

of documents.

Regardless of the technology used to implement the transcription system,

the intervention of an expert user is mandatory to validate and/or correct the

system output in order to obtain a complete and error-free transcription of the

entire content of the document. This means that with the current state of the

art, it is not possible to obtain a correct transcription of a document without

human intervention, regardless of the system used and its performance. It is

therefore interesting to assess whether the use of a KWS-type text recognition

system can provide an effective advantage in the transcription of documents.

We are therefore interested in determining the minimum performance require-

ments of the KWS so that the use of the system is beneficial in reducing the

time taken by the user to complete the transcription of the document. In other

words, we would like to answer the following questions: Is the KWS system so

good that the time taken by the user to validate the output, in order to obtain

a complete and correct transcription of the document content, is less than the

time taken by the same user to transcribe it manually? If so, can we estimate

by how much the user’s time is reduced?

In this chapter, we present a model to define the conditions under which

the use of the system is profitable, and we describe a procedure for estimating

both the performance improvements and the accuracy of the estimate in terms

of the actual improvement. For the discussion and definition of the model, we

have chosen to use a multi-output KWS system, i.e. a system that for each

word image provides an ordered list of its possible transcriptions. The proposed
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model assumes that no information is available other than that obtained from

the samples and the performance of the KWS system on the training set.

3.1 The Model

To introduce the proposed model, let us assume that the collection of documents

to be transcribed has been segmented at the word level in order to extract the

number nDC of example images from the entire data collection. Let us further

assume that nTS samples from the collection were transcribed manually and

used to define the training set and the reference dictionary of the KWS system.

In this way, the dataset of samples for which a transcript needs to be provided to

complete the activity consists of nDS = nDC −nTS samples. We also denote by

NDC and NTS the number of keywords, i.e. the number of individual entries

in the vocabulary associated with the data collection and the training set,

respectively. Using a KWS system to support the transcription, it returns for

each of the nDS instances an ordered list of a few possible transcriptions. To

obtain the transcription, the user needs to choose the correct transcript from

the list when it is available or type it if not. In this way, the number of actions

required from the user to achieve the complete and error-free transcription is

nDS . According to our hypothesis that only information from the training set

is available to the system, NTS is known because the samples in the training

set were labelled, while NDC is not known.

We can note that TS and DS represent the two subsets of words to be

transcribed from the entire collection and that the two sets generally partially

overlap. This means that the system only knows a representation of the words

that belong to the intersection for the set DS, but that in order to obtain

a complete transcript, a transcript must also be provided for the words that

belong only to DS. These words belong to the set of Out-Of-Vocabulary (OOV)

words, which can represent a non-negligible percentage of the words in small

document collections. If the system is not able to provide a transcription for
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the OOV words, the user must transcribe them manually, and this process may

involve a significant effort.

We can express the time needed to transcribe the content of the document

collection using the KWS system according to the following expression:

Tu = TTS + Tout + Tmiss + Toov (3.1)

Here, TTS is the time required to create the training set and transcribe the

images that make it up, Tout is the time required to validate and/or correct

the output of the KWS system, Tmiss is the time required to transcribe the

instances of words not retrieved by the system and Toov is the time required to

transcribe the OOV words manually. We can state that using the system to

perform the transcription is beneficial if the time Tu is less than the time Tman

required to complete the manual transcription of the data collection. Therefore,

the condition must be fulfilled:

Tu < Tman (3.2)

The manual time Tman can be expressed as the composition of two times:

Tman = TTS + TDS (3.3)

We can then rewrite the condition (3.2) as:

Tout + Tmiss + Toov < TDS (3.4)

The time Tu is affected by the use of the KWS, and it depends to some extent

on the performance of the system. Let us now focus on the behaviour of the

KWS system while spotting the keyword wi of the training set, by denoting

with nDS
i the number of instances of wi in DS, with nc

i the number of correct

instances, i.e. those that the system correctly considered to be instances of wi,

with nw
i the number of wrong instances, i.e. those that the system wrongly
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considered to be instances of wi, and finally with nm
i the number of missing

instances of wi (Figure 3.1).

Figure 3.1: As the size k of the KWS system output list grows, the overall system
performance changes allowing more words to be fetched.

When the KWS spots the word wi, it returns the ranked list of k possible

transcriptions. The measures used in the literature to evaluate the performance

of an information retrieval system that provides k alternatives as output are

the recall@k and the precision@k:

recall@k = Rk =
#RetrievedRelevantImagesAtk

#RelevantImages
(3.5)

precision@k = P k =
#RetrievedRelevantImagesAtk

#RetrievedImages
(3.6)

The recall and precision indices of this KWS system for the keyword wi can

be expressed as:

ri =
nc
i

nDS
i

(3.7)

pi =
nc
i

nc
i + nw

i

(3.8)

We can than reformulate the expressions of nc
i , n

w
i and nm

i in terms of recall

and precision as k varies:

nc
i = rki · nDS

i (3.9)
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nw
i = rki · (

1

pki
− 1) · nDS

i (3.10)

nm
i = (1− rki ) · n

DS
i (3.11)

If we denote by tci the time required to validate a correct sample of the i-th

keyword, by twi the time required to produce a correct transcript for an incorrect

sample of the i-th keyword, by tmi the time required to produce a transcript

for a missing sample of the i-th keyword, and with tMi the time required to

manually transcribe image of a generic word (i.e. a word of the traing set or an

OOV words), we can write the expression for each of the four terms in equation

(3.1) as follows:

TTS =

NTS
∑

i=1

(tMi · nTS
i ) (3.12)

Tout =

NTS
∑

i=1

[(tci · n
c
i ) + (twi · nw

i )] (3.13)

Tmiss =

NTS
∑

i=1

(tmi · nm
i ) (3.14)

Toov =

NDS
∑

i=NTS+1

(tMi · noov
i ) (3.15)

In the same way we can rewrite the term TDS of equation (3.3):

TDS =

NTS
∑

i=1

(tMi · nDS
i ) +

NDS
∑

i=NTS+1

(tMi · nDS
i ) (3.16)

We can now rewrite equations (3.13) and (3.14) as a function of the recall

precision indices of the system using equations (3.9), (3.10) and (3.11):

Tout =

NTS
∑

i=1

((tvi · r
k
i ) + (twi · (

1

pki
− 1) · nDS

i )) (3.17)
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Tmiss =

NTS
∑

i=1

(tmi · (1− rki ) · n
DS
i ) (3.18)

Equations (3.17) and (3.18) show that Tout and Tmiss express a dependence

on the performance indices of the system and are the only components of Tu

that introduce this dependence. The equations also show that the effects of

system performance on user time tu are modulated by the times for validation,

correction, and transcription of correct, wrong, and missing samples, which

depend on the user interface of the system. Given the performance of the

system in terms of rki , p
k
i , and the mean value tM of the times tMi required to

transcribe the instances of the training set, equation (3.4) therefore allows us

to determine the maximum values of tvi , t
w
i , and tmi that satisfy the condition

for profitable use of the system. Conversely, given the user interface properties

of tvi , t
w
i , and tmi , the equation allows us to calculate the minimum values of rki

and pki that the KWS system must have in order to be profitable for the writer.

In the following subsections, we will derive such conditions for lexicon-based

and lexicon-free KWS systems.

3.1.1 Lexicon-Based Systems

In this case, as the KWS system is not able to find OOV words, the use of the

system is profitable when

Tout + Tmiss < TDS − Toov (3.19)

which can be written in terms of the KWS performance as:

NTS
∑

i=1

[(tvi · r
k
i + twi · rki · (

1

pki
− 1) + tmi · (1− rki )) · n

DS
i ] <

NTS
∑

i=1

(tMi · nDS
i ) (3.20)
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In the case of a perfect KWS system, i.e., a system for whom rki = pki = 1, ∀i,

the inequality above becomes

NTS
∑

i=1

(tvi · n
DS
i ) <

NTS
∑

i=1

(tMi · nDS
i ) (3.21)

which holds with certainty if tvi < tMi , ∀i. In the case of a real system, both

rki and pki are less than 1 and the first and last terms of the sum on the left-

hand side of the inequality (3.20) show an opposite tendency as rki increases:

the former becomes larger whilst the latter becomes smaller. The second term

behaves complexly, but since 1

pk
i

> 1 and in any information retrieval system

recall and precision are such that when pki increases rki does not increase (and

usually decreases), it becomes smaller as pki increases.

3.1.2 Lexicon-Free Systems

Let us now consider the case where the KWS system is able to recognise words

that are not included in the query list. To estimate the extent to which the

system is able to spot OOV words, we assume that a test set (TSS) containing

nTSS ≈ nTS samples of the data collection is provided to the KWS system

trained on TS. We can divide the OOV found by the KWS system in TTS into

two parts; These include the correct OOV, which consists of the OOV words

that have an empty output list, and the wrong OOV, which consists of the

OOV words that have a non-empty output list. Under the same assumptions

as in the previous subsection, and denoting by noovc

i and noovw

i respectively the

number of correct OOV and wrong OOV word images that are instances of the

Noov keywords, we can estimate Toov as follows:

Toov =

Noov
∑

i=NTS+1

(tMi · noovc

i + tMw

i · noovw

i ) (3.22)
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It is worth noting that tMw

i > tMi because in the case of a wrong OOV, the

user has to read the output list to find the transcription and only then start

transcribing the word. In contrast, the time for transcribing the correct OOV

is only the time for transcription because the output list is empty.

At this point, after interacting with the system, the user has used up the

time:

Tu = Tout + Tmiss + Toov (3.23)

where the times appearing on the right side are estimated using the Equations

(3.20) and (3.22), respectively, and the query list is composed of NTTS =

NTS + NOOV keywords. Thus, to achieve the transcription of the remaining

samples of the data set, the user will spend the time T ′

out for processing the

output of the system and the time T ′

miss for transcribing the missed words when

spotting the NTTS keywords, plus the time T ′

oov for transcribing the OOV word,

i.e., the word images that are instances of the NDS −NTTS keywords. We can

express these times as follows:

T ′

out =

NTTS
∑

i=NTS+1

(tvi + twi · (
1

pki
− 1)) · rki · nDS

i (3.24)

T ′

miss =

NTTS
∑

i=NTS+1

(tmi · (1− rki ) · n
DS
i ) (3.25)

T ′

oov =

NDS
∑

i=NTTS+1

(tMi · noovc

i + tMw

i · noovw

i ) (3.26)

and thus:

T ′

u = T ′

out + T ′

miss + T ′

oov (3.27)

To estimate T ′

oov we need the value of NDS and the values of noovc

i and noovw

i .

We can estimate them by assuming that the coverage of the query list computed

on TTS with respect to the actual list, i.e., the ratio NTTS/NDS , is the same

as the coverage of the query list computed on TS with respect to that of TTS,
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i.e. the ratio NTS/NTTS , and thus nDS =
N2

TTS

NTS
. Similarly, we estimate noovc

i

and noovw

i by assuming that the distribution of OOV words between correct

and wrong in DS is the same as in TTS.

Under these assumptions, we can divide the time TDS for the manual tran-

scription of DS into the time for transcribing the word images that are instances

of the NTS keywords obtained from the manual transcription of TS, the time

for transcribing the word images that are instances of the NTTS keywords ob-

tained from the data in TTS, and the time for transcribing the remaining OOV

words:

TDS =

NTS
∑

i=1

tMi · nDS
i +

NTTS
∑

i=NTS+1

tMi · nDS
i +

NDS
∑

i=NTTS+1

tMi · nDS
i (3.28)

We can now establish the condition for the profitable use of a lexicon-free

KWS as follows:

Tu + T ′

u < TDS (3.29)

This expression shows that the use of the KWS system can be profitable com-

pared to manual transcription if the inequality (3.29) for the word images that

are instances of the query list keywords holds to such an extent that the extra

time incurred by transcribing the incorrect OOV words detected by the system

is compensated, i.e. if the following occurs:

(

NTTS
∑

i=1

tMi · nDS
i −

NTTS
∑

i=1

[⋆] · nDS
i

)

< Toov + T ′

oov (3.30)

where the expression between the square bracket (the ⋆) is the same as in

equation (3.20).
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3.1. The Model

Table 3.1: The table reports an overview of all the element of all the components.

Description

DC Data Collection - All the words of the collection.

TS Training Set - The words in the pages selected for the training.

DS Data Set - All the word of the collection that do not belong to
the training pages.

TTS Test Set - Pages different from the training set used to estimate
OOV ratio.

nDC Number of word images from the entire Data Collection.

nTS Number of word images from the Training Set.

nDS Number of word images from the Data Set.

NDC Number of different words in the entire Data Collection.

NTS Number of different words in the Training Set.

NDS Number of different words in the Data Set.

Tman Time required to transcribe the entire collection manually.

Tu Time required to transcribe the entire collection using a KWS
to support the process.

TTS Time required to transcribe the training set words and to pre-
pare the keyword list.

Tout Time to validate or correct the out of the KWS system.

Tmiss Time to transcribe the in vocabulary words that the system can
not recognize.

Toov Time to transcribe OOV words.

nc
i Number of instances of the word wi correct recognized by the

KWS.

nw
i Number of instances of the word wi wrongly recognized by the

KWS. i.e the KWS proposes a transcription that it is not cor-
rect.

nm
i Number of instances of the word wi for which KWS does not

propose any transcription.

noovc

i In Lexicon-Free KWS, the number of instances of OOV word
correct recognized

noovw

i In Lexicon-Free KWS, the number of instances of OOV word
wrong recognized. In this case the KWS can provide a wrong
transcript or no transcript.

tci Time required to validate a correct out of the KWS.

twi Time required to correct a wrong out of the KWS

tmi Time required to transcribe a missed word.

tMi Time to manually transcribe a generic word without using the
KWS
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Chapter 3. Performance Model

3.2 The Model at Work

To show how to use the model in practice, let us define the gain G achievable

while using the keyword spotting system as:

G = 1−
Tuser

Tman

(3.31)

where Tuser = Tu in the case of a lexicon-based KWS or Tuser = Tu+T ′

u in the

case of a lexicon-free KWS, and Tman is defined as in the previous section. The

parameters of the models described in the previous section can be calculated

or estimated by the following steps:

1. Transcription of the training data;

2. Training of the system and feasibility check;

3. Keyword spotting on the Test set;

4. Computing the gain G

3.2.1 Transcription of the Training Data

This step requires the manual transcription of the training set’s word images

and the recording of time to achieve a complete and correct transcription. After

manually transcribing the training set and recording the time spent by the user,

we know the values of nTS , NTS and tMi for each keyword.

3.2.2 Training of the System and Feasibility Check

After training the system, it is possible to obtain the values rki and pki calculated

on TS for each keyword and check whether the condition (3.29) is satisfied or

not. If it is not, and considering that the values rki and pki on DS are very likely

to be smaller than those calculated on TS, the performance of the KWS system

may not be good enough to profitably use the assisted transcription instead of
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3.2. The Model at Work

the manual one. At this point, one may consider increasing the training set or,

if possible, reconfiguring the KWS system with a larger value of k and repeating

the test. The first approach requires more user time, while the second approach

depends on the architecture of the KWS.

3.2.3 Keyword Spotting on the Test Set

Once the KWS system has been trained and passed the feasibility test, it is

used to recognise the words of TTS. After validating the system outputs, we

reach the transcription of the test set, obtain the values of tvi , t
w
i and tmi and

can calculate the values of rki and pki . In the case of a lexicon-free system, we

can also obtain the values of NTTS , noovc

i and noovw

i and calculate the values of

tMi , tMw

i , rki and pki for the NTTS keywords.

Estimating the User Time: Lexicon-Based System

The application of the model requires the values of its parameters as well as

the values of nDS obtained from the data set, which are unknown. Considering

that TS, TTS and DS were extracted from the data collection we want to

transcribe, it is reasonable to assume the following:

1. the distribution of the values of rki and pki computed on TTS and DS is

similar;

2. the distribution of the length of the keywords is similar on each set,

and because tMi depends mostly on the number of characters rather than

on the actual character of the keyword, it is independent of the actual

keyword;

3. the values of the model parameters are normally distributed;

4. all the samples of the data set are instances of the keywords obtained

from the training set, i.e. than NTS = NDS
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Chapter 3. Performance Model

According to these assumptions, we use for tMi the mean value computed on

TS, while for tvi , t
w
i , tmi , rki , and pki we use the mean values computed on TTS,

so that the time for processing the system outputs can be written as follows:

(

tv · rk + tw · rk · (
1

pk
− 1) + tm · (1− rk)

)

· nDS (3.32)

where all the parameters assume the respective mean values and use this equa-

tion for estimating Tu.

Estimating the User Time: Lexicon-Free System

In this case, we follow the same line of thought as before for estimating T ′

out

and T ′

miss, while the value of NDS as well as those of noovc

i and noovw

i can be

estimated as in section 3.1.2. Under these assumptions, we can estimate T ′

out,

T ′

miss and T ′

oov as follow:

T ′

out =

(

tv + tw · (
1

pk
− 1)

)

· rk · nDS (3.33)

T ′

miss =
(

tm · (1− rk) · nDS
)

(3.34)

T ′

oov = tM · noovc + tMw · noovw (3.35)

where the values of the parameters are as in the previous case and use them to

compute T ′

u.

3.2.4 Computing the Gain

Under the same assumptions as before, we can estimate Tman as follows:

Tman = tM · (nTS + nDS) (3.36)

and eventually derive the estimated value of G using equation (3.31), which

represents the reduction of the user time achieved using the KWS system with

respect to the manual transcription.
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Chapter 4

Tools and Methodologies to

Speed up the Labelling Data

Process

4.1 Text Line-Segmentation

The problem of line segmentation is well known in the literature and has been

addressed by various proposed solutions, including depth-based methods, which

have shown increasingly better performance in recent years, as explained in sec-

tion 2.5.2. Despite the significant advances, the methods available suffer from

some limitations, and the problem of segmenting lines of text in handwritten

documents is still considered an open issue. The methods in the literature can

be divided into two broad categories: learning-free and learning-based.

The advantage of learning-free methods becomes clear when segmentation

has to be applied to documents or collections of documents with special fea-

tures, which may consist of a few pages. In this case, the scarcity of available

documents may make it impossible to perform the training phase due to the

lack of labelled data. In this context, learning-free methods may prove to be
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Chapter 4. Tools and Methodologies to Speed up the Labelling Data Process

a convenient solution, but as far as we know, they do not provide a general

solution that works satisfactorily under all conditions. An example of a fea-

ture that complicates segmentation is certainly the presence of lines of text

that have a curved and irregular shape. Indeed, most methods assume that

the document pages have a fairly regular layout and that the text lines follow

an ideal horizontal line. However, it is not very difficult to find handwritten

historical documents that have text lines with a curved course and this fea-

ture complicates the segmentation process and the system performance cannot

handle it satisfactorily. Figure 4.1 b) shows some examples of segmentation of

documents with curved lines by the learning-free method proposed by Alberti

et al. [3], which performs among the bests in this category. The picture shows

that this method has problems in segmenting documents with curved lines and

the segmentation does not turn out satisfactorily.

Since learning-based methods require a learning or fine-tuning phase for

optimal performance, which should be performed with similar documents close

to the documents of interest, some pre-trained solutions have been proposed

that promise considerable performance even without a specific training phase.

Among these solutions, we can mention the deep-based solutions docExtractor

[73] and dhSegment [79] which are proposed as ready-to-use solutions that

have already undergone an extensive learning phase on very large datasets.

Although the performance of these systems in recognising lines of text is very

high even in the case of curved trends, they are subject to behaviours that can

be problematic for some applications. A well-representative example of such

behaviour is that these solutions are able to recognise the position of the centre-

line of text lines well, but have problems recognising the base-line and the top-

line. This behaviour leads to the exclusion of ink strokes in the segmentation of

the line, in particular the exclusion of the typical and characteristic ascenders

and descenders of many cursive manuscripts, as shown in Figure 4.1. These

strokes, however, represent descriptive and discriminative features of cursive

manuscripts, and the loss of this information during the process of segmentation
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4.1. Text Line-Segmentation

(a)

(b)

(c)

Figure 4.1: (a)Examples of text area with curve baselines. Example of segmentation
performed with Alberti et al. [3]. (c) Example of segmentation performed with Oliveria
et al. [79].

can be a serious problem.

In this chapter, we propose a solution to the problem of segmenting lines

of text by presenting a learning-free method that is able to process handwrit-

ten lines of text with a curved shape and that tends to avoid truncating the

ascending and descending strokes of cursive writing. Among the learning-free

algorithms proposed in the literature, the algorithm presented by Surinta et al.

in [128] separates consecutive lines of text even when they partially overlap. It

is relatively simple to implement and robust for different types of handwritten
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documents. However, it cannot process text lines with curved baselines. To

overcome these limitations, we kept the idea of formulating text line segmen-

tation as a path-planning problem to be solved by the A* algorithm. However,

we have reformulated it for the problem at hand and used the information from

the available transcriptions as described below.

4.1.1 The Proposed Line-Segmentation Solution

The line segmentation method proposed in this chapter presupposes a phase of

preparation of the images to be processed. In the continuation of the discussion,

we will hypothesize that during the pre-processing phase, a binarization process

of the image is applied and that therefore the input to the segmentation process

is a black-and-white image.

As a preliminary step to the segmentation process, the text area present

in the document is recognised in such a way that the segmentation focuses

only on the area of the image that actually contains the text to be extracted.

This is done by calculating the horizontal projection profile (HPP) and vertical

projection profile (VPP) of the foreground pixels and finding the histogram

regions that correspond to the predominantly black rows/columns of the image.

Figure 4.2 shows an example of the detection of the text area highlighted within

the red rectangle.

In the method originally proposed by Surinta et al. [128] the authors use

the A* search algorithm to determine the boundaries of each line of text. To

determine the position of the text lines, the method computes the horizontal

projection profile (HPP) of the entire text area and locates the centres of the

text lines in accordance with the local HPP maxima. The part of the image

between two successive maxima of the HPP is thus the search space to find

the cut boundary separating the two text lines. The cut boundary is defined

by applying the A* algorithm to find the shortest path between the leftmost

and rightmost white pixels of each image line within the search space, using

the squared Euclidean distance between two nodes of the path to weight the
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4.1. Text Line-Segmentation

Figure 4.2: The figure shows in the red rectangle the text area detected in a document
image.

different paths. Since the goal is to segment the page into lines of text, the black

ink pixels are considered obstacles and the path search tries to work around

them to connect the origin and destination points.

The main disadvantage of the original method is certainly its inability to

segment documents containing lines of text with a curved baseline that cannot

be separated by a horizontal line. This is because the first phase of the method

is based on identifying the search spaces by analysing the horizontal black

pixel projection profile on the entire image. When the text lines have highly

curved baselines, it is not possible with the projection technique to satisfactorily

identify the different spaces between the text lines. To solve this problem,

we conjectured that identifying the search spaces for each part is possible by

looking at the projections not on the whole image, but on different consecutive

vertical regions called stripes. By applying the A* search to each strip, we

approximate the curved baseline with a step function whose step size is equal

to the horizontal size of the strips. Figure 4.3 shows an example where the
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computation of the HPP does not allow to identify a search space and thus

does not segment the text space (a), while the computation of the histogram

on each strip results in as many search spaces as the number of text lines in

each strip (b).

(a)

(b)

Figure 4.3: Examples of detection of search areas for text line segmentation. Green
areas represent the search areas detected by computing the histogram on the whole
image (a) or on each stripe (b).

Below, we report the procedural steps of our text line segmentation algo-

rithm:

1. Divide the image into stripes The image of the text area is divided

into S stripes of the same width, in such a way that the sum of the widths

of the stripes equals the width of the document image.

2. Find the horizontal projection profile The HPP is calculated for each

strip. The profile analysis makes it possible to identify the position of the

line of text in the region studied, assuming that each peak corresponds

to one line of text. If the number of lines of the document is known, this

information can be used to determine the maximum number of peaks
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that can be recovered from the histogram of the region under study. The

peaks, starting with the peak with the highest value, are then extracted

from the HPP until the maximum number is reached if they are present in

the histogram. If the histogram contains a number of peaks that is below

the threshold, this means that not all lines are present in the strip under

consideration, such as in the case where the ink of the handwritten text

does not extend over the entire line. In these cases, all detected peaks

are selected, even if they are fewer than expected. if the number of rows

is unknown, all the detected peaks are taken into account and considered

as a different row. Once the peaks are identified, the space between the

different peaks represents the search area that separates the two lines.

3. Carry out A* path planning along the search areas in each stripe

Once the different search areas for each strip are identified, the A* algo-

rithm is run to find the cut boundaries for each search area. In the

original algorithm, the presence of overlapping ascenders and descenders,

as shown in Figure 4.4(a), poses an insurmountable obstacle to the path

search, since it is impossible to define a path without crossing them. To

solve this problem, Surinta et al. [128] modify algorithm A* to allow ob-

stacles to be crossed, leaving it to the cost function to model whether

an obstacle should be crossed or not. However, this makes the algorithm

more complex and increases the difficulty of computing the cost func-

tion. In our implementation, we preferred to add a preliminary phase

to the path planning, which consists of identifying the obstacles as the

area of HPP between two local maxima, i.e., the search space for the A*

algorithm, that does not contain a white row, and then tunnel them by

inserting a path of white pixels in the row of the image corresponding

to the centre of the search area so that the A* path planning algorithm

can find a valid path. Figure 4.4(b) shows an insurmountable obstacle

modified by a sequence of white pixels in the centre of the ink trace.
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(a) (b)

Figure 4.4: The image shows an example of an insurmountable obstacle. (a) An
example of an insurmountable obstacle, (b) An example of a modified insurmountable
obstacle: note the path of white pixels inserted in the middle of the ink track for
allowing crossing the obstacle.

4. Connect the cutting boundaries between adjacent stripes. The

final step is to combine the results of the different A* for each stripe with

the results of the algorithm in the immediately adjacent one, and so on.

In this way, cutting boundaries are obtained that traverse the entire text

area.

Figure 4.5 shows an example of the HPP calculated for the entire text area

(a), and for the case where it is calculated for 8 different strips (b). In the

latter case, it is much easier than in the former to identify the local maxima in

each stripe. It is also worth noting that only two local maxima are detected in

the four rightmost stripes since the handwriting of the last line does not extend

over the entire line.
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(a)

(b)

Figure 4.5: Text-line segmentation in case of lines with curved baseline: (a) the result
of the original algorithm (S = 1); (b) the result of our algorithm (in the case S = 8).

4.2 Transcript Alignment

The process of transcript alignment aims to match the words present in the im-

age of a handwritten line of text with their corresponding digital transcription.
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Figure 4.6 shows the workflow of the process. It starts with a colour image of

a document and its line-by-line transcription and ends with a data structure

that links the transcriptions to the bounding boxes of the corresponding word

images in each line of text.

Line SegmentationPre-Processing Word-Segmentation

Figure 4.6: Workflow of the transcript alignment process. The input consists of the
colour image of a document and its transcription. The document is pre-processed by
creating its black-and-white version and identifying the text area. Then follows the
segmentation into lines of text and finally the alignment of the transcription.

The first stage is a pre-processing phase that prepares the image for the

subsequent stages. Here the image is binarized and then a Gaussian filter is

applied to reduce noise and blur the ink strokes. The second stage includes a line

segmentation method that allows for the extraction of images from the original

document, each containing only one of the text lines of the entire document.

For each line a preliminary phase of word segmentation is then carried out, this

segmentation is then corrected and improved during the transcript alignment

phase until the system is able to provide an alignment of all the words present

in the line transcription. The preliminary stage of segmentation into words is

achieved by calculating the vertical projection profile (VPP) of the black pixels

of the text line, and the edges of each bounding box correspond to the columns

of white pixels. In this way, different bounding boxes are identified for each of

the continuous ink components on the line, as shown in Figure 4.7.

The word segmentation provides the sequence of bounding boxes W :

W =< w1, w2, . . . , wm >

74



4.2. Transcript Alignment

Figure 4.7: Examples of preliminary word segmentation. The bounding boxes are
represented as grey areas of the text line.

where m is the number of identified boxes. For the digital transcription of the

handwritten row it is possible to construct the sequence of transcripts T :

T =< t1, t2, . . . , tn >

where n is the total number of words that make up the transcription of the line

of text. Aligning each bounding box in W with its corresponding transcript in

T would be a trivial task in case m = n and each bounding box includes just

a one-word image, i.e., if an error-free word segmentation would be available.

As such an ideal word segmentation is not available, there may be both over-

and under-segmentation errors. To deal with them, the alignment algorithm

involves a correction process that, in short, attempts at either merging adjacent

bounding boxes or splitting a bounding box to delineate whole word images.

The method consists of scanning the sequences W and T for analysing each

ordered pair (wcurr, tcurr) and performing a consistency test to decide whether

it is possible to align the transcript with the bounding box.

To perform the consistency test, the algorithm computes the Average Char-

acter Width (ACW) for each line of text according to the following equation:

ACW =

∑

W (Word image width (pixels))
∑

T (Number of characters)

It also records the minimum and maximum value of ACW calculated over all

the text-lines extracted from the document respectively denoted in the following

with mth and Mth.

Then, assuming that the transcript to be linked with wi is tj , it estimates the
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ACW for the box wi as:

ACW box =
width of wi

number ofcharacter of tj

The value of ACW box is then compared with the values of mth and Mth,

so to distinguish three different cases:

1. Correct segmentation: mth < ACW box < Mth The size of the box

wi matches the number of characters in the transcript tj . In this case, the

transcript tj is aligned with the bounding box wi, and the next unmatched

pair (wi+1, tj+1) is considered.

2. Over-segmentation: ACW box < mth The box size wi is too small

to accommodate the number of characters in the transcription ti. In

this case, the algorithm assumes that an over-segmentation error has oc-

curred, and the tentative word segmentation is modified by merging wi

with wi+1. This way, the box size increases, and the consistency test can

be repeated. If it is passed the merged bounding boxes are associated with

the transcript tj , and the next unmatched pair (wi+2, tj+1) is considered.

3. Under-segmentation: ACW box > Mth. The box size wi is too large to

accommodate the number of characters of the transcript tj . In this case,

the algorithm assumes that an under-segmentation error has occurred. In

this case, the method first attempts to split the bounding box to try to

obtain a smaller box that can be aligned with the current transcription

tj . For this purpose, the box wi is tentatively split in correspondence to

the minimum of its VPP so that it is possible to segment within the ink

trace. The leftmost part of wi and the transcript tj are then considered

for the consistency test. If it is passed, the split and the corresponding

alignment are validated and the remaining part of the box wi and the

transcript tj+1 are considered for the next consistency test. Otherwise,

the transcription tj is merged with the adjacent transcription tj+1, the
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ACW box is then computed using the total number of characters of tj and

tj+1 and then a new consistency test is performed. If successfully passed,

the bounding box wi was associated with the two transcripts tj and tj+1.

The alignment, thus, proceeds by going through the sequences W and T and

performing a consistency test between a potential box and a transcript from

time to time. The method provides two options for the order in which pairs

are to be selected for consistency testing: the first method is called Forward

and consists of selecting the boxes and the transcripts from left to right in

the sequences, the second method is called MiM (Meet in the Middle), where

we alternately select the text line sides. In short, we start with the leftmost

box/transcript and perform the consistency test. Once this is done, instead of

continuing with the next box/transcript, we go to the rightmost box/transcript

and move one step backwards, from right to left. We then return to the leftmost

box/transcript among those still waiting to be aligned and so on. In this way,

we try to limit the spread of alignment errors to the entire line of text and

avoid a possible "snowball effect" [17]. Figure 4.8 shows an example of the

entire process of alignment performed on an Italian document of the IV century

written in Latin.

Figure 4.8: Examples of alignment method. The result of the MiM algorithm per-
formed on an example of the handwritten text of the IV century.
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Chapter 5

KWS by N-gram Retrieval

5.1 The Rationale of the N-gram Retrieval Solution

For handwriting, it is complicated and time-consuming to address character-

level segmentation and apply OCR techniques for recognition. For this reason,

specific HTR techniques, such as KWS, are preferred. Typically, KWS focuses

its attention on whole words and furthers its application to handwriting but

introduces the problem of OOV words that cannot be easily spotted. If on

the one hand, we find the single characters and on the other the entire words,

one wonders: "what if we put ourselves in the middle?" Segmenting cursive

handwriting into sequences of characters can be much easier than segmenting

it at the character level, and recovering sequences of a few characters (N-grams)

could allow for the identification of entire words, even those that would have

been OOV at the word level. Hence our idea of building a keyword spotting

system based on retrieving N-grams instead of whole words.

5.1.1 Writing as a Complex Motor Act

Writing by hand is not only a cognitive skill but also a complex motor act. It is

therefore subject to a learning phase that enables the writer to memorise and
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acquire the necessary motor activations through the repetition of movements.

Like any other motor activity, at the beginning of learning, writing requires

special attention and the movements result slow and not very accurate, but

with practice, one gains more and more speed and confidence until finally, a

writer can show fluent movements that can be performed without any special

effort. From this observation, two different phases of the learning to write

process can be derived: an early phase followed by a late phase [69].

Studies on motor learning [51, 84, 97, 110, 129] show how the execution of

complex movements requires interaction between different structures, such as

cortical and subcortical structures, basal ganglia, cerebellum and cortical motor

regions, up to the motor circuits of the spinal cord. Figure 5.1 shows a neural

scheme for the learning process of handwriting, which illustrates which areas are

involved in the two phases of the early and late stages. According to this scheme,

in the early phase, the trajectory or sequence of dots to be joined to produce the

handwriting is learned. In the late phase, the sequence of motor commands for a

particular trajectory is considered acquired and executed as a single behaviour.

This results in the desired movement being executed quickly and accurately,

or in other words, the movement to produce the desired trajectory has been

automated.

Source: Marcelli et Al. [69]

Figure 5.1: Neural scheme of the model for procedural motor learning.
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According to this model, sensory information is transmitted to the basal

ganglia and cerebellum via an input module. The basal ganglia and parietal

cortex then interact with each other to define the desired trajectory and select

the points in the spatial sequence to be reached in order to perform the motor

task. The parietal cortex in turn sends this information to the cerebellum by

interacting with the motor cortex and selecting the appropriate motor com-

mands. The goal of learning handwriting is thus to develop a repertoire of

automated movements that correspond to the trajectories most often used to

write words, i.e. the pathways that are most often repeated during the learning

phase and with which the writer is most familiar. In principle, each person de-

velops different motor programmes for different processes. Just think about the

shapes and forms of handwriting are characteristic of each individual, and it is

these differentiations that provide a scientific basis for assessing the authorship

of written documents in legal proceedings [26,27,141]. On the other hand, this

means that it is not easy to identify and define the trajectories for which motor

programmes are typically developed.

We can imagine, however, that a trajectory for which a motor programme

develops must observe some characteristics. Indeed, it is difficult to imagine

that a trajectory that is too complex and long would prove to be a good candi-

date, which would lead to excluding the development of motor automatisms for

whole words. On the other hand, in this case, it would be necessary to store a

large number of motor programmes that could be associated with each learned

word, which would be inconvenient for words that are written with little reg-

ularity or for new words that have never been written before and that cannot

benefit from an automatism. It is, therefore, necessary to look for automatable

trajectory in pathways associated with subsequences of words that can then be

used again and again when they appear in a word, regardless of how familiar

the writer is with the word in question.

When we think of the most natural discretisation of a word, we immediately

think of the division of the word into the characters of which it is composed.
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The set of characters is a much more limited set than the set of all the words

of a language, and by defining an automatism for each character it would be

possible to compose any word without any limit. However, the distinction in

characters alone might make little sense if we consider them as basic trajectories

for handwriting, especially if we think of cursive writing. It would be more likely

to focus on sequences of a few characters, or sequences consisting of two or three

characters that can be repeated many times in different words of a language.

The development of automaticity related to these sequences of characters could

prove useful in the process of automating writing motor programmes. The

tendency of an individual to develop motor patterns in the writing process

also emerges in the study of Sparrow and Newell [119], who reasoned that

this aspect is a consequence of the organism’s tendency to conserve metabolic

energy. Motor learning thus suggests that the size of the motor pattern is

related to the ability to memorise a certain number of elementary actions, while

linguistics suggests that there are sequences of signs in a language that occur

more frequently than others. This aspect seems to support the hypothesis that

the most automated motor sequences are associated with short sequences of a

few signs that occur frequently in the writer’s language.

Developing motor programmes for character sequences that can be triggered

each time an author wants to write a particular sequence may mean that the

variability of the trajectory is reduced for successive repetitions. For example,

if a sequence of two characters is automated and always triggers the activation

of the same motor programme, this may mean that the sequence of ink on paper

always appears with very similar features, even if the sequence of characters

belongs to different words. Figure 5.2, for example, shows how the sequence ’th’

appears very similar in the two words ’other’ and ’then’. This could mean that

considering sequences of two or three characters as primitives for recognising

handwriting could be a correct and functional choice.
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Figure 5.2: The 2-gram ’th’ appears very similar in both the execution in the words
’other’ and ’than’.

5.1.2 The OOV Problem

As discussed in section 2.6.2, the KWS technique has proven to be a good alter-

native for recognising handwritten text in documents of historical interest [1],

with solutions based on a reference dictionary being of particular interest. How-

ever, this class of KWS systems suffers from the major problem that recognition

is limited to the words contained in the reference dictionary, which effectively

prevents the recovery of out-of-vocabulary (OOV) words. This problem is more

relevant the smaller the reference dictionary of keywords. Small dictionaries,

by definition, contain only a few words, so the likelihood of having to handle

OOV words increases. On the other hand, too large a dictionary increases the

complexity of the system considerably, as there are more and more classes of

possible interpretations.

Limited dictionaries, however, can be useful for problems with a well-defined

domain, such as postal addresses [56] or bank cheques [60]. For similar prob-

lems, it is easy to narrow the range of possible words, thus creating a small

reference dictionary that reduces the likelihood that the system will have to

deal with OOV words. However, if it is not possible to define a range of pos-

sible words, increasing the cardinality of the reference dictionary seems to be

the only solution. However, this would lead to the system having to evaluate

many more possible words, effectively increasing the processing time, and also

introducing many similar words that may only differ in a few letters, which

could worsen the retrieval performance.

The definition of large dictionaries requires the ability to access large data
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sets, which cannot always be guaranteed. This observation seems to be particu-

larly true for historical documents. The amount of data available for particular

documents or collections of documents is often limited by the lack of such large

manuscript collections. Collections of historical documents may even consist

of less than a hundred pages, but with features typical and characteristic only

of the collection itself. In these contexts, it is therefore difficult to define a

dictionary large enough to severely limit the problem of OOV words.

To limit the OOV problem, some promising solutions have used the intro-

duction of language models based on N-grams. Kozielski et al [58] investigated

the use of linguistic character models using character models of 10 grams esti-

mated by the WittenBell method. Brakensiek et al. in [9] present a recognition

system based on Markov models hidden in linked mixtures and investigate the

use of N-grams of characters as a linguistic model. In these cases, the intro-

duction of linguistic models based on N-grams has led to an improvement in

the recovery of OOV words, although the performance remains far from that

of words in the vocabulary.

The idea of drawing attention to N-grams could therefore be interesting to

manage the recovery of OOV words. As discussed in section 5.1.1, the writ-

ing of certain character sequences by a scribe can produce similar trajectories,

suggesting the use of such character sequences as building blocks of an OOV

system. This could therefore enable recognition of a word once the sequences

that make it up have been identified, whether it is a dictionary word or an OOV.

To illustrate the concept, we can refer to Figure 5.3. Let us imagine that the

word "violent" is a word belonging to the group of OOV words. The word then

never appears in training instances, but focusing on the N-grams, it is possible

that the N-grams composing the word are known by the system as they are

present in different words of the training set. Therefore, the system may be

able to recover, for example, the two-character (2-gram) sequences "vi", "io",

"le", "en" and "nt". If it is possible to define a relationship between the recog-

nised 2-grams, for example through a spatial superposition relationship, the
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composition of the different sequences can provide the "violent" transcription.

violent his enmity against the owner, the

i o

l e

en

ntv i

violent

Figure 5.3: Example of spotting an OOV word based on 2-gram detection.

5.2 The N-gram Spotting Idea

The general idea behind the proposed N-gram spotting system is to search for

a query word within the image of a document page by decomposing the word

into the N-grams for which the system can perform a search. Figure 5.4 shows

the general workflow of the system. The first step is to decompose the query

word into its N-grams, thus defining the set of query N-grams that contains all

Figure 5.4: The system receives the query word "nature" and a page on which to
search. The query word is decomposed into the query N-grams that are searched for.
At the end of the process, the N-grams found are combined to provide the position of
the word within the document page.
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the N-grams occurring in the word for which the spotting system can perform

a search. Once this set is determined, the step of spotting the N-grams allows

to identify the positions of the different N-grams within the document. In

this phase, only the N-grams are searched, ignoring the original query word

entirely. In the final step of the process, the focus is returned to the word level

by analyzing the detected N-grams and determining the position of the original

query word.

The system as a whole receives as input the image of a page of the document

and a string of the query word to be searched so that the QbS search paradigm

is fully applied at this level. In the N-gram retrieval phase, the problem is to

find the image areas of the page that contain the N-grams of the query set. The

query set consists of N-gram reference images, and this set can be considered

as a dictionary of the N-grams to search. From this point of view, the N-gram

spotting system is equivalent to the QbE search paradigm but still accepts

string-level whole-word searches. In its overall view, the system combines the

QbS and QbE search paradigms by presenting itself as a hybrid search system

that combines a QbS system at the word level with a QbE at the N-gram level.

Figure 5.5: The system combines the QbS search approach at the word level with the
QbE search at the N-gram level.

In the next sections, the different phases of the workflow are described in

detail, starting with the deconstruction of the word query and the definition
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of the N-gram query set, then the analysis of the N-gram retrieval phase, and

finally the process of combining the identified N-grams to find the original query

word.

5.3 Word Deconstruction

The first stage of the keyword spotting process is to define the "N-grams query

set" starting from the string of the original keyword. This set is thus composed

of the N-grams contained in the word for which the spotting system can provide

an output.

Figure 5.6: The image shows the process of the construction of the N-gram Query
Set. From a query word, all the N-grams are extracted and then image examples are
selected from the system dictionary if the N-gram class is available.

The process of set definition is very simple. The word sequence of the query

is decomposed into all its reference N-grams, including overlapping N-grams.

To illustrate the concept, consider the word "Pleasure" shown in Figure 5.6.

Suppose we want to extract all the 3-grams that make up the word. Starting

with the first character "P", the first 3-gram "Ple" is extracted, then continue

with the following character "l" and extract the sequence "lea", and so on until

all available characters are processed. Once the N-grams present in the word are
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defined, the N-grams query set must be defined, which consists of the images

of the N-grams in the reference dictionary of the QWS system. Of course, the

set consists only of the N-grams that are present in the query word and in the

reference dictionary at the same time. Indeed, it may happen that the query

word contains an N-gram that is not present in the dictionary (see the case of

"asu" in Figure 5.6) and for which the QWS system cannot provide an answer.

Therefore, only N-gram images that the system can use for the search may

appear in the N-grams query set.

5.4 N-gram Retrieval

In the following, two alternatives for the QbE system to retrieve N-grams within

a handwritten line are proposed. The first is based on the implementation of a

Siamese Neural Network capable of learning a measure of the distance between

N-gram images and on the definition of a Sliding-Window architecture to carry

out the search. The second is still based on a Siamese paradigm but it avoids any

sliding-windows operators and takes advantage of the benefits that an attention

mechanism can bring.

5.4.1 Sliding-Window Architecture

A Siamese Network is a type of network architecture that contains two or more

identical sub-networks that are used to generate feature vectors for each input

and compare them to obtain a measure of similarity between them [21,55]. This

architectural scheme can be used for our purpose by providing the network with

two images of N-grams to be compared, one belonging to the N-gram query set

and the other cropped from the text line to be analysed. The architecture

of a branch of the network consists of a convolutional backbone for feature

extraction, followed by a fully connected layer for refining the encoding of the

final embedding. As envisaged in the Siamese paradigm, the weights of the two

branches are shared to ensure coherent feature extraction for both images for
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the purpose of computing the similarity measure. Figure 5.7 shows the network

architecture on the top right. The two images of the N-grams to be compared

are fed to the network and a measure of similarity between the two images is

provided, which is greater the more similar the input images are to each other.

Figure 5.7: A crop of images of a text line is fed into the Siamese Network together
with the image of the reference N-gram to obtain the similarity score.

The system described so far only provides a measure of the similarity be-

tween two images and does not allow locating the reference N-gram in the line of

text. There is therefore a need to measure the distance of the reference N-gram

along the entire line of text in order to assess whether and where the N-gram

is present. A sliding window system can be used for this purpose; a selection

window crops out a part of the image of the text line that is used for compar-

ison with the reference N-gram image. The selection window is then scrolled

over the entire line to obtain the trend of the similarity score over the entire

line. As can be seen in Figure 5.8, when analysing the similarity score trend,

the peaks should correspond to an instance of the N-grams we are looking for.

The N-gram spotting step is then repeated for all N-gram classes contained in

the N-gram query set, so as to obtain a trend score for each possible N-gram

of the query word.
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Figure 5.8: The sliding window cuts out the image portions of a line of text and the
similarity score calculated with the reference N-gram is reported for the entire line.
The score trend helps identify where the reference N-gram might be.

5.4.2 Attention-Based Architecture

In this section we describe an alternative to the solution described in 5.4.1,

taking inspiration from the work of Souibgui et al. [118]. We propose a few-

shot learning-based model to tackle the task of spotting N-grams in a line of

handwritten text. The proposed architecture is based on a faster R-CNN [95]

detector, which still uses a Siamese architecture as a basis with the aim to

provide a similarity score between the reference N-gram images and the crop

found in the handwritten text line.

Figure 5.9: The architecture of the Attention-Based approach. The backbone is used
in feature extraction of the query and support images, as predicted by the Siamese
model. .

Figure 5.9 shows the attention-based architecture of the proposed system.

The system receives as input a line of handwritten text and an image of a

reference N-gram to be spotted. The first stage is a feature extraction stage

in which the CNN network extracts features from text images. It should be
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noted that the network used to extract features from the N-gram and the line

crop images is the same as required for a Siamese architecture. The choice

of backbone for feature extraction is not fixed, and by changing the choice of

network for feature extraction, a different search mode can be applied, allowing

identification to be performed in a different search space each time. The feature

extraction phase is followed by the region proposal phase. In this phase, the

feature map of both the query image and the reference N-gram image is sent to

an attention module and furthermore to a Region Proposal Network (RPN). An

upstream attention mechanism of the RPN network strengthens the regional

suggestion phase by exploring the link between the supporting image and the

query image [28]. After this step, ROI-pooling is applied to the regions proposed

by the RPN and the feature map of the supporting N-gram image. The feature

maps are then combined and sent to a classification and regression module. This

module consists of a collection of fully connected layers divided into two heads.

The first is a classifier head and the second is a regression head. The output

of the classifier uses a sigmoid activation function that can decide whether the

proposed region belongs to the supporting image class or not. At the same

time, the regression model generates the coordinates of the bounding boxes

within the handwritten line image with respect to the classified parts of the

image.

The backbone for feature extraction can be chosen from different types so

that different search modes can be combined with the aim of evaluating the

results obtained in different feature spaces. We now propose an architecture

that combines two different search modes, as shown in Figure 5.10, in such

a way that we can perform N-gram spotting in different feature spaces. The

two independent branches operate simultaneously and obtain the two solutions

y1 and y2 using the backbones BB1 and BB2, respectively. Finally, the two

solutions are combined into the new solution Y using weighted concatenation:

Y = (w1 · Y1)||(w2 · Y2) (5.1)
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Through the chosen weights of each backbone w1 and w2, it is possible to define

the relative importance of the solution y1 compared to y2.

Figure 5.10: The architecture performs the N-gram spotting in different feature spaces.
At last, the solution are fused together to provide a single spotting result.

Fusion and Rescore Solutions

The N-gram spotting solutions provide the option to select the ³ number of

samples for each class of N-grams to be used in the search. The N-gram query

set is composed of the N-gram classes that make up the original query word,

but each of these classes is filled by all N-gram instances from the training set.

This means that for each class there are multiple images of the same N-gram,

each with its own features. Indeed, one characteristic of the manuscript text is

precisely variability, even if the scribe remains the same, repetition of the same

N-gram will produce ink traces that are never perfectly identical. Repeating

the search for the same class of N-grams, but using a different example image,

could result in different instances being found within the analysed line, thus

recovering a larger number of N-grams. For example, Figure 5.11 a) shows how

the 3-gram ’the’ was recognised by two different searches.

To obtain a single solution for each class of N-grams, the different ones

are unified. If two overlapping solutions with values s1 and s2 are found, it is

possible to combine them into a new solution with a higher similarity value s′.
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Figure 5.11: The figure shows an example of the combination of two similar solutions
proposed for the same area. a) shows two proposals of the 3-gram "the" with two
different scores; b) shows the result of the fusion. It results in a new interpretation
for the 3-gram "the" whose score is higher than that of the initial interpretations.

The gain µ is then defined as:

µ = ¶ ·

(

1−
|s1 − s2|

max(s1, s2)

)

(5.2)

where ¶ is the maximum possible increment. The score s′ of the new unified

solution s3 is then given by:

s′ = max(s1, s2) + µ (5.3)

Thus, the score s′ is directly proportional to the maximum score between s1

and s2 and the difference between the two scores. In this way, the cases where

the similarity values of the initial solutions s2 and s2 are high and close to each

other are rewarded. Figure 5.11 b) shows how the similarity value of the new

solution is greater than the similarity values of the initial solutions shown in

Figure 5.11 a).
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Once the solution fusion and the rescoring mode are defined, the whole

N-gram retrieval phase can be schematised as in Figure 5.12. The first phase

deals with the detection of the N-grams in a line of the reference text. This

phase receives as input the line to be analysed, the N-grams query set and the

number ³ of searches to be repeated for each N-gram class. The subsequent

phase of fusing and reordering modifies the results of the previous phase by

providing the positions within the text line for each class of N-grams.

Figure 5.12: Overall schema for the N-gram retrieval stage.

5.5 Word Reconstructor

Once the positions of the N-grams of interest within the handwritten line of text

have been determined, the position of the original search word can be retrieved.

In this section, we present a method to reconstruct the position of the searched

word starting from the analysis of the results of the previous phase of N-gram

spotting.

The N-gram spotting phase provides the position of the N-grams within the

analysed line of text. Since the goal is to find the word that consists of all the

N-grams in the search set, we look for "high-density areas", i.e. areas of the

text line where there are overlaps of searched N-grams. If the N-gram retrieval

phase was successful for all classes of N-grams, a density area could correspond

to an area where the searched word occurs. It is important to note, however,

that the detection of density areas alone is not sufficient to confirm that these

ranges correspond to the position of the words sought. This is because the
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density zone does not take into account the position of the N-grams and could

therefore contain different anagrams of the search word. Also, the N-gram

detection phase is not error-free and could result in density zones that do not

contain all the N-grams of the word. Therefore, a density area evaluation phase

is required in which a confidence measure is assigned to each area.

A confidence measure was defined with a value in the range (0, 100), where

100 represents the maximum confidence estimated considering three criteria:

1. number of retrieved N-grams;

2. mean similarity score of retrieved N-grams;

3. position of retrieved N-grams.

For the first criterion, the more N-grams detected in the density area, the

greater the confidence measure. For a maximum confidence measure, the den-

sity area must have exactly the number of expected N-grams. More generally,

the confidence level sc varies linearly with the number of detected N-grams.

For example, if the number of detected N-grams equals half of the expected

number, the confidence measure is halved:

sc = sc ·
#Ngram_in_area

#Ngram_expected
(5.4)

When applying the second criterion, note that each N-gram was recognised

with a similarity score. The lower the similarity score, the more reliable the

prediction. The confidence measure can then be reshaped by subtracting the

average of the similarity scores of all N-grams belonging to the density area. In

the optimal case, each detected N-gram has a similarity score of zero, resulting

in a maximum likelihood for each N-gram. In this case, the confidence would

not change because every N-gram in the area is safe:

sc = sc− avg(Ngrams_distance_score) (5.5)
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To evaluate the position of the N-grams in the density area, we can calcu-

late the pyramidal decomposition of the query word and consider the different

sets of N-grams at the different levels of the representation. To calculate the

representation, the word for each level must be divided into different parts

corresponding to the depth of the level. In other words, level two of the repre-

sentation consists of the first and the second half of the query word, the third

level consists of the word divided into three parts, and so on. We can assign

the set of N-grams that make up each sequence of the representation and thus

build the pyramidal N-gram sets representation (PNGR) of the query word.

Figure 5.13 shows an example of the PNGR of the query word word "action".

Figure 5.13: Example of Pyramidal N-grams sets Representation of the word word
"action". On the left, there is the PNRG at string level, while on the right the PNRG
on N-gram images level.

Similarly, the PNGR of a density area can be computed. The density area

is divided into an increasing number of contiguous zones from time to time and

the sets of N-grams belonging to the different zones are constructed. When the

density area is consistent with the query word, consistency between the two

PNGRs must be maintained at all levels. To assess the consistency, the number

of N-grammes of the PNGR of the density area that does not match the PNGR

of the word query is counted. An N-gram of the density area is inconsistent with

the word query representation if it is present in a set of N-grams at a particular

level of the density area representation but is not present in the relative set
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of the query word representation at the same level. The confidence value can

then be reshaped based on the ratio between the inconsistent and consistent

N-grams. If all N-grams from level 2 of the representation are inconsistent, the

confidence value is reduced by 100%. If, on the other hand, all N-grams are

consistent, the restructuring has no effect on the confidence value:

sc = sc ·
#Correct_in_PNGR

#Total_in_PNGR
(5.6)

Computing the sc score, to each detected density area is assigned a confi-

dence measure, the higher the more likely it is to contain an instance of the

query word. In this way, once the system receives a query word, it can re-

turn a list of all the areas that may contain the word, each with its confidence

measure.
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Chapter 6

Experimental Evaluations

In this chapter, we will present an experimental evaluation of the methods

proposed in the previous chapters. We start with a validation of the model

presented in chapter 3. We then present the methodology for defining labelled

words, focusing in particular on testing the line segmentation method and the

transcript alignment method proposed in chapter 4. Finally, we analyse the

results of a KWS system based on N-gram retrieval method described in chapter

5.

6.1 The Performance Model Validation

In Chapter 3, we made several assumptions that allowed us to define an esti-

mate of the gain G of the transcription time obtained using a KWS system to

support the process. In order to assess whether and to what extent the assump-

tions made allow a reliable estimate of the effective value of G, we conducted

a series of experiments to compare the estimated value of G with the actual

value. The experiments involved three experts who transcribed the pages of

the set DS. The pages were transcribed manually by alternating 20-minute

transcription sessions with 10-minute rest periods, as it is common practice

to avoid fatigue effects. The transcription sessions were conducted by two ex-
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perts, and during the break session, another expert checked for inconsistencies

between the two transcripts to obtain an error-free transcription. The experts

were palaeographers with more than 10 years of experience and basic knowledge

in information technology, especially in word processing, spell checking and an-

notation tools. Before the transcription, all experts were trained in the use of

the tool’s graphical user interface (GUI). There were three training sessions. In

the first session, which lasted 60 minutes, they were familiarised with the main

functions of the GUI for both transcription and validation, while in the remain-

ing two sessions they were able to practice using the GUI for transcription and

validation until they felt comfortable with it. It took the experts less than 30

minutes to become familiar with the functioning of transcription, while it took

them a little longer - a few minutes - to master the GUI for validation. The

experiments were conducted with 50 pages of the Bentham Collection data set.

We used 5 pages of the dataset as TS, 5 pages as TTS and the remaining 40

pages as DS. Table 6.1 shows the composition of each set, where with n are

counted all the words in a set and with N are counted the number of different

words into a set.

Table 6.1: The composition of the dataset used in the experimental work. DC, data
collection; TS, training set; TTS, test set; DS, data set

nDC nTS NTS nTTS NTTS nDS

10733 1089 354 942 391 8702

During each session, we recorded the expert’s activity via the user interface

and calculated the value of tM
i

, i.e. the time taken to transcribe an instance of

the i-th word in the data collection. From the recorded data, we calculated the

mean µ and the standard deviation Ã of these values over the entire data set.

The result was µ = 5.81 and Ã = 1.237 sec for the first expert, and µ = 5.65

and Ã = 1.251 sec for the second. No statistically significant differences were

found between the samples of the two experts. This allows us to say that the
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experts were both familiar with the use of the interface and procedures and

that the values recorded are statistically significant.

The mean value µ = 5.73 was then selected as the actual value for estimating

the user time. There were only 12 words on the 10 pages for which the two

experts provided different transcriptions. After assessing the performance of the

two experts, each transcribed half of the pages from DS. The sum of the time

taken to transcribe the pages of DS and the minimum time taken to transcribe

TS and TTS was taken as the Tman time for the manual transcription of DS.

We considered minimum times instead of average times to analyze the worst

case and make the estimation in a conservative way. Their values are given in

Table 6.2

Table 6.2: Times to manually transcribe the training set, the test set, the dataset,
and the whole collection. The times are in seconds.

TTS TTTS TDS Tman

6240 5472 52459 61534

6.1.1 The Validation Tool

To evaluate the performance of the KWS system in supporting transcription,

we have developed a validation tool to process the system output. In this

section, we briefly describe the use of the graphical tool. As we have mentioned

in chapter 3, the values of the times tv
i
, tw

i
, tm

i
and tMw

i
depend on the user

interface of the validation tool. In our case, the user interface appears as in

Figure 6.1 as soon as a page of the collection has been opened for validation.

The top of the user interface displays the current line of text in the document,

with each word enclosed by its bounding box provided by the segmentation step.

In the middle of the user interface, the main field displays the current word,

i.e. the word being validated, and directly below it the field for its manual

transcription. The rightmost field displays the output list containing all the
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proposed transcriptions for the current word and the lowest part of the user

interface contains a text area that displays the transcription of the entire page

line by line and is updated as the transcription progresses.

Figure 6.1: The user interface of the validation tool.

In the case of a correct sample, the output list contains the correct inter-

pretation. The user thus searches for the correct transcription and confirms the

word as soon as he has found it by clicking on the correct transcription. The

interface then displays the transcription on the corresponding word image in

the text line as well as in the lowest field, as shown in Figure 6.2, and moves

on to the next word to be transcribed.

In the case of an incorrect example, the correct transcription is not present in

the output list, as shown in Figure 6.3, but the word is an instance of a keyword

included in the query list. In this case, the user must enter the transcription.

To speed up this process, the interface provides an auto-complete mode, i.e. as

soon as the user enters the first characters, the system updates the output list

by displaying all entries in the query list that match the characters entered so

far. As soon as the correct transcription is displayed on the user interface (see
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Figure 6.2: The user interface when transcribing a correct sample.

figure 6.4), the user can confirm it by clicking on it, as in the previous case, or

confirming using the enter key.

In the case of a missing word, the output list is empty, so the user has to

enter the transcription manually. As in the previous case, the auto-complete

mode in the output list shows all entries in the query list that match the string

entered so far, and as soon as the correct entry appears, the user can continue

by simply clicking on it.

If the current word is an OOV word, the system can display either an

empty or a non-empty output list, depending on whether the OOV is correct

or incorrect. In both cases, the user must type in the entire transcription, but

in the case of a wrong OOV, the user will first search the output list for the

transcription and only then start transcribing, as shown in Figure 6.5.

During validation sessions, the tool logs all user actions and the time spent

by the user on each action, making it possible to calculate the number of correct,

incorrect, missed, OOV-correct and OOV-wrong words, as well as the times

taken to reach their transcriptions.
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Figure 6.3: The user interface when transcribing a wrong sample.

6.1.2 Experimental Results

In the experimentation, we used a KWS system whose architecture and opera-

tion can be summarised as follows. Essentially, it is built on two main blocks:

the reference set (RS) and the knowledge base (KB). RS is built by process-

ing the word image from TS in such a way as to recover the trajectory [16],

decomposing it into elementary parts called strokes [19], and finally labelling

each stroke with the character to which it belongs [111]. Thus, each word is

represented by a string consisting of as many characters as strokes extracted

from the ink trace. Then, each word from DS is decomposed into strokes as be-

fore, but the labelling of the strokes is determined by matching each word from

DS with all words from RS: whenever a sequence of strokes is found whose

shape is similar, the labels of these strokes found in the words from RS are

copied to the matching stroke of the word from DS [18]. Thus, each word from

DS is connected to a graph whose number of nodes is equal to the number of

strokes, and each node is labelled with a character if the corresponding stroke

matches one of the strokes from RS. When searching for a query, the KWS
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Figure 6.4: The user interface after a few characters of the word to transcribe have
been entered. The output list is updated and, once the correct transcription appears
in the box, the user validates the correct transcription by just a click or using the
enter key.

system searches within the graph of each word of DS for a path whose nodes

correspond to the characters of the query [20]. When such a path is found, the

word is returned in response to the query. Due to the multiple labelling of the

strokes, the same word image may be returned in response to different queries

and a word may be discovered that is not an instance of a keyword, allowing

the system to detect OOV words.

An initial experiment was conducted to determine whether and to what

extent the length of the output list affects the time taken to validate the system

outputs. The validation tool was configured to return the top 5, top 10, and

top 15 interpretations for each word image. For each configuration, a different

expert performed the transcription of a batch of five pages DS. The total time

to complete the task as k varies is reported in Table 6.3. These results suggest

that the value of k = 10 is the best compromise for our user interface because for

a longer list, the time to find the correct transcription in the list counterbalances
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Figure 6.5: The word “consigned” is a correct out-of-vocabulary (OOV) word: the
output list is empty and the user enters the entire transcription.

the improvement in recall. This is consistent with the observation that people

can search at a glance within a list of about five items, but as the list grows

longer, search time grows almost linearly with the number of items in the list.

Table 6.3: Time to complete the transcription of DS as k varies.

k Time in sec

5 2996.062

10 2835.130

15 3314.240

In the second experiment, we performed keyword spotting in the set TTS

and calculated the mean and standard deviation of the model parameters by

recording user activity, as shown in Table 6.4.

Since the KWS is a lexicon-free system, to simulate a lexicon-based system,

we have disabled the output list display interface if the words are OOV words
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Table 6.4: The mean and the standard deviation of the model parameters estimated
on TTS. The times are in milliseconds.

tv tw tm tMw rk pk noovc noovw

µ Ã µ Ã µ Ã µ Ã

1024 359 3152 1045 2543 682 5903 6211 0.65 0.71 39 247

(we know this because we have transcribed DS manually for performance eval-

uation) and do not update the query list. In contrast, we enable the display of

the output list in the case of a lexicon-free system and add the unique words

obtained by transcribing the OOV to the query list. So, using the values in

Table 6.4, we calculated the sum on the left-hand side of inequality (15), re-

placing nDS with nTTS . Then, by adding TTS and TOOV (using tM and tMw for

the lexicon-based and lexicon-free cases, respectively), we calculated Tuser and,

finally, the gain G. We then calculated G using the actual user time recorded

by the tool to complete the task, and then added TTS to calculate Tuser and the

gain G. Table 6.5 shows the value of Tuser and G estimated using our model

and the actual value for both the lexicon-based and lexicon-free configurations

of the KWS system. As shown in Table 6.5, the model provides a reliable es-

timate of G in both cases. However, in the case of a lexicon-free system, the

model shows the largest difference between the estimated and the actual value

of G.

Table 6.5: Comparison between the values provided by our model and the actual ones
on TTS. Times are expressed in the format hh:mm:ss.

Values Lexicon-Based Lexicon-Free

on TTS Tuser G(%) Tuser G(%)

estimated 01:02:12 14.86 00:51:21 20.41

actual 01:04:48 12.14 01:01:30 16.61

In the last experiment, the expert who transcribed the first 20 pages of DS

107



Chapter 6. Experimental Evaluations

performed the validation of the system output on the remaining 20 pages, while

the second expert who transcribed the last 20 pages validated the system output

on the first 20 pages. This procedure was chosen to avoid the memory effect

that could have altered the time spent if they had performed the validation on

the same pages they had already transcribed. Table 6.6 shows the results of the

experiment. They show that, as in the case of TTS, the estimated values on DS

are an upper bound for the actual values, and that the difference in percentage

between the estimated and the actual values is similar to the one in the case of

TTS, confirming that it is possible to derive a reliable estimate of the actual

value of G for the entire data collection from the model’s estimates on TTS.

Table 6.6: Comparison between the values provided by our model and the actual ones
on DS. Times are expressed in the format hh:mm:ss.

Values Lexicon-Based Lexicon-Free

on DS Tuser G(%) Tuser G(%)

estimated 11:27:37 13.91 10:30:30 19.25

actual 11:31:02 12.38 11:10:14 15.02

6.1.3 Discussion

In this paragraph, we addressed the problem of estimating the time required

by the user to obtain a complete and correct transcription of small collections

of historical documents when using a KWS system that can provide multiple

possible transcriptions for each image word in the collection, compared to the

time required by the user for manual transcription. The model shows that the

reduction in user time depends on both the performance of the KWS system

and the user interface of the validator. In particular, it is shown that, for

the same precision and recall, i.e. for a given KWS system, the effective time

saving depends on the time required to process the different types of output

(correct, incorrect, missing, and OOV) compared to the time required to man-
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ually transcribe the corresponding word, so that the smaller the ratio between

the processing time of the outputs and the time required to manually tran-

scribe it, the greater the time savings for the user. Conversely, given a user

interface to be used for validation, the KWS system must have a minimum level

of performance to be useful for assisting the transcription. This interaction be-

tween the performance of the KWS system and the time efficiency of the user

interface should be carefully considered when designing a system that aims at

minimizing human efforts when dealing with small collections of handwritten

historical documents.

In the case of a lexicon-based system, the model shows that the perfor-

mance benefits of the KWS are limited to the word images in the dataset that

are instances of the lexicon keywords; that is, the more keywords we target,

the greater the potential benefit. Therefore, a multi-step procedure could be

adopted to create a training set with as many keywords as possible and split the

dataset into batches. Then the results are validated and if the user enters new

keywords in response to an incorrect output, they are added to the keyword

list and the next batch is processed.

For lexicon-free systems, the model shows that the more wrong OOVs the

system finds, the greater the disadvantage of the KWS system compared to

lexicon-based KWS and manual transcription, but also that these advantages

can be mitigated by updating the query list. Although the mitigation mainly

depends on the distribution of keyword patterns in the test set and data set,

the higher the performance of the KWS system in recognizing OOV words, the

lower the number of false OOVs found, and this can ensure the viability of

lexicon-free KWS compared to lexicon-based or manual transcription.

in conclusion, it is interesting to read table 6.6 explaining directly the re-

lation with time Tman, i.e., the time for the complete manual transcription of

the collection. In the case of the set DS, the recorded time Tman is equal to

13:08:42. Looking at the values given in the table for the actual line, consid-

ering for example a lexicon-free system, we find that the transcription can be
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completed in a time of 11:10:14. Thus, the 15% gain represents a time sav-

ings of almost 2 hours, time actually saved by the user, which may translate

into a reduction in transcription costs. However, given the time gain estimated

by the model, we would have expected a time saving of about two hours and

forty minutes. This means that in reality, it took the experts just under one

minute less per page to transcribe the collection than the time estimated by the

model. This illustrates that the model can provide a realistic estimate of how

the time required for transcription can be reduced by choosing an appropriate

KWS system to support the transcription process.

6.2 Tools and Methodologies to Labelling Data

in Chapter 4 we have proposed some methodologies to speed up the process

of data labelling for building a dataset composed of images of handwritten

text labelled with its transcription. In this chapter, we present experimental

validation for the handwritten line segmentation method and for the transcript

alignment.

6.2.1 The Moccia-Code Dataset

To evaluate the performance of the line segmentation and transcript alignment

methods, we used images from a seventeenth-century documentary manuscript.

The script belongs to the bastard Italian typologies widely used in chancery

in the sixteenth to seventeenth centuries, executed in brown ink, sometimes

lighter, mainly by a single hand. The pages are easily readable, and their

layout is fairly regular. The manuscript entitled Code of the Moccia family.

Privileges, Investitures, Announcements and Decrees, 1449-1610, is currently

preserved in the archives of the Salerno-Lucan Province of Friars Minor, based

in the Monastery of the Holy Trinity in Baronissi (Italy, Salerno) [11]. From

now on we will refer to this collection as Moccia Code.

As part of the typology of the book document and, in particular, the car-
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(a) (b)

(c) (d)

Figure 6.6: Examples of pages from the Moccia Code: (a) f. 6r; (b) f. 7v; (c)
f. 9r; (d) f. 10r.
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tulary, in which, in addition to structure and content, are taken up purposes

and functions, especially those of "I remember for the future" and documentary

preservation, it formed a kind of family ’archive casket’ and munimen, as a col-

lection of documents that certified the rights and privileges of the family, to be

presented in court in case of possible summons, or to verify the "legitimacy of

the titles held by the holders of the offices", which, in short, could be useful for

the defense of a representative of a Neapolitan family, the Moccias, who held

the office of Portolania in the Kingdom of Naples since the fifteenth century and

throughout the modern era, in the inquisitorial and judicial phase. In addition

to three of Alfonso il Magnanimo, Ferrante I. and Federico d’Aragona, which

refer to the granting, confirmation and re-granting of the privilege of "mastro

portolano" and procurator of the province of Terra di Lavoro to members of

the Moccia family, there are copies, mainly in the form of a simple copy, admin-

istrative documents (instructions to officials, orders, regulations) and judicial

communications (acta, summonses, decrees, execution of judgments) issued by

the main magistracy and provincial offices of the Kingdom of Naples between

the 15th century and the early 17th century. and the early 17th century. Prob-

ably the transcription was made directly from the originals or, in any case, from

loose documents in the possession of the principal (or recipients) or temporarily

available for recording. About thirty documents contain the registration data

of the original document in the Royal Chamber of Sommaria, in the Archives of

the Aragonese Kings and Viceroy, and in the office of the "mastro portolano"

The book was probably commissioned by one of the last representatives of

the family, perhaps a certain Giovanni Simone Moccia, whose titles of ownership

were contested and who was accused of abuse in the exercise of the Portolania

office. Here the transcription does not provide for the completion of the abbre-

viated words, although occasionally the omitted nasals and the development of

special graphic signs related to the enclitic -ue, to the ending us, q and p were

indicated in round brackets

As Figure 6.6 shows, the Moccia-Code contains mainly text documents,
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which simplifies the segmentation of text lines, but presents a very challeng-

ing testbed for transcription alignment, due to irregular line spacing (6.6a),

uneven illumination conditions (6.6.b), curved text lines (6.6.c), uneven back-

ground due to ageing (6.6.d). In addition, there are overlaps of ascenders and

descenders, handwriting is small, spacing between words is very irregular, and

abbreviations are frequently used in the documents

For our experiments, we selected images corresponding to the front/back

of five paper documents of the Moccia Code, referred to as ff. 6r-10r, whose

line-by-line transcription is available in [11].

6.2.2 The Line Segmentation Method

To test the proposed segmentation method, we conducted experiments on dif-

ferent datasets showing the performance of the method on the Bentham Col-

lection [107], George Washington [94], Jefferson’s letter [131], Sant Gall [31]

and finally the Moccia-Code. For a proper comparison with the state of the

art, segmentation methods available in the literature were selected and segmen-

tation was performed for all selected methods on all available datasets. The

methods selected for comparison are those of Surinta et al. [128], which served

as an inspiration for our method, the method proposed by Alberti et al. [3],

which was chosen because its performance is comparable to the best methods

in the two recent text line segmentation competitions [23, 24], and the deep

methods docExtractor [73] and dhSegment [79] because trained models (on a

large dataset) are proposed as "off-the-shelf" tools that can be used without

further training and can thus be adapted to the application scenario we are

dealing with.

The table 6.7 contains the results of the experiments on the segmentation

of text lines on all selected datasets.

The row segmentation results listed in Table 6.7 show that the proposed

method outperforms both the learning-free method proposed in [128] and the

learning-based method recently proposed in [3], albeit to different degrees, and
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Table 6.7: Line segmentation results. The table reports, for each data set, the actual
number and the number of correctly segmented text lines provided by each method.

our Surinta
et al.

Alberti
et al.

docExtractor dhSegment

Dataset N Lines [128] [3] [73] [79]

Moccia
275

253 153 144 274 267

Code 92.00% 55.64% 52.36% 99.64% 97.09%

Bentham
1056

1004 924 1003 1040 967

Collection 95.08% 87.50% 94.98% 98.48% 92.45%

George
653

600 585 587 632 635

Washington 91.88% 89.59% 89.89% 96.78% 97.24%

Jefferson
23

22 19 19 22 23

Letter 95.65% 82.61% 82.61% 95.65% 100.00%

Saint Gall 1430
1415 1351 1387 1419 1420

98.95% 94.48% 96.99% 99.23% 99.30%
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that in both cases the greatest improvements are achieved on the Moccia-Code.

This is due to the curved baselines in this collection, which neither method can

deal with effectively, as they tend to merge multiple lines when the baseline

of a line bends along the writing direction. The results also show that the

deep docExtractor and dhSegment methods perform the best, as they are still

effective when the other methods, including those presented in this work, fail.

It is interesting to note, however, that docExtractor returns only the region

encompassing the central region of the handwriting, thus ignoring both ascen-

ders and descenders, while dhSegment returns only the baseline. In the case

of applications where the entire ink of the text line needs to be available for

subsequent steps, as in our case, it is necessary to develop and integrate some

ad hoc post-processors into the application workflow, so acquisition may not

be the best option.

6.2.3 The Transcript Alignment

The performance of an alignment method is usually expressed in terms of accu-

racy, i.e. the ratio between the number of correct alignments between the image

word and the corresponding transcript, and the total number of transcripts to

be aligned. To implement this definition, the basic idea is to evaluate, for each

transcription, the overlap between the word image in the ground truth and

the image produced by the system, and to hypothesise that the word image

matches its transcription if the overlap with the ground truth image is above a

threshold. However, this type of accuracy assessment does not take into account

the actual size and position of the bounding boxes. Conversely, depending on

the application, whether or not the non-overlapping area contains a significant

amount of ink may be important. Therefore, the accuracy given may not reflect

the actual accuracy.

To get around this, we implemented a performance evaluation by visual

inspection, where we assume that a transcript has been correctly aligned to a

bounding box if the image word within the bounding box contains ink corre-
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sponding to the characters of the transcript. In the following, this condition is

referred to as perfect alignment. This is a very restrictive condition, as it results

in the cases shown in Figure 6.7(a) being considered misalignments, even if the

missing part/added ink does not prevent the transcript from being read. We

have therefore considered a less restrictive alignment, which we refer to below

as acceptable Alignment. Here we assume that a transcript is correctly aligned

even if the maximal bounding box lacks the ink of the initial/final character of

the transcript or if it contains the ink of maximal the initial/final character of

the neighbouring transcripts in addition to the ink corresponding to the tran-

scripts. Under this condition, the case shown in Figure 6.7(b) can be considered

as a correct alignment where the bounding boxes are missing or contain the ink

corresponding to a character. Finally, it should be noted that this condition

allows two or more transcripts to be considered aligned even if they are aligned

within the same bounding box, as shown in Fig. 6.7(c), i.e. when a partial

segmentation has been treated by merging the transcripts instead of dividing

the bounding box.

To enable reviewers to calculate the performance of alignment methods, a

graphical interface for validating and correcting method output was designed

and implemented. Figure 6.8 shows the interface in use. From time to time,

the interface displays all detected alignments and highlights the position of the

current word within the text line with a green box. If a user detects an incorrect

alignment, they can correct it with the mouse in a simple and intuitive way.

Right-clicking on the image of the line allows the user to change the right vertex

of the detected box, while left-clicking on the text allows the user to change the

left vertex of the box. An example of a correction is shown in figure 6.8. At the

end of the validation process, the interface allows to count the number of human

interventions and thus the performance of the alignment method. Trivially, if

the user does not make any corrections, this means that the alignment method

was able to correctly align the entire data collection. Using the interface’s log

files, we can also track the time the user takes to validate and thus fully align
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(a)

(b)

(c)

Figure 6.7: Examples of acceptable alignments on the Moccia-Code: (a) miss-
ing/added strokes; (b) missing/added characters; (c) multiple-to-one alignment.
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the dataset, i.e. segment the entire collection at the word level without errors.

(a)

(b)

Figure 6.8: Graphical User Interface to assist the validation process of the alignment
transcription method. (a) Sows the case of a correct alignment. (b)shows the case of
an incorrect alignment, in this case, the new vertices for the box are visualized in red
(the left one) and purple (the right one).

In order to mitigate as much as possible the bias that arises from the subjec-

tive assessment of our definition, the assessment was carried out independently

by two people. If the experts assessed the same alignment differently, the final

decision was left to a third party. Table 6.8 shows the performance obtained

with the Moccia Code when a perfect or acceptable alignment was adopted.

Table 6.8: Performance of the alignment method and its variants on the Moccia Code.
The results are given in terms of accuracy. The best results are in boldface.

Alignment Forward MiM

Perfect 45.05 % 42.47%

Acceptable 67.59 % 68.39%

Table 6.8 shows that there is no clear indication of which alignment strat-

egy works best between the Forward and Mim variants we have implemented.

The former is superior to the latter in terms of perfect alignment, while the

opposite is true, albeit to a limited extent, in terms of acceptable alignment.

However, the best results of both methods in terms of acceptable alignments

show that word segmentation errors are mainly due to bounding boxes missing
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(or containing) at most one character (belonging to adjacent transcripts) and

that the MiM strategy performs slightly better than the Forward strategy for

segmentation errors occurring simultaneously on both sides of the text line.

To compare our method with the state of the art, we list in Table 6.9 the

alignment methods proposed in the literature over the last twenty years. For

each method, we indicate the dataset they use, the type of writing of the doc-

uments, the historical period of creation, whether it is publicly available or

available on request from collectors, the method used for text alignment and

the reported performance. As we can note from the table, some collections

are not available, and others contain digital images of the documents but the

transcript of the content is not available (and we were unable to provide it our-

selves because of the language). Two of them contain old printed or encrypted

documents. Moreover, no implementations of the methods are available, and

the relevant documents do not contain all the details for a re-implementation.

Finally, in the case of Corpus Cristo Salvador, the composition of the test set

used in the performance assessment is neither specified in the document nor

identified in the data set. All these problems limit the possibility of a direct

comparison. However, it was possible to evaluate our alignment method on

some of the data sets used by the various previous methods. In particular, we

evaluated our method on the Bentham Collection, George Washington and Jef-

ferson Letter datasets, as the test sets are publicly available in the repository.

Table 6.10 shows the results of our method and those of its competitors. We

note that for a fair comparison with the metrics used in the other studies, we

report the results of our method in terms of perfect alignment precision.

Error analysis has shown that most alignment errors are due to irregularities

in both the spacing between words and the size of the bounding boxes containing

the word image of the same transcript. Indeed, we have found that most errors

occur along lines of text which, as the type approaches the right-hand margin,

show a narrowing/widening of both the spaces between words and the horizontal

width of the type, which will most likely allow you to write a whole word before
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Table 6.9: Overview of alignment methods in the literature. The period of produc-
tion is expressed by the ordinal of the century AC. Results are reported in terms of
accuracy.

Type Dataset Period Available Method Result

[131] Handwritten Thomas
Jeffer-
son

Letter

XVIII Yes Dynamic
Pro-
gram-
ming

72.00%

[57] Handwritten George
Wash-
ington

XVIII Yes Dynamic
Time

Warping

75.40%

[103] Handwritten George
Wash-
ington

XVIII Yes HMM 72.80%

[133] Handwritten Corpus
Cristo

Salvador

XIX Yes HMM 92.80%

[48] Handwritten The
Swiss

Literary
Archives

XX No HMM 94.66%

[147] Handwritten Kabinet
van de

Koningin
(KdK)
collec-
tion

XIX Only
images
Tran-

scription
not

available

Ink Pro-
jection

Segmen-
tation

69.00%

[123] Handwritten ICDAR2009
test set

XXI No Word
Segmen-
tation

97.04%

[122] Handwritten ICDAR2009
test set

XXI No Word
Segmen-
tation

99.48%

[61] Handwritten Queste
del

Saint
Graal

IX Yes Segmen-
tation
Free

72.90%

[101] Handwritten C5
Hattem
Manuscript

XVI Only
images
Tran-

scription
not

available

HMM -
Dy-

namic
pro-

gram-
ming

75.50%

[17] Handwritten Bentham
Collec-
tion

XVIII Yes Ink Pro-
jection

75.93%

[148] Early

Printed

Gutenberg
Bible

XV Yes CNN-
based

90.00%

[132] Chipered Copiale
ciphered
manuscript

XVIII Yes Attention
based

90.00%
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Table 6.10: Comparison of alignment results with the state of art. The results are
given in terms of accuracy. The best results are in boldface.

Database Method Result

Bentham Collection [17] 75.93%

our 77.20%

George Washington [57] 75.40%

[103] 72.80%

our 79.76%

Jefferson Letter [131] 72.00%

our 88.80%

the margin. For abbreviations where the last part of the word is displayed

superscript, the method tends to misalign. This affects the pixel size of the

abbreviated word image and makes alignment more complex for the method.

Another feature that is common in historical manuscripts is that the first or last

letter of a paragraph is often capitalised and/or flowery. This change in writing

style also complicates the automatic alignment of the method. Whenever a

line of text has these features, the method fails to align the transcript to the

leftmost and/or rightmost edge of the line, and the errors spread to both sides

of the line.

Time Required to Achieve Proper Word-Segmentation

After running the alignment algorithm and correcting the output of the method

via the interface shown in Figure 6.8, we get the correct word-level segmentation

of the document images. The correction is a process that must be performed by

an expert user who can read and interpret the script to judge correct alignment.

However, an expert user is able to correctly segment a text into its words with-

out first having to perform alignment using the suggested methods, and once

in possession of correct word-level segmentation, alignment with transcription
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is a trivial and immediate process. Both approaches require the intervention of

a user, it is, therefore, legitimate to ask which of the two methods is more con-

venient from the user’s point of view. Table 6.11 shows the times recorded by

the interface for validating and correcting the alignment on different datasets:

5 pages of the Bentham collection (Bentham5), 20 pages of the Bentham col-

lection (Bentham20), 50 pages of the George Washington, and the Jefferson’s

letter.

Table 6.11: Time required to perform the validation of the transcript alignment
method.

Dataset Total Time (hh:mm:ss)

Bentham5 00:11:36

Bentham20 00:57:25

George Washington 01:03:44

Jefferson′s letter 00:03:08

An experienced user performed a full manual segmentation of the Bentham5

and Bentham20 datasets using a dedicated word segmentation tool. The tool

allows the user to work on images of the documents and draw bounding boxes

for words providing special features to speed up the segmentation process. How-

ever, segmenting in this way does not take advantage of any automated process,

as is the case with our alignment method. Table 6.12 shows the times recorded

for manual segmentation.

Table 6.12: Time required for fully manual word segmentation.

Dataset Total Time (hh:mm:ss)

Bentham5 00:41:40

Bentham20 02:52:40

As can be seen from the comparison between the times shown in the two
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tables 6.11 and 6.12, the use of the proposed procedure makes it possible to

achieve the objective of word segmentation by saving up to about 70% of the

time necessary in the case of manual segmentation.

6.2.4 Discussion

In this section, we presented an experiment for the line segmentation and tran-

script alignment techniques presented in Chapter 4. The performance of the

proposed solution was evaluated using the Moccia-Code, a small collection of

handwritten historical documents that proved to be very challenging compared

to some of the datasets currently used as benchmarks for performance evalua-

tion.

The performance of the line segmentation algorithm shows that it outper-

forms the state-of-the-art, with the sole exception of docExtractor and dhSeg-

ment, but none of them outputs the entire handwriting of the text line, which

limits its usability without further ad-hoc determinations as in our case, as

well as for keyword spotting, writer identification, and handwriting recogni-

tion. The segmentation method divides the document into a fixed number of

stripes, which was set to 8 in the experimental phase. This value has shown the

best performance on the datasets considered. However, there is no indication

that this value should be considered the best in more general cases. This default

may prove to be a weakness of the system, and an automatic estimation system

for the optimal value may prove to be essential to obtain the best performance

on additional data collections different from those tested.

As for alignment performance, the results of a direct comparison with state-

of-the-art learning-free methods have shown that the proposed method outper-

forms its competitors on every dataset tested. They also show that they are

at least qualitatively consistent with the performance of other state-of-the-art

methods on datasets that were not available for direct comparison. Finally, it

is worth noting that in the case of the Moccia-Code, the performances of our

method are lower than those obtained on the datasets currently used in the
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literature as benchmarks for performance evaluation. This confirms that the

Moccia-Code is much more challenging for text alignment of mostly text-based

handwritten documents.

The experimental results obtained so far not only provide convincing evi-

dence that our methods are an effective fully automatic solution for text align-

ment of mostly text-based historical handwritten documents, but also give hints

for possible future developments. If the results of the consistency test indicate

that an under- or over-segmentation error has occurred, the alignment algo-

rithm attempts to correct this error by using information from the neighbouring

frame/transcript. Even if at the end of the process it turns out that something

went wrong because a transcript or a bounding box is misaligned, the algorithm

does not allow to undo previous decisions and trying an alternative word seg-

mentation. Furthermore, we assumed that the spatial dimension in pixels of a

character is constant regardless of the single character. This is a very restrictive

assumption that can be relaxed considering that each character class can have

its own size.

6.3 KWS by N-gram Retrieval Validation

In chapter 5 we presented a system for spotting OOV words that bases the

search core on the detection of N-grams within a line of handwritten text. We

proposed two solutions for the N-gram QbE system. The first one is based on a

sliding window architecture, while the second one uses the attention mechanism

to search for N-grams. In this section, we will evaluate the performance of the

two methods by highlighting the retrieval capabilities of the proposed solutions.

6.3.1 N-gram Retrieval

Under the premises of the whole work, the definition of our application sce-

nario as a collection of very small handwritten documents will always remain.

To simulate the conditions of the application scenario as well as possible, we
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considered a small subset of the Bentham Collection for the experiments. 20

pages were selected, 5 of which were used as a training set. The images of

the documents were first binarised using the method of Sauvola et al. [108].

Then the documents are segmented into lines of text, and the transcript of the

training set was used to align the individual transcripts with the images of the

words present in the documents, using the methods described in the chapter 4.

From the set of correctly labelled images, the images of the N-grams present

in the entire training set could be extracted, and using these images to build

the set of reference N-grams of the system. To perform the extraction of the

correctly labelled N-grams, a graphical interface was designed and implemented

to facilitate the process. Figure 6.9 shows an example of this interface. Starting

from a dataset consisting of correctly labelled words, the software automatically

extracts the images of the N-grams. The tool allows the user to view all the

N-grams extracted starting from the original word and correct any extraction

errors by manually changing the N-gram crop box.

Figure 6.9: Graphical User Interface to extract and validate the N-gram images from
a set of labelled word images).
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Using the interface, all the N-grams with N equal to 2 and 3 were extracted.

The decision to limit N to 3 is due to the fact that considering character se-

quences consisting of more than 3 characters would, in our opinion, contradict

the premises of this work. We want to use N-grams as recognition primitives

and keep the sequences large enough to facilitate segmentation but small enough

to remain effective recognition primitives. After extracting the N-grams from

the training set, we obtain a set of N-grams consisting of 1044 different classes.

However, the dataset is very imbalanced as the cardinality of each class varies

from 1 to 117, with 615 classes consisting of less than 3 elements. To reduce

the imbalance, the minimum cardinality of the classes was increased to 3 by

simple image transformations and adding noise. In this way, the training set is

composed as in table 6.13.

Table 6.13: Dimension of the training set composed of N-grams obtained from 5 fully
labelled pages of the Bentham collection

Pages N-grams Class N-grams Items

Bentham
Collection

5 1044 5440

The training set thus defined turns out to be a set of small data. Con-

sequently, it is possible to test and explore scenarios that allow the use of

the N-gram spotting system even on data sets with these characteristics. For

this reason, the architectures presented are based on a Siamese architecture

paradigm, which makes it possible to obtain similarity measures between im-

ages even with few exemplars. The basic frameworks for feature extraction

of the images used are all pre-trained on large datasets. In other words, we

propose a management with "few-shot" learning methods. Such a learning sce-

nario allows a system to learn discriminative patterns even when only a small

amount of training data is available so that the model can adapt to the data

provided. The model primarily learns a similarity function between a search

image and a support image and provides high similarity values for very similar
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images.

Figure 6.10: Example of the result of the N-gram spotting on a query text line image.
The image highlights all the boxes detected in correspondence with each N-gram
reporting the scores associated with each box at the bottom.

To discuss which metric should be used to evaluate system performance, we

show a sample output in Figure 6.10. The system provides different interpre-

tations for each text area of the text line, each with a different similarity score.

However, the system provides a unique interpretation for each N-gram class for

each area of the text line, due to the merging of options by the module "Fusion

& Rescore". The problem we face can be considered as a retrieval problem and

the system as a multi-element recommender system, with the peculiarity that

the system cannot suggest multiple options belonging to the same class and

therefore only one element can be interpreted as relevant. On the other hand,

our interest lies in the fact that at least one of the top k options proposed by the

system is the correct one, in order to be able to claim that the correct transcrip-

tion of the N-gram has been identified. We, therefore, propose a modification

of the precision@k and recall@k metrics used in similar problems:

recall@k = rk =
true_relevant_n-gramsAtk

relevantn-grams
(6.1)

precision@k = pk =
true_relevant_n-gramsAtk

retrievedn-grams
(6.2)

where true_relevant_n-gramsAtk is the number of N-grams successfully de-

tected given the first k options for each area of the text line, retrievedn-grams

is the number of all N-grams detected within the text line, while relevantn-
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grams is the total number of N-grams that make up the text line. It should be

noted, however, that the system is not able to recognise N-grams outside the

lexicon of N-grams defined in the training phase, but suggests an interpretation

for all areas of the queried text line in any case, even if it has a low score. It is

therefore interesting to limit the analysis to the N-grams that the system can

actually recognise ad retrieve. We will refer to these N-grams as in-vocabulary.

It is proposed to use as a metric the reference to k, which is restricted only to

the N-grams in the vocabulary, defined as:

r@kInV oc =
true_relevant_n-gramsAtk

relevantn-gramsInV oc

(6.3)

where relevantn-gramsInV oc is the number of N-grams in the vocabulary that

are in the text line.

Sliding-Window Solution

The core of the proposed solution based on the sliding window is the simple

Siamese Neural Network presented in section 5.4.1. One branch of the network

essentially consists of a convolutional backbone for feature extraction, followed

by fully connected layers for refining the embedding of the input image. The

PHOCNet network backbone [125] was used for the experiments. The purpose

of this network is to compute the PHOC [4] representation of a handwritten text

image. It is therefore designed to work with images from the same domain as the

images of our N-grams. The PHOCNet backbone used was pre-trained with the

IAM handwriting dataset [70], a large handwriting dataset composed of images

of handwritten words. Once the backbone architecture was selected, the entire

branch of the Siamese network was trained with N-gram images. To train the

Siamese architecture, a triplet loss [109] was used. To train the Siamese network

branch with a triplet loss, it is necessary to design an architecture with three

branches that all have common weights and receive three images as input:

• Anchor sample image A: taken as reference;
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• Positive sample P : which belongs to the same class as the anchor;

• Negative sample N : belonging to a different class than the anchor.

Equation 6.4 gives the triple loss:

L(A,P,N) = Max
(

∥f(A)− f(P )))∥2 − ∥f(A)− f(N)))∥2 + ³, 0
)

(6.4)

where f(A), f(P ) and f(N) are the embeddings of A, P and N and ³ is a

hyperparameter to be tuned. By minimising this loss function, the learning

process will tend to modify the embeddings so as to reduce the difference be-

tween similar images (∥f(A)− f(P ))∥2) and maximise the difference between

different images (−∥f(A)− f(N))∥2).

Figure 6.11: Three-branch Siamese Network used for the training phase.).

Since the three branches share the weights, it is possible to train a three-

branch net and then use a two-branch net, as shown in section 5.4.1. The goal of

the network is to calculate "similar" embeddings for images that belong to the

same class. Once a network has been trained, it is also possible to use a single

branch to calculate the embeddings of different images and then evaluate the
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distance between the embeddings to assess the similarity between the images.

A two-branch Siamese network simply restricts the assessment of similarity to

two images at a time.

Choosing to train the network with a triplet loss, the choice of how the

training triplets are constructed is very important. As mentioned earlier, the

goal is to minimise the distance between images of the same class and maximise

the distance between images of different classes. In the case of manuscript

writing, the elements of a class are characterised by high variability. One can

easily imagine that all N-grams belonging to the same class and written at

different times, even by the same author, and perhaps originating from different

words, will always differ from each other. Moreover, N-grams that differ by only

one letter can look very similar, as shown in Figure 6.12. For this reason, it is

important to define hard-to-train triplets that can imprint these characteristics

as much as possible.

(a)

(b)

Figure 6.12: The image shows how two N-grams belonging to the same class could
appear dissimilar (a), or two N-grams belonging to different classes could appear
similar (b).
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For these reasons, after randomly selecting an anchor A from a class, the

image of the positive element P is chosen among the "most distant" elements

of the same class. It may seem strange to speak of distance before we have

trained the network to provide that distance. However, the network performs

feature extraction over a pre-trained convolutional backbone. We can then use

the embedding provided by the pre-trained backbone to evaluate the "a priori"

distance between images of the same class of N-grams and then select an image

for the positive element. To define the negative element N , the 10 classes closest

to the anchor class are selected based on the Levenshtein distance calculated

from the N-gram labels. The element N is then randomly selected from this

set with a probability of 80%, otherwise, it is randomly selected from the entire

dataset. To construct the training set of hard triplets, a maximum of 10 anchor

elements are then selected for each class around which to construct the triplets.

Any N-gram images that were not used to construct the triplets and are still

present in the training set are used to define the validation set.

Once the training process for the Siamese network is complete, the Sliding-

Window architecture can be evaluated on the 15 test pages of the Bentham

Collection. For this purpose, all N-grams belonging to the reference dictionary

created on the 5 training pages were searched in the test pages. The results

are shown in Table 6.14. The table shows the indices of precision, recall

and recallInV oc at k, where k is equal to 1 and 5. k = 1 practically means

that for each part of the entered text line, the system only considers the N-

gram recognised with the highest score in the output. If one brings k = 5,

instead a maximum of 5 N-grams are considered for each text section. Three

experiments were repeated with three different numbers of shots, i.e. 1, 2 or

3. The number of shots indicates how many N-gram samples for each class

are selected as samples for the N-gram retrieval phase. If we select the number

of shots equal to 3, three searches will be repeated for each class of N-grams

with three different images of the N-gram randomly selected from the available

images.
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Table 6.14: Results for the N-gram retrieval with the Sliding-Window architecture

#shot p@1 r@1 r@1
InVoc

p@5 r@5 r@5
InVoc

Siding

Window

1 0.0042 0.0045 0.0333 0.0108 0.0467 0.1956

3 0.0067 0.0080 0.0178 0.0059 0.0404 0.1250

5 0.0068 0.0082 0.0300 0.0092 0.0815 0.2956

Attention-Based Architecture Solution

The greater complexity of the attention-based architecture compared to the

sliding-window architecture allows further decisions to be made to expand the

datasets for the training phase of the model and to test different pre-trained

network architectures for feature extraction.

As a first experiment, we decided to select different backbones for feature

extraction to test the basic architecture and evaluate its performance when the

backbone varies. We chose two architecture backbones that performed well

on different image processing tasks: VGG16 [116] and Resnet18 [46], and we

also decided to test the PHOCNet [125] backbone as was done for the previous

sliding window architecture. Table 6.15 shows the results for the single branch

architecture described in section 5.4.2 with different backbones. The results

are given for the cases k = 1 and k = 5 and for the number of hits of 1, 3

and 5. The different systems were trained with the set of n-grams extracted

from the training data of the Bentham collection. From the table, we can see

how the performance of the model changes depending on the backbone network

used for the feature extraction phase. It is noticeable that the VGG16 network

backbone achieves the best results in terms of all performance indices.

The performance of the model seems to be unsatisfactory in most cases. To

achieve better performance, it is essential to perform a pre-training phase with

synthetic data. We then extended the pre-training dataset by synthetically gen-

erating two datasets much larger than our actual data. It should be noted that
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Table 6.15: Results for the N-gram retrieval with the Attention-Base architecture
evaluating different backbones (BB) for feature extraction:

#shot p@1 r@1 r@1
InVoc

p@5 r@5 r@5
InVoc

BBV GG16

1 0.0701 0.0373 0.0942 0.1747 0.0854 0.2114

3 0.0579 0.0339 0.0638 0.1947 0.1006 0.2302

5 0.0465 0.0274 0.0513 0.1980 0.1062 0.2732

BBRESNET18

1 0.0000 0.0000 0.0000 0.0533 0.0061 0.0150

3 0.0333 0.0042 0.0167 0.0333 0.0042 0.0167

5 0.0167 0.0026 0.0059 0.0333 0.0061 0.0150

BBPHOCNet

1 0.0000 0.0000 0.0000 0.0167 0.0048 0.0083

3 0.0310 0.0071 0.0392 0.0671 0.0153 0.0566

5 0.0111 0.0048 0.0083 0.0954 0.0233 0.0780

this process of expanding the training dataset does not impose any further bur-

den on the user, as no further transcriptions or manual validations are required.

To create the first synthetic dataset, we chose the Omniglot dataset [59]. Om-

niglot consists of 1623 different characters handwritten by different scribes from

50 different alphabets. There are 20 examples of each character in this dataset.

We generated 2000 lines of text with 964 different symbols by randomly arrang-

ing the symbols in the array with a high probability of overlapping symbols.

For the second set of synthetic training data, the lines of handwritten text were

instead generated using a generative network capable of generating words from

the handwritten text. The network was trained on the IAM dataset [70] and

then used to generate random words (composed into 2000 lines of text). In

this case, it was possible to use these lines to mark the N-grams they contained

and use these N-grams as marked elements for the training set. Figure 6.13

shows some examples of lines that were synthetically generated using the two

methods.

133



Chapter 6. Experimental Evaluations

(a)

(b)

Figure 6.13: Synthetic generated handwritten data. (a) shows examples generated
starting from the Omniglot dataset; the lines are a collection of handwritten symbols.
(b) the handwritten lines generated are composed of N-grams; in the second image
N-grams "not", "for", and "ast" are highlighted.

A second experiment was run to assess the contribution of synthetic datasets.

Two backbones were used in this instance for feature extraction: the VGG16

backbone because it performed better than the Resnet18 backbone architecture,

and the PHOCNet backbone because it was more appropriate for the applica-

tion domain. The models were then pre-trained on the synthetic datasets, and

only at the end of a fine-tuning phase were performed on the actual data from

the Bentham Collection.

The results are summarized in the table 6.16, which also shows how the pre-

training phase on synthetic data enables the system to significantly improve its

performance in all relevant metrics. This effectively emphasizes the fact that

the contribution of synthetic data brings significant advantages. It is important

to note that using the Omniglot dataset’s synthetic training data with the

PHOCNet network was not viable since the PHOC representation of a word

made up of symbols rather than letters has no meaning.

For the experiments conducted performed so far, we have always used the

single-branch architecture. As discussed in the section 5.4.2, the proposed

model allows the use of different branches, each using a different backbone for
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Table 6.16: Results for the N-gram retrieval using the Attention-based architecture
evaluating different backbones (BB) for feature extraction and training on synthetic
data and fine-tune on real ones.

#shot p@1 r@1 r@1
InVoc

p@5 r@5 r@5
InVoc

BBV GG16

Omniglot

1 0.1823 0.1291 0.3376 0.3126 0.2171 0.6092

3 0.2060 0.1405 0.4279 0.3462 0.2349 0.7170

5 0.2216 0.1470 0.4436 0.3725 0.2450 0.7594

BBV GG16

Synth

1 0.1555 0.0778 0.2298 0.2940 0.1511 0.4908

3 0.1823 0.1036 0.3357 0.3019 0.1644 0.5346

5 0.1878 0.1117 0.3292 0.3336 0.1856 0.5832

BBPHOCNet

Synth

1 0.1084 0.0612 0.1669 0.2682 0.1543 0.4156

3 0.1369 0.0831 0.2105 0.2734 0.1638 0.4781

5 0.1333 0.0791 0.1976 0.2861 0.1700 0.4809

feature extraction. In the third experiment conducted, we want to evaluate

whether using the simultaneous use of different branches and performing the

search in different feature spaces simultaneously can lead to an improvement

in performance. We still choose to decide to use the VGG16 and PHOCNet

backbones, respectively pre-trained with the dataset generated from the Om-

niglot dataset and with the synthetically generated dataset containing n-grams,

in perfect continuity with the previous experiment. The outcome result of the

model depends on the values assigned to the parameters w1 and w2 of equa-

tion 5.1, values that allow to weight the obtained solutions with respect to the

search space. We evaluated the model by varying the two weights from the

minimum value of 0 to the maximum value of 1 with a step of 0.1 and testing

all combinations of weights by performing a grid search [5].

The search’s outcomes are shown in Figure 6.14 for the case of a 5-shot

scenario, and it is possible to note that merging the two separate branches
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(a) (b) (c)

(d) (e) (f)

Figure 6.14: Visualizing feature weights for multi-space architecture. Variation
of the (a)Precision@1 (b)Recall@1 (c)Recall@1_InVoc (d)Precision@5 (e)Recall@5
(f)Recall@5_InVoc according to the fusion weights for visual and PHOC features in
case of 5-shot scenario.

yields the best outcomes. Except in the instance of r@5, the weight of the

branch with the VGG16 backbone is consistently larger than or equal to the

weight of the branch with the PHOCNet backbone. We may infer from the

weight values, supporting our intuition, that the more discriminating feature

spaces should be more significant for the purposes of the combination. The

best result for each statistic in the case of 1, 3, and 5-shot scenarios are shown

in the table 6.17. Additionally, compared to the prior performance with the

single backbone model, the performance of all indices is better. This suggests

that searching multiple feature spaces may contribute to better performance.
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Table 6.17: Best result for the N-gram retrieval reached with the Attention-Based
multi-space architecture.

#shot p@1 r@1 r@1
InVoc

p@5 r@5 r@5
InVoc

BBV GG16

+
BBPHOCNet

1 0.2140 0.1424 0.4505 0.3437 0.2392 0.7195

3 0.2045 0.1495 0.4783 0.3536 0.2519 0.7498

5 0.2303 0.1808 0.5582 0.3747 0.2588 0.7975

Comparison to Existing SOTA Methods

To the best of our knowledge, there are no articles that address the issue of

finding N-grams inside a line of handwritten text, which is a challenge that has

received little attention in the literature. However, Soubgui et al. [118] have

encountered a very similar issue. They reflect the state of the art in identifying

encrypted symbols inside a line of handwritten text. Despite the fact that the

two issues’ domains are different, they both offer solutions based on a few-shot

setup and search for a symbol inside a line of handwritten text (whether it be

an encrypted symbol or a Latin N-gram). The model developed by Souibgui

et al. was pre-trained using a synthetic dataset derived from the Omniglot

dataset and after we ran a fine-tuning phase of the model using real data from

our training set from the Bantam Collection to ensure an accurate comparison

with the proposed strategy.

The performance of the Sliding-Window system is lower than that of the

other solutions, while the results of the model developed by Souibgui et al.

[118] are comparable to those of our Attention-Based model, as shown in Table

6.18. It is noteworthy to notice that when k grows and when the number of

shots is big, the Attention-Based proposed system performs better than [118].

This implies that the "Fusion & Rescore" module’s contribution to rescoring

overlapping solutions really enhances system performance.
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Table 6.18: Comparison width SOTA method for the N-gram retrieval problem.

#shot p@1 r@1 r@1
InVoc

p@5 r@5 r@5
InVoc

Souibgui

et al.

[118]

1 0.1613 0.1121 0.3408 0.3007 0.2042 0.6465

3 0.2088 0.1427 0.4391 0.3436 0.2301 0.6948

5 0.2241 0.1602 0.4703 0.3342 0.2364 0.7314

Sliding

Window

Model

1 0.0042 0.0045 0.0333 0.0108 0.0467 0.1956

3 0.0067 0.0080 0.0178 0.0059 0.0404 0.1250

5 0.0068 0.0082 0.0300 0.0092 0.0815 0.2956

Attention

Based

Model

1 0.2140 0.1424 0.4505 0.3437 0.2392 0.7195

3 0.2045 0.1495 0.4783 0.3536 0.2519 0.7498

5 0.2303 0.1808 0.5582 0.3747 0.2588 0.7975

6.3.2 Discussion

In this section, we have presented an experimental validation for the N-gram

retrieval methods proposed in chapter 5. Based on the experimental results, we

have demonstrated the adequacy of our approach and shown that it is possible

to recognise N-grams of references within a handwritten line of text. The

proposed attention-based solution proved to be not only more powerful than

the Sliding-Window proposal but also competitive with the state of the art.

We limited the analysis to some of the available feature spaces, but the results

show that using more than one representation can improve performance. In

this direction, a comprehensive study of the different available representations

could be conducted by analysing in detail different architectures of backbones

with different depths to understand their impact on the model.

The methods do not limit the search for N-grams to the words that appear

in the training pages from which the classical recognition systems build their

reference lexicons but offer the possibility to recognise N-grams also in the
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OOV words that appear only in the test pages. This encourages considering

this solution as a possible way to solve the problem of OOV word spotting.

6.4 From N-gram Retrieval to Word Spotting

In this section, we present a use case of the whole-word spotting system to

analyse the capabilities of the architecture in OOV word retrieval. Finally, we

evaluate if and how the use of the proposed KWS system can be useful for the

final user to build a transcription of small data collections, analyzing the time

that the use of the system can save.

6.4.1 Can we Spot OOV words?

The main aim of the system proposed and described in chapter 5 is to overcome

the distinction between the words belonging to the words present in the training

pages and the OOV words of the whole collection, and to allow a search for any

word. In this section, we try to verify whether the proposed architecture is able

to overcome this distinction and actually recognise OOV words by evaluating

its performance on the 20 pages of the Bentham Collection used in the previous

sections.

The KWS system uses the QbS search paradigm, which allows us to search

for a word in an image of a document by using a text string as input. This makes

querying the system very easy, as we do not have to worry about retrieving

sample images of the queried words. To find out if and how searching for OOV

words affects the search, we decided to define two groups of query words. The

first group consists of in-vocabulary words (InV oc), i.e. words that appear on

the 5 training pages of the collection, and the second group consists of OOV

words only:

• WInV oc - made of 55 In-Vocabulary words;

• WOOV - made of 85 Out-Of-Vocabulary words.
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We then decided to evaluate the performance of the system for the two sets

of query words by first using the set WInV oc to define a performance baseline

and then moving on to evaluate the words of the set WOOV . In this way, the

comparison between the results of the experiments can reveal any difficulties in

recognising OOV words.

The KWS QbS system is based on a QbE N-gram retrieval system, which

is the core element for search. In the previous section 6.3.1, we evaluated the

two system proposals for solving the N-gram retrieval problem, the first one

based on a sliding-window solution and the second one on an attention-based

solution. The results show that the attention-based solution outperforms the

sliding-window one by far. However, in this experiment, we chose the sliding-

window solution as a precautionary measure to evaluate the performance of the

KWS system. The sliding-window solution proves to be very easy to implement

and particularly fast in training. However, in our opinion, it is interesting to

evaluate the possibility of OOV spotting even if a non-optimal N-gram retrieval

system is available. In other words, we somehow set a lower bound on the

performance measure. If it is possible to detect OOV words even with the least

penetrating core system, using a better system can only improve the overall

performance.

When queried with a search string, the system returns a confidence-ordered

list of images that are likely to contain instances of the searched word. Since

the number of occurrences of the words in the collection is unknown, setting the

maximum length of the k output list may result in underestimating performance

in terms of both recall and precision: Given the value of k, this leads to an

underestimation of Recall if there are more than k instances of the queried

word in the collections, while it leads to an underestimation of Precision in

the case of words with fewer than k instances. From an application’s point

of view, a user wants to retrieve instances of the searched word, preferably

without having to read the entire text. If all occurrences of the searched word

are contained in a reasonably large list k, which from the user’s point of view
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means that he or she can search in a short time, the user might be satisfied. In

other words, an index that can satisfactorily measure the performance of the

system may be the recall that varies with the length of the output list k. Thus,

the system works satisfactorily if it can achieve high recall values while keeping

the value of k low.

Figure 6.15: Recall at k reached by the system performing search on WInV oc and on
WOOV sets.

Figure 6.15 shows the results in terms of recall for different values of k

(r@k) for the two sets of query words. If we look at the trends of the two lines,

we can immediately notice that both show a similar trend. The system finds

words from both the WInV oc set and the WOOV set with a similar retrieval rate,

regardless of the value of k. This is because the N-gram recognition phase takes

place in the N-gram search space, and as long as all N-grams are available to

search for the queried word, it makes no difference to the system whether it is

an InVoc word or an OOV word. Although the sliding-window N-gram retrieval

QbE system has shown unsatisfactory performance, its use within the overall

KWQ QbE system still enables the retrieval of InVoc and OOV words and

achieves retrieval rates around 50% with a still quite small output list length

k.

However, this system has limitations in terms of suggestion accuracy. Figure
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6.16 shows the evolution of accuracy for the sets WInV oc and WOOV . It can be

seen that the accuracy of the system tends to be low regardless of the value of

k. In fact, even with a rather low confidence value, the system tends to suggest

solutions to fill the list of suggestions and, of course, the longer the list, the

lower the accuracy.

Figure 6.16: Recall at k reached by the system performing search on WInV Oc and on
WOOV sets.

6.4.2 Can the System Support a Transcription?

Once a word-spotting system is defined that can recognise both InVoc and

OOV words, the only general question that remains to be answered is: "Is it

convenient to use such a system?" To answer this question, we can imagine

using our KWS system to obtain the transcription of the collection composed

of 20 pages of the Bentham Collection and evaluate the time gain that can be

obtained by using this system, estimated by the model presented in Chapter 3.

To this end, we need to make the necessary clarifications to be able to use

this KWS system for the purpose of transcription. Remember that the KWS

system is a query-by-strings system, i.e. it can search within the collection for

words belonging to a list of query words. The system is in fact a lexicon-based

system, but this lexicon may or may not consist of words belonging to the
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training set. We then consider the first 5 pages of the collection as the training

set, and we build the reference lexicon as the list of words included in the 5

training pages by adding to them the additional 100 most common words in

the English language in the 1700s [68, 74].

We also need to specify the value of k to be used to indicate an appropriate

number of transcript suggestions to propose to the user who has to correct and

validate the transcription. As we saw in section 6.1, and as intuition suggests, a

small number of options to be evaluated makes the use of the system productive.

We, therefore, decide to use k = 5, also taking into account that the values for

precision and recall for k = 5 have similar values and are therefore a good

compromise, considering the graphs in Figure 6.15 and Figure 6.16:

• r@k = 0.2668

• r@k = 0.2501

The model used to calculate the time gain assumes that the time TTS needed

to transcribe the training pages and define the keyword list is given. We then

considered the time it takes a user to transcribe the words and then the time

it takes to build the N-gram dataset using the tools presented in the previous

chapters.

At this point, we can estimate the gain obtained by using the KWS system

to transcribe all 20 selected pages from the Bentham Collection. Table 6.19

shows the times estimated by the model and the achievable gain calculated for

transcribing the entire collection DC, or the times that can be achieved for

transcribing the 15 pages of the DS set (i.e. excluding the training pages).

When looking at the values in table 6.19 it is interesting to note that for

the complete transcription of the 20 pages, it makes no difference whether

the user uses the KWS system or transcribes the whole collection manually.

However, considering that the gain is not negligible for only 15 test pages of

the DS collection, we can conclude that the KWS system does indeed help in

transcribing the pages without transcribing the DS and that the effort the user

143



Chapter 6. Experimental Evaluations

Table 6.19: Comparison width time required to transcribe 20 pages of the Bentham
Collection in a fully manual way or using the KWS system as a support tool.

Collection Manual Time KWS Time Gain

15 test pages 4h 26m 15s 2h 47m 6s 37.24%

Entire collection 5h 35m 58s 5h 44m 45s -2.61%

has to put in to create the keyword list is not negligible at all.

We have so far considered the case where the pages of the training set have

to be transcribed from scratch, and we have found that the manual transcription

of these pages has a strong impact on the time needed to transcribe the whole

collection. We can now imagine using the system when the transcript of the

training pages is already available. In this case, the time saved by the system

is not negligible, as we can see from table 6.20.

Table 6.20: Comparison width time required to transcribe 20 pages of the Bentham
Collection in a fully manual way or using the KWS system as a support tool in the
case the transcription of the training set is already available.

Collection Manual Time KWS Time Gain

Entire collection 5h 35m 58s 4h 0m 45s 28.34%

6.4.3 Discussion

In this section, we measured the potential of the KWS system by testing it

on a small collection consisting of 20 pages from the Bentham Collection. The

results show that the system can retrieve words from both the InV oc word

set and the OOV word set with similar recall and precision rates, regardless

of the value of k. Searching for words in the N-gram search space effectively

eliminates the difference between InV oc words and OOV words, provided we

have enough N-grams available to cover a large number of words. An important

feature of the proposed system is that it is segmentation-free, i.e., it avoids
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Figure 6.17: Example of system results: Examples of images retrieved by the
system for a few query words. The correct outputs are highlighted with green boxes,
while the incorrect ones are in red

both character-level and word-level segmentation, which is far from easy with

cursive writing. The price for this is that the system also retrieves parts of

words that are similar to the searched word. In other words: If the retrieved

word is part of a longer word, the system can retrieve those parts, e.g., in the

case of the retrieved word "perform", the system can retrieve part of the word

"performed", as can be seen in Figure 6.17, with a fairly high confidence value,

since the transcript of the selected excerpt is in fact the same or very similar to

the retrieved word. As evidence of this, the figure shows the case of the query

word "motion", and the system retrieves different words but which manuscript

versions look very similar as happens for "nation". Similarly, there are also

cases where not all the required N-grams of the queried word can be found,

but most of them can, as in the case of the queried word "appellate" and the

instance of the word "appeal" in the figure.

Experimental results have shown that the system can recognise OOV words
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with similar performance to InV oc. They also show that the overall perfor-

mance is very encouraging considering that the training set is small, with many

classes and few samples per class, and that we chose the Sliding-Windows solu-

tion as the core system for the N-gram retrieval phase, which shows the lowest

performance. In examining the time spent transcribing the entire collection,

it is also interesting to note that we have reached a lower limit for the use of

the system. Using a more powerful N-gram retrieval system or increasing the

pages of the set DS to be transcribed could lead to a non-negligible gain in

time, making the use of the system convenient for transcription from the user’s

point of view.
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Conclusions

In this thesis, we have addressed the problem of keyword spotting in images of

documents of historical interest, focusing on the particular case of manuscript

collections that are at most a few hundred pages long. The digitisation pro-

cess of libraries, which is affecting more and more organisations today, is a

process that involves not only information technologies, but more generally the

structure of organisations, hardware resources, facilities, human resources and

knowledge, as well as the overall organisational processes. The complexity of

the process can be an obstacle to the digital transformation of smaller organ-

isations, which, however, keep archives and document collections that often

consist of a few dozen pages and have special and unique characteristics that

are of particular interest to researchers and scholars for this reason. However,

limitations in resources often mean data scarcity, and this limitation makes IT

technology experts disdain, but their objective still remains to provide inno-

vative artificial intelligence-based solutions that promise to simplify and speed

up the management of document collections. For this reason, an AI system

capable of adapting its operation to a limited amount of data may be critical

to the use of this solution by scholars interested in studying collections.

One of the mantras of the AI community is the "80/20" rule. This means

that once a dataset is created, it is often split into two subsets. The first
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subset consists of 80% of the data used for training, while the remaining 20%

is used as a test set for the trained methods. AI systems, especially deep

learning solutions, are very data-hungry and learn well when an abundance of

data is available to them. However, when the available datasets are limited

and the process of labelling, and thus defining training sets, is very tedious,

the idea of "80/20" might not be the best choice. In these cases, it might be

useful to refer to another famous "80/20" rule, namely, the well-known Pareto

principle [25,83], which states, in short, that "most of the effects (80%) depend

on a limited number of causes (20%)”. This view would lead to a total reversal:

If a scholar has to hand-label 80% of the collection to train a method, he or

she might decide that the effort required is too high and choose to abandon

AI tools. It is therefore necessary to combine efforts to obtain methods and

systems that allow users to minimize their effort while obtaining satisfactory

results, which can lead to solutions that are convenient for the user.

We then talked about the "convenience" of using an AI system to support

the processing of historical documents, in our case a KWS system to support

the transcription of a collection. But what does "convenience" mean? What

can be convenient for the end user? To answer these questions, in chapter 3 we

proposed a model aimed at estimating the time savings that the use of a KWS

system can bring to the transcription process of a manuscript collection. By

focusing on time and providing a tangible measure of gain, we believe that it is

possible to provide the user with a clear and simple feature that can define the

goodness of the AI system and its ease of use. Focusing on the time that can be

saved by using a system allows the user, even the less trained and experienced,

to get an idea of the contribution the technology can make to their work. If the

estimate of time saved is accurate, it also allows the user to understand well the

potential of the method to support transcription and avoid false promises of AI

solutions that can completely replace the presence of the experienced human

user.

From the analysis of the time estimation model discussed in Chapter 6, it
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is clear that the preparation of the training data and the relative keywords list

has a large impact on the time the user has to spend on the collection. For

this reason, it is crucial for the positive benefits of the systems to propose so-

lutions that allow for speeding up the image word labelling processes. In this

direction, in Chapter 4 we proposed solutions for training a keyword spotting

system designed for small collections of handwritten documents. We have pro-

posed techniques and methods to speed up the process of labelling handwritten

words starting from images and transcripts of entire documents by propos-

ing a technique of segmentation into text lines and transcript alignment. The

presented approach is learning-free and represents an end-to-end solution that

includes a line segmentation algorithm and an alignment algorithm. The former

can extract text lines with a curved baseline, while the latter allows us to align

the transcript to the image part of the text line that contains the handwritten

word. Therefore, the proposed technique allows us to easily and quickly obtain

a set of images of words correctly labelled with the correct transcription. The

proposed graphical validation and correction tools are intended to be simple

and intuitive, allowing the user to speed up the labelling process.

However, the proposed methods have limitations that we believe can be

addressed through further development. The main limitation of the line seg-

mentation method is that it is based on a subdivision into a fixed number of

vertical stripes, which was set to S = 8 in the experimental phase. This value

has been shown to be optimal for the datasets tested, but there is no evidence

that it is the best choice in general. To overcome this inconvenience, a self-

adaptive algorithm can determine the optimal value for each collection to which

the method is applied. Starting from a value S = 1, the method can gradually

increase the value until the best performance is achieved. On the other hand,

the alignment method may not align all the words in the transcripts of a line.

This behaviour can be easily caught and solutions can be implemented to deal

with such anomalies. For example, a backtracking mechanism that takes into

account that the number of bounding boxes to be aligned should be equal to the
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number of words in the line’s transcript can correct such errors and improve the

overall performance of the system. It may be possible to make the consistency

check itself more effective by estimating the average character width for each

character class and then using that value to estimate the bounding box width

to use in the consistency check.

The analysis of the transcription time estimated by the model has shown

that, in addition to the time required to create the keyword list and label the

data, another important factor is the presence of Out-Of-Vocabulary words

that must be transcribed throughout the collection. The ability to handle

OOV words can therefore be extremely important for the transcription process

of small data collections, where the limited size of keyword lists increases the

likelihood of encountering OOV words. To address this problem, in Chapter 5

we presented a KWS system that can adapt to small collections and recognize

both InV oc and OOV words. The basic idea is to build the keyword recog-

nition system around an N-gram retrieval system, assuming that N-grams can

represent good search primitives for words. Our hypothesis is based on the

notion that N-grams are the result of the execution of a particular motor pro-

gram. If a subject develops motor programs to control the movements necessary

for writing, he is unlikely to automate whole words or single letters. On the

other hand, the automation of character sequences implies that the N-grams

are similar, even if they belong to different words. The experiments performed

seem to support this hypothesis because the N-grams detected are not always

sequences belonging to words present in the set of InV oc words. Moreover, the

recall and precision rates between whole InV oc and OOV words show similar

trends. These behaviours suggest that the hypothesis is confirmed.

Analysis of transcription times with the proposed KWS system has shown

that even when a non-optimal KWS system is used, transcription time can be

reduced by about 30% compared to fully manual transcription. When the col-

lections to be transcribed are very small, as in our experiment that included

only 20 manuscript pages, we have seen that the ability to recognize OOV
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words, but especially the ability to quickly generate keyword lists, are funda-

mental aspects for the use of a profitable transcription support system. In fact,

we have seen how the system allows a significant time saving during its use, i.e.,

in the transcription of the 15 pages of the collection that are not used for the

creation of the keyword list and the knowledge base for the KWS system, which

in our case consists of the set of reference N-gram examples. The analyzed sys-

tem allowed to save almost 40% of the time required for the transcription of

the 15 pages and still provide a complete and correct transcription of the col-

lection. It is therefore important to point out that if techniques are not used

to optimize and speed up the preparation process of the KWS system (i.e. the

definition of the keyword list from the training pages), the effort required at

this stage may cancel out the time saved by using the KWS during its use. In

our experiment, labelling only 5 of the 20 pages of the collection using classical

and manual techniques was sufficient to negate the positive effects of the system

for assisted transcription. However, it is useful to underline how speeding up

the labelling process of the same 5 pages with the methods proposed in chapter

4, based on the automatic alignment of the transcription, allowed the whole

system to have a positive outcome and to record a time saving of almost 30%.

The experiments then demonstrated and confirmed what the model used

to estimate the time gain had suggested, namely that the performance of the

KWS system alone is not sufficient to measure the contribution that the sys-

tem can make to the transcription process. Operations such as the labelling

and knowledge base building phase, or the ability to handle OOV words, are

therefore essential features for evaluating the performance of the system on a

par with the performance indexes of the KWS system.

Finally, it is interesting to analyze the behaviour of N-gram retrieval systems

in a bit more detail, as it represents the core element of our KWS proposal. To

address the few data scenario, we proposed a Sliding-Window solution, which

is characterized by a very simple architecture and therefore does not require

an extremely large amount of data for training, as opposed to a much more
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complex Attention-Based architecture, which does require more data. We then

decided to use synthetic data generation techniques for building a training set

large enough to allow the system to significantly improve its performance. It

should be emphasized that the data generation techniques allowed us to expand

the data set for the Attention-Based model rather than for the Sliding-Window

model. Although we focused on state-of-the-art handwriting image generation

techniques, these techniques are not able to properly represent the variability

of a subject’s handwriting. This behaviour can be observed in the examples

shown in Figure 6.13, where all N-grams belonging to the same class appear ex-

tremely similar to each other. This behaviour did not allow us to constructively

increase the size of the training set for the Sliding-Window solution, as the ap-

plication would have been limited to the addition of a single N-gram image per

class, rather than the generation of different handwriting inks associated with

the same N-gram, as it would happen when different subjects write the same

N-grams. These observations lead to an interesting consideration: To constrain

the hand-made process of labelling images of handwritten words, we need au-

tomatic image generation systems capable of modelling handwriting variability

typical of individual human subjects. In other words, to have a performing

system capable of reading human handwriting, we would need to have a system

capable of writing like a human.
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This appendix contains a list of repositories with tools, code, datasets, and

additional material used during the experimental phases.

List of Repositories

• A* Line Segmenter

https://github.com/Natural-Computation-Lab/AStarSegmenter

The repository contains the code for the line segmentation algorithm pre-

sented in chapter 4

• Transcripts Alignment - MiM Algorithm

https://github.com/Natural-Computation-Lab/MiMtranscriptAligner

The repository contains the code for the transcript alignment algorithm pre-

sented in chapter 4. The repository also contains the user interface tool for the

data validation and correction of the alignment showed in 6.8

• The Moccia Code

https://github.com/Natural-Computation-Lab/MocciaCode

The repository contains examples of images of the Moccia-Code. In the reposi-

tory, it is possible to find entire pages or single-line images, and all the ground

truth files consisting of the correct transcription.

• Validation N-Grams Tool

https://github.com/ZeePPe/Ngram-Validator-Tool

The repository contains the user interface tool used to validate and extract

N-gram images shown in figure 6.9.
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APPENDIX A

• Keyword Spotting based on N-gram retrieva

https://github.com/ZeePPe/PHOCsiameseNet

The repository contains the code for the N-gram retrieval system based on the

Sliding-Window architecture described in section 5.4.1.

The repository also contains the code for the KWS system to spot OOV words

described in Chapter 5
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