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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The seismic events that have affected our peninsula and the world over the 

last decade have highlighted the importance of a correct design of structures in 

seismic zone and the seismic inadequacy of a large part of the built heritage [1]-

[3]. In particular, the social and media impact of the catastrophic consequences 

of these events, linked to the extreme vulnerability of the buildings, has 

accompanied and pushed the implementation of modern rules on the design and 

verification of structures in seismic areas that, however, are still lacking in 

content in terms of assessing the seismic performance of existing buildings [4]. 

In addition, many countries do not have a large-scale mapping of the seismic 

vulnerability of the built heritage, according to performance criteria based on 

the "capacity-demand" comparison.  

In particular, they do not provide specific rules for different structural 

typologies. Moreover, the code-compliant rules are mainly set up on reinforced 

concrete structures resulting inadequate for the evaluation of steel structures [5]. 

These procedures also do not lend themselves to seismic classification and 

code liability being strongly influenced by the software used to develop them 

and for the modeling of the members which is characterized by numerous 

variables that are difficult to standardize.  

Consequently, a completely analytical simplified model that allows to 

control these complexities in a univocal way is introduced for steel Moment 

Resisting Frames (MRFs) [6]-[8] and Concentrically Braced Frames (CBFs) 

[9]-[12].  
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The Performance levels, intended as a combination of structural and non-

structural performance, define levels of damage considered acceptable in 

relation to the severity of the seismic event. In its classical formulation, 

performance-based design theory identifies five fundamental performance 

levels [13],[14]: 

• “Fully Operational”: no interruption of activities and negligible 

damage; 

• “Operational”: no interruption of activities and marginal damage to 

non-structural components; 

• “Reparability”: occurrence of damage such as to cause the 

interruption of activities but of such magnitude as to be repairable in 

any case; 

• “Life safety”: the occurrence of extensive damage, reparable, with 

interruption of activities but without danger to human life; 

• “Near Collapse”: significant damage such as endangering the 

stability of the structure and human life. 

The work described here aims to define a simplified and unique method, 

applicable on a large scale or in the immediacy of a seismic event, for the 

evaluation of the seismic performance of steel buildings, depending on the 

performance levels provided by performance-based design.  

1.2 Motivations of the Work 

Emphasis is placed on two adjectives referring to the word "method" which 

are decisive in the explanatory statement behind the research work: 

• Simplified: a large-scale classification of the building or an 

evaluation to be carried out in the immediate post-earthquake period 

requires the use of a methodology providing quick results. In the first 

case for the huge building basin to be analyzed, and in the second 

case for the need to receive "answers" in the shortest possible time. 

• Unique: the classification of the built heritage on a large scale and 

the analysis of results obtained in the immediate post-earthquake 

period require a criterion for the evaluation of seismic performance 

not susceptible to contour variables such as not allowing a direct 

comparison between the outputs obtained. 
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The proposed solution is a fully analytical (therefore unique) methodology 

that allows to represent the capacity curve of a structure through a trilinear 

approximation.  

This methodology solves the problems of multiple voices (polydromy) of 

the result that arises with the use of structural analysis software. The result, in 

these cases, is the result of different input data, modeling, and assumptions of 

the specific user that can lead to completely different results even for the same 

structure. Uniqueness is the prerogative of analytical methods, which determine 

unambiguously and uniquely a result if wisely used.  

A great advantage, moreover, lies in the possibility of automating the 

calculation through input files containing the information (geometric, 

mechanical, etc.) concerning the structures to be analyzed, obtaining in the 

output the corresponding capacity values in terms of spectral acceleration or 

spectral displacements. In this way, quickly and unambiguously, it will be 

possible to recreate maps of seismic vulnerability on a large scale once all the 

structural types and construction materials have been implemented. 

The validation of the proposed methodology has been performed through a 

calibration procedure on a total of 840 designed structures, and then through 

Incremental Dynamic Analysis (IDA) applied to simulated designs and real 

structures available in the literature [15]-[17]. 

1.3 Investigated Structural Types 

The methodology has been calibrated on steel buildings, considering the 

most widespread structural typologies in accordance with the built-up heritage. 

The horizontal actions in steel structures can be faced by different types of 

seismic-resistant structures, as reported in Eurocode 8 [18]-[21]: 

• Moment resisting frames; 

• Concentrically braced frames; 

• Eccentrically braced frames. 

The moment resisting frames are characterized by a limited lateral stiffness 

and high ductility linked to the possibility of forming a large number of plastic 

hinges. The dissipative zones consist of the end sections of the beams for which 

the dissipation of seismic energy is demanded to the flexural behavior of these 

elements, and therefore to the moment-rotation cycles. In order to ensure an 
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adequate level of overall ductility, it is necessary to prevent the formation of 

local mechanisms, such as the “soft storey” ones (Figure 1.3.1b) which, by 

involving few dissipative elements, quickly lead to the exploitation of local 

ductility resources, and are therefore accompanied by low energy dissipation. In 

this context, the hierarchy criterion provided by the current codes (Eurocode 8, 

NTC 2018) [18],[20], aims to promote the formation of plastic hinges at the ends 

of the beams ensuring adequate over resistance of the columns. This criterion, 

however, fails to ensure the development of a highly dissipative mechanism 

(global collapse mechanism reported in Figure 1.3.1a). This objective can be 

achieved through the application of more sophisticated design procedures. 

 

Figure 1.3.1 Collapse mechanisms for moment resisting frames: difference in terms of 

ductility demand. 

In addition, the performance design implemented by the current seismic 

codes is based on the satisfaction of two main objectives: damage limit state 

(DLS), i.e. containment of structural damage (interstorey drift) during seismic 

events with a return period comparable with the working life of the structure, 

and life-safety limit (LS), which consists in preventing structural collapse, even 

at the cost of significant damage to the structure (provided that inelastic 

deformations are compatible with local ductility resources), on the occasion of 

seismic events with a return period greater than the working life of the structure. 

A necessary condition to satisfy the DLS is that the structure is equipped with 

sufficient lateral stiffness; on the contrary, adequate local and global ductility 

resources are required to meet the LS requirements. The frames have a high 

dissipative capacity, making it easy to meet the SLV checks; on the other hand, 

they are equipped with a contained lateral stiffness so that deformability checks 
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are generally the most difficult requirement to meet and that, as a result, governs 

the design. 

Concentric braces counteract the lateral actions that affect the structure by 

means of the axial resistance of the diagonal members; therefore, they are 

characterized by a high lateral stiffness that allows to easily meet the checks in 

terms of interstorey drift. Dissipative elements are basically diagonals. 

However, the cyclic behaviour of the axial members is asymmetric and 

nonlinear, as well as rapidly degrading, due to the instability in compression. 

For this reason, the single diagonal solution (Figure 1.3.2a) is not covered by 

current codes, but it is necessary to equip these structures in such a way as to 

have, for each direction of seismic action, at least one stretched diagonal. This 

solution is equivalent to that of the “X” braced frames). In both cases, in fact, 

the incoming seismic energy is dissipated mainly by the stretched diagonals. 

Inverted “V” and “V” braces (Figure 1.3.2b and c) are characterized, like 

the previous ones, by the presence of diagonals in both directions that ensure the 

presence of at least one stretched member for each direction of seismic action. 

However, due to the imbalance between the actions in the stretched and 

compressed diagonals (given the post-critical behavior), a concentrated action 

is generated on the beam that results in strong vertical displacements. In order 

to improve the cyclic behavior, it is necessary the use of a continuous beam. In 

any case, the post-critical behavior of the system is characterized by rapid 

deterioration due to the inability of the buckled diagonal to recover the initial 

configuration. The scheme is therefore characterized by a lower dissipative 

capacity than the X-pattern or single-diagonal coupled pattern; the current 

codes, in fact, provide structural factors of 2 and 2.5 in low and high ductility 

class for these systems, respectively, while for X-schemes the structure factor 

must be assumed equal to 4 in both situations. 

Finally, K-braces (Figure 1.3.2e are characterized by problems related to 

the instability of the columns due to the lateral displacements inevitably 

induced, at the mid-sections, by the actions transferred from the diagonals. For 

this reason, the current seismic codes classify this type among the non-

dissipative structures, for which the project must be carried out ensuring that the 

members remain in the elastic field (structure factor equal to 1). 

Ultimately, concentric braces, while easily meeting damage limitation 

checks, on the other hand, due to the non-linear and rapidly degrading behaviour 

of diagonals, and therefore the limited dissipative capacity under cyclic loads, 
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do not lend themselves to meeting the requirements at the limit state of life 

protection at destructive events. 

 

Figure 1.3.2 Concentrically braced frames types: a) single diagonal braced frame; b) 

inverse“V” braced frame; c)“V” braced frame, d)“X” braced frame; e)“K”braced frame 

A good compromise between resistance and ductility is achieved, on the 

other hand, in eccentric braces. In this type of brace frame, the diagonals are 

arranged eccentrically with respect to the nodes of the structure, and divide the 

beams into several parts, depending on the geometric scheme adopted (Figure 

1.3.3). The smaller portions in which the beams are divided are called links; 

these elements dissipate energy by plasticizing by shear or bending. The cyclic 

behavior of the links is mainly influenced by their length but overall, the 

hysteresis cycles are wide and stable. This ensures a considerable dissipation 

capacity of the incoming energy and gives this type of bracing a high ductility 

that makes it easy to meet the checks at the Near Collapse limit state. On the 

other hand, the presence of the diagonals in an eccentric position gives a lateral 

stiffness such as to satisfy the checking for lateral deformation. Finally, these 

types provide, from an architectural point of view, greater freedom in the 

positioning of openings than concentric braces. 

The research work aims to define a simplified methodology for the 

assessment of the seismic vulnerability of the existing built heritage. As a result, 

the focus was on MRFs and CBFs typologies, more widespread in the building 

scene. 
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Figure 1.3.3 Eccentrically braced frames types: a)”D” scheme: b)”split-K” scheme; 

c)”V” scheme; d)”Y” scheme. 

1.4 Organization of the work 

The dissertation is comprised of seven chapters, and a conclusive section: 

CHAPTER 1 provides the background and motivation, objective and 

scope, and organization of the work. 

CHAPTER 2 provides an overall view of the design approaches adopted 

for the database of buildings used for the calibration of the method. In particular, 

the Theory of Plastic Mechanism Control is addressed in detail. 

CHAPTER 3 provides in the first part the description of the proposed 

simplified method for MRFs and CBFs. In the following the equations of the 

branches for the characterization of the non-dimensional pushover curve are 

addressed. 

CHAPTER 4 is based on the calibration procedure adopted to assure a 

wide applicability of the method. In particular, summary graphs on the accuracy 

of the method are shown in the final part. 

CHAPTER 5 introduces two assessment procedures based on the ADRS 

spectrum and a formulation proposed by Nassar & Krawinkler. 

CHAPTER 6 provides examples of application of the performance-based 

assessment approach. In particular, three examples for each structural type are 

reported. 

CHAPTER 7 provides the application of the simplified method on 

simulated designs and the validation through Incremental Dynamic Analysis 

(IDA). In the final part, summary graphs on the accuracy of the method are 

shown. 
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CONCLUSIONS present the summary of the work with some suggestions 

for future research. 
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CHAPTER 2 

2 DESIGN APPROACHES 

2.1 Introduction 

Defining a simplified analytical methodology requires a large database of 

structures to calibrate and validate the procedure. The database was recreated 

through simulated design of Moment Resisting Frames (MRFs) [6] and 

Concentrically Braced Frames (CBFs) [9] according to three approaches 

deriving from the most modern design philosophies, which aim to develop a 

global collapse mechanism, up to the older ones, which did not include special 

requirements to be met in response to seismic actions. 

Below are the 3 design approaches considered for each structural typology 

and related synthetic nomenclature that will be used to identify them. 

For structures of type Moment Resisting Frames (MRFs): 

• Global Moment Resisting Frames (GMRFs) 

• Special Moment Resisting Frames (SMRFs) 

• Ordinary Moment Resisting Frames (OMRFs) 

For structures of type Concentrically Braced Frames (CBFs): 

• Global Concentrically Braced Frames (GCBFs) 

• Special Concentrically Braced Frames (SCBFs) 

• Ordinary Concentrically Braced Frames (OCBFs) 

The adjective "Global" refers to structures designed with advanced 

methodologies capable of ensuring the development of global collapse 

mechanisms. In particular, reference is made to the "Theory of Plastic 
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Mechanism Control" which is based on rigid plastic analysis extended to the 

second-order effects and which allows to achieve the result through a closed-

form solution. 

The adjective “Special”, on the other hand, refers to structures designed by 

applying the criteria provided by the existing European codes, in particular 

Eurocode 8, which should avoid the development of single storey mechanisms.  

Finally, the adjective "Ordinary" refers to structures designed before 

modern anti-seismic regulations, and which consequently do not provide for 

compliance with particular requirements aimed at dissipating incoming seismic 

energy. Such structures, when faced with a seismic event, generally show "soft 

storey" collapse mechanisms (design for only horizontal loads). 

2.2 Collapse Mechanisms for MRFs and CBFs  

The term "collapse mechanism" has been mentioned several times because 

there is a strong relationship between the type of collapse mechanism developed 

by the structure, the local ductility, the global ductility, and consequently the 

seismic performance exhibited under horizontal action. 

The (Global) ductility expresses the ability of a structure to exhibit 

deformations in the plastic field before reaching the structural collapse 

condition, i.e. μ=δu/δy where δu represents the top sway displacement exhibited 

at the collapse while δy top sway displacement corresponding to the elastic limit. 

The capacity to exhibit inelastic deformations is representative of the structure's 

ability to dissipate incoming seismic energy, and thus survive the earthquake. It 

is a function not only of the ductility of the material and the elements (local 

ductility), which are a necessary but not sufficient condition to ensure adequate 

ductility of the structure (Global ductility); structures with elements with high 

local ductility but distributed in a way that is not consistent with the demand 

distribution, in fact, can exhibit non dissipative collapse mechanisms, a 

symptom of low overall ductility of the structure. 

In this regard, it is of fundamental importance to highlight that the collapse 

mechanisms typical of MRF [6] and CBF [10] type structures subject to 

horizontal forces can be distinguished into three fundamental types (Figure 

2.2.1) provided that some specific hypotheses for the structural typology 

considered are respected, which will be deepened in the following. The three 

main typologies are completed by the global collapse mechanism, which is a 

particular case of type 2 collapse mechanism [22],[23].  
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The explanation of the various collapse mechanisms will take place with 

reference to the "mechanism 𝑖𝑚 indices". They are plan indicators that allow to 

identify the collapse mechanism and define its extension in association with the 

mechanism typology. 

Type 1 collapse mechanisms are partial mechanisms called "Lower partial" 

because they involve the first 𝑖𝑚 storeys. In this case, the higher is the 

mechanism index, the more are plans involved into the collapse mechanism. 

Type 2 collapse mechanisms are partial mechanisms called "Upper partial" since 

they involve storeys from 𝑖𝑚 to 𝑛𝑠, being 𝑛𝑠 the total number of storeys. In this 

case, the lower is the mechanism index, the more are storeys involved in the 

collapse mechanism. Type 3 collapse mechanisms, on the other hand, are local 

collapse mechanisms, also called "soft storey", which involve only the columns 

of the storey 𝑖𝑚 to dissipate the incoming energy. For each of the types of 

collapse mmechanismsidentified, 𝑛𝑠 mechanisms are possible (𝑖𝑚= 1, 2, ….., 

𝑛𝑠). Then there is the global collapse mechanism (type 2 mechanism with 𝑖𝑚 

equal to 1)   which is optimal from the point of view of structural ductility and 

the ability to dissipate the incoming seismic energy being characterized by the 

involvement in the plastic field of all the dissipative elements of the structure.  

Differently, the single storey or "soft storey" mechanisms lead to collapse 

through the formation few plastic hinges, i.e. to the head and foot of the columns 

of the same storey. These hinges are also placed in members, the columns, 

characterized by having low local ductility supplies due to the influence of axial 

force.  
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Figure 2.2.1 Collapse mechanism types for CBFs and MRFs 

It is possible to confirm what has been said through rigid-plastic analysis, 

that is, in the hypothesis of simultaneous formation of all plastic hinges, it can 

be noted that the plastic rotation required at the hinges for a fixed value of the 

plastic displacement 𝛿𝑝 at the top of the structure, is given by: 

𝜃𝑝 =
𝛿

𝐻0
 (2.2.1) 

Where 𝐻0 is the sum of the interstorey heights of the storeys involved into the 

collapse mechanism; Therefore: 

- type 1 mechanisms:  𝐻0 = ℎ𝑖𝑚 

- type 2 mechanisms:  𝐻0 = ℎ𝑛𝑠 − ℎ𝑖𝑚−1 

- type 3 mechanisms:  𝐻0 = ℎ𝑖𝑚 − ℎ𝑖𝑚−1 

- global mechanism:   𝐻0 = ℎ𝑛𝑠 
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The maximum value of 𝐻0 is achieved in the case of a global collapse 

mechanism, in which 𝐻0 coincides with the height of the entire building and 

minimum value in the case of soft storey mechanisms where 𝐻0 coincides with 

the interstorey height of the only storey involved into the collapse mechanism. 

Therefore, it is evident that, when a lateral displacement limit value is set, the 

global collapse mechanism leads to the minimum demand for plastic rotation, 

i.e, translated in terms of ductility, to the minimum local ductility demand. 

Finally, it is important to note that the type of collapse mechanism also 

influences structural sensitivity to second-order effects in the plastic field. This 

sensitivity is maximum in the case of soft storey mechanisms and minimum for 

global mechanisms. Of course, partial collapse mechanisms lead to intermediate 

inelastic performance between those of the global mechanism and those of the 

soft storey mechanisms. 

2.3 Theory of Plastic Mechanism Control: Generalities  

The Theory of the Plastic Mechanism Control [22],[23] is based on the 

extension, to the mechanism equilibrium curve, of the of the kinetic theorem of 

the plastic collapse which is one of the fundamental theorems of the limit 

analysis. The kinematic theorem states that the collapse multiplier is the 

minimum among all the kinetically admittable multipliers. Thanks to TPMC, 

rigid-plastic analysis is for the first time recognised as a useful tool for seismic 

design of structures.  

In particular, TPMC allows the theoretical solution to the problem of 

designing a structure failing in global mode, i.e. assuring the plasticization of all 

the dissipative zones before the collapse mechanism develops. The sections of 

the dissipative members are assumed to be known quantities, because they are 

preliminarily designed to withstand vertical loads according to the non-seismic 

load combination, or to withstand the design value of the seismic horizontal 

forces, according to the considered structural typology, while the unknowns of 

the design problem are the column sections needed to assure the desired collapse 

mechanism, i.e. the global mechanism. 

According to the theory of limit analysis, the assumption of a rigid-plastic 

behaviour of the structure until the complete development of a collapse 

mechanism is made. It means that the attention is focused on the condition the 

structure exhibits in the collapse state by neglecting each intermediate condition. 
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However, the simple application of the kinematic theorem of plastic 

collapse is not sufficient to assure the desired collapse mechanism, because high 

horizontal displacements occur before the complete development of the 

kinematic mechanism. These displacements give rise to significant second-order 

effects which cannot be neglected in the seismic design of structures. Therefore, 

the basic principle of TPMC is essentially constituted by the extension of the 

kinematic theorem of plastic collapse to the concept of mechanism equilibrium 

curve. Within the framework of a kinematic approach, for any given collapse 

mechanism, the mechanism equilibrium curve can be easily derived by equating 

the external work to the internal work due to the plastic hinges involved in the 

collapse mechanism, provided that the external second-order external work due 

to vertical loads is also evaluated. 

In this way the mechanism equilibrium curve is a straight line having the 

following form: 

𝛼 = 𝛼0 − 𝛾𝑠𝛿 (2.3.1) 

where 𝛼0 is the collapse multiplier of horizontal forces according to first-

order rigid-plastic analysis and 𝛾𝑠 is the (non-dimensional) slope of the 

mechanism equilibrium curve. 

In the framework of the limit analysis, the collapse multiplier is intended as 

the scalar value the actions have to be increased by to reach the structure 

collapse, namely the development of the collapse mechanism. In common 

practice, reference is made to the first-order analysis given on the undeformed 

configuration. However, as steel frames are more prone to exhibit overall 

buckling phenomena due to their intrinsic slenderness, the sensitivity to second-

order effects cannot be neglected. For this reason, the kinematic theorem of 

plastic collapse is extended to second-order effects on the deformed shape by 

the concept of collapse mechanism equilibrium curve, thus introducing the 

second-order collapse multiplier. The sensitivity to second-order effects is 

directly related to the slope of the mechanism equilibrium curve 𝛾𝑠. 

According to the extension to the mechanism equilibrium curve of the 

kinetic theorem of the plastic collapse, it can be stated that: 

given the sections of the columns, of the dissipative members, and the static 

force distribution, the mechanism that will be more prone to develop is the one 

corresponding to the curve characterized by the lower values of α, in the range 

of displacements compatible with the local ductility resources. 
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From a checking point of view, the procedure will result in the 

determination of the first order collapse multipliers 𝛼0 and the slopes 𝛾𝑠 of the 

collapse mechanism equilibrium curve for each possible trigging collapse 

mechanism of a pre-designed structure. The trigging mechanism will be the one 

corresponding to the curve characterized by the lower values of α, in the range 

of displacements compatible with the local ductility supplies. 

From a design point of view, the objective is to obtain a global collapse 

mechanism. Consequently, to avoid all the undesired collapse mechanisms, the 

design condition must be the following: 

the mechanism equilibrium curve corresponding to the global mechanism 

must be located below those corresponding to all the undesired mechanisms in 

a range of displacements 𝛿 compatible with the local ductility supplies. 

This design procedure has been applied to different structural typologies. 

In the thesis work the application on Moment Resisting Frames (MRFs) and 

Concentrically Braced Frames (CBFs) will be reported. 
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2.4 Global Moment Resisting Frames Design 

The TPMC applied to MRFs [22] allows the theoretical solution of the 

problem of designing a structure failing in global mode, i.e. assuring that plastic 

hinges develop only at beam ends while all the columns remain in elastic range 

with the only exception of base sections at first storey columns. The beam 

sections are assumed to be known quantities, because they are preliminarily 

designed to withstand vertical loads according to the non-seismic load 

combination, or to withstand the design value of the seismic horizontal forces 

while the unknowns of the design problem are the column sections needed to 

assure the desired collapse mechanism, i.e. the global mechanism. 

In the following, for the sake of simplicity, reference is made to the case of 

uniform vertical loads acting on the beams satisfying the limitation: 

𝑞𝑗𝑘 ≤
4𝑀𝑏.𝑗𝑘

𝑙𝑗
2  (2.4.1) 

where 𝑞𝑗𝑘 is the uniform vertical load applied to the beam of j-th bay and 

k-th storey, 𝑀𝑏.𝑗𝑘 is the corresponding beam plastic moment and 𝑙𝑗 is the j-th 

bay span. Such limitation assures that beam plastic hinges develop at the beam 

ends. In case of vertical loads exceeding the above limit the second plastic hinge 

in the beam develops in an intermediate section, so that the external work due 

to the uniform vertical loads has also to be considered.  

In the case of global mechanism, the external work is given due to a virtual 

rotation dθ of columns plastic hinges is given by 

𝑊𝑒 =  𝛼0
(𝑔)

( ∑ 𝐹𝑘ℎ𝑘

𝑛𝑠

𝑘=1

)  𝑑𝜃 +
𝛿

ℎ𝑛𝑠

∑ 𝑉𝑘ℎ𝑘
𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

𝑑𝜃 (2.4.2) 

where α is the multiplier of horizontal forces, 𝐹𝑘 and ℎ𝑘 are, respectively, 

the seismic force applied at k-th storey and the k-th storey height with respect 

to the foundation level, ℎ𝑛𝑠
 is the value of ℎ𝑘 at the top storey, δ is the top sway 

displacement and 𝑉𝑘 is the total vertical load acting at k-th storey. 

Equation (2.4.2) has been derived considering work due to the vector of 

vertical and horizontal virtual displacements, defined according to Figure 2.4.1. 



Chapter 2                                                                                               23 

 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

 

Figure 2.4.1 Second order vertical displacements 

From the analysis of the figure, in case of small displacements, it is possible 

to define the k-th component of the vector of virtual horizontal displacements 

as:  

𝑑𝑢𝑘 = ℎ𝑘𝑐𝑜𝑠𝜃𝑑𝜃 ≈ ℎ𝑘𝑑𝜃  (2.4.3) 

Where ℎ𝑘 is the height of the considered storey level and 𝑑𝜃 is the virtual 

rotation. 

The vector of virtual vertical displacements has the same shape of the one 

of horizontal displacements and can be expressed as: 

𝑑𝑣𝑘 =
𝛿

ℎ𝑛𝑠

ℎ𝑘𝑑𝜃  (2.4.4) 

Consequently, equation (2.4.3) will allow determining the first order 

external work, due to the horizontal forces (first term of Eq.(2.4.2)), while 

equation (2.4.4) the second order external work, due to the vertical loads (second 

term of Eq.(2.4.2)). 

𝛿𝑢𝑘  

𝛿 

𝛿𝑣𝑘  

𝐻0 

ℎ𝑘 

𝑢𝑘 

𝜃 

𝜃 

𝑑𝜃 
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2.4.1 First-Order Collapse Multipliers and Slopes of the Mechanism 

Equilibrium Curve for MRFs 

The internal work due to a virtual rotation dθ of column plastic hinges can 

be easily computed considering the work due to the dissipative zones activated 

by the trigging collapse mechanism. 

• Global collapse mechanism 

In the case of global collapse mechanism, it can be computed as: 

𝑊𝑖 = (∑ 𝑀𝑐𝑖.1

𝑛𝑐

𝑖=1

+ 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏

𝑗=1

𝑛𝑠

𝑘=1

)  𝑑𝜃 (2.4.5) 

where 𝑀𝑐𝑖.1 is the plastic moment of i-th column of the first storey reduced 

due to the contemporary action of the axial force; 𝑛𝑐, 𝑛𝑏 and 𝑛𝑠 are the number 

of columns, bays and storeys, respectively. 

The mechanism equilibrium curve for the global collapse mechanism can 

be derived by equating the internal work to the external one (Eq.(2.4.5), 

Eq.(2.4.2)) and can be written as: 

𝛼(𝑔) =
∑ 𝑀𝑐.𝑖1 + 2

𝑛𝑐
𝑘=1 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

−
1

ℎ𝑛𝑠

∑ 𝑉𝑘ℎ𝑘
𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

𝛿 (2.4.6) 

 where the kinematically admissible multiplier of horizontal forces 

according to first-order rigid plastic analysis 𝛼0
(𝑔)

is given by: 

𝛼0
(𝑔)

=
∑ 𝑀𝑐.𝑖1 + 2

𝑛𝑐
𝑘=1 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 (2.4.7) 

And the slope of the mechanism equilibrium curve 𝛾(𝑔) by: 

𝛾(𝑔) =
1

ℎ𝑛𝑠

∑ 𝑉𝑘ℎ𝑘
𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 (2.4.8) 

The procedure for the definition of the mechanism equilibrium curves for 

all the considered collapse mechanisms exploits the same assumptions reported 

in the global case. The only difference lies in the specific collapse configuration 

which, for each mechanism, will lead to a different definition of the collapse 

multiplier 𝛼0 and the slope 𝛾. 
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For the sake of simplicity, the collapse multipliers 𝛼0 and the slopes 𝛾 for 

each mechanism typology considered, are reported in a schematic way. 

• Type 1 collapse mechanisms 

With reference to 𝑖𝑚 th mechanism of type 1, the first order collapse 

multiplier of seismic horizontal forces 𝛼0.𝑖𝑚

(1)
 is given by: 

𝛼0.𝑖𝑚

(1)
=  

∑ 𝑀𝑐.𝑖.1
𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘 +

𝑛𝑏
𝑗=1

𝑖𝑚−1
𝑘=1 ∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐
𝑖=1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

 (2.4.9) 

while 𝛾𝑖𝑚
(1)

 is the slope of the Type 1 mechanism equilibrium curve, and can 

be reported as: 

𝛾𝑖𝑚

(1)
=

1

ℎ𝑖𝑚

 
∑ 𝑉𝑘ℎ𝑘

𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

 (2.4.10) 

• Type 2 collapse mechanisms 

With reference to 𝑖𝑚 th mechanism of type 2, the first order collapse 

multiplier of seismic horizontal forces 𝛼0.𝑖𝑚

(2)
 is given by: 

𝛼0.𝑖𝑚

(2)
=  

∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑚−1
𝑛𝑠
𝑘=𝑖𝑚

)
 (2.4.11) 

while 𝛾𝑖𝑚
(2)

 is the slope of the Type 2 mechanism equilibrium curve, and can 

be reported as: 

𝛾𝑖𝑚

(2)
=

1

ℎ𝑛𝑠
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑚−1

𝑛𝑠
𝑘=𝑖𝑚

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑚−1
𝑛𝑠
𝑘=𝑖𝑚

)
 (2.4.12) 

• Type 3 collapse mechanisms 

With reference to 𝑖𝑚-th mechanism of type 3 (“Soft Storey” mechanisms), 

the first order collapse multiplier of seismic horizontal forces 𝛼0.𝑖𝑚

(3)
 is given by: 

𝛼0.𝑖𝑚

(3)
=  

2 ∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐
𝑖=1

(ℎ𝑖𝑚
− ℎ𝑖𝑚−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑚

 (2.4.13) 
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while 𝛾𝑖𝑚
(3)

 is the slope of the Type 1 mechanism equilibrium curve, and can 

be reported as: 

𝛾𝑖𝑚

(3)
=

1

ℎ𝑖𝑚
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚

 (2.4.14) 

The design conditions to be fulfilled in order to avoid all the undesired 

collapse mechanisms require that the mechanism equilibrium curve 

corresponding to the global mechanism has to be located below those 

corresponding to all the undesired mechanisms within a top sway displacement 

range, 𝛿𝑢, compatible with the ductility supply of structural members. 

The considerations just made lead to define the design conditions that must 

be verified for each mechanism index and for every typology: 

𝛼0
(𝑔)

− 𝛾(𝑔)𝛿𝑢 ≤ 𝛼0.𝑖𝑚

(𝑡)
− 𝛾𝑖𝑚

(𝑡)
𝛿𝑢  for t=1,..,3  𝑖𝑚=1,.., 𝑛𝑠 (2.4.15) 

Equation (2.4.15) constitutes the statement of the theory of plastic 

mechanism control and it is valid independently of the structural typology.  

 

Figure 2.4.2 Design condition 

2.4.2 TPMC Design steps for MRFs 

The TPMC presents a solution in closed form thanks to some considerations 

about the collapse mechanisms. The mechanism of type 1 and type 3 for 𝑖𝑚 =1 

are coincident, as are the mechanism of type 2 and global.  

In particular, the solution is obtained according to the following steps: 
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a) Selection of a design top sway displacement 𝛿𝑢 compatible with 

the ductility supplies of structural members. To this scope, in the 

following, the plastic rotation capacity is assumed equal to 0.04 rad 

so that δu=0.04 hns where hns is the height of the structure. 

b) Computation of the slopes of mechanism equilibrium curves 𝛾𝑖𝑚
(𝑡)

 

by means of Equations (2.4.10), (2.4.12) and (2.4.14). The slope of 

the global mechanism equilibrium curve γ(g) is provided by 

Equation (2.4.8) and it’s the minimum among the γim
(t)

 values 

computed before. 

c) Design of first storey columns sections. This is probably the most 

important design step. Referring to the case where the frame is 

orthogonal to the secondary beams of the deck, the vertical loads 

lead the design of the beams. Consequently, the preliminary design 

of the beams can be carried out by estimating the maximum 

bending moment that occurs in the combination of non-seismic 

loads. According to these premises, In such a case (high gravity 

loads), the required sum of plastic moment of columns, reduced due 

to the contemporary action of the axial force, ∑ 𝑀𝑐.𝑖1
𝑛𝑐
𝑖=1 , for 𝑖𝑚 =

1, i.e. at the first storey, to avoid the development of undesired 

collapse mechanisms, is computed by means of the following 

relation: 

∑ 𝑀𝑐.𝑖.1

𝑛𝑐

𝑖=1

≥
2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1 + (𝛾1

(3)
−𝛾(𝑔)) 𝛿𝑢 ∑ 𝐹𝑘ℎ𝑘

𝑛𝑠
𝑘=1

2
∑ 𝐹𝑘ℎ𝑘

𝑛𝑠
𝑘=1

ℎ1 ∑ 𝐹𝑘
𝑛𝑠
𝑘=1

− 1

 
(2.4.16) 

The second case occurs when the moment resisting frame is parallel to the 

secondary beams of the decks. In such a case, being the tributary area for the 

gravity loads small, the simple design of beams for vertical loads only would 

lead to beam sections too small which could be not sufficient 

In this second case, it is desirable to have the distribution of the beam 

flexural strength along the building height that follows the distribution of the 

design storey shears, i.e. 𝑀𝑏.𝑗𝑘 = 𝛽𝑘𝑀𝑏.𝑗𝑛𝑠
where 𝛽𝑘 is the ratio between the 

design seismic shear at k-th storey and the design seismic shear at the top storey. 

d) The sum of the required plastic moments of columns at first storey 

is distributed among the columns proportionally to the axial load 
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acting at the collapse state, so that, the design internal actions 

(𝑀𝑐.𝑖1, 𝑁𝑐.𝑖1 for 𝑖 = 1,2, … , 𝑛𝑐) are derived and the column sections 

at first storey can be designed. As column sections are selected 

from standard shapes, the value obtained of ∑ 𝑀𝑐.𝑖.1
𝑛𝑐
𝑖=1 , namely 

∑ 𝑀𝑐.𝑖1
∗𝑛𝑐

𝑖=1  is generally greater than the required minimum value 

provided by Eq. (2.4.16).   

e) Computation of the required sum of plastic moment of columns, 

reduced due to the contemporary action of the axial force, 

∑ 𝑀𝑐.𝑖𝑖𝑚

(𝑡)𝑛𝑐
𝑖=1 , for im > 1 and 𝑡 = 1,2,3 by means of the following 

relations: 

∑ 𝑀𝑐.𝑖.𝑖𝑚

(1)

𝑛𝑐

𝑖=1

≥ (𝛼(𝑔) + 𝛾𝑖𝑚

(1)
𝛿𝑢) (∑ 𝐹𝑘ℎ𝑘

𝑖𝑚

𝑘=1

+ ℎ𝑖𝑚
∑ 𝐹𝑘

𝑛𝑠

𝑘=𝑖𝑚+1

)

− ∑ 𝑀𝑐.𝑖.1
∗

𝑛𝑐

𝑖=1

− 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏

𝑗=1

𝑖𝑚−1

𝑘=1

 

(2.4.17) 

needed to avoid type 1 mechanisms; 

∑ 𝑀𝑐.𝑖.𝑖𝑚

(2)

𝑛𝑐

𝑖=1

≥ (𝛼(𝑔) + 𝛾𝑖𝑚

(2)
𝛿𝑢) ∑ 𝐹𝑘(ℎ𝑘

𝑛𝑠

𝑘=𝑖𝑚

− ℎ𝑖𝑚−1)

− 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏

𝑗=1

𝑛𝑠

𝑘=𝑖𝑚

 

(2.4.18) 

needed to avoid type 2 mechanisms; 

∑ 𝑀𝑐.𝑖.𝑖𝑚

(3)

𝑛𝑐

𝑖=1

≥ (𝛼(𝑔) + 𝛾𝑖𝑚

(3)
𝛿𝑢)

(ℎ𝑖𝑚
− ℎ𝑖𝑚−1)

2
∑ 𝐹𝑘

𝑛𝑠

𝑘=𝑖𝑚

 (2.4.19) 

needed to avoid type-3 mechanisms. 

Equations (2.4.16)-(2.4.19) have been directly derived from Eq. (2.4.15) for 

𝑖𝑚 > 1 and 𝑡 = 1, 𝑡 = 2 and 𝑡 = 3, respectively. 
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f) Computation of the required sum of the reduced plastic moments 

of columns for each storey as the maximum value among those 

coming from the above design conditions: 

∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐

𝑖=1

= 𝑚𝑎𝑥 {∑ 𝑀𝑐.𝑖.𝑖𝑚

(1)

𝑛𝑐

𝑖=1

, ∑ 𝑀𝑐.𝑖.𝑖𝑚

(2)

𝑛𝑐

𝑖=1

, ∑ 𝑀𝑐.𝑖.𝑖𝑚

(3)

𝑛𝑐

𝑖=1

} (2.4.20) 

g) The sums of the required plastic moments of the columns on each 

floor, reduced for the simultaneous action of the axial force, are 

distributed among all the columns of the storey proportionally to 

the axial force acting in collapse condition. The knowledge of the 

plastic moments 𝑀𝑐.𝑖.𝑖𝑚 , coupled with the axial forces in collapse 

conditions 𝑁𝑐.𝑖.𝑖𝑚, allows to design the columns by selecting them 

using standard shapes. 

h) If necessary, a technological condition is imposed by requiring, 

starting from the base, that the column sections cannot increase 

along the building height. If this condition requires the change of 

column sections at first storey then the procedure needs to be 

repeated from point e). In fact, in this case, a new value of 

∑ 𝑀𝑐.𝑖.1
∗𝑛𝑐

𝑖=1  is obtained and, as a consequence, the value of the sum 

of the required plastic moments of columns at each storey changes. 

2.5 Global Concentrically Braced Frames design 

In the case of CBF systems (reference is made to simple “X-shaped” CBFs) 

[9],[11],[12], the global mechanism is characterised by the yielding of all the 

tensile diagonals while the compressed ones are buckled. The control of the 

failure mode requires the analysis of 3ns mechanisms (being ns the number of 

storeys). The beam sections are designed to withstand vertical loads while the 

diagonal sections are designed for a given percentage of the design horizontal 

forces. Therefore, diagonal sections are considered as input data of the design 

problem.  

Consequently, the only unknowns of the design procedure are the column 

sections. 

According to TPMC, column sections are designed by imposing that the 

mechanism equilibrium curve corresponding to the global mechanism has to be 

located below those corresponding to all the undesired partial or soft-storey 
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mechanisms within a top sway displacement range compatible with the plastic 

deformation capacity of members. 

Regarding the calculation of first-order kinematically admissible multiplier 

of horizontal forces, it is preliminarily convenient to define the internal work 

Wd.jk due to dissipative zones (diagonal braces) of j-th bay of k-th storey, 

occurring for a unit virtual rotation of plastic hinges of columns: 

𝑊𝑑.𝑗𝑘 = 𝑁𝑡.𝑗𝑘 ∙ 𝑒𝑡.𝑗𝑘 + 𝑁𝑐.𝑗𝑘(𝛿) ∙ 𝑒𝑐.𝑗𝑘 (2.5.1) 

where et.jk = ec.jk = (hk–hk-1)∙cosβjk represent, respectively, the elongation of 

tensile diagonal and the shortening of the buckled compressed diagonal of j-th 

bay of k-th storey, occurring for a unit virtual rotation of plastic hinges of 

columns; hk is the storey height of k-th storey with respect to the foundation; bjk 

is the inclination of the diagonal of k-th storey and j-th bay with respect to the 

horizontal direction; Lj is the bay span. In addition, Nt.jk is the yielding axial 

force of the tensile diagonal of j-th bay of k-th storey, and Nc.jk, for the same bay 

and the same storey, is the axial force in the compressed diagonal accounting 

for the post-buckling behaviour according to Georgescu’s model (Figure 2.5.1). 

 

Figure 2.5.1 Evaluation of compression and tension axial force depending on diagonal 

axial deformation. 

The compressive acting axial force is dependent on the shortening δbr of the 

diagonal braces which is related to the ultimate top sway displacement δu. 

Depending on the collapse mechanism, δbr can be computed according to the 

following relationships: 
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𝛿𝑏𝑟 =
𝛿𝑢

𝐻0
∙ ℎ𝑖 ∙ 𝑐𝑜𝑠 𝛽 (2.5.2) 

where hi is the interstorey height, β is the inclination of the generic diagonal 

referred to the horizontal direction and H0 is the sum of inter-storey heights of 

storeys involved in the collapse mechanism. More precisely, H0 = him, H0 = hns 

- him-1 and H0 = him – him-1 for im-th mechanism of type-1, type-2 and type-3, 

respectively. 

The ultimate top sway displacement 𝛿𝑢 is defined as a function of the 

interstorey drift limit: 

𝜑𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖=1
𝑛 𝜑𝑖 = 𝑚𝑎𝑥𝑖=1

𝑛 𝛿𝑏𝑟.𝑙𝑖𝑚

ℎ𝑖 ∙ 𝑐𝑜𝑠𝛽𝑖
 (2.5.3) 

𝛿𝑢 =  𝜑𝑚𝑎𝑥 ∙ 𝐻0 (2.5.4) 

where 𝛿𝑏𝑟.𝑙𝑖𝑚 is the limit value of elongation for the diagonal members 

(Figure 2.5.2.a) 

 

Figure 2.5.2 a) Undeformed configuration; b) collapse configuration; c) axial forces 

transmitted at the collapse by dissipative elements. 

For design purposes, obviously, H0 = hns in the case of global collapse 

mechanism.  

Concerning the axial force Nc.jk that needs to be evaluated to compute the 

plastic moment of columns Mc.jk reduced by the effect of the axial load, reference 
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has to be made to the distribution of internal actions occurring at collapse. This 

evaluation can be easily carried out starting from the knowledge of the forces 

which the diagonal members transmit to the columns in collapse condition 

(Figure 2.5.2.c) 

As regards the external work, it can be computed starting from the same 

considerations made for Moment Resisting Frames. In fact, the external work 

depends on the collapse configuration of the structure and, for assumption, 

MRFs and CBFs are characterized by the same possible trigging collapse 

mechanisms (Figure 2.2.1). 

2.5.1 First-Order Collapse Multipliers and Slopes of the Mechanism 

Equilibrium Curve for MRFs 

By means of the virtual work principle, the first-order kinematically 

admissible multiplier of horizontal forces and the slopes of the mechanism 

equilibrium curve can be easily evaluated for all the possible collapse 

mechanisms. The following relationships are obtained:  

• Global collapse mechanism 

The kinematically admissible multiplier of horizontal forces according to 

first-order rigid plastic analysis 𝛼0
(𝑔)

is given by: 

𝛼0
(𝑔)

=
∑ ∑ 𝑊𝑑.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 (2.5.5) 

And the slope of the mechanism equilibrium curve 𝛾(𝑔) by: 

𝛾(𝑔) =
1

ℎ𝑛𝑠

∑ 𝑉𝑘ℎ𝑘
𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 (2.5.6) 

• Type 1 collapse mechanisms 

With reference to 𝑖𝑚 th mechanism of type 1, the first order collapse 

multiplier of seismic horizontal forces 𝛼0.𝑖𝑚

(1)
 is given by: 

𝛼0.𝑖𝑚

(1)
=

∑ ∑ 𝑊𝑑.𝑗𝑘
𝑛𝑏
𝑗=1 + ∑ 𝑀𝑐.𝑖𝑖𝑚

𝑛𝑐
𝑖=1

𝑖𝑚−1
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

;     𝑖𝑚 = 1,2, … , 𝑛𝑠−1 (2.5.7) 

For im = ns,  𝛼0.𝑛𝑠

(1)
= 𝛼0

(𝑔)
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while 𝛾𝑖𝑚
(1)

 is the slope of the Type 1 mechanism equilibrium curve, and can 

be reported as: 

𝛾𝑖𝑚

(1)
=

1

ℎ𝑖𝑚

 
∑ 𝑉𝑘ℎ𝑘

𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

  (2.5.8) 

• Type 2 collapse mechanisms 

With reference to 𝑖𝑚 th mechanism of type 2, the first order collapse 

multiplier of seismic horizontal forces 𝛼0.𝑖𝑚

(2)
 is given by: 

𝛼𝑜.𝑖𝑚

(2)
=

∑ ∑ 𝑊𝑑.𝑗𝑘
𝑛𝑏
𝑗=1 + ∑ 𝑀𝑐.𝑖𝑖𝑚

𝑛𝑐
𝑖=1

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘 ∙ (ℎ𝑘
𝑛𝑠
𝑘=𝑖𝑚

− ℎ𝑖𝑚−1)
;      𝑖𝑚 = 2,3, … , 𝑛𝑠 (2.5.9) 

for im = 1,  𝛼0.1
(2)

= 𝛼0
(𝑔)

 

while 𝛾𝑖𝑚
(2)

 is the slope of the Type 1 mechanism equilibrium curve, and can 

be reported as: 

𝛾𝑖𝑚

(2)
=

1

ℎ𝑛𝑠
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑚−1

𝑛𝑠
𝑘=𝑖𝑚

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑚−1
𝑛𝑠
𝑘=𝑖𝑚

)
 (2.5.10) 

• Type 3 collapse mechanisms 

With reference to 𝑖𝑚 th mechanism of type 3 (“Soft Storey” mechanisms), 

the first order collapse multiplier of seismic horizontal forces 𝛼0.𝑖𝑚

(3)
 is given by: 

𝛼0.𝑖𝑚

(3)
=

2 ∙ ∑ 𝑀𝑐.𝑖𝑖𝑚

𝑛𝑐
𝑖=1 + ∑ 𝑊𝑑.𝑗𝑖𝑚

𝑛𝑏
𝑗=1

(ℎ𝑖𝑚
− ℎ𝑖𝑚−1) ∙ ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑚

;         2 < 𝑖𝑚 < 𝑛𝑠 (2.5.11) 

𝛼0.𝑛𝑠

(3)
=

∑ 𝑀𝑐.𝑖𝑛𝑠

𝑛𝑐
𝑖=1 + ∑ 𝑊𝑑.𝑗𝑛𝑠

𝑛𝑏
𝑗=1

(ℎ𝑛𝑠
− ℎ𝑛𝑠−1) ∙ 𝐹𝑛𝑠

;                      𝑖𝑚 = 𝑛𝑠  (2.5.12) 

𝛼0.1
(3)

=
∑ 𝑀𝑐.𝑖1

𝑛𝑐
𝑖=1 + ∑ 𝑊𝑑.𝑗1

𝑛𝑏
𝑗=1

ℎ1 ∙ ∑ 𝐹𝑘
𝑛𝑠
𝑘=1

;                           𝑖𝑚 = 1  (2.5.13) 

while 𝛾𝑖𝑚
(3)

 is the slope of the Type 1 mechanism equilibrium curve, and can 

be reported as: 
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𝛾𝑖𝑚

(3)
=

1

ℎ𝑖𝑚
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚

 (2.5.14) 

where nc, nb and ns are, respectively, the number of columns, bays and 

storeys; Mc.ik is the plastic moment of ith column of k-th storey, reduced due to 

the contemporaneous action of the axial force; Mb.jk is the plastic moment of the 

beam of j-th bay of k-th storey; qjk is the vertical uniform load acting on the 

beam of j-th bay of k-th storey and, finally, Fk is the design horizontal force 

applied at k-th storey and Vk is the total vertical load acting at k-th store. With 

respect to the axial force Nc.jk that needs be evaluated to compute the plastic 

moment Mc.jk reduced to account for M–N interaction, reference has to be made 

to the distribution of internal actions occurring at collapse (Figure 2.5.2.c) 

2.5.2 TPMC Design steps for simple CBFs 

In order to assure the development of the desired global mechanism, 

according to TPMC, column sections have to be designed by imposing that the 

mechanism equilibrium curve corresponding to the global mechanism is located 

below those corresponding to all the other undesired partial mechanisms up to a 

selected design ultimate top sway displacement du compatible with the plastic 

deformation capacity of members. 

The design condition for GCBFs can be expressed as: 

𝛼0
(𝑔)

− 𝛾(𝑔)𝛿𝑢 ≤ 𝛼𝑖𝑚

(𝑡)
− 𝛾𝑖𝑚

(𝑡)
𝛿𝑢 (2.5.15) 

with im = 1,2,3, . . ., ns and t = 1,2,3. 

The design procedure can be summarised into the following steps:  

(a) Design of beam and diagonal sections to withstand vertical loads and 

seismic horizontal forces, respectively.  

(b) Selection of the design top sway displacement du depending on the 

ductility supply of dissipative zones. In the specific case, the limitations defined 

by Eurocode 8 for tensile and compressed diagonals have been used. As a 

function of the extensional limit, a drift limitation has been derived. 

Consequently, the ultimate displacement has been computed as δu = φlimhns is 

assumed, where hns is the overall height of the structure and φlim is the drift 

limitation.  
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(c) Computation of the axial load acting at collapse state in the columns. 

This step can be easily carried out considering that, when the global mechanism 

is completely developed, the column axial forces can be obtained, at each storey, 

from the sum of the shear forces transmitted by the beam ends and the vertical 

component of axial forces occurring in diagonal braces. Obviously, beams and 

diagonal braces at and above the analysed storey need to be considered.  

 (d) Design of first storey column sections by computing the required sum 

of plastic moment of columns, reduced due to the contemporaneous action of 

the axial load, by means of the following relation:  

∑ 𝑀𝑐.𝑖1

𝑛𝑐

𝑖=1

≥

∑ ∑ 𝑊𝑑.𝑗𝑘 + ∑ 𝐹𝑘ℎ𝑘 (𝛾1
(3)

− 𝛾(𝑔)) 𝛿𝑢
𝑛𝑠
𝑘=1

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1 −

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

𝐹𝑘ℎ𝑘 + ℎ1 ∑ 𝐹𝑘
𝑛𝑠

𝑘=1

∑ 𝑊𝑑.𝑗1
𝑛𝑏
𝑗=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠

𝑘=1

𝐹𝑘ℎ𝑘 + ℎ1 ∑ 𝐹𝑘
𝑛𝑠

𝑘=1

 

(2.5.16) 

Equation (2.5.16) is derived from design conditions (2.5.15) for im = 1 and 

t = 1 or t = 3 (because for im = 1, type 1 mechanism and type 3 mechanism are 

coincident). In addition, it is important to underline that, for im =1, type 2 

mechanism is coincident with the global mechanism, so that Equation (2.5.15) 

becomes an identity. This observation is of paramount importance from a 

practical point of view because it allows to design the first-storey columns 

directly by means of Equation (2.5.16) and to avoid any iterative procedure 

providing a closed-form solution easy to be applied by hand calculations. 

As soon as the sum of plastic moments of first storey columns has been 

computed according to Equation (2.5.16), the plastic moment of i-th column is 

derived by assuming that the above sum is distributed among the different 

columns proportionally to the corresponding axial force Nc.i1 obtained according 

to step (c). Therefore, the column section can be selected from standard shapes 

by imposing that the point representative of internal actions (Mc.i1; Nc.i1) is 

located inside or, at least, on the boundary line of the design M–N plastic 

domain.  

(e) Because of the selection of column sections from standard shapes, some 

column overstrength can occur. Therefore, the bending moment M*c.i1 

corresponding to Nc.i1 on the boundary line of the design M–N plastic domain is 

M*c.i1 ≥ Mc.i1, and the equations depending on Mc.i1  need to be computed 

applying M*c.i1 instead of Mc.i1.  
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(f) Computation of the required sum of plastic moments of columns, 

reduced due to the contemporaneous action of the axial load, for im > 1, by means 

of the following relations needed to avoid type-1, type-2 and type-3 

mechanisms, respectively: 

for mechanism of type 1 

∑ 𝑀𝑐.𝑖𝑖𝑚

(1)

𝑛𝑐

𝑖=1

≥ (𝛼(𝑔) + 𝛾𝑖𝑚

(1)
𝛿𝑢) (∑ 𝐹𝑘ℎ𝑘 + ℎ𝑖𝑚

𝑖𝑚

𝑘=1

∑ 𝐹𝑘

𝑛𝑠

𝑘=𝑖𝑚+1

)

− ∑ ∑ 𝑊𝑑,𝑗𝑘

𝑛𝑏

𝑗=1

𝑖𝑚

𝑘=1

 

(2.5.17) 

for mechanism of type 2 

∑ 𝑀𝑐.𝑖𝑖𝑚

(2)

𝑛𝑐

𝑖=1

≥ (𝛼(𝑔) + 𝛾𝑖𝑚

(2)
𝛿𝑢) ∑ 𝐹𝑘(ℎ𝑘 + ℎ𝑖𝑚−1)

𝑛𝑠

𝑘=𝑖𝑚

− ∑ ∑ 𝑊𝑑,𝑗𝑘

𝑛𝑏

𝑗=1

𝑛𝑠

𝑘=𝑖𝑚

 

(2.5.18) 

for mechanism of type 3 

∑ 𝑀𝑐.𝑖𝑖𝑚

(3)

𝑛𝑐

𝑖=1

≥
1

2
[(𝛼(𝑔) + 𝛾𝑖𝑚

(3)
𝛿𝑢) (ℎ𝑖𝑚

− ℎ𝑖𝑚−1) ∑ 𝐹𝑘

𝑛𝑠

𝑘=𝑖𝑚

− ∑ 𝑊𝑑,𝑗𝑖𝑚

𝑛𝑏

𝑗=1

] 

(2.5.19) 

Equations (2.5.17)(2.5.19) have been directly derived from Equation 

(2.5.16) for im > 1. 

 (g) Computation of the required sum of the reduced plastic moments of 

columns for each storey as the maximum value among those coming from the 

above design conditions: 

∑ 𝑀𝑐,𝑖𝑖𝑚

𝑛𝑐

𝑖=1

= 𝑚𝑎𝑥 {∑ 𝑀𝑐.𝑖𝑖𝑚

(1)
, ∑ 𝑀𝑐.𝑖𝑖𝑚

(2)

𝑛𝑐

𝑖=1

, ∑ 𝑀𝑐.𝑖𝑖𝑚

(3)

𝑛𝑐

𝑖=1

𝑛𝑐

𝑖=1

} (2.5.20) 
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(h) For each column, the required plastic moment Mc.iim , reduced due to the 

contemporaneous action of the axial load Nc.iim , is computed and the column 

section is designed with the same procedure pointed out in step (d) with 

reference to the first storey.  

(i) If needed, a technological condition is imposed requiring that, starting 

from the base, the column sections cannot increase along the building height. If 

this condition leads to the revision of column sections at first storey, then the 

value of M*c.i1 has to be updated and the design procedure needs to be repeated 

from step (f). 

Before introducing the design procedure for Global Concentrically Braced 

Frames, it is necessary to define how the axial force in compressed members, in 

collapse condition, are defined. 

2.5.3 Definition of the Axial Force in Compressed Members According 

to Georgescus’s Model 

The behaviour of the axially loaded member is described through three 

parameters: the axial stress P, the axial deformation δ, and the transverse 

deflection f. 

Georgescu’s model [24],[25] refers to a cycle that is divided into zones 

corresponding to several characteristic behaviours, the definition of which is 

closely related to the physical interpretation of the inelastic cyclic behaviour.  

In the specific case, Georgescu’s model has been adapted to a monotonic 

behaviour considering only the tension/elongation and the 

compression/shortening phases, as depicted in Figure 2.5.1. Consequently, only 

the OA, AB, and BC branches will be used to describe the behaviour in 

compression.  

Branch OA of elastic shortening in compression: because of axial 

compression, a progressive shortening that ends in point A with the achievement 

of the unstable condition occurs. It corresponds to the value of the resistant load 

in compression Pcr. 

Branch AB: once the unstable condition is reached, the member begins to 

buckle laterally. As a consequence, a variable second order bending moment 

occurs along the beam equal to P∙f(z), where f(z) represents the deformation of 

the axis line. The lateral displacement increases under constant load up to point 
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B, at which, because of the second-order, a plastic hinge is formed in the centre 

section. 

Branch BC: represents the equilibrium curve of the mechanism into which 

the member has been transformed. Because of the formation of the plastic hinge, 

the bending moment in the middle section remains constant; therefore, the axial 

and transversal deformation increase must be accompanied by a load reduction. 

The plastic hinge continues to rotate until it reaches point C at which the load is 

reversed. The section is characterized by a non-linear trend due to the interaction 

of normal stress-bending moment. 

The equations describing the model depend on the initial imperfection f0, 

defined according to Georgescu’s model and Eurocode 3: 

𝑓0 =
𝑊

𝐴
𝛼(𝜆2̅̅ ̅ − 0.04)   𝑤𝑖𝑡ℎ  𝛼 = 0.21 , 𝜆̅ =

𝜆

𝜆𝑦
 (2.5.21) 

where W is the plastic section modulus, A is the section area, α is a 

coefficient depending on the buckling curve, defined by Eurocode 3, λ is the 

geometric slenderness defined as the ratio between the effective buckling length 

L0 and the radius of gyration  𝜆𝑦 = 𝜋(𝐸 𝑓𝑦⁄ )
1 2⁄

 is the slenderness 

corresponding to the yielding condition, E is the elastic modulus and fy is the 

resistance of the steel in tension. 

The equations representing the branches of the model are reported in the 

following: 

OA branch: 

𝑃 =
𝐸𝐴

𝐿
𝛿𝑂𝐴 = 𝐾𝑑𝛿𝑂𝐴     𝑤𝑖𝑡ℎ 𝑃 ≤   𝑃𝑐𝑟𝑖𝑡  ;    𝛿𝐴 =

𝑃𝑐𝑟𝑖𝑡

𝐾𝑑
 (2.5.22) 

Where Pcrit is the critical axial load defined according to Eurocode 3. 

AB branch: 

𝑓𝑡𝐵 =
𝑀𝑝𝑙

𝑃𝑐𝑟𝑖𝑡
(1 −

𝑃𝑐𝑟𝑖𝑡

𝑃𝑦
) (2.5.23) 

𝛿𝐵 = −
𝑃𝑐𝑟𝑖𝑡𝐿

𝐸𝐴
+

𝜋2

4𝐿
(𝑓𝑡𝐵

2 − 𝑓0
2) (2.5.24) 

Where Mpl is the plastic resisting moment of the section and Py is the axial 

resistance in tension. 
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BC branch: 

𝑓𝑡 =
𝑀𝑝𝑙

𝑃
(1 −

𝑃

𝑃𝑦
)  𝑤𝑖𝑡ℎ 𝑃 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 <  𝑃𝑐𝑟𝑖𝑡 (2.5.25) 

𝑓0 = 𝛿𝐵𝐶 = −
𝑃𝐿

𝐸𝐴
+

𝜋2

4𝐿
(𝑓𝑡

2 − 𝑓0
2) (2.5.26) 

The link describing the monotonic behaviour of compressed diagonals is 

completed by defining the elastic and the plastic branch in tension, respectively 

branch OF and FG, as reported in Figure 2.5.1. 

OF branch: 

𝑃 =
𝐸𝐴

𝐿
𝛿𝑂𝐹 = 𝐾𝑑𝛿𝑂𝐹     𝑤𝑖𝑡ℎ 𝑃 ≤   𝑃𝑦 ;    𝛿𝐹 =

𝑃𝑦

𝐾𝑑
 (2.5.27) 

FG branch: 

𝑃 = 𝑃𝑦   ∀ 𝛿𝐹𝐺 (2.5.28) 

Once defined the stresses in the dissipative elements (in compression and 

tension) in the collapse configuration, the axial force acting on columns, 

influencing the plastic resisting moment Mc.ik, is evaluated in the seismic 

conditions considering the stresses transmitted by the diagonals at collapse, 

according to the second principle of capacity design. Therefore, concerning the 

scheme shown in Figure 2.5.2c, we have for columns [9]:  

𝑁𝑐.𝑘 = ∑ 𝑃𝑦.𝑘 ∙ 𝑠𝑖𝑛 𝛼𝑗 + ∑ 𝑃𝑐.𝑘(𝛿𝑢.𝑗) ∙ 𝑠𝑖𝑛 𝛽𝑗 ;   𝑘 < 𝑛𝑠 (2.5.29) 

𝑁𝑐.𝑘 = 𝑃𝑦.𝑘 ∙ 𝑠𝑖𝑛 𝛽𝑗 ;                                             𝑤𝑖𝑡ℎ 𝑘 = 𝑛𝑠 (2.5.30) 

where Pc.k (δu.j) is the axial force in compression corresponding to the 

interstorey displacement of the j-th diagonal at k-th storey in collapse condition. 

The axial force in diagonals is assumed in absolute value. 

The design stresses of beams and columns are finally obtained by the 

addition of the normal stresses estimated through Eqs.(2.5.29) and (2.5.30)  and 

the stresses resulting from the action of the non-seismic loads of the seismic 

load combination (Gk+ψQk). 
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2.6 Upper Partial and Shear Band Collapse Mechanisms 

Another more complete way to describe all possible collapse mechanisms 

for MRFs and CBFs structures involves the introduction of "Shear band" 

mechanisms.  

 

Figure 2.6.1 “Upper partial” and “Shear band” mechanisms for MRFs and CBFs. 

These partial collapse mechanisms are characterized by also affecting 

intermediate bands of storeys and require the introduction of two storey indices 

to be defined. 

 

In order to enclose all possible types of collapse mechanism, two patterns 

of yielding corresponding to two mechanism typologies, named “upper partial” 

and “shear band” have been defined. These mechanisms are depicted in Figure 
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2.6.1 for given mechanism indexes 𝑖𝑏 and 𝑖𝑡, additionally in the same figure, it 

is also pointed out that the global mechanism is a particular case of the upper 

partial mechanisms occurring when 𝑖𝑏 = 1 and 𝑖𝑡 = 𝑛𝑠.  

Type-1 mechanisms are specific cases of shear band mechanisms occurring 

for 𝑖𝑏 = 1 ; Type-2 mechanisms are herein referred as upper partial mechanisms 

characterized by  𝑖𝑡 = 𝑛𝑠; finally, Type-3 mechanisms are particular cases of 

shear band mechanisms occurring for 𝑖𝑏 = 𝑖𝑡, i.e. soft storey mechanisms). 

Given the number of storeys, 𝑛𝑠, it is possible to demonstrate that the total 

number of possible mechanisms, with the exclusion of the global one, is given 

by: 

𝑁𝑡𝑜𝑡 =
𝑛𝑠(𝑛𝑠 + 1)

2
+ 𝑛𝑠 − 1 (2.6.1) 

2.6.1 First-Order Collapse Multipliers and Slopes of the Mechanism 

Equilibrium Curve for MRFs 

By means of the virtual work principle, the first-order kinematically 

admissible multiplier of horizontal forces and the slopes of the mechanism 

equilibrium curve can be easily evaluated for all the possible collapse 

mechanisms. The following relationships are obtained. 

•  Upper partial collapse mechanisms 

With reference to upper partial mechanisms, (𝑖𝑡 = 𝑛𝑠), the first order 

kinematically admissible multiplier of horizontal forces is given by: 

𝛼0.𝑖𝑏𝑖𝑡

(𝑢𝑝)
=  

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=𝑖𝑏

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 (2.6.2) 

while 𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
 is the slope of the Upper partial mechanism equilibrium curve, 

and can be reported as: 

𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
=

1

ℎ𝑛𝑠
− ℎ𝑏−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1

𝑛𝑠
𝑘=𝑖𝑏

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 (2.6.3) 

• Shear band collapse mechanisms 

Similarly, with reference to shear band mechanisms, the first order 

kinematically admissible multiplier of horizontal forces is given by: 
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𝛼0.𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘 +

𝑛𝑏
𝑗=1

𝑖𝑡−1
𝑘=𝑖𝑏

∑ 𝑀𝑐.𝑖.𝑖𝑡

𝑛𝑐
𝑖=1

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 (2.6.4) 

while 𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
 is the slope of the Upper partial mechanism equilibrium curve, 

and can be reported as: 

𝛾𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

1

(ℎ𝑖𝑡
− ℎ𝑖𝑏−1)

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)

𝑖𝑡−1
𝑘=1 + (ℎ𝑖𝑡

− ℎ𝑖𝑏−1) ∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑡

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 (2.6.5) 

2.6.2 First-Order Collapse Multipliers and Slopes of the Mechanism 

Equilibrium Curve for CBFs 

By means of the virtual work principle, the first-order kinematically 

admissible multiplier of horizontal forces and the slopes of the mechanism 

equilibrium curve can be easily evaluated for all the possible collapse 

mechanisms. The following relationships are obtained. 

•  Upper partial collapse mechanisms 

With reference to upper partial mechanisms, (𝑖𝑡 = 𝑛𝑠), the first order 

kinematically admissible multiplier of horizontal forces is given by: 

𝛼0.𝑖𝑏𝑖𝑡

(𝑢𝑝)
=  

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + ∑ ∑ 𝑊𝑑,𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=𝑖𝑏

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 (2.6.6) 

while 𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
 is the slope of the Upper partial mechanism equilibrium curve, 

and can be reported as: 

𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
=

1

ℎ𝑛𝑠
− ℎ𝑏−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1

𝑛𝑠
𝑘=𝑖𝑏

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 (2.6.7) 

 

• Shear band collapse mechanisms 

Similarly, with reference to shear band mechanisms, the first order 

kinematically admissible multiplier of horizontal forces is given by: 
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𝛼0.𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + ∑ ∑ 𝑊𝑑,𝑗𝑘 +

𝑛𝑏
𝑗=1

𝑖𝑡−1
𝑘=𝑖𝑏

∑ 𝑀𝑐.𝑖.𝑖𝑡

𝑛𝑐
𝑖=1

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 (2.6.8) 

while 𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
 is the slope of the Upper partial mechanism equilibrium curve, 

and can be reported as: 

𝛾𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

1

(ℎ𝑖𝑡
− ℎ𝑖𝑏−1)

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)

𝑖𝑡−1
𝑘=1 + (ℎ𝑖𝑡

− ℎ𝑖𝑏−1) ∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑡

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 (2.6.9) 

It is important to note that in the case of simple CBFs, the terms 𝑀𝑐.𝑖.𝑖𝑏
 for 

𝑖𝑏 = 1 and 𝑀𝑐.𝑖.𝑖𝑡
 for 𝑖𝑡 = 1, are equal to 0 (Real hinge on top and at the base). 
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CHAPTER 3 

3 SIMPLIFIED PERFORMANCE-BASED APPROACH 

FOR THE EVALUATION OF SEISMIC CAPACITY  

3.1 Introduction 

One of the most common strategies adopted to assess the capacity of a 

structure is the pushover analysis. Many times, these procedures are not under 

the control of the professional engineer who is usually not aware of what the 

software is precisely making and computing.  

The simplified method herein proposed can be used in the immediate 

aftermath of an earthquake because it does not require any non-linear analyses, 

but only the use of common analyses such as the elastic structural analysis and 

the rigid-plastic analysis. In fact, the user can easily build a capacity curve 

constituted by three branches, whose target points can be computed by simple 

equations proposed in the following [6]-[10].  

The methodology associates four characteristic points of the frame 

behavioural curve, to specific limit states, provided by codes. 

The procedure also involves the evaluation of the triggered collapse 

mechanism therefore it is important to investigate the types of collapse 

mechanism possible for the structural type considered. 

The methodology has been designed for general use. For both CBFs and 

MRFs it is based on the use of elastic analysis combined with rigid plastic 

analysis. The difference lies in the definition of some characteristic points. In 

particular, CBFs [9] are characterized by presenting a second elastic branch with 

reduced stiffness for the buckling of the compressed diagonals while MRFs [6] 
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have an horizontal branch due to the plastic redistribution capacity typical of the 

structural type. 

However, some assumptions for the modelling of the structure should be 

made for the modelling of dissipative zones. For example, MFRs are modelled 

considering rigid perfectly-plastic hinges where the resistance threshold 

accounts for the ultimate condition of dissipative zones through the use of an 

overstrength coefficient. In addition, from a benefits safety point of view, the 

plastic hinges are put at the end of the beams not accounting for the real 

dimension of the panel zone. In the case of CBFs, the plastic behavior is defined 

through a simplified trilinear monotonic Georgescu’s model. 

3.2 Trilinear Approximation of the Non-Dimensional 

Pushover Curve for MRFs 

The simplified trilinear model needs only the elastic structural analysis and 

the rigid-plastic analysis not requiring any static or dynamic non-linear analyses. 

Therefore, the user can quickly obtain the non-dimensional pushover curve 

through the intersection of three linear branches [6]. 

 

Figure 3.2.1 Trilinear approximation of the non-dimensional pushover curve for MRFs. 

The first branch is affected by the elastic behavior of the structure. The knee 

depends on the plastic capacity distribution, appearing sharper as more as the 

plastic hinges develop simultaneously. The softening branch is sensitive to the 

second-order effects. 
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In the case of MRFs, it is simple observing that the behavioural curve can 

be easily approximated by a trilinear curve where the first branch can be 

represented by the elastic response curve, the horizontal one is provided by the 

maximum load bearing capacity, while the softening branch is given by the 

collapse mechanism equilibrium curve of the structure. 

Being known the sections of columns and beams of the structure and the 

design loads, both the first order collapse multiplier 𝛼0 and the slopes 𝛾𝑠 can be 

computed for each type of possible collapse mechanism. The trigging 

mechanism is the one characterized by the collapse mechanism equilibrium 

curve located below the others into a given displacement range compatible with 

the dissipative supplies. 

The evaluation of 𝛼0 and 𝛾𝑠 has been reported in chapter 2.4.1 for MRFs  

A summary is reported in Table 3.2.1: 

Table 3.2.1 Collapse multipliers and slopes summary for MRFs 

Type 𝜶𝟎 

(g) 𝛼0
(𝑔)

=
∑ 𝑀𝑐.𝑖1 + 2

𝑛𝑐
𝑘=1 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 

(1) 𝛼0.𝑖𝑚

(1)
=  

∑ 𝑀𝑐.𝑖.1
𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘 +

𝑛𝑏
𝑗=1

𝑖𝑚−1
𝑘=1 ∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐
𝑖=1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

 

(2) 𝛼0.𝑖𝑚

(2)
=  

∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑚−1
𝑛𝑠
𝑘=𝑖𝑚

)
 

(3) 𝛼0.𝑖𝑚

(3)
=  

2 ∑ 𝑀𝑐.𝑖.𝑖𝑚

𝑛𝑐
𝑖=1

(ℎ𝑖𝑚
− ℎ𝑖𝑚−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑚

 

Type 𝜸𝒔 

(g) 𝛾(𝑔) =
1

ℎ𝑛𝑠

∑ 𝑉𝑘ℎ𝑘
𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 

(1) 𝛾𝑖𝑚

(1)
=

1

ℎ𝑖𝑚

 
∑ 𝑉𝑘ℎ𝑘

𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1
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(2) 𝛾𝑖𝑚

(2)
=

1

ℎ𝑛𝑠
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑚−1

𝑛𝑠
𝑘=𝑖𝑚

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑚−1
𝑛𝑠
𝑘=𝑖𝑚

)
 

(3) 𝛾𝑖𝑚

(3)
=

1

ℎ𝑖𝑚
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚

 

𝜹𝒖 0.04 ∙  𝐻0 

Another way to define the collapse multipliers and the slopes involves 

Shear band collapse mechanisms. 

The evaluation of 𝛼0 and 𝛾𝑠 has been reported in chapter 2.6.1 for MRFs. 

A summary is reported in Table 3.2.2: 

Table 3.2.2 Collapse multipliers and slopes summary for MRFs (Shear band) 

Type 𝜶𝟎 

(up) 𝛼0.𝑖𝑏𝑖𝑡

(𝑢𝑝)
=  

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=𝑖𝑏

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 

(sb) 𝛼0.𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + 2 ∑ ∑ 𝑀𝑏.𝑗𝑘 +

𝑛𝑏
𝑗=1

𝑖𝑡−1
𝑘=𝑖𝑏

∑ 𝑀𝑐.𝑖.𝑖𝑡

𝑛𝑐
𝑖=1

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 

Type 𝜸𝒔 

(up) 𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
=

1

ℎ𝑛𝑠
− ℎ𝑏−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1

𝑛𝑠
𝑘=𝑖𝑏

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 

(sb) 𝛾𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

1

(ℎ𝑖𝑡
− ℎ𝑖𝑏−1)

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)

𝑖𝑡−1
𝑘=1 + (ℎ𝑖𝑡

− ℎ𝑖𝑏−1) ∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑡

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 

𝜹𝒖 0.04 ∙  𝐻0 

Since the collapse mechanism equilibrium curve is obtained by a second 

order rigid-plastic analysis, the displacement δ appearing in the relationship 

𝛼 = 𝛼0 − 𝛾𝑠𝛿  represents only the plastic part of the total displacement, with a 

fully developed mechanism. However, it is advisable to account also for the 

elastic part of the displacements, rearranging Eq. (2.3.1) in the following form: 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦) (3.2.1) 
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where (𝛿 − 𝛿𝑦) is the plastic displacement range and 𝛿𝑦 is the displacement 

corresponding to the formation of the first plastic hinge. Consequently, the 

intersection with the ordinate axis is  𝛼 = 𝛼0 + 𝛾𝑠𝛿𝑦. This correction is 

significant especially if the frames exhibit soft-storey mechanisms. In these 

cases, the displacements that the structure suffers in the elastic field, constitute 

a large percentage of the total displacements and are more relevant than those 

in the plastic field. Moreover, it is important to introduce 𝛼𝑚𝑎𝑥 as the collapse 

multiplier corresponding to the achievement of the maximum load-bearing 

capacity of the structure. 

The equations of the three identified branches in the α-δ plane (horizontal 

force multiplier - top sway displacement) are reported below: 

Elastic response curve 

𝛼(𝐼) =
1

𝛿1
𝛿 (3.2.2) 

where δ1 is the elastic top sway displacement, corresponding to the design 

value of the seismic forces. 

Maximum load-bearing capacity curve 

𝛼(𝐼𝐼) = 𝛼𝑚𝑎𝑥 (3.2.3) 

Where 𝛼𝑚𝑎𝑥 is the multiplier corresponding to the maximum load-bearing 

capacity of the structure. The maximum multiplier will be evaluated starting 

from the Merchant-Rankine formula subjected to a calibration procedure, 

reported in Chapter 4. 

Mechanism equilibrium curve 

𝛼(𝐼𝐼𝐼) = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦) (3.2.4) 

Where 𝛿𝑦, the displacement corresponding to the formation of the first 

plastic hinge, is obtained through an iterative incremental elastic analysis. 

3.3 Performance-Based Capacity Definition Approach for 

MRFs 

In this section, the definition of the performance points used to define the 

capacity of the structure is provided. Starting from the trilinear approximation 

model, a performance-based methodology is proposed. It associates four 
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characteristic points of the frame behavioral curve (points A, B, C, D of Figure 

3.3.1), to specific limit states, provided by codes [6], [18]-[20]. These limit 

states have the meaning of identifying the achievement of a performance target 

such as the formation of the first plastic hinge or the attainment of the ultimate 

plastic rotation of the most involved member.  

 

Figure 3.3.1 Performance points of the trilinear model for MFRs. 

• Point A 

Point A corresponds to the minimum value between the multiplier of the 

horizontal forces, due to the formation of the first plastic hinge and the one 

corresponding to the maximum storey displacement admitted under 

serviceability conditions. This point is associated with the "Fully Operational" 

limit state, fully operational structure. 

• Point B 

Point B corresponds to the development of the maximum bearing capacity 

of the structure and to the first significant deviation of the structure from linear 

elastic behaviour (towards non-linear plastic). The Overcapacity due to plastic 

redistribution is exploited with limited demands for plastic rotation 𝜗𝑝.𝐵 (or 
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𝜗𝑝.𝛼𝑚𝑎𝑥
) to which the top sway displacement 𝛿𝐵 corresponds. The "Operational" 

limit state is associated with this point. 

• Point C 

Under the action of rare seismic events, the frame draws on high resources 

of ductility. Point C, in trilinear modelling, corresponds to the complete 

development of the collapse mechanism. The corresponding top sway 

displacement 𝛿𝐶  and plastic rotation  𝜗𝑝.𝐶 (or 𝜗𝑝.𝑚𝑒𝑐𝑐  ) are associated with the 

"Life Safety" limit state. 

• Point D 

In the case of very rare seismic events, the dynamic equilibrium is still 

possible thanks to the inertia forces, but considerable local ductility is required. 

The limit point D is identified, which is characterised by the fact that, at least in 

one member, the reserves of local ductility are exceeded. It is associated with 

the "Near Collapse" limit state. 

3.3.1 Equations for the Definition of the Performance Points (MRFs) 

As mentioned above, point A (Fully Operational) corresponds to the 

minimum value between the horizontal force multiplier, corresponding to 

the formation of the first plastic hinge and the one corresponding to the 

maximum storey displacement admitted in serviceability conditions. The 

point belongs to the elastic branch of the curve and the top sway 

displacement 𝛿𝐴 (𝑜 𝛿𝑦 ) is determined, known the slope of the elastic 

branch 1 𝛿1⁄  (for α=1) and the multiplier corresponding to point A, 

obtained iteratively through elastic analysis. 

 The top sway displacement 𝛿𝐴 (𝑜 𝛿𝑦 ) can be calculated as follows: 

𝛿𝐴 = 𝛿𝑦 = 𝛼𝑦𝛿1 = 𝛼𝐴𝛿1 (3.3.1) 

Point B (Operational), characterised by the attainment of the maximum 

bearing capacity of the structure, derives from the intersection of the horizontal 

branch 𝛼 = 𝛼𝑚𝑎𝑥 with the elastic branch 𝛼 =
1

𝛿1
𝛿. To locate point B, the 

maximum collapse multiplier (𝛼𝑚𝑎𝑥 = 𝛼𝐵) has to be analytically computed, by 

means of the Merchant-Rankine formula, calibrated by means of the regression 

analysis (CHAPTER 4). 
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Therefore, it can be stated that: 

𝛼𝑚𝑎𝑥 = 𝛼𝐵 =
1

𝛿1
𝛿𝐵 (3.3.2) 

where the unknown, represented by the top sway displacement 𝛿𝐵, can be 

derived as follows: 

𝛿𝐵 = 𝛼𝑚𝑎𝑥𝛿1 (3.3.3) 

Point C (Life Safety), characterized by the complete development of the 

collapse mechanism, derives from the intersection of the horizontal branch of 

equation 𝛼 = 𝛼𝑚𝑎𝑥 with the descending branch, representative of the collapse 

mechanism equilibrium curve (Eq.(3.2.4)).  

The displacement 𝛿𝐶  can be derived as follows: 

𝛿𝐶 = 𝛿𝑚𝑒𝑐𝑐 =
𝛼0 − 𝛼𝑚𝑎𝑥

𝛾𝑠
+ 𝛿𝑦 (3.3.4) 

Point D (Near Collapse), in which the equilibrium is guaranteed by the 

forces of inertia and considerable local ductility supplies are required, can be 

detected along the descending branch of the trilinear non-dimensional pushover 

curve.  

The top sway displacement 𝛿𝐷 = 𝛿𝑢, is expressed as a function of the 

residual plastic rotation capacity occurring at point C (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)  and can 

be calculated as follows: 

𝛿𝐷 = 𝛿𝐶 + (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)𝐻0 (3.3.5) 

where 𝜗𝑝.𝑢 is the plastic hinge rotation capacity assumed equal to 8.0 𝜗𝑦 

according to EC8-part 3 provisions [19], 𝜗𝑝.𝑚𝑒𝑐𝑐 is the plastic hinge rotation 

demand corresponding to the formation of the collapse mechanism and 𝐻0 is the 

total height of the storeys involved into the collapse mechanism.  

For the definition of the demand in terms of plastic rotation corresponding 

to the development of the collapse mechanism 𝜗𝑝.𝑚𝑒𝑐𝑐, an analytic formulation 

has been derived and calibrated. The details are reported in Chapter 4 

As regards the plastic hinge rotation capacity 𝜗𝑝.𝑢, it has been defined 

according to Eurocode 8 – part 3 as a multiple of the chord rotation at yielding 

𝜗𝑦 (Table 3.3.1). 



Chapter 4                                                                                               53 

 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

Table 3.3.1 Plastic rotation capacity at the end of beams or columns with 

dimensionless axial load ν not greater than 0.30. 

 Limit State 

Class DL SD NC 

1  1.0 𝜗𝑦  6.0 𝜗𝑦  8.0 𝜗𝑦 

2  0.25 𝜗𝑦  2.0 𝜗𝑦   3.0 𝜗𝑦 

The evaluation of chord rotation 𝜗𝑦 is not reported in Eurocode. It has been 

defined as a property of the member, assumed to be an isolated element. The 

static model used for beams and for columns involved in “soft storey” collapse 

mechanisms is a beam on two supports, stressed by bending moments of 

opposite sign at the ends (simulating a seismic action) and zero vertical loads.  

 For the determination of the chord rotation at yielding 𝜗𝑦, the beam will be 

brought in collapse conditions with the ends that will have drawn to the 

maximum resources of flexural resistance. 

Consequently, for beams it can be written: 

𝛾𝑜𝑣𝑀𝑝.𝑏𝑙𝑏

3𝐸𝐼𝑏
−

𝛾𝑜𝑣𝑀𝑝.𝑏𝑙𝑏

6𝐸𝐼𝑏
= 𝜗𝑦 (3.3.6) 

𝜗𝑦 =
𝛾𝑜𝑣𝑀𝑝.𝑏𝑙𝑏

6𝐸𝐼𝑏
 (3.3.7) 

where 𝑀𝑝.𝑏 is the plastic resisting moment of the beam, 𝑙𝑏  is the length of 

the beam, 𝐼𝑏 is the moment of inertia of the beam, 𝐸 is the elastic modulus and 

𝛾𝑜𝑣   is the overstrength coefficient. 

Referring to columns, equation (3.3.7) can be written as: 

𝜗𝑦 =
𝛾𝑜𝑣𝑀𝑝.𝑐𝑙𝑐

6𝐸𝐼𝑐
 (3.3.8) 

where 𝑀𝑝.𝑐 is the plastic resisting moment of the column, 𝑙𝑐   is the length 

of the beam, 𝐼𝑐 is the moment of inertia of the column. 

For columns involved in partial or global mechanisms, considering only 

one end reaching the maximum flexural resistance, Equation (3.3.8) can be 

written as: 
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𝜗𝑦 =
𝛾𝑜𝑣𝑀𝑝.𝑐𝑙𝑐

4𝐸𝐼𝑐
 (3.3.9) 

3.4 Trilinear Approximation of the Non-Dimensional 

Pushover Curve for CBFs 

In the case of simple CBFs [9], the plastic redistribution of capacity is 

limited; consequently, the length of the horizontal branch can be considered 

negligible according to the performed analyses.  

 

Figure 3.4.1 Trilinear approximation of the non-dimensional pushover curve for CBFs. 

The simplified method herein proposed for CBFs is based on a trilinear 

approximation of the non-dimensional pushover curve obtained as the envelope 

of three branches:  

1. an elastic branch obtained by elastic analysis 

2. a branch with a lower slope due to the buckling of diagonal members 

3. a softening branch obtained by rigid plastic second-order analysis 
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The user can easily build a pushover or a non-dimensional pushover curve 

constituted by three branches (Figure 3.4.1), whose target points, also in this 

case, are easily identified by simple mathematical relations. 

Being known the sections of columns and diagonals of the structure and the 

design loads, both the first order collapse multiplier 𝛼0 and the slopes 𝛾𝑠 can be 

computed for each type of possible collapse mechanism. The trigging 

mechanism is the one characterized by the collapse mechanism equilibrium 

curve located below the others into a given displacement range compatible with 

the dissipative supplies. 

The evaluation of 𝛼0 and 𝛾𝑠 has been reported in chapter 2.5.1 for CBFs. A 

summary is reported in Table 3.4.1: 

Table 3.4.1 Collapse multipliers and slopes summary for CBFs 

Type 𝜶𝟎 

(g) 𝛼0
(𝑔)

=
∑ ∑ 𝑊𝑑.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1

 

(1) 𝛼0.𝑖𝑚

(1)
=

∑ ∑ 𝑊𝑑.𝑗𝑘
𝑛𝑏
𝑗=1 + ∑ 𝑀𝑐.𝑖𝑖𝑚

𝑛𝑐
𝑖=1

𝑖𝑚−1
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

;     𝑖𝑚 = 1,2, … , 𝑛𝑠−1 

(2) 
𝛼𝑜.𝑖𝑚

(2)
=

∑ ∑ 𝑊𝑑.𝑗𝑘
𝑛𝑏
𝑗=1 + ∑ 𝑀𝑐.𝑖𝑖𝑚

𝑛𝑐
𝑖=1

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘 ∙ (ℎ𝑘
𝑛𝑠
𝑘=𝑖𝑚

− ℎ𝑖𝑚−1)
;       𝑖𝑚 = 2,3, … , 𝑛𝑠 

𝛼0.𝑛𝑠

(1)
= 𝛼0

(𝑔)
;    𝑖𝑚 = 𝑛𝑠 

(3) 

𝛼0.𝑖𝑚

(3)
=

2 ∙ ∑ 𝑀𝑐.𝑖𝑖𝑚

𝑛𝑐
𝑖=1 + ∑ 𝑊𝑑.𝑗𝑖𝑚

𝑛𝑏
𝑗=1

(ℎ𝑖𝑚
− ℎ𝑖𝑚−1) ∙ ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑚

;         2 ≤ 𝑖𝑚 < 𝑛𝑠 

𝛼0.𝑛𝑠

(3)
=

∑ 𝑀𝑐.𝑖𝑛𝑠

𝑛𝑐
𝑖=1 + ∑ 𝑊𝑑.𝑗𝑛𝑠

𝑛𝑏
𝑗=1

(ℎ𝑛𝑠
− ℎ𝑛𝑠−1) ∙ 𝐹𝑛𝑠

;                      𝑖𝑚 = 𝑛𝑠 

𝛼0.1
(3)

=
∑ 𝑀𝑐.𝑖1

𝑛𝑐
𝑖=1 + ∑ 𝑊𝑑.𝑗1

𝑛𝑏
𝑗=1

ℎ1 ∙ ∑ 𝐹𝑘
𝑛𝑠
𝑘=1

;                           𝑖𝑚 = 1 

Type 𝜸𝒔 

(g) 𝛾(𝑔) =
1

ℎ𝑛𝑠

∑ 𝑉𝑘ℎ𝑘
𝑛𝑠
𝑘=1

∑ 𝐹𝑘ℎ𝑘
𝑛𝑠
𝑘=1
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(1) 𝛾𝑖𝑚

(1)
=

1

ℎ𝑖𝑚

 
∑ 𝑉𝑘ℎ𝑘

𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

∑ 𝐹𝑘ℎ𝑘
𝑖𝑚
𝑘=1 + ℎ𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚+1

 

(2) 𝛾𝑖𝑚

(2)
=

1

ℎ𝑛𝑠
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑚−1

𝑛𝑠
𝑘=𝑖𝑚

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑚−1
𝑛𝑠
𝑘=𝑖𝑚

)
 

(3) 𝛾𝑖𝑚

(3)
=

1

ℎ𝑖𝑚
− ℎ𝑖𝑚−1

 
∑ 𝑉𝑘

𝑛𝑠
𝑘=𝑖𝑚

∑ 𝐹𝑘
𝑛𝑠
𝑘=𝑖𝑚

 

𝜹𝒖 

𝜑𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖=1
𝑛 𝜑𝑖 = 𝑚𝑎𝑥𝑖=1

𝑛
𝛿𝑏𝑟.𝑙𝑖𝑚

ℎ𝑖 ∙ 𝑐𝑜𝑠𝛽𝑖

 

𝛿𝑢 =  𝜑𝑚𝑎𝑥 ∙ 𝐻0 

The axial force in the compressed diagonal accounting for the post-buckling 

behaviour is defined according to Georgescu’s model. 

Another way to define the collapse multipliers and the slopes involves 

Shear band collapse mechanisms. 

The evaluation of 𝛼0 and 𝛾𝑠 has been reported in chapter 2.6.2 for CBFs  

A summary is reported in Table 3.4.2: 

Table 3.4.2 Collapse multipliers and slopes summary for CBFs (Shear band) 

Type 𝜶𝟎 

(up) 𝛼0.𝑖𝑏𝑖𝑡

(𝑢𝑝)
=  

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + ∑ ∑ 𝑊𝑑.𝑗𝑘

𝑛𝑏
𝑗=1

𝑛𝑠
𝑘=𝑖𝑏

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 

(sb) 𝛼0.𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

∑ 𝑀𝑐.𝑖.𝑖𝑏

𝑛𝑐
𝑖=1 + ∑ ∑ 𝑊𝑑.𝑗𝑘 +

𝑛𝑏
𝑗=1

𝑖𝑡−1
𝑘=𝑖𝑏

∑ 𝑀𝑐.𝑖.𝑖𝑡

𝑛𝑐
𝑖=1

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 

Type 𝜸𝒔 

(up) 𝛾𝑖𝑏𝑖𝑡

(𝑢𝑝)
=

1

ℎ𝑛𝑠
− ℎ𝑏−1

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1

𝑛𝑠
𝑘=𝑖𝑏

)

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1
𝑛𝑠
𝑘=𝑖𝑏

)
 

(sb) 𝛾𝑖𝑏𝑖𝑡

(𝑠𝑏)
=

1

(ℎ𝑖𝑡
− ℎ𝑖𝑏−1)

 
∑ 𝑉𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)

𝑖𝑡−1
𝑘=1 + (ℎ𝑖𝑡

− ℎ𝑖𝑏−1) ∑ 𝑉𝑘
𝑛𝑠
𝑘=𝑖𝑡

∑ 𝐹𝑘(ℎ𝑘 − ℎ𝑖𝑏−1)
𝑖𝑡−1
𝑘=𝑖𝑏

+ (ℎ𝑖𝑡
− ℎ𝑖𝑏−1) ∑ 𝐹𝑘

𝑛𝑠
𝑘=𝑖𝑡

 

𝜹𝒖 𝜑𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖=1
𝑛 𝜑𝑖 = 𝑚𝑎𝑥𝑖=1

𝑛
𝛿𝑏𝑟.𝑙𝑖𝑚

ℎ𝑖 ∙ 𝑐𝑜𝑠𝛽𝑖
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𝛿𝑢 =  𝜑𝑚𝑎𝑥 ∙ 𝐻0 

The axial force in the compressed diagonal accounting for the post-buckling 

behaviour is defined according to Georgescu’s model. 

3.5 Performance-Based Capacity Definition Approach for 

CBFs 

In this section, the definition of the performance points used to define the 

capacity of the structure is provided. In particular, four characteristic points of 

the non-dimensional pushover curve (points A, B, C, D of Figure 3.5.1) are 

associated with specific performance objectives related to the limit states 

provided by codes [9], [18]-[20].  

 

Figure 3.5.1 Performance points of the trilinear model for CBFs. 

These performance objectives are set up as target achievements, as the 

yielding of the first diagonal in tension or the attainment of the collapse 

mechanism. In the case of CBFs, before defining the equations of the three 

branches it is necessary to introduce the performance points since the second 

branch, for example, is a function of the multiplier corresponding to point A. 
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• Point A 

Point A corresponds to the minimum value between the multiplier of the 

horizontal forces, due to the buckling of the first compressed diagonal and the 

one corresponding to the maximum storey displacement admitted under 

serviceability conditions. In this case, a second point A' is introduced. This point 

is associated with the "Fully Operational" limit state, fully operational structure. 

• Point B 

Point B corresponds to the yielding of the first stretched diagonal and is 

associated with the “Operational” limit state; it can be identified above the 

second elastic branch, characterized by reduced stiffness due to the buckling of 

the compressive diagonals. 

• Point C 

Point C in the trilinear model corresponds to the complete development of 

the collapse mechanism and is associated with the "Life Safety" limit state. In 

the case of CBFs, this point corresponds also to the development of the 

maximum bearing capacity of the structure because of the limited plastic 

redistribution capacity. 

• Point D 

Point D is reached in the case of very rare seismic events, the dynamic 

equilibrium is still possible thanks to the inertia forces, but considerable local 

ductility is required. The limit point D is identified, which is characterised by 

the fact that, at least in one member, the reserves of local ductility are exceeded. 

It is associated with the "Near Collapse" limit state. 

3.5.1 Equations for the Definition of the Performance Points (CBFs) 

As mentioned above, point A (Fully Operational) corresponds to the 

minimum value between the horizontal force multiplier, due to the buckling of 

the first compressed diagonal and the one corresponding to the maximum storey 

displacement admitted under serviceability conditions. The point belongs to the 

first elastic branch of the curve and the top sway displacement 𝛿𝐴 (𝑜𝑟 𝛿𝑏,𝑠 ) is 

determined. Known the displacement and the slope of the elastic branch 

𝐾 = 1 𝛿1⁄  (for α=1), the multiplier corresponding to point A, will be calculated 

as follows: 
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𝛼𝑏,𝑠 = 𝛼𝐴 =
1

𝛿1
𝛿𝐴 (3.5.1) 

where δ1 is the top sway displacement corresponding to the design forces. 

Point B (Operational), corresponding to the yielding of the first stretched 

diagonal belongs to the second elastic branch. The representative line of the 

second elastic branch can be expressed as follows: 

𝛼𝑒,2 = 𝛼𝐴 + 𝐾′(𝛿 − 𝛿𝐴) (3.5.2) 

where K’ is the slope of the second elastic branch accounting for the 

buckling of the compressed diagonals and that is derived through a reduction 

factor applied to the slope of the first elastic branch: 

𝐾′ =  𝛽𝐾 (3.5.3) 

where β is the reduction factor defined as a function of the mechanism 

height H0 and the tensile-compressive percentage difference: 

𝛽 = 1 − (
𝑃𝑦.1 − 𝑃𝑐𝑟𝑖𝑡.1

𝑃𝑦.1
) 0.5 ∙

𝐻0

𝐻
 (3.5.4) 

H0 is the mechanism height derived by the rigid-plastic analysis and H is 

the total height of the structure and (
𝑃𝑦−𝑃𝑐𝑟𝑖𝑡

𝑃𝑦
) represents the percentage 

difference between the axial resistance in tension and compression of the 

diagonal members of the first storey. It can be observed that in the limit case 

𝑃𝑐𝑟𝑖𝑡.1 = 0 the β coefficient is equal to 0.5 (halved stiffness), while for the case 

𝑃𝑐𝑟𝑖𝑡.1 = 𝑃𝑦.1, the β coefficient is equal to 1 (no reduction in stiffness). 

Therefore, to calculate the displacement 𝛿𝐵 it can be stated that: 

𝛼𝑦 = 𝛼𝐴 + 𝐾′(𝛿𝐵 − 𝛿𝐴) (3.5.5) 

where the unknown is represented by the top sway displacement 𝛿𝐵, which 

can be derived as follows: 

𝛿𝐵 =
𝛼𝑦 − 𝛼𝐴

𝐾′
+ 𝛿𝐴 (3.5.6) 

Point C (Life Safety), characterized by the complete development of the 

collapse mechanism and the attainment of the maximum bearing capacity of the 

structure, derives from the intersection of the second elastic branch with the 

mechanism equilibrium curve. The displacement 𝛿𝐶  can be derived as follows: 
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𝛿𝐶 =
𝛼0 − 𝛼𝐴 + 𝐾′𝛿𝐴

𝐾′ + 𝛾𝑠
 (3.5.7) 

Point D (Near Collapse), in which the equilibrium is guaranteed by the 

forces of inertia and requiring considerable resources of local ductility, can be 

detected along the descending branch of the trilinear approximation of the α-δ 

curve. This corresponds to the displacement 𝛿𝐷 = 𝛿𝑢, calculated as follows: 

𝛿𝐷 = 𝜑𝑙𝑖𝑚 ∙ 𝐻0 (3.5.8) 

𝛿𝐷 = (
𝛿𝑑,𝑐𝑝

ℎ𝑖 ∙ 𝑐𝑜𝑠 𝜃
) ∙ 𝐻0 (3.5.9) 

where θ is the angle between the first yielded diagonal and the horizontal 

direction, φlim is the capacity in terms of interstorey drift, and δd,cp is the capacity 

in terms of shortening (if buckling of connection plates occurs) or elongation of 

the diagonal according to Eurocode 8 limitations (Table 3.5.1) [19]. 

For braces in compression, the inelastic deformation capacity should be 

expressed in terms of the axial deformation of the brace, as a multiple of 

the axial deformation of the brace at buckling load, ΔC. 

For braces in tension, the inelastic deformation capacity should be 

expressed in terms of the axial deformation of the brace, as a multiple of 

the axial deformation of the brace at yielding load, ΔT. 

Table 3.5.1 Axial deformation capacity for braces in compression according to Eurocode 

8 - part 3[19]. 

 Limit State 

Class of cross-

section 
DL SD NC 

1 0.25 ΔC 4.0 ΔC 6.0 ΔC 

2 0.25 ΔC 1.0 ΔC 2.0 ΔC 

Table 3.5.2 Axial deformation capacity for braces in tension according to Eurocode 8 - 

part 3[19]. 

Limit State 

DL SD NC 

0.25 ΔT 7.0 ΔT 9.0 ΔT 
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CHAPTER 4 

4 CALIBRATION AND VALIDATION OF THE METHOD 

THROUGH REGRESSION ANALYSIS 

4.1 Introduction 

Within the framework of an approach for evaluating performance levels, 

which does not require any nonlinear analysis, it is important to assure a wide 

application and the calibration of the analytic relationships that have been 

proposed. A wide parametric analysis has been carried out on 420 steel Simple 

“X-Shaped” Concentrically Braced frames and 420 steel Moment Resisting 

Frames, concerning three categories of structures [6],[9]. 

The parametric analysis has regarded 140 geometrical schemes of low-rise 

buildings. The parameters are: 

▪ Number of bays: between 2 and 6 

▪ Number of storeys: between 2 and 8 

▪ Design approaches for MRFs: GMRFs, SMRFs, OMRFs 

▪ Design approaches for CBFs: GCBFs, SCBFs, OCBFs 

▪ Bay span: 3,00 m, 4.50 m, 6.00 m, 7.50m 

All the combinations were analysed considering dead loads Gk equal to 

3.5kN/m2, live loads Qk equal to 3 kN/m2, and interstorey height equal to 3.5m. 

Each frame has been designed considering the design levels previously specified 

so that 140x3= 420 frames have been investigated in the parametric analysis. 

The study cases here investigated are referred to buildings whose general plan 

configurations are depicted in Figure 4.1.1 for MRFs and Figure 4.1.2 for CBFs, 

whose beams are designed for gravity loads. 



62 Calibration and Validation of the Method Through Regression analysis 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

 

Figure 4.1.1 General plan configuration for MRFs 

Both for MRFs and CBFs Each floor is equipped with a double frame of 

beams, one main and one secondary. 

The secondary beams are spaced at isb = 1.50 m so the number of secondary 

beams (nsb) varies as the length of the spans varies. 

The secondary beams are schematized as doubly supported beams 

subjected to a uniformly distributed load. The load is obtained considering the 

portion of the deck on which the influence of the secondary beam drops, and 

which has a width equal to the distance between the secondary beams 

themselves. 

The main beams are schematized as doubly supported beams subject to 

several concentrated forces equal to the number of secondary beams dropping 

on the main beam considered. This number varies as the length of the spans 

varies. The concentrated forces are the reactions (Rsb) of the secondary beams 

supported on the main beams. 
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In the preliminary design, the loads are to be compared at ULS combination 

according to Eurocode. 

 

Figure 4.1.2 General plan configuration for CBFs 

The 140 geometric patterns are shown in the table, which also provides 

details on the variable parameters considered and on the design approaches for 

MFRs and CBFs. 

Table 4.1.1 Geometric patterns, variable parameters and design approaches for MRFs 

and CBFs. 

Scheme 

name 

N. of 

storeys 

N. of 

spans 

Span 

length 

[m] 

𝑸𝒌 

[kN/𝒎𝟐] 
Design 

Approach 

MRFs 

Design 

Approach 

CBFs 

2S2B 2 2 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

2S3B 2 3 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 
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2S4B 2 4 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

2S5B 2 5 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

2S6B 2 6 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

3S2B 3 2 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

3S3B 3 3 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

3S4B 3 4 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

3S5B 3 5 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

3S6B 3 6 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

4S2B 4 2 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

4S3B 4 3 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

4S4B 4 4 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

4S5B 4 5 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

4S6B 4 6 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

5S2B 5 2 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

5S3B 5 3 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

5S4B 5 4 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

5S5B 5 5 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

5S6B 5 6 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

6S2B 6 2 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

6S3B 6 3 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

6S4B 6 4 3, 4.5, 

6, 7.5 

3.00 GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

6S5B 6 5 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 
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6S6B 6 6 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

7S2B 6 2 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

7S3B 6 3 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

7S4B 6 4 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

7S5B 6 5 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

7S6B 6 6 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

8S2B 8 2 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

8S3B 8 3 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

8S4B 8 4 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

8S5B 8 5 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

8S6B 8 6 
3, 4.5, 

6, 7.5 
3.00 

GMRF, SMRF, 

OMRF 

GCBF, SCBF, 

OCBF 

4.2 Calibration Through Pushover Analysis 

To evaluate the overall seismic performances of the structures, non-linear 

static analyses (pushover) have been carried out for each designed structure by 

SAP 2000 computer program. The primary aim of this analysis is to collect 

results to impose as a target value for the calibration procedure of the proposed 

analytical relationship, through regression analysis. 

 The secondary aim is the assessment of the collapse mechanism typology, 

to compare with the one evaluated by the second-order rigid-plastic analysis. 

4.2.1 Mechanical Modelling of Members for MRFs 

Pushovers have been carried out by means of SAP2000 computer program 

[30] with a load pattern distribution compliant with the first vibration mode [6].  

Beams and columns have been modelled by means of beam-column 

elements whose non-linearities have been concentrated in plastic hinges (“P-

hinge” elements) located at their ends. A simple M3 moment P-hinge has been 

selected for beams (Table 4.2.1). Plastic hinges accounting for the interaction 

between axial force and bending moment have been defined for columns (Table 
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4.2.2). Both the maximum resistance of columns and beams has been computed 

considering the random material variability and hardening (1.10 × 1.25). 

Table 4.2.1 Moment/rotation model for beams. 

Point 
Moment/Yield 

 Moment 
Rotation/SF Moment SF=Mpl Rotation SF =1 

A 0 0 

 

B 1 0 

C 1 0.04 

D 1 0.06 

E 1 1 

Table 4.2.2 Moment/rotation model for columns. 

Point 
Moment/Yield 

 Moment 
Rotation/SF P=Py M3=Mpl 

A 0 0 

 

B 1 0 

C 1 0.04 

D 1 0.06 

E 1 1 

The pushover analysis has been led under displacement control considering 

both geometrical and mechanical non-linearities. The pushover curve is 

provided with reference to a structural model based on the use of simple rigid-

perfectly plastic hinges. 

4.2.2 Mechanical Modelling of Members for CBFs 

In the case of CBFs, Columns have been modelled by means of beam-

column elements, whose non-linearities have been concentrated in plastic 

hinges (“p-hinge” elements) located at their ends [9]. In particular, plastic hinges 

accounting for the interaction between axial force and bending moment have 

been defined for columns (Table 4.2.2). 

An axial P hinge element accounting for buckling has been located at the 

middle length of the column (Table 4.2.3). 
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Table 4.2.3 Force/Displacement parameters for axial P hinge - columns. 

Point Force/SF Displacement/SF Force SF Disp SF 

E- -1 -6 Py - positive Δt - positive 

D- -1 -4 Pcrit - negative Δc - negative 

C- -1 -0.25 

 

B- -1 0 

A 0 0 

B 1 0 

C 1 0.25 

D 1 7 

E 1 9 

As regards diagonal members, an axial P hinge element with an asymmetric 

link has been located at the midspan (Table 4.2.4). The compression branch 

accounting for buckling has been modelled using the simplified Georgescu 

multi-linear model by introducing target points defined according to Eurocode 

8 limitations in terms of elongation (Table 4.2.5) and shortening (Table 3.5.1). 

Table 4.2.4 Force/Displacement parameters for axial P hinge - braces. 

Point Force/SF Displacement/SF Force SF Disp SF 

E- -𝑃(𝛿𝑁𝐶)/𝑃𝑐𝑟𝑖𝑡  -6 Py - positive Δt - positive 

D- -𝑃(𝛿𝑆𝐷)/𝑃𝑐𝑟𝑖𝑡  -4 Pcrit - negative Δc - negative 

C- -1 𝛿𝑏𝑟.𝐵 ∆𝑐⁄  

 

B- -1 0 

A 0 0 

B 1 0 

C 1 1 

D 1 7 

E 1 9 

Table 4.2.5 Axial deformation capacity for braces in tension according to Eurocode 8 - 

part 3 

Limit State 

DL SD NC 

0.25 ΔT 7.0 ΔT 9.0 ΔT 
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For braces in compression, the inelastic deformation capacity should be 

expressed in terms of the axial deformation of the brace, as a multiple of the 

axial deformation of the brace at buckling load, Δc. For braces in compression, 

the inelastic deformation capacities at the three limit states may be taken in 

accordance with Table 3.5.1. For braces in tension, the elongation limit is 

expressed as a multiple of the Plastic axial deformation ΔT. 

4.3 Evaluation of Maximum Multiplier of Horizontal 

Forces according to Merchant-Rankine Formula for 

MRFs 

The trilinear approximation of the curve can be obtained by defining the 

mechanism equilibrium curve (Eq.(3.2.4)), the maximum load-bearing capacity 

curve (Eq.(3.2.3)), and the elastic branch (Eq.(3.2.2)). The determination of the 

maximum multiplier 𝛼𝑚𝑎𝑥, corresponding to the maximum bearing capacity, 

needs the use of the Merchant-Rankine formula. This formula expresses 𝛼𝑚𝑎𝑥,  

as a combination of the collapse multiplier obtained by the rigid-plastic analysis 

𝛼0 and the critical collapse multiplier for vertical loads 𝛼𝑐𝑟 [13]: 

1

𝛼𝑚𝑎𝑥
=

1

𝛼0
+

1

𝛼𝑐𝑟
 (4.3.1) 

 

Figure 4.3.1 Kinematics of single-storey MRF subject to seismic force. 



Chapter 4                                                                                               69 

 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

 

A single storey Grinter MRF, subjected to vertical and horizontal actions 

has been defined (Figure 4.3.1). The critical collapse multiplier for vertical loads 

𝛼𝑐𝑟 can be defined as: 

𝛼𝑐𝑟 =
𝑁𝑐𝑟

𝑁
=

𝜋2𝐸𝐼𝑐

𝑁ℎ2
 (4.3.2) 

Where 𝑁𝑐𝑟 is the critical buckling load for the columns, 𝐼𝑐 is the inertia of 

the columns, 𝑁 is the sum of the vertical loads acting on the structure and h is 

the height of the structure (see Figure 4.3.1). 

Accounting for second-order effects, the initial stiffness k1 and the slope γ 

can be defined as follows: 

𝑘1 =
12𝐸𝐼𝑐

ℎ3
 (4.3.3) 

𝛾 =
𝑁

𝐾1ℎ
 (4.3.4) 

The critical multiplier αcr can be written as: 

𝛼𝑐𝑟 =  
𝜋2𝐸𝐼𝑐

𝐾1𝛾ℎ3
=

𝜋2𝐸𝐼𝑐

𝛾ℎ3
∙

ℎ3

12𝐸𝐼𝑐
≅

1

𝛾
 (4.3.5) 

Consequently, it is possible to rearrange Eq.(4.3.5) in the following form: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛼0𝛾𝑠𝛿1
 (4.3.6) 

To improve the level of accuracy in the estimation of 𝛼𝑚𝑎𝑥, and calibrate 

the formulation on many structural configurations, the following relation is 

proposed: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛹𝛼0𝛾𝑠𝛿1
 (4.3.7) 

where: 

𝛹 = 𝑎 + 𝑏𝜉 (4.3.8) 
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𝜉 =
∑

𝐸𝐼𝑏
𝐿𝑏

∑
𝐸𝐼𝑐
𝐿𝑐

 (4.3.9) 

 

and Ib and Lb  are respectively the moment of inertia and the length of the 

beam; Ic e  Lc are the moment of inertia and the height of the column; E is the 

elastic modulus; a  and  b  are coefficients obtained from regression analysis. 

The parameter 𝜉 is a stability coefficient and it is calculated with reference to 

the members of the first storey. 

Regression analyses were conducted, evaluating the a and b with the aim 

of making the values obtained analytically (pushover analyses), as close as 

possible to those obtained through the non-linear structural analysis considering 

OMRFs, SMRFs and GMRFs. The determination of the coefficient has been 

performed through the least squares method [6]. 

The coefficient Ψ can be computed according to the following relationship, 

considering a regression analysis accounting for all the design approaches: 

𝛹 = 0.28488 − 0.14042 𝜉 (4.3.10) 

More precisely, the coefficients a and b can be distinguished according to 

the design approach of the building analyzed. 

For Ordinary Moment Resisting Frames (OMRFs), i.e. structures designed 

without special provisions aimed at controlling the collapse mechanism: 

𝛹 = 0.331455 − 0.2239 𝜉 (4.3.11) 

For Special Moment Resisting Frames (SMRFs), i.e. structures designed 

according to hierarchy criteria (EC8, NTC 08, NTC18): 

𝛹 = 0.313266 − 0.081307 𝜉 (4.3.12) 

For Global Moment Resisting Frames (GMRFs), i.e. structures designed to 

exhibit global collapse mechanisms: 

𝛹 = 0.358 − 1.331 𝜉 (4.3.13) 

Below are the results of the regression analysis through graphs in which on 

the x-axis there are the maximum multiplier 𝛼𝑚𝑎𝑥 values, obtained analytically, 

while on the y-axis there are the values obtained through the pushover analyses 

(Figure 4.3.2-Figure 4.3.5). 
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The precision of the results obtained is testified by the trendline showing a 

slope close to the bisector, the regression points leaning against the trendline, 

and the determination coefficient R2 close to the unit. 

 

 

 

 

 

 

Figure 4.3.2 Regression analysis for GMRFs, SMRFs, OMRFs. 
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Figure 4.3.3 Regression analysis for OMRFs. 

 

Figure 4.3.4 Regression analysis for SMRFs. 
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Figure 4.3.5 Regression analysis for GMRFs. 

 

The accuracy of the results obtained is of considerable importance. The 

accuracy in determining the maximum multiplier and the high adaptability to 

the different parameters shown by the Merchant-Rankine formula is the first 

strong signal of the actual accuracy with which the pushover curve can be 

approximated through the proposed methodology. 

4.3.1 Assessment of the precision of the method through 𝛿𝐶 (MRFs) 

To assess the precision of the proposed trilinear model, in the case of MRFs, 

reference is made to point C, corresponding to the full development of the 

collapse mechanism. Referring to Eq. (3.3.4), it can be noted that to analytically 

evaluate the displacement δC it is necessary to evaluate first the collapse 

multiplier α0, the slope of the mechanism equilibrium curve γs, the maximum 

multiplier 𝛼𝑚𝑎𝑥, and the top sway displacement at yielding δA. Consequently, a 

high correspondence between the δC values analytically evaluated and those 

evaluated by structural analysis, would guarantee great precision in defining the 

capacity of the structure until collapse, through the simplified method. 
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Figure 4.3.6 Precision in the simplified evaluation of δc (MRFs). 

 

Figure 4.3.7 Precision in the simplified evaluation of δD (MRFs). 
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In Figure 4.3.6 is reported a graph in which on the x-axis there are the δC 

values, obtained analytically, while on the y-axis there are the values obtained 

through the pushover analyses. The precision of the results obtained is testified 

by the trendline with a slope close to the bisector, the regression points leaning 

against the trendline, and the determination coefficient R2 close to the unit. In 

Figure 4.3.7 is reported a graph in which on the x-axis there are the δD values, 

obtained analytically, while on the y-axis there are the values obtained through 

the pushover analyses. The precision of the results obtained is very high as for 

the top sway displacement δC 

4.4 Evaluation of Maximum Multiplier of Horizontal 

Forces according to Merchant-Rankine Formula for 

CBFs 

The evaluation of the maximum multiplier of horizontal forces is useful to 

check the precision of the model and is also suitable to correct the value of the 

first order collapse multiplier α0 in the cases in which the elastic deformability 

of the structure, relevant for structures with pinned bases, makes the rigid-plastic 

analysis being imprecise.  

 

Figure 4.4.1 Kinematics of single-storey CBF subject to seismic force. 



76 Calibration and Validation of the Method Through Regression analysis 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

 Since for simple CBFs the plastic redistribution capacity is limited, the 

point corresponding to the first yielding is very close to the one corresponding 

to the maximum bearing capacity in α-δ plane. Consequently, a way to define a 

corrected estimation of the first-order collapse multiplier is to sum the elastic 

part of the total displacement δy along the mechanism equilibrium curve to the 

maximum multiplier 𝛼𝑚𝑎𝑥 [9]. 

The determination of the maximum multiplier 𝛼𝑚𝑎𝑥, corresponding to the 

maximum bearing capacity is defined using the Merchant-Rankine formula as a 

combination of the collapse multiplier obtained by the rigid-plastic analysis 𝛼0 

and the critical collapse multiplier for vertical loads 𝛼𝑐𝑟 as reported in 

Eq.(4.3.1)[9]. 

Considering a single storey simple CBF and accounting for second-order 

effects, as depicted in Figure 4.4.1, The initial stiffness k1 and the slope γ can be 

defined as follows: 

𝑘1,𝑑 =
𝐸𝐴𝑑𝑖𝑎𝑔

𝐿𝑑𝑖𝑎𝑔
𝑐𝑜𝑠2 𝜃 (4.4.1) 

𝛾 =
𝑁

𝐾1,𝑑ℎ
 (4.4.2) 

where Adiag is the area of diagonals, Ldiag is the length of the diagonal, θ is 

the angle between the diagonal and horizontal direction. 

Consequently, the critical multiplier αcr can be written as: 

𝛼𝑐𝑟 =  
𝜋2𝐸𝐼𝑐

𝐾1𝛾ℎ3
=

1

𝐷𝛾
 (4.4.3) 

where 

𝐷 =  
𝐾1ℎ3

𝜋2𝐸𝐼𝑐
 (4.4.4) 

Analysing the D coefficient, it is evident that it depends on the ratio 

between the lateral stiffness given by the diagonal k1 and the one given by the 

column, less than a factor and considering that: 

1

𝛼𝑐𝑟
≈ 𝐷𝛾 = 𝐷𝛾𝑠𝛿1 (4.4.5) 

It is possible to rearrange Eq. (4.3.1) in the following form:  
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𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛼0𝐷𝛾𝑠𝛿1
 (4.4.6) 

To improve the level of accuracy in the estimation of 𝛼𝑚𝑎𝑥, and calibrate 

the formulation on many structural configurations, the following relation is 

proposed: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛹𝐶𝐵𝐹𝛼0𝛾𝑠𝛿1
 (4.4.7) 

where: 

𝛹𝐶𝐵𝐹 = 𝑎 + 𝑏𝜉𝐶𝐵𝐹 (4.4.8) 

𝜉𝐶𝐵𝐹 =

∑
𝐸𝐴𝑑𝑖𝑎𝑔

𝐿𝑑𝑖𝑎𝑔
∙

1
1 + (𝐿𝑏/ℎ)2𝑛𝑏𝑐

∑
𝐸𝐼𝑐

ℎ3𝑛𝑐

 (4.4.9) 

𝐿𝑏 is the bay span, a and b are coefficients obtained from regression 

analysis. The parameter 𝜉𝐶𝐵𝐹 is evaluated by considering the members of the 

first storey. 

Regression analyses have been conducted, evaluating a and b, to make the 

values obtained analytically, as close as possible to those obtained through the 

non-linear structural analysis considering SCBFs and GCBFs. OCBFs are 

structures whose diagonal braces strength has been evaluated according to the 

seismic design loading. Therefore, column sections are dimensioned to 

withstand the unloading actions coming from the diagonals without any specific 

hierarchy criterion design provision. It is worth observing that columns fail for 

buckling before the development of any possible dissipative mechanism. All the 

140 OCBFs have been analyzed as well as the other frames but the obtained 

result in terms of pushover curve is in perfect agreement with the expected 

behaviour of the structure, namely a brittle overall failure. 

 For this reason, the simplified method provides only the first 2 branches, 

and the OCBFs are set aside by the calibration of the Merchant-Rankine formula 

[9]. 

The coefficient ΨCBF can be computed according to the following 

relationship, considering both the design approaches: 

𝛹𝐶𝐵𝐹 = 1.00421 + 0.10265 𝜉𝐶𝐵𝐹 (4.4.10) 
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The coefficient ΨCBF has been determined also for the single approaches. 

For Global Concentrically Braced frames 

𝛹𝐶𝐵𝐹 = 1.410677 + 0.294433 𝜉𝐶𝐵𝐹 (4.4.11) 

while for Special Concentrically Braced frames 

𝛹𝐶𝐵𝐹 = 0.18799 + 0.11338 𝜉𝐶𝐵𝐹 (4.4.12) 

The results of the regression analysis are reported in Figure 4.4.2-Figure 

4.4.4. 

 

 

 

Figure 4.4.2 Regression analysis for GCBFs, SCBFs. 
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Figure 4.4.3 Regression analysis for GCBFs. 

 

Figure 4.4.4 Regression analysis for SCBFs. 
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Given the accuracy in estimating the maximum collapse multiplier, it is 

possible to calculate, if 𝛼0 > 𝛼𝑚𝑎𝑥 a correct multiplier 𝛼̅0 in the following way: 

𝛼̅0 = 𝛼𝑚𝑎𝑥 + 𝛾𝑠𝛿𝑦 (4.4.13) 

The obtained multiplier can be used for the evaluation of the multiplier and 

the displacement corresponding to point C. 

4.4.1 Assessment of the precision of the method through 𝛿𝐶 (CBFs) 

To assess the precision of the proposed trilinear model, in the case of CBFs, 

reference is made to point C, corresponding to the achievement of maximum 

bearing capacity and the formation of the collapse mechanism [9]. Referring to 

Eq. (3.5.7), it can be noted that to analytically evaluate the displacement δC it is 

necessary to evaluate first the collapse multiplier α0, the slope of the mechanism 

equilibrium curve γs, the stiffness of the second elastic branch K’, the multiplier 

associated with the first buckling of a diagonal αA and the corresponding top 

sway displacement δA.  

Consequently, the accuracy of the analysis can be testified by the precision 

obtained in the analytical evaluation of the individual components of the 

formula. The first buckling multiplier αA and the corresponding top sway 

displacement δA can be determined by iterative elastic analysis with increasing 

horizontal loads. Finally, it remains evaluating the accuracy of the slope of the 

second elastic branch whose stiffness is K’. Based on the considerations made, 

a high correspondence between the analytical evaluation and that resulting from 

the pushover analysis of point C would confirm the accuracy in estimating the 

stiffness of the second elastic branch, and the precision of the entire model. The 

validation is reported in Figure 4.4.5 where the values of δC obtained by 

pushover analysis and the values obtained analytically are reported in the x and 

y axes, respectively. The graph in Figure 4.4.5 shows the high level of precision 

achieved, evidenced by the coefficient of determination close to the unit and by 

the presence of points leaning against the trend line which is very close to the 

bisector.  
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Figure 4.4.5 Precision in the evaluation of δc (CBFs). 

A further study was carried out by defining variation ranges of the slope 

reduction β and the value of αA expressed as a reduced multiplier compared to 

αmax. The results of the structural analysis showed variability of β between 0.6 e 

0.7, also confirmed by the application of the analytical relationship, while for 

the reduced multiplier a range was found between 0.5αmax e 0.6 αmax. Because of 

the small variation range, a linear regression was carried out to define the exact 

coefficients that could minimize the deviations between δC defined through 

pushover analysis and analytically (Figure 4.4.6). Downstream of the regression 

analysis, a simplified, alternative, formula is proposed for the evaluation of δC, 

characterized by similarly high precision (Eq.(4.4.14)). 

In Figure 4.4.7 the values of δD obtained by pushover analysis and the 

values obtained analytically are reported in the x and y axes, respectively. The 

graph in Figure 4.4.5 shows the high level of precision achieved. 

 

𝛿𝐶 =
𝛼0 − 0.55𝛼𝑚𝑎𝑥 + 0.7𝐾𝛿𝐴

0.7𝐾 + 𝛾𝑠
 (4.4.14) 
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Figure 4.4.6 Precision in the simplified evaluation of δc (CBFs). 

 

Figure 4.4.7 Precision in the simplified evaluation of δD (CBFs). 
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4.5 Evaluation of the Plastic Hinge Rotation Demand θp.mec 

and θp.αmax for MRFs 

The most important behavioural parameters characterizing the inelastic 

performance of a structure are the following [13],[14]: 

• the global ductility 𝜇 =
𝛿𝑢

𝛿𝑦
 

• the plastic redistribution parameter   
𝛼𝑢

𝛼𝑦
 

• the slope of the softening branch  (i.e. stability coefficient) 

• the rotational capacity of the critical plastic hinge R 

• the typology of collapse mechanism 

Referring to global ductility, it is affected by the plastic redistribution 

capacity that leads, on one hand, to an increase of the load-carrying capacity and 

on the other hand, to a more severe plastic engagement of plastic hinges, due to 

their premature formation. In addition, the frame sensitivity to second-order 

effects influences the slope of the softening branch of the behavioural curve α-

δ and, consequently, it affects the value of the available global ductility. 

Therefore, the parameters affecting the value of the available global 

ductility can be summarized as follows: 

• the plastic redistribution parameter   
𝛼𝑢

𝛼𝑦
 

• the member rotation capacity R 

• the stability coefficient   

The most simple model that can be used to explain the role that play the 

above parameters for the available global ductility, is represented by a Grinter’s 

(shear type) single storey portal in which, to represent the plastic redistribution 

capacity characterizing real frames, it is assumed that the plastic moments are 

different at the top and at the base of the columns. In Figure 4.5.1is represented 

the model from which the subsequent relations will be obtained [6],[13]. 

As mentioned in Chapter 3.3.1(Eq.(3.3.5)), to define point D of the 

performance-based model, it is necessary to know, in addition to the rotational 

capacity of the members, also the demand in terms of plastic rotations 
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corresponding to the development of the collapse mechanism 𝜗𝑝.𝑚𝑒𝑐𝑐. An 

analytical formulation is proposed, based on the model reported in Figure 4.5.1. 

In addition, a similar relationship for the definition of the plastic rotation 

demand corresponding to the attainment of the maximum load-bearing capacity 

𝜗𝑝.𝛼𝑚𝑎𝑥
 is reported, with the aim of evaluating if the departure from elastic to 

plastic behaviour occurred at point B. 

 

 

 

Figure 4.5.1 Grinter’s single storey portal model. 

Starting from the simplified model, two lateral stiffness values have been 

defined. A first value 𝐾1 is valid until the elastic threshold is reached, and 𝐾2 

post-yielding stiffness, valid until the formation of the collapse mechanism 

occurs. 

Considering second-order effects in the equilibrium of horizontal forces it 

is obtained the following relation: 

𝐹 +
𝑁𝛿

ℎ
= 𝐾1𝛿 (4.5.1) 
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The frame is subjected to the vertical load N, and to the horizontal force F. 

At the elastic threshold, considering the second-order effects, the equilibrium in 

the horizontal direction provides (first yielding condition): 

𝛼𝑦𝐹1 +
𝑁𝛿𝑦

ℎ
= 𝐾1𝛿𝑦 (4.5.2) 

At the activation of the collapse mechanism, the plastic top-sway 

displacement 𝛿𝑃𝑙 is given by: 

𝛿𝑃𝑙 = 𝛿𝑚𝑒𝑐 − 𝛿𝑦 (4.5.3) 

where 𝛿𝑚𝑒𝑐 is the top-sway displacement corresponding to the formation 

of the plastic mechanism. 

As a result of the first yielding, there is also a reduction in the lateral 

stiffness of the frame, so that in the plastic field the lateral stiffness will be K2 < 

K1 (Figure 4.5.2). 

 

Figure 4.5.2 Lateral stiffness model adopted for the analysed structural scheme. 

In collapse condition, the horizontal direction equilibrium changes and 

becomes: 
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𝛼𝑢𝐹1 +
𝑁𝛿𝑚𝑒𝑐

ℎ
= 𝐾1𝛿𝑦 + 𝐾2(𝛿𝑚𝑒𝑐 − 𝛿𝑦) (4.5.4) 

𝛿𝑦 can be obtained from the Equation (4.5.2) as: 

𝛿𝑦 =
1

𝐾1
(𝛼𝑦𝐹1 +

𝑁𝛿𝑦

ℎ
) (4.5.5) 

That replaced in the Equation (4.5.4) gives: 

𝛼𝑢𝐹1 +
𝑁𝛿𝑚𝑒𝑐

ℎ
= 𝐾̸1

1

𝐾̸1

(𝛼𝑦𝐹1 +
𝑁𝛿𝑦

ℎ
) + 𝐾2(𝛿𝑚𝑒𝑐 − 𝛿𝑦) (4.5.6) 

Rearranging Equation (4.5.6) appropriately, returns: 

(𝛿𝑚𝑒𝑐 − 𝛿𝑦) =
1

𝐾2
[(𝛼𝑢 − 𝛼𝑦)𝐹1 +

𝑁

ℎ
(𝛿𝑚𝑒𝑐 − 𝛿𝑦)] (4.5.7) 

Returning to the first yielding condition Eq.(4.5.2), it is possible to obtain 

F1 as follows: 

𝐹1 =
𝐾1

𝛼𝑦
𝛿𝑦 (1 −

𝑁

𝐾1ℎ
) (4.5.8) 

Provided that: 

𝛾 =
𝑁

𝐾1ℎ
 (4.5.9) 

Equation (4.5.8) becomes: 

𝐹1 =
𝐾1

𝛼𝑦
𝛿𝑦(1 − 𝛾) (4.5.10) 

Substituting Equation (4.5.10) in Equation (4.5.7), it is obtained: 

(𝛿𝑚𝑒𝑐 − 𝛿𝑦) =
1

𝐾2

[(𝛼𝑢 − 𝛼𝑦)
𝐾1

𝛼𝑦

𝛿𝑦(1 − 𝛾) +
𝑁

ℎ
(𝛿𝑚𝑒𝑐 − 𝛿𝑦)] (4.5.11) 

Factoring out (𝛿𝑚𝑒𝑐 − 𝛿𝑦) and multiplying and dividing by 𝐾1: 

(𝛿𝑚𝑒𝑐 − 𝛿𝑦) (1 −
𝐾1

𝐾2

𝑁

𝐾1ℎ
) =

𝐾1

𝐾2
[
(𝛼𝑢 − 𝛼𝑦)

𝛼𝑦
𝛿𝑦(1 − 𝛾)] (4.5.12) 

from which, recalling the Equations (4.5.9) and (4.5.3), it is obtained: 
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𝛿𝑃𝑙

𝛿𝑦
=

𝐾1

𝐾2
(

𝛼𝑢

𝛼𝑦
− 1)

(1 − 𝛾)

(1 −
𝐾1
𝐾2

𝛾)
 (4.5.13) 

The plastic rotations at the base of the structure 𝜃𝑃𝑙 are directly related to 

displacement 𝛿𝑃𝑙 through the height h considering a rigid collapse mechanism. 

As a result, Equation (4.5.13) can be written as: 

𝜃𝑃𝑙 = 𝑐
𝐾1

𝐾2
(

𝛼𝑢

𝛼𝑦
− 1)

𝛿𝑦

ℎ

(1 − 𝛾)

(1 −
𝐾1
𝐾2

𝛾)
 (4.5.14) 

where c is a corrective coefficient linked to the structural typology and to 

the conversion from displacements to rotations. 

Having to adapt Equation (4.5.14) to multi-storey structures, it is better to 

express h as H0/ns where H0 is the mechanism height of the examined structure 

and ns is the number of storeys of the structure. 

𝜃𝑃𝑙

𝛿𝑦

𝐻0

𝑛𝑠
= 𝑐

𝐾1

𝐾2
(

𝛼𝑢

𝛼𝑦
− 1)

(1 − 𝛾)

(1 −
𝐾1
𝐾2

𝛾)
 (4.5.15) 

Similarly, the relationship for the evaluation of the plastic rotation demand 

for the development of the collapse mechanism is proposed as follows: 

𝜃𝑝.𝑚𝑒𝑐 𝐻0

𝑛𝑠𝛿𝑦
=

𝛹1

𝛹2
𝛹3 (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹4 1 − 𝛹5𝛾𝑠

1 − 𝛹6𝛾𝑠
 (4.5.16) 

𝜃𝑝.𝑚𝑒𝑐 𝐻0

𝑛𝑠𝛿𝑦
=

𝛹′1
𝛹′2

𝛹3 (
𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹′4 1 − 𝛹′5𝛾𝑠

1 − 𝛹′6𝛾𝑠
 (4.5.17) 

for the first yielded element and the critical column, respectively.  

Similarly, the relationship to evaluate the plastic rotations corresponding to 

the achievement of the maximum bearing capacity is given in the form: 

𝜃𝑝.𝛼𝑚𝑎𝑥 𝐻0

𝑛𝑠𝛿𝑦
=

𝛹7

𝛹8
𝛹9 (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹10 1 − 𝛹11𝛾𝑠

1 − 𝛹12𝛾𝑠
 (4.5.18) 

where 𝐻0 is the total height of storeys involved into the collapse 

mechanism, ns  is the number of storeys, 𝛼𝑦 is the multiplier of the horizontal 

forces corresponding to the formation of the first plastic hinge, 𝛿𝑦 is the 
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displacement corresponding to the formation of the first plastic hinge and is 

equal to δ1αy with δ1 displacement under the design seismic forces.  

The 𝛹𝑖 coefficients are determined by regression analyses with the least 

square method and are given by: 

𝛹1 =  𝑎1  +  𝑏1𝑛𝑏                         𝛹′1 =  𝑎′1  + 𝑏′1𝑛𝑏 (4.5.19) 

𝛹2 =  𝑎2  +  𝑏2𝑛𝑠                         𝛹′2 =  𝑎′2  +  𝑏′2𝑛𝑠 (4.5.20) 

𝛹𝑖 =  𝑎𝑖 +  𝑏𝑖𝜉          𝛹’𝑖 =  𝑎’𝑖 +  𝑏’𝑖𝜉   

 𝑖 = 3, … ,6 
(4.5.21) 

𝛹7 =  𝑎7  +  𝑏7𝑛𝑏 (4.5.22) 

𝛹8 =  𝑎8  +  𝑏8𝑛𝑠 (4.5.23) 

𝛹𝑘  =  𝑎𝑘  +  𝑏𝑘𝜉   𝑘 = 9, … ,12          (4.5.24) 

where nb is the number of bays, ns is the number of storeys and 𝜉 =
∑

𝐸𝐼𝑏
𝐿𝑏

∑
𝐸𝐼𝑐
𝐿𝑐

. 

These relationships link the plastic rotations corresponding to the maximum 

multiplier 𝜗𝑝.𝛼𝑚𝑎𝑥
 and the formation of the collapse mechanism 𝜗𝑝.𝑚𝑒𝑐 , to the 

main parameters characterizing the structural behaviour (αy, multiplier of 

horizontal forces corresponding to the formation of the first plastic hinge, αmax 

maximum multiplier and s, slope of the collapse mechanism equilibrium curve). 

They are calibrated by means of a wide parametric analysis, thanks to the data 

obtained from the Pushover analyses carried out. 

Given that, in many cases, the first yielded element and the critical element 

exceeding the local ductility capacity do not coincide. 

Consequently, the evaluation of plastic rotations at the formation of the 

collapse mechanism requires the selection of the most prone collapsing element. 

Therefore, two linear regressions are considered (Eqs. (4.5.16) and (4.5.17)). 

The most unfavourable condition provided by the two regressions must be 

applied with the scope of not overestimating the actual dissipative capacity.  

It is important referring to both the plastic rotation of the first yielded 

element and the plastic rotation of the critical column, which will be identified 

according to the typology of collapse mechanism, defined by rigid plastic 

analysis. In fact, by performing a single linear regression containing the critical 
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element only for local ductility, it would not be possible to know through the 

analytical methodology, if the critical element is a column or a beam, thus 

causing possible non-real member-rotation associations. The proposed 

formulations are valid also in the case of other rotation capacity model adopted, 

in other words, the methodology proposed does not fall if the way for the 

evaluation of the plastic rotation changes.  

In order to evaluate the critical member, it is also important to remember 

the variability of the rotational capacity according to the profile considered, for 

this, it is important to introduce the coefficient of rotational exploitation, given 

by the ratio between plastic rotation demand of the member and its rotational 

capacity 𝜃𝑑 𝜃𝑢⁄ . The critical element will be the one characterized by the 

maximum coefficient of rotational exploitation between the cases “first plastic 

hinge” and “critical column”. The values of the parameters 𝑎𝑖 and 𝑏𝑖, have been 

determined to make the values obtained analytically, as close as possible to 

those obtained through the structural analysis program, for OMRFs, SMRFs and 

GMRFs and are reported in Table 1. The coefficients with apex are referred to 

the critical column case. 

Table 4.5.1 Values of the parameters 𝑎𝑖 and 𝑏𝑖 

 GMRFs SMRFs OMRFs 
a1 2.7747755 2.982417 19.542818  

b1 0.0207354 -0.14356 -1.372652  

a2 1.817070 1.370201 -144.9099  

b2 -0.07731 0.652663 123.8454  

a3 0.0844528 0.964755 -0.028950  

b3 1.616165 1.802312 0.1820582  

a4 -0.112433 0.737624 -1.840828  

b4 1.4966937 -0.51209 3.0361764  

a5 1.0606602 0.976295 97.159963  

b5 0.6787599 1.027818 25.416893  

a6 1.0528759 0.975839 1.8666626  

b6 0.7200734 1.030732 -0.429104  

a7 1.0416842 1.307034 0.5193375  

b7 -0.010106 -0.04927 -0.026298  

a8 1.4746805 -0.51629 -8.989332  

b8 1.9600399 2.089958 8.1703708  

a9 2.4191909 1.177776 0.9718614  

b9 -3.197633 0.564625 -0.101879  

a10 1.15158 0.62573 0.1638561  

b10 -2.771682 0.665697 0.2129056  

a11 0.7467686 1.002079 3.7814613  



90 Calibration and Validation of the Method Through Regression analysis 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

b11 1.7354908 0.980063 2.3614914  

a12 0.7464403 1.007887 1.482424  

b12 1.7354092 0.95805 0.275188  

a'1 1.1674452 3.415537 19.508374  

b'1 0.0575325 -0.07355 -0.637701  

a'2 6.0112325 0.251316 -89.8716  

b'2 0.3665074 1.394603 73.87363  

a'3 1.0944684 3.860496 -0.044146  

b'3 -1.169347 -0.09045 0.3181349  

a'4 -2.322765 1.415893 -2.345411  

b'4 7.462743 -1.18406 3.917804  

a'5 0.993180 0.968454 -17.06279  

b'5 0.95649 1.11087 95.899727  

a'6 1.0150939 0.976968 1.5715063  

b'6 0.7912074 1.069351 -0.053770  

 

As evidence, from the results of the pushover analyses developed on the 

frames subject to parametric analysis and from some theoretical assessments 

concerning how the structures collapse, it can be noted that the frames designed 

according to TPMC and therefore characterized by global collapse mechanism, 

will dissipate energy mainly by means of plastic hinges formed on the beams, 

which in many cases, but not all, will be the critical collapse element due to lack 

of resources of local ductility. The coincidence between the first plasticized 

element and the critical element (beam) is often verified. In the case of the 

frames designed for only horizontal loads, characterized mainly by soft storey 

mechanisms, the beams are excluded from the energy dissipation process and 

for this reason, the plasticized beam elements will be discarded and will be 

considered the first plasticized column to evaluate plastic rotations when the 

maximum carrying capacity is reached and when the collapse mechanism is 

formed. In this case, the coincidence between the first plasticized element and 

the critical element (column) for local ductility is often verified. The EC8 

designed frames will behave in intermediate terms and it will not be possible for 

them to define a coincidence between the first plasticized element and the 

critical element. 

Given the non-coincidence in many cases between the first plasticised 

element and the critical element exceeding the local ductility capacity, the 

evaluation of plastic rotations at the formation of the collapse mechanism will 

require a double linear regression and consider in any case the most 

unfavourable condition, in order to ensure universality of application to the 
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method. We will refer to plastic rotation of the first plasticised element (known 

by elastic analysis) at the formation of the collapse mechanism and the plastic 

rotation of the critical column, which will be identified according to the 

typology of collapse mechanism, defined by rigid plastic analysis.  

The results of linear regression carried out on GMRFs, SMRFs, OMRFs are 

reported in Figure 4.5.3-Figure 4.5.11.  

 

Figure 4.5.3 GMRFs – 𝜃𝑝.𝛼𝑚𝑎𝑥
1st yielded element. 
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Figure 4.5.4 GMRFs – 𝜃𝑝.𝑚𝑒𝑐1st yielded element. 

 

Figure 4.5.5 GMRFs – 𝜃𝑝.𝑚𝑒𝑐  critical column. 
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Figure 4.5.6 SMRFs – 𝜃𝑝.𝛼𝑚𝑎𝑥
 1st yielded element. 

 

Figure 4.5.7 SMRFs – 𝜃𝑝.𝑚𝑒𝑐1st yielded element. 
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Figure 4.5.8 SMRFs – 𝜃𝑝.𝑚𝑒𝑐  critical column. 

 

Figure 4.5.9 OMRFs – 𝜃𝑝.𝛼𝑚𝑎𝑥
 1st yielded element. 
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Figure 4.5.10 OMRFs – 𝜃𝑝.𝑚𝑒𝑐1st yielded element. 

 

Figure 4.5.11 OMRFs – 𝜃𝑝.𝑚𝑒𝑐  critical column. 
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CHAPTER 5 

5 PERFORMANCE-BASED ASSESSMENT PROCEDURES 

5.1 Introduction 

According to the NTC 18 application circular, Chapter 7, "Design for 

Seismic Actions" [20] and Eurocode 8 [18],[19], one of the verification methods 

for constructions is nonlinear static analysis. This method of analysis can be 

used for constructions whose behaviour under the component of the earthquake 

considered, is governed by a main mode of vibration, characterized by 

significant mass participation.  

The nonlinear static analysis determines the capacity curve of the structure, 

expressed by the relation 𝐹𝑏 − 𝑑𝑐, in which 𝐹𝑏 is the seismic shear at the base 

and 𝑑𝑐 is the displacement of a control point, which for buildings is represented 

by the top sway displacement of the center of mass.  

The assessment procedures herein reported have the scope of checking in 

terms of comparison capacity-demand the performance exhibited by the existing 

MRFs and CBFs buildings. To this scope, two alternative to code approaches in 

terms of spectral acceleration, and a graphic ADRS procedure, are reported 

[6],[9]. The application of the simplified methods has the advantage of allowing 

an analytical definition of the capacity curve and it is also possible to identify 

the direct correspondence between the characteristic points of the trilinear model 

(A, B, C, D) and the code limit states. Moreover, second-order effects are 

accounted for, allowing to consider the actual energy dissipated. 

The first approach exploits the so-called ADRS spectrum and the checking 

discriminates between low and high periods, the second has a more general 

validity because it is valid for all the periods range [26]-[29]. The second 
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approach, in fact, exploits the Nassar & Krawinkler definition of the structure 

factor 𝑞0 that avoids the distinction between high and low periods of vibration. 

5.2 Definition of the Equivalent SDOF System 

Transformation, SDOF Dynamic Parameters and 

Capacity Curve in ADRS Plane 

The codes and the proposed assessment procedures exploit the definition of 

an equivalent Single Degree of Freedom (SDOF) replacing the Multiple Degree 

of Freedom (MDOF) actual system. 

Below the schematic steps necessary for the definition of the equivalent 

system, the capacity curve in the ADRS plan, and the dynamic parameters of 

the equivalent SDOF system are reported. 

• MDOF – SDOF transformation 

An equivalent structural SDOF system replaces the MDOF actual system 

introducing the coefficient of participation of the first vibration mode Γ.  

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 (5.2.1) 

where 𝑚𝑘 is the mass associated to the k-th storey and ɸ𝑘 is the k-th 

component of the modal vector of the main vibrating mode of the structure. 

In order to create a simplified methodology for performance assessment, 

without carrying out any dynamic analysis of the building to determine the 

natural vibrating modes, it has been hypothesized a distribution of the 

displacements of the building, linearly increasing with the height from the 

foundation plane, according to the distribution of seismic forces. 

Consequently, the components of the modal vector ɸ𝑘 can be derived as 

follows: 

ɸ𝑘 =  
𝐹𝑘

𝐹𝑛
 ;   𝑤𝑖𝑡ℎ  ɸ𝑛 = 1 (5.2.2) 

• Representation of the capacity curve in the ADRS plan 

The capacity curve must be represented in 𝐹𝑏 - 𝑑𝑐 plane by multiplying, 

point by point, the non-dimensional pushover curve with the design base shear. 
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Therefore, the 𝐹𝑏 - 𝑑𝑐 curve must be scaled through the modal participation 

factor and represented in a F* - d* plane, in which the shear force F* and the 

displacement d* of the equivalent system are linked to the corresponding 

quantities of the real system 𝐹𝑏 and 𝑑𝑐 through the relations  𝐹∗ =  𝐹𝑏 𝛤⁄  , 𝑑∗ =

 𝑑𝑐 𝛤⁄ .  

To represent the capacity curve in the ADRS plane, where spectral 

accelerations 𝑆𝑎 are represented as a function of spectral displacements 𝑆𝐷𝑒, the 

following transformations will be performed for the capacity spectrum: 

𝑆𝑎 =  
𝐹∗

𝑚∗
 (5.2.3) 

𝑆𝐷𝑒 = 𝑑∗ (5.2.4) 

• Dynamic parameters of the equivalent SDOF system 

To define the "demand", it is necessary to evaluate the period of vibration 

T* and the mass m* of the equivalent SDOF system, through the following 

relations: 

𝑇∗ =
2𝜋

𝜔0
∗ = 2𝜋√

𝑚∗

𝑘∗
 (5.2.5) 

𝑚∗ = ∑ 𝑚𝑘ɸ𝑘

𝑛

𝑘=1

 (5.2.6) 

with 𝜔0
∗ = √

𝑘∗

𝑚∗ 

5.2.1 Evaluation of the stiffness k* of the equivalent SDOF system for 

MRFs and CBFs 

The stiffness k* of the equivalent SDOF system, as a result of the 

representation of the capacity curve in the F* - d*, it will be equal to k evaluated 

in plane 𝐹𝑏 − 𝑑𝑐. 

In particular, for MRFs, the stiffness k is the one characterizing the first 

branch of the trilinear model. It can be obtained as: 

𝑘𝑀𝑅𝐹,1 =  
𝐹𝑏,𝐴

𝛿𝐴
  (5.2.7) 
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For CBFs the definition of k can be carried out according to several 

approaches: 

The first approach involves the slope of the first elastic branch in the plane 

𝐹𝑏 − 𝑑𝑐 and can be obtained as: 

𝑘𝐶𝐵𝐹,1 =  
𝐹𝑏,𝐴

𝛿𝐴
  (5.2.8) 

The second approach refers to a secant stiffness that takes into account the 

slopes of the first and second elastic branches. In this way the stiffness k can be 

derived as: 

𝑘𝐶𝐵𝐹,2 =  
𝐹𝑏,𝐶

𝛿𝐶
  (5.2.9) 

The first approach is designed for structures that do not reach the plastic 

threshold due to a lack of local ductility resources. 

All the verification procedures shown can be applied indiscriminately and 

for MRFs and CBFs, paying attention to the definition of the stiffness of the 

equivalent system k*. 

5.3 Assessment Procedure in Terms of Spectral 

Displacements into ADRS Plane According to Italian 

and European Codes 

For the quantification of the "demand", the code distinguishes two cases: 

The first one occurs when the period of the equivalent SDOF system is bigger 

than the characteristic period TC. In this case, for equality of displacements, the 

elastic demand is equal to the plastic one (Figure 5.3.1). 

The second one occurs when the period of the equivalent SDOF system is 

smaller than the characteristic period TC, and in this case, according to the 

principle of energy equality, the elastic demand is less than the plastic demand 

(Figure 5.3.2). 

Schematically: 

• If T∗ > TC, the demand in terms of displacements for the inelastic 

system is assumed to be the same as that of an elastic system of the 

same period and will result in: 
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𝑑𝑚𝑎𝑥
∗ = 𝑑𝑒.𝑚𝑎𝑥

∗ = 𝑆𝐷𝑒(𝑇∗) (5.3.1) 

where 

𝑆𝐷𝑒(𝑇) = 𝑆𝑎(𝑇) (
𝑇

2𝜋
)

2

 (5.3.2) 

 

Figure 5.3.1 Displacement demand for 𝑇∗ > 𝑇𝐶 

• If  𝑇∗ < 𝑇𝐶, the demand in terms of displacements for the inelastic 

system is greater than that of an elastic system of equal period and 

is obtained from it by means of the relation: 

𝑑𝑚𝑎𝑥
∗ =

𝑑𝑒.𝑚𝑎𝑥
∗

𝑞∗ [1 + (𝑞∗ − 1)
𝑇𝐶

𝑇∗] ≥ 𝑑𝑒.𝑚𝑎𝑥
∗  (5.3.3) 

Where 𝑞∗ = 𝑆𝑒(𝑇∗)𝑚∗/𝐹𝑦
∗ represents the ratio between the elastic response 

force and the yielding force of the equivalent system.  

will result in: 

 

If  𝑇∗ < 𝑇𝐶 , the demand in terms 
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Figure 5.3.2 Displacement demand for 𝑇∗ < 𝑇𝐶 

If it results 𝑞∗ ≤ 1, consequently 𝑑𝑚𝑎𝑥
∗ = 𝑑𝑒.𝑚𝑎𝑥

∗  

For the various limit states considered, for the capacity-demand assessment, 

it will be sufficient to verify the following inequality: 

𝑑𝑚𝑎𝑥
∗ ≤ 𝑑𝐿𝑆

∗  (5.3.4) 

Where 𝑑𝐿𝑆
∗  is the capacity in terms of spectral displacement of the 

equivalent SDOF system, for the specific Limit State. 

5.4 Graphic Assessment Procedure through ADRS Plane  

As described, it can be displayed graphically and more intuitively by means 

of the representation of the capacity and demand spectra on the ADRS plan, for 

each limit state considered. 

The demand spectrum is represented into the ADRS plane, where spectral 

accelerations 𝑆𝑎 are represented as a function of spectral displacements 𝑆𝐷𝑒 , by 

means of the relation: 

𝑑𝑚𝑎𝑥
∗ ≤ 𝑑𝐿𝑆

∗  (5.4.1) 

If results 𝑞∗ ≤, consequently 𝑑𝑚𝑎𝑥
∗ = 𝑑𝑒 .𝑚𝑎𝑥

∗  

 

 

Figure 5.1.2b Displacement demand for 𝑇∗ < 𝑇𝐶 
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In this representation, the periods do not appear explicitly, but are 

represented by the star of straight lines with centre in the origin of the axes, 

being the slope of the generic line passing by the origin, equal to 
𝑆𝑎

𝑆𝐷𝑒
= (

2𝜋

𝑇
)

2
. 

Consequently: 

• If  T∗ > TC, the demand in terms of displacements for the inelastic 

system is assumed equal to that of an elastic system of the same period 

for this is obtained by extending the elastic tract (the slope of which is 

a function of T*) until the intersection with ADRS spectrum. The 

projection of the intersection point on the x-axis will represent the 

demand in terms of displacements 𝑑𝑚𝑎𝑥
∗ = 𝑑𝑒.𝑚𝑎𝑥

∗ . 

 

Figure 5.4.1 Graphic assessment procedure for 𝑇∗ > 𝑇𝐶 

• If  𝑇∗ < 𝑇𝐶 the demand in terms of displacements for the inelastic 

system is greater than that of an elastic system of the same period 

and for this reason the displacement 𝑑𝑒.𝑚𝑎𝑥
∗  obtained graphically as 

shown in the previous case, will be increased according to the 
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criterion of energy equality. 𝑑𝑒.𝑚𝑎𝑥
∗  will be used to calculate 𝑑𝑚𝑎𝑥

∗  

by means of the equation (5.3.3). 

 

Figure 5.4.2 Graphic assessment procedure for 𝑇∗ < 𝑇𝐶 

In conclusion, analysing Figure 5.4.1 and Figure 5.4.2 it can be noted that 

the scale factor between the dashed line (capacity) and the continuous one 

(demand), represents the safety factor of the structure. 

5.5 Assessment Procedure in Terms of Spectral 

Acceleration through the ADRS Plane  

The capacity-demand assessment procedure can be expressed in terms of 

spectral accelerations, through the ADRS plane. For each limit state considered, 

the spectrum 𝑆𝑎 − 𝑆𝐷𝑒 will be defined by means of the equation  𝑆𝐷𝑒(𝑇) =

𝑆𝑎(𝑇)(𝑇 2𝜋⁄ )2 (demand curve). As regards the capacity, on the other hand, it 

will be necessary to define in ADRS plane the characteristic points of the 

behavioural curve of the structure. Of these points, each of which is 

representative of a limit state, it will be necessary to know the abscissa, that is 

the displacement 𝑑𝐿𝑆
∗ =  𝑑𝐿𝑆 𝛤⁄  where 𝛤 is the modal participation factor 
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Referring to capacity, it will be necessary to distinguish between cases T∗ >

TC e 𝑇∗ < 𝑇𝐶. If T∗ > TC  the capacity in terms of spectral acceleration, relative 

to the limit state considered, can be obtained through the following relation: 

𝑆𝑎𝑆𝐿 = 𝑑𝑆𝐿
∗ 𝜔0

∗ 2
 (5.5.1) 

Graphically, the meaning is to represent the spectrum whose point of 

intersection with the line characterized by the elastic period 𝑇 = 𝑇∗ has abscissa 

equal to 𝑑𝐿𝑆
∗  (Figure 5.4.1). 

If  𝑇∗ < 𝑇𝐶 and q>1, according to the criteria of equality of energy, there is 

a different procedure to evaluate the capacity in terms of spectral acceleration 

𝑆𝑎𝐿𝑆 that leads to the concept of anelastic spectrum (Figure 5.4.2): 

𝐹𝐿𝑆
∗ =

𝑚∗𝑆𝑎(𝑇∗)

𝑞𝐿𝑆
 (5.5.2) 

𝑞𝐿𝑆 = 1 + (𝜇𝐿𝑆 − 1)
𝑇∗

𝑇𝐶
 (5.5.3) 

𝑆𝑎𝐿𝑆 = 𝑞𝐿𝑆

𝐹𝐿𝑆
∗

𝑚∗
 (5.5.4) 

If  𝑇∗ < 𝑇𝐶 and q≤1, results: 

𝐹𝐿𝑆
∗ = 𝑚∗𝑆𝑎(𝑇∗) (5.5.5) 

𝑆𝑎𝐿𝑆 =
𝐹𝐿𝑆

∗

𝑚∗
 (5.5.6) 

For the checking procedure, the inequality 𝑆𝑎𝑆𝐿 ≥ 𝑆𝑎(𝑇∗) has to be 

satisfied, where 𝑆𝑎𝑆𝐿 is the capacity in terms of spectral acceleration, linked to 

the limit state considered and 𝑆𝑎(𝑇∗) is the spectral acceleration provided by the 

code, for the specific limit state. 

5.6 Assessment Procedure in Terms of Spectral 

Acceleration According to Nassar & Krawinkler  

In the framework of capacity-demand checking an alternative to the 

existing ADRS spectrum verification is proposed [6],[9],[28]. An equivalent 

structural SDOF system replaces the MDOF actual system introducing the 

coefficient of participation of the first vibration mode Γ. The capacity curve 

must be reported in 𝐹𝑏 - 𝑑𝑐 plane by multiplying the multiplier α with the design 

base shear. 
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Therefore, the capacity curve must be scaled through the modal 

participation factor and represented in a F* - d* plane, in which the shear force 

F* and the displacement d* of the equivalent system are linked to the 

corresponding quantities of the real system 𝐹𝑏 and 𝑑𝑐 through the relations  𝐹∗ =

 𝐹𝑏 𝛤⁄  , 𝑑∗ =  𝑑𝑐 𝛤⁄ .  

The demand can be estimated through the period T* and the mass m* of the 

equivalent SDOF system. In the following, the verification procedure, for each 

characteristic point of the trilinear capacity curve, is reported for MRFs and 

CBFs.  

5.6.1 Assessment procedure for MRFs 

In the following the verification procedure for each characteristic point of 

the capacity curve approximated with the trilinear model is reported.  

• Point A (Fully operational) 

Representation of point A in plane 𝐹𝑏 − 𝑑𝑐 by means of the transformations 

𝐹𝑏.𝐴 = 𝐹𝑏.𝐹𝑂 =  𝛼𝐴 ∑ 𝐹𝑘𝑘   and   𝑑𝑐.𝐴 = 𝑑𝑐.𝐹𝑂 = 𝛿𝐴.  

Representation of the equivalent SDOF system in plane F* - d* by means 

of the transformations 𝐹𝐴
∗ = 𝐹𝐹𝑂

∗ =  𝐹𝑏.𝐴 𝛤⁄   and  𝑑𝐴
∗ = 𝑑𝐹𝑂

∗ =  𝑑𝑐.𝐴 𝛤⁄ . 

The capacity in terms of spectral acceleration for point A is given as 

follows: 

𝐹𝐹𝑂
∗ = 𝑚∗𝑆𝑎𝐹𝑂(𝑇∗) (5.6.1) 

𝑆𝑎𝐹𝑂(𝑇∗) =
𝐹𝐹𝑂

∗

𝑚∗
 (5.6.2) 

• Point B (Operational) 

Representation of point B in plane 𝐹𝑏 − 𝑑𝑐 by means of the transformations 

𝐹𝑏.𝐵 = 𝐹𝑏.𝑂 =  𝛼𝑚𝑎𝑥 ∑ 𝐹𝑘𝑘   and  𝑑𝑐.𝐵 = 𝑑𝑐.𝑂 = 𝛿𝐵. 

Representation of the equivalent SDOF system in plane F* - d* by means 

of the transformations 𝐹𝐵
∗ = 𝐹𝑂

∗ =  𝐹𝑏.𝐵 𝛤⁄  and 𝑑𝐵
∗ = 𝑑𝑂

∗ =  𝑑𝑐.𝐵 𝛤⁄ . 

The capacity in terms of spectral acceleration will be evaluated as follows: 

𝐹𝑂
∗ = 𝑚∗𝑆𝑎𝑂(𝑇∗) (5.6.3) 

𝑆𝑎𝑂(𝑇∗) =
𝐹𝑂

∗

𝑚∗
 (5.6.4) 
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• Point C (Life Safety) 

Representation of point C in plane 𝐹𝑏 − 𝑑𝑐 by means of the transformations 

𝐹𝑏.𝐶 = 𝐹𝑏.𝐿𝑆 =  𝛼𝑚𝑎𝑥 ∑ 𝐹𝑘𝑘  and 𝑑𝑐.𝐶 = 𝑑𝑐.𝐿𝑆 = 𝛿𝐶. 

Representation of the equivalent SDOF system in plane F* - d* by means 

of the transformations 𝐹𝐶
∗ = 𝐹𝐿𝑆

∗ =  𝐹𝑏.𝐶 𝛤⁄  and 𝑑𝐶
∗ = 𝑑𝐿𝑆

∗ =  𝑑𝑐.𝐶 𝛤⁄ . 

The capacity in terms of spectral acceleration will be evaluated as follows: 

𝐹𝐿𝑠
∗ =

𝑚∗𝑆𝑎𝐿𝑠(𝑇∗) 

𝑞𝐿𝑠
 (5.6.5) 

𝑆𝑎𝐿𝑠(𝑇∗) =
𝐹𝐿𝑆

∗

𝑚∗
𝑞𝐿𝑠 (5.6.6) 

𝑞𝐿𝑠 = 𝑞0(𝜇, 𝑇, 𝛾=0) = [𝑐(𝜇𝐿𝑆 − 1) + 1]
1

𝑐⁄  (5.6.7) 

where 𝑐 =
𝑇∗

1+𝑇∗ +
0.42

𝑇∗  and 𝜇𝐿𝑆 =
𝑑𝐿𝑆

∗

𝑑𝑂
∗  according to Nassar & Krawinkler 

formulation. 

In the case of point C (and point D), the structure draws on its own plastic 

resources to dissipate incoming seismic energy.  

In the assessment of capacity in terms of spectral acceleration, the q 

structure factor comes into play, expressed according to the formulation of 

Nassar and Krawinkler, and consequently the ductility 𝜇𝐿𝑆 that will affect the 

structure factor itself. 

• Point D (Near Collapse) 

Representation of point D in plane 𝐹𝑏 − 𝑑𝑐 by means of the transformations 

𝐹𝑏.𝐷 = 𝐹𝑏.𝑁𝐶 =  𝛼0 ∑ 𝐹𝑘𝑘  and 𝑑𝑐.𝐷 = 𝑑𝑐.𝑁𝐶 = 𝛿𝐷. It’s important to note that the 

shear force 𝐹𝑏.𝑁𝐶 is calculated referring to the collapse multiplier 𝛼0, to evaluate, 

subsequently, the q factor as a function of the slope of the collapse mechanism 

equilibrium curve. 

Representation of the equivalent SDOF system in plane F* - d* by means 

of the transformations 𝐹𝐷
∗ = 𝐹𝑁𝐶

∗ =  𝐹𝑏.𝐷 𝛤⁄  e 𝑑𝐷
∗ = 𝑑𝑁𝐶

∗ =  𝑑𝑐.𝐷 𝛤⁄ . 

The capacity in terms of spectral acceleration will be evaluated as follows: 

𝐹𝑁𝐶
∗ =

𝑚∗𝑆𝑎𝑁𝐶(𝑇∗) 

𝑞𝑁𝐶
 (5.6.8) 
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𝑆𝑎𝑁𝐶(𝑇∗) =
𝐹𝑁𝐶

∗

𝑚∗
𝑞𝑁𝐶  (5.6.9) 

𝑞𝑁𝐶 =
𝑞0

𝜑
 (5.6.10) 

The structure factor 𝑞0, expressed in accordance with the formulation of 

Nassar and Krawinkler, is obtained for =0 and consequently doesn’t take in 

account the second-order effects. To take these into account, the coefficient  

which appears to be a function of the ductility  and the slope of the equilibrium 

curve  (expressing the sensitivity of the structure to second-order effects), has 

been introduced. Therefore: 

𝑞0(𝜇, 𝑇, 𝛾=0) = [𝑐(𝜇𝑁𝐶 − 1) + 1]
1

𝑐⁄  (5.6.11) 

where 𝑐 =
𝑇∗

1+𝑇∗ +
0.42

𝑇∗  and 𝜇𝑁𝐶 =
𝑑𝑁𝐶

∗

𝑑𝑂
∗  

𝜑 =
1 + 0.62(𝜇𝑁𝐶 − 1)1.45𝛾

(1 − 𝛾)
  (5.6.12) 

𝑞𝑁𝐶 =
𝑞0

𝜑
=

[𝑐(𝜇𝑁𝐶 − 1) + 1]
1

𝑐⁄

1 + 0.62(𝜇𝑁𝐶 − 1)1.45𝛾
(1 − 𝛾)

 (5.6.13) 

To verify all the limit state considered, the following inequality must be 

satisfied: 

𝑆𝑎𝐿𝑆(𝑇∗)𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝑆𝑎𝐿𝑆(𝑇∗)𝑑𝑒𝑚𝑎𝑛𝑑  

5.6.2 Assessment procedure for CBFs 

In the following, the verification procedure, for each characteristic point of 

the trilinear capacity curve, is reported.  

• Point A (Fully operational) 

Representation of point A in plane 𝐹𝑏 − 𝑑𝑐 using the transformations 

𝐹𝑏.𝐴 = 𝐹𝑏.𝐹𝑂 =  𝛼𝐴 ∑ 𝐹𝑘𝑘   and   𝑑𝑐.𝐴 = 𝑑𝑐.𝐹𝑂 = 𝛿𝐴.  

Representation of the equivalent SDOF system in plane F* - d* through the 

transformations 𝐹𝐴
∗ = 𝐹𝐹𝑂

∗ =  𝐹𝑏.𝐴 𝛤⁄   and  𝑑𝐴
∗ = 𝑑𝐹𝑂

∗ =  𝑑𝑐.𝐴 𝛤⁄ . 

The capacity in terms of spectral acceleration for point A is given as 

follows: 
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𝐹𝐹𝑂
∗ = 𝑚∗𝑆𝑎𝐹𝑂(𝑇∗) (5.6.14) 

𝑆𝑎𝐹𝑂(𝑇∗) =
𝐹𝐹𝑂

∗

𝑚∗
 (5.6.15) 

• Point B (Operational) 

Representation of the point B in plane 𝐹𝑏 − 𝑑𝑐 through the transformations 

𝐹𝑏.𝐵 = 𝐹𝑏.𝑂 =  𝛼𝐵 ∑ 𝐹𝑘𝑘   and  𝑑𝑐.𝐵 = 𝑑𝑐.𝑂 = 𝛿𝐵. 

Representation of the equivalent SDOF system in plane F* - d* through the 

transformations 𝐹𝐵
∗ = 𝐹𝑂

∗ =  𝐹𝑏.𝐵 𝛤⁄  and 𝑑𝐵
∗ = 𝑑𝑂

∗ =  𝑑𝑐.𝐵 𝛤⁄ . 

The capacity in terms of spectral acceleration will be evaluated as follows: 

𝐹𝑂
∗ = 𝑚∗𝑆𝑎𝑂(𝑇∗) (5.6.16) 

𝑆𝑎𝑂(𝑇∗) =
𝐹𝑂

∗

𝑚∗
 (5.6.17) 

• Point C (Life Safe) 

Representation of point C in plane 𝐹𝑏 − 𝑑𝑐 through the transformations 

𝐹𝑏.𝐶 = 𝐹𝑏.𝐿𝑆 =  𝛼𝑚𝑎𝑥 ∑ 𝐹𝑘𝑘  and 𝑑𝑐.𝐶 = 𝑑𝑐.𝐿𝑆 = 𝛿𝐶. 

Representation of the equivalent SDOF system in plane F* - d* through the 

transformations 𝐹𝐶
∗ = 𝐹𝐿𝑆

∗ =  𝐹𝑏.𝐶 𝛤⁄  and 𝑑𝐶
∗ = 𝑑𝐿𝑆

∗ =  𝑑𝑐.𝐶 𝛤⁄ . 

The capacity in terms of spectral acceleration will be evaluated as follows: 

𝐹𝐿𝑠
∗ = 𝑚∗𝑆𝑎𝐿𝑠(𝑇∗) (5.6.18) 

𝑆𝑎𝐿𝑠(𝑇∗) =
𝐹𝐿𝑠

∗

𝑚∗
 (5.6.19) 

In the case of point D, the structure draws on its plastic resources to 

dissipate incoming seismic energy.  

In the assessment of capacity in terms of spectral acceleration, the q 

structure factor has an important role. It is expressed according to the 

formulation of Nassar and Krawinkler as a function of the ductility 𝜇𝐿𝑆 that will 

affect the structure factor itself. 

• Point D (Near Collapse) 

Representation of point D in plane 𝐹𝑏 − 𝑑𝑐 through the transformations 

𝐹𝑏.𝐷 = 𝐹𝑏.𝑁𝐶 =  𝛼0 ∑ 𝐹𝑘𝑘  and 𝑑𝑐.𝐷 = 𝑑𝑐.𝑁𝐶 = 𝛿𝐷. It is important to underline 
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that the shear force 𝐹𝑏.𝑁𝐶 is calculated referring to the collapse multiplier 𝛼0, to 

evaluate, subsequently, the q factor as a function of the slope of the collapse 

mechanism equilibrium curve. Representation of the equivalent SDOF system 

in plane F* - d* through the transformations 𝐹𝐷
∗ = 𝐹𝑁𝐶

∗ =  𝐹𝑏.𝐷 𝛤⁄  e 𝑑𝐷
∗ =

𝑑𝑁𝐶
∗ =  𝑑𝑐.𝐷 𝛤⁄ . 

The capacity in terms of spectral acceleration can be evaluated as follows: 

𝐹𝑁𝐶
∗ =

𝑚∗𝑆𝑎𝑁𝐶(𝑇∗) 

𝑞𝑁𝐶
 (5.6.20) 

𝑆𝑎𝑁𝐶(𝑇∗) =
𝐹𝑁𝐶

∗

𝑚∗
𝑞𝑁𝐶  (5.6.21) 

𝑞𝑁𝐶 =
𝑞0

𝜑
 (5.6.22) 

The structure factor 𝑞0, expressed by the formulation of Nassar and 

Krawinkler, is obtained for =0 (stability coefficient) and consequently does not 

account for the second-order effects. To take these into account, the coefficient 

, defined as a function of the ductility  and the slope of the equilibrium curve 

 (expressing the sensitivity of the structure to second-order effects), has been 

introduced. Therefore: 

𝑞0(𝜇, 𝑇, 𝛾=0) = [𝑐(𝜇𝑁𝐶 − 1) + 1]
1

𝑐⁄  (5.6.23) 

where 𝑐 =
𝑇∗

1+𝑇∗ +
0.42

𝑇∗  and 𝜇𝑁𝐶 =
𝑑𝑁𝐶

∗

𝑑𝑂
∗  

𝜑 =
1 + 0.62(𝜇𝑁𝐶 − 1)1.45𝛾

(1 − 𝛾)
  (5.6.24) 

𝑞𝑁𝐶 =
𝑞0

𝜑
=

[𝑐(𝜇𝑁𝐶 − 1) + 1]
1

𝑐⁄

1 + 0.62(𝜇𝑁𝐶 − 1)1.45𝛾
(1 − 𝛾)

 (5.6.25) 

To verify all the limit state considered, the following inequality must be 

satisfied: 

𝑆𝑎𝐿𝑆(𝑇∗)𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 𝑆𝑎𝐿𝑆(𝑇∗)𝑑𝑒𝑚𝑎𝑛𝑑 (54) 
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CHAPTER 6 

6 EXAMPLES OF APPLICATION OF THE 

PERFORMANCE-BASED ASSESSMENT APPROACH 

6.1 Introduction 

The definition of a new simplified assessment methodology requires the 

validation through the application, point by point, to case studies characterized 

by different design approaches.  

This chapter contains three application examples for both MRFs [7] and 

CBFs [10]. It starts from the definition of the geometric scheme, the sections, 

and the acting forces, up to the comparison with the pushover curves obtained 

through the Sap 2000 structural analysis program [30].  

In conclusion, the capacity-demand verification procedure for each 

analyzed structure is reported. 

6.2 MRFs Numeric Examples 

The simplified assessment procedure is applied to evaluate the capacity of 

a seven-storey and four-span steel moment resisting frame [7]. 

 The permanent loads 𝐺𝑘 are equal to 3.5 kN/m2 while the live loads 𝑄𝑘 

equal 3 kN/m2.  

For the evaluation of gravitational loads on the beams, a frame tributary 

length of 6.00 m has been set. The steel used is S275.  

A flowchart of the procedure is reported in Figure 6.2.1 
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Figure 6.2.1 Flowchart of the procedure for MRFs 
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6.2.1 Global Moment Resisting Frames 

Global moment resisting frames are designed according to the TPMC. The 

design results are reported in Figure 6.2.2. 

 

Figure 6.2.2 Representation of the frame with indication of beams, columns, and seismic 

forces (GMRF). 

The trilinear capacity curve is shown in Figure 6.2.3, which also shows the 

characteristic performance points of the model. 
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Figure 6.2.3 Trilinear model and characteristic points for the structure 7S4B_GMRF_6m 

• Parameters obtained from the elastic analysis: 

𝛿1(𝛼 = 1) = 0.02684 𝑚  

𝑘 = 37.2606 𝑚−1 

𝛿𝐴 = 𝛿𝑦 = 0.1602 𝑚 

𝛼𝐴 = 𝛼𝑦 = 𝑘𝛿𝑦 =5.999 

• Parameters obtained from the rigid-plastic analysis: 

𝛼0 = 10.149 

𝛾𝑠 = 0.53 𝑚−1 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  10.149 − 0.53(𝛿 − 0.1602) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 10.234  

𝐻0 = 24.5 𝑚 (Global collapse mechanism) 

• Evaluation of the maximum multiplier using the calibrated 

Merchant−Rankine formula: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛹𝛼0𝛾𝑠𝛿1
= 9.7594 

where: 

 

 

Figure Errore. Nel documento non esiste testo dello stile specificato..1 Trilinear model 

and characteristic points for the structure 7S4B_GMRF_6m 
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𝛹 = 0.28488 − 0.14042 𝜉 = 0.2763 with 𝜉 =
∑

𝐸𝐼𝑏
𝐿𝑏

∑
𝐸𝐼𝑐
𝐿𝑐

= 0.06129  

and consequently 𝛿𝐵 =
𝛼𝑚𝑎𝑥

𝑘
= 0.2619 and 𝛿𝐶 = 𝛿𝑚𝑒𝑐𝑐 =

𝛼0−𝛼𝑚𝑎𝑥

𝛾𝑠
+

𝛿𝑦=
10.149−9.7594

0.53
+ 0.1602 = 0.8946 𝑚 

• Evaluation of the plastic rotation demand corresponding to the 

development of the collapse mechanism for the first plasticized element 

(first storey beams): 

θp.mec =
nsδy

H0
[
Ψ1

Ψ2
Ψ3 (

αmax

αy
− 1)

Ψ4 1 − Ψ5γs

1 − Ψ6γs
] = 0.01886 rad 

The calculation of the corresponding capacity provides a final plastic 

rotation value of 8𝜃𝑦 = 8 × 0.008257 =0.06605 rad. 

• Evaluation of the plastic rotation demand corresponding to the 

development of the collapse mechanism for the critical element (the 

mechanism is global, so the critical element is one of the first storey 

columns): 

θp.mec =
nsδy

H0
[
Ψ1′

Ψ2′
Ψ3′ (

αmax

αy
− 1)

Ψ4′
1 − Ψ5′γs

1 − Ψ6′γs
] = 0.01774 rad 

The calculation of the corresponding capacity, in the case of the first storey 

columns, provides a value of the ultimate plastic rotation equal to 8𝜃𝑦 =

8 × 0.003714 = 0.02971 rad. Therefore, the ultimate conditions are governed 

by the columns of the first storey. 

• Considering the plastic rotation capacity, the ultimate displacement is 

given by: 

 𝛿𝑢 = 𝛿𝐶 + (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)𝐻0=0.8946 + (0.02971 − 0.01774) × 24.5 = 1.188 𝑚   

All the verification procedures considered use the transformation of the 

MDOF system into an equivalent SDOF system employing the participation 

coefficient of the main vibration mode Γ. For this reason, it is necessary to 

define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5, ɸ6} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, 

is: 
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ɸ1 = 0.134  ɸ2 = 0.267 ɸ3 = 0.401   

ɸ4 = 0.535 ɸ5 = 0.669 ɸ6 = 0.802 ɸ7 = 1.000  

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.4381  

being: 

𝑚1 = 57.98 × 103 kg 𝑚2 = 57.98 × 103 kg 𝑚3 = 57.98 × 103kg   

𝑚4 = 57.98 × 103 kg 𝑚5 = 57.98 × 103 kg 𝑚5 = 57.98 × 103 kg 𝑚7

= 61.94 × 103 kg 
 

• The dynamic parameters of the equivalent SDOF system are reported in 

Table 6.2.1. 

Table 6.2.1 Dynamic parameters of the equivalent SDOF system (GMRFs) 

m* k* ω* T* 

[kg 103] [kN/m] [rad/s] [s] 

224.76 10108.5 6.7063 0.9369 

Consequently, the performance points of the capacity curve are defined in 

the planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for both Nassar & Krawinkler and ADRS spectrum approaches. In 

Table 6.2.2 the results, based on the ADRS spectrum and the Nassar & 

Krawinkler formulation, are reported. 

Table 6.2.2 Capacity in terms of Spectral acceleration and displacements (GMRFs) 

  FO O LS NC NC0 

F [kN] 1627.71 2647.66 2647.66 2647.51 2776.3 

F* [kN] 1131.83 1841.05 1841.05 1840.94 1930.53 

d [m] 0.1602 0.2619 0.8946 1.1879  

d* [m] 0.1114 0.1821 0.6220 0.8260 

μ [m] - - 3.415 4.535 

𝑺𝒂.𝑨𝑫𝑹𝑺
∗  [g] 0.513 0.835 2.852 3.787 
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𝑺𝒂.𝑵&𝑲
∗  [g] 0.513 0.835 2.958 3.988 

𝑺𝒂.𝒑𝒖𝒔𝒉
∗  [g] 0.513 0.835 2.9132 3.894 

6.2.2 Special Moment Resisting Frames 

Special moment resisting frames are designed to fulfil the Eurocode 8 

seismic provisions. The selected case study with the definition of the beam and 

column dimension is reported in Figure 6.2.4. 

 

Figure 6.2.4 Representation of the frame with indication of beams, columns, and seismic 

forces (SMRF). 

The trilinear capacity curve is shown in Figure 6.2.5, which also shows the 

characteristic performance points of the model. 
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Figure 6.2.5 Trilinear model and characteristic points for the structure 7S4B_SMRF_6m 

• Parameters obtained from the elastic analysis: 

𝛿1(𝛼 = 1) = 0.03814 𝑚  

𝑘 = 15.8605 𝑚−1 

𝛿𝐴 = 𝛿𝑦 = 0.1802 𝑚 

𝛼𝐴 = 𝛼𝑦 = 𝑘𝛿𝑦 = 4.736 

• Parameters obtained from the rigid-plastic analysis: 

𝛼0 =7.989 

𝛾𝑠 = 1.006 𝑚−1 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  7.989 − 1.006(𝛿 − 0.1802) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 8.1704 

𝐻0 = 14.0 𝑚 (collapse mechanism Type 1, im=4) 

• Evaluation of the maximum multiplier using the calibrated 

Merchant−Rankine formula: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛹𝛼0𝛾𝑠𝛿1
= 7.4056 

 

Figure Errore. Nel documento non esiste testo dello stile specificato..1 Trilinear model and characteristic points for the 

structure 7S4B_SMRF_6m 
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where: 

𝛹 = 0.28488 − 0.14042 𝜉 = 0.2572 with 𝜉 =
∑

𝐸𝐼𝑏
𝐿𝑏

∑
𝐸𝐼𝑐
𝐿𝑐

= 0.1971  

and consequently 𝛿𝐵 =
𝛼𝑚𝑎𝑥

𝑘
= 0.2824 and 𝛿𝐶 = 𝛿𝑚𝑒𝑐𝑐 =

𝛼0−𝛼𝑚𝑎𝑥

𝛾𝑠
+

𝛿𝑦=
7.989−7.4056

1.006
+ 0.1802 = 0.7605 𝑚 

• Evaluation of the plastic rotation demand corresponding to the 

development of the collapse mechanism for the first plasticized element 

(first storey beams): 

θp.mec =
nsδy

H0
[
Ψ1

Ψ2
Ψ3 (

αmax

αy
− 1)

Ψ4 1 − Ψ5γs

1 − Ψ6γs
] = 0.03043 rad 

The calculation of the corresponding capacity provides a final plastic 

rotation value of 8𝜃𝑦 = 8 × 0.008257 =0.06605 rad. 

• Evaluation of the plastic rotation demand corresponding to the 

development of the collapse mechanism for the critical element (the 

mechanism is partial type 1 im=4, so the critical element is a first storey 

column): 

θp.mec =
nsδy

H0
[
Ψ1′

Ψ2′
Ψ3′ (

αmax

αy
− 1)

Ψ4′
1 − Ψ5′γs

1 − Ψ6′γs
] = 0.04587 rad 

The calculation of the corresponding capacity, in the case of first storey 

columns, provides a value of the ultimate plastic rotation equal to 8𝜃𝑦 =

8 × 0.004212 = 0.033699 rad.  

Therefore, the ultimate conditions are governed by the columns of the first 

storey. 

• Considering the plastic rotation capacity, the ultimate displacement is 

given by: 

 𝛿𝑢 = 𝛿𝐶 + (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)𝐻0=0.76 + (0.033699 − 0.04587) ×

14.0 = 0.5901 𝑚 
 

Since the plastic rotation capacity of the third storey columns is lower than 

that necessary for the complete development of the kinematic mechanism, the 

points C and D corresponding to the limit states “Life Safety” and “Near 
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Collapse” are coincident and correspond to the aforementioned last 

displacement (𝛿𝑢). 

All the verification procedures considered use the transformation of the 

MDOF system into an equivalent SDOF system by means of the participation 

coefficient of the main vibration mode Γ. For this reason, it is necessary to 

define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5, ɸ6} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, 

is: 

ɸ1 = 0.134  ɸ2 = 0.267 ɸ3 = 0.401   

ɸ4 = 0.535 ɸ5 = 0.669 ɸ6 = 0.802 ɸ7 = 1.000  

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.4381  

being: 

𝑚1 = 57.98 × 103 kg 𝑚2 = 57.98 × 103 kg 𝑚3 = 57.98 × 103kg   

𝑚4 = 57.98 × 103 kg 𝑚5 = 57.98 × 103 kg 𝑚5 = 57.98 × 103 kg 𝑚7

= 61.94 × 103 kg 
 

• The dynamic parameters of the equivalent SDOF system are reported in 

Table 6.2.3. 

Table 6.2.3 Dynamic parameters of the equivalent SDOF system (SMRFs) 

m* k* ω* T* 

[kg 103] [kN/m] [rad/s] [s] 

224.76 7113.36 5.6257 1.117 

Consequently, the performance points of the capacity curve are defined in 

the planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for both Nassar & Krawinkler and ADRS spectrum approaches. In 

Table 6.2.4. The results, based on the ADRS spectrum the Nassar & Krawinkler 

formulation, are reported. 
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Table 6.2.4 Capacity in terms of Spectral acceleration and displacements (SMRFs) 

  FO O LS NC NC0 

F [kN] 1284.84 2009.08 2009.08 2009.08 - 

F* [kN] 893.41 1397.01 1397.01 1397.01 - 

d [m] 0.1802 0.2824 0.5901 0.5901  

d* [m] 0.1253 0.1964 0.4103 0.4103 

μ [m] - - 2.089 2.089 

𝑺𝒂.𝑨𝑫𝑹𝑺
∗  [g] 0.405 0.634 1.324 1.324 

𝑺𝒂.𝑵&𝑲
∗  [g] 0.405 0.634 1.353 1.353 

𝑺𝒂.𝒑𝒖𝒔𝒉
∗  [g] 0.405 0.634 1.353 1.391 

6.2.3 Ordinary Moment Resisting Frames 

Ordinary moment resisting frames are designed without any seismic 

prescription aimed at mechanism control. The beams and column sections are 

reported in Figure 6.2.6. 
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Figure 6.2.6 Representation of the frame with indication of beams, columns, and seismic 

forces (OMRF). 

The trilinear capacity curve is shown in Figure 6.2.7, which also shows the 

characteristic performance points of the model. 

 

Figure 6.2.7 Trilinear model and characteristic points for the structure 7S4B_OMRF_6m 

• Parameters obtained from the elastic analysis: 

𝛿1(𝛼 = 1) = 0.06305 m 

𝑘 =15.8605 m−1 

𝛿𝐴 = 𝛿𝑦 =0.2602 m 

𝛼𝐴 = 𝛼𝑦 = 𝑘𝛿𝑦 =4.128 

• Parameters obtained from the rigid-plastic analysis: 

𝛼0 = 5.219 

𝛾𝑠 = 3.729 𝑚−1 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  5.219 − 3.729(𝛿 − 0.2602) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 6.1888  

𝐻0 = 3.5 𝑚 (collapse mechanism Type 3, im=3) 
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• Evaluation of the maximum multiplier using the calibrated 

Merchant−Rankine formula: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛹𝛼0𝛾𝑠𝛿1
= 4.2025 

where: 

𝛹 = 0.28488 − 0.14042 𝜉 = 0.1970 with 𝜉 =
∑

𝐸𝐼𝑏
𝐿𝑏

∑
𝐸𝐼𝑐
𝐿𝑐

= 0.6255  

and consequently 𝛿𝐵 =
𝛼𝑚𝑎𝑥

𝑘
= 0.265 and 𝛿𝐶 = 𝛿𝑚𝑒𝑐𝑐 =

𝛼0−𝛼𝑚𝑎𝑥

𝛾𝑠
+

𝛿𝑦=
5.219−4.2025

3.729
+ 0.2602 = 0.5326 𝑚 

• Evaluation of the plastic rotation demand corresponding to the 

development of the collapse mechanism for the first plasticized element 

(first storey beams): 

θp.mec =
nsδy

H0
[
Ψ1

Ψ2
Ψ3 (

αmax

αy
− 1)

Ψ4 1 − Ψ5γs

1 − Ψ6γs
] = 0.06612 rad 

The calculation of the corresponding capacity provides a final plastic 

rotation value of 8𝜃𝑦 = 8 × 0.008257 =0.06605 rad. 

• Evaluation of the plastic rotation demand corresponding to the 

development of the collapse mechanism for the critical element (the 

mechanism is partial type 3 im = 3, so the critical element is a third storey 

column): 

θp.mec =
nsδy

H0
[
Ψ1′

Ψ2′
Ψ3′ (

αmax

αy
− 1)

Ψ4′
1 − Ψ5′γs

1 − Ψ6′γs
] = 0.07693 rad 

The calculation of the corresponding capacity, in the case of the third storey 

columns, provides a value of the ultimate plastic rotation equal to 8𝜃𝑦 =

8 × 0.005568 = 0.04454 rad.  

Therefore, the ultimate conditions are governed by the columns of the third 

storey. 

• Considering the plastic rotation capacity, the ultimate displacement is 

given by: 
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 𝛿𝑢 = 𝛿𝐶 + (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)𝐻0=0.5326 + (0.04454 − 0.07693) ×

3.5 = 0.4192 𝑚 
 

Since the plastic rotation capacity of the third storey columns is lower than 

that necessary for the complete development of the kinematic mechanism, the 

points C and D corresponding to the limit states “Life Safety” and “Near 

Collapse” are coincident and correspond to the aforementioned last 

displacement (𝛿𝑢). 

All the verification procedures considered the use of the transformation of 

the MDOF system into an equivalent SDOF system using the participation 

coefficient of the main vibration mode Γ. For this reason, it is necessary to 

define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5, ɸ6} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, 

is: 

ɸ1 = 0.134  ɸ2 = 0.267 ɸ3 = 0.401  

ɸ4 = 0.535 ɸ5 = 0.669 ɸ6 = 0.802 ɸ7 = 1.000  

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.4381  

being: 

𝑚1 = 57.98 × 103 kg 𝑚2 = 57.98 × 103 kg 𝑚3 = 57.98 × 103kg  

𝑚4 = 57.98 × 103 kg 𝑚5 = 57.98 × 103 kg 𝑚5 = 57.98 × 103 kg 𝑚7

= 61.94 × 103 kg 
 

• The dynamic parameters of the equivalent SDOF system are reported in 

Table 6.2.5. 

Table 6.2.5 Dynamic parameters of the equivalent SDOF system (OMRFs) 

m* k* ω* T* 

[kg 103] [kN/m] [rad/s] [s] 

224.76 4302.8 4.3753 1.436 
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Consequently, the performance points of the capacity curve are defined in 

the planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for both Nassar & Krawinkler and ADRS spectrum approaches. In 

Table 6.2.6. The results, based on the ADRS spectrum the Nassar & Krawinkler 

formulation, are reported. 

Table 6.2.6 Capacity in terms of Spectral acceleration and displacements (OMRFs) 

  FO O LS NC NC0 

F [kN] 1119.90 1140.12 1140.12 1140.12 - 

F* [kN] 778.72 792.78 792.78 792.78 - 

d [m] 0.2602 0.265 0.4192 0.4192  

d* [m] 0.181 0.184 0.291 0.291 

μ [m] − − 1.582 1.582 

𝑺𝒂.𝑨𝑫𝑹𝑺
∗  [g] 0.353 0.359 0.569 0.569 

𝑺𝒂.𝑵&𝑲
∗  [g] 0.353 0.359 0.575 0.575 

𝑺𝒂.𝒑𝒖𝒔𝒉
∗  [g] 0.353 0.359 0.583 0..583 

 

6.3 CBFs Numeric Examples 

The simplified assessment procedure is applied to evaluate the capacity of 

three steel Concentrically Braced Frames designed according to three different 

approaches [10]. 

 Permanent loads Gk are equal to 3.5 kN/m2 while live loads Qk equal to 3 

kN/m2.  

A frame tributary length of 6.00 m has been considered for the evaluation 

of gravitational loads acting on the beams. The steel used is S275. 

A flowchart of the procedure is reported in Figure 6.3.1 
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Figure 6.3.1 Flowchart of the procedure for CBFs 
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6.3.1 Global Concentrically Braced Frames 

Global concentrically braced frames are designed according to the TPMC. 

The beams, diagonals, and column sections are reported in (Figure 6.3.2) 

 

Figure 6.3.2 Representation of the frame with indication of beams, diagonals, columns, 

and seismic forces (GCBF). 

The trilinear capacity curve, showing the characteristic points of the model, 

is reported in Figure 6.3.3) 

 

Figure 6.3.3 Trilinear model and characteristic points for the structure 4S6B_GCBF_6m 



128 Examples of Application of the Performance-Based Assessment Approach 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

• Parameters obtained from the elastic analysis: 

𝛿1(𝛼 = 1) = 0.0255 m; 

𝐾 = 39.161 m−1; 

𝐾′ = 23.4964 m−1; 

𝛿𝐴(1𝑠𝑡  buckling) =0.0426 m; 

𝛼𝐴 = 𝑘𝛿𝐴 =1.6577. 

• Parameters obtained from the rigid plastic analysis: 

𝛼0 =2.598; 

𝛾𝑠 =0.285 m−1; 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  2.598 − 0.285(𝛿 −0.07438); 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 2.620; 

𝐻0 = 14 𝑚 (global collapse mechanism). 

• Evaluation of the maximum multiplier through the calibrated 

Merchant–Rankine formula: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1+𝛹𝐶𝐵𝐹𝛼0𝛾𝑠𝛿1
= 2.5058 

where 

ΨCBF = a + bξCBF = 1.41068 + 0.29443 ξ𝐶𝐵𝐹 = 1.698909; 

with ξCBF =
∑

EAdiag

Ldiag
∙

1

1+(Lb/h)2nbc

∑
EIc
h3nc

 = 1.945191; 

consequently δB =
αy−αA

K′
+ δA = 0.07438; 

and 𝛿𝐶 =
𝛼0−𝛼𝐴+𝐾′𝛿𝐴

𝐾′+𝛾𝑠
= 0.08163. 

• According to the limitations given by Eurocode 8 for compressed 

diagonals at Near Collapse limit state (Δc ∙ 6), the ultimate displacement 

is evaluated as: 

𝛿𝐷 = (
𝛿𝑑,𝑐𝑝

ℎ𝑖∙cos 𝜃
) ∙ 𝐻0 = (

0.026874

3.5 × 0.86378
) × 14 = 0.12445 𝑚 
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The checking procedures exploit the transformation of the MDOF system 

into an equivalent SDOF system through the participation factor of the main 

vibration mode Γ. For this reason, it is necessary to define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, is: 

ɸ1 = 0.2398  ɸ2 = 0.4795 ɸ3 = 0.7193 

ɸ4 = 1.00 

• The modal participation factor Γ: 

being 

𝑚1 = 278.75 × 103 kg 𝑚2 = 278.75 × 103 kg 𝑚3 = 278.75 × 103kg 

𝑚4 = 290.64 × 103 k 
 

• The dynamic parameters of the equivalent SDOF system (Table 6.3.1) 

Table 6.3.1 Dynamic parameters of the equivalent SDOF system (GCBFs) 

m* k* ω* T* 

[kg 103] [kN/m] [rad/s] [s] 

691.67 92569.9 11.5688 0.5431 

Consequently, the performance points of the capacity curve are defined in 

the planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for both Nassar & Krawinkler and ADRS spectrum approaches. In 

Table 6.3.2 the results, based on the ADRS spectrum and the Nassar & 

Krawinkler formulation, are reported. 

Table 6.3.2 Capacity in terms of Spectral acceleration and displacements (GCBFs) 

  FO O LS NC NC0 

F [kN] 3918.52 5683.83 6086.44 6057.55 6141.53 

F* [kN] 2917.66 4232.08 4531.86 4510.35 4572.88 

d [m] 0.0426 0.0751 0.08163 0.12445  

d* [m] 0.0317 0.0559 0.0608 0.0927 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.343  
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μ [m] - - - 1.524 

𝑺𝒂.𝑨𝑫𝑹𝑺
∗  [g] 0.433 0.624 0.6679 0.9803 

𝑺𝒂.𝑵&𝑲
∗  [g] 0.433 0.624 0.6679 1.0177 

𝑺𝒂.𝒑𝒖𝒔𝒉
∗  [g] 0.433 0.624 0.6753 0.9986 

6.3.2 Special Concentrically Braced Frames 

Special concentrically braced frames are designed to fulfil the Eurocode 8 

seismic provisions. The selected case study with the definition of the beam, 

diagonals, and column sections is reported in Figure 6.3.4. 

 

Figure 6.3.4 Representation of the frame with indication of beams, diagonals, columns, 

and seismic forces (SCBF). 

The trilinear capacity curve, showing the characteristic points of the model, 

is reported in Figure 6.3.5 
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Figure 6.3.5 Trilinear model and characteristic points for the structure 6S6B_SCBF_6 m. 

• Parameters obtained from the elastic analysis: 

𝛿1(𝛼 = 1) = 0.06133 m; 

𝐾 = 16.305 m−1; 

𝐾′ = 13.044 m−1; 

𝛿𝐴(1𝑠𝑡  buckling) =0.0571 m; 

𝛼𝐴 = 𝑘𝛿𝐴 =0.9311. 

• Parameters obtained from the rigid plastic analysis: 

𝛼0 =1.763; 

𝛾𝑠 =0.185 m−1; 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  1.763 − 0.185(𝛿 − 0.1171) ; 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 1.785; 

𝐻0 = 21 𝑚 (global collapse mechanism). 

• Evaluation of the maximum multiplier through the calibrated 

Merchant–Rankine formula: 
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𝛼𝑚𝑎𝑥 =  
𝛼0

1+𝛹𝐶𝐵𝐹𝛼0𝛾𝑠𝛿1
= 1.7267 

where 

ΨCBF = a + bξCBF = 1.00421 + 0.10265 ξ𝐶𝐵𝐹 = 1.05338; 

With ξCBF =
∑

EAdiag

Ldiag
∙

1

1+(Lb/h)2nbc

∑
EIc
h3nc

 = 0.47899; 

consequently δB =
αy−αA

K′
+ δA = 0.1171; 

and 𝛿𝐶 =
𝛼0−𝛼𝐴+𝐾′𝛿𝐴

𝐾′+𝛾𝑠
= 0.11922. 

• According to the limitations given by Eurocode 8 for compressed 

diagonals at Near Collapse limit state (Δc ∙ 6), the ultimate displacement 

is evaluated as: 

𝛿𝐷 = (
𝛿𝑑,𝑐𝑝

ℎ𝑖∙cos 𝜃
) ∙ 𝐻0 = (

0.026874

3.5 × 0.86378
) × 21 = 0.18667 𝑚 

The checking procedures exploit the transformation of the MDOF system 

into an equivalent SDOF system through the participation factor of the main 

vibration mode Γ. For this reason, it is necessary to define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5, ɸ6} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, 

is: 

ɸ1 = 0.1598  ɸ2 = 0.3197 ɸ3 = 0.4795 

ɸ4 = 0.6394 ɸ5 = 0.7992 ɸ6 = 1.00 
 

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.405  

being 

 

 

𝑚1 = 278.75 × 103 kg 𝑚2 = 278.75 × 103 kg 𝑚3 = 278.75 × 103kg 

𝑚4 = 278.75 × 103 kg 𝑚5 = 278.75 × 103 kg 𝑚6 = 290.64 × 103 kg 
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• The dynamic parameters of the equivalent SDOF system (Table 6.3.3). 

Table 6.3.3 Dynamic parameters of the equivalent SDOF system (SCBFs) 

m* k* ω* T* 

[kg 103] [kN/m] [rad/s] [s] 

959.01   57610 7.75062 0.81067 

Consequently, the performance points of the capacity curve are defined in 

the planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for both Nassar & Krawinkler and ADRS spectrum approaches. In 

Table 6.3.4 the results, based on the ADRS spectrum and the Nassar & 

Krawinkler formulation, are reported. 

Table 6.3.4 Capacity in terms of Spectral acceleration and displacements (SCBFs) 

  FO O LS NC NC0 

F [kN] 3290.01 6009.54 6151.51 6107.34 6229.56 

F* [kN] 2340.99 4276.06 4377.08 4345.65 4432.62 

d [m] 0.0571 0.1171 0.1192 0.1867  

d* [m] 0.0406 0.0833 0.0848 0.1328 

μ [m] - - - 1.566 

𝑺𝒂.𝑨𝑫𝑹𝑺
∗  [g] 0.2488 0.4545 0.6525 0.0848 

𝑺𝒂.𝑵&𝑲
∗  [g] 0.2488 0.4545 0.6525 0.7399 

𝑺𝒂.𝒑𝒖𝒔𝒉
∗  [g] 0.433 0.624 0.6753 0.7548 

6.3.3 Ordinary Concentrically Braced Frames 

Ordinary Concentrically Braced Frames are designed only to withstand 

horizontal design actions. The selected case study with the definition of the 

beam, diagonals, and column sections is reported in Figure 6.3.6 
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Figure 6.3.6 Diagram of the frame with indication of beams, diagonals, columns, and 

seismic forces (OCBF). 

The trilinear capacity curve, showing the characteristic points of the model, 

is reported in Figure 6.3.7 

 

Figure 6.3.7 Trilinear model and characteristic points for the structure 5S4B_OCBF_6 m. 
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• Parameters obtained from the elastic analysis: 

𝛿1(𝛼 = 1) = 0.02597 m; 

𝐾 = 38.501 m−1; 

𝐾′ = 25.02; 

𝛿𝐴 = 0.1602 m; 

𝛼𝐴 = 𝑘𝛿𝐴 =2.0680. 

It is not necessary to perform rigid plastic analysis because the buckling of 

columns occurs for a multiplier of horizontal forces very close to 𝛼𝐴. 

Consequently, 

𝛿𝑢 = 𝛿𝐵 = 𝛿𝐶 = 𝛿𝐷 = 0.0575 𝑚; 

𝛼𝑢 = 𝛼𝐵 = 𝛼𝐶 = 𝛼𝐷 = 2.18596. 

The checking procedures exploit the transformation of the MDOF system 

into an equivalent SDOF system through the participation factor of the main 

vibration mode Γ. For this reason, it is necessary to define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, is: 

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.379  

being 

𝑚1 = 123.89 × 103 kg 𝑚2 = 123.89 × 103 kg 𝑚3 = 123.89 × 103kg 

𝑚4 = 123.89 × 103 kg 𝑚5 = 129.17 × 103 kg 
 

• The dynamic parameters of the equivalent SDOF system (Table 

6.3.5). 

 

 

 

ɸ1 = 0.192  ɸ2 = 0.384 ɸ3 = 0.575 

ɸ4 = 0.767 ɸ5 = 1.00 
 



136 Examples of Application of the Performance-Based Assessment Approach 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

Table 6.3.5 Dynamic parameters of the equivalent SDOF system (OCBFs) 

m* k* ω* T* 

[kg 103] [kN/m] [rad/s] [s] 

366.82 37127.6 10.061 0.6245 

Consequently, the performance points of the capacity curve are defined in 

the planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for both Nassar & Krawinkler and ADRS spectrum approaches. In 

Table 6.3.6 the results, based on the ADRS spectrum and the Nassar & 

Krawinkler formulation, are reported. 

Table 6.3.6 Capacity in terms of Spectral acceleration and displacements (OCBFs) 

  FO O LS NC NC0 

F [kN] 2235.76 2363.33 2363.33 2363.33 - 

F* [kN] 1620.83 1713.31 1713.31 1713.31 - 

d [m] 0.0538 0.0575 0.0575 0.0575  

d* [m] 0.0390 0.0417 0.0417 0.0417 

μ [m] - - - - 

𝑺𝒂.𝑨𝑫𝑹𝑺
∗  [g] 0.450 0.476 0.476 0.476 

𝑺𝒂.𝑵&𝑲
∗  [g] 0.450 0.476 0.476 0.476 

𝑺𝒂.𝒑𝒖𝒔𝒉
∗  [g] 0.450 0.487 0.487 0.487 
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CHAPTER 7 

7 VALIDATION OF THE METHODOLOGY THROUGH 

INCREMENTAL DYNAMIC ANALYSIS (IDA) 

7.1 Introduction 

The simplified method allows to define the capacity curve of a MRF or CBF 

steel structure through a trilinear approximation by using the elastic and rigid 

plastic analyses and has been calibrated by regression analysis on 420 structures 

designed for each structural type.  

To assess the accuracy of the method, compared to other tools provided by 

the codes, in addition to pushover analysis, incremental dynamic analyses (IDA) 

were performed. These analyses were developed on real structures and 

simulated designs according to recent and old codes and whose data are 

available in the literature.  

The IDAs have been developed with the OpenSees software [31], creating 

very accurate fiber models capable of catching the real behavior of the analyzed 

structures. In this way, it was possible to evaluate the actual percentage error 

between the seismic capacity defined by the simplified methodology and that 

obtained by the IDA, for each limit state considered. 

To this end, an in-depth analysis of the cyclic behavior of the members is 

reported, in particular for CBFs. In fact, their behaviour is strongly affected by 

the dissipative capacity of the diagonal members, which, differently from the 

beams and the link members exhibit an asymmetric hysteresis behaviour that 

deserves to be accurately modelled.  

 

 



138 Validation of the Methodology through Incremental Dynamic Analysis (IDA) 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

7.2 Incremental Dynamic Analyses (IDA) 

Incremental dynamic analysis (IDA) is an innovative method in the field of 

earthquake engineering.  

It consists in subjecting the considered structure to one or more 

accelerograms (In the case study the structure was subjected to 7 accelerograms) 

of intensity scaled by means of an amplification factor (λ) to obtain one or more 

characteristic curves, in which the variation of the maximum value of a 

predetermined response parameter to the variation of a predetermined seismic 

intensity parameter is represented. 

The curves obtained facilitate the understanding of the dynamic behavior 

of structures from the elastic field to collapse, but require a computational effort 

higher than all the other methods. 

7.2.1 Evaluation of the reference earthquakes 

For the purpose of evaluating the set of earthquakes for the development of 

incremental dynamic analysis, the design spectrum of our case study structure 

has been derived from the Italian technical standards [20] considering the 

following values expressed in Table 7.2.1. 

Table 7.2.1 Seismic parameters of the design spectrum 

ag/g ag g S TB TC TD η 

[-] [m/s2] [m/s2] [-] [s] [s] [s] [-] 

0.261 2.56 9.81 1.15 0.157 0.47 2.64 1 

For the type B soil category, 34 earthquakes occurred mainly in the 

Mediterranean including the Italian peninsula, Greece and Turkey, for which 

accelerograms, response spectra, and characteristics of seismic events are 

available, have been considered. 

Through the simulation of a spreadsheet, it was possible to select 7 

earthquakes scaling them appropriately (Table 7.2.2) so that the average 

spectrum obtained for these 7 seismic events does not exceed or subceed at any 

point in the Sa(T)-T graph of a value of the 10% with respect to the design 

spectrum (Figure 7.2.1). 
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Table 7.2.2 Spectrum-compatible seismic events 

 Event ID 
MAX PGA 

[cm/s2] 

Length 

[s] 
Npt 

Scale 

factor 

S1 GR-1995-0047 510.615 6.18 7958 1.50 

S7 IT-2009-0009 355.460 11.75 20000 1.28 

S9 IT-1976-0030 341.508 4.795 4919 0.50 

S13 IT-2009-0009 644.247 7.695 20001 0.75 

S21 
EMSC-20161030_0000029 

(CENTRAL_ITALY) 
476.428 10.395 10000 0.63 

S25 IT-1980-0012 314.302 39.005 14152 0.80 

S26 IT-1980-0012 58.702 35.200 10602 1.50 

 

 

Figure 7.2.1 Spectrum-compatible accelerograms 
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7.3 Modelling in OpenSees 

OpenSees (Open System for Earthquake Engineering) is an open-source 

finite element program used in engineering to simulate the nonlinear response 

of structural and geotechnical systems, and it is developed at the University of 

California, Berkeley. Its characteristic of being "open" allows a continuous 

evolution of libraries thanks to the interchangeability between users and 

developers. The solutions implemented mainly concern: the construction of the 

model, the analytical formulation of a given element, material models, analysis 

methods, numerical solvers, and useful procedures for data implementation. 

OpenSees uses the C++ language and has no graphical input or output interface: 

data input (geometries, mechanical parameters, external actions, and resolution 

strategy) takes place through a file written in the TCL language or, as recently 

developed, in the Python language, better in the field of post processing.  

7.3.1 Model construction syntax 

Each tcl or python file is characterized by a precise syntax and the structural 

system model must follow the following order [31]: 

• Geometric data: the "basic model builder" is defined, as well as the size 

of the problem to be analyzed and the number of degrees of freedom of 

each node.  For the study under consideration, it has been defined: 

model basic -ndm 2 -ndf 3; 

• Nodal coordinates: definition of all the coordinates of the nodes in the 

reference system x, y, z where the x-y plane is the working plane; 

• Constraints: definition of the boundary conditions with fix followed by 

0 for free degrees of freedom and 1 for constrained degrees of freedom; 

In addition, for the structure under study, internal constraints such as 

the real hinges of the beams and diagonals have been inserted through 

the EqualDof command, binding the slave node to the master node 

which is the structural node of the ends of the columns in the degree of 

freedom 1 and 2. 

• Materials: the materials of the system are defined using the constitutive 

laws present in the uniaxialMaterial library; 

• Sections: the sections of the model are defined according to a fiber 

modeling; they are made with the patch rect and wideFlange command 
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according to a rectangular model with discretized fibers with the 

presence of 16 fibers. 

• Transformation: the transformation of the reference system is defined 

with regard to the stiffness and stresses of the elements, in the specific 

case, it has been considered a P-delta transformation to take into account 

the second order effects, relevant for the aforementioned structural 

typology; 

• Elements: the individual elements of the system are defined by 

associating the end nodes, the section and the geometric transformation 

of the reference system; Each element was modeled with the command 

dispBeamColumn, nonLinearBeamColumn and elasticBeam with 5 

integration points for each element (corotational transformation). 

Loads: loads are defined at nodes or on previously defined 

elements; To have a better resolution of the problem in the nonlinear 

field, the gravitational load was applied in 10 steps proportionally, 

fixing the load constant after the tenth step. 

Recorders:  the outputs of the analysis to be saved in appropriate 

.out files are defined; The stresses of the elements as well as the 

displacements of the structural nodes were derived for the purpose of 

data interpretations. 

Analysis: the solver of the system of equations under analysis, the 

type of boundary conditions, the numbering of the equations and the 

degrees of freedom are defined. The convergence test on the equation 

matrix, and the algorithm used to solve a nonlinear system of equations, 

are also defined. 

7.3.2 Fiber Elements and Uniaxial Material 

The structural software Opensees (Open System for Earthquake 

Engineering) allows to perform a fiber modeling of the sections of the structural 

elements. Consequently, non-linear analysis on structures is performed 

attributing to each fiber constitutive links of materials that do not have purely 

elastic behavior. It turns out that each fiber constituting the element has a 

uniaxial behavior. 

The structural element is divided into a series of control sections. For fiber 

elements, the concept of distributed plasticity is used, which differs from 

concentrated plasticity, involving the entire element rather than considering 
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plasticity concentrated in plastic hinges. Considering the concentrated plasticity, 

it is necessary to provide precise points of formation of the plastic hinges, in 

which all the non-linearity of the system is concentrated. This is not entirely in 

line with the real behavior of the structures, especially due to the difficulty of a 

precise identification of the position of the plastic hinge. On the other hand, this 

method allows to have a computational advantage since it makes the structural 

elements easily manageable. As far as fiber modeling is concerned, plasticity is 

widespread throughout the element. In this way, the determination of the point 

of formation of the plastic hinge and the calculation of the plasticization moment 

are not necessary. However, this way requires a greater computational burden, 

but in the face of a more realistic behavior of the element. 

Therefore, in the context of a finite element program it is essential to use a 

numerical model that can guarantee a good level of accuracy without requiring 

too high a computational burden to handle the nonlinear analysis of individual 

structural elements. A fundamental aspect becomes the choice of the 

methodology for modelling non-linearities. Distributed plasticity models can be 

modeled according to the following formulations: 

• Force Based Elements (FBE) /NonLinearBeamColumn 

• Displacement Based Elements (DBE) 

DBE is the most used methodology, in which the field of deformations of 

the element is obtained from the displacements of the end nodes through 

appropriate interpolating functions. Next, the virtual work principle is used to 

derive the nodal forces. To interpolate the deformation field, for the 

displacement is adopted u(x) form functions with linear pattern and for the 

curvature v(x) a function with quadratic trend. This results in a constant axial 

deformation, and a linear curvature. Due to the approximation chosen, it is 

therefore necessary to adopt a sufficiently refined discretization to be able to 

adequately grasp the deformation field. The fundamental limitation of such an 

approach is, therefore, related to the lack of precision in describing highly non-

linear behaviors, without having to excessively refine the mesh. 

For Forced Based elements, on the other hand, a dense discretization is not 

required, as the approximation will be adequate thanks to the use of control 

sections defined by the integration points. The response of the elements changes 

significantly depending on whether one type of element is used rather than the 

other, but a good approximation of the structural behavior is still obtained if the 

mesh is handled properly. 
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In this specific case, both models have been developed which, properly 

calibrated, have provided comparable results. 

The fiber section was modeled using both the patch and the wideflange 

command, where the main dimensions of the section are assigned directly. 

As regards the selection of the constitutive model of the materials, the fibers 

have been equipped with a uniaxial material of the type “Steel 01” and “Steel 

02” Giuffrè-Menegotto-Pinto. 

7.3.3 “Steel 02” Giuffré-Menegotto-Pinto uniaxial material 

For MRFs and CBFs the uniaxial material "Steel02" has been selected and 

calibrated for the specific case study [31]. 

This material is based on the Giuffrè-Menegotto-Pinto behavioural link 

(Figure 7.3.1) modified later by Filippou et al.[36] to include the isotropic 

hardening effect. 

 
Figure 7.3.1 Giuffrè-Menegotto-Pinto constitutive link (Steel02). 

According to this model, the constitutive link of the steel material is 

expressed by the relation: 

𝜎∗ = 𝑏 ⋅ 𝜀∗ +
(1 − 𝑏) ⋅ 𝜀∗

(1 + |𝜀∗|𝑅(𝜉))1/𝑅(𝜉)
 (7.3.1) 

whereε* and σ* are, respectively, dimensionless deformation and stress, 

expressed by the relations: 
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𝜎∗ =
𝜎 − 𝜎0

𝜎0 − 𝜎𝑟
 (7.3.2) 

𝜀∗ =
𝜀 − 𝜀0

𝜀0 − 𝜀𝑟
 (7.3.3) 

where ε0 and σ0 are the coordinates of the intersection point of the two 

asymptotes of the current load phase, while εr and σr are the coordinates of the 

previous load reversal point. 

b is the ratio between the elastic modulus of the hardening phase and that 

of the elastic phase;  

R(ξ) is a decreasing function of the parameter ξ expressing the overall 

deformation of the previous cycle and is expressed by the relation: 

𝑅(𝜉) = 𝑅0 −
𝑎1 ⋅ 𝜉

𝑎2 + 𝜉
 (7.3.4) 

where R0, a1 and a2 are parameters to be calibrated experimentally. 

Figure 7.3.1 shows the first two load paths (compression and subsequent 

tension); Also highlighted are the coordinate points (ε 0, σ 0) and (ε r, σ r) for 

the same phases. 

According to the model shown, the OpenSEES analysis program in the tcl 

language requires the specification of a series of input parameters for the 

definition of the material "Steel02".  

The expected syntax is the following: 

uniaxialMaterial Steel02 $matTag $Fy $E $b $R0 $cR1 $cR2 $a1 $a2 $a3 

$a4 

where:  

• $matTag is the numerical code that identifies the defined material 

(necessary for the assignment of the material to the fibers in the 

modeling of the sections);  

• $Fy is the yield stress of the material; - $E is the initial tangent 

modulus of elasticity;  

• $b is the work hardening ratio (ratio between the tangent modulus 

of elasticity in the post-plasticization phase and the initial one);  
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• $R0 $cR1 $cR2 are parameters that control the transition from the 

elastic branch to the plastic branch. The following values are 

suggested for these parameters: 10-20 for $R0, 0.925 for $cR1 and 

0.15 for $cR2;  

• $a1 $a2 $a3 $a4 are the parameters for the definition of isotropic 

hardening.  

Especially:  

• $a1 represents the factor of increase of the plastic threshold in 

compression after a plastic deformation of $a2 times the 

deformation at yield strength ($Fy/$E);  

• $a3 represents the factor of increase of the plastic threshold in 

tension after a plastic deformation of $a4 times the deformation at 

yield strength ($Fy/$E).  

The following is the syntax that is used for the Python language: 

uniaxialMaterial('Steel02', matTag, Fy, E0, b, *params, a1=a2*Fy/E0, 

a2=1.0, a3=a4*Fy/E0, a4=1.0, sigInit=0.0) 

where the parameters are the same as those previously reported with regard 

to the TCL language. 

7.4 Fiber Elements, Sections and Uniaxial Material in 

OpenSees for MRFs 

In the case of MRFS, a fiber modeling of the sections of the structural 

elements has been selected. Consequently, non-linear analyses on structures are 

performed attributing to each fiber of the element a uniaxial behavior [31]. 

Non-linearities have been modelled through a distributed plasticity model 

can be modeled considering both Force Based Elements (FBE) and 

 Displacement Based Elements (DBE) 

The models, properly calibrated, have provided comparable results. 

The fiber sections have been modeled using the wideflange command, 

where the main dimensions of the section are assigned directly. 

The fiber section was modeled using the “wideflange” command in which 

the main dimensions of the section are assigned directly; the syntax used is as 

follows: 
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section('WFSection2d', secTag, matTag, d, tw, bf, tf, Nfw, Nff) 

where: 

secTag is the unique identifier tag for the section 

matTag is the tag of the material assigned to the section 

d è the height of the section 

tw is the thickness of the web 

bf is the base of the section, flange size 

tf is the thickness of the flange 

Nfw is the number of fibers to be assigned in the direction of the web 

Nff is the number of fibers to be assigned in the direction of the flange 

The following is an example for a section HEM300 (Figure 7.4.1) according 

to Python language:  

ops.section('WFSection2d', HEM300, Steel02, 0.34, 0.0210, 0.310, 0.0390, 

6, 8 ) 

 

Figure 7.4.1 HEM 300 fiber section 

As regards the selection of the constitutive model of the materials, the fibres 

have been equipped with a uniaxial material of the type “Steel 02” Giuffrè-

Menegotto-Pinto, considering an S355 steel grade material. 
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The comparison between the static pushover curve obtained by SAP2000 

and Opensees is reported in  Figure 7.4.2. It is worth observing that the SAP2000 

model considers a concentrated plasticity model through the use of the so-called 

P-Hinge properties. The Opensees material has been calibrated considering the 

absence of hardening. From the analysis of Figure 7.4.2 it seems to achieve the 

same behaviour of the structure modelled with concentrated plasticity. 

 

Figure 7.4.2 Comparison between concentrated and distributed plasticity models 

The parameters have been set as reported in Table 7.4.1. 

Table 7.4.1 Parameters used for steel02 uniaxial material (MRFs) 

𝑓𝑦[N/mm2] 𝐸0[N/mm2] 𝑏 𝑅0 𝑐𝑅1 𝑐𝑅2 𝑎1 𝑎2 𝑎3 𝑎4 

355 210000 
1 x 

10-8 
18 0.925 0.15 a2*Fy/E0 

1 x 

10-8 
a4*Fy/E0 

1 x 

10-8 
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7.5 Non-linear Cyclic behaviour of Bracing Members 

The seismic behavior of the CBFs is governed by the cyclic behavior of the 

bracing members, which constitute the dissipative elements. 

The cyclic behavior of the bracing diagonals is characterized by a strongly 

non-linear trend, due to the drawing of buckling conditions, and rapidly 

degrading for cycles subsequent to the first, due to both the presence of the 

accumulated residual deformations and the Bauschinger effect, which occurs 

due to the translation of the plasticization surface (kinematic hardening), 

towards a point representative of the tensile stress state. 

The typical trend of hysteresis cycles for symmetric load history is reported 

in Figure 7.5.1, where Py and δy are, respectively, the plastic resistance of the 

beam in tension and the corresponding plastic axial deformation [31]. 

 

Figure 7.5.1 Hysteretic behavior of an axially loaded beam with symmetrical load 

history. 

7.5.1 Studies on the fundamental parameters affecting the cyclic 

behaviour of axially loaded members. 

The numerous studies [24],[25],[31]-[35] developed on the cyclic behavior 

of the axially loaded beams have highlighted the dependence of the dissipative 

capacities of the diagonals on three fundamental parameters:  

• slenderness ratio 

• constraint conditions 

• cross section shape 
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The cyclic response of axially loaded members depends essentially on the 

slenderness λ, expressed by the ratio β·L/ρ between the effective length and the 

gyration radius (referred to the deflection plan). 

Depending on the slenderness, the members can be divided into slender, 

intermediate and stocky. A member can be defined slender if the buckling load 

is less than or at most equal to half the yield strength 213[25]: 

𝜎𝑐𝑟 ≤ 0.5 ⋅ 𝜎𝑦 (7.5.1) 

Considering the elastic critical stress defined through the Eulero 

relationship: 

𝜎𝑐𝑟 =
𝜋2𝐸

𝜆2
 (7.5.2) 

And combining Eq.(7.5.1) and Eq.(7.5.2), the following limitation is 

obtained for slender members: 

𝜎𝑠𝑙𝑒𝑛𝑑𝑒𝑟 ≥
𝜋 ⋅ √𝐸/0.5

√𝑓𝑦

 (7.5.3) 

Where fy is the yield strength of the steel and E is the elastic modulus. 

Assuming E equal to 210000 N/mm2, it is possible to write: 

𝜎𝑠𝑙𝑒𝑛𝑑𝑒𝑟 ≥ 2036/√𝑓𝑦 (7.5.4) 

Eq. (7.5.4) provides a slenderness limit value of 133 for S235 steel and 108 

for S355 steel.  

Too high slenderness ratio, produce a worsening of the overall behaviour 

of the structure. Slender members, in fact, are characterized by reduced stiffness 

in the unstable configuration, that rapidly increases when the straightening, due 

to the load reversal, occurs. 

However, such straightening, if rapid, can also lead to the collapse of the 

connections at the ends of the diagonals themselves.  

A member is instead defined as stocky when the response is governed by 

the local instability of the section, which determines the decrease in the flexural 

capacity of the plastic hinges. 
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Finally, intermediate members are characterized by the interaction between 

local and global instability. 

A summary table for the classification in terms of slenderness, derived from 

the studies conducted by (Bruneau et al., 1998 [25]) and (Jain et al., 1978 [35]), 

is given below: 

Steel 𝝈𝒔𝒍𝒆𝒏𝒅𝒆𝒓
(1) 𝝈𝒊𝒏𝒕

(1) 𝝈𝒔𝒕𝒐𝒄𝒌𝒚
(2) 

S235 𝜎𝑐𝑟 ≥ 133 60 < 𝜎𝑐𝑟 < 133 𝜎𝑐𝑟 ≤ 60 

S355 𝜎𝑐𝑟 ≥ 108 50 < 𝜎𝑐𝑟 < 108 𝜎𝑐𝑟 ≤ 50 

1 Bruneau et al., 1998; 2 Jain et al., 1978; 

As regards the constraint conditions, the effects on the hysteretic behavior 

of axially loaded members have been analyzed by Black et al. [33],[34]. With 

the same slenderness and for constraining conditions of support-support and 

support-fixed end type, the results show, in the transition from the first 

constraint condition to the second, only a slight improvement in hysteretic 

behavior (increasing the area underlying the diagram). 

The study of the effect of the cross-section type on the hysteretic response 

of axially loaded limbs was conducted by Black et al. [33],[34]. The work is 

based on the analysis of the hysteretic behaviour of six simply supported beams, 

one with a double T section, a T-section, two tubular, a boxed section, and 

finally one with coupled angles. The six members analyzed all have the same 

slenderness ratio λ=80. The results led to the identification of two modes of 

collapse of the members:  

1. collapse due to local buckling;  

2. collapse due to lateral-torsional buckling. 

The improvement of the dissipative capacities of the members can be 

achieved by reducing the width-to-thickness ratio b/t for boxed sections, or d/t 

(diameter/thickness) for tubular sections and bf/2tf (flange width/thickness) for 

double T sections. 

On the basis of the results obtained, Black et al. [33],[34] classify the 

analysed sections in descending order according to dissipative capacity for a 

given overall slenderness value: 

1. tubular members;  
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2. boxed members;  

3. double T members;  

4. T-shaped members;  

5. members with coupled angles. 

7.5.2 An analytical model for the characterization of the cyclic 

behavior of the axially loaded members 

Georgescu's model [24],[25] provides an analytical formulation of the 

schematization of the hysteretic behavior of diagonals. The model investigates 

the effect of the initial deformations on the behavior of the axially loaded 

member. It is considered a beam with initial geometric imperfection fo, 

equivalent to the overall geometric and mechanical imperfections, also called 

"industrial beam"(Figure 7.5.2). 

 

Figure 7.5.2 “Industrial beam” with initial imperfection. 

The behavior of the axially loaded beam is described through three 

parameters: the axial stress P, the axial deformation δ, and the deflection f 

(transverse deformation).  

Georgescu’s model refers to a cycle that is divided into zones corresponding 

to several characteristic behaviours, defined as a function of the physical 

interpretation of the inelastic cyclic behaviour. 

In Figure 7.5.3 the schematization of the first hysteretic cycle is reported []. 

The schematization of the hysteretic cycle identifies several branches 

associated with the following meaning: 

Branch O-A of elastic shortening in compression: the member is subjected, 

because of the axial compression, to a progressive shortening that ends at point 

A with the achievement of the buckling condition, corresponding to the critical 

load in compression Pcr. 

P z 
   f0 f0 

f1 

   

     
 

 

 

 

L 
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Branch A-B: when the buckling condition is attained the member begins 

to skid sideways. As a result, a second-order bending moment arises along the 

beam equal to P·f(z), where f(z) represents the deformation of the axis line. The 

lateral displacement, therefore, grows under constant load up to point B, where 

there is the formation of the plastic hinge in the centerline section. 

Consequently, in this branch, the shortening of the beam is substantially linked 

to the deflection. 

Branch B-C: represents the mechanism equilibrium curve of the member. 

After the formation of the plastic hinge, the bending moment in the centerline 

section remains constant. For equilibrium, an increase in axial and therefore 

transverse deformation must be accompanied by a reduction in terms of axial 

load. The plastic hinge, therefore, continues to rotate until it reaches point C, 

where the reversal of the load occurs. The branch is characterized by a non-

linear trend due to the normal stress-bending moment interaction.  

Branch C-D of elastic elongation in compression: due to the reversal of the 

load, the reduction of the axial load is accompanied by a progressive elongation 

of the member. This branch is similar to the OA one, but it is obviously 

characterized by stiffness, and therefore by a slope, lower than the previous 

branch, due to the level of deformation reached at point C. In addition, point D 

is associated with a zero axial load but non-zero axial deformation and lateral 

displacement (residual deformations).  

Branch D-E of elastic elongation in tension or straightening phase: due to 

the increase in the tensile load, there is a progressive elongation and therefore 

the simultaneous straightening of the member. As a result of the 

existing(residual) lateral deformation, a variable bending moment is generated 

along the member; when this equals the resisting moment in the centerline 

section, at point E, the formation of a plastic hinge is obtained. 

 Branch E-F: similarly to the B-C branch, it represents the equilibrium 

curve of the kinematic mechanism in which the member has been transformed; 

an increase in axial elongation is accompanied by a reduction in transverse 

deformation. Consequently, the tensile axial load must increase, resulting in a 

P-δ link that is still non-linear. At point F, the yield strength Py is reached, which 

is associated with a residual transverse displacement.  

Branch F-F’ or yielding branch: the load remains constant, equal to the 

plastic stress (in the hypothesis of absence of hardening), while there is a 

progressive elongation of the member. 
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Branch F’-G of elastic shortening in tension: starting from point F' the 

beam is gradually released until it reaches point G, characterized by a zero axial 

load and non-zero residual axial deformation. 

 

Figure 7.5.3 Cyclic behavior of an axially loaded beam. 

The cycles following the first can be schematized in a similar way to what 

has been described so far, considering a translation of the reference system since 

the initial point of the i-th cycle corresponds to the final one of the i-1 cycle. For 

example, the second cycle will start from point G instead of O. However, for 

cycles subsequent to the first, it is necessary to take into account the reduction 

of the compression strength threshold, due to the accumulated residual 

deformations. 

From the analytical point of view, a beam with initial imperfection f0 is 

considered, equivalent to the overall geometric and mechanical imperfections, 

also called "industrial beam". 

The initial deformed configuration can be expressed through the equation 

of a sine wave: 

𝑓0(𝑧) = 𝑓0 ⋅ 𝑠𝑖𝑛
𝜋 ⋅ 𝑧

𝐿
 (7.5.5) 
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where L is the length of the rod and z is the generic abscissa computed 

according to the reference system indicated in Figure 7.5.3. The generic abscissa 

z, for the equilibrium between the internal and external moment, must result: 

𝑀(𝑧) = 𝑃 ⋅ (𝑓0(𝑧) + 𝑓1(𝑧)) (7.5.6) 

where f0 is the initial imperfection and f1 is the differential deflection from 

the initial configuration. Taking into account the relationship between the elastic 

deflection of the beam f1(z) and bending moment, Eq.(7.5.6) gives the relation: 

𝑑2𝑓1(𝑧)

𝑑𝑧2
+

𝑃

𝐸𝐼
⋅ 𝑓1(𝑧) = −

𝑃

𝐸𝐼
⋅ 𝑓0(𝑧) (7.5.7) 

from which, placed K2 = P/EI, we obtain the equation of the elastic curve 

of the industrial beam subject to axial load P: 

𝑑2𝑓1(𝑧)

𝑑𝑧2
+ 𝐾2 ⋅ 𝑓1(𝑧) = −𝐾2 ⋅ 𝑓0(𝑧) (7.5.8) 

From the resolution of the non-homogeneous differential equation (7.5.8) 

the variation of the deformed configuration of the beam is expressed starting 

from an initial configuration already deformed: 

𝑓1(𝑧) = (
𝑃/𝑃𝐸𝑢𝑙

1 − 𝑃/𝑃𝐸𝑢𝑙
) ⋅ 𝑓0𝑠𝑖𝑛 (

𝜋 ⋅ 𝑧

𝐿
) (7.5.9) 

where PEul represents the Eulerian buckling load, equal to π2 EI/L2 for a 

simply supported beam. Normal stress has to be expressed in absolute value. 

By placing  

𝑓 = (
𝑃/𝑃𝐸𝑢𝑙

1 − 𝑃/𝑃𝐸𝑢𝑙
) ⋅ 𝑓0 (7.5.10) 

can be rewritten as: 

𝑓1(𝑧) = 𝑓 ∙ 𝑠𝑖𝑛 (
𝜋 ⋅ 𝑧

𝐿
) (7.5.11) 

In order to determine the axial deformation corresponding to the transversal 

deflection, reference is made to the infinitesimal element of the beam placed 

near the support, reported in Figure 7.5.4. For small displacements, it is possible 

to approximate the curvilinear deformation of the beam with a straight line. 

Consequently, the axial shortening of the infinitesimal element, related to the 

transverse deformation, can be expressed as: 
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𝑑𝑤 = 𝑑𝑧 − 𝑑𝑧 𝑐𝑜𝑠𝛼 = 𝑑𝑧 ⋅ (1 − 𝑐𝑜𝑠𝛼) (7.5.12) 

 

 

Figure 7.5.4 Infinitesimal element at the support. 

The total shortening of the beam is obtained by integrating the (7.5.12) 

along the length of the beam: 

𝑑𝑤 = ∫ (1 − 𝑐𝑜𝑠𝛼)
𝐿

0

𝑑𝑧 (7.5.13) 

Developing the Taylor series cosα with zero starting point stopped at the 

second term (cosα=1- α2 /2) and substituting this expression into the (7.5.13), it 

is obtained: 

𝑤 = ∫ (1 − 1 +
𝛼2

2
)

𝐿

0

𝑑𝑧 =
1

2
∫ (𝛼2𝑑𝑧)

𝐿

0

 (7.5.14) 

On the other hand, the angle α can be expressed through the derivative of 

the transverse deformation: 

𝛼 =
𝑑𝑦

𝑑𝑧
→

𝑑𝑦

𝑑𝑧
=

𝜋

𝐿
⋅ 𝑓 ⋅ 𝑐𝑜𝑠 ⋅ (

𝜋 ⋅ 𝑧

𝐿
) (7.5.15) 

where f is the total deflection of the midspan. Substituting the (7.5.15) In 

the (7.5.14), it is possible to write: 

𝑤 =
1

2
∫ [

𝜋

𝐿
⋅ 𝑓 ⋅ 𝑐𝑜𝑠 ⋅ (

𝜋 ⋅ 𝑧

𝐿
)]

2

𝑑𝑧
𝐿

0

 (7.5.16) 

whose solution provides the shortening of the beam corresponding to the 

transverse deformation with deflection f: 
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𝑤 =
𝜋2

4

𝑓2

𝐿
≅ 2 ⋅

𝑓2

𝐿
 (7.5.17) 

With reference to the industrial beam, the total transverse deformation is 

provided by the sum of the initial deformation f0 (imperfection of the beam) and 

the variation of the transverse deformation from the initial configuration f.  

Consequently, it is possible to define the overall transverse deformation ft 

as: 

𝑓𝑡 = (
𝑃/𝑃𝐸𝑢𝑙

1 − 𝑃/𝑃𝐸𝑢𝑙
) ⋅ 𝑓0 + 𝑓0 =

1

(1 −
𝑃

𝑃𝐸𝑢𝑙
)

𝑓0 
(7.5.18) 

where P, consistent with the convention assumed in (7.5.9), must be 

assumed in absolute value. 

Ultimately, the overall shortening of the beam can be expressed as the sum 

of the elastic contribution, due to the acting axial load, and the contribution of 

the total deformation, i.e.: 

𝛿 = 𝛿𝑖 −
𝜋2

4
⋅

𝑓𝑡
2

𝐿
+

𝑃𝐿

𝐸𝐴
 (7.5.19) 

where δi represents the initial axial deformation, while it represents the 

overall flexural deformation. It should be noted that in 𝑓𝑡(7.5.19) axial load P 

must be taken in sign, where, by convention, the compressive stresses are 

defined as negative. In this way, the normal stress in compression and the 

transverse deformation provides concordant contributions, i.e., negative axial 

deformations that identify the shortening of the beam. 

Finally, expressing the initial axial deformation δi as a function of the initial 

imperfection f0 through ((7.5.17), the report (7.4. (7.5.19): 

𝛿 =
𝑃𝐿

𝐸𝐴
 −

𝜋2

4𝐿
⋅ (𝑓𝑡

2 − 𝑓0
2) (7.5.20) 

With 𝑓𝑡 =
1

(1−
𝑃

𝑃𝐸𝑢𝑙
)

𝑓0 as reported in Eq.(7.5.18) 

Given the relationship between transverse deformation and axial 

deformation (Eq.(7.5.20), and exploiting Eq.(7.5.18), it is possible to formulate 

the equations that define the different branches in Georgescu's model. The 
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Eulerian buckling load has been replaced with the critical buckling load Pcrit, 

defined according to Eurocode 3. 

The equations describing the model depend on the initial imperfection f0, 

defined according to Georgescu’s model, considering the first yielding 

condition and Eurocode 3 buckling formulation (see chapter…..): 

𝑓0 =
𝑊

𝐴
𝛼(𝜆2̅̅ ̅ − 0.04)   𝑤𝑖𝑡ℎ  𝛼 = 0.21 , 𝜆̅ =

𝜆

𝜆𝑦
 (7.5.21) 

where W is the plastic section modulus, A is the section area, α is a 

coefficient depending on the buckling curve, defined by Eurocode 3, λ is the 

geometric slenderness defined as the ratio between the effective buckling length 

L0 and the radius of gyration   𝜆𝑦 = 𝜋(𝐸 𝑓𝑦⁄ )
1 2⁄

 is the slenderness 

corresponding to the yielding condition, E is the elastic modulus and fy is the 

resistance of the steel in tension. 

OA branch: 

Given the axial displacement 𝛿𝑂𝐴, the axial load P can be defined as: 

𝑃 =
𝐸𝐴

𝐿
𝛿𝑂𝐴 = 𝐾𝑑𝛿𝑂𝐴     𝑤𝑖𝑡ℎ 𝑃 𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑡𝑜 𝑃𝑐𝑟𝑖𝑡   (7.5.22) 

and consequently, point A(𝛿𝐴, 𝑃𝑐𝑟) can be defined evaluating the 

displacement 𝛿𝐴 corresponding to the achievement of the critical buckling load 

𝑃𝑐𝑟𝑖𝑡: 

𝛿𝐴 =
𝑃𝑐𝑟𝐿

𝐸𝐴
  (7.5.23) 

AB branch: 

At point A, buckling occurs. The second-order bending moment increases 

until the formation of the plastic hinge in the centerline section occurs (point B). 

Taking into account the axial force-bending moment interaction, it is possible 

to define the total transversal deflection corresponding to point B as: 

𝑓𝑡𝐵 =
𝑀𝑝𝑙

𝑃𝑐𝑟𝑖𝑡
(1 −

𝑃𝑐𝑟𝑖𝑡

𝑃𝑦
) (7.5.24) 

Where Mpl is the plastic resisting moment of the section and Py is the axial 

resistance in tension. 
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Consequently, point B(𝛿𝐵 , 𝑃𝑐𝑟) can be defined evaluating the displacement 

𝛿𝐵 exploiting Eq.(7.5.20) (valid if buckling occurs) for 𝑃 = 𝑃𝑐𝑟𝑖𝑡 and 𝑓𝑡 = 𝑓𝑡𝐵: 

𝛿𝐵 =
𝑃𝑐𝑟𝑖𝑡𝐿

𝐸𝐴
−

𝜋2

4𝐿
(𝑓𝑡𝐵

2 − 𝑓0
2) (7.5.25) 

BC branch: 

At point B, a mechanism occurs, whose equilibrium curve is still expressed 

through Eq.(7.5.24) and (7.5.25), but considering a generic axial stress P: 

𝑓𝑡 =
𝑀𝑝𝑙

𝑃
(1 −

𝑃

𝑃𝑦
)  𝑤𝑖𝑡ℎ 𝑃 <  𝑃𝑐𝑟𝑖𝑡 (7.5.26) 

𝛿𝐵𝐶 =
𝑃𝐿

𝐸𝐴
−

𝜋2

4𝐿
(𝑓𝑡

2 − 𝑓0
2) (7.5.27) 

Point C is defined according to EC8 shortening limits or to the cyclic test 

performed. 

The OA and AB branches, thus represented, are a simplification of the real 

model. Substituting Eq.(7.5.18) in Eq.(7.5.20), A hyperbolic function with 

horizontal asymptote P=Pcrit is obtained. Point B, strictly speaking, should be 

determined as the intersection between the curve previously defined and the 

mechanism equilibrium curve BC, shown below. 

 

Figure 7.5.5 Shape of the first three branches (OA-AB-BC) - Ø 139,7 s 5 

Il punto B, a rigore, andrebbe determinato come intersezione tra la curva 1 

precedentemente definita e la curva di equilibrio del meccanismo BC. 2 

 3 

Figure 1. Shape of the first three branches (OA-AB-BC) 4 
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CD branch: 

The C-D branch is linear and is similar to the OA branch. It is therefore 

possible to use the same formulations by making a proper translation of the axes 

at point D. Point d is on the x-axis so the transversal deflection at point D is seen 

as the initial imperfection 𝑓0 of the (7.5.18), in the new reference system. Placing 

𝑓𝑡𝐷 = 𝑓0, the (7.5.18) represents the variation of the total transverse deflection: 

𝑓𝑡 =
1

1 − 𝑃 𝑃𝑐𝑟⁄
𝑓𝑡𝐷 (7.5.28) 

As a result, it is possible to obtain the total deflection 𝑓𝑡𝐷 exploiting the 

(7.5.28) for point C: 

𝑓𝑡𝐶 =
1

1 − 𝑃𝐶 𝑃𝑐𝑟⁄
𝑓𝑡𝐷 (7.5.29) 

Consequently: 

𝑓𝑡𝐷 = 𝑓𝑡𝐶(1 − 𝑃𝐶 𝑃𝑐𝑟⁄ ) (7.5.30) 

With the values of 𝑃𝐶 and𝑓𝑡𝐶 defined using the equations of the BC branch. 

Equation (7.5.20) gives for 𝑃 = 𝑃𝐶   , 𝑓𝑡 = 𝑓𝑡𝐶 and 𝑓0 = 𝑓𝑡𝐷 axial 

deformation at point C, according to the new reference system: 

𝛿𝐶′ =
𝑃𝐶𝐿

𝐸𝐴
−

𝜋2

4𝐿
(𝑓𝑡𝐶

2 − 𝑓𝑡𝐷
2) (7.5.31) 

From which it is possible to derive the axial deformation at the point D 

through the relation: 

𝛿𝐷 = 𝛿𝐶 − 𝛿𝐶′ (7.5.32) 

DE branch: 

The D-E branch is still characterized by a linear trend. It is still possible to 

adopt the same formulations of the O-A branch. In particular, assuming a local 

reference system with origin in D, the transverse deformation can be expressed 

through (7.5.18) by substituting the initial imperfection with the transverse 

deformation 𝑓𝑡𝐷. In addition, a reversal of the sign to the denominator is carried 

out in such a way that for increasing values of the axial load in tension, there is 

a reduction of the transverse deformation compared to that corresponding to the 

D point, obtaining: 
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𝑓𝑡 =
1

1 + 𝑃 𝑃𝑐𝑟⁄
𝑓𝑡𝐷 (7.5.33) 

By analogy, the axial deformation of the D-E branch, relative to the local 

reference system, will be expressed by the relation (Eq.(7.5.20) translated by δD, 

considering 𝑓𝑡𝐷 as initial imperfaction):  

𝛿 = 𝛿𝐷 +
𝑃𝐿

𝐸𝐴
−

𝜋2

4𝐿
(𝑓𝑡

2 − 𝑓𝑡𝐷
2) (7.5.34) 

However, the D-E branch is only fully defined once the axial load at the 

end point E has been determined. This value is estimated by considering the EF 

branch equation. 

EF branch: 

In analogy to the BC branch, it is represented by the mechanism equilibrium 

curve (Eq.(7.5.26)) 

The transverse deformation of point E can be expressed through Eq.(7.5.33) 

for 𝑃 = 𝑃𝐶  and 𝑓0 = 𝑓𝑡𝐷: 

𝑓𝑡𝐸 =
1

1 + 𝑃𝐸 𝑃𝑐𝑟⁄
𝑓𝑡𝐷 (7.5.35) 

The equilibrium curve, calculated at point E, gives: 

𝑓𝑡𝐸 =
𝑀𝑝𝑙

𝑃𝐸
(1 −

𝑃𝐸

𝑃𝑦
) (7.5.36) 

Substituting the (7.5.35) into (7.5.36), it is possible to derive 𝑃𝐸 (and 

consequently 𝑓𝑡𝐸) through the following second order equation: 

𝑃𝐸
2 + 𝐵 ⋅ 𝑃𝐸 ⋅ −(𝑃𝑦 ⋅ 𝑃𝐸𝑢𝑙) = 0 (7.5.37) 

where it is placed B=(∆D·PEul·Py/γMpl)+PEul-Py. 

Known the value of the axial load PE, are fully defined both the DE and EF 

branches, considering that the load in F is known and is equal to Py in the case 

in which it reaches the yield strength.  

In this case, the point F corresponds to a total transverse deformation 𝑓𝑡 =

0. 
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FG branch: 

The FG branch is defined by the final load PG, corresponding to the reverse 

point of the load, and the yield ratio of the material. This branch should be 

represented only if the yield strength is reached. 

 A simplification has also been implemented for the CD and DE branches. 

Strictly speaking, this branch is represented by the hyperbolic function (7.5.34). 

This function was defined by two straight lines through points D, C and E 

(Figure 7.5.6). 

 

Figure 7.5.6 Shape of the Georgescu’s model - Ø 139,7 s 5 

GH branch: 

The GH branch still has a linear trend, so that, as in the previous cases, 

fixing at point H the local reference system, the transverse deformation is 

described by Eq.(5.6.18), assuming 𝑓0 = 𝑓𝑡𝐻. In particular, inverting the relation 

for P=PG and then𝑓𝑡 = 𝑓𝑡𝐺, The unknown value of the transverse deformation 

is deduced 𝑓𝑡𝐻: 
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𝑓𝑡𝐻 = 𝑓𝑡𝐺 ⋅ (1 +
𝑃𝐺

𝑃𝑐𝑟
) (7.5.38) 

The axial deformation at point G in the new reference system can be 

expressed by the Equation (7.5.20) for 𝑃 = 𝑃𝐺  and 𝑓0 = 𝑓𝑡𝐻: 

𝛿𝐺′ =
𝑃𝐺𝐿

𝐸𝐴
−

𝜋2

4𝐿
(𝑓𝑡𝐺

2 − 𝑓𝑡𝐻
2) (7.5.39) 

Consequently: 

𝛿𝐻 = 𝛿𝐺 − 𝛿𝐺′ (7.5.40) 

The reported expressions of the Georgescu’s model allow to fully 

characterize the first cycle of hysteresis of an axially loaded member. However, 

they can be used for the characterization of subsequent cycles provided, of 

course, replacing the initial deformation f0 with the residual one of the previous 

cycles, i.e. corresponding to the point G, and estimating the degradation of the 

compressive resistant load. 

7.6 Characterization of the Cyclic Behaviour of Diagonal 

Members in OpenSees 

The modeling of the nonlinear behavior of the members was carried out 

using elements with distributed plasticity “nonlinear Beam Column”, exploiting 

a discretization of the sections of fiber type [31]. 

OpenSEES does not have a specific library element that can accurately 

reproduce the cyclic behavior of axially loaded members. It was therefore 

necessary to develop a model to represent nonlinear behavior in compression 

(due to buckling) and degrading for cycles subsequent to the first. 

The calibration of the initial imperfection was carried out using the Perry-

Robertson formula which expresses the compressive strength as a function of 

the dimensionless slenderness 𝜆̅ and the imperfection coefficient η. With 

reference to the industrial beam with initial imperfection f0 subject to axial load 

P, Considering the first yielding condition, it is possible to write the Perry-

Robertson formula [13],[21] as: 

𝑃̅ =
(1 + 𝜆̅2 + 𝜂) ∓ √(1 + 𝜆̅2 + 𝜂)

2
− 4 ⋅ 𝜆̅2

2𝜆̅2
 

(7.6.1) 
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where 

𝜂 =
𝐴

𝑊
⋅ 𝑓0 (7.6.2) 

According to EC3, the expression of the imperfection coefficient that gives 

the best approximation of the instability curves is as follows: 

𝜂 = 𝛼 ⋅ √𝜆̅2 − 0.04 (7.6.3) 

With 𝛼 expressed as a function of the instability curve considered Table 

7.6.1 

Table 7.6.1 Values for α coefficient according to EC3 

Buckling 

curve 
a b c d 

α 0.21 0.34 0.49 0.76 

Combining equations and it is possible to express the initial imperfection 

as: 

𝑓0 =
𝑊

𝐴
𝛼(𝜆2̅̅ ̅ − 0.04)   𝑤𝑖𝑡ℎ  𝛼 = 0.21 ÷ 0.76 , 𝜆̅ =

𝜆

𝜆𝑦
 (7.6.4) 

The proposed scheme for modelling the axially loaded member in 

OpenSEES is shown in Figure 7.6.1. In addition to the end nodes, five 

intermediate nodes are defined. Obviously, the greater is the number of 

intermediate nodes used, the better is the approximation.; In this regard, the 

choice was made in order to achieve a good compromise between the accuracy 

of results and the containment of processing times. 

To take account of the initial imperfection, a fictitious force was applied in 

the centerline, orthogonal to the axis of the diagonal, modeled as a rectilinear 

element. The value of the fictitious force is such as to determine an initial 

deflection equal to the imperfection calibrated based on the Eq. (7.6.4). Thus, 

give the scheme of simply supported beam, the fictitious force F can be 

determined as: 

𝐹 =
48 ⋅ 𝐸 ⋅ 𝐼

𝑙3
⋅ 𝑓0 (7.6.5) 
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Figure 7.6.1 Initial impefection model in OpenSees. 

Tests carried out on a sufficient number of elements have shown that the 

proposed model provides a well-approximated estimation of the maximum 

compressive load and the non-linear cyclic behaviour. Some comparisons 

between the Georgescu model and the curves derived from the application of 

the model proposed in the OpenSEES are shown in Figure 7.6.2a. The curves 

are relative to three beams with cross sections of type HEA 180, HEA 220, and 

HEA 260, respectively, having the same length L=721 cm and therefore 

slenderness of 160, 130, and 110 respectively. The dashed curves reproduce the 

Georgescu model for the first cycle, while the continuous curves are those 

derived from the application of the model proposed in the OpenSEES for the 

same displacement story. 

 

Figure 7.6.2 Comparison between Georgescu’s model and OpenSees model for the first 

cycle – Diagonals HEA 180, HEA 220, HEA 260 (L=721 cm, fy=275 N/mm2) 

 

a 
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In addition, the simulations conducted in the cyclic field have shown that 

the proposed imperfection model is effective for modeling the behavior of 

bracing members for the purpose of simulating dynamic analysis. The analyses 

conducted had a different outcome by introducing a model characterized by an 

initial configuration that reproduces a sine wave with a transversal deflection 

equal to the initial imperfection f0 (Figure 7.6.2b). In this case, during cyclic 

analysis, the diagonal, recovering a rectilinear configuration, loses memory of 

the initial imperfection, and consequently the compression resistance threshold 

is equal to the plastic stress, i.e. equal to the tensile one.  

The application of the fictitious force determines an additional rate of 

bending moment in the centerline section which would tend to anticipate the 

plasticization of the section thus providing an underestimation of the normal 

compressive resistant stress. Appropriate corrections should therefore be made. 

However, for slender diagonals, such as those commonly used in bracing, the 

values of the fictitious force are so low that it has been considered appropriate 

to neglect this effect. The additional normal stress contributions transmitted to 

the columns due to the presence of fictitious forces are also negligible). 

In Figure 7.6.3 is reported the diagonal inserted in the structural mesh of 

the bracing, where i, j, k, and l represent the nodes for the definition of structural 

geometry. The member is then modeled by defining: 

• two end nodes, 1 and 7, having the same coordinates as the nodes 

of the structural mesh i and k, respectively, and bound, through the 

element "equalDOF", to have the same horizontal and vertical 

displacements of those nodes in order to simulate the presence of 

the hinge constraint;  

• five intermediate nodes, 2-6, which, as described above, constitute 

a good compromise between the accuracy of results and 

containment of processing times (in particular with reference to 

nonlinear dynamic analysis); 

• a fictitious force applied in the centerline section, orthogonal to the 

axis of the diagonal, the value of which is determined through the 

(7.6.5) in order to determine an initial deflection equal to the 

imperfection calibrated on the Perry-Robertson formula (Eq. 

(7.6.4)). 
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Figure 7.6.3 Model of the diagonal inserted in the structural mesh of the bracing. 

7.7 Fiber Elements, Sections and Uniaxial Material in 

OpenSees for CBFs 

In the case of CBFS, a fiber modeling of the sections of the structural 

elements has been selected. Consequently, non-linear analyses on structures are 

performed attributing to each fiber of the element a uniaxial behavior [31]. 

Non-linearities have been modelled through a distributed plasticity model 

can be modeled considering both Force Based Elements (FBE) and 

Displacement Based Elements (DBE). The models, properly calibrated, have 

provided comparable results. 

The fiber sections have been modeled using the “wideflange” command for 

beams and columns, while the “patch rect” command for diagonal members. 

In this case, the two opposite vertices that build the rectangular patch are 

inserted. The syntax used is the following: 

patch('quad', matTag, numSubdivY, numSubdivZ, *crdsI, *crdsJ, ) 

dove: 

• matTag- identificative tag of the material 

• numSubdivY- number of fibers in Y direction 

• numSubdivZ- number of fibers in Z direction 

• *crdsI- coordinates in plane y-z of first vertex I 
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• *crdsJ- coordinates in the y-z plane of the second vertex J 

The following is an example for a UPE220 section:  

ops.section('Fiber',UPE220) 

ops.patch('rect',Steel02,8,2,-0.027, 0.098, 0.058, 0.11) 

ops.patch('rect',Steel02,2,8,-0.027, -0.098, -0.0205, 0.098) 

ops.patch('rect',Steel02,8,2,-0.027, -0.11, 0.058, -0.098) 

 

Figure 7.7.1 UPE220 fiber section 

7.7.1 Calibration of the cyclic behaviour 

The proposed model for the characterization of the cyclic behavior of 

axially loaded members has been calibrated and validated through the 

comparison with experimental tests available in the literature. 

The effect of the degradation of the compressive strength for cycles 

subsequent to the first, it has been modeled using the "Steel02" library material 

for the bracing members, through an appropriate calibration of the parameters 

required at the input. 

 Reference was made to experimental data obtained from the NEES website 

(Network for Earthquake Engineering Simulation) related to the project “Large 

Scale Tests and Micromechanics-based simulation of Ultra-Low Cycle Fatigue 

(ULCF) and Fracture in Steel Structures” developed at the University of 
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Berkeley in collaboration with Stanford University (http:// cee.engr.ucdavis.edu 

/ faculty / kanvinde / NEESPage / default.htm) [37],[38]. 

The first simulated experimental test is a cyclic test with symmetrical load 

history conducted on a beam with a section HSS 4x4x1/4 (boxed of 10.16cm 

side and thickness of 0.635cm) with slenderness λ=79.  

The model used for the simulation of the experimental test is shown in 

Figure 7.6.1a with L=305cm. The value of the initial imperfection calibrated on 

the Perry-Robertson formula (assumed α=0.21 at the curve a) is: 

𝑓0 =
𝑊

𝐴
𝑎 ⋅ √𝜆̅2 − 0.04 = 0.73 𝑐𝑚 (7.7.1) 

from which it is derived the value of the fictitious force applied at the 

centerline section: 

𝐹 =
48 ⋅ 𝐸 ⋅ 𝐼

𝑙3
⋅ 𝑓0 = 8.706 𝑘𝑁 (7.7.2) 

The member was subjected to a cyclic push-over analysis in displacement 

control, where the displacement history assumed is the one applied in the test 

phase (Table 7.7.1). In Figure 7.7.2 is reported the theoretical curve derived 

from the simulation carried out by OpenSEES, where Py and Pc represent, 

respectively, the yielding load and the normal compressive strength determined 

in accordance with the provisions of Eurocode 3. 

Table 7.7.1 Displacement history for cyclic test 

Load Step Peak Displacement [cm] Number of Cycles 

1 0.1016 6 

2 0.1524 6 

3 0.2286 6 

4 0.3048 4 

5 1.5494 2 

6 2.794 2 

7 4.0386 2 

8 6.0452 2 

9 7.5946 2 

The parameters for the characterization of the Steel02 material obtained 

from the calibration are shown below(N,mm): 
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uniaxialMaterial Steel02 2 475 210000 0.0001 20 0.925 0.15 0.00001 0.1 

0.00001 0.1 

where the yield stress value is assumed to be the actual value derived from 

the results of the experimental test. The values used for the parameters a1, a2, 

a3 e a4 clearly indicate the absence of the effect of isotropic hardening. 

(Kinematic hardening effect according to the Bauschinger effect - an increase 

in tensile yield stress corresponds to a decrease in compression yield stresses) 

 

 Figure 7.7.2 Comparison between the experimental curve and the theoretical curve 

derived from the OpenSees model (Test 1: HSS 4x4x1/4, λ=79) 

Figure 7.7.2 shows a good agreement between the experimental curve and 

the theoretical model. A substantial difference is related to the compression 

phase and, in particular, to the underestimation of the resistant normal stress 

justified by the fact that the theoretical model is calibrated on the value of the 

normal resistant stress in compression provided by the code, of which it provides 

only a good approximation. 

Figure 7.7.3 shows the comparison between the experimental and the 

theoretical curve related to a member with tubular profile 3STD (diameter 8.89 

https://it.wikipedia.org/wiki/Effetto_Bauschinger
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cm and thickness 0.5486 cm) having the same length as the previous one and 

subjected to the same loading procedure described in Table 7.7.1. The member 

is characterized by a slenderness λ=103. 

The geometric model used is still the one reported in the previous case. The 

value of the initial imperfection calibrated on the Perry-Robertson formula 

(assumed α = 0. 21) at curve (a) is: 

𝑓0 =
𝑊

𝐴
𝑎 ⋅ √𝜆̅2 − 0.04 = 0.5977 𝑐𝑚 (7.7.3) 

𝐹 =
48 ⋅ 𝐸 ⋅ 𝐼

𝑙3
⋅ 𝑓0 = 2.6159 𝑘𝑁 (7.7.4) 

The parameters used for the characterization of the Steel02 material are the 

same as in the previous case, while the yield stress, derived from the results of 

the experimental test, is equal to 408 N/mm2. 

 

Figure 7.7.3 Comparison between the experimental curve and the theoretical curve 

derived from the OpenSees model (Test 7: PIPE 3STD, λ=103) 

Figure 7.7.3 shows a good agreement between the results derived from the 

theoretical simulation, conducted using OpenSees, and the experimental data. 
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Once again it is observed that the most significant differences are related to the 

compression phase. 

It should also be noted that the approximation provided by the theoretical 

model for the second experimental test is better than in the previous case. This 

is justified by the fact that, due to the greater slenderness and type of section, 

the second diagonal is less sensitive to local instability phenomena that cannot 

be taken into account through a modeling of the elements of the fiber type and 

which, therefore, inevitably compromise the accuracy of the results provided by 

the theoretical modeling. 

The excellent results obtained, regardless of the type of steel considered and 

the type of section, allow to exploit the coefficients obtained through calibration 

also in the case study addressed in this work characterized by S355 steel grade 

for bracing members. 

7.8 Case Study 1 for MRFs 

The dynamic analyses were carried out with reference to the compatible 

spectrum earthquakes and to the models developed in the previous paragraphs. 

The case study is a MRF belonging to a five-storey building consisting of 

five symmetrical bays of 4 m in each direction.  

The building was designed according to a pre-1970 design code (ACI 1968) 

[15]. The reference site has been hypothesized in L'Aquila (high seismic risk 

area in Italy) and is characterized by a type B soil and a topographic category 

T1. 

The floors have been designed to withstand a variable load of 2.00 kN/m2 

and a permanent non-structural load of 2.00 kN/m2. The interstorey height is 

3.00 m, the thickness of the floors is 140 mm, and the total height of the building 

is 15.00 m. The weight per unit volume of concrete is assumed to be 24.00 

kN/m3. The beams have IPE300 section while the columns have HEA400 

section, the characteristic yield strength of the steel is 355 MPa. 

 In Figure 7.8.1 the planimetric configuration of the building and the 

tributary area of the analyzed frame, are represented. In Figure 7.8.2 the frontal 

view, the designed cross sections, and the seismic design forces are reported 

[15]. 
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Figure 7.8.1 Plan configuration and tributary area of the case study 

 

Figure 7.8.2 Frontal view and seismic design forces 
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7.8.1 Application of the Trilinear Simplified Model 

The collapse mechanism equilibrium curve, as described above, can be 

obtained by a rigid-plastic analysis extended to second-order effects. 

First, it is necessary to evaluate, for each possible collapse mechanism, the 

first-order collapse multiplier 𝛼0 and the corresponding slope of the mechanism 

equilibrium curve 𝛾𝑠  . 

The mechanism that will be activated, in a field of displacements 

compatible with the local ductility supplies, will be the one characterized by the 

equilibrium curve located below the others.  

Table 7.8.1 First order collapse multiplier and slopes of the mechanism equilibrium 

curves. 

im α0im (1) α0im (2) α0im (3) γim (1) γim (2) γim (3) 

 [-] [-] [-] [m-1] [m-1] [m-1] 

1 10.96 5.04 10.96 3.02 0.49 3.02 

2 6.81 7.41 11.74 1.41 0.59 2.59 

3 5.62 10.13 13.70 0.88 0.72 2.26 

4 5.27 16.46 18.26 0.63 0.99 2.01 

5 5.39 32.87 32.87 0.49 1.81 1.81 

From the analysis of Table 7.8.1 the collapse mechanism that can 

potentially be activated is the global one, being characterized by the lowest first-

order multiplier. 

• Parameters obtained through the elastic analysis: 

𝛿1(𝛼 = 1) = 0.04 𝑚 

𝑘 = 25.00 𝑚−1 

𝛿𝐴 = 𝛿𝑦 = 0.086 𝑚 

𝛼𝐴 = 𝛼𝑦 = 𝑘𝛿𝑦 = 2.27 

• Parameters obtained through rigid-plastic analysis: 

𝛼0 = 5.04  

𝛾𝑠 = 0.49 
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𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  5.04 − 0.49(𝛿 − 0.086) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 5.09 

𝐻0 = 15 𝑚  (Collapse mechanism of Type 2 - im = 1) 

• Evaluation of the maximum multiplier exploiting the calibrated 

Merchant-Rankine formula: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1+𝛹𝛼0𝛾𝑠𝛿1
= 4.81  

𝛹 = 0.358 − 0.1331 𝜉  e 𝜉 =
∑

𝐸𝐼𝑏
𝐿𝑏

∑
𝐸𝐼𝑐
𝐿𝑐

= 0.116 

Starting from the trilinear approximation of the push-over curve, the four 

characteristic points of the structural behavior curve have been identified, each 

of these points is associated with a specific limit state. 

• Point A (Fully Operational) 

𝛿𝐴 = 𝛿𝑦 = 0.086 𝑚 

𝛼𝐴 = 𝛼𝑦 = 2.27 

• Point B (Operatonal) 

𝛼𝐵 = 𝛼𝑚𝑎𝑥 = 4.81 

𝛿𝐵 = 𝛼𝑚𝑎𝑥 𝛿1 = 0.181 𝑚 

• Point C (Life Safety) 

𝛼𝐶 = 𝛼𝑚𝑎𝑥 = 4.81 

𝛿𝐶 = 𝛿𝑚𝑒𝑐𝑐 =
𝛼0 − 𝛼𝑚𝑎𝑥

𝛾𝑠
+ 𝛿𝑦 = 0.554 𝑚 

• Point D (Near Collapse) 

Evaluation of the plastic rotation demand corresponding to the development 

of the collapse mechanism for the first plasticized element (first storey beam): 

𝜃𝑝.𝑚𝑒𝑐 =
𝑛𝑠𝛿𝑦

𝐻0
[
𝛹1

𝛹2
𝛹3 (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹4 1 − 𝛹5𝛾𝑠

1 − 𝛹6𝛾𝑠
] = 0.018 rad 
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The computation of the corresponding capacity gives a value of the ultimate 

plastic rotation equal to 8𝜗𝑦 = 8
𝛾𝑜𝑣𝑀𝑝.𝑚𝑙𝑚

6𝐸𝐼𝑚
= 0.074 𝑟𝑎𝑑  

Evaluation of the plastic rotation demand corresponding to the development 

of the collapse mechanism for the critical element (first storey column): 

𝜃𝑝.𝑚𝑒𝑐 =
𝑛𝑠𝛿𝑦

𝐻0
[
𝛹1′

𝛹2′
𝛹3′ (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹4′
1 − 𝛹5′𝛾𝑠

1 − 𝛹6′𝛾𝑠
] = 0.057 rad 

The computation of the corresponding capacity gives a value of the ultimate 

plastic rotation equal to 8𝜗𝑦 = 8
𝛾𝑜𝑣𝑀𝑝.𝑚𝑙𝑚

4𝐸𝐼𝑚
= 0.063 𝑟𝑎𝑑  

Evaluation of the plastic rotation demand corresponding to the achievement 

of the maximum load-bearing capacity for the first plasticized element: 

𝜃𝑝.𝛼𝑚𝑎𝑥 =
𝑛𝑠𝛿𝑦

𝐻0
[

𝛹7

𝛹8
𝛹9 (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹10 1−𝛹11𝛾𝑠

1−𝛹12𝛾𝑠
] = 0.004 rad        

The most unfavorable condition is 𝜃𝑝.𝑚𝑒𝑐 = 0.057 rad. 

𝛿𝐷 = 𝛿𝐶 + (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)𝐻0 = 0.858 𝑚 

𝛼𝐷 =  𝛼0 − 𝛾𝑠(𝛿𝐷 − 𝛿𝑦) = 4.66 

To evaluate the accuracy of the trilinear model obtained, a static nonlinear 

analysis, or push-over, was carried out using the SAP2000 computer program 

[30]. 

Beams and columns were modeled using beam-column elements, whose 

non-linearities were concentrated in hinges ("p-hinge" elements) placed at their 

ends. In particular, plastic hinges have been defined for the columns, which take 

into account the interaction between axial force and bending moment. 

The push-over analysis was conducted under displacement control taking 

into account geometric and mechanical nonlinearities.  

In Figure 7.8.3 the non-dimensional pushover curve obtained by SAP2000 

and the trilinear model obtained by applying the procedure described above are 

reported. 
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Figure 7.8.3 Trilinear approximation and performance points (MRF case study) 

After defining the trilinear model and the performance points, the 

transformation procedure of the multiple degrees of freedom (MDOF) system 

into an equivalent single degree of freedom (SDOF) system was applied through 

the modal participation coefficient Γ. Subsequently, known the dynamic 

properties of the SDOF system, the simplified curve and the performance points 

were represented in the ADRS plan. In this way, the capacity in terms of spectral 

displacements and accelerations was defined according to the "ADRS spectrum" 

and "Nassar & Krawinkler" models.  

It was, therefore, necessary to define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, is:  

ɸ1 = 0.206            ɸ2 = 0.402      ɸ3 = 0.608   

ɸ4 = 0.788          ɸ5 = 1.00      

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.364 

being: 
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𝑚1 = 60.346 × 103 kg    𝑚2 = 60.346 × 103 kg    𝑚3 = 60.346 × 103 kg 

𝑚4 = 60.346 × 103 kg   𝑚5 = 60.346 × 103 kg 

• the dynamic parameters of the equivalent SDOF system (Table 7.8.2). 

Table 7.8.2 Dynamic parameters of the equivalent SDOF system (MRF Case Study). 

m* k* 𝜔∗ T* 

[kg 103] [kN/m] [rad/s] [s] 

181.04 8668.21 6.9195 0.90803 

Therefore, the characteristic points of the capacity curve are defined in the 

planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for Nassar & Krawinkler approach and ADRS spectrum approach. 

In particular, in Table 7.8.3 the results based on the use of the ADRS spectrum 

and the Nassar & Krawinkler formulation, are reported [28],[29]. 

Table 7.8.3 Capacity in terms of spectral acceleration and displacements according to 

ADRS Spectrum and Nassar & Krawinkler approach (MRF case study). 

T*>TC  FO O LS NC 

α [-] 2.27 4.81 4.81 4.66 

δ [m] 0.086 0.181 0.554 0.858 

δ* [m] 0.063 0.133 0.406 0.629 

F [kN] 742.99 1572.21 1572.21 1523.57 

F* [kN] 544.86 1152.96 1152.96 1117.28 

Sa(T*) 

ADRS 

Spectrum 

[g] 0.307 0.649 1.983 3.071 

Sa(T*) 

Nassar & 

Krawinkler 

[g] 0.307 0.649 2.040 3.151 

7.8.2 IDA Results and Comparison with the Simplified Method (MRF) 

The accelerograms previously obtained were applied, individually, to the 

structure, scaled with multiple levels of intensity. In this way has been possible 

to get response curves parameterized with the intensity level.  
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The maximum interstorey drift, i.e. the ratio between the maximum relative 

interstorey displacement and the interstorey height, have been evaluated as a 

function of the peak ground acceleration (PGA) for each earthquake and for each 

intensity level. 

The MIDR provide an estimate of the maximum rotation exhibited by the 

members (columns) of the structure and can be compared with the plastic 

rotation capacity of the same for each different limit state considered. The 

rotation capacity has been defined according to Eurocode 8 – Part 3 provisions 

(Table 7.8.4). 

Table 7.8.4 Rotation Capacity defined according to Eurocode 8 – Part 3 [19] 

Limit State DL SD NC 

Rotation capacity 

θ 
0.0078 0.047 0.063 

The corresponding PGA/g value was evaluated for each rotation as reported 

in Figure 7.8.4 

 

Figure 7.8.4 PGA/g value evaluated for each MIDR limit provided by codes (rotation 

limit). 

For each earthquake, the PGA/g corresponding to the achievement of the 

two limit states considered was derived and the average value was determined. 
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Given the PGA/g mean, the corresponding spectral acceleration was 

derived by constructing a specific response spectrum in terms of accelerations 

(Figure 7.8.5). 

 

Figure 7.8.5 Sa/g value evaluated for each MIDR limit provided by codes (rotation limit). 

The accelerations thus obtained were compared with those obtained 

through the application of the verification procedures described in the proposed 

simplified method. 

Table 7.8.5 Comparison between IDA results and Simplified Method in terms of spectral 

accelerations (MRF) 

Limit State ϑ
C PGA/g 

Sa(T*)/g 

IDA 
Sa(T*)/g 

ADRS 
Sa(T*)/g  

N. & K. 
A - FO - 0.206 0.293 0.307 0.307 
B - O 0.0078 0.429 0.618 0.649 0.649 

C - LS 0.047 1.522 2.180 1.983 2.040 

D - NC 0.063 2.063 3.010 3.071 3.151 

From the analysis of Table 7.8.5 there is a percentage error in the evaluation 

of capacity in terms of spectral acceleration, between Simplified Method and 

IDA, equal to 4.5% for the "Fully Operational" limit state, 4.7% for the 

“Operational” limit state, 6.4% for the “Life Safety” limit state and 2% for the 
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"Near Collapse" limit state. The error exceeds the results of the IDAs for the 

limit states FO and NC, while subceeds for limit states O and LS. 

7.9 Case Study 2 for MRFs 

The dynamic analyses were carried out with reference to the compatible 

spectrum earthquakes and to the models developed in the previous paragraphs. 

The case study is a MRF belonging to a three-storey building (Figure 7.9.1) 

whose plan configuration is depicted in Figure 7.9.2 [16]. 

The building, located in Amatrice, Italy, was built decades ago, before the 

introduction of modern seismic design standards. The building was damaged 

following the 2016-2017 Amatrice earthquakes. Amatrice is a high seismic risk 

area in Italy and as reported in the building area is characterized by a type B soil 

and a topographic category T1. 

The building is trapezoidal, measuring 6.6 and 8.5 m wide and 22.5 m long. 

The interstorey height is variable (about 3.6 m), as reported in Figure 7.9.3. 

The floors have been designed to withstand a variable load of 2.00 kN/m2 

and a permanent non-structural load of 1.76 kN/m2. 

The flooring systems consist of concrete slabs on a corrugated sheet of steel 

with a thickness of 10 mm. The cross sections of the outer and inner beams are 

HEA160 and HEA300 respectively, and all columns are HEA200. 
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Figure 7.9.1 Frontal and lateral view - real 

All cross-sections can be classified as Class 1 cross-sections, and the steel 

grade used in the design is S235. The beam-column connections are completely 

welded. The infills consist of a double layer of perforated brick measuring 120 

× 250 × 80 mm, for a total thickness of 160 mm. 

The proper weight of the slab is assumed to be 4.88 kN/m2. 

 

Figure 7.9.2 Plan configuration of the case study 
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Figure 7.9.3 side view of the case study 

7.9.1 Application of the Trilinear Simplified Model 

The collapse mechanism equilibrium curve, as described above, can be 

obtained by a rigid-plastic analysis extended to second-order effects. 

First, it is necessary to evaluate, for each possible collapse mechanism, the 

first-order collapse multiplier 𝛼0 and the corresponding slope of the mechanism 

equilibrium curve 𝛾𝑠  . 

The mechanism that will be activated, in a field of displacements 

compatible with the local ductility supplies, will be the one characterized by the 

equilibrium curve located below the others.  

Table 7.9.1 First order collapse multiplier and slopes of the mechanism equilibrium 

curves. 

im α0im (1) α0im (2) α0im (3) γim (1) γim (2) γim (3) 

 [-] [-] [-] [m-1] [m-1] [m-1] 

1 0.66 1.17 0.66 1.64 0.48 1.64 

2 1.27 1.80 0.96 0.77 0.61 1.43 

3 1.33 3.00 1.48 0.48 1.07 1.07 

From the analysis of Table 7.9.1 the collapse mechanism that can 

potentially be activated is the “Soft storey” (im=1), being characterized by the 

lowest first-order multiplier. 
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• Parameters obtained through the elastic analysis: 

𝑘 =4.25 m-1 

𝛿𝐴 = 𝛿𝑦 =0.096 m 

𝛼𝐴 = 𝛼𝑦 = 𝑘𝛿𝑦 =0.42 

• Parameters obtained through rigid-plastic analysis: 

𝛼0 = 0.66 

𝛾𝑠 = 1.64 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 = 0.66 − 1.64(𝛿 − 0.096) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 0.835 

𝐻0 = 10.7𝑚  (Type 3-im = 1) 

• Evaluation of the maximum multiplier exploiting the calibrated 

Merchant-Rankine formula: 

𝛼𝑚𝑎𝑥 =  
𝛼0

1 + 𝛼0𝛾𝑠𝛿1
= 0.53 

Starting from the trilinear approximation of the push-over curve, the four 

characteristic points of the structural behavior curve have been identified, each 

of these points is associated with a specific limit state. 

• Point A (Fully Operational) 

𝛿𝐴 = 𝛿𝑦 = 0.096 𝑚 

𝛼𝐴 = 𝛼𝑦 = 0.42 

• Point B (Operatonal) 

𝛼𝐵 = 𝛼𝑚𝑎𝑥 = 0.53 

𝛿𝐵 = 𝛼𝑚𝑎𝑥 𝛿1 = 0.124 𝑚 

• Point C (Life Safety) 

𝛼𝐶 = 𝛼𝑚𝑎𝑥 = 0.53 

𝛿𝐶 = 𝛿𝑚𝑒𝑐𝑐 =
𝛼0 − 𝛼𝑚𝑎𝑥

𝛾𝑠
+ 𝛿𝑦 = 0.188 𝑚 
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• Point D (Near Collapse) 

Evaluation of the plastic rotation demand corresponding to the development 

of the collapse mechanism for the first plasticized element (first storey column): 

𝜃𝑝.𝑚𝑒𝑐 =
𝑛𝑠𝛿𝑦

𝐻0
[
𝛹1

𝛹2
𝛹3 (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹4 1 − 𝛹5𝛾𝑠

1 − 𝛹6𝛾𝑠
] = 0.054 rad 

The computation of the corresponding capacity gives a value of the ultimate 

plastic rotation equal to 8𝜗𝑦 = 8
𝛾𝑜𝑣𝑀𝑝.𝑚𝑙𝑚

6𝐸𝐼𝑚
= 0.070 𝑟𝑎𝑑  

Evaluation of the plastic rotation demand corresponding to the development 

of the collapse mechanism for the critical element (first storey column): 

𝜃𝑝.𝑚𝑒𝑐 =
𝑛𝑠𝛿𝑦

𝐻0
[
𝛹1′

𝛹2′
𝛹3′ (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹4′
1 − 𝛹5′𝛾𝑠

1 − 𝛹6′𝛾𝑠
] = 0.054 rad 

The computation of the corresponding capacity gives a value of the ultimate 

plastic rotation equal to 8𝜗𝑦 = 8
𝛾𝑜𝑣𝑀𝑝.𝑚𝑙𝑚

4𝐸𝐼𝑚
= 0.070 𝑟𝑎𝑑  

Evaluation of the plastic rotation demand corresponding to the achievement 

of the maximum load-bearing capacity for the first plasticized element: 

𝜃𝑝.𝛼𝑚𝑎𝑥
=

𝑛𝑠𝛿𝑦

𝐻0
[

𝛹7

𝛹8
𝛹9 (

𝛼𝑚𝑎𝑥

𝛼𝑦
− 1)

𝛹10 1−𝛹11𝛾𝑠

1−𝛹12𝛾𝑠
] = 0.0011 rad        

The most unfavorable condition is 𝜃𝑝.𝑚𝑒𝑐 = 0.054 rad. 

𝛿𝐷 = 𝛿𝐶 + (𝜗𝑝.𝑢 − 𝜗𝑝.𝑚𝑒𝑐𝑐)𝐻0 = 0.254 𝑚 

𝛼𝐷 =  𝛼0 − 𝛾𝑠(𝛿𝐷 − 𝛿𝑦) = 0.40 

To evaluate the accuracy of the trilinear model obtained, a static nonlinear 

analysis, or push-over, was carried out using the SAP2000 computer program 

[30]. 

Beams and columns were modeled using beam-column elements, whose 

non-linearities were concentrated in hinges ("p-hinge" elements) placed at their 

ends. In particular, plastic hinges have been defined for the columns, which take 

into account the interaction between axial force and bending moment. 
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The push-over analysis was conducted under displacement control taking 

into account geometric and mechanical nonlinearities.  

In Figure 7.9.4 the non-dimensional pushover curve obtained by SAP2000 

and the trilinear model obtained by applying the procedure described above are 

reported. 

 

Figure 7.9.4 Trilinear approximation and performance points (MRF case study 2) 

After defining the trilinear model and the performance points, the 

transformation procedure of the multiple degrees of freedom (MDOF) system 

into an equivalent single degree of freedom (SDOF) system was applied through 

the modal participation coefficient Γ. Subsequently, known the dynamic 

properties of the SDOF system, the simplified curve, and the performance points 

were represented in the ADRS plan. In this way, the capacity in terms of spectral 

displacements and accelerations was defined according to the "ADRS spectrum" 

and "Nassar & Krawinkler" models.  

It was, therefore, necessary to define: 

• The eigenvector ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5} that, assuming ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, is:  

ɸ1 = 0.262            ɸ2 = 0.519      ɸ3 = 1.00   
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• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.331 

being: 

𝑚1 = 54.234 × 103 kg    𝑚2 = 54.234 × 103 kg    𝑚3 = 54.234 × 103 kg 

• the dynamic parameters of the equivalent SDOF system (Table 7.9.2). 

Table 7.9.2 Dynamic parameters of the equivalent SDOF system (MRF Case Study 2). 

m* k* 𝜔∗ T* 

[kg 103] [kN/m] [rad/s] [s] 

96.63 1152.32 3.443 1.82 

Therefore, the characteristic points of the capacity curve are defined in the 

planes 𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 assessing the capacity in terms of 

accelerations for Nassar & Krawinkler approach and ADRS spectrum approach. 

In particular, in Table 7.9.3 the results based on the use of the ADRS spectrum 

and the Nassar & Krawinkler formulation, are reported [28],[29]. 

Table 7.9.3 Capacity in terms of spectral acceleration and displacements according to 

ADRS Spectrum and Nassar & Krawinkler approach (MRF case study). 

T*>TC  FO O LS NC 

α [-] 0.42 0.53 0.53 0.40 

δ [m] 0.096 0.124 0.188 0.245 

δ* [m] 0.072 0.093 0.141 0.184 

F [kN] 115.48 145.73 145.73 109.98 

F* [kN] 86.77 109.49 109.49 82.63 

Sa(T*) 

ADRS 

Spectrum 

[g] 0.087 0.112 0.171 0.224 

Sa(T*) 

Nassar & 

Krawinkler 

[g] 0.087 0.112 0.182 0.236 



Chapter 7                                                                                               187 

 

 Simplified Methods for the Evaluation of Seismic Performances of steel MRFs and 

CBFs  

 

7.9.2 IDA Results and Comparison with the Simplified Method (MRF 

2) 

The accelerograms previously obtained were applied, individually, to the 

structure, scaled with multiple levels of intensity. In this way has been possible 

to get response curves parameterized with the intensity level.  

The maximum interstorey drift, i.e. the ratio between the maximum relative 

interstorey displacement and the interstorey height, has been evaluated as a 

function of the peak ground acceleration (PGA) for each earthquake and for each 

intensity level. 

The MIDR provides an estimate of the maximum rotation exhibited by the 

members (columns) of the structure and can be compared with the plastic 

rotation capacity of the same for each different limit state considered. The 

rotation capacity has been defined according to Eurocode 8 – Part 3 provisions 

(Table 7.9.4). 

Table 7.9.4 Rotation Capacity defined according to Eurocode 8 – Part 3 [19] 

Limit State DL SD NC 

Rotation capacity 

θ 
0.0088 0.053 0.070 

The corresponding Sa/g value was evaluated for each rotation as reported 

in Figure 7.9.5 

 

Rotazione plastica ultima cerniere delle travi 8ϑy 0.088225 rad 6ϑy 0.066169 rad

Rotazione plastica ultima cerniere dei pilastri 8ϑy 0.070483 rad 6ϑy 0.052862 rad
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Figure 7.9.5 Sa/g value evaluated for each MIDR limit provided by codes (rotation limit). 

For each earthquake, the PGA/g corresponding to the achievement of the 

two limit states considered was derived and the average value was determined. 

Given the PGA/g mean, the corresponding spectral acceleration was 

derived by considering a specific response spectrum in terms of accelerations. 

The accelerations thus obtained were compared with those obtained 

through the application of the verification procedures described in the proposed 

simplified method. 

Table 7.9.5 Comparison between IDA results and Simplified Method in terms of spectral 

accelerations (MRF) 

Limit State ϑ
C 

Sa(T*)/g 

IDA 
Sa(T*)/g 

ADRS 
Sa(T*)/g  

N. & K. 
A - FO - 0.078 0.087 0.087 
B - O 0.009 0.0892 0.112 0.112 

C - LS 0.053 0.201 0.171 0.182 

D - NC 0.070 0.230 0.224 0.236 

From the analysis of  Table 7.9.5 there is a percentage error in the evaluation 

of capacity in terms of spectral acceleration, between Simplified Method and 

IDA, equal to 10.3% for the "Fully Operational" limit state, 19.7% for the 

“Operational” limit state, 9.4% for the “Life Safety” limit state and 2.5% for the 

"Near Collapse" limit state. The error exceeds the results of the IDAs for the 

limit states O and FO. 

7.10 Case Study for CBFs 

The analyzed structure is a simulated design of a concentrically “X” braced 

structure located in L'Aquila (IT), with type B soil [17]. The design spectrum 

considered refers to a return period of 475 years. 

The structure has 5 floors and extends for 5 bays of 6 m in the X direction 

and for 3 bays of 7 m in the Y direction. The interstorey height is 3.5 m and the 

braced bays are those at the ends. The permanent loads were calculated 

considering the prefabricated slab of type "Predalles" (𝐺1 = 3.70 𝑘𝑁/𝑚2). The 

destination is for offices, so accidental loads are equal to 𝑄𝑘 = 3.0 𝑘𝑁/𝑚2. The 

steel used is grade S355 for the diagonals and S235 for the other members. 
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The plan arrangement of seismoresistant macroelements is shown in Figure 

7.10.1. The profiles used for beams, columns, and diagonals, are shown in Table 

7.10.1. 

 

Figure 7.10.1 Plan and bracing configuration of the case study 

Table 7.10.1 Beams, columns, and braces sections for the case study. 

Storey 

(kth) 
Beams Columns Braces 

 

X Y X, Y X, Y 

external internal braced unbraced external internal 
Seismic 

design 

1 
HEA 

300 

HEA 

400 

HEA 

340 

HEA 

220 

HEM 

300 

HEM 

240 

UPE 

220 

2 
HEA 

300 

HEA 

400 

HEA 

320 

HEA 

220 

HEM 

240 

HEM 

220 

UPE 

200 

3 
HEA 

300 

HEA 

400 

HEA 

300 

HEA 

220 

HEM 

200 

HEM 

200 

UPE 

200 

4 
HEA 

300 

HEA 

400 

HEA 

260 

HEA 

220 

HEM 

200 

HEM 

200 

UPE 

180 

5 
HEA 

260 

HEA 

320 

HEA 

220 

HEA 

220 

HEM 

200 

HEM 

200 

UPE 

140 
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Figure 7.10.2 Frontal view and seismic design forces – X direction. 

 

Figure 7.10.3 Frontal view and seismic design forces – Y direction. 
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The elevations of the seismoresistant frames and the design seismic forces 

evaluated according to the Italian NTC 2018 standard, are shown in Figure 

7.10.2, Figure 7.10.3. 

7.10.1 Application of the simplified method – X direction 

After describing in detail the geometric and mechanical characteristics of 

the building under study, the next step is the application of the simplified method 

for the evaluation of seismic performances. In the second phase, the validation 

process through incremental dynamic analysis (IDA) will be performed. 

 This method, through the use of linear elastic analysis and rigid-plastic 

analysis extended to second-order effects, allows to represent the pushover 

curve of the considered structure.  

It is also possible to define the performance points (A, B, C, D) to which 

specific limit states provided by current codes are associated (Fully Operational, 

Operational, Life Safety, Near Collapse). 

The trilinear capacity curve is shown in Figure 7.10.4. 

 

Figure 7.10.4 Simplified non-dimensional pushover curve and performance points – X 

direction. 
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Table 7.10.2 First order collapse multiplier and slopes of the mechanism equilibrium 

curves – X direction. 

im α0im (1) α0im (2) α0im (3) γim (1) γim (2) γim (3) 

 [-] [-] [-] [m-1] [m-1] [m-1] 

1 2.64 2.29 2.64 1.89 0.31 1.89 

2 2.18 2.47 2.57 0.88 0.35 1.62 

3 2.16 2.68 2.68 0.55 0.44 1.42 

4 2.24 3.07 3.20 0.40 0.61 1.26 

5 2.29 3.97 3.97 0.31 1.13 1.13 

• Parameters obtained by elastic analysis: 

𝛿1(𝛼 = 0.48) = 0.0117 m 

𝐾 = 41.10 m-1 

𝐾′ = 30.72 m-1 

𝛿𝐴(1st buckling) =0.012016 m 

𝛼𝐴 = 𝑘𝛿𝐴 =0.4939 

• Parameters obtained by rigid-plastic analysis: 

𝛼0 =2.220 

𝛾𝑠 =0.55 m-1 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  2.220 − 0.55(𝛿 −0.074) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 2.260 

𝐻0 = 7 𝑚  (partial type 1 collapse mechanism, storey 2) 

• Evaluation of the maximum multiplier through the Merchant-Rankine 

formula: 

𝛼𝑚𝑎𝑥 𝑀−𝑅 =  
𝛼0

1+𝛹𝐶𝐵𝐹𝛼0𝛾𝑠𝛿1
= 2.1888 

Where: 

ΨCBF = a + bξCBF = 1.41068 − 0.29443 ξ = 1.4103   

with ξCBF =
∑

EAdiag

Ldiag
∙

1

1+(Lb/h)2nbc

∑
EIc
h3nc

 = 0.0102 
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In accordance with the limitation of Eurocode 8 regarding the shortening of 

the diagonal members for the "Near Collapse" limit state (Δc ∙ 6), the ultimate 

displacement of the structure is evaluated as follows: 

𝛥𝐶 = 0.00118 𝑚 

𝛿𝐷,𝑐𝑝 = 6 ∙ 𝛥𝐶 = 0.0708 𝑚 

𝑐𝑜𝑠 𝜃 = 0.86378 

𝛿𝐷 = 𝛿𝐴 + (
𝛿𝑑,𝑐𝑝

ℎ𝑖 ∙ 𝑐𝑜𝑠 𝜃
) ∙ 𝐻0 = 0.012016 + (

0.0708

3.5 ×  0.86378
) ∙ 17.5

= 0.0529 𝑚 

After defining the trilinear model and the performance points, the 

transformation procedure of the multiple degrees of freedom (MDOF) system 

into an equivalent single degree of freedom (SDOF) system was applied through 

the modal participation coefficient Γ. Subsequently, known the dynamic 

properties of the SDOF system, the simplified curve, and the performance points 

were represented in the ADRS plan. In this way, the capacity in terms of spectral 

displacements and accelerations was defined according to the "ADRS spectrum" 

and "Nassar & Krawinkler" models.  

It was, therefore, necessary to define: 

• The eigenvector  ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5}  assuming  ɸ𝑘 =
𝐹𝑘

𝐹𝑛
, : 

ɸ1 = 0.20            ɸ2 = 0.40     ɸ3 = 0.60   

ɸ4 = 0.80          ɸ5 = 1.00      

 

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.364 

Where:  

𝑚1 = 147.7 × 103 kg    𝑚2 = 147.7 × 103 kg    𝑚3 = 147.7 × 103kg  

𝑚4 = 147.7 × 103 kg   𝑚5 = 147.7 × 103 kg 
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m∗ = ∑ 𝑚𝑘  ɸ𝑘

𝑛

𝑘=1
 

 

The dynamic parameters of the equivalent SDOF system in the x-direction 

are given in Table 7.10.3 

Table 7.10.3 Dynamic parameters of the equivalent SDOF system – X direction. 

Г m* k* k* ω* T* 

- kg kN/m N/m [rad/s] s 

1.364 443100 45059.3356 45059336 10.0842 0.623072 

All the characteristic points of the capacity curve are reported in the plans 

𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 and represent the capacity in terms of spectral 

accelerations and displacements according to Nassar & Krawinkler and ADRS 

spectrum approaches (Table 7.10.4). 

Table 7.10.4 Capacity in terms of spectral displacement and acceleration – X direction 

T*>TC  FO O LS NC 

α [-] 0.4939 1.5047 1.5047 1.5047 

δ [m] 0.0120 0.0530 0.0530 0.0530 

δ* [m] 0.0088 0.0389 0.0389 0.0389 

F [kN] 541.4 1649.4 1649.4 1649.4 

F* [kN] 397.1 1209.6 1209.6 1209.6 

Sa(T*) 

ADRS Spectrum 
[g] 0.0896 0.3952 0.3952 0.3952 

Sa(T*)  

Nassar & Krawinkler 
[g] 0.0896 0.3952 0.3952 0.3952 
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7.10.1 Application of the simplified method – X direction 

The paragraph defines the performance points for the Y direction. (A, B, C, 

D) to which are associated specific limit states provided for by current codes 

(Fully Operational, Operational, Life Safety, Near Collapse). 

The trilinear capacity curve is shown in Figure 7.10.5 where the 

performance points are also represented according to the simplified method. 

 

Figure 7.10.5 Simplified non-dimensional pushover curve and performance points – Y 

direction. 

Table 7.10.5 First order collapse multiplier and slopes of the mechanism equilibrium 

curves – Y direction. 

im α0im (1) α0im (2) α0im (3) γim (1) γim (2) γim (3) 

 [-] [-] [-] [m-1] [m-1] [m-1] 

1 2.82 2.35 2.82 1.89 0.31 1.89 

2 2.29 2.56 2.85 0.88 0.35 1.62 

3 2.23 2.78 2.90 0.55 0.44 1.42 

4 2.31 3.20 3.49 0.40 0.61 1.26 

5 2.35 4.27 4.27 0.31 1.13 1.13 
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• Parameters obtained by elastic analysis: 

𝛿1(𝛼 = 0.34) = 0.0080 m 

𝐾 = 42.75 m-1 

𝐾′ = 25.65 m-1 

𝛿𝐴(1st buckling) =0.0080 m 

𝛼𝐴 = 𝑘𝛿𝐴 =0.3426 

• Parameters obtained by rigid-plastic analysis (Table 7.10.5): 

𝛼0 =2.232 

𝛾𝑠 =0.55 m-1 

𝛼 = 𝛼0 − 𝛾𝑠(𝛿 − 𝛿𝑦)  →  𝛼 =  2.232 − 0.55(𝛿 −0.076) 

𝛼(𝛿 = 0) = 𝛼0 + 𝛾𝑠𝛿𝑦 = 2.263 

𝐻0 = 7 𝑚  (partial type 1 collapse mechanism, storey 2) 

• Evaluation of the maximum multiplier through the Merchant-Rankine 

formula: 

𝛼𝑚𝑎𝑥 𝑀−𝑅 =  
𝛼0

1+𝛹𝐶𝐵𝐹𝛼0𝛾𝑠𝛿1
= 2.21 

Where: 

ΨCBF = a + bξCBF = 1.41068 − 0.29443 ξ = 1.4103   

with ξCBF =
∑

EAdiag

Ldiag
∙

1

1+(Lb/h)2nbc

∑
EIc
h3nc

 = 0.0102 

In accordance with the limitation of Eurocode 8 regarding the shortening of 

the diagonal members for the "Near Collapse" limit state (Δc ∙ 6), the ultimate 

displacement of the structure is evaluated as follows: 

𝛥𝐶 = 0.00118 𝑚 

𝛿𝐷,𝑐𝑝 = 6 ∙ 𝛥𝐶 = 0.0708 𝑚 

cos 𝜃 = 0.86378 
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𝛿𝐷 = 𝛿𝐴 + (
𝛿𝑑,𝑐𝑝

ℎ𝑖 ∙ cos 𝜃
) ∙ 𝐻0 = 0.012016 + (

0.0708

3.5 ×  0.86378
) ∙ 17.5

= 0.0431 𝑚 

𝛼𝐷 = 𝛼𝐴 + 𝐾′ ∙ (𝛿𝐷 − 𝛿𝐴) = 0.343 + 25.65 ∙ (0.0431 − 0.0080) = 1.24 

 

After defining the trilinear model and the performance points, the 

transformation procedure of the multiple degrees of freedom (MDOF) system 

into an equivalent single degree of freedom (SDOF) system was applied through 

the modal participation coefficient Γ. Subsequently, known the dynamic 

properties of the SDOF system, the simplified curve, and the performance points 

were represented in the ADRS plan. In this way, the capacity in terms of spectral 

displacements and accelerations was defined according to the "ADRS spectrum" 

and "Nassar & Krawinkler" models.  

It was, therefore, necessary to define: 

• The eigenvector  ɸ = {ɸ1, ɸ2, ɸ3, ɸ4, ɸ5}  assuming  ɸ𝑘 =
𝐹𝑘

𝐹𝑛
 : 

ɸ1 = 0.20            ɸ2 = 0.400      ɸ3 = 0.60   

ɸ4 = 0.80        ɸ5 = 1.00      

 

• The modal participation factor Γ: 

𝛤 =
∑ 𝑚𝑘ɸ𝑘

𝑛
𝑘=1

∑ 𝑚𝑘ɸ𝑘
2𝑛

𝑘=1

 = 1.364 

where:  

𝑚1 = 147.7 × 103 kg    𝑚2 = 147.7 × 103 kg    𝑚3 = 147.7 × 103kg  

𝑚4 = 147.7 × 103 kg   𝑚5 = 147.7 × 103 kg 

m ∗= ∑ 𝑚𝑘  ɸ𝑘

𝑛

𝑘=1
 

 

The dynamic parameters of the equivalent SDOF system in the x-direction 

are given in Table 7.10.6. 
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Table 7.10.6 Dynamic parameters of the equivalent SDOF system – Y direction. 

Г m* k* k* ω* T* 

- kg kN/m N/m [rad/s] s 

1.364 443100 46867.67 46867668 10.28456 0.610934 

All the characteristic points of the capacity curve are reported in the plans 

𝛼 − 𝛿, 𝐹𝑏 − 𝑑𝑐, 𝐹∗ − 𝐷∗, 𝑆𝑎 − 𝑆𝐷 and represent the capacity in terms of spectral 

accelerations and displacements according to Nassar & Krawinkler and ADRS 

spectrum approaches (Table 7.10.7). 

Table 7.10.7 Capacity in terms of spectral displacement and acceleration – Y direction. 

T*>TC  FO O LS NC 

α [-] 0.3426 1.2438 1.2438 1.2438 

δ [m] 0.0080 0.0431 0.0431 0.0431 

δ* [m] 0.0059 0.0316 0.0316 0.0316 

F [kN] 375.6 1363.4 1363.4 1363.4 

F* [kN] 275.4 999.8 999.8 999.8 

Sa(T*) 

ADRS Spectrum 
[g] 0.0622 0.3346 0.3346 0.3346 

Sa(T*) 

Nassar & Krawinkler 
[g] 0.0622 0.3346 0.3346 0.3346 

7.10.2 IDA Results and Comparison with the Simplified Method (CBF) 

To evaluate the overall seismic performance of the structure, nonlinear 

dynamic analyses were performed. Preliminary, a non-linear static analysis was 

also carried out in OpenSees, after which incremental dynamic analyses were 

carried out with reference to the earthquakes taken into consideration.  

The primary objective of this analysis is the dynamic pushover evaluation, 

to be compared with the static one. The dynamic pushover, for each earthquake, 

was built considering the maximum top sway displacement and the maximum 

base shear for each step of increment.  

In Figure 7.10.6 the comparisons for each considered earthquake, in X 

direction, are reported; in Figure 7.10.7 the comparisons for each considered 

earthquake, in Y direction, are reported. 
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Figure 7.10.6 Comparison between static and dynamic pushover – X direction 
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Figure 7.10.7 Comparison between static and dynamic pushover – Y direction 

Subsequently, depending on the limits imposed by the EC8 in terms of 

shortening of the diagonal members, for each limit state (Table 7.10.8), the 

corresponding values of peak ground acceleration (PGA) and consequently of 

spectral acceleration Sa have been identified for each earthquake considered. 

The average values obtained were compared with the capacity in terms of 

spectral acceleration defined by the proposed simplified methodology (Table 

7.10.9-Table 7.10.10).  

Table 7.10.8 EC8 Shortening limits expressed as a function of the shortening 

corresponding to the critical load ΔC. 

 Limit State 

Class of cross-section DL SD NC 

1 0.25 ΔC 4.0 ΔC 6.0 ΔC 

2 0.25 ΔC 1.0 ΔC 2.0 ΔC 

Table 7.10.9. Comparison between IDA results and Simplified Method in terms of 

displacements and spectral acceleration – X direction 

X direction  FO O LS NC 

δ(IDA) [m] 0.0098 0.0495 0.0495 0.0495 

δ(S.M.) [m] 0.0120 0.0530 0.0530 0.0530 

Sa(T*) 

IDA 
[kN] 0.0797 0.3695 0.3695 0.3695 

Sa(T*) 

ADRS Spectrum 
[g] 0.0896 0.3952 0.3952 0.3952 

Sa(T*)  

Nassar & Krawinkler 
[g] 0.0896 0.3952 0.3952 0.3952 
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 Table 7.10.10 Comparison between IDA results and Simplified Method in terms of 

displacements and spectral acceleration – Y direction 

Y direction  FO O LS NC 

δ(IDA) [m] 0.0071 0.0397 0.0397 0.0397 

δ(S.M.) [m] 0.0080 0.0430 0.0430 0.0430 

Sa(T*) 

IDA 
[kN] 0.052 0.289 0.289 0.289 

Sa(T*) 

ADRS Spectrum 
[g] 0.062 0.335 0.335 0.335 

Sa(T*) 

Nassar & Krawinkler 
[g] 0.062 0.335 0.335 0.335 

Finally, a summary graph is shown (Figure 7.10.8-Figure 7.10.9) in which 

are reported, by points, all the dynamic pushovers obtained and the static 

pushover. On the graph the displacement limits have been identified by means 

of a vertical line and consequently the corresponding base shear, for the limit 

states DL and NC (green IDA, red Simplified Method). 

 

Figure 7.10.8 Comparison between static and dynamic pushover for each earthquake – X 

direction. 
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Figure 7.10.9 Comparison between static and dynamic pushover for each earthquake – Y 

direction 

From the analysis of Table 7.10.9 (X direction), there is a percentage error 

in the evaluation of capacity in terms of spectral acceleration, between 

Simplified Method and IDA, equal to 11% for the "Fully Operational" limit state 

and 6% for the "Near Collapse" limit state. 

From the analysis of Table 7.10.10 (Y direction), there is a percentage error 

in the evaluation of capacity in terms of spectral acceleration, between 

Simplified Method and IDA, equal to 16% for the "Fully Operational" limit state 

and 12% for the "Near Collapse" limit state. 
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CHAPTER 8 

8 CONCLUSIONS 

The simplified performance-based approach herein presented has the aim 

of assessing the seismic vulnerability of existing steel Moment Resisting Frames 

(MRFs) and Concentrically Braced Frames (CBFs) subjected to seismic actions, 

without using any static non-linear or dynamic non-linear analysis. 

 To check the validity and the field of application of the method, an 

extensive parametric analysis was carried out on 420 frames for each structural 

type, designed according to 3 different approaches. 

The capacity can be estimated through the pushover curves whose trend can 

be approximated by a trilinear capacity curve.  

In the case of MRFs, among its three branches, the first one is representative 

of the elastic behaviour, the second of the maximum load multiplier, and the 

third of the collapse mechanism equilibrium curve.  

In the case of CBFs, the proposed methodology consists of a trilinear 

approximation of the structure behavioural curve whose first two branches are 

obtained through elastic analysis, while, rigid-plastic analysis, taking into 

account second-order effects helps to define the third "softening" branch. 

In addition, four characteristic points of the curve are identified and 

connected to four limit states corresponding to achieved target performances of 

the structures. Their evaluation has been obtained by means of mathematical 

relations opportunely calibrated on the basis of a wide parametric analysis 

including 420 structures on which pushover analyses have been carried out.  

In Chapter 4 the validation and the calibration results have been reported. 

In particular, for MRFs the maximum loading multiplier (Merchant-Rankine) 

and the plastic rotation demand relations have been defined through linear 
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regression, showing a high accuracy due to the determination coefficients close 

to the unit value, the trendline close to the bisector and the regression points 

leaning against the trendline. 

Also for CBFs the Merchant-Rankine formula has been calibrated but 

considering different regression parameters, based on the specificity of the 

structural typology. In addition, a regression analysis has been performed also 

to define the reduction factor β of the stiffness, characterizing the second branch 

of the trilinear model. The parameter has been set between 0.7 and 0.75. 

 The same accuracy of MRFs has been detected for CBFs, testifying to the 

great flexibility and adaptability of the method and the proposed relationships. 

The simplified method has been applied to all 840 structures designed.  

From the analysis of Figure 4.3.6-Figure 4.3.7 for MRFs and Figure 4.4.6-

Figure 4.4.7 for CBFs, we report the synthetic results in terms of medium 

percentage error in the definition of the maximum multiplier and the points C 

and D, in terms of top sway displacement, referring to the results obtained by 

pushover analyses (Table 8.1). 

Table 8.1 Comparison between simplified method and pushover results 

 αmax δmec δu 

[%] [%] [%] 

GMRFs 0.9 1.9 5.3 

SMRFs 5.2 9.5 4.8 

OMRFs 1.8 5.1 7.2 

GCBFs 0.8 1.2 5.6 

SCBFs 4.7 3.5 6.3 

OCBFs - - - 

 

In Chapter 6, some numeric examples explaining the application of the 

simplified method are reported. As can be seen from the given numerical 

examples, the methodology is of easy and rapid application. The methodology 

is also completely analytical since the equations of the branches constituting the 

trilinear model can be obtained uniquely, given the horizontal seismic actions 

and the sections of beams and columns of the analyzed frame.  

The speed of application and the uniqueness show that this methodology is 

strongly indicated for the evaluation of seismic performances in the immediate 

post-earthquake or the large-scale assessment of the seismic vulnerability of the 
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built heritage. Furthermore, it constitutes a suitable tool to check the capacity of 

the buildings designed with the new seismic code prescriptions. The feasibility 

of the procedure is very high and makes it suitable to be applied indiscriminately 

to frames belonging to different historical periods. 

Finally, in Chapter 7, is reported the validation of the method through 

Incremental Dynamic Analysis (IDA) applied to simulated design structures 

whose data are available in the literature. The IDAs have been developed with 

the Abaqus software, creating a very accurate fiber model capable of catching 

the real behavior of the analyzed structures. In this way, it was possible to 

evaluate the actual percentage error between the seismic capacity defined by the 

simplified methodology and that one obtained through the IDAs, for each limit 

state considered. 

In the case of MRFs the objective was the definition of the MIDR – PGA/g 

(Sa/g) curves for each of the 7 earthquakes considered. The comparison in terms 

of spectral acceleration capacities between the simplified method and IDAs 

provided consistent results. The analysis of Table 7.8.5 (Table 7.9.5) results in 

an error equal to 4.5% (10.3%) for the "Fully Operational" limit state, 4.7% 

(19.7%) for the “Operational” limit state, 6.4% (9.4%) for the “Life Safety” limit 

state and 2% (2.5%) for the "Near Collapse" limit state. 

In the case of CBFs, the objective was the definition of dynamic pushover 

curves for the two braced frames considered and for each of the 7 earthquakes 

considered. The curves obtained showed good adherence compared to the static 

ones.  Finally, a comparison in terms of spectral acceleration capacities between 

the simplified method and IDAs was made. The analysis of Table 7.10.9 (Table 

7.10.10) results in an error of 11% (16%) for the "Fully Operational" limit state 

and an error of 6% (12%) for the Near Collapse limit state. 

I would like to underline that the proposed methodology aims to achieve a 

high level of precision for the ultimate limit states, being devoted to the 

assessment of seismic vulnerability over long time periods. In this sense, the 

results obtained are satisfactory, presenting a very low percentage error (2% - 

12%). 

In conclusion, the main advantage of the proposed methodology is that the 

equations of the branches constituting the trilinear model can be obtained 

uniquely and analytically, given the seismic action distribution and the sections 

of beams and columns of the analysed frame.  
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Consequently, it is recommended in the large-scale mapping of the seismic 

vulnerability of the built heritage, according to given performance criteria 

because of the uniqueness of the method and the statistical reliability in 

operating on a large-scale number of structures. 
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