
Universitá degli Studi di Salerno

PhD thesis in

COMPUTER SCIENCE

Automatic Discovery of

Drug Mode of Action

and

Drug Repositioning

from Gene Expression Data

Candidate: Francesco Iorio

Supervisors:

Prof. Giancarlo Raiconi, Dr. Diego di Bernardo

Coordinator:

Prof. Margherita Napoli

IX Cycle - 2007/2010



ii



To Giorgia:

the greatest result

I have ever achieved



Acknowledgements

During my PhD training I have spent more than 3 years in the Systems,

Synthetic and Computational Biology Laboratory (diB-LAB) led by Diego

di Bernardo at the TeleThon Institute of Genetics and Medicine (TIGEM).

I joined the group after my graduation in computer science, in a joint PhD

program between the University of Salerno and the TIGEM.

When I arrived I felt like a stranger in a strange land: until that moment I

used to deal mainly with numbers, codes and programming languages and

from that moment I started to tackle molecular biology problems.

However I was really lucky because in that place I found nice people, with

different backgrounds, talking to each other with ease, with humility and

friendship. They taught me that true science is communication, knowledge

sharing and creativity. They were the diB-LAB “first-generation” mem-

bers: Mukesh Bansal, Giusy della Gatta, Alberto Ambesi-Impiombato, and

Giulia Cuccato. Thanks!

I started my training program with three other PhD students. We grew

together, learning from each other and we had really nice parties and a lot

of fun: Thanks to Vincenzo Belcastro for helping me at different stages of

my project, for giving me the opportunity to collaborate with him, and...

for getting drunk together in different parts of the world; thanks to Velia

Siciliano for kindly introducing me to the wonderful world of biotechnology

experimental tools and for being one of the most “positive” people I have

ever known; thanks to Lucia Marucci (mathematics, art, music, madness,

genius and candor mixed together in an explosive recipe) for having been a

real friend in some difficult moments.



I received precious help and suggestions from him, and we had an incredible

number of insightful discussions: thanks to Mario Lauria, senior scientist in

our lab and my deskmate. Thanks also for giving to me the opportunity to

work with him on NIRest and other algorithms.

During these years our lab was enriched by novel and really smart guys:

Thanks to Filippo Menolascina for being the best lab-mate one could imag-

ine and for listening to me patiently; Thanks to Gennaro Gambardella for

being my personal Java trainer and “food-shopping-assistant”; Thanks to

Mariaurelia Ricci and Alda Graziano for their kindness and friendship.

Thanks to Nicoletta Moretti (aka Alfia), Stefania Criscuolo, Immacolata

Garzilli and Chiara Fracassi: we did not share the lab for a long time be-

cause some of them joined our group in the last months of my permanence

there and others were constantly involved in wet-lab experiments, but that

time was sufficient to me to understand what nice people they are.

Thanks to Gennaro Oliva, of the ICAR institute, for his kind assistance

and his (massive) competence, which were of great help to me during the

implementation and management of the MANTRA web-tool.

Irene Cantone did incredible work, and I found IRMA to be one of the

most exciting projects I encountered since I started to work in this field.

However, I principally wish to thank this “mad” girl for her genuine and

unruly friendship.

Thanks to Vincenza Maselli: truly one of the most kind and good-natured

people I have ever met.

Thanks to the TIGEM bioinformatic-core for its support and kind help

while I was dealing with statistical tests and microarray data. Rossella

Rispoli, Gopuraja Dharmalingam, Annamaria Carissimo, and Margherita



Mutarelli: thanks!

A special thank you to Luisa Cutillo for her ideas about ranked lists, which

inspired my work, for being the first person that patiently worked with me

when I joined the TIGEM, and for her really fun jokes.

A really great special thanks to my friend Santosh Anand!

I wish to thank Graciana Diez-Roux for very critically reading and revising

the manuscript of my most important paper.

A great thank you to Nicola Brunetti-Pierri that contributed ideas and

the design of the research about Fasudil: a significant effort to my results.

Thanks to Pratibha Mithbaokar and Rosa Ferriero, of the Brunetti-Pierri

lab, doing the experiments that confirmed one of my nicest results.

Being a member of a TIGEM group has been one of the most stimulating

experiences of my life. I wish to thank Maria Pia Cosma, who gave me the

opportunity to collaborate with people in his lab in really great projects, and

the other group leaders that involved me in their work: Alberto Auricchio,

Giancarlo Parenti, and Alberto Luini. A great thank you to Seetharaman

Parashuraman for the same reasons.

Working at TIGEM has been great and comfortable also because of the nice

people working in the administration and human resources: Silvana Ruo-

tolo, Federico Barone, Brunella Summaria, Barbara zimbardi, Mariolina

Pepe et al. Thanks!



... And How to forget our IT core technicians? Giampiero Lago, Marco

Savarese, Giancarlo Sambrini and Mario Traditi: Thanks for your great

work, your kind assistance and all the nice chats and funny jokes.

What makes TIGEM a special place is each single person working there:

thanks to Signor Agostino, Antonio and Dina. Your smiles were the best

way to start each working day!

I want to thank my housemate Carmine Spampanato for having kindly put

up with me for almost three long years.

Last but (obviously) not least a huge thank to Diego di Bernardo (my su-

pervisor, at the TIGEM): literally the best mentor that anyone trying to

do science could have!

He has an incredible ability in helping young scientists to discover (and to

do) what they do best. He saw some little talent in me and cheered me up

even in the most discouraging moments.

THANKS!

At the University of Salerno I have been working in the Neural and Robotic

Network (NeuRoNe) Laboratory led by Prof. Roberto Tagliaferri and Prof.

Giancarlo Raiconi.

I met these two Professors when I was an undergraduate and I wish to

thank them for insightfully introducing me to the world of Machine Learn-

ing, Data Mining, Complex Systems and Neural Networks.

Moreover I gratefully thank them for their support, encouragement and the



inspiring discussions we had during my periodical reports.

I wish to thank Loredana Murino (PhD student at the NeuRoNe lab) for

her great work on the GO:Fuzzy-Enrichment analysis.

Thanks to Francesco “Ciccio” Napolitano: a real friend and one of the most

intelligent and stimulating people I ever met.

Thanks to the people of the lab for their friendship and the time spent

together: Andrea Raiconi, Carmine Cerrone, Donatella Granata, Ekaterina

Nosova, Ivano Scoppetta (aka Vittorio Santoro), Francesco Carrabs and Ida

Bifulco.

A huge thank you to Antonella Isacchi, Roberta Bosotti, and Emanuela

Scacheri of the Nerviano Medical Science conceiving the blind test of my

method, for producing novel Microarray-Data for me and performing the

experiments validating some of my most original and interesting results.

Additionally, thanks to them for their great contribution to my paper, for

their help in interpreting MANTRA results, their great expertise in on-

cology and the extremely stimulating chats we had via Skype, Phone and

Email.

A great team: it has been really a pleasure to work with them.

THANKS Nerviane!

A special thanks to Dr. Julio Saez-Rodriguez for hosting me in his labo-

ratory at the European Bionformatics Institute in the last months of my

PhD, for giving me the opportunity of joining a great group and the chance



of pursuing other scientifically exciting results together in the coming years.

Thanks to my new lab-mates (both the temporary and the permanent ones):

Beatriz Penalver, Ioannis Melas, Camille Terfve, Jordi Serra i Musach,

Aidan MacNamara, Jerry Wu and David Henriques.

Thanks to Gabriella Rustici for her kind help when myself and my fam-

ily were searching for accommodation in Cambridge and for her friendship.

Now it is the turn of the most important people in my life...

First of all, I wish to thank my parents, who always supported me in every

possible way. I believe that they should be cited as co-authors of this and

all the other successes in my life. Mum and Dad: I love you.

Secondly, I want to thanks my in-laws: they were literally my second par-

ents in these last few years and helped the little new family that myself and

my wife were composing with infinite love and patience. Nonna Brenda and

Nonno Pasquale: a huge THANK YOU and a hug!

A huge hug and a thank you to my “brothers and sisters”:

Ylenia, Giuseppe (the greatest mathematician I have ever known) and Raf-

faella, Davide and Annarita, for their love and all the funny moments to-

gether.



There are no words to describe my love for you nor do numbers exist to

quantify it. You have been my force and together the source of all my

happiness. To say “thank you” would be improper, as is improper (and

impossible) to list all the reasons why I should do it. Annalisa, I love you

and I am so happy you are my wife.

Finally, to you: I hope that your eyes will always be full of this curiosity

and vivacity, and that you will look at me always as you do now; I hope to

deserve your love for ever and that your smiles will be always so real and

happy.

With Love, Dad :)



Abstract

The identification of the molecular pathway that is targeted by a compound,

combined with the dissection of the following reactions in the cellular envi-

ronment, i.e. the drug mode of action, is a key challenge in biomedicine.

Elucidation of drug mode of action has been attempted, in the past, with

different approaches. Methods based only on transcriptional responses are

those requiring the least amount of information and can be quickly applied

to new compounds. On the other hand, they have met with limited success

and, at the present, a general, robust and efficient gene-expression based

method to study drugs in mammalian systems is still missing.

We developed an efficient analysis framework to investigate the mode of

action of drugs by using gene expression data only. Particularly, by using

a large compendium of gene expression profiles following treatments with

more than 1,000 compounds on different human cell lines, we were able

to extract a synthetic consensual transcriptional response for each of the

tested compounds. This was obtained by developing an original rank merg-

ing procedure. Then, we designed a novel similarity measure among the

transcriptional responses to each drug, endingending up with a “drug sim-

ilarity network”, where each drug is a node and edges represent significant

similarities between drugs.

By means of a novel hierarchical clustering algorithm, we then provided

this network with a modular topology, contanining groups of highly inter-

connected nodes (i.e. network communities) whose exemplars form second-

level modules (i.e. network rich-clubs), and so on. We showed that these

topological modules are enriched for a given mode of action and that the

hierarchy of the resulting final network reflects the different levels of simi-

larities among the composing compound mode of actions.

Most importantly, by integrating a novel drug X into this network (which



can be done very quickly) the unknown mode of action can be inferred by

studying the topology of the subnetwork surrounding X. Moreover, novel

potential therapeutic applications can be assigned to safe and approved

drugs, that are already present in the network, by studying their neighbor-

hood (i.e. drug repositioning), hence in a very cheap, easy and fast way,

without the need of additional experiments.

By using this approach, we were able to correctly classify novel anti-cancer

compounds; to predict and experimentally validate an unexpected similar-

ity in the mode of action of CDK2 inhibitors and TopoIsomerase inhibitors

and to predict that Fasudil, a known and FDA-approved cardiotonic agent,

could be repositioned as novel enhancer of cellular autophagy.

Due to the extremely safe profile of this drug and its potential ability to

traverse the blood-brain barrier, this could have strong implications in the

treatment of several human neurodegenerative disorders, such as Hunting-

ton and Parkinson diseases.
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1

Introduction

A bottleneck in drug discovery is the identification of the molecular targets of a com-

pound and of its off-target effects (Figure 1.1).

Figure 1.1: Discovery of drug mode of action -

The recognition of a set of interacting genes, proteins and metabolites (i.e. a bi-

ological pathway) whose activity is modulated by the drug treatment, combined with

the dissection of the resulting reactions in the cellular environment (Figure 1.2), is

nowadays a key challenge in biomedicine.

Addressing these problems means to investigate drug Mode of Action (MoA).

On the other hand, the detection of the complex regulatory relationships occurring
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1. INTRODUCTION

Figure 1.2: Reactions to drug-substrate interaction -

among genes (i.e. gene regulatory network) is of major importance in order to under-

stand the working mechanisms of the cell in patho-physiological conditions and it also

allows the discovery of novel drug targets.

Thanks to the development of new experimental methods and to the constant decrease

of the data-storage costs, current technology allows the analysis of massive quantities

of data. One of the scientific fields that are taking great advantages of this capabilities

is molecular biology in which a key role is played by DNA-microarray technology, in

the context of functional genomics.

Each single cell contains a copy of the entire genome of the organism to which it be-

longs.

The genome is composed by DNA molecules and it contains the set of informations

needed for the transmission of the hereditary factors and the protein synthesis. Once

a gene is “activated” a corresponding molecular intermediate, the messenger RNA

(mRNA), is generated through a process called “transcription” and released in the cy-

toplasm (the thick liquid residing among the nucleus, the cellular membrane and the

organelles). Here, the mRNA is translated into proteins through the assembly of amino

acids by a ribosomes.

The amount of mRNA equivalent to the DNA sequence of a given gene, in a give in-

stant, quantifies the “level of expression” of that gene.

2



A DNA-microarray is a tool able to measure gene expression levels at a genome-wide

scale simultaneously (i.e. it is able to produce a genome-wide Gene Expression Pro-

file (GEP)). By using DNA-microrrays it is possible to monitor the expression of all

the genes in the cells of a given tissue in pathological conditions or to measure how

cells respond to a pharmacological treatment at a transcriptional level.

Even if elucidation of drug MoAs has been attempted, in the past, with different ap-

proaches, the drug discovery pipeline typically has been guided by knowledge of the

biological mechanisms underlying the disease to treat. Based on this knowledge, “drug-

gable” molecular targets have been hypothesized and libraries of chemical structures

have been systematically analyzed in order to find drug candidates on the basis of their

chemical “affinity” with the desired target.

More recently, alternative approaches such as high-throughput screening of drug li-

braries have been developed to allow identification of molecules acting on specific cel-

lular targets experimentally. However, they are generally based on assays or binding

studies that focus narrowly on the molecular target, not taking into account the com-

plexity of the cell response.

Strategies based on the analysis of drug-induced changes in gene expression profiles

have the potential to elucidate the cellular response to specific drugs. Moreover, meth-

ods based only on transcriptional responses are those requiring the least amount of

experiments and can be quickly applied to new compounds. On the other hand, they

have met with limited success and, at the present, a general, robust and efficient gene-

expression based method to study drugs in mammalian systems is still missing.

Other important problems are linked to the concept of “drug repositioning”: the large

number of drug candidate failures has been enormously costly for the pharmaceuti-

cal industry, but has also created the opportunity of re-purposing these molecules for

therapeutic applications into new disease areas. Companies which can systematically

“reposition” unsuccessful drug candidates could create significant value by reinforcing

their pipeline (the set of drugs under development or in testing) and meeting the needs

of innovative medicines.

In this PhD thesis we present the methodology and the results of our research, which

has been focused on the development of a novel and efficient analysis framework to in-

vestigate the MoA of new drugs by using gene expression data only and for suggesting

novel therapeutic uses of well-known and already approved drugs.
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Our leading assumption was a simple but strong postulate: if two drugs elicit similar

effects on the transcriptional activity of the cell then they could share a MoA (and pos-

sibly a therapeutic application) even if they act on distinct intracellular direct targets

(point 1 in Figure 1.3).

Figure 1.3: Project: Leading ideas and problems -

As a consequence, similarities in the transcriptional responses to drugs could be ex-

ploited allowing drug classification and repositioning (i.e. re-purposing for novel uses)

(point 2 in Figure 1.3). The first problem we had to tackle was due to a phenomenon

known for microarray studies: cells grown at the same time and in the same experimen-

tal setting tend to respond similarly at a transcriptional level even if they are differently

stimulated. In other word similarity of gene expression profiles can be recorded for un-

related stimuli in the same experimental setting (also called batch effect)(81). On the

other hand, cells in different pathological conditions obey to the rules of the transcrip-

tional program in the corresponding disease phenotype (the condition characteristics)

hence they tend to respond differently to the same drug treatment. Consequently, poor

results can be achieved with classic micro-array analysis approach, which tends to dis-
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criminate gene expression profiles on the basis of the experimental settings (kind of

cells, observation time, microarray platform) in which they have been produced rather

than on the basis of the stimuli they are responding to (for example a drug treatment)

(point 3 in Figure 1.3).

We addressed this problem by using a large compendium of gene expression data fol-

lowing treatments with more than 1,000 compounds on different human cell lines, being

able to compute a synthetic consensual transcriptional response for each of the tested

compounds. This response is a proxy of a “phenotype independent” transcriptional

response and we considered it a sufficiently general summary of the drug MoA (point 4

in Figure 1.3). This was obtained by using a novel and original data merging procedure.

In order to pair-wise compare the drugs in our reference dataset (point 5 in Figure 1.3)

we conceived a novel similarity measure among these responses, which was based on a

non-parametric statistic, ending up to a “drug similarity network” (point 6 in Figure

1.3).

Finally we used this network as a classification template and as a predictor of drug can-

didates for drug repositioning, a task which has been growing in importance in the last

few years as an increasing number of drug development and pharmaceutical companies

see their drug pipelines drying up. To assess our results, novel experimental data were

produced on purpose in order to validate computational predictions.

1.1 Outline

This thesis in computer science describes a computational approach to a practical prob-

lem of drug discovery, which has been tackled based on principles of molecular biology

and making use of available biomedical data.

Moreover, a number of experiments has been conducted with different experimental

tools in order to produce de-novo data and to verify computational results. Some bi-

ological concepts and principles together with the background informations needed to

understand the experiment outcomes are provided in Chapter 2.

In the same chapter we covered some concepts from complex network theory and tra-

ditional drug discovery. In Chapter 3 we briefly discuss gene expression and systems

biology approaches to drug discovery.

In 4 we exhaustively describe the design of our analysis framework while in Chapter 5
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we present Mode of Action by Network Analysis (MANTRA), the online implementa-

tion of our method, and we describe the drug classification algorithm.

In Chapter 6 we present the results that were obtained while testing our method in

classifying novel drugs and their experimental validation.

Chapter 7 contains the description of a drug repositioning proposal predicted by our

method. Future directions and a final discussion are presented in Chapter 8.

Part of the work described in this thesis has been published in:

• Iorio F, Isacchi A, di Bernardo D, Brunetti-Pierri N.

Identification of small molecules enhancing autophagic function from drug net-

work analysis.

Autophagy. 2010 Nov 16; 6(8): 1204-5.

• Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L,

Tagliaferri R, Brunetti-Pierri N, Isacchi A, di Bernardo D.

Discovery of drug mode of action and drug repositioning from transcriptional

responses.

Proc Natl Acad Sci U S A. 2010 Aug 17; 107(33): 14621-6.

• Iorio F, Murino L, di Bernardo D, Raiconi G, Tagliaferri R.

Gene ontology fuzzy-enrichment analysis to investigate drug mode-of-action

Neural Networks (IJCNN), The 2010 International Joint Conference on. 2010

July: 1-7.

• Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di

Bernardo M, di Bernardo D, Cosma MP.

A yeast synthetic network for in vivo assessment of reverse-engineering and mod-

eling approaches.

Cell. 2009 Apr 3; 137(1): 172-81.

• Lauria M, Iorio F, di Bernardo D.

NIRest: a tool for gene network and mode of action inference.

Ann N Y Acad Sci. 2009 Mar; 1158: 257-64.
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• Iorio F, Tagliaferri R, di Bernardo D.

Identifying network of drug mode of action by gene expression profiling.

J Comput Biol. 2009 Feb; 16(2): 241-51.

• Iorio F, Tagliaferri R, di Bernardo D.

Building Maps of Drugs Mode-of-Action from Gene Expression Data

Computational Intelligence Methods for Bioinformatics and Biostatistics. LNCS.

2009, Volume 5488/2009, 56-65.

Supplementary data sheets referred in the text are contained in the Supplementary

Data Disc (SDD) attached to this thesis.
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2

Background

2.1 Introduction

This chapter contains basic informations, needed to fully understand the biology under-

lying the main presented results the experimental data that we analyzed and produced

“de-novo”, and a short description of the experimental platforms that we used to verify

our results (Section 2.2).

In Section 2.3 some definitions and methods of network theory that we used while de-

signing our computational approach are listed.

In the final section computational drug discovery is briefly discussed and existing ap-

plications of network analysis in this field are introduced.

The content of this chapter (figures and some portions of text) are from the following

web resources:

www.nigms.nih.gov,

www.ebi.ac.uk,

www.wordiq.com,

www.bio.davidson.edu,

www.molegro.com.
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2. BACKGROUND

2.2 Molecular biology: basic principles and techniques

2.2.1 Overview of the Cell

A cell is the simplest and most elementary functional basic unit of life and it can be

considered as the building block of all living beings. Some organisms, such as most

bacteria, consist of a single cell (unicellular organisms) while others, such as humans,

are composed by about 100 trillion of cells.

In an “eukaryotic” cell (see Figure 2.1) the nucleus is a membrane enclosed organelle

that can occupy up to 10 percent of the cellular space. It contains the equivalent of the

cell’s “program”, its genetic material, the Deoxyribonucleic acid (DNA). DNA contains

the instructions used in the development and functioning of all known living organisms

with the exception of some viruses. The main role of DNA molecules is the long-term

storage of information. DNA is often compared to a set of blueprints, like a recipe

or a code, since it contains the instructions needed to construct other components of

cells, such as proteins and Ribonucleic acid (RNA) molecules. The DNA segments that

carry this genetic information are called genes, but other DNA sequences have struc-

tural purposes, or are involved in regulating the use of this genetic information.

The nucleus is surrounded by two pliable membranes, together known as the nuclear en-

velope. Normally, the nuclear envelope is pockmarked with octagonal pits and hemmed

in by raised sides. These nuclear pores allow chemical messages to exit and enter the

nucleus.

Between the cell membrane (a selectively-permeable phospholipidic layer) and the nu-

clear envelope resides a thick and clear liquid called the cytoplasm. The cell’s outer

membrane is made up of a mix of proteins and lipids (fats). Lipids give membranes

their flexibility. Proteins transmit chemical messages into the cell, and they also mon-

itor and maintain the cell’s chemical climate.

On the outside of cell membranes, attached to some of the proteins and lipids, are

chains of sugar molecules that help each cell type do its job.

Close to the nucleus resides a groups of interconnected sacs snuggling close by. This

network of sacs, the Endoplasmatic Reticulum (ER), often makes up more than 10

percent of a cell’s total volume.

Made up of more than 70 proteins and 4 strands of RNA (a chemical relative, of DNA
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that we will describe later), ribosomes have a critical job: assembling all the cell’s pro-

teins. To make a protein, ribosomes weld together chemical building blocks one by one

(as explained in the following sections).

Another important component of the cellular endomembrane system (the set of differ-

ent membranes that are suspended in the cytoplasm) is the Golgi apparatus. Composed

of stacks of membrane-bound structures known as cisternae, the Golgi apparatus pro-

cesses and packages macromolecules, such as proteins and lipids, after their synthesis

and before they make their way to their destination; it is particularly important in the

processing of proteins for secretion.

The waste disposal system of the cell is composed by the lysosomal machinery. Lyso-

somes are cellular organelles which contain acid hydrolase enzymes to break up waste

materials and cellular debris.

Figure 2.1: The cell - [Image from: http://www.ebi.ac.uk]

The subtle movements of the cell as well as the many chemical reactions that take

place inside organelles require vast amounts of cellular energy. The main energy source

of the cell is a small molecule called Adenosine-5’-triphosphate (ATP). ATP is often

referred as the “molecular unit of currency” of intracellular energy transfer because it

transports chemical energy within cells for metabolism. It is produced by membrane-

enclosed organelles called mitochondria. ATP is used by enzymes and structural pro-

teins in many cellular processes, including biosynthetic reactions, motility, and cell

division. Among these processes one of the most important is phosphorilation.

Phosphorylation is the transfer of a phosphate (PO4) group from a high-energy donor
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2. BACKGROUND

molecule (such as ATP) to a protein (in this case, a substrate). Phosphorylation is

conducted by specific enzymes called phosphotransferases or kinases, it activates or

deactivates many protein enzymes, causing or preventing the mechanisms of diseases

such as cancer and diabetes. Protein phosphorylation in particular plays a significant

role in a wide range of cellular processes and usually it results in a functional change

of the target protein by changing enzyme activity, cellular location, or association with

other proteins.

The series of events that takes place in a cell leading to its division and duplication

(replication) is called the cell cycle, or cell-division cycle. Cell cycle is tightly regulated

by the activity of a group of protein kinases, i.e. Cyclin-Dependent kinases (CDKs).

A CDK is activated by association with a cyclin, forming a cyclin-dependent kinase

complex. Cyclins are proteins whose concentrations varies in a cyclical fashion during

the cell cycle. The oscillations of the cyclins, namely fluctuations in cyclin gene expres-

sion and destruction by proteolysis, induce oscillations in CDK activity to drive the

cell cycle.

A normal component of the development and health of multicellular organisms is cel-

lular apoptosis, or programmed cell death. Cells die in response to a variety of stimuli

and during apoptosis they do so in a controlled, regulated fashion. This makes apop-

tosis distinct from another form of cell death called necrosis in which uncontrolled cell

death leads to lysis of cells, inflammatory responses and, potentially, to serious health

problems. Apoptosis, by contrast, is a process in which cells play an active role in their

own death (which is why apoptosis is often referred to as cell suicide).

2.2.2 DNA structure and function

DNA is the main information carrier molecule in a cell. A single stranded DNA

molecule, also called a polynucleotide, is a chain of small molecules, called nucleotides

(see Figure 2.2). There are four different nucleotides grouped into two types, purines:

adenine and guanine and pyrimidines: cytosine and thymine. They are usually referred

to as bases and denoted by their initial letters, A, C, G and T. Different nucleotides can

be linked together in any order to form a polynucleotide. The end of the polynucleotides

are marked either 5’ and 3’ . By convention DNA is usually written with 5’ left and 3’

right, with the coding strand at top. Two such strands are termed complementary, if

one can be obtained from the other by mutually exchanging A with T and C with G,
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and changing the direction of the molecule to the opposite. Although such interactions

are individually weak, when two longer complementary polynucleotide chains meet,

they tend to stick together.

Two complementary polynucleotide chains form a stable structure, which resembles a

helix and is known as a the DNA double helix. About 10 base pairs (bp) in this struc-

ture takes a full turn, which is about 3.4 nm long. Complementarity of two strands in

the DNA is exploited for copying (multiplying) DNA molecules in a process known as

the DNA replication, in which one double stranded DNA is replicated into two iden-

tical ones. (The DNA double helix unwinds and forks during the process, and a new

complimentary strand is synthesized by specific molecular machinery on each branch

of the fork. After the process is finished there are two DNA molecules identical to the

original one.) In a cell this happens during the cell division and a copy identical to the

original goes to each of the new cells.

Figure 2.2: DNA - [Image from: http://www.scq.ubc.ca]

During replication an enzyme called Topoisomerase (Topo) prevents DNA tangling

and damaging. As a replication fork moves along double-stranded DNA, it creates what
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has been called the “winding problem”. Every 10 bp replicated at the fork corresponds

to one complete turn about the axis of the parental double helix. Therefore, for a

replication fork to move, the entire chromosome ahead of the fork would normally have

to rotate rapidly. This would require large amounts of energy for long chromosomes,

and an alternative strategy is used instead: a swivel is formed in the DNA helix by

DNA Topo.

DNA winds around proteins called histones. These proteins play an important role

in gene regulation in eukaryotic cells and they are are highly water soluble. The six

histone classes are H1, H2A, H2B, H3, H4, and Archaeal. All but the H1 and Archaeal

classes create nucleosome core particles by wrapping DNA around their protein spools;

the H1 then binds nucleosomes and entry and exit sites of the DNA. Histones and

DNA assembled in this way are called chromatin. Packed in this way DNA are 50,000

times shorter than unpacked ones. Histones also perform a function in gene regulation;

their “methylation” (modification of certain amino acids by the addition of one, two,

or three methyl groups) causes tighter bindings to down-regulate or even inhibit gene

transcription, while “acetylation” (addition of acetyl groups) loosens bindings to help

encourage transcription and translation.

Histone proteins are packaged into structures called chromosomes. Chromosomes are

not visible in the cells nucleus, not even under a microscope, when the cell is not di-

viding. However, the DNA that makes up chromosomes becomes more tightly packed

during cell division and is then visible under a microscope. Most of what researchers

know about chromosomes was learned by observing chromosomes during cell division.

Each chromosome has a constriction point called the centromere, which divides the

chromosome into two sections, or “arms”. The short arm of the chromosome is labeled

the “p arm”. The long arm of the chromosome is labeled the “q arm”. The location

of the centromere on each chromosome gives the chromosome its characteristic shape,

and can be used to help describe the location of specific genes.

Together with DNA and proteins, RNA is one of the major macromolecules that are

essential for all known forms of life. The sequence of nucleotides composing a molecule

of RNA allows it to encode genetic information. For example, some viruses use RNA

instead of DNA as their genetic material, and all organisms use messenger messenger
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RNA (mRNA) to carry the genetic information that directs the synthesis of proteins.

This process can be divided into two parts (as summarized in Figure 2.3):

• Transcription: Before the synthesis of a protein begins, the corresponding RNA

molecule is produced by RNA transcription. One strand of the DNA double helix

is used as a template by the RNA polymerase to synthesize an mRNA. This

mRNA migrates from the nucleus to the cytoplasm. During this step, mRNA

goes through different types of maturation including one called splicing when

the non-coding sequences are eliminated. The coding mRNA sequence can be

described as a unit of three nucleotides called a codon;

• Translation: The ribosome binds to the mRNA at the start codon (AUG) that

is recognized only by the initiator Transfer RNA (tRNA) (a small RNA molecule

that transfers a specific active amino acid to the ribosome). The ribosome pro-

ceeds to the elongation phase of protein synthesis. During this stage, complexes,

composed of an amino acid linked to tRNA, sequentially bind to the appropriate

codon in mRNA by forming complementary base pairs with the tRNA anticodon.

The ribosome moves from codon to codon along the mRNA. Amino acids are

added one by one, translated into polypeptidic sequences dictated by DNA and

represented by mRNA (Figure 2.4). At the end, a release factor binds to the stop

codon, terminating translation and releasing the complete polypeptide from the

ribosome.

The rule that deals with the detailed residue-by-residue transfer of sequential infor-

mation establishing that information cannot be transferred back from protein to either

protein or nucleic acid is known as the “central dogma of molecular biology”. In other

words, once information gets into protein, it can’t flow back to nucleic acid.

Like shoelaces, the polypeptidic sequences released by the ribosomes loop about each

other in a variety of ways (i.e., they fold). But, as with a shoelace, only one of these

many ways allows the protein to function properly. Yet lack of function is not always

the worst scenario. For just as a hopelessly knotted shoelace could be worse than one

that wont stay tied, too much of a misfolded protein could be worse than too little of a

normally folded one. This is because a misfolded protein can actually poison the cells

around it.
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Figure 2.3: The central dogma of molecular biology - [Image from:

http://www.scq.ubc.ca]

Figure 2.4: Protein synthesis - [Image from: http://www.wikipedia.org]
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2.2.3 Gene Expression and Regulation

Living cells are the product of gene expression programs involving “regulated” tran-

scription of thousands of genes. The central dogma, briefly introduced in the previous

section, defines a paradigm in molecular biology: genes are perpetuated as sequences

of nucleic acid and translated in functional units, i.e. the proteins. In these process

mRNA provides a molecular intermediate that carries the copy of a DNA sequence

that represents a protein. It is a single-stranded RNA identical in sequence with one of

the strands of the duplex DNA. In protein-coding genes, translation will convert the

nucleotide sequence of mRNA into the sequence of amino acids comprising a protein.

This transformation of information (from gene to gene product) called gene expression.

Gene expression is a complex process regulated at several stages by other biological

phenomenon.

For example, a large group of proteins play an important role by this point of view.

These proteins are known as transcription factors and they can regulate the expression

of a gene in a positive or a negative sense. In positive regulation, an “excitatory”

protein binds to the promoter (usually a region of the DNA up-streaming the gene

sequence), and increases (or activates) the level of mRNA transcribed for that gene (as

summarized in Figure 2.5). Some other transcription factors exert a negative regulation

by decreasing the mRNA transcription rate of a gene.

Several other aspect of the gene expression process may be modulated. Apart from

DNA transcription regulation, the expression of a gene may be controlled during RNA

processing and transport (in eukaryotes), RNA translation, and the post-translational

modification of proteins. The degradation of gene products can also be regulated in the

cell. Recently, RNA has been discovered to play a direct role in regulation of gene ex-

pression and it is known that small RNA molecules can act, through RNA interference

mechanism, as “silencers” of gene expression (see (28, 40)).

The different cellular components (mRNA, proteins and DNA) compose complex hi-

erarchical networks of interactions that regulate and supervise all the cellular processes,

and among these its “transcriptional program”. Particularly, the levels of interactions

in which gene expression activity tightly regulate itself are referred as “transcriptional

networks” or “gene expression networks”.

In these networks the interacting entities are genes whose product act as transcriptional

17



2. BACKGROUND

Figure 2.5: A view of gene regulation - [Image from: http://www.nature.com]

factor (or regulates in other ways) the transcriptional activity of other genes (i.e. target

genes).

2.2.4 How to measure gene expression level

Measuring gene expression is an important task in several fields of life sciences and the

ability to quantify the level at which a particular gene is expressed within a cell, tissue

or organism can give a huge amount of information.

When dealing with a small number of genes a possible option for measuring their ex-

pression levels consists in using realtime Polymerase Chain Reaction (PCR). Often

referred also as qPCR or qrt-PCR, realtime PCR is used to amplify and simultane-

ously quantify a targeted DNA molecule. It enables both detection and quantification

(as absolute number of copies or relative amount when normalized to DNA input or

additional normalizing genes) of one or more specific sequences in a DNA sample.

When used for quantifying the level of expression of a given gene, real-time PCR

is combined with reverse transcription and actually complementary DNA (cDNA) is

quantified.

The procedure follows the general principles of polymerase chain reaction. The start-

ing point is a portion of the sequence of the DNA (or cDNA) molecule that one wishes
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to replicate and “primers”: short oligonucleotides (containing about two dozen nu-

cleotides) that are precisely complementary to the sequence at the 3’ end of each strand

of the DNA to amplify (as depicted in Figure 2.6).

Figure 2.6: Polymerase chain reaction - [Image from: http://campus.queens.edu]

In a series of iterative step (PCR cycles) the DNA samples are heated to separate

their strands and mixed with the primers. If the primers find their complementary

sequences in the DNA, they bind to them. Synthesis begins (as always from 5’ to 3’)

using the original strand as the template (see Figure 2.8).

This “polymerization” continues until each newly-synthesized strand has proceeded

far enough to contain the site recognized by the other primer. Now there are two DNA

molecules identical to the original molecule. Their are heated, separated into their

strands, and the whole process repeat. In conclusion, each cycle doubles the number

of DNA molecules of the previous cycle (see Figure 2.8).

Fluorescent reporter probes detect only the DNA containing the sequence of inter-
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Figure 2.7: Polymerase chain reaction - [Image from: http://campus.queens.edu]

Figure 2.8: Polymerase chain reaction - [Image from: http://campus.queens.edu]
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est thus allowing the detection of relative concentrations of DNA present during the

reactions, which are determined by plotting fluorescence against cycle number, as sum-

marized in Figure 2.9. A threshold for detection of fluorescence above background is

Figure 2.9: Realtime PCR outcomes -

determined. The cycle at which the fluorescence from a sample crosses the threshold

is called the cycle threshold, Ct. The quantity of DNA theoretically doubles every

cycle during the exponential phase and relative amounts of DNA can be calculated, for

example a sample whose Ct is 3 cycles earlier than another’s has 23 = 8 times more

template. Since all sets of primers don’t work equally well, one has to calculate the

reaction efficiency first. Thus, by using this as the base and the cycle difference Ct as

the exponent, the precise difference in starting template can be calculated.

Amounts of RNA or DNA are then determined by comparing the results to a stan-

dard curve produced by realtime PCR of serial dilutions of a known amount of RNA

or DNA. As mentioned above, to accurately quantify gene expression, the measured

amount of RNA from the gene of interest is divided by the amount of RNA from a

housekeeping gene (i.e. a gene that is constitutively expressed) measured in the same

sample to normalize for possible variation in the amount and quality of RNA between

different samples. This normalization permits accurate comparison of expression of the
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gene of interest between different samples, provided that the expression of the reference

(housekeeping) gene used in the normalization is very similar across all the samples.

Measuring gene expression with this method for a large number of genes or at a genome-

wide scale is infeasible and other tools, such as DNA microarray, are used for this case.

A DNA microarray (or DNA chip) is basically a set of microscopic fragments (i.e.

spots) of DNA oligonucleotides on a solid surface of roughly 1 cm2. These fragments

are divided in about 250.000 cells (depending from the platform model) and each of

these cells contains millions of copies of a specific sequence of DNA (i.e. probes). These

can be a short section of a gene or other DNA element that are used to hybridize (i.e.

permanent bind) complementary sequences of cDNA.

cDNA is DNA synthesized from a mature mRNA template in a reaction catalyzed by

the enzyme reverse transcriptase and the enzyme DNA polymerase. DNA microarrays

can be used to measure changes in expression levels, to detect Single Nucleotide Poly-

morphisms (SNPs), or to genotype or re-sequence mutant genomes.

Here we focus on microarrays as tools to simultaneously measure the level of expression

of thousands of genes (i.e. genome-wide measurement). In a typical microarray exper-

iment like this, the nucleic acid of interest (in this case RNA) is purified and isolated

(total as it is nuclear and cytoplasmic). After a quality control of the RNA a labelled

product cDNA is generated via reverse transcription. The labeling is typically obtained

by tagging fragments with fluorescent dyes. Finally, the labeled samples are then mixed,

denatured and added to the microarray surface. Here the cDNA fragments hybridizes

with the corresponding complementary DNA spot forming a double helix structure. At

this point, the fragments that did not hybridized are washed away and it is possible

to count the number of formed double helix thus allowing the quantification of the

corresponding RNA levels hence the level of expression of the corresponding coding

genes. This counting is achieved after drying the microarray, by using a special ma-

chine where a laser excites the dye and a detector measures its emission. The whole

process is summarized in Figure 2.10.

In a cDNA microarray experiment fragments are labelled with different dyes (thus

different colors) depending on the biological condition they come from (i.e. a cell cul-

ture grown in an condition of interest such as, for example, the treatment with a drug

or in an anaerobic environment, and in a “normal” condition, respectively) (see Figure

22



2.2 Molecular biology: basic principles and techniques

Figure 2.10: cDNA Microarray technology - [Image from: http://www.columbia.edu]
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2.10). The final measurement is a “differential” expression value for each probe, quan-

tifying wether the gene corresponding to a given probe is expressed the more in the

condition of interest, or in the normal one, or in both of them.

In oligonucleotide microarrays (for example, Affymetrix gene chips), hybridized

samples come from just one biological condition during an experiments (see Figure

2.11). Once labeled, the sample of cRNAs can be hybridized to the array and measured

values are not differential but absolute. In order to compute differential expression

values hybridizations of the control condition samples are needed on different chips.

Figure 2.11: Affymetrix GeneChip Scheme - [Image from:

http://www.columbia.edu]
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2.2.5 Protein detection and localization assays

The analysis of the location of proteins is a powerful tool applicable on a whole or-

ganism or at a cellular scale. Investigation of localization is particularly important for

study of development in multicellular organisms and as an indicator of protein function

in single cells.

Western blotting (or immunoblotting) is a technique used to identify and locate pro-

teins based on their ability to bind to specific antibodies. This kind of analysis can

detect a protein of interest from a mixture of a great number of proteins and can provide

information about the size of the protein (with comparison to a size marker), and also

give information on protein expression (with comparison to a control such as untreated

sample or another cell type or tissue).

The first step is “gel electrophoresis”. The proteins in the sample are separated accord-

ing to size on a gel. Usually the gel has several lanes so that several samples can be

tested simultaneously. The proteins in the gel are then transferred onto a membrane

made of nitrocellulose or PVDF, by pressure or by applying a current. This is the ac-

tual blotting process and is necessary in order to expose the proteins to antibody. The

membrane is “sticky” and binds proteins non-specifically (i.e. binds all proteins equally

well). Protein binding is based upon hydrophobic interactions as well as charged inter-

actions between the membrane and protein.

The membrane is then blocked, in order to prevent non-specific protein interactions

between the membrane and the antibody protein. The first antibody (often called the

primary antibody) is incubated with the membrane. “Incubation” is typically accom-

plished by diluting the antibody in a solution containing a modest amount of a salt such

as sodium chloride, some protein to prevent non-specific binding of the antibody to sur-

faces and a small amount of a buffer to keep the solution near neutral pH. The diluted

antibody solution and the membrane can be sealed in a plastic bag and gently agitated

for an “incubation” of about half an hour. The primary antibody recognizes only the

protein of interest, and will not bind any of the other proteins on the membrane. After

rinsing the membrane to remove unbound primary antibody a secondary antibody is

incubated with the membrane. It binds to the first antibody. This secondary antibody

is usually linked to an enzyme that can allow for visual identification of where on the

membrane it has bound. The enzyme can be provided with a substrate molecule that
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will be converted by the enzyme to a colored reaction product that will be visible on

the membrane. Alternately, the reaction product may produce enough fluorescence to

expose a sensitive sheet of film when it is placed against the membrane. The whole

process is summarized in Figure 2.12.

Figure 2.12: Immunoblotting - [Image from: http://www.elec-intro.com]

Same principles lead other immunofluorescence techniques: the specificity of anti-

bodies to their antigen is exploited to target fluorescent dyes to specific biomolecule

targets within a cell, and therefore to allows visualization of the distribution of the
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target molecule through the sample. Immunofluorescence is a widely used example of

immunostaining and is a specific example of immunohistochemistry that makes use of

fluorophores to visualize the location of the antibodies.

2.3 Network Theory: basic principles

A network (or equivalently, a graph) is the natural abstraction combined with the cor-

responding logical-mathematical formalism of a set of objects and their relations. The

concept of network is general, “cross disciplinary”, and independent from the kind of

its composing objects and relations. Sometimes these are strictly dependent from the

field in which, in turn, the concept of network is used and they can represents concepts

and properties very different among each others: similarity, capacity, interaction, co-

operation, transition, etc.

Formally, a network G is defined as the pair (V,E), which is composed by the set

of objects V = {v1, . . . , vn} called the network “vertex” or “nodes”, and by the set

E = {e1, . . . , em} called the network “edges” or “links”, representing the relations oc-

curring among the network nodes.

The single edge e ∈ E is a pair of nodes (x, y) ∈ V 2 and it represents the relation

occurring between node x and node y. In this case, nodes x and y are said to be joined

by the edge e. If in the pair (x, y) the sorting order is relevant then the network G will

be considered as “oriented network” (or directed graph, or di-graph), being the edge

(x, y) different from the edge (y, x). Otherwise the network will be said “not oriented”

(or simple graph).

An edge e = (x, y) of a directed network is composed by a “source” node s(e) = x

(or head of e) and a “destination” node d(e) = y (or “tail” of e). On the other hand,

in a simple graph, the two nodes joined by the edge e can be considered as source or

destination interchangeably.

Nodes of a network are visually denoted as circles or points while edges of a directed

network (i.e. directed edges) are denoted as arrows going from the source to the desti-

nation node. Segments are used to denote simple edges.

In Figure 2.14 two example of network are shown: a directed (a) and an undirected

network (b), respectively.
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Figure 2.13: Indirect immunofluorescence - [Image from:

http://www.di.uq.edu.au/indirectif]
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Figure 2.14: Examples of networks - a) directed network, b) undirected network

There is a huge amount of problem in operations research that are modeled through

“weighted networks”. Generally in these models the weight of an edge represent a “loss”

or a “gain” and the solution to most of these modeled problems implies the identifica-

tion of a sub-network (composed by a sub-set of nodes and edges) for which a function

defined on the weights of its edges assumes an optimal value given a certain numbers

of constraints.

For example the identification of a path of edges with minimal total weight between

two nodes is a classical problem of this kind. Another very famous problem is the iden-

tification of the ”minimum spanning tree” (i.e. the sub-network obtained by linking

together each pair of nodes with path of minimal total weight).

Many other definitions, statistics and measures on networks define their “topological”

(i.e. structural) features, their “modularity”, the density and localization of their edges.

As an example, in a network, a “clique” is a subset of its vertex that are mutually joined

by an edge and a “maximal clique” is a clique for which is not possible to add other

nodes without violating the condition of mutual conjunction.

On the other hand the “local clustering coefficient” quantifies the edge density on a

defined subset of nodes. Specifically, it measures the tendency of the nodes neighboring

(i.e. connected to) a given node to form a clique.

Another important property of network is “modularity”: the tendency to contain “com-

munities”. A network community is a group of nodes that are “densely” interconnected

among each other and with fewer connections to nodes outlying group (where “densely”

and “fewer” are statistically defined).
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Community structures are quite common in real networks. Social networks often

include community groups (the origin of the term, in fact) based on common location,

interests, occupation, etc. Metabolic networks have communities based on functional

groupings. In some network other concept of modularity can be observed for example

when nodes of higher degree (hubs) are better connected among themselves than are

nodes with smaller degree. A network with this property is said to presents modules

termed “rich-clubs”. The presence of the rich-club phenomenon (100) may be an in-

dicator of several interesting high-level network properties, such as tolerance to hub

failures. Being able to identify these sub-structures within a network can provide in-

sight into how network function and topology affect each other. Many algorithms have

been proposed to find communities in network (43, 48, 109).

Other important features of networks regard the statistical distribution the degree and

basically are used to discriminate random, hierarchical and complex networks.

2.3.1 Networks as alternative to euclidean embeddings

When the object of study is the analysis of “similarities” among a set of objects then

“similarity-networks” are a very effective alternative to “euclidean embeddings”. An

euclidean embedding is a placement (i.e. a disposition) of a set of objects in a (usually)

low-dimensional and visualizable space and it is an important tool in unsupervised

learning and in preprocessing data for supervised learning algorithms. Euclidean em-

beddings are especially valuable for exploratory data analysis and visualization because

they provide easily interpretable representations of relationships among objects. Many

dimensionality reduction techniques such as Principal Components Analysis (PCA)

(71) or MultiDimensional Scaling (MDS) (23) make possible the euclidean embedding

of a set of objects, starting from their coordinates in a high dimensional original space

or their pair-wise similarity/distance scores. With respect to euclidean embeddings

similarity networks are more easily computable and visualizable and can be exploited

for a number of tasks in data exploration analysis through topological tools from net-

work theory.

In these networks the edges have weights corresponding to a similarity scores (or dis-

tances, inversely proportional to similarity) and, usually, only “significant” edges (whit

weights above a statistically significant threshold) are included.

In some cases (i.e. when the network is too dense, it contains to much connections) is
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very useful to “compress” it by identifying its modules and communities. Anyway it

must be stressed that in this case modularity is deemed as a property to be provided

to the network rather than being one of its intrinsic features and it is strictly linked to

cluster analysis. Cluster Analysis is one of the most famous tool for data exploration

whose goal is grouping objects of similar kind into respective categories without know-

ing anything but the data itself. One could look to cluster analysis as to a classification

tool in which no sets containing already classified samples are available as well as no

prior knowledge about the composition that the output clusters should have. Hence

nothing could be learnt in any kind of preliminary matter training.

Formally, the problem tackled with cluster analysis is a particular case of a more gen-

eral class of problems: the partitioning problems. In this class of problems, given a set

of objects N and a set of K functions f = (f1, f2, . . . , fk) from the set N to R (real

numbers), the aim is to find a partition A = (A1, A2, . . . , Ak) of the set N that min-

imizes or maximizes an objective function g(f1(A1), ..., fk(Ak)). In the case of cluster

analysis the function defined on the subsets Ai of N is the same for every i = 1, . . . , k

and usually it is the sum of the pairwise similarity between the elements of Ai. The

function g is usually a sum and it should be maximized. In other words, in this class

of problems, the production of a partition in which data points belonging to the same

subset (cluster) are as similar as possible is aimed. So, the first observation we can

make is that the ability to quantify a similarity (or distance, its inverse) between two

objects is fundamental to clustering algorithms.

The greatest part of clustering algorithms are based on the concept of distance so we

have to choose a similarity measure that allows the set of objects to be embedded in

a metric space. Usually the guidelines that we can follow are: we use a lot of detailed

knowledge to make a metric space embedding then we use classical distance metric (i.e.

euclidean, correlation, cosine, etc.) in this space to make clustering or we use a user

defined distance metric in a clustering algorithms directly.

Almost all the clustering approaches can be divided in two major class: hierarchical

clustering algorithms and partitional clustering algorithms. The methods of the first

class build (agglomerative algorithms), or breaks up (divisive algorithms), a hierarchy

of clusters. The traditional representation of this hierarchy is a tree (called a dendro-

gram), with individual elements as leaves and a single cluster containing every element

as root. Agglomerative algorithms begin from the leaves of the tree, whereas divisive
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algorithms begin from the root. The methods of the second class attempt to directly

decompose the data set into a set of disjoint clusters. The most famous algorithm of

this second class is the K-means algorithm. In partitional clustering algorithms the

value of the input parameters (like i.e. the value of K in K-means or the map dimension

in Self Organizing Map approach) plays a key role and in many cases it determines the

final number of clusters. In hierarchical clustering algorithms the same role is played

by the choice of the dendrogram cutting threshold. A way to justify the choice of these

values consists in making same preliminary matter statistical analysis on the set that

we want to cluster instead of blindly make clustering on it. Alternatively, an heuristic

can be used. Moreover, this first analysis can check the effective clusterizability of a

set, in other words, it check the presence of well localized and well separable homoge-

neous (by the similarity point of view) groups of objects in the set. The tools allowing

this kind of analysis are based on the clustering stability concept(11, 134). In these

methods many clusterings are computed by previously introducing perturbations into

the original set, and the candidate clustering is considered reliable if its composition

is approximately reflected across all the computed clusterings. Informally, the stability

of a given clustering is a measure that quantifies the change the clustering is affected

by, after a perturbation on the data set.

Usually the objective functions that clustering algorithms tries to minimize has multi-

ple local minimums. It means that multiple and, in some cases very different, solutions

grant very close optimal values for the objective function.

For all these reasons, with cluster analysis the ability to form meaningful groups of

objects (one of the most fundamental modes of intelligence) can be approximatively

simulated by automatic procedures. However, enabling computers to accomplish this

task is a difficult and ill-posed problem.

2.4 Computational Drug Discovery

Drug industries are part of a very segmented market in which the largest company

(Pfizer) only has an 11% market share. In this highly competitive field risks are ex-

tremely significant for investors and the term of profits is very long. Usually a novel

drug takes from 10 to 20 years to be developed, and most drugs fail to get to the mar-

ket.
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Additionally this industry area is highly regulated by governmental regulatory agen-

cies like the U.S. Food and Drug Administration (FDA) and the European Medicine

Agency (EMEA).

The production process in drug has traditionally been divided in four main phases that

can be roughly summarized as:

• Discovery: after a disease or a pathological condition of interest has been iden-

tified, the responsible proteins are isolated and characterized (for example, by

identifying causal genetic changes); then a “pharmacophore” (i.e. a set of struc-

tural features in a molecule that is recognized at a receptor site and is responsible

for that molecule’s biological activity) is identified on the basis of these proteins;

usually this is done by searching for compounds that interacts with the target

protein by using huge libraries of compounds;

• Development: the objective of this phase is to synthesize lead compounds,

new analogs with improved potency, reduced off-target activities, and physio-

chemical/metabolic properties suggestive of reasonable in vivo pharmacokinetics;

this optimization is accomplished through chemical modification of the pharma-

cophore (also called “hit structure”), with modifications chosen by employing

structure-activity analysis;

• Clinical trials: depending on the type of product and the stage of its devel-

opment, investigators enroll healthy volunteers and/or patients into small pilot

studies initially, followed by larger scale studies in patients that often compare

the new product with the currently prescribed treatment; as positive safety and

efficacy data are gathered, the number of patients is typically increased; clinical

trials can vary in size from a single center in one country to multicenter trials in

multiple countries;

• Marketing: the process of advertising or otherwise promoting the sale of the

novel approved drug.

Before computational drug discovery was introduced, drugs were discovered by chance

in a trial-and-error manner. Not even the introduction of new technologies, such as

High-Throughput Screening (HTS) that can experimentally test hundreds of thou-

sands of compounds a day for activity against the target protein, have resulted in a
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more successful identification of promising drug candidates or reduced the process costs.

Additionally, the use of HTS is very expensive.

Computational methods can be used to predict or simulate how a particular compound

interacts with a given protein target. They can be used to assist in building hypotheses

about desirable chemical properties when designing the drug and they can be used to

refine and modify drug candidates. Computational Methods can also be used to auto-

mate repetitive tasks such as searching large compound databases. Virtual Screening

is a general term for computational methods that use computers to screen a database

of virtual drug candidates to identify promising candidates (leads). This can be seen

as an alternative to perform laboratory experiments or to perform HTS. The major

advantages compared to laboratory experiments are: low costs, it is possible to conduct

investigation on compounds that have not yet been synthesized, possible preliminary

step to select set of compounds for real HTS, investigation are conducted in a huge

chemical search space in which the number of possible virtual molecules is higher than

the number of real ones.

When the structure of the target is known the most commonly used virtual screening

method is molecular docking. Molecular docking programs try to predict how a drug

candidate binds to a protein target without performing a laboratory experiment.

Other important applications of computational drug discovery are led by the follow-

ing requirements and offer proper solutions: chemical structure and other biological

data need to be stored for millions of datapoints so computational representation of

2D chemical structure are widely used; thousands of active compounds need to be or-

ganized into meaningful groups hence cluster analysis or machine learning methods are

effective in grouping similar structures together and relate to activity; as much infor-

mation as possible must be learnt from the data (data mining) so statistical methods

and other unsupervised computational techniques are applied to the structures and

related information; finally, microarray technology allows to look for changes in protein

expression for different people with a variety of conditions, and to see if the presence

of drugs changes that expression, thus making possible the design of drugs to target

different phenotypes.
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2.5 Network analysis improves understanding of drug use

and effects

In several recent works it has been shown that biological network analyses can con-

tribute in understanding the effects of clinically used pharmaceuticals (12). Various

approaches can identify previously unknown targets of the drug, pathways affected by

the drug and pharmacogenomic factors affecting the usage of the drug. These can in

turn be used to explain off-target effects, adverse events or suggest additional indi-

cations or contraindications for the usage of a drug. While many drugs have known

therapeutic targets, many other drugs that are currently used work through unknown

mechanisms. Furthermore, even drugs with a known target often have off-target effects.

These are effects, often undesirable, of a drug which can not be explained through its

interaction with its primary targets.

Network studies of drugs have allowed identification of some of these secondary targets

of drugs (18). Another way drug targets can be linked together into a network involves

a chemoinformatic approach in a method for scoring the similarity between the sets of

ligands for different receptor (76). Then this score can be used to construct a network

of receptors connected together if they bind structurally similar ligands . This analysis

showed that many biologically related drug targets clustered together by ligand simi-

larity even though the targets themselves have minimal sequence similarity.

Drug action is not only related to the targets of the drug, but can also be affected by

variations in metabolic enzymes, transporter proteins and downstream effects of drug

action. The field of pharmacogenomics identifies genetic variations that can change

drug effects. Network analyses can contribute to identification of such pharmacogenes,

genes which modulate the response to a drug (55).

In addition to identifying unknown targets of drugs and pharmacogenes, network-based

approaches can suggest potential alternative uses of drugs (91).

By using a text-mining based approach information about drugs, treatments and dis-

eases can be integrated into a Disease-Drug Correlation Ontology (117). By querying

the complex network structure surrounding a disease drugs that might modify its course

can be predicted.

These kind of study (referred as Systems pharmacology approaches) are changing the

traditional drug discovery pipe-line and the way about drug actions are tougth. They
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allow a deep understanding of the mechanism of action of the drug enabling proposal

predictions for “drug repositioning”.

Also known as Drug repurposing, Drug re-profiling and Therapeutic Switching, drug

repositioning has been growing in importance in the last few years. Using drug repo-

sitioning, pharmaceutical companies have achieved a number successes, for example

Pfizer’s Viagra in erectile dysfunction and Celgene’s thalidomide in severe erythema

nodosum leprosum. Smaller companies are also performing drug repositioning on a

systematic basis. These companies use a combination of approaches including in silico

biology and in vivo/in vitro experimentation to assess a compound and develop and

confirm hypotheses concerning its usage for new indications.

The most significant advantage of drug repositioning over traditional drug development

is that since the repositioned drug has usually already passed a significant number of

toxicity and other tests, its safety is known and the risk of failure for reasons of adverse

toxicology are reduced. Therefore, the walk of a repositioned drug to the marked is

easier, cheaper and faster.
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Gene Expression Based Methods

and Systems Biology

3.1 Introduction

Systems biology approaches are naturally suited to capture the complexity of drug

activity in cells (12, 61, 96) and the discovery of drug direct target, or more generally of

the drug MoA is strictly linked to the problem of the inference of regulatory mechanisms

in the cell.

In this chapter we introduce some basic concepts in this field and we report about some

results that we obtained in two side-projects we were involved in.

Finally, we describe the gene-signature based methods for the analysis of phenotypes

and the study of drug effects and we introduce the starting point of our main project:

the Connectivity Map (cMap).

3.1.1 Inference of Gene Regulatory Network

In the context of systems and computational biology a “regulatory network” is a com-

plex set of interactions occurring among different entities within the cell (i.e. DNA,

mRNA, proteins, etc.), which tightly regulates its behavior. Depending on which cel-

lular entities are taken into account, different kind of regulatory networks can be dis-

tinguished as a hierarchy of layers, as depicted in Figure 3.1.

A “transcriptional network” can be viewed as a graph in which the nodes are the genes

and there is an edge between two nodes if the transcriptional activities of the corre-
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sponding genes are correlated, in some way. As an example, the gene denoted by 1 in

Figure 3.1 could encode for a transcriptional factor that modulates the expression of

the genes corresponding to the gene denoted by 3.

In protein networks, the nodes represent proteins and the edges identify physical inter-

actions among them. An important subset of these networks are the phosphoproteomic

signaling networks that can be viewed as direct graphs in which nodes are kinase pro-

teins and their substrates.

At the third level of the hierarchy of Figure 3.1 are the “metabolic networks”. Metabo-

lites are usually small molecules produced, absorbed and/or transformed by the cells

through different chemical reactions. Since these reactions are typically linear and uni-

directional, metabolic networks are usually represented as trees (i.e. directed acyclic

graphs) in which nodes are metabolites and there is an edge between two nodes if an

enzyme catalyzes a chemical reaction transforming the metabolite represented by the

first node into the metabolite corresponding to the second one.

1 2 3

Figure 3.1: Biological network layers - Depending on the involved cellular entities,

regulatory networks are organized in different layers of specificity

The development of computational methods to reconstruct these regulatory net-

works is crucial for the following tasks:

• Identification of functional modules (i.e. subset of genes densely interconnected

among each other thus consistently involved in the same biological processes);

• Identification of physical interactions (i.e. new transcription factors or transcrip-

tion factor targets) elucidating the mechanism of a disease and/or suggesting new
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“druggable” targets;

• Prediction of the system response to an external perturbation as well as the

identification of the specific target of the perturbation (i.e. identification of drug

target or, more generally, of drug MoA).

The problem of “reverse engineering” gene regulatory network from gene expression

data can be stated as follows: given a set of gene-expression data obtained from multiple

microarray experiments, we would like to infer the network of genes that produced such

data, that is, the gene-gene interactions describing the underlying biological process (9).

A number of approaches have been proposed, based on correlation analysis (120), on

mutual information relevance networks (97), on Bayesian networks (153), on clustering

algorithms (37) and on deterministic Ordinary Differential Equations (ODEs) models

(34, 45).

All these methods follow the computational pipeline depicted in Figure 3.2: differential

gene expression measurements are taken from a system (i.e. a cell culture) grown in

different conditions and/or exposed to different perturbations (i.e. drug treatment,

stress, etc.) then they are given in input to a learning algorithm, which predicts a

model of transcription regulation that could underlie the system under investigation.

Figure 3.2: Computational pipeline - The general computational pipeline of the algo-

rithms for gene-regulatory network inference.

3.1.2 The Network Inference by multiple Regression (NIR) algorithms

As described in (45), in the NIR approach, the gene network dynamics describing the

time evolution of the mRNA concentration transcribed by each gene are modeled by a
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set of ordinary differential equations:

dx

dt
= f (x,u) (3.1)

where x represents the mRNA concentrations of the genes in the network and

u is a set of transcriptional perturbations. Basically, NIR is based on the strong

assumption that the rate of change in expression for each gene can be modeled as a

linear combination of the expression level of its regulator genes plus a proper component

of the external perturbation to the system (as summarized in Figure 3.3).

Figure 3.3: The NIR assumption - The rate of change in expression of the generic

gene X1 can be modeled as a linear combination of a subset of other genes plus an external

perturbation.

This assumption of linearity is supported by the following considerations. Assuming

that the system under investigation is at equilibrium near a stable steady-state point

(i.e. the genes are close to an equilibrium point in which their level of expression are

sufficiently kept constant), then we can apply a small perturbation to each of its genes.

A perturbation is small if it does not drive the system out of the basin of attraction

of its stable steady-state point and if the stable manifold in the neighborhood of the

steady-state point is approximately linear. With these assumptions the set of nonlinear

rate equations can be linearized near their stable steady-state point.
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Thus for each gene i, in a network of N genes, we can write the equations

dxil
dt

=
m∑
j=1

aijxjl + uil = aixl + uil, i = 1, . . . , N, l = 1, . . . ,M (3.2)

where xil is the mRNA concentration of gene i following the perturbation in experiment

l; aij represents the influence of gene j on gene i; and uil is an external perturbation

to the expression of gene i in experiment l.

Identifying the gene interactions network means to derive the matrix A of the coefficient

aij for each gene i in the model described above. This can be accomplished if we measure

the mRNA concentration of all the N genes at steady state (i.e., dxi/dt = 0) in M

experiments and then we solve the system of equations:

AX =−U (3.3)

where X is an N ×M matrix whose columns are the xl vector and U is an N ×M

matrix whose columns are the ul vectors. This system can be solved only if M is at

least equal to N , however the recovered weights A will be extremely sensitive to noise

both in the data and in the perturbations and thus unreliable unless we overdetermine

the system (increasing the number of experiments or assuming the number of regulators

of each gene, k, is much smaller than M).

In order to estimate the coefficients of the gene interaction network (i.e. the matrix

A), NIR essentially solves a linear regression problem for each equation in equation

3.2 assuming an upper bound of k regressors for each predicted gene. That is, it

assumes that each gene can be regulated at most by k other genes; the value of k can

be computed empirically as the best compromise between computational complexity

and completeness of the results. Otherwise it can be computed adaptively by using

strategies such as the Akaike’s final prediction error (2).

The set of variables comprising the regressor set is chosen according to the Residual

Sum of Square (RSS) error minimization criterion.

As explained in the next section NIR is one of the most powerful algorithms for the

reverse engineering of gene regulatory network but it requires to a priori know which

is the gene that has been perturbed in each of the experiment.
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3.1.3 The DREAM initiative

We competed, for the challenge number 4 of the Dialogue for Reverse Engineering As-

sessment and Methods (DREAM) 2 competition (138) by applying the NIR algorithm.

The DREAM initiative (together with the annual conference), as claimed by the orga-

nizers, aims at “catalyzing the interaction between experiment and theory in the area of

cellular network inference and quantitative model building in systems biology” in order

to rigorously definine standards and methods in the assessment of reverse-engineering

approaches and to create a repository of benchmark data and algorithms.

Thanks to this initiative, experimental data (both real and “in-silico” simulated data)

are made publicly available every year and people working in this field can try to infer

the true-biological/simulated model (for example, the gene regulatory network) through

which those data have been generated.

We won one of the challenges of the DREAM initiative by applying NIR and by ob-

taining a very high final score.

Moreover, we designed NIR with perturbation Estimates (NIRest) , a tool that builds

upon the original NIR and extends its use to cases in which the generating perturbations

are not known (82).

3.1.4 The IRMA project: In-vivo Reverse-engineering and Modelling

Assessment

The goal of the IRMA project was to provide the systems biology community with an

in vivo benchmark, which can be used as “ground truth” to test and compare model-

ing approaches and reverse-engineering inference strategies. At present, the usefulness

and predictive ability of computation approaches in the field of systems and synthetic

biology cannot be assessed and compared rigorously. To this aim in (19), we built, in

the yeast Saccharomyces Cerevisiae, a synthetic network of five genes regulating each

other for In-vivo Reverse-engineering and Modelling Assessment (IRMA).

The network was designed to be negligibly affected by endogenous genes, and to re-

spond to galactose, which triggers transcription of its genes. Our network (Figure 3.4),

apparently simple, is in fact very articulated in its interconnections generated by the

combination of transcriptional activators and repressors.
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Figure 3.4: IRMA - Schematic diagram of IRMA. New transcriptional units (rectangles)

were built by assembling promoters (red) with non-self coding sequences (blue). Genes

were tagged at the 3’ end with the specified sequences (green). Each cassette encodes for a

protein (represented as a circle) regulating the transcription of another gene in the network

(solid green lines). The resulting network, is fully active when cells are grown in presence

of galactose, while it is inhibited by the Gal80-Gal4 interaction in presence of glucose.
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In order to infer the topology of IRMA, we analyzed the transcriptional response

of network genes after the following perturbation strategy: we performed multiple

perturbation experiments (to each of the network genes, in turn) and collected mRNA

measurements at the steady state (as explained before, the situation in which the gene

expression levels are sufficiently constant). We then applied NIR to these data. In

each of the perturbation experiments we performed only one gene was perturbed (see

Figure 3.5). Perturbations were realized by over-expressing each of the five network

genes under the control of a promoter that is strongly constitutively expressed in yeast.

In this case we considered a fixed number of regressors for each of the 5 genes (k = 2)

(i.e. we assume that each gene can be regulated by a maximum of 2 other genes). The

regressor set was chosen according to the RSS minimization criterion. Since we have

only 5 genes in the network we exhaustively searched the best regressors in the space

of all the possible couples of genes.

As shown in Figure 3.6, 60% of the network predicted by NIR was composed by

connection that are actually present in IRMA and these performances are clearly better

than those expected to be obtained by chance (40%).

3.2 Analysis of Phenotypic Changes

A phenotype is any observable feature, or trait, of an organism in normal, diseased or

perturbed condition.

“Phenotypic drug discovery”, primarily abandoned in the 1980’s in favor of targeted

approaches to drug development, is nowadays demonstrating its value when used in

conjunction with new technologies (89).

Differential gene expression data following drug treatment can be considered as an

important aspect of a phenotypic change in response to the drug. The goal in this case

is to identify small molecules that modulate the expression of a target gene in a specific

manner, thereby either increasing or decreasing the concentration of the corresponding

protein product. Transcriptional modulation not only provides a potential means to

replace recombinant proteins as drugs, but also provides a novel approach to manipulate

key gene targets in many therapeutic areas.

On the other hand drug perturbations of human cells lead to complex responses upon

target binding. Therefore to focus narrowly on a single target gene does not take into
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Figure 3.5: Perturbing IRMA - In vivo expression levels (by real-time PCR) of IRMA

genes after over-expression of each gene (perturbed gene, indicated by the black dots on

the bars) from the constitutive GPD promoter (gray bars) and after transformation of

the empty vector (white bars). IRMA cells were transformed with each of the constructs

containing one of the five genes or with the empty vector
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Figure 3.6: Inferring IRMA with NIR - Performances of the NIR algorithm when

applied to the inference of IRMA
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account the complexity of physiological functions. For this reason, strategies based on

the analysis of drug-induced changes in gene expression at a genome-wide scale have the

potential to elucidate the cellular response to specific drugs hence to provide significant

efforts to the drug discovery process. Basing on these concepts, prediction of drug

MoA has been attempted by using gene expression profiles following drug treatment in

a valuable number of recent approaches (45, 62, 65, 79, 80, 152)

3.2.1 The Connectivity Map dataset

The Connectivity Map (cMap) data-set is a large public database of genome-wide gene

expression data from five different human cancer cell lines, treated with ≈ 1, 300 bio-

active small molecules at different concentrations (79, 80).

Data are organized in experiments (batches) composed by two or more microarray hy-

bridizations of the treated cell line and one or more hybridizations of the untreated

cell line as negative control, for a total number or 6,100 “instances”. An instance is

the basic unit of data and metadata in cMap and consists of a treatment and control

pair and the list of probe sets ordered by their extent of differential expression between

this treatment and control pair. Every instance has a number of attributes including a

unique identifier, the batch in which it was produced, the cMap name of the treatment,

the source of that treatment, the concentration of that treatment, the cMap cell line

used, and the scan (i.e. the chip) numbers for the treatment and its control(s).

The number of treatments and controls per batch can vary as the number of total

treatments across batches per single drug.

The change in expression of a cell line after a treatment is computed by considering

the differential expression values of a treated hybridization with respect to those of the

untreated one (or the set of untreated ones). Hence, each treatment with a drug in

a batch yields a genome-wide differential Gene Expression Profile (GEP) (see Figure

3.7).

The aim of the cMap project is to generate a detailed map that links gene patterns

associated with disease to corresponding patterns produced by drug candidates and a

variety of genetic manipulations.

Together with the data, a pattern-matching tool (detailed in the following sections

and summarized in Figure 3.8) allowing users to find connections between a well defined
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Figure 3.7: The Connectivity Map - Dataset overview

set of genes (a signature) and the GEPs of the cMap has been designed and its imple-

mentation is publicly available on the cMap website (http://www.broadinstitute.

org/cmap/).

3.3 Gene Signature Based Methods

Given a gene expression profile for a set of cells in a specific condition and for a set of

control cells, an important problem is to identify “patterns” of differential gene expres-

sion that can be used as a “summary” of that biological condition. These identified

patterns are useful in a large number of problems (for example, to classify phenotypes

(17)).

A “gene signature” is, in this case, a set of genes whose differential expression pattern

is specific for the condition under consideration and gene signature based methods for

drug study and phenotype characterization are based on the following ideas. Given a

set of microarray gene expression profiles from two different conditions (i.e. healthy vs.

diseased tissues or treated vs. untreated cells) the difference in gene expression can be

used to compose a gene signature. Then the obtained signature can be “connected” to

other conditions (drug treatment, diseases, etc.) consistently expressing the composing
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genes. This form the basis and the leading concept of the tool described in the following

section, upon which the cMap query system is built.

3.3.1 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) (140) is a computational method that deter-

mines whether an a priori defined set of genes (i.e. a gene signature) shows statistically

significant, concordant differences between two biological states (i.e. phenotypes). The

basic idea behind GSEA is that by using predetermined sets of genes, perhaps based

on a function, gene expression profiles could be better interpreted.

GSEA considers experiments with genome-wide expression profiles from samples be-

longing to two conditions (for example, untreated vs. treated cells). Genes are ranked

according to their differential expression between these two conditions yielding the

ranked list of genes L. Given an a priori defined set of genes S (i.e., genes encoding

products in a metabolic pathway, located in the same cytogenetic band, or sharing the

same Gene Ontology (GO) category, or selectively expressed in a disease, or consis-

tently up-regulated in response to a drug treatment), the goal of GSEA is to determine

whether the members of S are randomly distributed throughout L or primarily found

at the top or bottom. The key assumption is that if the genes in S are related to

the phenotypic distinction then they will tend to show the latter distribution. These

propensity is quantified by a measure called the Enrichment Score (ES).

ES is calculated by walking down the list L, increasing a running-sum statistic when

a gene in S is encountered and decreasing it when a gene not in S is encountered.

ES is the maximum deviation from zero encountered in this walk; it corresponds to a

weighted Kolmogorov-Smirnov-like statistic (59).

3.3.2 The Connectivity Map query system

One of the cMap’s unique features is that it allows researchers to screen a huge set of

compounds against an a priori defined gene signature. The query system makes use of

an extension of the GSEA.

The computation starts with a “query signature” and measures the extent of its simi-

larity to each of the reference GEPs in the cMap data set. This query signature is any

list of genes known to be involved in a biological state of interest (i.e. genes correlated

with a subtype of disease or regulated by a biological process of interest etc.).
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The signature is composed by two subset of genes: those that are typically up-regulated

in the described biological state and those that are down-regulated.

The reference gene-expression profiles in the cMap data set are represented in a non-

parametric fashion. Each profile is compared to its corresponding intra-batch untreated

hybridization (the negative control). Then the genes on the array are rank-ordered ac-

cording to their differential expression relative to the control; each treatment instance

thus gives rise to a rank-ordered list of ≈ 22, 000 genes.

The query signature is finally compared to each rank-ordered list to determine whether

up-regulated query genes tend to appear at the top of the list and down-regulated query

genes at the bottom or vice versa, yielding a Connectivity Score (CS) ranging from −1

to 1. In the first case the CS will be near 1 while in the second case it will be near −1.

All instances in the database are then ranked according to their CS; those at the top

are most strongly correlated to the query signature, and those at the bottom are most

strongly anti-correlated. An overview of the method is presented in Figure 3.8.

Figure 3.8: cMap query method - Overview of the cMap query system to link the

GEPs to a well defined genomic signature.

The cMap query system has been successfully used in a valuable number of recent

works and for different purposes (56, 58, 124).

3.4 A first pilot study

In a first pilot study we sought to probe a first release of the cMap dataset (164 small

molecules for a total of 453 instances) in order to selectively compare all the contained

drugs. We did this by using traditional methods for identifying small molecules with
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similar effects on the basis of gene-expression profiles, such as hierarchical or partitional

clustering with genome-wide correlation as similarity metric. The result was that these

methods were not able to group (i.e. to consider “similar”) GEPs following treatments

with the same drug and the dominant detected structure in the correlation induced

space was related to cell type and batch effects (similarity among cells of the same type

grown at the same time).

We assessed this property by means of Positive Predicted Value (PPV) analysis: For

each differential GEP A in the cMap dataset we sorted all the other GEPs according

to their correlation with A (in decreasing order) then we computed for each k “most

correlated to A” GEPs the percentage of them that were obtained with the same drug

of A, for each k = 1, . . . , 453. Results of this assessment are shown in Figure 3.10

(green curve and green area). Only 35% of the GEPs obtained by treating a cell line

with drugs with an average number of 3.2 treated hybridization per batch had as closest

neighbor (according to the correlation measure) another GEP obtained by treating cells

with the same drug. This percentage is equal to 21% for drugs with an average number

of 0.8 treated hybridization per batch and 12% for those with an average number of

0.4 treated hybridization per batch.

On the contrary the percentage of GEPs for which the closest neighbor was a GEP

obtained by treating the same cell line was always 100% (see the green curve and the

green area in Figure 3.11) while the percentages of those for which the closest neighbor

was a GEP obtained in the same batch was equal to 82%, 91% and 91% respectively

(see the green curve and the green area in Figure 3.11).

Since, in the cMap online tool there is a mechanism to build internal signatures, de-

riving set of genes, from the GEPs of the cMap itself, we built a signature for each GEP

and we used these signatures as input to the cMap query system. Then we considered

the obtained CSs as pair-wise similarities between individual GEPs. As shown in the

figures 3.10 and 3.11 (blue curves and blue areas) the performance that we obtained

with this method are comparable with those obtained with classical correlation.
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Figure 3.9: Profile-wise GSEA - Profile-wise CS as a measure of similarity between

individual cellular responses to cMap compounds

Figure 3.10: Distance performances - Profile-wise similarity performances
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Figure 3.11: Distance performances - Profile-wise similarity performances
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4

A novel computational

framework for Drug Discovery

4.1 Introduction

We developed an automatic and robust approach that exploits similarity in the gene ex-

pression profiles of the cMap dataset to predict similarities in drug effect and MoA. We

constructed a Drug Network (DN) of 1,302 nodes (drugs) and 41,047 edges (indicating

similarities between pair of drugs) then applied network theory, partitioning drugs into

groups of densely interconnected nodes (i.e., communities). These communities were

significantly enriched for compounds with similar MoA and can be used to identify the

compound-targeted biological pathways. New compounds can be integrated into the

network to predict their therapeutic and off-target effects.

An overview of the method is depicted in Figure 4.1. At the heart of the approach is

a novel definition of distance between two drugs. This is computed by combining gene

expression profiles obtained with the same compound, but in different experimental

settings, via an original rank-aggregation method, followed by the application of an

established method for the analysis of gene sets along genome-wide ranked lists (Figure

4.1 (a)).

A DN is then generated by considering each compound as a node, and adding a weighted

edge between two compounds if their similarity distance is below a given significance

threshold (Figure 4.1 (b)). By using a novel clustering based procedure, we identified

topological modules in our DN termed “communities” and we organized them into hi-
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erarchical topological structures called rich-clubs. We observed that the whole topology

of the resulting DN reflects hierarchy of similarities among the composing drugs and

that communities were enriched for drug with similar MoA.

The DN is a powerful and meaningful classifier for novel drugs; previously undescribed

compounds can be integrated in the DN by simply using gene expression data following

treatment (Figure 4.1 (c)); then, the unknown MoA can be revealed by analyzing the

surrounding drug communities and their enriched MoAs.

In this chapter we explain how we computed a synthetic consensual response, which is

sufficiently independent from the treated phenotype, for each of the drug in the cMap

(Section 4.2). The drug distance computation is detailed in Section 4.3 while the assess-

ment of its effectiveness is the topic of Section 6.4. The method used to build the DN,

based on our definition of distance between drugs, is explained in Section 6.5, whereas

the community identification and the topological analysis description is provided in

Section 6.6. Network topology is assessed and related to similarities and differences in

drug MoAs in Section 4.7. Particularly, in the subsection 4.7.6 we describe a method

based on fuzzy-logic that we conceived in order to additionally characterize each of the

communities by analyzing the functional annotations of a corresponding set of consis-

tently modulated genes.

The final goals of the DN and its ability in providing the basis for a general drug

classification algorithm are described in the final section.

4.2 Synthetic Consensual Responses to Drugs

As discussed in Chapter 3, an increasing number of published methods builds on the

idea that a given set of genes (i.e. a gene-signature) is sufficient to summarize a biologi-

cal state or condition (108). Gene-signatures and their combined patterns of expression

have been successfully used to classify cancers (87), for predicting survival rates in the

progression of a disease (20) and for explaining drug resistance or susceptibility (39).

Attempts to summarize the general effect of a drug with a gene signature and to classify

drugs on expression patterns alone have so far met with limited success. This happened

because selecting genes whose differential expression is a marker of the general-effect

of a drug (i.e. it is independent from the specificities in the response of the treated cell

line) is non-trivial. Actually, the similarity in gene expression profiles due to unrelated
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Figure 4.1: Methodology overview - (a) A distance value for each couple of drugs

is computed. (b) Each drug is considered as a node in a network with weighted edges

(proportional to distances) connecting pairs of drugs. Network communities are identified.

(c) Ranked list of differentially expressed genes, following treatment with a novel drug X

are merged together, and the distance d(X,Y ) is computed for each drug Y in the reference

dataset. X is connected to drugs whose distance is below a significant threshold.
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stimuli in cells grown at the same time (81) (also called “batch effect”) is a phenomenon

that needs to be overcome.

Inspired by these considerations, we developed an approach that is able to derive, for

each drug in the reference dataset (i.e. the cMap), a consensus synthetic transcrip-

tional response. This response summarizes the transcriptional effect of the drug across

multiple treatments on different cell lines and/or at different dosages.

As starting point, for each compound in the cMap, we considered all the transcriptional

responses following treatments, across different cell lines and/or at different concentra-

tions. Each of these transcriptional responses was represented as a list of genes ranked

according to their differential expression. We then computed a single synthetic ranked

list of genes, the Prototype Ranked List (PRL), by merging all the ranked lists referring

to the same compound (Figure 4.2).

In order to equally weight the contribution of each of the cell lines to the drug PRL,

rank merging was achieved with a procedure we conceived, which is based on a hierar-

chical majority-voting scheme, where genes consistently over-expressed/down-regulated

across the ranked lists are moved at the top/bottom.

We observed that 78% of the compounds contained in the cMap dataset were tested

on, at least, three different cell lines (out of five) and just 6% of them were tested on

a single cell line. Therefore, for the majority of the compounds in the cMap dataset,

we have multiple treatments suitable for being merged together in order to compose

a synthetic and general cellular response to the drug. For the minority of drugs (6%)

that were tested on a single cell line at a single concentration, we had a single ranked

list of genes, and therefore we used this single list as the cellular response to the drug.

In the rest of this chapter we will make use of the following notation:

• P : a set containing all the Microarray Probe-set Identifiers (MPI);

• m: the total number of MPI = |P | (note that, for the microarray platform used

in our reference dataset, m = 22.283);

• D: the set of all the possible permutations of the same set of m MPI;

• X: a set of ranked lists of MPI computed by sorting, in decreasing order, the

genome-wide differential expression profiles obtained by treating cell lines with

the same drug, X ∈ D;
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• r : P ×D → [1, . . . ,m]: a function with values in the interval [1, . . . ,m], assigning

to the couple composed by a MPI i ∈ P and a ranked list d ∈ D the rank position

of i in d;

• δ : D2 → N : the Spearman’s Footrule distance associating to each pair of ranked

lists in X, a natural number quantifying the similarity between them;

• B : D2 → D: the Borda Merging Function associating to each pair of ranked

lists in X a new ranked list obtained by merging them with the Borda Merging

Method.

Figure 4.2: Synthetic consensual response to the drug - A drug PRL is obtained

by merging together all the GEPs following treatments with a given drug A on a variety

of human cell lines with different concentrations.

4.2.1 How to merge ranked lists of objects

We chose to use a famous and simple method to pair-wisely merge ranked lists of

genes: the Borda Merging Function. This function is defined as B : D×D → D and it

associates to a couple of ranked lists of the same objects (i.e. two permutations of the

same genome-wide set of MPIs) a third list that summarizes the sorting order of both

the previous ones. So, B(x, y) = z with x, y, z ∈ D. This function simply implements
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a majority voting scheme by computing the list of values P = [p1, p2, . . . , pm] in which

pi = r(i, x) + r(i, y), i = 1, . . . ,m. Where r is the function previously defined.

Finally a new ranked list of probes z is obtained by sorting them according to the

corresponding values in P , in increasing order.

4.2.2 Adaptive weighting of individual cell responses

The cMap contains some experiments in which several treatments with a single drug on

a particular cell line are available, but only one, or few of them, have been performed

on the other cell lines. In this case, applying a single majority voting method (i.e.,

the Borda Merging Method) will lead to a final merged list in which the response of

these cell lines with a smaller number of treatments are poorly represented. In order

to avoid an over-representation of the most treated cell line and to equally weight the

contribution of each of the cell specific responses, we designed a novel method that is

capable to implicitly and adaptively compute these weights while it merges the lists.

This novel algorithm builds a PRL for each drug by combining the following tools: a

measure of the distance between two ranked lists (Spearman’s Footrule), a method to

merge two or more ranked lists (the Borda Merging Method) and an algorithm to obtain

a single ranked list from a set of them in a hierarchical way (the Kruskal Algorithm)

(22, 33, 86). For this reason we named this algorithm the KRUBOR merging method.

Similarly to a hierarchical clustering method, it first computes the pair-wise Spearman’s

Footrule distances between all the ranked lists obtained with the same drug. Then it

merges the two closest lists according to this distance with the Borda Merging Method,

obtaining a new ranked list. Then this new list replaces the former two (that have

been merged together) and the Spearman’s Footrule distances are recomputed. This

procedure is repeated until only one ranked list remains.

4.2.3 Spearman’s Footrule

We computes the Spearman’s Footrule by neglecting normalization terms (as m is fixed

for all the pairs of ranked lists), as follows:

δ(x, y) =

m∑
i=1

|r(i, x)− r(i, y)| (4.1)

where, x, y ∈ X ⊆ D.
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4.2.4 The KRUBOR algorithm

A pseudocode description of the method is in algorithm 1

Algorithm 1 KRUBOR merging method

PRL=KRUBOR(X)

input: X, a set of ranked lists of genes.

output: PRL, the prototype ranked list of genes for the drug used to produce X.

1. n← |X|
2. while n > 1

3. find i, j : xi, xj ∈ X and δ(xi, xj) = minp,q=1,...,n:p 6=q δ(xp, xq)

4. y = B(xi, xj)

5. X = (X/{xi, xj}) ∪ y
6. n← |X|
7. endwhile

8. PRL← x : x ∈ X
9. return PRL

The input of the algorithm is X (i.e. the set of all the ranked lists obtained by

treating with a given drug). Following the Kruskal Algorithm (22) strategy, the algo-

rithm first searches for the two ranked lists of MPI in X with the smallest Spearman’s

Footrule distance [line 3]. Then it merges them using the Borda Merging Method [line

4], obtaining the new ranked list of MPI y. In the next step [line 5], the two merged

lists are removed from X and the new one is added to it. This process iterates until

only one list remains in X and it is deemed as the drug PRL, which is given in output

[lines, 8 and 9].

An example is provided in Figure 4.3. In this example we start from the pair-wise

Spearman’s Footrule distances computed among all the ranked lists obtained by treating

a set of different cell lines with alvespimycin, an inhibitor of the Heat Shock Protein

90 (Hsp90) protein. In the figure, each node of the tree is a ranked list of genes, and

the euclidean distances between the nodes the Spearman’s Footrule distances between

the ranked lists that they correspond to. The first two lists that the algorithm merges

are those represented by nodes 1 and 2 (the closest ones, i.e. most similar, according to

the Spearman’s Footrule). These two lists are merged with the Borda Merging Method,
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Figure 4.3: Cellular response variability three - Each leaf (ellipses) of this tree

represents a ranked list obtained by treating a cell line with alvespymicin in a given batch

experiment. Colors specify the treated cell line. Each internal node (square) represents

an intermediate ranked list (RL) obtained by merging the two lists represented by its

children nodes. The width of an edge connecting two nodes is inversely proportional to the

Spearman’s Footrule distance between the ranked lists represented by those nodes. The

root of the tree is the final PRL of alvespimycin (large green rectangle). Solid lines indicate

childhood relationships, while nodes connected by a dashed line are siblings.
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yielding the new list represented by node 3. The algorithm continues by merging nodes

4 and 5 (the second closest pair in the set), yielding the list in node 6. This process

iteratively continues until the lists represented by nodes 21 and 22 remains. Then they

are merged, in the last iteration, and the alvespymicin PRL is obtained. If applied to

the cMap, this approach is able to correctly merge ranked lists of differentially expressed

genes obtained by multiple treatments with the same drug, adaptively weighting the

contribution of each cell specific response to the final PRL. It is possible that, with

this algorithm, an outlier (i.e., a ranked list of genes coming from a hybridization with

a systematic error) could be overweighed. This could have been prevented by adding a

pre-filtering step to outliers. However, even without this time-consuming pre-filtering

step, the final results show that our method is robust when applied to the real dataset.

4.3 Drug distance Measure

4.3.1 Drug Optimal Signature

Once a PRL has been obtained for each drug in the cMap, we extract a gene signature

p, q, where p, q ∈ P and |p| = |q| = 250, from each of them. To this end, we selected the

top-ranked 250 genes from a PRL and the bottom-ranked 250 ones (p and q, respec-

tively). We deem this gene signature to be a synthetic short descriptor summarizing

the general cellular response to the drug. In other words, we isolate sets of genes that

seem to consistently vary in response to the drug across different experimental condi-

tions (e.g., different cell lines and different dosages). Considerations about the chosen

signature size can be found in Section 4.5.4.

4.3.2 Computation of the distance between two drugs

Given the optimal signature of the drug d, with p = {p1, . . . , p250} (up-regulated genes)

and q = {q1, . . . , q250} (down-regulated genes), we define the Inverse Total Enrichment

Score (ITES) of the drug d signature {p, q} with respect to the PRL of drug x, as

follows:

ITESd,x = 1− ESp
x − ESq

x

2
. (4.2)
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Here, ESy
x (with y = p or q) is the ES (defined in the Section 3.3.1) of the up-regulated

part of the signature (resp. the down-regulated one) with respect to the PRL of the

drug x. As detailed in Section 3.3.1, ESy
x ranges in [−1, 1], it is a measure based on the

Kolmogorov-Smirnov (KS) statistic, and it quantifies how much a set of genes tends to

group at the top of a ranked list (140). The closer this measure is to 1, the closer the

genes are to the top of the list. The closer to −1, the closer the genes are to the bottom

of the list. ITESd,x ranges in [0, 2], it takes as inputs a signature {p, q} and a ranked

list of genes x, and it quantifies how much the genes in the p set tend to be grouped at

the top of the x PRL and how much the genes in the q set tend to be grouped at its

bottom. The closer these two statements are to the truth, the closer to 0 is the value

of ITESd,x. We defined two different distance measurements among drugs as follows:

Given two drugs A and B,

• AES distance:

aes(A,B) =
ITESA,B + ITESB,A

2
; (4.3)

• MES distance:

mes(A,B) =
min(ITESA,B, ITESB,A)

2
. (4.4)

As shown in the following section, we verified that the AES distance is more stringent

than the MES distance, whereas the MES distance is more sensitive to weak similarities

(Tables 6.5 and 6.7).

We computed a distances for each pairs of drug in the cMap, for a total number of(
1,309
2

)
= 856, 086 values, by using both definitions. The empirical Probability Density

Function (pdf) of the AES distance and the MES distance on the whole cMap are

provided in Figure 4.4 and Figure 4.5 respectively.

4.4 Distance assessment

4.4.1 Gold-Standard Definition

In a first assessment of our drug distance we tested the ability of our measure to con-

sider “closer” to each others those pairs of drugs sharing a therapeutic application, or
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Figure 4.4: AES distance empirical pdf - The empirical probability density function

of the AES distance on the whole cMap dataset
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Figure 4.5: MES distance empirical pdf - The empirical probability density function

of the MES distance on the whole cMap dataset
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a MoA. To this end, we chose as “Gold-Standard” (i.e. a benchmark composed by

true predictions) the “drug ontology” of the Anatomical Therapeutic Chemical (ATC)

classification system (112, 126).

The ATC classification system is a method for drug cataloguing controlled by the World

Health Organization Collaborating Centre (WHOCC) for drug statistics methodology.

In this system each drug is coded with an alphanumerical identifier and the drug/code

mapping yields a “drug ontology” in which compounds are grouped according to the

organ, or system, on which they act and/or their therapeutic and chemical character-

istics. Briefly this ontology is composed by a “forest of trees” in which the position of

a drug is defined by the corresponding ATC code and ATC code prefixes of different

lengths define the 5 different levels of the ontology, i.e. the depth of the trees. An

example of ATC code is provided in Figure 4.6.

Each bottom-level ATC (corresponding to a leaf in one of the trees) stands for

a therapeutic chemical substance in a single indication (or use), implying that more

than one ATC code can be assigned to the same drug: for example, acetylsalicylic acid

has A01AD05 as a drug for local oral treatment, B01AC06 as a platelet inhibitor, and

N02BA01 as an analgesic and antipyretic.

The first level of the ATC code indicates the anatomical main group and consists of one

letter. There are 14 of these main groups (reported in Table 4.1). In the example in

Figure 4.6, the first letter of the ATC code of tamoxifen (an estrogen receptor antagonist

used in the treatment of breast cancer), is L, which correspond to the tree containing

Antineoplastic and Immunomodulating agents.

The second level of the ATC code denotes the therapeutic main group and consists

of two digits. (in the figure: L02 corresponds to the sub-tree containing compounds

used for Endocrine Therapy).

As examples, the complete second level of the B tree (i.e. Blood and blood forming

organs) and L tree (i.e. Antineoplastic and Immunomodulating agents) are provided in

Tables 4.2 and 4.3 respectively

The third level of the code indicates the therapeutic/pharmacological subgroup

and consists of one letter (in the figure: L02B corresponds to the sub-tree containing

Hormone antagonists and related agents).
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Figure 4.6: ATC code example - An example of ATC coding: Tamoxifen is in the

Antineoplastic and immunomulating agents tree (letter L at the first level); in the Endocrine

Therapy subtree (rooted in 02 at the second level); in the Hormones antagonists and related

substances subtree (rooted in B at the third level); in the Anti-estrogens subtree (rooted

in A at the fourth level); in the leaf denoted by 01. The final ATC code is L02BA01.
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Code Group

A Alimentary tract and metabolism

B Blood and blood forming organs

C Cardiovascular system

D Dermatologicals

G Genito-urinary system and sex hormones

H Systemic hormonal preparations, excluding sex hormones and insulins

J Antiinfectives for systemic use

L Antineoplastic and immunomodulating agents

M Musculo-skeletal system

N Nervous system

P Antiparasitic products, insecticides and repellents

R Respiratory system

S Sensory organs

V Various

Table 4.1: ATC coding system, 1st Level - The 14 main groups defined by the first

letter in the ATC coding system.

Code Group

B01 Antithrombotic agents

B02 Antihemorragic agents

B03 Antianemic preparations

B04 Blood substitutes and perfusion solutions

Table 4.2: ATC coding system, 2st Level of the B tree - The 4 sub-trees in the

B tree of the ATC ontology, defined by the second and third digits in the ATC coding

system.

Code Group

L01 Antineoplastic agents

L02 Endocrine Therapy

L03 Immunostimulants

L04 Immunosuppressants

Table 4.3: ATC coding system, 2st Level of the L tree - The 4 sub-trees in the L

tree of the ATC ontology, defined by the second and third digits in the ATC coding system.
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For example, the third level of the C tree (i.e. Cardiovascular system) in the C01 sub-

tree (i.e. Cardiac Therapy) is reported in Table 4.4 while the third level of the L tree

(i.e. Antineoplastic and Immunomodulating agents) in the L02 sub-tree (i.e. Endocrine

Therapy) is reported in Table 4.5.

Code Group

C01A Cardiac glycosides

C01B Antiarrhythmics, class I and III

C01C Cardiac stimulants excl. cardiac glycosides

C01D Vasodilators used in cardiac diseases

C01E Other cardiac preparations

Table 4.4: ATC coding system, 3rd Level of the C tree in C01 sub-tree - The 5

sub-trees in the C tree and C01 subtree of the ATC ontology, defined by the fourth letter

in the ATC coding system.

Code Group

L02A Hormones and related agents

L02B Hormones antagonists and related agents

Table 4.5: ATC coding system, 3rd Level of the L tree in L02 sub-tree - The 2

sub-trees in the L tree and L02 subtree of the ATC ontology, defined by the fourth letter

in the ATC coding system.

The fourth level of the code indicates the chemical/therapeutic/pharmacological

subgroup and consists of one letter. (in the figure: L02BA corresponds to the sub-tree

containing Anti-estrogens).

For example, the other trees of this 4th level (L tree, L02 sub-tree, L02B sub-tree) are

reported in Table 4.6.

The fifth level of the code denotes the chemical substance and consists of two digits

(in the figure: L02BA01 corresponds to the tamoxifen leaf). For example, the complete

list of leafs in the fifth level of the G tree (i.e. Genito urinary system and sex hormones),

G03 sub-tree (Sex hormones and modulators of the genital system), G03D sub-tree

(Progestogens) and G03DC sub-tree (Estrogen derivatives) is reported in Table 4.7.

The ATC coding system can be queried at the following URL: http://www.whocc.

no/atc_ddd_index/.
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Code Group

L02BA Anti-estrogens

L02BB Anti-androgens

L02BG Enzyme inhibitors

L02BX Other hormone antagonists and related agents

Table 4.6: ATC coding system, 4th Level in the L02B sub-tree - The 4 sub-trees

in the L02B sub-tree of the ATC ontology, defined by the fifth letter in the ATC coding

system.

Code Group

G03DC01 allylestrenol

G03DC02 norethisterone

G03DC03 lynestrenol

G03DC04 ethisterone

G03DC06 etynodiol

G03DC31 mehtylestrenolone

Table 4.7: ATC coding system, 4th Level in the L02B sub-tree - The 4 sub-trees

in the L02B sub-tree of the ATC ontology, defined by the fifth letter in the ATC coding

system.
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Given the features of the ATC coding system, is reasonable to assume that two

drugs sharing a prefix of their ATC code could share their therapeutic application,

hence could have a similar MoA. The specificity of this commonality depends on the

length of this shared prefix. For this reason, we assessed the reliability of our drug

distance by labeling all the compounds in the cMap according to their ATC code.

Since only 768 out of the 1, 309 cMap compounds are classified with an ATC code,

we restricted our analysis on the subset composed by the
(
768
2

)
= 294, 528 similarity

distances among couples of ATC-coded drugs. Then we ranked these distances in as-

cending order, and computed the curves shown in Figure 4.7 by meaning of Receiver

Operating Characteristic (ROC) analysis as explained in the following section.

4.4.2 Assessment Methodology

In a typical Binary Classification Problem the task is to assign the objects contained

in a given set to one among two different categories: the positive and the negative one.

The PPV, or precision rate is a measure of the classification performances in such a

problem and it is given by the proportion of objects who are correctly assigned to posi-

tive category (i.e. the True Positive (TP) prediction) out of the total number of object

assigned to this category without taking into account of the prediction correctness (i.e.

the set composed by the TP and False Positive (FP) prediction). Formally:

PPV =
|TPs|

|TPs|+ |FPs|
. (4.5)

In order to evaluate the performances of our drug distance, we considered a binary

classification problem in which the set of objects to classify was composed by all the

possible couples of ATC-coded drugs in the cMap. The two categories to predict were:

1. couples of drugs sharing an ATC code (positive category);

2. couples of drugs without a common ATC code (negative category).

Finally, we considered as positive prediction (i.e. assigned to the positive category) the

set of drug-pairs corresponding to the smallest k drug distances (i.e. the first k couples

of closest drugs, according to our distance). In this way we quantified the tendency
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of our drug distance to consider “close to each other” drugs with similar MoA (i.e.

sharing an ATC code).

Particularly, we computed PPVs considering as positive predictions the drug-pairs cor-

responding to the first k smallest drug distance values, with k = 1, . . . , 280, 875. Each

of these drug-pairs was considered as a TP prediction if the two composing drugs shared

an ATC code prefix.

4.4.3 Results

For each k = 1, . . . , 280, 875, we computed the PPV as the percentage of true positives

TP out of the total number of positive prediction (i.e. TP and FP, k). By considering as

positive category the set composed by couples of drugs sharing an ATC code of length

1, 3, 4 and 5 (1st, 2nd, 3rd and 4th level of specificity in the ATC coding system),

respectively, we obtained the 4 curves plotted in Figure 4.7 for the first 10, 000 smallest

distances (first 100 in the magnification).

Figure 4.7: Drug distance performances - PPVs versus number of considered dis-

tances (from the smallest to the largest). A true positive prediction is defined as the

distance between two drugs sharing an ATC code prefix. Different colors are for curves

computed considering ATC code prefixes of different lenghts.

72



4.5 From pair-wise similarities to Drug-Network

In order to analyze the significance of the obtained PPV curves we computed the

expected PPV had the k considered drug distances been randomly chosen indepen-

dently from their values (dashed line in Figure 4.7).

Given a set of s objects (i.e. ATC-coded drug-pairs) containing n objects of the pos-

itive category (i.e. drug-pairs sharing an ATC code), with n ≤ s, and s − n objects

of the negative category (drug-pairs with no commonalities in their ATC codes), if we

randomly select a subset of k of these objects, then the expected number of objects be-

longing to the positive category among the k selected ones can be computed considering

the following hypergeometric distribution function

f(x, s, n, k) =

(
n
x

)(
s−n
k−x
)(

s
k

) , (4.6)

which quantifies the probability of having x objects belonging to the positive cate-

gory among the k randomly selected ones (with x ≤ k ≤ n ≤ s). The average value of

this function (i.e. the expected value of objects belonging to the positive category) is

given by:
kn

s
. (4.7)

This implies that the expected PPV (i.e. the random PPV ) is equal to the ratio be-

tween the expected number of correct predictions obtained by chance (the last formula)

and k :
kn

sk
=
n

s
. (4.8)

By using this formula we computed the dashed lines in Figure 4.7 assessing that

the classification performances achievable with our drug distance (i.e. its tendency to

consider close to each other drugs with similar MoA) were clearly far from the random

ones at each level of ATC-coding specificity.

In conclusion, according to our distance, drugs sharing a therapeutic application tends

to be close to each other.

4.5 From pair-wise similarities to Drug-Network

4.5.1 Network Evolution

Once we computed a distance value for each pair of drugs of the cMap, we can build

a DN by considering each of the drugs as a node and adding a weighted edge between
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two drugs if their distance is below a given threshold. A first example of the results

that we obtained by doing this is provided in Figure 4.8 (A).

In the first panel of the Figure (A) is represented the first sub-network obtained by

linking two drugs with a weighted edge if their AES distance is under the very stringent

threshold of 0.2 and considering only drugs with at least one incident edge.

This first sub-network contains two connected components. The first one consists of

the following drugs (ATC codes are reported where available): digoxigenin, digoxin

[C01AA05], digitoxigenin, lanatoside C [C01AA06] and helveticoside: cardiac glycosides

from the plants digitalis purpurea, digitalis orientalis and digitalis lanata; ouabain and

proscillaridin [C01AB51]: cardiac glycosides found in the ripe seeds of the african plant

strophantus and from the plant scilla maritima, respectively. All of these drugs are

mainly used to threat congestive heart failure and arrhythmia by increasing the force

of contraction of the heart (52). One of the mechanisms through which this could be

achieved is by increasing the availability of intracellular Calcium ions (Ca2+) (123)

and cardiac glycosides are effective to this because they inhibit the plasma membrane

Sodium-Potassium pump (Na+/K+-ATPase) (123), leading to increased intracellular

Sodium ion (Na+) and Ca2+ and decreased intracellular Potassium ion (K+) (74).

The second component consists of: cephaeline and emetine, two natural alkaloids used

as anti-protozoal, as vomiting inducing agents and for blocking protein synthesis in

eucaryotic cells. This last effect is due to the binding of these compounds to the 40S

subunit of the ribosome, thus by blocking the elongation during protein synthesis (5).

This first result shows the efficacy of our approach in building a drug network from our

drug distances since we used only GEPs without any prior knowledge about the MoA

of the drugs or their chemical descriptors.

In the rest of this section we show how the topology of the DN grows coherently with

the MoAs of the included drugs when the distance threshold for the edge inclusion

increases.

By including connections between drugs whose AES distance was less than 0.3, we

obtained the network depicted in Figure 4.8 (B).

With respect to the previous network, new connections appeared in the component

containing the cardiac glycosides, whereas cicloheximide, an inhibitor of protein synthe-

sis in eukaryotic organisms (38), joined the other protein synthesis inhibitors; a cluster
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Figure 4.8: Network evolution - Each drug is a node and there is an edge between

two drugs if their distance is less than a fixed threshold; edge thickness are inversely

proportional to distance values; nodes are painted according to the known MoA of the

corresponding drugs. (A) A first drug network obtained with distance threshold equal to

0.2; (B) Drug network obtained by linking two drugs if their distance is less than 0.3. (C)

Drug network obtained by linking two drugs if their distance is less than 0.4.
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of Histone deacetylases (HDAC) inhibitors (vorinostat, scriptaid, HC toxin), containing

also the bactericidal antibiotic rifabutin [J04AB04], appeared, and two inhibitors of the

Hsp90 protein (geldanamycin and alvespymicin) were linked together. Hsp90 is one of

the most important “molecular chaperones” that plays a number of important roles,

which include protein folding, intracellular transport, maintenance, and degradation of

proteins as well as facilitating cell signaling.

Further increasing the distance threshold to 0.4 yielded the network in Figure 4.8

(C). Several drugs were added: monorden (an Hsp90 inhibitor) coherently joined the

other two, whereas anisomycin, a protein synthesis inhibitor (51), was linked to the

right component; a small cluster containing CDKs inhibitors (GW-8510, alsterpaullone

and H-7) appeared, luteolin and apigenin (a flavone and a flavonoid, classes of plant

secondary metabolites) became connected, as well as campthotecin and irinotecan

[L01XX19] (TopoI inhibitors), astemizole [R06AX11] and terfenadine [R06AX12] (two

antihistamines), MG-262 and MG-132 (two proteasome inhibitors), dexverapamil and

examestane (two L-type calcium channel blockers), etc.

Interestingly, a weak edge between lanatoside C and anisomycin connected the compo-

nent containing cardiac glycosides to protein synthesis inhibitors. This “second level”

of similarity between these two drugs could be due to the fact that both of them inhibit

caspase-3 (26, 115).

Increasing the distance threshold level to 0.6 yielded a network of 158 drugs with 379

edges.

4.5.2 Statistical significance of the Drug Distance

Because we had a huge number of pairwise distance values (
(
1,309
2

)
= 856, 086) we as-

sumed the empirical pdf estimable from these sample data as a good approximation of

the real one and we used it to compute a statistically significant threshold level for the

drug distance. Specifically, we chose as a significance threshold value the upper bound

of the 5% quantile of the empirical Probability Density Function (pdf). These values

were 0.8327 and 0.8065, respectively AES distance and MES distance.

In this way, given a distance value d, the corresponding empirical p-value can be com-

puted by dividing the number of distances less than d in the whole set of all the possible

ones by the cardinality of this set (i.e., 856,086).
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Obviously, the empirical p-values of threshold values were equal to 0.05. Because we

built the DN by linking with a weighted edge two drugs if their distance was below

a statistically significant threshold, all of the included edges correspond to significant

distances and the smaller the distance, the higher it is in statistical significance (addi-

tional considerations on the distance threshold impact on the network topology can be

found in the following sections).

4.5.3 The final Drug Network

The final DN, obtained by linking two drug nodes if their MES distance was below the

statistically significant threshold of 0.8065 is shown in Figure 4.9.

This network was composed by a giant connected component containing 1,302 drug

nodes out of 1,309 and 41,047 edges, corresponding to 5% of a fully connected network

with the same number of nodes (856,086 edges).

The average shortest path length was 2.5 and the average local clustering coefficient

was 0.44 whereas the maximum shortest path length was 7.

The cumulative degree distribution of the DN is shown in Figure 4.10. In the plot-

ting, the horizontal axis is the vertex degree k and the vertical axis is the cumulative

probability distribution of degrees (i.e. the fraction of vertices that have degree greater

than or equal to k). Clearly, this distribution does not follow the power-law and the

network seems not to have a scale-free topology.

4.5.4 Network Robustness

We heuristically determined the size of the drug optimal signatures {p, q} (whose com-

putation is detailed in Section 4.3.1) guided by the following considerations. We tested

optimal signatures of different length k and for each value of k, we computed distances

among drugs and derived a drug network, always using the same distance significance

threshold. We observed that the network obtained with the smallest k always con-

tained, as a subnetwork, the networks obtained with larger k values. This means that,

as the signature length k increases, the overall structure of the network does not change

substantially. We chose k = 250 as a good compromise, which takes into account the

number of considered genes (which should be sufficiently small), the edge density of the

obtained network, and the network prediction performances (the network assessment
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Figure 4.9: Final network - A final Drug Network obtained with a statistically signifi-

cant threshold for the MES drug distance
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Figure 4.10: Network statistics - Cumulative degree distribution of the final DN

is detailed in the following sections).

Finally, we observed that the network topology, in terms of drug communities (whose

computation is detailed in the following sections), did not change substantially if we

chose a different significance threshold value. This happened because the community-

finding algorithms we used were working on weighted edges (i.e., distances) and, there-

fore, were not very sensitive to the addition or removal of few edges, due to slightly

different choices of the distance significance threshold.

4.6 Community Identification and Topological analysis

The final DN, which was obtained by considering only significant edges (see Figure 4.9),

was very dense and hard to analyze and visualize. In order to “compress” it and make it

easily analyzable we provided it with modularity by grouping its nodes in communities

and rich-clubs with a novel hierarchical clustering algorithm.

We first applied a slightly modified version of the Girvan-Newman algorithm (48) to

a drug network composed by 158 drug nodes and 379 edges, obtained by considering

only AES drug distance values lower than 0.6 (which was quite far from the significant

threshold of 0.8327), as a pilot study.

We decided to apply the same algorithm to the final DN (built on MES distances and

considering the statistically significant threshold values) however it was too computa-

tionally expansive and hence infeasible.
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Therefore, we turned to a novel clustering algorithm based on passing messages between

data-points (44). By slightly refining its implementation for our purpose, we obtained

the modular and hierarchical DN shown in Figure 4.14.

4.6.1 Girvan-Newman Algorithm for finding communities in complex

networks

The Girvan-Newman algorithm (48) is a method for hierarchically clustering the nodes

of a graph basing on its topology. The implemented method groups together nodes

that are very interconnected among each other but with fewer connections with the

rest of the graph (see the definition of community in Section 2.3). For this reason, this

algorithm is deemed as a method to “identify” communities by considering modularity

as an inherent property of a graph. It is based on the concept of “betweennes” (or

“centrality”) of the edges which are iteratively removed from the graph defining, at

each iteration, a level of clustering in the hierarchy (in a top-down fashion).

The centrality of an edge is defined as the number of shortest paths between pairs of

nodes that run through it. The rationale behind this strategy is that if a network is

modular (i.e. contains communities) then it contains groups of nodes that are densely

connected to each other but poorly connected with other groups by a few intergroup

edges. Therefore all shortest paths between nodes lying in two distinct groups of these

must run through one of these few edges. This imply that the edges connecting two

nodes in different communities will have high betweenness. Hence, by removing these

edges, the groups are separated and the underlying modular structure of the graph is

revealed.

Informally, in each iteration, the algorithm first solves the all-pairs shortest path prob-

lem; for each edge e in the graph, it counts how many shortest paths include e, i.e. it

computes the centrality of e; finally, the edge with the highest centrality is removed.

At this point, if the number of connected components of the graph increases (meaning

that one or more connected components disconnected into two sub-components) then

the novel connected components are returned as communities in the current level of the

hierarchy (which is updated) and the algorithm goes to the next iteration. If the graph

does not become disconnected, then the algorithm goes to the next iteration directly,

without updating the clustering hierarchy. Iterations end when no more edges remain

in the graph.
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As every other hierarchical clustering algorithm, this method gives in output a hierar-

chy of clusters (i.e. communities) containing the whole graph at the first level, a set of

few communities at the second one which are divided in sub-communities in the third

one and so on. At the bottom level the hierarchy contains single nodes. There is no way

to compute the best level at which this hierarchy should be cut and set of disjointed

communities considered. Moreover our DN is weighted and the Girvan-Newman Algo-

rithm does not take this into account.

For this reasons we slightly modified this algorithm by including a heuristic way to

automatically stop the “community desegregation” ending up into a set of disjointed

groups of nodes, at a certain level of the hierarchy, and to take into account of the edge

weights. We did this by adding the additional constraints, to each iteration:

1. Solve the weighted all-pairs shortest path problem;

2. If an identified community is a singleton (i.e. is composed by a single node) then

remove it from the network;

3. If the number of identified community at the current level is lower than the

previous one then stop the computation.

A pseudo-code of our version of the Girvan-Newman algorithm is provided in algo-

rithm 2. Committing a little abuse of notation we will use e ∈ p to denote that the

edge e is part of the path p (i.e. the path p runs along e) and we will use p ∈ G to

indicate that p is an path on the graph G.

The algorithm takes in input a weighted graph and gives in output a hierarchy of

network communities.

When the computation begins the connected components of the graph are computed

and considered as the first level of the community hierarchy [lines 1-3]. Note that if

the graph is connected then all its nodes form a unique community while if it is not

connected then each connected component is considered as a first level community.

A cycle of iterations runs until the set of edges is emtpy [line 4]. In each of these

iterations the minimum weight all-pairs shortest paths are computed and assigned to

the set P [line 5]. Formally, P is the set of the admissible paths of G, p, for which does

not exist any other path p′ in G with the same extremity nodes and with a lower total

weight.
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Algorithm 2 Modified Girvan-Newman

NCH = MGN(G)

input: G = (V,E, ω), a weighted network.

output: NCH, a network community hierarchy on the network G.

1. h← 1

2. C̄∗ =
{
C : C ⊆ V,∀(x, y) ∈ C2 : ∃p ∈ G|s(p) = x, d(p) = y

}
3. NCH(h)← C̄∗

4. while E 6= ∅
5. P ← {p ∈ G|@p′ ∈ G : s(p) = s(p′), d(p) = d(p′), ω̄(p′) < ω̄(p)}
6. find i : max

ej∈E
|{p ∈ P |ej ∈ p}| = |{p ∈ P |ei ∈ p}|

7. E ← E − {ei}
8. C̄ =

{
C : C ⊆ N, ∀(x, y) ∈ C2 : ∃p ∈ G|s(p) = x, d(p) = y

}
9. for each c ∈ C̄ : |c| = 1

10. C̄ ← C̄ − {c}
11. endfor

12. if |C̄| > |C̄∗|
13. h← h+ 1

14. NCH(h)← C̄ − C̄∗

15. C̄∗ ← C̄

16. endif

17. if |C̄| < |C̄∗|
18. return NCH

19. endif

20. endwhile

21. return NCH
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At this point the edge with the highest centrality is searched and deleted from the

graph [lines 6 and 7]. After this removal, the connected components of the graph are

recomputed [line 8] and assigned to the set C̄. If some single nodes become disconnected

from the graph (i.e. there are connected components containing a single nodes) then

they are removed from the set C̄ [lines 9-11].

If the number of connected components in C̄ is greater than the number of those

identified in the previous iteration then the novel connected components are considered

as network communities and the hierarchy is updated [lines 12-16].

If the number of connected components in C̄ is lower than the number of those identified

in the previous iteration then the computation ends and the hierarchy of communities

is returned in output.

In a pilot study, we applied this algorithm to a drug network composed by 158 drug

nodes and 379 edges, obtained by considering as significant the edges corresponding

to AES distance values lower than 0.6. This drug network is depicted in Figure 4.11

and the 33 identified communities are highlighted in blue. The composing drugs are

reported for some of them in Table 4.8.

These results further confirmed the efficacy of our drug distance in defining a

“pseudo-metric” space in which drugs sharing a MoA are placed in close positions and

drugs can be clustered in sufficiently homogeneous groups with unsupervised learning

methods.

Particularly, some of the communities in Table 4.8 and 4.9 contained drugs targeting

the same proteins (communities 2, 4, 5 and 8), having the same therapeutic application

(communities 1, 6 and 9) or with similar chemical characteristics (communities 3, 11,

12, 13) and modulating the activity of the same biological pathways (communities 7

and 10).

Applying this algorithm to the complete DN (Figure 4.9) obtained by considering sig-

nificant edges according the threshold levels described in subsection 4.5.2 would have

been too computationally expansive. For this reason we implemented a novel method

based on a recent and more efficient clustering algorithm.

4.6.2 Clustering by Passing Messages between datapoints

As explained in Section 2.3.1, one of the problems linked to cluster analysis is that is

not possible to automatically compute the number of clusters. Clustering data by iden-
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Figure 4.11: Girvan-Newman network communities - Results of a first community

identification pilot study on a DN obtained by filtering out edges corresponding to AES

drug distances greater than 0.6. This network contained 158 drug nodes and 379 edges.

33 network communities were identified by our modified version of the Girvan-Newman

algorithm. The composition of the numbered communities are reported in table 4.8.
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Community n. 1

anisomycin cicloheximide digitoxigenin digoxigenin

digoxin elveticoside lanatoside C ouabain

proscillaridin strophanthidin

Drug Commonality: Cardiac glicosydes and protein synthesis inhibitors

Community n. 2

HC toxin MS-275 rifabutin scriptaid

vorinostat

Drug Commonality: HDAC inhibitors

Community n. 3

nocodazole mebendazole

Drug Commonality: Benzimidazoles

Community n. 4

alvespimycin geldanamycin monorden tanespimycin

Drug Commonality: Hsp90 inhibitors

Community n. 5

GW-8510 H-7 alsterpaullone camptothecin

daunorubicin doxorubicin mitoxantrone tyrphostin AG-825

Drug Commonality: CDKs inhibitors, anthracyclines and Topo inhibitors

Community n. 6

astemizole mefloquine suloctidil

Drug Commonality: Antihistamines, anticholinergics

Community n. 7

apigenin chrysin harmine luteolin

Drug Commonality: PPAR-gamma modulators

Community n. 8

MG-132 MG-262 celastrol lomustine

parthenolide phenoxybenzamine piperlongumine puromycin

thiostrepton withaferin A

Drug Commonality: Proteasome inhibitors

Table 4.8: Girvan-Newman Communities (a) - The composition of some of the

33 communities identified with our version of the Girvan-Newman algorithm on a DN

generated with an AES distance threshold equal to 0.6.
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Community n. 9

loperamide perphenazine trifluoperazine

Drug Commonality: Antipsychotics

Community n. 10

sirolimus wortmannin

Drug Commonality: PI3K inhibitor

Community n. 11

benzethonium chloride methylbenzethonium chloride

Drug Commonality: Quaternary ammonium compounds

Community n. 12

exisulind sulindac sulfide

Drug Commonality: Sulindac metabolites

Community n. 13

bromocriptine methylergometrine

Drug Commonality: Ergot alkaloids derivatives

Table 4.9: Girvan-Newman Communities (b) - The composition of some of the

33 communities identified with our version of the Girvan-Newman algorithm on a DN

generated with an AES distance threshold equal to 0.6.
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tifying a subset of representative examples is important for processing sensory signals,

detecting patterns in data. Such ”exemplars” can be found by randomly choosing an

initial subset of data points and then iteratively refining it, as the K-means algorithm

does. However this works well only if that initial choice is close to a good solution and

there is no way to determine the optimal number of exemplar. A recent method, based

on “affinity propagation” (44) takes as input measures of similarity between pairs of

data points, then it allows real-valued messages exchanging between data points until

a high-quality set of exemplars and corresponding clusters gradually emerges. For each

of the identified clusters the element whose features best interpolate the features of all

the other points in the cluster (i.e. the cluster exemplar) is also given in output.

The Affinity Propagation Clustering (APC) algorithm requirement consists in a pair-

wise distance matrix and a set of probabilities, one for each node to be elected as

exemplar of a cluster.

If this probability is assumed to be uniform then the algorithm automatically calculates

it and infers the proper number of exemplars, hence of clusters, exclusively from the

data. From this point of view, APC can be considered striking and revolutionary and

probably this is the key aspect contributing to its great success.

How affinity propagation works is illustrated for two-dimensional data points in Figure

4.12, where negative euclidean distance was used to measure similarity. Each point is

colored according to the current evidence that it is a cluster exemplar. The darkness

of the arrow directed from point i to point k corresponds to the strength of the trans-

mitted message that point i “prefers” k as exemplar of its cluster. This preferences

are determined by the distances. The more i is close to k the more it will prefer k as

exemplar of its cluster.

So, as a first step, “responsibilities” r(i, k) are sent from data points to candidate

exemplars and indicate how strongly each data point favors the candidate exemplar over

other candidate exemplars. Then “availabilities” a(i, k) are sent from candidate exem-

plars to data points and indicate to what degree each candidate exemplar is available

as a cluster exemplar for the data point. The “availability” a(i, k), sent from candidate

exemplar point k to point i, reflects the accumulated evidence for how appropriate it

would be for point i to choose point k as its exemplar, taking into account the support

from other points that point k should be an exemplar. Basing on these messages, points
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Figure 4.12: Affinity propagation algorithm - The affinity propagation is illustrated

for two-dimensional data points, where negative euclidean distance was used to measure

similarity. Each point is colored according to the current evidence that it is a cluster

exemplar. The darkness of the arrow directed from point i to point k corresponds to the

strength of the transmitted message that point i prefers to belong to the cluster whose

exemplar is k.
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are re-assigned to clusters, novel clusters arise or existing ones disappear.

When updating the messages, it is important that they be dampened to avoid nu-

merical oscillations that arise in some circumstances. Each message is sent to λ times

its value from the previous iteration plus 1−λ times is prescribed updated value, where

the damping factor λ is between 0 and 1. Each iteration of affinity propagation consist

of (i) updating all responsibilities given the availabilities, (ii) updating all availabilities

given the responsibilities, and (iii) combining availabilities and responsibilities to mon-

itor the exemplar decisions and terminate the algorithm when these decisions did not

change for ten iterations. To begin availabilities are initialized to zero.

We used a slightly modified version of the APC algorithm for “providing” modu-

larity to our DN. In fact, we used the whole MES pair-wise distance matrix without

using any filtering threshold on the edges. In this way we treated the problem of iden-

tifying communities in our DN as an usual cluster analysis problem. As a consequence,

the network modularity here is conceptually different with respect to the approach we

used with the Girvan-Newman algorithm. In fact, we here dealt with an exhaustive set

of pair-wise distances among drugs (rather than a network) and from this we built a

modular and hierarchical network.

In order to turn the clusters obtained with the affinity propagation algorithm into net-

work communities, to build a final modular and hierarchical connected network rather

than a set of disjointed communities and to investigate how different network levels

reflect the hierarchy of similarities in the drug MoAs, we conceived a novel hierarchical

clustering algorithm based on the APC one.

4.6.3 Building a modular network by recursive affinity propagation

clustering

We used the APC algorithm in a recursive and hierarchical fashion. In the first step we

computed clusters of drugs by starting from the whole MES pair-wise distance matrix.

We considered each of the drugs as a potential cluster exemplar. In the second phase,

we focused on the cluster exemplars only (and the corresponding MES sub-matrix) and

we clustered them again with the APC. Then we continued this procedure recursively

until no more data-points were merged together.
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The clusters obtained at each iteration step were turned out into disjointed network

communities as follows. For each cluster C we built a community (i.e. a sub-network)

GC = (NC , EC) in which NC = C and ∀ (x, y) ∈ NC ×NC : (x, y) ∈ EC ⇔ mes(x, y) 6

0.8065. In other words we built a community by linking the nodes clustered in C

through edges corresponding to statistically significant MES distances. For construc-

tion, most of the communities built in this way contain a hub node (“the rich guy”)

that is the exemplar of the corresponding cluster. For simplicity we will refer to it as

the community exemplar.

The DN community obtained in the first iteration step (i.e. the first-level communities)

are shown in Figure 4.13. Extending this method to cluster exemplars, we obtained

communities of community exemplars, in other words we obtained communities of

rich-guys (i.e. rich-clubs). The rich-clubs had their own exemplar so the procedure

was iterated until no more nodes were clustered together and the final hierarchical and

modular network depicted in Figure 4.14 was obtained.

A pseudo-code of our recursive procedure, named NeTwork by Recursive Affinity

Propagation (N-TRAP) , is provided in algorithm 3. In that pseudo-code we denoted

with D a set of n data-points, with M an n× n symmetric matrix in which Mi,j is the

distance between the data-points xi and xj .

Given the distance matrix M and a set of data-points p ⊆ D, we used the notation Mp

to refer to the sub-matrix of M that contains the pair-wise distances among the points

in p.

Additionally, in the pseudo-code we denote with APC(M) the call to the APC algo-

rithm by passing the distance matrix M to it and by denoting with {C, p′} its output.

We omitted the vector of probabilities of each nodes to be elected as cluster exemplar

implicitly by deeming all of them eligible with the same probability. C is the set of

clusters computed by the APC, which is a partition of D.

Formally C = {c|c ⊂ D} such that

• ∀i, j = 1, . . . , |C| : h 6= k ⇒ ci ∩ cj = ∅;

•
⋃|C|

i=1 ci = D.

p′ ⊆ D is the set of cluster exemplars. Please note that when no data-points are merged

together then p′ = D and C = {x|x ∈ D}, in other words each of the data-points belong

to a distinct cluster and it is the exemplar of that cluster.
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Figure 4.13: Drug communities - The first-level DN communities obtained with the

N-TRAP algorithm on the whole MES distance matrix, assuming that each drug node

is eligible as cluster exemplar. In order to turn clusters into communities, drugs in the

same cluster have been linked through edges corresponding to statistically significant MES

distances. Communities have been coded with a numerical identifier and a color.
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Algorithm 3 N-TRAP

N = N-TRAP(M,p)

input: p, a set of data-points;

M , a matrix containing the distances among all the data-points in p

output: N = (VN , EN , ωN ), a weighted network which contains communities and

rich-club structure.

1. VN ← p

2. EN ← ∅
3. ωN : EN → 0

4. N ← (VN , EN , ωN )

5. if p = ∅
6. return N

7. endif

8. {C, p′} ← APC(M)

9. if |p′| = |C|
10. p′ = ∅
11. else

12. for each ci ∈ C
13. for each (x, y) ∈ c2i
14. if Mx,y < 0.8065

15. EN ← EN ∪ (x, y)

16. ω((x, y)) = Mx,y

17. endif

18. endfor

19. endfor

20. endif

21. N ′ =N-TRAP(Mp′ , p
′)

22. EN ← EN ∪ E′N
23. for each (x, y) ∈ E′N
24. ω((x, y)) = ω′((x, y))

25. endfor

26. N ← (VN , EN , ωN )

27. return N
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The algorithm takes in input a set of data-points (i.e. p) and a matrix containing

the distances among all the data-points in p (i.e. M). The output is a weighted network

containing communities and rich-club structure that are obtained by using the APC

algorithm in a hierarchical fashion and by adding significant edges among nodes in the

same cluster.

The first 7 lines of the pseudo-code are for the termination condition. If the parameter

p is an empty set [line 5] then an empty network (built in [lines 1-4], i.e. a set of nodes

without connections) is given in output and the computation ends.

If it is not the case, then the data-points are clustered with the APC algorithm [line 8].

If no data-points are clustered together (i.e. each data-point is the exemplar of its own

cluster) [line 9] then the set of exemplars is emptied and the computation continues

to the next recursion, which ends immediately after the first 6 lines of code giving in

output an empty network. This network is added to that of the previous recursion level

[lines 22-26], which is given in output terminating the computation. Alternatively, if

the APC algorithm clusters together at least two data-points then the instruction block

contained between lines 12 and 19 is executed. Each cluster is considered in turn [line

12]. If the distance between two data-points in the considered cluster is less than the

significant threshold [line 14], then the nodes corresponding to those data-points are

linked through an edge in the current recursion level network [line 15] and the weight

of that edge is equal to the distance between the two data-points [line 16].

Finally, the algorithm is called again recursively on the set of cluster exemplar and

the corresponding sub-matrix of M [line 21]. When the new level of recursion ends,

the novel edges given in output in that level are added to the previous recursion level

network [line 22] with the proper weights [lines 23-25] and the algorithm ends giving in

output the network.

When applied to the matrix containing all the pair-wise MES distances the N-TRAP

algorithm gave in output a set of 106 drug communities at the first level of recursion.

These communities are shown in Figure 4.13. The average number of drugs per com-

munity was equal to 11.62. The largest community was n. 90, containing 79 drugs,

while the smallest ones were communities n. 17, 18, 24, 45, 51, 56, 65, 78, 94 and

103. At the second level of recursion the 106 community exemplars were clustered in

9 rich-clubs containing an average number of 9 community exemplars. At the third

level rich-club 6 exemplars were clustered into two super-rich-clubs containing 4 and 2
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rich-club exemplars respectively. Finally the exemplars of these 2 super-rich-clubs were

linked together yielding the final hierarchical network depicted in Figure 4.14. The

composition of all the drug communities and rich-clubs together with some the public

available information for each drug (from the DrugBank (148) and ChemBank (127)

repositories) is contained in the SDD [SDD1-CommRichClubs.xls].

Figure 4.14: The Drug Network - The modular and hierarchial DN obtained by using

the N-TRAP algorithm on the MES drug distance matrix.

The final DN contained 1233 drugs in 27 connected components (note that 76 drugs

did not cluster with any other drugs at the first iteration so were excluded from the

DN).

The average number of drug nodes in each component was 45.67. The largest compo-

nent (the big subnetwork in Figure 4.14) contained 547 drug nodes whereas the smallest

ones contained 3 drug nodes.

The total number of edges was equal to 5,403, i.e. 0.7% of a fully connected network

with the same number of nodes.

The average shortest path length was equal to 3.82 and the average local clustering

coefficient was equal to 0.65. Finally the longest shortest path contained 8 edges. By
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comparing these characteristics with those of the network obtained by including all the

significant edges (described at the end of subsection 4.5.3), it results that even if we

significantly “compressed” the network (≈ 1.5% of the significant edges was included)

we increased the average local clustering coefficient for ≈ 47%, increasing the average

shortest path length only for a ≈ 52%. It means that this network contains few edges

respect to the previous one but the neighbors of each node are more interconnected

among each other and the degree of separation between each couple of nodes is only

slightly increased. In conclusion we provided modularity to the network composed

by all the significant edges. Additionally now the degree distribution is closer to a

power-law (Figure 4.15).

Figure 4.15: Post-processed network statistics - The degree cumulative distribu-

tion of the network obtained with the N-TRAP algorithm. Linear scale (left plot) and

logarithmic scale (right plot).

4.7 Network Assessment

Similarly to what we observed for the communities obtained with the our version of the

Girvan-Newman algorithm, also the N-TRAP communities contain drugs with similar

effects. Some examples are reported in Figure 4.16.

In order to formally assess this property and, more generally, how the topological

properties of our DN reveals similarities and differences in the MoA of the compos-

ing drugs we assessed, first of all, that the tendency of our method to group drugs

in the same community was not exclusively due to trivial chemical commonalities (as
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Figure 4.16: N-TRAP communities contain similar drugs - The communities ob-

tained with the N-TRAP algorithm tend to contain drugs with similar effects. In the insets

some communities are magnified, and the enriched MoAs are provided in the legend.
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detailed in subsection 4.7.5). We next determined whether drugs within a community

shared a common MoA. For this reason, we collected for each drug the ATC code,

the known direct target genes (from DrugBank (148) and ChemBank (127)), and other

literature-based evidences. As explained in Section 4.4.1, ATC codes (112, 126) are

alphanumerical strings assigned by the WHOCC to group drugs according to their

therapeutic and chemical profiles. ATC codes were available for 59% of the drugs (768

out of 1,309). We retrieved the known target genes for 535 out of 1,309 (41%) drugs

from the public repositories, DrugBank (148) and ChemBank (127). We thus assigned

a known MoA to 804 drugs out of 1,309 (61%).

For each community, we counted the number of contained drugs with the same MoA.

We then divided this number by the number one would expect had the drugs been

randomly grouped, to compute odds ratios and p-values.

We further checked if compounds in the same community impinge on common biolog-

ical pathways. To this aim we developed a Fuzzy-Logic based approach to identify a

common set of genes that was consistently up-, or, down-regulated in the PRLs of the

compounds in the same community. We thus associated over-represented gene func-

tional annotations, i.e. GO terms (7), to the drug communities by performing a GO

enrichment analysis on the common set of genes.

We finally assessed the opposite tendency, i.e. whether compounds characterized by

the same MoA end up in the same drug community.

4.7.1 Statistical Testing

We validated each community by checking if ATC codes or target genes were surpris-

ingly overrepresented among those associated to its composing drugs (or vice versa

checking if drugs with similar MoA, i.e., same ATC codes or target gene, were found in

the same communities). In a similar way, we searched for enriched GO terms when we

analyzed sets of genes that were differentially expressed after treatments with all drugs

in a community.

In both cases we had to analyze frequencies of terms (ATC codes/target genes and GO

terms, respectively) within given sets (drug communities and set of genes, respectively).

Therefore, we performed the same statistical test in both analyses.

In order to test the enrichment significance of each ATC code/target gene in a drug

community, and to quantify it through a p-value assignment, we had to compute the
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probability of counting, by chance, at least k occurrences of a given ATC code/target

gene among those associated to the n drugs within a community. If we know that, in

the total set D of N drugs, m of them are associated to the given ATC code/target

gene, then that probability follows the hypergeometric distribution and is given by

Pr {X > k} =

∞∑
x=k

(
m
x

)(
N −m
n− x

)/(
N
n

)
. (4.9)

In the same way, p-values were computed for assessing the significance of a given GO

term enrichment within those associated to genes in a given set. Finally, correction

for multiple hypothesis testing was applied to the obtained p-values. The odds ratio

(number of observed terms divided by the expected value) was computed as follows:

k

E(X)
= k

N

nm
(4.10)

4.7.2 Community enrichments

We found that 52 out of 95 assessable communities (i.e., those containing at least two

compounds with known MoA) were significantly enriched (p-value < 0.05) for com-

pounds with similar MoA. Specifically, 3 communities were enriched for a direct target

gene, 28 for one ATC code, whereas 21 were enriched for both a direct target gene and

an ATC code. Additionally, by searching the literature for supporting evidences, we

found 43 communities including several compounds with similar MoA, 9 of which were

composed by compounds with no ATC codes and no known target genes. So the total

number of enriched communities was 61 (52 + 9) (as reported in Figure 4.17). This

number goes up to 77, considering as significant communities, those with a correspond-

ing significant odds ratio greater than 1.

The whole lists of communities enriched for a given MoA (literature based evidence,

ATC codes and direct target gene) are provided in appendices B.1, B.2 and B.3, to-

gether with the computed p-values and odds-ratios.

4.7.3 Mode of Action enrichments

To assess the opposite tendency, i.e. how compounds characterized by the same MoA

end up in the same drug community, we considered in the set of 804 compounds with

known MoA a subset of 698 drugs (i.e., with an ATC code or a known target gene).
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Figure 4.17: Community enrichments - Overview of the community enrichments

This subset contained only the drugs sharing their MoA with at least another drug and

was divided in 429 groups (not mutually disjointed) of drugs with the same MoA.

We verified that the MoA of 512 drugs (out of 698) was enriched for a specific community

(p-value < 0.05). This number goes up to 586 drugs, considering those with a significant

odds ratio greater than 1 (Figure 4.18). The whole lists of MoA (i.e. ATC codes and

direct target genes) enriched for occurrences in a given community are provided in

appendices C.1 and C.2, together with the computed p-values and odds-ratios.

4.7.4 Network hierarchy reflects different degrees of similarity

The DN has a community structure, which reflects different levels of similarities in the

MoA of the composing drugs. In Figure 4.19, an example of this property is reported.

The rich-club in Figure 4.19, contains a group of communities whose exemplars are in-

terlinked. This group contains community n. 28 (enriched for Hsp90 inhibitors), com-

munity n. 53 (enriched for inhibitors of elongation during protein synthesis), commu-

nity n. 40 (enriched for proteasome inhibitors and Ubiquitin Proteasome System (UPS)

modulators), community n. 104 (enriched for UPS modulators). Even if acting on dif-

ferent intracellular targets, all these classes of drugs produce as a down-stream effect a

stress in the cellular environment due to an increased presence of unfolded/misfolded

protein. In fact Hsp90 is a molecular chaperone, the UPS system is responsible for the

degradation of misfolded protein and a premature stop of the elongation during the
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Figure 4.18: MoAs enrichments - Overview of the MoA enrichments
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protein synthesis do not allow the polypeptide chains to fold correctly. Consequently,

all these drugs cause the up-regulation of genes involved in the response to this stress.

So also this secondary effect is detectable at a transcriptional level and reflected by the

hierarchy of the network.

Figure 4.19: Hierarchy of similarities and topology - Hierarchies of similarity in

MoA are reflected by the network topology.

4.7.5 Influence of Chemical Commonalities on drug distance and net-

work topology

In order to test whether drugs that are found to be similar according to our drug dis-

tance and the network topology could have also been identified simply by looking at

their chemical similarities, we first collected the canonical Simplified Molecular Input

Line Entry Specification (SMILES) (146) describing the chemical structure of the cMap

drugs, and we then computed chemical similarities among them. Finally, we checked if

any correlation between chemical similarity and our drug distance was present.

A SMILES is a specification for unambiguously describing the structure of chemical
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molecules using short text strings. SMILES were available on the DrugBank database

(148) for 579 cMap drugs (out of 1,309).

We focused on this subset of drugs by computing
(
179
2

)
= 167, 331 pair-wise chemi-

cal similarities with two different methods (both working on SMILES): The first one

was based on a definition of distance between molecular Electrotopological States (ESF)

(53, 54), whereas the second one is based on comparisons between extended-connectivity

fingerprints and, making use of a software tool from SciTegic R©, computes a property

distance inversely proportional to chemical similarity (applications can be found in

(63, 70, 102, 122)).

In Figure 4.20, each point represents a pair of drugs for which both the SMILES were

available. The first coordinate of each point is equal to the MES distance between the

two drugs (DN distance). The second coordinate is equal to 1 minus the ESF similarity

between the SMILES of the two drugs.

As apparent, there is no significant correlation between our distance and the ESF sim-

ilarity (Pearson correlation coefficient (121) between these two measurements is equal

to 0.04).

In the same way, there is no significant correlation between the MES of distance and

the extended-connectivity fingerprints Property Distance. Also in this case, both the

correlation plot and the Pearson Correlation Coefficient (0.05) show that there is no sig-

nificant correlation between these two distances. This is a first evidence that chemical

commonalities between two drugs have no significant influences on their DN distance.

As a matter of fact, in very few cases (i.e., points on the figure) with the MES distance

less that 0.5 (which is a value lower than the selected significance threshold of 0.8065),

there is a tendency for chemical distance and DN distance to both be small, but for

the majority of the cases (i.e., those with a MES distance below the 0.8065 threshold)

the chemical similarity does not correlate at all with the MES distance.

In addition, also the opposite effect happens; that is, drugs with very small chemical

distance have very high MES distance. Therefore, the two measures are not correlated,

although there are a few cases where very small chemical distance corresponds with

small MES distance.

Moreover, we measured the tendency of our network communities to group together

drugs that are similar by the chemical point of view. To this end we considered the
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Figure 4.20: Correlation with chemical similarity - Correlation plots between the

MES distance and two measures quantifying the chemical similarities among the cMap

compounds: ESF similarity (left plot) and property distance (rigth plot)).

empirical pdf of the pairwise ESF similarity, computed on the whole set of drugs with

a SMILES. Then we considered the pairwise ESF similarity computed only between

drugs in the same community.

Finally, we tested the null hypotesis that this set (similarities in the same community)

was sampled from the first distribution. The obtained p-value was equal to 1, meaning

that the composition of our communities is not significantly influenced by chemical

similarities.

In Figure 4.21, we can observe that the empirical pdf of the pairwise ESF similarity

computed between drugs in the same community (red line) almost perfectly overlaps

the pdf of the pairwise ESF computed on the whole set of drugs with a SMILES (blue

line).

Very similar results were obtained by considering the Property Distance measures (in

the same figure).

Finally, we computed the average ESF similarity for all the communities that are

enriched for a given MoA (appendices B.1, B.2 and B.3) and containing at least two

drugs with an available SMILES. Results are contained in appendix D and show that

just for few communities the average ESF is significantly greater than the average value

(i.e. 1.7).

In the table of appendix D the first column contains the community identifiers, the
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second one contains the community enrichment (Literature evidence/ATC-code/Direct

Target Gene), the third one contains the fraction of drugs in the community for which

chemical descriptors were available, and the last column contains the average ESF

similarity for the community.

Figure 4.21: Influence of chemical similarity on drug distance - Empirical pdfs

of the ESF similarity (left plot) and the property distance (right plot) computed between

each couple of cMap compounds (blue curves) and only between couples of compounds

clustered in the same community (red curves).

4.7.6 Gene Ontology Fuzzy-Enrichment analysis of the communities

We developed a Fuzzy-Logic (155) based approach to identify a common set of genes

that was consistently up-, or, down-regulated in the PRLs of the compounds in the same

community. We thus associated significant GO terms statistically over-represented in

these sets to 57 drug communities. For most of these communities, the associated

fuzzy-enriched GO terms were strictly linked to the mode of action of the composing

drugs. We considered this a very interesting result, which is objective, completely un-

supervised and obtained with a general method.

We describe the method that we developed to perform this analysis in this section and

we report also on some of the obtained results.

The Gene Ontology (7) is a hierarchical vocabulary describing the roles of genes and

proteins in eucaryotes organisms, which is accessible by the web. It is composed by
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ontology of terms (GO:terms) defining, in a proper standard way, gene properties and

it covers three different domains: biological processes, molecular functions and cellular

components. In order to obtain information about a given gene it is sufficient to analyze

the associated GO:terms. Analysis of GO:term enrichments (78) has become a widely

recognized way to quickly gain insights about the biological condition represented by a

set of genes and many bioinformatics tools have been developed for this aim. As an ex-

ample, pretend to have a set of genes describing a condition of interest (i.e. genes that

are differentially expressed after a drug treatment or that are selectively expressed in

a disease). If a GO:term is surprisingly recurrent among those associated to the genes

in that set, then we can conclude that the selection criterion through which the set

of genes was composed (i.e. the condition of interests) is biologically and semantically

connected to the property described by the GO:term.

In our case the condition of interest is the transcriptional response to the drugs con-

tained in the same community. We computed fuzzy-sets (154) of differentially expressed

genes for each community and we performed a GO enrichment analysis on them.

Differently from a normal set (also said a “crisp set”) elements can belong to a fuzzy-

set with different degree of confidence, which is defined by a membership function with

values in [0, 1].

Formally a fuzzy-set is defined as a couple (A,m), where A is a set and m : A→ [0, 1]

is said “membership function”.

For each x ∈ A, m(x) is called the degree of membership of x in A. If m(x) = 0 then x

is called not included in the fuzzy-set (A,m) whereas x is called fully included if m(x)

= 1. Finally, x is called fuzzy member if 0 < m(x) < 1 .

The set {x ∈ A|m(x) > 0}, composed by all the fuzzy members of A, is called the “sup-

port” of (A,m) and the set {x ∈ A|m(x) = 1}, composed by the elements that are fully

included in A, is called its “kernel”.

In our method, we first collected the PRLs for each of the drug in a community then we

gave all the PRLs in input them to the algorithm GO:Fuzzy-Enrichment-Analysis. The

algorithm computed two fuzzy-sets of differentially expressed genes (up-regulated and

down-regulated, respectively) and two “fuzzy-intersections” (defined in the following)

of genes (up-regulated and down- regulated, respectively) by heuristically determining

an optimal threshold value for the fuzzy-sets membership functions.

The output of the algorithm was composed by the computed fuzzy-intersections, the
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optimal value of the membership function threshold and the GO:terms enriched in the

fuzzy-intersections.

Note that to compute p-values in the GO:enrichment analysis we used the considera-

tions and formulas introduced in subsection 4.7.1.

Let us consider a community C and the set of PRLs associated to the drugs contained

in it {d1, d2, . . . , dn}. First of all, for each di we selected the top-ranked 2,000 genes

by composing with them the set Upi and the bottom-ranked 2,000 ones by composing

with them the set Downi.

We then compute the following fuzzy-sets: (UUP ,mUP ) and (UDOWN ,mDOWN ) where:

UUP =

n⋃
i=1

Upi (4.11)

and

UDOWN =

n⋃
i=1

Downi. (4.12)

For each gene x in UUP (respectively UDOWN ) the membership function mUP : UUP →
[0, 1] (respectively mDOWN : UDOWN → [0, 1]) was defined as follows:

mUP (x) = |{i : x ∈ Upi}|/n (4.13)

respectively

mDOWN (x) = |{i : x ∈ Downi}|/n. (4.14)

Obviously, the following relations always hold:

∀x ∈ UUP : 1/n 6 mUP (x) 6 1 (4.15)

and

∀x ∈ UDOWN : 1/n 6 mDOWN (x) 6 1. (4.16)

This means that the support set of (UUP ,mUP ) (respectively, (UDOWN ,mDOWN ) is

equal to UUP (respectively, UDOWN ) since it contains the genes that belong to at least

one Upi (respectively, Downi).

The kernel set of (UUP ,mUP ) (respectively, (UDOWN ,mDOWN ) contains the genes that

are in the top-ranked (bottom-ranked, respectively) 2,000 positions in the PRL of all

the drugs of the community under consideration.

Now, fixing threshold level k for the membership function values, such that 1/n 6 k 6 1,
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we define the fuzzy-intersection of up-regulated genes, in the drug community C, with

membership k, as follows:

FUP (C, k) = {x ∈ UUP |mUP (x) > k} . (4.17)

Note that FUP (C, 1) is equal to the traditional intersection (called also “crisp” inter-

section)
n⋂

i=1
Upi. In the same way, the fuzzy-intersectio of down-regulated genes, in the

community C, with membership k, is defined as

FDOWN (C, k) = {x ∈ UDOWN |mDOWN (x) > k} . (4.18)

Also in this case FDOWN (C, 1) is equal to the crisp intersection
n⋂

i=1
Downi.

In order to describe our algorithm through a pseudo-code, let us introduce the following

additional notation: we denote with GOUP (k) the set of GO:terms that are statistically

over-represented (i.e. enriched) among those associated to the genes in FUP (C, k) and

with GODOWN (k) the set of GO:terms over-represented among those associated to the

genes in FDOWN (C, k).

In our algorithm we used a heuristic approach to fix an appropriate value of k, in order

to maximize it and the cardinalities of these two sets as well.

The input of the algorithm is the drug community C. The output is composed by the

two sets GOUP (k) and GODOWN (k) together with the compute value of k.

The pseudo-code is provided in algorithm 4.

When the computation begins, k is set to 1 [line 1]. The cardinality of the two

fuzzy-intersections is set to zero [line 2] and the set of fuzzy enriched GO:terms is set

to the empty set [line 3].

Then a cycle iterates until at least one of the two fuzzy-sets contains more than 2,000

genes [line 4]. In each of the iterations, the fuzzy intersections and the sets of fuzzy

enriched GO:terms are recomputed [lines 5 and 6], according to the current value of k.

If the total number of fuzzy-enriched GO:terms does decrease [line 7], then the current

sets of fuzzy enriched GO:terms together with the value of k, which has been computed

in the previous iteration, are given in output and the algorithm ends [line 8]. Otherwise

(if the total number of fuzzy enriched GO:terms does not decrease) [line 9], then the

variables are updated [lines 10 and 11] and the membership threshold value is decreased

[line 12]. The remaining code [lines 13 to 15] is executed if the total number of fuzzy
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Algorithm 4 GO:Fuzzy-Enrichment-Analysis

{k,GOUP (k) , GODOWN (k)} = GO:Fuzzy-Enrichment-Analysis(C)

input: C, a drug community

output: k, the optimal threshold value for the membership functions

GOUP (k), the GO:terms enriched in the up-regulated fuzzy-intersection of C

GODOWN (k), the GO:terms enriched in the down-regulated fuzzy-intersection of C

1. k ← 1

2. nUp← nDown← 0

3. totalGO = ∅
4. while nUp < 2, 000 and nDown < 2, 000

5. compute FUP (C, k) and FDOWN (C, k)

6. compute GOUP (k) and GODOWN (k)

7. if |GOUP (k)|+ |GODOWN (k)| < |totalGO|
8. then return {k + 1/n,GOUP (k + 1/n), GODOWN (k + 1/n)}
9. else

10. totalGO ← GOUP (k) ∪GODOWN (k)

11. nUp← |GOUP (k)|, Down← |GODOWN (k)|
12. k ← k − 1/n

13. endif

14. endwhile

15. return {k + 1/n,GOUP (k + 1/n), GODOWN (k + 1/n)}
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enriched GO:terms never decreases, while decreasing k, and the total number of genes

in the two fuzzy intersection is greater than 2,000.

The results that we obtained with the GO:Fuzzy-Enrichment-Analysis on the 106

communities of our DN are provided in the SDD [SDD2-GOFuzzyEnrichements.xls].

We report in the rest of this section on some of the most representative ones.

For community n. 28 (enriched for Hsp90 inhibitors) our algorithm gave in output an

optimal threshold level for the membership functions (i.e. k) equal to 0.8 (meaning

that the computed fuzzy-intersections were composed by genes that were significantly

differentially expressed when treating with 4 among 5 drugs in this cluster). The fuzzy-

intersection of up-regulated genes contained 209 genes while the down- regulated one

236. Fuzzy enriched GO:terms for this cluster of drugs are shown in table 4.10.

Community n. 28: Hsp90 inhibitors

Up-regulated fuzzy-intersection

Biological Process Enriched

GO:Terms

p-value Molecular Function Enriched

GO:Terms

p-value

response to unfolded protein 4.42× 10−29 Unfolded protein binding 1.63× 10−13

response to protein stimulus 4.42× 10−29 TPR domain binding 4.53× 10−08

protein folding 2.26× 10−24 heat shock protein binding 3.30× 10−05

response to biotic stimulus 3.73× 10−13 nitric-oxide synthase regulator ac-

tivity

3.07× 10−04

response to chemical stimulus 3.59× 10−05 chaperone binding 4.18× 10−04

regulation of nitrogen compound

metabolic process

5.05× 10−05 macrolide binding 2.37× 10−02

positive regulation of nitrogen com-

pound metabolic process

7.59× 10−05 FK506 binding 2.37× 10−02

protein refolding 1.13× 10−04

regulation of nitric oxide biosyn-

thetic process

2.36× 10−04

response to stress 3.43× 10−04

positive regulation of nitric oxide

biosynthetic process

1.80× 10−03

protein metabolic process 4.02× 10−02

Down-regulated fuzzy-intersection

Biological Process Enriched

GO:Terms

p-value Molecular Function Enriched

GO:Terms

p-value

tRNA processing 2.57× 10−06

ribosome biogenesis and assembly 6.44× 10−04

Table 4.10: GO:Fuzzy enrichment analysis results for Community n. 28

Hsp90 is a chaperone protein responsible for the correct folding, stabilization, and

function of multiple proteins (141). Inhibition of Hsp90 increases the amount of un-

folded client proteins in the cellular environment. This leads to a stress condition for

the cell, resulting in the activation of a proper response via the activation of several

pathways, as those involved in the ubiquitin-proteasome degradation system. Looking

at the GO:terms enriched in the up-regulated fuzzy intersection (table 4.10), for this
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community, highlights the response induced in the cell by these compounds.

The genes contained in the fuzzy-intersections of this cluster were differentially ex-

pressed when treating with the analyzed drugs in the following proportions: 98%

alvespimycin, 95% geldanamycin, 89% monorden, 84% tanespimycin, 45% fulvestrant,

meaning that the drugs in this cluster are represented by the computed fuzzy- inter-

sections with different levels of specificity.

Interestingly, this specificity is approximately proportional to the relation occurring be-

tween these drugs and the MoA characterizing this cluster (i.e. inhibition of the Hsp90

protein). This because alvespimycin, and geldanamycin directly bind the Hsp90 pro-

tein inhibiting its cytosolic chaperone function and they are very similar by a chemical

point of view; monorden is a wider Hsp90 inhibitor with effects on Topo I and II also;

fulvestrant binds the estrogen receptor, dissociates Hsp90 and triggers its intracellular

degradation so it indirectly inhibits the chaperone functionality in the cell.

For community n. 14 (CDK2 inhibitors and Topo inhibitors) our algorithm gave in out-

put an optimal threshold level for the membership functions equal to 0.8 (i.e. fuzzy-

intersections were composed by genes that were significantly differentially expressed

when treating with 12 among 15 drugs in this community). The fuzzy-intersection of

up-regulated genes contained 8 genes (and no enriched GO terms) while the down-

regulated one contained 75 genes and the enriched GO:terms reported in table 4.11.

Community n. 14: CDK2 and Topo inhibitors [L01D, L01DB, L01, L] [GSK3B, TOP2A]

Down-regulated fuzzy-intersection

Biological Process Enriched GO:Terms p-value

cell division 2.07× 10−03

Mitosis 2.04× 10−02

M phase of mitotic cell cycle 2.28× 10−02

M phase cell cycle phase 3.68× 10−02

cell cycle phase 4.75× 10−02

Table 4.11: GO:Fuzzy enrichment analysis results for Community n. 14

Cyclin-Dependant Kinases (CDKs) are key regulators of cell cycle progression.

CDK2 and CDK4 are responsible for phosphorylation of the Retinoblastoma (RB)

protein, causing the release and activation of the E2F transcription factors, resulting

in transcription of genes involved in cell cycle progression (94).

Also in this case, it is possible to hypothesize the effects of this community of drugs on

the transcription just by looking to the GO:fuzzy-enriched terms reported in table 4.11.
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Additionally, as in the previous case, the proportions of genes of the fuzzy-intersections

that are differentially expressed when treating with each of the drugs reflect the speci-

ficity of the described drug effect (> 80% for the CDK2 and Topo inhibitors, < 40%

for the other drugs).

For the community n. 63 (Sodium/Potassium membrane pump blocker), our algorithm

gave in output an optimal threshold level for the membership functions equal to 0.91

(i.e. fuzzy-intersections were composed by genes that were significantly differentially

expressed when treating cells with 10 among 11 drugs in this community). The fuzzy-

intersection of up-regulated genes contained 40 genes (and the fuzzy enriched GO:terms

reported in table 4.12) while the down-regulated one contained 39 genes but no enriched

GO:terms.

Community n. 63: Na+/K+-ATPase membrane pump inhibitors

[C01A, C01AA, C01, C], [ATP1A1]

Up-regulated fuzzy-intersection

Biological Process Enriched GO:Terms p-value

biogenic amine biosynthetic process 3.60× 10−04

amino acid derivative biosynthetic process 6.11× 10−04

biogenic amine metabolic process 1.40× 10−02

regulation of epidermis development 2.23× 10−02

ethanolamine metabolic process 2.81× 10−02

phosphatidylethanolamine biosynthetic process 2.81× 10−02

ethanolamine biosynthetic process 2.81× 10−02

amino acid derivative metabolic process 3.90× 10−02

Table 4.12: GO:Fuzzy enrichment analysis results for Community n. 63

The obtained fuzzy-enriched GO:terms are linked to a specific effect of cardiac gly-

cosides (the majority the drugs in this community): the enhancement of some heart

phosphatides (i.e. ethanolamine and phopshatidylethanolamine) activity (98). The

majority of the genes contained in the computed fuzzy-intersections were differentially

expressed in all of the PRL of the cardiac glycosides in this cluster (> 90%).

Finally, for community n. 43 (estrogen and estrogen inhibitors), our algorithm gave in

output an optimal threshold level for the membership functions equal to 0.44 (meaning

that genes in the fuzzy-intersections were differentially expressed when treating cells

with 4 among 9 drugs in this cluster). The fuzzy intersection of up-regulated genes

contained 425 genes while the down-regulated one contained 335 genes. The fuzzy

enriched GO:terms (reported in table 4.13) hilighted the interactions between estro-

gens and the Golgi apparatus (50, 116) and the down-regulation of genes involved in

metabolic processes of organic compounds interacting with estrogens (cobalamin, por-
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phyrin and others). So, also in this case the fuzzy enriched GO:terms were strictly

linked to the MoA of the analyzed drugs.

Community n. 43: Estrogens and estrogen inhibitors

Up-regulated fuzzy-intersection

Biological Process Enriched

GO:Terms

p-value Molecular Function Enriched

GO:Terms

p-value

ER to Golgi vesicle-mediated trans-

port

4.36× 10−05 cadmium ion binding 3.54× 10−06

protein transport 7.38× 10−05 protein disulfide isomerase activity 9.61× 10−06

establishment of protein localiza-

tion

7.38× 10−05 intramolecular oxidoreductase ac-

tivity & transposing S-S bonds”

9.61× 10−06

Golgi vesicle transport 8.41× 10−05 intramolecular oxidoreductase ac-

tivity & interconverting keto- and

enol-groups”

1.63× 10−05

protein folding 1.30× 10−04 isomerase activity 1.80× 10−04

protein localization 2.17× 10−03 neutral amino acid transmembrane

transporter activity

3.59× 10−02

cell redox homeostasis 5.36× 10−03 cystine:glutamate antiporter activ-

ity

3.92× 10−02

macromolecule localization 1.03× 10−02 unfolded protein binding 4.37× 10−02

Golgi organization 1.77× 10−02

Down-regulated fuzzy-intersection

Biological Process Enriched

GO:Terms

p-value Molecular Function Enriched

GO:Terms

p-value

biotin biosynthetic process 2.78× 10−07 adenosylmethionine-8-amino-

7-oxononanoate transaminase

activity

1.02× 10−07

cobalamin metabolic process 2.78× 10−07 biotin synthase activity 1.02× 10−07

cobalamin biosynthetic process 2.78× 10−07 dethiobiotin synthase activity 1.02× 10−07

biotin metabolic process 3.79× 10−06 8-amino-7-oxononanoate synthase

activity

1.02× 10−07

vitamin biosynthetic process 3.95× 10−04 cobyrinic acid a & c-diamide syn-

thase activity

1.02× 10−07

porphyrin biosynthetic process 3.72× 10−03 sulfurtransferase activity 1.39× 10−06

tetrapyrrole biosynthetic process 3.72× 10−03 glutaminase activity 3.88× 10−06

water-soluble vitamin biosynthetic

process

3.72× 10−03 cyclo-ligase activity 9.54× 10−06

2 iron & 2 sulfur cluster binding 8.42× 10−05

4 iron & 4 sulfur cluster binding 4.95× 10−04

transaminase activity 2.10× 10−03

iron-sulfur cluster binding 6.35× 10−03

metal cluster binding 6.35× 10−03

transferase activity & transferring

nitrogenous groups

2.14× 10−02

transferase activity & transferring

acyl groups other than amino-acyl

groups

4.12× 10−02

Table 4.13: GO:Fuzzy enrichment analysis results for Community n. 43

4.8 Goals of a drug network with modular and character-

ized topology

The N-TRAP algorithm performs a proper pruning of the edges of the network in order

to make it modular. Most of the identified communities are enriched for a given mode
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of action, others have been characterized through a GO enrichment analysis, as shown

in the previous section. This means that, if one would be able to integrate a compound

under investigation into the DN, then he could make hypothesis on its MoA by looking

at the communities to which it is connected and to their characterizations. This is the

leading idea of the classification algorithm that is described in the next chapter and

represents a striking and original improvement to existing methods (79, 80).

In conclusion we show that the N-TRAP pruning is able to keep the “right” connections

and to eliminate the “wrong” ones. In other words, we measure how the tendency of

drugs with a similar MoA of being linked together changes after removing edges with

the N-TRAP algorithm. We ranked the edges of both the pruned network and the

original one, in ascending order (according to the associated distance value), and we

computed the percentage of edges that connect drugs sharing an ATC prefix of length 3

following the assessment methodology explained in subsection 4.4.2 and obtaining the

results shown in Figure 4.22. As we can see in Figure 4.22, in the pruned network the

edges connecting similar drugs tend to be kept and the performances of the network

improve.
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Figure 4.22: Modularity and performances - Impact of the community identication

on the performances. PPV curve obtained by sorting the edges of the whole significant

according to their weight (in decreasing order) in the whole significant network (red) and

the processed network (i.e. the modular network built with the N-TRAP algorithm) (blue).
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5

MANTRA: Mode of Action by

NeTwork Analysis

5.1 Introduction

In this Chapter we describe a web-tool that we developed in order to allow users to

explore the DN and query it for classification of previously undescribed compounds.

We named this tool Mode of Action by Network Analysis (MANTRA) and made it

available online for the scientific community at the following web-site http://mantra.

tigem.it).

With this online software unreported similarities among drugs can be easily explored

by users via an interactive analysis of the DN topology. Hence safe and FDA approved

drugs can be easily proposed for a repurposing and novel drugs can be integrated in

the DN revealing their MoA

When a new drug is added to the network, by drawing the significant connections among

this drug and the other drugs in the different communities, it is possible to check to

which drug communities the drug is similar to, and which are the closest communities

in terms of distance.

We imagined this to be an interactive approach in which the user looks at his drugs and

the communities to which the drug is connected to in order to make hypothesis on the

drug MoA. Thus realizing a semi-automated approach. Although the tool can be used

also in a full-automatic way thanks to a definition of a “drug-to-community distance”

that we conceived. This is a score to rank the communities closest to the drug. The
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score between a drug and a community is detailed in Section 5.2. The smaller the score,

the closer the total distance between the drug and the community.

In the next chapter we show that thanks to this score we can automatically predict the

closest community without the need to look at the network, although we believe this

to be useful.

In Section 5.3 of this chapter a detailed description of the classification algorithm is

provided while in the Section 5.4 we report on the development of MANTRA illustrating

how it can be used for exploring the drug network and its modules, to search for

candidates for drug repositioning and to classify novel drugs basing on gene expression

data only.

5.2 Drug-to-Community Distance

We defined the Drug-to-Community distance as follows: Let x be the testing drug

and C a network community containing a subset Cx of, at least, two drugs that are

connected to x through significant edges (i.e., through edges corresponding to distances

that are below the significance threshold). Then we define the distance between x and

C as

D̄ (x,C) = |Cx|

√∏
y∈Cx

MES (x, y)/|Cx|. (5.1)

So, the distance between the testing drug x and the network community C is given

by the ratio between the geometric mean of the significant distances between drugs in

C and x and the cardinality of this set of distances. If |Cx| < 2, then we assume that

the distance between C and x is equal to ∞.

5.3 Classification Algorithm

A description of the classification procedure implemented in our online tool is provided

in algorithm 5.

The algorithm takes in input the DN N , the set containing the PRLs for each drug

in the DN, the set containing the node communities of the DN CN and a set X of

ranked lists containing all the MPI (Affymetrix R©HG-U133a chip). The MPI in these

lists are sorted according to their differential expression values in MicroArray exper-

iments in which the drug that is going to be classified has been tested on. In these
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Algorithm 5 Drug-Classification

{N∗, η, χ} = Drug-Classification(X,N,PRLN , CN )

input: X, a set of permutations of the m MPI of the specific microarray platform;

N = (VN , EN , ωN ), the DN;

PRLN , the set of the PRLs of the drugs in the DN,

such that ∀y ∈ VN : PRLy is the PRL of the corresponding drug;

CN , the set of the communities in N .

output: N∗ = (V ∗N , E
∗
N , ω

∗
N ), the updated DN;

η = a sorted list of drug nodes;

χ = a sorted list of drug communitites.

1. x← the novel drug nodes

2. VN ← VN ∪ {x}
3. PRLx ← KRUBOR(X)

4. for each y ∈ VN\ {x}
5. dx,y = d(PRLx, PRLy)

6. if dx,y < th

7. EN ← EN ∪ {(x, y)}
8. ω(x, y) = dx,y

9. endif

10. endfor

11. η = {y ∈ VN |(x, y) ∈ EN}
12. turn η into a list by sorting its nodes y basing on the values ω((x, y))

in ascending order

13. χ = {C ∈ CN |D̄(x,C) <∞} in η

14. turn χ into a list by sorting its communities C basing on the values D̄(x,C)

in ascending order

15. if |η| = 0

16. V ∗N ← V ∗N\{x}
17. endif

18. V ∗N ← VN

19. E∗N ← EN

20. ω∗N ← ωN

21. N∗ ← (V ∗N , E
∗
N , ω

∗
N )

22. return {N∗, η, χ}
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experiments differential expression values should be computed with respect to the un-

treated hybridizations of the corresponding cell lines following the cMap composition

scheme.

The output of the algorithm is the updated version of the DN, N∗ in which the node

corresponding to the testing drug has been added together with the significant connec-

tions; the drug nodes lying in the neighborhood that the novel drug node x has in N∗,

sorted in ascending order according to the weights of the edges connecting them to x

(i.e. the distances for the corresponding drugs from the novel one); the drug commu-

nities with a finite community-distance from the novel drug, sorted according to this

distance in increasing order.

When the computation begins a new node associated to the testing drug is created [line

1] and temporarily added to the set of the drug nodes in the DN [line 2].

The PRL for the novel drug is computed with the KRUBOR algorithm starting from

the ranked lists of MPI in input [line 3].

For each node different from x in the DN [line 4] the distance between the correspond-

ing drug and the novel one is computed [line 5]. Note that at this stage the d function

can compute the distance via one of the two functions (aes or mes, respectively for the

AES drug distance and the MES drug distance) introduced in Section 4.3. We defined

these two functions by the mathematical point of view only but it is clear that their

implementation computes the drug optimal signatures by retrieving them from the drug

PRLs (as explained in Section 4.3) so the input they should receive is represented by a

pair of PRLs only (and this is the input of the function d as well).

At this point, if the distance between x and the drug under consideration is less than

the statistically significant threshold th (0.8065 or 0.8327, for MES drug distance and

AES drug distance, respectively) [line 6] than x is connected to that drug (i.e. the edge

(x, y) is added to the set of the edges of the DN) [line 7]; the weight of this new edge

is equal to the distance between the two drugs [line 8].

When the cycle ends, the set of drug nodes with a connection with x (i.e. the η, the

x-neighborhood built with the code in [line 11]) is sorted according to the connection

weights in ascending order (i.e. the set η is turned out in a ranked list according to

these weights) [line 12].

The code in [line 13] builds the set χ of communities with a finite distance from x (i.e.

the communities containing at least two drugs connected to x).
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This set is sorted according the community distances from x [line 14].

With the code in the [line 15 to 17] x is removed from the set of the drug nodes if it is

not connected to any other drug nodes. Note that if it is the case than the set χ (that

now is a ranked list) is for sure empty.

The rest of the code [lines 18 to 22] updates the DN and terminates the computation

returning the proper output.

5.4 MANTRA web-tool

The MANTRA web-tool implements the algorithm described in the previous section

and the method that we published in (66).

Briefly, the web-tool allows users to visually explore the DN we built among the

cMap compounds in a user-friendly environment (see Figure 5.1) providing, for each of

the drugs, information about biochemical interactions, therapeutic indications, known

MoA, pharmacology and targeted proteins.

These data come from the public available databases DrugBank (148) and Chem-

Bank (127) and are displayed in a pop-up window when the user moves the mouse

pointer over a drug node (yellow box in Figure 5.1).

By exploring the DN with MANTRA, users can identify unexpected similarities be-

tween drugs acting on different direct intra-cellular targets and search for “reposi-

tionable” drugs (i.e. drugs for which novel and previously unrecognized therapeutic

applications could be hypothesized).

Finally, the user can choose to integrate its own drug in the DN and to classify its MoA

by uploading up to 6 GEPs.

MANTRA has been implemented as a Java Applet by customizing the Applet version

of Medusa (60), a front end to the STRING protein interaction database (144), which

can be also used as a general graph visualization tool. The algorithm for classifying

novel drugs is embedded in the applet and the whole system has been implemented

in a Tomcat server. Use of MANTRA web-tool is free to academic, government and

non-profit users for non-commercial use only. With MANTRA it is possible to predict

established and FDA approved drugs that could be repositioned by finding previously

unreported MoAs.

To this aim, it is sufficient to search for “interesting outliers” in the drug communities.

119



5. MANTRA: MODE OF ACTION BY NETWORK ANALYSIS

Figure 5.1: MANTRA - According to the Hindu tradition a “Mantra” is a sound, sylla-

ble, word or group of words capable of creating “spiritual transformation”. Our MANTRA

is capable of creating a transformation: it turns the information hidden in a microarray

experiment in a meaningful landscape of drugs providing an “enlightened” view of them.

MANTRA is a web-tool for the analysis of novel drugs and for the “repositioning” of

known and FDA approved drugs by the assignment of previously unrecognized putative

therapeutic applications (hence the Hippocrates Symbol in this logo).

The MANTRA analysis is based on a novel similarity measure among the cellular responses

elicited by a huge set of compounds in human (hence the central man figure in the logo).

These responses are summarized by genome-wide gene expression profiles, hence the DNA

aura surrounding the man.
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Figure 5.2: MANTRA interface - The graphical user interface of MANTRA

In fact, if a given drug x is contained in a community C that is enriched for a given

MoA and that MoA has never been linked to x before then it could be interesting to

test whether x shares that MoA too.

If this is the case, and x is a safe and approved drug, then it can be proposed for a

“repurposing” to treat conditions in which the novel discovered MoA has a therapeutic

effect.

Alternatively, users can choose a drug with a desired MoA and searching in its neigh-

borhood for other safe and approved drugs that were not previously linked to that

MoA. Examples are reported in (66) and (67).

In order to integrate a novel drug into the DN and to classify its MoA, it is suf-

ficient to submit to MANTRA up to 6 text files containing all the 22,283 MPI of

the Affymetrix R©HG-U133a microarray platform (human), sorted according to their

differential expression (in decreasing order) following treatments with the drug on a

sufficiently heterogeneous (i.e. with different genetic background) set of human cell

lines.

Once the drug is integrated in the DN, according to the algorithm we introuduced,

users can make hypotheses on its MoA by studying drug nodes and communities in its
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neighborhood. Examples are reported in (66).

In conclusion, MANTRA is a web-tool for the drug mode of action discovery and drug

repositioning based on a network of consensual transcriptional responses to drugs.

It allows the classification of novel drugs by simply uploading gene expression profiles

following treatment and the topology of its network has an incredible potential (easily

exploitable by users) in finding novel applications for a huge number of approved drugs.
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6

Experimental validation of

MANTRA predictions using

known and novel

chemotherapeutic agents

6.1 Introduction

In this chapter we show how we experimentally assessed the ability of our method in

classifying novel compounds by using gene expression data only. In principle, we probed

our method with two different classes of compounds, containing both known and novel

drugs, observing that they were correctly integrated in the DN and connected to the

right drug communities.

By studying these MoAs we were able to make hypotheses on the effects of the novel

drugs and to discover, for the first time, a strong transcriptional similarities between

chemotherapeutic agents acting on two distinct molecular targets.

A description of the tested compounds, the experimental design, and the microarray

data that we produced are provided in the following section while the classification

results are reported in Section 6.3, together with the discussion about the new ex-

perimental data that we generated in order to further investigate the transcriptional

similarity that we discovered.

The rationale behind the predictions of our method is explored in Section 6.4 while in
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Section 6.5 classification performances are numerically evaluated and compared with

those of other existing methods.

In 6.6 the impact of our rank merging strategy on the classification performances is

assessed and we show that a set of microarray data coming from a sufficiently heteroge-

neous set of cell lines treated with a drug provides a general summary of the drug effect.

A discussion about the attained goals and the limitations of our method is provided in

the last section of the chapter.

6.2 A “blind” classification test

We assessed the ability of the DN to predict the MoA of anticancer compounds whose

gene expression profiles were not included in the original cMap dataset as well as the

ability in classifying established drugs contained in the cMap.

As summarized in Figure 4.1 (C), we measured expression profiles derived from different

cell lines treated with anticancer compounds still being studied, developed at Nerviano

Medical Science (NMS) and reference drugs already present in the cMap dataset.

Nine compounds were considered for a total amount of 39 microarray hybridizations.

We computed a PRL for each of the tested compounds, and their distances from the

1,309 drugs in the cMap dataset. We then integrated the compounds in the DN by

connecting them to the other drugs, if their distance was below the significant threshold.

Additionally, we computed a drug-to-community distance, which quantifies how close

the tested compound is to each of the communities.

This was a “blind” classification test because the NMS provided us the microarray data

without specifying the compound used nor the treated cell lines.

6.2.1 Experimental Setting and protocols

Drugs tested were chosen among well-known compounds, already present in the cMap

dataset, and new generation compounds. They included Hsp90 inhibitors tanespimycin

(132), NVP-AUY922 (35), NMS-E973 (42); Topo inhibitors SN-38 (75) and doxorubicin

(6); CDKs inhibitors flavopiridol (128), PHA-848125 (14), PHA-690509, and PHA-

793887 (13).

The rationale behind the choice of the test compounds and the cell lines to treat is

explained in the following sections.
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Human ovarian cancer cell line (A2780) cells were treated with flavopiridol (0.3 µM),

PHA-848125 (1 µM), PHA-690509 (3 µM), and PHA-793887 (1 µM), whereas Human

breast cancer cell line (MCF7) was treated with PHA-848125 (8.5 µM), PHA-793887

(6.0 µM), tanespimycin (0.5 µM), NVP-AUY922 (0.07 µM), NMS-E973 (2 µM), SN-

38 (0.165 µM), and doxorubicin (1.5 µM).

Additional data were collected by treating Human glioma cell line (U251) and Human

glioblastoma cell line (SF539) with PHA-848125 (3 µM), to assess the impact of the

merging of data coming from different settings on the classification performances as

explained in Section 6.6.

A2780 and MCF7 from European Collection of Cell Cultures were seeded in T-75 tis-

sue culture flasks (Corning), 25.000 cells/cm2 in RPMI medium 1640 (Gibco), pH 7.4,

10% FBS (EUROCLONE Australia-USDA approved), 2 mM L-Glutamine (Gibco), 1×

penicillinstreptomycin (Gibco), and maintained in 5% CO2 at 37 C with 96% relative

humidity.

After 24 hours, cells were treated with different compounds at a dose equal to 5×

the IC50 for 6 hours and collected using Qiagen RNeasy Lysis Buffer (Qiagen cat no.

79216). Total RNA was extracted using Qiagen RNeasy kit (Qiagen cat. no. 74104),

starting from total cell lysates.

The RNA was purified following manufacturer instructions. During the process, any ge-

nomic DNA contaminations were removed by DNAse treatment. Quantity and purity of

the extracted RNA were assessed by spectrophotometric evaluation of light absorbance

at 260 and 280 nm; after extraction, RNA was stored at -80C. Biotin-labeled, frag-

mented cRNA probes were prepared starting from 1.5 µg of total RNA per replicate

sample, using the One-Cycle Target Labeling and Control Reagents (Affymetrix R©)

according to the protocols included in the Affymetrix GeneChip Expression Analysis

Technical Manual (http://www.affymetrix.com).

Samples were hybridized onto Affymetrix GeneChip R©Human Genome U133 Plus 2.0

Arrays and processed as per manufacturers instructions using GeneChip R©Hybridization,

Wash, and Stain Kit components (Affymetrix). Scanned images were first inspected for

quality control (QC) using a variety of built-in QC tools from the Bioconductor pack-

age [http://www.bioconductor.org] of R, the open source environment for statistical

analysis.
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Feature intensity values from scanned arrays were normalized and reduced to expres-

sion summaries using MAS5 implemented in the R statistical environment.

A ranked list of genes was obtained for each compound treatment by sorting the mi-

croarray probe-set identifiers according to the differential expression values with respect

to the untreated hybridization. These ranked lists composed the starting point of our

classification test.

Data are available at Gene Expression Omnibus database (GEO), www.ncbi.nlm.nih.

gov/geo (accession no. GSE18552).

6.2.2 Hsp90 Inhibitors

Heat Shock Protein 90 (Hsp90) is one of the most abundantly expressed molecular chap-

erone in the cell (27). Chaperones are proteins responsible for the folding or unfolding

and the assembly or disassembly of other macromolecular structures, but not occurring

in these structures when they are performing their normal biological functions.

Hsp90 is a member of the heat shock protein family which are up-regulated when the

cell is exposed to elevated temperatures or in response to other kind of stress (32).

Heat shock proteins, as a class, are among the most highly expressed cellular proteins

across all species. As their name implies, heat shock proteins protect cells when stressed

by elevated temperatures. They account for 1 - 2% of total protein in unstressed cells,

increasing to 4 - 6% when cells are heated.

Hsp90 is one of the most common of the heat related proteins. The protein is named

“HSP” for obvious reasons whereas the “90” comes from the fact that it weighs roughly

90 kiloDaltons. A 90 kDa size protein is considered a fairly large for a non-fibrous pro-

tein.

Hsp90 is part of the cell’s powerful network of chaperones to fight the deleterious con-

sequences of protein unfolding caused by nonphysiological conditions. In the absence

of stress, however, Hsp90 is an obligate component of fundamental cellular processes

such as hormone signaling and cell cycle control. In this context, several key regulatory

proteins, such as steroid receptors, cell cycle kinases, and p53, have been identified

as substrates of Hsp90. Recently, Hsp90 was shown to be the unique target for gel-

danamycin, a potent new anti-tumor drug that blocks cell proliferation.

Interestingly, under physiological conditions, Hsp90 seems to perform its chaperone

function in a complex with a set of partner proteins, suggesting that the Hsp90 complex
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is a multi-chaperone machine specialized in guiding the maturation of conformation-

ally labile proteins. Clinical studies have demonstrated that disruption of many client

proteins chaperoned by Hsp90 is achievable and associated with significant growth in-

hibition, both in vitro and in tumor xenografts (49). The regulation of key signaling

molecules of the cell by the Hsp90 machinery is a stimulating new concept emerging

from these studies, and Hsp90 has become a promising new drug target (125) for several

therapeutic applications (111).

Additionally, Hsp90 is capable of suppressing protein aggregation, solubilizing protein

aggregates and targeting protein clients for degradation. Induction of the heat-shock

response by small molecules may facilitate the clearance of toxic aggregates responsible

for neurodegenerative diseases and, consequently, Hsp90 has emerged more recently as

a target for the treatment of neurodegenerative diseases that result from misfolded and

aggregated proteins (136).

Our DN contains a community enriched for Hsp90 inhibitors (n. 28) containing, sorted

according to their distance from the community exemplar, alvespimycin (the exem-

plar), geldanamycin (MES distance from the exemplar = 0.28), monorden (0.35),

tanespimycin (0.52), fulvestrant (0.77). 4 of these drug are known Hsp90 inhibitors

(alvespimycin, geldanamycin, monorden and tanespimycin) while fulvestrant is a se-

lective estrogen receptor down-regulator. Note that the distances from the exemplar

reflects the specificity of these compounds in inhibiting the Hsp90 (see subsection 4.7.6).

The sub-community containing only the 4 Hsp90 inhibitors is a fully connected com-

ponent with edges corresponding to MES distances less than 0.59, which is a very

significant value and at least monorden has a chemical structure that significantly dif-

fers from those of the other three. Moreover, as mentioned in subsection 4.7.6, even if

it does not inhibit Hsp90 directly, fulvestrant binds the estrogen receptor, dissociates

Hsp90 and triggers its intracellular degradation so it indirectly inhibits the chaperone

functionality in the cell, which translates in a down-stream effect on the transcription

that is similar to that elicited by the Hsp90 inhibitors.

In conclusion, this class of compounds elicit a well defined transcriptional response that

should be easily recognizable so we chose to perform a first classification test by using

known and novel Hsp90 inhibitors.
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6.2.3 Cyclin-Dependent kinase (CDK) 2 Inhibitors

As second set of testing compounds we chose four Cyclin-Dependent kinase (CDK) 2

inhibitors.

As introduced in Section 2.2 and Section 4.7.6, CDKs are key regulators of cell cycle

progression: CDK2 and CDK4 are responsible for phosphorylation of the Retinoblas-

toma (RB) protein, causing activation of the E2F transcription factor and transcription

of genes involved in G1/S transition and initiation of DNA replication (94).

From human tumors and mouse models, it is clear that misregulation of G1 CDK ac-

tivity by either over-expression of cyclins or loss of CDK inhibitory proteins almost

invariably leads to hyperproliferative defects and eventually to tumor development. In

particular, activation of the CDK4/6 pathway seems to dramatically decrease the re-

quirements that allow cells to enter the cell cycle and participate in tumor development

(95).

Similarly, activation of CDK2 and perhaps CDK1, through over-expression of E-, A-, or

B-type cyclins or p27Kip1/p21Cip1 inactivation, seems to force the entry into S phase and

commit cells to progress through the mitotic cell cycle. These data have been obtained

from multiple research efforts including molecular analysis of human tumors, molecular

and cellular biology, and the characterization of knock-out and knock-in mice. These

data have stimulated the design and development of small-molecule CDK inhibitors as

new drugs for cancer therapy. In the last few years, a plethora of CDK inhibitors have

been analyzed in vitro, in mouse models, or in clinical trials (129, 131, 133).

CDK2 activity is deregulated in human cancer primarily through over-expression of

cyclin E and cyclin A and inactivation of the CDK inhibitor p27Kip1 (95).

Given the relevance of these alterations in human cancer, CDK2 has been considered an

important target for cancer therapy. Numerous CDK2 inhibitors have been described

and their crystallographic structures either in complex with CDK2 or CDK2-cyclin A

have been broadly analyzed(145) including flavopiridol, currently in Phase III clinical

trials (128). Many of these inhibitors also inhibit CDK1 and in certain cases other

kinases such as CDK5, CDK7, CDK9, Glycogen synthase kinase (GSK) 3β, Mitogen-

activated protein kinase (MAPK), and Extracellular signal-regulated kinases (ERK)

(8), complicating their biochemical profiling. Therefore, further studies need to be ac-

complished to depict whether the anti-tumor effects are mainly because of the CDK2

128



6.2 A “blind” classification test

inhibition or the synergism with other kinases.

Genetic evidence has shown that CDK2-cyclin E activity is not essential for cell pro-

gression through the cell cycle and may be compensated by another kinases, possibly

CDK4, CDK6, or CDK1. In addition, CDK2 inhibition by RNA interference fails to

arrest proliferation of osteosarcoma cells and pRB-negative cervical cancer cells (143).

These results suggest that CDK2 may not be a good target for inhibition by small

molecules intended to treat cancer.

This finding, along the fact that most efficient CDK2 inhibitors also inhibit other ki-

nases, have shifted attention back toward CDK4 (92, 93) or CDK1 as the primary

cell-cycle target for cancer drug discovery. Actual efforts are directed to obtain more

specific CDK2 inhibitors.

The cMap includes a limited number of molecules whose MoA is associated with the

inhibition of CDK2. These compounds are clustered in two different communities (n.

14 and n. 32) that are part of the same rich-club. This means that the effect on the

transcription of this class of compounds is wider with respect to that of the Hsp90

inhibitors and it could be harder to “recover” them in the DN in a classification test.

Therefore, we sought to probe the DN, through our classification algorithm, with the

transcriptional profile of flavopiridol, as well as those of PHA-690509, PHA-793887, and

PHA-848125, three ATP-competitive CDK inhibitors developed at NMS, with different

selectivity profiles within the CDK family, which have completed Phase I clinical trials

(13, 14).

Table 6.1 reports a selectivity profile of the four CDK inhibitors. In this table we

reported for each tested compound and for a set of kinases the average Half maximal

inhibitory concentration (IC50) concentration. The IC50 is a measure of the effectiveness

of a compound in inhibiting biological or biochemical function. This quantitative mea-

sure indicates how much of a particular drug or other substance (inhibitor) is needed

to inhibit a given biological process (or component of a process, i.e. an enzyme, cell,

cell receptor or microorganism) by half. In other words, it is the half maximal (50%)

inhibitory concentration of a substance (50% IC, or IC50).
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PHA-793887 PHA-848125 PHA-690509 Flavopiridol

Enzyme Average IC50 (µM) Average IC50 (µM) Average IC50 (µM) Average IC50 (µM)

CDK1 0.06 0.398 0.16 0.034

CDK2 0.008 0.045 0.031 0.04

CDK4 0.062 0.16 >10 0.09

CDK5 0.005 0.265 0.09 0.102

CDK7 0.01 0.15 nt 0.754

CDK9 0.138 1.112 0.141 0.025

GSK3 0.079 >10 1.9 0.971

TRKA >10 0.053 nt nt

Table 6.1: Selectivity profiles of the tested CDK inhibitors.

6.3 Classification results

Figure 6.1 shows the position of the tested compounds in the DN whereas the 10 clos-

est neighboring drugs and communities in the DN for each of the tested compounds,

according to the Drug-Classification algorithm, are listed in table 6.2 and table 6.3,

respectively. The whole neighborhoods are listed in the appendix F.

Particularly, the closest community to the three tested Hsp90 inhibitors is n. 28,

composed by the Hsp90 inhibitors present in cMap, as well as the anti-estrogen drug

fulvestrant, known to bind the estrogen receptor, dissociate HSP90, and trigger its

intracellular degradation. The second closest community common to all the three

compounds (n. 40) is enriched for proteasome inhibitors, ubiquitin proteasome sys-

tem modulators (celastrol, MG-132, MG-262, thapsigargin, disulfiram, mometasone),

and protein synthesis inhibitors (puromycin and primaquine). Another interesting

community is n.104, which contains the proteasome/NF-kB inhibitors withaferin A,

parthenolide, thiostrepton, and etacrynic acid. Weaker edges connect two of the three

tested compounds to community n. 63, consisting of Na+/K+-ATPase membrane

pump inhibitors. This proximity might be explained by the fact that inhibition of

Na+/K+-ATPase by cardiac glycosides has been shown to affect NF-kB signaling (150).

As introduced in Section 4.7.6, fuzzy GO:term enrichment analysis showed that genes

involved in the response to unfolded proteins are up-regulated in community n. 28

and community n. 104, whereas community n. 40 is enriched for GO:terms relative to

endoplasmatic reticulum overload and stress.

Therefore, the DN approach correctly predicted, with multiple evidences, the MoA of

the tested compounds by identifying them as Hsp90 inhibitors.

All four CDK inhibitors were positioned in the DN in close vicinity to community n.
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NMS-tanespimycin NMS-E973 NVP-AUY922

MES Compound MAS Compound MAS Compound

0.4360 alvespimycin* 0.4436 alvespimycin* 0.6084 alvespimycin*

0.4913 geldanamycin* 0.4891 geldanamycin* 0.6391 monorden*

0.5176 monorden* 0.5294 monorden* 0.7123 geldanamycin*

0.6315 tanespimycin* 0.6568 tanespimycin* 0.7506 puromycin

0.6533 puromycin 0.6723 puromycin 0.7608 tanespimycin*

0.7178 trifluoperazine 0.7308 trifluoperazine 0.7756 gefitinib

0.7542 parthenolide 0.7638 disulfiram

0.7561 thiostrepton 0.7842 methylbenzethonium chloride

0.7608 withaferin A 0.7850 parthenolide

0.7724 disulfiram 0.7903 lanatoside C

NMS-doxorubicin SN38 flavopiridol

MES Compound MAS Compound MAS Compound

0.5587 daunorubicin* 0.3215 irinotecan* 0.4540 alsterpaullone*

0.6495 GW-8510 0.5641 camptothecin* 0.4857 GW-8510*

0.6536 hycanthone 0.6158 apigenin* 0.5374 apigenin*

0.6555 ellipticine* 0.6251 phenoxybenzamine 0.5534 0175029-0000

0.6689 irinotecan 0.6363 etoposide 0.5789 daunorubicin

0.6900 camptothecin 0.6596 luteolin* 0.5966 doxorubicin

0.6921 etoposide* 0.6675 tyrphostin AG 825 0.5976 camptothecin

0.6926 mycophenolic acid 0.6877 daunorubicin 0.6196 ellipticine

0.6996 phenoxybenzamine 0.6882 thioguanosine 0.6270 H-7*

0.7175 doxorubicin* 0.6903 hycanthone 0.6301 tyrphostin AG 825

PHA-690509 PHA-793887 PHA-848125

MES Compound MAS Compound MAS Compound

0.3838 GW-8510* 0.4715 0175029-0000 0.6212 0175029-0000

0.4613 doxorubicin 0.4846 GW-8510* 0.6352 apigenin*

0.4794 alsterpaullone* 0.5145 alsterpaullone* 0.6504 harmine*

0.5001 H-7* 0.5370 apigenin* 0.6672 thioguanosine

0.5593 daunorubicin 0.5694 daunorubicin 0.6711 GW-8510*

0.5873 camptothecin 0.5976 doxorubicin 0.6746 luteolin*

0.5956 ellipticine 0.6014 ellipticine 0.6795 daunorubicin

0.6048 mitoxantrone 0.6353 tyrphostin AG 825 0.6828 irinotecan

0.6144 tyrphostin AG 825 0.6582 luteolin* 0.6877 camptothecin

0.6274 fisetin* 0.6607 camptothecin 0.6886 piperlongumine

*True Positives: drugs sharing the mode of action with the testing one

Table 6.2: First ten neighbors of the tested compounds in the drug network
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NMS-tanespimycin NMS-E973 NVP-AUY922

D Community D Community D Community

0.1285 28* 0.1310 28* 0.1285 28*

0.1296 104 0.1996 63 0.1296 40

0.1329 63 0.2481 40

0.1863 40 0.2566 100

0.2567 100 0.2640 104

NMS-doxorubicin SN38 flavopiridol

D Community D Community D Community

0.0978 14* 0.0888 32* 0.0480 14*

0.1458 3 0.1174 14 0.0603 90

0.1900 16 0.1434 3 0.0625 32*

0.2374 32 0.2581 89 0.0954 89

0.3955 40 0.3798 75 0.1929 52

0.1995 85

0.2527 40

0.2564 63

0.3781 104

0.3874 61

PHA-690509 PHA-793887 PHA-848125

D Community D Community D Community

0.0300 90 0.0527 14* 0.0721 14*

0.0464 14* 0.0916 32* 0.0845 32*

0.0585 32* 0.0947 63 0.0927 63

0.0639 89 0.1927 3 0.2550 89

0.1283 85 0.3830 104 0.2590 104

0.1299 52 0.3762 69

0.1931 74 0.3763 100

0.1933 61 0.3847 3

0.2561 13

0.3837 40

*True positives: communities enriched for the mode of action of the testing drug.

Table 6.3: Closest ten drug network communities in the neighborhood of the

tested compounds
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14, which includes a mixture of CDKs and Topo inhibitors, altogether accounting for

about 80% of this community (Figure 6.1 (c)).

The other closest community was n. 32, also containing several CDK and/or Topo

inhibitors, such as the CDK2 inhibitors chrysin, harmine, harman, and harmol, the

CDK2/Topo II inhibitor apigenin, the CDK2/Topo I inhibitor luteolin, and the Topo

I inhibitors irinotecan and skimmianine.

The intermixing of CDK and Topo inhibitors in communities n. 14 and n. 32, as well

as the identification of several Topo inhibitors as the closest neighbors of the CDK

inhibitors, implies a similarity of their effects at the transcriptional level, despite their

different intracellular protein targets. To confirm this transcriptional similarity, we

probed the DN with in-house generated transcriptional profiles following treatment

with two known Topo inhibitors as detailed in the following section.

6.3.1 Topoisomerase Inhibitors

Topoisomerase inhibitors are agents designed to interfere with the action of Topoiso-

merase (Topo) enzymes (Topo I and II), which are enzymes that control the changes

in DNA structure by catalyzing the breaking and rejoining of the phosphodiester back-

bone of DNA strands during the normal cell cycle (see Section 2.2.2).

In recent years, topoisomerases have become popular targets for cancer chemotherapy

treatments. It is thought that topoisomerase inhibitors block the ligation step of the

cell cycle, generating single and double stranded breaks that harm the integrity of the

genome. Introduction of these breaks subsequently lead to apoptosis and cell death.

Topoisomerase inhibitors can also function as antibacterial agents (104) (quinolones

have this function (41)).

We decided to probe our classification method with SN-38, the active metabolite of

irinotecan (a prototypic Topo I inhibitor) and with doxorubicin (a prototypic Topo II

inhibitor). The tested doxorubicin will be denoted in the following text with NMS-

doxorubicin in order to avoid ambiguities with the counterpart in the cMap dataset

As shown in Figure 6.1 (b) and Tables 6.2 and 6.3, SN-38 and NMS-doxorubicin were

positioned, as expected, close to communities n. 14 and n. 32, containing their counter-

parts in the database. Hence, also in this case the compounds were correctly classified.

Additionally, the 10 closest neighbors for both compounds included a mixture of CDKs

and Topo I or II inhibitors. Suggesting that these two class of compounds elicit a
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Figure 6.1: Classification results - Subnetworks connected to the tested compounds

(cyan nodes) once they have been integrated in the DN. For clarity we included only

compounds whose distances from the tested compounds were less than 0.8 (A and C)

or 0.72 (B). Edge thickness is inversely proportional to the distance between the drugs;

edge and node colors indicate communities. Hexagonal-shaped nodes represent community

exemplars. (a) HSP90 inhibitors; (b) Topo inhibitors; (c) CDK inhibitors.
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similar transcriptional response even if acting on different intracellular targets.

We studied the cause of this similarity discovering a strong rationale behind this classi-

fication outcomes. Conclusions of these studies are summarized in the following section.

6.4 MANTRA highlights previously unreported similari-

ties

Whereas most CDK inhibitors act by competitively binding to the ATP pocket of

kinases, and given that Topo II uses ATP hydrolysis for its function, we verified that

there was no direct biochemical inhibition of CDKs by SN-38 and doxorubicin, and

that flavopiridol was not able to interfere with the ATPase activity of Topo II (Figure

6.2). Another possible way to induce functional inhibition of CDKs is through the

log

Figure 6.2: Inhibition of CDKs by doxorubicin and SN-38 - Inhibition of CDKs

by doxorubicin and SN-38: Biochemical Essay. Inhibition of CDK2/cyclinA complex

(CDK2/CYCA) activity by two topoisomerase inhibitors (doxorubicin and SN-38) and

two CDK inhibitors (PHA-00848125 and PHA-00793887) developed at NMS, used as con-

trols, tested in a biochemical assay. Compound concentration is on the x axes, expressed in

Moles (in logarithmic values), whereas percentage of inhibition is on the y axes. Different

colors represent different compounds. No biochemical inhibition of CDKs by SN-38 and

doxorubicin could be observed.
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induction of their universal inhibitor p21. Indeed, DNA damage induced by Topo

inhibitors causes p21 up-regulation activating both p53-dependent and independent

apoptosis (1, 88).

We hypothesized that p21 inhibition of the endogenous CDKs, and in particular CDK2,

elicited an effect on the RB-mediated transcription and might thus explain the similarity

at the gene expression level (as summarized in Figure 6.3).

Figure 6.3: Down-stream effects of CDK2 and Topo inhibitors - Summary of the

common down-stream effect of CDK2 and Topo inhibitors on E2F mediated transcription,

as elucidated by MANTRA

To confirm this, we treated MCF7 cells for 6 hours with PHA-793887 (used as ref-

erence CDK inhibitor), doxorubicin, or SN-38, at the same doses previously used, and

analyzed the protein cell lysates by Western Blot (WB).

Following treatment with both Topo inhibitors, we observed induction of p21 result-

ing in inhibition of CDK2, as measured by decreased phosphorylation of the CDK2

substrates, RB and nucleophosmin (Figure 6.4).

Although we cannot exclude that induction of other genes, such as p27, in addition

to p21, may also contribute to this effect.

It was recently proposed that camptothecin (a natural analog of irinotecan) treat-

ment would directly inhibit CDK9 activity by disrupting its complex with the acti-

vating cyclin T partner, inducing a functional effect similar to that observed after

ATP-competitive inhibition of CDK9 by flavopiridol (4). To test this hypothesis, we

analyzed the protein cell lysates used in the previous experiment for inhibition of RNA

polymerase II as measured by decreased phosphorylation of its carboxyterminal domain

and diminished Myeloid Cell Leukemia sequence (MCL)1 levels.
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Figure 6.4: Effects on p21 and CDK2 substrates - Western blot of total MCF7 cell

lysates following 6 hours of treatment with doxorubicin (Dx), SN-38 (SN38), and the CDK

inhibitor PHA-793887 (887). Induction of p21 coupled to decreased phosphorylation of the

CDK2 substrates Retinoblastoma (Rb) and Nucleophosmin (NPM) by the Topo inhibitors

Dx and SN38 is observed.

After treatment with PHA-793887 (CDK7 inhibition IC50 10 nM; CDK9 inhibition IC50

140 nM), a decrease of phosphoserine 5, and to a minor extent also of phosphoserine 2,

was detected and resulted in diminished levels of MCL1. However, no effect on RNA

Polymerase II phosphorylation or MCL1 levels was observed after treatment with the

Topo inhibitors, suggesting that this pathway was not affected (as shown in figure 6.5).

Taken together, these data prove that the transcriptional effects observed with the

Topo I and Topo II inhibitors are due to an (indirect) inhibition of CDK2 (and possi-

bly other CDKs such as CDK4) mediated by p21 induction, highlighting a previously

unreported similarity that provides a strong rationale for the DN classification results.

6.5 Classification Performance assessment and compari-

son with other tools

In order to compare the classification results achievable with method with those pro-

vided by the cMap online tool (79, 80), we computed a signature of differentially ex-

pressed genes in a “traditional way” (i.e., list of significant genes according to t-test

corrected with false discovery rate False Discovery Rate (FDR)) for each microarray
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Figure 6.5: Effects on RNA pol II - Western blots following treatments with CDK2

and Topo inhibitors. Decreased phosphorylation of RNA polymerase II (RNA Pol II) on

Serine 5 (RNA Pol II pSer 5, a CDK7 substrate) and to a lesser extent on Serine 2 (RNA

Pol II pSer2, a CDK9 substrate) by PHA-00793887 (887), a CDK inhibitor developed at

Nerviano Medical Science, coupled to loss of MCL1 protein. Minor effects on Serine 5

are observed also with doxorubicin (Dx) and SN-38 (SN38), but they do not affect MCL1

levels.
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experiment, as follows.

Scanned microarray images were first inspected for Quality control (QC) using a va-

riety of built-in QC tools from the Bioconductor (47) package of R, the open source

environment for statistical analysis.

Feature intensity values from scanned arrays were normalized and reduced to expres-

sion summaries using the Robust Multiarray Algorithm (RMA) and normalized by the

quantiles method (68, 149).

To assess differential expression, we used a moderated t-test together with a FDR cor-

rection of the p-value (135, 147). Thus, the list of differentially expressed genes was

generated using a FDR ≤ 0.05 together with an absolute fold-change threshold of 2

(i.e., |log2 (fold change) > 1|) and composed the signatures that were used to query the

cMap online tool.

The experiments were relative to four groups of related drugs (see table 6.4).

Tested Compound Set True Positives [Hsp90 inhibitors]

NMS-tanespimycin geldanamycin, alvespimycin,

NVP-AUY922 rifabutin, monorden

NMS-E973 tanespimycin

Tested Compound Set True Positives [Topo I inhibitors]

irinotecan, camptothecin, luteolin,

SN-38 kaempferol, suranin-sodium, vidarabine,

proscillaridin, apigenin, cinoxacin, skiammianine

Tested Compound Set True Positives [Topo II inhibitors]

daunorubicin, podophyllotoxin,

NMS-doxorubicin mitoxantrone, genistein, ellipticine,

oxilinc-acid, etoposide, doxorubicin, nalidic-acid,

ofloxacin, enoxacin, novobiocin, ciprofoxacin, apigenin

Tested Compound Set True Positives [CDK2 inhibitors]

PHA-848125 alsterpaullone

PHA-690509 staurosporine, GW-8510,

flavopiridol H-7, apigenin, harmine, harmol, luteolin,

PHA-793887 chrysin, fisetin, sanguinarine, thyrpostin AG 825

Table 6.4: Compounds analyzed with the cMap online tool and corresponding

sets of true positives.
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We used the computed signatures to query the cMap online tool. We then compared

the results obtained with our approach with those provided by the cMap online tool

by means of ROC analysis.

The cMap tool provided in output a list of drugs connected to each of the input sig-

natures. In these lists, we filtered out the drugs that were predicted to be negatively

connected to the input signature, and we considered each of the remaining drugs as

true positives if they belonged to at least one of four different reference golden standard

sets (sets of true positives in table 6.4).

These reference golden standard sets included both the counterpart of the tested drugs

(if they were present in the cMap) and drugs known to have the same MoA as the

tested drugs (respectively, Hsp90 inhibitors, Topo I inhibitors, Topo II inhibitors, and

CDK2 inhibitors) according to either Drugbank (148) or ChemBank (127).

All of the signatures obtained with the traditional approach, which have been used to

query the cMap online tool, are available at http://mantra.tigem.it and in the SDD

(in a unique compressed folder, containing each signature in the cMap .grp format).

File SDD3-Signatures-for-cMap.zip.

All the classification results obtained with the cMap online tool when queried with

these signatures are shown in the appendix E.

The result assessment shows that our classification method performed comparably and,

in many cases, better than the cMap classic online tool. The percentage of cases in

which the first neighbor of a tested compound in the DN is a true positive is equal

to 89% for the AES distance and 77% for the MES distance. This value raises to

100% if we consider the case in which there is at least a true positive among the first

two neighbors of each tested compound, for both the distances (as depicted in table 6.5).

N = 1 N = 2 N = 3 N = 5 N = 10 N = 15

cMap classic query system 56% 88% 88% 88% 88% 88%

AES distance 89% 100% 100% 100% 100% 100%

MES distance 77% 100% 100% 100% 100% 100%

Table 6.5: Distance performances - Percentage of tested compounds with at least one

correct neighbor among the first n.

The ROC analysis results are provided in table 6.6.
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a) cMap Classic Query System

PPV when considering the first n neighbors

Tested Compound Treated Cell Line n = 1 n = 2 n = 3 n = 5 n = 10 n = 15 n = 20 n = 50

PHA-848125 U251 0.00 0.50 0.33 0.40 0.30 0.20 0.20 0.10

flavopiridol A2780 1.00 0.50 0.33 0.60 0.60 0.40 0.35 0.14

PHA-848125 A2780 0.00 0.00 0.00 0.40 0.20 0.13 0.10 0.08

PHA-690509 A2780 0.00 0.50 0.67 0.60 0.30 0.20 0.15 0.12

PHA-793887 A2780 1.00 0.50 0.67 0.60 0.40 0.33 0.25 0.12

PHA-793887 MCF7 1.00 0.50 0.33 0.60 0.30 0.20 0.15 0.12

NMS-tanespimicyn MCF7 1.00 1.00 1.00 0.80 0.40 0.40 0.30 0.12

NMS-E973 MCF7 1.00 1.00 1.00 0.80 0.50 0.40 0.30 0.12

NVP-AUY922 MCF7 0.00 0.50 0.67 0.60 0.40 0.27 0.20 0.08

SN38 MCF7 1.00 0.50 0.33 0.20 0.20 0.13 0.10 0.08

NMS-doxorubicin MCF7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

Average Value: 0.54 0.50 0.42 0.50 0.32 0.24 0.19 0.10

b) cMap Classic Query System (Best Profile per Drug)

PPV when considering the first n neighbors

Tested Compound Treated Cell Line n = 1 n = 2 n = 3 n = 5 n = 10 n = 15 n = 20 n = 50

PHA-848125 U251 0.00 0.50 0.33 0.40 0.30 0.20 0.20 0.10

flavopiridol A2780 1.00 0.50 0.33 0.60 0.60 0.40 0.35 0.14

PHA-690509 A2780 0.00 0.50 0.67 0.60 0.30 0.20 0.15 0.12

PHA-793887 A2780 1.00 0.50 0.67 0.60 0.40 0.33 0.25 0.12

NMS-tanespimicyn MCF7 1.00 1.00 1.00 0.80 0.40 0.40 0.30 0.12

NMS-E973 MCF7 1.00 1.00 1.00 0.80 0.50 0.40 0.30 0.12

NVP-AUY922 MCF7 0.00 0.50 0.67 0.60 0.40 0.27 0.20 0.08

SN38 MCF7 1.00 0.50 0.33 0.20 0.20 0.13 0.10 0.08

NMS-doxorubicin MCF7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

Average Value: 0.56 0.56 0.56 0.51 0.34 0.26 0.21 0.10

c) DN, AES distance

PPV when considering the first n neighbors

Tested Compound Treated Cell Line n = 1 n = 2 n = 3 n = 5 n = 10 n = 15 n = 20 n = 50

PHA-848125 A2780, MCF7 1.00 1.00 0.67 0.40 0.40 0.33 0.25 0.25

flavopiridol A2780 1.00 1.00 1.00 0.60 0.50 0.40 0.40 0.20

PHA-690509 A2780 1.00 1.00 0.67 0.60 0.40 0.40 0.35 0.18

PHA-793887 A2780, MCF7 1.00 1.00 0.67 0.60 0.40 0.40 0.38 0.12

NMS-tanespimicyn MCF7 1.00 1.00 1.00 0.80 0.40 0.27 0.20 0.08

NMS-E973 MCF7 1.00 1.00 1.00 0.80 0.40 0.27 0.20 0.08

NVP-AUY922 MCF7 1.00 1.00 0.67 0.40 0.20 0.13 0.10 0.04

SN38 MCF7 1.00 1.00 0.67 0.40 0.40 0.27 0.20 0.08

NMS-doxorubicin MCF7 0.00 0.50 0.67 0.40 0.20 0.13 0.10 0.04

Average Value: 0.89 0.94 0.78 0.56 0.37 0.29 0.24 0.12

d) DN, MES distance

PPV when considering the first n neighbors

Tested Compound Treated Cell Line n = 1 n = 2 n = 3 n = 5 n = 10 n = 15 n = 20 n = 50

PHA-848125 A2780, MCF7 0.00 0.50 0.67 0.60 0.40 0.30 0.30 0.12

flavopiridol A2780 1.00 1.00 1.00 0.60 0.40 0.40 0.40 0.20

PHA-690509 A2780 1.00 0.50 0.67 0.60 0.40 0.47 0.35 0.18

PHA-793887 A2780, MCF7 0.00 0.50 0.67 0.60 0.40 0.40 0.25 0.16

NMS-tanespimicyn MCF7 1.00 1.00 1.00 0.80 0.50 0.33 0.25 0.10

NMS-E973 MCF7 1.00 1.00 1.00 0.80 0.40 0.33 0.25 0.10

NVP-AUY922 MCF7 1.00 1.00 1.00 0.80 0.40 0.27 0.20 0.08

SN38 MCF7 1.00 1.00 1.00 0.60 0.40 0.27 0.20 0.08

NMS-doxorubicin MCF7 1.00 0.50 0.33 0.40 0.40 0.33 0.25 0.04

Average Value: 0.77 0.77 0.81 0.64 0.41 0.34 0.27 0.13

Table 6.6: Classification performances ROC analysis. PPV values when considering

the first n neighbors (according to our drug distances) and the connectivity scores of the

cMap online tool queried with traditional signatures. The color of the n-th PPV is red if

no TPs were found among the first n predictions, is green if at least one TP was found.

Finally, is black if for in the considered case less than n predictions were significant.
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We would like to point out that we used for this comparison 11 gene expression

profiles for 9 compounds: for the testing compounds PHA-793887 and PHA-848125 we

had two gene expression profiles since two different cell lines were treated with them.

Our methods merges together multiple data for a given drug (with the rank merging

procedure) but the cMap online tool does not. Consequently, in order to have compa-

rable results, we used the cMap online tool also on a subset of 9 gene expression profiles

including, for PHA-793887 and PHA-848125, only the best-classified profile between

the two available ones (panel b in table 6.6). Although, even with this “supervised

little help” the cMap online tool performed worse than both our distances.

Additionally, the particular case of the tested compound NMS-doxorubicin shows that

our approach is able to correctly classify drugs with high precision and sensitivity where

the cMap classic online tool clearly fails (see Table 6.7).

Interestingly, Table 6.7 shows also that the AES distance is generally more stringent

and reliable whereas the MES one is more sensitive to weak similarities and provides a

lower PPV but a higher “recall” (i.e. the ratio of true positives recognized among all

the possible ones).

Moreover, the usefulness of our DN classification approach and its output format is

demonstrated in the following example: When the NMS-tanespimycin signature, in-

cluding the 142 maximally up-regulated and the 61 maximally down-regulated probe

sets (available in the SDD, where previously specificed), was used to interrogate the

cMap in the classic way, geldanamycin, tanespimycin, alvespimycin, and monorden

ranked among the top six hits (see appendix E), that also included the protein synthe-

sis inhibitor emetine. However, the next top hits up to position 29 were a miscellaneous

of chemicals most of which cannot clearly be related to the Hsp90 and/or ubiquitin pro-

tein degradation inhibition. Known proteasome inhibitors ranked position 29 and 30.

Similar results were obtained by querying the cMap classic online tool with the gene

signatures of the other two Hsp90 tested inhibitors.

On the contrary, the subnetwork containing the tested compounds (Figure 6.1, A) and

all their significant neighbors provides a modular and meaningful view of the DN ap-

proach output where drugs are grouped according to their effects. This allows users to

easily interpret the obtained output and to make a hypothesis on the MoA of a new

drug in a clearer way.
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cMap Classic Query System DN MES distance DN AES distance

#Connections = 68, #Connections = 26, #Connections = 5,

PPV = 3%, PPV = 20%, PPV = 40%,

First TP in 29th position. First TP in 1st position. First TP in 2nd position.

CS p Compound MES Compound AES Compound

0.761 0.00000 resveratrol 0.559 daunorubicin 0.781 mycophenolic acid

0.598 0.00000 thioridazine 0.649 GW-8510 0.793 etoposide

0.572 0.00000 trichostatin A 0.654 hycanthone 0.794 daunorubicin

0.977 0.00004 camptothecin 0.655 ellipticine 0.810 hycanthone

0.927 0.00004 trifluridine 0.669 irinotecan 0.823 MG-262

0.574 0.00004 trifluoperazine 0.690 camptothecin

0.572 0.00006 15-delta prostaglandin J2 0.692 etoposide

0.266 0.00006 LY-294002 0.693 mycophenolic acid

0.959 0.00010 mycophenolic acid 0.700 phenoxybenzamine

0.959 0.00010 proscillaridin 0.718 doxorubicin

0.885 0.00018 digitoxigenin 0.726 0175029-0000

0.476 0.00026 fluphenazine 0.734 mepacrine

0.879 0.00030 bufexamac 0.743 5151277

0.866 0.00044 thiostrepton 0.744 apigenin

0.864 0.00046 phenoxybenzamine 0.752 5109870

0.918 0.00114 irinotecan 0.758 vorinostat

0.712 0.00159 cloperastine 0.760 scriptaid

0.813 0.00235 digoxin 0.763 alsterpaullone

0.503 0.00239 vorinostat 0.764 resveratrol

0.789 0.00394 norcyclobenzaprine 0.772 cytochalasin B

0.869 0.00413 scriptaid 0.782 piperlongumine

0.716 0.00433 antimycin A 0.786 tyrphostin AG-825

0.775 0.00487 hycanthone 0.790 HC toxin

0.771 0.00525 monobenzone 0.793 trifluridine

0.759 0.00635 withaferin A 0.800 MG-262

0.623 0.00886 helveticoside 0.806 ciclopirox

0.737 0.00939 pinacidil

0.927 0.01012 quinostatin

0.732 0.01017 daunorubicin

0.927 0.01022 MS-275

0.820 0.01166 0297417-0002B

0.718 0.01307 alimemazine

0.596 0.01412 quercetin

0.709 0.01476 pimozide

0.701 0.01643 zalcitabine

0.795 0.01747 cefotetan

0.637 0.01788 cinchocaine

0.688 0.01975 etoposide

0.687 0.02007 methyldopate

0.686 0.02085 zuclopenthixol

0.680 0.02246 strophanthidin

0.776 0.02269 fenoterol

Color Legend: Topo II inhibitors, Topo I inhibitors, CDK2

Table 6.7: The NMS-doxorubicin classification case.
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6.6 Rank Merging Impact on the performances

As shown in Chapter 3, some recent approaches attempted to use cMap data to build a

drug similarity network by selectively comparing pairs of individual GEPs (62) rather

than pairs of drug PRLs, as done in our approach. However the use of individual GEPs

tend to group together profiles coming from the same cMap batch experiment, or the

same cell line, rather than grouping drugs with similar MoA. To avoid this problem, it

is necessary to merge together all of the differential expression profiles obtained with the

same drug, on different cell lines and at different dosages, prior to computing distances.

As introduced in Section 3.3.2, to show the effect of using individual GEPs, for each

GEP we considered the K closest GEPs in the cMap dataset, according to the distance.

We then computed the percentage of these closest GEPs (i.e. PPV, see Figure 6.6) that

were obtained by treating cells with the same drug (green line in Figure 6.6) as the

GEP under consideration, or in the same cell lines, regardless of the drug (blue line in

Figure 6.6), or in the same batch experiment, regardless of the drug (red line in Figure

6.6).

Figure 6.6: Individual GEPs distance assessment - PPV curves considering as

positive predicted values neighboring GEPs obtained in the same batch experiment (red),

by treating the same cell line (blue), or by treating with the same drug (green) of the

GEP under consideration. Average values have been computed across the whole dataset.

Dashed lines denotes random performances.

We therefore concluded from Figure 6.6 that using individual GEPs to compute

the similarity distance between drugs is not able to catch similarities in MoAs because
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of the inability to discriminate treatments obtained with different drugs in the same

experimental setting.

In order to additionally assess the impact of the PRL merging procedure on the clas-

sification performance of our tool, we specifically produced additional microarray data

by treating U251 cells with PHA-848125 at 3 µM, a dose equal to 5× the IC50 for 6

hours. We then merged the set of GEPs by using different combinations of them, and

we evaluated the ability of our tool to classify the resulting different PRLs. Results of

this assessment are summarized in table 6.8.

Performances are measured by means of ROC analysis, considering the neighborhoods

as sets of predictions and the sets of drugs in table 6.4 as correct predictions. The Area

under the curve (AUC) (i.e. ROC curve) has been measured as well.

Treated Cell Line PPV AUC

n = 1 n = 2 n = 3 n = 5 n = 10 n = 50 n = 100

1 SF539 0 0.5 0.33 0.2 0.1 0.2 0.12 46.81

2 A2780 0 0.5 0.33 0.2 0.4 0.12 0.07 48.73

3 U251 0 0.5 0.33 0.4 0.4 0.24 0.12 54.27

4 MCF7 0 0.5 0.67 0.6 0.4 0.22 0.11 55.7

5 MCF7, SF539 0 0.5 0.67 0.4 0.4 0.24 0.12 55.03

6 A2780, MCF7, U251 1 0.5 0.33 0.4 0.5 0.22 0.12 57.06

7 A2780, MCF7, U251, SF539 1 0.5 0.33 0.4 0.4 0.24 0.12 56.58

Table 6.8: Impact of the rank merging on the classification performances.

As expected the best performance is obtained when the PHA- 848125 PRL derives

from treatments on all three cell lines. Specifically, by using the profiles individually

the best classified was the one obtained by treating the MCF7 cells. This is quite ob-

vious, first of all because MCF7 is the most recurrent cell line among those treated in

the cMap dataset. Moreover for A2780 and U251 there are no treatments at all in the

cMap.

However, once we combined the profiles from MCF7 with that from A2780 or U251,

classification performances are still good, although the combination with U251 gives a

less efficient classification.

U251 cell line is the most diverse cell line among the three, since glioblastoma is a

very heterogeneous disease where different pathways are known to be disrupted, which

might explain the observed signal dilution.

Nevertheless, when combining the profiles coming from all three cell lines together
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(MCF7, A2780, and U251), we obtained the best performances in classification, sup-

porting the hypothesis that a sufficiently large combination of treated cell lines provides

a sufficiently general summary of the drug activity, which is well classified in the major-

ity of the cases. We further explored the robustness of our method in classifying drugs

by pooling together profiles coming from treatments on cell lines with a very different

genetic background, potentially causing a significant signal dilution.

To this aim we collected additional gene expression data by treating SF539 human

glioma cell line with PHA-848125 for 6 hours.

The SF539 cell line is genotipically characterized by a mutation in the RB gene (encod-

ing for the retinoblastoma tumor suppressor protein), whereas the other three treated

cell lines (A2780, MCF7, and U251) are RB wild type.

DNA replication and the regulation of the G1/S transition is under the control of the

RB/E2F pathway. In wild-type cells RB binds the E2F-1 transcription factor, thus

inhibiting its regulatory activity. When RB is phosphorylated by CDK2, it releases

E2F-1 that mediates the cell cycle progression (107).

In the SF539 cell line, RB is no longer able to block E2F-1, which is constitutively active

in this cell line as a result. As a consequence, inhibiting CDK2 with PHA-848125 on

SF539 will not have the same effect on the E2F mediated transcription that is elicited

in the RB wild-type cell lines.

Following the strategy previously described, we merged the set of gene expression pro-

files obtained by treating A2780, MCF7, U251, and SF539 with PHA-848125, and we

evaluated the ability of our tool to classify the resulting different PRLs.

The whole neighborhoods obtained in this assessment are available in the appendix G.

Results, listed in Table 6.8, show that by using expression profiles individually from a

single cell line, the best classification is obtained with the MCF7 cell line. This is to

be expected, because MCF7 is the most recurrent cell line among those treated in the

cMap dataset. The worst classification was instead obtained with the SF539 cell line,

which is coherent with the RB inactivation that mediates the MoA of the PHA-848125

compound.

Nevertheless, once we combined the profile coming from all four cell lines together

(MCF7, A2780, U251, and SF539), or even of two cell lines (MCF7 and SF539) only,

we improved the classification performance considerably.

These results support the hypothesis that a sufficiently large combination of treated
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cell lines provides a sufficiently general summary of the drug activity, which is well

classified by our method.

6.7 Discussion

In this chapter, we showed that our method is a general procedure that is able to predict

the molecular effects and MoA of new compounds. We were able to exploit information

hidden in the gene expression profiles following drug treatment to capture similarity

in drug MoA. Previous attempts to use gene expression profiles following compound

treatment in mammalian cells did not consider the variability in the transcriptional

response to the compound due to cell-line effects, to different dosages, and to differ-

ent experimental settings. Moreover, information embedded in the global structure

of the network of similarities among drugs has not been fully exploited in the past.

We removed unspecific effects by capturing the consensus transcriptional response to

a compound across multiple cell lines and dosages. We then automatically extracted

a gene signature for each compound and computed pairwise similarities between com-

pounds using a gene signature-based approach.

In Chapter 4 we analyzed the resulting network to identify communities of drugs with

similar MoA and to determine the biological pathways perturbed by these compounds.

We remark that, differently from other methods, whose aim is to identify the specific

drug substrates (34, 96), our approach also groups together compounds interacting with

distinct members of the same pathway.

In conclusion, the DN can be used to infer the MoA and targeted pathways of anticancer

compounds still being studied. We correctly classified both known and previously un-

described Hsp90 inhibitors. Interestingly, in addition to the Hsp90 inhibitors present

in the database (alvespimycin, geldanamycin, and monorden), several drugs included

in the top 10 closest neighbors for NMS-tanespimycin and NMS-E973 were connected

to inhibitors of the proteasome/NF-kB pathway, including disulfiram (29), withaferin

A (151), and parthenolide (57).

We also investigated the ability of our method in classifying well-known (flavopiridol)

and novel CDK inhibitors (PHA-690509, PHA-793887, and PHA-848125). These drugs

were correctly classified as CDK inhibitors, distinct from the other kinase inhibitors in

the database, and were also predicted to be very similar to Topo inhibitors.
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Although the induction of p21 by DNA damage-inducing agents was previously re-

ported, here we showed that this is clearly detected at the transcriptional level, sup-

porting the concept that gene modulations can be used as a biomarker to monitor the

effect of DNA damage-inducing agents.

As described in Chapter 5, the DN can be useful for formulating hypotheses on the MoA

of novel compounds by simply measuring multiple transcriptional responses in different

cell lines. In addition, by analyzing the PRLs associated to each drug in the network,

we may identify the drug communities that consistently up-, or down-regulate a given

set of genes, thus hinting to drug classes able to modulate a specific pathway of interest.

The major limitation of our approach is in the limited number of compounds in the

network. Because our approach is based on comparing how similar two drugs are, if a

compound is not similar to any of the drugs in the network, no inference on its MoA or

its biological effects can be done. Moreover, for a compound having inconsistent effects

on different cell lines (for example, due to a cell line with a mutated substrateprotein

targeted by the compound) merging gene expression profiles from distinct cell lines

may dilute the biological effects of the compound. Nevertheless, when no information

on the drug MoA is available a priori, the best strategy is still to merge profiles from

multiple cell lines.

As shown in this chapter, merging profiles coming from a sufficiently large, even if

heterogeneous, pool of treated cell lines, provides a summary of the transcriptional

response to the drug that can still be well classified by the DN. Considering that we

have made our approach publicly available as an online tool, it is clear that the DN

can be easily queried with the transcriptional responses of a unique compound, thus

providing a valuable tool to the research community.

148



7

MANTRA predicts candidates

for Drug Repositioning

7.1 Introduction

This chapter contains an interesting example of drug reposition proposed by MANTRA.

Thanks to our tool we discovered that fasudil, a safe vasodilator, enhances a metabolic

process known as cellular autophagy. In Section 7.2 a brief overview of this process, the

description of its roles in the aetiology of neurodegenerative disorders, and a discussion

about how its enhancement is clinically effective are provided.

In section 7.3 we explain how, starting from a known and safe cellular autophagy en-

hancer already present in our DN, we obtained a list of similar drug by using MANTRA.

This list contained a number of known cellular autophagy enhancer and fasudil, whose

ability in enhancing cellular autophagy has never been reported before.

The rest of the chapter contains the description of the experiments we conducted in or-

der to verify this novel MoA of fasudil and a discussion about the possible implications

of this discovery on some therapeutic approaches. Conclusions are reported in the final

section.

7.2 Overview of the mechanism of cellular autophagy

Autophagy, or autophagocytosis, is a catabolic process involving the degradation of

a cell’s own components through the lysosomal machinery. It is a tightly-regulated

process that plays a normal part in cell growth, development, and homeostasis, helping
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to maintain a balance between the synthesis, degradation, and subsequent recycling of

cellular products. It is a major mechanism by which a starving cell reallocates nutrients

from unnecessary processes to more-essential processes.

A variety of autophagic processes exist, all having in common the degradation of intra-

cellular components via the lysosome. The most well-known mechanism of autophagy

involves the formation of a membrane around a targeted region of the cell, separating

the contents from the rest of the cytoplasm. The resultant vesicle then fuses with a

lysosome and subsequently degrades the contents (Figure 7.1).

Figure 7.1: Cellular Autophagy - An autophagosome sequesters cytoplasmic con-

stituents, such as mitochondria, endoplasmic reticulum, and ribosomes, by forming a dou-

ble membrane vesicle. The outer membrane of the autophagosome then fuses with the

lysosome in mammalian cells delivering the sequestered content to the lumen of lysosome

for degradation

Autophagy is critical for the survival of yeast and mammalian cells under starvation

conditions because it functions to recycle intracellular material for macromolecular

synthesis and energy production (90). Autophagy occurs in all cells at low basal levels

under normal conditions to perform homeostatic functions, but it can be rapidly up-

regulated under starvation or stress conditions (90).
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7.2 Overview of the mechanism of cellular autophagy

Figure 7.2: Autophagic pathways - Biological pathways involved in cellular autophagy

[Image from: http://www.cellsignal.com/].
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During autophagy the Light chain 3 (LC3) protein localizes to the autophagosomal

membrane (72) and mammalian LC3 has been shown to mark the autophagosome

membrane specifically.

Autophagy is a key process involved in the pathogenesis of a wide range of human

disorders in which misfolded protein aggregation is the causative pathologic event. This

happens in various neurodegenerative diseases such as Parkinsons disease, Alzheimers

disease and Huntington disease. As an example, in Huntington disease, the UPS is

thought to be impaired, which leads to the formation of insoluble protein aggregates.

In this case, autophagy helps maintain cellular homeostasis by clearing damaged or-

ganelles and unfolded proteins. Moreover, autophagy is involved in the degradation of

various pathogens and its deficiency predisposes to tumorigenesis and aneuploidy.

Increasing autophagy may provide clinical benefit in the treatment of various dis-

eases, and therefore there is a great effort in developing drugs enhancing this function.

As shown in Figure 7.2, in mammalian cells, mTOR kinase, the target of rapamycin,

mediates the major inhibitory signal that shuts off autophagy under nutrient-rich con-

ditions (90) but also other pathways are involved in this process. mTOR activity can be

inhibited by rapamycin hence causing an mTOR-dependant cellular autophagy. How-

ever, the cytotoxicity of rapamycin and its dangerous side effects (such as immune

system suppression) has prevented its applications.

Nowaday, there is a great effort in developing safe drugs modulating autophagy, and

various approaches have been taken towards this goal.

7.3 Drug repositioning proposals through established-drug

neighborhood analysis

Recently, glucose has been proposed as a novel, natural and safe enhancer of cellular

autophagy (118). The cMap (and our DN as well) contains gene expression profiles

obtained by treating with 2DOG, a glucose molecule which has the 2-hydroxyl group

replaced by hydrogen, so that it cannot undergo further glycolysis (i.e. the process

that converts glucose into pyruvate, releasing free energy used to form the high-energy

compounds ATP).
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By using 2DOG to interrogate the drug network we identified a list of drugs that were

included in the neighborhood of 2DOG, hence predicted to share a similar mode of ac-

tion with this drug. This list is provided in table 7.1 and included fasudil, thapsigargin,

trifluoperazine, gossypol and niclosamide as closest neighbors (Figure 7.3). Of these,

thapsigargin, trifluoperazine, gossypol and niclosamide are previously known inducers

of autophagy (25, 83, 110, 119).

Figure 7.3: 2-deoxy-d-glucose closest neighbors - Each dot corresponds to a drug of

the DN and edge thickness is inversely proportional to the MES drug distance. In green

are shown drugs previously known to induce autophagy.

Additionally, 2DOG is the exemplar of community n. 1, which contains, in increas-

ing order of distance to 2DOG, fasudil, sodium-phenylbutirate, tamoxifen, arachidonyl-

trifluoromethane, and novobiocin (see table 7.2). In this community 2 drugs are known

autophagy inducers (2DOG and tamoxifen (16, 31)).

2DOG is also linked to other communities exemplars and is part of the rich-club whose

members are listed in table 7.3.

In this rich-club, 3 out of the 4 exemplars connected to 2DOG are known autophagy

inducers: trifluoperazine (25), ciclosporin (113) and oligomycin (142).
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Neighbor MES distance from 2DOG

Fasudil 0.5162

Thapsigargin* 0.5644

Trifluoperazine* 0.5770

Gossypol* 0.6330

Niclosamide* 0.6539

Tyrphostin AG-1478 0.6682

Valinomycin 0.6780

Ivermectin 0.6792

Sodium phenylbutyrate 0.6833

BW-B70C 0.6905

Calmidazolium 0.6912

5224221 0.6968

MG-132 0.6971

Desipramine 0.7007

Rottlerin 0.7013

Clotrimazole 0.7054

Mefloquine 0.7066

Ionomycin 0.7087

Tamoxifen* 0.7143

Cytochalasin B 0.7164

Ciclosporin* 0.7201

Puromycin 0.7268

Pyrvinium 0.7283

Astemizole 0.7290

Alexidine 0.7305

Disulfiram 0.7311

Fendiline 0.7329

Prochlorperazine 0.7387

Anisomycin 0.7397

Pararosaniline 0.7417

Chlorprothixene 0.7420

Loperamide 0.7422

Mometasone 0.7439

Iloprost 0.7475

0297417-0002B 0.7480

Thioridazine 0.7488

MG-262 0.7500

Spiperone 0.7556

Arachidonyltrifluoromethane 0.7599

Methylbenzethonium chloride 0.7615

5707885 0.7630

Oligomycin 0.7701

Podophyllotoxin 0.7725

Homochlorcyclizine 0.7736

Perphenazine 0.7742

Celastrol 0.7752

Vanoxerine 0.7760

Idoxuridine 0.7760

5666823 0.7765

Hydroxyzine 0.7766

Nordihydroguaiaretic acid 0.7776

Geldanamycin 0.7776

Metergoline 0.7777

Novobiocin 0.7779

Terfenadine 0.7781

Butoconazole 0.7787

Piroxicam 0.7808

*Known enhancers of cellular autophagy

Table 7.1: Neighbors of 2DOG in the DN
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Community n. 1

2-deoxy-D-glucose*

fasudil

tamoxifen*

sodium phenylbutyrate

arachidonyltrifluoromethane

novobiocin

*Known enhancers of cellular autophagy

Table 7.2: Composition of community n. 1

Exemplar Community

2-deoxy-D-glucose * 1

Trifluoperazine*† 100

Ciclosporin*† 43

Astemizole† 34

Oligomycin*† 78

Gefitinib 60

5114445 4

Esculetin 54

Dimethyloxalylglycine 51

Demecolcine 48

Zardaverine 106

CP-319743 10

Terconazole 92

3-aminobenzamide 2

Mycophenolic acid 75

HC toxin 16

*Known enhancers of cellular autophagy

†Exemplars connected to 2DOG

Table 7.3: 2DOG network rich-club
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7.4 MANTRA predicts that Fasudil promotes cellular au-

tophagy

The DN topology surrounding 2DOG suggests that fasudil could be an autophagy en-

hancer.

Despite being a drug with a well-characterized MoA, fasudil has never been previously

linked to autophagy so this could be a very interestingly case of “repositionable” drug

for conditions in which cellular autophagy could have a therapeutic efficacy.

Fasudil is a RHO kinase (ROCK) inhibitor used to reverse blood vessel spasm occurring

after subarachnoid hemorrhage. Besides subarachnoid hemorrhage, clinical applica-

tions of fasudil include various types of cardiovascular diseases, such as acute ischemic

stroke, stable angina pectoris, coronary artery spasm, heart failure-associated vascular

resistance and constriction, pulmonary arterial hypertension, essential hypertension,

atherosclerosis and aortic stiffness.

Interestingly, previous studies have shown that Y-27632, an analog of fasudil not cur-

rently approved for clinical use, is effective at reducing the aggregation of several polyg-

lutamine proteins (130), including mutant Huntingtin (Htt) (10), which plays a crucial

role in a patology known as Huntington’s disease (HD).

HD is a progressive neurodegenerative genetic disorder, which affects muscle coordina-

tion and leads to cognitive decline and dementia. It typically becomes noticeable in

middle age. HD is the most common genetic cause of abnormal involuntary writhing

movements called chorea and is much more common in people of Western European

descent than in those from Asia or Africa. The disease is caused by an autosomal dom-

inant mutation on either of an individual’s two copies of the gene coding for the Htt

protein, which means any child of an affected parent has a 50% risk of inheriting the

disease. In rare situations where both parents have an affected gene, or either parent

has two affected copies, this risk is greatly increased. Physical symptoms of HD can

begin at any age from infancy to old age, but usually begin between 35 and 44 years of

age. About 6% of cases start before the age of 21 years with an akinetic-rigid syndrome;

they progress faster and vary slightly.

The mutation of the Huntingtin gene codes for a different form of the protein, whose

presence results in gradual damage to specific areas of the brain. The exact way this

happens is not fully understood. The Htt protein interacts with over 100 other proteins,
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and appears to have multiple biological functions. The behavior of mutated Htt protein

is not completely understood, but it is toxic to certain types of cells, particularly in the

brain.

The discovered effect of Y-27632 on mutant Htt was attributed to enhancement of

degradation by macroautophagy and the UPS, mediated by inhibition of ROCK 1 and

2 (130).

Interestingly, in our drug network, in contrast to fasudil, Y-27632 was found in commu-

nity n. 40, which is enriched for small molecules functioning as UPS modulators (see

appendix B.1), raising the hypothesis that the effects of Y-27632 on UPS are stronger

than those on autophagy.

7.5 Experimental validation

To verify the efficacy of fasudil in enhencing autophagic activity, as predicted by our

approach, we evaluated the levels of the second isoform of the LC3 protein (LC3-II)

in wild-type human fibroblasts treated with fasudil, by WB with anti-LC3 antibody, a

well-established assay for the activation of autophagy (105). In fact, as introduced in

Section 7.2, during autophagy, a cytosolic form of the LC3 protein (LC3-I) is conju-

gated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine conjugate

(LC3-II), which is recruited to autophagosomal membranes, and LC3-II is degraded

by lysosomal hydrolases after the fusion of autophagosomes with lysosomes. Therefore,

lysosomal turnover of LC3-II reflects starvation-induced autophagic activity, and detec-

tion of LC3 by immunoblotting or immunofluorescence has become a reliable method

for monitoring autophagy.

We measured a marked increase in LC3-II levels in fibroblasts treated with fasudil

and trifluoperazine identified by the DN, as well as, in cells treated with 2DOG and

rapamycin, two well-known inducers of autophagy (Figure 7.4).

Immunostaining with LC3 antibody further confirmed the WB analysis, demon-

strating a strong activation of autophagic degradation upon treatment with fasudil

(Figure 7.5).

The effect of fasudil on autophagy enhancement was further confirmed in HeLa cells

(Figure 7.6).
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Figure 7.4: Effects of fasudil on autophagy (1) - Evaluation of LC3 levels in human

fibroblasts after treatment with drugs: (Rp, rapamycin; HF, fasudil; Tr, trifluoperazine;

2D, 2-deoxy-D-glucose; NT, untreated). The experiments were performed in triplicate, and

representative results are shown.

7.6 Hypotheses and consequences

We do not know which is the mechanism resulting in the enhancement of autophagy by

fasudil. ROCKs, existing as two isoforms (ROCK1 and ROCK2), are Serine/Threonine

(Ser/Thr) protein specific kinases, which are downstream targets of the small Guanosine

Triphosphate (GTP)ase Ras homolog gene family (Rho)A, primarily involved in cy-

toskeletal regulation.

ROCKs regulate a wide range of biological functions including cell growth, migration

and apoptosis. Since knockdown of both ROCK1 and 2 results in autophagy activation

(10), the effect of fasudil on autophagy is likely mediated by its known inhibitory effect

on these proteins. However, whether and how cytoskeletal changes due to Rho/ROCK

inhibition results in activation of UPS and autophagy remain unknown.

Activation of ROCKs by GTP-bound Rho results in phosphorylation of various target

proteins. One of the main substrates of ROCK is Myosin Light Chain (MLC) that

stimulates myosin-actin interactions. Other downstream targets of ROCKs include the

Ser/Thr kinases LIM kinase (LIMK) 1 and 2.

Besides the action on MLC, which underlies its therapeutic effect against vasospasm,

fasudil appears to have other cellular effects.

Substrates of ROCK, for example, include the glial fibrillary acidic protein, neurofila-

ments that upon phosphorylation by ROCK undergo depolymerization and Microtubule-

Associated Protein 2 (MAP2).
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Figure 7.5: Effects of fasudil on autophagy (2) - Immunofluorescence with anti-

LC3 antibody in fibroblasts treated with drugs promoting autophagy. Evaluation of LC3

levels in human fibroblasts after treatment with drugs: 1, Rapamycin; 2, Fasudil; 3, Tri-

fluoperazine; 4, 2DOG; NT, untreated. The experiments were performed in triplicate and

representative results are shown.
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Figure 7.6: Effects of fasudil on autophagy (3) - Effects of Fasudil on HeLa Cells.

Western blot with anti-LC3 antibody in drug treated Hela cells treated: 1, rapamycin; 2,

dasudil 10 µm; 3, fasudil 30 µM; 4, trifluoperazine 1 µM; 5, 2DOG 100 µM; NT, untreated.

LC3-II levels are increased following treatment with fasudil, trifluoperazine, and 2DOG as

compared to the untreated control. The experiments were performed in duplicate and

representative results are shown.

Based on results obtained in animal models (85), ROCK inhibitors have been proposed

to slow down the degenerative process in Alzheimer disease by reducing toxic levels

of Aβ42, whose accumulation is thought to be involved in the disease aetiology, and

stimulating regenerative growth of neurites (106). Moreover, peripheral delivery of fa-

sudil reduces neuronal death and epilepsy in mice and improves spatial cognition and

memory in rats (64). Whether these effects are mediated by enhancing autophagy is

an interesting hypothesis which warrants further studies. Nevertheless, these studies

suggest that fasudil is able to cross the blood-brain barrier and to reach therapeutic

concentrations in the brain, at least in rodents.

In summary, fasudil is a clinically approved drug with potential applications to various

human disorders where enhancement of autophagy can provide clinical benefit.

7.7 Discussion

In this chapter we described how we obtained a surprising prediction from MANTRA:

fasudil promotes cellular autophagy. Given the excellent safety profile, this newly

recognized effect of fasudil could be exploited for disorders due to protein misfolding,

including neurodegenerative diseases. This shows that MANTRA is a valid tool for

finding previously unrecognized MoAs of well-characterized drugs. Moreover, this can

be accomplished in a very quick, easy and cheap way: by simply looking to the topology
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surrounding a drugs with the desired MoA and searching in it for safe drugs never linked

before to that MoA.

Considering that MANTRA is publicly available and easily usable on-line it is clear that

it has an incredible potential (quickly exploitable by users) in finding novel applications

for a huge number of approved drugs, hence strikingly speeding up the drug discovery

pipe-line.
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8

Future directions and Discussion

8.1 Introduction

In this final chapter we discuss about two possible extensions of our approach describing

how it could be improved or used for an alternative purpose.

A conclusive summary is provided in the final section and the major strengths and

weakness of our method are finally listed.

8.2 Cross platform/species compatibility

The currently implemented version of MANTRA can be used with data coming from

Affymetrix R©HG-U133a gene chip hybridizations only. This because the used reference

dataset (i.e. the cMap) has been created by using this platform exclusively and the

DN is obtained by comparing lists of MPI rather than lists of genes in order to retain

as more information as possible. In our classification tests (see Chapter 6) we used

a more recent platform (Affymetrix R©HG-U133 Plus 2.0) including all the MPI of the

Affymetrix R©HG-U133a platform. Hence we processed this data by simply filtering out

the entries corresponding to probe sets not belonging to the platform we used.

Generally, this approach is unsuitable for the integration of data coming from other

microarray platforms. The probe/gene mapping of microarray from different brand and

for species different from human are even more heterogeneous and hence unusable.

As an example, there are no MPI in common between the Affymetrix R©HG-U133a plat-

form and the equivalently popular Affymetrix R©Mo430 mouse platform and according

to the Affymetrix R©conversion table only an amount of 120 sequences match well among
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the two platforms. Therefore, reducing the analysis on the MPI mapping for this se-

quence is unconceivable. In fact our platform contains 22,283 MPI and the mouse one

45,101 (see Figure 8.1). By considering only 120 MPI a massive quantity of informative

data would be filtered out wasting the advantages of a large-scale approach such those

realized by the DNA microarrays.

On the other hand, if we focus on the “gene-symbol domain” we can see that the MPI

set of our reference platform contains 14,467 distinct gene sequences or sub-sequences

while the mouse platform MPI is mapped into a set of 21,970 gene sequences or sub-

sequences. The intersection of these two set of genes contains 9,783 elements corre-

sponding to genes that are conserved among the two species (see Figure 8.1).

Reducing the analysis of data coming from this mouse platform to these 9,783 Cross-

platform conserved genes (CPCGs) affords to take into account of the corresponding

16,063 MPI of the human platform (70%) and 20,528 MPI of the mouse platform (45%).

There will be indeed a consistent loss of information regarding the mouse data, but

most of the information contained in our reference dataset and the DN is conserved.

In order to quantify how this filtering influences the classification performances, we

sought to test our classification algorithm by using publicly available gene expression

data from the ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress/) (15)

(114). The data, which we downloaded, corresponded to the following experiments:

• Transcription profiling of mouse embryonic stem cell line CGR8 grown in presence

of Leukemia Inhibitory Factor and treated with trichostatin A (ArrayExpress ID.

= E-TABM-670)

• Transcription profiling of mouse embryonic stem cells cultured with PI3-K sig-

nalling inhibitor LY-294002 to identify PI3K-target genes (ArrayExpress ID. =

E-TABM-673)

These data have been created and are described in the studies (73) and (139) respec-

tively.

Trichostatin A is an organic compound that serves as an anti-fungal antibiotic and

selectively inhibits the class I and II mammalian HDAC families of enzymes. Our DN

contains a community (n. 16) that is highly enriched for this MoA and, generally, we

observed that this class of compounds elicit a well defined transcriptional response.

Hence we chose this example because it is relatively simple.
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8.2 Cross platform/species compatibility

Figure 8.1: Cross-platform conserved genes - Affymetrix human and mouse plat-

forms: 22,283 MPI in the human platform and 45,101 in the mouse platform. 14,467 dis-

tinct genes are mapped by the MPI of the human platform and 21,970 genes are mapped

by the MPI of the mouse platform. 9,783 gene are contained in the intersection of these

two sets and they are mapped by 16,063 MPI of the human platform (70%) and 20,528

MPI of the mouse platform (45%).
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LY-294002 is a potent inhibitor of Phosphoinositide 3-kinasess (PI3Ks). The effect of

LY-294002 on the transcription is very wide and actually this drug is an outlier in its

community in the DN. Hence this could be considered a more difficult example of

classification test.

After computing differential expression values for these experiments we applied a filter

on the MPI by keeping only those mapping for sequences in the set of the CPCGs

and we computed a PRL by sorting the surviving MPI according to their differential

expression values. Then we assigned to each of the survived MPI the corresponding

gene-symbol as a label. At this stage we removed probe-set mapping for more than one

gene and we kept for genes mapped by several MPI only the “farthest-from-the-centre”

probe-set (i.e. the probe set whose rank position has the greatest difference from the

average value).

Obviously, before computing drug distances we had to apply this pre-processing also

to our reference collection of drug PRLs and recomputing distance statistical threshold

levels as detailed in the Section 4.5.2.

After this preliminary step we classified the two drugs with our classification algorithm

(see Section 5.3 and pseudocode 5). Results of this classification test are shown in

Figure 8.2 and Table 8.1.

The trichostatin A four closest neighbors, once it has been integrated in the DN, are

known HDAC inhibitors while LY-294002 was connected to sirolimus (rapamycin) and

quinostatin two drugs modulating the PI3K-Akt-mTOR pathway. This hints that even

if in a broader sense also in the more difficult case the MoA of the tested compound

could have been deduced by looking to our classification result.

The outcome of this pilot study suggests that it is more than reasonable to plan an

extension of MANTRA with the described preprocessing step in order to enabling cross-

platform/cross-specie compatibility and that good classification performances could be

kept also in the “gene symbol domain”.

8.3 Classification of diseases

Can a generic biological state of interest be represented by a gene signature and a pat-

tern of expression only? A positive response to this question is the leading concept of

the cMap and other computational approaches.
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Figure 8.2: Pilot study results on mouse data - Result of MANTRA on the gene

symbol domain by using microarray data from Mouse.

Trichostatin A LY-294002

MES Distance Compound MES Distance Compound

0.4470 vorinostat* 0.4890 sirolimus†
0.5114 scriptaid* 0.6788 quinostatin†
0.5457 rifabutin*

0.6502 HC-toxin*

0.7064 camptothecin

0.7477 resveratrol

*HDAC inhibitors †PI3K-Akt-mTOR pathway modulators

Table 8.1: Classification results on mouse data: Significant neighbors of the tested

compounds
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We exploited the cMap database and its querying system by improving its performance

on well defined sub-class of biological states: those eliciting a response to a drug treat-

ment. We further investigated a possible use of our approach in classifying also PRLs

describing other biological states such as, for example, a disease with transcriptional-

influencing phenotype.

To this end, we downloaded from the GEO database, a set of gene expression profiles

from hybridizations of the substantia nigra (a sub-structure of the brain, located in

the mesencephalon, o midbrain, that plays an important role in reward, addiction, and

movement) of postmortem human brain in humans affected by Parkinson’s disease (PD)

(GEO accession number: GSE7621). This dataset was created in the study (84) where

the authors investigated common gene variations that predispose to complex diseases.

Some of the obtained results were validated by using generated in-house gene expres-

sion data so the cited dataset was created.

To do this, substantia nigra tissue from postmortem brain of normal and PD patients

was used for RNA extraction and hybridization on Affymetrix microarrays: 9 replicates

for the controls and 16 replicates for the PD patients were used.

We computed profiles of differential expression from this data (PD versus normal pa-

tient), we generated a PRL for PD by using the KRUBOR algorithm (subsection 4.2.4,

pseudocode 1) and we classified this disease as we classify a compound with our algo-

rithm (see Section 5.3 and pseudocode 5). Results of this classification are reported in

Figure 8.3.

According to our classification result, the most “similar to PD” drug (by the induced

transcriptional response point of view) is 1,5-isoquinolinediol. Differently from other

isoquinoline derivatives that find many therapeutic applications, the pharmacological

and toxicological properties of 1,5-isoquinolinediol have not been fully investigated and

it is not used in humans. This compound is reported as Poly (ADP-ribose) poly-

merase (PARP) inhibitor in several studies but more interestingly (and consistently

with our classification result) it belongs to a family of endogenous neurotoxins thought

to be involved in the aetiology of PD (103). Particularly a neurotoxin called MPTP

(1[N]-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was found and linked to PD in the

1980s. The active neurotoxins destroy dopaminergic neurons, leading to parkinsonism

and PD. Several tetrahydroisoquinoline derivatives have been found to have the same

neurochemical properties as MPTP. These derivatives may act as neurotoxin precursors
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8.3 Classification of diseases

Figure 8.3: Classification of Parkinson’s disease - Neighbors (connected by green

edges) and an “anti-neighbors” (connected by a red edge) of Parkinson’s Disease, once

it has been integrated in our DN. Color intensities are proportional to the correspondig

similarity relationships.
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to active neurotoxins.

In order to check wether the cMap contains drug whose transcriptional response is

“anti-correlated” to the transcriptional activity in PD we computed also distances by

considering the PD PRL in a reversed order (i.e. down-regulated genes at the top of the

list and up-regulated genes at the bottom). The closest drug to this “reversed” PRL

was sulindac sulfide. This drug is a dopamine level reducer (30) and dopaminergic

agonist are used in the treatment of PD. Combined together, these results provide a

very strong rationale to our classification results and hints that gene expression could

be used to monitor the activity of the cited neurotoxin (in order to better understand

their role in the aetiology of PD) as well as to find novel drug candidates to treat this

condition.

In conclusion, this example additionally confirm that genomic signatures together with

patterns of expression can be used to summarize biological state of interests and that

MANTRA could be extended in order to study complex diseases and other conditions

by using gene expression data only.

8.4 Conclusions

In this PhD thesis we presented a three year project in which we designed and imple-

mented a general procedure for the prediction of the molecular effects and the mode

of action of new compounds, and to find previously unrecognized applications of well-

known drugs.

We were able to exploit the information hidden in a public available collection of

gene expression profiles following drug treatment to capture similarity in drug effects.

Previous attempts to use gene expression profiles following compound treatment in

mammalian cells did not consider the variability in the transcriptional response to the

compound due to cell-line effects, to different dosages, and to different experimental

settings. Moreover, information embedded in the global structure of the network of

similarities among drugs has never been fully exploited in the past.

We removed unspecific effects by capturing the consensus transcriptional response to

a compound across multiple cell lines and dosages. We then automatically extracted

a gene signature for each compound and computed pairwise similarities between com-

pounds using a gene signature-based approach. We analyzed the resulting network to
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identify communities of drugs with similar effects and to determine the biological path-

ways perturbed by these compounds. We remark that, differently from other methods,

whose aim is to identify the specific drug substrates, our approach also groups together

compounds interacting with distinct members of the same pathway. Our drug network

can be used to infer the mode of action and the targeted pathways of anticancer com-

pounds still being studied and to find candidates for drug repositioning (i.e., to suggest

novel clinical application for well-known and approved drugs).

We correctly classified both known and novel drugs. By doing this we discovered a

previously unreported similarity in the effect elicited by two different classes of com-

pounds.

In addition, we experimentally verified a surprising prediction by discovering an unre-

ported effect of a well known and approved drug. Given the excellent safety profile of

this drug this could have a significant impact on the treatment of several neurodegen-

erative disorder.

Our drug network can be useful for formulating hypotheses on the mode of action

of previously undescribed compounds by simply measuring multiple transcriptional re-

sponses in different cell lines. In addition, drug repositioning is the easiest way to find

previously undescribed drug therapies for different conditions. We have shown that it

is possible to find previously unrecognized mode of action of well-characterized drugs

by simply looking for the drugs neighboring a drug of interest in the network. In ad-

dition, by analyzing the prototype ranked lists of genes associated to each drug in the

network, we may identify the drug communities that consistently up-, or down-regulate

a given set of genes, thus hinting to drug classes able to modulate a specific pathway

of interest.

The major limitation of our approach is in the limited number of compounds in the

network. Because our approach is based on comparing how similar two drugs are, if a

compound is not similar to any of the drugs in the network, no inference on its mode

of action or its biological effects can be done.

Moreover, for a compound having inconsistent effects on different cell lines (for example,

due to a cell line with a mutated substrate-protein targeted by the compound) merging

gene expression profiles from distinct cell lines may dilute the biological effects of the

compound. Nevertheless, when no information on the drug mode of action is available
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8. FUTURE DIRECTIONS AND DISCUSSION

a priori, the best strategy is still to merge profiles from multiple cell lines. We have

evidences, that merging profiles coming from a sufficiently large, even if heterogeneous,

pool of treated cell lines, provides a summary of the transcriptional response to the

drug that can still be well classified by the DN.

We have made our approach publicly available as an online tool that has been enthusias-

tically welcomed by the international scientific community as proven by the increasing

number of MANTRA user account requests and the number of citations in reviews

and papers appeared on peer reviewed journals in the fields of computational biology,

statistics and network theory (3, 12, 21, 46, 69, 77, 99, 101, 137).

The drug network can be easily searched for a compound of interest, or queried with

the transcriptional responses of a unique compound, thus providing a valuable tool for

computational drug discovery and repositioning.
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Appendix A

Abbreviations

2DOG 2-deoxy-D-glucose

A2780 Human ovarian cancer cell line

AES Average Enrichment-Score

APC Affinity Propagation Clustering

ATC Anatomical Therapeutic Chemical

ATP Adenosine-5’-triphosphate

AUC Area under the curve

bp base pairs

Ca2+ Calcium ions

CDK Cyclin-Dependent kinase

cDNA complementary DNA

cMap Connectivity Map

CPCG Cross-platform conserved gene

CS Connectivity Score

diB-LAB Systems, Synthetic and Compu-

tational Biology Laboratory

DN Drug Network

DNA Deoxyribonucleic acid

DREAM Dialogue for Reverse Engineering

Assessment and Methods

EMEA European Medicine Agency

ER Endoplasmatic Reticulum

ERK Extracellular signal-regulated kinases

ES Enrichment Score

ESF Electrotopological States

FDA U.S. Food and Drug Administration

FDR False Discovery Rate

FP False Positive

GEO Gene Expression Omnibus database

GEP Gene Expression Profile

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

GSK Glycogen synthase kinase

GTP Guanosine Triphosphate

HDAC Histone deacetylases

Hsp90 Heat Shock Protein 90

HD Huntington’s disease

HTS High-Throughput Screening

Htt Huntingtin

IC50 Half maximal inhibitory concentration

IRMA In-vivo Reverse-engineering and

Modelling Assessment

K+ Potassium ion
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A. ABBREVIATIONS

KRUBOR Kruskal-Borda

KS Kolmogorov-Smirnov

ITES Inverse Total Enrichment Score

LC3 Light chain 3

LIMK LIM kinase

mRNA messenger RNA

MANTRA Mode of Action by Network

Analysis

MAP2 Microtubule-Associated Protein 2

MAPK Mitogen-activated protein kinase

MCF7 Human breast cancer cell line

MCL Myeloid Cell Leukemia sequence

MDS MultiDimensional Scaling

MES Maximum Enrichment-Score

MLC Myosin Light Chain

MoA Mode of Action

MPI Microarray Probe-set Identifiers

N-TRAP NeTwork by Recursive Affinity

Propagation

Na+ Sodium ion

Na+/K+-ATPase Sodium-Potassium

pump

NIR Network Inference by multiple Regres-

sion

NIRest NIR with perturbation Estimates

NMS Nerviano Medical Science

ODE Ordinary Differential Equation

PARP Poly (ADP-ribose) polymerase

PCA Principal Components Analysis

PCR Polymerase Chain Reaction

PD Parkinson’s disease

pdf Probability Density Function

PI3K Phosphoinositide 3-kinases

PPV Positive Predicted Value

PPAR-gamma Peroxisome proliferator-

activate receptor gamma

PRL Prototype Ranked List

PVDF Polyvinylidene Fluoride

QC Quality control

RB Retinoblastoma

RNA Ribonucleic acid

ROCK RHO kinase

RMA Robust Multiarray Algorithm

ROC Receiver Operating Characteristic

Rho Ras homolog gene family

RSS Residual Sum of Square

SDD Supplementary Data Disc

Ser/Thr Serine/Threonine

SF539 Human glioblastoma cell line

SMILES Simplified Molecular Input Line

Entry Specification

SNP Single Nucleotide Polymorphism

Topo Topoisomerase

TIGEM TeleThon Institute of Genetics and

Medicine

tRNA Transfer RNA

TP True Positive

U251 Human glioma cell line

UPS Ubiquitin Proteasome System

WB Western Blot

WHOCC World Health Organization Col-

laborating Centre
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Appendix B

Community enrichments

B.1 Literature based evidences
Community n. 3

Drug name Class

5109870

5182598

resveratrol G1/S Cell Cycle Blockers

5248896

ciclopirox G1/S Cell Cycle Blockers

etoposide G1/S Cell Cycle Blockers

blebbistatin

5255229

trifluridine

5279552

5211181

triamterene

deferoxamine G1/S Cell Cycle Blockers

kaempferol G1/S Cell Cycle Blockers

apomorphine

colforsin G1/S Cell Cycle Blockers

quercetin G1/S Cell Cycle Blockers

guaifenesin

hycanthone

Community n. 9

Drug name Class

BCB000038

16-phenyltetranorprostaglandin-E2 fatty acids and prostaglandin derivatives

CP-944629

IC-86621

11-deoxy-16,16-dimethylprostaglandin-E2 fatty acids and prostaglandin derivatives

Community n. 10

Drug name Class

CP-319743

15(S)-15-methylprostaglandin-E2 fatty acids and prostaglandin derivatives

BCB000040

BCB000039

Community n. 13

Drug name Class

DL-thiorphan

atropine Anticholinergics
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B. COMMUNITY ENRICHMENTS

methacholine-chloride

papaverine Anticholinergics

protoveratrine-A

labetalol

scopolamine Anticholinergics

flufenamic-acid

tremorine Cholinergic Receptor Agonists

bupropion

demeclocycline

tomatidine

hydrastine-hydrochloride

clonidine Anticholinergics

diclofenac

cefuroxime

sulfadiazine

physostigmine Anticholinergic antagonists

gramine

hydroxyachillin

ramipril

testosterone

lidoflazine

alpha-yohimbine

ifosfamide

Community n. 14

Drug name Class

GW-8510 CDK2 inhibitors

doxorubicin TopoII inhibitors

alsterpaullone CDK2 inhibitors

H-7 CDK2 inhibitors

tyrphostin-AG-825 CDK2 inhibitors

camptothecin TopoI inhibitors

daunorubicin TopoII inhibitors

mitoxantrone TopoII inhibitors

ellipticine CDK2/TopoII inhibitors

azacitidine TopoII inhibitors

fisetin CDK2 inhibitors

staurosporine CDK2 inhibitors

MS-275

bromopride

gallamine-triethiodide

Community n. 15

Drug name Class

Gly-His-Lys carbonic anhydrase inhibitors

pilocarpine carbonic anhydrase inhibitors

STOCK1N-35874

diclofenamide carbonic anhydrase inhibitors

Community n. 16

Drug name Class

HC-toxin HDAC inhibitors

vorinostat HDAC inhibitors

rifabutin HDAC inhibitors

scriptaid HDAC inhibitors

trichostatin-A HDAC inhibitors

valproic-acid HDAC inhibitors

idoxuridine

mepacrine

LY-294002 PI3K inhibitors

bufexamac

spironolactone

pergolide

fusidic-acid
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trimethobenzamide

rosiglitazone PI3K inhibitors

diprophylline

Community n. 22

Drug name Class

Prestwick-1080

Prestwick-1100

nialamide Antidepressants

levcycloserine Antidepressants

santonin

quinethazone

chlorambucil

homosalate

ciclacillin

lithocholic-acid

phenelzine Antidepressants

Prestwick-984

Community n. 23

Drug name Class

SB-203580 PGE2 antagonists

NS-398 PGE2 antagonists

pioglitazone PGE2 antagonists

SC-19220 PGE2 antagonists

Community n. 26

Drug name Class

aciclovir

guanabenz adrenoreceptor and histamine receptor antagonists

lisuride adrenoreceptor and histamine receptor antagonists

timolol adrenoreceptor and histamine receptor antagonists

thioperamide adrenoreceptor and histamine receptor antagonists

finasteride

Community n. 28

Drug name Class

alvespimycin HSP90 inhibitors

geldanamycin HSP90 inhibitors

monorden HSP90 inhibitors

tanespimycin HSP90 inhibitors

fulvestrant

Community n. 32

Drug name Class

apigenin CDK2/TopoII inhibitors

luteolin CDK2/TopoI inhibitors

chrysin CDK2 inhibitors

thioguanosine DNA precursors/antimetabolites (S phase)

harmine CDK2 inhibitors

skimmianine TopoI inhibitors

0175029-0000

rimexolone

sulfametoxydiazine antibacterials

trioxysalen

flunixin

metyrapone

cefalotin antibacterials

irinotecan TopoI inhibitors

sulfaphenazole antibacterials

acetylsalicylic-acid

metacycline

pancuronium-bromide

dextromethorphan

amoxicillin antibacterials

lymecycline antibacterials
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2,6-dimethylpiperidine

etidronic-acid

ethotoin

lysergol

vidarabine antibacterials

Prestwick-664

Prestwick-665

heliotrine

todralazine

proxymetacaine

calcium-pantothenate

tiabendazole

paroxetine

tinidazole antibacterials

harman CDK2 inhibitors

acacetin

harmol CDK2 inhibitors

nifedipine

Community n. 34

Drug name Class

astemizole antihistamines and anticholinergics

terfenadine antihistamines and anticholinergics

mefloquine antihistamines and anticholinergics

prenylamine

suloctidil

isoconazole

spiperone antihistamines and anticholinergics

rescinnamine

trimipramine antihistamines and anticholinergics

dihydroergotamine antihistamines and anticholinergics

nicergoline

nordihydroguaiaretic-acid

dosulepin

chlorphenamine antihistamines and anticholinergics

proadifen antihistamines and anticholinergics

aminophenazone

atropine-oxide antihistamines and anticholinergics

penbutolol antihistamines and anticholinergics

Community n. 39

Drug name Class

carbinoxamine Histamine receptor H1 antagonists

drofenine Histamine receptor H1 antagonists

isopropamide-iodide

ribostamycin Aminoglicosidic Antibiotics

butirosin Aminoglicosidic Antibiotics

Community n. 40

Drug name Class

celastrol Proteasome inhibitors and UPS modulators

MG-132 Proteasome inhibitors and UPS modulators

5224221

MG-262 Proteasome inhibitors and UPS modulators

thapsigargin Proteasome inhibitors and UPS modulators

puromycin protein synthesis inhibitors (elongation inhibitors)

ionomycin calcium signal modulators

piperlongumine

disulfiram Proteasome inhibitors and UPS modulators

5253409

1,4-chrysenequinone

mometasone Proteasome inhibitors and UPS modulators

fendiline calcium signal modulators

tyrphostin-AG-1478
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econazole calcium signal modulators

cyproheptadine calcium signal modulators

isotretinoin

(+)-chelidonine

lynestrenol

primaquine protein synthesis inhibitors (elongation inhibitors)

dienestrol

pimethixene

loxapine

PF-00875133-00

5230742

dicycloverine

mianserin

dyclonine

nalbuphine

Y-27632

betazole

vinburnine

propidium-iodide

prilocaine

PHA-00846566E

Community n. 42

Drug name Class

chlorzoxazone

glibenclamide

clindamycin antibiotics and bactericidals

dirithromycin antibiotics and bactericidals

lobeline

chlortetracycline antibiotics and bactericidals

danazol

clopamide

ajmaline

ampyrone

betaxolol

chlorhexidine antibiotics and bactericidals

methazolamide

hydrastinine

Prestwick-689

Community n. 43

Drug name Class

ciclosporin

estrone Estrogens

diethylstilbestrol Estrogens

pizotifen

equilin Estrogens

naringenin Estrogen inhibitors

betulinic-acid

saquinavir

MK-886

Community n. 44

Drug name Class

indometacin Dopaminergic agents

dopamine Dopaminergic agents

quinpirole Dopaminergic agents

cobalt-chloride

Community n. 48

Drug name Class

demecolcine plant alkaloids

(-)-catechin plant alkaloids

12,13-EODE plant alkaloids

phenanthridinone plant alkaloids
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DL-PPMP

3-hydroxy-DL-kynurenine plant alkaloids

5252917

paclitaxel plant alkaloids

chloroquine plant alkaloids

Community n. 49

Drug name Class

dexverapamil L-type calcium channel blockers

exemestane Aromatase inhibitors

4,5-dianilinophthalimide

mesalazine COX2 inhibitors

rofecoxib COX2 inhibitors

verapamil L-type calcium channel blockers

kanamycin

midecamycin Estrogens (PGE2 increasers)

mepyramine

alpha-estradiol Estrogens (PGE2 increasers)

troleandomycin Estrogens (PGE2 increasers)

racecadotril

Community n. 50

Drug name Class

dicoumarol antibacterials

benfotiamine

spiramycin antibacterials

sulfadimidine antibacterials

ethoxyquin antibacterials

flecainide

piperacillin antibacterials

Community n. 52

Drug name Class

doxazosin Alpha-adrenoreceptor modulators

carbachol Alpha-adrenoreceptor modulators

rolitetracycline Antibacterials for systemic use

ethaverine

xylazine Alpha-adrenoreceptor modulators

Prestwick-860

ioversol

betahistine

cinchocaine

natamycin Antibacterials for systemic use

meropenem Antibacterials for systemic use

piromidic-acid Antibacterials for systemic use

progesterone Progestogen Hormons

levamisole

pivampicillin Antibacterials for systemic use

esculin

naringin

fluorocurarine

crotamiton Alpha-adrenoreceptor modulators

cinoxacin Antibacterials for systemic use

cefsulodin Antibacterials for systemic use

dimethadione

bephenium-hydroxynaphthoate

dydrogesterone Progestogen Hormons

edrophonium-chloride

lomefloxacin Antibacterials for systemic use

bemegride

palmatine

bendroflumethiazide

cisapride

Community n. 53
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Drug name Class

emetine protein synthesis inhibitors

cephaeline protein synthesis inhibitors

anisomycin protein synthesis inhibitors

cicloheximide protein synthesis inhibitors

vanoxerine

propofol

Community n. 59

Drug name Class

flunisolide corticosteroids

citiolone

mepenzolate-bromide

eldeline

solasodine corticosteroids

pempidine

halcinonide corticosteroids

fludroxycortide corticosteroids

alcuronium-chloride

Community n. 60

Drug name Class

gefitinib PI3Ks inhibitors

1,5-isoquinolinediol PARP inhibitors

clomipramine

tolfenamic-acid PARP inhibitors

famotidine

chlorphenesin

guanethidine

vinpocetine

wortmannin PI3Ks inhibitors

SC-58125 PI3Ks inhibitors

bambuterol

nimesulide COX2 modulators

amodiaquine

hexamethonium-bromide

tetracycline COX2 modulators

acebutolol

josamycin

Community n. 62

Drug name Class

gossypol Sodium/Calcium Decreasers and calcium channel blockers

pararosaniline

niclosamide Antiinfectives, Antiseptics, Antiparasitics

pyrvinium Antiinfectives, Antiseptics, Antiparasitics

valinomycin

rottlerin

clotrimazole Antiinfectives, Antiseptics, Antiparasitics

5707885

dequalinium-chloride Antiinfectives, Antiseptics, Antiparasitics

miconazole Antiinfectives, Antiseptics, Antiparasitics

butoconazole Antiinfectives, Antiseptics, Antiparasitics

benzamil Sodium/Calcium Decreasers and calcium channel blockers

antimycin-A

azacyclonol

clioquinol Antiinfectives, Antiseptics, Antiparasitics

felodipine Sodium/Calcium Decreasers and calcium channel blockers

ticlopidine Antiplatelets and vasoprotectives

tribenoside Antiplatelets and vasoprotectives

abamectin

erastin

mifepristone

clofazimine
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profenamine

LM-1685

rotenone Antiinfectives, Antiseptics, Antiparasitics

0179445-0000

isradipine Sodium/Calcium Decreasers and calcium channel blockers

naftifine Antiinfectives, Antiseptics, Antiparasitics

mercaptopurine

foliosidine

Community n. 63

Drug name Class

helveticoside Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

lanatoside-C Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

digoxin Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

ouabain Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

digoxigenin Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

proscillaridin Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

digitoxigenin Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

strophanthidin Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

bisacodyl Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

lycorine Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

hydroquinine Na+/K+ - ATPase (sodium Potassium) membrane pump inhibitors

Community n. 65

Drug name Class

imatinib COX2 modulators

pirinixic-acid COX2 modulators

celecoxib COX2 modulators

Community n. 69

Drug name Class

mebendazole Microtubule inhibitors

nocodazole Microtubule inhibitors

colchicine Microtubule inhibitors

fenbendazole Microtubule inhibitors

dobutamine Alpha and Beta Adrenergic receptor modulators

scoulerine Alpha and Beta Adrenergic receptor modulators

nifuroxazide

(+)-isoprenaline Alpha and Beta Adrenergic receptor modulators

amiloride

oxedrine Alpha and Beta Adrenergic receptor modulators

Community n. 73

Drug name Class

methylergometrine dopamine receptors agonists

bromocriptine dopamine receptors agonists

diltiazem dopamine receptors agonists

fenoterol Alfa and Beta adrenergic modulators

alfuzosin Alfa and Beta adrenergic modulators

hesperidin Alfa and Beta adrenergic modulators

orciprenaline Alfa and Beta adrenergic modulators

(-)-isoprenaline Alfa and Beta adrenergic modulators

dexibuprofen Alfa and Beta adrenergic modulators

Community n. 75

Drug name Class

mycophenolic-acid hepatic enzymes inducers

methotrexate hepatic enzymes inducers

ribavirin hepatic enzymes inducers

rifampicin hepatic enzymes inducers

Community n. 77

Drug name Class

nitrendipine calcium channel blockers

paracetamol

nimodipine calcium channel blockers

oxybenzone

188



B.1 Literature based evidences

Community n. 81

Drug name Class

pirenperone serotonin receptors modulators / antiparkinsonians

serotonin serotonin receptors modulators / antiparkinsonians

epiandrosterone

biperiden serotonin receptors modulators / antiparkinsonians

propranolol serotonin receptors modulators / antiparkinsonians

Community n. 88

Drug name Class

ritodrine

androsterone Steroids hormons

ketoconazole Steroid hormon synthesis inhibitors, cythochrome P450 blockers,

domperidone metabolism blocker

domperidone P450 substrates

procainamide P450 substrates

clenbuterol P450 substrates

Community n. 89

Drug name Class

sanguinarine Hemostatic agents

cantharidin

8-azaguanine

verteporfin

ginkgolide-A Hemostatic agents

talampicillin

menadione Hemostatic agents

ipratropium-bromide

hydrocotarnine

dacarbazine

etamsylate Hemostatic agents

solanine

dipyridamole Hemostatic agents

N-acetyl-L-leucine

desoxycortone

epivincamine

zimeldine

tracazolate

pargyline Antihypertensive agents

sitosterol Antihypertensive agents

picrotoxinin

6-benzylaminopurine

altizide Antihypertensive agents

terbutaline

ketoprofen Hemostatic agents

laudanosine

phentolamine Antihypertensive agents

tolbutamide

flumequine

oxytetracycline

sotalol Antihypertensive agents

methyldopa Antihypertensive agents

R-atenolol Antihypertensive agents

Community n. 90

Drug name Class

sulconazole Imidazoles and Sulfonamides

phthalylsulfathiazole Imidazoles and Sulfonamides

cetirizine

medrysone Corticosteroids

tyloxapol

Prestwick-1084

omeprazole Imidazoles and Sulfonamides

promethazine

famprofazone
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lorglumide

metamizole-sodium Imidazoles and Sulfonamides

eucatropine

pentoxyverine

cefalexin

liothyronine

piperidolate

amiodarone

tropicamide

riboflavin

acepromazine

latamoxef

hexestrol

meclozine

monobenzone

cyproterone

(-)-MK-801

ketanserin

etofenamate

trazodone

pyrazinamide

sulfafurazole Imidazoles and Sulfonamides

ronidazole Imidazoles and Sulfonamides

dexpropranolol

capsaicin

apramycin

denatonium-benzoate

nitrofurantoin

naloxone

tranylcypromine

norethisterone

fluocinonide Corticosteroids

ifenprodil

oxybuprocaine

sulfamerazine Imidazoles and Sulfonamides

cycloserine

beta-escin

clobetasol Corticosteroids

xylometazoline

methapyrilene

scopoletin

Prestwick-674

bezafibrate

sertaconazole Imidazoles and Sulfonamides

difenidol

anabasine

ganciclovir

sulfamethoxazole Imidazoles and Sulfonamides

adrenosterone

fluorometholone Corticosteroids

cortisone Corticosteroids

mevalolactone

flunarizine

pentamidine

aminophylline

zoxazolamine

ranitidine

parbendazole Imidazoles and Sulfonamides

colecalciferol

ethosuximide

clorgiline
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furaltadone

etanidazole Imidazoles and Sulfonamides

sulfinpyrazone

pipenzolate-bromide

nifurtimox

methylprednisolone Corticosteroids

alverine

prasterone

bretylium-tosilate

Community n. 91

Drug name Class

sulindac-sulfide sulindac metabolites

sulindac sulindac metabolites

exisulind sulindac metabolites

tacrolimus

phenyl-biguanide

Community n. 93

Drug name Class

tiapride

ofloxacin TopoII inhibitors

nalidixic-acid TopoII inhibitors

griseofulvin

metaraminol

flutamide

Community n. 96

Drug name Class

tolazoline

sulfaguanidine sulfonamides

succinylsulfathiazole sulfonamides

minoxidil

cyclopenthiazide sulfonamides

Community n. 99

Drug name Class

trichlormethiazide non-selective phosphodiesterase inhibitors and adenosine receptor

antagonists

reserpine

mestranol

galantamine

fosfosal non-selective phosphodiesterase inhibitors and adenosine receptor

antagonists

atovaquone

spectinomycin

simvastatin non-selective phosphodiesterase inhibitors and adenosine receptor

antagonists

trimethylcolchicinic-acid

canavanine

theophylline non-selective phosphodiesterase inhibitors and adenosine receptor

antagonists

theobromine non-selective phosphodiesterase inhibitors and adenosine receptor

antagonists

arcaine

colistin

Community n. 100

Drug name Class

trifluoperazine Antipsychotics (Phenothiazines)

metergoline Antipsychotics (5-HT and Dopamine Receptors modulators)

perphenazine Antipsychotics (Phenothiazines)

loperamide

methylbenzethonium-chloride

alexidine

calmidazolium

chlorprothixene Antipsychotics (Thioxanthene derivatives)
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tetrandrine calcium channel blockers and Ca2+ level increaser

protriptyline Antidepressants (Non-selective monoamine reuptake inhibitors)

fluphenazine Antipsychotics (Phenothiazines)

0297417-0002B

cloperastine Antipsychotics (Thioxanthene derivatives)

benzethonium-chloride

nortriptyline Antidepressants (Non-selective monoamine reuptake inhibitors)

fluspirilene Antipsychotics (Diphenylbutylpiperidine derivatives)

homochlorcyclizine

prochlorperazine Antipsychotics (Phenothiazines)

maprotiline Antidepressants (Non-selective monoamine reuptake inhibitors)

BW-B70C

levomepromazine Antipsychotics (Phenothiazines)

desipramine Antidepressants (Non-selective monoamine reuptake inhibitors)

metitepine Antipsychotics (5-HT and Dopamine Receptors modulators)

bepridil calcium channel blockers and Ca2+ level increaser

chlorcyclizine Antipsychotics (Thioxanthene derivatives)

cytochalasin-B

piperacetazine Antipsychotics (Phenothiazines)

norcyclobenzaprine Antidepressants (Non-selective monoamine reuptake inhibitors)

ivermectin

tonzonium-bromide

pimozide Antipsychotics (Diphenylbutylpiperidine derivatives)

metixene Antipsychotics (Thioxanthene derivatives)

perhexiline calcium channel blockers and Ca2+ level increaser

thioproperazine Antipsychotics (Phenothiazines)

chlorpromazine Antipsychotics (Phenothiazines)

thioridazine Antipsychotics (Phenothiazines)

flupentixol Antipsychotics (Thioxanthene derivatives)

monensin Antidepressants (Non-selective monoamine reuptake inhibitors)

clomifene calcium channel blockers and Ca2+ level increaser

raloxifene calcium channel blockers and Ca2+ level increaser

hexetidine

CP-645525-01

imipramine Antidepressants (Non-selective monoamine reuptake inhibitors)

amoxapine Antidepressants (Non-selective monoamine reuptake inhibitors)

quinisocaaine Antihistamines

clofilium-tosylate calcium channel blockers and Ca2+ level increaser

zuclopenthixol Antipsychotics (Thioxanthene derivatives)

amitriptyline

phenazopyridine

co-dergocrine-mesilate

clemastine Antihistamines

fluvoxamine Antidepressants (Non-selective monoamine reuptake inhibitors)

ursolic-acid

clozapine Antipsychotics (others)

promazine

podophyllotoxin

cyclobenzaprine Antidepressants (Non-selective monoamine reuptake inhibitors)

dihydroergocristine

5666823

orphenadrine Antipsychotics (Thioxanthene derivatives)

S-propranolol

sirolimus

albendazole

troglitazone

diperodon

lasalocid

doxepin Antidepressants (Non-selective monoamine reuptake inhibitors)

alimemazine Antihistamines

thiethylperazine Antihistamines
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procarbazine

fluoxetine Antidepressants (Non-selective monoamine reuptake inhibitors)

lovastatin

amphotericin-B

proguanil

raubasine

diphenylpyraline Antihistamines

Community n. 104

Drug name Class

withaferin-A

lomustine nitrosourea compounds used as alkylating agents in chemotherapy.

F0447-0125

parthenolide

phenoxybenzamine

semustine nitrosourea compounds used as alkylating agents in chemotherapy.

5155877

thiostrepton

STOCK1N-35215

15-delta-prostaglandin-J2

securinine

oxyphenbutazone

5194442

etacrynic-acid

carmustine nitrosourea compounds used as alkylating agents in chemotherapy.

C-75

myricetin

Community n. 105

Drug name Class

yohimbic-acid natural occuring alkaloids and derivatives

diflorasone natural occuring alkaloids and derivatives

Prestwick-691

gelsemine natural occuring alkaloids and derivatives

conessine natural occuring alkaloids and derivatives
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B.2 ATC-Codes
Community n. 14

Enriched

ATC

code

Definition p-value Odds-

ratio

L01D CYTOTOXIC ANTIBIOTICS AND RELATED SUBSTANCES 0.0000 192.00

L01DB Anthracyclines and related substances 0.0000 192.00

L01 ANTINEOPLASTIC AGENTS 0.0001 24.00

L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 0.0005 14.77

Community n. 63

Enriched

ATC

code

Definition p-value Odds-

ratio

C01A CARDIAC GLYCOSIDES 0.0000 153.60

C01AA Digitalis glycosides 0.0000 153.60

C01 CARDIAC THERAPY 0.0010 12.45

C CARDIOVASCULAR SYSTEM 0.0491 3.18

Community n. 48

Enriched

ATC

code

Definition p-value Odds-

ratio

L01C PLANT ALKALOIDS AND OTHER NATURAL PRODUCTS 0.0001 128.00

L01 ANTINEOPLASTIC AGENTS 0.0028 21.33

L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 0.0073 13.13

Community n. 65

Enriched

ATC

code

Definition p-value Odds-

ratio

L01X OTHER ANTINEOPLASTIC AGENTS 0.0001 109.71

L01 ANTINEOPLASTIC AGENTS 0.0009 32.00

L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 0.0025 19.69

Community n. 96

Enriched

ATC

code

Definition p-value Odds-

ratio

A07AB Sulfonamides 0.0001 102.40

A07A INTESTINAL ANTIINFECTIVES 0.0026 23.63

A07 ANTIDIARRHEALS, INTESTINAL ANTIINFLAMMATORY/ANTIINFECTIVE

AGENTS

0.0088 12.80

A ALIMENTARY TRACT AND METABOLISM 0.1137 3.30

C CARDIOVASCULAR SYSTEM 0.0491 3.18

Community n. 104

Enriched

ATC

code

Definition p-value Odds-

ratio

L01AD Nitrosoureas 0.0000 96.00

L01A ALKYLATING AGENTS 0.0000 54.86

L01 ANTINEOPLASTIC AGENTS 0.0005 16.00

L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 0.0022 9.85

C CARDIOVASCULAR SYSTEM 0.3170 1.77

Community n. 77

Enriched

ATC

code

Definition p-value Odds-

ratio

C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY VASCULAR EF-

FECTS

0.0002 85.33

C08CA Dihydropyridine derivatives 0.0002 85.33

C08 CALCIUM CHANNEL BLOCKERS 0.0007 42.67

C CARDIOVASCULAR SYSTEM 0.0931 3.53

Community n. 22

Enriched

ATC

code

Definition p-value Odds-

ratio
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N06AF Monoamine oxidase inhibitors, non-selective 0.0002 76.80

N06A ANTIDEPRESSANTS 0.0059 15.36

N06 PSYCHOANALEPTICS 0.0096 12.00

N NERVOUS SYSTEM 0.1297 3.02

Community n. 43

Enriched

ATC

code

Definition p-value Odds-

ratio

G03CC Estrogens, combinations with other drugs 0.0002 76.80

G03C ESTROGENS 0.0003 61.44

G03 SEX HORMONES AND MODULATORS OF THE GENITAL SYSTEM 0.0062 15.36

L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 0.0228 7.88

G GENITO URINARY SYSTEM AND SEX HORMONES 0.0499 5.21

Community n. 69

Enriched

ATC

code

Definition p-value Odds-

ratio

P02CA Benzimidazole derivatives 0.0004 54.86

C01CA Adrenergic and dopaminergic agents 0.0025 24.38

P02C ANTINEMATODAL AGENTS 0.0031 21.94

C01C CARDIAC STIMULANTS EXCL. CARDIAC GLYCOSIDES 0.0053 16.88

P02 ANTHELMINTICS 0.0071 14.63

P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 0.0367 6.27

C01 CARDIAC THERAPY 0.0407 5.93

C CARDIOVASCULAR SYSTEM 0.1284 2.27

Community n. 15

Enriched

ATC

code

Definition p-value Odds-

ratio

S01E ANTIGLAUCOMA PREPARATIONS AND MIOTICS 0.0004 48.00

S01 OPHTHALMOLOGICALS 0.0121 9.04

S SENSORY ORGANS 0.0127 8.83

Community n. 75

Enriched

ATC

code

Definition p-value Odds-

ratio

L04 IMMUNOSUPPRESSANTS 0.0006 48.00

L04A IMMUNOSUPPRESSANTS 0.0006 48.00

L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 0.0141 9.85

J ANTIINFECTIVES FOR SYSTEMIC USE 0.1225 3.12

Community n. 89

Enriched

ATC

code

Definition p-value Odds-

ratio

B02B VITAMIN K AND OTHER HEMOSTATICS 0.0005 45.18

B02 ANTIHEMORRHAGICS 0.0027 22.59

B BLOOD AND BLOOD FORMING ORGANS 0.0070 7.13

R03 DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES 0.0822 4.11

G GENITO URINARY SYSTEM AND SEX HORMONES 0.3805 1.53

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.3978 1.33

R RESPIRATORY SYSTEM 0.5219 1.17

J ANTIINFECTIVES FOR SYSTEMIC USE 0.5290 1.10

S01 OPHTHALMOLOGICALS 0.5784 1.06

S SENSORY ORGANS 0.5919 1.04

Community n. 73

Enriched

ATC

code

Definition p-value Odds-

ratio

R03A ADRENERGICS, INHALANTS 0.0011 36.57

G02 OTHER GYNECOLOGICALS 0.0001 32.91

G02C OTHER GYNECOLOGICALS 0.0015 31.35

R03C ADRENERGICS FOR SYSTEMIC USE 0.0015 31.35
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R03 DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES 0.0151 9.97

G GENITO URINARY SYSTEM AND SEX HORMONES 0.0009 7.44

R RESPIRATORY SYSTEM 0.5219 1.17

Community n. 99

Enriched

ATC

code

Definition p-value Odds-

ratio

R03DA Xanthines 0.0012 34.13

R03D OTHER SYSTEMIC DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES 0.0018 28.44

J01X OTHER ANTIBACTERIALS 0.0033 21.33

C03 DIURETICS 0.0208 8.53

R03 DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES 0.0250 7.76

C CARDIOVASCULAR SYSTEM 0.0704 2.35

R RESPIRATORY SYSTEM 0.2256 2.22

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.3405 1.67

J ANTIINFECTIVES FOR SYSTEMIC USE 0.4360 1.39

Community n. 61

Enriched

ATC

code

Definition p-value Odds-

ratio

N06B PSYCHOSTIMULANTS, AGENTS USED FOR ADHD AND NOOTROPICS 0.0021 25.60

N06BX Other psychostimulants and nootropics 0.0021 25.60

B01AC Platelet aggregation inhibitors excl. heparin 0.0051 17.07

B01 ANTITHROMBOTIC AGENTS 0.0119 11.38

B01A ANTITHROMBOTIC AGENTS 0.0119 11.38

R01A DECONGESTANTS AND OTHER NASAL PREPARATIONS FOR TOPICAL USE 0.0455 5.69

R01 NASAL PREPARATIONS 0.0503 5.39

B BLOOD AND BLOOD FORMING ORGANS 0.0503 5.39

N06 PSYCHOANALEPTICS 0.1260 3.20

C01 CARDIAC THERAPY 0.1600 2.77

R RESPIRATORY SYSTEM 0.0542 2.66

N NERVOUS SYSTEM 0.4631 1.21

A ALIMENTARY TRACT AND METABOLISM 0.5598 1.10

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.6136 1.01

Community n. 64

Enriched

ATC

code

Definition p-value Odds-

ratio

R03D OTHER SYSTEMIC DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES 0.0027 23.27

R03 DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES 0.0369 6.35

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.0857 3.99

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.0857 3.99

M MUSCULO-SKELETAL SYSTEM 0.1936 2.45

R RESPIRATORY SYSTEM 0.3038 1.81

S01 OPHTHALMOLOGICALS 0.3483 1.64

S SENSORY ORGANS 0.3594 1.61

C CARDIOVASCULAR SYSTEM 0.3452 1.44

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.4409 1.37

J ANTIINFECTIVES FOR SYSTEMIC USE 0.5473 1.14

Community n. 61

Enriched

ATC

code

Definition p-value Odds-

ratio

J01M QUINOLONE ANTIBACTERIALS 0.0027 23.27

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1834 2.51

J ANTIINFECTIVES FOR SYSTEMIC USE 0.2473 2.08

Community n. 49

Enriched

ATC

code

Definition p-value Odds-

ratio

J01FA Macrolides 0.0033 21.33

J01F MACROLIDES, LINCOSAMIDES AND STREPTOGRAMINS 0.0052 17.07
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A07 ANTIDIARRHEALS, INTESTINAL ANTIINFLAMMATORY/ANTIINFECTIVE

AGENTS

0.0020 10.67

A ALIMENTARY TRACT AND METABOLISM 0.0840 2.75

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1050 2.51

J ANTIINFECTIVES FOR SYSTEMIC USE 0.1622 2.08

Community n. 44

Enriched

ATC

code

Definition p-value Odds-

ratio

C01 CARDIAC THERAPY 0.0023 20.76

C CARDIOVASCULAR SYSTEM 0.0354 5.30

Community n. 76

Enriched

ATC

code

Definition p-value Odds-

ratio

B BLOOD AND BLOOD FORMING ORGANS 0.0034 20.21

A ALIMENTARY TRACT AND METABOLISM 0.0740 4.13

Community n. 13

Enriched

ATC

code

Definition p-value Odds-

ratio

S01F MYDRIATICS AND CYCLOPLEGICS 0.0039 19.20

S01FA Anticholinergics 0.0039 19.20

A03 DRUGS FOR FUNCTIONAL GASTROINTESTINAL DISORDERS 0.0412 6.00

S01E ANTIGLAUCOMA PREPARATIONS AND MIOTICS 0.0412 6.00

S01 OPHTHALMOLOGICALS 0.0241 2.82

S SENSORY ORGANS 0.0264 2.76

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.1625 2.74

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.1625 2.74

M MUSCULO-SKELETAL SYSTEM 0.3358 1.68

G GENITO URINARY SYSTEM AND SEX HORMONES 0.3517 1.63

A ALIMENTARY TRACT AND METABOLISM 0.3043 1.55

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.3591 1.41

C CARDIOVASCULAR SYSTEM 0.3567 1.32

J ANTIINFECTIVES FOR SYSTEMIC USE 0.4857 1.17

N NERVOUS SYSTEM 0.5089 1.13

D DERMATOLOGICALS 0.5443 1.13

Community n. 62

Enriched

ATC

code

Definition p-value Odds-

ratio

G01AF Imidazole derivatives 0.0003 19.20

C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY VASCULAR EF-

FECTS

0.0051 17.07

C08CA Dihydropyridine derivatives 0.0051 17.07

D01AC Imidazole and triazole derivatives 0.0093 12.80

G01 GYNECOLOGICAL ANTIINFECTIVES AND ANTISEPTICS 0.0002 11.38

G01A ANTIINFECTIVES AND ANTISEPTICS, EXCL. COMBINATIONS WITH COR-

TICOSTEROIDS

0.0002 11.38

S02A ANTIINFECTIVES 0.0119 11.38

S02AA Antiinfectives 0.0119 11.38

D01 ANTIFUNGALS FOR DERMATOLOGICAL USE 0.0029 9.60

D01A ANTIFUNGALS FOR TOPICAL USE 0.0029 9.60

A01AB Antiinfectives and antiseptics for local oral treatment 0.0177 9.31

C08 CALCIUM CHANNEL BLOCKERS 0.0210 8.53

S02 OTOLOGICALS 0.0283 7.31

P02 ANTHELMINTICS 0.0323 6.83

A01 STOMATOLOGICAL PREPARATIONS 0.0365 6.40

A01A STOMATOLOGICAL PREPARATIONS 0.0365 6.40

P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 0.0271 4.39

G GENITO URINARY SYSTEM AND SEX HORMONES 0.0037 4.34

D DERMATOLOGICALS 0.0736 2.41
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S SENSORY ORGANS 0.5215 1.18

A ALIMENTARY TRACT AND METABOLISM 0.5598 1.10

C CARDIOVASCULAR SYSTEM 0.5605 1.06

Community n. 59

Enriched

ATC

code

Definition p-value Odds-

ratio

D07 CORTICOSTEROIDS, DERMATOLOGICAL PREPARATIONS 0.0056 16.17

D07A CORTICOSTEROIDS, PLAIN 0.0056 16.17

D DERMATOLOGICALS 0.0970 3.61

Community n. 6

Enriched

ATC

code

Definition p-value Odds-

ratio

M01AB Acetic acid derivatives and related substances 0.0065 15.36

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.0722 4.39

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.0722 4.39

M MUSCULO-SKELETAL SYSTEM 0.1660 2.69

A ALIMENTARY TRACT AND METABOLISM 0.1097 2.48

N NERVOUS SYSTEM 0.2202 1.81

Community n. 100

Enriched

ATC

code

Definition p-value Odds-

ratio

N05AB Phenothiazines with piperazine structure 0.0000 15.06

N05AF Monoamine oxidase inhibitors, non-selective 0.0003 15.06

N05AG Diphenylbutylpiperidine derivatives 0.0043 15.06

N06AA Non-selective monoamine reuptake inhibitors 0.0000 10.95

R06AD Phenothiazine derivatives 0.0124 10.04

N05AA Phenothiazines with aliphatic side-chain 0.0025 9.04

N05A ANTIPSYCHOTICS 0.0000 8.07

C08E NON-SELECTIVE CALCIUM CHANNEL BLOCKERS 0.0238 7.53

N05 PSYCHOLEPTICS 0.0000 6.84

N06A ANTIDEPRESSANTS 0.0000 6.02

N06AB Selective serotonin reuptake inhibitors 0.0380 6.02

R06AA Aminoalkyl ethers 0.0380 6.02

N06 PSYCHOANALEPTICS 0.0000 4.71

N NERVOUS SYSTEM 0.0000 3.08

P02C ANTINEMATODAL AGENTS 0.1383 3.01

R06 ANTIHISTAMINES FOR SYSTEMIC USE 0.0280 2.79

R06A ANTIHISTAMINES FOR SYSTEMIC USE 0.0280 2.79

C08 CALCIUM CHANNEL BLOCKERS 0.1866 2.51

D04 ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC. 0.1866 2.51

D04A ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC. 0.1866 2.51

P02 ANTHELMINTICS 0.2623 2.01

G03 SEX HORMONES AND MODULATORS OF THE GENITAL SYSTEM 0.3883 1.51

P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 0.4149 1.29

R RESPIRATORY SYSTEM 0.4049 1.17

G GENITO URINARY SYSTEM AND SEX HORMONES 0.5637 1.02

Community n. 32

Enriched

ATC

code

Definition p-value Odds-

ratio

J01ED Long-acting sulfonamides 0.0068 14.63

J01A TETRACYCLINES 0.0228 8.13

J01AA Tetracyclines 0.0228 8.13

J01E SULFONAMIDES AND TRIMETHOPRIM 0.0532 5.22

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.0141 2.51

J ANTIINFECTIVES FOR SYSTEMIC USE 0.0112 2.38

P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 0.2475 2.09

D DERMATOLOGICALS 0.4161 1.29

S01 OPHTHALMOLOGICALS 0.4161 1.29
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S SENSORY ORGANS 0.4317 1.26

Community n. 90

Enriched

ATC

code

Definition p-value Odds-

ratio

C01BD Antiarrhythmics, class III 0.0049 14.22

D10AA Corticosteroids, combinations for treatment of acne 0.0139 9.48

R06AE Piperazine derivatives 0.0266 7.11

A03A DRUGS FOR FUNCTIONAL BOWEL DISORDERS 0.0204 4.74

C05AA Corticosteroids 0.0606 4.74

S01BA Corticosteroids, plain 0.0277 4.27

J04A DRUGS FOR TREATMENT OF TUBERCULOSIS 0.0811 4.06

D01AC Imidazole and triazole derivatives 0.1034 3.56

A02 DRUGS FOR ACID RELATED DISORDERS 0.1271 3.16

A02B DRUGS FOR PEPTIC ULCER AND GASTRO-OESOPHAGEAL REFLUX DIS-

EASE (GORD)

0.1271 3.16

D10 ANTI-ACNE PREPARATIONS 0.1271 3.16

D10A ANTI-ACNE PREPARATIONS FOR TOPICAL USE 0.1271 3.16

H02AB Glucocorticoids 0.1271 3.16

J04 ANTIMYCOBACTERIALS 0.1271 3.16

J01E SULFONAMIDES AND TRIMETHOPRIM 0.0688 3.05

D07 CORTICOSTEROIDS, DERMATOLOGICAL PREPARATIONS 0.0384 2.99

D07A CORTICOSTEROIDS, PLAIN 0.0384 2.99

R05 COUGH AND COLD PREPARATIONS 0.1520 2.84

A03 DRUGS FOR FUNCTIONAL GASTROINTESTINAL DISORDERS 0.0959 2.67

S01B ANTIINFLAMMATORY AGENTS 0.0959 2.67

H02 CORTICOSTEROIDS FOR SYSTEMIC USE 0.1777 2.59

H02A CORTICOSTEROIDS FOR SYSTEMIC USE, PLAIN 0.1777 2.59

D04 ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC. 0.2040 2.37

D04A ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC. 0.2040 2.37

C01B ANTIARRHYTHMICS, CLASS I AND III 0.2308 2.19

R06 ANTIHISTAMINES FOR SYSTEMIC USE 0.1144 2.11

R06A ANTIHISTAMINES FOR SYSTEMIC USE 0.1144 2.11

C05 VASOPROTECTIVES 0.2578 2.03

C05A AGENTS FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR

TOPICAL USE

0.2578 2.03

D01 ANTIFUNGALS FOR DERMATOLOGICAL USE 0.3119 1.78

D01A ANTIFUNGALS FOR TOPICAL USE 0.3119 1.78

H SYSTEMIC HORMONAL PREPARATIONS, EXCL. SEX HORMONES AND IN-

SULINS

0.3119 1.78

D DERMATOLOGICALS 0.0631 1.67

R RESPIRATORY SYSTEM 0.1620 1.48

G03 SEX HORMONES AND MODULATORS OF THE GENITAL SYSTEM 0.4170 1.42

S01 OPHTHALMOLOGICALS 0.2381 1.34

S SENSORY ORGANS 0.2590 1.31

J01D OTHER BETA-LACTAM ANTIBACTERIALS 0.4906 1.24

A ALIMENTARY TRACT AND METABOLISM 0.3248 1.22

N06A ANTIDEPRESSANTS 0.5365 1.14

J ANTIINFECTIVES FOR SYSTEMIC USE 0.5076 1.04

Community n. 102

Enriched

ATC

code

Definition p-value Odds-

ratio

C10 LIPID MODIFYING AGENTS 0.0079 13.96

C10A LIPID MODIFYING AGENTS, PLAIN 0.0079 13.96

C04 PERIPHERAL VASODILATORS 0.0166 9.60

C04A PERIPHERAL VASODILATORS 0.0166 9.60

S01B ANTIINFLAMMATORY AGENTS 0.0166 9.60

C CARDIOVASCULAR SYSTEM 0.0251 2.65

D DERMATOLOGICALS 0.3054 1.81

S01 OPHTHALMOLOGICALS 0.3054 1.81

S SENSORY ORGANS 0.3156 1.77
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A ALIMENTARY TRACT AND METABOLISM 0.3462 1.65

Community n. 42

Enriched

ATC

code

Definition p-value Odds-

ratio

J01F MACROLIDES, LINCOSAMIDES AND STREPTOGRAMINS 0.0079 13.96

A01AB Antiinfectives and antiseptics for local oral treatment 0.0096 12.69

A01 STOMATOLOGICAL PREPARATIONS 0.0201 8.73

A01A STOMATOLOGICAL PREPARATIONS 0.0201 8.73

S01E ANTIGLAUCOMA PREPARATIONS AND MIOTICS 0.0201 8.73

S01A ANTIINFECTIVES 0.0652 4.65

S01 OPHTHALMOLOGICALS 0.0251 3.29

S SENSORY ORGANS 0.0272 3.21

D DERMATOLOGICALS 0.1122 2.46

G GENITO URINARY SYSTEM AND SEX HORMONES 0.2043 2.37

A ALIMENTARY TRACT AND METABOLISM 0.1381 2.25

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1698 2.05

J ANTIINFECTIVES FOR SYSTEMIC USE 0.2518 1.70

C CARDIOVASCULAR SYSTEM 0.3452 1.44

Community n. 82

Enriched

ATC

code

Definition p-value Odds-

ratio

N01 ANESTHETICS 0.0081 13.71

N NERVOUS SYSTEM 0.0042 3.78

Community n. 52

Enriched

ATC

code

Definition p-value Odds-

ratio

J01MB Other quinolones 0.0082 13.47

J01M QUINOLONE ANTIBACTERIALS 0.0019 11.02

G03D PROGESTOGENS 0.0149 10.11

N07 OTHER NERVOUS SYSTEM DRUGS 0.0279 7.35

G03 SEX HORMONES AND MODULATORS OF THE GENITAL SYSTEM 0.0845 4.04

J01D OTHER BETA-LACTAM ANTIBACTERIALS 0.1077 3.51

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.0077 2.77

S01A ANTIINFECTIVES 0.1673 2.69

J ANTIINFECTIVES FOR SYSTEMIC USE 0.0215 2.30

G GENITO URINARY SYSTEM AND SEX HORMONES 0.1735 2.06

S01 OPHTHALMOLOGICALS 0.1490 1.90

S SENSORY ORGANS 0.1586 1.86

Community n. 58

Enriched

ATC

code

Definition p-value Odds-

ratio

M01AE Propionic acid derivatives 0.0094 12.80

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.1000 3.66

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.1000 3.66

M MUSCULO-SKELETAL SYSTEM 0.2218 2.25

S01 OPHTHALMOLOGICALS 0.3904 1.51

S SENSORY ORGANS 0.4022 1.47

N NERVOUS SYSTEM 0.6159 1.01

Community n. 34

Enriched

ATC

code

Definition p-value Odds-

ratio

R06AX Other antihistamines for systemic use 0.0103 12.19

N06AA Non-selective monoamine reuptake inhibitors 0.0155 9.97

N02 ANALGESICS 0.0283 7.31

C04 PERIPHERAL VASODILATORS 0.0320 6.86

C04A PERIPHERAL VASODILATORS 0.0320 6.86

R06 ANTIHISTAMINES FOR SYSTEMIC USE 0.0109 6.10
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R06A ANTIHISTAMINES FOR SYSTEMIC USE 0.0109 6.10

N06A ANTIDEPRESSANTS 0.0729 4.39

N06 PSYCHOANALEPTICS 0.1121 3.43

R RESPIRATORY SYSTEM 0.1577 2.14

C CARDIOVASCULAR SYSTEM 0.1050 1.89

N NERVOUS SYSTEM 0.1882 1.73

Community n. 5

Enriched

ATC

code

Definition p-value Odds-

ratio

S03 OPHTHALMOLOGICAL AND OTOLOGICAL PREPARATIONS 0.0135 10.67

J01CA Penicillins with extended spectrum 0.0166 9.60

S02 OTOLOGICALS 0.0320 6.86

H SYSTEMIC HORMONAL PREPARATIONS, EXCL. SEX HORMONES AND IN-

SULINS

0.0412 6.00

J01C BETA-LACTAM ANTIBACTERIALS, PENICILLINS 0.0412 6.00

A07 ANTIDIARRHEALS, INTESTINAL ANTIINFLAMMATORY/ANTIINFECTIVE

AGENTS

0.0860 4.00

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.0124 2.82

J ANTIINFECTIVES FOR SYSTEMIC USE 0.0302 2.34

A ALIMENTARY TRACT AND METABOLISM 0.3043 1.55

N NERVOUS SYSTEM 0.5089 1.13

S01 OPHTHALMOLOGICALS 0.5443 1.13

S SENSORY ORGANS 0.5577 1.10

Community n. 29

Enriched

ATC

code

Definition p-value Odds-

ratio

D06B CHEMOTHERAPEUTICS FOR TOPICAL USE 0.0152 10.04

J01DC Second-generation cephalosporins 0.0152 10.04

N03 ANTIEPILEPTICS 0.0226 8.21

N03A ANTIEPILEPTICS 0.0226 8.21

D06 ANTIBIOTICS AND CHEMOTHERAPEUTICS FOR DERMATOLOGICAL USE 0.0070 7.13

B BLOOD AND BLOOD FORMING ORGANS 0.0632 4.76

P01 ANTIPROTOZOALS 0.0632 4.76

J01D OTHER BETA-LACTAM ANTIBACTERIALS 0.0888 3.93

S01A ANTIINFECTIVES 0.1396 3.01

P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 0.1791 2.58

J ANTIINFECTIVES FOR SYSTEMIC USE 0.0110 2.57

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.0624 2.21

D DERMATOLOGICALS 0.1083 2.13

N NERVOUS SYSTEM 0.5526 1.07

S01 OPHTHALMOLOGICALS 0.5784 1.06

S SENSORY ORGANS 0.5919 1.04

Community n. 40

Enriched

ATC

code

Definition p-value Odds-

ratio

R06AX Other antihistamines for systemic use 0.0170 9.48

N01B ANESTHETICS, LOCAL 0.0209 8.53

N01 ANESTHETICS 0.0400 6.10

G03 SEX HORMONES AND MODULATORS OF THE GENITAL SYSTEM 0.0768 4.27

R06 ANTIHISTAMINES FOR SYSTEMIC USE 0.1289 3.16

R06A ANTIHISTAMINES FOR SYSTEMIC USE 0.1289 3.16

P ANTIPARASITIC PRODUCTS, INSECTICIDES AND REPELLENTS 0.1959 2.44

R RESPIRATORY SYSTEM 0.0965 2.22

G GENITO URINARY SYSTEM AND SEX HORMONES 0.1541 2.17

N NERVOUS SYSTEM 0.0609 2.02

D DERMATOLOGICALS 0.3204 1.51

Community n. 67

Enriched

ATC

code

Definition p-value Odds-

ratio
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C01 CARDIAC THERAPY 0.0206 8.30

C CARDIOVASCULAR SYSTEM 0.2396 2.12

Community n. 106

Enriched

ATC

code

Definition p-value Odds-

ratio

C01 CARDIAC THERAPY 0.0206 8.30

G GENITO URINARY SYSTEM AND SEX HORMONES 0.0499 5.21

C CARDIOVASCULAR SYSTEM 0.2396 2.12

Community n. 16

Enriched

ATC

code

Definition p-value Odds-

ratio

D06 ANTIBIOTICS AND CHEMOTHERAPEUTICS FOR DERMATOLOGICAL USE 0.0232 8.08

S01A ANTIINFECTIVES 0.0546 5.12

J ANTIINFECTIVES FOR SYSTEMIC USE 0.2058 1.87

D DERMATOLOGICALS 0.3054 1.81

S01 OPHTHALMOLOGICALS 0.3054 1.81

S SENSORY ORGANS 0.3156 1.77

N NERVOUS SYSTEM 0.5121 1.21

Community n. 97

Enriched

ATC

code

Definition p-value Odds-

ratio

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.0270 7.31

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.0270 7.31

Community n. 46

Enriched

ATC

code

Definition p-value Odds-

ratio

M MUSCULO-SKELETAL SYSTEM 0.0669 4.49

A ALIMENTARY TRACT AND METABOLISM 0.1574 2.75

M MUSCULO-SKELETAL SYSTEM 0.0295 6.74

Community n. 26

Enriched

ATC

code

Definition p-value Odds-

ratio

G GENITO URINARY SYSTEM AND SEX HORMONES 0.0315 6.51

Community n. 36

Enriched

ATC

code

Definition p-value Odds-

ratio

D DERMATOLOGICALS 0.0626 4.52

S01 OPHTHALMOLOGICALS 0.0626 4.52

S SENSORY ORGANS 0.0654 4.41

D DERMATOLOGICALS 0.0337 6.02

N NERVOUS SYSTEM 0.0726 4.03

Community n. 2

Enriched

ATC

code

Definition p-value Odds-

ratio

C CARDIOVASCULAR SYSTEM 0.0354 5.30

Community n. 88

Enriched

ATC

code

Definition p-value Odds-

ratio

G GENITO URINARY SYSTEM AND SEX HORMONES 0.0499 5.21

Community n. 7

Enriched

ATC

code

Definition p-value Odds-

ratio
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A01 STOMATOLOGICAL PREPARATIONS 0.0513 5.33

A01A STOMATOLOGICAL PREPARATIONS 0.0513 5.33

H SYSTEMIC HORMONAL PREPARATIONS, EXCL. SEX HORMONES AND IN-

SULINS

0.0513 5.33

S01B ANTIINFLAMMATORY AGENTS 0.0513 5.33

M02AA Antiinflammatory preparations, non-steroids for topical use 0.0573 5.02

C02 ANTIHYPERTENSIVES 0.0636 4.74

M02 TOPICAL PRODUCTS FOR JOINT AND MUSCULAR PAIN 0.0636 4.74

M02A TOPICAL PRODUCTS FOR JOINT AND MUSCULAR PAIN 0.0636 4.74

N05 PSYCHOLEPTICS 0.0380 3.88

J01D OTHER BETA-LACTAM ANTIBACTERIALS 0.0982 3.71

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.0442 3.66

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.0442 3.66

M MUSCULO-SKELETAL SYSTEM 0.1429 2.25

N NERVOUS SYSTEM 0.1618 1.68

R RESPIRATORY SYSTEM 0.2665 1.66

J ANTIINFECTIVES FOR SYSTEMIC USE 0.5702 1.04

D DERMATOLOGICALS 0.6107 1.01

S01 OPHTHALMOLOGICALS 0.6107 1.01

Community n. 50

Enriched

ATC

code

Definition p-value Odds-

ratio

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.0337 3.76

J ANTIINFECTIVES FOR SYSTEMIC USE 0.0555 3.12

Community n. 26

Enriched

ATC

code

Definition p-value Odds-

ratio

S01 OPHTHALMOLOGICALS 0.0486 3.39

S SENSORY ORGANS 0.0516 3.31

Community n. 37

Enriched

ATC

code

Definition p-value Odds-

ratio

C07 BETA BLOCKING AGENTS 0.0552 5.12

C07A BETA BLOCKING AGENTS 0.0552 5.12

G GENITO URINARY SYSTEM AND SEX HORMONES 0.1935 1.95

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.2688 1.51

C CARDIOVASCULAR SYSTEM 0.3208 1.32

J ANTIINFECTIVES FOR SYSTEMIC USE 0.4019 1.25

A ALIMENTARY TRACT AND METABOLISM 0.4441 1.24

Community n. 29

Enriched

ATC

code

Definition p-value Odds-

ratio

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.0722 4.39

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.0722 4.39

M MUSCULO-SKELETAL SYSTEM 0.1660 2.69

C CARDIOVASCULAR SYSTEM 0.1006 2.12

R RESPIRATORY SYSTEM 0.2647 1.99

A ALIMENTARY TRACT AND METABOLISM 0.3462 1.65

Community n. 12

Enriched

ATC

code

Definition p-value Odds-

ratio

R RESPIRATORY SYSTEM 0.0813 3.99

Community n. 4

Enriched

ATC

code

Definition p-value Odds-

ratio
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G GENITO URINARY SYSTEM AND SEX HORMONES 0.0949 3.72

Community n. 60

Enriched

ATC

code

Definition p-value Odds-

ratio

N06 PSYCHOANALEPTICS 0.0985 3.69

M01 ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS 0.1149 3.38

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS 0.1149 3.38

M MUSCULO-SKELETAL SYSTEM 0.2502 2.07

D DERMATOLOGICALS 0.4312 1.39

S01 OPHTHALMOLOGICALS 0.4312 1.39

S SENSORY ORGANS 0.4436 1.36

A ALIMENTARY TRACT AND METABOLISM 0.4801 1.27

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.5326 1.16

Community n. 20

Enriched

ATC

code

Definition p-value Odds-

ratio

C CARDIOVASCULAR SYSTEM 0.0931 3.53

Community n. 47

Enriched

ATC

code

Definition p-value Odds-

ratio

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1335 3.01

J ANTIINFECTIVES FOR SYSTEMIC USE 0.1833 2.50

Community n. 64

Enriched

ATC

code

Definition p-value Odds-

ratio

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1335 3.01

J ANTIINFECTIVES FOR SYSTEMIC USE 0.1833 2.50

Community n. 83

Enriched

ATC

code

Definition p-value Odds-

ratio

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1335 3.01

J ANTIINFECTIVES FOR SYSTEMIC USE 0.1833 2.50

Community n. 33

Enriched

ATC

code

Definition p-value Odds-

ratio

C CARDIOVASCULAR SYSTEM 0.1634 2.65

Community n. 41

Enriched

ATC

code

Definition p-value Odds-

ratio

C CARDIOVASCULAR SYSTEM 0.1634 2.65

Community n. 72

Enriched

ATC

code

Definition p-value Odds-

ratio

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.1834 2.51

J ANTIINFECTIVES FOR SYSTEMIC USE 0.2473 2.08

Community n. 85

Enriched

ATC

code

Definition p-value Odds-

ratio

A ALIMENTARY TRACT AND METABOLISM 0.2037 2.36

C CARDIOVASCULAR SYSTEM 0.3925 1.51

Community n. 4

Enriched

ATC

code

Definition p-value Odds-

ratio
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C CARDIOVASCULAR SYSTEM 0.1284 2.27

N NERVOUS SYSTEM 0.3265 1.73

Community n. 95

Enriched

ATC

code

Definition p-value Odds-

ratio

N NERVOUS SYSTEM 0.1314 2.27

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.2882 1.88

J ANTIINFECTIVES FOR SYSTEMIC USE 0.3751 1.56

Community n. 8

Enriched

ATC

code

Definition p-value Odds-

ratio

J ANTIINFECTIVES FOR SYSTEMIC USE 0.2473 2.08

Community n. 27

Enriched

ATC

code

Definition p-value Odds-

ratio

J ANTIINFECTIVES FOR SYSTEMIC USE 0.1622 2.08

S01 OPHTHALMOLOGICALS 0.2620 2.01

S SENSORY ORGANS 0.2712 1.96

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.3405 1.67

Community n. 87

Enriched

ATC

code

Definition p-value Odds-

ratio

N NERVOUS SYSTEM 0.3265 1.73

Community n. 31

Enriched

ATC

code

Definition p-value Odds-

ratio

R RESPIRATORY SYSTEM 0.3425 1.66

C CARDIOVASCULAR SYSTEM 0.4019 1.32

J01 ANTIBACTERIALS FOR SYSTEMIC USE 0.4880 1.25

J ANTIINFECTIVES FOR SYSTEMIC USE 0.5969 1.04

N NERVOUS SYSTEM 0.6159 1.01
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B.3 Molecular direct targets

Community n. 77

Enriched direct Target p-value Odds-ratio

CACNG1 0.0000 167.33

Community n. 75

Enriched direct Target p-value Odds-ratio

IMPDH1 0.0001 83.33

Community n. 14

Enriched direct Target p-value Odds-ratio

GSK3B 0.0002 62.50

TOP2A 0.0076 13.89

Community n. 63

Enriched direct Target p-value Odds-ratio

ATP1A1 0.0002 62.50

Community n. 29

Enriched direct Target p-value Odds-ratio

ABAT 0.0016 27.78

pbpA 0.1246 3.21

Community n. 62

Enriched direct Target p-value Odds-ratio

CACNA2D1 0.0021 25.00

ERG11 0.0003 18.75

CALM1 0.0120 11.11

Community n. 52

Enriched direct Target p-value Odds-ratio

PGR 0.0043 16.73

Community n. 58

Enriched direct Target p-value Odds-ratio

CA2 0.0063 15.21

Community n. 89

Enriched direct Target p-value Odds-ratio

PDE4A 0.0063 15.15

ADRA2A 0.0259 7.58

Community n. 34

Enriched direct Target p-value Odds-ratio

KCNH2 0.0077 13.89

HRH1 0.0825 4.03

Community n. 47

Enriched direct Target p-value Odds-ratio

pbpA 0.0076 12.87

Community n. 100

Enriched direct Target p-value Odds-ratio

GRIN2D 0.0063 12.50

CACNA1A 0.0178 8.33

DRD1IP 0.0178 8.33

DRD4 0.0178 8.33

CHRM5 0.0043 7.50

HTR2C 0.0043 7.50

SLC6A2 0.0000 7.14

SLC6A4 0.0000 7.03

CALM1 0.0003 6.94

DRD1 0.0000 5.92

HTR2A 0.0000 5.36

CHRM4 0.0133 5.36

OPRD1 0.0535 5.00

CHRM3 0.0201 4.69

DRD2 0.0000 4.41

HRH1 0.0000 4.03

CHRM2 0.0317 3.13

HTR1A 0.1285 3.13
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ADRA1A 0.1158 2.08

CHRM1 0.2994 1.56

ESR1 0.4012 1.47

Community n. 90

Enriched direct Target p-value Odds-ratio

PLA2G4A 0.0008 12.10

SERPINA6 0.0098 6.05

CACNA1G 0.0331 6.45

CHRM4 0.0643 4.61

HRH1 0.1166 2.08

HTR2A 0.1342 2.30

ANXA1 0.1667 2.69

ADRA1A 0.1802 2.02

Community n. 43

Enriched direct Target p-value Odds-ratio

ESR1 0.0103 11.81

ALB 0.0293 6.92

Community n. 13

Enriched direct Target p-value Odds-ratio

ACHE 0.0118 11.11

TTR 0.0118 11.11

CHRM1 0.1584 2.78

Community n. 88

Enriched direct Target p-value Odds-ratio

ADRB2 0.0128 10.57

Community n. 73

Enriched direct Target p-value Odds-ratio

ADRB2 0.0188 8.77

Community n. 97

Enriched direct Target p-value Odds-ratio

PTGS1 0.0186 8.70

PTGS2 0.0219 8.00

Community n. 49

Enriched direct Target p-value Odds-ratio

PTGS1 0.0273 7.28

PTGS2 0.0320 6.69

Community n. 60

Enriched direct Target p-value Odds-ratio

SLC6A2 0.0290 7.14

Community n. 3

Enriched direct Target p-value Odds-ratio

PTGS1 0.0371 6.24

PTGS2 0.0434 5.74

Community n. 32

Enriched direct Target p-value Odds-ratio

SLC6A4 0.0448 5.23

pbpA 0.1246 3.21

Community n. 74

Enriched direct Target p-value Odds-ratio

PTGS1 0.0599 4.83

PTGS2 0.0697 4.44

Community n. 31

Enriched direct Target p-value Odds-ratio

HRH1 0.0643 4.61

Community n. 5

Enriched direct Target p-value Odds-ratio

pbpA 0.0310 4.12

ALB 0.1920 2.46

Community n. 40

Enriched direct Target p-value Odds-ratio

HTR2A 0.0992 3.66
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HRH1 0.1897 2.48

Community n. 7

Enriched direct Target p-value Odds-ratio

DRD2 0.0414 3.39

PTGS1 0.1160 3.34

PTGS2 0.1336 3.08

HRH1 0.1897 2.48

Community n. 19

Enriched direct Target p-value Odds-ratio

ADRB1 0.1168 3.33

DRD2 0.2714 1.96i
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Appendix C

Mode of Action enrichments

C.1 ATC codes

[ATC-codes associated to a set of 482 distinct drugs]

L01DB Anthracyclines and related substances

Community p-value Odds-ratio

14 - Rich Club n. 4 0.0000 247.25

L01D CYTOTOXIC ANTIBIOTICS AND RELATED SUBSTANCES

Community p-value Odds-ratio

14 - Rich Club n. 4 0.0000 247.25

C01AA Digitalis glycoside

Community p-value Odds-ratio

63 - Rich Club n. 3 0.0000 164.83

C01A CARDIAC GLYCOSIDES

Community p-value Odds-ratio

63 - Rich Club n. 3 0.0000 164.83

L01C PLANT ALKALOIDS AND OTHER NATURAL PRODUCTS

Community p-value Odds-ratio

48 - Rich Club n. 1 0.0000 164.83

C08CA Dihydropyridine derivatives

Community p-value Odds-ratio

77 - Rich Club n. 4 0.0001 131.87

62 - Rich Club n. 3 0.0068 14.65

C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY VASCULAR EFFECTS

Community p-value Odds-ratio

77 - Rich Club n. 4 0.0001 131.87

62 - Rich Club n. 3 0.0068 14.65

L01AD Nitrosoureas

Community p-value Odds-ratio

104 - Rich Club n. 3 0.0000 123.63

N06AF Monoamine oxidase inhibitors, non-selective

Community p-value Odds-ratio

22 - Rich Club n. 7 0.0001 98.90

A07AB Sulfonamides

Community p-value Odds-ratio

96 0.0001 94.19

L01X OTHER ANTINEOPLASTIC AGENTS

Community p-value Odds-ratio

65 - Rich Club n. 6 0.0001 94.19

G03CC Estrogens, combinations with other drugs

Community p-value Odds-ratio
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43 - Rich Club n. 1 0.0003 61.81

L01A ALKYLATING AGENTS

Community p-value Odds-ratio

104 - Rich Club n. 3 0.0000 61.81

P02CA Benzimidazole derivatives

Community p-value Odds-ratio

69 - Rich Club n. 3 0.0003 61.81

L04A IMMUNOSUPPRESSANTS

Community p-value Odds-ratio

75 - Rich Club n. 6 0.0006 49.45

S01E ANTIGLAUCOMA PREPARATIONS AND MIOTICS

Community p-value Odds-ratio

15 - Rich Club n. 6 0.0006 43.96

42 - Rich Club n. 3 0.0489 5.49

13 - Rich Club n. 2 0.0606 4.88

B02B VITAMIN K AND OTHER HEMOSTATICS

Community p-value Odds-ratio

89 - Rich Club n. 2 0.0006 39.56

R03DA Xanthines

Community p-value Odds-ratio

99 - Rich Club n. 9 0.0011 35.96

C01CA Adrenergic and dopaminergic agents

Community p-value Odds-ratio

69 - Rich Club n. 3 0.0016 30.91

R03A ADRENERGICS, INHALANTS

Community p-value Odds-ratio

73 - Rich Club n. 2 0.0016 29.97

R03D OTHER SYSTEMIC DRUGS FOR OBSTRUCTIVE AIRWAY DISEASES

Community p-value Odds-ratio

99 - Rich Club n. 9 0.0016 29.97

74 - Rich Club n. 2 0.0035 20.60

G02C OTHER GYNECOLOGICALS

Community p-value Odds-ratio

73 - Rich Club n. 2 0.0023 25.69

R03C ADRENERGICS FOR SYSTEMIC USE

Community p-value Odds-ratio

73 - Rich Club n. 2 0.0023 25.69

N06BX Other psychostimulants and nootropics

Community p-value Odds-ratio

61 - Rich Club n. 2 0.0023 24.73

N06B PSYCHOSTIMULANTS, AGENTS USED FOR ADHD AND NOOTROPICS

Community p-value Odds-ratio

61 - Rich Club n. 2 0.0023 24.73

P02C ANTINEMATODAL AGENTS

Community p-value Odds-ratio

69 - Rich Club n. 3 0.0025 24.73

J01M QUINOLONE ANTIBACTERIALS

Community p-value Odds-ratio

93 - Rich Club n. 7 0.0030 22.48

52 - Rich Club n. 2 0.0029 9.63

J01X OTHER ANTIBACTERIALS

Community p-value Odds-ratio

99 - Rich Club n. 9 0.0030 22.48

A07A INTESTINAL ANTIINFECTIVES

Community p-value Odds-ratio

96 0.0032 21.74

J01FA Macrolides

Community p-value Odds-ratio

49 - Rich Club n. 2 0.0036 20.60

C01C CARDIAC STIMULANTS EXCL. CARDIAC GLYCOSIDES

Community p-value Odds-ratio
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69 - Rich Club n. 3 0.0036 20.60

N06A ANTIDEPRESSANTS

Community p-value Odds-ratio

22 - Rich Club n. 7 0.0036 19.78

100 - Rich Club n. 1 0.0000 7.60

34 - Rich Club n. 1 0.0527 5.27

90 - Rich Club n. 2 0.5473 1.11

D07A CORTICOSTEOROIDS, PLAIN

Community p-value Odds-ratio

59 - Rich Club n. 2 0.0040 19.39

90 - Rich Club n. 2 0.0284 3.28

N05AB Phenothiazines with piperazine structure

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0000 19.02

N05AF Monoamine oxidase inhibitors, non-selective

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0001 19.02

N05AG Diphenylbutylpiperidine derivatives

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0027 19.02

S01FA Anticholinergics

Community p-value Odds-ratio

13 - Rich Club n. 2 0.0042 18.31

S01F MYDRIATICS AND CYCLOPLEGICS

Community p-value Odds-ratio

13 - Rich Club n. 2 0.0042 18.31

J01F MACROLIDES, LINCOSAMIDES AND STREPTOGRAMINS

Community p-value Odds-ratio

49 - Rich Club n. 2 0.0046 18.31

42 - Rich Club n. 3 0.0183 9.16

B01AC Platelet aggregation inhibitors excl. heparin

Community p-value Odds-ratio

61 - Rich Club n. 2 0.0056 16.48

M01AB Acetic acid derivatives and related substances

Community p-value Odds-ratio

6 - Rich Club n. 6 0.0058 16.48

R06AX Other antihistamines for systemic use

Community p-value Odds-ratio

34 - Rich Club n. 1 0.0057 16.48

40 - Rich Club n. 3 0.0182 9.16

C01BD Antiarrhythmics, class III

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0051 13.93

D10AA Corticosteroids, combinations for treatment of acne

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0051 13.93

N06AA Non-selective monoamine reuptake inhibitors

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0000 13.83

34 - Rich Club n. 1 0.0109 11.99

G01AF Imidazole derivatives

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0009 13.74

J01ED Long-acting sulfonamides

Community p-value Odds-ratio

32 - Rich Club n. 4 0.0079 13.64

M01AE Propionic acid derivatives

Community p-value Odds-ratio

58 - Rich Club n. 2 0.0090 13.19

R06AD Phenothiazine derivatives

Community p-value Odds-ratio
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100 - Rich Club n. 1 0.0079 12.68

J01MB Other quinolones

Community p-value Odds-ratio

52 - Rich Club n. 2 0.0108 11.77

G03D PROGESTOGENS

Community p-value Odds-ratio

52 - Rich Club n. 2 0.0108 11.77

N05AA Phenothiazines with aliphatic side-chain

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0013 11.41

B01A ANTITHROMBOTIC AGENTS

Community p-value Odds-ratio

61 - Rich Club n. 2 0.0129 10.99

N05A ANTIPSYCHOTICS

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0000 10.19

D06B CHEMOTHERAPEUTICS FOR TOPICAL USE

Community p-value Odds-ratio

29 - Rich Club n. 7 0.0149 10.09

C08E NON SELECTIVE CALCIUM CHANNEL BLOCKERS

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0152 9.51

D01AC Imidazole and triazole derivatives

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0182 9.16

90 - Rich Club n. 2 0.1074 3.48

S02AA Antiinfectives

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0182 9.16

N01B ANESTHETICS, LOCAL

Community p-value Odds-ratio

40 - Rich Club n. 3 0.0182 9.16

S02A ANTIINFECTIVES

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0182 9.16

J01DC Second-generation cephalosporins

Community p-value Odds-ratio

29 - Rich Club n. 7 0.0195 8.83

G01A ANTIINFECTIVES AND ANTISEPTICS, EXCL. COMBINATIONS WITH CORTICOSTEROIDS

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0008 8.62

C04A PERIPHERAL VASODILATORS

Community p-value Odds-ratio

34 - Rich Club n. 1 0.0228 8.24

102 - Rich Club n. 4 0.0470 5.62

R06A ANTIHISTAMINES FOR SYSTEMIC USE

Community p-value Odds-ratio

34 - Rich Club n. 1 0.0047 8.24

100 - Rich Club n. 1 0.0066 3.96

C10A LIPID MODIFYING AGENTS, PLAIN

Community p-value Odds-ratio

102 - Rich Club n. 4 0.0230 8.17

M01A ANTIINFLAMMATORY AND ANTIRHEUMATIC PRODUCTS, NON-STEROIDS

Community p-value Odds-ratio

97 0.0229 8.07

6 - Rich Club n. 6 0.0643 8.07

58 - Rich Club n. 2 0.0958 4.71

74 - Rich Club n. 2 0.1071 3.77

60 - Rich Club n. 1 0.1429 3.53

37 - Rich Club n. 6 0.1554 2.97

7 - Rich Club n. 6 0.0998 2.83
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13 - Rich Club n. 2 0.2471 2.65

J01CA Penicillins with extended spectrum

Community p-value Odds-ratio

5 - Rich Club n. 6 0.0237 2.09

N06AB Selective serotonin reuptake inhibitors

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0245 7.61

J01A TETRACYCLINES

Community p-value Odds-ratio

32 - Rich Club n. 4 0.0263 7.58

J01AA Tetracyclines

Community p-value Odds-ratio

32 - Rich Club n. 4 0.0263 7.58

A01AB Antiinfectives and antiseptics for local oral treatment

Community p-value Odds-ratio

42 - Rich Club n. 3 0.0272 7.49

62 - Rich Club n. 3 0.0339 6.66

R06AE Piperazine derivatives

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0277 6.96

D01A ANTIFUNGALS FOR TOPICAL USE

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0080 6.87

90 - Rich Club n. 2 0.3209 1.74

R06AA Aminoalkyl ethers

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0245 6.50

N03A ANTIEPILEPTICS

Community p-value Odds-ratio

29 - Rich Club n. 7 0.0363 6.42

S01B ANTIINFLAMMATORY AGENTS

Community p-value Odds-ratio

102 - Rich Club n. 4 0.0366 6.42

7 - Rich Club n. 6 0.0724 4.42

90 - Rich Club n. 2 0.0728 2.98

C07A BETA BLOCKING AGENTS

Community p-value Odds-ratio

19 0.0430 5.89

J01E SULFONAMIDES AND TRIMETHOPRIN

Community p-value Odds-ratio

32 - Rich Club n. 4 0.0457 5.68

90 - Rich Club n. 2 0.0488 3.48

C05AA Corticosteroids

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0441 5.57

A01A STOMATOLOGICAL PREPARATIONS

Community p-value Odds-ratio

42 - Rich Club n. 3 0.0489 5.49

62 - Rich Club n. 3 0.0606 4.88

7 - Rich Club n. 6 0.0819 4.12

S01BA Corticosteroids, plain

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0153 5.22

A03A DRUGS FOR FUNCTIONAL BOWEL DISORDERS

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0153 5.22

S01A ANTIINFECTIVES

Community p-value Odds-ratio

16 - Rich Club n. 1 0.0593 4.95

29 - Rich Club n. 7 0.1555 2.83

42 - Rich Club n. 3 0.1207 3.30
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52 - Rich Club n. 2 0.1555 2.83

90 - Rich Club n. 2 0.5473 1.11

J01C BETA-LACTAM ANTIBACTERIALS, PENICILLINS

Community p-value Odds-ratio

5 - Rich Club n. 6 0.0685 4.56

D04A ANTIPRURITICS, INCL. ANTIHISTAMINES, ANESTHETICS, ETC.

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0770 4.23

90 - Rich Club n. 2 0.1318 3.10

J04A DRUGS FOR THE TREATMENT OF TUBERCOLOSIS

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0844 3.98

M02AA Antiinflammatory preparations, non-steroids for topical use

Community p-value Odds-ratio

7 - Rich Club n. 6 0.0918 3.86

M02A TOPICAL PRODUCTS FOR JOINT AND MUSCULAR PAIN

Community p-value Odds-ratio

7 - Rich Club n. 6 0.1020 3.64

J01D OTHER BETA-LACTAM ANTIBACTERIALS

Community p-value Odds-ratio

29 - Rich Club n. 7 0.1073 3.53

52 - Rich Club n. 2 0.1073 3.53

7 - Rich Club n. 6 0.1343 3.09

90 - Rich Club n. 2 0.4273 1.39

H02AB Glucocorticoids

Community p-value Odds-ratio

90 - Rich Club n. 2 0.1074 3.48

A02B DRUGS FOR PEPTIC ULCER AND GASTRO-OESOPHAGEAL REFLUX DISEASE (GORD)

Community p-value Odds-ratio

90 - Rich Club n. 2 0.1074 3.48

D10A ANTI-ACNE PREPARATIONS FOR TOPICAL USE

Community p-value Odds-ratio

90 - Rich Club n. 2 0.1074 3.48

H02A CORTICOSTEROIDS FOR SYSTEMIC USE, PLAIN

Community p-value Odds-ratio

90 - Rich Club n. 2 0.1574 2.79

C05A AGENTS FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE

Community p-value Odds-ratio

90 - Rich Club n. 2 0.1838 2.53

C01B ANTIARRHYTHMICS, CLASS I AND III

Community p-value Odds-ratio

90 - Rich Club n. 2 0.2109 2.32
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C.2 Molecular direct targets

[Molecular direct targets associated to a set of distinct drugs]

CACNG1

Community p-value Odds-ratio

77 - Rich Club n. 4 0.0000 276.67

ATP1A1

Community p-value Odds-ratio

63 - Rich Club n. 3 0.0004 62.25

IMPDH1

Community p-value Odds-ratio

75 - Rich Club n. 1 0.0004 56.59

GSK3B

Community p-value Odds-ratio

14 - Rich Club n. 4 0.0003 54.13

ABAT

Community p-value Odds-ratio

29 - Rich Club n. 7 0.0007 43.68

CACNA2D1

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0021 25.94

PTGS1

Community p-value Odds-ratio

97 0.0032 21.65

74 - Rich Club n. 2 0.0375 6.37

49 - Rich Club n. 2 0.0375 6.37

3 - Rich Club n. 3 0.0867 4.01

7 - Rich Club n. 3 0.1220 3.28

PTGS2

Community p-value Odds-ratio

97 0.0037 19.92

74 - Rich Club n. 2 0.0438 5.86

49 - Rich Club n. 2 0.0438 5.86

3 - Rich Club n. 3 0.1001 3.69

7 - Rich Club n. 3 0.1401 3.02

ERG11

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0003 19.45

KCNH2

Community p-value Odds-ratio

34 - Rich Club n. 1 0.0053 17.29

PGR

Community p-value Odds-ratio

52 - Rich Club n. 2 0.0050 17.17

CA2

Community p-value Odds-ratio

58 - Rich Club n. 2 0.0061 16.17

ADRB2

Community p-value Odds-ratio

88 - Rich Club n. 3 0.0075 14.56

73 - Rich Club n. 2 0.0133 10.92

PDE4A

Community p-value Odds-ratio

89 - Rich Club n. 2 0.0085 13.39

ACHE

Community p-value Odds-ratio

13 - Rich Club n. 2 0.0090 12.97

TTR

Community p-value Odds-ratio

13 - Rich Club n. 2 0.0090 12.97

TOP2A
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Community p-value Odds-ratio

14 - Rich Club n. 4 0.0109 12.03

CALM1

Community p-value Odds-ratio

62 - Rich Club n. 3 0.0118 11.53

100 - Rich Club n. 1 0.0016 4.84

PLA2G4A

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0010 11.53

GRIN2D

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0131 8.71

pbpA

Community p-value Odds-ratio

47 - Rich Club n. 4 0.0206 8.71

29 - Rich Club n. 7 0.0577 5.04

32 - Rich Club n. 4 0.1070 3.55

5 - Rich Club n. 6 0.0828 2.87

SLC6A2

Community p-value Odds-ratio

60 - Rich Club n. 1 0.0239 8.08

100 - Rich Club n. 1 0.0000 4.98

ESR1

Community p-value Odds-ratio

43 - Rich Club n. 1 0.0262 7.71

100 - Rich Club n. 1 0.5988 1.02

ADRA2A

Community p-value Odds-ratio

89 - Rich Club n. 2 0.0339 6.69

CACNA1G

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0368 6.15

CACNA1A

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0364 5.80

DRD1IP

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0364 5.80

DRD4

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0364 5.80

SERPINA6

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0117 5.76

SLC6A4

Community p-value Odds-ratio

32 - Rich Club n. 4 0.0451 5.76

100 - Rich Club n. 1 0.0000 4.90

HTR2A

Community p-value Odds-ratio

40 - Rich Club n. 3 0.0511 5.39

100 - Rich Club n. 1 0.0002 3.73

90 - Rich Club n. 2 0.1517 2.20

CHRM5

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0125 5.22

HTR2C

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0125 5.22

HRH1

Community p-value Odds-ratio
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34 - Rich Club n. 1 0.0580 5.02

31 - Rich Club n. 7 0.0717 4.46

40 - Rich Club n. 3 0.1018 3.65

100 - Rich Club n. 1 0.0015 2.81

7 - Rich Club n. 3 0.1972 2.43

90 - Rich Club n. 2 0.1373 1.98

ALB

Community p-value Odds-ratio

43 - Rich Club n. 1 0.0701 4.52

5 - Rich Club n. 6 0.3263 1.72

CHRM4

Community p-value Odds-ratio

90 - Rich Club n. 2 0.0709 4.39

100 - Rich Club n. 1 0.0367 3.73

DRD1

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0001 4.12

ADRB1

Community p-value Odds-ratio

19 0.1064 3.56

OPRD1

Community p-value Odds-ratio

100 - Rich Club n. 1 0.1038 3.48

DRD2

Community p-value Odds-ratio

7 - Rich Club n. 3 0.0581 3.33

100 - Rich Club n. 1 0.0002 3.07

19 0.2473 2.09

CHRM3

Community p-value Odds-ratio

100 - Rich Club n. 1 0.0538 3.26

CHRM1

Community p-value Odds-ratio

13 - Rich Club n. 2 0.1244 3.24

100 - Rich Club n. 1 0.5329 1.09

ANXA1

Community p-value Odds-ratio

90 - Rich Club n. 2 0.1809 2.56

CHRM2

Community p-value Odds-ratio

100 - Rich Club n. 1 0.1014 2.18

HTR1A

Community p-value Odds-ratio

100 - Rich Club n. 1 0.2318 2.18

ADRA1A

Community p-value Odds-ratio

90 - Rich Club n. 2 0.2015 1.92

100 - Rich Club n. 1 0.2939 1.45
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Appendix D

ESF similarity and communities

Community Enriched for a given: n. drug with

SMILES/n. drug

in the community

Average ESF

similarity

63 Literature-Evidence/ATC-codes/Direct-Target-Gene 2/11 0.55

77 Literature-Evidence/ATC-codes/Direct-Target-Gene 3/4 0.3922

43 Literature-Evidence/ATC-codes 5/9 0.2726

82 ATC-codes 5/10 0.235

100 Literature-Evidence/ATC-codes 42/76 0.2186

73 Literature-Evidence/ATC-codes 5/9 0.1894

65 Literature-Evidence/ATC-codes 2/3 0.1857

25 ATC-codes 5/10 0.1853

22 Literature-Evidence/ATC-codes 4/12 0.1754

104 Literature-Evidence/ATC-codes 5/17 0.1747

88 Literature-Evidence/ATC-codes 5/6 0.1717

34 Literature-Evidence/ATC-codes/Direct-Target-Gene 10/18 0.1708

14 Literature-Evidence/ATC-codes/Direct-Target-Gene 8/15 0.1697

13 Literature-Evidence/ATC-codes 15/25 0.1686

67 ATC-codes 4/10 0.1645

62 Literature-Evidence/ATC-codes/Direct-Target-Gene 11/30 0.1611

93 Literature-Evidence/ATC-codes 5/6 0.1544

58 ATC-codes 6/18 0.1518

53 Literature-Evidence 2/6 0.1463

42 Literature-Evidence/ATC-codes 10/15 0.1451

50 Literature-Evidence/ATC-codes 2/7 0.1449

89 Literature-Evidence/ATC-codes/Direct-Target-Gene 13/33 0.1448

74 ATC-codes 9/14 0.1433

29 ATC-codes/Direct-Target-Gene 12/21 0.143

46 ATC-codes 2/7 0.1429

60 Literature-Evidence 11/17 0.1414

90 Literature-Evidence/ATC-codes 38/79 0.1323

75 Literature-Evidence/ATC-codes/Direct-Target-Gene 3/4 0.1318

61 ATC-codes 7/20 0.1318

32 Literature-Evidence/ATC-codes 13/39 0.1317

6 ATC-codes 8/19 0.1314

81 Literature-Evidence 2/5 0.1277

52 Literature-Evidence/ATC-codes/Direct-Target-Gene 14/30 0.1273

16 Literature-Evidence/ATC-codes 9/16 0.1243

69 Literature-Evidence/ATC-codes 4/10 0.1232

28 Literature-Evidence 2/5 0.122

5 ATC-codes 15/24 0.1193

96 Literature-Evidence/ATC-codes 2/5 0.119
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102 ATC-codes 7/16 0.1175

7 ATC-codes 14/25 0.1175

40 Literature-Evidence/ATC-codes 13/35 0.1158

99 Literature-Evidence/ATC-codes 10/14 0.1143

106 ATC-codes 3/9 0.1126

26 Literature-Evidence/ATC-codes 5/6 0.1106

76 ATC-codes 4/5 0.1084

3 Literature-Evidence 9/19 0.1062

49 Literature-Evidence/ATC-codes 6/12 0.0968

97 ATC-codes 6/9 0.0944

36 ATC-codes 3/6 0.0886

48 Literature-Evidence/ATC-codes 2/9 0.0805

91 Literature-Evidence 2/5 0.0741

39 Literature-Evidence 2/5 0.0577
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Appendix E

cMap online tool results

*True Positives: drugs sharing the mode of action with the testing one

PHA-793887 on

A2780

NMS-

Flavopiridol

on A2780

PHA-690509 on

A2780

cmap name cs p cmap name cs p cmap name cs p

apigenin* 0.9990 0.0000 alsterpaullone* 0.9990 0.0000 camptothecin 0.9990 0.0000

irinotecan 0.9980 0.0000 doxorubicin 0.9980 0.0000 GW-8510* 0.9990 0.0000

alsterpaullone* 0.9950 0.0000 camptothecin 0.9980 0.0000 alsterpaullone* 0.9980 0.0000

phenoxybenzamine 0.9930 0.0000 H-7* 0.9970 0.0000 H-7* 0.9970 0.0000

luteolin* 0.9800 0.0000 GW-8510* 0.9970 0.0000 0175029-0000 0.8910 0.0000

ellipticine 0.9750 0.0000 apigenin* 0.9690 0.0000 vorinostat 0.7280 0.0000

GW-8510* 0.9600 0.0000 luteolin* 0.9400 0.0000 LY-294002 0.5630 0.0000

vorinostat 0.9520 0.0000 trichostatin-A 0.3430 0.0000 trichostatin-A 0.5480 0.0000

trichostatin-A 0.7580 0.0000 thioguanosine 0.9220 0.0000 sirolimus 0.3860 0.0000

thioridazine 0.5500 0.0000 chrysin* 0.9570 0.0001 proscillaridin 0.9760 0.0000

LY-294002 0.4980 0.0000 8-azaguanine 0.8880 0.0002 hexestrol 0.9080 0.0001

camptothecin 0.9880 0.0000 meticrane 0.8100 0.0006 lanatoside-C 0.8190 0.0001

thioguanosine 0.9370 0.0000 phthalylsulfathiazole 0.7870 0.0009 thioguanosine 0.8870 0.0002

chrysin* 0.9710 0.0000 medrysone 0.7300 0.0010 helveticoside 0.7830 0.0003

acacetin 0.8250 0.0001 rimexolone 0.8290 0.0013 digoxigenin 0.7850 0.0010

proscillaridin 0.9590 0.0001 LY-294002 0.2400 0.0015 irinotecan 0.9170 0.0012

resveratrol 0.6810 0.0001 vorinostat 0.5050 0.0023 astemizole 0.7470 0.0024

digitoxigenin 0.8900 0.0001 sanguinarine 0.9610 0.0026 resveratrol 0.5710 0.0025

lanatoside-C 0.7790 0.0003 trazodone 0.8860 0.0029 menadione 0.9610 0.0026

8-azaguanine 0.8800 0.0003 hexestrol 0.7980 0.0032 MS-275 0.9550 0.0038

piperlongumine 0.9870 0.0003 mitoxantrone 0.8820 0.0032 digoxin 0.7830 0.0041

bisacodyl 0.8690 0.0004 piperlongumine 0.9510 0.0044 ouabain 0.7830 0.0041

parthenolide 0.8670 0.0004 milrinone 0.8640 0.0047 digitoxigenin 0.7790 0.0045

scriptaid 0.9340 0.0005 gliclazide 0.7740 0.0049 1.4-

chrysenequinone

0.9440 0.0060

pyrvinium 0.7660 0.0005 0175029-0000 0.6440 0.0061 scriptaid 0.8500 0.0063

MS-275 0.9840 0.0005 daunorubicin 0.7570 0.0066 mefloquine 0.6950 0.0064

helveticoside 0.7530 0.0006 sulconazole 0.7570 0.0066 SC-19220 0.7550 0.0069

astemizole 0.8060 0.0006 phenoxybenzamine 0.7550 0.0069 strophanthidin 0.7440 0.0080

ciclopirox 0.8470 0.0008 resveratrol 0.5220 0.0079 5707885 0.7400 0.0088

digoxin 0.8450 0.0009 ellipticine 0.7460 0.0079 sanguinarine 0.9280 0.0098

bepridil 0.8400 0.0010 oxprenolol 0.7430 0.0082 rifabutin 0.8230 0.0111

dilazep 0.7690 0.0014 trioxysalen 0.7300 0.0105 thioridazine 0.3390 0.0155

tiabendazole 0.8260 0.0014 irinotecan 0.8260 0.0107 troglitazone 0.3750 0.0158

CP-690334-01 0.6170 0.0019 DL-thiorphan 0.9250 0.0110 harmine* 0.6970 0.0173

azacitidine 0.8980 0.0021 verteporfin 0.8190 0.0117 piperlongumine 0.9010 0.0202

withaferin-A 0.8140 0.0023 famprofazone 0.5990 0.0132 benzethonium-

chloride

0.7700 0.0244

221



E. CMAP ONLINE TOOL RESULTS

amrinone 0.8120 0.0024 N-acetyl-L-leucine 0.7160 0.0133 sulfametoxydiazine 0.6700 0.0263

0297417-0002B 0.8900 0.0025 tyloxapol 0.7010 0.0164 skimmianine 0.6660 0.0279

spironolactone 0.7320 0.0032 antimycin-A 0.6420 0.0168 AR-A014418 0.7570 0.0283

mefloquine 0.7160 0.0042 levonorgestrel 0.5860 0.0171 guaifenesin 0.5550 0.0295

suloctidil 0.7820 0.0043 bisacodyl 0.6980 0.0171 bisacodyl 0.6550 0.0329

trifluoperazine 0.4160 0.0048 levamisole 0.6900 0.0193 quinostatin 0.8540 0.0433

cloperastine 0.6530 0.0052 procaine 0.6320 0.0194 clorgiline 0.6320 0.0454

0175029-0000 0.6510 0.0054 trifluoperazine 0.3660 0.0197 betazole 0.5720 0.0456

rottlerin 0.8420 0.0078 morantel 0.6210 0.0229 isotretinoin 0.6310 0.0463

harmine* 0.7470 0.0078 ethaverine 0.6790 0.0230 alclometasone 0.6280 0.0479

CP-645525-01 0.8420 0.0079 ebselen 0.7730 0.0236 harmol* 0.6250 0.0496

terfenadine 0.8410 0.0080 doxazosin 0.6770 0.0236

fluphenazine 0.3760 0.0085 clomipramine 0.6750 0.0245

daunorubicin 0.7360 0.0094 repaglinide 0.6710 0.0258

oxetacaine 0.6720 0.0099 triflusal 0.7650 0.0259

methylbenzethonium-

chloride

0.6150 0.0101 eucatropine 0.5550 0.0295

prochlorperazine 0.3920 0.0101 etofenamate 0.6600 0.0308

ouabain 0.7290 0.0108 ronidazole 0.7500 0.0309

fulvestrant 0.2500 0.0108 azacitidine 0.7460 0.0320

hycanthone 0.7220 0.0118 norethisterone 0.6530 0.0337

mycophenolic-acid 0.8160 0.0122 etomidate 0.7390 0.0348

15-delta-

prostaglandin-J2

0.3960 0.0123 demeclocycline 0.5420 0.0356

trazodone 0.8070 0.0145 difenidol 0.7340 0.0369

pimozide 0.7090 0.0148 lorglumide 0.5870 0.0372

1.4-

chrysenequinone

0.9120 0.0156 skimmianine 0.6440 0.0386

PNU-0251126 0.5880 0.0166 acetylsalicylic-

acid

0.3720 0.0389

digoxigenin 0.6390 0.0176 omeprazole 0.6420 0.0403

strophanthidin 0.6930 0.0185 liothyronine 0.6410 0.0406

econazole 0.6880 0.0198 ginkgolide-A 0.6400 0.0407

sanguinarine* 0.9000 0.0205 1.4-

chrysenequinone

0.8570 0.0414

tretinoin 0.3110 0.0214 Prestwick-1084 0.6380 0.0421

clioquinol 0.6220 0.0226 zomepirac 0.6360 0.0428

alexidine 0.6770 0.0238 chlorpromazine 0.3070 0.0434

epiandrosterone 0.6760 0.0240 meclofenoxate 0.5270 0.0447

disulfiram 0.6170 0.0244 carbachol 0.6310 0.0462

PNU-0293363 0.7650 0.0258 apramycin 0.6280 0.0480

MG-262 0.7640 0.0261 amiodarone 0.5680 0.0483

pyridoxine 0.6670 0.0275 alvespimycin 0.3750 0.0485

prenylamine 0.6650 0.0286 nipecotic-acid 0.6240 0.0498

niclosamide 0.5920 0.0350

cetirizine 0.6490 0.0359

harmol* 0.6460 0.0377

fluspirilene 0.6400 0.0408

tonzonium-

bromide

0.6370 0.0427

griseofulvin 0.5720 0.0457

phenazopyridine 0.6320 0.0458

puromycin 0.6300 0.0465

etacrynic-acid 0.7080 0.0486

5182598 0.8440 0.0487

5707885 0.6250 0.0494
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*True Positives: drugs sharing the mode of action with the testing one

PHA-848125 on

U251

NMS-SN38 on

MCF7

NMS-

Doxorubicin

on MCF7

cmap name cs p cmap name cs p cmap name cs p

irinotecan 1.0000 0.0000 irinotecan* 0.9980 0.0000 resveratrol 0.7610 0.0000

alsterpaullone* 0.9980 0.0000 phenoxybenzamine 0.9950 0.0000 thioridazine 0.5980 0.0000

camptothecin 0.9970 0.0000 thioguanosine 0.9620 0.0000 trichostatin-A 0.5720 0.0000

phenoxybenzamine 0.9960 0.0000 resveratrol 0.7490 0.0000 camptothecin 0.9770 0.0000

apigenin* 0.9940 0.0000 15-delta-

prostaglandin-J2

0.6710 0.0000 trifluoperazine 0.5740 0.0000

luteolin* 0.9900 0.0000 trichostatin-A 0.4080 0.0000 trifluridine 0.9270 0.0000

thioguanosine 0.9890 0.0000 camptothecin* 0.9940 0.0000 15-delta-

prostaglandin-J2

0.5720 0.0001

ellipticine 0.9880 0.0000 mycophenolic-acid 0.9660 0.0000 LY-294002 0.2660 0.0001

8-azaguanine 0.9670 0.0000 mebendazole 0.8420 0.0002 mycophenolic-acid 0.9590 0.0001

thiostrepton 0.9510 0.0000 8-azaguanine 0.8760 0.0003 proscillaridin 0.9590 0.0001

parthenolide 0.9500 0.0000 menadione 0.9860 0.0004 digitoxigenin 0.8850 0.0002

vorinostat 0.9010 0.0000 5194442 0.8690 0.0004 fluphenazine 0.4760 0.0003

geldanamycin 0.6000 0.0000 trifluridine 0.8670 0.0004 bufexamac 0.8790 0.0003

tanespimycin 0.5590 0.0000 pyrvinium 0.7110 0.0016 thiostrepton 0.8660 0.0004

trichostatin-A 0.4830 0.0000 prochlorperazine 0.4450 0.0021 phenoxybenzamine 0.8640 0.0005

piperlongumine 0.9970 0.0000 ciclopirox 0.8090 0.0025 irinotecan 0.9180 0.0011

proscillaridin 0.9870 0.0000 hexestrol 0.8070 0.0026 cloperastine 0.7120 0.0016

thioridazine 0.5380 0.0000 vorinostat 0.5020 0.0026 digoxin 0.8130 0.0024

chrysin* 0.9690 0.0000 lomustine 0.7990 0.0031 vorinostat 0.5030 0.0024

digitoxigenin 0.9290 0.0000 hycanthone 0.7950 0.0035 norcyclobenzaprine 0.7890 0.0039

harmine* 0.9120 0.0001 fluorometholone 0.7900 0.0039 scriptaid 0.8690 0.0041

fluphenazine 0.5130 0.0001 corbadrine 0.7880 0.0040 antimycin-A 0.7160 0.0043

acacetin 0.8140 0.0001 antimycin-A 0.7170 0.0041 hycanthone 0.7750 0.0049

lanatoside-C 0.7950 0.0002 piperlongumine 0.9500 0.0047 monobenzone 0.7710 0.0053

menadione 0.9860 0.0003 digitoxigenin 0.7760 0.0048 withaferin-A 0.7590 0.0064

helveticoside 0.7720 0.0003 cloperastine 0.6410 0.0064 helveticoside 0.6230 0.0089

alvespimycin 0.5600 0.0004 flupentixol 0.7570 0.0067 pinacidil 0.7370 0.0094

CP-690334-01 0.6640 0.0006 daunorubicin 0.7390 0.0089 quinostatin 0.9270 0.0101

atropine 0.8500 0.0007 syrosingopine 0.7350 0.0098 daunorubicin* 0.7320 0.0102

oxetacaine 0.7960 0.0008 luteolin* 0.7340 0.0098 MS-275 0.9270 0.0102

0297417-0002B 0.9170 0.0012 pipenzolate-

bromide

0.7340 0.0098 0297417-0002B 0.8200 0.0117

withaferin-A 0.8320 0.0012 trifluoperazine 0.3920 0.0102 alimemazine 0.7180 0.0131

mebendazole 0.7770 0.0012 clomipramine 0.7300 0.0105 quercetin 0.5960 0.0141

amiloride 0.7680 0.0015 astemizole 0.6670 0.0108 pimozide 0.7090 0.0148

digoxigenin 0.7670 0.0015 gliclazide 0.7280 0.0109 zalcitabine 0.7010 0.0164

STOCK1N-35215 0.9080 0.0017 thiostrepton 0.7220 0.0120 cefotetan 0.7950 0.0175

dilazep 0.7580 0.0019 cycloserine 0.7200 0.0124 cinchocaine 0.6370 0.0179

oxantel 0.8000 0.0030 hydralazine 0.5980 0.0137 etoposide* 0.6880 0.0198

resveratrol 0.5630 0.0031 SC-19220 0.7010 0.0165 methyldopate 0.6870 0.0201

PHA-00851261E 0.5870 0.0036 harmine 0.6970 0.0176 zuclopenthixol 0.6860 0.0209

1.4-

chrysenequinone

0.9540 0.0039 methotrexate 0.5100 0.0185 strophanthidin 0.6800 0.0225

digoxin 0.7750 0.0048 tolfenamic-acid 0.6910 0.0190 fenoterol 0.7760 0.0227

suloctidil 0.7720 0.0051 monocrotaline 0.6890 0.0195 clomipramine 0.6750 0.0245

ouabain 0.7710 0.0052 apigenin* 0.6880 0.0198 parthenolide 0.6730 0.0251

F0447-0125 0.7700 0.0054 parthenolide 0.6870 0.0204 5230742 0.8880 0.0258

5182598 0.9410 0.0065 ellipticine 0.6820 0.0218 procarbazine 0.7620 0.0268

mefloquine 0.6900 0.0072 fluspirilene 0.6700 0.0261 ouabain 0.6620 0.0298

nocodazole 0.6350 0.0072 pimethixene 0.7570 0.0282 dosulepin 0.6580 0.0314

hycanthone 0.7470 0.0078 harmol 0.6650 0.0284 lanatoside-C 0.5490 0.0320

pimozide 0.7460 0.0079 5155877 0.6640 0.0289 harpagoside 0.6510 0.0348

nifuroxazide 0.7450 0.0080 nocodazole 0.5550 0.0295 telenzepine 0.6500 0.0354

etacrynic-acid 0.8400 0.0080 proadifen 0.6570 0.0319 prochlorperazine 0.3420 0.0354

harmol* 0.7440 0.0080 semustine 0.6550 0.0330 mometasone 0.6480 0.0364
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0173570-0000 0.6240 0.0086 suloctidil 0.6540 0.0334 flupentixol 0.6450 0.0384

daunorubicin 0.7300 0.0105 pimozide 0.6480 0.0368 ciclopirox 0.6430 0.0390

5155877 0.7190 0.0125 oxantel 0.6460 0.0375 tretinoin 0.2890 0.0395

PHA-00767505E 0.7030 0.0161 STOCK1N-35215 0.7310 0.0383 nifenazone 0.5790 0.0411

bisacodyl 0.7000 0.0166 CP-645525-01 0.7260 0.0402 ebselen 0.7220 0.0421

6-bromoindirubin-

3’-oxime

0.5390 0.0186 1.4-

chrysenequinone

0.8570 0.0412 MG-262 0.7220 0.0425

Y-27632 0.9040 0.0190 tretinoin 0.2860 0.0433 syrosingopine 0.6360 0.0431

cotinine 0.5730 0.0224 phenformin 0.4840 0.0490 isotretinoin 0.6330 0.0448

oxyphenbutazone 0.6750 0.0245 fluspirilene 0.6280 0.0481

loperamide 0.5600 0.0270 cefuroxime 0.6260 0.0490

0179445-0000 0.4890 0.0275 methylbenzethonium-

chloride

0.5200 0.0491

PNU-0293363 0.7560 0.0288

levobunolol 0.6500 0.0354

scriptaid 0.7360 0.0361

bepridil 0.6480 0.0363
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*True Positives: drugs sharing the mode of action with the testing one

NMS-

Tanespimycin

on MCF7

NMS-E973 on

MCF7

NVP-AUY922

on MCF7

cmap name cs p cmap name cs p cmap name cs p

geldanamycin* 0.9810 0.0000 alvespimycin* 0.9800 0.0000 5155877 0.9660 0.0000

alvespimycin* 0.9740 0.0000 geldanamycin* 0.9790 0.0000 tanespimycin* 0.7800 0.0000

tanespimycin* 0.9700 0.0000 tanespimycin* 0.9730 0.0000 alvespimycin* 0.7760 0.0000

securinine 0.9640 0.0000 securinine 0.9670 0.0000 geldanamycin* 0.7730 0.0000

monorden* 0.9560 0.0000 monorden* 0.9170 0.0000 diethylstilbestrol 0.7170 0.0014

thiostrepton 0.9490 0.0000 vorinostat 0.7840 0.0000 withaferin-A* 0.7790 0.0045

15-delta-

prostaglandin-J2

0.8020 0.0000 15-delta-

prostaglandin-J2

0.7450 0.0000 lomustine 0.7720 0.0051

vorinostat 0.6670 0.0000 trichostatin-A 0.6450 0.0000 thiostrepton 0.7720 0.0052

mycophenolic-acid 0.9520 0.0001 thiostrepton 0.9380 0.0000 STOCK1N-35874 0.9470 0.0053

diethylstilbestrol 0.7970 0.0001 rifabutin* 0.9590 0.0001 semustine 0.7710 0.0053

rifabutin* 0.9410 0.0003 diethylstilbestrol 0.8000 0.0001 5194442 0.7690 0.0056

idazoxan 0.8250 0.0015 oxolamine 0.8810 0.0003 oxyphenbutazone 0.7610 0.0063

STOCK1N-35215 0.8890 0.0026 mycophenolic-acid 0.9350 0.0004 alcuronium-

chloride

0.9420 0.0063

withaferin-A* 0.8020 0.0029 idazoxan 0.8490 0.0008 betulinic-acid 0.7560 0.0067

parthenolide 0.8020 0.0029 withaferin-A* 0.8190 0.0019 3-

acetamidocoumarin

0.7500 0.0075

lomustine 0.7990 0.0030 parthenolide 0.8170 0.0021 PHA-00745360 0.5340 0.0118

scoulerine 0.7990 0.0031 scoulerine 0.8170 0.0021 atracurium-

besilate

0.8180 0.0119

PNU-0251126 0.6750 0.0032 lomustine 0.8160 0.0022 podophyllotoxin 0.7200 0.0125

semustine 0.7970 0.0033 semustine 0.8120 0.0024 MK-886 0.9180 0.0132

5155877 0.7840 0.0041 5182598 0.9560 0.0034 thiamphenicol 0.6480 0.0152

proguanil 0.8650 0.0046 1.4-

chrysenequinone

0.9550 0.0037 cefamandole 0.7010 0.0164

sodium-

phenylbutyrate

0.6020 0.0055 piperlongumine 0.9530 0.0039 heptaminol 0.6410 0.0171

5182598 0.9440 0.0059 STOCK1N-35215 0.8660 0.0045 C-75 0.6920 0.0188

genistein 0.3990 0.0060 5155877 0.7700 0.0054 W-13 0.9010 0.0202

etacrynic-acid 0.8480 0.0067 Prestwick-1103 0.7470 0.0079 MG-262 0.7840 0.0206

piperlongumine 0.9380 0.0074 dinoprost 0.7420 0.0084 eticlopride 0.6810 0.0222

F0447-0125 0.7400 0.0088 nordihydroguaiaretic-

acid

0.4070 0.0092 idazoxan 0.6780 0.0232

oxolamine 0.7300 0.0105 vigabatrin 0.8260 0.0107 tocainide 0.6780 0.0234

1.4-

chrysenequinone

0.9250 0.0110 rifampicin 0.7270 0.0111 diprophylline 0.6160 0.0244

dinoprost 0.7170 0.0131 MG-262 0.8190 0.0117 naltrexone 0.6150 0.0252

MG-262 0.8030 0.0157 F0447-0125 0.6920 0.0188 nadolol 0.6710 0.0258

5194442 0.6890 0.0197 furosemide 0.6830 0.0217 levobunolol 0.6690 0.0266

epitiostanol 0.6850 0.0210 isotretinoin 0.6780 0.0234 amiprilose 0.6670 0.0276

CP-320650-01 0.4990 0.0231 halofantrine 0.7490 0.0312 thioperamide 0.6040 0.0296

carbimazole 0.7670 0.0254 iobenguane 0.6580 0.0314 Prestwick-1103 0.6610 0.0301

scriptaid 0.7570 0.0283 CP-690334-01 0.4800 0.0321 isoniazid 0.5890 0.0359

halofantrine 0.7520 0.0300 0317956-0000 0.4770 0.0337 indoprofen 0.6480 0.0366

0317956-0000 0.4780 0.0329 proguanil 0.7420 0.0337 metrizamide 0.6430 0.0390

cinchonine 0.6450 0.0384 indoprofen 0.6530 0.0338 canadine 0.6400 0.0411

Prestwick-967 0.6330 0.0446 Prestwick-983 0.7380 0.0353 chenodeoxycholic-

acid

0.6380 0.0419

ribavirin 0.6240 0.0499 Prestwick-967 0.6440 0.0386 Prestwick-642 0.6350 0.0437

metixene 0.6340 0.0443 flecainide 0.5280 0.0442

trichlormethiazide 0.6340 0.0445

cinchonine 0.6320 0.0454

halofantrine 0.7140 0.0461

Prestwick-692 0.6250 0.0497
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E. CMAP ONLINE TOOL RESULTS

226



Appendix F

Neighborhood of the tested

compounds in the drug network
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F. NEIGHBORHOOD OF THE TESTED COMPOUNDS IN THE DRUG
NETWORK
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F. NEIGHBORHOOD OF THE TESTED COMPOUNDS IN THE DRUG
NETWORK

Figure F.3: Nighborhood of the tested compounds 3 -
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F. NEIGHBORHOOD OF THE TESTED COMPOUNDS IN THE DRUG
NETWORK

Figure F.5: Nighborhood of the tested compounds 5 -
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Appendix G

Impact of rank merging on the

performances
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G. IMPACT OF RANK MERGING ON THE PERFORMANCES
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Figure G.2: Impact of rank merging on the performances 2 -
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G. IMPACT OF RANK MERGING ON THE PERFORMANCES

Figure G.3: Impact of rank merging on the performances 3 -
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Figure G.4: Impact of rank merging on the performances 4 -
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