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Introduction 

 
In this thesis we argue about several aspects of fuzzy logic. More precisely we investigate the following 

topics:  

- the properties preserved by a fuzzy model everytime it is subject to some kind of modification in the 

framework of the model theory for fuzzy logic proposed in [16],  

- fuzzy logic programming, similarity logic and meta-programming to take into account the synonymy 

relation among predicates in accordance with the ideas proposed by M. S. Ying in [33]  

- the connection between fuzzy logic and bilattices theory that represents an interesting tool for the 

treatment of both truth and grade of information (Ginsberg [20]).  

 

In particular, in chapter 1 we introduce some preliminaries on abstract logic.  

In chapter 2, we introduce some basic definitions for a model theory for fuzzy logic as proposed in [16]. 

In particular, we define the notions of homomorphism, congruence, quotient product, ultraproduct. A 

basic feature of the proposed approach it’s that the valuation structures are not fixed, so they vary in a 

given type. This gives the basis for the results exposed in chapter 5. 

In chapter 3, we introduce some general definitions in fuzzy logic programming, a very promising section 

of fuzzy logic, whose aim is to build up intelligent data-base systems with "flexible" answers, expert 

systems able to consider vague predicates and so on, combining the might of  logic programming and the 

big adaptability of fuzzy logic. In particular, we investigate the idea to extend fuzzy logic programming to 

take into account the synonymy relation among predicates in accordance with the similarity logic 

proposed by M. S. Ying in [33]. The idea of Ying is that it is possible to relax the application of the 

inference rules in such a way that it is also admitted an approximate matching of the predicate names. As 

an example it is admitted that from α and α’ →β we can infer β even in the case that α’ is only 

approximately equal to α. An application to such an idea to logic programming was done in several 

papers (see [1], [3], [11]) where the definition of synonymy refers to Gödel’s norm. 
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We show (see [13]) that given a fuzzy program in a language L, we can translate it into an equivalent 

classical program in a suitable (meta-)language Lm. Since the predicate names in L become constants in  

Lm, this enables us to admit in Lm  meta-relations (as meta-rules) among predicates. In particular, the 

meta-relation is the synonymy and this enable us to define a synonymy-sensitive fuzzy logic 

programming.  

We prove that there are at least three reasons in favour of such a logic. The first one is that, differently 

from the papers [1], [3] and [11], all the triangular norms are admitted. The second is that the resulting 

notion of fuzzy Herbrand model is uniformly continuous with respect to the synonymy relation (a basic 

property for a synonymy logic). Finally, another reason is that the resulting logic is a similarity logic in 

the abstract sense given in [17]. This means that its deduction operator is the closure operator obtained by 

combining the similarity closure operator with the one-step consequence operator associated with the 

given fuzzy program. 

In our approach we propose simply to add to the meta-language Lm the predicate symbol “synonymous”. 

We define a suitable notion of least Herbrand model for the similarity-based logic programming create 

and we show that we obtain an abstract synonymy logic programming and the Herbrand models of such a 

logic are the fixed points of TpoSYN, i.e. the Herbrand models of Tp which are fixed points for SYN. 

In chapter 4, we investigate about the potentialities of bilattice theory ([20]) for fuzzy logic by proposing 

and discussing some general definitions. In order to give an example, we apply the resulting apparatus to 

a Kripke-like logic (see [14]). 

In chapter 5 we study the modifications of a fuzzy structure and its properties, and the connections about 

two of them (via homomorphisms); the idea is to extend to fuzzy logic some preserving theorems of 

classical first order logic. More in particular, we study the properties preserved by a cut, by quotients or 

by products and ultraproducts and we investigate about the properties preserved after a “deformation” of a 

fuzzy model, more precisely, after a modification of the valuation part of such a structure (see [15]). 
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CHAPTER 1 

PRELIMINARIES 

 

1. Bounded lattices and homomorphisms  

 

In this section we will remind some elementary notions in lattice theory.  

Definition 1.1. An ordered set L = (L, ≤ ) is a lattice provided that, for any x, y∈L, both Inf({ x ,y}) and 

Sup({ x ,y})  exist. L is bounded if there is a greatest element 1 and a least element 0. L is complete if Inf(X) 

and Sup(X) exist for every subset X of L.  

 

It is also useful to represent a lattice as an algebraic structure. 

 

Definition 1.2.  (L, ∧, ∨, 0, 1) is a bounded lattice if for every x, y, z∈L 

 (i)      x∨(y∨z) = (x∨y)∨ z    ;    x∧(y∧z) = (x∧y)∧z        associativity 

 (ii)     x∨y = y∨x    ;    x∧y = y∧x           commutativity 

 (iii)     x∨x = x    ;      x∧x = x     idempotence 

 (iv)    0∨x = x  ;  1∧x = x.     

 

As it is well known, Definitions 1.1 and 1.2 are in a sense equivalent, in fact the following theorem holds 

true. 

 

Theorem 1.3.  Let the algebraic structure (L, ∧, ∨, 0, 1) be a bounded lattice and define an ordered set (L, 

≤ ) by putting    

x ≤ y   ⇔   x ∧ y = x . 

Then the relational structure (L, ≤, 0, 1) is a bounded lattice. Viceversa let the relational structure (L, 

≤, 0, 1) be a bounded lattice, then by putting for every x,y∈L   

x∧y = Inf({x ,y})  and  x∨y = Sup({x ,y})  
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the resulting algebraic structure (L, ∧, ∨, 0, 1) is a bounded lattice such that  

x ≤ y ⇔ x ∧ y = x. 

 

In accordance with such a theorem we can represent a lattice either as ordered structures or as algebraic 

structures. Neverthless, the two approaches are not equivalent with respect to the notion of homomorphism 

(and therefore from category point of view). 

 

Definition 1.4. Given two ordered sets L1 and L2, a map h : L1 → L2 is  an order-homomorphism if it is order-

preserving, i.e., for every x, y ∈  L1, 

x ≤ y   ⇒   h(x) ≤ h(y)      

An order-isomorphism is an one-to-one order-homomorphism h whose inverse is an order-

homomorphism.  An order-automorphism of L is an order-isomorphism from L onto itself. We say also 

that h is an embedding if 

x ≤ y   ⇔   h(x) ≤ h(y). 

 

Trivially, an embedding is injective and an isomorphism is an one-to-one embedding. The definition of 

homomorphism in the case the lattices are considered as algebraic structures is the usual one in universal 

algebra: 

 

Definition 1.5. Given two bounded lattices L1 = (L1, ∧, ∨, 0, 1) and L2 = (L2, ∧, ∨, 0, 1), a map h : L1 → L2  

is an algebraic homomorphism from L1 to L2  if for every x, y in L1 

h(0) = 0  ;  h(1)  =  1   ;   h(x∧y) =  h(x) ∧ h(y)   ;   h(x∨y) =  h(x)∨h(y). 

An algebraic-isomorphism is a bijective algebraic-homomorphism and an algebraic automorphism in a 

lattice L is an algebraic-isomorphism from L onto itself.  

 

Theorem 1.6.  Let L1 and L2 be two lattices, then every algebraic homomorphism from L1 to L2 is an 

order-homomorphism from L1 into L2. The viceversa is not valid. The order isomorphisms coincide with 

the algebraic isomorphisms. 

 Proof.  Let h : L1 → L2  an algebraic homomorphism from L1 to L2, then 

x ≤ y ⇒ x∧y = x   ⇒  h(x ∧ y) = h(x)   ⇒  h(x)∧h(y) = h(x)  ⇒  h(x) ≤ h(y) 
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Consider the lattices (P{ a,b}, ⊆ ) and ({0,1,2}, ≤), with the map h : P{a,b}  → {0, 1, 2 }such that 

h(∅) = 0  ;  h({ a}) = 1  ;  h({ b}) = 1  ;  h({ a,b}) = 2 

Then h is order-preserving but isn’t an algebraic homomorphism. In fact  

h({ a} ∪{b}) = h(∅) = 0 ≠1 = 1∧1= h({a}) ∧h({b}). 

Assume that h : L1 → L2 is an order-isomorphism and let x and y be elements in L1. Then, trivially, h(x∧y) 

≤ h(x) and h(x∧y) ≤ h(y). Assume that m’≤ h(x) and m’≤ h(y) and let m be such that h(m) = m’. Then, 

being h an order isomorphism, m ≤ x and m ≤ y and therefore m≤x∧y. This proves that m’ ≤ h(x∧y) and 

therefore that h(x∧y) is the greatest lower bound of the pair {h(x), h(y)}. In a similar way one proves the 

remaining part of the proposition.            

 

We conclude such a section by giving the notion of semilattice. 

 

Definition 1.7. A bounded semilattice is an algebraic structure  (L, ∧, 0, 1) such that for every x, y, z∈L 

 (i)     x∧(y∧z) = (x∧y)∧z        associativity 

 (ii)    x∧y = y∧x           commutativity 

 (iii)    x∧x = x     idempotence 

 (iv)  0∧x = 0  ;  1 ∧ x = x. 

 

Given a bounded semilattice (L, ∧, 0, 1) if we define a relation ≤ in L by putting x ≤ y ⇔ x∧y = x, then we 

obtain a bounded ordered set (L, ≤).     

 

2. Closure operators and closure systems 

The notions of closure operator and closure system can be defined in any complete lattice L (see [31]). In 

the following, we call an operator in L any map ∆ from L into L and class or system in L any subset C of 

L. 

 

Definition 2.1  Let L be a complete lattice. Then a closure operator in L is any operator ∆ : L → L 

satisfying 
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 i)   x ≤ y  ⇒  ∆(x) ≤ ∆(y)    (order-preserving)   

 ii)   x ≤ ∆(x)                          (inclusion) 

 iii)   ∆(∆(x)) = ∆(x)             (idempotence). 

If (iii) is skipped, ∆ is called an almost closure operator in L, in brief a-c-operator.  

 

We interpret an element x ∈ L as a piece of information and ∆(x) as the whole information we can derive 

from x.   

 

Example. Let ⊕  be the set of formulas of a first order logic. Then we can consider the immediate 

consequence operator ∆ : Π(⊕) → Π(⊕), i.e. the operator defined by setting, for any X∈Π(⊕),  

∆(X) = {α : α←β , β∈X} ∩{ ∀xα : α∈X} ∩Al ∩X 

where Al is the set of logical axioms. Then ∆ is a a-c-operator. 

 

 Strictly related with the notion of closure operator, we introduce the one of closure system. 

 

Definition 2.2. A nonempty class C of elements of a complete lattice L is called a closure system if the 

meet of any class of elements of C is an element of  C.  

 

Observe that, since Inf(∅) = 1, every closure system contains 1.  

 

Definition 2.3. Given a closure system C and x ∈ L, the element <x> of C generated by x is defined by 

setting 

  <x> = Inf{ x' ∈ C : x' ≥ x}. (2.1) 

The following proposition, whose proof is trivial, shows that any closure system is a complete lattice. 

 

Proposition 2.4. Let C ⊆ L  be a closure system. Then C is a complete lattice such that 

  - the least element of C is the meet of all the elements in C, 

  - the unity in C coincides with the unity 1 in L, 

  - the meets in C coincide with the meets in L, 
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  - the join in C of a class X  is  <Sup(X)>. 

 

Observe that C is not necessarily a sublattice of L and this since the joins in C are different from the joins 

in L, in general. As an example, consider the class C of subalgebras of a given algebraic structure A. Then 

C is a closure system and hence a complete lattice but, while the meet operator coincides with the 

intersection, the join of a family (Ai)i∈Ι of subalgebras coincides with the subalgebra generated by  ∩i∈Ι Ai. 

 The class of closure operators and the class of closure systems define two closure systems in the direct 

power LL of L with index set L. 

 

Proposition 2.5. Both the classes CO(L) of closure operators and AC(L) of almost closure operators in L 

are closure systems in LL. The class CS(L) of closure systems in L is a closure system in Π(L). 

 Proof. Let J  be the meet of a family (Ji)i∈Ι of a-c-operators and x ∈ L. Then it is immediate that J 

satisfies (i) and (ii) of Definition 2.1. Assume that each Ji is idempotent. Then, for every x ∈ L and k ∈ I,  

J(J(x)) = J(Infi∈Ι Ji(x)) ≤ Jk(Infi∈Ι Ji(x)) ≤ Jk(Jk(x)) = Jk(x). 

Hence  

J(J(x)) ≤ Infk∈I Jk(x) = J(x) 

and therefore J(J(x)) = J(x). This proves that CO(L) is a closure system. 

  Let C be the intersection of a family (Ci)i∈Ι of closure systems and let (xj)j∈J  be any family of elements 

in C. We claim that x = Inf{ xj : j ∈ J} is an element of C. Indeed, since, for every i ∈ I, (xj)j∈J  is a family 

of elements in Ci, we have  x ∈ Ci. Thus, x ∈ ∪{ Ci : i ∈ I} = C. This proves that CS(L) is a closure 

system.        

 

3. Connecting the two notions 

Let J be an operator in L and C a class of elements of L. Then we denote by c(J) the closure operator 

generated by J and by c(C) the closure system generated by C. 

 Now we will show how the closure systems and the closure operators are strictly related. To this 

purpose we define the map Co : Π(L) → LL by assuming that, for each C ⊆ L, Co(C) : L → L is the 

operator defined by setting 

  Co(C)(x) = Inf{ y ∈ C : y ≥ x} , (3.1)  

for every x ∈ L. Moreover, we define the map Cs : LL → Π(L) by setting, for any operator J ∈ LL,   
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  Cs(J) = { x ∈ L : J(y) ≤ x  for every  y ≤ x}. (3.2)  

 

Proposition 3.1. Given any C ⊆ L, the operator Co(C) : L → L is a closure operator. Given any J ∈ LL, 

the class Cs(J) is a closure system. 

 Proof. The first part is trivial. Let (xi)i∈Ι be a family of elements of Cs(J). We claim that Inf{ xi : 

i ∈ I}  ∈ Cs(J). Indeed, suppose y ≤ Inf{ xi : i ∈ I} , that is y ≤ xi for every i ∈ I. Then J(y) ≤ xi for every 

i ∈ I. Thus J(y) ≤ Inf{ xi : i ∈ I} and therefore Inf{ xi : i∈I}  ∈ Cs(J). This proves that Cs(J) is a closure 

system.            

    As claimed in Section 2, sometimes we write <x> instead of Co(C)(x). Given an operator J, we call 

fixed point of J any element x ∈ L such that J(x) = x. In the case that J is an a-c-operator this is equivalent 

to saying that J(x) ≤ x, i.e., x is closed with respect to J. Moreover, we have the following: 

 

Proposition 3.2. Let J be an a-c-operator. Then 

  Cs(J) ={ x ∈ L : J(x) = x}, (3.3)     

i.e., Cs(J) is the class of fixed points of J. 

 Proof. By (3.2), J(x) ≤ x for every x ∈ Cs(J). Then, if J is an a-c-operator, J(x) = x. Conversely, if x is 

a fixed point of J and y ≤ x, then J(y) ≤ J(x) = x and this proves that  x ∈ Cs(J).                         

  

The proof of the next proposition is evident: 

 

Proposition 3.3. Let J and J' be operators and C, C' classes. Then, 

J ≤ J'  ⇒  Cs(J) ⊇ Cs(J')   ;   C ⊆ C'  ⇒  Co(C) ≥ Co(C'). 

 

The first implication says that, if J and J' are a-c-operators such that J ≤ J', then every fixed point for J' 

is a fixed point for J. The following theorem gives a way to obtain the closure operator c(J) generated by 

J: 

 

Theorem 3.4. Let J be an operator.  Then 

  c(J) = Co(Cs(J)). (3.4) 
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So, if J is an a-c-operator and x ∈ L, c(J)(x) is the least fixed point of J greater than or equal to x. 

 Proof.  Set J' = Co(Cs(J)), then J' is a closure operator. To prove that J' ≥ J, it suffices to observe that 

for every y ∈ L, from  y ∈ Cs(J) and x ≤ y, it follows that J(x) ≤ y. Consequently,  

J'(x) = Inf{y ∈ Cs(J) : y ≥ x} ≥ J(x). 

 Let H be a closure operator such that H ≥ J and suppose y' ≤ H(x). Then  

J(y') ≤ H(y') ≤ H(H(x)) = H(x). 

This proves that H(x) ∈ Cs(J) and, since H(x) ≥ x, that H(x) ≥ J'(x).                   

 

 Given any class C of elements of L, we can obtain the closure system c(C) generated by C as follows:  

  c(C) = {Inf(X) : X ⊆ C}. (3.5) 

 

Moreover, we have the following theorem: 

 

Theorem 3.5. Given any class C of elements of L, we have 

  c(C) = Cs(Co(C)). (3.6) 

 Proof. Being every element of C a fixed point of Co(C), Cs(Co(C)) is a closure system containing C. 

Let C'  be a closure system containing C, and x an element of Cs(Co(C)). Then, since x = Co(C)(x), x is a 

meet of elements of C and hence belongs to C. Thus Cs(Co(C)) ⊆ C' and, therefore, Cs(Co(C)) = c(C).          

  

 

Some interesting properties of the operators Co and Cs are listed in the following proposition: 

 

Proposition 3.6. Let J and J' be operators, and  C and C' classes. Then  

  Cs(J) = Cs(c(J))      ;    Co(C) = Co(c(C)). (3.7) 

Also,  

 c(J) = c(J')  ⇔  Cs(J) = Cs(J')  ;   c(C) = c(C’)  ⇔  Co(C) = Co(C')   (3.8) 

Moreover, if C and C' are closure systems, and J and J' closure operators, then  

  C ⊆ C'  ⇔  Co(C) ≥ Co(C')   ;    J ≤ J'   ⇔   Cs(J) ⊇ Cs(J') (3.9) 

  Co(Cs(J)) = J   ;   Cs(Co(C)) = C. (3.10) 
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4. Abstract logic and continuity 

The following is the main definition in this chapter: 

 

Definition 4.1. Let ∆  be a closure operator in a complete lattice L. Then we can say that the pair Σ = 

(L,∆) is an abstract deduction system and that ∆  is a deduction operator ([4] ).  

 

 We call pieces of information the elements in L. Any classical logic Λ defines an abstract logic whose 

pieces of information are the set of formulas. Indeed, if ⊕ is the set of formulas of Λ, we can set L = Π(⊕) 

and ∆ equal to the operator associating any X ∈ Π(⊕) with the set ∆(X) of consequences of X.  

 A theory in an abstract deduction system (L, ∆) is defined as a fixed point of ∆, i.e., a piece of 

information τ closed under deductions. Proposition 3.2 says that the class Τ = Cs(∆) of theories of a 

deduction system is a closure system and hence a complete lattice. If τ is a theory and ∆(x) = τ, then we 

can say that x is a system of axioms for τ. A piece of information x ∈ L is inconsistent provided that ∆(x) = 

1. This extends the fact that in classical logic an inconsistent set of axioms generates the whole set ⊕ of 

formulas (i.e., the greatest element of Π(⊕)). In accordance, the piece of information 1 is called the 

inconsistent theory and a theory τ is consistent provided that τ ≠ 1. A maximal theory is a theory τ  which 

is maximal in the class of consistent theories, i.e., no theory τ' exists such that 1 > τ' > τ. 

 

Definition 4.2. A class Μ of elements of L such that 1 ∉ Μ is called an abstract semantics and the 

elements in Μ  are called models. If x ∈ L, m ∈ Μ and x ≤ m, then we can say that m is a model of x and 

we can write m ≤ x. If x, y ∈ L admit the same models, then we can say that x is logically equivalent to y. 

In accordance with Proposition 3.1, any semantics Μ induces a closure operator Co(Μ) : L → L. We 

call this a logical consequence operator and we denote it by Lc. Then, Lc is defined by setting, given a 

piece of information x, 

Lc(x) = Inf{ m ∈ Μ : m ≤ x}. 

 These definitions are in accordance with the classical definitions because we can identify the class of 

models in a classical logic Λ with the class Μ of complete theories of Λ. In fact, each model m in Λ is 

associated with its theory, i.e., with the complete theory  

Tm = {α ∈ ⊕ : α is true in m}. 
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Conversely, for every complete theory T a model m exists such that Tm = T.  Moreover, it is easy to see 

that m is a model of a set X of formulas iff X ⊆ Tm and that the set Lc(X) of logical consequences of X is 

equal to the intersection of all the complete theories containing X. 

 If τ is a theory of Lc we can say also that τ is a theory of Μ. Trivially,  

x is logically equivalent to y ⇔  Lc(x) = Lc(y). 

 

 We can also define Lc as follows: Consider the operators  

mod : L → Π(Μ)  and  th : Π(Μ) → L  

defined by setting, for every x ∈ L and Χ ∈ Π(Μ), 

  mod(x) = {m ∈ Μ  :  m ≤ x}  ;   th(Χ) = Sup{ x ∈ L  :  m ≤ x  ∀m∈Χ}. 

Then, mod(x) is the set of models of x and th(Χ) the information shared by all the models in Χ. It is 

easy to verify that mod and th define a Galois connection such that th  mod coincides with the closure 

operator Lc.  

 We define the system of tautologies as  

Tau(Μ) = Inf{ m : m ∈ Μ}, 

equivalently,  

Tau(Μ) = Lc(∅). 

 If  x is consistent with respect to Lc, then we prefer to say that x is satisfiable. Equivalently, x is satisfiable 

if a model of x exists. Also, x is categorical if just one model of x exists. We denote the class of satisfiable 

pieces of information by Sat(Μ), i.e.,  

Sat(Μ) = {x ∈ L : m ∈ Μ exists such that  m ≤ x}. 

 

Definition 4.3. An abstract logic is a triplet (L, ∆, Μ) where (L, ∆) is an abstract deduction system and Μ 

an abstract semantics such that ∆ = Co(Μ), i.e., the "completeness theorem" holds.  

  

 In defining the notion of abstract logic it seems natural to require some additional properties as an 

example, the basic notion of compactness. 

Definition 4.4. Let J : Π(S) → Π(S) be an operator in Π(S). Then we say that J is compact, provided that, 

for every subset X of S,  

x ∈ J(X)  ⇔  a finite subset Xf  of X exists such that x ∈ J(Xf). 
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Equivalently J is compact if  

J(X) = ∪{ J(Xf) : Xf is finite, Xf ⊆X } 

 Due to the finiteness of any proof, the deduction operator of a crisp logic is compact. Now, being the 

notion of finite subset not defined on a generic lattice L, we cannot define a compactness property in a 

generic abstract logic. Then we propose the notion of continuity as a natural counterpart of the notion of 

compactness. To this aim, we give some definitions (see [23]). 

 

Definition 4.5. A nonempty class Χ of elements in an ordered set L is upward directed if   

x ∈ Χ and y ∈ Χ  ⇒  ∃ z ∈ Χ , x ≤ z and y ≤ z. 

If X  is upward directed, and  z = Sup(X), then we say that z is the limit of X and we write z = limX. 

 

Obviously the totally ordered subsets of L are examples of upward directed classes. In the sequel, we 

write "directed" to mean "upward directed".   

If J is an order-preserving operator and Χ is directed, then the image J(Χ) = {J(x) : x ∈ Χ} is also 

directed. Then we can give the following definition: 

 

Definition 4.6. An order-preserving operator J is continuous if, for every directed class Χ, 

  J(lim Χ) = limJ(Χ) (4.1) 

A continuous closure operator is also called an algebraic closure operator. 

 

 The following proposition shows that the notion of continuity extends the notion of compactness. 

 

Proposition 4.7. Assume that L is the lattice Π(S) of all subsets of a given set S. Then J is continuous iff J 

is compact.  

 Proof. If J is continuous and X ∈ Π(S), then, because C = {Xf : Xf is a finite subset of X} is directed, we 

have  

J(X) = J(lim C) = lim J(C) = ∩{ J(Xf) : Xf  is a finite subset of X }.  

Conversely, let J : Π(S) → Π(S) be compact and observe that if C is a directed class of subsets of S then  

Xf  ⊆ lim C and Xf finite ⇒ there exists X∈C such that Xf ⊆ X. 

Consequently, 
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J(lim C) = ∩ {J(Xf )  : Xf  ⊆ lim C }) = ∩{J(X) : X ∈ C }  = lim J(C).             

 

 The connection between closure operators and closure systems suggests the following question: 

is there a property for closure systems fitting the continuity property for closure operators well ? 

The next definition enables us to give a positive answer. 

 

Definition 4.8. A class C of elements of L is called inductive if the limit of every directed family of 

elements in C  belongs to C. An inductive closure system is called algebraic.  

Every finite subset of L is inductive and therefore every finite closure system is algebraic. The notion 

of an algebraic closure system is well related to the notion of an algebraic closure operator.  

 

 Theorem 4.9. Given a nonempty class C,  

C is an algebraic closure system ⇔ Co(C) is an algebraic closure operator 

Given a closure operator J, 

 J  is algebraic  ⇔  Cs(J)  is an algebraic closure system. 

 Proof. Suppose the C is an algebraic closure system and let Τ be any directed class. Then, since the set 

Η = {Co(C)(x) : x ∈ Τ} is a directed subclass of C,  Sup{ Co(C)(x) : x ∈ Τ} is an element of C and 

therefore a fixed point for Co(C). Then,  

Co(C)(Sup( Τ)) ⊆ Co(C)(Sup{ Co(C)(x) : x ∈  Τ})  

             = Sup{ Co(C)(x) : x ∈ Τ}, 

and this proves that Co(C) is algebraic.  

 Conversely, let Co(C) be algebraic and let Τ be a directed subset of C. Then, as C is the class of fixed 

points of Co(C),  

 Co(C)(Sup(Τ))) = Sup({ Co(C)(x) : x ∈ Τ}) = Sup(Τ). 

This proves that Sup(Τ)) is a fixed point for Co(C) and hence an element of C. In conclusion, C is an 

algebraic closure system.  

 In order to prove the second part of the proposition, recall that if J is a closure operator then  J = 

Co(Cs(J)).             
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Example. Examine the closure systems in the lattice [0,1]. Then a closure system is any subset C of [0,1] 

closed with respect to the greatest lower bounds. Now, any nonempty subset of [0,1] is directed and 

therefore the algebraic closure systems coincide with the subsets C both closed under least upper bounds 

of subsets and greatest lower bounds of nonempty subsets. Thus, the class of algebraic closure systems 

coincides with {X ⊆ [0,1] : X is closed and 1 ∈ X }. For instance, set C = [1/3, 2/3) ∪ {1}. Then C is a 

closure system which is not algebraic and the associated closure operator is defined by setting: 

  Co(C)(x) = 1/3 for every x ∈ [0,1/3],  

  Co(C)(x) = x for every x ∈ [1/3, 2/3),  

  Co(C)(x) = 1 otherwise.  

Moreover, we have that its topological closure [1/3, 2/3] ∪ {1} is an algebraic closure system.  Notice 

that the continuity proposed in Definition 4.6 is different than the continuity with respect to the natural 

topology in [0,1]. In fact, an operator J satisfies (4.1) iff J is order-preserving and lower semicontinuous 

with respect to natural topology. 

We conclude this section with the following basic definition: 

 

 Definition 4.10. An abstract deduction system (L, ∆) (more generally, an abstract logic) is 

called continuous provided that ∆ is continuous.  

 

5. Fixed points and step-by-step deduction systems 

Usually a deduction operator ∆ is defined by giving a suitable set Α of logical axioms and a suitable set of 

inference rules. In this case we can define the immediate consequence operator H by setting, for any set X 

of formulas, J(X) equal to the set of formulas that can be obtained by one application of the inference 

rules to formulas in X and  

H(X) = J(X) ∪ Α  ∪ X. 

In other words, α ∈ H(X) if either α is obtained by applying an inference rule to formulas in X, or α is a 

logical axiom or α is a hypothesis (a proper axiom). Also, we define Hn by induction on n, by setting  

H1 = H  and  Hn+1 = H  Hn. 

Given a natural number n, Hn(X) represents the set of formulas that can be achieved by an n-step 

inferential process from X. It is easy to prove that H is a compact almost closure operator and that ∆ is the 

closure operator generated by H. Moreover, 

∆(X) = ∩n∈N Hn(X). 
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To extend such an approach to abstract logics, we must first examine how to obtain the closure operator 

generated by a continuous a-c-operator.   

 

Proposition 5.1. Let H be a continuous a-c-operator. Then the set Cs(H) of fixed points of H is an 

algebraic closure system and the closure operator c(H) generated by H, is an algebraic closure operator. 

 Proof. Let Τ be a directed subclass of Cs(H). Then, from the continuity of H it follows that: 

H(Sup(Τ)) = Sup({ H(x) : x ∈ Τ}) = Sup(Τ) 

and, hence, Sup(Τ) ∈ Cs(H). This proves that Cs(H) is algebraic. Thus, from the equality, c(H) = 

Co(Cs(H)), we can conclude that c(H) is algebraic.           

Let H be a continuous a-c-operator. Then, the following simple and useful theorem enables us to 

calculate the closure operator c(H) generated by H (see, for example, [23]).  

 

Theorem 5.2.  (Fixed-Point Theorem). Let H be a continuous a-c-operator. Then 

  c(H) = Supn∈N H
n. (5.1) 

In other words, for every x ∈ L, the least fixed point of H greater than or equal to x is given by Supn∈Ν 

Hn(x).  

 Proof. We have to prove that, for every x ∈ L, Supn∈Ν H
n(x) is the least fixed point of H greater than or 

equal to x. Now, the inequality H(x) ≥ x entails that Hn+1(x) ≥ Hn(x) for every n, and hence, that (Hn(x))n∈Ν 

is directed. By the continuity of H, 

H(Supn∈Ν H
n(x)) = Supn∈Ν H

n+1(x) = Supn∈Ν H
n(x) 

and Supn∈Ν H
n(x) is a fixed point for H greater than or equal to x. Let y be any fixed point such that y ≥ x. 

Then, for every n ∈ N, y = Hn(y) ≥ Hn(x) and therefore,  

y ≥ Supn∈Ν H
n(x). This proves that Supn∈Ν Hn(x) = c(H)(x).             

In accordance with the above considerations, we propose the following definition extending the 

example in Section 2: 

 

Definition 5.3. An abstract step-by-step deduction system is an triplet like (L, J, a) where 

  - L is a complete lattice, 

  - J is a continuous operator in L, 

  - a is an element of L  (the system of logical axioms). 
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Let (L, J, a) be a step-by-step deduction system and define H by setting  

  H(x) = J(x) ∨ x ∨ a,  (5.2) 

for every x ∈ L. Then, H is a continuous a-c-operator we call the immediate consequence operator. 

Definition 5.4. Let (L, J, a) be a step-by-step-deduction system and denote by ∆ the closure operator 

generated by the immediate consequence operator H. Then the abstract  deduction system (L, ∆) is called 

the deduction system associated with (L, J, a).   

The proof of the following theorem is trivial: 

 

Theorem 5.5. Let (L, J, a) be a step-by-step-deduction system and (L, ∆) the associated deduction system.  

Then ∆ is continuous and 

   ∆(x) = Supn∈Ν H
n(x). (5.3) 

Moreover, τ  is a theory of (L, ∆) iff  τ ≥ J(τ) and τ ≥ a. 

 

6. The product of two deduction systems  

Given two abstract deduction systems (L,∆) and (L,∆'), it is natural to search for a new deduction 

apparatus able to use both the inferential instruments of (L,∆) and (L,∆'). This suggests considering the 

operators ∆  ∆', ∆  ∆' and ∆ ∨ ∆'. Now, the composition (and the join) of two closure operators is, in 

general, an almost closure operator and not a closure operator. Consequently, we have to refer to the 

closure operators generated by these operators which coincide as the following theorem shows: 

 

Theorem 6.1.  Let J and J' be a-c-operators. Then 

  Cs(J  J') = Cs(J) ∩ Cs(J') = Cs(J ∨ J') = Cs(J'  J). (6.1) 

Consequently, 

  c(J  J') = c(J'  J) = c(J ∨ J'), (6.2) 

 i.e., J  J', J'  J  and  J ∨ J' generate the same closure operator.  

 Proof. Let x be a fixed point of J  J'. Then J'(x) ≤ J(J'(x)) = x and therefore x is a fixed point of J'. 

Moreover, the equalities x = J(J'(x)) = J(x) show that x is also a fixed point of J. Conversely, it is apparent 

that if x is fixed for both J and J', then x is fixed for J  J' and this proves the first equality. The remaining 

part of the proposition follows from (6.1) and Theorem 3.4.           
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Definition 6.2  Let (L, ∆) and (L, ∆') be two deduction systems. Then we call product of (L, ∆) and (L, ∆') 

the deduction system  

(L, c(∆∆' )) = (L, c(∆'∆)) = (L, c(∆∨∆' )) . 

From the first equality in (6.1) it follows that a piece of information x is a theory of the product (L, c(∆  

∆')) iff x is a theory of both the deduction system (L, ∆) and (L, ∆'). The proof of the following theorem is 

evident: 

 

Theorem 6.3.  The product of deduction systems is a commutative and associative operation. Moreover, 

the product of two continuous (logically compact) deduction systems is a continuous (logically compact) 

deduction system. 

 Sometimes it is possible that the composition of two closure operators is a closure operator. The 

following theorem gives some information to this regard: 

 

Theorem 6.4. Let J and J' be closure operators. Then the following are equivalent: 

  (i)     J  J'  is a closure operator. 

  (ii)    J  J' ≥ J'  J. 

  (iii)   J(J'(x)) is a fixed point of J' for every x ∈ L. 

 Proof. (i) ⇒ (ii). Let x ∈ L. Then, from J'(x) ≥ x it follows that J(J'(x)) ≥ J(x) and therefore J'(J(J'(x))) 

≥ J'(J(x)). Thus, since by hypothesis J  J' is a closure operator, by the inclusion property for J,  

J(J'(x)) = J(J'(J(J'(x)))) ≥ J'(J(J'(x))) ≥ J'(J(x)). 

(ii) ⇒ (iii). Observe that  

J'(J(J'(x))) ≤ J(J'(J'(x))) = J(J'(x)). 

(iii) ⇒ (i). Observe that 

J(J'(J(J'(x)))) = J(J(J'(x))) = J(J'(x)) 

 

7. Triangular norms and co-norms 

In fuzzy sets theory, triangular norms are usually used to generalize the logical conjunction “and”. More 

precisely, we have the following definition: 
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  Definition 7.1. A map T: [0,1] × [0,1] → [0,1] is called triangular norm (or T-norm) if satisfies the 

following properties: 

 i)  T(a,b) = T(b,a)    (commutativity)   

 ii)   T(a, T(b, c)) = T(T(a, b), c)   (associativity) 

 iii)   T(a, b) ≤ T(c, d)  if   a ≤ c and b ≤ d              (monotonicity) 

 iv)  T(a,1) = a    (identity element)   

∀ a,b,c,d ∈ [0,1]. 

  

The most used t-norm are: 

• minimum (or Gödel): min(a, b) = min{a, b} 

• Łukasiewicz: TL(a, b) = max{ a + b − 1, 0} 

• product: TP (a, b) = ab 

If T is a t-norm, and h: [0,1] → [0,1] is an increasing bijection, then  

 T*(a,b) = h-1(T(h(a),h(b))) 

 is a t-norm.  

 

The dual concept is the notion of triangular co-norms that instead are extensively used to model logical 

connectives “or”.  

Definition 7.2. A map S : [0,1] × [0,1] →  [0,1] is a triangular co-norm (t-conorm) if it is symmetric, 

associative, nondecreasing in each argument and S(a, 0) = a, for all a ∈  [0, 1]. In other words, any t-

conorm S satisfies the properties: 

 i)  S(a,b) = S(b,a)    (commutativity)   

 ii)   S(a, S(b, c)) = S(S(a, b), c)   (associativity) 

 iii )   S(a, b) ≤ S(c, d)  if   a ≤ c and b ≤ d              (monotonicity) 

 iv) S(a, 0) = a  (zero identity) 

∀ a,b,c,d ∈ [0, 1]  

 

If T is a t-norm, it’s possible to define a t-conorm S associated to T by the equality 

 S(a, b) := 1− T(1 − a, 1 − b) 
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and we say that S is derived from T. The basic t-conorms are: 

• maximum: max(a, b) = max{ a, b}  

• Łukasiewicz: SL(a, b) = min{ a + b, 1}  

• probabilistic: SP (a, b) = a + b − ab 

 

Definition 7.3. A t-norm is called continuous if it is continuous as a function, in the usual interval 

topology on [0, 1]2. 

 

For any left-continuous t-norm T, there is a unique binary operation I: [0,1] →  [0,1]  such that 

 T(x,z) ≤ y if and only if z ≤ I (x,y)  ∀ x, y, z ∈ [0,1] 

This operation is called the residuum of the t-norm and is frequently denoted by → since in a t-norm 

based fuzzy logics, if the logic conjunction is interpreted by a t-norm, the implication is interpreted by the 

residuum. Moreover, observe that the interval [0, 1] equipped with a t-norm and its residuum is a 

residuated lattice. 

More in general we have the following definition: 

 

Definition 7.4. We call residuated lattice the structure L = (L, ∧, ∨, ⊗,→, 0, 1) where (L, ∧, ∨, 0, 1) is a 

bounded lattice, ⊗ is a commutative,  associative, order-preserving binary operation whose neutral 

element is 1, → is a binary operation such that 

x ⊗ z ≤ y  ⇔  z ≤ x → y. 

Observe that if ⊗ is sup-preserving and (L, ∧, ∨, 0, 1) is complete, then we obtain a residuated lattice by 

defining → by the equation 

x → y = Sup{z∈L : x ⊗ z ≤ y}. 

 

If we refer to the class of the structures in which → is defined in such a way, then a function f from a 

residuated lattice L = (L, ∧, ∨, ⊗,→, 0, 1) into a residuated lattice L’  = (L’ , ∧, ∨, ⊗’,→, 0, 1) is an 

isomorphism if an only if f is an isomorphism from to the reduct (L, ∧, ∨, ⊗, 0, 1) to the reduct (L’ , ∧, ∨, 

⊗’, 0, 1).  

The operations ⊗ and → are used to interpret a conjunction ∧ and an implication →, respectively. In a 

residuated lattice we can define an operation ∼ by setting ∼(λ) = λ → 0. Such an operation is the 

interpretation of the negation ¬.  
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8. Similarity 

 

Definition 8.1. Let S be a nonempty set and ⊗ a triangular norm, then a fuzzy relation R : S×S→[0,1] is a 

similarity  if for every x, y, z in S,  

  (a)   R(x,x) = 1                           (reflexivity), 

  (b)   R(x,y) = R(y,x)                   (symmetry), 

  (c)   R(x,y) ≥ R(x,z) ⊗ R(z,y)     (transitivity). 

   

So a similarity relation can be link in a sense the “similar” elements and can be seen as a weakening of the 

identity relation. Since the notion of similarity depends strongly from the operation ⊗, to emphasize such 

a dependence sometime we say that R is a ⊗-similarity.  

In logic programming a similarity relation can be used to modify the classical unification in a “relaxed 

unification” which is particulary interesting when, in the classical unification process, a failure happens.  

 

Definition 8.2. For every λ ∈ [0,1], the λ-cut of a similarity relation R is the set Rλ = {(x, y) ∈ S×S |  R(x, 

y) ≥ λ }. 

If (x, y) ∈ Rλ we can say that x is λ-similar to y. 

 



CHAPTER 2 

MODELS AND DEDUCTION APPARATUS FOR FUZZY 

LOGIC 

 

1. Fuzzy interpretations of a first order language 

 

In this chapter we recall some basic notions in fuzzy logic. In particular, we define several model 

theoretic notions in accordance with the approach proposed in [16].  

 In order to evaluate the formulas in a multi-valued logic, we need a set V of truth values and suitable 

operations in V able to interpret the logical connectives. An order relation in V enables us to interpret the 

universal and existential quantifiers by the least upper bound and greatest lower bound operators, 

respectively. Technical reasons suggest to introduce such an order by a semilattice operation. The 

following is a more precise definition.   

 

Definition 1.1. A type for a valuation structure is a pair τ = (C, ar) defined by a nonempty set C and an 

arity function ar : C → N0. If λ is an element in C such that ar(λ) = 0, then λ is named a logical constant. 

If c is an element in C such that ar(c) = n ≠ 0, then c is called an n-ary logical connective. In the case 

ar(c) = 2 we say that c is binary. We assume that there are at least two logical constants 0 and 1 and a 

binary logical connective ∧ we call conjunction.  

 

Definition 1.2. A valuation structure of type τ is a pair V = (V, I), where V is a nonempty set (the true 

values set) and I (the interpretation) is a map in C such that:   

 a)     for every logical constant λ, I(λ) is an element in V, 

 b)     for every n-ary logical connective o, I(o)  is an n-ary operation in V, 

 c)     if ∧ = I(∧), 0 = I(0) and 1 = I(1), then  (V, ∧, 0, 1) is a semilattice 

 

Then, a valuation structure is an algebraic structure admitting as a reduct a bounded semilattice. As it is 

usual, we can represent a valuation structure V = (V, I) by the associate algebraic structure. In the case C 

is finite, we write (V, h1,…,ht) to denote such a structure.  Let ≤ denote the order relation defined by 

setting x ≤ y if and only if x∧y = x. We call complete a valuation structure which is complete with respect 

to such an order. Notice that we admit also incomplete valuation structures since there is a large class of 

fuzzy theories in which this does not create difficulties. Another reason in favor of such a choice is that 
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otherwise should be impossible to give the notion of quotient. In fact there are complete semilattices that 

admit quotients aren’t complete. Obviously, as we’ll see afterward, the incompleteness determines some 

difficulties in evaluating the quantifiers. 

 

Definition 1.3. A first order language L for a fuzzy logic is a system (F, R, C, ar) where F, R, C are 

disjoint sets and ar : F∪R∪C → N0 is a function we call arity function in such a way that (C, ar) is a type 

for a valuation structure. If c ∈ F and ar(c) = 0, then c is called a constant. If h ∈ F  is such that ar(h) = n 

≠ 0, then h is called an n-ary operation symbol. If r ∈ R and ar(r) = n, then r will be called an n-ary  

predicate symbol (we assume that the arity of a predicate symbol is different from 0). 

 

Then a first order language is a first order language as usually defined in classical logic together with a 

type for valuation structures. The semantics for first order multi-valued logic is based on the notion of 

fuzzy set and fuzzy relation [34].    

 

Definition 1.4. Given a valuation structure V and a nonempty set S, we call V–subset or simply fuzzy 

subset of S any map s : S → V from S to V. For every x∈S, the value s(x) is interpreted as a membership 

degree. An n-ary V-relation in S is a V-subset of Sn , i.e. a map s : Sn → V.  

 

The support of s is the set supp(s) = {x∈S : s(x) ≠ 0}. A fuzzy subset s is called crisp provided that 

s(x)∈{0,1} for every x∈S. We say that s is finite provided that its support is finite. We denote by VS the 

class of all the fuzzy subsets of S and we identify the subsets of S with the crisp fuzzy subsets by 

associating every subset with the related characteristic function. In the case V is complete, if (si)i∈I is a 

family of fuzzy subsets of S, then ∪i∈Isi and  ∩i∈Isi are the fuzzy subsets defined by the equations 

(∪i∈I si)(x) = Supi∈I si(x) ; (∩i∈I si)(x) = Infi∈I si(x). 

 

Definition 1.5. Given a first order language L, a fuzzy interpretation of L is a triple M = (D, V, I) such that 

D and V are nonempty sets (the domain and the truth values set, respectively), I (the interpretation) is a 

map such that: 

 i)  V  together the restriction of I to C  is a valuation structure, 

  ii)  I associates every n-ary operation symbol h∈F  with an n-ary operation  h =  

            I(h) in D,              

 iii )  I associates every n-ary predicate symbol r∈R  with an n-ary V-relation r =    

             I(r) in D.   
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Then a fuzzy interpretation M is defined by assigning:   

- a classical algebraic structure Al(M) = (D,F) we call algebraic structure of the domain 

- a valuation structure VAL(M) = (V,C)  

- a set Rel(M) of fuzzy relations.    

 

A fuzzy interpretation is also called a first order fuzzy structure. We say that two fuzzy structures are of 

the same type if they are fuzzy interpretations of the same language. We call crisp a fuzzy structure M 

such that all the fuzzy relation in Rel(M) are crisp. 

 

Definition 1.6. Assume that in the language there is the special relation symbol “=”. Then we call normal 

a fuzzy interpretation such that I(=) is the (characteristic function of the) identity relation.  

 

It is evident that we can identify the usual structures in classical logic with the normal crisp fuzzy 

structures.  

 
Given a first order language L in which we assume the universal quantifier ∀ as a primitive, we indicate 

with Form(L) the set of all formulas and with Form(Ln) (with Tern) the set of formulas (terms) whose free 

variables are in {x1,...,xn}. Given a fuzzy structure M = (D, V, I), the interpretation of a term t∈Tern is an 

n-ary function I(t) in D defined by recursion on the complexity of t as in classical logic. The valuation of 

the formulas of L  with respect to M = (D, V, I) is defined in a truth-functional way as follows. 

 

Definition 1.7. Given a fuzzy structure M = (D, V, I) and α∈ Form(Ln), the value of α in d1,…,dn with 

respect to M is the element val(M, α, d1,…,dn) in V defined, by recursion on the complexity of α, by the 

equations:  

 (i)      val(M, r(t1,…,tp), d1,…,dn) = I(r)(I(t1)(d1,…,dn),...,I(tp)(d1,...,dn)) 

 (ii )     val(M, c(α1,…,αq), d1,…,dn) = I(c)(val(M,α1,d1,...,dn),…,val(M,αq,d1,…,dn)) 

 (iii )    val(M, ∀xhβ, d1,…,dn) = Inf({ val(M, β, d1,…,dh-1, d, dh+1,…,dn) : d∈D})                                 

where  p, q ∈ N \{0}, r∈Rp , c∈Cs ,  t1,…, tp ∈Tern , α1,…,αq , β ∈ Form(Ln),  h ∈ {1,…,n}. 

 

It is evident that if α is a closed formula, then the value val(M, α, d1,…, dn) does not depend on the 

elements d1,..,dn. In such a case we write val(M, α) instead of val(M, α, d1,…,dn). In the case ∀x1…∀xn(α)) 

is the universal closure of α, we write val(M, α) to denote val(M, ∀x1…∀xn(α)). Observe that in the case 
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the valuation structure is not complete, due to the presence of the operator Inf  it is possible that the 

valuation is undefined for some universal formula. 

 

Definition 1.8. If in a fuzzy structure M all the formulas have a valuation, then M is called a safe structure.  

 

 Trivially, if Inf(X) exists for every X in P(V), then M is safe. Nevertheless we can refer only to a 

particular class of subsets of V. 

 

Definition 1.9. Let α be a formula such that val(M, α, d1,…,dm) exists for every d1∈D,…,dm ∈D. Then we 

call range of α in  M the subset V(α) of V defined by 

  V(α) = {val(M, α, d1,…,dm) : d1∈D,…,dm ∈D}.  

We denote by PM(V) the class of all the ranges of the formulas in M. 

 

Observe that PM(V) is enumerable and therefore that, in the case V infinite, PM(V) is different from the 

power set P(V)  of V. Obviously, it is sufficient to require that Inf(X) exists for every X in PM(V), to obtain 

the safeness of  M.  

 

Definition 1.10. We call fuzzy theory any fuzzy subset τ of formulas. We say that a safe interpretation M 

is a fuzzy model of τ, in brief M ⊧ τ, if val(M, α) ≥ τ(α) for every formula α. 

 

An equivalent formulation of the notion of fuzzy model of τ is obtained by the notion of fuzzy formula.   

 

Definition 1.11. We call fuzzy formula a pair <α,λ> where α is a formula and λ∈V. We say that such 

<α,λ> is satisfied by M, in brief M ⊧ <α,λ>, if val(M, α)  is defined and val(M, α) ≥ λ . We identify the 

fuzzy formula <α,1> with the formula α and we write M ⊧ α if val(M, α) = 1. 

 

Then we can represent a fuzzy theory τ as the set  

 {<α, λ> : α is a formula and λ = τ(α) ≠ 0} 

of fuzzy formulas and we can say that M is a model of τ if M is a model of all the fuzzy formulas in τ. In 

the case the support of τ is finite, we can represent τ by a list as 

 α1 [λ1] 

 . . . 
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 αn [λn] 

In the case τ is a crisp fuzzy subset, then we can represent τ by the related support T = {α : τ(α) = 1} and 

we have that (D,V,I) is a model of τ provided that val(M, α) = 1 for every α∈T. If T is an universal theory, 

this is equivalent to say that, given any formula ∀x1...∀xnα in T, 

 val(M, α, d1,…,dn) = 1 for every d1,…,dn in D. 

Consequently, in such a case the completeness of the valuation structure plays no role.  

 

Observe that, in accordance with such a definition of model, the value τ(ϕ) is not intended as the truth 

value of ϕ but as a lower-bound constraint on the possible truth value of ϕ. In other words, the 

information carried on by a fuzzy set of hypothesis τ is that, for any formula ϕ  "the truth value of ϕ is 

greater than or equal to τ(ϕ)". 

In accordance with the definition given for an abstract logic, it is possible to define a this a logical 

consequence operator that we denote by Lc.  

 

Definition 1.12. Let τ : F → L be a fuzzy set of hypotheses. Then the fuzzy set Lc(τ) of logical 

consequences of τ is defined by setting: 

  Lc(τ)(ϕ) = Inf{ m(ϕ) : m⊧τ }.  

 

In a sense, Lc(τ)(ϕ) is the best lower-bound constraint on the truth value of ϕ that we can find given 

the available information τ. It is easy to prove that Lc is a closure operator. 

 

 

2. Homomorphisms and quotients 

 

In the class of fuzzy structures of the same type we can define the notion of homomorphism. To simplify 

our notation, given a map h : D →D’ , we will denote again by h the map h: Dn→D'n defined by setting 

h(d1,…,dn) = (h(d1),…,h(dn)) for every (d1,..,dn)∈ Dn. 

 

Definition 2.1. Let M = (D, V, I) and M’ = (D’ , V’ , I’  ) be two fuzzy structures of the same type. Then we 

say that a pair (h, k) is a weak homomorphism from M to M’  provided that h is a homomorphism from 

Al(M) into Al(M’), k is a homomorphism from VAL(M) into VAL(M’) and, for every predicate symbol r , 

k ◦ I(r) ≤ I’ (r) ◦ h. 
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We say that a weak homomorphism (h, k) is a homomorphism if  

k ◦ I(r) = I’ (r) ◦ h 

for every predicate symbol r (different from the special symbol  = in the case M is normal). 

 

As usual, we can express the condition k ◦ I(r) ≤ I’ (r) ◦ h and the identity k ◦ I(r) = I’ (r) ◦ h by saying that 

the diagram 

 

quasi commutes or commutes respectively.  

 Due to the presence of the semilattice operation ∧, and to the meaning of the constants 0 and 1, if 

(h,k) is a weak homomorphism, then k is order-preserving and k(0) = 0, k(1) = 1. In the case k injective, 

x ≤ y ⇔ k(x) ≤ k(y). 

If there is no algebraic structure in the considered fuzzy structures, then the condition that h is a 

homomorphism from Al(M) into Al(M’) is skipped and the only request for h is the commutativity of the 

diagram for every fuzzy relation.  

 

Definition 2.3. Let (h,k) be a homomorphism, then 

 - (h,k) is an isomorphism if  both h and k are isomorphisms 

 - (h,k) is an epimorphism if both h and k are epimorphisms 

 

In the sequel, if X is a set we indicate by iX the identity map in X.  

 

Definition 2.4. Let (h,k) be a (weak) homomorphism, then 

 - (h,k) is a (weak) structure-homomorphism if V = V’ and k = iV  

 - (h,k)  is a (weak) valuation-homomorphism if  D = D’  and h = iD 

 

We denote by h the structure homomorphism (h,iV) and by k the valuation homomorphism (iD, k).  

 The second basic notion we have to define is the one of congruence and the related notion of quotient 

of a fuzzy structure. 
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Definition 2.5. A congruence ≡ in a fuzzy structure M  = (D,V,I) is a pair (≡1, ≡2) of congruences of Al(M) 

and VAL(M), respectively, such that for every m-ary relation symbol r∈R (different from the special 

symbol = in the case  M  is normal) and for every d1,…,dm, b1,…,bm ∈D 

  d1 ≡1  b1 ,…, dm ≡1  bm    ⇒  I(r)(d1,…,dm) ≡2 I(r)(b1,…,bm) (2.1) 

We say that (≡1, ≡2) is a structure congruence if ≡2 is the identity relation, we say that (≡1 , ≡2) is a 

valuation congruence if ≡1 is the identity relation. 

 

The condition r different from = is a necessary one since otherwise the only possible structure congruence 

in a normal fuzzy structure is the identity. Indeed 

b ≡ d  ⇒  b ≡ b, b ≡ d ⇒ 1= I(=)(b,b) = I(=)(b, d) ⇒ b = d. 

Obviously, the valuation congruences coincide with the congruences in VAL(M). Indeed in such a case 

(2.1) is trivial.  

 

It is useful to consider the class of congruences in a fuzzy structure by referring to the complete Boolean 

algebra (Rel(M), ≤) where  

 Rel(M) = {(R1, R2) : R1 ∈P(D×D) and R2 ∈P(V×V)} 

and  where ≤ is defined by setting  

 (R1,R2) ≤ (R’1, R’2)  ⇔  R1 ⊆ R’1  and R2 ⊆ R’2. 

In other words, such a Boolean algebra is the product of the Boolean algebra of the binary relations in D 

and the Boolean algebra of the binary relations in V. It is immediate that every congruence is the join in 

Rel(M) of a structure congruence with a valuation congruence.  

 

Proposition 2.6. The class of congruences of M is a closure system in the Boolean algebra (Rel(M), ≤).  

  Proof.  The maximum (D×D, V×V) is a congruence and therefore the meet of the empty class is a 

congruence. Consider a family (≡1
i, ≡1

i)i∈I  of congruences and consider the related meet  (≡1, ≡2)  in 

(Rel(M), ≤) 

  (≡1, ≡2)  = ∧i∈I (≡1
i,≡2

i) = (∩i∈I  ≡1
i, ∩i∈I ≡2

i ). 

It is immediate that ≡1 is a congruences of Al(M) and the ≡2 is a congruence of V(M). Moreover, for every 

m-ary relation symbol r and d1,…,dm, b1,…,bm ∈D,  

d1 ≡1 b1 ,…, dm ≡1 bm  ⇒ 1 1 1 1,....,i i
m md b d b≡ ≡    for every i∈I 

  ⇒    I(r)(d1,…,dm) 2
i≡ I(r)(b1,…,bm)  for every i∈I  

                           ⇒    I(r)(d1,…,dm) ≡2 I(r)(b1,…,bm). 
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The following proposition gives a way to obtain the congruence generated by a given pair (R1, R2). 

 

Proposition 2.7. Given (R1,R2) in Rel(M), we can obtain the congruence (≡1, ≡2) generated by (R1,R2) by 

setting ≡1 equal to the congruence in Al(M) generated by R1 and ≡2 equal to the congruence in VAL(M) 

generated by  

 R2∩{( I(r)(d1,…,dm), I(r)(b1,…,bm)) : r∈R and d1≡1 b1 ,…,dm≡1 bm }. 

 

Proof. Observe that, by definition, (≡1,≡2) is a congruence containing (R1,R2). Let  (≡’ 1,≡’ 2) be any 

congruence containing (R1,R2). Then ≡1 ⊆ ≡’ 1 because ≡1 is the smallest congruence of of Al(M) containing 

R1 . On the other hand, since ≡1 ⊆  ≡’ 1 and (≡’ 1,≡’ 2) is a congruence, if d1≡1 b1 ,…,dm≡1 bm, then 

(I(r)(d1,…,dm) ≡’ 2 I(r)(b1,…,bm)). Since by hypothesis  R2 is contained in ≡’ 2, this proves that ≡2  ⊆ ≡’ 2.  

 

 To define the quotient of a fuzzy structure modulo a congruence, if x and λ are elements in D and V, 

then we denote by [x] and [λ] the equivalence classes modulo ≡1 and ≡2, respectively. 

 

Definition 2.8. Let M = (D,V,I) be a fuzzy structure and ≡ a congruence in M. Then the quotient of M 

modulo ≡ is the fuzzy structure M/≡ such that Al(M /≡) is the quotient of Al(M) modulo ≡1, VAL(M /≡) is 

the quotient of VAL(M) modulo ≡2 and the interpretation I≡ in M/≡ of the relation symbols is defined  by  

 I≡(r)([d1],…,[dm]) = [I(r)(d1,…,dm)] 

for every m-ary relation symbol r∈R and d1,…,dm∈D. 

  

 As in the classical case we can prove a homomorphism theorem connecting the just considered 

notions. To do this, we have to define the notion of image of a fuzzy structure by a homomorphism. 

 

Definition 2.9. Let M to M’  be two fuzzy structures and (h,k) be a homomorphism from M to M’ . Then the 

image of M through (h, k) is the fuzzy structure, we indicate with Im(h,k)(M), such that: 

 -  Al(Im(h,k)(M)) is the algebraic substructure of Al(M’) defined in h(D)  

 - VAL(Im(h,k)(M)) is the algebraic substructure of VAL(M’) defined in k(V) 

 - the fuzzy relations in Rel(Im(h,k)(M)) are the restrictions to h(D) of the fuzzy relations in Rel(M’ ).  

 

Observe that the fuzzy relations in Im(h,k)(M) are well defined since a fuzzy relation r’  in Rel(Im(h,k)(M)) 

assumes its values in k(V). In fact, since k ◦ I(r) = I’ (r) ◦ h, we have I’ (r)(h(Dn)) ⊆ k(V). Instead, such an 
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argument falls for the weak homomorphisms and therefore there is a difficulty to define the notion of 

image through a weak homomorphism. This entails that an homomorphism theorem is not possible if we 

refer to these homomorphisms. 

 

Theorem 2.10. The following claims hold true. 

i) Let (h, k) be a homomorphism from M to M’  and ≡1, ≡2 the kernels of h and k, respectively. Then the 

pair (≡1,≡2) is a congruence of M we call the kernel of (h, k). Moreover if we denote by ≡ such a 

congruence, the quotient  M/≡ is isomorphic with Im(h,k)(M). 

ii ) Let ≡ be a congruence in M and M /≡ be the related quotient. Let h: Al(M)→ Al(M)/≡1  and k : VAL(M)→ 

VAL(M)/≡2 be the canonical epimorphisms. Then (h, k) is an epimorphism, we call the canonical 

epimorphism, from M to M/≡, and ≡ is the kernel of (h,k). 

 Proof.  To prove the first claim, let r be a relation symbol, and d1,…,dm,b1,...,bm elements in D such 

that d1≡1b1,....,dm≡1bm. Then h(d1) = h(b1),….,h(dm) = h(bm) and therefore,  

k(I(r)(d1,…,dm)) = I’ (r)(h(d1),…,h(dm)) = I’ (r)(h(b1),…,h(bm)) = k(I(r)(b1,…,bm)) 

Then I(r)(d1,…,dm) ≡2 I(r)(b1,…,bm) and this proves that (≡1,≡2) is a congruence. It is evident that the maps 

h’: D/≡1→ h(D) and k’ : V/≡2 → k(V) defined by setting h’([x]) = h(x) and k’([x]) = k(x) defines an 

isomorphism between M/≡ and Im(h,k)(M). The proof of the second claim is matter of routine. 

Observe that the order relation induced in VAL(M /≡) by the meet operator is defined by setting 

 [λ]  ≤ [µ]  ⇔ [λ]∧[µ] = [λ]  ⇔ [λ∧µ] = [λ] ⇔ λ∧µ ≡ λ. 

This means that the canonical homomorphism is order-preserving. 

 

 

3. Products and ultraproducts 

In this section we will introduce the basic notions of product and ultraproduct of a family of fuzzy 

models. As usual, if (Si)i∈I is a family of algebraic structures, then we denote by ∏i∈I Si the related direct 

product. If (Mi)i∈I   is a family of fuzzy models such that all the valuation structures VAL(Mi) are complete, 

then the valuation structure ∏i∈I  VAL(Mi) of its product M is complete.  

 

Definition 3.1. Let (Mi)i∈I  be a family of fuzzy models, then we define the Cartesian product of (Mi)i∈I  as 

the fuzzy model M = ∏i∈I Mi  such that  

   Al(M) =∏i∈I  AL(Mi),   VAL(M) = ∏i∈I  VAL(Mi)  
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and, for every n-ary predicate symbol r and f1,…,fn in the domain D of Al(M), 

   I(r)(f1,...,fn) = <I i(r)(f1(i),…,fn(i)>i∈I . 

 

Then M is defined in the domain ∏i∈I Di by the interpretation I such that 

   I(λ) = <I i(λ)>i∈I 

   I(o)(λ1,…,λn) = <I i(o)(λ1,...,λn)>i∈I 

   I(c) = <I i(c)>i∈I 

   I(h)(f1,…,fm) = <I i(h)(f1(i),...,fn(i))>i∈I 

 I(r)(f1,...,fn) = <I i(r)(f1(i),…,fn(i)>i∈I. 

Notice that such a definition is not an extension of the classical one. Indeed if we assume that all the 

valuation structures VAL(Mi) coincides with the two elements Boolean algebra {0,1}, then the Cartesian 

product M is not a classical structure since its predicate are evaluated in the Boolean algebra ∏i∈I  

VAL(Mi) = {0,1} I.  

 To define the notion of ultraproduct, we need the following proposition. 

  

Proposition 3.2. Let (Mi)i∈I  be a family of fuzzy models and let U be an ultrafilter in P(I). Let ≡1 and ≡2 

be the congruences defined by U in the structures ∏i∈I AL(Mi) and ∏i∈I VAL(Mi) respectively. Then the 

pair (≡1, ≡2) is a congruence of the Cartesian product M = ∏i∈I Mi∈I . 

 

 Proof. We observe only that 

 f1 ≡1 g1 ,...,fn ≡1 gn ⇒ { i∈I : f1(i) = g1(i)} ∈ U,... {i∈I : fn(i) = gn(i)} ∈ U  

                                    ⇒  { i∈I : f1(i) = g1(i)} ∩... ∩{ i∈I : fn(i) = gn(i)} ∈ U 

                                   ⇒  { i∈I  : I i(r)(f1(i),...,fn(i)) = I i(r)(g1(i),...,gn(i))} ∈ U 

⇒ I(r)(f1,...,fn) ≡2 I(r)(g1,...,gn). 

 

Definition 3.3. Let (Mi)i∈I  be a family of fuzzy models and U be an ultrafilter in P(I). Then the 

ultraproduct of (Mi)i∈I  modulo U is the fuzzy structure  MU =∏U
i∈I  Mi obtained as the quotient of ∏i∈I Mi 

modulo the congruence (≡1, ≡2) associated with U. 

 

Then MU is defined in the domain (∏i∈I Di)/≡1 by the interpretation IU such that 
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   IU(λ) = [<I i(λ)>i∈I] 

   IU(o)([λ1],…,[λn]) = [<I i(o)(λ1,...,λn)>i∈I] 

   IU(c) = [<I i(c)>i∈I] 

   IU(h)([f1],…,[fm]) = [<I i(h)(f1(i),...,fn(i))>i∈I] 

 IU(r)(f1,...,fn) = [<I i(r)(f1(i),…,fn(i)>i∈I]. 

 

Note 1. Differently from the case of the product, the ultraproduct of a family of classical models is a 

classical model, too. Indeed the quotient of ∏i∈I VAL(Mi) = {0,1} I modulo ≡2 is the Boolean algebra 

{0,1}.  

 

Note 2. Notice also that in the classical definition of ultraproduct the ultrafilter does not define a 

congruence in the direct product. More precisely, the “almost everywhere equal” relation is not 

compatible with the relations represented in the language. This since in the classical case the direct 

product is forced to be a model evaluated in the Boolean algebra {0,1} and not in the Boolean algebra 

{0,1} I.  

 

 

4. Deduction apparatus for fuzzy logic 

In all the logics, the deduction apparatus is a tool to elaborate pieces of information and in fuzzy logic, a 

piece of information is represented by a fuzzy subset. 

Let s be a finite fuzzy theory whose support is {α1,...,αn}. Then we can represent s by the finite set 

{( α1,λ1),..., (αn,λn)} of fuzzy formulas where λi = s(αi) . Equivalently, we represent s by a list as 

 

α1 [λ1] 

. . . 

αn [λn] 

 

We can improve the available information s by the proofs and, in turn, this requires a notion of fuzzy 

inference rule. The following are examples of “fuzzyfication” of three famous classical rules (modus 

ponens, particularization, and ∧-introduction rule): 

〉
⊗

→
〈

µλ
µλ

β
βαα

   ; 
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〉
∀
〈

λ
λ

α
α
)(t

x
 ; 

  〉
⊗∧

〈
µλ
µλ

βα
βα

    

where t is any term, α and β are formulas of the language, λ, µ elements in the valuation set V and ⊗ is a 

suitable binary operation. Notice that the values λ and µ in the inference rules are not intended as truth 

values but as constraints on the possible truth values. So, the operation ⊗ expresses a way to calculate a 

constraint on the truth value of the conclusion from constraints on the truth values of the premises. More 

in particular, the meaning of these rules is the following.  

 

Extended modus ponens:  

if it is proved that the truth value of α is at least λ  and that the truth value of α→β is at least µ, then we 

can claim that the truth value of β is at least λ⊗µ. 

Extended particularization: 

if it is proved that the truth value of ∀xα  is at least λ and t is a term, then the truth value of α(t) is at least 

λ. 

Extended  ∧∧∧∧-introduction rule:   

if it is proved that the truth value of α is at least λ  and that the truth value of β is at least µ, then we can 

claim that the truth value of α∧β is at least λ⊗µ.  

When not differently specified, we assume that the valuation structure is a residuated lattice (V, ⊗ , →, ≤, 

0, 1) and that the fuzzy inference rules are defined by the product ⊗ in such a lattice. Also, we assume 

that ⊗ satisfies the continuity condition, i.e. x⊗(Supi∈Ixi) = Supi∈I x⊗xi for every family (xi)i∈I of elements 

in V. Important examples are obtained by setting V equal to the interval [0,1] and by assuming that ⊗ is a 

continuous triangular norm. 

 

More in general a fuzzy inference rule is defined as a pair r = (rsyntax, rsemantics) where rsyntax is a partial n-ary 

operation defined in the set of sentences (i.e. an inference rule in the usual sense) and rsemantics is an n-ary 

operation in the set V of truth values satisfying a continuity property. 

 

Definition 4.1. Let L be a first order language, then a fuzzy deduction apparatus in L is a pair (IR, la) 

where IR is a set of fuzzy inference rules and la : Form(L) →V is a fixed fuzzy set of formulas we call the 

fuzzy subset of logical axioms. 
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 Notice that, as in classical logic, the fuzzy subset of logical axiom is fixed in a fuzzy logic while the 

fuzzy subset of proper axioms varies. In classical logic given a set T of hypothesis a proof is a finite 

sequence of formulas such that every formula is either a logical axiom, or an hypothesis, or is obtained by 

an inference rule from early proved formulas. Instead in fuzzy logic we can admit every formula as a 

logical axiom or as an hypothesis. The valuation of the correctness degree of the proof depends on  the 

correctness degree of these assumptions.  

 

Definition 4.2. A proof π of a formula α is any sequence π1,..., πm of formulas such that πm = α, together 

with the related "justifications". This means that, for any formula αi, we must specify whether 

  (i)    αi is assumed as a logical axiom; or 

  (ii)   αi is assumed as an hypothesis; or 

  (iii)  αi is obtained by a rule (in this case we have to indicate also the rule and the formulas from 

α1,..., αi–1 used to obtain αi).  

 

The importance of the justifications is that they are necessary to define the validity degree of the proof. 

Such a definition is by induction on the length of π (see [17], [28]). Observe that, as in the classical case, 

for any i ≤m, the initial segment α1,..., αi � is a proof of αi we denote by π(i).  

 

Definition 4.3. Given a fuzzy theory s and a proof π, the valuation Val(π,s) of π with respect to s is 

defined by induction on the length m of π in accordance with the following rules: 

 Val(π,s) = la(αm) if  αm is assumed as a logical axiom,  

 Val(π,s) = s(αm)  if αm  is assumed as an hypothesis.  

   Val(π,s) = rsemantics(Val(π(i(1)),s),…,Val(π(i(n)),s)) if αm is obtained by the rule r = (rsyntax, rsemantics), 

                                                        and αm = rsyntax(αi(1),…, αi(n)) with 1≤ i(1)<m,…,1≤ i(n)<m).  

 

Notice that we have only two proofs of α whose length is equal to 1. The formula α with the justification 

that α is assumed as a logical axiom and the formula α with the justification that α is assumed as a 

hypothesis. So, the first two lines of the definition of 4.3 gives also the induction basis. The value Val(π,s) 

is interpreted as a piece of information on the truth value of α, more precisely, the information: “ the truth 

value if α  is at least Val(π,s)” . Different proofs of the same formula α give different pieces of 

information on the truth value of α. This suggests the following definition. 
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Definition 4.4. Given a fuzzy deduction apparatus (IR, la), the deduction operator is the operator  

D : VForm(L)  →  VForm(L) such that, for every s ∈ VForm(L)  the fuzzy subset D(s) is defined by setting,  

  D(s)(α) = Sup{ Val(π,s) : π  is a proof of α} (4.1) 

for every formula α. 

 

We emphasize that D(s)(α) represents the best possible information on α we can draw from s.  
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CHAPTER 3 

FUZZY LOGIC PROGRAMMING 

 

1. Fuzzy logic programming  

 

Fuzzy logic programming (see [9]) is a very promising section of fuzzy logic whose aim is to build up 

intelligent data-base systems with "flexible" answers, expert systems able to consider vague predicates 

and so on, combining the might of logic programming (see [24]) and the big adaptability of fuzzy logic. 

We introduce some basic definitions in fuzzy logic programming; observe that in this section L will be a 

residuated lattice. 

Consider a fuzzy deduction apparatus (IR, la) and let s be a fuzzy subset of S, we call support of s the 

subset Supp(s) = {x ∈ S : s(x) ≠ 0}. 

As usual, if L is a first order language, then we denote by F=Form(L) the set of formulas of L and by BL 

the Herbrand base, i.e. the set of facts. 

 

Definition 1.1. A (positive) implicative clause is either an atomic formula or a formula like 

h(α1,...,αn)→α where α, α1,…,αn are atomic formulas and h(α1,...,αn) is composed only by conjunctions 

and disjunctions interpreted by continuous norms and co-norms, respectively (Cl(L) is the related set of 

positive clauses). 

 

Definition 1.2. A fuzzy subset p: F→L of formulas is a (positive, ground) fuzzy program if Supp(p) is a 

set of (positive, ground) implicative clauses. 

 

 

The following definition of least fuzzy Herbrand model is syntactical in nature. It is possible to prove that 

such a definition is equivalent with the usual one, semantic in nature (see [18]). 

  

Definition 1.3. Let p be a fuzzy program, we call least fuzzy Herbrand model of p the fuzzy subset of 

facts mp we can derive from p, i.e. the restriction of  D(p) to BL (where D is the deduction operator define 

as in definition 4.4., in chapter 2) 

 

Such a notion depends on the considered deduction apparatus, obviously.  
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Denote by Gr(p) the set of ground instances of the formulas in p and by Fact(p) the set of facts in Gr(p). 

Then, the one-step consequence operator is the function TP : P(BL) → P(BL) defined by setting 

TP(S) = {α ∈ BL : α ←α1∧...∧αm∈Gr(p), α1∈S,...,αm∈S} ∪ Fact(p) 

for every subset S of BL.  

Such an operator enables us ([18]) to obtain the least Herbrand model mP of p by the equation 

                                            mP = ∪n∈N TP
n(∅). (1.1) 

 

Observe that equation (1.1) suggests an algorithm to calculate, for any fact α, the value mp(α). More 

precisely, if we adopt the definition of recursive enumerability for fuzzy sets proposed in [2] and [19], 

then, under very natural hypotheses, it is easy to show that mp is a recursively enumerable fuzzy subset of 

BL.  

 A consequence is the following theorem (see [18]) that shows that the least fuzzy Herbrand model of 

a positive fuzzy program represents the informative content of p. 

 

Theorem 1.4. Let p be a positive fuzzy program. Then the least fuzzy Herbrand model of p is equal to the 

fuzzy subset of facts which are logical consequences of p, i.e., for any fact α ,  

  mp(α) = Lc(p)(α).   

 

Observe that as in the classical case, several difficulties exist for fuzzy programs which are not positive.  

 

2. Fuzzy logic meta-programming  

The idea is to extend fuzzy logic programming to take into account the synonymy relation among 

predicates in accordance with the similarity logic proposed by M. S. Ying in [33]. The idea of Ying is that 

it is possible to relax the application of the inference rules in such a way that it is also admitted an 

approximate matching of the predicate names. As an example it is admitted that from α and α’ →β we 

can infer β even in the case that α’ is only approximately equal to α. An application to such an idea to 

logic programming was done in several papers (see [1], [3], [5], [11])  where the definition of synonymy 

refers to Gödel’s norm. Successively, in [25] it’s shows that it is possible to define a similarity logic 

programming (in particular a synonymy logic programming) in the framework of multi-adjoint logic 

programming. The proposed procedure works with any triangular norm and the authors show that the 

resulting logic coincides with the existing ones in the case of Gödel’s norm.   

Since the synonymy is a meta-relation, in order to define a synonymy logic we have to consider a suitable 

meta-logic. On the other hand, all the definitions in fuzzy logic programming and in similarity logic 

programming can be expressed by positive clauses in classical logic programming. Then, we show that 
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given a fuzzy program in a language L, we can translate it into an equivalent classical program in a 

suitable (meta-) language Lm. Since the predicate names in L become constants in  Lm, this enables us to 

admit in Lm  meta-relations among predicates. In particular, the meta-relation the paper is interested is the 

synonymy and this enable us to define a synonymy-sensitive fuzzy logic programming.  

There are at least three reasons in favour of such a logic. The first one is that, differently from the papers 

[1], [3], [11], all the triangular norms are admitted. The second is that the resulting notion of fuzzy 

Herbrand model is uniformly continuous with respect to the synonymy relation (a basic property for a 

synonymy logic). Finally, another reason is that the resulting logic is a similarity logic in the abstract 

sense given in [17]. This means that its deduction operator is the closure operator obtained by combining 

the similarity closure operator with the one-step consequence operator associated with the given fuzzy 

program. 

  

 

3. Translation of a classical program   

As a first step, we consider a way to translate a classical program (in a language L) into another simple 

classical program (in a suitable “meta-language” Lm). Successively we will extend it to the fuzzy case. As 

an example, consider the following program P 

 r(a,b)  

 r(b,c)  

 r(c,d)  

 r(s,s) 

 sr(X,Y) ← r(Y,X)  

 sr(X,Y) ← r(X,Y). 

The language L of P has two predicate symbols r and sr and the constants a, b, c, d, s. Now, we can 

interpret the fact r(a,b) in a meta-linguistic level by claiming that:  

the sentence “ the relation r is satisfied by a and b” is an axiom. 

Likewise, we can interpret the instance sr(b,a) ← r(a,b) of the rule sr(X,Y) ← r(Y,X)  by claiming 

 if  the sentence “ the relation r is satisfied by a and b” is a theorem,  

 then the sentence “the relation  sr is satisfied by b and a” is a theorem. 

Then we have to consider a language Lm in which, by a reification process, the predicate symbols r and sr 

become two constants and in which there are two predicates corresponding to the notions “to be an 

axiom” and “to be a theorem”. In such a language we can translate the program P into the following 

program 

  ax(r,a,b) 
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 ax(r,b,c)        

 ax(r,c,d)      

 ax(r,s,s) 

 th(sr,X,Y) ← th(r,X,Y) 

 th(sr,X,Y) ← th(r,Y,X). 

Obviously, we have to add also a general rule to claim that any axiom is a theorem 

 th(R, X, Z) ← ax(R, X, Z). 

We can also avoid such a rule and to substitute directly ax with th. Notice that we cannot interpret 

th(sr,X,Y) ← th(r,Y,X) as “if r(Y,X) is a theorem then r(X,Y) is a theorem” since this should be the 

interpretation of the formula ∀X∀Y(sr(X,Y)) ← (∀X∀Y (r(Y,X))). Instead a ground instance as th(sr,b,a) 

← th(r,a,b) of such a rule is correctly interpreted as “if r(a,b) is a theorem then r(b,a) is a theorem”. 

 

Definition 3.1. Given a first order language L we denote by Lm the language such that: 

 - the constants of Lm are obtained by adding to the constants of L all the predicate symbols of L 

 - the function symbols are the same as in L 

 - there is a predicate symbol thn of arity n+1 for every arity n of a predicate symbol in L. 

 

A translation function from L to  Lm is defined as follows. 

 

Definition 3.2. The translation function is the map τ : Form(L) → Form(Lm) defined by setting  

 τ(r(t1,…,tn)) = thn(r,t1,…,tn). 

 τ(α1∧α2) = τ(α1)∧τ(α2),  

 τ(α1∨α2) = τ(α1)∨τ(α2),  

 τ(¬α) = ¬τ(α),   

 τ(∀xiα) = ∀xiτ(α). 

 

In particular, the translation of a (positive) clause α ←α1∧…∧αh is the (positive) clause τ(α) 

←τ(α1)∧…∧τ(αh). This means that if P is a (positive) program, then τ(P) is a (positive) program, too. 

 To simplify our notations, in the sequel we will write th(r,t1,…,tn) instead of thn(r,t1,…,tn). 

Equivalently, we can consider only a monadic predicate th in Lm and some way to represent a vector 

(x0,x1,...,xn). For example, we can add in Lm a name List for a binary function, and to write (x0,x1,...,xn) to 

denote the term List((x0,x1,...,xn-1),xn) and (x0) to denote x0. Then the translation can be defined by 

substituting the first rule with 
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 τ(r(t1,…,tn)) = th((r,t1,…,tn)). 

It is evident that,  

 T |-α  ⇔ τ(T) |-τ(α) 

where |- is the classical entailment relation, T is a theory and α a formula. To show this it is sufficient to 

observe that:  

- if Ax is the set of logical axioms, then α∈Ax if and only if τ(α)∈Ax 

- the translation is compatible with the inference rules.  

In particular, if P is a program and α a fact,     α ∈MP  ⇔  τ(α) 

∈ Mτ(P) 

where MP and Mτ(P) are the Herbrand models of P and τ(P), respectively. We give a step-by-step proof of 

such an equivalence in the perspective of its extension to fuzzy logic programming.  

 

Theorem 3.3. Let P be a positive program and let MP and Mτ(P) be the Herbrand models of P and τ(P), 

respectively. Then,  

  α ∈MP   ⇔  τ(α) ∈ Mτ(P). (3.1) 

 

 Proof. It is not restrictive to assume that P is ground. To prove (3.1) it is sufficient to prove that, for 

every fact α and n∈N, 

  α ∈ TP
n(∅)  ⇔  τ(α)∈Tτ(P)

n(∅). (3.2) 

We will prove this by induction on n. Indeed, in the case  n =1, since TP(∅) = Fact(P) and Tτ(P)(∅) = 

Fact(τ(P)) = τ(Fact(P)), (3.2) is evident. Consider the case n ≠ 1, assume that (2.2) is satisfied by n-1 and 

that α ∈ TP
n(∅) = TP(TP

n-1(∅)). Then either α ∈ TP
n-1(∅) or there is a rule α ← α1∧…∧αh in P such that 

α1∈TP
n-1(∅),…,αh∈TP

n-1(∅). In the first case, by the induction hypothesis τ(α)∈ TP
n-1(∅) and therefore 

τ(α)∈TP
n(∅). In the latter, by the induction hypothesis τ(α1)∈Tτ(P)

n-1(∅),…, τ(αh)∈Tτ(P)
n-1(∅) and, since 

the rule τ(α) ←τ(α1)∧…∧τ(αh) is in τ(P), this entails that τ(α)∈Tτ(P)
n(∅). 

 Conversely, assume that τ(α) ∈ Tτ(P)
n(∅) = Tτ(P)(Tτ(P)

n-1(∅)). Then either τ(α) ∈ Tτ(P)
n-1(∅) or there is 

a rule β1∧...∧βh→β with β =τ(α) in τ(P) such that  

β1∈ Tτ(P)
n-1(∅),…,βh∈ Tτ(P)

n-1(∅). In the first case by induction hypothesis  

α ∈ TP
n-1(∅) and therefore α ∈ TP

n(∅). In the latter, let α’←α1∧…∧αh be a rule in P whose translation is 

β ← β1∧...∧βh. Then  

τ(α’ ) = β = τ(α),  τ(α1) = β1∈ Tτ(P)
n-1(∅), … , τ(αh) = βh∈ Tτ(P)

n-1(∅). 

Since by inductive hypothesis, α1∈TP
n-1(∅),…,αh∈TP

n-1(∅), this entails that α’∈TP
n(∅). Since τ is 

injective, we can conclude that α∈ TP
n(∅). 



Chapter 3:  Fuzzy logic programming 

38 
 

 

 The translation of a program P into the meta-program τ(P) is proposed as a first step towards a 

possible translation of a fuzzy logic program into a classical meta-program. Nevertheless, perhaps this 

translation gives some advantages also in the case we confine ourselves to classical logic programming. 

As an example, if we admit the meta-predicate “is the symmetric extension of”, then we can consider the 

following translation of the proposed example: 

 th(r,a,b) 

 th(r,b,c)        

 th(r,c,d)      

 th(r,s,s) 

 symm_exten(sr,r) 

 th(R2,X,Y) ← symm_exten(R2,R1)∧th(R1,X,Y) 

     th(R2,X,Y) ← symm_exten(R2,R1)∧th(R1,Y,X)). 

The advantage of such a translation is that the two meta-rules give a general procedure for the symmetric 

extension of a relation. So we can add such a procedure to our library. In a similar uniform way we can 

define, for example, procedures for the reflexive extension and the transitive extension of a relation.  

 Observe that the idea for a translation of classical logic into classical logic programming was 

examined in literature in a extensive way (see for example [7], [23]). 

 

 

4. An example of fuzzy logic programming 

We refer to a residuated lattice (V, ⊗ , →, ≤, 0, 1) and to a deduction apparatus with no logical axiom and 

whose fuzzy rules are the extended Modus Ponens, the extended ∧-introduction rule and the extended 

particularization. As an example, consider the following fuzzy program p in the interval [0,1]: 

 loves(carl,luise)  [0.3] 

 loves(carl,mary)  [0.2] 

 loves(carl,X)←young(X)∧beautiful(X)  [0.9] 

 beautiful(mary)  [0.8] 

 young(mary)  [0.7] 

 young(helen)      [0.7] 

we represent by a set of fuzzy rules, i.e. as the set of pair (α, p(α)), p(α) ≠ 0. Also, assume that we will 

calculate, for example, the value mp(loves(carl, mary)). Then, a simple proof of the fact loves(carl, mary), 

we denote byπ1, consists in the observation that such a formula is an axiom at degree 0.2 (i.e. it is true at 
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least at degree 0.2), and this gives the constraint Val(π1,p) = 0.2. A different proof π2 is obtained by 

observing that, by particularization, we obtain the formula  

 loves(carl, mary) ← young(mary)∧beautiful(mary) 

with truth degree 0.9. On the other hand, by the ∧-introduction rule, we obtain the formula  

 young(mary)∧beautiful(mary) 

with truth degree 0.8 ⊗ 0.7. Afterwards, by Modus Ponens, we get 

 loves(carl, mary) 

with truth degree 0.9⊗0.8⊗0.7. In the case ⊗ is the usual product, this gives the value  val(π2,p) = 0.504. 

Since there is no further proof for such a fact, we can conclude that  

 mp(loves(carl, mary)) = max{ Val(π1,p), Val(π2,p)} = 0.504. 

Instead, if we consider the fact loves(carl, helen), then there is no proof for such a fact using the formulas 

in the support of p. On the other hand, since the fuzzy program p assigns to loves(carl, helen) the value 0, 

the observation that loves(carl, helen) is an axiom at degree 0 is a proof with degree 0. Then,   

 mp(loves(carl, helen)) = 0. 

 

We have a general way to calculate the least Herbrand model of a fuzzy program, by extending the fixed 

point method of classical logic programming.  

We recall that the fuzzy subset of ground instances of clauses in p is the fuzzy program Gr(p): Cl(L) → V 

defined by setting Gr(p) (α)=0 if α is not ground and 

 

  Gr(p)(α) = Sup{p(α) : α is a ground instance of a clause α}, 

 

otherwise. The supremum is justified by the fact that it is possible for a formula α to be the ground 

instance of  more than one formula in Supp(p).  

As an example if p(r(x,b)) = 0.7 and  p(r(a,y)) = 0.5, then we have to set Gr(p)(r(a,b)) = max {0.5,0.7} = 

0.7. 

   We say that p is ground if Gr(p) = p. We recall also that the fuzzy subset of fact of p is the restriction of 

Gr(p) to the Herbrand base, i.e. the fuzzy subset Fact(p) : BL
 → V defined by 

 Fact(p)(α) = Sup{ p(α) : α is a ground instance of an atomic formula α}.  

In the case p is ground,  

 Fact(p)(α) = p(α).  

We give an equivalent definition for the one-step consequence operator: 
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Definition 4.1. Let p: Cl(L) → V  be a fuzzy program. Then the one-step consequence operator is the 

operator Tp : V BL → V BL defined by setting, for every s∈VBL, 

 Tp(s) = T*p(s)∪Fact(p) 

where, in turn T*p : V
BL → VBL)  is defined by setting, for every α ∈ BL,  

    T*p(s)(α) =  Sup{ Gr(p)(α ←α1∧...∧αm)⊗s(α1)⊗...⊗s(αm) : α ←α1∧...∧αm ∈ Supp(Gr(p))}. 

 

Observe that the least fuzzy Herbrand model for a program p, is given by 

  mp = ∪n∈N Tp
n(∅). 

and this entails that the fuzzy least Herbrand model of p coincides with the fuzzy least Herbrand model of 

Gr(p). So, in all the proofs it is not restrictive to assume that p is ground.  

 

 

5. A meta-logic for fuzzy logic programming 

 

In this section we will show how translate a fuzzy program in a language L into a classical meta-program 

in a language Lm. To this aim, again we have assume that in Lm there are the predicate names thn and a 

constant for every predicate name in L. In addition, since we have to write in an explicit way the involved 

truth values, in Lm we put constants to denote the truth values. More precisely, since it is not reasonable to 

admit a language which is not enumerable, it is useful to refer only to a particular class of truth values. 

Then, in accordance with domain theory, we consider the following definition where ≺ is the relation in V 

defined by setting b ≺ x provided that for every nonempty upward directed subset A of V 

 x ≤ supA ⇒ there is a ∈ A such that b ≤ a. 

 

Definition 5.1. We say that a residuated lattice (V, ≤, ⊗, →, 0, 1) is a continuous residuated lattice with 

enumerable basis B, provided that ⊗ is continuous, B is an enumerable sublattice of V closed with respect 

to ⊗ and, for every x ∈ V, 

 x = sup({ b ∈ B : b ≺ x}) 

 

In other words, in a continuous residuated lattice all the elements can be approximate “from below” by 

elements in B. As an example, we can consider the case V is the lattice [0,1], B is the set of rational 

numbers in [0,1] and ⊗ is the usual product. In such a case ≺ is the strict order. Further example are 

obtained by assuming that ⊗ is one of the triangular norms usually considered in literature. Also, every 
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finite residuated lattice is a continuous residuated lattice provided that we put B = V.  In such a case ≺ 

coincides with the order relation ≤. If S is an enumerable set, then P(S) is a continuous residuated lattice 

in which a basis is defined by the class of all the finite subsets of S. In such a case b≺x if and only if b is a 

finite part of x. 

 In the following we consider only continuous residuated lattices with an enumerable basis B and 

fuzzy programs with values in B. Also, in the meta-language Lm we put only an enumerable amount of 

constants to denote the elements in B.  

 Another question is that in the translation, we have to represent in some way the product ⊗. To do this 

we assume that in Lm there is a predicate product and that in the translation we consider the diagram of the 

algebraic structure (B,⊗), i.e. the (decidable) set of facts 

Diagr(B) = {product(λ,µ,γ) : γ = λ ⊗µ ; λ, µ, γ ∈ B}. 

As an example, the translation of the fuzzy program given in Section 4 is obtained by adding to Diagr(B) 

the program  

 th(loves, carl, luise, 0.3). 

 th(loves, carl, mary, 0.2). 

th(loves, carl, X, Z) ← th(young, X, Z1) ∧ th(beautiful, X, Z2) ∧ product(Z1,Z2,Z3) ∧ product(Z3, 0.9, 

Z). 

 th(beautiful, mary, 0.8). 

 th(young, mary, 0.7). 

  th(young, helen, 0.7). 

More precisely we have to consider also the default rules  

 th(R, X, 0). 

 th(R, X, Y, 0).  

claiming that that every fact in L can be proved at least with truth degree 0. Thus, we propose the 

following general definition.  

 

Definition 5.2. Let L be a first order language and let (V, ⊗ , →, ≤, 0, 1) be a residuated lattice with an 

enumerable basis B. Then we denote by Lm the first order language such that 

- the constants of  Lm are obtained by adding to the constants in L all the predicate symbols of L and all the 

elements λ in B 

- the function symbols in Lm are the same as in L 

- in Lm there is a predicate symbol thn for every n which is the arity of a predicate symbol in L 

- in Lm there is a predicate product. 
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As early argued in Section 3, we can assume also that in Lm there is only a monadic predicate th. In the 

next definition we write Z = X⊗Y to denote the formula product(X,Y,Z), Z = X⊗Y⊗A to denote the 

formula product(X,Y,Z1)∧product(Z1, A, Z) and so on. 

 

Definition 5.3. Consider a first order language L, a continuous residuated lattice (V, ⊗ , →, ≤, 0, 1) with 

an enumerable basis B and the corresponding meta-language Lm. Then, given a clause α and a variable Z, 

we define the formula τ(α,Z) in Lm by setting 

 τ(r(t1,…,tn),Z) = th(r,t1,…,tn, Z)   for every atomic formula r(t1,…,tn) in L  

τ(α ← α1∧…∧αn, Z) = τ(α, Zn+1) ← τ(α1,Z1)∧…∧τ(αn,Zn) ∧ (Zn+1 = Z1⊗…⊗Zn⊗Z)  

for every rule α ← α1∧…∧αn in L and where the variables Z, Z1,…,Zn+1 are pairwise distinct and not 

occurring in α, α1,...,αn. 

 

For example,  

 τ(loves(carl, X) ← young(X)∧beautiful(X))= 

 = τ(loves(carl,X), Z3) ←τ(young(X),Z1)∧τ(beautiful(X), Z2)∧( Z3 = Z1⊗Z2⊗Z)= 

 = th(loves, carl, X, Z3) ← th(young, X, Z1)∧th(beautiful, X, Z2)∧(Z3 = Z1⊗Z2⊗Z). 

To translate a program we have to consider the set Dfl of default formulas th(R,X,0), th(R,X,Y,0), …, .  

 

Definition 5.4. Consider a fuzzy program p in the language L. Then the translation of p is the classical 

program τ(p) in Lm defined by setting  

 τ(p) = {τ(α,Z)Z/p(α) : α is a positive clause}∪Diagr(B)∪Dfl 

where τ(α,Z)Z/p(α) denotes the formula obtained from τ(α,Z) by substituting in Z the value p(α). 

 

In order to simplify our notation we avoid to write the diagram of valuation structure and the default rules 

in an explicit way. So the translation of the fuzzy program in Section 4 becomes:  

 th(loves, carl, luise, 0.3). 

 th(loves, carl, mary, 0.2). 

 th(beautiful, mary, 0.8). 

 th(young,mary,0.7). 

 th(young, helen,0.7). 

 th(loves, carl, X, Z3) ← th(young, X, Z1)∧th(beautiful, X, Z2)∧(Z3 = Z1⊗Z2⊗0.9)   
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In such a case, given the query th(loves,carl, mary, Z), we obtain the answers Z = 0, Z = 0.2 and Z = 

0.504. In accordance with the definition of deduction operator, this means that the best constraint on the 

truth value of the formula loves(carl,mary) is the maximum 0.504. 

 To prove the equivalence between a fuzzy program p and its translation τ(p), it is useful the following 

very interesting lemma given in [32]. 

 

Lemma 5.5. Let (M, ⊗, ≤, 1) be a finitely generated ordered monoid. Then every nonempty subset of M 

admits a maximal element and therefore every nonempty totally ordered subset of M admits a maximum.  

 

As an immediate consequence we obtain the following lemma.  

 

Lemma 5.6. Assume that V is totally ordered and that the fuzzy program p assumes only a finite number 

of values in B. Let (M, ⊗, ≤, 1) be the submonoid of (B,⊗,≤,1) generated by the values assumed by p and 

let s be a fuzzy subset of facts assuming its values in M. Then for every fact α there is a rule α 

←α1∧...∧αm such that 

  T*p(s)(α) = p(α ←α1∧...∧αm) ⊗s(α1)⊗...⊗s(αm) (5.1) 

 

Proof. Since  

 {p(α ←α1∧...∧αm)⊗s(α1)⊗...⊗s(αn) : α←α1∧...∧αm ∈ Supp(p)} 

is a subset of M, by Lemma 5.5 it admits a maximum max. Then a rule α ←α1∧...∧αm exists such that 

max = p(α ←α1∧...∧αm)⊗s(α1)⊗...⊗s(αm) and such a rule satisfies (5.1). 

 

Theorem 5.7. Assume that V is totally ordered and that the fuzzy program p assumes only a finite number 

of truth values. Then, for every fact r(t1,…,tk),  

  mp(r(t1,…,tk)) = Sup{ λ ∈B : th(r,t1,…,tk,λ)∈Mτ(p)}. (5.2)   

Proof.  It is not limitative to assume that p is ground. To prove (5.2) it is sufficient to prove that, for every 

λ∈B and n∈N, 

    Tp
n(∅)(r(t1,…,tk)) = λ  ⇔   th(r,t1,…,tk,λ)∈ Tτ(p)

n(∅). (5.3) 

Now in the case n = 1 observe that Tp(∅)(r(t1,…,tk)) = Fact(p)(r(t1,…,tk)) = p(r(t1,…,tk)) and Tτ(p)(∅) = 

Fact(τ(p)) = τ(Fact(p)). Then (5.3) follows from the definition of τ. Consider the case n ≠1 and, by 

induction hypothesis, assume that (5.3) is satisfied by n-1. Then, if Tp
n(∅)(r(t1,…,tk)) = λ, since  

 Tp
n(∅)(r(t1,…,tk)) = Tp(Tp

n-1(∅)(r(t1,…,tk)))  

                                         = T*
p(Tp

n-1(∅))(r(t1,…,tk))∨Fact(p)(r(t1,…,tk)), 
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we have to consider two cases. In the case λ = Fact(p)(r(t1,…,tk)), it is evident that  th(r,t1,…,tk,λ)∈ 

Fact(τ(p)) ⊆ Tτ(p)
n(∅). In the case λ  = T*

p(Tp
n-1(∅))(r(t1,…,tk)), by Lemma 5.6 there is a fuzzy inference 

rule in p,   

 r(t1,…,tk) ←r1(t1,1, ..,t1,k(1))∧…∧rm(tm,1, .., tm,k(m))       [µ], 

such that,  

 λ = µ⊗Tp
n-1(∅)(r1(t1,1,.., t1,k(1)))⊗...⊗ Tp

n-1(∅)(rm(tm,1,.., tm,k(m))). 

Set λi = Tp
n-1(∅)(r i(tm,1, .., ti,k(i))), then, since by induction hypothesis  

 th(r i, ti,1, .., ti,k(i), λi)∈ Tτ(p)
n-1(∅)  and  

th(r,t1,…,tk,λ) ← th(r1,t1,1,..,t1,k(1),λ1) ∧ … ∧ th(rm,tm,1,..,tm,k(m),λm)) ∧  

∧ (λ=λ1⊗…⊗λm⊗µ), 

is a ground instance of a rule in τ(p), we can conclude that th(r,t1,…,tk, λ)∈ Tτ(p)
n(∅).  

 Conversely, assume that th(r,t1,…,tk, λ) ∈Tτ(p)
n(∅) and that th(r,t1,…,tk, λ) is obtained from Tτ(p)

n-1(∅) 

by the rule 

  th(r,t1,…,tk, Zn+1) ← t(r1, t1,1, .., t1,k(1), Z1)∧…∧th(rm, tm,1, .., tm,k(m), Zm)) ∧  

 ∧ (Zn+1 = Z1⊗…⊗Zm⊗µ), 

Then there is a ground instance   

 th(r,t1,…,tk, λ) ← th(r1,t1,1,..,t1,k(1),λ1)∧…∧th(rm, tm,1,.., tm,k(m), λm)) ∧  

 ∧ (λ = λ1⊗…⊗λm⊗µ), 

of such a rule such that  

 th(r1, t1,1,.., t1,k(1), λ1)∈ Tτ(p)
n-1(∅), …,th(rm, tm,1,.., tm,k(m), λm))∈ Tτ(p)

n-1(∅). 

Let  

 r(t1,…,tk) ←r1(t1,1,..,t1,k(1))∧…∧rm(tm,1,.., tm,k(m))         [µ], 

be the fuzzy rule in the fuzzy program p whose translation coincides with the considered rule in τ(p). 

Then, since by inductive hypothesis,  

 Tp
n-1(∅)(r1, t1,1,.., t1,k(1)) = λ1, ... , Tp

n-1(∅)(rm, tm,1,.., tm,k(m)) = λm 

we can conclude that 

 Tp
n(∅)(r(t1,…,tk)) =  µ⊗Tp

n-1(∅)(r1,t1,1,..,t1,k(1))⊗...⊗Tp
n-1(∅)(rm,tm,1,..,tm,k(m))) = λ. 
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6. Similarity logic and synonymy 

 

We are now ready to face the main question we are interested. We start from an example. Let us suppose 

that a bookshop assistant have a request, by a customer, for an adventurous and economic book. Moreover 

let us suppose that he doesn’t find any book with these characteristics, then he tries to recommend a book 

which is sufficiently close to the customer’s request. For example he could propose a fantasy book which 

is not expensive. This attitude is a typical use of synonymy in reasoning in everyday life. Now, it is 

evident that the available information is vague in nature and therefore that we have to represent it by a 

fuzzy set of claims as 

 if x is adventurous and economic then  x is good    (at degree 1) 

 “I Robot” is a fantasy story                   (at degree 0.6) 

 “I Robot” is not expensive   (at degree 1) 

 “adventurous” is a synonymous of “fantasy”   (at degree 0.8) 

 “economic” is synonymous of “not expensive”       (at degree 0.7) 

 

More formally 

 Adventurous(x)∧Economic(x) ⇒  Good(x)    (at degree 1) 

 Fantasy(“I_robot” )                   (at degree 0.6) 

 Not_expensive(“I_robot” )  (at degree 1) 

 synonymous(“adventurous”, “fantasy”)   (at degree 0.8) 

 synonymous(“economic”, “not_expensive”)       (at degree 0.7) 

 

Unfortunately, we cannot consider such a list of fuzzy formulas in the framework of first order fuzzy logic. 

Indeed, there are words as adventurous, fantasy, economic, not_ expensive occurring both as predicates 

symbols and as constants. In a series of papers (see, for example, [11]) such a question was faced by 

relaxing the notion of matching between predicates. This means that one considers only the first order 

fuzzy formulas 

 Adventurous(x)∧Economic(x) ⇒  Good(x)    [1] 

 Fantasy(“I_robot” )                                                                                        [0.6] 

 Not_expensive(“I_robot” )                                                                                 [1] 

while the information about the synonymy between predicates is used to calculate the degree of 

admissibility of an approximate matching.   
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In this paper we propose a different approach in which we simply add to the meta-language Lm the predicate 

symbol “synonymous”. In accordance, we formalize the information in the considered example by the 

program 

 th(good, X, Z) ← th(adventurous, X, V1)∧th(economic, X, V2)∧(Z = V1⊗V2). 

 th(fantasy, I_robot, 0.6). 

 th(notexpensive, I_robot, 1). 

 synonymous(adventurous, fantasy, 0.8). 

 synonymous(economic, notexpensive, 0.7). 

 th(A,X,V) ← synonymous(A, A’, V1)∧th(A, X, V2)∧(V = V1⊗V2). 

As usual in fuzzy logic, the intended meaning of a fact as synonymous(economic, notexpensive, 0.7) is that 

economic is a synonymous of notexpensive at degree at last 0.7. Equivalently, we can consider the 

predicate symbol synonymous as a constant and to consider the program 

 th(good, X, Z) ← th(adventurous, X, V1)∧th(economic, X, V2)∧(Z =V1⊗V2). 

 th(fantasy, I_robot,0.6). 

 th(notexpensive, I_robot, 1). 

 th(synonymous, adventurous,  fantasy, 0.8). 

 th(synonymous, economic, notexpensive,0.7). 

 th(A,X,V) ← th(synonymous, A, A’, V1)∧th(A’, X, V2)∧(V = V1⊗V2). 

Given such a program and, for example, the query th(good, I_robot, Z), we obtain the answer Z = 

1⊗0.8⊗0.6⊗0.7⊗1. Notice that such a program is not complete since it is natural to assume that a 

synonymy satisfies suitable properties, namely that it is a similarity.  

 

Definition 6.1. Given a first order language L, we call ⊗-synonymy, in brief synonymy, any ⊗-similarity 

syn on the set of predicate symbols such that syn(r,r’ ) = 0 for every pair of predicate symbols r and r’ 

with different arities. 

 

It is evident that a synonymy is a fuzzy model of a suitable fuzzy program. Then, it is useful to represent 

it by a (small) fuzzy set of facts and suitable rules corresponding to three properties (reflexivity, 

symmetry, transitivity). 

We write such a program directly into a suitable extension of the language Lm as follows: 
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Definition 6.2. Let LSyn be the language obtained by adding to Lm the predicate name synonymous. Then a 

definition of a synonymy is a program Syn containing a set of facts like synonymous(r, r’ , λ) where r and 

r’ are predicate names with the same arity and λ ≠ 0, together with the rules 

 synonymous(R, R, 1) 

 synonymous(R’, R, V1)← synonymous(R, R’, V1) 

synonymous(R, R” , V) ← synonymous(R, R’, V1)∧ synonymous(R’, R” , V2)∧ 

∧ (V = V1⊗V2) 

 synonymous(R’, R, 0). 

 

Since we assume that in the language L there is only a finite set of predicate names, Syn is a finite set. We 

denote by syn the interpretation of synonymous in the least Herbrand model of Syn, namely 

  syn(r,r’ ) = Sup{ λ∈B : synonymous(r,r’ ,λ)∈MSyn}. (6.1) 

Due to the finiteness of Syn, the values of syn are in B.  

  

Definition 6.3. Let p be a fuzzy program and Syn be a definition of a synonymy. Then the translation of p 

given Syn is the classical program τ(p,Syn) in the language LSyn obtained by adding to the program τ(p) the 

program Syn and the synonymy rules 

 th(R,X1,...,Xn,V) ← synonymous(R, R’, V1) ∧ th(R’, X1,..., Xn, V2) ∧ (V = V1⊗V2). 

 

Notice that such a rule is strictly related with a rule considered in [25] (see the proof of Theorem 23). As 

it is usual, we denote by Mτ(p,Syn) and Tτ(p,Syn) the least Herbrand model and the one-step consequence 

operator of τ(p,Syn), respectively. 

 We are now ready to define a suitable notion of least Herbrand model for a similarity-based logic 

programming.  

 

Definition 6.4. Let p be a fuzzy program and Syn the definition of a synonymy. Then we call least 

Herbrand syn-model of p the fuzzy set of facts mp
Syn : BL → V defined by setting, for every r(t1,...,tn)∈BL , 

  mp
Syn(r(t1,...,tn)) = Sup{ λ ∈B : th(r,t1,...,tn,λ) ∈ Mτ(p,Syn)}. (6.2) 
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7. A justification for the proposed synonymy logic 

 

Obviously, the question arises whether Definition 6.4 is an adequate one for a synonymy logic. Now, 

usually one proves the adequateness of a logic by the exhibition of a completeness theorem. Unfortunately 

it is not evident if this can be done for synonymy logic since it is not evident whether the notion of 

synonymy is semantic in nature or not. Nevertheless it is possible to give some arguments in favour of 

such a definition. To do this, at first we prove the following useful proposition in which the synonymy syn 

is extended to BL by setting 

 syn(α, α’ ) = syn(r,r’ )    if α = r(t1,...,tn) and α’ = r’ (t1,...,tn) 

 syn(α, α’ ) = 0               otherwise. 

 

Theorem 7.1. Assume that V is totally ordered and let α and α’ be two facts. Then  

  mp
Syn(α’ )⊗syn(α,α’ ) ≤ mp

Syn(α) (7.1) 

and therefore,  

  syn(α,α’ ) ≤ (mp
Syn(α) ↔ mp

Syn(α’ )) (7.2) 

 

 Proof.  In the case syn(α,α’ ) = 0, then (7.1) is trivial. Otherwise, assume that α = r(t1,...,tn), α’ = 

r’ (t1,...,tn) and set 

A = {λ ∈B : th(r,t1,...,tn,λ)∈ Mτ(p,Syn)}  and  A’ = {λ’ ∈B : th(r’ ,t1,...,tn,λ’ )∈ Mτ(p,Syn)}. 

Then, by the synonymy rule for every x ∈B such that synonymous(r,r’ ,x)∈MSyn  we have  

 λ’ ∈ A’ ⇒ λ’⊗x ∈ A 

and therefore, since in (6.1) the value syn(r,r’ ) = syn(α,α’ ) is obtained as a maximum, 

 λ’ ∈ A’ ⇒ λ’⊗syn(α,α’ ) ∈ A. 

So, {λ’⊗ syn(α,α’ ) : λ’∈A’} ⊆ A and, by the continuity of ⊗,  

 mp
Syn(r’ (t1,...,tn))⊗syn(α,α’ ) = (Sup { λ’∈A’}) ⊗syn(α,α’ ) = 

 = Sup{ λ’⊗syn(α,α’ ): λ’∈A’ } ≤  Sup{ λ : λ∈A} = mp
Syn(r(t1,...,tn)). 

To prove (7.2) observe that (7.1) entails 

  syn(α,α’ ) ≤ mp
Syn(α’ ) → mp

Syn(α)  

and therefore by symmetry 

  syn(α,α’ ) ≤ mp
Syn(α) → mp

Syn(α’ ).  

Since in a totally ordered residuated lattice   

 mp
Syn(α’ ) ↔ mp

Syn(α) = (mp
Syn(α’ ) → mp

Syn(α))∧(mp
Syn(α) → mp

Syn(α’ )), 



Chapter 3:  Fuzzy logic programming 

49 
 

and (7.2) follows.  

 

Inequality (7.2) says that mp
Syn is continuous with respect to syn, in a sense. We can express such a claim 

in a more precise way by referring to the following results proved by Valverde in [30].  

 

Proposition 7.2. Let h : [0,1] → [0,∞] be an additive generator, i.e. a strictly decreasing continuous map h 

: [0,1] → [0,∞] such that h(1) = 0. Define the operation ⊗ by setting 

 x⊗y = h-1(h(x)+h(y))  if h(x)+h(y) ≤ h(0) 

 x⊗y = 0                      otherwise.  

Then ⊗ is an Archimedean triangular norm. If ↔ is the associated equivalence, then  

  h(x ↔ y) = |h(y) – h(x)|.  (7.3) 

 

As an example, if h(x) = 1-x, then ⊗ is the Łukasiewicz norm and h(x ↔ y) = |y – x|. In the case h(x) = -

log(x) for x ≠ 0 and h(0) = ∞, ⊗ is the usual product and h(x ↔ y) = |log(y)-log(x)|. 

   

Proposition 7.3. Assume that ⊗ is an Archimedean norm whose additive generator is the map h : [0,1] → 

[0,∞], and let syn be a ⊗-synonymy. Then the map d : BL × BL  → [0,∞] defined by setting  

 dsyn(α,α’ ) = h(syn(α,α’ )) 

for every α and α’  in BL is an extended pseudo-distance.  

 

Theorem 7.4. In the case ⊗ is an Archimedean norm, the function mp
Syn : BL → [0,1] is a continuous map 

from the extended pseudo-metric space (BL, dsyn) to [0,1]. 

 

Proof. By (7.2) and (7.3) for every pair α and α’ of facts  

  dsyn(α,α’ ) = h(syn(α,α’ )) ≥ h(mp
Syn(α) ↔ mp

Syn(α’ )) = |h(mp
syn(α)) – h(mp

Syn(α’ ))| 

This inequality entails that homp
syn is continuous. Since h is a injective continuous map defined in the 

compact set [0,1] and with values in a Hausdorff space, h-1 is continuous. So, we can conclude that mp
syn is 

continuous, too.  
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8. Another justification. 

 

Another argument in favour of Definition 6.4 is that it is in accordance with the abstract definition of a 

similarity logic given in [17]. In such a book an abstract fuzzy logic is defined as a continuous 

(conservative) operator H : VF → VF defined in the class VF of all the fuzzy subsets of a given set F. H is 

named the one-step consequence operator. H(s) is interpreted as the fuzzy subset of formulas we can 

obtain from s by an one-step proof. The deduction operator is the closure operator D : VF → VF generated 

by H. This means that, for every fuzzy subset s of formulas  

 D(s) = ∪n∈ N H
n(s). 

Let sim be a synonymy relation, then a continuous operator SYN : VF → VF is defined by setting,  

 SYN(s)(α) = Sup{syn(α',α)⊗s(α') : α’∈ BL}  (8.1) 

SYN(s) is interpreted as the fuzzy subsets of facts which are a synonymous of a fact in s. A fuzzy subset s 

of facts is a fixed point for SYN if and only if, for every α, α’∈ BL 

 syn(α',α)⊗s(α')≤s(α).  (8.2) 

 

Definition 8.1. Let H be the one-step consequence operator of an abstract fuzzy logic and let SYN  be a 

synonymy operator. Then we call abstract synonymy logic the abstract logic whose one-step consequence 

operator is the composition HoSYN  (see [17]).  

 

In the case F coincides with BL and H is the one-step consequence operator Tp of a fuzzy program p, we 

obtain an abstract synonymy logic programming. The Herbrand models of such a logic are the fixed 

points of TpoSYN, i.e. the Herbrand models of Tp which are fixed points for SYN. 

   

Theorem 8.2. The least Herbrand model mp
Syn given in Definition 6.4 coincides with the least Herbrand 

model of the abstract synonymy logic defined by Tp and SYN.  

 Proof.  We have to prove that mp
Syn is a fixed point for both SYN and Tp and that if m is a fixed point 

for SYN and Tp  then m ⊇ mp
Syn. Now, from (7.1) it follows that mp

Syn is a fixed point of SYN. To prove that 

mp
Syn is a fixed point of Tp we have to prove that, for every fact α,  

 T*
p(mp

Syn)(α)∨Fact(p)(α) ≤ mp
Syn(α). 

Since Fact(p)(α)≤ mp
Syn(α), this is equivalent to prove that 

 T*
p(mp

Syn)(α) ≤ mp
Syn(α) 

and therefore that, given any ground rule α ← r1(t
1
1,...,t

1
n(1))∧...∧ rm(tm1,...,t

m
n(m)),  

 µ⊗mp
Syn(r1(t

1
1,...,t

1
n(1)))⊗...⊗mp

Syn( rm(tm1,...,t
m

n(m))) ≤ mp
Syn(α) 



Chapter 3:  Fuzzy logic programming 

51 
 

where µ = Gr(p)(α ← r1(t
1
1,...,t

1
n(1))∧...∧ rm(tm1,...,t

m
n(m))). Now 

µ⊗mp
Syn(r1(t

1
1,...,t

1
n(1)))⊗...⊗mp

Syn(rm(tm1,...,t
m

n(m)))  = 

= µ⊗(Sup{ λ1 : th(r1,t
1
1,...,t

1
n(1),λ1)∈ Mτ(p,Syn)}) ⊗...⊗ (Sup{ λm : th(rm,tm1,...,t

m
n(m),λm) ∈ Mτ(p,Syn)}) = 

 = Sup{ λ1⊗…⊗λm⊗µ : th(r1,t
1
1,...,t

1
n(1),λ1) ∈ Mτ(p,Syn), ..., th(rm,tm1,...,t

m
n(m),λm) ∈ Mτ(p,Syn) }. 

On the other hand, if α is the formula r(t1,...,tn), the translation of the rule  

α ← r1(t
1
1,...,t

1
n(1))∧...∧ rm(tm1,...,t

m
n(m)) is  

th(r, t1,...,tn,Zm+1) ← th(r1,t
1
1,...,t

1
n(1),Z1)∧...∧ th(rm,tm1,...,t

m
n(m),Zm) ∧  

∧ (Zm+1 = Z1⊗...⊗Zm⊗µ). 

Such a rule enables us to claim that if  th(r1,t
1
1,...,t

1
n(1),λ1) ∈ Mτ(p,Syn),..., th(rm,tm1,...,t

m
n(m),λm)∈Mτ(p,Syn) , 

then th(r, t1,...,tn,λ1⊗...⊗λm⊗µ)∈ Mτ(p,Syn). In turn, this entails that 

Sup{ λ1⊗…⊗λm⊗µ : th(r1,t
1
1,...,t

1
n(1),λ1) ∈ Mτ(p,Syn), ...,  

th(rm,tm1,...,t
m

n(m),λm) ∈ Mτ(p,Syn)} ≤ Sup{ λ : th(r,t1,...,tn,λ) ∈ Mτ(p,Syn)} = mp
Syn(r(t1,...,tn)) 

Thus, mp
Syn is a fixed point of Tp. 

 Let m be a fixed point for both SYN and Tp. Then to prove that m ⊇ mp
Syn, it is sufficient to prove that, 

given λ∈B, 

 th(r,t1,...,tn,λ) ∈ Tτ(p,Syn)
n(∅) ⇒ m(r(t1,...,tn)) ≥ λ 

for every n∈N. We will prove this by induction on n. Indeed, in the case n = 1, since T*
p(m)∪Fact(p) ⊆ m, 

we have 

 th(r,t1,...,tn,λ) ∈ Tτ(p,Syn)(∅) ⇒ th(r,t1,...,tn,λ) ∈ Fact(τ(p))  

                                            ⇒ p(r(t1,...,tn)) = λ ⇒ m(r(t1,...,tn)) ≥ λ. 

Assume that the implication holds true for n and that  

 th(r,t1,...,tn,λ) ∈ Tτ(p,Syn)
n+1(∅) = Tτ(p,Syn)(Tτ(p,Syn)

n(∅)). 

Then it is possible that th(r,t1,...,tn,λ) is obtained by the rule  

th(r, t1,...,tn,λ ) ← th(r1,t
1
1,...,t

1
n(1),λ1) ∧...∧ th(rq,t

q
1,...,t

q
n(q),λq)∧(λ = λ1⊗...⊗λq⊗µ) 

in τ(p) with th(r i,t
i
1,...,t

i
n(i),λi)∈ Tτ(p,Syn)

n(∅). In such a case, by induction hypothesis, we have that 

m(r i(t
i
1,...,t

i
n(i))) ≥ λi. Since m is a fixed point for Tp,  

 λ =λ1⊗...⊗λm⊗µ ≤ µ⊗m(r1(t
1
1,...,t

1
n(1)))⊗...⊗m(rq(t

q
1,...,t

q
n(q))) ≤ m(r(t1,...,tn)). 

Assume that th(r,t1,...,tn,λ) is obtained by the rule  

 th(r,t1,...,tn,λ) ← synonymous(r, r’ ,λ1) ∧ th(r’ , t1,...,tn,λ2) ∧ (λ = λ1⊗λ2). 

in Syn with th(r’ , t1,...,tn,λ2)∈ Tτ(p,Syn)
n(∅). Then by inductive hypothesis m(r’ (t1,...,tn)) ≥ λ2. Since m is a 

fixed point for SYN,  
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λ = λ1⊗λ2 ≤ λ1⊗m(r’ (t1,...,tn)) ≤ m(r(t1,...,tn)). 

Finally, it is possible that th(r,t1,...,tn,λ)∈Fact(τ(p,Syn)), i.e. that th(r,t1,...,tn,λ)∈Fact(τ(p)). In such case 

we proceed as in the case n = 1. 

 

Since both the operators Tp and SYN are continuous, in accordance with the fixed-point theorem for 

continuous operators (see for example [17]), we can obtain mp
syn as the limit of the sequence 

 Tp(∅) ⊆ SYN(Tp(∅)) ⊆ Tp(SYN(Tp(∅))) ⊆ . . . 

Equivalently, since the operators SYNoTp, TpoSYN and Tp∨SYN define the same class of fixed points,  we 

can obtain mp
Syn

 also as the limit of the sequence  

SYN(∅) ⊆ Tp(SYN(∅)) ⊆ SYN(Tp(SYN(∅))) ⊆ . . . 

or of the sequence 

(Tp∨SYN)(∅) ⊆ (Tp∨SYN)((Tp∨SYN)(∅)) ⊆ (Tp∨SYN)((Tp∨SYN)((Tp∨SYN)(∅))) ⊆ ... 

 

 

9. Recursive enumerability in fuzzy logic programming and in synonymy logic 

programming 

 

In this section we analyze the computational features of the proposed logic by referring to the notion of 

recursively enumerable fuzzy subset. 

In classical logic programming there is no difficulty to represent all the recursive enumerable subsets and 

this shows that the associated paradigm of computability is in accordance with Church thesis. We can 

formulate an analogous question for fuzzy logic programming and sinonymy-based logic programming. 

In order to do this we will refer to a notion of recursive enumerability for fuzzy subsets which is in 

accordance with the theory proposed in [2]  and [19] .  

 

Definition 9.1. We say that a continuous residuated lattice (V, ≤, ⊗, →, 0, 1) is effective provided that 

there is coding of its basis B such that  

- the lattice operations and ⊗ are effectively computable in B  

- the relation ≺ is recursively enumerable in B.  

 

All the examples of continuous residuated lattices in Section 5 are also effective. 
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Definition 9.2. Let S be a coded set and s : S →V a fuzzy subset of S. Then we say that s is recursively 

enumerable provided that a computable function h : S×N →B exists which is increasing with respect to 

the second variable and such that, for every x∈S,  

  s(x) = Supn∈N h(x,n). (9.1) 

 

Assume that in (V, ≤, ⊗, →, 0, 1)  an involution ∼ is defined which is computable in B, then  we can 

define the notion of complement –s of a fuzzy subset s by setting (-s)(x) = ∼s(x). Then we say that a fuzzy 

subset s is recursively co-enumerable if its complement –s is recursively enumerable. If s is both 

recursively enumerable and recursively co-enumerable, the we say that s is decidable.  

 

Definition 9.3. Let L be a first order language and UL the related Herbrand universe. Then we say that a 

fuzzy subset s : UL →V  of UL is representable by a fuzzy program p provided that a predicate name r 

exists such that s(x) = mp(r(x)) for every x in UL . 

 

Theorem 9.4. Consider a finite fuzzy program p with truth values in B. Then, mp is recursively 

enumerable. Consequently every fuzzy subset of UL representable by a fuzzy program is recursively 

enumerable. 

 

Proof. Since Mp is recursively enumerable, we can define the function h : BL × N →B as follows. Let 

r(t1,…,tk) be an element in BL, then 

- we generate step-by-step all the elements λ1,...,λi,... of the set {λ∈B : th(r,t1,…,tk,λ)∈Mp} 

-  at the same time, we generate the increasing sequence (h(r(t1,…,tk),n))n∈N by setting h(r(t1,…,tk),1) 

= λ1, h(r(t1,…,tk),i) = h(r(t1,…,tk),i-1)∨λi  

It is evident that h is computable and order-preserving with respect to the second variable and that  

  mp(r(t1,…,tk)) = Supn∈N h(r(t1,…,tk), n). (9.2) 

 

 Now, the question arises whether every recursively enumerable fuzzy subset can be represented in 

such a way or not. Unfortunately, the answer is negative.  

 

Theorem 9.5. There are recursively enumerable fuzzy subsets which are not definable by a fuzzy 

program. 
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 Proof. In [2] one defines d-enumerable a recursively enumerable fuzzy subset in which instead of 

(9.1) we have that s(x) = Maxn∈N h(x,n), i.e. every s(x) is obtained as a maximum of the sequence h(x,n). 

Also, one proves that, in the case V is the interval [0,1], there is a recursively enumerable fuzzy subset s 

which is not d-recursively enumerable. On the other hand, since by Lemma 5.5 the sequence 

(h(r(t1,…,tk),n))n∈N admits a maximum, all the fuzzy subsets representable by a fuzzy program are d-

enumerable.  

 

 It is evident that we can extend Theorems 9.4 and 9.5 to the synonymy-based logic programming. 

 We conclude by observing that (apparently) we can obtain mp
syn(r(t1,…,tn)) by the findall operation in 

Prolog and by a predicate enabling us to calculate the maximum of a list. Indeed, we can consider the rule 

Herbrand_model(r,t1,...,tn,Z)←findall(Z1,th(r,t1,...,tn,Z1), List)∧maximum(List,Z) 

or, in a most general way: 

Herbrand_model(R,X1,...,Xn,Z))←findall(Z1,th(R,X1,...,Xn,Z1),List)∧maximum(List,Z) 

Regrettably, in spite of {λ ∈V : th(r,t1,...,tn,λ)} is finite, there is no general criterion to establish if all the 

elements in such a set where attained at a given step of the computation. Equivalently, in spite of the fact 

that we can compute the increasing sequence h(r(t1,…,tk),1) ≤ h(r(t1,…,tk),1) ≤ … and that such a 

sequence becomes constant after a finite number of steps, there is no general criterion to establish if the 

maximum is attained at a given step. Obviously, this is not surprising since it is in accordance with the 

notion of recursive enumerability. 

 



CHAPTER 4 

KRIPKE-BASED BILATTICE LOGIC 

 

1. Bilattice and fuzzy logic 

 

Bilattice theory was introduced by Ginsberg [20] in order to treat both truth and grade of information 

from an algebraic point of view (see also Fitting [10]); its principal task is to give successful tools for 

logic programming. Formal fuzzy logic (or fuzzy logic in narrow sense) is a chapter of formal logic 

strictly related with the theory of fuzzy subsets and connected with the tradition of multi-valued logic (see 

[17], [21], [22], [27], [28], [34]). 

Our aim is to investigate the potentialities of bilattice theory for the graded approach to formal fuzzy 

logic; in particular we show that bilattice theory enables us to obtain in a sense, a nice extension of the 

fuzzy logic. 

Notice that in the literature about fuzzy logic an analogous of the notion of bilattice is considered under 

the name of intuitionistic fuzzy logic (see for example [8], [26]), but in the intutionistic approach there are 

some other limitations.  

Our approach is different since we refer to a formal definition of fuzzy logic in Pavelka’s sense in which a 

deduction apparatus is defined by a suitable fuzzy subset of logical axioms and by fuzzy inference rules. 

So, we propose and discuss some possible general definitions involving bilattice theory and extending 

Pavelka’s ideas [28]. Also, to give an example, we apply the proposed apparatus to a Kripke-like logic 

related with a logic proposed by Ginsberg in its basic paper [20]. 

 The main tool we use in this chapter is the notion of closure operator and the associated one of closure 

system. This in accordance with the abstract approach to fuzzy logic proposed in [17] in which Tarski’s 

ideas of a logic as a closure operator is embraced. Recall that, given a complete lattice L, a closure 

operator in L is a map  

H : L→L such that 

 H(x) ≥ x  ;  x ≥ y  ⇒ H(x) ≥ H(y)   ;  H(H(x)) = H(x). 

In particular, if two closure operators have the same fixed points, they coincide. Finally, observe that, 

given M⊆ L, the closure system  generated by M, that we denote by <M>, is the intersection of all the 

closure systems containing M. Equivalently, <M> = {infi∈I mi : (mi)i∈I is a family of elements of M}. Also, 

<M> coincides with the set of fixed points of HM . 
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2. Bilattice theory 

 

A bilattice is a structure with two lattice orderings: one ordering ≤t is with respect to the degree of truth, 

the other ordering ≤k is related with information or knowledge.  

 

Definition 2.1. A bilattice is a structure B = (B, ≤t, ≤k , False, True, ⊥, T) such that (B, ≤t, False, True) and 

(B, ≤k, ⊥, T) are bounded lattices. If both the orders are complete, then we say that B is complete. We 

denote by ∧t and ∨t, ∧k, and ∨k the lattice operations in (B, ≤t, False, True) and in (B, ≤k , ⊥, T), 

respectively;  B is  interlaced if all these operations are order preserving with respect to ≤t and ≤k ; B is 

distributive if all 12 distributive laws connecting ∧t, ∨t, ∧k, and ∨k are valid; B satisfies the decomposition 

property provided that, for every x∈B, 

x = (x∧k True)∨k(x∧k False). 

 

It is easy to prove that if a bilattice is distributive, then it is also interlaced and that an interlaced bilattice 

satisfies the decomposition property.  

 

Definition 2.2. Assume that in a bilattice B an operation ~ : B→B is defined in such a way that: 

 1.  x ≤t y ⇒ ~y ≤t ~x   

 2.  x ≤k y ⇒ ~x ≤k ~y  

 3.  ~~x = x. 

Then we say that (B, ≤t, ≤k, ~, False, True, ⊥, T) is a bilattice with negation.  

 

Observe that since ∼ is order-reversing with respect to ≤t and order-preserving with respect to ≤k, 

 ∼(x∧ty) = ∼(x)∨t ∼(y)  ;  ∼(x∨ty) = ∼(x)∧t ∼(y)  ;   

 ∼(x∧ky) = ∼(x)∧k ∼(y)  ;  ∼(x∨ky) = ∼(x)∨k ∼(y) 

for every x, y in B. It is also immediate that ∼False = True, ∼True = False, ∼⊥= T,  ∼T = ⊥. 

 There are several ways to define a bilattice by starting from a bounded lattice L = (L, ≤, 0, 1). A way is 

to consider the set of intervals of L (see for example [29]) and it is related in a natural way with multi-

valued logic. Indeed, an interval is interpreted as a constraint on a possible truth value. 

 

Theorem 2.3. Let I(L) be the set of closed intervals of a bounded lattice L (included the empty set) and 

define the structure I (L) = (I(L), ≤t, ≤k, {0}, {1}, [0,1], ∅) in such a way that 

-  ≤k is the dual of the inclusion relation,  

- for every [a,b], [c,d] in I(L)-{ ∅}, [ a,b] ≤t [c,d] provided that a≤c  and b≤d, 

- {0} ≤t ∅ ≤t {1} and ∅ is not t-comparable with any other interval. 
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Then I (L) is a bilattice which satisfies the decomposition property. If L is complete, then I (L) is complete. 

Moreover, if −  is an involution in L, by setting 

∼[a,b] = [−b,−a]  ;  ∼∅ = ∅ 

we obtain a negation in I(L). If L is different from the Boolean algebra {0,1}, I (L) is not interlaced. 

 

Proof. We observe only that, for every interval [a,b],  

 [a,b] = [a,1]∩[0,b] = ([a,b]∧k{1}) ∨k([a,b]∧k{0}) 

and that,  

 ∅ = {1} ∨k{0} = ( ∅∧k{1}) ∨k(∅∧k{0}). 

Moreover, due to the behavior of ∅, in the case L ≠ {0,1}, I (L) is not interlaced. Indeed, if c is an element 

of L different from 0 and 1, then [0,0] ≤t [c,c] while [0,0]∨k[c,1] = ∅ and [c,c]∨k[c,1] = [c,c]. On the other 

hand the relation ∅≤t[c,c]  is false.      

 

Observe that the lattice operations in I (L) are defined by setting 

 -  [a,b]∧t[c,d] = [a∧c, b∧d]     ;   [a,b]∨t[c,d] = [a∨c, b∨d] 

 -  {1} ∧t∅ = ∅∧t{1} = ∅         ;   {0}∨t∅ = ∅∨t{0} = ∅ 

 -  {1} ∨t∅ = ∅∨t{1} = {1}       ;   {0} ∧t∅ = ∅∧t{0} = {0} 

 -  [a,b]∧t∅ = ∅∧t[a,b] = {0} ([ a,b]≠{1})  ; 

        [a,b]∨t∅ = ∅∨t[a,b] = {1}  ([ a,b] ≠ {0})     

 -  ∅∧t∅ = ∅∨t∅ = ∅. 

 -  [a,b]∧k[c,d] = [a∧c, b∨d]     ;   [a,b]∨k[c,d] = [a∨c, b∧d] 

 -  [a,b]∧k∅ = ∅∧k[a,b] = [a,b]  ;   [a,b]∨k∅ = ∅∨k[a,b] = ∅     

 -  ∅∧k∅ = ∅∨k∅ = ∅. 

 

Definition 2.4. Given a bounded lattice L (with an involution −), the bilattice I (L) is called the interval 

bilattice (with negation) associated with L.  

 

Another very famous way to obtain a bilattice is the following one. 

 

Theorem 2.5. Let L = (L,≤,0,1) be a bounded lattice and denote by B(L) the structure (L×L, ≤t, ≤k, ~, 

(0,1), (1,0), (0,0), (1,1)) where ∼ is defined by setting  ∼(x,x’) = (x’,x), and  the relations ≤t, ≤k are defined 

by setting 

 (x,x′) ≤t (y,y′) ⇔ x ≤ y and  x′ ≥ y    and    

 (x,x′) ≤k (y,y′) ⇔ x ≤ y and  x′ ≤ y. 

Then B(L) is an interlaced bilattice with negation. If L is complete (distributive) then B(L) is complete 

(distributive, respectively). 
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Definition 2.6. We call the product bilattice associated with L the bilattice B(L).  

 

Since B(L) is interlaced, it satisfies the decomposition property. On the other hand, since (x,x’)∧k(1,0) = 

(x,0) and (x,x’)∧k(0,1) = (0,x’), trivially  

x = ((x,x’)∧k(1,0))∨k((x,x’)∧k(0,1)). 

The following proposition shows a connection between the bilattices I (L) and B(L). 

 

Proposition 2.7. Let L be a bounded lattice with an involution − and let I0(L) be the set of nonempty 

intervals of L. Then by setting h([a,b]) = (a, −b) we obtain an embedding of the structure I 0(L) = (I0(L), ≤t, 

≤k, ∼, {0},  {1}, [0,1]) into the structure (L×L, ≤t, ≤k, ~, (0,1), (1,0), (0,0)).  

 

 

 

3. Bilattice-based fuzzy logic: the semantics 

 

In this section we call valuation structure a complete lattice V = (V, ≤, 0, 1) with 0≠1. The elements in V 

are interpreted as truth values and, in particular, the minimum 0 and the maximum 1 are interpreted as 

“false” and true”, respectively.   

To connect bilattice theory with fuzzy logic we interpret the elements in a bilattice B as pieces of 

information on the elements in V. To do this, we need to define a relation from V to B. The following is a 

possible definition. 

 

Definition 3.1. A bt-system is a structure (V, B, ╞*) such that V is a valuation structure, B is a complete 

bilattice and ╞*  ⊆ V×B is a relation such that,  

 i)  λ ╞*x and x’ ≤k x ⇒ λ ╞*x’  

 ii)  for every λ ∈V the set {x∈B : λ ╞*x} admits a k-maximum  

 iii )  0 ╞*False  ; 1 ╞*True. 

 

In the case the relation λ╞*x is satisfied, we say that λ satisfies x or that x is a correct piece of 

information on λ. 

 

Definition 3.2. Given a bt-system (V, B, ╞*), we set Sat = {x∈B : there is λ∈V such that λ ╞*  x} and we 

define the map i : V → B by setting 

 i(λ) = Maxk{ x∈B : λ ╞* x}. 
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Also, we put 

 Maxsat = {x∈B : x is maximal in (Sat,≤k)}  ; 

 Compl = {x∈B : there is c∈Maxsat, x≥kc}. 

    

We say that Sat is the set of satisfiable elements of B. We say that i : V →B is the information map and 

this since i(λ) summarizes the whole information on λ we can obtain in the bt-system  (V, B, ╞*) . 

Obviously, for every λ ∈V, 

 λ ╞* x ⇔ x ≤k i(λ) 

and, consequently,  

 Sat = {x∈B : there is c∈Maxsat such that x ≤k c}. 

The elements in Maxsat are the maximal elements in Sat, if x∈Compl the we say that x is complete.   

 Usually, the semantics in a multi-valued logic is defined in a truth-functional way. This means that if, 

for example, we consider a propositional language whose logical connectives are ∨, ∧, ¬, then suitable 

operations ⊕, ⊗, −  are defined in V to interpret these connectives. Denoting by F the set of formulas, the 

semantics is obtained by considering the class M of truth assignments m : F → V such that 

 m(α∧β) = m(α)⊗m(β)  ;  m(α∨β) = m(α)⊕m(β)  ;  m(¬α) = −m(α). 

Nevertheless, since there are interesting semantics which are not truth-functional (see [17]) we prefer the 

following abstract definition of semantics proposed in [28]. 

  

Definition 3.3. Let V be a valuation structure and F be the set of formulas in a given logical language. 

Then a semantics is a class M of maps m : F →V. The elements in M are called models.  

 

To proceed in our definitions, we refer to the expressive language of fuzzy logic. We denote by LS the 

class of all the L-subsets of S. Such a class is a complete lattice, the direct power of L with index set S. 

The order relation in LS  is denoted by ⊆ and named inclusion relation. The meet and the join in LS are 

denoted by ∩ and ∪ and named intersection and union, respectively. Finally, in the case a negation − : L 

→ L is defined in L, the complement of s is the L-subset –s defined by setting (−s)(x) = −s(x) for every 

x∈S. In such a paper we are mainly interested in considering the set F of formulas of a given language and 

the knowledge order in a bilattice B.  

 

Definition 3.4. Given a bilattice B, we call B-subset of formulas or valuation any element v : F → B in BF. 

We denote by ⊇k the knowledge order in BF and we call it k-inclusion. Also, we denote by v⊥ and vT the 

minimum and the maximum with respect to ⊆k and we say that v⊥ is the empty information and that vT is 

the totally inconsistent information. The lattice operations, we denote by ∩k and ∪k, are called k-

intersection and k-union, respectively. Finally, we say that v is pointwise satisfiable if v(α) ∈ Sat for 

every formula α. In the case a negation ∼ is defined in B, we say that v is balanced if v(¬α) = ∼v(α). 
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Definition 3.5. Let M ⊆ VF be a semantics and v be a B-set of formulas. We say that m ∈ M  is a model of 

v, in brief m╞ v, if m(α)╞*v(α) for every formula α. In such a case we say that v is satisfiable. 

 

Obviously, if v is satisfiable then v is pointwise satisfiable, too. 

 

Definition 3.6. Given m∈M, we denote by m : F →B the composition i om and we set M = {m : m∈M}. 

Also, we define the logical consequence operator Lc : B
F → BF by setting as usual, 

                             Lc(v)(α) = Infk{ m(α) :  m╞ v}  (3.1) 

for every v∈BF and α∈F. 

 

An element m∈M represents the way we can represent a world m by our information system (V, B, ╞*) . 

Also, for every formula α, Lc(v)(α) is the information on the truth value of α shared by all the possible 

models of v. Namely, such an information says that the unknown truth value of α belongs to {λ∈V : λ ╞*  

Lc(v)(α)}. 

 The proof of the following proposition is trivial. 

 

Proposition 3.7.  For every valuation v and m∈M,  

 m╞ v ⇔ m ⊇k v 

and therefore,  

 Lc(v) = ∩k{ m :  m ⊇k v}      (3.2) 

 

We can identify M with the class of complete theories and the B-set Lc(v) of logical consequences of v 

with the k-intersection of all the complete theories containing v. It is also of some interest to define an 

analogous of the notion of set of tautologies. 

  

Definition 3.8. Given a semantics M, we call B-subset of tautologies the B-subset of formulas   

 Tau = Lc(v⊥) = ∩k{ m : m∈M}  (3.3) 

 

In other words, Tau(α) is the information on α shared by all the possible models in the given semantics. 

The information content of Tau(α) is logical in nature since it depends on the structure of α and not on the 

state of the affairs. The proof of the following theorem is trivial. 

 

Theorem 3.9.  Lc is a closure operator in the lattice (BF, ⊆k). Namely, Lc is the closure operator generated 

by M.  
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4. The deduction apparatus  

 

We define a notion of deduction apparatus by extending the classical notions of inference rule and of set 

of logical axioms. The definitions are inspired to the ones given by Pavelka [28]. 

 

Definition 4.1. Let B be a complete bilattice, then an n-ary B-inference rule is a pair r = (rsin, rsem) where 

rsin is a partial n-ary operation in F (i.e. an inference rule in the usual sense) and rsem is an n-ary operation 

in B preserving the inductive limits, i.e. arbitrary k-joins of k-directed subsets of B (continuity property). 

A B-deduction apparatus, in brief a deduction apparatus, is a pair (IR, la) such that la is a B-subset of 

formulas, we call B-subset of logical axioms, and IR is a set of B-inference rules. 

 

We represent an application of an n-ary B-inference rule as follows 
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The intended meaning is that if λ1,…,λn are correct piece of information on α1,…,αn, then  rsem(λ1,…,λn) 

is a correct piece of information on the formula rsin(α1,…,αn). 

Every deduction apparatus is associated with a notion of proof in the following way. 

 

Definition 4.2. A proof π of a formula α is any sequence α1,...,αm of formulas such that αm = α, together 

with the related “justifications” . This means that, for any formula αi, we must specify whether 

 (i)    αi is assumed as a logical axiom; or 

 (ii )   αi is assumed as an hypothesis; or 

 (iii )��  αi is obtained by a rule (in this case we have to indicate also the rule and  

         the formulas αi(1),…, αi(n)  in α1,..., αi–1 used to obtain αi).  

 

Differently from the classical logic, the justifications are necessary to calculate the information furnished 

by a proof.  

Observe that, as in the classical case, for any i ≤ m, the initial segment α1,..., αi � of a proof α1,..., αm is a 

proof of αi we denote by π(i). 

 

Definition 4.3. Given a proof π = α1,...,αm  of α and a valuation v : F→B, the information on α furnished 

by π �given v is the element I(π,v) in B defined by induction on the length of π in accordance with the 

following rules: 

 I(π,v) = la(αm)  if αm is assumed as a logical axiom,  

 I(π,v) = v(αm)   if αm is assumed as an hypothesis, 
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   I(π,v) = rsem(I(πi(1),v),…,I(πi(n),v))  if αm is obtained by a rule r = (rsin, rsem) from    

                αi(1),…, αi(n) with i(1) < m,…, i(n) < m.  

Notice that we have only two proofs of α whose length is equal to 1. The formula α with the justification 

that α is assumed as a logical axiom and the formula α with the justification that α is assumed as an 

hypothesis. So, the first two lines in the definition of I(π,v) give also the induction basis.   

Different proofs of the same formula α can give different pieces of information on the truth value of α. 

This suggests the following definition. 

 

Definition 4.4. Given a deduction apparatus (IR, la), we call deduction operator the operator D : BF → BF 

defined by setting, for every v ∈ BF and α∈F, 

                     D(v)( α) = Supk{ I(π,v) : π  is a proof of α} (4.1) 

If v is a fixed point for D, then we say that v is a theory. 

 

It useful to assume that in the considered deduction apparatus there is the fusion rule: 

〉
∨

〈
yx

yx

k

|
α

αα
 

Such a rule enables us to fuse two different proofs π1 and π2 of a formula α into an unique proof π of α in 

such a way that I(π,v) = I(π,v)∨kI(π2,v). This entails that the set {I(π,v) : π  is a proof of α} is closed with 

respect to ∨k and therefore is up-ward directed. Then, the value D(v)(α) is the direct limit of an up-ward 

directed class. On the other hand, if we add to a deduction system the fusion rule the power of the system 

remains unchanged since this rule gives no contribution to the definition of D. 

 The continuity property of the inference rules enables us to prove the following theorem. 

 

Theorem 4.5. The deduction operator D is a closure operator in the lattice (BF, ⊆k). 

 

Proof. To prove that D(v)⊇kv it is sufficient to observe that, given a formula α, the formula α justified as 

an hypothesis is a proof π of α such that I(π,v) = v(α). We can prove that D is monotone by proving that 

I(π,v) is monotone with respect to v for every proof π of a formula α. To this aim it is sufficient to 

observe that the semantics part of the inference rules is monotone and to proceed by induction on the 

length of π. To prove that D is idempotent we have to prove that D(v) is a fixed point for D and therefore 

that, given a formula α, 

  Supk{ I(π,D(v)) : π  is a proof of α} ≤k D(v)(α). 

Equivalently, we have to prove that, for every proof π = α1,…,αm of α, 

 I(π,D(v)) ≤k D(v)(α)  (4.2) 
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We will proceed by induction on the length m of π. Now, if αm is assumed either as a logical axiom or as 

an hypothesis, then (4.2) is evident. Otherwise, assume that αm is obtained by an n-ary inference rule and 

therefore that  

  I(π,D(v)) = rsem(I(πi(1), D(v)),…,I(πi(n), D(v))) 

where πi(1),…,πi(n) are the proofs of the formulas αi(1),…, αi(n), i(1) < m,…, i(n)<m. Then, taking in account 

the induction hypothesis, the definition of D(v) and the continuity property of rsem,  

 I(π,D(v)) ≤k  rsem(D(v)(αi(1)),…,D(v)(αi(n))) 

 = rsem(Supk{ I(π,v) : π  is a proof of αi(1)},…,  Supk{ I(π,v) : π  is a proof of αi(n)})= 

 = Supk{ rsem(I(πi(1),v),…, I(πi(n),v)) : πi(1)  is a proof of αi(1),…, πi(n)  is a proof of αi(n)}) ≤k D(v)(α). 

 

We are now ready to give the main definitions in this paper. 

 

Definition 4.6. Let M  be a fuzzy semantics and (IR, la) a deduction apparatus. Then (IR, la) is correct 

with respect to M if Lc(v) ⊇k D(v) for every v ∈BF. (IR, la) is complete with respect to M if D(v) ⊇k Lc(v) 

for every v ∈BF. In the case (IR, la) is both correct and complete, i.e. D = Lc, we say that (M, IR, la) is a 

bilattice based fuzzy logic and that the completeness theorem holds true. 

 

 

 

5. Examples of bt-systems 

 

In order to illustrate the notion of bilattice based fuzzy logic, we will give some example. The first one is 

related with the interval bilattices. 

 

Proposition 5.1. Let V be a valuation structure and assume that B is the interval bilattice I (V). Then we 

obtain a bt-system by setting   

λ ╞*x ⇔  λ∈x. 

In such a system, 

 Sat = I(V)-{ ∅}  ;  i(λ) = {λ} ;  Maxsat = {x∈I(V) : x is a singleton}   

 Compl = Maxsat ∪{ ∅}. 

In accordance, given a semantics M, 

 m ╞ v provided ⇔ for every formula α, m(α)∈v(α), 

and, if v admits a model, Lc(v)(α) is the least interval containing {m(α) :  m╞ v}, i.e. 

 Lc(v)(α) = [Inf{ m(α) :  m ╞ v}, Sup{ m(α) : m ╞ v}]. 

In particular, for every formula α, 
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 Tau(α) = [Inf{ m(α) : m∈M}, Sup{ m(α) : m ∈M}]. 

As an example, assume that the valuation structure is ([0,1], ∧, ∨, 1-x). Then Tau(α∨¬α) = [0.5, 1] and 

Tau(α∧¬α) = [0, 0.5]. This means that by our formalisms we can have useful a-priori information on the 

formulas. Instead, if we adopt the usual notions of tautology and contradictions no tautology or 

contradiction exists in such a logic. Notice also that while in classical logic we refer both to the notion of 

tautology and contradiction to represent the a-priori information of the formulas, in our approach Tau(α) 

represents the whole a-priori information we have on α.  

The definition of a bt-system in the case of a product bilattice B(V) is more problematic. Assume that a 

negation − in V exists. Then a definition of a bt-system have to be in accordance with the embedding h of 

I 0(V) into B(V) defined in Theorem 2.9. This means that we have to assume that for every (a,b) such that 

a ≤ −b, λ ╞*  (a,b) if and only if λ∈[a, −b]. This suggests the following definition. 

 

Proposition 5.2. Assume that a negation − in V exists and that B is the product bilattice B(V). Then we 

obtain a bt-system by setting 

 λ ╞*  (a,b)  ⇔  a ≤ λ and b ≤ −λ. 

In such a bt-system,  

  Sat = {(a,b) : a ≤ −b}  ;  i(λ) = (λ,−λ)  ;   

 Maxsat = {(a, b) : a = −b}  ;   

 Compl = {(λ,µ) : there is x such that λ≥x, µ ≥-x}.   

Also, given a semantics M,   

 m ╞ v  ⇔  m ≥  v+  and −m ≥ v- 

and, 

 Lc(v)(α) = (Inf{ m(α): m ╞ v} , Inf{ −m(α) : m ╞ v}). 

 

Proof. We observe only that   

 λ ╞*  (a,b)  ⇔  a ≤ λ  and  b ≤ −λ  ⇔  a ≤ λ ≤ −b 

and therefore that there is λ such that λ ╞*  (a,b)  if and only if a ≤ −b. Moreover 

 Lc(v)(α) = Infk{ m(α) : m ╞ v} = Infk{( m(α),−m(α)) :  m ╞ v} = 

 =  (Inf{ m(α) : m ╞ v} , Inf{ −m(α) : m ╞ v}). 

 

In particular,  

 Tau(α) = (Inf{ m(α) :  m∈M} , Inf{ −m(α) : m∈M}). 

So, by referring to the valuation structure ([0,1],∧,∨,1-x, 0, 1), 

 Tau(α∨¬α) = (0.5,0) and Tau(α∧¬α) = (0, 0.5). 
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6. The proposed approach extends the one of Pavelka  

 

In this section we will show that the definitions proposed in this paper extend the usual ones in the graded 

approach to fuzzy logic (see [28]). This in spite of the fact that in such an approach it is not apparent the 

reference to a knowledge order since one refers to the order relation ≤  in V. As a matter of fact the 

reference to the knowledge order is implicit in the proposed semantics since the information is 

represented by a fuzzy subset v: F →V of formulas and one claims that m is a model of v provided that 

m⊇v. This means that the information carried on by v is that, for every formula α, v(α) represents a lower-

bound constraint like “the truth value of α is greater or equal to v(α)”. Then  in the graded approach one 

manages interval constraints on truth values and not truth values and we have not confuse the truth value 

λ with the constraint [λ,1]. To make more precise such an observation, we consider the following sub-

bilattice of I (V). 

  

Proposition 6.1. Let L be a bounded lattice and consider the set  

 I+(L) = {[a,1] : a∈L } ∪{{0}, ∅}. 

Then the substructure I +(L) of I (L) defined by I+(L) is a bilattice satisfying the decomposition property, 

we call such a bilattice the lower-bound bilattice associated with L. 

Then in such a bilattice ≤k is the dual of the inclusion relation and ≤t is defined by setting 

 - {0} is the minimum with respect to ≤t 

 -  [a,1] ≤t [c,1] ⇔ a≤c     

 - {0} ≤t ∅ ≤t {1} and ∅ is not t-comparable with any other interval. 

In accordance, the operations are defined by setting 

 -  [a,1]∧t[c,1] = [a∧c,1]  ;  [a,1]∨t[c,1] = [a∨c,1] 

 -  {1} ∧t∅ = ∅∧t{1} = ∅   ;   {0}∨t∅ = ∅∨t{0} = ∅ 

 - {1} ∨t∅ = ∅∨t{1} = {1} ;    {0} ∧t∅ = ∅∧t{0} = {0} 

 -  [a,1]∧t∅ = ∅∧t[a,1] = {0}  (a ≠ 1) ;  [a,1]∨t∅ = ∅∨t[a,1] = {1}  (a ≠ 0) 

 -  [a,1]∧t{0} = {0}  ;  [ a,1]∨t{0} = [ a,1]. 

 

Proposition 6.2. Let B be the lower bound interval bilattice I +(V), then we obtain a bt-system by setting 

λ ╞ * x ⇔  λ∈x. 

In such a system,   

 Sat = I+(V)-{ ∅} ;  i(λ) = [λ, 1] in the case λ≠0 ; i(0) = {0} ;   

 Maxsat = {{0}, {1}}  ;  Compl = {{0}, {1}, ∅}.  

 



Chapter 4:  Kripke-based bilattice logic 

66 
 

Proposition 6.3. Call normal a valuation v assuming only values different from ∅ and {0}. Then the bt-

system associated with I +(V) gives the same formalisms of the graded approach to fuzzy logic provided 

we confine ourselves to the normal valuations. 

 

Proof. It is possible to identify every normal valuation v with the function v’ : F → V such that v(α) = 

[v’(α), 1] for every α∈F. Moreover,  given a semantics M and m∈M, we have that m╞ v provided that 

m⊇ v’. Finally, since for every formula α,  

Lc(v)(α) = [Inf{ m(α) : m ⊇ v’}, 1], 

it is possible to identify Lc(v)(α) with Inf{ m(α): m ⊇ v’}. In a similar way we can relate the deduction 

apparatus of the graded approach to fuzzy logic with the deduction apparatus proposed in this paper. 

 

It is interesting to observe that, in particular,  

Tau(α) = [Inf{ m(α) : m∈M}, 1]. 

Therefore, by referring to the early considered valuation structure ([0,1], ∧, ∨, 1-x, 0, 1),   

 Tau(α∨¬α) = [0.5,1] and Tau(α∧¬α) = [0,1].  

This means that Tau gives no information on a contradiction.  

 We conclude this section with the following proposition emphasizing that I +(V) is obtained by 

extending the domain V of V by two elements and the order in V into two different orders.  

  

Proposition 6.4. Extend the domain V of V  by two symbolic elements f  and i (corresponding to {0} and 

∅, respectively) and set B = V∪{ f, i}. Extend the order ≤ in V into two orders ≤t and ≤k in such a way that   

 - i is a maximum with respect to ≤k   and f  is a minimum with respect to ≤t   

 - f ≥k 0, i ≤t1,  

 - f  is not k-comparable with the elements in V-{0},  

 - i is not t-comparable with the elements in V-{1}.   

Then (B, ≤t, ≤k, f, 1, 0, i) is a bilattice isomorphic with I +(V) = (I+(V), ≤t , ≤k, {0}, {1}, [0,1], ∅). 

 

 Proof. It is sufficient to consider the map h : I+(V) → B defined by setting h(∅) = i, h({0}) = f and 

h([λ,1]) = λ. 

 

Observe that in (B, ≤t, ≤k, f, 1, 0, i) False and True are represented by f and 1, while no information and 

inconsistency are represented by 0, i, respectively.  Then the bt-system given in Proposition 6.2 gives a 

proper extension of Pavelka’s formalisms in which we admit valuations v able to express the fact that a 

formula α is false (in the case v(α)=0) and the fact that the information on α is inconsistent (in the case 

v(α) = i).   
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7. Completeness theorem and fixed points 

 

Let M be fuzzy semantics and (IR,la) a deduction apparatus. Then to prove a completeness theorem it is 

useful to examine the fixed points of the operators D and Lc. Indeed, (IR, la) is correct if and only if all the 

fixed points of Lc are fixed points of D and is complete if all the fixed point of D are fixed points of Lc. 

Regarding the fixed points of Lc, the general theory of the closure operators gives the following 

proposition. 

 

Proposition 7.1. A valuation v is a fixed point of Lc if and only if v is a k-intersection of elements in M. 

Equivalently, the set of fixed points of Lc is the closure system generated by M. 

 

Instead, we can characterize the fixed points of D, i.e. the theories, as the B-subsets of formulas closed 

with respect to the deduction apparatus. 

 

Definition 7.2. Let v be a B-set of formulas, then v is called closed with respect to the n-ary inferential 

rule r  if, for every α1,…,αn 

 v(rsyn(α1,…,αn)) ≥k  rsem(v(α1),…,v(αn)). 

We say that v is closed with respect to a fuzzy deduction apparatus (IR, la) if v is closed with respect to all 

the inferential rules in IR and v k-contains the B-subset of logical axioms. 

 

Observe that the closure with respect to the fusion rule is expressed by the inequality v(α) ≥kv(α)∨kv(α) 

and therefore that all the B-sets of formulas are closed with respect to this rule. 

 

Theorem 7.3. Let v be a valuation, then v is a theory (i.e. a fixed point of D) if and only if v is closed with 

respect to (IR, la). 

 

Proof. Assume that v is closed with respect to (IR,la). To prove that v is a fixed point for D, we prove, by 

induction on the length of the formulas, that for every formula α and for every proof π of α 

                 I(π,v) ≤k v(α)  (7.1) 

In the case n = 1, the proof consists in assuming either that α is a logical axiom or a hypothesis. In both 

the cases (7.1) is satisfied in a trivial way. Consider the case n ≠1 and, by induction hypothesis, that (7.1) 

is satisfied by all the proofs whose length is less than n. Then again in the case α is assumed as a logical 

axiom or a hypothesis (7.1) holds true. Otherwise, there is an inference rule r = (rsyn, rsem) such that  

    α = rsin(αi(1),…, αi(m)) with 1≤ i(1)<n,…,1≤ i(m)<n  and   

    I(π,v) = rsem (I(π(i(1)),v),…,I(π(i(m)),v)). 

Then by the closure of v, by induction hypothesis and the monotony of rsem, we have that 
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 v(α)=v(rsin(πi(1),…, πi(m))) ≥k rsem(v(α1),…,v(αn))≥k 

 ≥k rsem (I(π(i(1)),v),…,I(π(i(m)),v))= I(π,v). 

Conversely, assume that v is a fixed point of D. Then v(α) = Supk{ I(π,v) : π  is a proof of α} and therefore 

v(α) ≥k I(πv) for every proof π of α. By assuming that π is the proof of length 1 consisting in assuming α 

as a logical axiom, then we obtain v(α) ≥k I(π,v) = la(α). Then v k-contains la. Let r be an n-ary inference 

rule, then to prove that v is closed with respect to r, given α1,…,αn we consider the proof π obtained by 

assuming α1,…,αn as hypotheses and by applying the rule r. Such a proof proves the formula α = 

rsin(α1,…,αn) and therefore 

 v(rsin(α1,…,αn)) = v(α) ≥k I(π,v) = rsem(v(α1),…,v(αn)). 

Thus v is closed with respect to (IR, la). 

 

Definition 7.4. We say that an inference rule is correct with respect to a semantics M provided that, every 

m∈M is closed with respect to the rule.  

 

The following simple proposition it is useful to prove the correctness of a deduction apparatus. 

 

Proposition 7.5. A deduction apparatus (IR, la) is correct with respect to a semantics M if and only if la 

≤kTau and all the inference rule in IR are correct with respect to M. 

 

The following simple proposition gives an useful tool to prove the completeness.  

 

Proposition 7.6. Le B be a bilattice satisfying the decomposition property. Then to prove the 

completeness of the deduction apparatus it is sufficient to prove that given a theory v different from vT  

 i) for every formula α, there is a model mα of v such that   

  mα(α)∧kTrue = v(α)∧kTrue   

 ii ) for every formula α, there is a model mα
 of v such that 

   mα(α)∧kFalse = v(α)∧kFalse. 

If B is with negation and both the elements in M and the theories are balanced, then it is sufficient to 

prove i).  

 

Proof. To prove that every fixed point v of D is a fixed point of Lc, observe that in the case v = vT this is 

trivial. In the case v ≠ vT, by the assumed hypotheses, for every formula α,  

 Lc(v)(α)∧kTrue = (Infk{ m(α) :  m ╞  v}) ∧kTrue ≤k mα(α)∧kTrue = v(α)∧kTrue  

and  

 Lc(v)(α)∧kFalse = (Infk{ m(α) :  m ╞  v}) ∧kFalse ≤k m
α(α)∧kFalse = 

 = v(α)∧kFalse. 
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Consequently, 

 Lc(v)(α) = (Lc(v)(α)∧kTrue)∨k(Lc(v)(α)∧kFalse) ≤k (v(α)∧True))∨k(v(α)∧kFalse) = v(α). 

So, v is a fixed point of Lc and this entails the completeness. 

Assume that the elements in M and the fixed points of D are balanced and that i) holds true. Then, by i), 

given the formula  ¬α there is a model m¬α such that m¬α(¬α)∧kTrue = v(¬α)∧kTrue. Consequently, if 

we set mα = m¬α  

 mα(α)∧kFalse = ∼(∼mα(α)∧k∼False) = ∼(mα(¬α)∧kTrue)  

                            = ∼(v(¬α)∧kTrue) = (∼v(¬α))∧k(∼True) =  v(α)∧kFalse 

and ii ) holds true. 

 

In the case B is a product bilattice B(V), the condition of such a proposition requires that there are two 

models mα , m
α of v such that, for every formula α, mα(α) = v+(α) and mα(α) = -v-(α). 

   

 

8. Boolean logic and Kripke bilattices 

 

Now we will test our formalisms on a logic related with a Boolean truth-functional semantics. Namely, 

given a nonempty set W whose elements we call worlds, we consider the Boolean algebra V = P(W) and 

the related product bilattice BW = B(P(W)), we call product Kripke bilattice (see [20]). Obviously, BW is 

defined by setting 

(X, Y) ≤k (X′, Y′) ⇔ X ⊆ X′ e Y ⊆ Y′  ;  (X, Y) ≤t (X′, Y′) ⇔ X ⊆ X′ e Y ⊇ Y′ ; 

~(X, Y) = (Y, X)  ;   ⊥ = (∅,∅)  ; T = (W,W); 

  False = (∅,W) ; True = (W, ∅) 

The intended meaning of a valuation v : F → BW is that, for every formula α, the pair v(α) = (X,Y) 

represents: 

- the set X of worlds in which the available information says that α is true  

- the set Y of worlds in which the available information says that α is false.   

In accordance with the formalisms proposed in Section 4, we have that a bt-system is defined such that, 

for every X∈P(W) and (A,B)∈BW,  

X ╞*  (A,B) provided that  A ⊆ X and B ⊆ −X. 

Moreover, 

Sat = {(A,B) : A∩B = ∅} ; i(X) = (X,−X) ; 

Maxsat = {(X,−X) : X∈P(W)}  ;  Compl = {(X,Y) : X∪Y = W}  . 

We call Kripke-bt-system such a bt-system. 
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Definition 8.1. We call Kripke truth functional semantics the set M of mappings  

m : F → P(W) that are truth-functional in (P(W), ∩, ∪, -) i.e. such that for every α, β ∈F, 

m(α∧β) = m(α)∩m(β)  ;  m(α∨β) = m(α)∪m(β)  ;   m(¬α) = −m(α). 

 

Notice that condition m(¬α) = −m(α) entails that the elements in M are balanced. The intended meaning 

is that, given m ∈ M and α∈F, m(α) is the set of worlds in which α is true.  

As it is well known, we have that if α and α’ are logically equivalent in classical propositional calculus 

then m(α) = m(α’ ). Moreover, m(α) = W for every tautology α and m(α) = ∅ for every contradiction α. 

This entails that Lc(v) is compatible with the logical equivalence and that  

 Tau(α) = (W, ∅)   if α is a tautology 

 Tau(α) = (∅, W)   if α is a contradiction 

 Tau(α) = (∅, ∅)  otherwise.   

To individuate a suitable inferential apparatus for the just defined semantics, at first we will give a 

“symmetric” version of the usual deduction apparatus in classical propositional calculus. Indeed, denote 

by α →tβ  the formula ¬α∨β and by α →fβ the formula β∧¬α. Then we define two rules. The positive 

Modus Ponens enables to obtain β  from α and α →tβ , the negative Modus Ponens enables us to obtain β 

from α and α →fβ. We denote by MP+ and MP- these rules. It is evident that while MP+ is correct in a 

positive sense (i.e. if α and α →tβ  are true, then β is true), MP- is correct in a negative sense (i.e. if α and 

α →fβ  are false, then β is false). Also, we denote by LA one of the sets of logical axioms of classical 

propositional calculus and by ¬LA the set {¬α : α∈LA}.  

 

 

Definition 8.2. We say that a set T of formulas is a theory or that T is closed with respect to positive 

proofs provided that T contains LA and it is closed with respect to MP+. We say that T is an anti-theory or 

that T is closed with respect to negative proofs provided that T contains ¬LA and it is closed with respect 

to MP-.  

 

 Passing to our bilattices-based logic, we call positive Modus Ponens (in brief MP+) the rule defined by 

setting 

〉
◊

→
〈

−+
+

−+

−+−+

),(),(

),(),(
|

IIAA

IIAAt

β
βαα

 

 

where ◊+ is the positive conjunction defined by setting: 

 (A+ , A-)◊
+(I+ , I- ) =  (A+ ∩ I+ , ∅). 
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Such a rule works on the positive information since the negative components of the antecedents in this 

rule do not give information on the conclusion. On the dual side we can define the following rule we call 

the negative Modus Ponens (in brief MP-), 

〉
◊

→
〈

−+
−

−+

−+−+

),(),(

),(),(
|

IIAA

IIAAf

β
βαα

 

where the negative conjunction ◊- is defined by setting 

 (A+, A-)◊
-(I+, I- ) = (∅, A-∩I-).  

In such a case the rule works only on the negative information. 

 Also we will consider the ¬-elimination and the ¬-introduction rules (whose meaning is obvious) 

〉
¬
〈

),(

),(
|

XY

YX

α
α

 ; 〉
¬
〈

),(

),(
|

XY

YX

α
α

 

Notice that a valuation v is closed with respect to these two rules if and only if v is balanced. Also, these 

rules are not independent. Finally a particular role is played by the following inconsistency rule  

〉〈
),(

),(
|

YXk

YX

α
α

  

where the map k is defined by setting k(X,Y) = (X,Y) if X∩Y = ∅ and k(X,Y) = (W,W) otherwise.  Such a 

rule says that if there is a world w in which the information on α is inconsistent, then the information on α 

have to be considered inconsistent in all the worlds.  

 

Proposition 8.3. The proposed rules satisfy the continuity condition.  

 

 Proof. To prove that ◊+ is continuous, let (Ai)i∈I be a directed family of elements of BW  and I ∈BW. 

Then  

 (Supi∈I (Ai
+

 , Ai ¯ ))◊+(I+,I ¯) = (∪i Ai
+, ∪i Ai ¯ ) ◊+(I+

 , I ¯) = ((∪i Ai
+) ∩ I+ , ∅)  

                                              = (∪i (Ai
+∩I+), ∅) = Supi∈I,(Ai

+ ∩ I+ , ∅) 

                                              = Supi∈I((Ai
+ , Ai ¯)◊+(I+, I  ¯)). 

In a similar way one proves that ◊- is continuous. To prove that ~ is continuous we observe that 

~(Supi∈I Ai) = ~(∪i Ai
+, ∪i Ai ¯) = (∪i Ai

-, ∪i Ai 
+) = Supi∈I ~Ai . 

To prove that k is continuous, assume that ∪i Ai∈I
+ and ∪i∈IAi ¯ are disjoint. Then, since for every i∈I,  Ai

+ 

and Ai ¯ are disjoint,  

 k(Supi∈IAi) = k(∪i Ai
+, ∪i Ai ¯) =  (∪i Ai

+, ∪i Ai ¯) = Supi∈I(Ai
+, Ai ¯) =  Supi∈Ik(Ai). 

Assume that there is a word w∈(∪i∈I Ai
+)∩(∪i∈IAi ¯), then there are i and j such that w∈Ai

+∩Aj¯. Since 

(Ai)i∈I is directed, there is Ah such that Ai
+⊆Ah

+, Ai
-⊆Ah

-, Aj
+⊆Ah

+, Aj
-⊆Ah

-, . This entails that w∈ Ah
+∩ Ah

-  

and therefore, 

 k(Supi∈IAi) = k(∪i Ai
+, ∪i Ai ¯) =  (W, W) = k(Ah) =  Supi∈Ik(Ai). 
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Definition 8.4. We call Kripke deduction system, in brief K-system, the deduction system in the Kripke 

bilattice BW whose rules are MP+and MP- and whose BW-set of logical axioms is defined by setting 









 ∅∅
¬∈  ∅

∈  ∅
=

otherwise

LAifW

LAif

la

),(

),(

)(W,

)( α
α

α  

It is intended that the K-system contains the fusion rule. The proof of the following proposition is matter 

of routine. 

 

Proposition 8.5. Given a valuation v, the following equivalences hold true 

a) v ⊇k la  ⇔  v+(α) = W and v-(¬α) = W for every α∈LA 

b) v is closed with respect to MP+  ⇔  v+(β) ⊇ v+(α)∩v+(α →tβ)  for every α and β  

c) v is closed with respect to MP-  ⇔  v-(β) ⊇ v-(α)∩v-(α →fβ) for every α and β 

d) v is closed with respect to the ¬-introduction and the ¬-elimination rules  

                ⇔ v(¬α) = ∼v(α)  ⇔  v+(α) = v-(¬α) and v-(α) = v+(¬α) for every α 

e) v is closed with respect to the inconsistency rule ⇔  either v is pointwise satisfiable or v = v♦. 

 

Notice that the sets Sat, Maxsat, Compl, can be also defined by the lattice operations in BW. Indeed, 

 (X,Y) ∈ Sat ⇔ (X,Y)∧t∼(X,Y) ≤k False 

 (X,Y) ∈ Maxsat ⇔  (X,Y)∨t∼(X,Y) = True ⇔  (X,Y)∧t∼(X,Y) = False.  

 (X,Y) ∈ Compl ⇔  (X,Y)∨t∼(X,Y) ≥k True ⇔  (X,Y)∧t∼(X,Y) ≥k False.  

As it is usual in formal logic, there is no difficulty to prove the correctness of the considered inferential 

apparatus. 

 

Proposition 8.6. The K-system is correct with respect to the truth-functional semantics M. 

  

 Proof. It is evident that if m∈M, then m ⊇k la and that m is closed with respect to the ¬-introduction 

rule, the ¬-elimination rule and the inconsistency rule. To prove that m is closed with respect to MP+, it is 

sufficient to observe that 

 m+(β) = m(β) ⊇ m(α)∩m(β) = m(α)∩(m(β))∪−m(α)) = m(α)∩m(β∨¬α) = m+(α)∩m+(β∨¬α)    

To prove that m is closed with respect to MP-, we observe that  

 m(β) ⊆ m(α)∪(m(β)∩−m(α)) = m(α)∪m(β∧¬α)  

and therefore that 

 m-(β) = −m(β) ⊇ −m(α)∩−m(β∧¬α) = m-(α)∩m-(β∧¬α). 

 

 



Chapter 4:  Kripke-based bilattice logic 

73 
 

9. An isomorphic bilattice  

 

In order to find a completeness theorem relating M with the proposed K-system, it is useful to introduce 

the following bilattice. 

 

Definition 9.1. Let P(F) be the Boolean algebra of all the subsets of F and denote by BF the associated 

product bilattice B(P(F)). Then we call formulas based bilattice the bilattice BF
W obtained as the direct 

power of the bilattice BF with index set W. We call W-valuation the elements of such a bilattice. 

 

Then a W-valuation U : W → BF is defined by a pair (U+,U-) of functions from W into P(F) whose 

intended interpretation is that, for every world w,  

- U+(w)  is the set of formulas the available information suggests to be true in w 

- U-(w) is the set of formulas the available information suggests to be false in w.  

The following theorem shows that the bilattices BW
F and BF

W are isomorphic. 

 

Theorem 9.2. Define the map H :  BW
F → BF

W by setting, for every v∈ BW
F, 

  H(v)(w) = (Tv(w), Fv(w)) 

where,  

  Tv(w) = {α : w∈v+(α)}  and  Fv(w) = {α : w∈v-(α)}. 

Then H is an isomorphism between BW
F and BF

W whose inverse is the function K : BF
W → BW

F such that, 

for every U ∈ BF
W and α∈F, 

  K(U)(α) = ({w: α ∈ U+(w)},  { w: α∈ U-(w)}). 

 

Proof. It is immediate that H and K are both one-to-one and H-1 = K. Moreover, 

u ≤k v ⇔ for every α∈F, u(α) ≤k v(α) ⇔ for every α∈F u+(α) ⊆ v+(α) and u-(α) ⊆ v-(α) ⇔ for every 

w∈W,{α : w∈u+(α)} ⊆ {α : w∈v+(α)} and {α : w∈u-(α)} ⊆ {α : w∈v-(α)} ⇔ for every w∈W, 

H(u)(w) ≤k H(v)(w) ⇔ H(u) ≤k H(v).  

and 

u ≤t v ⇔ for every α∈F, u(α) ≤t v(α) ⇔ for every α∈F u+(α) ⊆ v+(α) and u-(α) ⊇ v-(α) ⇔ for every 

w∈W, { α : w∈u+(α)} ⊆ {α : w∈v+(α)} and {α : w∈u-(α)} ⊇ {α : w∈v-(α)}  ⇔ for every w∈W, 

H(u)(w) ≤t H(v)(w) ⇔ H(u) ≤t H(v). 

Finally, 

 H(~v)(w) = H((v-, v+))(w) = ({α : w∈v-(α)},{ α : w∈v+(α)})  

                     = ~ ({α : w∈v+(α)}, { α : w∈v-(α)}) = ~H(v)(w). 
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Observe that, H(v⊥) is the map constantly equal to (∅,∅), H(vT) the map constantly equal to (F,F) and 

H(la) the map constantly equal to (LA,¬LA). 

 

Definition 9.3. Let U be an element in BF
W, then we say that 

 - U is pointwise satisfiable if, for every w∈W, U+(w)∩U-(w) = ∅ 

 - U is closed with respect to MP+ if, for every w∈W, U+(w) is closed with respect to MP+   

 - U is closed with respect to MP- if, for every w∈W, U-(w) is closed with respect to MP-   

 - U is balanced if, for every w∈W,  

  α∈U+(w) ⇔ ¬α∈U-(w)   and  α∈U-(w) ⇔ ¬α∈U+(w). 

 - U is complete if, for every w∈W, U+(w) is a complete and U-(w) = -U+(w). 

 

 Proposition 9.4. Given v ∈ BW
F, 

 i)    v ⊇k la   ⇔  Tv(w) ⊇ LA and Fv(w) ⊇ ¬LA 

 ii )  v is closed with respect to MP+ ⇔ Tv(w) is closed with respect to MP+ for every w∈W. 

      iii)  v is closed with respect to MP-  ⇔  Fv(w) is closed with respect to MP- for every w∈W. 

      iv)  v is balanced ⇔ v is closed with respect to the ¬-elimination and ¬-introduction rules ⇔  H(v) is 

balanced 

 v) v is closed with respect to the inconsistency rule ⇔  either H(v) is pointwise satisfiable or H(v) is 

constantly equal with (F,F).  

 

 Proof.  Equivalences i), ii ), iii ) and v) are all trivial. To prove iv), assume that v is closed with respect 

to the ¬-introduction and ¬-elimination rules and therefore that, for every α, v+(α) = v-(¬α) and v-(α) = 

v+(¬α). Then  

 α ∈Tv(w) ⇔ w∈v+(α) ⇔ w∈v-(¬α) ⇔ ¬α∈Fv(w)  

and  

 α∈Fv(w) ⇔ w∈v-(α) ⇔ w∈ v+(¬α) ⇔ ¬α∈Tv(w) 

and this proves that H(v) is balanced. Conversely, assume that H(v) is balanced, then 

 w∈v+(α) ⇔ α ∈Tv(w) ⇔ ¬α∈Fv(w)  ⇔ w∈v-(¬α) 

and  

 w∈v-(α) ⇔ α ∈Fv(w) ⇔ ¬α∈Tv(w)  ⇔ w∈v+(¬α). 

 

Now, we are able to characterize the models of Kripke logic as the families of complete theories. 

 

Proposition 9.5. Given m∈M, H(m) is a complete W-valuation. Conversely, if U is a complete W-

valuation, then K(U)∈M. Namely, K(U) = m  where m is defined by setting, for every α ∈ F,  m(α) = 

{ w∈W : α∈U+(w)}.  
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 Proof. Assume that m∈M, then it is immediate that, for every w∈W, Fm(w) = -Tm(w). Moreover, in 

accordance with Proposition 8.6, m is closed with respect to MP+ and m⊇kla. By Proposition 9.4 this 

entails that Tm(w) contains LA and it is closed with respect to MP+. Then Tm(w) is a theory. To prove that 

Tm(w) is complete, observe that, 

  α∈ Tm(w) ⇔  w ∈ m(α) ⇔ w∉m(¬α) ⇔ ¬α∉ Tm(w). 

 Conversely, assume that for every w∈W, U+(w) is a complete and that U-(w) = − U+(w) and define m 

by setting  m(α) = {w∈W : α∈U+(w)}. Then m is truth-functional. Indeed, since U+(w) is closed under 

deductions, 

 w∈ m(γ∧β) ⇔ γ∧β ∈ U+(w)  ⇔ γ∈U+(w)  and β∈U+(w)  

                        ⇔ w ∈ m(γ) and w ∈ m(β) ⇔  w ∈ m(γ)∩m(β).  

Then m(γ∧β) = m(γ)∩m(β). Moreover, since U+(w) is complete 

 w∈ m(γ∨β) ⇔ γ∨β∈U+(w) ⇔ γ∈U+(w) or β∈U+(w)  

                        ⇔ w∈m(γ) or w∈m(β) ⇔  w ∈ m(γ)∪m(β).  

This means that m(γ∨β) = m(γ)∪m(β). Finally,   

 w ∈ m(¬γ) ⇔ ¬γ ∈U+(w) ⇔ γ ∉U+(w) ⇔ w ∉ m(γ) 

and this proves that m(¬γ) = -m(γ). 

On the other hand, since for every w∈W,  

 w∈-m(α) ⇔ α∉U+(w) ⇔ α∈U-(w), 

we have also  

 m(α) = (m(α), -m(α)) = ({w: α ∈ U+(w)},  { w: α∈ U-(w)})= K(U)(α). 

 

Corollary 9.6. Given a valuation v, a model m of v exists if and only if there is a family (Tw)w∈W of 

complete theories such that Tv(w) ⊆ Tw ⊆ -Fv(w). The model m is obtained by setting, for every formula α, 

m(α) = {w∈W : α∈Tw}.  

 

 Proof. It is evident that if a model m of v exists, then, H(m) is a complete W-valuation and, since m 

≥kv, H(m) ≥kH(v). This entails that  (H+(m)(w))w∈W  is a family of complete theories such that Tv(w) ⊆ 

H+(m)(w) ⊆ -Fv(w).   

 Conversely, consider a family of complete theories (Tw)w∈W  such that Tv(w) ⊆ Tw ⊆ -Fv(w). Then we 

can consider the W-valuation U obtained by setting U+(w) = Tw and U-(w) = -Tw . By definition U is 

complete and therefore by setting m(α) = {w∈W : α∈Tw} we obtain an element m of M such that m = 

K(U). Since by hypothesis Tv(w) ⊆ Tw and -Tw ⊇ Fv(w), we have m = K(U) ≥k v, i.e. m╞ v.     

  

Proposition 9.7. Given a valuation v ∈ BW
F, v ≠ vT,  the following are equivalents: 

i)  v is a theory 
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ii ) Tv(w) is a consistent theory for every w∈W and H(v) is balanced. 

iii ) Fv(w) is a consistent anti-theory for every w∈W and H(v) is balanced. 

 

 Proof. The implications i) ⇒ ii ) and i) ⇒ iii ) are evident. To prove that ii ) ⇒ i) we observe that H(v) is 

pointwise satisfiable and therefore v is closed with respect to the inconsistency rule. Indeed, assume that 

there are α∈F and w∈W such that α∈Tv(w)∩Fv(w). Then, since H(v) is balanced,  ¬α∈Tv(w) and 

therefore Tv(w) is inconsistent. This contradict the hypothesis Tv(w) ≠ F. To prove the closure of v with 

respect to MP- we prove that Fv(w) is closed with respect to MP-. Now if α and α→fβ are in Fv(w), then 

¬α and ¬(β∧¬α)∈ 
 Tv(w). Since Tv(w) is a theory, this means that ¬α and ¬α→t¬β∈ Tv(w) and therefore 

¬β∈ Tv(w). Thus, since H(v) is balanced, we can conclude that β ∈ Fv(w). In a similar way one proves 

that iii ) ⇒ i).   

 

10. The completeness theorem 

 

In Section 8 we proved the correctness of the considered inferential apparatus. Taking in account the 

results of Section 9 we are ready to prove the completeness, too.  

  

Proposition 10.1. The K-system is complete with respect to the truth-functional semantics M. 

 

  Proof. Since both the elements in M and the fixed points of D are balanced, by Proposition 7.6 it is 

sufficient to prove that, for every formula α, there is a model mα  of v such that mα(α) = v+(α). Now, since 

v is fixed point of D, for every w∈W, Tv(w) is a consistent theory that Tv(w)⊇¬Fv(w) and Fv(w)⊇¬Tv(w). 

Define Uα = (U+
α, U-

α)∈BF
W  by setting: 

 - U+
α(w) equal to any complete theory extending  Tv(w) in the case α ∈ Tv(w)  

 - U+
α(w) equal to any complete theory extending Tv(w)∪{ ¬α} in the case α∉ Tv(w) 

 - U-
α(w) = −U+

α(w).  

Then U+
α(w) is a complete extension of Tv(w) such that, trivially, 

 α ∈ U+
α(w)  ⇔  α ∈ Tv(w). 

Now, by Corollary 9.6, Uα is associated with an element mα in M. Namely, mα is defined by the model 

mα∈M such that mα(β) = {w : β∈ U+
α(w)} for every formula β. To prove that mα is a model of v, we 

observe that, by definition, U+
α(w)⊇Tv(w). To prove that U+

α(w) ⊆ -Fv(w) we observe that, for every β ∈ 

U+
α(w),  ¬β∉ U+

α(w) and therefore ¬β∉Tv(w). So β ∉Fv(w). This proves that mα is a model of v. To 

prove that mα(α) = v+(α), we observe that 

 w∈ mα(α)  ⇔  α ∈ U+
α(w)  ⇔  α ∈ Tv(w)  ⇔  w ∈ v+(α). 
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 We can summarize the results in this section as follows. 

  

Theorem 10.2. The Kripke truth-functional semantics and the Kripke deduction system define a bilattice-

based fuzzy logic. 

 

We conclude such a section by emphasizing the algebraic features of the fixed points of D. Indeed, denote 

by F/≡ the Lindenbaum algebra of the propositional calculus and for every valuation v set  

  [Tv(w)] = {[ α] ∈ F/≡ : α ∈ Tv(w)} and [Fv(w)] = {[ α] ∈ F/≡ : α ∈ Fv(w)}. 

Then if v is a fixed point of D, [Tv
w] is a proper filter and [Fv

w] the corresponding dual ideal in F/≡. If v = 

m with m ∈M, then [Tv
w] is maximal and [Fv

w] is its complement. 

 

 

11. Inconsistency-tolerant Kripke logic  

 

In the just considered fuzzy bilattice logic there is no tolerance with respect to the inconsistency of the 

information. Indeed, assume that in a given valuation v there is a formula α such that v+(α)∩v-(α) ≠ 0. 

Then in such a logic no model exists for v and therefore Lc(v) = v♦. So,  the whole information content of v 

is useless. This is disturbing since the utility of bilattice theory is also to manage inconsistency. In 

alternative, we can attempt to consider the following inconsistency-tolerant logic. At first we observe that 

given a bilattice B, we can obtain a bt-system by assuming that the valuation structure V coincides with B, 

in a sense. 

  

Proposition 11.1. Given a bilattice B, we obtain a bt-system (V, B, ╞*) by setting V = (B, ≤t) and λ ╞*  x 

⇔ λ ≥kx. 

In such a system  

 Sat = B  ;  Maxsat = Compl = {T}  ;   i(λ) = λ. 

Moreover, if M ⊆ VF is a semantics, for every m∈M 

 m╞ v provided ⇔ m⊇kv, 

and therefore,  

 Lc(v)(α) = Infk{ m(α) :  m ⊇k v}. 

 

It is evident that in such a case the set Sat, Maxsat and Compl are meaningless. Also, we are interested in 

the following semantics in BW. 
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Definition 11.2.  Let M be the Kripke truth-functional semantics given in Definition 8.1 and, for every 

m∈M and X⊂W, define mX by setting mX = m∨k(X,X). Then the inconsistency-tolerant Kripke semantics is 

defined by setting Minc = {mX : X⊂W, m∈M} .  

 

Observe that if α is a tautology, then mX(α) = (W, X), if α is a contradiction, then mX(α) = (X, W). 

Moreover, mX is compatible with the logical equivalence.  

 

Proposition 11.3. Let v : F → BW be an initial valuation and set I = ∪α∈Fv+(α)∩v-(α). Then mX ╞ v only if 

X⊇I. Moreover, for every X⊂W, denote by vX the valuation defined by setting vX(α) =  (v+(α)−X, v-(α)−X) 

for every α∈F. Then the following are equivalent: 

 i)    mX ╞ v  

 ii)  mX ╞ vI , X ⊇ I. 

 iii) m ⊇k v
X   

Consequently, 

 Lc(v) = ∩k{ mX : m∈M, I ⊆X⊂W, m ⊇k v
X}  (11.1) 

and therefore the BW-set of tautologies coincides with the one defined by M. 

 

 Proof. If mX ╞ v then  for every α∈F, m(α)∪X ⊇ v+(α) and  −m(α)∪X ⊇ v-(α) and therefore 

 X = (m(α)∪X)∩(−m(α)∪X) ⊇ v+(α)∩v-(α). 

This entails that X ⊇ I.  

 i) ⇒ ii ). Assume that mX ╞ v, then it is evident that  mX ╞ vI  and  X⊇I.   

 ii ) ⇒ iii ). Assume that mX ╞ vI  with X⊇I, then, mX ⊇k v
I and therefore for every α∈F, m(α)∪X ⊇ 

v+(α)−I and  (−m(α))∪X ⊇ v-(α)-I. In turn this entails m(α) ⊇ (v+(α)-I)−X and  −m(α) ⊇ (v-(α)-I)−X and 

therefore m(α) ⊇ v+(α)−X and  −m(α) ⊇ v-(α)−X. So, m ⊇kv
X. 

 iii ) ⇒ i) Observe that 

m ⊇kv
X ⇒ mX ╞ v ⇒ for every α∈F, m(α) ⊇ v+(α)−X and  −m(α) ⊇ v-(α)−X  ⇒ for every α∈F, m(α)∪X 

⊇ v+(α) and  −m(α)∪X ⊇ v-(α)  ⇒  mX ╞ v.  

 

Then, even if there is α such that v+(α)∩v-(α) ≠ ∅, it is again possible that v admits a model. This since 

we can search for models mX of the pointwise consistent valuation vI such that X ⊇I.  

 

Definition 11.4. We call inconsistency-tolerant Kripke deduction system, in brief t-K-system, the 

deduction system obtained from the K-system by deleting the inconsistency rule. We denote by Dt the 

related deduction operator. 

 

Observe that the inconsistency rule is deleted since is useless. Indeed the function k is the identity. 
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The proof of the following proposition is similar with the one of Proposition 9.7. 

 

Proposition 11.5. Given a valuation v ∈ BW
F, the following are equivalent: 

 i)  v is a fixed point of Dt 

 ii) Tv(w) is a theory for every w∈W and H(v) is balanced. 

 iii ) Fv(w) is an anti-theory for every w∈W and H(v) is balanced. 

 

Proposition 11.6. The t-K-system is correct with respect to the semantics Minc. 

  

 Proof. Let mX = m∨k(X,X)∈M inc then mX ⊇m ⊇k la. Moreover, since  

 mX(¬α) = (m(¬α)∪X, -m(¬α)∪X)  = ((-m(α))∪X, m(α)∪X) = ~mX(α). 

mX is closed with respect to the ¬-introduction and the ¬-elimination rules. To prove that mX is closed 

with respect to MP+, it is sufficient to observe that 

 X∪m(β)⊇ X∪(m(α)∩m(β)) = X∪(m(α)∩(m(β)∪−m(α)))  

                  = X∪(m(α)∩m(β∨¬α)) = (m(α)∪X)∩(m(β∨¬α)∪X).    

To prove that mX is closed with respect to MP-, we observe that  

 X∪−m(β)⊇ X∪(−m(α)∩−m(β)) = X∪(−m(α)∩(−m(β)∪m(α))) 

                   = X∪(−m(α)∩−(m(β)∩-m(α))) = X∪(−m(α)∩−m(β∧¬α))  

                = (X∪−m(α))∩(X∪−m(β∧¬α)). 

 

Proposition 11.7. The t-K-system is complete with respect to the semantics Minc. 

 

 Proof. Since both the elements in Minc and the fixed points of Dt are balanced, by Proposition 7.6 it is 

sufficient to prove that, if v is a fixed point of Dt different from vT then for every formula α, there is a 

model nα∈M inc of v such that the first component of nα(α) is v+(α). Now, since v is a fixed point of Dt, by 

Proposition 11.5, given w∈W either Tv(w) = F or Tv(w) is a consistent theory closed under deductions. We 

set  

 X = {w∈W : Tv(w) = F} = ∩γ∈Fv+(γ). 

It is immediate that since v ≠ vT, X ≠ W. Also, we define Uα = (U+
α, U-

α)∈BF
W by setting: 

 - U+
α(w) equal to any complete theory if w∈X 

 - U+
α(w) equal to any complete theory extending  Tv(w) if w∉X and α ∈ Tv(w)  

 - U+
α(w) equal to any complete theory extending Tv(w)∪{ ¬α} if w∉X and α∉ Tv(w) 

 - U-
α(w) = −U+

α(w) for every w∈W.  

It is evident that, for every w∉X, U+
α(w) is a complete extension of Tv(w) such that, 

 α ∈ U+
α(w)  ⇔  α ∈ Tv(w). 
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Now, by Proposition 9.5,  if we define mα by setting mα(β) = {w : β∈U+
α(w)}, then mα  is an element of M 

such that H(mα) = Uα. We claim that mα∨k(X,X) is a model of v, i.e., by Proposition 11.3, that, for every 

β∈F, 

 mα(β) ⊇ v+(β)-X  and  -mα(β) ⊇ v-(β)-X.  (11.2) 

To this aim, at first we observe that, for every w∉X  

 (U+
α(w), U-

α(w)) ≥k (T
v(w), Fv(w)).  (11.3) 

Indeed, by definition, U+
α(w)⊇Tv(w). To prove that U-

α(w) ⊇ Fv(w) observe that, since v is closed with 

respect to the ¬-introduction and the ¬-elimination rule, Tv(w) ⊇ ¬Fv(w) and Fv(w) ⊇¬Tv(w). Then, for 

every β ∈ Fv(w), since ¬β ∈ Tv(w), it is also ¬β ∈ U+
α(w). In turn, since U+

α(w) is consistent, this entails 

that β∉U+
α(w) and therefore β∈U-

α(w). Coming back to (11.2), assume that w∈v+(β)-X, then β∈Tv(w) 

and therefore, since w∉X, β∈U+
α(w). Then w∈mα(β). Assume that  

w∈v-(β)-X, then β∈Fv(w) and therefore β∈U-
α(w). Then β∉U+

α(w) and this entails that w∈-mα(β).   

To prove that the first component of (mα∨k(X,X))(α) is v+(α), i.e. that   

 w ∈ mα(α)∪X ⇔ w∈ v+(α), 

we observe that such an equivalence is evident in the case w∈X. Otherwise 

  w∈ mα(α)  ⇔  α ∈ U+
α(w)   ⇔  α ∈ Tv(w)  ⇔  w ∈ v+(α).  

We can summarize the results in this section as follows. 

  

Theorem 11.8. The semantics Minc and the t-K-deduction system define a bilattice-based fuzzy logic. 

 

 

12. Extending the Kripke bilattice logic  

 

Perhaps it is possible to extend the just considered logic related to Kripke-bt-systems to obtain similar 

logics in any bt-system. Even we will consider such a question in a future work, in this section we sketch 

some ideas and results.  

 

Definition 12.1. Given any bt-system (V, B, ╞*) in a bilattice B with a negation, the canonical semantics 

associated with (V, B, ╞*) is the semantics defined by the class of maps n : F → B which are B-truth-

functional in (B, ∧t, ∨t, ~), i. e. such that 

   n(α∧β) = n(α)∧t n(β)  ;   n(α∨β) = n(α)∨t n(β)  ;  n(¬α) = ~n(α) 

and such that, for every formula α, n(α) is complete and satisfiable. 

 

The following proposition shows that such a definition extends the one of Kripke semantics. 
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Proposition 12.2. Let M be the Kripke semantics. Then, given n : F → BW, the following are equivalent: 

 i)  n∈M  

 ii) n is BW-truth-functional and its values are satisfiable and complete 

iii ) n is BW-truth-functional and its values in the propositional variables are satisfiable and complete. 

Therefore, M is the canonical semantics associated with the Kripke-bt-system. 

Proof. i) ⇒ ii ) Assume that n ∈ M, i.e. that there is m∈M such that n = i om. It is immediate that the 

values assumed by n are complete and satisfiable. Moreover   

   n(α∧β) = (m(α∧β),-m(α∧β)) = (m(α)∩m(β),-(m(α)∩m(β))) =  

             =(m(α)∩m(β),-m(α)∪-m(β)) = n(α)∧tn(β). 

   n(α∨β) = (m(α∨β),-m(α∨β)) = (m(α)∪m(β),-(m(α)∪m(β)))   

                  = (m(α)∪m(β),-m(α)∩-m(β)) = n(α)∨tn(β). 

  n(¬α) = (m(¬α), -m(¬α)) = (-m(α), m(α)) = ~n(α). 

ii ) ⇒ iii ) Evident. 

iii ) ⇒i) Let n : F → BW  a BW-truth functional valuation whose values in the propositional variables are 

complete and satisfiable. Let m the element of M defined in a truth-functional way by assigning to every 

propositional variable pi the value m(pi) = n+(pi). We claim that n coincides with m. Indeed, since n is 

truth functional by hypothesis and m is truth functional by implication i)⇒ii ), it is sufficient to prove that 

n(pi) = m(pi) for every propositional variable pi. On the other hand, since n(pi) is satisfiable and complete, 

 n(pi) = (n+(pi), n-(pi)) =  (n+(pi) , -n+(pi)) = m(pi). 

 

Definition 12.3. Given any bt-system (V, B,╞*) in a bilattice B with a negation, we call canonical 

deduction apparatus associated with (V, B,╞*) the deduction apparatus (IR, la) such that la is defined by 

setting, for every α∈F, 









 ⊥
¬∈  

∈  
=

otherwise

LAifFalse

LAifTrue

la α
α

α )(  

and IR is the set of the following inference rules 
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〉
¬
〈

λ
λ

α
α

~
|     (¬-introduction) 

 

〉〈
)(

|
λ

λ
α
α

k
        (consistency) 

 
where k(λ) = λ if λ∈Sat and k(λ) = T, otherwise.  

 

Obviously, some trivial hypotheses on B are necessary to obtain the continuity condition for the inference 

rules. The following proposition shows that such a definition extends the one of K-system.  

 

Proposition 12.4. The K-system is the canonical deduction apparatus associated with the Kripke-bt-

system.  

 

Proof. We observe only that   

 (A+, A-)◊
-(I+, I-) = (A+, A-)∧k(I+, I-)∧kTrue and  

 (A+, A-)◊
-(I+, I-) = (A+ , A-)∧k(I+, I-)∧kFalse.  

 

 We can give similar definitions by referring to the inconsistency-tolerant Kripke logic. Indeed, it is 

possible to consider the same deduction apparatus apart the inconsistency rule and the semantics 

suggested by iii ) of the following proposition. 

 

Definition 12.5. Given any bt-system (V, B, ╞*) in a bilattice B with a negation, the canonical 

inconsistency-tolerant semantics associated with (V, B, ╞*) is the semantics defined by the class of maps 

n : F → B which are B-truth-functional in (B, ∧t, ∨t, ~) and such that there is c ≠ T such that, for every 

formula α, n(α) is complete and n(α)∧k∼n(α) = c 

 

Proposition 12.6. Let M inc be the inconsistency-tolerant Kripke semantics and n : F → BW be a map, then 

the following are equivalent: 

 i)  n∈M inc  

ii ) n is BW-truth-functional and there is c ≠ T such that, for every formula α, n(α) is complete and 

n(α)∧k∼n(α) = c 

iii ) n is BW-truth-functional and there is c ≠ T such that, for every propositional variable pi  the value of 

n(pi) is complete and n(pi)∧k∼n(pi) = c. 

Consequently, Definition 12.5 extends the notion of inconsistency-tolerant Kripke semantics. 

 

Proof. i) ⇒ ii ) Assume that n∈M inc and therefore that there is m ∈M and X ⊂ W such that n = mX, then, 

for every formula α,   
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 n(α)∧k∼n(α) =  (m(α)∪X,-m(α)∪X)∧k (-m(α)∪X, m(α)∪X) = 

 = ((m(α)∪X)∩(-m(α)∪X), (m(α)∪X)∩(-m(α)∪X) = (X,X)  

where (X,X) ≠ (W,W). It is evident that n is pointwise complete. To prove that n is BW-truth-functional, we 

observe that, since BW is distributive, 

 n(α∧β) = m(α∧β)∨k(X,X) = (m(α)∧tm(β))∨k(X,X) = 

                  = (m(α)∨k(X,X))∧t(m(β)∨k(X,X)) = n(α)∧tn(β). 

Likewise,  

 n(α∨β) = m(α∨β)∨k(X,X) = (m(α)∨tm(β))∨k(X,X) = 

                 = (m(α)∨k(X,X))∨t(m(β)∨k(X,X)) =  n(α)∨tn(β). 

Finally,  

  n(¬α) = m(¬α)∨k(X,X) = ∼m(α)∨k(X,X) = ((-m(α))∪X, m(α)∪X) = 

                 = ~(m(α)∨k(X,X)) = ~n(α). 

ii ) ⇒ iii ) Evident. 

iii ) ⇒ i) Let n : F → BW  a BW-truth functional valuation such that, for every propositional variable pi,  

n(pi) is complete and n(pi)∧∼n(pi) = (X,X), X≠W. Let m the element of M defined in a truth-functional way 

by assigning to every propositional variable pi the value m(pi) = n+(pi)−X. We claim that n coincides with 

mX. Indeed, given a propositional variable pi, by hypothesis n+(pi)∪n-(pi) = W and n+(pi)∩n-(pi) = X and 

therefore, since  {n+(pi)-X, n-(pi)} is a partition of W, n-(pi) = -(n+(pi)-X). Then  

 n(pi) = (n+(pi), n-(pi)) = ((n+(pi)-X)∪X, n-(pi)∪X) =  

             = ((n+(pi)−X)∪X ,  -(n+(pi)−X)∪X) = m(pi)∨k(X,X) = mX(pi). 

Now, n is truth functional by hypothesis and mX is truth-functional by implication i) ⇒ ii ). Then the fact 

that n coincides with mX in the propositional variables entails that n = mX.  

 

 

13. About the meaning of the canonical deduction system 

 

To give an idea of the meaning of a canonical deduction apparatus, assume that B is the product bt-system 

B(V) defined in Proposition 5.2 and G is a set of generators of V, i.e. a set of truth values such that for 

every λ∈V, λ = sup{ g∈G | g≤λ}. For example, if V is the real numbers interval [0,1] we can put G equal 

to the set of rational numbers in [0,1]. If V is the Boolean algebra BW, we can assume that G is the set of 

singletons. Under these conditions, we can consider a bilattice similar to the one considered in Section 9, 

namely the bilattice BF
G obtained as the direct power of BF with index set G. Also, we can associate every 

valuation v with the family H(v) = (Tv(λ), Fv(λ))λ∈G  where Tv(λ) and  Fv(λ) are the positive λ-cut and 

negative λ-cut of v defined by 

 Tv(λ) = {α | v+(α) ≥ λ} and Fv(λ) = {α | v-(α) ≥ λ}. 
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Then if all the elements in G are prime, H is an algebraic homomorphism H : BF → BF
G from the bilattice 

BF into BF
G.  Since  

 v(α) = (sup{ g∈G | α∈ Tv(λ)}, sup{ g∈G | α∈ Fv(λ)}), 

such a homomorphism is an embedding.   

If, for example we consider the the canonical inconsistency-tolerant system. Then the fixed points of the 

related deduction operator are the valuations v such that, for every α, β ∈F,  

 i)   v(α) ≥kTrue for every α∈LA  

 ii )  v(α) ≥k False for every α∈¬LA 

 iii ) v(β) ≥k v(α)∧kv(α →tβ)∧kTrue 

 iv) v(β) ≥k v(α)∧kv(α →fβ)∧kFalse 

 v) v(¬α) = ∼v(α), 

i.e. such that  

 i)    v+(α) = 1 for every α∈LA  

 ii )   v-(α) = 1  for every α∈¬LA 

 iii )  v+(β) ≥ v+(α)∧v+(α →tβ) 

 iv)  v-(β) ≥ v-(α)∧v-(α →fβ) 

 v)   v+(¬α) = v-(α) ; v-(¬α) = v+(α) 

In turn, it is evident that v satisfies these conditions if and only if, for every λ∈G,  

 - Tv(λ)  is a theory 

 - Fv(λ)  is an anti-theory 

 - α∈Fv(λ) ⇔ ¬α ∈Tv(λ)  ;   α∈Tv(λ) ⇔ ¬α ∈Fv(λ). 

Thus, a canonical inconsistency-tolerant system is able to generate a family (Tv(λ), Fv(λ))λ∈G  where Tv(λ) 

is the set of formulas we can prove at degree λ and Fv(λ) is the set of formulas we can disprove at degree 

λ. 

 

14. Remarks 

 

The just exposed logics are related with the Kripke bilattice logics proposed by Ginsberg. Indeed, in [20] 

a valuation satisfying ii ) of Proposition 11.5 is called W-closed. Moreover, the W-closure of a valuation v 

is defined as the k-intersection of all the W-closed valuations k-containing v. Consequently, in accordance 

with such a proposition, the W-closed valuations coincide with the fixed points of the deduction operator 

Dt and Dt(v) coincides with the W-closure of v. Finally, Ginsberg characterizes the W-closed valuations in 

theoretic bilattice terms by showing that a valuation v is W-closed if and only if 

 1. if β is a consequence of α, then v(α) ≤t v(β) 

 2. v(α∧β) ≥k v(α)∧tv(β) 
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 3. v(¬α) = ∼v(β). 

In accordance with the fact that the W-closed valuations coincide with the fixed points of Dt, this paper 

gives a further characterization of the W-closed valuations by the conditions 

 i) v(α) ≥kTrue for every α∈LA ;    

 ii ) v(α) ≥k False for every α∈¬LA ; 

 iii ) v(β) ≥k v(α)∧kv(α →tβ)∧kTrue ;   

 iv) v(β) ≥k v(α)∧kv(α →fβ)∧kFalse ; 

 v) v(¬α) = ∼v(α). 

This means that our formalisms give a semantics and a deduction system in Pavelka’s style (as in the 

tradition of logic) for Ginsberg’s notion of W-closure. 

 It is evident that several open questions exist. As an example, an open question is to find suitable 

conditions on a bt-system to obtain that the associated canonical semantics and canonic deduction 

apparatus are related by a completeness theorem. Also, perhaps it is interesting to investigate about the 

connections of these logics with the notions of necessity and possibility in fuzzy set theory (see [17]). 

Indeed, by referring to the product bt-system considered in Section 13, we have that the positive part of a 

theory v is a theory of the generalized necessity logic proposed in [17].  

 However, the main open question is that, in spite of the possible interest of the logics proposed in 

Sections 8-13, every serious investigation about the connection between fuzzy logic and bilattice theory 

leads to face up with the valuation structures usually considered in many-valued logic (see for example 

[6]). While suggestions to connect these structures with bilattice theory are in [8], as far as we know these 

connections are not investigate in the framework of formal logic.  

 

 



CHAPTER 5 

PRESERVATION THEOREMS 

 

1. The cuts of a fuzzy structure  

 

A natural modification of a fuzzy structure is to transform it into a crisp structure by a cutting operation. 

This is done everytime one decides that truth values beyond a given level are sufficient to claim that a 

vague property is satisfied. A precise definition is the following. 

 

Definition 1.1. Let 0 and 1 be the minimum and the maximum in a given valuation structure V and λ∈V.  

Then the function cλ : V →{0,1} is defined by setting  

 cλ(x) = 1    if x ≥ λ 

 cλ(x) = 0   otherwise. 

Given a fuzzy subset s : S → V, the λ-cut of s is the crisp fuzzy subset sλ = cλ ◦ s.  

 

Equivalently, the λ-cut sλ is the characteristic function of the subset 

  C(s,λ) = {x∈S : s(x) ≥λ}. 

As usual, we identify sλ
 with C(s,λ). A fuzzy subset s is completely determined by the associate family 

(sλ)λ∈V of its cuts. Indeed, we have that, for every x∈S,   

s(x) = supλ∈V λ∧sλ(x) = sup{ λ ∈V : x∈C(s,λ)}. 

Observe that the family (C(s,λ))λ∈V is continuous, i.e. 

C(s,µ) = ∪λ<µC(s,λ). 

 

Definition 1.2. Given a fuzzy structure M and λ∈V, the λ-cut of M is the interpretation Mλ = (D, {0,1}, Iλ) 

in which the constants and the operation symbols are interpreted as in M and such that, for every relation 

symbol r, Iλ(r) is the λ-cut of I(r), i.e. , for every d1,...,dn  in D 

  Iλ(r)(d1,...,dn) = cλ(I(r)(d1,...,dn)). 

 

Equivalently we can define Mλ as the classical structure with the same algebraic structure as M and in 

which  
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Iλ(r) = {(d1,...,dn) : I(r)(d1,...,dn) ≥ λ}. 

It is evident that a fuzzy structure is completely determined by the family of its cuts. Also, we can 

characterize the homomorphism from M to M’ by referencing to the cuts of these structures.  

 

Proposition 1.3. Let M = (D, V, I) and M’ = (D’ ,V’,I’ ) be two fuzzy structures, h a homomorphism from 

Al(M) into Al(M’) and k a homomorphism from VAL(M) into VAL(M’). Then  

 (h, k) is a weak homomorphism  

                           ⇔  h is a weak homomorphism from Mλ to M’k(λ) for every λ∈V. 

Assume that k is an isomorphism, then  

      (h, k) is a homomorphism  

                            ⇔  h is a homomorphism from Mλ to M’k(λ) for every λ∈V. 

 

 Proof. To prove the first part of the proposition, assume that (h,k) is a weak homomorphism, let r be a 

relation symbol and (d1,…,dn)∈ Dn
. Then,  

 (d1,…,dn)∈C(I(r),λ)  ⇔  I(r)(d1,…,dn)≥λ  ⇒  k(I(r)(d1,…,dn)) ≥ k(λ)   

                                         ⇒ I’ (r)(h((d1,…,dn)) ≥ k(λ)   

                                   ⇔  h(d1,…,dn)∈C(I’ (r), k(λ)). 

This proves that h is a weak homomorphism from Mλ to M’k(λ). Vice versa  assume that, for every λ ∈V, h 

is a weak homomorphism from Mλ to M’k(λ). Then, by setting λ = I(r)(d1,…,dn), since (d1,…,dn)∈C(I(r),λ), 

it is h(d1,…,dn) ∈ C(I’ (r), k(λ)) and therefore  

 I’ (r)(h((d1,…,dn)) ≥  k(λ) = k(I(r)(d1,…,dn)).  

This proves that (h,k) is a weak homomorphism from M to M’. 

       To prove the second part of the proposition, assume that k is an isomorphism. Then, in the case (h,k) 

is a homomorphism,  

 (d1,…,dn)∈C(I(r),λ)  ⇔ I(r)(d1,…,dn)≥λ   ⇔  k(I(r)(d1,…,dn)) ≥ k(λ)  

                                         ⇔ I'(r)(h(d1,…,dn)) ≥ k(λ)   

                                    ⇔  h(d1,…,dn)∈C(I’ (r), k(λ)). 

This proves that h is a homomorphism from Mλ to M’k(λ).  

 Conversely, assume that h is a homomorphism from Mλ to M’k(λ) for every λ ∈V. Then, since we have 

just proved that (h,k) is a weak homomorphism, we have only to prove that I’ (r)(h(d1,…,dn)) ≤ 

k(I(r)(d1,…,dn)). Let λ be an element in V such that k(λ) = I’ (r)(h(d1,…,dn)), then h(d1,…,dn)∈C(I’ (r), 

k(λ)) and therefore (d1,…,dn) ∈ C(I(r),λ), i.e. I(r)(d1,…,dn) ≥ λ. Then,  
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k(I(r)(d1,…,dn)) ≥ k(λ) = I’ (r)(h(d1,…,dn)). 

We can describe the connection among a fuzzy model and the associated family of cuts in terms of 

category theory. The objects of such a category are defined as follows. 

 

Definition 1.4. A continuous chain of first order structures is a family (Mλ)λ∈V of crisp first order 

interpretations of a given language with the same domain D and such that, (Iλ(r))λ∈V is a continuous chain 

in Dn for every n-ary relation r.  

 

The morphisms of our category are defined as follows. 

 

Definition 1.5. A weak morphism from a continuous chain (Mλ)λ∈V into a continuous chain (M’ λ)λ∈V’ is a 

pair (h,k) such that k is a homomorphism from VAL(M) into VAL(M’), and h is a weak homomorphism 

from Mλ to M’k(λ) for every λ∈V. 

 

Definition 1.6. The category of continuous chains of first order structures is the category whose objects 

are the continuous chains of first order structures and whose morphisms are the weak morphisms given in 

Definition 1.5.  

 

To proof of the following proposition is immediate. 

 

Proposition 1.7. Let H be the map associating every fuzzy structure M with the related family (Mλ)λ∈V of 

λ-cuts and every morphism (h,k) with (h,k). Then H is a functor from the category of fuzzy structure into 

the category of continuous chains of first order structures.  

 

Proposition 1.8. Let K be the map associating every continuous chain of first order structures (Mλ)λ∈V  

with the fuzzy structure (D,I) whose algebraic part coincides with the common algebraic part of (Mλ)λ∈V 

and such that, for every n-ary relation symbol  

I(r)(d1,…,dn) = Supλ∈VIλ(r) (d1,…,dn). 

Also, assume that K associate every morphism (h, k) with (h, k). Then K is a functor from the category of 

the continuous chains of first order structures into the category of the fuzzy structures. Moreover, K is the 

inverse of H. 
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2. Properties preserved by a cut 

 

Usually a fuzzy structure does not satisfy the same first order properties of its cuts. Nevertheless there is 

an important class of fuzzy formulas for which this holds true. To show this, at first we emphasize some 

properties of the map cλ.  

 

Proposition 2.1. The function cλ is monotone with respect to λ and therefore  

  cλ(x⊗y) ≤ cλ(x)⊗cλ(y). (2.1) 

Assume that λ is idempotent, then  

  cλ(x⊗y) = cλ(x)⊗cλ(y). (2.2) 

 

 Proof.  It is immediate that cλ is monotone and therefore that, since x⊗y ≤ x and x⊗y ≤ y, cλ(x⊗y) ≤ 

cλ(x) and cλ(x⊗y) ≤ cλ(y). So,  cλ(x⊗y)≤ cλ(x)⊗cλ(y). Let λ be idempotent, then to prove the inequality 

cλ(x⊗y) ≥ cλ(x)⊗cλ(y) we observe that 

cλ(x)⊗cλ(y) = 1  ⇒  x  ≥ λ and y ≥λ  ⇒  x⊗y ≥ λ⊗λ = λ ⇒  cλ(x⊗y) = 1. 

we will consider the atomic formulas. 

 

Proposition 2.2. Let M be a fuzzy structure and λ∈V. Then, for every atomic formula α, 

  val(Mλ,α, d1,...,dn) = cλ(val(M,α, d1,...,dn)) (2.3) 

Consequently, given µ ∈V,   

  M ⊧ <α,µ>  ⇔  Mλ ⊧ α for every λ ≤ µ (2.4) 

 Proof. To prove (2.2) observe that if α = r(t1,…,tm), then 

  val(Mλ, α, d1,...,dn) = Iλ(r)(Iλ(t1)(d1,...,dn),..., Iλ(tm)(d1,...,dn))  

                                  = cλ(I(r)(I(t1)(d1,...,dn),..., I(tm)(d1,...,dn)))  

     = cλ(val(M,α,d1,...,dn)). 

 To prove (2.4) assume that M satisfies <α, µ> and therefore that val(M,α, d1,...,dn) ≥ µ for every 

d1,…,dn in D. Then   

val(Mλ,α,d1,...,dn) = cλ(val(M,α,d1,...,dn)) ≥ cλ(µ) = 1 

and this proves that Mλ satisfies α. Assume that Mλ ⊧ α and therefore that cλ(val(M,α, d1,...,dn)) = 1 for 

every λ≤µ. Then val(M,α, d1,...,dn) ≥ λ for every λ≤µ and this proves that val(M,α, d1,...,dn) ≥ µ.        
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Theorem 2.3. Let M be a fuzzy structure and let <α, µ> be a positive fuzzy clause. Then  

  M ⊧ <α,µ> ⇒ Mλ ⊧ α. for every idempotent λ such that λ ≤ µ.  (2.5) 

In the case all the elements λ in V are idempotent, then  

  M ⊧ <α,µ>  ⇔  Mλ ⊧ α for every λ ≤ µ (2.6) 

 

 Proof. In the case α is an atomic formula both (2.5) and (2.6) are immediate consequences of 

Proposition 2.2. Assume that α is the positive clause ∀x1...∀xn(β1∧*... ∧*βt → β) and that M ⊧ <α,µ>. 

Then, 

 val(M, β1, d1,...,dn)⊗...⊗val(M, βt, d1,...,dn)⊗µ ≤ val(M, β, d1,...,dn) 

and therefore, since cλ(µ) = 1 and λ is idempotent, by (2.2) 

 val(Mλ, β1, d1,...,dn))⊗...⊗val(Mλ, βt, d1,...,dn) ≤ val(Mλ,β,d1,...,dn) 

and this proves that Mλ ⊧ α.            

 To prove (2.6), assume that all the elements in V are idempotent and that Mλ ⊧ α for every λ ≤ µ. 

Then, for every d1,...,dn∈D,   

 val(Mλ, β1, d1,...,dn)⊗...⊗val(Mλ, βt, d1,...,dn) ≤ val(Mλ, β, d1,...,dn) 

and therefore, by (2.2), 

 cλ(val(M, β1, d1,...,dn))⊗...⊗cλ(val(M, βt, d1,...,dn)) ≤ cλ(val(M, β, d1,...,dn)). 

Set λ = val(M, β1, d1,...,dn)⊗...⊗val(M, βt, d1,...,dn)⊗µ, then λ≤µ and 

 cλ(val(M, β1, d1,...,dn)) =  ... = cλ(val(M, βt, d1,...,dn)) = 1. 

Consequently cλ(val(M, β, d1,...,dn)) = 1 and therefore  

 val(M, β, d1,...,dn) ≥ λ = val(M, β1, d1,...,dn)⊗...⊗val(M, βt, d1,...,dn)⊗µ. 

Thus, M ⊧ <α,µ>. 

 

Corollary 2.4. Assume that all the elements λ in V are idempotent, let P be a positive program and M be a 

fuzzy structure.  Then  

  M ⊧ P  ⇔  Mλ ⊧ P for every λ ∈V. (2.7) 

Consequently, the maps H and K defined at end of Section 1 defines two functors from the category of 

fuzzy models of P into the category of continuous chain of models of P. 
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In particular, in the case all the elements λ in V are idempotent, given an algebraic structure A and a fuzzy 

subset s of A,  

 (A,s) is a fuzzy subalgebra  ⇔  all the cuts of s are subalgebras of A 

Moreover, the functors H and K defined in Section 1 enable us to identify a fuzzy subsgroup with a 

continuous chain of fuzzy subgroups. Likewise, if S is a set and e a binary fuzzy relation in S, then    

  (S, e) is a similarity  ⇔  all the cuts of e are equivalence relations. 

Moreover we can identify a similarity with a continuous chain of of equivalence relations.  

 

 

3. Connecting valuations and homomorphisms 

 

It is possible to extend to fuzzy logic some preserving theorems of classical first order logic. To do this, 

we consider particular classes of formulas. We say that a logical connective is positive in the valuation 

structure V, if its interpretation in V is an order preserving function. A matrix is positive in V, if is defined 

only by positive connectives in V. An universal formula is positive in V provided that its matrix is positive 

in V. We say that a formula α is identity-free in the case there is no occurrence in α of the identity symbol 

=. 

 

Proposition 3.1. Let (h,k) be a weak homomorphism from M to M’ . Then the following claims hold true. 

 i)   For every matrix α which is positive with respect to V’ and d1,…,dn∈D  

  k(val(M, α, d1,…,dm)) ≤ val(M’, α, h(d1),…,h(dm)) (3.1) 

 ii)   Let h be surjective and let α be an universal formula which is positive with respect to V’  and such 

that both val(M, α) and val(M’, α) are defined. Then  

  k(val(M, α)) ≤ val(M’, α) (3.2) 

 

 Proof. We prove i) by induction on the complexity of α. Indeed, if α is the atomic formula r(t1,…,tn), 

then   

      k(val(M, r(t1,…,tn), d1,…,dm)) 

               = k(I(r)(I(t1)(d1,…,dm),...,I(tn)(d1,...,dm)) 

                                         ≤ I’ (r)(h(I(t1)(d1,…,dm)),...,h(I(tn)(d1,...,dm))) 

                                              = I’ (r)(I’ (t1)(h(d1),…,h(dm)),...,I’ (tn)(h(d1),...,h(dm))) 

                                              = val(M’, r(t1,…,tn), h(d1),…,h(dm)) 
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and this proves that α satisfies (3.1). Assume that (3.1) is satisfied by α1,…,αn and let c be an n-ary 

logical connective which is positive. Then  

 k(val(M , c(α1,…,αn), d1,…,dm)   

                          = k(I(c)(val(M, α1, d1,…,dm),…,val(M, αn,d1,…,dm)) ) 

                          = I’(c)(k(val(M , α1, d1,…,dm)),…, k(val(M, αn, d1,…,dm)))  

                          ≤ I’ (c)(val(M’, α1, h(d1),…, h(dm)),…,val(M’, αn, h(d1),…,h(dm)))  

                          = val(M’, c(α1,…,αn), h(d1),…,h(dm))  

and this proves that (3.1) is satisfied by c(α1,…,αn). 

 To prove ii ), let α = ∀x1...,∀xm(β)  where β is a positive matrix, then    

        k(val(M, α)) = k(Inf{ val(M, β, d1,…,dm) : d1∈D,…,dm ∈D}) 

                            ≤ Inf{k(val(M, β, d1,…,dm)) :  d1∈D,…,dm ∈D} 

                            ≤ Inf{val(M’, β, h(d1),…,h(dm)) : d1∈D,…,dm ∈D} 

                            = Inf{ val(M’, β, d’1,…,d’m) : d’1∈D’ ,…,d’m ∈D’ } = val(M’, α).          

 

Definition 3.2. A homomorphism (h,k) from M to M’  is called inf-preserving in weak sense provided that, 

for every formula α such that both Inf(V(α))) and Inf k(V(α)) exist, 

k(Inf(V(α))) = Inf k(V(α)). 

We say that (h,k) is inf-preserving provided that k is inf-preserving, i.e. 

k(Inf(X)) = Inf k(X) 

for every subset X of V such that both Inf(X) and Inf k(X) exist. 

 

Proposition 3.3. Let (h,k) be a homomorphism from M to M’  and let α be a formula. Then the following 

claims hold true. 

 i)   If α is an identity-free matrix, then for every d1,…,dn∈D  

  val(M’, α, h(d1),…,h(dm)) = k(val(M , α, d1,…,dm)) (3.3) 

 ii)   If  k is inf-preserving in a weak sense and α is an identity-free universal formula, then if both 

val(M ,α) and k(val(M, α)) exist,  

  val(M’, α) ≤ k(val(M, α)) (3.4) 

 iii )  Assume that k be inf-preserving in a weak sense and that h is surjective, then if α is any identity-

free formula such that both val(M’, α, h(d1),…,h(dm)) and val(M, α, d1,…,dm) exist, then 

  val(M’, α, h(d1),…,h(dm)) = k(val(M, α, d1,…,dm)). (3.5) 
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 Proof. The proof of i) is an obvious modification of the proof of i) in Proposition 3.3. To prove ii ), 

assume that α = ∀x1...,∀xm(β)  where β is an identity-free matrix . Then    

 k(val(M, α)) = k(Inf{ val(M, β, d1,…,dm) : d1∈D,…,dm ∈D}) 

                           = Inf{ k(val(M, β, d1,…,dm)) :  d1∈D,…,dm ∈D} 

                           = Inf{ val(M’, β, h(d1),…,h(dm)) : d1∈D,…,dm ∈D} 

                           ≥ Inf{ val(M’, β, d’1,…,d’m) : d’1∈D’ ,…,d’m ∈D’ } = val(M’, α). 

To prove iii ) we observe that, by (3.3), equation (3.5) is satisfied by all the atomic formulas. Assume that 

(3.5) is satisfied by α1,…,αn and let c be an n-ary logical connective. Then  

k(val(M , c(α1,…,αn),d1,…,dm)   

                            = k(I(c)(val(M ,α1, d1,…,dm),…,val(M ,αn, d1,…,dm)) ) 

                           = I’(c)(k(val(M , α1, d1,…,dm)),…, k(val(M , αn, d1,…,dm)))  

                           = I’ (c)(val(M’, α1, h(d1),…, h(dm)),…,val(M’, αn, h(d1),…,h(dm)))  

                           = val(M’, c(α1,…,αn), h(d1),…,h(dm)).  

This proves that (3.5) is satisfied by c(α1,…,αn). Assume that (3.5) is satisfied by β. Then  

 k(val(M, ∀xi(β), d1,…,dm)) = k(Inf{ val(M, β, d1,…,di-1,d,di+ 1,...,dm) :  d∈D})             

                           = Inf{ k(val(M, β, d1,…,di-1,d,di+ 1,...,dm)) :  d∈D} 

                          = Inf{ val(M’, β, h(d1),…, h(di-1), h(d), h(di+ 1),..., h(dm)) :  d∈D)} 

                           = Inf{ val(M’, β, h(d1),…, h(di-1), d’, h(di+ 1),..., h(dm)), d’∈D’ }  

                           = val(M’, α, h(d1),..., h(dm)). 

This proves that (3.5) it is satisfied by ∀xi(β).           

 

An obvious extension of the proof of Proposition 3.3 enables us to prove the following theorem 

emphasizing that every pair of isomorphic fuzzy structures are “elementary equivalent”. 

 

Theorem 3.4. Let (h, k) be an isomorphism between two save fuzzy structures M and M’ . Then, for every 

formula α and d1,…,dn∈D,  

  k(val(M , α, d1,…,dm)) = val(M’, α, h(d1),…,h(dm)) (3.9) 

In particular, for every closed formula α,  

  k(val(M, α)) = val(M’, α) (3.10) 

 

 As an example the map k defined in Example 1 is a valuation isomorphism between the fuzzy 

subgroups M16 and M’16 and this entails that these fuzzy structures are logically equivalent. Notice that if in 
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the valuation structure we consider also the operation ∼ defined by setting ∼x = 1-x, then k is not an 

isomorphism at all. Indeed k(∼0.5) = k(0.5) = 0.9 while ∼k(0.5) = 0.1. This is in accordance with the fact 

that a formula as ∃x(s(x) ↔¬ s(x)) is satisfied in M16  and it is not satisfied in M’16.  

 

Proposition 3.5. Let (h, k) be a homomorphism from M to M’  such that h is surjective and let α be an 

universal formula which is either identity-free or positive, then 

  val(M, α) = 1 ⇒ val(M’, α) = 1 (3.11) 

 Proof. Assume that α = ∀x1...,∀xm(β)  and that val(M, α) = 1, i.e. that val(M ,β, d1,…,dm)) = 1 for 

every d1,…,dm ∈D. Then in the case α is positive by (3.2) in Proposition 3.1  

val(M’, α) ≥ k(val(M, α)) ≥ k(1) = 1. 

In the case α is identity-free, since by (3.3)  

val(M’, β, h(d1),…,h(dm)) = k(val(M , β, d1,…,dm)), 

we have  

val(M’, α, ) = Inf{ val(M’, β, h(d1),…,h(dm)), d1,…,dm ∈D} 

                   = Inf{ k(val(M, β, d1,…,dm)) :  d1,…,dm ∈D } = 1.          

 

4. Preservation theorems for fuzzy formulas 

 

We can reformulate the results in Section 2 in terms of fuzzy properties preserved by homomorphisms. 

 

Proposition 4.1. Let (h, k) be a weak homomorphism from M to M’ with h surjective. Then, for every  

universal fuzzy formula <α,λ> which is positive with respect to V’  and such that both val(M’, α) and 

val(M, α) are defined, 

  M  ⊧<α,λ> ⇒  M’  ⊧ <α, k(λ)> (4.1) 

 Proof. Assume that M  ⊧ <α,λ> and therefore that  val(M, α) ≥λ. Then, by ii ) of Proposition 3.1, 

val(M’, α) ≥ k(val(M, α)) ≥ k(λ) and this proves that M’  ⊧ <α, k(λ)>.        

 

Proposition 4.2. Let (h, k) be a homomorphism from M to M’. Then 

i) if k is injective and inf-preserving in a weak sense, then, for every identity-free universal fuzzy formula 

<α,λ> such that both val(M’, α) and val(M, α) are defined, 

  M’  ⊧ <α, k(λ)> ⇒ M  ⊧ <α,λ> (4.2) 
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ii )  if k is injective and inf-preserving in a weak sense and h is surjective, then, for every identity-free 

fuzzy formula <α,λ> such that both val(M’, α) and val(M, α) are defined, 

  M  ⊧ <α,λ> ⇔  M’  ⊧ <α, k(λ)> (4.3) 

 Proof.  To prove i), assume that M’  ⊧ <α, k(λ)>.  Then, by (3.4), k(val(M, α)) ≥ val(M’, α) ≥ k(λ). 

Since k is injective, this entails that val(M, α) ≥ λ and therefore that M  ⊧ <α,λ>.  

To prove ii ), observe that, by iii ) in Proposition 3.2, 

 M  ⊧ <α,λ> ⇔  val(M, α) ≥ λ   ⇔  k(val(M, α)) ≥ k(λ)  ⇔  val(M’, α) ≥ k(λ)                           

                         ⇔  M’  ⊧ <α, k(λ)>.           

 

Theorem 4.3. Let (h, k) be an isomorphism from the safe structure M into the safe structure to M’. Then, 

for every fuzzy formula <α,λ>,   

  M  ⊧  <α,λ>   ⇔   M’  ⊧ <α, k(λ)>. (4.4) 

 

 As an immediate consequence of Proposition 3.6 we obtain: 

 

Proposition 4.4. Let (h, k) be a homomorphism from M to M’ with h surjective and let α be an universal 

formula which is either identity-free or positive in V’ and such that both val(M’, α) and val(M, α) are 

defined. Then 

  M  ⊧  α  ⇒   M’  ⊧ α (4.5) 

 

5. Quotients and preservation theorems 

 

Notice that if ≡ is a congruence in a valuation structure V, then every logical connective which is positive 

in V is positive in the quotient V/≡, too. Consequently, every formula α which is positive in V is positive 

in V/≡. 

 

Proposition 5.1. Let ≡ be a congruence in a fuzzy structure M. Then the following claims hold true. 

 i) If α is a positive matrix, then for every d1,…,dn∈D  

  [val(M, α, d1,…,dm)] ≤ val(M/≡, α, [d1],…,[dm]). (5.1) 

 ii) If α is a positive universal formula α such that both val(M, α) and val(M/≡, α)  exist, then, 



Chapter 5:  Preservation theorem 

96 
 

  [val(M, α)] ≤ val(M/≡, α). (5.2) 

 iii ) If α is an identity-free matrix, then, for every d1,…,dn∈D,  

  [val(M , α, d1,…,dm)] = val(M /≡, α, [d1],…,[dm]). (5.3) 

  

 Proof. Claims i), ii ) and iii ) are consequences of i) and ii) of Proposition 3.1 and i) of Proposition 3.3, 

respectively.           

 

 The following is an immediate consequence of iii) of Proposition 3.2.          

 

Theorem 5.2. Let ≡ be a congruence in a fuzzy structure M whose canonical homomorphism is inf-

preserving in a weak sense. Then, for every identity-free formula α, 

  val(M /≡, α, [d1],…,[dm]) = [val(M , α, d1,…,dm)]. (5.4) 

 

There is a simple characterization of the congruences whose canonical  homomorphism is inf-preserving. 

 

Proposition 5.3. Let ≡ be a congruence in a valuation structure V, then the associated canonical 

homomorphism is inf-preserving if and only if all the complete classes are closed with respect to the inf 

operator. 

 

 Proof. Assume that the canonical homomorphism is inf-preserving and assume that (λi)i∈I is a family 

of elements in a class [c]. Then since [Inf(λi)i∈I] = Infi∈I [λi] = [c], Inf(λi)i∈I is in the class [c]. Conversely, 

assume that all the complete classes are closed with respect to the inf operator, then since Inf(λi)i∈I ≤ λi   it 

is also [Inf(λi)i∈I]  ≤ [λi] and this shows that [Inf(λi)i∈I] is a lower bound of the family ([λi]) i∈I. Let [m] be a 

lower bound of such a family. Then, for every i∈I, m∧λi ≡ m. Consequently, Infi∈I m∧λi ≡ m and, since 

Infi∈I m∧λi = m∧(Infi∈I λi)  it is also m∧(Infi∈I λi) ≡ m. In turn this implies that [m] ≤ [Inf(λi)i∈I]. Thus, 

[Inf(λi)i∈I] = Infi∈I [λi].           

 

Proposition 5.4. Let α be an universal formula which is either identity-free or positive in V and ≡ be a 

congruence in M,  then 

  M  ⊧  α  ⇒   M/≡ ⊧ α (5.5) 

 Such a theorem entails, for example, that the quotient of a fuzzy subgroup is a fuzzy subgroup. 

Indeed, the fuzzy subgroups are the models of a fuzzy theory whose formulas are either equations (which 
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are positive universal formulas) or identity-free formulas. Again, it entails that the quotient of a similarity 

is a similarity. 

 Further preserving properties for quotients are given in the next theorem. 

 

Theorem 5.5. Let ≡ be a congruence in a fuzzy structure M. Then for every positive universal fuzzy 

formula <α,λ>, 

  M  ⊧ <α,λ> ⇒  M /≡  ⊧ <α, [λ]> (5.6) 

Assume that for every λ∈V the class [λ] is closed with respect to the inf operator. Then, for every 

identity-free fuzzy formula <α,λ>, 

  M  ⊧ <α,λ>   ⇔    M/≡  ⊧ <α, [λ]> (5.7) 

 Proof. Implication (5.6) is a consequence of ii ) of Proposition 5.1. Equivalence (5.7) follows from 

Theorem 5.2.           

 

6. Properties preserved by products and ultraproducts 

 

In this section we will examine the properties preserved by the products and the ultraproducts. At first we 

will examine the behavior of the inf operator with respect to the direct product and the ultraproduct of the 

family of valuation structures. 

 

Lemma 6.1. If (Si, ∧i)i∈I is a family of semilattices and Z ⊆ ∏i∈I Si  be such that Inf(pri(Z)) exists for every 

i∈I. Then Z admits a greatest lower bound and 

  Inf(Z) = <Inf(pri(Z))>i∈I. (6.1) 

Moreover, if U is an ultrafilter in I and Z is a rectangle, i.e. Z = ∏i∈I Zi where Zi is a subset of Si for every 

i∈I, then [Z] = {[ z] : z  ∈Z} admits a greatest lower bound and  

  Inf([Z]) = [<Inf(Zi)>i∈I]. (6.2) 

  

Proof. If <zi>i∈I∈Z then, for every i∈I, zi∈pri(Z) and therefore zi≥ Inf(Zi). This proves that <Inf(pri(Z))>i∈I 

is lower bound for Z. Let m = <mi>i∈I  be a lower bound for Z and let i∈I. Then for every x∈pri(Z) there is 

z = <zi>i∈I in Z such that zi = x. Since m≤z, it is mi≤zi = x. Then mi ≤ Inf(pri(Z))) and therefore m ≤ 

<Inf(pri(Z))>i∈I. 



Chapter 5:  Preservation theorem 

98 
 

 To prove the second part of the proposition observe that it is evident that [<Inf(Zi)>i∈I] is an lower 

bound of [Z]. Let [m] = [<mi>i∈I] be a lower bound for [Z] and assume that [m]∧[<Inf Xi>i∈I ] = [m] is 

false, i.e. {i∈I : (Inf Xi)∧mi ≠ mi} ∈ U. Let z = <zi>i∈I be a family in ∏i∈I Zi  such that zi satisfies the 

condition x∧mi ≠ mi if such a condition is satisfied by some element in Xi and such that zi is any element in 

Zi otherwise. Then since (Inf Zi)∧mi ≠ mi entails the existenxe of x∈Zi such that x∧mi ≠ mi, { i∈I : zi∧mi ≠ 

mi} ⊇ { i∈I : (Inf Xi)∧mi ≠ mi}  and therefore {i∈I : zi∧mi ≠ mi} ∈ U. This proves that [z] is an element in 

[Z] such that [z]∧[m] ≠ [m], in spite of the fact that [m] is a lower bound for [Z]. 

 

In accordance with such a lemma, if (Mi)i∈I   is a family of fuzzy models such that all the valuation 

structures VAL(Mi) are complete, then the valuation structure  

∏i∈I VAL(Mi) of the product ∏i∈I  Mi is complete, too. This is not true in the case of  an ultraproduct. As 

an example if all the valuation structures coincides with a valuation structure defined in the complete 

lattice [0,1], then the valuation structure in the ultraproduct is defined in the non-standard interval [0,1]* 

and such an interval is not complete.  

 

Theorem 6.2. Let (Mi)i∈I  be a family of safe fuzzy models and  M = ∏i∈I Mi its direct product. Then, M is 

safe, and for every formula α, 

  val(M, α, f1,…,fn) = <val(Mi, α, f1(i),…, fn(i))> i∈I (6.3) 

for  f1,…,fn∈ ∏i∈I Di. Consequently, V(α) = ∏i∈I Vi(α) where V(α) and Vi(α) are the range of α in M  and 

in Mi respectively.   In particular, for every closed formula α,  

  val(M, α) = <val(Mi, α)>i∈I (6.4)  

 Proof.  We operate by induction on the complexity of α. 

Let  α = r(t1,…,tm), then 

 val(M, α, f1,…,fn) = I(r)(I(t1)(f1,…,fn),…I(tm)(f1,…,fn))  

                                = <I i(r)(I i(t1)(f1(i),…,fn(i)),…,I i(tm)(f1(i),…,fn(i)))>i∈I  

                                = <val(Mi, α, f1(i),…,fn(i))>i∈I . 

Assume that (6.3) is satisfied by α1,…,αt. We have to prove that c(α1,…,αt) is valued in M and that such a 

formula satisfies (6.3). Indeed, 

 val(M, c(α1,…,αt), f1,…,fn)  

                        = I(c)(val(M,α1, f1,…,fn),…,val(M,αt, f1,…,fn))   

                        = I(c)(<val(Mi, α1, f1(i),…,fn(i)>i∈I ,…,<val(Mi, αt, f1(i),…,fn(i)>i∈I)   

                        = < val(Mi, c(α1,…,αt), f1(i),…,fn(i)) >i∈I . 
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Now suppose that α is valued and that (6.3) is true for α. Then by (6.1), 

  val(M, ∀xiα, f1,…,fn) = Inf{val(M, α, f, f2,…,fn): f∈D}  

                                     = Inf{<val(Mi, α, f(i),…,fn(i))>i∈I : f∈D}  

                                     = <Inf{ val(Mi, α, f(i),…,fn(i)) : f(i)∈Di}> i∈I  

                                                          = <val(Mi, ∀xiα, f1(i),…,fn(i))>i∈I 

 

Note. (6.2) looks to be in contrast with the fact the in classical model theory only particular first order 

properties are preserved by the direct products. The contrast is only apparent since in the approach 

proposed in this thesis the product M of a family (Mi)i∈I of normal crisp models is not a crisp normal model 

and therefore it is not the usual product. As a matter of fact, the usual product is the 1-cut M1 of M. Then, 

in accordance with Theorem 1.6, only in the case α is a positive clause we can claim that    

  Mi ⊧ α for every i∈I  ⇔  M ⊧ α  ⇒ M1 ⊧ α. (6.5) 

 

Theorem 6.3. Let (Mi)i∈I  be a family of safe fuzzy models and U be an ultrafilter in P(I). Then the 

ultraproduct MU of (Mi)i∈I  modulo U is safe and     

  val(MU, α, [f1],…,[fn]) = [<val(Mi, α, f1(i),…, fn(i))>i∈I]  (6.6) 

for every formula α and  [f1],…,[fn]∈D. 

 

 Proof.  We prove (6.6) by induction on the complexity of α.  

Let  α = r(t1,…,tm), then 

 val(MU, α, [f1],…,[fn]) = I(r)(I(t1)([f1],…,[fn]),…I(tm)([f1],…,[fn]))  

                                      = [<I i(r)(I i(t1)( f1(i),…,fn
i(i),…I i(tm)( f1(i),…,fn(i)))>i∈I] 

                                      = [<val(Mi, α, f1(i),…, fn(i))>i∈I]. 

Assume that α1,...,αn are valued and that (6.6) is satisfied by α1,…,αt. Then, given a logical connective o, 

we have to prove that o(α1,…,αt) is valued and that it satisfies (6.6). Indeed, 

 val(MU, o(α1,…,αt), [f1],…,[fn])   

                    = I(o)(val(MU,α1, [f1],…,[fn]),…,val(MU,αt, [f1],…,[fn]))   

                    = I(o)([<val(Mi, α1, f1(i),…, fn(i))>i∈I],…,[<val(Mi, αt, f1(i),…, fn(i))>i∈I]) 

                    = [<I i(o)(val(Mi, α1, f1(i),…, fn(i)),…,val(Mi, αt, f1(i),…, fn(i))>i∈I])   

                    = [<val(Mi, o(α1,…,αt), f1(i),…, fn(i)>i∈I]. 

Now suppose that α is valued and α satisfies (6.6). Then  
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 val(MU, ∀x1α, [f1],…,[fn]) = Inf{ val(MU, α, [f], [ f2],…,[fn]) : f∈D}  

                                             = Inf{[< val(Mi, α, f(i),…, fn(i))>i∈I] : f∈D}. 

In turn, if we set Vi(α) = {val(Mi, α, d,…, fn(i)) : d∈Di}, then, by Lemma 6.1, 

 Inf{[< val(Mi, α, f(i),…, fn(i))>i∈I] : f∈D} 

                                            = Inf([∏i∈I Vi(α)]) = [<Inf(Vi(α))>i∈I] 

                                           = [<Inf{ val(Mi, α, f(i),…,fn(i)) : f(i)∈Di}> i∈I]   

                                                                     = [< val(Mi, ∀x1α, f1(i),…,fn(i)) >i∈I]. 

 

 

7.  Modifying the valuation-scale of the predicates 

 

In this section we will analyze the question of the properties preserved after a “deformation” of a fuzzy 

model. More in particular, after a modification of the valuation part of such a structure. In Section 1 we 

early considered such a question after the drastic modification obtained by “cutting” a fuzzy structure at a 

given level.  

 

Definition 7.1. Let M = (D,V,I) be a fuzzy interpretation, V’ = (V’, I’ ) be a valuation structure and k : 

V→V’ an order-preserving map such that k(1) = 1. Then we call k-deformation of (D,V,I) the 

interpretation Mk = (D, V’,Ik) defined by setting: Ik(λ) =  I’ (λ), Ik(o) = I’ (o) , Ik(c) = I(c) and Ik(h) = I(h) for 

every constant c and operation symbol h and  

  Ik(r)(d1,...,dn) = k(I(r)(d1,...,dn)) (7.1) 

for every n-ary relation symbol r (different from =) and d1,...,dn in D. 

 

Such a definition extends Definition 1.3, obviously. The idea is that we can modify the valuation of the 

predicates in an uniform way. The question we are interested in is to individuate the properties of M 

inherited by Mk. A first immediate result is the following one. 

 

Proposition 7.2. Let Mk be the deformation of M by k. Then, for every atomic formula α, 

  val(Mk, α, d1,...,dn) = k(val(M, α, d1,...,dn)). (7.2) 

 

 Proof. Assume α equal to r(t1,...,tp), then 

 val(Mk, r(t1,...,tp), d1,...,dn) = Ik(r)(Ik(t1)(d1,...,dn),..., Ik(tp)(d1,...,dn)) 
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                                           = Ik(r)(I(t1)(d1,...,dn),..., I(tp)(d1,...,dn)) 

                                                = k(I(r)(I(t1)(d1,...,dn),..., I(tp)(d1,...,dn))  

   = k(val(M, r(t1,...,tp), d1,...,dn)). 

 

To obtain more interesting results we have to assume that k is an homomorphism. In such a case the 

following proposition holds true. 

 

Proposition 7.3. Let M = (D,V,I) be a fuzzy structure and k be a homomorphism from the valuation 

structure V into another valuation structure V’ . Then k defines a valuation homomorphism from M to Mk 

and therefore:  

i) for every universal fuzzy formula <α,λ> which is positive with respect to V’   

  M  ⊧ <α,λ> ⇒  Mk  ⊧ <α, k(λ)> (7.3) 

ii ) assume that k is an isomorphism, then for every fuzzy formula <α,λ>,  

  M  ⊧ <α,λ> ⇔  Mk  ⊧ <α, k(λ)> (7.4) 

iii ) for every universal fuzzy formula <α,λ> which is either identity-free or positive with respect to V’   

  M  ⊧ α ⇒  Mk  ⊧ α (7.5) 

 Proof. Claim i) is a consequence of Proposition 4.1. Claim ii ) follows from Theorem 4.3.  Claim iii ) is 

a consequence of Proposition 4.4.          

 

 Observe that in Proposition 7.3 it is required that all the operations in the considered valuation 

structure are preserved by k. In the case of fuzzy clauses more simple conditions are sufficient.  

 

Proposition 7.4. Let V be a residuated lattice, M = (D,V,I) be a fuzzy structure and let k be an order-

preserving map such that k(λ⊗µ) ≥ k(λ)⊗k(µ) for every λ, µ ∈V. Then for every positive fuzzy clause 

<α1∧*…∧*αt→α,λ>  

  M  ⊧ <α1∧*…∧*αt →α,λ> ⇒  Mk  ⊧ <α1∧*…∧*αt →α, k(λ)> (7.6) 

Consequently, if M is a model of a fuzzy program p, then Mk is a model of the fuzzy program k°p.  

 Assume that  k is injective, ∧-preserving and such that k(λ⊗µ) ≤ k(λ)⊗k(µ) for every λ, µ ∈V. Then, 

  M  ⊧ <α1∧*…∧*αt →α,λ> <=  Mk  ⊧ <α1∧*…∧*αt →α, k(λ)> (7.7) 

and therefore if Mk is a model of the fuzzy program k ° p then M is a model of a fuzzy program p. 
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 Proof. By Proposition 1.2 in Chapter 3,  if M satisfies <α1∧*…∧*αt→α,λ> then   

val(M, α1, d1,...,dn)⊗...⊗val(M, αt, d1,...,dn)⊗λ ≤ val(M, α, d1,...,dn) 

for every d1,…,dn in D. Consequently 

        k(val(M,α1, d1,...,dn))⊗...⊗k(val(M, αt, d1,...,dn))⊗k(λ) 

                       ≤ k(val(M,α1, d1,...,dn)⊗...⊗val(M, αt, d1,...,dn))⊗k(λ)  

                            ≤ k(val(M, α, d1,...,dn)) 

and therefore, by (7.2),  

 val(Mk, α1, d1,…,dn)⊗...⊗val(Mk, αt, d1,...,dn))⊗k(λ) ≤ val(Mk, α, d1,...,dn)). 

In turn, this means that Mk  satisfies <α1∧*…∧*αt →α, k(λ)> 

 To prove the second part, assume that Mk  ≤ <α1∧*…∧*αt →α, k(λ)>, i.e. 

 k(val(M,α1, d1,...,dn))⊗...⊗k(val(M, αt, d1,...,dn))⊗k(λ) ≤ k(val(M, α, d1,...,dn)) 

Then  

 k(val(M,α1, d1,...,dn))⊗...⊗val(M, αt, d1,...,dn))⊗λ) 

                                ≤ k(val(M,α1, d1,...,dn))⊗...⊗k(val(M, αt, d1,...,dn))⊗k(λ)  

                                     ≤ k(val(M, α, d1,...,dn)) 

Consequently, since k is injective and ∧-preserving, 

val(M,α1, d1,...,dn))⊗...⊗val(M, αt, d1,...,dn))⊗λ ≤ val(M, α, d1,...,dn) 

and therefore  M  ⊧ <α1∧*…∧*αt →α,λ>.           

 

Example 1.  Let ⊗ be a triangular norm, and define the ⊗-n-power λ(n) by setting λ(1) = λ and  λ(n) = λ(n-

1)⊗λ. Then, trivially, by setting kn(λ) = λ(n), we obtain a map such that kn(λ⊗µ) = kn(λ)⊗kn(µ) and which is 

∧-preserving. In the case ⊗ is the usual product, such a map is  injective. If we set k(λ) = λn and ⊗ is the 

product of Lukasiewicz, then it is possible to prove that k(λ⊗µ) ≥ k(λ)⊗k(µ). In accordance, if (S,e) is a 

⊗-similarity, then we obtain a similarity e(n) by setting e(n)(x,y) = e(x,y)(n).  In the case ⊗ is the 

Lukasiewicz product another similarity is obtained by setting en(x,y) = e(x,y)n.  

 

Example 2.  To show an example of property which is not preserved, consider the valuation structure ({0, 

½, 1}, ∧, →, ¬, 0, 1) where ∧ is the minimum, → is the corresponding implication and ¬ is the 1-ary 

operation such that ¬(x) = 1-x. Also, consider the fuzzy subgroup M4 defined in the additive group (Z4, + , 
-1 , 1) of integers modulo 4 by the fuzzy subset s : Z4 → {0, ½, 1} such that s(0) = 1, s(1) = 0, s(2) = ½, 

s(3) = 0. Finally, denote by k : {0, ½, 1} → {0, ½, 1} the function such that  k(0) = 0 ;  k(1/2) = 1 ;  k(1) = 

1. Then, the deformation of M4 by k is a fuzzy subgroup which is not a model of ∃x(s(x) ↔¬ s(x)). This is 
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in accordance with the fact that f is not a homomorphism since it is not compatible with the interpretation 

of the negation. 

 

 

8. Further results on the deformation 

Another way to modify a model is to consider a quotient of the valuation part of a structure and by 

applying the results in Section 5. Notice that it is possible to obtain the following very simple 

characterization of the congruences in the structure ([0,1], ∧, →, 0, 1).  

 

Proposition 8.1. Consider the valuation structure  ([0,1], ∧, →, 0, 1) where ∧ is the operation of  

minimum and → the related residuum. Then we can identify the congruences in such a structure with the 

partitions in which a class is an interval containing 1 and the remaining classes are singletons. 

 

Example 1. For instance consider the fuzzy subgroup M16 defined in Example 1 of Section 2 and define 

in ([0,1], ∧, →,0,1) the congruence ≡ generated by the pair (0.3, 1). Then ≡ is the congruence whose 

classes are the interval [0.3, 1] together with the singletons {x} with x ∉ [0.3,1]. The related quotient is 

Z 0 1 2 3 4 5 6 7 

G(z) [0.3,1] {0.1} {0.2} {0.1} [0.3,1] {0.1} {0.2} {0. 1} 

Z 8 9 10 11 12 13 14 15 

G(z) [0.3,1] {0.1} {0.2} {0.1} [0.3,1] {0.1} {0.2} {0. 1} 

 

Equivalently, if we denote by 0.3 the whole class [0.3] and we identify a singleton {x} with x, then we can 

identify the quotient of the valuation structure with ([0, 0.3], ∧, →, 0, 0.3) and therefore to represent the 

quotient as follows: 

 

z 0 1 2 3 4 5 6 7 

g(z) 0.3 0.1 0.2 0.1 0.3 0.1 0.2 0.1 

z 8 9 10 11 12 13 14 15 

g(z) 0.3 0.1 0.2 0.1 0.3 0.1 0.2 0.1 

  

 Up to now we considered homomorphisms and, in particular, endomorphisms. Unfortunately there are 

basic valuation structures which are rigid, i.e. in which the only endomorphism is the identity map. 

Consider for example the interval [0,1] equipped with the Lukasiewicz norm ⊗ and the related residuum 
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and negation. Then if k is an endomorphism, all the rational numbers are fixed points. Indeed, taking in 

account of the fact that k preserves also the operation ⊕, given m∈N-{0}, since   

1 = k(1) = k(m/m) = k(1/m ⊕…⊕1/m) = k(1/m) ⊕…⊕k(1/m) = m⋅k(1/m) 

we have that   k(1/m) = 1/m. Also, for every n,  

k(n/m) = k(1/m⊕…⊕1/m) = k(1/m)⊕…⊕k(1/m) = n/m 

Since k is order-preserving, this entails that all the real numbers in [0,1] are fixed points. Thus there is no 

non-trivial endomorphism in the Lukasievicz valuation structure.  

 These considerations suggest a different strategy in which we admit also a modification of the 

operations in a valuation structure. 

 

Definition 8.2. Let V = (V,I) be a valuation structure and k : V → V  be an order-preserving one-to-one 

map. Then we denote by Vk  the valuation structure (V,Ik) whose domain is V and in which an n-ary 

logical connective c  is interpreted by setting, for every λ1,…,λn in V, 

  Ik(c)(λ1,…,λn) = k(I(c) (k-1(λ1),…, k-1(λn)))       . 

 

Notice that, in account of the fact that k preserves the meet operator, Ik(∧) = I(∧). As an example, consider 

a valuation structure as ([0,1], ∧, ⊗, 0, 1) where ⊗ = I(⊗) is the interpretation of a binary logical 

connective ⊗  and assume that k : [0,1] → [0,1] is an order-preserving one-to-one map. Then, k is a ∧-

automorphism and the operation ⊗k = Ik(⊗) is define by 

x⊗k y = k(k-1(x)⊗k-1(y)). 

The proof of the following proposition is trivial 

 

Proposition 8.3. Let V = (V,I) be a valuation structure and k : V → V be an order-preserving one-to-one 

map. Then k is an isomorphism between V and Vk.. 

Observe that from such a proposition it follows if ⊗ is a triangular norm then ⊗k is a triangular norm, too.  

 

Definition 8.4. Let M = (D,V,I) be a fuzzy structure and let k : V → V be an order-preserving one-to-one 

map. Then we call total k-deformation of (D,V,I) the fuzzy model Mk which is the k-deformation by the 

isomorphism k from V to Vk.. 

 

The proof of the following proposition is obvious. 
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Theorem 8.5. Let M = (D,V,I) be a fuzzy structure and k : V →V be an order-preserving, one-to-one map. 

Then, for every λ∈V and every formula α,  

M ⊧ <α,λ>  ⇔  Mk  ⊧ <α, k(λ)>. 

 

As an example, if we consider a ⊗-similarity e: S × S → [0,1] and k : [0,1]→[0,1] an one-to-one order 

preserving map, then by setting  ek(x,y) = k(e(x,y)) we obtain a ⊗k-similarity. We can verify directly such 

a fact since  

ek(x,x) = k(e(x,x)) = k(1) = 1   and   ek(x,y) = k(e(x,y)) = k(e(y,x)) = ek(y,x). 

Moreover, since e(x,y))⊗e(y,z) ≤ e(x,z), 

 k(e(x,y)) ⊗e(y,z)) ≤ k(e(x,z))  

and therefore 

 k(e(x,y)) ⊗k  k(e(y,z)) = k(k-1(k(e(x,y)) ⊗ k-1(k(e(y,z)))  

                                        = k(e(x,y) ⊗ e(y,z)) ≤ k(e(x,z)). 

This proves that  

ek(x,y) ⊗k ek(y,z) ≤ ek(x,z) 

Likewise, we have that the flexible deformation of a fuzzy subgroup with respect to the valuation 

structure V = ([0,1], ∧, ⊗, 0, 1) is a fuzzy subgroup with respect to the valuation structure Vk  = ([0,1], ∧, 

⊗k, 0, 1). 
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