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Abstract

This work takes a pioneering approach to a bio-inspired design of seismic
isolation systems. There is a growing demand for tunable seismic isolation
devices to be widely used in developing countries at affordable cost. This thesis
work employs architecture materials concepts and a bio-inspired design approach
to formulate, manufacture, and experimentally test a novel seismic isolator. The
unit cell of the analyzed device is formed by rigid linkages mimicking the bones
of the limbs of the human body, which are connected to a central post through
stretchable tendons. The central post carries the vertical load transmitted by the
superstructure and can slide against the basis of the system.

This seismic ‘sliding-stretching’ isolator dissipates mechanical energy via
friction and the pseudo-elastic recentring force of the tendons. Its displacement
capacity can be finely tuned through an optimized design of the geometry of the
limb members, while dissipative effects can be adjusted for the application at
hand by playing with the geometry, the training cycles, and the material of the
tendons.

It can be manufactured in-house using 3D printers and metallic parts provided
by local metal framing companies or online suppliers, and hence does not require
heavy industry or expensive materials. Its development paves the way to a
customizable approach to the protection of artworks, small houses, and essential
equipment in industrialized and developing countries.

KEYWORDS: Bio-inspired design, Seismic isolation, 3D printing, Scaling laws
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CHAPTER 1

INTRODUCTION AND MOTIVATION

In the event of earthquakes, seismic isolation offers an effective strategy to ensure the
safety of people and the prevention of damage to structures, machinery, and equipment
[1][2][3][4][5][6]. The most widespread seismic isolators currently on the market use
elastomeric or friction-pendulum bearings [7][8]. These devices partially or completely
disconnect the portion of the ‘superstructure’ above them from the ground motion. As a
result, the fundamental vibration period of the structure is significantly increased,

avoiding resonance with high-frequency seismic excitations [9].

Seismic isolators offer different levels of damping [10], which is useful for dissipating
energy and reducing the amplitude of lateral displacements during earthquakes. The
inherent limitations of currently available isolators include their confined operational
frequencies, manufacturing complexity, need for advanced technical expertise, and
substantial costs. While elastomeric bearings are still widely used and appreciated for
their simplicity and consistent performance, even after several decades in service

[11][12][13], friction-based devices quickly become the technology of choice when the



displacement demand increases significantly. Sliding bearings generally imply a more
complex behavior of the isolated structure, due to the intrinsic complexity of the
frictional phenomena and the still limited data about the durability of their critical

components [14].

The choice of the appropriate technology for seismic isolation interventions on existing
or new structures requires a careful analysis [1][15]. However, even the simplest
implementation of the seismic isolation technology offers a major improvement in terms
of the level of seismic protection of buildings and infrastructures in both industrialized
and developing countries. Residential and rural buildings [16], equipment in hospitals
and essential buildings [4][5], artworks in museums [6], and critical industrial facilities
are nowadays often protected through many variations and combinations of seismic
isolators. The considerable high cost and the perceived complexity of such devices,
together with local availability constraints, often discourage a larger use of this reliable
technology, particularly in less developed countries. The scientific community senses
the need to create the conditions for a broader field of applications, and in this sense,
several low-cost solutions for seismic isolators have been proposed in the literature and

are currently under investigation [4][16][17][18][19].

The use of architecture material concepts to design next-generation seismic isolators

deserves special attention, in consideration of the exceptional properties these systems
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exhibit in  different fields of mechanics, robotics, and acoustics
[21][22]]23][24][25][26][27]. This is due to an optimized geometric design of the
internal structure [20][21] that can be conveniently manufactured using 3D printing at
different scales [28][29][30]. Seismic metamaterials have been successfully proposed to
protect buildings from seismic waves by creating shields around the structure through
Bragg-scattering structured soils, buried mass or above-surface resonators, auxetic and
hierarchical materials [31][32][33][34][35][36]. The periodicity of these media is often
at the meter scale, which makes them not suited for use as seismic isolators. The
employment of confined pentamode lattices as small amplitude vibration attenuation

devices has been the subject of recent discussion in the literature [37].

Ever since Leonardo da Vinci’s pioneering anatomic studies [38], the mechanics of
human and animal locomotion have attracted researchers’ attention. Animals adjust their
muscle contraction frequencies to reach a state of resonance with pendulum- and elastic-
type oscillation mechanisms during locomotion [39]. This frequency tuning process
produces motion at low energy consumption. The bones of the legs and arms behave as
pendulum systems that the muscles bend periodically to match their natural frequencies
[40][41]. Animals such as jellyfish tune vibration frequencies through the elasticity of

their tissues, which is a nonlinear function of the deflection of the mesoglea bell [39].

This thesis work takes a novel approach to a bio-inspired design of seismic isolation

systems. It is focused on the design of a hybrid sliding—stretching isolator (SSI)

11



combining finite kinematics linkages that replicate the bones of human arms and legs,
stretchable membranes that mimic the action of the muscle-tendon complex and
confinement plates. The proposed device dissipates mechanical energy via friction and
the hysteretic recentring force of the tendons. Its displacement capacity can be finely
tuned through an optimized design of the geometry of the limb members, while
dissipative effects can be adjusted for the application at hand by playing with the

geometry, the training cycles, and the material of the tendons.

The SSI can be manufactured on-site or in a fabrication laboratory using 3D printers and
metallic parts provided by local metal framing companies or online suppliers, and hence
does not require heavy industry or expensive materials. Its development paves the way
to novel, tunable seismic isolators that can be fully or partially manufactured through

3D printing techniques.
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CHAPTER 2

BIO-INSPIRED DESIGN OF A STRETCHING

SLIDING ISOLATOR

This section involves the design and development of the nature-inspired seismic
isolation system which is a sliding stretching-based base isolation system. This system
employs various parts which were designed with the help of the 3D CAD package and
then additive manufacturing (AM) was used to manufacture the components which are
described in the upcoming section. AM was used because of the rapid technique as the
rapid manufacturing of the parts were needed for various testing purposes and design
modifications. Most of the parts were manufactured or printed in filament wire made of
polylactic acid (PLA) polymer and restitution elements (tendons) were printed in
Thermoplastic Polyurethane (TPU) as they are flexible yet strong. The characterization
of such TPU membranes was also carried out in later sections to optimize the response

of the tendons. The tendons are the restitution elements that play a major role in the
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functioning of the isolator. In the next sections, experimental and numerical modeling

of the isolator has been discussed along with the results and discussion section.

2.1 Materials and methods

2.1.1 Unit cell design

An exploded view of the unit cell of the SSI is shown in Figure 1. It is composed of four
articulated ‘limb’ members (arms and legs) branching out from a central post connected
to the top plate of the device. This plate carries the vertical load transmitted by the
superstructure, consisting, e.g., of a column, a bridge beam, machinery, or an artifact
that needs to be isolated from the foundation. A cap screwed to the top plate covers the
central post, which cap can exhibit relative rotations with respect to the post, due to a
deformable cap cushion positioned between these parts. Such a movement allows the
top plate to achieve the correct level (Figure 1). If rocking motions need to be prevented
[5], the cushion can be removed, with the cap and the post-forming a single element.
The central post ends with a slider made of a low-friction material built into a recess in

its base.
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Figure 1 Exploded view of the SSI unit cell

As Figure 1 illustrates, four corner posts are screwed to the bottom plate and connected
to the limb members at the ends opposite the central post. Vertical hinges connect the
limbs and to the posts, while four membranes—tendons connect the corner posts to the
central post (see Figure 1). The tendons are made of a material that can carry large
stretching strains and that dissipates energy through hysteretic response [43][44]. The
undeformed configuration of the limbs, depicted with red dashed lines in Figure 4 A,

shows lower arms and legs with axial length a1, upper arms and legs with axial length
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a», and the relative angle between these members equal to 7z/2+f. Interestingly, the
design variable £ (‘initial foot angle’ or ‘rest angle’ of the limbs) can be easily varied by

changing the screw points of the corner posts on the bottom plate.

The kinematics of the unit cell is described by the two parameters illustrated in Figure 4,
for a given direction of the displacement of the central node (relative to the foundation):
the angle a formed by such a direction with the horizontal axis, and the scalar projection
u of the displacement vector of the central node in this direction. The displaced positions
of the elbow and knee joints are easily found at the intersection points of the circle with
radius a», which is centered at the current position of the central post, and the circles
with radius a; centered at the corner posts. Due to symmetry, the kinematics of the cell
is comprehensively studied by assuming « > 0 and letting o vary in the interval [0°, 90°]
deg. It is safe to assume that the design value of the lateral displacement allowed by the
biomimetic isolator, hereafter referred to as ‘displacement capacity’ ¢, must be
sufficiently lower than the minimum value of u producing a ‘locking’ configuration of

loc

the unit cell (u = u”%). The locking condition is achieved when one or more tendons
overlap the adjacent limb members (see Figure 2). The remarkable increase in ‘d’ in
systems with negative rest angles is achieved without changing the limbs’ length and

slightly reducing the footprint of the device (see insets in b). Overall, the displacement

capacity depends only on the geometric design variables ai, a; and £.
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Figure 2 Snapshots extracted from the animations of the unit cell’s motion. (A-D) Deformed
configurations for different values of the applied displacement u,o0= 0, and p=—10 deg. (E-
H) Deformed configurations for o= 0 and p= 10 deg.
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Figure 3 Undeformed and deformed configurations of different models of the SSI. (A)
Top view of a deformed configuration of a single unit cell. (B) Top view of a 2x2 array
of unit cells (undeformed configuration, f= 8deg).
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Figure 3 (continued) (C) Different views of the deformed configuration of an assembled
model featuring 1 layer.
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Figure 3 (continued) (D) Different views of the deformed configuration of an assembled model
featuring 2 layers.
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The plot in Figure 4 shows the variation of the dimensionless locking displacement
Upock = Wioeke/@ With a, for a1 = ax = a. One observes that the minimum value of ;.
is attained at a = 7/4 - /2, and that such a value grows appreciably when the rest angle
changes from positive to negative. Indeed, it increases from 0.468 to 0.714 (= 53%)
when switching £ from 10 deg to -10 deg. It is also possible to double the displacement
capacity of the device by stacking 2 unit cells one over the other in the vertical direction,

as shown in Figure 4 (see also Figure 3, D).

The remarkable increase in ‘d’ in systems with negative rest angles is achieved without
changing the limbs’ length and slightly reducing the footprint of the device. Overall, the
displacement capacity depends only on the geometric design variables ai, a> and f.
Positive values of the rest angle are needed to build periodic systems formed by arrays
of unit cells since the knee/elbow joints of adjacent cells do not touch one another if S

is sufficiently greater than zero (Figure 3, B).

This design approach distributes the vertical load ‘P’ transmitted by the superstructure
among multiple central posts, creating a periodic metamaterial. The bio-inspired
character of the proposed seismic isolator is multi-fold. First, the shape of the unit cell
replicates that of a human body with bent arms and legs (Figure 1). Second, the tendon—
membranes’ capacity to stretch acts as a recentring mechanism of the central post, which

regulates the fundamental vibration period of the isolated structure.
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locking
undeformed

actuated cable (optional)

Figure 4 Locking displacements versus loading angle o. and rest angle f. Deformed configuration

of a two-layer system.

The extension-and-release working principle of the membranes produces time
fluctuations of kinetic and stored energies like those induced by the stretching and recoil
of animals’ tendons during running and hopping [40]. Such a response also converts the
frequency tuning mechanism associated with the locomotion of animals [39] into a

passive mode. While animals move at resonance through the active control of
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locomotion by muscles, tendons, and tissues, the SSI analyzed in this study works
oppositely: it tunes the nonlinear stiffness of the tendons to avoid resonance with seismic
excitation frequencies [9]. It is also possible to actively control the isolator by equipping
the device with actuated cables that run on top of the posts or along the tendons
controlled, e.g., by actuators embedded in the joints [42] (Figure 4 and Figure 3, B). This
optional feature can be useful because it allows adjustment in real-time of the
fundamental vibration period and the dissipation capacity of the isolated structure to the
earthquake frequency and energy content during extreme events [3]. The active control

provides an additional recentring mechanism of the system.
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CHAPTER 3

PREPARATION OF PROTOTYPES

Physical models of the SSI were manufactured at the Rapid Prototyping Laboratory of
the University of Salerno. This was achieved using fused deposition modeling (FDM)
3D printers, a lathe from a partner metal framing company, and Aluminum 7075-T651

(Ergal) confinement plates. The analyzed prototypes feature a single unit cell with the

properties @; = 97.0 mm, @, = 100.5 mm, B = 0, and an overall height of 95 mm

(including the confinement plates). The non-structural components were 3D printed
using eco-friendly polylactic acid (PLA) filaments. The load-carrying members of the
tested prototypes were fabricated in S235 steel through a parallel lathe (Figure 6 B). The
slider underneath the central post (Figure 1) is a circular disk made of

polytetrafluoroethylene (PTFE).

One of the tested prototypes (prototype #1) does not have tendons and was analyzed to
study the pure friction sliding response of the central post (Figure 5A). Prototype #2

features tendons 3D-printed using thermoplastic polyurethane (TPU) filament for FDM

24



(Figure 5 D). Prototypes equipped with fully 3D-printed unit cell parts were also
manufactured for demonstrative purposes (Figure 5 A, B). Table 1 illustrates the key

manufacturing parameters of the biomimetic isolator prototypes.

Figure 5 Physical models and experimental validation. (A) Motion animation of a demonstrative
version of prototype #1 equipped with fully 3D-printed unit cell parts, which can be moved by
hand. (B) Demonstrative version of prototype #2 equipped with telescopic tendons
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Figure 5 (continued) (C) Prototype #2 with stretchable tendons and metallic posts under testing

A -

- / Arm/
LN =l S - Upper
v \ =y 4 Leg

\;/
Central Ring Comner Ring
l Forearm/
* * Lower
Seoialicnp Sankrel posk Central Hinge Corner Hinge - Elbow/
Knee
Hinge
-’ : Elbow/
. : Knee Pin
Central Cushion Slider Tendon Corner Post

Figure 6 Different parts of the isolators. (4) List of components.
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Figure 6 (continued) (B) Structural parts fabricated in S235 steel.
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Figure 6 (continued) (C) Exploded view of the unit cell featuring a rest angle = -10 deg.

An SSI prototype without tendons (hereafter referred to as sample #1) and a prototype

equipped with thermoplastic polyurethane (TPU) membranes (sample #2) were
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assembled at the Rapid Prototyping Laboratory of the Department of Civil Engineering
of the University of Salerno. Figure 6 A illustrates the bill of materials of these

prototypes, while Figure 6 C shows an exploded view of the unit cell. The fabricated

SSI samples show lower limb length @;=97.0 mm, upper limb length @>=100.5 mm;

and overall height of the unit cell equal to 95 mm (including the terminal plates). The
limb members are composed of prismatic solid plates with a 40-mm maximum height,
80-mm total length, and a thickness variable of 5 to 6 mm. The central post has a

cylindrical core with a 25-mm diameter.

It is fitted with a cap of 70 mm diameter, for a total height (including the cap and the
slider) of 65 mm. The sliders are circular discs with 30-mm diameters and 5-mm
thickness made of polytetrafluoroethylene (PTFE). The corner posts have a 10-mm
diameter cylindrical core, a 26-mm diameter base enlargement with a 6-mm height, and
a total height of 50 mm. The SSI prototypes are confined between a top square plate
with a 150-mm edge and 15-mm thickness and a bottom square plate with a 250-mm
edge and 15-mm thickness. The tendons forming sample #2 have a prismatic central
region with a 31.6-mm height and a 1.9-mm thickness, which terminates with two
terminal cylindrical rods with a 9-mm diameter and measuring 47.6 mm at the
extremities. These rods are inserted into the corner rings and encase M3 steel bolts (3-

mm diameter and 50-mm length) acting as stiffeners.
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Table 1 key 3D printing parameters

Parameters TPU
Print plane tilt No
Heated printed plate Yes
First layer height 0.15mm
First layer extrusion speed | 50%
Surrounding temperature | 23°C
Print speed 25mm/s
Humidity Absent
Layer thickness 0.3 mm
Nozzle diameter 0.4 mm
Filament diameter 1.75 mm
Extrusion temperature 230°C
Activating cooling fan Immediate
Cooling fan slow down N/A
Retraction N/A
Skirt height N/A
Object skirt distance 5 mm
Brim N/A
Infill (percentage) 50 %
Infill speed 35mm/s
Perimeter printing speed 35mm/s
Bridge N/A
Print time and weight
Print time/part Weight/part
1h 30 min 18.86¢g
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The 3D-printed parts of the SSI prototypes were manufactured using standard 3D
printers based on the fused deposition modeling (FDM) technology. Polylactic acid
(PLA) filaments commercially produced by Fillamentum® were used to build the
components shown in Figure 6 A, except for the membrane/tendons, which were 3D
printed using a TPU filament by Sunlu®. The PLA material employed has a mass
density of 1.24 g/cm’, a tensile strength at a yield of about 50 MPa, and a tensile elastic

modulus of 3600 MPa.

Table 1 illustrates the key 3D printing settings used for the manufacture of a fully 3D-
printed unit cell, together with the print times and weights of the different components
(see Figure 6 A). Table 2 gives the cost analysis of the two prototypes, assuming a unit
cost of €15.44 /kg for PLA Extrafill filaments by Fillamentum® (€38.6 for a 2.5 kg
spool), and a unit cost of €43.98 /kg for TPU filaments by Sunlu® (€21.99 for a 0.5 kg
spool). The cost analysis presented in Table 2 assumes that corner posts, corner rings,
and the central ring of prototype #1 are 3D printed in PLA. The S235 structural steel
parts were manufactured using a parallel lathe machine (Grazioli Fortuna 150, available
at the partner metal framing company Carpenterie Morinelli srl [54], which also
provided the up-to-date cost list.

The confinement plates were manufactured in the aluminum 7075-T651 alloy (Ergal)
and were purchased from an online metal parts supplier (Acciai e Metalli) [59]. The

sliders are high-strength polytetrafluoroethylene (PTFE) discs with 30 mm diameter and
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5.0 mm thickness cut out of 1.25 m x 1.25m plates. These elements feature a maximum
compressive strength in the range of 30 - 40 MPa, and a cost per slider of about €5.00
(including lubricant: silicon grease applied on the slider according to EN 1337-248 (EN
1337-2,2003) [56]. The overall manufacturing cost for prototypes #1 and #2 is €120.72

and €392.53, respectively (not including labor costs for 3D printing).

Table 2 Print times and weights of the different parts of a fully 3d printed unit cell

Part name Qty Print time/part | Total print time | Weight/part Weight
central cap 1 1h 38 min 1h 38 min 22 ¢g 22 ¢g
cap cushion 1 12 min 12 min g g
central hinge 4 41 min 2h 44 min 8¢ 32¢g
central post 1 2 h 39 min 2 h 39 min 39¢g 39¢g
central ring 2 31 min 1h 2 min 7g 14 ¢
corner ring 8 16 min 2h 8 min 4¢g 32¢g
corner hinge 4 37 min 2h 28 min 8¢ 32¢g
corner post 4 1h 20 min 5h 20 min 850 ¢g 34 ¢
Tendon 4 1h 25 min 5h 40 min 12¢g 48 ¢
arm/upper leg 4 1h 28 min 5h 52 min 17.5¢ 70 g
forearm/lower leg | 4 1h 28 min 5h 52 min 17.5¢ 70 g
elbow/knee hinge | 8 26 min 3h 28 min g 24 ¢
elbow/knee pin 4 21 min 1h 24 min 2g 8¢
Overall weights of prototypes #1 and #2
Prototype # Unit cell weight \Tv(e)li)gh ¢ plate Botvtvztingﬁtlate Weight
1 0.716 kg 0.948 kg 2.634 kg 4.299 kg
1.314 kg 0.948 kg 2.634 kg 4.897 kg
Cost analysis of prototypes #1 and #2 (Euro)
Prototype # PLA | TPU Steel Slider | Plates Total cost
1 5.71 0.11 70.00 5.00 | 39.90 120.72
2 4.19 3.43 340.00 5.00 | 39.90 392.53

32




CHAPTER 4

EXPERIMENTAL VALIDATION PROCEDURE

Experimental validation tests were designed ‘ad hoc’ in collaboration with FIP MEC srl
[55], a leading company in the field of anti-seismic devices based in Padova (Italy). A
loading frame equipped with vertical and horizontal hydraulic actuators (Figure 7) was
employed to apply unidirectional displacement histories to the bottom plate while
subjecting the top plate to a fixed vertical load ‘P’. The testing activities led to the
execution of 1 training cycle and 4 additional cycles of a sinusoidal displacement time-

history with a frequency of 0.40 Hz and amplitude d = +50 mm.
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Figure 7 Employed experimental setup. (A) Experimental setup. (B) Snapshots extracted from
the video recordings of the tests run on prototype # 1 under vertical load P= 25 kN and maximum
lateral displacement d=+50mm
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Figure 7 (continued) Employed experimental setup (C) Snapshots of the test run on prototype#2

Additional tests were run by applying one training cycle and 4 additional cycles of
triangular displacement histories with a frequency of 0.50 Hz and amplitude d = +25
mm. Three different values of the vertical load were applied to the top plate (P =35, 15,
25 kN ). Two sets of tendons were analyzed (sample #2): unconditioned tendons, and
tendons subject to preliminary stretching through a few percent axial strains, leading
such members to a state of pretension when the device was in the rest configuration.
This pre-conditioning prevented the occurrence of significant residual strains after the

training cycle.
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For P =5 kN, two pre-conditioned tendons were placed on opposite edges with respect
to the loading direction, while the remaining two tendons were mounted as
unconditioned (so that there was always one pre-conditioned tendon active for positive
and negative lateral displacements). For P = 15 kN, three pre-conditioned tendons were
mounted, while for P = 25 kN, all the tendons were pre-conditioned. The maximum
engineering strain suffered by the tendons was estimated to reach values as high as 28%
under testing, while the engineering strain rate suffered by the tendons was estimated to

reach a peak value of 0.65/s.

The applied load frequencies are consistent with the typical frequency range of
seismically isolated buildings [2][3]. To subject the tested specimens to similar sliding
conditions, sample #1 was obtained by cutting and removing the membranes from

sample #2, after all the tests on this sample were completed.
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CHAPTER 5

EXPERIMENTAL CHARACTERIZATION OF THE
RESPONSE OF THE TENDONS

The membrane/tendons of the SSI were 3D-printed, using a TPU filament with a mass
density of 1.19 g/cm3 [58]. The mechanical characterization of these members was
carried out via monotonic and cyclic uniaxial tension tests on 200 mm x 34 mm x1:5
mm samples with gauge length LO = 145 mm (Figure 8, A-I). The engineering axial
strain of the sample is computed as follows: € = (I - Ly)=Ly, with  denoting the current
length of the portion of the member used to measure the elongation (‘deformed gauge
length’). Monotonic tests estimated a tensile modulus of 40 MPa; nominal stress at 35
% axial strain equal to 5 MPa; maximum nominal stress at the failure of 14 MPa; and

296 % failure strain Figure 8 A .

(Five series of cyclic, loading, and unloading tests were conducted at the displacement
rate of 1,000 mm/min (0.11/s average strain rate) up to 35 % maximum strain, for a total
of 20 cycles, the results of which are shown in Figure 8 B-F. The cyclic tests estimated

maximum nominal stress of 5.4 MPa and a last cycle peak stress of 4.5 MPa. The average
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stress-strain response after pre-conditioning can be easily fitted to the rate-independent,

pseudo-elastic (PE) models by Dorfmann and Ogden [63] ( Figure 8A, I).

The first of these models (hereafter referred to as ‘model 1°) assumes that the Mullins
effect and residual strains have been removed through pre-conditioning and account for
a hysteretic response during cyclic loading [63]. Let /y denote the deformed gauge length
measured in the configuration at the end of the preconditioning phase. The nominal
stress in the tendons (&;) is related to the stretch ratio A =l/[p (measured after pre-

conditioning) through the following equations:

4w (1)

@

1 W, — W
g = gl [1 - ;tanh (—m - ( )>]

where 6t(l) and 6t(u) respectively denote the nominal stress on the loading path and the

unloading path; W(A) denotes the strain energy function accounting for the
incompressibility constraint, Here, wy, indicates the value of W at the maximum stretch
An during loading, while ‘m’ and ‘r’ are material parameters. The second hysteretic

model generalizes the previous one to account for additional residual strains during
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cyclic loading [63], after pre-conditioning (‘model 2”). The unloading branch is now

described through the following equation:

1 W, W)\
O't(u'z) = 6t(u'1) + [1 - ;tanh <<—mW ( )> )/tanh(l)] (v A —v,172)

m

3)

V1, V> and O; are additional constitutive parameters. We use the Yeoh hyper-elastic
model defined by

W= C22D Qeiph e300 32+ D) 3o A+ 22— 1Y) )

which is often employed to model the response of elastomeric isolators [64], and the Fit
function of Mathematica®, to obtain: C; =4:19579 MPa, C,; = -4:85976 MPa, and C; =
9:67521 MPa for both hysteretic models by Dorfmann and Ogden. For the model
without permanent deformation, we further obtain » = r; = 1:37159, and m = m; =
0:63206 MPa (see the solid curve in Figure 8, I). With reference to the second model by

Dorfmann and Ogden [63], we instead estimate: » = r> = 0:571226; m = m» = 0:203351

MPa; V; = 8:2281 MPa; V; = 8:58084 MPa, a; = 6.25557 (dashed curve in Figure 8, I).
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Figure. 8 Results of mechanical tests on TPU tendons. (4) Quasi-static tension tests conducted
at the displacement rate of 1 mm/min to determine the tensile modulus and the displacement rate

of 100 mm/min for failure analysis. (B-C) First two cyclic tests with 20 cycles up to 35 % axial
strain at a displacement rate of 1,000 mm/min, up to 0.1 MPa stress at unloading.
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Figure. 8 (continued) (D) Third cyclic tests with 20 cycles up to 35 % axial strain at a
displacement rate of 1,000 mm/min, up to 0.1 MPa stress at unloading. (E-F) Cyclic tests 4-5

with 20 cycles up to 35 % axial strain at a displacement rate of 1,000 mm/min, up to zero strain

at unloading.
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(h)

Figure 8 (continued) (G) lllustration of the deformed configuration at 35% strain of a tested
specimen. (H) Undeformed and post-failure configuration of a specimen subjected to a
monotonic tension test.
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Figure 8 (continued) (I) Fit of a representative experimental stress-strain response after 15
cycles of pre-conditioning (test of panel F: circle marks) to a hysteretic model without permanent
deformation (10) (model 1: solid line) and a hysteretic model accounting for a nonzero residual
strain at the end of the unloading phase (11) (model 2: dashed line).
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CHAPTER 6

RESULTS AND DISCUSSION

Let F = F, + F denote the overall shear force acting on the top plate of the SSI (base
shear of the superstructure). The experimental and theoretical results obtained for the
shear force F vs. lateral displacement u response of prototype #1 and #2 are illustrated
in Figure 9 and Figure 10 respectively, in correspondence with the examined values of

the vertical load (P =5, 15, 25 kN).

The overall restoring force F, transmitted from the tendons to the central post (Figure 3,

C) is computed through the equation:

) » (5)
F‘r = At Z(l + 11[}) b\-t (At’]) kt'j ) k
J

Fr = uPsign(v) (6)
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A trial-and-error procedure was employed to obtain the best-fit parameters of the friction
model described by Equations ((6(7), and the constitutive model given by Equation (5)

with respect to the experimental results for prototypes #1 and #2, respectively (after the

training cycles). We estimated P..r = 42.35 kN, u0 = 0.47%, y = 4.00, V,oy = 2.50 mm/s

and y = 0.19. The accuracy of the employed mechanical models for Fy and F, is
demonstrated by the good theory vs. experiment matching observed in Figure 9, Figure
10. For the tests run on prototype #1, we note the following theory vs. experiment
differences in terms of the average energy dissipated per cycle (sinusoidal tests): -5.27
% for P =5 kN (theory: 16.61 J; experiment: 17.54 J); 11.07 % for P = 15 kN (theory:
39.36 J; experiment: 35.44 J); and 7.86% for P = 25 kN (theory: 51.81 J; experiment:

48.03 J).

These values of £ DC correspond to average values of ey varying from 1.66% (P =5

kN) to 1.04% (P =25 kN). The oscillations of the experimental results visible in Figure
9 are explained by accuracy measurement errors due to the low values of the shear forces
recorded during the tests (0.1-0.3kN), which are close to zero on the scale range of the

horizontal actuator (0—100 kN), and the experimentally measured variability of the
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vertical load P. Passing to examine the sinusoidal test on sample #2 under P =5 kN, we
note that the loading branches of the experimental F' - u response exhibit low-slope

segments in proximity to the points with # = 0 (see Figure 10).

Such portions of the F' - u curve is caused by the fact the unconditioned tendons are
initially ‘slack’ due to the residual strains accumulated in the training cycle. In the tests
with P = 15 kN, the initial slope of the F' - u curve (near u# = 0) is smaller for # > 0 than
for u < 0, thanks to the insertion of two preconditioned tendons working for # < 0 and
only one working for # > 0 ( see Figure 10). Finally, for P = 25 kN all the loading
branches of the F' -u curve exhibit considerably high slope near u = 0, because all the
tendons were pre-conditioned in correspondence to such a value of P (Figure 10 G). As
a result, the overall matching between theoretical predictions and experimental
observations of the force-displacement response is appreciably more accurate for P =25

kN than for the previous cases (cf. Figure 10 C,E,G).

Let us now compare the results of sinusoidal tests, affected by material- and friction-
dependent nonlinearities (due to the time-variation of the sliding-velocity of the central
post), with those of triangular input tests, where the sliding velocity is constant (see
Figure 9, Figure 10). A comparative analysis of the response laws given in Figure 9 and
Figure 10 reveals that the nonlinearity of the /' — u curve of prototype #2 is essentially

due to the nonlinear behavior of the tendons and pre-conditioning effects. The hysteretic
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response of the tendons determines the different shapes of the loading and unloading

branches shown in Figure 10 D,F,H [43][44][45].

Referring to the theoretical model for prototype #2, we record &= 17.05%, 24.72%,
27.84% for P = 5kN, 15 kN and 25 kN, respectively. Similarly, we estimate 7y of
prototype #2, respectively, equal to 1.32 s, 2.09 s and 2.51 s for P = 5kN, 15 kN and 25
kN. For P = 25 kN, the employed mechanical model estimates Tcy = 1.94 s (& =
20.87%) when setting the cross-section area of the tendons to twice the value At
corresponding to prototype #2 (cf. Figure 5 E). Which are close to zero on the scale
range of the horizontal actuator (0—100 kN), and the experimentally measured variability
of the vertical load P. Passing to examine the sinusoidal test on sample #2 under P =5
kN, we note that the loading branches of the experimental F' - u response exhibit low-

slope segments in proximity to the points with « = 0 (see Figure 10 C).

Such portions of the F' - u curves are caused by the fact the unconditioned tendons are
initially ‘slack’ due to the residual strains accumulated in the training cycle. In the tests
with P = 15 kN, the initial slope of the F - u curve (near u = 0) is smaller from u > 0
than for u < 0, thanks to the insertion of two preconditioned tendons working for u < 0
and only one working for # > 0 (Figure 10 E). Finally, for P = 25 kN all the loading
branches of the F' -u curve exhibit a considerably high slope near u = 0 since all the

tendons were pre-conditioned in correspondence to such a value of P (see Figure 10 G).

47



As a result, the overall matching between theoretical predictions and experimental
observations of the force-displacement response is appreciably more accurate for P =25

kN than for the previous cases (cf. Figure 10 C,E,G).

Let us now compare the results of sinusoidal tests, affected by material- and friction-
dependent nonlinearities (due to the time-variation of the sliding-velocity of the central
post), with those of triangular input tests, where the sliding velocity is constant (see
Figure 9 and Figure 10). A comparative analysis of the response laws given in Figure 9
and Figure 10 reveals that the nonlinearity of the F — u curve of prototype #2 is
essentially due to the nonlinear behavior of the tendons and pre-conditioning effects.
The hysteretic response of the tendons determines the different shapes of the loading
and unloading branches shown in Figure 10 D,F,H [43][44][45]. Referring to the
theoretical model for prototype #2, we record & = 17.05%, 24.72%, 27.84% for P =

SkN, 15 kN and 25 kN, respectively.

Similarly, we estimate 7. of prototype #2, respectively, equal to 1.32's,2.09 s, and 2.51
s for P = 5kN, 15 kN, and 25 kN. For P = 25 kN, the employed mechanical model
estimates Top=1.94 s (&= 20.87%) when setting the cross-section area of the tendons

A to twice the value A corresponding to prototype #2 (cf. Figure 5 E).
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Figure 9 Shear force F versus lateral displacement u response of the SSI prototype #I.
Comparison of experimental results and theoretical predictions under fixed vertical load P
and cyclic displacement histories with amplitude d = +50 mm, for P = 5 kN (A,B); P = 15 kN
(C,D); and P = 25 kN (E,F). The displacement window of triangular loading tests has been
restricted to 85% of the maximum value to exclude disturbance effects related to load reversal.
Error bars refer to deviations of the shear force from the mean value under cyclic loading.
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Figure 10 Shear force F versus lateral displacement u response of the SSI prototype #2.

A) Images of the tendons reinforced with M3 bolts at the extremities. B) Components of
the adopted mechanical model (sinusoidal loading with P = 25 kN). C—H) F - u curves for
P=5kN(C, D); P=15kN (E-F); and P = 25 kN (G—H). The displacement window of
triangular loading tests has been restricted to 85% of the maximum value to exclude

disturbance effects related to load reversal
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CHAPTER 7

SCALING LAWS

The sizing of the prototypes illustrated in the previous section can be extrapolated to
SSIs of different sizes and load-displacement capacities. This extrapolation assumes that
the materials used for the different parts, as well as the overall height H and the thickness
t of the confinement plates, remain the same as for prototypes #1 and #2 (H=95 mm;
=15 mm). Since the locking displacement of the unit cell depends linearly on the limb
lengths a; and a,, we design the geometric variables for a SSI with lateral displacement
capacity d in such a way that it results in: a,/a,""? = d/d"? and ax/a,"? = d/d"?, where

d” denotes the displacement capacity the prototype #i.

By prescribing a rest angle = -10 deg, and making use of the chart given in Figure 2b
of [66], we set d” = d” = 70 mm. The vertical load capacity of prototypes #1 and #2 is
PV = p@ =25 kN, which induces a pressure of about 35 MPa in the PTFE slider. The
maximum admissible force P,"? that the central post of prototypes #1 and #2 can carry

without yielding (fully elastic regime) is estimated as 92 kN, utilizing an admissible
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elastic stress oy = fi/1.25 = 188 MPa for S235 steel (fi,x = 235 MPa denoting the

characteristic yielding stress, see EN 10025).

6.1 SSI1 systems

We start by extrapolating the cost of prototype #1 to SSIs not equipped with tendons
(SSI1 systems), which feature various (vertical) load and (lateral) displacement
capacities. Such systems show the central post and cap made of S235 steel and the other

parts of the unit cell 3D printed in TPU (cap cushion) or PLA (all the remaining parts).
Hereafter, we will denote C L.(j ) the cost of the component #i of the prototype #/, and C;

the cost of the same component in the current system.

The first component that we examine is the bottom plate, which rests on the foundation
and has a non-structural function. The cost of such a plate that corresponds to a given

displacement capacity d can be computed as follows:

d ®)
) = ¢ o

Assuming that the quotation systems provided by the metal parts supplier give prices for
metallic plates that scale linearly with the edge length (and the thickness) of the

plate. The second group of components is formed by limb members; corner rings, posts,
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and hinges; and elbow/knee pins and hinges. The longitudinal size of such members
linearly scales with @ = max(a;,az), i.e., with d. On assuming that their thickness also
scales with d, we estimate the cost of the current group of components through the

following formulae,

d \? €))
6@ = ¢ (7m)

The third group of parts collects the central post and cap, and the top plate. Such parts
transfer the vertical load ‘P’ to the foundation. The cost of these components that

corresponds to a given load-carrying capacity P can be estimated as it follows:

W (_P (1
C3(P):C3 :F' (1.2)
Py ’
where:
(L forx<1 (11)
F):= {x,forx >1

since we assume that the size of the parts under examination cannot be lower than that
taken in correspondence with the base prototypes. The use of Eqn. (9) for estimating the
cost of the central post is explained by the observation that the cross-section area of such
a member can be designed to scale with ‘P’, by adopting the design formula of the

structural members under axial loading [69] (remember that we are keeping the height

53



of the SSI constant). For what concerns the central cap, we assume a 2.8 constant ratio
between the diameter of such a member and that of the central post, which scales with
P'?. The thickness of such a member scale with the square root of the bending moment
M..p produced by the applied vertical load over the section of attack of the central post,
i.e., with P'”. Similarly, we assume that the edge length of the top plate is 9 times larger

than the diameter of the central post.

The thickness of this part is scaled with the square root of the bending moment M)u.
over the section of attack of the central cap. Overall, we conclude that both the volume
of the central cap and that of the top plate can be assumed to scale with ‘P’. The fourth

group is the slider and the central cushion. To calculate their cost, we assume:

P (12)
1
Ca(P) = Cy )m

Finally, for what concerns the central ring and hinge, we observe that the diameter of
such members linearly scales with the diameter of the central post. We can therefore

estimate the cost of the current set of parts through the following formula:

b (13)
Cs(P) =P |F (_P(m)

y
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6.2 SSI2 systems

We can now extrapolate the cost of prototype #2 to SSIs equipped with tendons for
which not only the central post and cap (as in SSI1 systems) but also the central ring,
corner posts, and corner rings are made of S235 steel (SSI2 systems). The main
difference between these devices and the SSII systems lies in the fact that the presence
of the tendons now gives a structural role to the corner posts, whose function is to
transfer the recentring forces carried by the tendons to the foundation. As for SSI1
systems, we can again categorize most of the parts into five groups, with the difference
that group two will not include corner rings and posts. The scaling laws for the costs of
these groups of parts are identical to those for SSI1 systems, with the replacement of the
apex (1) with (2) where necessary. The cost estimation of the remaining parts of SSI2
systems is as follows. To match the requirements of the standards for seismic isolation,

we set:
E., (P)=xP (14)

where F., indicates the design value of tendons’ restoring force, and y denotes a
dimensionless parameter [50]. We, therefore, design the cross-section area 4, of these

members using the equation:
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AdP) fr, = XP (15)

Regarding the comer posts, each tendon transfers two shear forces to the competent
corner post, which are each equal to one-half of the overall axial force carried by the
tendon. The first force is applied at a height H,i,, from the base of the core of the post,
while the second one is applied at the base of prototype #2. Considering that the motion
at 45 degrees of the unit cell almost stresses one single tendon (see the animations
provided as Supplementary Materials), we assume that the above forces are each equal
to F/2. The corresponding bending moment at the base of the post is M, = FaH in/2.
We design the diameter d, and the cross-section area 4, of the corner posts according to

the following standard formulas for structural members loaded in bending [69]:

32M,(P)\*/? d> 16
i A > , APy =2 (16)

MOgqZ

dp(p) = <

Finally, regarding the corner rings, we assume that the outer diameter of these members
is equal to msd, where my is a magnification factor that we assign equal to 2.5. The
members are loaded in tension under the forces transmitted from the tendons to the

corner posts. To be on the safe side, we assign a force F., to each ring, and we design

the thickness ¢ and the volume V. of these members via the equations:
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FTd(P)

ty(p) = Seady (1) (17)

nd2(P)

18
vr(p) = (m% - 1)tr(p) (1%)
4

The extrapolation laws of the costs of tendons, corner posts, and corner rings,

respectively, are:

A

_ g (A (19)

an=es(5)

&) = ¢+ (1 -7 (-5)], 0
(P = (07 (1), D

where ¢ indicates a percentage of fixed costs due to the fine threading and machining of

the corner posts.
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6.3 Cost comparison

Let us now compare the costs of the scalable SSI systems, obtained through the cost
analysis procedure outlined above, with those of commercial seismic isolators currently
available on the market. The analyzed commercial devices are FP systems (single- and
double-dish devices), and rubber bearings (RB), with the latter comprising high-
damping rubber bearings (HDRB) and lead rubber bearings (LRB). These systems show
displacement capacity in the range 100-300 mm and load-carrying capacity in the range
1000-1500 kN. The costs of commercial devices have been obtained by using the
dimensions and mechanical properties provided in the catalogs of two internationally

renowned manufacturing companies: FIP Industriale srl, and Freyssinet Italia.

Their price was roughly estimated by averaging the unit costs for seismic isolation
devices from those of the public works price lists of the Italian regions of Abruzzo,
Campania, and Sicily. Labor costs for the installation of the devices are not included in
the calculations. As for the SSIs, we have focused on systems with 100 mm < d < 300
mm and 250 kN < P < 1500 kN. The costs of these systems have been roughly estimated

using the cost-extrapolation procedure described in the previous sections, assuming: f;.,

= F.,/4:= 12 MPa; y = 0.025 (according to AASHTO, 2000 [52]); and § = 0.40.

The average costs of commercial RB and FP systems with d = 150 mm and P ranging

between 1000 kN and 1500 kN is priced at 1.24 k€ and 2.32 k€, respectively. Those of
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FP and RB devices with d = 250 and P € [1000,1500] kN are 3.04 k€ and 2.69 k€,
respectively. SSI1 systems with d = 150 mm, P € [1000,1500] exhibit an average cost
C = 1.49 k€, while analogous systems with d =250 mm, P € [1000,1500] kN) show an
average cost C = 1.56 k€. Finally, SSI2 systems with d = 150 mm, P € [1000,1500] kN
and d = 250 mm, P € [1000,1500] kN) respectively exhibit average costs C = 3.37 k€,

and C = 3.44 k€.

Cost savings can be obtained by employing low-cost metal 3D printers for the
manufacture of the metallic parts of the SSI systems. One observes that the costs of SSI1
and SSI2 devices exhibit a small cost increase with d. A similar trend is exhibited by the
FP systems, while the cost of rubber bearings instead shows a significantly high rate of
growth with d. The costs of SSI1 and SSI2 systems appreciably increase with P. Such a
feature is also exhibited by RB devices, while FP systems conversely feature a slight
cost increase with P. SSI1 and SSI2 systems become particularly cost-effective in the
case of medium- and small-scale isolation systems. The costs of a SSI1 systems with d
=150 mm, P = 500 kN and d = 250 mm, P = 500 kN amount to 0.64 k€ and 0.72 k€,
respectively. Those of SSI2 systems with d = 150 mm, P = 500 kN and d = 250 mm, P
=500 kN are instead respectively equal to 1.50 k€ and 1.56 k€. By further decreasing P
down to 250 kN and setting d = 150 mm, one finally obtains C = 0.36 k€ and C = 0.88

k€ for SSI1 and SSI2 systems, respectively.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

The work presented in this thesis let us conclude that the analyzed biomimetic isolators
help us to forge a novel path to seismic isolation. Such devices with an anthropomorphic
character are classified as highly tunable seismic isolators that can be manufactured with
customized properties using optimal geometries and sustainable materials easily
available around the world. Some key advantages enjoyed by these systems over their
current state-of-the-art counterparts are derived from the possibility to tune the
displacement capacity acting only on the internal architecture of the unit cell; the
uniaxial tension regime of the tendons, up to 40%-55% maximum axial strains, which
is suitable for a class of materials much larger than the elastomeric products employed

in rubber bearings [53]; and the possibility of creating periodic ‘metaisolators’.

In addition, the SSI does not require heavy industry and is easily repaired by replacing
the tendons after an extreme seismic event. It is worth noting that the level of preliminary

training of the tendons can be employed as a peculiar design variable of the SSI.
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We have observed that the reduced slope at the origin of the hysteretic loops of the
device indicates a prevalent contribution of the frictional component to the base shear.
By adjusting the amplitude of the pre-conditioning of the tendons one can suitably
design the extension of this region of reduced reaction force. With such design flexibility
the building movement can be facilitated at the onset of the earthquake excitation,
preventing the experience of significant levels of acceleration transferred to the

structure, while providing higher stiffness for larger displacements.

The design and testing of architectured seismic isolators that feature an independently
tunable antiseismic performance against horizontal and vertical ground motions will be
addressed in future work, employing, e.g., linkages that mimic the knee articulation of
the human leg in the vertical plane. Such a nonconventional performance is highly

desirable in the case of high-risk industrial installations and power plants [5].
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Appendix A: Mathematica® code for the analytic formulation of the kinematics of the SSI

Analytic form of the kinematics for arbitrary rest configuration

Notation

n[i] =nundef[i]=nbeta[i]=nundefbeta[i] denote the undeformed node coordinates

ndef[i] = ndefbeta[i] denote the deformed node coordinates

v denotes the lateral displacement of the SSI (denoted u in the main Article and the Methods section)

General data

In[1]:= Clear[adata, vdata]
adata = {};
vdata = {vact -» v, anglealpha » (alphav)};
cdata = {C[1] - 0, C[2] - 0};
kloadata = {Cos[anglealpha], Sin[anglealpha], @} /. vdata

Oout[5]= {Cos[alphav], Sin[alphav], 0}

Undeformed node coordinates

In[6]:= nnodes = 9;

In[7:= n[1] = {a2+alxSin[beta], al«Cos[beta], @} /. adata;
n[2] = {a2, @, 0} /. adata;
n[3] = {al*Cos[beta], -a2-al*Sin[beta], @} /. adata;

n[4] = {0, a2, @} /. adata;
n[5] = {0, 0, 0} /. adata;
n[6] = {0, -a2, 0} /. adata;

n[7] = {-alxCos[beta], a2 +al*Sin[beta], @} /. adata;
n[8] = {-a2, @, @} /. adata;
n[9] = {-a2-al xSin[beta], -alCos[beta], 0} /. adata;

In[16]:= Do[nundef[i] =n[i], {i, 1, nnodes}];

In[17]:= a89 = al /. adata;
a58 = a2 /. adata;
a63 = al /. adata;
a56 = a2 /. adata;
al2 = al /. adata;
a52 = a2 /. adata;
a54 = a2 /. adata;
a74 = al /. adata;

In[25]:= Do[nbeta[i] = n[i]; nundefbeta[i] = nbeta[i], {i, 1, nnodes}];
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| Appendix_A_Narinder_Thesis.nb

Solve the analytic form of the unit-cell kinematics (see Methods) for a1, a2 angles (a1=alpha1, a2=alpha2 with the notation of Fig. S2 A)

In[26]:=

ut[34]=

n8xdefa = (n[9][[1]] +a89 *Sin[angleal]) /. vdata;

n8xdefb = ((n[5][[1]] +vact «Cos[anglealpha]) - a58 x Cos [anglea2]) /. vdata;
n8ydefa = (n[9][[2]] +a89 = Cos[angleal]) /. vdata;

n8ydefb = ((n[5][[2]] +vact «Sin[anglealpha]) - a58 x Sin[anglea2]) /. vdata;
eq8x = n8xdefa == n8xdefb;

eq8y = n8ydefa == n8ydefb;

angleasol = Solve[{eq8x, eq8y}, {angleal, anglea2}] /. cdata // Simplify;
isol = 1;

angleasol[ [isol]]

n8xdefa /. angleasol;

n8xdefb /. angleasol;

n8ydefa /. angleasol;

n8ydefb /. angleasol;

n[8j;

{angleal - Ar‘cTan[ (2 al® a2 v Cos [alphav - beta] +2 a1 Cos [beta] +2 a1? v? Cos [beta] -

a1? v? Cos [2 alphav + beta] +3 a1’ v Sin[alphav] +alv> Sin[alphav] +al a2 v?Sin[2 alphav] +a1® a2 Sin[2 beta] -

N (al2 (a2+vCos[alphav] +alSin[beta])? (2 a1?a2?2-2a1?v?-2a22vi-v*-4a2v (al2 +v2) Cos[alphav] -2 a2? v? Cos [2 alphav] +
2a1% a2? Cos[2beta] +2al%v? Cos[2 (alphav +beta)] +4al1% a2 v Cos[alphav+2beta] +4ala2®vSin[alphav-beta] -
8ala2v’Sin[beta] -4 ala2’vSin[alphav+beta] -4 alv’Sin[alphav +beta] -4 ala2 v’ Sin[2alphav+beta])) +

a1’ vSin[alphav + 2 beta]) / (a1 (a1* +a2® +v? + 2 a2 v Cos [alphav] + 2 al a2 Sin[beta] +2alvSin[alphav +beta])),

(2a1°+8a1’ a2’ +5a1’ v> +6ala2’ v’ +alv* +ala2v (18a1* +4a2% + 7v?) Cos[alphav] +alv? (4a1%+4a2® +v?) Cos[2 alphav] +
ala2 v’ Cos[3alphav] -3 a1’ a2vCos[alphav-2beta] -2 al® Cos[2beta] - 4 al1® a2? Cos [2 beta] -

3a1%v2 Cos[2beta] -2a13v? Cos[2 (alphav +beta)] -7 a1® a2 v Cos[alphav +2beta] - 5al1* v Sin[alphav - beta] -

8a12a2? vSin[alphav-beta] -3a1%v? Sin[alphav-beta] - 3a1% a2 v> Sin[2 alphav - beta] +

11 a1* a2 Sin[beta] +4 a1? a2® Sin[beta] +14 a1 a2 v? Sin[beta] - a1* a2 Sin[3 beta] + 6 al* v Sin[alphav + beta] +

12 a1% a2? v Sin[alphav +beta] +4 a1? v? Sin[alphav + beta] + 7 a1? a2 v’ Sin[2 alphav + beta] + 2 a1 Cos [beta]

+/ (a1 (a2+v Cos[alphav] +alSin[beta])® (2a1® a2’ -2a1’ v’ -2a2° v’ -v*-4a2v (a1’ +Vv?) Cos[alphav] - 2 a2® v* Cos [2 alphav] +
2a12a22 Cos[2beta] +2al1%v? Cos[2 (alphav+beta)] +4al%a2v Cos[alphav+2beta] +4 ala2?vSin[alphav-beta] -
8ala2v’Sin[beta] -4ala2”vSin[alphav+beta] -4 a1V’ Sin[alphav+beta] -4 ala2v?Sin[2alphav+beta])) +

2vSin[alphav] +/ (-a1® (a2+v Cos[alphav] +alSin[beta])? (-2a1*a2*+2a1* v’ +2a2* v’ +v* +4a2v (a1> +Vv?) Cos[alphav] +

2a22v? Cos[2alphav] -2 a1?a2%Cos[2beta] -2 a1 v’ Cos[2 (alphav+beta)] -4 a1?a2v Cos[alphav+2beta] -
4a1a2%vsSin[alphav-beta] +8ala2v?Sin[beta] +4ala2?vsSin[alphav+beta] +4alv?Sin[alphav+beta] +
4a1a2v’Ssin[2alphav+beta])) +al® v’ Sin[3 alphav + beta] -a1* v Sin[alphav + 3 beta] ) /
(2a1% (a2 +v Cos[alphav] +alSin[beta]) (al®+a2®+v?+2a2vCos[alphav] +2ala2Sin[beta] +2alvSin[alphav+betal))],
anglea2 - ArcTan| (6 a1’ a2* +4ala2* +3a1’ v>+8ala2’ v’ +alv*+ala2v (16 a1”+12a2? + 7v?) Cos[alphav] +

alv® (2a1*+6a2”+v?) Cos[2alphav] +ala2v> Cos[3 alphav] -3 a1® a2 v Cos [alphav - 2 beta] -

6a1® a2? Cos[2 beta] -3 a1®v? Cos[2 beta] -2 a1® v? Cos[2 (alphav +beta) ] -

7 a1® a2 v Cos [alphav + 2 beta] - al® v Sin[alphav - beta] - 12 a1? a2® v Sin[alphav - beta] -

3a1%v3 Sin[alphav - beta] - 3a12 a2 v2 Sin[2 alphav - beta] + 3 a1* a2 Sin[beta] +

12a1% a2’ sin[beta] + 14 a1? a2 v? Sin[beta] - a1* a2 Sin[3 beta] +2 a1* v Sin[alphav + beta] +

16 a1® a2% v Sin[alphav + beta] + 4 a1? v? Sin[alphav + beta] + 7 a1? a2 v? Sin[2 alphav + beta] - 2 al Cos [beta]

N (al2 (a2+v Cos[alphav] +alSin[beta])? (2 a1?a2?2-2a1?v?-2a2’v?-v*-4a2v (alz +v2) Cos [alphav] -2 a2? v Cos [2 alphav] +
2a1? a22 Cos[2beta] +2al1%v? Cos[2 (alphav +beta)] +4al1% a2 v Cos[alphav+2beta] +4 ala2®vSin[alphav-beta] -
8ala2v’Sin[beta] -4 ala2’vSin[alphav+beta] -4alv’Sin[alphav +beta] -4 ala2 v’ Sin[2alphav +beta])) -

2vSin(alphav] +/ (-a1® (a2+v Cos[alphav] +alSin[beta])? (-2a1%a2*+2a1? v’ +2a2> v’ +v* +4a2v (a1® +v?) Cos [alphav] +

2a2?v? Cos[2alphav] -2 a1? a2 Cos[2beta] -2 al?v? Cos[2 (alphav +beta)] -4 al1? a2 v Cos[alphav +2beta] -
4a1a2%vSin[alphav-beta] +8ala2v?Sin[beta] +4ala2?vSin[alphav+beta] +4alv?Sin[alphav+beta] +
4ala2v®Sin[2alphav+beta])) +a1® v’ Sin[3 alphav + beta] -al1 v Sin[alphav + 3 beta] ) /
(2ala2 (a2+vCos[alphav] +alSin[beta]) (alz +a22+v?+2a2vCos[alphav] +2ala2Sin[beta] +2alvSin[alphav +beta] ))s
(2a1% a2 v Cos [alphav - beta] +2 a1* (a2” + v?) Cos [beta] - a1® v Cos [2 alphav + beta] + a1’ v Sin[alphav] +

2a1a2?vsin[alphav] +al v’ Sin[alphav] +ala2v?Sin[2alphav] +a1®a2Sin[2beta] +

+/ (a1 (a2+v Cos[alphav] +alSin[beta])® (2a1” a2’ -2a1° v’ -2a2° v’ -v*-4a2v (a1’ +Vv?) Cos[alphav] - 2 a2® v* Cos [2 alphav] +
2a12 a2 Cos[2beta] +2al1%v? Cos[2 (alphav+beta)] +4al?a2v Cos[alphav+2beta] +4 ala2?vSin[alphav-beta] -
8ala2v’Sin[beta] -4 ala2”vSin[alphav+beta] -4 a1V’ Sin[alphav+beta] -4 ala2v?Sin[2alphav+beta])) +

a1’ vSin[alphav+2beta]) / (ala2 (a1’ +a2®+v®+2a2v Cos[alphav] +2ala2Sin[beta] +2alvSin[alphav+beta]))]}
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Appendix_A_Narinder_Thesis.nb |

Solve the analytic form of the unit-cell kinematics for b1, b2 angles (b1=beta1, b2=beta2 with the notation of Fig. S2, A)

In[40):= néxdefa = (n[3][[1]] - a63 « Cos [anglebl]) /. vdata;
néxdefb = ((n[5][[1]] +vact x Cos[anglealpha]) -a56 xSin[angleb2]) /. vdata;
néydefa = (n[3][[2]] +a63 *Sin[anglebl]) /. vdata;
néydefb = ((n[5][[2]] +vact «Sin[anglealpha]) - a56 x Cos [angleb2]) /. vdata;
eq6x = néxdefa == néxdefb;
eq6y = néydefa == néydefb;
anglebsol = Solve[{eq6x, eq6y}, {anglebl, angleb2}] /. cdata // Simplify;
isol = 1;
anglebsol[ [isol]]
néxdefa /. anglebsol;
néxdefb /. anglebsol;
néydefa /. anglebsol;
néydefb /. anglebsol;
n[eéj;

Jut[48]= {angleble
ArcTan[-((alv (3a1%+v?) Cos[alphav] -2a1’ (a1*+v?) Cos[beta] -a1® v’ Cos[2 alphav + beta] +a1’ v Cos [alphav + 2 beta] +al a2
v?>sin[2alphav] -2 a1’ a2 v Sin[alphav - beta] - a1’ a2 Sin[2 beta] ++/ (-al® (a2+vSin[alphav] +alSin[beta])?
(-2a1?a2%+2a1 v? + 2a2% v? + v* - 2 2% v Cos [2 alphav] +4 al a2’ v Cos [alphav - beta] - 2 a1” a2® Cos [2 beta] -
4 a1a2%v Cos[alphav +beta] -4 alv? Cos[alphav +beta] +2a1? v2 Cos[2 (alphav+beta)] +4a1?a2vSin[alphav] +
4a2v’sin[alphav] +8ala2 v’ Sin[beta] -4 ala2v®Sin[2alphav+beta] -4 al” a2 v Sin[alphav+2beta]))) /
(a1® (a1* +a2> +v> -2 alv Cos[alphav + beta] +2 a2 v Sin[alphav] +2ala2Sin[beta]))),
(2a1°+8a1* a2’ +5a1’ v’ +6al a2’ v’ +alv* -a1v? (4a1’+4a2% +v?) Cos[2alphav] +al’v (5a1®+8a2%+3v?) Cos [alphav - beta] -
2a1° Cos[2 beta] -4 a1®a2% Cos[2beta] -3 a1 v? Cos[2beta] -6 al* v Cos[alphav + beta] -
12 a1? a2% v Cos [alphav + beta] - 4 a1? v® Cos [alphav + beta] + 2 a1® v Cos [2 (alphav+beta)] +
a1? v? Cos [3 alphav + beta] +al* v Cos [alphav + 3 beta] + 18 a1®> a2 v Sin[alphav] + 4 al a2® v Sin[alphav] +
7ala2v3Sinfalphav] -ala2v?Sin[3alphav] -3a1®a2vSin[alphav-2beta] +3a1?a2v?Sin[2alphav-beta] +
11a1* a2 Sin[beta] +4 a1? a23 Sin[beta] +14 a1 a2 v2 Sin[beta] - a1* a2 Sin[3 beta] - 7 a1? a2 v2 Sin[2 alphav + beta] -
7a1® a2 v Sin[alphav +2 beta] - 2 v Cos [alphav] N (—al2 (a2+vSin[alphav] +alSin[beta])?

(-2a1?a2%+2a1? v? + 2a2% v? + v* - 2 a2% v? Cos [2 alphav] +4 al a2” v Cos [alphav - beta] - 2 a1* a2” Cos [2 beta] -

4 a1a2%vCos[alphav+beta] -4 alv? Cos[alphav+beta] +2a1? v Cos[2 (alphav+beta)] +4al1%a2vSin[alphav] +
42a2v3sin [alphav] +8 al a2 v2Sin [beta] -4 ala2 v2Sin [2 alphav + beta] ~4a1?a2vsin [alphav + 2 beta] ) ) +

2alCos [beta] +/ (a1® (a2+vSin[alphav] +alSin[beta])? (2a1® a2’ -2a1® v’ -2a2* v’ -v* + 222 v’ Cos [2 alphav] -
4 a1a2%vCos[alphav-beta] +2a1? a2? Cos[2 beta] +4 al a2 v Cos [alphav +beta] +
4 a1v3 Cos[alphav + beta] -2 a1 v2 Cos[2 (alphav +beta)] -4 a1? a2 vSin[alphav] -4 a2 v? Sin[alphav] -
8ala2v?Sin[beta] +4ala2v’Sin[2alphav +beta] +4al* a2 v Sin[alphav+2beta]))) /

(2a1% (a2 +vSin[alphav] +alSin[beta]) (a1*+a2®+v?-2alvCos[alphav+beta] +2a2vSin[alphav] +2ala2Sin[betal))],
angleb2 - Ar‘cTan[ (6 a1®a2?2+4a1a2*+3a13v?+8a1a2?v?+alvi-alv? (2 a1? +6a2? +vz) Cos[2 alphav] +

a1’ v (a1*+12a2> +3v?) Cos[alphav - beta] - 6 a1 a2® Cos [2 beta] -3 a1’ v’ Cos [2 beta] -

2a1*v Cos [alphav +beta] - 16 a12 a2? v Cos [alphav + beta] -4 a1? v Cos [alphav +beta] +

2a1®>v? Cos[2 (alphav + beta) ] +a1? v3 Cos[3 alphav + beta] +al* v Cos [alphav + 3 beta] +

10 a1® a2 vSin[alphav] +12al a2 vSin[alphav] + 7 ala2v> Sin[alphav] -ala2v?Sin[3alphav] -

3a1®a2vSin [alphav-2beta] +3 a1? a2 v? sin [2 alphav -beta] +3 a1*a2sin [beta] +

12 a12 a2 Sin[beta] + 14 a1? a2 v Sin[beta] - a1l® a2 Sin[3 beta] - 7 a1? a2 v’ Sin[2 alphav + beta] -

7a1% a2 v Sin[alphav + 2 beta] + 2 v Cos [alphav] +/ (-al® (a2+vSin[alphav] +alSin[beta])?

(—2 a1?a2?+2a1?v?+2a2? v?+v*-2a2% v? Cos[2 alphav] +4 al a2® v Cos [alphav - beta] - 2 a1? a2? Cos [2 beta] -
4.ala2?vCos[alphav+beta] -4alv? Cos[alphav+beta] +2a1?v? Cos[2 (alphav+beta)] +4al?a2vSin[alphav] +
4a2v?sin[alphav] +8ala2v® Sin[beta] -4 ala2v?Sin[2alphav +beta] -4 al1” a2 v Sin[alphav + 2 beta])) -

2 alCos[beta] +/ (al2 (a2+vSin[alphav] +alSin[beta])? (2 a1?a2?-2a12v?-2a2?v*-v*+2a2% v? Cos[2 alphav] -
4ala2’vCos[alphav-beta] +2al? a2% Cos[2beta] +4 ala2?v Cos[alphav +beta] +
4 a1v? Cos [alphav + beta] -2 a1% v2 Cos[2 (alphav +beta)] -4 al? a2 v Sin[alphav] -4 a2 v?Sin[alphav] -
8ala2v’Sin[beta] +4ala2v®Sin[2alphav+beta] +4a1” a2vSin[alphav+2beta]))) /
(2ala2 (a2+vsSin[alphav] +alSin[beta]) (alZ +a22+v?-2alvCos[alphav+beta] +2a2vSin[alphav] +2ala2Sin[beta] ))s
-((-a1lv (a1*+2a2%+v?) Cos[alphav] +2a1® (a2’ +v?) Cos[beta] +al? v’ Cos[2 alphav + beta] - a1’ v Cos [alphav + 2 beta] -
ala2v?Sin[2alphav] +2al® a2 v Sin[alphav-beta] +al1® a2 Sin[2beta] + N (—al2 (a2+vSin[alphav] +alSin[beta])?
(—2 a1?a22+2a1?v?+2a22v?+v*-2a22v?Cos [2 alphav] +4 a1l a2% v Cos [alphav -beta] -2 a1 a2? Cos [2 beta] -
4ala2?vCos[alphav+beta] -4 alv? Cos[alphav+beta] +2a1?v? Cos[2 (alphav+beta)] +4a1? a2 v Sin[alphav] +
4a2v?sin[alphav] +8ala2v?®Sin[beta] -4 ala2v’Sin[2alphav +beta] -4 al1* a2 v Sin[alphav+2betal))) /
(a1a2 (a1®+a2”+v?-2alv Cos[alphav + beta] +2a2vSin[alphav] +2ala2Sin[beta])))]}
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Solve the analytic form of the unit-cell kinematics for c1, c2 angles (c1=gamma1, c2=gammaz2 with the notation of Fig. S2, A)

In[54]:=

ut[62]=

n2xdefa = (n[1][[1]] +al2*Sin[anglecl]) /. vdata;

n2xdefb = ((n[5][[1]] +vact «Cos[anglealpha]) +a52 xCos[anglec2]) /. vdata;
n2ydefa = (n[1][[2]] -al2xCos[anglecl]) /. vdata;

n2ydefb = ((n[5][[2]] +vact «Sin[anglealpha]) -a52 *Sin[anglec2]) /. vdata;
eq2x = n2xdefa == n2xdefb;

eq2y = n2ydefa == n2ydefb;

anglecsol = Solve[{eq2x, eq2y}, {anglecl, anglec2}] /. cdata // Simplify;
isol = 1;

anglecsol[[isol]]

n2xdefa /. anglecsol;

n2xdefb /. anglecsol;

n2ydefa /. anglecsol;

n2ydefb /. anglecsol;

n[2];

{anglecl > ArcTan |
- ((2a1* a2 v Cos [alphav - beta] -2 a1’ (a1 +v?) Cos[beta] +a1® v* Cos[2 alphav + beta] +3 a1’ v Sin[alphav] +al Vv’ Sin[alphav] -
ala2v?Sin[2alphav] -a1® a2 Sin[2beta] ++/ (a1 (a2-v Cos[alphav] +alSin[beta])?
(2a1*a2®-2a1° v*-222° v’ -v* +4 a2 v (a1’ +V?) Cos[alphav] - 2 a2® v* Cos [2 alphav] + 2 a1® a2® Cos [2 beta] +
2a12v? Cos[2 (alphav +beta) ] -4 a1 a2 v Cos [alphav + 2 beta] -4 al a2? v Sin[alphav-beta] -8 al a2 v?Sin[beta] +
4ala2’vSin[alphav+beta] +4al v’ Sin[alphav+beta] -4 ala2v® Sin[2alphav +beta])) +al1’ v Sin[alphav + 2 beta] ) /

(a1® (a1* +a2> +v> -2 a2 v Cos[alphav] +2al a2 Sin[beta] -2alv Sin[alphav+beta]))),

-((2a1°+8a1’a2* +5a1’ v’ +6ala2’ v’ +alv*® -ala2v (18a1’+4a2® + 7 v?) Cos[alphav] +al v’ (4 a1’ +4a2% +v?) Cos[2alphav] -
ala2 v’ Cos[3alphav] +3 a1’ a2vCos[alphav-2beta] -2al1® Cos[2beta] -4 a1®a2% Cos[2beta] -3 a1’ v? Cos[2beta] -
2a1% v? Cos[2 (alphav +beta) ] +7 a1’ a2 v Cos[alphav + 2 beta] +5al* v Sin[alphav - beta] +8a1? a2? v Sin[alphav - beta] +
3a1%v? sin[alphav-beta] - 3a1? a2 v? Sin[2 alphav - beta] + 11 al® a2 Sin[beta] +4 a1? a2®> Sin[beta] +
14 a1? a2 v? Sin[beta] -al* a2 Sin[3 beta] - 6 al® v Sin[alphav + beta] - 12 a1 a2? v Sin[alphav + beta] -
4a1% v? sin[alphav + beta] + 7 a1®> a2 v* Sin[2 alphav + beta] + 2 al Cos [beta] -/ (a1* (a2-v Cos [alphav] +alSin[beta])?

(2a1%a@2*-2a1®v*-2a2° v* - v* +4a2v (a1’ + v?) Cos[alphav] -2 a2® v? Cos[2 alphav] + 2 a1® a2® Cos [2 beta] +
2a12v? Cos[2 (alphav +beta) ] -4 a12 a2 v Cos [alphav + 2 beta] -4 al a2 v Sin[alphav - beta] -
8ala2v’Sin[beta] +4ala2”vSin[alphav+beta] +4alv’ Sin[alphav +beta] -4 ala2v?Sin[2alphav +beta])) -
2vSsin[alphav] +/ (a1* (a2-v Cos[alphav] +alSin[beta])? (2a1*a2*-2a1*v*-2a2*v*-v* +4a2v (a1’ +v?) Cos[alphav] -
2a22v? Cos[2alphav] +2a1? a2%Cos[2beta] +2a1? v? Cos[2 (alphav +beta)] -4 a1? a2 v Cos[alphav +2 beta] -
4a1a2%vSin [alphav -beta] -8 al a2 v2sin [beta] +4 a1 a2?vSin [alphav +beta] +4 al v3 sin [alphav +beta] -
4ala2v’Sin[2alphav+beta])) -a1® v’ Sin[3 alphav + beta] +a1* v Sin[alphav + 3 beta]) /
(2a1? (a2-v Cos[alphav] +alSin[beta]) (al®+a2®+v?-2a2v Cos[alphav] +2ala2Sin[beta] -2alvSin[alphav+beta])))],
anglec2 - ArcTan| (6a1® a2* +4a1a2* +3a1’ v> +8ala2’ v’ +alv®-ala2v (16 a1” +12a2” + 7 v?) Cos[alphav] +

alv® (2a1*+6a2*+v?) Cos[2 alphav] -ala2v® Cos[3 alphav] +

3a1% a2 v Cos[alphav-2beta] - 6a1® a2? Cos[2 beta] -

3a1®v2 Cos[2 beta] -2a1%v? Cos[2 (alphav +beta) ] +

7 a1®> a2 v Cos[alphav +2beta] +al* vSin[alphav - beta] +

12 a1% a2? v Sin[alphav - beta] +3 a1? v? Sin[alphav - beta] -

3a1%?a2v?Sin[2alphav-beta] +3a1* a2 Sin[beta] +

12 a1? a2® Sin[beta] + 14 a1? a2 v2 Sin[beta] - a1* a2 Sin[3 beta] -

2a1*vSin[alphav +beta] - 16 a1? a2? v Sin[alphav + beta] -

4.a1? v? Sin[alphav +beta] +7 al? a2 v’ Sin[2 alphav + beta] - 2 a1 Cos [beta]

+/ (a1® (a2-v Cos [alphav] +alSin[beta])? (2a1®a2”-2a1’ v’ -2a2> v’ -v*+4a2v (a1’ +v?) Cos [alphav] - 2 a2 v’ Cos [2 alphav] +
2a1%?a2? Cos[2 beta] +2al%v? Cos[2 (alphav+beta)] -4 al? a2 v Cos[alphav+2beta] -4 ala2?vSin[alphav-beta] -8 ala2
v?Sin[beta] +4ala2?vSin[alphav+beta] +4 alv>Sin[alphav+beta] -4 ala2v?Sin[2alphav+beta] ) ) +2vSin[alphav]
N (al2 (a2-v Cos[alphav] +alSin[beta]) 2 (2 a1?a2?-2a12v?-2a2°v*-v*+4a2v (al2 +v2) Cos[alphav] -2 a22 v? Cos [2 alphav] +
2a1% a2? Cos[2 beta] +2al% v? Cos[2 (alphav+beta)] -4 al? a2 v Cos [alphav +2 beta] - 4 al a2% v Sin[alphav - beta] -
8ala2v?Sin[beta] +4ala2’vsSin[alphav+beta] +4alv?Sin[alphav+beta] -4 ala2v?Sin[2 alphav +beta] ) ) -
a1? v3 sin[3 alphav +beta] +al1% v Sin[alphav + 3 beta] ) / (2 ala2 (a2-vCos[alphav] +alSin[beta])
(a1*+a2® +v?-2a2 v Cos [alphav] +2al a2 Sin[beta] -2 alvSin[alphav +beta])),
(2a1® a2 v Cos [alphav - beta] -2 a1* (a2® +v?) Cos [beta] +al1* v? Cos [2 alphav + beta] +a1® v Sin[alphav] +

2a1a2?vsin[alphav] +alv? Sin[alphav] -ala2v?Sin[2alphav] -a1®a2Sin[2beta] -

N (al2 (a2-vCos[alphav] +alSin[beta])? (2 a1?a2’?-2a12v?-2a22vi-v*+4a2v (al2 +v2) Cos[alphav] -2 a2 v? Cos[2 alphav] +
2a1%2a2? Cos[2beta] +2al%v? Cos[2 (alphav+beta)] -4 al? a2 v Cos[alphav+2beta] - 4 al a2? v Sin[alphav - beta] -
8ala2v’sin[beta] +4ala2®vsSin[alphav+beta] +4alv?®Sin[alphav+beta] -4 ala2v?Sin[2 alphav +beta] ) ) +

a1® v Sin[alphav + 2 beta] ) / (al a2 (al2 +a22+v?-2a2vCos[alphav] +2ala2Sin[beta] -2 alvSin[alphav +beta] ) ) } }
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Solve the analytic form of the unit-cell kinematics for d1, d2 angles (d1=delta1, d2=delta2 with the notation of Fig. S2, A)

In[68]:= ndxdefa = (n[7][[1]] +a74 «Cos [angledl]) /. vdata;
ndxdefb = ((n[5][[1]] +vact = Cos[anglealpha]) -a54 xSin[angled2]) /. vdata;
ndydefa = (n[7][[2]] +a74 *Sin[angledl]) /. vdata;
ndydefb = ((n[5][[2]] +vact «Sin[anglealpha]) +a54 % Cos[angled2]) /. vdata;
eq4x = ndxdefa == ndxdefb;
eqdy = ndydefa == ndydefb;
angledsol = Solve[ {eq4x, eqdy}, {angledl, angled2}] /. cdata // Simplify;
isol = 1;
angledsol[ [isol]]
n4xdefa /. angledsol;
ndxdefb /. angledsol;
ndydefa /. angledsol;
ndydefb /. angledsol;
n[4];

Hut[76]= {angledle
ArcTan| (alv (3a1%+v?) Cos[alphav] +2 a1’ (a1’ +v?) Cos[beta] +a1® v* Cos[2 alphav + beta] +a1® v Cos [alphav + 2 beta] - al a2 v?
Sin[2alphav] -2 a1 a2 v Sin[alphav - beta] +al1® a2 Sin[2 beta] -+/ (-a1® (a2-vSin[alphav] +alSin[beta])? (-2a1”a2® +2a1®
vZi2a2’v2+v*-2a22v? Cos[2alphav] -4 ala2?vCos[alphav-beta] - 2a1? a2® Cos[2 beta] +4 ala2®v Cos [alphav + beta] +
4 a1V Cos[alphav + beta] +2al% v? Cos[2 (alphav +beta)] -4 al? a2 vSin[alphav] -4 a2 V> Sin[alphav] +
8ala2v?sin[beta] -4ala2v?sSin[2alphav+beta] +4al®a2vSin[alphav+2 beta] ) ) ) /
(a1* (a1* +a2® +v?+ 2 alv Cos [alphav + beta] -2 a2 v Sin[alphav] +2ala2Sin[beta])),
-((2a1°+8a1*a2* +5a1> v’ +6a1a2’ v* +alv* -alv? (4a1” +4a2” +v?) Cos[2alphav] -a1® v (5 a1’ + 8 a2’ +3v?) Cos[alphav - beta] -
2 a1° Cos [2beta] -4 a1® a2’ Cos [2beta] -3 a1®v2 Cos [2beta] +6 al* v Cos [alphav +beta] +12 a1? a2% v Cos [alphav +beta] +
4 a1% v? Cos [alphav + beta] +2 a1® v2 Cos[2 (alphav +beta) ] - a1? v? Cos[3 alphav + beta] - a1* v Cos [alphav + 3 beta] -
18 a1® a2 v Sin[alphav] -4 al a2’ vSin[alphav] -7 ala2v?Sin[alphav] +ala2v>Sin[3 alphav] +3a1® a2 v Sin[alphav-2beta] +
3a1%?a2v?Sin[2alphav-beta] +11al1* a2 Sin[beta] +4 a1? a2> sin[beta] + 14 a1? a2 v?> Sin[beta] - a1l* a2 Sin[3 beta] -
7 a1? a2 v2 Sin[2 alphav +beta] +7 a1®> a2 v Sin[alphav + 2 beta] + 2 v Cos [alphav] A (al2 (a2-vsSin[alphav] +alSin[beta])?
2a12a22-2a12v?-2a22v?-v*+2a2%v? Cos[2alphav] +4 ala2? v Cos [alphav - beta] +2 al? a2 Cos [2 beta] -
4.ala2?vCos[alphav+beta] -4 alv> Cos[alphav+beta] -2 al%v? Cos[2 (alphav +beta) ] +4al?a2vSin[alphav] +
4a2v3sin[alphav] -8ala2v?Sin[beta] +4ala2v?Sin[2alphav+beta] -4 al? a2 v Sin[alphav + 2 beta] ) ) +
2alCos [beta] +/ (a1® (a2-vSin[alphav] +alSin[beta])? (2a1® a2’ -2a1> v’ -2a2* v’ -v*+2a2% v’ Cos [2 alphav] +
4 ala2?vCos[alphav-beta] +2a1? a2% Cos[2 beta] -4 ala2®v Cos [alphav + beta] -
4 a1 v3 Cos[alphav + beta] -2 al1% v? Cos[2 (alphav +beta)] +4al? a2 v Sin[alphav] +4a2v>Sin[alphav] -
8ala2v’Sin[beta] +4ala2v®Sin[2alphav+beta] -4a1” a2v Sin[alphav+2beta]))) /
(2a1% (a2-vsSin[alphav] +alSin[beta]) (a1*+a2®+v?+2alvCos[alphav+beta] -2a2vSin[alphav] +2ala2Sin[beta])))],
angled2 - ArcTan[ (6a1% a2® +4a1a2* +3a1’ v’ +8ala2’ v’ +alv* -alv’ (2a1’ +6a2” + v?) Cos[2 alphav] -
a1’ v (a1’ +12a2° +3v?) Cos [alphav - beta] - 6 a1’ a2® Cos [2 beta] -
3a1% v? Cos[2 beta] +2 al® v Cos[alphav + beta] + 16 al? a2? v Cos [alphav + beta] +
4a12 v3 Cos [alphav + beta] +2 a1®> v2 Cos [2 (alphav +beta) ] -
a1 v3 Cos [3 alphav + beta] - a1* v Cos [alphav + 3 beta] - 18 a1® a2 v Sin[alphav] -
12 a1 a2® vSin[alphav] -7 ala2 v? Sin[alphav] +ala2 v Sin[3 alphav] +
3a1%a2vSin[alphav-2beta] +3a1?a2v?Sin[2 alphav - beta] +3al* a2 Sin[beta] +
12a1% a2’ sin[beta] + 14 a1? a2 v? Sin[beta] - a1* a2 Sin[3 beta] -
7a1? a2 v2 Sin[2 alphav +beta] +7 al®> a2 v Sin[alphav + 2 beta] - 2 v Cos [alphav]
N (al2 (a2-vSin[alphav] +alSin[beta])? (2 a1?a2?-2a1?v?-2a2?v?-v*+2a2?v? Cos[2 alphav] +4 al a2? v Cos [alphav - beta] +
2a1? a2? Cos[2beta] -4 ala2? v Cos[alphav+beta] -4 alv? Cos[alphav+beta] -2a1?v? Cos[2 (alphav+beta)] +4a1%a2v
Sin[alphav] +4 a2 v’ Sin[alphav] -8 ala2v®Sin[beta] +4 ala2 v’ Sin[2alphav +beta] -4 a1* a2 v Sin[alphav+2beta])) -
2 alCos[beta] +/ (alz (a2-vsSin[alphav] +alSin[beta])? (2 a1?a2?-2a1?v?-2a2?v?-v*+2a2% v? Cos[2 alphav] +
4ala2’vCos[alphav-beta] +2al? a2% Cos[2 beta] -4 ala2? v Cos[alphav +beta] -
4 a1v? Cos [alphav + beta] -2 a1% v? Cos[2 (alphav +beta)] +4al?a2vSin[alphav] +4 a2 V> Sin[alphav] -
8ala2v’Sin[beta] +4ala2v®Sin[2alphav+beta] -4a1”a2vSin[alphav+2beta]))) /
(2a1a2 (a2-vsSin[alphav] +alSin[beta]) (alz +a22+v?+2alvCos[alphav+beta] -2a2vSin[alphav] +2ala2Sin[beta] ))s
(alv (a1®+2a2% +v?) Cos[alphav] +2 a1’ (a2® +v?) Cos[beta] +a1® v? Cos[2 alphav + beta] +
a1® v Cos [alphav + 2 beta] -al a2 v2Sin[2alphav] -2al1%? a2 v Sin[alphav - beta] +
a1’ a2Sin[2beta] ++/ (-a1® (a2-v Sin[alphav] +alSin[beta])>
(-2a1?a2® +2a1? v? + 2a2% v? + v* - 2 a2 v? Cos [2 alphav] -4 a1 a2’ v Cos [alphav - beta] - 2 a1* a2® Cos [2 beta] +
4a1a2%v Cos[alphav +beta] +4 alv? Cos[alphav +beta] +2a1? v2 Cos[2 (alphav+beta)] -4a1%a2vSin[alphav] -
4a2v’sin[alphav] +8ala2 v’ Sin[beta] -4 ala2v®Sin[2alphav +beta] +4a1” a2 v Sin[alphav+2beta]))) /
(a1a2 (a1®+a2’+v?+2alv Cos[alphav +beta] -2a2vSin[alphav] +2ala2Sin[beta]))]}
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Node coordinates in the deformed configuration

In[82]:=

Jut[83]=

In[88]:=

Do[ndef[i] = nundef[i], {i, 1, nnodes}];
ndef[5] = n[5] + {vact x Cos [anglealpha], vact *Sin[anglealpha], 0} /. vdata

ndef[8] = { (n8xdefa /. angleasol[[isol]]), (n8ydefa /. angleasol[[isol]]), @};
ndef[6] = { (n6xdefa /. anglebsol[[isol]]), (n6ydefa /. anglebsol[[isol]]), @};
ndef[2] = { (n2xdefa /. anglecsol[[isol]]), (n2ydefa /. anglecsol[[isol]]), @};
ndef[4] = { (nd4xdefa /. angledsol[[isol]]), (ndydefa /. angledsol[[isol]]), @};

{v Cos[alphav], vSin[alphav], 0}

Do[ndefbeta[i] = nundefbeta[i], {i, 1, nnodes}];
isol = 1;

ndefbeta[5] = ndef[5];

ndefbeta[8] = ndef[8];

ndefbeta[6] = ndef[6];

ndefbeta[2] = ndef[2];

ndefbeta[4] = ndef[4];

Analytic computation of the locking geometry for arbitrary rest configuration

In[95]:=

cdata = {C[1] » 0, C[2] » @};

First locking condition for the alignment of the limb members 5-8 and 8-9 (Fig. S2, A)

In[96]:=

In[98]:=

1[103]:=

data = {};
Clear[alpha]

eqla = vSin[alpha] + alCos[beta] == (al+a2) Sin[phi];
eq2a = v Cos[alpha] + a2 + alSin[beta] == (al+a2) Cos[phi];

eqldataa = eqla /. data;
eq2dataa = eq2a /. data;

solnewa = Solve[ {eqldataa, eq2dataa}, {v, phi}] // Simplify;

vsolla = (v /. solnewa[[1]]) /. {alpha » (alphadegPi/180)} // Simplify;
vsol2a = (v /. solnewa[[2]]) /. {alpha » (alphadegPi/180)} // Simplify;

Second locking condition for the alignment of the limb members 5-6 and 6-3 (Fig. S2, A)

2[105]:=

A[107]:=

[112]:=

data = {};
Clear[alpha]

eqlb = vSin[alpha] +a2 + alSin[beta] == alCos[phi] + a2 Cos[phi];
eq2b = v Cos[alpha] + a2Sin[phi] + alSin[phi] == al Cos[beta] ;

eqldatab = eqlb /. data;
eq2datab = eq2b /. data;

solnewb = Solve[ {eqldatab, eq2datab}, {v, phi}] // Simplify;

vsollb = (v /. solnewb[[1]]) /. {alpha -» (alphadeg«Pi/180)} // Simplify;
vsol2b = (v /. solnewb[[2]]) /. {alpha » (alphadeg*Pi/180)} // Simplify;

Third locking condition for the alignment of the limb members 5-2 and 2-1 (Fig. S2, A)

[114]:=

data = {};
Clear[alpha]
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1[116]:= eqlc = vSin[alpha-Pi] +alCos[beta] == alSin[phi] + a2Sin[phi];
eq2c = vCos[alpha-Pi] + a2 + alSin[beta] == alCos[phi] + a2 Cos[phi] ;

eqldatac = eqlc /. data;
eq2datac = eq2c /. data;

solnewc = Solve[ {eqldatac, eq2datac}, {v, phi}] // Simplify;

a[121]:= vsollc = (v /. solnewc[[1]]) /. {alpha » (alphadeg«Pi/180)} // Simplify;
vsol2c = (v /. solnewc[[2]]) /. {alpha » (alphadeg*Pi/180)} // Simplify;

Fourth locking condition for the alignment of the limb members 5-4 and 4-7 (Fig. S$2, A)

[123:= data = {};
Clear[alpha]

W125]= eqld = vSin[2%Pi-alpha] +a2 + alSin[beta] == alCos[phi] + a2Cos[phi];
eq2d = vCos[2 % Pi-alpha] + alCos[beta] == al1Sin[phi] + a2Sin[phi] ;

eqldatad = eqld /. data;
eq2datad = eq2d /. data;

solnewd = Solve[ {eqldatad, eq2datad}, {v, phi}] // Simplify;

1[130]:= vsolld = (v /. solnewd[[1]]) /. {alpha » (alphadeg«Pi/180)} // Simplify;
vsol2d = (v /. solnewd[[2]]) /. {alpha » (alphadeg*Pi/180)} // Simplify;

Find vmax vs alpha law for beta = 0 deg (vmax=u_{lock} with the notation of the main text)

Analytic expression of vbarlock (vbarlock={\bar u}_{lock} with the notation of the main text)

1[132]:= vbarlock = (vsolla /. {al- a, a2 » a, beta- 0, alphadeg > (a+180/Pi)}) /a // Simplify
vbarlockl = vbarlock /. {a -> 1}

1[132]= -Cos[a] -Sin[a] + (Sec[a] +/ (a* Cos[a]? (3+Sin[2a]))) /a®

1[133]= -Cos [a] - Sin[a] +Sec[a] +/ (Cos[a)? (3+Sin[2a]))

Plot of vbarlock for varying alpha

[134]:= dataplot = {a -» 100., al -» 100., a2 - 100., beta - (0)}

i[134]= {a-100., al » 100., a2 -» 100., beta > 0}
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[135:= vplotabcd = Min[vsolla /. dataplot, vsollb /. dataplot];
vgraphabcd = Plot[{vplotabcd}, {alphadeg, 0, 89.99}, PlotStyle » {Thick, Red},
AxesLabel » {"a (deg)", "v [mm]"}, (xPlotRange-{vplotmin,vplotmax}=x) PlotRange - All, PlotPoints - 100]
eps =1%x10" {-9};
vplot@abcd = vplotabed /. {alphadeg - @ +eps}
vplot45abcd = vplotabced /. {alphadeg - 45}
vplot90abcd = vplotabcd /. {alphadeg —» 90 - eps}
vplotbeta@deg = Plot [ {vplotabcd / {a /. dataplot}}, {alphadeg, 0, 90}, PlotStyle » {Thick, Red},
AxesLabel -» {"a (deg)", "v [mm]"}, PlotRange - All, PlotPoints - 100, Frame -» {{True, True}, {True, False}}];
v [mm]
I[136]=
L 1 L L L 1 L L a (deg)
F 20 40 60 80
Jt[138]= 73.2051
Jt[139]= 58.5786
Jt[140]= 73.2051
[142]:= v1 = vsolla /. dataplot;
Dvl = D[vl, alphadeg];
solDv1 = FindRoot [ {Dv1 == @}, {alphadeg, 45}]
vbarlockmin® = (v1 /. solDv1l) /a /. dataplot
it[144]= {alphadeg - 45.}
1[145]= ©.585786

Engineering axial strains of the tendons

2[146]:= Clear[a]
data={a->a, al- a, a2 > a, beta» 0, v (vbara), alphav- a};
vdes = vbarlockl

1[148]= -Cos[a] - Sin[a] +Sec[a] +/ (Cos[a]? (3+Sin[2a]))
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ibar = 5;

jbar =9

adef2act = (ndef[ibar] - ndef[jbar]). (ndef[ibar] - ndef[jbar]) /. data;
aundef2act = (nundef[ibar] - nundef[jbar]). (nundef[ibar] - nundef[jbar]) /. data;
epsact = (Sqrt[adef2act] - Sqrt[aundef2act]) / Sqrt[aundef2act] /. data;

eps59 = epsact

eps59 /. {a - aplot} // Simplify

k59 = (ndef[ibar] - ndef[jbar]) /Sqrt[adef2act] /. data

k59 /. {a - aplot} // Simplify

eps59lock = eps59 /. {vbar - vdes} // Simplify

(7\/2\/a2+\/((a+avbar‘Cos[a] + (a+avbarSinfal) ))/(x/Z\/a)

(-2+ (\/2\/ (aplot? (2+vbar?+ 2 vbar Cos [a] +2vbar Sin[a]))) / (+/aplot?))

2

1
2
{ (a+avbar Cos|

1)/ (v ((a+avbarCos[a])®+ (a+avbarSin[a])?)),
(a+avbarsin(a]) / (+/ ((a+avbarCos[a])?+ (a+avbarsin(a])?)), 6}
{ (aplot (1+vbar Cos[a])) / (+/ (aplot® (2+vbar’+2vbar Cos[a] +2vbarSin[a]))),

(aplot (1+vbarsin(a])) / (+/ (aplot? (2+vbar?+2vbar Cos[a] +2vbarSin(a]))), @}

“1++/2
ibar = 5;
jbar = 7;

adef2act = (ndef[ibar] - ndef[jbar]) . (ndef[ibar] - ndef[jbar]) /. data;
aundef2act = (nundef[ibar] - nundef[jbar]) . (nundef[ibar] - nundef[jbar]) /. data;
epsact = (Sqrt[adef2act] - Sqrt[aundef2act]) / Sqrt[aundef2act] /. data;

eps57 = epsact

eps57 /. {a - aplot} // Simplify

k57 = (ndef[ibar] - ndef[jbar]) /Sqrt[adef2act] /. data

k57 /. {a - aplot} // Simplify

eps57lock = eps57 /. {vbar - vdes} // Simplify

(f\/Z\/aZ+J((a+avbar~Cos[oz]) + (-a+avbarSin| ))/(\/Zx/a)

1

— (-2+ (v/2+/ (aplot? (2+vbar®+2 vbar Cos[a] -2 vbarSin[a]))) / (v/aplot?))
2

{(a+avbarCos[a]) /(+/ ((a+avbarCos[a])+ (-a+avbarSin[a])?)),
(-a+avbarsSin[a]) /(+/ ((a+avbarCos[a])®+ (-a+avbarsSin[a])?)), 0}

(aplot? (2+vbar? + 2 vbar Cos [a] -2 vbar Sin[a])))

{ (aplot (1+vbarCos(a])) / (+/ B
1))/ (+/ (aplot? (2+vbar® +2 vbar Cos[a] -2 vbarSin[a]))), @}

(aplot (-1+vbarSin|

1

— (-2+ (V2+/ (-a* (-5+Cos[3 a] Sec[a] - Sec[a] Sin[3a] -Tan[a] +4+/ (Cos[a]® (3+Sin[2a])) Tan[a]))) / (\/az))
2

ibar = 5;

jbar = 3;

adef2act = (ndef[ibar] - ndef[jbar]). (ndef[ibar] - ndef[jbar]) /. data;
aundef2act = (nundef[ibar] - nundef[jbar]) . (nundef[ibar] - nundef[jbar]) /. data;
epsact = (Sqrt[adef2act] - Sqrt[aundef2act]) / Sqrt[aundef2act] /. data;

eps53 = epsact

eps53 /. {a - aplot} // Simplify

k53 = (ndef[ibar] - ndef[jbar]) /Sqrt[adef2act] /. data

k53 /. {a -» aplot} // Simplify

eps53lock = eps53 /. {vbar - vdes} // Simplify

(—\/2\/az+\/((—a+avbar‘Cos[a])2+(a+avbar‘51n ))/(\/2\/3)
1
— (-2+ (V2+/ (aplot® (2 +vbar? -2 vbar Cos [a] +2 vbar Sin[a]))) / (v aplot?))
2

{(-a+avbarCos[a]) / (+/ ((-a+avbarCos[a])?+ (a+avbarsin[a])?)),

(a+avbarsSin[a /(\/( ~a+avbarCos[a])®+ (a+avbarSina])?)), 6}

{ (aplot (-1+vbarCos[a])) / (+/ (aplot® (2+vbar®-2vbar Cos[a] +2vbarsSin(al))),
(aplot (1+vbarsin(a])) / (+/ (aplot? (2+vbar? -2 vbar Cos[a] +2vbarSin[a]))), 0}

“1+ (+/ (-a* (-3-Cos[2a] -2Cos [a] Sin[a] +2+/ (Cos[a]? (3+Sin[2a])>)))/(\/az)
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179]:= ibar = 5;
jbar = 1;
adef2act = (ndef[ibar] - ndef[jbar]). (ndef[ibar] - ndef[jbar]) /. data;
aundef2act = (nundef[ibar] - nundef[jbar]) . (nundef[ibar] - nundef[jbar]) /. data;
epsact = (Sqrt[adef2act] - Sqrt[aundef2act]) /Sqrt[aundef2act] /. data;
eps51 = epsact
eps51 /. {a - aplot} // Simplify
k51 = (ndef[ibar] - ndef[jbar]) /Sqrt[adef2act] /. data
k51 /. {a - aplot} // Simplify
eps51lock = eps51 /. {vbar - vdes} // Simplify

184)= (~vV2Va?++/ ((-a+avbarCos[a])?+ (-a+avbarsin[a])?)) /(V2Va?)

185]= (-2+ (V2+/ (aplot® (2+vbar? -2 vbar Cos [a] -2 vbar Sin[a]))) / (/aplot?))

1
2
[186]= { (-a+avbar Cos [«

(

N/
(-a+avbarSinfa]) / (v

((-a+avbarCos[a])?+ (-a+avbarsin(a])?)),
(

( 7a+avbar‘Cos[ot])2+(fa+aVbar‘Si“[0(])2)>: o}

(187)= {(aplot (-1+vbar Cos[a])) / (+/ (aplot? (2+vbar®-2vbar Cos[a] -2vbarSin[a]))),
(aplot (-1+vbarsSin(a])) /(+/ (aplot® (2+vbar®-2vbarCos[a] -2vbarSin[a]))), @}

188)= (-Va?++/ (a? (4+3Cos[a] Sinfa] -2+/ (Cos[a]? (3+Sin[2a])) - (-1+Sin[a]?+2+/ (Cos[a]? (3+sin[2a]))) Tan[a])))/(\/az)

= Plot the locking strains vs loading angle alpha

189]:= vmaxrule = {a -» (alphadegPi/180), vbar - vdes};

eps59lockplot = eps59lock /. vmaxrule // Simplify;
eps57lockplot = eps571ock /. vmaxrule // Simplify;
eps53lockplot = eps53lock /. vmaxrule // Simplify;
eps51lockplot = eps51lock /. vmaxrule // Simplify;

194]:= epsfact = 1;

epsliminf = 1- \/2;

aplot = 1;

aplotrule = {a -» aplot};

epsalphaplot = Plot[{epsSQlockplot = epsfact /. aplotrule, eps571lockplot = epsfact /. aplotrule,

eps53lockplot x epsfact /. aplotrule, eps51lockplot = epsfact /. aplotrule, epsliminf xepsfact}, {alphadeg, 0, 90},

PlotStyle -» {{Thick, Red}, {Thick, Orange}, {Thick, Magenta}, {Thick, Blue}, {Thick, Blue, Dashed}},
AxesLabel » {"a (deg)", "ei 10"}, PlotRange - {Automatic, Automatic},

Ticks » {Automatic, {{-1++V2, "v2-1"}, {1-V2, "1-v2"}}}]

V-1

1198]=
a (deg)

1-vV2

Find vmax vs alpha law for al=a2=a, beta = 10 deg

199]:= dataplot = {a > 100., al » 100., a2 -» 100., beta - (10. xPi/180)}

i199]= {a - 100., al > 100., a2 > 100., beta » 0.174533}
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200]:= vplotabcd = Min[vsolla /. dataplot, vsollb /. dataplot];
vgraphabcd = Plot[{vplotabcd}, {alphadeg, ©, 89.99}, PlotStyle » {Thick, Green},
AxesLabel » {"a (deg)", "v [mm]"}, (xPlotRange-{vplotmin,vplotmax}=+) PlotRange - All, PlotPoints - 100];
eps =1%x10" {-9};
vplot@abcd = vplotabed /. {alphadeg - @ +eps}
vplot45abcd = vplotabced /. {alphadeg - 45}
vplot80abcd = vplotabcd /. {alphadeg - 80}
vplot85abcd = vplotabed /. {alphadeg - 85}
vplot9@abcd = vplotabed /. {alphadeg - 90 - eps}
vplotbetal@deg = Plot[{vplotabcd / {a /. dataplot}}, {alphadeg, @, 90}, PlotStyle » {Thick, RGBColor([0.1, 1, 0.5]},
AxesLabel - {"a (deg)", "v [mm]"}, PlotRange - All, PlotPoints - 100, Frame -» { {True, True}, {True, False}}]

{[203]= 56.7085
{[204]= 46.9279
{[205]= 56.7085
[206]= 59.7825
{[207]= 56.7085

0.60

0.58

0.56

0.54
208]=

0.52

0.50

0.48

0 20 40 60 80

209]:= vl = vsolla /. dataplot;
Dvl = D[v1l, alphadeg];
solDv1 = FindRoot [ {Dv1 == @}, {alphadeg, 45}]
vbarlockminp1@ = (v1 /. solDvl) /a /. dataplot

i211]= {alphadeg - 40.}

[212]= ©.467911

Find vmax vs alpha law for al=a2=a, beta =5 deg

213]= dataplot = {a » 10@., al -» 100., a2 - 100., beta - (5. *Pi/180)}

i213]= {a->100., al - 100., a2 > 100., beta > 0.0872665}
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214]:= vplotabcd = Min[vsolla /. dataplot, vsollb /. dataplot];
vgraphabcd = Plot [ {vplotabcd}, {alphadeg, ©, 89.99}, PlotStyle » {Thick, Blue},
AxesLabel » {"a (deg)", "v [mm]"}, (xPlotRange-{vplotmin,vplotmax}=x) PlotRange - All, PlotPoints - 100]
eps =1%x10" {-9};
vplot@abcd = vplotabed /. {alphadeg - @ +eps}
vplot45abcd = vplotabced /. {alphadeg - 45}
vplot85abcd = vplotabed /. {alphadeg - 85}
vplot875abcd = vplotabed /. {alphadeg -» 87.5}
vplot9@abcd = vplotabed /. {alphadeg - 90 - eps}
vplotbetaSdeg = Plot[{vplotabcd / {a /. dataplot}}, {alphadeg, @, 90}, PlotStyle » {Thick, Blue},
AxesLabel - {"a (deg)", "v [mm]"}, PlotRange - All, PlotPoints - 100, Frame -» {{True, True}, {True, False}}];

v [mm]
66 f
64 \
62
215]= 60
58
56

54

a (deg)
52

{217]= 64.7086

[218]= 52.5814

[219]= 64.7086

[220]= 66.4038

[221]= 64.7086

223]:= vl = vsolla /. dataplot;
Dvl = D[v1, alphadeg];

solDvl = FindRoot [ {Dv1 == @}, {alphadeg, 45}]
vbarlockminp5 = (vl /. solDv1) /a /. dataplot

{[225]= {alphadeg — 42.5}

{[226]= ©.525445

Find vmax vs alpha law for al=a2=a, beta = -5 deg

227]:= dataplot = {a -» 100., al » 100., a2 - 100., beta - (-5.*Pi/180)}

i227]= {a—100., al - 100., a2 - 100., beta - -0.0872665}
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228]:= vplotabcd = Min[vsolla /. dataplot, vsollb /. dataplot, vsol2d /. dataplot];
vgraphabcd = Plot [ {vplotabcd}, {alphadeg, ©, 89.99}, PlotStyle » {Thick, Magenta},
AxesLabel » {"a (deg)", "v [mm]"}, (xPlotRange-{vplotmin,vplotmax}=x) PlotRange - All, PlotPoints - 100]
eps =1%x10" {-9};
vplot@abcd = vplotabed /. {alphadeg - @ +eps}
vplot25abcd = vplotabed /. {alphadeg » 2.5}
vplot5abcd = vplotabed /. {alphadeg -» 5}
vplot45abcd = vplotabed /. {alphadeg - 45}
vplot9@abcd = vplotabed /. {alphadeg - 90 - eps}
vplotbetam5deg = Plot[{vplotabcd / {a /. dataplot}}, {alphadeg, @, 90}, PlotStyle » {Thick, Magenta},
AxesLabel - {"a (deg)", "v [mm]"}, PlotRange - All, PlotPoints - 100, Frame -» {{True, True}, {True, False}}];

v [mm]

80

75

i229]=

70

a (deg)

[231]= 78.3332
{[232]= 80.1602
[233]= 78.3332
[234]= 64.9237
{[235]= 78.3332
237]:= vl = vsolla /. dataplot;
Dvl = D[v1, alphadeg];
solDv1 = FindRoot [ {Dv1 == @}, {alphadeg, 45}]
vbarlockminm5 = (v1 /. solDv1) /a /. dataplot
i[239]= {alphadeg - 47.5}

{[240]= ©.64882

Find vmax vs alpha law for al=a2=a, beta = -10deg

241]:= dataplot = {a » 100., al » 100., a2 -» 100., beta - (-10. xPi/180)}

[241]= {a - 1@@., al > 100., a2 - 100., beta - -0.174533}
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vplotabed = Min[vsolla /. dataplot, vsollb /. dataplot, vsol2d /. dataplot];
vgraphabcd = Plot[{vplotabcd}, {alphadeg, ©, 89.99}, PlotStyle » {Thick, Orange},
AxesLabel » {"a (deg)", "v [mm]"}, (xPlotRange-{vplotmin,vplotmax}=x) PlotRange - All, PlotPoints - 100]
eps =1%x10" {-9};
vplot@abcd = vplotabed /. {alphadeg - 0 +eps}
vplot5abcd = vplotabed /. {alphadeg -» 5}
vploti@abcd = vplotabed /. {alphadeg -» 10}
vplot45abced = vplotabed /. {alphadeg -» 45}
vplot9@abcd = vplotabced /. {alphadeg - 90 - eps}
vplotbetamlodeg = Plot [ {vplotabcd/ {a /. dataplot}}, {alphadeg, @, 90}, PlotStyle » {Thick, Orange},
AxesLabel » {"a (deg)", "v [mm]"}, PlotRange - All, PlotPoints » 100, Frame » {{True, True}, {True, False}}];

v [mm]

85

80 -

5r

L L L L L L L L L L L L L L L L L L a (deg)

83.6495
87.2435
83.6495
71.6176
83.6495

vl = vsolla /. dataplot;

Dvl = D[vl, alphadeg];

solDv1 = FindRoot [ {Dv1 == @}, {alphadeg, 45}]
vbarlockminm1® = (v1 /. solDvl) /a /. dataplot

vbarlockminp1@

(vbarlockminm1@ - vbarlockminp1@) / vbarlockminp10 « 100
{alphadeg —» 50.}

0.714425

0.467911

52.6839
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Global vlock vs. alpha chart

257]:= vlockchart = Show[vplotbetal@deg, vplotbetaSdeg, vplotbeta@deg, vplotbetam5deg, vplotbetamlodeg]
(* SetDirectory[NotebookDirectory[]];
Export["vlock_chart.pdf",vlockchart] =)

0.8 e
0.7+ e
2571 1

0.6 — b

0.5+ =
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APPENDIX B

MATHEMATICA® CODE FOR THE SIMULATION
OF THE FORCE-DISPLACEMENT RESPONSE OF
PROTOTYPE #2 UNDER P=25 KN
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Appendix B: Mathematica® code for the simulation of the force-displacement response of prototype #2 under P=25 kN

General data

General data

inf-= Clear [adata, vdata]
adata={};
vdata = {vact » v, anglealpha - (alphav)};
cdata= {C[1] -0, C[2] »0};
kloadata = {Cos[anglealpha], Sin[anglealpha], @} /. vdata

outf-}= {Cos[alphav], Sin[alphav], @}

n[- = degbetacurr =0.0;
degalphacurr =0.0;
dataplot = {alphav - (degalphacurr xPi/180), alphadegload - (degalphacurr),
a-100.50, al-»97, a2- 100.50, beta - (degbetacurrxPi/180x1),
vamax - 50, epspredata - (0.9), epspreveresaldata -> (0.0) }
dataplot2 = {a—> (a /. dataplot), al - (al/. dataplot),
a2 - (a2 /. dataplot), beta- (beta /. dataplot)}

ouy-]= {alphav-#@., alphadegload -0., a—»100.5, al »97, a2 > 100.5,
beta - 0., vamax - 50, epspredata —» 0., epspreveresaldata— 9.}

ouf-= {a—100.5, al »>97, a2 >100.5, beta—>0.}

Theoretical and experimental F - v curves of sinusoidal tests

Velocity vs. time law of the tests

in[-}= Clear [loaddata@]
Clear [mufrictactfriction®, mufrictactfrictionl, mufrictactfriction2, mufrictactfriction3]

loaddata = {loadfreq- (0.4), Pref -»42.352,
gammaref -» 4.0, vdotref 2.5, mus@ - (0.004675661715740908" ) }

Fmaxplotall = 1000;
Fminplotall = -Fmaxplotall;

ou-)= {loadfreq- 0.4, Pref —>42.352, gammaref - 4., vdotref - 2.5, mus@ - 0.00467566}

In[-]:= Vmax
vlawtime = vmax *Sin[2 x Pi x loadfreq*time]
vdotlawtime = D[vlawtime, time]

Out[=]= 50
outf-}]= 50 Sin[2 loadfreq r time]

outf-}= 100 loadfreq it Cos [2 loadfreq st time]
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in[-]}= Solve[vmaxx*Sin[2 % Pi* loadfreq*time] == v, {time}]
isol = 2;
soltime = Solve[vmax*Sin[2xPixloadfreqxtime] ==v, {time}][[isol]] /. {C[1] -» @}
(time /. {soltime}) /. {v->0}
(time /. {soltime}) /. {v - vmax}

H—APCSin[é}JrZJT«:l Ar‘CSin[;—e}JrZ]TCl

out[+]= {{time» if ez }, {timee if ez }}

2 loadfreq it 2 loadfreq it

ArcSin| Le]

[V

Outf]= {time B —
2 loadfreq

out-J= {0}

1

s {4 loadfreq }

in[-}= vdotlawv = vdotlawtime /. soltime // Simplify
vdotlawvdata = vdotlawv /. loaddata
vdotlawvdata /. {v- 0}
vdotlawvdata /. {v - vmax}

ouf - 2 loadfreq r /2500 - v?
outf-]= 2.51327 4/2500 - v2

ou-]= 125.664

Out[«]= 0.

Load case # 3 - 25 kN

n-1= coloract = Black;
colorexp = Blue;
loadact = 3;
vmaxcurr = 50;
expdashed = Dashed;
expdashed = "";
thdashed = "";
thdashed = Dashed;
fontsize = 12;
r=0.1;
numthickness = Thickness [r];
(* numthickness=AbsoluteThickness ;x)
numthickness = Thick;
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Inf+]:=

Out[=]=

Out[~]=

Out[~]=
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Veffact = Veffactfriction3;
mufrictact = mus@x Exp[-Veffactfriction3 /Pref] *
(gammaref + (1 - gammaref) x Exp[-vdotlawv /vdotref]) /. loaddata;
VeffactN = Veffact x1000; (x N x)
Floadact = Floadoo;
Funloact = Funlo99;

Vnormact = VeffactN/ (fact);
Floadactfriction = Floadact + mufrictact «Vnormact;
Funloactfriction = Funloact - mufrictact «Vnormact;

FFrictionp = +mufrictact xVnormact;
FFrictionm = -mufrictact xVnormact;

mufrictact xVnormact /. {v - vmaxcurr };
Fmaxact = Floadactfriction /. {v - vmaxcurr };
Floadact /. {v - vmaxcurr };

mufrictact3 = mufrictact;

Floadactfriction3 = Floadactfriction;
Funloactfriction3 = Funloactfriction;

Fmaxact3 = Fmaxact

mul3 = mufrictact *Vnormact

Fmaxact = Max [Fmaxactl, Fmaxact2, Fmaxact3] //N

606.992
64.7773 (4. — 3. o 1-99531 V2500-V?

Max[606.992, Fmaxactl, Fmaxact2]

Plot current load case

In[«]:=

In[«]:=

Out[~]=

Fmaxplot = Fmaxactx1.5;
Fminplot = -Fmaxplot;

vFmax = 0.995 x vmaxcurr

49.75
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m-= vfact =1.;
Ffact = fact /1000;

vdimrule = {v - (vdim/vfact)};

plotfrictionscaled =

Plot [ {Ffact = (Floadactfriction /. vdimrule), Ffact x (Funloactfriction /. vdimrule)},
{vdim, @, vmaxcurr xvfact}, PlotStyle - {{numthickness, coloract, thdashed}},
TicksStyle » { {FontSize - 12, Black}, {FontSize - fontsize, Black}},

LabelStyle - {FontSize - fontsize, Black}, AxesLabel - {"v (mm)", "F (kN)"},
PlotRange -» { {-vmaxcurrxvfact+1.1, vmaxcurr*vfactx1.1},
{Ffact «Fminplotall, FfactxFmaxplotall}}, AxesOrigin- {0, 0}]

plotfrictionscaledaddl =

{{vmaxcurr xvfact, (Ffacts* (Floadactfriction /. vdimrule)) /. {vdim -> vmaxcurr xvfact}},
{vmaxcurr xvfact, (Ffactx (Funloactfriction /. vdimrule)) /. {vdim -> vmaxcurrxvfact}}}

Ffact = -fact /1000;

vdimrule = {v - (-vdim/vfact) };

plotfrictionscaledinv =

Plot[{Ffact x (Floadactfriction /. vdimrule), Ffact x (Funloactfriction /. vdimrule)},
{vdim, -vmaxcurr xvfact, 0}, PlotStyle - {{numthickness, coloract, thdashed}},
TicksStyle » { {FontSize - 12, Black}, {FontSize -» fontsize, Black}},

LabelStyle » {FontSize - fontsize, Black}, AxesLabel - {"v (mm)", FF7(KN)™},
PlotRange -» { {-vmaxcurr*vfact+1.1, vmaxcurr+vfact+1.1},
{Ffact « Fminplotall, Ffact xFmaxplotall}}, AxesOrigin- {0, 0}];

plotfrictionscaledadd2 =

{{-vmaxcurr xvfact, (Ffact=x (Floadactfriction /. vdimrule)) /. {vdim - -vmaxcurrxvfact}},
{-vmaxcurr xvfact, (Ffacts* (Funloactfriction /. vdimrule)) /. {vdim- -vmaxcurr xvfact}}}

Listplotadd3 = ListPlot [ {plotfrictionscaledaddl, plotfrictionscaledadd2}, Joined - True,
PlotStyle -» { {numthickness, coloract, thdashed}, {numthickness, coloract, thdashed}}];

theoryplot = Show[plotfrictionscaled, plotfrictionscaledinv, Listplotadd3]
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= dispact = 2;
expcurvedataunscaled = FIPload[loadact, dispact];
nexp = Dimensions [expcurvedataunscaled] [[1]];
expcurvedata =
Table[ {expcurvedataunscaled[[i, 1]], expcurvedataunscaled[[i, 2]] /1000}, {i, 1, nexp}];
expcurve = ListPlot [ {expcurvedata}, Joined - True, PlotStyle -> { {expdashed, colorexp}},
TicksStyle » { {FontSize - fontsize, Black}, {FontSize - fontsize, Black}},
LabelStyle - {FontSize - fontsize, Black}];

expcurves3 = expcurve;
expcurvedata3sinusOK = expcurvedata;

fig5g = Show[plotfrictionscaled, plotfrictionscaledinv, Listplotadd3, expcurve]
(» Export["Fig5g.pdf",fighg]; *)

Out[«~]=
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Estimate fundamental period current load case

Infe]:=
Ffact = fact;
vdimrule = {v - (vdim/vfact)};
vmaxscaled = vmaxcurr x vfact

VvFmax

Fmaxscaled = Ffact * (Floadactfriction /. vdimrule) /. {vdim - (vFmax) }
F@scaled = Ffact » (Floadactfriction /. vdimrule) /. {vdim - 0}
Kheffact = Fmaxscaled /vmaxscaled (x N/mm =)

masseffact = Veffact+1000/9.81 (» 25 kN transformed into kg =)
KheffNmact = Kheffact +1000 (» Keff from N/mm to N/m =)

Theffact = 2% PixSqrt[masseffact /KheffNmact]

out[-]= 50.
out[-]= 49.75
out[-]= 796.831
out[-]= 259.109
out/-}]= 15.9366
out[-]= 2548.42
out/-]= 15936.6

outf-]= 2.51256

in[-]}= VFmax = vmaxcurr;
forcel = Ffact » (Floadactfriction /. vdimrule) ;
force2 = Ffact » (Funloactfriction /. vdimrule) ;
Plot [ {forcel, force2}, {vdim, 0, VFmax*vfact} ,
PlotStyle -» { {coloract, Thick}}, AxesLabel » {"v (mm)", "F (N)"},
PlotRange -» { {-vmaxcurrxvfactx1.1, vmaxcurrxvfact+1.1}, {FfactxFminplot, Ffact xFmaxplot}},
AxesOrigin- {0, 0}]

EDCINmm = NIntegrate[forcel, {vdim, 0, VFmax*Vvfact}];
EDC1 = EDC1Nmm / 1000

EDC2Nmm = NIntegrate[-force2, {vdim, 0, VFmaxX®Vfact}];
EDC2 = EDC2Nmm / 1000

EDCTH = (EDC1 + EDC2) * 2

ouf-j- 27.3055
ouf-j- 7.54274

ouf-j- 69.6964

In[-]= EDCTH3 = EDCTH;
csieffact = EDCTH/ (2 *PixKheffNmact » ( (vmaxscaled/1000) ~2))

outf-]= 0.278416
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in[-}= mudynav = 1.0361291837657416" / 100;
EDCfrictionavg = 4 *xmudynav % Veffact * vmaxcurr
EDCTH / EDCfrictionavg

outf-]= 51.8065

outf-]= 1.34532

nr-= Theffload3 = Theffact
csieff3 = csieffact

outf-]= 2.51256

Out[=]= 0.278416

Plot the different contributions to the force-displacement model

nf-]= scaleAt =1.0;
Atdim2 =1.9%31.6xscaleAt (x mm2, rescaled cross-
section area of the membranes of the metaisolator in the rest configuration )
psiload =1.19; (* 1.1918720852764824 ; )
psiunlo =1.0;
Fmaxplotall® = Fmaxplotall;
Fmaxplotall = 1000 %« (1 + scaleAt) /2;
Fminplotall = -Fmaxplotall;

ou[-]- 60.04

in[-}= Frload® = psiload x Atdim2 x floado;
Frunlo® = psiunloxAtdim2 x funlo@;
Floadact = Frloado;
Funloact = Frunlo9;

Friction term

in[-]= Floadactfriction = Floadact x @ + mufrictact »Vnormact;
Funloactfriction = Funloact @ - mufrictact xVnormact;
coloract = Magenta;
thdashed = Thick;
thdashed = Dashed;

in[-]:= Fmaxplot = Fmaxact*1.5;
Fminplot = -Fmaxplot;
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Inf+]:=

Out[]=

Out[]=

vfact=1.;
Ffact = fact /1000;
vdimrule = {v - (vdim/vfact)};
plotfrictionscaled =
Plot [ {Ffact = (Floadactfriction /. vdimrule), Ffact = (Funloactfriction /. vdimrule)},
{vdim, @, vmaxcurr xvfact}, PlotStyle - {{coloract, numthickness, thdashed}},
TicksStyle » { {FontSize - 12, Black}, {FontSize -» fontsize, Black}},
LabelStyle - {FontSize - fontsize, Black}, AxesLabel - {"u", M™F"},
Ticks - None, PlotRange -» { {-vmaxcurr xvfact*1.1, vmaxcurrxvfactx1.1},
{Ffact x Fminplotall, Ffact xFmaxplotall}}, AxesOrigin- {0, 0}];

plotfrictionscaledaddl =
{{vmaxcurr xvfact, (Ffacts* (Floadactfriction /. vdimrule)) /. {vdim -> vmaxcurr xvfact}},
{vmaxcurr xvfact, (Ffactx (Funloactfriction /. vdimrule)) /. {vdim -> vmaxcurrxvfact}}}

Ffact = -fact /1000;
vdimrule = {v - (-vdim/vfact) };
plotfrictionscaledinv =
Plot[{Ffact x (Floadactfriction /. vdimrule), Ffact x (Funloactfriction /. vdimrule)},
{vdim, -vmaxcurr xvfact, 0}, PlotStyle - {{coloract, numthickness, thdashed}},
TicksStyle » { {FontSize - 12, Black}, {FontSize -» fontsize, Black}},
LabelStyle » {FontSize - fontsize, Black}, AxesLabel - {"u", MF"},
Ticks - None, PlotRange -» { {-vmaxcurrxvfact+1.1, vmaxcurr*vfact+1.1},
{Ffact « Fminplotall, Ffact xFmaxplotall}}, AxesOrigin- {0, 0}];

plotfrictionscaledadd2 =
{{-vmaxcurr xvfact, (Ffact=x (Floadactfriction /. vdimrule)) /. {vdim - -vmaxcurrxvfact}},
{-vmaxcurr xvfact, (Ffacts* (Funloactfriction /. vdimrule)) /. {vdim- -vmaxcurr xvfact}}}

Listplotadd3 = ListPlot [ {plotfrictionscaledaddl, plotfrictionscaledadd2}, Joined - True,
PlotStyle -» { {coloract, Thick, thdashed}, {coloract, numthickness, thdashed}}];

plotfriction = Show[plotfrictionscaled, plotfrictionscaledinv, Listplotadd3]
{{50., 0.0647773}, {50., -0.0647773}}

{{-50., -0.0647773}, {-50., 0.0647773} )

F
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Recentering term

nf-]= Floadactfriction = Floadact x1 + mufrictact xVnormactx0;
Funloactfriction = Funloact *1 - mufrictact xVnormact+9;
coloract = Brown;
thdashed = Thick;
thdashed = DotDashed;
thdashed = Dashed;

in[- = Fmaxplot = Fmaxact*1.5;
Fminplot = -Fmaxplot;
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Inf+]:=

Out[]=

Out[=]=

vfact=1.;

Ffact = fact /1000;

vdimrule = {v - (vdim/vfact)};

plotfrictionscaled =

Plot [ {Ffact = (Floadactfriction /. vdimrule), Ffact x (Funloactfriction /. vdimrule)},
{vdim, @, vmaxcurr xvfact}, PlotStyle - {{coloract, numthickness, thdashed}},
TicksStyle » { {FontSize - 12, Black}, {FontSize - fontsize, Black}},
LabelStyle - {FontSize - fontsize, Black}, AxesLabel - {"u", ™F"},
Ticks - None, PlotRange -» { {-vmaxcurrxvfact*1.1, vmaxcurrxvfactx1.1},
{Ffact « Fminplotall, FfactxFmaxplotall}}, AxesOrigin- {0, 0}]

plotfrictionscaledaddl =
{{vmaxcurr xvfact, (Ffacts* (Floadactfriction /. vdimrule)) /. {vdim -> vmaxcurr xvfact}},
{vmaxcurr xvfact, (Ffactx (Funloactfriction /. vdimrule)) /. {vdim -> vmaxcurrxvfact}}}

Ffact = -fact /1000;

vdimrule = {v - (-vdim/vfact) };

plotfrictionscaledinv =

Plot [ {Ffact * (Floadactfriction /. vdimrule), Ffact x (Funloactfriction /. vdimrule)},
{vdim, -vmaxcurr xvfact, 0}, PlotStyle - {{coloract, numthickness, thdashed}},
TicksStyle » { {FontSize - 12, Black}, {FontSize -» fontsize, Black}},
LabelStyle » {FontSize - fontsize, Black}, AxesLabel - {"u", MF"},
Ticks - None, PlotRange -» { {-vmaxcurrxvfact+1.1, vmaxcurr*vfact+1.1},
{Ffact «Fminplotall, Ffact »Fmaxplotall}}, AxesOrigin- {0, 0}]

plotfrictionscaledadd2 =
{{-vmaxcurr xvfact, (Ffact=x (Floadactfriction /. vdimrule)) /. {vdim - -vmaxcurrxvfact}},
{-vmaxcurr xvfact, (Ffacts* (Funloactfriction /. vdimrule)) /. {vdim- -vmaxcurr xvfact}}}

Listplotadd3 = ListPlot [ {plotfrictionscaledaddl, plotfrictionscaledadd2}, Joined - True,
PlotStyle -» { {coloract, Thick, thdashed}, {coloract, numthickness, thdashed}}]

plotrecentering = Show[plotfrictionscaled, plotfrictionscaledinv, Listplotadd3]

{{-50., -0.541364}, {-50., -0.454928}}

F
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Combo plot

inf-= Fmaxplot = Fmaxact;

Fminplot = -Fmaxplot;

Floadactfriction = Floadact *1 + mufrictact *Vnormact1;
Funloactfriction = Funloact *1 - mufrictact *Vnormact+1;
coloract = Black;

thdashed = Thick;

thdashed = DotDashed;

thdashed = Solid;

in[-]:= comboplot = Show[plotfriction, plotrecentering, theoryplot]
path = FileNameJoin [ {NotebookDirectory[], "“comboplot.pdf"}];
(» Export[path,comboplot] *)

F

out[+]=
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STL GRAPHIC/CAD FILES OF 3D PRINTED PARTS

CAD design for Cap cushion CAD design for Cap
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CAD design for Central post CAD design for Central ring
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CAD design for Elbow hinge CAD design for Elbow pin
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CAD design for Arm CAD design for short ring
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CAD design for Shoulder hinge CAD design for Tendon
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CAD design for Wrist hinge CAD design for Shoulder pin
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CAD design for Final model
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