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Introduction

In this thesis we argue about several aspectszalyflogic. More precisely we investigate the follog/
topics:

- the properties preserved by a fuzzy model evmgftit is subject to some kind of modification ireth
framework of the model theory for fuzzy logic preed in [16],

- fuzzy logic programming, similarity logic and ragtrogramming to take into account the synonymy
relation among predicates in accordance with teasgroposed by M. S. Ying in [33]

- the connection between fuzzy logic and bilattitlesory that represents an interesting tool for the

treatment of both truth and grade of informatiom&berg [20]).

In particular, in chapter 1 we introduce some priglaries on abstract logic.

In chapter 2, we introduce some basic definitiamrsaf model theory for fuzzy logic as proposed i@][1

In particular, we define the notions of homomorphisongruence, quotient product, ultraproduct. A
basic feature of the proposed approach it's thatviluation structures are not fixed, so they varg
given type. This gives the basis for the resulfgosed in chapter 5.

In chapter 3, we introduce some general definitiarfsizzy logic programming, a very promising senti

of fuzzy logic, whose aim is to build up intelligedata-base systems with "flexible" answers, expert
systems able to consider vague predicates and,smomining the might of logic programming and the
big adaptability of fuzzy logic. In particular, virvestigate the idea to extend fuzzy logic prograngno
take into account the synonymy relation among patds in accordance with the similarity logic
proposed by M. S. Ying in [33]. The idea of Yingtist it is possible to relax the application oé th
inference rules in such a way that it is also ataian approximate matching of the predicate nafkes.
an example it is admitted that from and @ - £ we can inferS even in the case that is only
approximately equal tar. An application to such an idea to logic programmings done in several

papers (see [1], [3], [11]) where the definitionsghonymy refers to Godel's norm.



We show (see [13]) that given a fuzzy program ilareguagel, we can translate it into an equivalent
classical program in a suitable (meta-)langufigeSince the predicate names./firbecome constants in

L, this enables us to admit i, meta-relations (as meta-rules) among predicatepatticular, the

meta-relation is the synonymy and this enable usdeéfine a synonymy-sensitive fuzzy logic
programming.

We prove that there are at least three reasoravisuf of such a logic. The first one is that, diffetly

from the papers [1], [3] and [11], all the trianguhorms are admitted. The second is that thetnegul
notion of fuzzy Herbrand model is uniformly contous with respect to the synonymy relation (a basic
property for a synonymy logic). Finally, anotheasen is that the resulting logic is a similaritgimin

the abstract sense given in [17]. This means thateduction operator is the closure operator nethby
combining the similarity closure operator with thee-step consequence operator associated with the

given fuzzy program.

In our approach we propose simply to add to theHatguage., the predicate symb&synonymous”

We define a suitable notion of least Herbrand mddekhe similarity-based logic programming create
and we show that we obtain ahstract synonymy logic programmiagd the Herbrand models of such a

logic are the fixed points af,o SYN i.e. the Herbrand models ©f which are fixed points foBYN.

In chapter 4, we investigate about the potentivdf bilattice theory ([20]) for fuzzy logic bygposing
and discussing some general definitions. In ordejite an example, we apply the resulting appar@tus

a Kripke-like logic(se€[14]).

In chapter 5 we study the modifications of a fugiayicture and its properties, and the connectibosita
two of them (via homomorphisms); the idea is toeagt to fuzzy logic some preserving theorems of
classical first order logic. More in particular, waidy the properties preserved by a cut, by gotstier

by products and ultraproducts and we investigateiaiihe properties preserved after a “deformatimfré

fuzzy model, more precisely, after a modificatidrihee valuation part of such a structure (see [15])
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CHAPTER 1

PRELIMINARIES

1. Bounded lattices and homomorphisms

In this section we will remind some elementary osi in lattice theory.

Definition 1.1. An ordered seL = (L, <) is alattice provided that, for any, yOOL, bothInf({x,y}) and
Sug{x,y}) exist.L is boundedf there is a greatest element 1 and a least elenéris completef Inf(X)

andSupX) exist for every subset of L.
It is also useful to represent a lattice as antalje structure.

Definition 1.2. (L, [0, [0, 0, 1) is éounded latticef for everyx, y, z[L
H Xyl =xlydz ; xtyll) = xly)lz associativity
(i) xOy=yx ; Xy=ylkx commutativity
(i) XXx=x ; xx=x idempotence

(iv) Ox=x ; 1lIXx=x.

As it is well known, Definitions 1.1 and 1.2 aredrsense equivalent, in fact the following theotrestds

true.

Theorem 1.3. Let the algebraic structuré,(d, 0, 0, 1) be a bounded lattice and define an ordseed.,
<) by putting

X<y = xOy=x.
Then the relational structuré.,(<, 0, 1) is a bounded lattice. Viceversa let the relatisteucture [,

<, 0, 1) be a bounded lattice, then by putting for eveyyIL
XLy = Inf({x.y}) and Xy = Sug{x.y})
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the resulting algebraic structuie, (J, [J, 0, 1) is a bounded lattice such that

X<y < xOy=x

In accordance with such a theorem we can represdaitice either as ordered structures or as agebr
structures. Neverthless, the two approaches arequavalent with respect to the notion of homomdsph

(and therefore from category point of view).

Definition 1.4. Given two ordered sets andL,, a maph: L; —» L, is anorder-homomorphisrif it is order-
preserving, i.e., for every, yO Ly,

X<y = h(X) < h(y)
An order-isomorphismis an one-to-one order-homomorphism whose inverse is an order-

homomorphism. Arorder-automorphisnof L is an order-isomorphism from onto itself. We say also
thath is anembeddingf

X<y < h(X) <h(y).

Trivially, an embedding is injective and an isomntdgm is an one-to-one embedding. The definition of
homomorphism in the case the lattices are congidesealgebraic structures is the usual one in usale

algebra:

Definition 1.5. Given two bounded latticds = (L, [0, [J, 0, 1) and_, = (L, [, [}, 0, 1), amam: L; - L,
is analgebraic homomorphisimomL; to L, if for everyx, yinL;

h(0)=0; h1) = 1 ; h(xCy)= h(x) Oh(y) ; hxCy)= h(x)th(y).
An algebraic-isomorphisnis a bijective algebraic-homomorphism andadgebraic automorphisnm a

lattice L is an algebraic-isomorphism fromonto itself.

Theorem 1.6. Let L; andL, be two lattices, then every algebraic homomorpHisom L; to L, is an
order-homomorphism frorh; into L,. The viceversa is not valid. The order isomorplsigoincide with

the algebraic isomorphisms.

Proof. Leth: L; - L, an algebraitomomorphisnfromL; toL,, then

x<y=xy=x = h(xOy)=h(x) = h(X)Th(y) =h(x) = h(x) < h(y)
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Consider the lattice?(a,b}, ) and ({0,1,2},<), with the magh: P{a,b} - {0, 1, 2 }such that
h(d)=0 ; hfa}) =1 ; h({b}) =1 ; hfab}) =2
Thenh is order-preserving but isn’t an algebraic homgrhgm. In fact
h({a} 0{b}) = h(O) = 0#1 = 1T1=h({a}) Ch({b}).
Assume thah: L; - L,is an order-isomorphism and bendy be elements ih;. Then, trivially,h(xOy)
< h(x) and h(xly) < h(y). Assume thatm’< h(x) andm'< h(y) and letm be such thabh(m) = m'. Then,
beingh an order isomorphisnm < x andm < y and thereforensxCly. This proves tham’ < h(xCy) and

therefore thah(xCy) is the greatest lower bound of the pdifxX), h(y)}. In a similar way one proves the

remaining part of the proposition.

We conclude such a section by giving the notiogsemnilattice.

Definition 1.7. A boundedsemilatticeis an algebraic structur@, [J, 0, 1) such that for everyy, z[1L
H XAyl = xy)[z associativity
(i) xOy=yx commutativity
(i) XIx=x idempotence

(iv) Olx=0 ; 10Ox=x

Given a bounded semilatti¢e, [J, 0, 1) if we define a relationin L by puttingx<y = x[y = x, then we

obtain a bounded ordered skt <£).

2. Closure operators and closure systems

The notions of closure operator and closure syst@mbe defined in any complete latticésee [31]). In
the following, we call amperatorin L any mapA from L into L andclassor systemn L any subseC of
L.

Definition 2.1 Let L be a complete lattice. Thenclbsure operatorin L is any operatod : L - L

satisfying
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i) X<y = AX)<A4Ay) (order-preserving)
i) x<A4(x) (inclusion)
i) 4(4(x)) = 4(x) (idempotence).

If (iii) is skipped,A is called aralmost closure operatdn L, in briefa-c-operator

We interpret an elementd L as a piece of information adqx) as the whole information we can derive

from x.

Example. Let // be the set of formulas of a first order logic.elhwe can consider thenmediate

consequence operatdr: N(/) - M(/), i.e. the operator defined by setting, for aay1(/)),
AX) ={a:aB,B0X}n{Oxa : alIX} nAl nX

whereAl is the set of logical axioms. Thénis aa-c-operator

Strictly related with the notion of closure operatve introduce the one of closure system.

Definition 2.2. A nonempty clas€ of elements of a complete lattiteis called aclosure systenf the

meet of any class of elements®fs an element ofC.

Observe that, sindaf(d0) = 1, every closure system contains 1.

Definition 2.3. Given a closure syste@ andx [ L, theelement<x> of C generated by s defined by

setting

< =Inf{x' 0 C: X' = x}. (2.2)

The following proposition, whose proof is trivighows that any closure system is a complete lattice

Proposition 2.4.LetC 0 L be a closure system. Then C is a complete ¢astich that
- the least element of C is the meet of all taments irC,
- the unity in C coincides with the unityn L,

- the meets in C coincide with the meets in L,
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- the join in C of a class X isSugX)>.

Observe tha€ is not necessarily a sublatticelofind this since the joins {D are different from the joins
in L, in general. As an example, consider the dlae$ subalgebras of a given algebraic structurd&hen
C is a closure system and hence a complete lattite vihile the meet operator coincides with the

intersection, the join of a familyA();5, of subalgebras coincides with the subalgebra geegby n g, A;.

The class of closure operators and the clasosticd systems define two closure systems irlitteet

powerL" of L with index set..

Proposition 2.5.Both the classe€O(L) of closure operators and AL) of almost closure operators in L

are closure systems iff.LThe clas€SL) of closure systems in L is a closure systef(in).
Proof LetJ be the meet of a familydji-, of a-c-operators an&k O L. Then it is immediate that
satisfies (i) and (ii) of Definition 2.1. Assumeatteachl; is idempotent. Then, for everyd L andk U I,
J(I(¥)) = I(Infin; J(¥)) < I(Infin, J(X)) < IWI(X)) = IX).

Hence
JI(X)) < Inficy I(X) = I(X)

and thereford(J(x)) = J(X). This proves thaCO(L) is a closure system.
Let C be the intersection of a familZi, of closure systems and lef)(; be any family of elements
in C. We claim thak = Inf{x; : j O J} is an element oC. Indeed, since, for eveny |, (x);0; is a family

of elements inC;, we have x O C;. Thus,xOO{C; : i O1} = C. This proves thaCqL) is a closure

system.

3. Connecting the two notions

Let J be an operator ih andC a class of elements &f Then we denote bg(J) the closure operator

generated by and byc(C) the closure system generated®y

Now we will show how the closure systems and tlwswre operators are strictly related. To this
purpose we define the mapo : M(L) — L" by assuming that, for eacb O L, Co(C) : L — L is the

operator defined by setting
CaC)(x) =Inf{ydC:y=x}, (3.2)

for everyx [ L. Moreover, we define the m&ps: L" — (L) by setting, for any operatdrd L",
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CqJ) = {xOL:Jy)<x forevery ¥x}. (3.2)

Proposition 3.1.Given anyC O L, the operator C(C) : L — L is a closure operator. Given any[JL",

the class @) is a closure system.

Proof The first part is trivial. LetX)in, be a family of elements d€qJ). We claim thatInf{x; :
i O1} OCHJ). Indeed, suppose< Inf{x : i 01}, that isy < x for everyi [JI. ThenJ(y) < x; for every
i O1. ThusJ(y) < Inf{x : i 01} and therefordnf{x; : iJI} OO CHJ). This proves thaCqJ) is a closure

system.

As claimed in Section 2, sometimes we write- shstead ofCo(C)(x). Given an operatod, we call
fixed point of Jany elemenk [0 L such thatl(x) = x. In the case thakis ana-c-operator this is equivalent

to saying thad(x) < x, i.e.,x is closed with respect to Moreover, we have the following:

Proposition 3.2 Let J be an a-c-operator. Then
CqJ) ={x0OL:JxX) =x}, (3.3)

i.e., C4J) is the class of fixed points &f

Proof By (3.2),J(X) < x for everyx [0 CHJ). Then, ifJ is ana-c-operator J(X) = X. Conversely, i is
a fixed point ofJ andy < x, thenJ(y) < J(X) = x and this proves that 0 CHJ).

The proof of the next proposition is evident:

Proposition 3.3 Let J and J' be operators and C, C' classes. Then,

J<J = CgJ)0CKd) ; COC = CoC)=CoC).

The first implication says that, dfandJ' area-c-operators such thdt< J', then every fixed point faoF
is a fixed point ford. The following theorem gives a way to obtain thasare operatoc(J) generated by
J:

Theorem 3.4.Let J be an operator. Then

oJ) = Co(CKJ)). (3.4)
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So, ifJis an a-c-operator and X L, c(J)(X) is the least fixed point of J greater than or goax

Proof Set)' = Co(CgqJ)), thenJ'is a closure operator. To prove that J, it suffices to observe that
for everyy O L, from y O CqJ) andx <y, it follows thatJ(x) < y. Consequently,

JX) =Inf{y0CqJ):y=x} = JX).
Let H be a closure operator such tht J and supposg < H(x). Then
J(y) < H(y) < HH(¥) = H(x).

This proves that(x) O CgJ) and, sinceH(x) = x, thatH(x) = J'(X).

Given any clas€ of elements of, we can obtain the closure systef@) generated b as follows:

¢(C) = {Inf(X) : X O C}. (3.5)

Moreover, we have the following theorem:

Theorem 3.5.Given any class C of elements of L, we have

oC) =CHCaAC)). (3.6)

Proof Being every element o a fixed point ofCo(C), CqCo(C)) is a closure system containiy
Let C' be a closure system containi@gandx an element o€4Co(C)). Then, sincex = Co(C)(x), Xis a
meet of elements af and hence belongs @ ThusCqCo(C)) O C' and, thereforeCHCo(C)) = ¢(C).

Some interesting properties of the opera@vsandCsare listed in the following proposition:

Proposition 3.6.Let J and J' be operators, and C and C' classhenT
CqY) =CHc(l)) ; CoC)=Co(c(Q)). (3.7)
Also,
cJ) =c(J) = CH)=CqI) ; ¢(C)=c(C’) - CaC)=CaoC) (3.8)
Moreover, if C and C' are closure systems, andd Arlosure operators, then
COC' = CoC)=CoC) ; J<J = Cgl)Ocyd) (3.9
Co(CqJ)) =J ; CqCo(C)) =C. (3.10)



Chapter 1: Preliminaries

4. Abstract logic and continuity

The following is the main definition in this chapte

Definition 4.1. Let A be a closure operator in a complete latticeThen we can say that the pair=

(L,A) is anabstract deduction systeamd that is adeduction operato([4] ).

We callpieces of informatiothe elements ih. Any classical logie\ defines an abstract logic whose
pieces of information are the set of formulas. &dlef //is the set of formulas &, we can set =T1(2)

andA equal to the operator associating 2y M(/Z) with the sefA(X) of consequences &

A theory in an abstract deduction systein ) is defined as a fixed point &, i.e., a piece of
information 7 closed under deductions. Proposition 3.2 says ttietclassT = CqA) of theories of a
deduction system is a closure system and hencenplete lattice. If7 is a theory and\(x) = 7, then we
can say thaxis asystem of axiom®r 7. A piece of informationx O L is inconsistenprovided thaf\(x) =
1. This extends the fact that in classical logidrasonsistent set of axioms generates the whol&/sat
formulas (i.e., the greatest elementl®f.)). In accordance, the piece of information 1 ifechthe
inconsistent theorgnd a theory is consistenprovided thatr # 1. A maximal theorys a theoryr which

is maximal in the class of consistent theories, he theoryr' exists such that 1 2 > 1.

Definition 4.2. A classM of elements ol such that 10 M is called anabstract semanticand the
elements irM are callednodelsIf xJ L, m0 M andx £ m, then we can say thatis amodelof x and

we can writem< x. If x, y O L admit the same models, then we can sayxtisbgically equivalentoy.

In accordance with Proposition 3.1, any semar¥csduces a closure operatGo(M) : L - L. We
call this alogical consequence operatand we denote it blyc. Then,Lc is defined by setting, given a
piece of informatiorx,

Le() = Inf{mOM : m< .

These definitions are in accordance with the @abslefinitions because we can identify the clafss

models in a classical logit with the clasdv of complete theories dk. In fact, each modehin A is

associated with its theory, i.e., with the comptegory

Tn={al [J: ais true inm}.
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Conversely, for every complete thedrya modelm exists such thaf,,=T. Moreover, it is easy to see
thatmis a model of a seX of formulas iff X 0 T,, and that the setc(X) of logical consequences Hfis

equal to the intersection of all the complete thencontaining.
If 7is a theory of.c we can say also thats a theory oM. Trivially,

xis logically equivalent ty = LX) = Lc(y).

We can also definkc as follows: Consider the operators
mod: L - MNM(M) andth:M(M) - L
defined by setting, for every] L andX O (M),
modx) ={mOM : m<x} ; th(X) =SudxUOL : m<x OmOX}.
Then,modX) is the set of models of andth(X) the information shared by all the modelsxinlt is

easy to verify thamodandth define a Galois connection such that modcoincides with the closure

operatorLc.
We define thesystem of tautologiess
TauM) =Inf{m: mQO M},
equivalently,
TauM) =Lc(0).
If xis consistent with respect ka, then we prefer to say thats satisfiable Equivalently x is satisfiable

if a model ofx exists. Alsox is categoricalif just one model ok exists. We denote the class of satisfiable

pieces of information b$a(M), i.e.,

Sa(M) = {xOL:mOM exists such tham< x}.

Definition 4.3. An abstract logicis a triplet [, A, M) where [, 4) is an abstract deduction system &md

an abstract semantics such that Co(M), i.e., the'completeness theorerhblds.

In defining the notion of abstract logic it seenmatural to require some additional properties as an

example, the basic notion of compactness.

Definition 4.4. LetJ: MN(S - M(S be an operator iAl(S). Then we say thatis compact provided that,
for every subseX of S

x[0J(X) = afinite subseX; of X exists such that [1 J(X).
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EquivalentlyJ is compact if
J(OX) = Of I(Xg) : X is finite, X; OX }
Due to the finiteness of any proof, the deductiperator of a crisp logic is compact. Now, being th
notion of finite subset not defined on a generttida L, we cannot define a compactness property in a

generic abstract logic. Then we propose the naifatontinuity as a natural counterpart of the notid

compactness. To this aim, we give some definit{ses [23]).

Definition 4.5. A nonempty clasX of elements in an ordered %eis upwarddirectedif
xOXandyOX = OzOX,x<zandy<z.

If X is upward directed, and = SugX), then we say thatis thelimit of X and we writez = limX.

Obviously the totally ordered subsetslofire examples of upward directed classes. In thaetewe

write "directed" to mean "upward directed".

If Jis an order-preserving operator addis directed, then the imagkX) = {J(x) : x X} is also

directed. Then we can give the following definition

Definition 4.6. An order-preserving operatdlis continuousf, for every directed class,
J(lim X) =1limJ(X) 4.1)

A continuous closure operator is also calleclgebraic closureperator.

The following proposition shows that the notiorcohtinuity extends the notion of compactness.

Proposition 4.7.Assume that is the latticd1(S) of all subsets of a given s&tThenJ is continuous iff]

is compact.

Proof. If Jis continuous anX O IN(9), then, becausg = {X; : X;is a finite subset ok} is directed, we

have
J(X) =J(lim C) =lim J(C) = n{JI(Xs) : X is a finite subset aX }.

Conversely, led : T1(S - M(S be compact and observe tha€ifs a directed class of subsetsSahen
X; O lim C andX; finite = there existXC such thal; O X.

Consequently,

10
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Jim C) =n {I%) : % OlimC}) = n{I(X) : XD C} =lim J(C).

The connection between closure operators andre@yistems suggests the following question:

is there a property for closure systems fitting ¢batinuity property for closure operators well ?

The next definition enables us to give a positinsveer.

Definition 4.8. A classC of elements oL is calledinductiveif the limit of every directed family of

elements irC belongs taC. An inductive closure system is callalgiebraic

Every finite subset off is inductive and therefore every finite closursteyn is algebraic. The notion

of an algebraic closure system is well relatedheortotion of an algebraic closure operator.

Theorem 4.9.Given a nonempty class,
Cis an algebraic closure systemCo(C) is an algebraic closure operator
Given a closure operatdr

J is algebraic= CdJ) is an algebraic closure system.

Proof Suppose th€ is an algebraic closure system andlldéte any directed class. Then, since the set
H = {Co(C)(x) : x T} is a directed subclass &, SudCo(C)(x) : x[ T} is an element ofC and
therefore a fixed point fa€o(C). Then,

Co(C)(Sug T)) O Co(C)(SUACo(C)(x) : xT T})
=Sug Co(C)(x) : x O T},
and this proves th&o(C) is algebraic.

Conversely, 1e€Co(C) be algebraic and |t be a directed subset 6f Then, a< is the class of fixed
points of Co(C),

CO(C)(SUHT))) = Su{ CoC)(x) : x T T}) = SugT).

This proves thaBufT)) is a fixed point forCo(C) and hence an element Gf In conclusionC is an

algebraic closure system.

In order to prove the second part of the propmsitrecall that ifJ is a closure operator thed =

Co(CHJ)).

11
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Example. Examine the closure systems in the lattice [Oflhen a closure system is any sulisetf [0,1]
closed with respect to the greatest lower boundsv,Nany nonempty subset of [0,1] is directed and
therefore the algebraic closure systems coincidle thie subset€ both closed under least upper bounds
of subsets and greatest lower bounds of nonemjityesst Thus, the class of algebraic closure systems
coincides with X [0 [0,1] : X is closed and 11 X }. For instance, se€ = [1/3, 2/3)0 {1}. ThenC is a
closure system which is not algebraic and the @stsatclosure operator is defined by setting:

Co(C)(x) = 1/3 for every [ [0,1/3],

Co(C)(x) = x for everyx U [1/3, 2/3),

Co(C)(x) = 1 otherwise.
Moreover, we have that its topological closure [P/3] 0 {1} is an algebraic closure system. Notice
that the continuity proposed in Definition 4.6 éferent than the continuity with respect to theunal
topology in [0,1]. In fact, an operatdrsatisfies (4.1) iff) is order-preserving and lower semicontinuous

with respect to natural topology.

We conclude this section with the following basggidition:

Definition 4.10. An abstract deduction systent, (A) (more generally, an abstract logic) is

calledcontinuousprovided thafA is continuous.

5. Fixed points and step-by-step deduction systems

Usually a deduction operatfris defined by giving a suitable s&tof logical axioms and a suitable set of
inference rules. In this case we can definenimaediate consequence operatobyisetting, for any se{
of formulas,J(X) equal to the set of formulas that can be obtaimgdne application of the inference
rules to formulas ixX and
HX) =J(X)OA OX
In other wordsa 00 H(X) if either a is obtained by applying an inference rule to folasunX, or ais a
logical axiom ora is a hypothesis (a proper axiom). Also, we defifidy induction om, by setting
H'=H and H™' =H[ H"
Given a natural numbem, H"(X) represents the set of formulas that can be aetlidoy ann-step
inferential process frorX. It is easy to prove that is a compact almost closure operator andAhatthe
closure operator generated HyMoreover,
AX) = non H'(X).
12
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To extend such an approach to abstract logics, u& first examine how to obtain the closure operato

generated by a continuoasc-operator.

Proposition 5.1. Let H be a continuous a-c-operator. Then the G€H) of fixed points ofH is an

algebraic closure system and the closure opecéityrgenerated b, is an algebraic closure operator.

Proof LetT be a directed subclass@fH). Then, from the continuity dfl it follows that:
H(SugT)) = Sug{H(x) : xO T}) = SulT)

and, henceSufT) O CqH). This proves thatCqH) is algebraic. Thus, from the equalitg(H) =
Co(CqH)), we can conclude thafH) is algebraic.

Let H be a continuousi-c-operator. Then, the following simple and usefulotieen enables us to

calculate the closure operatgH) generated b¥d (see, for example, [23]).

Theorem 5.2. (Fixed-Point Theorein LetH be a continuous a-c-operator. Then
C(H) = SUp,DN H". (51)

In other words, for every [ L, the least fixed point dfl greater than or equal ¥ds given bySupoy
H"(x).

Proof. We have to prove that, for evexyl L, SupoyH"(X) is the least fixed point dfl greater than or
equal tox. Now, the inequalityd(x) = x entails thaH™*(x) = H"(x) for everyn, and hence, thaH{(x)).cw

is directed. By the continuity o,
H(SupawH"(X)) = SupayH"™ (%) = SupayH"(X)
andSupoyH"(X) is a fixed point foH greater than or equal ¥o Lety be any fixed point such thgt> x.

Then, for evernyn O N, y = H"(y) = H"(x) and therefore,
y = SupoyH"(X). This proves thaBupsy H'(X) = c(H)(x).

In accordance with the above considerations, weqe® the following definition extending the

example in Section 2:

Definition 5.3. An abstractstep-by-stegleduction system is an triplet like, J, @) where
- L is a complete lattice,
- Jis a continuous operator in

-ais an element df (the system digical axioms.

13
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Let (L, J, @) be a step-by-step deduction systma defineH by setting
H(x) =J(x) OxOa, (5.2)

for everyx 00 L. Then,H is a continuoua-c-operator we catheimmediate consequenoperator.

Definition 5.4. Let (L, J, @) be a step-by-step-deduction system and denot& the closure operator
generated by the immediate consequence opétlatbhen the abstract deduction systényy) is called

thededuction systemssociated witliL, J, a).

The proof of the following theorem is trivial:

Theorem 5.5.Let (L, J, a) be a step-by-step-deduction system @nad) the associated deduction system.
ThenA is continuous and
A(X) = SupovH"(X). (5.3)

Moreover,7 is a theory ofL, A) iff 7=J(7)and 7= a.

6. The product of two deduction systems

Given two abstract deduction systenmisAj and (,AY), it is natural to search for a new deduction
apparatus able to use both the inferential instrusnef (,A) and (,A"). This suggests considering the
operatorsA | A, AL A" andA OA'. Now, the composition (and the join) of two claswperators is, in
general, an almost closure operator and not a r@osperator. Consequently, we have to refer to the

closure operators generated by these operatorfwbincide as the following theorem shows:

Theorem 6.1. LetJ andJ' be a-c-operators. Then
CqILJ)=Cs(I) n CYI)=CIDOI)=CgI'L J). (6.1)
Consequently,
c@LI)=c@LI=cQ0d), (6.2)

ie.,J L J', J01JandJOJ generate the same closure operator.

Proof. Let x be a fixed point ofl | J'. ThenJ'(x) < J(J'(X)) = x and thereforecis a fixed point ofJ'.
Moreover, the equalities= J(J'(x)) = J(X) show thai is also a fixed point al. Conversely, it is apparent
that if x is fixed for bothJ andJ', thenxis fixed forJ| J' and this proves the first equality. The remaining

part of the proposition follows from (6.1) and Them 3.4.
14
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Definition 6.2 Let (L, A) and (, A") be two deduction systems. Then we patiductof (L, &) and (, A")

the deduction system
(Locala)) = L cala) = L cam)) .
From the first equality in (6.1) it follows thatpéece of informatiorx is a theory of the product (c(A |

A") iff xis a theory of both the deduction systémX) and (, A"). The proof of the following theorem is

evident:

Theorem 6.3. The product of deduction systems is a commutatngeassociative operation. Moreover,
the product of two continuous (logically compaatddction systems is a continuous (logically compact

deduction system.

Sometimes it is possible that the compositionvad tlosure operators is a closure operator. The

following theorem gives some information to thigaed:

Theorem 6.4.Let J andJ' be closure operators. Then the following are ejant:
() JLJ isa closure operator.
iy JLI=IL

(i) J(J'(X)) is a fixed point of) for everyx O L.

Proof. (i) = (ii). Letx U L. Then, fromJ'(x) = x it follows thatJ(J'(x)) = J(x) and thereford'(J(J'(x)))
> J'(J(X)). Thus, since by hypothesl$ J' is a closure operator, by the inclusion propevtydf

J(JI'(¥)) = II'(IF'(¥))) 2 FEI'(X) 2 F(I(X)).-
(ii) = (iii). Observe that

JE'() = III'(X)) = II'(X)).
(i) = (i). Observe that

JE'EECY)) =IEI'(9)) = II'(X))

7. Triangular norms and co-norms

In fuzzy sets theory, triangular norms are usuadlgd to generalize the logical conjunction “andbril

precisely, we have the following definition:

15
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Definition 7.1. A mapT: [0,1] x [0,1] - [0,1] is calledtriangular norm (or T-norn) if satisfies the

following properties:
i) T(a,b) =T(b,a (commutativity)
i) T(a, T(b, 9) = T(T(a, b), ) (associativity)
i) T(a,b<T(c,d if a<candb<d (monotonicity)
iv) T(a,) =a (identity element)
a,b,c,d][0,1].

The most used t-norm are:
e minimum (or Godel)min(a, b) = min{a, b}
* LukasiewiczT (a, b) =maXa+b -1, 0}

e product:Tr (a, b) =ab
If Tis at-norm, andh: [0,1] - [0,1] is an increasing bijection, then
T*(ab) = h*(T(h(a),h(b)))

is a t-norm.

The dual concept is the notion of triangular corm®ithat instead are extensively used to model dbgic

connectives “or”.

Definition 7.2. A map S: [0,1] x [0,1] —» [0,1] is atriangular co-norm (t-conormif it is symmetric,
associative, nondecreasing in each argumentSgmd) =a, for alla 0 [0, 1]. In other words, any t-

conorm S satisfies the properties:
i) Sa,b=9b,a (commutativity)
i) Ha, §b, 9) = SYa, b, ¢ (associativity)
i) Ja,b<Yc,0 if a<candb<d (monotonicity)

iv) Y&, 0) =a (zero identity)

[7a,b,c,dd [0, 1]

If Tis a t-norm, it’s possible to define a t-conddassociated td by the equality

Ja,h:=1-T(1-a,1-Db)

16
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and we say thabis derived fronil. The basic t-conorms are:
* maximum:maxa, b =maxa, b}

 Lukasiewicz:§ (a, h =min{a + b, 1}

* probabilistic:S> (a, h =a+b - ab

Definition 7.3. A t-norm is calledcontinuousif it is continuous as a function, in the usualemal

topology on [0, 13

For any left-continuous t-norify there is a unique binary operatio0,1] — [0,1] such that
T(x,2 <yifandonlyifz<1 (xy) Ox,y,z][0,1]

This operation is called theesiduumof the t-norm and is frequently denoted by since in a t-norm
based fuzzy logics, if the logic conjunction iseirtreted by a t-norm, the implication is interpdely the
residuum. Moreover, observe that the interval [Oequipped with a t-norm and its residuum is a

residuated lattice.

More in general we have the following definition:

Definition 7.4. We callresiduated latticeghe structure. = (L, 00, [0, O, -, 0, 1) wherel{, 0, 0, 0, 1) is a
bounded lattice[] is a commutative, associative, order-preservingatyi operation whose neutral
elementis 1~ is a binary operation such that

xOzL<y = z<x - y.

Observe that if] is sup-preserving and.,(CJ, O, 0, 1) is complete, then we obtain a residuattitéaby

defining — by the equation

X -» y=SudzOL:xOz<y}

If we refer to the class of the structures in whighis defined in such a way, then a functiofnom a
residuated lattice. = (L, [J, [0, 0,-, O, 1) into a residuated lattidé = (L', [, [J, ', », O, 1)is an
isomorphism if an only if is an isomorphism from to the redutt (J, [J, [J, 0, 1) to the reducL{, [J, [,
', 0, 1).

The operation$g! and - are used to interpret@njunctiond and animplication —, respectively. In a
residuated lattice we can define an operafibby setting(dA) = A - 0. Such an operation is the

interpretation of the negation.

17
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8. Similarity

Definition 8.1. Let She a nonempty set amndla triangular norm, then a fuzzy relatiBn SxS- [0,1] is a

similarity if for everyx,y, zin §
(@ Rxx) =1 (reflexivity),
(b) R(xy) =R(y.x) (symmetry),
(c) Rxy)=>R(x2 0OR(zy) (transitivity).

So a similarity relation can be link in a sense“gimilar” elements and can be seen as a weakaxfitite
identity relation. Since the notion of similaritgends strongly from the operation to emphasize such

a dependence sometime we say Bt all-similarity.

In logic programming a similarity relation can bged to modify the classical unification in a “retax

unification” which is particulary interesting when,the classical unification process, a failurpfens.
Definition 8.2. For everyA [J [0,1], theA-cut of a similarity relatiorR is the seR, = {(x, y) O SXS | R(x,

)2 Al
If (x,y) R, we can say thatis A-similar toy.

18



CHAPTER 2

MODELS AND DEDUCTION APPARATUS FOR FUZZY
LOGIC

1. Fuzzy interpretations of a first order language

In this chapter we recall some basic notions irnzyulogic. In particular, we define several model
theoretic notions in accordance with the approaopgsed in [16].

In order to evaluate the formulas in a multi-valdegic, we need a s&tof truth values and suitable
operations irV able to interpret the logical connectives. An ondgation inV enables us to interpret the
universal and existential quantifiers by the leapper bound and greatest lower bound operators,
respectively. Technical reasons suggest to int@dsiech an order by a semilattice operation. The

following is a more precise definition.

Definition 1.1. A type for a valuation structures a pairr = (C, ar) defined by a nonempty s€tand an
arity functionar : C - No. If Ais an element i€ such thatr(A) = 0, therd is named dogical constant
If cis an element i€ such thatar(c) = n # 0, thenc is called am-ary logical connectiveln the case
ar(c) = 2 we say that is binary. We assume that there are at least two logicataats_Oand_land a

binary logical connectivél we callconjunction

Definition 1.2. A valuation structureof typez is a pairV = (V, 1), whereV is a honempty set (thteue

values sgtandl (theinterpretatior) is a map irC such that:
a) for every logical constant I(4) is an element i,
b) for everyn-ary logical connective, 1(0) is ann-ary operation iV,

¢ if0=1(0), 0=I(0) and 1 =H(1), then ¥, [, 0, 1) is a semilattice

Then, a valuation structure is an algebraic strecagdmitting as a reduct a bounded semilatticeit s
usual, we can represent a valuation structure(V, 1) by the associate algebraic structure. In the €ase
is finite, we write ¥, hy,...,hy) to denote such a structure. Lst denote the order relation defined by
settingx < y if and only if x(Cy = x. We callcompletea valuation structure which is complete with respec
to such an order. Notice that we admit also incetepValuation structures since there is a largesabd

fuzzy theories in which this does not create diffies. Another reason in favor of such a choicthat
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otherwise should be impossible to give the notibgumtient. In fact there are complete semilattites
admit quotients aren’t complete. Obviously, as Iwele afterward, the incompleteness determines some

difficulties in evaluating the quantifiers.

Definition 1.3. A first order languagéd. for a fuzzy logic is a systenfF(R, C, ar) whereF, R, C are
disjoint sets andr : FOROC — N, is a function we calhrity functionin such a way thaQ, ar) is a type
for a valuation structure. & (1 F andar(c) = 0, thercis calleda constantIf h (1 E is such thaar(h) =n
# 0, thenh is called am-ary operation symbollf r 0 R andar(r) = n, thenr will be called ann-ary

predicate symbdwe assume that the arity of a predicate symbdiffisrent from 0).

Then a first order language is a first order lamguas usually defined in classical logic togethgh
type for valuation structures. The semantics fost forder multi-valued logic is based on the notadn

fuzzy set and fuzzy relation [34].

Definition 1.4. Given a valuation structurg and a nonempty s& we callV—subsetor simply fuzzy
subsef Sany maps: S— V from Sto V. For everyx[JS, the values(x) is interpreted as a membership

degree. Am-ary V-relationin Sis aV-subset o', i.e.amas: S'— V.

The supportof s is the setsupfs) = {xOS: s(x) # 0}. A fuzzy subsets is calledcrisp provided that
s(X){0,1} for every x(JS. We say thas is finite provided that its support is finite. Wertbte byV® the
class of all the fuzzy subsets Sfand we identify the subsets @ with the crisp fuzzy subsets by
associating every subset with the related chaiatitefunction. In the cas¥ is completeif (s)ig is a

family of fuzzy subsets d thenlli5s and nig s are the fuzzy subsets defined by the equations

(Oims)(¥) =Supas(¥) ; (Nio s)(X) = Infig s(X).

Definition 1.5. Given a first order languade afuzzy interpretation df is a tripleM = (D, V, 1) such that
D andV are nonempty sets (tlmmainand thetruth values setrespectively)] (theinterpretation is a

map such that:
i) V together the restriction dfto C is a valuation structure
i) | associates everyary operation symbdilJF with ann-ary operationh =
I(h) in D,
iii) | associates everyary predicate symbglIR with ann-ary V-relationr =

I(r) in D.
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Then a fuzzy interpretatioM is defined by assigning:
- a classical algebraic structuk§M) = (D,F) we callalgebraic structure of the domain
- a valuation structuréAL(M) = (V,C)

- a setRel(M) of fuzzy relations.

A fuzzy interpretation is also calledfiast order fuzzy structuréNe say that two fuzzy structures are of
the same typef they are fuzzy interpretations of the same laage. We caltrisp a fuzzy structurd/

such that all the fuzzy relation Rel(M) are crisp.

Definition 1.6. Assume that in the language there is the spedaiagr symbol “=". Then we cathormal

a fuzzy interpretation such thidt) is the (characteristic function of the) ideptielation.

It is evident that we can identify the usual stwe$ in classical logic with the normal crisp fuzzy

structures.

Given a first order languagé in which we assume the universal quantifieas a primitive, we indicate
with Form(£) the set of all formulas and wifform(L,)) (with Ter,) the set of formulas (terms) whose free

variables are inX,... X;}. Given a fuzzy structur¢ = (D, V, 1), the interpretation of a terthiTer, is an
n-ary functionl(t) in D defined by recursion on the complexitytas in classical logic. The valuation of

the formulas off with respect td = (D, V, I) is defined in a truth-functional way as follows.

Definition 1.7. Given a fuzzy structuré! = (D, V, 1) andad Form(L,), thevalueof « in d;,...,d, with

respect taV is the elemenval(M, o, dy,...,d,) in V defined, by recursion on the complexity afby the

equations:
(i) valM, r(ty,...,tp), di,...,dn) = 1)1 (t)(dy, ...,An),... | (tp) (D, )
(i) valiM, c(ay,...,0q), Oy, ...,0n) = 1(C)(val(M,a1,04,...0n), ..., val(M,0q,04, ...,dr))
(i) val(M, OxB3, di,...,dy) = Inf({val(M, B, di,...,dh1, d, Ane,...,dn) : dOID})

where p,q ON\0}, rOR,, cC, ty,..., t,0Ter, ay,...,aq, B O Form(L,), hO{1,...,n}.

It is evident that ifa is a closed formula, then the valual(M, a, d,,..., d,) does not depend on the
elementd,,..d,. In such a case we writal(M, o) instead oval(M, a, dy,...,dy). In the casélx;...[0x,(a))

is the universal closure @f, we writeval(M, «) to denoteval(M, Ox;...O0x,(a)). Observe that in the case
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the valuation structure is not complete, due to fresence of the operattnf it is possible that the

valuation is undefined for some universal formula.

Definition 1.8. If in a fuzzy structuré/ all the formulas have a valuation, théis called asafe structure.

Trivially, if Inf(X) exists for everyX in P(V), thenM is safe Nevertheless we can refer only to a

particular class of subsets \éf

Definition 1.9. Let a be a formula such thabl(M, a, d,,...,d) exists for every,[1D,...,d,, [OD. Then we
callrange ofa in Mthe subseV(a) of V defined by

V(@) = {val(M, a, di,...,d) : iID, .. .dm ID}.

We denote by (V) the class of all the ranges of the formulasfin

Observe thaPy(V) is enumerable and therefore that, in the daggfinite, Py(V) is different from the
power seP(V) of V. Obviously, it is sufficient to require thhtf(X) exists for every in Py(V), to obtain

the safeness oW.

Definition 1.10. We callfuzzy theorany fuzzy subset of formulas. We say that a safe interpretatibn

is afuzzy model of, in briefM k r, if val(M, «) = 1(a) for every formulaa.

An equivalent formulation of the notion of fuzzy ded of ris obtained by the notion of fuzzy formula.

Definition 1.11. We callfuzzy formulaa pair <o,A> wherea is a formula andil]V. We say that such
<a,A> is satisfied by, in brief M £ <a,A>, if val(M, a) is defined andial(M, a) = A . We identify the

fuzzy formula <,1> with the formulaa and we writeVl £ aif val(M, «) = 1.

Then we can represent a fuzzy theoss the set
{<a, 2> : ais a formula and = 7(a) £ 0}

of fuzzy formulas and we can say titats a model ofr if M is a model of all the fuzzy formulas mIn

the case the support ofs finite, we can represemty a list as

m [Ad]
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a [Ad]
In the case is a crisp fuzzy subset, then we can represégtthe related suppoft= {«a: (a) = 1} and
we have thatld,V,l) is a model off provided thawal(M, a) = 1 for everyaT. If T is an universal theory,
this is equivalent to say that, given any fornmuia...00x,ain T,

vallM, a, di,...,d,) = 1 for everyd,,...,d, in D.

Consequently, in such a case the completeness ohthation structure plays no role.

Observe that, in accordance with such a definibmodel, the value(g) is not intended as the truth
value of ¢ but as a lower-bound constraint on the possihléhtvalue ofg. In other words, the
information carried on by a fuzzy set of hypothesis that, for any formulg "the truth value of is

greater than or equal ta(g)".

In accordance with the definition given for an shst logic, it is possible to define a thisogical

conseqguence operattimat we denote blyc.

Definition 1.12. Let 7: F - L be a fuzzy set of hypotheses. Then the fuzzyLs@f) of logical

consequenced 7is defined by setting:

Lo(7)(9) = Inf{{m(@) : m= 7}.

In a sensel.c(7)(¢) is the best lower-bound constraint on the trualue of ¢ that we can find given

the available informatiom. It is easy to prove thaftc is a closure operator.

2. Homomorphisms and quotients

In the class of fuzzy structures of the same typecan define the notion of homomorphism. To sirgplif
our notation, given a map: D - D’, we will denote again bl the maph: D"—D" defined by setting
h(dy,...,d,) = (h(dy),...,h(d,)) for every ¢h,..d,)0 D".

Definition 2.1. LetM = (D, V, I) andM’ = (D", V' , I' ) be two fuzzy structures of the same type. Then we
say that a pairh( k) is aweak homomaorphisrdtom M to M’ provided thath is a homomorphism from
Al(M) into Al(M’), kis a homomaorphism frotddAL (M) into VAL (M) and, for every predicate symho|

kel(r)<I'(r) ° h.
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We say that a weak homomaorphismk) is ahomomorphisnif
kel(r)=1(r)>h

for every predicate symbol(different from the special symbol = in the c&tis normal).

As usual, we can express the conditioni(r) < I (r) - h and the identitk » I(r) = I'(r) - h by saying that

the diagram
n h n
D » D'
Kr) I(r)
14 u %

guasi commutesr commutesespectively.

Due to the presence of the semilattice operdiioand to the meaning of the constantar@ 1 if
(h,K) is a weak homomaorphism, thkis order-preserving ari0) = 0,k(1) = 1. In the caskinjective,
X<y = k(X) < k(y).
If there is no algebraic structure in the considefezzy structures, then the condition tlhais a

homomorphism fromAl(M) into Al(M") is skipped and the only request fors the commutativity of the

diagram for every fuzzy relation.

Definition 2.3. Let (h,k) be a homomorphism, then
- (h,K) is anisomorphismf bothh andk are isomorphisms

- (h,K) is anepimorphisnif both h andk are epimorphisms
In the sequel, iK is a set we indicate ky the identity map irX.
Definition 2.4. Let (h,k) be a (weak) homomorphism, then

- (h,Kk) is a (veaR structure-homomorphishV=V’ andk =iy

- (h,K) is a (veak valuation-homomorphisiii D =D’ andh=ip

We denote by the structure homomorphisth,ii) and byk the valuation homomorphisnp( k).

The second basic notion we have to define is tieead congruence and the related notion of quotient

of a fuzzy structure.
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Definition 2.5. A congruences in a fuzzy structurd/ = (D,V,l) is a pair €, =,) of congruences dkl(M)
and VAL (M), respectively, such that for eveny-ary relation symbok[R (different from the special

symbol = in the cas#/ is nhormal) and for eveny,,...,dn, by,...,0, 0D
=1 by,..., dn=1 by = 1()(dy,...,dm) =2 1(r)(by,...,bm) (2.1)

We say that,;, =,) is astructure congruencé =, is the identity relation, we say that (, =) is a

valuation congruencd =, is the identity relation.

The conditiorr different from = is a necessary one since othertfiseonly possible structure congruence

in a normal fuzzy structure is the identity. Indeed
b=d = b=b,b=d= 1=I(=)(b,b) =1(=)(b,d) = b=d.

Obviously, the valuation congruences coincide wlith congruences iMAL(M). Indeed in such a case
(2.1) is trivial.

It is useful to consider the class of congruenoes fuzzy structure by referring to the complet®lBan

algebra Re(M), <) where

RelM) = {(R;, Ry) : Ry OP(DxD) andR, OP(VxV)}
and wheres is defined by setting

(RuR) < (R', R, = RIOR’; andR, OR',.

In other words, such a Boolean algebra is the prodiuthe Boolean algebra of the binary relation®i
and the Boolean algebra of the binary relation$.ift is immediate that every congruence is the jain i

RelM) of a structure congruence with a valuation coagog.

Proposition 2.6.The class of congruencesMfs a closure system in the Boolean algeRe({/), <).

Proof. The maximumDxD, VxV) is a congruence and therefore the meet of theyeohass is a

congruence. Consider a famil¥1i( Ef)im of congruences and consider the related megf ={) in
(Re(M), <)
=L =) =HoE=)=(Nio =, Nin=).

It is immediate tha¥, is a congruences &f(M) and the=, is a congruence &f(M). Moreover, for every

m-ary relation symbat andd,...,dm, by,...,b, 0D,
di=1 by, dn= b= d, = b,....,d =, b foreveryidl
= I(r)(dy,...,dn) E‘ZI([)(bl,...,bm) for everyill

= 1(r)(dy,...,dw) =2 1(r)(by,...,0m).
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The following proposition gives a way to obtain ttangruence generated by a given pRir R).

Proposition 2.7.Given R;,Ry) in RelM), we can obtain the congrueneg, ;) generated byR;,R,) by
setting=; equal to the congruence & (M) generated by, and=, equal to the congruence WAL (M)

generated by
Ren{(1(r)(dy,....dw), I(r)(by,....bw)) : TOR andd;=; by, ...,dw=1 b }.

Proof. Observe that, by definition=(,=;) is a congruence containingj(R,). Let E',=',) be any
congruence containindr(,R,). Then=, [0 =" ; because; is the smallest congruence ofAd{M) containing
R; . On the other hand, sincg O ='; and € .,=,) is a congruence, ith=; b ,...,d=1 by, then

(I(1)(dy,...,dy) =2 I(r)(by,...,by)). Since by hypothesi&; is contained i’ ,, this proves that, [1=',.

To define the quotient of a fuzzy structure modalloongruence, i andA are elements iD andV,

then we denote by] and [A] the equivalence classes modelcand=,, respectively.

Definition 2.8. Let M = (D,V,I) be a fuzzy structure arela congruence iM. Then thequotientof M
modulo= is the fuzzy structurd//= such thatAl(M /=) is the quotient oAl(M) modulo=,, VAL(M /=) is
the quotient o/AL (M) modulo=, and the interpretatiol in M/= of the relation symbols is defined by

IF(O)([da].....[A]) = [1(r) (D, O]

for everym-ary relation symbot(OR andd;,....,d[ID.

As in the classical case we can prove a homomsmphheorem connecting the just considered

notions. To do this, we have to define the notibmmage of a fuzzy structure by a homomorphism.

Definition 2.9. Let M to M’ be two fuzzy structures antd,K) be a homomorphism fromM to M'. Then the

imageof M through b, K) is the fuzzy structure, we indicate withy (M), such that:
- Al(Imui(M)) is the algebraic substructureAl{M’) defined inh(D)
- VAL (Imp(M)) is the algebraic substructure\OAL (M’) defined ink(V)

- the fuzzy relations iRel(/mxx(M)) are the restrictions taD) of the fuzzy relations iRel(M").

Observe that the fuzzy relations imy (M) are well defined since a fuzzy relationin Rel(Impg(M))
assumes its values kV). In fact, sincek e I1(r) = I'(r) - h, we have’ (r)(h(D")) O k(V). Instead, such an
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argument falls for the weak homomorphisms and fhesethere is a difficulty to define the notion of
image through a weak homomorphism. This entails@h&aomomorphism theorem not possible if we

refer to these homomorphisms.

Theorem 2.10.The following claims hold true.

i) Let (h, K} be a homomorphism froM to M’ and=,, =, the kernels oh andk, respectively. Then the
pair E;,=,) is a congruence a¥ we call the kernelof (h, k). Moreover if we denote bg¥ such a

congruence, the quotiet/= is isomorphic withim,x(M).

i) Let= be a congruence M andM /= be the related quotient. LetAl(M) — Al(M)/=, andk: VAL(M) -
VAL(M)/=, be the canonical epimorphisms. Theh, ) is an epimorphism, we call theanonical
epimorphismfromM to M/=, and= is the kernel ofi{Kk).

Proof. To prove the first claim, lat be a relation symbol, ard], ... ,dybs,... by elements irD such

thatd,=by,....dw=1by. Thenh(d,) = h(by),...., h(d.) = h(b.) and therefore,
k(I(r)(dy,....dw)) = 1" (D)(D(d), ....n(dm)) = 1" ()(N(DY),.....h(Dm) = k(I (r)(by,....br))

Thenl(r)(dy,...,dn) = 1(r)(by,...,by) and this proves tha&{,=,) is a congruence. It is evident that the maps
h’: D/=;-» h(D) andk’ : V/=, - k(V) definedby settingh’([x]) = h(x) andk’([X]) = k(x) defines an
isomorphism betweelM/= and/m,(M). The proof of the second claim is matter of noti
Observe that the order relation induce® AL (M /=) by the meet operator is defined by setting

(A <[d = [AIOMd =[A = [A0d =[] = ATu= A

This means that the canonical homomorphism is guokserving.

3. Products and ultraproducts
In this section we will introduce the basic notioofsproduct and ultraproduct of a family of fuzzy

models. As usual, if)ig is a family of algebraic structures, then we derytd /i S the related direct

product. If ()i is a family of fuzzy models such that all the vdilo@ structures/AL (M;) are complete,

then the valuation structu®;;, VAL(M)) of its productM is complete.

Definition 3.1. Let (M))in be a family of fuzzy models, then we define @ertesian producof (M))iq; as

the fuzzy modeM = /7 M, such that

Al(M) =/l AL(M}), VAL(M) = /]y VAL(M)
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and, for evenn-ary predicate symbalandfy,... f,in the domairD of Al(M),

I()(Fu... fn) = <(O(F(),.. FuD)>ic -

ThenM is defined in the domaii/, D; by the interpretatioh such that

I(4) = <i(A)>ii
1(0)(A1, ..., An) = <1i(Q)(A1s... An)>ic
I(c) = <li(C)>in

I(N)(fa,... fm) = <L) (F2(D),-.. Fui))>ic
I()(fy,.. fo) = <H@O)(FL(0), . i) >ica-

Notice that such a definition is not an extensiérine classical one. Indeed if we assume thathall t

valuation structure¥’AL(M,) coincides with the two elements Boolean algel¥d}{ then the Cartesian
product M is not a classical structure since its predicag @raluated in the Boolean algebfa
VAL(M) = {0,1}".

To define the notion of ultraproduct, we needftiilwing proposition.

Proposition 3.2.Let (M))iy, be a family of fuzzy models and |11 be an ultrafilter irP(l). Let=; and=,

be the congruences defined B¥in the structured/, AL(M;) and 775 VAL(M,) respectively. Then the

pair &1, =,) is a congruence of the Cartesian proddist /7o M5 .

Proof.We observe only that

f1=1 01, fo =1 Go = {012 Fy() = ()} 0 U,... {00 : £(1) = go(i)} O U
= {i0l: fy(i) = ()} n... n{i0N : £(i) = go(i)} O U
= {i00 K@), £0(0) = 1(0)(9a(i)....9a(1))} U U
= 1O ) =2 1(0)(9n,--- Gn)-

Definition 3.3. Let (M)io;y be a family of fuzzy models an@l be an ultrafilter inP(l). Then the
ultraproductof (M))io; moduloU is the fuzzy structureV =/7%, M; obtained as the quotient éf, M,

modulo the congruence,( =,) associated witll.

ThenM! is defined in the domain/fi; D;)/=; by the interpretatioh such that
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1“(4) = [<li(A)>iol

Q[ -, [An]) = [<1i(Q) (A1, An)>in]
1(c) = [<i(©)>inl

O)F, - [fd) = [<E)(F().... £o(0))>ic]
1) (F-.. £a) = [<LEOEG), - fal)>ia]-

Note 1. Differently from the case of the product, the yeduct of a family of classical models is a

classical model, too. Indeed the quotient/@f, VAL(M,) = {0,1}' modulo=, is the Boolean algebra

{0,1}.

Note 2. Notice also that in the classical definition ofrafiroduct the ultrafilter does not define a
congruence in the direct product. More precisehg talmost everywhere equal’ relation is not
compatible with the relations represented in theglage. This since in the classical case the direct
product is forced to be a model evaluated in thel&m algebra {0,1} and not in the Boolean algebra
{0,1}".

4. Deduction apparatus for fuzzy logic

In all the logics, the deduction apparatus is & tm@laborate pieces of information and in fuzagit, a
piece of information is represented by a fuzzy stibs
Let s be a finite fuzzy theory whose support ig: {...a,}. Then we can represestby the finite set

{(a1,A0),..., (an,An)} of fuzzy formulas wherel; = s(a;) . Equivalently, we represesby a list as

a1 [Ad]
an [Ad

We can improve the available informatisrby the proofs and, in turn, this requires a notibrfuzzy
inference rule. The following are examples of “fyfzzation” of three famous classical rules (modus

ponens, particularization, andintroduction rule):

a a-pf /],u>

s A0 4
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Oxa A .
(m E> ,

a pf A u
<a ap A0 ,u>
wheret is any terma and 5 are formulas of the languagg, iz elements in the valuation sétandl] is a
suitable binary operatioMotice that the valued and 1 in the inference rules are not intended as truth
values but as constraints on the possible trutheglSo, the operatidn expresses a way to calculate a
constraint on the truth value of the conclusiomfrconstraints on the truth values of the premistse

in particular, the meaning of these rules is thi@fang.

Extended modus ponens

if it is proved that the truth value ofis at leastd and that the truth value of—4 is at leasjy, then we

can claim that the truth value gis at leasfi(] 4.
Extended particularization:

if it is proved that the truth value @ixa is at leastl andt is a term, then the truth value aft) is at least
A

Extended -introduction rule:

if it is proved that the truth value ofis at leastd and that the truth value gfis at leasjy, then we can

claim that the truth value af(}p is at leastAl ..

When not differently specified, we assume thatwileation structure is a residuated lattivel( , -, <,

0, 1) and that the fuzzy inference rules are ddfiog the productl in such a lattice. Also, we assume
that satisfies the continuity condition, iXJ(Supmx) = Supy XUx for every family &)io of elements
in V. Important examples are obtained by setihequal to the interval [0,1] and by assuming thas a

continuous triangular norm.

More in general duzzy inference rulis defined as a pair= (I'syntax 'semanticy Wherersynaxis a partiah-ary
operation defined in the set of sentences (i.enf@nence rule in the usual sense) aQ@anicsiS ann-ary

operation in the sét of truth values satisfying a continuity property.

Definition 4.1. Let L be a first order language, therfuzzy deduction apparatus L is a pair (R, 1a)
wherelR is a set of fuzzy inference rules dad Form(L) -V is a fixed fuzzy set of formulas we call the

fuzzy subset of logical axioms.
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Notice that, as in classical logic, the fuzzy sl logical axiom is fixed in a fuzzy logic whitee
fuzzy subset of proper axioms varies. In classlioglc given a sefl of hypothesis a proof is a finite
sequence of formulas such that every formula feeeia logical axiom, or an hypothesis, or is oladiby
an inference rule from early proved formulas. ladtén fuzzy logic we can admit every formula as a
logical axiom or as an hypothesis. The valuatiothef correctness degree of the proof depends en th

correctness degree of these assumptions.

Definition 4.2. A proof 7rof a formulaa is any sequencg,..., 77, of formulas such thatr, = a, together

with the relatedjustifications" This means that, for any formutg we must specify whether
() a; is assumed as a logical axiom; or
(i) a is assumed as an hypothesis; or

(i) o is obtained by a rule (in this case we have tacatd also the rule and the formulas from

ai,..., a_pused to obtaim).

The importance of the justifications is that theg aecessary to define the validity degree of tlu®fp
Such a definition is by induction on the lengthrfsee [17], [28]) Observe that, as in the classical case,

for anyism, the initial segmendr,..., @; is a proof ofa; we denote byti).

Definition 4.3. Given a fuzzy theory and a proofrz the valuation Val(7zs) of /rwith respect to ss
defined by induction on the lengthof 7zin accordance with the following rules:

Val(7zs) =la(a) if anis assumed as a logical axiom,

Val(7zs) =s(am) if am is assumed as an hypothesis.

Val7zs) = rsemanictVal(74i(1)),9),...,Val(7£i(n)),9)) if anis obtained by the rule= (rsyntax I'semantic},

andam = r'syna{ Qiay, - .-, Giy) With 1< i(1)<m,..., 1< i(n)<m).

Notice that we have only two proofs gfwhose length is equal to 1. The formalavith the justification
that a is assumed as a logical axiom and the fornmbaith the justification thaty is assumed as a
hypothesis. So, the first two lines of the defomtiof 4.3 gives also the induction basis. The valairzs)
is interpreted as a piece of information on théhtualue ofa, more precisely, the informatiofithe truth
value if o is at least Vdlzs)”. Different proofs of the same formula give different pieces of

information on the truth value @f. This suggests the following definition.
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Definition 4.4. Given a fuzzy deduction apparatiR, (a), thededuction operatois the operator
D : V™Y, \FomW gych that, for every 0 V™Y the fuzzy subsdd(s) is defined by setting,
D(s)(@) = Sud Val(7zs) : 77 is a proof ofa} (4.1)

for every formulaa.

We emphasize th&(s)(a) represents the best possible informatiormrave can draw frons.

32
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CHAPTER 3
FUZZY LOGIC PROGRAMMING

1. Fuzzy logic programming

Fuzzy logic programming (see [9]) is a very promjssection of fuzzy logic whose aim is to build up
intelligent data-base systems with "flexible" anssyexpert systems able to consider vague predicate

and so on, combining the might of logic programmi(isge [24]) and the big adaptability of fuzzy lagic
We introduce some basic definitions in fuzzy logiogramming; observe that in this sectlowill be a
residuated lattice.

Consider a fuzzy deduction apparatil®, (a) and lets be afuzzy subsedf S, we callsupportof s the
subsetSupfs) = {x O S: s(x) # 0}.

As usual, ifL is a first order language, then we denotd-birorm(L) the set of formulas df and byB;

the Herbrand base, i.e. the set of facts

Definition 1.1. A (positivg implicative clauseis either an atomic formulaor a formula like
h(a,....an) - a wherea, a,...,a, are atomic formulaandh(a,,...,a) is composed only by conjunctions
and disjunctions interpreted by continuous nornd @mnorms, respectivel\C((L) is the related set of

positive clauses).

Definition 1.2. A fuzzy subsep: F - L of formulas is agositive ground fuzzy programf Supgp) is a

set of (positive, ground) implicative clauses.

The following definition of least fuzzy Herbrand del is syntactical in nature. It is possible toyardhat

such a definition is equivalent with the usual semantic in nature (see [18]).

Definition 1.3. Let p be a fuzzy program, we cdélast fuzzy Herbrand modef p the fuzzy subset of
factsm, we can derive fromp, i.e. the restriction ofD(p) to B, (whereD is the deduction operator define

as in definition 4.4., in chapter 2)

Such a notion depends on the considered dedugijmaraus, obviously.
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Denote byGr(p) the set of ground instances of the formulap and byFact(p) the set of facts iGr(p).
Then,the one-step consequence operasdhe functionly : P(B,) —» P(B.) defined by setting

Te(S ={aUB.: a -« a[1...Oa,AGr(p), anJS,...,a,JS} O Fact(p)
for every subses of B;.
Such an operator enables us ([18]) to obtain thst lderbrand modehs of p by the equation
pA Onon Te'(0). (1.1)

Observe that equation (1.1) suggests an algorithiwatculate, for any fact, the valuemy(a). More
precisely, if we adopt the definition of recursieeumerability for fuzzy sets proposed in [2] an8][1
then, under very natural hypotheses, it is eaghtav thatm, is a recursively enumerable fuzzy subset of
B..

A consequence is the following theorem (see [f&) shows that the least fuzzy Herbrand model of

a positive fuzzy program represents the informatweatent ofp.

Theorem 1.4.Let p be a positive fuzzy program. Then the least fuzeypbrand model gp is equal to the

fuzzy subset of facts which are logical consequeitp, i.e., for any factr,

my(a) = Le(p)(a).

Observe that as in the classical case, severaldifés exist for fuzzy programs which are notipes.

2. Fuzzy logic meta-programming

The idea is to extend fuzzy logic programming tketanto account the synonymy relation among
predicates in accordance with the similarity lggioposed by M. S. Ying in [33]. The idea of Yingfst

it is possible to relax the application of the nefece rules in such a way that it is also admitiad
approximate matching of the predicate names. Aexample it is admitted that frosmanda’ - S we
can inferf even in the case that is only approximately equal ta. An application to such an idea to
logic programming was done in several papers (8g€d], [5], [11]) where the definition of synomy
refers to Godel's norm. Successively, in [25] #lsows that it is possible to define a similaritgito
programming (in particular a synonymy logic prognaimg) in the framework of multi-adjoint logic
programming. The proposed procedure works with iaygular norm and the authors show that the

resulting logic coincides with the existing onesha case of Godel’'s norm.

Since the synonymy is a meta-relation, in ordatdfine a synonymy logic we have to consider a blgdta

meta-logic. On the other hand, all the definitionsfuzzy logic programming and in similarity logic

programming can be expressed by positive clausetasgsical logic programming. Then, we show that
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given a fuzzy program in a languafiewe can translate it into an equivalent classfalgram in a
suitable (meta-) languadg, Since the predicate namesLitbecome constants ik, this enables us to
admit inL,, meta-relations among predicates. In particula nieta-relation the paper is interested is the
synonymy and this enable us to define a synonymgitee fuzzy logic programming.

There are at least three reasons in favour of adolgic. The first one is that, differently frometipapers

[1], [3], [11], all the triangular norms are adreit The second is that the resulting notion of yuzz
Herbrand model is uniformly continuous with respecthe synonymy relation (a basic property for a
synonymy logic). Finally, another reason is that thsulting logic is a similarity logic in the atasit
sense given in [17]. This means that its deduabjperator is the closure operator obtained by comgin
the similarity closure operator with the one-stemsequence operator associated with the given fuzzy

program.

3. Translation of a classical program

As a first step, we consider a way to translatéaastcal program (in a languagginto another simple
classical program (in a suitable “meta-langualgg’ Successively we will extend it to the fuzzy case. A

an example, consider the following progrBm
r(a,b)
r(b,c)
r(c,d)
r(ss)
sr(X)Y) < r(Y,X)
sr(XY) < r(X\Y).

The languagé. of P has two predicate symbotsand sr and the constants, b, ¢, d, s. Now, we can

interpret the fact(a,b) in a meta-linguistic level by claiming that:
the sentence “ the relation r is satisfied by a drids an axiom.
Likewise, we can interpret the instarsréb,a) — r(a,b) of the rulesr(X)Y)  r(Y,X) by claiming
if the sentence “ the relation r is satisfieddognd b” is a theorem,
then the sentence “the relation sr is satisfigcdbland a” is a theorem.

Thenwe have to consider a langudggin which, by a reification procesthe predicate symbofsandsr
become two constants and in which there are twdigamges corresponding to the notidite be an
axiom” and“to be a theorem”.In such a languagee can translate the prograeninto the following
program
ax(r,a,b)
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ax(r,b,c)

ax(r,c,d)

ax(r,s,s)

th(sr,X,Y) < th(r,XY)

th(sr,X,Y) < th(r,Y,X).
Obviously, we have to add also a general ruledorcthat any axiom is a theorem

th(R, X, 2) « ax(R X, 2).
We can also avoid such a rule and to substitutectiyrax with th. Notice that we cannot interpret
th(sr,X,Y) < th(r,Y,X) as “if r(Y,X) is a theorem themn(X)Y) is a theorem” since this should be the
interpretation of the formulaXOY(sr(X)Y)) « (OXOY (r(Y,X))). Instead a ground instance thésr,b,a)

~ th(r,a,b) of such a rule is correctly interpreted asr(d,b) is a theorem ther(b,a) is a theorem”.

Definition 3.1. Given a first order languadewe denote by, the language such that:
- the constants df,, are obtained by adding to the constants alf the predicate symbols bf
- the function symbols are the same ak in

- there is a predicate symhbl, of arity n+1 for every arityn of a predicatsymbol inL.

A translation function fromk to L, is defined as follows.

Definition 3.2. Thetranslation functions the mapr: Form(L) — Form(L,,) defined by setting
(r(ty, ... .ty) =thy(r ty, ... tn).
Mala) = (an)Ur(a,),
M(anUm,) = (an)Un(a),
1(~a) =-1a),
(Oxa) = Ox1(a).

In particular, the translation of a (positive) daua — all...Oa, is the (positive) clause(q)

~ f(a)0...00(ay). This means that iP is a (positive) program, ther{P) is a (positive) program, too.
To simplify our notations, in the sequel we willritg th(rty,...,t)) instead ofthy(rty,... t).

Equivalently, we can consider only a monadic pratith in L,, and some way to represent a vector

(X0, X1,---%n). FOr example, we can addlip a namelist for a binary functionand to write Xo,Xy,... X,) t0

denote the ternList((Xo,Xs,...Xn1),Xn) and &) to denotex,. Then the translation can be defined by

substituting the first rule with
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(r(ty, ... .tn) =th((r ty,....to)).
It is evident that,
Tla - «T)|-n(a)
where [- is the classical entailment relatidns a theory andr a formula. To show this it is sufficient to
observe that:
- iIf Axis the set of logical axioms, theiAxif and only if 7{a) JAX
- the translation is compatible with the inferendesu
In particular, ifP is a program and a fact, alMp <= 170a)
U Myp)

whereMp andM ) are the Herbrand models Bfand 7(P), respectively. We give a step-by-step proof of

such an equivalence in the perspective of its exerto fuzzy logic programming.

Theorem 3.3.Let P be a positive program and &t and Mg be the Herbrand models Bfand 7(P),

respectively. Then,

allMp = T(O') U M,(p). (31)

Proof. It is not restrictive to assume tHatis ground. To prove (3.1) it is sufficient to peothat, for

every facta andnlIN,
a0TN(@) = {a)0Te"(0). (3.2)

We will prove this by induction on. Indeed, in the casen =1, sinceTp([]) = Fact(P) and Tp(0) =
Fact(7(P)) = r(Fact(P)), (3.2) is evident. Consider the casg 1, assume that (2.2) is satisfiedrb§ and
thata O T (0) = Te(To"Y(0)). Then eitherr O To"*(0O) or there is a ruler — ay0...Oan in P such that
o, 0T ), ...,arOT"(O). In the first case, by the induction hypothegig)d To"*(0) and therefore
7(@)0T:"(0). In the latter, by the induction hypothesign) T (0),..., 1(aw)0T4"(0) and, since
the ruler(a) — f{ay)0...0(a) is in (P), this entails that(a)OT)"(0).

Conversely, assume thain) O T.p"(0) = Tee(Te) (0)). Then eitherr(a) O T, (0) or there is
a rules, 0.5, - pwith S=1(a) in 7(P) such that
B0 T (0),....,50 T (0). In the first case by induction hypothesis

al Tp”'l(D) and thereforer O T'(0J). In the latter, ler — as[J...Oay, be a rule irP whose translation is

£ < Al.0G. Then
(@) =B=1a), 1) =L0Te " (0), ..., qar) = B0 T (D).
Since by inductive hypothesignOTe"*(0),...,an0Te"*(0), this entails thate’ OT"(0). Since 7 is

injective, we can conclude that] To"(0).
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The translation of a prograf into the meta-progranma(P) is proposed as a first step towards a
possible translation of a fuzzy logic program imtalassical meta-program. Nevertheless, perhaps thi
translation gives some advantages also in the waseonfine ourselves to classical logic programming
As an example, if we admit the meta-predicasetie symmetric extension pfhen we can consider the

following translation of the proposed example:

th(r,a,b)

th(r,b,c)

th(r,c,d)

th(r,s,)

symm_extgsr,r)

th(R,,X,Y) — symm_extgiR,,R;) (th(Ry,X,Y)

th(Rx,XY) « symm_extgiR,,R;) [th(Ry,Y,X)).
The advantage of such a translation is that themweta-rules give a general procedure for the symnet
extension of a relation. So we can add such a gwoedo our library. In a similar uniform way wenca
define, for example, procedures for the reflexixgersion and the transitive extension of a relation

Observe that the idea for a translation of classiogic into classical logic programming was

examined in literature in a extensive way (seesf@mple [7], [23]).

4. An example of fuzzy logic programming

We refer to a residuated latticé, (0 , -, <, 0, 1) and to a deduction apparatus with no ldgigem and
whose fuzzy rules are the extended Modus Poneasextendedtintroduction rule and the extended

particularization. As an example, consider theofelhg fuzzy progranp in the interval [0,1]:

lovegcarl,luise) [0.3]
lovegcarl,mary) [0.2]
lovegcarl,X) — youndX)Obeautifu[X) [0.9]
beautifu{mary) [0.8]
youndmary) [0.7]
youndheler) [0.7]

we represent by a set fafzzy rulesi.e. as the set of paio(p(a)), p(a) # 0. Also, assume that we will
calculate, for example, the valog(lovegcarl, mary)). Then, a simple prodadf the factiovegcarl, mary),

we denote byg, consists in the observation that such a formaukani axiom at degree 0.2 (i.e. it is true at
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least at degree 0.2), and this gives the constkal({z,p) = 0.2. A different proof7z is obtained by

observing that, by particularization, we obtain filnenula
lovegcarl, mary) — youngmary)Cbeautifu{mary)
with truth degree 0.9. On the other hand, by{fketroduction rule, we obtain the formula
youndmary)Cheautifu{mary)
with truth degree 0.8 0.7. Afterwards, by Modus Ponens, we get
lovegcarl, mary)
with truth degree 0[90.800.7. In the casél is the usual product, this gives the vala(7z,p) = 0.504.
Since there is no further proof for such a fact,cae conclude that
my(lovegcarl, mary)) = max Val(7z,p), Val(7z,p)} = 0.504.

Instead, if we consider the fdowvegcarl, helen, then there is no proof for such a fact usingftteulas
in the support op. On the other hand, since the fuzzy progmassigns tdovegcarl, helen the value 0,

the observation thddvegcarl, heler) is an axiom at degree 0 is a proof with degreEh@n,

my(lovegcarl, heler)) = 0.

We have a general way to calculate the least Hedomzodel of a fuzzy program, by extending the fixed

point method of classical logic programming.

We recall that the fuzzy subset of ground instaméetauses i is the fuzzy prograrer(p): CI(L) - V
defined by settingr(p) (a)=0 if ais not ground and

Gr(p)(a) = Sup{p(@) : ais a ground instance of a claug

otherwise. The supremum is justified by the factt tih is possible for a formula to be the ground
instance of more than one formulaSapgp).

As an example ip(r(x,b)) = 0.7 andp(r(a,y)) = 0.5, then we have to $8t(p)(r(a,b)) = max{0.5,0.7} =
0.7.

We say thap is groundif Gr(p) = p. We recall also that the fuzzy subset of facp &f the restriction of
Gr(p) to theHerbrand base, i.e. the fuzzy sulisatt(p) : B, — V defined by

Fact(p)(a) = Sudp(a) : ais a ground instance of an atomic formaja

In the caseis ground,

Fact(p)(a) = p(a).

We give an equivalent definition for the one-stepsequence operator:
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Definition 4.1. Let p: CI(L) - V be a fuzzy program. Then tlo@e-step consequence operat®ithe
operatorT, : V& _ V® defined by setting, for evegriv?,

Tp(s) = T*p(s)IFact(p)
where, in turiiT*, : V2 V) s defined by setting, for every( By,

T*(s)(a) = Sud Gr(p)(a — anll...Oam)0s(an)U..08(an) : a — anl..Oam O SupGr(p))}.

Observe that the least fuzzy Herbrand model faognamp, is given by

m, = Unon Tpn(D)-
and this entails that the fuzzy least Herbrand roflp coincides with the fuzzy least Herbrand model of

Gr(p). So, in all the proofs it is not restrictive tesame thap is ground.

5. A meta-logic for fuzzy logic programming

In this section we will show how translate a fuprggram in a languadeinto a classical meta-program
in a languagé.. To this aim, again we have assume thatjithere are the predicate nanmtbsanda
constant for every predicate namd.inn addition, since we have to write in an exphgay the involved
truth values, irL,, we put constants to denote the truth values. Mageisely, since it is not reasonable to

admit a language which is not enumerable, it igulige refer only to a particular class of truthlues.

Then, in accordance with domain theory, we congtaefollowing definition where< is the relation it/
defined by settingy < x provided that for every nonempty upward directgosetA of V

X< SUpA= there isa € Asuch thab<a.

Definition 5.1. We say that a residuated lattié¢ €, [0, —, 0, 1) is acontinuous residuated lattice with
enumerable basiB, provided thafl is continuousB is an enumerable sublattice\dtlosed with respect

to 0 and, for everx €V,

x=sug{b e B:b<x})

In other words, in a continuous residuated latéitghe elements can be approximétem below” by

elements inB. As an example, we can consider the cdde the lattice [0,1]B is the set of rational

numbers in [0,1] andl is the usual product. In such a caseas the strict order. Further example are

obtained by assuming that is one of the triangular norms usually considéretiterature. Also, every
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finite residuated lattice is a continuous residddédtice provided that we p@& = V. In such a cas«
coincides with the order relatian If Sis an enumerable set, thB(S) is a continuous residuated lattice
in which a basis is defined by the class of allfthite subsets 08 In such a cade<x if and only ifbis a
finite part ofx.

In the following we consider only continuous resited lattices with an enumerable baBisind
fuzzy programs with values iB. Also, in the meta-languadg, we put only an enumerable amount of

constants to denote the elementBin

Another question is that in the translation, weent represent in some way the producio do this
we assume that ih, there is a predicafgroductand that in the translation we consider digramof the
algebraic structureB([0), i.e. the (decidable) set of facts

Diagr(B) = {produc(A,1,)) : y=A0u; A, u, yO B}.
As an example, the translation of the fuzzy proggiven in Section 4 is obtained by addindiagr(B)

the program
th(loves carl, luise, 0.3).
th(loves carl, mary, 0.2).
th(loves carl, X, Z2) ~ th(young X, Z;) Oth(beautiful X, Z;) O produc(Z,;,Z,,Zs) O produc{Zs, 0.9
2).
th(beautiful mary, 0.8).
th(young mary, 0.7).
th(young helen 0.7).
More precisely we have to consider also the defaids
th(R, X, 0).
th(R, X, Y, 0).

claiming that that every fact ib can be proved at least with truth degree 0. Tkues,propose the

following general definition.

Definition 5.2. Let L be a first order language and I8t (0 , -, <, 0, 1) be a residuated lattice with an

enumerable basB. Then we denote hly, the first order language such that

- the constants of, are obtained by adding to the constantk atl the predicate symbols bfand all the

elementsi in B
- the function symbols ih, are the same as in
- in L, there is a predicate symbdy, for everyn which is the arity of a predicate symbolLin

- in L, there is a predicatgroduct
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As early argued in Section 3, we can assume afgairiti, there is only a monadic predicdte In the
next definition we writeZ = XOY to denote the formulgroduc(X,Y,Z), Z = XOOYUA to denote the
formulaproduc(X,Y,Z1)[Jproduc(Z1, A, Z) and so on.

Definition 5.3. Consider a first order languagiea continuous residuated latticé (0 , —, <, 0, 1) with
an enumerable badand the corresponding meta-languégeThen, given a clausg and a variable,

we define the formula(a,Z) in L., by setting
1(r(ty,... tn),2) =th(r,ty,... t,, 2) for every atomic formula(ty,... t,) inL
na - av0...0a, 2) = 0(a, Zn+1) « Mo, Z)0...00anZy) O(Zne1=2:0...02Z,02)

for every rulea « a[...0a, in L and where the variableg Z,,...,Z,.; are pairwise distinct and not

occurring ina, a,...,a.

For example,
1(lovegcarl, X) — youndX)[beautifu[X))=
= 1(lovegcarl,X), Z3) « r(youndX),Z;)Or(beautifu(X), Z,)[( Zz= Z,00Z,[12)=
=th(loves carl, X, Z3)  th(young X, Z;)th(beautiful X, Z,)[(I(Z;= Z,0Z,(12).

To translate a program we have to consider thB#etf default formulagh(R,X,0), th(RX,Y,0), ..., .

Definition 5.4. Consider a fuzzy programin the languagé. Then thetranslationof p is the classical
programi(p) in L, defined by setting
1(p) = {1(a, D)z : is a positive clause}Diagr(B)0Dfl

where1(a,2)zp denotes the formula obtained fraf®,Z) by substituting irZ the valuep(a).

In order to simplify our notation we avoid to writee diagram of valuation structure and the defauds

in an explicit way. So the translation of the fugrggram in Section 4 becomes:
th(loves carl, luise, 0.3).
th(loves carl, mary, 0.2).
th(beautiful mary, 0.8).
th(youngmary,0.7).
th(young helen0.7).
th(loves carl, X, Z3) « th(young X, Z;)[(th(beautiful X, Z,)[((Zs = Z,[12,10.9)
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In such a case, given the quehflovescarl, mary, Z), we obtain the answe& = 0,Z = 0.2 andZ =
0.504. In accordance with the definition of dedwuctoperator, this means that the best constrainhen

truth value of the formulbbvegcarl,mary) is the maximum 0.504.

To prove the equivalence between a fuzzy programd its translatior(p), it is useful the following

very interesting lemma given in [32].

Lemma 5.5.Let (M, [J, £, 1) be a finitely generated ordered monoid. Theryenonempty subset M

admits a maximal element and therefore every nohetotally ordered subset M admits a maximum.

As an immediate consequence we obtain the follovangna.

Lemma 5.6.Assume thaV is totally ordered and that the fuzzy progrprmssumes only a finite number
of values inB. Let (M, [, <, 1) be the submonoid oB{(1,<,1) generated by the values assumeg bynd
let s be a fuzzy subset of facts assuming its valueMinThen for every factr there is a rulea

«~ a;0...0ay, such that

T*(s)(a) =p(a — arl...0ay) Os(a)U...08(aw) (5.2)

Proof. Since
{p(a « »0..Oa)0s(a)0...0a) : a— a,0...Oay, O Supgp)}

is a subset oM, by Lemma 5.5 it admits a maximumax Then a rulea — o1[...0a;, exists such that

max=p(a « o10..0a,)0s(ay)0...09(aw) and such a rule satisfies (5.1).

Theorem 5.7.Assume thaV is totally ordered and that the fuzzy programissumes only a finite number

of truth values. Then, for every fagt, ... ty),
my(r(ts,....t)) = SuUg A OB : th(r ty, ... t,A) DM g} (5.2)

Proof. It is not limitative to assume thais ground. To prove (5.2) it is sufficient to pravet, for every
AOB andnON,

T, O)(r(ty... ) =4 = th(rty,... tA)0 Tgp'(O). (5.3)
Now in the case& = 1 observe thaly(L)(r(ty,...,t)) = Fact(p)(r(ty,...,t)) = p(r(ts...,t)) andT,(0) =
Fact(7(p)) = r(Fact(p)). Then (5.3) follows from the definition of Consider the case #1 and, by
induction hypothesis, assume that (5.3) is satidfien-1. Then, ifT,"(0)(r(ty,...,t)) = A, since
T (O)(r (b, b0) = To(Te (O)(r (ta, - 8)))

BT (O))(r (ta, .. k) OFACP) (r (ta, .- 1),
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we have to consider two cases. In the case Fact(p)(r(t,....ty), it is evident that th(r ty,... t,A)0
Fact(7(p)) O Txy"(0). In the casel = 'I'*p(Tp“'l(D))(r(tl,...,tk)), by Lemma 5.6 there is a fuzzy inference

rule inp,
r(ty,... t) <riltey @)D Ormtma - tokm) [,
such that,
A= 0T Ot tix) D0 T Ot s k)
SetA = T,"(O)(ri(tma, - tixy)), then, since by induction hypothesis
th(ri, tia, -ty A)0 Top™(0) and
th(r,ts,... tA) < th(rateg,.taxapAs) O . Oth(mtng, -tk Am) O
O@A=A0...0A.04),
is a ground instance of a rule ip), we can conclude th&(r,ty,...,t, A)0 T (0).

Conversely, assume thr ty, ... t, 1) 0T, (0) and thath(r ty, ... t, 1) is obtained fronT ,"*(0)
by the rule

th(r,ty, ...t Zner) < t(r, tog, - taxay, Z) 0. Oth(rm, tma, - tkemyy Zm)) O
0 (Znea= Z20...0Zn0 ),
Then there is a ground instance
th(r,ty,... .t A) < th(re,ts g, tikayA) O O, tng,e.s b An) O
O =A0...0A04),
of such a rule such that
th(ry, to 1, tigay 400 T (D) ety s gy Am) D Ty (0).
Let
r(ty,... ) «riltys. tax@)O . Or(tn - tokem) [,

be the fuzzy rule in the fuzzy progrgmwhose translation coincides with the considereé imlz(p).

Then, since by inductive hypothesis,

Tpn-l(D)(rl- t1 1. L) = Au - ,Tpn_l(D)(l’my tm1r- tkm) = Am

we can conclude that

T(O)(r(ty,....8)) = LOT ™ Oty g tak) D O T (D) it s ki) = A
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6. Similarity logic and synonymy

We are now ready to face the main question werdegdsted. We start from an example. Let us suppose
that a bookshop assistant have a request, by anseistfor an adventurous and economic book. Momeove
let us suppose that he doesn't find any book wids¢ characteristics, then he tries to recommédimbla
which is sufficiently close to the customer’s resjuéor example he could propose a fantasy booktwhi

is not expensive. This attitude is a typical usesyfionymy in reasoning in everyday life. Now, it is
evident that the available information is vaguen@riure and therefore that we have to represent & b

fuzzy set of claims as

if X is adventurous and econontlien x is good (at degree 1)
“I Robot” is a fantasy story (at degree 0.6)
“I Robot” is not expensive (at degree 1)
“adventurous” is a synonymous ‘Gantasy” (at degree 0.8)
“economic” is synonymous of “not expensive” (at degree 0.7)

More formally

Adventurou&)Economi¢x) = GoodXx) (at degree 1)
Fantasy“l_robot” ) (at degree 0.6)
Not_expensi&l_robot” ) (at degree 1)
synonymoy$adventurous”, “fantasy”) (at degree 0.8)
synonymoy$economic”, “not_expensive) (at degree 0.7)

Unfortunately, we cannot consider such a list azfuformulas in the framework of first order fuzbgic.
Indeed, there are words adventurousfantasy economic¢ not_ expensiveccurring both as predicates
symbols and as constants. In a series of papees f@eexample, [11]) such a question was faced by
relaxing the notion of matching between predicaldgs means that one considers only the first order

fuzzy formulas

Adventurou§)JEconomi¢x) = GoodX) [1]
Fantasy“l_robot” ) [0.6]
Not_expensi&l_robot” ) [1]

while the information about the synonymy betweemdprates is used to calculate the degree of

admissibility of an approximate matching.

45



Chapter 3: Fuzzy logic programming

In this paper we propose a different approach iithwvitve simply add to the meta-langudgghe predicate
symbol “synonymous” In accordance, we formalize the information ie ttonsidered example by the
program

th(good X, 2) — th(adventurousX, V;)[th(economi¢X, V,)[XZ = Vi[1V,).

th(fantasy|_robot, 0.6).

th(notexpensivd_robot, 1).

synonymouyadventurousfantasy 0.8).

synonymoygconomig¢notexpensived.7).

th(AX,V) « synonymou@®, A’, V,)[Ith(A, X, Vo)V =V, 00V,).

As usual in fuzzy logic, the intended meaning ¢het assynonymougconomig¢notexpensive0.7) is that
economicis a synonymous ohotexpensiveat degree at last 0.7. Equivalently, we can comside

predicate symbadynonymouas a constant and to consider the program
th(good X, 2) — th(adventurousX, V,)[th(economicX, V,)[((Z =V,00V,).
th(fantasy|_robot,0.6).
th(notexpensivd_robot, 1).
th(synonymousadventurous fantasy 0.8).
th(synonymouseconomignotexpensiv@.7).
th(AX,V) « th(synonymousA, A’, V)[th(A’, X, Vo)AV = V1[OVy).
Given such a program and, for example, the qulfgood | robot, Z), we obtain the answet =

1000.8J0.60.701. Notice that such a program is not complete sincis matural to assume that a

synonymy satisfies suitable properties, namelyithata similarity.

Definition 6.1. Given a first order languade we callJ-synonymyin brief synonymyany [-similarity
synon the set of predicate symbols such &afr,r') = 0 for every pair of predicate symbalandr’

with different arities.

It is evident that a synonymy is a fuzzy model afuitable fuzzy program. Then, it is useful to esant
it by a (small) fuzzy set of facts and suitableesulcorresponding to three properties (reflexivity,

symmetry, transitivity).

We write such a program directly into a suitableeagion of the languadg, as follows:
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Definition 6.2. Let Lsy,be the language obtained by adding4d¢he predicate nam&/nonymousThen a
definition of a synonymig a progranSyncontaining a set of facts likeynonymous, r’, A) wherer and

r' are predicate names with the same arity &And, together with the rules
synonymoy®, R, 1)
synonymou®’, R, V) « synonymou®, R’, V)
synonymou®, R”, V) « synonymou®, R’, V;)Osynonymou&’, R”, V,)[
OV =ViOV,)

synonymouf®’, R, 0).

Since we assume that in the languidieere is only a finite set of predicate nant&mis a finite set. We

denote bysynthe interpretation afynonymous the least Herbrand model $fn namely
syr(r,r’) = Sud A0B : synonymous,r’ ,A)dMsy4. (6.1)

Due to the finiteness @yn the values ofynare inB.

Definition 6.3. Let p be a fuzzy program arfsiynbe a definition of a synonymy. Then tianslationof p
given Syns the classical programfp,Syr) in the languagés,,obtained by adding to the progranip) the

programSynand thesynonymy rules

th(R,X1,...X,V) « synonymou®, R’, V,) Oth(R’, Xy,..., X,, Vo) O (V =V,0V,).

Notice that such a rule is strictly related withuée considered in [25] (see the proof of Theoré&h As
it is usual, we denote bWl s,y and T,,syy the least Herbrand model and the one-step conseguen

operator ofz(p,Syr), respectively.

We are now ready to define a suitable notion asteHerbrand model for a similarity-based logic

programming.
Definition 6.4. Let p be a fuzzy program an8ynthe definition of a synonymy. Thewe call least

Herbrand syn-model of {he fuzzy set of factmpsyn: B. — Vdefined by setting, for evengt,,...t,) 1B,
My \r (ta,- £n)) = SUdA OB : th(r ty,... £0,A) O Myp.sy9)- (6.2)
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7. A justification for the proposed synonymy logic

Obviously, the question arises whether Definitiod 8 an adequate one for a synonymy logic. Now,
usually one proves the adequateness of a logibéogsthibition of a completeness theorem. Unforelgat

it is not evident if this can be done for synonyfogic since it is not evident whether the notion of
synonymy is semantic in nature or not. Nevertheiess possible to give some arguments in favour of
such a definition. To do this, at first we prove following useful proposition in which the synonysyn

is extended t®, by setting
syrna, @) =syn(r,r’) ifa=r(ty,.. 1) anda =r (ts,...1)

syna,a)=0 otherwise.

Theorem 7.1.Assume thaV is totally ordered and let anda’ be two facts. Then

m>1@)Osyr(a,a’) < m>1a) (7.1)

and therefore,

sy(a.a’) < (m>Na) - m™\a’)) (7.2)

Proof. In the casesyrn(a,a’) = 0, then (7.1) is trivial. Otherwis@assume thatr = r(t,...tn), @ =

I’ (ty,...tn) and set
A={A0B: th(rty,...5n )0 Mgpsyyt @and A’ = {A" OB : th(r’ ,t,... tn,A" )0 Mypsyn}-
Then, by the synonymy rule for everyIB such thasynonymous,r’ ,Xx)[Ms,, we have
AOA = A0OxXOA
and therefore, since in (6.1) the vahye(r,r') = syna,a’) is obtained as a maximum,
A OA = X0Osyn(a,a) OA.
So, {0 syna,a’) : Y0A’} O Aand, by the continuity dfl,
mNr (ty,... t))Osyn(a,@’) = (Sup{ A’ OA’}) Osyn(a,a’) =
=Sug A Osyn(a,a@): A0A"} < Sud A : A0A} = m>r(ty,... 1n))-
To prove (7.2) observe that (7.1) entails
syfa.d) <m>(a) - m>1a)
and therefore by symmetry
sy(a,) < m\a) - ma).

Since in a totally ordered residuated lattice

m>@)  m>a) = (Mm>1@’) - m>a)dm>1a) - m>(a)),
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and (7.2) follows.

Inequality (7.2) says thempSyn is continuous with respect 8yn in a sense. We can express such a claim

in a more precise way by referring to the follownegults proved by Valverde in [30].

Proposition 7.2.Leth: [0,1] — [0,0] be an additive generator, i.e. a strictly dedreasontinuous map

: [0,1] - [0,0] such thah(1) = 0. Define the operatidn by setting
xOy = hi{(h(x)+h(y)) if h(x)+h(y) < h(0)
xdy=0 otherwise.

Then[ is an Archimedean triangular norm.dJf is the associated equivalence, then

h(x - y) = In(y) —h(X)|. (7.3)

As an example, ih(x) = 1x, thenO is the tukasiewicz norm arfdx ~ y) = ly —x|. In the casé&(x) = -

log(x) for x # 0 andh(0) =, [ is the usual product afgx  y) = Jog(y)-log(X)|.

Proposition 7.3.Assume thaf] is an Archimedean norm whose additive generattreignagh : [0,1] -
[0,0], and letsynbe alJ-synonymy. Then the map: B, x B, — [0,] defined by setting

dsy(a,a’) =h(syn(a.a’))
for everya anda’ in B is an extended pseudo-distance.

Theorem 7.4.In the casél is an Archimedean norm, the functin‘gsy”: B, - [0,1] is a continuous map

from the extended pseudo-metric spa@eds,,) to [0,1].

Proof.By (7.2) and (7.3) for every paranda’ of facts
dyda,a) =h(sya,@)) 2 h(m>1a) -~ m>(a)) = h(m(a)) —h(m,™a))|

This inequality entails thdtom,™" is continuous. Sincé is a injective continuous map defined in the
compact set [0,1] and with values in a Hausdoréicggh™ is continuous. So, we can conclude it is

continuous, too.
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8. Another justification.

Another argument in favour of Definition 6.4 is thiis in accordance with the abstract definitimina
similarity logic given in [17]. In such a book aabstract fuzzy logids defined as a continuous
(conservative) operatdt : V- — VF defined in the clas¥’ of all the fuzzy subsets of a given §etH is
namedthe one-step consequence operatdfs) is interpretedas the fuzzy subset of formulas we can
obtain froms by an one-step proof. Thieduction operatois the closure operat® : V7 - \F generated
by H. This means that, for every fuzzy subset formulas

D(s) = UnanHY(S).

Let simbe a synonymy relation, then a continuous opef@¥dx: V- - \f is defined by setting,

SYNs)(a) = Sud syn@,a)0s(a) : o O B} (8.1)
SYNs) is interpreted as the fuzzy subsets of facts whi@ a synonymous of a factdmA fuzzy subses

of facts is a fixed point faBYNif and only if, for everya, a0 B,

syr(d,a)0s(ad)<s(q). (8.2)

Definition 8.1. Let H be the one-step consequence operator of an abltragtlogic and leSYN be a
synonymy operator. Then we calbstract synonymy logitie abstract logic whose one-step consequence

operator is the compositidtho SYN (se€[17]).

In the casé coincides withB, andH is the one-step consequence operdjaf a fuzzy progranp, we
obtain anabstract synonymy logic programminghe Herbrand models of such a logic are the fixed
points of T,o SYN i.e. the Herbrand models ©f which are fixed points foBYN.

Theorem 8.2.The least Herbrand modet,™" given in Definition 6.4 coincides with the leasetdrand

model of the abstract synonymy logic definedlpandSYN

Proof. We have to prove thampsy"is a fixed point for botl®YNandT, and that ifmis a fixed point
for SYNandT, thenm[ mpsy”. Now, from (7.1) it follows thampSy”is a fixed point oSYN To prove that

mpsy”is a fixed point off, we have to prove that, for every fart
T o(my™)(@)CFact(p)(a@) < m,™a).

SinceFact(p)(a)<s m,>(a), this is equivalent to prove that
T y(m™)(a) < m™1a)

and therefore that, given any ground rale- ry(t',...t4) 0.0 (™, ... £ "vm)

AOM () O My (™ ) < MY a)
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whereu = Gr(p)(a « ry(t's,... ') 0.0 rn(t™, .. £ o)) - Now

AOM (e ) O O™ ) =

= tO(Sud Ar : th(r,thy, ... A0 0 Mipsynd) 0.0 (SUE Am 2 th(rmt™s, o e Am) 0 Mipsynd) =
= Sug Ay 0. 004 th(rp,t's,.. £y As) O Mogsyg, o th(Cmt™s e s Am) O Mapisyn 3

On the other hand, tis the formula(ty,... ), the translation of the rule

a « 1yt @) 0O (™ £ ) IS

th(r, ta,... tnZmst) < t(rst's,.. o) O O th(rmt™, . gy Zn) O

0 (Zner = Z20...0Z,04).

Such a rule enables us to claim thattif(r,,t',... £ A1) O Mosysees (T mt™s - £ s Am) DM o sy
thenth(r, ty,... th,A10...0A0£) 0 Mypsys. In turn, this entails that

SUF{/MD DAmD,U th(rl,tll,...,tln(l),)ll) O Mr(p,Syr)a .
th(rm,tml,...,tmn(m),Am) D Mr(pysyr)} S SUF{A : th(r,tl,...,tn,A) [l Mr(p’Syr)} = n’})syr(r(tl,...,tn))
Thus,m,>"is a fixed point ofT,.

Letmbe a fixed point for bot®&YNandT,. Then to prove thah [ mpsy”, it is sufficient to prove that,
given ALIB,

th(r ty, ...t A) O Trpsyn ' (0) = mM(r(ty,... 1) = A

for everynN. We will prove this by induction on. Indeed, in the case= 1, sincefp(m)DFact(p) am,

we have
th(r,ty,...tn,A) O Trpsyn(0) = th(r ty,... tn,A) O Fact 7(p))
= p(r(ty,...1n) =4 = m(r(ty,... 1) = A.
Assume that the implication holds true foand that
th(r,ts,..-£0A) O Trpsyn™ (0) = Trpsyn(Trpsyn (D).
Then it is possible thah(r t,... ;1) is obtained by the rule
th(r, ty,... ) < th(rs,ts,.. taapAs) OO th(rgt, ... £g A 04 = A10...0A,04)

in 7(p) with th(ri,til,...,tin(i),)li)D Tapsyy (0). In such a case, by induction hypothesis, we hinat

m(ri(ts,... ) = Ai. Sincemis a fixed point forT,,

A=A0. 0A 0 < tOm(ry(t,.. ) 0. Om(rg (1%, .. %)) < mM(r(ta,... 1))
Assume thath(r ty,... t,,4) is obtained by the rule

th(r,ty,...tn,A) « synonymous, r' ,A;) Oth(r’, ty,...1n,A2) O (A = A.04,).

in Synwith th(r’, ty,...1n,42)0 Typsyy (0). Then by inductive hypothesis(r’ (ty,...£n)) = A.. Sincemis a
fixed point forSYN
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A=A0A< A0 m(r, (tl,,tn)) < m(r(tl,...,tn)).
Finally, it is possible thath(r ty,... t,,A)OFact 7(p,Syn), i.e. thatth(rty,...tn,A)OFact(7(p)). In such case

we proceed as in the case 1.

Since both the operatoig, and SYNare continuous, in accordance with the fixed-poh@orem for

continuous operators (see for example [17]), weat#ainm,™" as the limit of the sequence
T(0) OSYNT,(O)) OT(SYNT(O)) O. ..

Equivalently, since the operatd¥ N Ty, T,o SYNandT,[ISYNdefine the same class of fixed points, we

can obtairm,™"

also as the limit of the sequence
SYNDO) O T(SYNO)) O SYNTL(SYNO)) O . ..
or of the sequence

(ToESYN(D) O (TOSYN((T,LSYN(D)) O (ToUSYN((T,USYN((T,USYN(E)) O-..

9. Recursive enumerability in fuzzy logic programmng and in synonymy logic

programming

In this section we analyze the computational feztwf the proposed logic by referring to the nowén

recursively enumerable fuzzy subset.

In classical logic programming there is no diffiguio represent all the recursive enumerable salzsal

this shows that the associated paradigm of compityais in accordance with Church thesis. We can
formulate an analogous question for fuzzy logicgoamming and sinonymy-based logic programming.
In order to do this we will refer to a notion ofctesive enumerability for fuzzy subsets which is in

accordance with the theory proposed in [2] and [19

Definition 9.1. We say that a continuous residuated lattée<( 0, -, 0, 1) iseffectiveprovided that
there is coding of its basisuch that

- the lattice operations and are effectively computable

- the relation< is recursively enumerable B

All the examples of continuous residuated lattioeSection 5 are also effective.
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Definition 9.2. Let Sbe a coded set arst S -V a fuzzy subset o6 Then we say thatis recursively
enumerableprovided that a computable functibn SxN - B exists which is increasing with respect to

the second variable and such that, for exerg

S(X) = Sup.h(x,n). (9.1)

Assume that in\(, <, 0, -, 0, 1) an involutiorilis defined which is computable B, then we can
define the notion ofomplement —ef a fuzzy subsed by setting {s)(x) = [B(x). Then we say that a fuzzy
subsets is recursively co-enumerablé its complement—s is recursively enumerable. ¥ is both

recursively enumerable and recursively co-enumerdbé we say thatis decidable

Definition 9.3. Let L be a first order language ahld the related Herbrand universe. Then we say that a
fuzzy subses: U, -V of U, is representable by a fuzzy progranppovided that a predicate name

exists such thai(x) = my(r(x)) for everyxin U..

Theorem 9.4. @nsider a finite fuzzy program with truth values inB. Then, m, is recursively
enumerable. Consequently every fuzzy subset)ofepresentable by a fuzzy program is recursively

enumerable.

Proof. SinceM, is recursively enumerable, we can define the fandt : B, x N - B as follows. Let

r(ty,....ty) be an element iB, then
- we generate step-by-step all the elemdnts ;... of the set 0B : th(r,ty,... t,A)OM}
- at the same time, we generate the increasingeseg K(r(t,...,t),n))non by settingh(r(ty, ... t),1)
= Ay, h(r(ty,....t),i) =h(r(ty,....t),i-1)0A

It is evident thah is computable and order-preserving with respetitésecond variable and that

my(r (o, ...,t)) = Supn h(r(ty,... ty), n). (9.2)

Now, the question arises whether every recursieglymerable fuzzy subset can be represented in

such a way or not. Unfortunately, the answer isatieg.

Theorem 9.5.There are recursively enumerable fuzzy subsetshwhie not definable by a fuzzy

program.
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Proof. In [2] one definedd-enumerablea recursively enumerable fuzzy subset in whichekstof
(9.1) we have thad(x) = Max, h(x,n), i.e. everys(x) is obtained as a maximum of the sequédm(za).
Also, one proves that, in the cages the interval [0,1], there is a recursively enuaide fuzzy subsed
which is not d-recursively enumerable. On the other hand, sinceLeypnma 5.5 the sequence
(h(r(ty,...,ty,n))non @dmits a maximum, all the fuzzy subsets reprebenty a fuzzy program arg-

enumerable.

It is evident that we can extend Theorems 9.4%8do the synonymy-based logic programming.

We conclude by observing that (apparently) weaatainm,™(r(ty,....t)) by thefindall operation in
Prolog and by a predicate enabling us to calculate thaéman of a list. Indeed, we can consider the rule
Herbrand_modét t;,...1,2) < findall(Zy,th(r ty,... th,Zy), List)OmaximunfList,2)
or, in a most general way:

Herbrand_modéR Xy, ... Xn,2)) < findall(Z1,th(R,Xy,... Xn,Z1),List) OmaximuniList,Z)

Regrettably, in spite of { IV : th(r,ty,... £, A)} is finite, there is no general criterion to ddtsh if all the
elements in such a set where attained at a giegnadtthe computation. Equivalently, in spite o fiact
that we can compute the increasing sequémcgy,... t,),1) < h(r(t,...,ty),1) < ... and that such a
sequence becomes constant after a finite numbsteps, there is no general criterion to estabfishei
maximum is attained at a given step. Obviouslys thinot surprising since it is in accordance i@

notion of recursive enumerability.
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CHAPTER 4
KRIPKE-BASED BILATTICE LOGIC

1. Bilattice and fuzzy logic

Bilattice theory was introduced by Ginsberg [20]arder to treat both truth and grade of information
from an algebraic point of view (see also Fittid@]); its principal task is to give successful ®dbr
logic programming. Formal fuzzy logic (or fuzzy logn narrow sense) is a chapter of formal logic
strictly related with the theory of fuzzy subsetsl @onnected with the tradition of multi-valuedio¢see
[17], [21], [22], [27], [28], [34]).

Our aim is to investigate the potentialities ofatliice theory for the graded approach to formakyuz
logic; in particular we show that bilattice theagables us to obtain in a sense, a nice extensitreo
fuzzy logic.

Notice that in the literature about fuzzy logic @malogous of the notion of bilattice is considenader
the name of intuitionistic fuzzy logic (see for exale [8], [26]), but in the intutionistic approatiere are
some other limitations.

Our approach is different since we refer to a fdrdedinition of fuzzy logic in Pavelka’'s sense iieh a
deduction apparatus is defined by a suitable fszdset of logical axioms and by fuzzy inferencesul
So, we propose and discuss some possible gendnaitides involving bilattice theory and extending
Pavelka’s ideas [28]. Also, to give an example,apply the proposed apparatus to a Kripke-like logic
related with a logic proposed by Ginsberg in itsib@aper [20].

The main tool we use in this chapter is the notibolosure operator and the associated one ofios
system. This in accordance with the abstract agpréa fuzzy logic proposed in [17] in which Tarski’
ideas of a logic as a closure operator is embraRedall that, given a complete lattite a closure
operatorin L is a map
H:L-L such that

HX)=2x ; x=2y = HX) =H(y) ; HH(X) =H(X).

In particular, iftwo closure operators have the same fixed poihey toincide. Finally, observe that,
given M L, the closure systengenerated by Mthat we denote byM>, is the intersection of all the
closure systems containimg. Equivalently, 1> = {inf,;;m: (m)ig is a family of elements df1}. Also,

<M> coincides with the set of fixed pointsldf; .
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2. Bilattice theory

A bilattice is a structure with two lattice ordeg8) one ordering;, is with respect to the degree of truth,

the other orderingy is related with information or knowledge.

Definition 2.1. A bilattice is a structur® = (B, <, <, False True [J, T) such thatB, <;, False True) and
(B, <, U, T) are bounded lattices. If both the orders amapmlete, then we say thBtis complete We
denote by[}k and [4, [k, and [ the lattice operations inB( <;, False, Tru¢ and in B, <, O, T),
respectively; B is interlacedif all these operations are order preserving watspect tas, and<, ; B is
distributiveif all 12 distributive laws connecting, [}, [k, andl are valid;B satisfiesthe decomposition

propertyprovided that, for every 1B,
X = X[k True)O(xCk False.

It is easy to prove that if a bilattice is distriive, then it is also interlaced and that an irieed bilattice

satisfies the decomposition property.

Definition 2.2. Assume that in a bilattid® an operation ~B -, B is defined in such a way that:
1. XSy= ~y<~X
2. Xy = XKy
3. ~X=X

Then we say thaB( <, <, ~, False True [, T) is abilattice with negation

Observe that sincdeis order-reversing with respectgpand order-preserving with respecto

[x0y) =0 HY) ; OxOy) = O0Oy) ;

[xCy) = H)LOY) 5 HxOy) = D)L y)
for everyx, y in B. It is also immediate thafFalse= True, (OTrue=False [(T1= T, OT =[1.

There are several ways to define a bilattice bytisy from a bounded lattide= (L, <, 0, 1). A way is
to consider the set of intervals bf(see for example [29]) and it is related in a redtway with multi-

valued logic. Indeed, an interval is interprete@d a®nstraint on a possible truth value.

Theorem 2.3.Let I(L) be the set of closed intervals of a boundedckatti(included the empty set) and
define the structurgL) = (I(L), <, <« {0}, {1}, [0,1], OJ) in such a way that

- ¢ is the dual of the inclusion relation,

- for every p,b], [c,d] in I(L)-{O}, [a,] <[c,d] provided thaasc andb=d,

-{0} <0 <{1} and OO is nott-comparable with any other interval.
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Thenl(L) is a bilattice which satisfies the decompositiooperty. IfL is complete, theh(L) is complete.
Moreover, if — is an involution irL, by setting
dab] = [-b,—a] ; O =0

we obtain a negation ifL). If L is different from the Boolean algebra {0,1}L) is not interlaced.

Proof. We observe only that, for every intervald],
[ab] = [a,1]n[0,b] = ([a,b]i{1}) Ld[a,b]Li{0})
and that,
O = {1} G40} = (D O41}) DO GA0}).
Moreover, due to the behavior @f, in the casé # {0,1}, I1(L) is not interlaced. Indeed, dfis an element
of L different from 0 and 1, then [0,8][c,d while [0,0]Cc,1] =0 and E,d0Jc,1] = [c,c]. On the other

hand the relatiofl<c,c] is false.

Observe that the lattice operationgd (b) are defined by setting
- [ab]0fc,d] = [alk, bld] ; [ab]Cc,d] = [allk, blid]
- {1300 =00{1} = O ; {0)B0 =00{0}= 0
- {1300 =00{1y={1} ; {0} 4 = 0o} = {0}
- [ab]0 =D00fa,b] = {0} ([a,bj#{1}) ;
B,b]00 =0Lfab] = {1} ([a,b] #{0})
- 000 =040 =0.
- [ab]Gdc,d] = [aCkc, bld] ; [ab]Cc,d] = [alk, bld]
- [ab]G0 =00fab] = [ab] ; [ab]LO =U0fab] =0
- 000 =00d =0.

Definition 2.4. Given a bounded lattide (with an involution-), the bilatticel (L) is called thenterval

bilattice (with negation associated with L.

Another very famous way to obtain a bilattice is fbllowing one.

Theorem 2.5.Let L = (L,£,0,1) be a bounded lattice and denoteBiy.) the structurgLxL, <, <, ~,
(0,1), (1,0), (0,0), (1,1)) wheriéis defined by setting [x,x’) = (X’,X), and the relations,, < are defined
by setting

xX) < (yy) = x<yandx =y and

xX) < (yy) = x<yand x <vy.
ThenB(L) is an interlaced bilattice with negation.Lfis complete (distributive) theB(L) is complete

(distributive, respectively).
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Definition 2.6. We call theproductbilattice associated with the bilatticeB(L ).

SinceB(L) is interlaced, it satisfies the decomposition prop On the other hand, sincex()Ck(1,0) =
(x,0) and &,x’)[k(0,1) = (0x’), trivially

X = ((xx")H(1,0))((xx") 10, 1)).
The following proposition shows a connection betwte bilatticed(L) andB(L).

Proposition 2.7.Let L be a bounded lattice with an involutienand letlo(L) be the set of nonempty
intervals ofL. Then by settintn([a,b]) = (a, —b) we obtain an embedding of the structlyk) = (Io(L), <,
<, 00 {0}, {1}, [0,1]) into the structuréLxL, <, <, ~, (0,1), (1,0), (0,0)).

3. Bilattice-based fuzzy logic: the semantics

In this section we callaluation structurea complete lattic& = (V, <, 0, 1) with &1. The elements W

are interpreted as truth values and, in particuker, minimum 0 and the maximum 1 are interpreted as
“false” and true”, respectively.

To connect bilattice theory with fuzzy logic we e@npret the elements in a bilatti& as pieces of
information on the elements WA To do this, we need to define a relation frdrio B. The following is a

possible definition.

Definition 3.1. A bt-systemis a structure\{, B, |=*) such thatV is a valuation structurd is a complete
bilattice andf* 0 VxB is a relation such that,

) A Pxandx scx= A X

i) for everyA [0V the set £<00B: A |=*x} admits ak-maximum

i) 0 F*False; 1 F*True

In the case the relatioA |=*x is satisfied, we say that satisfies xor thatx is a correct piece of

information on.

Definition 3.2. Given abt-system Y, B, |*), we setSat= {x0JB : there isA0V such thatl F* x} and we
define the map: V - B by setting
i(A) =Max{xOB: A F x}.
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Also, we put
Maxsat= {x(OB : x is maximal in §at<,)} ;

Compl= {xOB : there isc0Maxsat x=c}.

We say thaBatis the set oBatisfiableelements oB. We say that : V - B is theinformation mapand
this sincei(4) summarizes the whole information dnwe can obtain in thét-system (V, B, |=*).
Obviously, for everyl [1V,

A B X e xi(A)
and, consequently,

Sat= {x[IB : there iscl0Maxsatsuch thak < c}.
The elements iMaxsatare the maximal elements $at if xdComplthe we say that is complete.

Usually, the semantics in a multi-valued logi@éfined in a truth-functional way. This means that
for example, we consider a propositional languagese logical connectives aré [, -, then suitable
operationdd, [0, — are defined itV to interpret these connectives. Denoting by F gtetformulas, the
semantics is obtained by considering the clasd tuth assignment®: F - V such that

m(atlp) =m(a)0m(p) ; m(atlp) =m(a)Um(p) ; m(~a) = -m(a).
Nevertheless, since there are interesting semanticsh are not truth-functional (see [17]) we pretee

following abstract definition of semantics proposef8].

Definition 3.3. Let V be a valuation structure and F be the set of faamut a given logical language.

Then asemanticss a clasdvl of mapsm: F - V. The elements iiM are callednodels.

To proceed in our definitions, we refer to the essive language of fuzzy logic. We denotelByhe
class of all thd_-subsets oS Such a class is a complete lattice, the direatgpamf L with index setS
The order relation in.° is denoted byl and namednclusion relation The meet and the join it° are
denoted byn andd and namedhtersectionandunion, respectively. Finally, in the casenagation—: L
- L is defined inL, the complement of & thelL-subset s defined by setting-5)(x) = -s(x) for every
XOS. In such a paper we are mainly interested in clemiig the set F of formulas of a given languagk an

the knowledge order in a bilatti&

Definition 3.4. Given a bilatticeB, we callB-subset of formulasr valuationany elemenv: F - Bin BF.
We denote by, the knowledge order iB" and we call ik-inclusion Also, we denote by, andv; the
minimum and the maximum with respectlipand we say that; is theempty informatiorand thatvr is
the totally inconsistent informationThe lattice operations, we denote by and [I,, are calledk-
intersectionand k-union respectively. Finally, we say thatis pointwise satisfiabléf v(a) O Sat for

every formulaa. In the case a negatidhis defined inB, we say that is balancedf v(- a) = [/(a).
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Definition 3.5. Let M O V" be a semanticandv be aB-set of formulas. We say that[] M is a model of

v, in briefm |= v, if m(a) |=*v(a) for every formulaa. In such a case we say thds satisfiable
Obviously, ifvis satisfiable thew is pointwise satisfiable, too.

Definition 3.6. Givenm[M, we denote byn : F - B the compositiono mand we seM = {m: mlM}.
Also, we define théogical consequence operatog LB . BF by setting as usual,

@)(a) = Infi{m(a) : mEv} (3.1)
for everyvIB and aCJF.

An elementm[IM represents the way we can represent a warly our information systemv/( B, |=*).
Also, for every formulaa, L¢(v)(@) is the information on the truth value ofshared by all the possible
models ofv. Namely, such an information says that the unknawtihtvalue ofa belongs to 400V : A |=*

L(v)(a)}-

The proof of the following proposition is trivial.

Proposition 3.7. For every valuatiorn andm(IM,
mEv = mOcv
and therefore,
Le(V) =nidm: m Oy v} (3.2)

We can identify_Mwith the class of complete theories and BisetL.(v) of logical consequences wf
with the k-intersection of all the complete theories contajnimlt is also of some interest to define an

analogous of the notion of set of tautologies.

Definition 3.8. Given a semantids!, we callB-subset of tautologidhe B-subset of formulas
Tau=L(vp) = ni{m: mOIM} (3.3)

In other words;Tau(a) is the information orr shared by all the possible models in the given séica
The information content dfau(a) is logical in nature since it depends on the stmgcof a and not on the

state of the affairs. The proof of the followingdrem is trivial.

Theorem 3.9. L. is a closure operator in the lattid (,). Namely,L. is the closure operator generated
by M.
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4. The deduction apparatus

We define a notion of deduction apparatus by extenthe classical notions of inference rule andetf

of logical axioms. The definitions are inspiredtie ones given by Pavelka [28].

Definition 4.1. Let B be a complete bilattice, then arary B-inference rulés a pair = (rsin, sen) Where
rsin IS @ partiah-ary operation in F (i.e. an inference rule in tiseial sense) ang.,is ann-ary operation
in B preserving the inductive limits, i.e. arbitrdeyjoins of k-directed subsets & (continuity property.

A B-deduction apparatysn brief adeduction apparatyds a pair IR, la) such thata is aB-subset of

formulas, we calB-subset of logical axiomandIR is a set oB-inference rules.

We represent an application of mary B-inference rule as follows

a,...,a, |
g, (@y,....a,) 1

< Ao, A

)
sem(All""/‘n)

The intended meaning is thatff,...,A, are correct piece of information an,...,a,, then rse{A,...,A0)
is a correct piece of information on the formug o, ...,ar).

Every deduction apparatus is associated with @mati proof in the following way.

Definition 4.2. A proof tof a formulaa is any sequenca;,....an of formulas such thatr, = a, together
with the relatedjustifications”. This means that, for any formutg we must specify whether

() a is assumed as a logical axiom; or

(i) a is assumed as an hypothesis; or

(iii) a;is obtained by a rulén this case we have to indicate also the rule and

the formulasy,..., e N ..., G used to obtaimr).

Differently from the classical logic, the justifit@ans are necessary to calculate the informationished
by a proof.
Observe that, as in the classical case, forianyn, the initial segmentr,..., g; of a proofa,..., anis a

proof of a;we denote byfi).

Definition 4.3. Given a proofrr= a,...,ar, of a and a valuatiow : F- B, theinformation ona furnished
by rrgiven vis the element(rtv) in B defined by induction on the lengtf 1t in accordance with the
following rules:

I(v) =la(ay) if anis assumed as a logical axiom,

I(tv) =v(am) if an is assumed as an hypothesis,
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I(TtV) = rsen{l (7T0),V), ... |(7n),V)) if amis obtained by a rule= (i, rsen) from
day,--., Oy With i(1) <m,..., i(n) <m.
Notice that we have only two proofs gfwhose length is equal to 1. The formalavith the justification
that a is assumed as a logical axiom and the fornabaith the justification thatr is assumed as an
hypothesis. So, the first two lines in the defomtiofI(1tv) give also the induction basis.
Different proofs of the same formutacan give different pieces of information on thethrualue ofa.

This suggests the following definition.

Definition 4.4. Given a deduction apparatu&(la), we calldeduction operatothe operatob : B" - B"
defined by setting, for evesy B andaCF,
D) ( @) = Sup{I(mVv) : 1t is a proof ofa} (4.2)

If vis a fixed point foD, then we say thatis atheory.

It useful to assume that in the considered deduepparatus there is thesion rule

a a, x y

o hay

Such a rule enables us to fus® different proofsz and 7z of a formulaa into an unique proofrof ain

such a way that(mv) = 1(1t,v)[ (Tg,v). This entails that the sek(ftv) : 1t is a proof ofa} is closed with
respect td and therefore is up-ward directed. Then, the vBI(§(a) is the direct limit of an up-ward
directed class. On the other hand, if we add tedudtion system the fusion rule the power of trstesy
remains unchanged since this rule gives no conioibtio the definition oD.

The continuity property of the inference rules dealis to prove the following theorem.

Theorem 4.5.The deduction operat@ is a closure operator in the lattid ().

Proof. To prove thaD(v)Ov it is sufficient to observe that, given a formutathe formulag justified as
an hypothesis is a proafof a such thatl(77v) = v(a). We can prove thdd is monotone by proving that
I(7zv) is monotone with respect wfor every proofsrof a formulaa. To this aim it is sufficient to
observe that the semantics part of the inferentas ris monotone and to proceed by induction on the
length of 7z To prove thaD is idempotent we have to prove tiix) is a fixed point foD and therefore
that, given a formula,
Su{1(r,D(V)) : 1t is a proof ofa} < D(V)(Q).

Equivalently, we have to prove that, for every praos ay,...,an, of @,

I(r.D(V)) =« D(v)(a) (4.2)
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We will proceed by induction on the lengthof 7z Now, if ay, is assumed either as a logical axiom or as
an hypothesis, then (4.2) is evident. Otherwissyme thair, is obtained by an-ary inference rule and
therefore that
(D)) = Fsenll (7Twy: D)), - 77y, D(V)))

wherermn,..., 7, are the proofs of the formulagyy, ..., G, i(1) <m,..., i(n)<m. Then, taking in account
the induction hypothesis, the definition@fv) and the continuity property of.n,

I(TLD(V)) i Feen DM)(@(w), - D) (@)

= Isenr(SUR{I(1TV) : 1T is a proof ofaiw)},..., Sup{I(mv) : 1t is a proof ofxn)})=

= SUR rsen(l (T2 V), -, (T8, V)) : Ty is @ proof ofti),..., Thy is @ proof ofaiy}) <k D(V)(a).

We are now ready to give the main definitions iis traper.

Definition 4.6. Let M be a fuzzy semantics antR( la) a deduction apparatus. ThdR,(la) is correct
with respect to Mf L(v) O, D(v) for everyv OB, (IR, la) is completewith respect to Mf D(v) Oy L(V)
for everyv OB". In the caselR, la) is both correct and complete, i@ = L., we say that (MIR, la) is a

bilattice based fuzzy logand thathe completeness theordmlds true.

5. Examples ofbt-systems

In order to illustrate the notion of bilattice bddezzy logic, we will give some example. The fioste is

related with the interval bilattices.

Proposition 5.1.Let V be a valuation structure and assume B& the interval bilattice (V). Then we
obtain abt-systenmby setting
A Fx = A0x.

In such a system,

Sat=1(V)-{0O} ; i(1) ={4}; Maxsat= {xOI(V) : xis a singleton}

Compl=MaxsatJ{ O}.
In accordance, given a semantics M,

m |=v provided = for every formulaa, m(a)Cv(a),
and, ifv admits a model,.(v)(a) is the least interval containingya) : m|=v}, i.e.

L(v)(a) = [Inf{m(a) : m v}, Sugm(a) : m [ V}].

In particular, for every formula,
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Taua) = [Inf{m(a) : MM}, Sugm(a) : mOM}].
As an example, assume that the valuation strugsuf®,1], 0, [0, 1x). ThenTaua:=a) = [0.5, 1] and
Tauall- a) = [0, 0.5].This means that by our formalisms we can have usefwiori information on the
formulas. Instead, if we adopt the usual notionstaftology and contradictions no tautology or
contradiction exists in such a logic. Notice alsattwhile in classical logic we refer both to thation of
tautology and contradiction to represent the arpimbormation of the formulas, in our approathua)
represents the whole a-priori information we hanvero
The definition of at-system in the case of a product bilatti2@/) is more problematic. Assume that a
negation- in V exists. Then a definition oflat-system have to be in accordance with the embeddaofg
Io(V) into B(V) defined in Theorem 2.9. This means that we hawassoime that for everg,b) such that
as<-b, A |=* (a,b) if and only ifAlJ[a, —b]. This suggests the following definition.

Proposition 5.2. Assume that a negatichin V exists and thaB is the product bilattic8(V). Then we
obtain abt-system by setting
A F(ab) = asAandb<-A
In such abt-system,
Sat={(a,b):a<-b} ; i(N)=UA-A) ;
Maxsat={(a, b) :a= b} ;
Compl= {(A,4) : there isx such thatl>x, y=>-x}.
Also, given a semantidd,
mEv « m=2v, and-m>v.
and,
L{(v)(a) = (Inf{m(a): m E\}, Inf{-m(a) : m E}).

Proof. We observe only that
AF(@b) - asdandb<-1 = asA<-b

and therefore that thereAssuch thati |=* (a,b) if and only ifa< —b. Moreover
L(V)(@) = Inf{m(a) : m [} = Infid(m(a),-m(a)) : m Fv} =
= (Inf{m(@) : m EV}, Inf{-m(a) : m FW}).

In particular,
Taua) = (Inf{m(a) : mOM}, Inf{—-m(a) : mOM}).

So, by referring to the valuation structure ([Q,10}1-, O, 1),
Tauala) = (0.5,0) andrau e a) = (0, 0.5).
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6. The proposed approach extends the one of Pavelka

In this section we will show that the definition®posed in this paper extend the usual ones igrimed
approach to fuzzy logic (see [28]). This in spifehe fact that in such an approach it is not appiathe
reference to a knowledge order since one refetbdoorder relatiore in V. As a matter of fact the
reference to the knowledge order is implicit in tpeoposed semantics since the information is
represented by a fuzzy subset- -V of formulas and one claims thatis a model ofv provided that
mCv. This means that the information carried orvliy that, for every formula, v(a) represents a lower-
bound constraint like “the truth value afis greater or equal ¥ a)”. Then in the graded approach one
manages interval constraints on truth values andruati values and we have not confuse the trutheva
A with the constraint],1]. To make more precise such an observation, emsider the following sub-
bilattice ofl (V).

Proposition 6.1.Let L be a bounded lattice and consider the set
I"(L) ={[a,1] :a0L }Off0}, O}.
Then the substructuré(L) of I(L) defined byl*(L) is a bilattice satisfying the decomposition prpe
we call such a bilattice tHewer-bound bilattice associated with
Then in such a bilatticsy is the dual of the inclusion relation agds defined by setting
- {0} is the minimum with respect t&,
- [a1] &[c,1] = a<c
-{0} <0 <{1} and O is nott-comparable with any other interval.
In accordance, the operations are defined by gettin
- [a1]0[c1] = [alkc1] ; [a,1]tc,1] = [allc,1]
- {100 =00{1}=0 ; {000 =000y = O
-{1}00 =00{1y ={1}; {0} 0O =00Ho} = {0}
- [21]00 =00[a1] ={0} (a#1); 180 =00[a 1] ={1} (a#0)
- [&1]0{0} = {0} ; [a1]t{0} =[al].

Proposition 6.2.Let B be the lower bound interval bilattitgV), then we obtain ht-system by setting
AE*x e ADx
In such a system,

Sat=1"(V)-{0}; i(A) =[A, 1] in the cas&#0 ;i(0) = {0} ;

Maxsat= {{0}, {1}} ; Compl={{0}, {1}, U}.
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Proposition 6.3.Call normal a valuationv assuming only values different froih and {0}. Then thebt-
systemassociated with*(V) gives the same formalisms of the graded appraadhzzy logic provided

we confine ourselves to the normal valuations.

Proof. It is possible to identify every normal valuatigrwith the functionv’ : F - V such thatw(a) =
[V'(@), 1] for everyallF. Moreover, given a semantics &hhdmlIM, we have tham|= v provided that
mC v'. Finally, since for every formula,

L(W)(@) = [Inf{m(a) : mOVv’}, 1],

it is possible to identif\.(V)(a) with Inf{m(a): m O v’}. In a similar way we can relate the deduction

apparatus of the graded approach to fuzzy logik thié deduction apparatus proposed in this paper.

It is interesting to observe that, in particular,
Tau a) = [Inf{m(a) : mOM}, 1].
Therefore, by referring to the early considerediaabn structure ([0,1]}, [, 1x, 0O, 1),
Taual a) =[0.5,1] andTaua(+ a) = [0,1].
This means thafaugives no information on a contradiction.
We conclude this section with the following propiom emphasizing that®(V) is obtained by

extending the domaiv of V by two elements and the ordednnto two different orders

Proposition 6.4.Extend the domaiW of V by two symbolic elements andi (corresponding to {0} and
I, respectively) and s&= V[{f, i}. Extend the ordex in Vinto two orderss; and<, in such a way that
- i is a maximum with respect & andf is a minimum with respect tg
-f20,i <1,
-f is notk-comparable with the elements\r{0},
- I is nott-comparable with the elements\i{1}.
Then B, <, <, f, 1, 0,i) is a bilattice isomorphic with'(V) = (1" (V), <, <« {0}, {1}, [0,1], O).

Proof. It is sufficient to consider the mdp: 1" (V) — B defined by settindn(0J) =i, h({0}) = f and
h([1,1]) = A.

Observe that ing, <, <, f, 1, 0,i) False and True are represented byd 1, while no information and
inconsistency are represented by,Oespectively. Then thist-system given in Proposition 6.2 gives a
proper extension of Pavelka’'s formalisms in whioh admit valuations able to express the fact that a

formula a is false (in the casg a)=0) and the fact that the information arns inconsistent (in the case

v(a) =i).
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7. Completeness theorem and fixed points

Let M be fuzzy semantics antR(la) a deduction apparatus. Then to prove a complssetheorem it is
useful to examine the fixed points of the operabendL.. Indeed, (R, 1a) is correct if and only if all the
fixed points ofL. are fixed points oD and is complete if all the fixed point Bf are fixed points of...
Regarding the fixed points df;, the general theory of the closure operators gibes following

proposition.

Proposition 7.1.A valuationv is a fixed point ofL. if and only ifv is ak-intersection of elements in .M

Equivalently, the set of fixed points bf is the closure system generated by M

Instead, we can characterize the fixed point®of.e. the theories, as thigsubsets of formulas closed

with respect to the deduction apparatus.

Definition 7.2. Let v be aB-set of formulas, them is calledclosedwith respect to tha-ary inferential
ruler if, for everyam,...,a,

V(rsyd a1, ..., 00) 2k TsenfM(Q1), ... V().
We say thav is closed with respect to a fuzzy deduction apparéirida) if v is closed with respect to all

the inferential rules itR andv k-contains thd3-subset of logical axioms.

Observe that the closure with respect to the fusita is expressed by the inequalya) =v(a)0v(Q)

and therefore that all tH&sets of formulas are closed with respect to tHes. ru

Theorem 7.3.Letv be a valuation, thewis a theory (i.e. a fixed point &) if and only ifvis closed with

respect tolR, 1a).

Proof. Assume that is closed with respect téRla). To prove thav is a fixed point foD, we prove, by
induction on the length of the formulas, that feey formulaa and for every proofrof o
(rv) scv(a) (7.1)

In the casen = 1, the proof consists in assuming either thét a logical axiom or a hypothesis. In both
the cases (7.1) is satisfied in a trivial way. Gdesthe cas@ #1 and, by induction hypothesis, that (7.1)
is satisfied by all the proofs whose length is ldssn. Then again in the cageis assumed as a logical
axiom or a hypothesis (7.1) holds true. Otherwtisere is an inference rute= (rsy, 'ser) SUch that

a = rsin( Gy, ..., Gm) With I<i(1)<n,..., 1< i(m)<n and

1(72v) = Fsem(1(7i (1)), | (i (M), V).

Then by the closure of by induction hypothesis and the monotony.gf, we have that
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V(@) =V(rsin( 7Ty, -+, 7)) 2k Fsenl V(A1) .. M(OR)) >k

i Fsem(I (7T (1)) V), ... | (7T (M)) V)= 1 (72V).
Conversely, assume thais a fixed point oD. Thenv(a) = Sup{I(tV) : 1t is a proof ofa} and therefore
v(a) 2¢I(Tw) for every proofrrof a. By assuming thatris the proof of length 1 consisting in assuming
as a logical axiom, then we obtaita) >I(TLv) = la(a). Thenv kcontainda. Letr be ann-ary inference
rule, then to prove thatis closed with respect tQ given a,...,a, we consider the proofrobtained by
assumingas,...,a, as hypotheses and by applying the ruleSuch a proof proves the formuta =
rsin(a,-...ay) and therefore

V(rsin(a,...,an) =V(@) 2 1(77V) = rsed(V( @), ... V(OR)).

Thusv is closed with respect tdR, la).

Definition 7.4. We say that an inference rulecisrrectwith respect to a semantics rovided that, every

mM is closed with respect to the rule.
The following simple proposition it is useful togwe the correctness of a deduction apparatus.

Proposition 7.5.A deduction apparatus$R, la) is correct with respect to a semantics M if antydf la

<Tauand all the inference rule IR are correct with respect to M.
The following simple proposition gives an usefuwltto prove the completeness.

Proposition 7.6. Le B be a bilattice satisfying the decomposition propefhen to prove the
completeness of the deduction apparatus it iscseiffi to prove that given a theorylifferent fromvy
i) for every formulag, there is a modeh, of v such that
m(a)True=v(a)kTrue
i) for every formulaa, there is a modeh” of v such that
m’(a)False= v(a)[False
If B is with negation and both the elements inaktl the theorieare balanced, then it is sufficient to

provei).

Proof. To prove that every fixed pointof D is a fixed point ofL;, observe that in the case= v; this is
trivial. In the case # vy, by the assumed hypotheses, for every formuyla
L.W(a)OTrue= (Inf{m(a) : m |= V) GkTrues, m(a@) G True = v(@)kTrue
and
L(v)(a)kFalse= (Inf{m(a) : m |= v}) Falses, m?(a)kFalse=
=v(a)[jFalse.
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Consequently,
L(v)(a) = (LM (a)CkTrug)Ck(L(v)(a)kFalse) <« (v(a)ITrue) L(v(a)LFalsg = v(a).
So,vis a fixed point oL and this entails the completeness.
Assume that the elements_in &nd the fixed points dD are balanced and thgtholds true. Then, bi),
given the formula- a there is a modein., suchthatm. (- @)dTrue = V(= a) i True. Consequently, if
we setm” =m.,
mf(a)OFalse= ([ (a)O/Falsg) = Am"(~ a)CTrue)
E(v(- a)True) = (v(- a)) (COTrue) = v(a)False

andii) holds true.

In the caseB is a product bilatticd8(V), the condition of such a proposition requires thare are two

modelsm,, m? of v such that, for every formula, my(a) = v.(a) andm?(a) =-v.(a).

8. Boolean logic and Kripke bilattices

Now we will test our formalisms on a logic relat@dth a Boolean truth-functional semantics. Namely,
given a nonempty s&/ whose elements we callorlds we consider the Boolean algebfas P(W) and
the related product bilattidd, = B(P(W)), we callproductKripke bilattice (see [20]). ObviouslyBy is
defined by setting
XY <X Y) e XOXeYOY; XKV)S(XY) - XOXeYOY,
~XY)=(Y, X) ; O=@.0) ; T=wWw);
False= (O,W) ; True= (W, )
The intended meaning of a valuatien F - By is that, for every formular, the pairv(a) = (X,Y)
represents:
- the seiX of worlds in which the available information sagatta is true
- the sety of worlds in which the available information sagatta is false.
In accordance with the formalisms proposed in 8acdfi, we have that lat-system is defined such that,
for everyXOP(W) and @,B)[1By,
X [* (AB) provided thatA 0 X andB O X.
Moreover,
Sat={(A,B): AnB=0}; i(X) = X,-X) ;
Maxsat= {(X,—X) : XOP(W)} ; Compl={(X)Y) : XOY=W} .
We callKripke-bt-systensuch abt-system.
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Definition 8.1. We callKripke truth functional semantidhe set Mof mappings

m: F — P(W) that are truth-functional ifr(W), n, [0, -) i.e. such that for every, £ OF,
m(atlB) = m(a)nm(B) ; m(allf) =m(a)im(B) ; m(=a)=-m(a).

Notice that conditiorm(- a) = -m(a) entails that the elements in &e balanced. The intended meaning
is that, giverm O M andalJF, m(q) is the set of worlds in whiclris true.
As it is well known, we have that & and @’ are logically equivalent in classical propositiocalculus
thenm(a) = m(a’). Moreoverm(a) = W for every tautologyr andm(a) = O for every contradictiomny.
This entails thak(v) is compatible with the logical equivalence anatth

Taua) = (W, 0) if ais a tautology

Taua) = (O,W) if ais a contradiction

Taua) = (1, O0) otherwise.
To individuate a suitable inferential apparatus tloe just defined semantics, at first we will giae
“symmetric” version of the usual deduction appasatuclassical propositional calculus. Indeed, deno
by a - the formula- alJB8 and bya -8 the formulaf a. Then we define two rules. Thmsitive
Modus Ponengnables to obtaiff from aanda -3, thenegative Modus Ponemmables us to obtaj
from a and a - 3. We denote bpMP* andMP these rules. It is evident that whN&P" is correct in a
positive sense (i.e. randa -8 are true, the@is true),MP" is correct in a negative sense (i.ezidind
a - are false, theif is false). Also, we denote yA one of the sets of logical axioms of classical

propositional calculus and byLA the set & a: allLA].

Definition 8.2. We say that a séf of formulas is aheoryor thatT is closed with respect to positive
proofsprovided thafl containsLA and it is closed with respect k6P*. We say thal is ananti-theoryor
thatT is closed with respect to negative propfsvided thafl contains- LA and it is closed with respect
to MP".

Passing to our bilattices-based logic, we palitive Modus Poner{s brief MP") the rule defined by

setting

a U*tﬂl (ALA) (1,.1))

< B (AL A)OT(L,1)

)

where¢” is thepositive conjunctionlefined by setting:
A, A+, 1) = A n 1, 0).
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Such a rule works on the positive information sitlee negative components of the antecedents in this
rule do not give information on the conclusion. ba dual side we can define the following rule \aé c

the negative Modus Ponefis brief MP),

<0 a - ﬁl (A A) (1.,1))
B (AL A (1,,10)

where thenegative conjunctiofy is defined by setting
(A, A)O(I4, 1) =@, AnlL).

In such a case the rule works only on the negatfeemation.

)

Also we will consider the:-eliminationand the--introductionrules (whose meaning is obvious)

—a (X,Y),  a (X))
<a I(Y,X)>’<ﬂa (Y,X)>

Notice that a valuatiom is closed with respect to these two rules if anly dnv is balanced. Also, these

rules are not independent. Finally a particulae islplayed by the followinmconsistency rule
(@ 0,
a k(X,Y)
where the mapx is defined by setting(X,Y) = (XY) if XnY =0 andk(X,Y) = (W,W) otherwise. Such a

rule says that if there is a wonhdin which the information ow is inconsistent, then the information on

have to be considered inconsistent in all the vsorld

Proposition 8.3.The proposed rules satisfy the continuity conditio

Proof To prove that" is continuous, letA)- be a directed family of elements Bfy andl OB.
Then
(Supa (A", AT OIS = @A DIAT) O, 1) = (@A) n 17, 0)
Ei(A"nl"), 0) =Supa (A" n 1", 0)
Supa (A", A", 17).
In a similar way one proves thatis continuous. To prove that ~ is continuous wgeole that
~(Sups A) =~ AT DAY = (O A, O AY) =Supg ~A
To prove thak is continuous, assume tHat A" and; A ~ are disjoint. Then, since for everyl, A*
andA; " are disjoint,
K(SupaA) =k(0; A", OiAY) = O A7, Oi A7) = Supa(A7, A7) = Supak(A).
Assume that there is a wovdl(;yy A*)n (0inA 7), then there areandj such thathAan{. Since
(A)ioi is directed, there i8y, such thatA"DA,", A'DAY, A"OA,, ATA, . This entails that Ay"'n Ay
and therefore,
K(SUpA) = k(O A', 0 AT = W, W) =k(A) = Supuk(A).
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Definition 8.4. We callKripke deduction systenin brief K-systemthe deduction system in the Kripke
bilattice By, whose rules arbIP*andMP and whosey-set of logical axioms is defined by setting
(w,0) if aOLA
la(a) =<(0,W) if aO-LA
(U,0) otherwise
It is intended that th&-system contains the fusion rule. The proof of tiWing proposition is matter

of routine.

Proposition 8.5.Given a valuatiorw, the following equivalences hold true
a)vikla = vi(a) =Wandv.(-a) =Wfor everyallLA
b) vis closed with respect tdP* < v, (B) Ov.(a)nv.(a —H) for everya andf
¢) vis closed with respect tdP" = v (f) Dv.(a)nv.(a - ) for everya andf
d) vis closed with respect to theintroduction and the:-elimination rules

= V(=) =/(a) = v.(a)=v(-a) andv(a) =V.(-a) for everya

e) vis closed with respect to the inconsistency ruleeitherv is pointwise satisfiable or=v, .

Notice that the setSat Maxsat Comp| can be also defined by the lattice operatior8yjnindeed,
(X)Y) O Sat = (X,Y)[1I(X,Y) <, False
(X)Y) O Maxsat= (X,Y)O4(X,Y) =True = (X,Y)OOX,Y) =False
(X)Y) O Compl = (XYV)OLXY) 2 True = (XY)AOX,Y) 2 False
As it is usual in formal logic, there is no diffitpito prove the correctness of the consideredranftal

apparatus.

Proposition 8.6.TheK-system is correct with respect to the truth-funwicsemantics M

Proof. It is evident that iim[IM, thenm [ la and thatm is closed with respect to the-introduction
rule, the--elimination rule and the inconsistency rule. Toverthatmis closed with respect tdP", it is

sufficient to observe that

m.(8) = m(g) 0 m(a)nm(B) = m(a)n(M(B))1-m(a)) = m(a)nm(BL a) = m.(a)nm. (8- a)

To prove thatnis closed with respect tdP’, we observe that

m(p) O m(a)(m(B)n-m(a)) = m(a)0m(81-a)

and therefore that

m(f) = -m(P) O -m(a)n -Mm(fa) =m(a)nm (8 a).
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9. An isomorphic bilattice

In order to find a completeness theorem relatingith the proposed-system, it is useful to introduce

the following bilattice.

Definition 9.1. Let P(F) be the Boolean algebra of all the subsets ahd& denote bys: the associated
product bilatticeB(P(F)). Then we calformulas based bilatticéhe bilatticeB:" obtained as the direct

power of the bilatticd®: with index seWW. We callW-valuationthe elements of such a bilattice.

Then aW-valuationU : W - Bg is defined by a pairl,,U) of functions fromW into P(F) whose
intended interpretation is that, for every wonld

- U.(w) is the set of formulas the available informatioggests to be true im

- U(w) is the set of formulas the available informatioggests to be false im.

The following theorem shows that the bilattiG¢ andB:" are isomorphic.

Theorem 9.2.Define the mag : By — B:" by setting, for every By,
H(V)(W) = (T(w), F'(w))
where,
T'(W) ={a:wlv:(a)} and F'(w) = {a: wlv.(a)}.
ThenH is an isomorphism betwed,” andB:" whose inverse is the functi¢h: B — By such that,
for everyU 0 B andaCF,
KU)(a) = {w: a O U,(W)}, {w: ald U(wW)}).

Proof. It is immediate thad andK are both one-to-one amtl* = K. Moreover,
usv = for everyallF, u(a) scv(a) = for everyalF u.(a) O v.(q) andu(a) O v.(a) = for every
wiW{a : wlu.(a)} O {a : wOv.(@)} and {a : whu(@)} O {a : wiv(a)} = for everywdW,
H(u)(W) sk H(V)(W) = H(u) <cH(v).

and
us< v = for everyallF, u(a) < v(a) = for everyallF u.(a) O vi(a) andu(a) O v.(a) = for every
waw, {a : whu,(a@)} O {a: wOv.(a)} and {a : wOu(a)} O {a: whv(a)} < for everywdW,
H(u)(w) S H(V)(W) < H(u) < H(v).

Finally,
H(~v)(w) = H((v., vi))(W) = ({a: wiv.(a)}.{ a: wlv.(a)})

=~ @:wiv.(a)}, { a: wlv(a)}) = ~H(V)(w).
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Observe thatH(vp) is the map constantly equal ta,(d), H(vr) the map constantly equal to (F,F) and
H(la) the map constantly equal toA,-LA).

Definition 9.3. Let U be an element iB-", then we say that
- U is pointwise satisfiabld, for everywW, U.(w)nU.(w) =0
- U is closed with respect talP" if, for everywW, U, (w) is closed with respect tdP*
- U is closed with respect tdlP" if, for everywW, U (w) is closed with respect tdP
- U is balancedf, for everywW,
alu,(w) = -aU.(w) and aOdU.(w) = - aldU.(w).

- U is completdf, for everywW, U, (w) is a complete and.(w) =-U.(w).

Proposition 9.4.Givenv 00 By,
i) vikla < T(w)OLAandF'(w) O-LA
ii) vis closed with respect tdP" = T'(w) is closed with respect tdP* for everywIW.
i) vis closed with respect tdP~ = F'(w) is closed with respect tdP for everywW.
i) vis balanced= v is closed with respect to theelimination and--introduction rules= H(v) is
balanced
V) v is closed with respect to the inconsistency rdle eitherH(v) is pointwise satisfiable dd(v) is

constantly equal with (F,F).

Proof. Equivalences), ii), iii) andv) are all trivial. To provav), assume that is closedwith respect
to the--introduction and--elimination rules and therefore that, for everw.(a) = v.(-a) andv.(a) =
V.(-a). Then

aOT'(w) = wivi(a) = wiv.(=a) = = alF'(w)
and

alF'(w) = wiv(a) = wVi(=a) = -alT'(w)
and this proves thai(v) is balanced. Conversely, assume th@d is balanced, then

wiv, (@) = aOT'(w) = =aldF'(w) < wiv(-a)
and

wiv(a) = aOF' (W) = =adT'(w) = wivi(-a).

Now, we are able to characterize the models ofke€ripgic as the families of complete theories.

Proposition 9.5. Given m(OM, H(m) is a completéW-valuation. Conversely, ifJ is a completeW-
valuation, therK(U)OM. Namely,K(U) = m wherem is defined by setting, for every 0 F, m(a) =

{wOW: alJU,(w)}.
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Proof. Assume thamIM, then it is immediate that, for evewiJW, F(w) = -T"(w). Moreover, in
accordance with Proposition 8.8 is closed with respect thlP* and mJJa. By Proposition 9.4 this
entails thaff™(w) contains_A and it is closed with respect kP*. ThenT™(w) is a theory. To prove that
T%(w) is complete, observe that,

ald T"(W) « wim(a) « wim(=a) = - all T%(w).

Conversely, assume that for everyW, U, (w) is a complete and that(w) = - U.(w) and definem
by setting m(a) = {wOW : aOJU.(w)}. Then mis truth-functional. Indeed, sindé.(w) is closed under
deductions,

wi m(yB) = yPpOUL(w) = pU.(w) andpOU.(w)

= wOm()) andw O m(B) = w O m())nm(B).
Thenm(yp) = m()) nm(B). Moreover, sincé).(w) is complete
wi m(i)) < pJpiu. (W) < yuU.(w) or LU (w)
= wim()) orwm(p) = w O m(pOm(B).
This means than(yJ8) = m())dm(p). Finally,

wiOm(=)) = = ydUu.(w) = yOU.(w) = wOm())
and this proves thai(- )) =-m(})).

On the other hand, since for evaviyl\W,

wi-m(a) = aU,.(w) = au.(w),
we have also

m(a) = (M(a), -m(a)) = ({w: a 0 U.(w)}, {w: ald U(w)})= K(U)(a).

Corollary 9.6. Given a valuationv, a modelm of v exists if and only if there is a familyff)wow of
complete theories such thE{(w) O T,, O -F(w). The modemis obtained by setting, for every formua
m(a) = {wOW: a0T,}.

Proof. It is evident that if a modeh of v exists, thenH(m) is a completéV-valuation and, sincen
>, H(m) >H(v). This entails that(H.(m)(w))wow is a family of complete theories such tidiw) O
H. (m)(w) O -F'(w).

Conversely, consider a family of complete theo(&3wow such thaff*(w) O T, O -F'(w). Then we
can consider th&V-aluationU obtained by setting).(w) = T,, and U.(w) = -T,, . By definition U is
complete and therefore by settinga) = {wOW : aldT,} we obtain an elemenn of M such thatm =
K(U). Since by hypothesiE(w) O T, and-T,, 0 F(w), we havem = K(U) v, i.e.mfv.

Proposition 9.7.Given a valuatiow 0 By/, v # vy, the following are equivalents:

i) vis atheory
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ii) T'(w) is a consistent theory for evemsy]W andH(v) is balanced.

iii) F'(w) is a consistent anti-theory for every]W andH(v) is balanced.

Proof. The implicationsg) = ii) andi) = iii) are evident. To prove th&} = i) we observe thatl(v) is
pointwise satisfiable and therefords closed with respect to the inconsistency rideed, assume that
there areallF and wOW such thataOT'(W)nF'(w). Then, sinceH(v) is balanced, - aOT'(w) and
thereforeT'(w) is inconsistent. This contradict the hypothégsisv) # F. To prove the closure efwith
respect tdVIP” we prove thaf'(w) is closed with respect tdP". Now if a and a3 are inF'(w), then
- aand- (A1~ a)0 T'(w). SinceT'(w) is a theory, this means thatr and- a - 80 T'(w) and therefore
- A0 T(w). Thus, sinceH(v) is balanced, we can conclude tjgafl F'(w). In a similar way one proves

thatiii) = ).

10. The completeness theorem

In Section 8 we proved the correctness of the densd inferential apparatus. Taking in account the

results of Section 9 we are ready to prove the ¢etgpess, too.
Proposition 10.1 TheK-system is complete with respect to the truth-fural semantics M.

Proof Since both the elements in &hd the fixed points dD are balanced, by Proposition 7.6 it is
sufficient to prove that, for every formuta there is a modeh, of v such tham,(a) = v.(a). Now, since
v is fixed point ofD, for everywOW, T¥(w) is a consistent theory thaft(w)- F'(w) andF'(w)0-=T'(w).
DefineU, = (U, U.9OB" by setting:

- U, “(w) equal to any complete theory extendihtfw) in the caser O T'(w)

- U, “(w) equal to any complete theory extendirify)1{ - a} in the caseal] T'(w)

- U9(w) =-U.(w).

ThenU.%(w) is a complete extension ®f(w) such that, trivially,

alU.%(w) = alT(w).

Now, by Corollary 9.6U, is associated with an elemant, in M. Namely,m, is defined by the model
m,IM such thatm,(8) = {w : A0 U.%w)} for every formulag. To prove thaim, is a model ofv, we
observe that, by definitiot), “(w)OT"(w). To prove that),“(w) O -F'(w) we observe that, for evefy[]
U.%w), =80 U.%w) and therefore- SOT'(w). SoB OF'(w). This proves thain, is a model ofv. To
prove thaim,(a) = v.(a), we observe that

wilmga) = aldU,W) = aOT(w) = wOvi(a).
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We can summarize the results in this section &swsl

Theorem 10.2.The Kripke truth-functional semantics and the Keapleduction system define a bilattice-

based fuzzy logic.

We conclude such a section by emphasizing the edgeteatures of the fixed points bf Indeed, denote
by FE the Lindenbaum algebra of the propositional cals@nd for every valuationset

[TW)]={[a OF=:a0T(W)}and [F'(W)] ={{a] OF=: alF(w)}.
Then ifvis a fixed point oD, [T',] is a proper filter andH",] the corresponding dual ideal irsF-If v =

mwith mOM, then [I*] is maximal andf",] is its complement.

11. Inconsistency-tolerant Kripke logic

In the just considered fuzzy bilattice logic théseno tolerance with respect to the inconsisterfcthe
information. Indeed, assume that in a given vatumatithere is a formular such thatv.(a)nv.(a) # O.
Then in such a logic no model exists Yand thereford.(v) =v,. So, the whole information content of
is useless. This is disturbing since the utility bofattice theory is also to manage inconsistenny.
alternative, we can attempt to consider the foligpninconsistency-tolerant logic. At first we obseihat
given a bilatticeB, we can obtain at-system by assuming that the valuation structuceincides withB,

in a sense.

Proposition 11.1.Given a bilatticeB, we obtain &t-system V¥, B, |=*) by settingV = (B, <) andA |=* X
= A X
In such a system
Sat=B ; Maxsat=Compl={T} ; i(1)=A.
Moreover, if MO V¥ is a semantics, for evergiIM
mE v provided = myy,
and therefore,
L.(v)(a) = Inf{m(a) : m [, v}.

It is evident that in such a case the Sat Maxsatand Complare meaningless. Also, we are interested in

the following semantics iBy.
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Definition 11.2. Let M be the Kripke truth-functional semantics given igfiDition 8.1 and, for every
mOM and XOW, definemy by settingmy = mC(X,X). Then thenconsistency-tolerant Kripke semantiss
defined by setting M. = {my : XOW, mOM} .

Observe that ifa is a tautology, themy(a) = (W, X), if a is a contradiction, themy(a) = (X, W).

Moreover,my is compatible with the logical equivalence.

Proposition 11.3.Letv: F - By be an initial valuation and skt [1 eV, (@) nv.(a). Thenmy |=von|y if
XOI. Moreover, for everXOW, denote by the valuation defined by setting(a) = (v.(a)-X, v.(a)-X)
for everyallF. Then the following are equivalent:

) m kv

i) my vV, XO1.

i) m O, v*
Consequently,

Le(V) = nid my : mOM, | OXOW, m O, vV (11.1)

and therefore thBy-set of tautologies coincides with the one defibgd/.

Proof. If my |=vthen for evenoF, m(@)OX O v, (a) and -m(@)0X O v.(a) and therefore
X=(M(a@)OX)n(—-m(a)0X) O v.(a)nv.(a).
This entails thax O I.

i) = ii). Assume thainy v, thenit is evident thatmy Fv' and XOI.

i) = iii). Assume thamy [V with XOI, then,my Oy V and therefore for evergOF, m(a)OX O
vi(a)-1 and €m(a))0X O v.(a)-l1. In turn this entailsn(a) O (v.(a@)-1)-X and -m(a) O (v.(@)-1)-X and
thereforem(a) O v, (a)-X and —-m(a) O v.(a@)-X. So,m Ov*.

iii) = i) Observe that
m OV = my |=v: for everyallF, m(a) O v.(@)-X and —-m(@) O v.(a)-X = for everyallF, m(a)OX
Ov.(a) and -m(@)OX Ov(a) = my Fv.

Then, even if there ig such that.(a)nv.(a) # 0, it is again possible thatadmits a model. This since

we can search for modets; of the pointwise consistent valuatigrsuch thatx Cl.

Definition 11.4. We call inconsistency-tolerant Kripke deduction system brief t-K-system the
deduction system obtained from tKesystemby deleting the inconsistency rule. We denoteDpyhe

related deduction operator.

Observe that the inconsistency rule is deletecesmaseless. Indeed the functlois the identity.
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The proof of the following proposition is similaiitivthe one of Proposition 9.7.

Proposition 11.5.Given a valuatio O B/, the following are equivalent:
i) vis a fixed point oD
ii) T'(w) is a theory for everwIW andH(V) is balanced.

i) F'(w) is an anti-theory for evemny W andH(v) is balanced.

Proposition 11.6.Thet-K-system is correct with respect to the semantigs M

Proof. Let my = mCk(X,X)OM;,. thenmy Om [ la. Moreover, since
m(~a) = (M- a)0X, -m(-a)IX) = (Cm(a)UX, m(a@)0X) = ~mx(a).
my is closed with respect to the-introduction and thes-elimination rules. To prove thaty is closed
with respect taviP, it is sufficient to observe that
XUm(B)U Xt(m(a) nm(B) = XU(m(a)n(m(B)U-m(a)))
K(m(a)nm(fL- a)) = (M(@)UX)n (M(FLE- a)0X).
To prove thatny is closed with respect tdP’, we observe that
XO-m(B)U XO(-m(@)n-m(B)) = XO(-m(a)n (-m(BLm(a)))
= Xi(-m(@)n (m(B)n-m(a))) = XD(-m(a)n (B} a))
=XO-m(a))n (XO -M(B~ a)).

Proposition 11.7.Thet-K-systemnis complete with respect to the semantigg.M

Proof. Since both the elements inMand the fixed points dd, are balanced, by Proposition 7.6 it is
sufficient to prove that, i’ is a fixed point ofD, different fromv; then for every formulay, there is a
modeln,[OM;.. of v such that the first componentmf(a) is v.(a). Now, sincev is a fixed point oD, by
Proposition 11.5, givem{W eitherT'(w) = F orT'(w) is a consistent theory closed under deductiore. W
set

X={wOW: T'(W) = F} = n eV ().

It is immediate that since# vy, X# W. Also, we defindJ, = (U, U.9)OB:" by setting:

- U, %(w) equal to any complete theorywfIX

- U, “(w) equal to any complete theory extendiftfw) if wOX anda O T'(w)

- U, “(w) equal to any complete theory extendirigv)1{ - a} if wOX andall T'(w)

- U.%(w) = -U,“(w) for everywIW.

It is evident that, for everywIX, U, “(w) is a complete extension df(w) such that,
alU.%(w) = alT(w).
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Now, by Proposition 9.5, if we defimg, by settingm,(A) = {w : S0U.“(w)}, thenm, is an element of M
such thatH(m,) = U,. We claim thatm,[0(X,X) is a model ofv, i.e., by Proposition 11.3, that, for every

BOF,

m(B) O v.(H)-X and-my L) O v.(H)-X. (11.2)
To this aim, at first we observe that, for evefyx
(U (w), U.9w)) 2 (TY(wW), F'(w)). (11.3)

Indeed, by definitionlJ, “(w)OT'(w). To prove that).“(w) O F'(w) observe that, sinceis closed with
respect to the:-introduction and the:-elimination rule, T'(w) O = F'(w) andF'(w) O-T'(w). Then, for
every 0 F'(w), since-~ B0 T'(w), it is also~ 40 U, “(w). In turn, sinceJ, “(w) is consistent, this entails
that 00U, “(w) and thereforg8JU.“(w). Coming back to (11.2), assume theiflv,(5)-X, then SOT'(w)
and therefore, sinag0X, fOU. “(w). Thenwm,(A). Assume that
wiv.(B)-X, thenBOF'(w) and thereforg8JU.“(w). ThenBOU. “(w) and this entails that-m(A).
To prove that the first component ofi{k(X,X))(a) isv.(a), i.e. that

wOmy{(a)0X = wl v.(a),
we observe that such an equivalence is evidehiicasav1X. Otherwise

womya) « adU,%w) = aOT(WwW = wOvi(a).

We can summarize the results in this section &swsl

Theorem 11.8.The semantics M and the-K-deduction system define a bilattice-based fuzziclog

12. Extending the Kripke bilattice logic

Perhaps it is possible to extend the just consitikrgic related tdKripke-btsystemsto obtain similar
logics in anybt-system. Even we will consider such a questionfinare work, in this section we sketch

some ideas and results.

Definition 12.1. Given anybt-system ¥, B, |=*) in a bilatticeB with a negation, theanonical semantics
associated with{V, B, |=*) is the semantics defined by the class of map$ - B which areB-truth-
functionalin (B, [4, [4, ~),i. e.such that

nath =n(a)lin(p) ; n(atP) =n(a)kn(B) ; n(-a) =~n(a)

and such that, for every formutan(a) is complete and satisfiable.

The following proposition shows that such a deiimtextends the one of Kripke semantics.
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Proposition 12.2.Let M be the Kripke semantics. Then, givenF - By, the following are equivalent:
i) nOM
i) nis By-truth-functional and its values are satisfiable aohplete
iii) nis By-truth-functional and its values in the propositiovexiables are satisfiable and complete.
ThereforeM is the canonical semantics associated with thpki€rt-system.
Proof. ) = ii) Assume thah O M, i.e. that there isnCJM such thath = iom. It is immediate that the
values assumed lyyare complete and satisfiable. Moreover
n(allh) = (m(aliB),-m(atlp)) = (M(a)nm(B),-(m(a)nm(B))) =
=t(a) nm(B),-m(a)0-m(8)) = n(a)Lkn(H).
n(atp) = (M(atB),-m(alif)) = (m(a)Im(B),-(m(a)Im(5)))
=1p(a)Im(B),-m(a)n-m(f)) = n(a)Lkn(H).
n(=a) = (m(=a), M- a)) = (M(a), m(a)) = ~n(a).
ii) = iii) Evident.
iii) =i) Letn: F -~ Bw aBwrtruth functional valuation whose values in thegmsitional variables are
complete and satisfiable. Letthe element of Mlefined in a truth-functional way by assigning ey
propositional variablgy the valuem(p;) = n.(p;). We claim thain coincides withm. Indeed, sinca is
truth functional by hypothesis amdis truth functional by implication=ii), it is sufficient to prove that
n(p) = m(p;) for every propositional variablg. On the other hand, sinoép) is satisfiable and complete,

n(p) = (:+(p), n(p)) = (+(p) , N+ (p)) = M(p).

Definition 12.3. Given anybt-system V, B, |=*) in a bilattice B with a negation, we caltanonical
deduction apparatuassociated witlV, B, |=*) the deduction apparatub( la) such thata is defined by
setting, for evenn(lF,
True if a OLA
la(a) =4 False if a O0-LA
O otherwise

andIR is the set of the following inference rules
a a-,f A U

| ) (Positive Modus Ponens)
B A0, u0, True

(

a a -
( A | A H ) (Negative Modus Ponens)
B A0, 0O, False

(1 |L> (=-elimination)
a ~A
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(L | %> (=-introduction)
a, A :
—|—= consistenc

wherek(A) = A if AOSatandk(A) =T, otherwise.

Obviously, some trivial hypotheses Brare necessary to obtain the continuity conditiarttie inference

rules. The following proposition shows that sudteéinition extends the one &fsystem

Proposition 12.4. The K-systemis the canonical deduction apparatus associateld tivé Kripkebt-

system.

Proof. We observe only that
(As, A)O(l4, 1) = (A, A)O(4, )G Trueand
(Ar, AYO (4, 1) = (A, A4, 1)OFalse

We can give similar definitions by referring teetinconsistency-tolerant Kripke logic. Indeed,sit i
possible to consider the same deduction appargtast @éhe inconsistency rule and the semantics

suggested bii ) of the following proposition.

Definition 12.5. Given anybt-system Y, B, |=*) in a bilattice B with a negation, thecanonical
inconsistency-tolerant semantiassociated witl{V, B, |=*) is the semantics defined by the class of maps
n: F - B which areB-truth-functionalin (B, [}, [}, ~) and such that therees# T such that, for every

formula a, n(a) is complete and(a)[k/h(a) =c

Proposition 12.6.Let M. be the inconsistency-tolerant Kripke semanticsmné — Bybe a map, then
the following are equivalent:
i) NOMine
il) nis By-truth-functional and there is# T such that, for every formula, n(a) is complete and
n(a)tkin(a) =c
i) nis By-truth-functional and there s# T such that, for every propositional variaplethe value of
n(p) is complete and(p)Ck/N(p;) =c.

Consequently, Definition 12.5 extends the notiomobnsistency-tolerant Kripke semantics.

Proof. i) = ii) Assume thah[OM;,. and therefore that therens M andX O W such than = my, then,

for every formulag,
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n(a)th(a) = M(@)UX,-m(a) X)L (-m(@)UX, m(a)UX) =
= ((M(@)IX)n (-m(@)0X), (M(a)DX)n (-m(a)1X) = (X,.X)
where ¥, X) # (W,W. It is evident thah is pointwise complete. To prove thais By-truth-functional, we
observe that, sind8y is distributive,
n(atp) = m(atB)0(X,X) = (M(a)m(B)) L(X,X) =
=1f(a) L(X, X)) (M(B) (X X)) = n(a)Cin(B).
Likewise,
n(atlp) = m(alB)LX.X) = (m(a)im(B) (X, X) =
=1f(a) k(X X)) B(M(B (X, X)) = n(a@)Lin().
Finally,
n(=a) = m(= a) (X, X) = tn(a) (X, X) = ((m(a))TX, m(a)UX) =
= 10(a)L(X.X)) = ~n(a).
iil) = iii) Evident.
i) => i) Letn: F - Bw aBwrtruth functional valuation such that, for everyppositional variablg;,
n(p;) is complete and(p)Ch(p) = (X,X), X£#W. Letmthe element of Miefined in a truth-functional way
by assigning to every propositional variaplehe valuem(p)) = n.(p)—X. We claim than coincides with
my. Indeed, given a propositional varialge by hypothesis. (p)Un.(p) = W andn.(p)nn.(p;) = X and
therefore, since H.(p)-X, n(p)} is a partition ofW, n(p;) = -(n.(p;)-X). Then
n(p) = (), n(p) = (N (R)-X)EX, n(p) LX) =
= (0 (p)-X)0X, ~(n.(p)=X)0X) = m(p) (X, X) = mx(py).-
Now, n is truth functional by hypothesis angj is truth-functional by implicatiom) = ii). Then the fact

thatn coincideswith my in the propositional variables entails that my.

13. About the meaning of the canonical deduction sfem

To give an idea of the meaning of a canonical déslu@apparatus, assume tiais the producbt-system
B(V) defined in Proposition 5.2 ar@ is a set ofgeneratorsof V, i.e. a set of truth values such that for
every AV, A = sug glG | ggA}. For example, iV is the real numbers interval [0,1] we can @uequal

to the set of rational numbers in [0,1]Mfis the Boolean algebia,, we can assume th@tis the set of
singletons. Under these conditions, we can considelattice similar to the one considered in SuT8,
namely the bilattic®:° obtained as the direct power Bf with index seiG. Also, we can associate every
valuationv with the family H(v) = (T'(1), F'(A)),0c whereT'(4) and F'(1) are thepositive A-cut and
negativel-cut of vdefined by

TN ={a|v.(a) 2 A} andF'(1) = {a|v.(a) = A}.
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Then if all the elements iG are primeH is an algebraic homomorphigrh: BF - B from the bilattice
B into B=°. Since

v(a) = (sud 90G | a0 T'(A)}, sud g0G | al F(A)}),
such a homomorphism is an embedding.
If, for example we consider the the canonical irststency-tolerant system. Then the fixed pointthef
related deduction operator are the valuatioggch that, for every, S OF,

i) Ma)=Truefor everyallLA

i) v(a) 2Falsefor everyall- LA

i) v(B) 2« v(a)Ov(a - B0 True

iv) v(B) 2 V(@) wv(a — B0 False

V) V(- a) = O(a),
i.e. such that

i) w(a)= 1lforeveryallLA

i) v(a)=1 foreveryal-LA

i) vi(B) = v.(@)vi(a ->H)

iv) v(f) = v(a)v(a -

V) V(ma)=v(a);v(-a)=v.(q)
In turn, it is evident that satisfies these conditions if and only if, for gvariG,

-T(A) is a theory

-F'(1) is an anti-theory

-a0F' (M) = =a0OT'(M) ; adT'(A) = ~a OF'(N).
Thus, a canonical inconsistency-tolerant systeabls to generate a family*(A), F'(A))oc whereT'(A)
is the set of formulas we can prove at degreadF'(J) is the set of formulas we can disprove at degree
A

14. Remarks

The just exposed logics are related with the KripHattice logics proposed by Ginsberg. Indeed20]

a valuation satisfying) of Proposition 11.5 is calléd/-closed Moreover, thaV-closureof a valuationv

is defined as thk-intersection of all th&V/-closed valuationk-containingv. Consequently, in accordance
with such a proposition, thé&/-closed valuations coincide with the fixed pointstoed deduction operator
D, andDy(v) coincides with th&V-closure ofv. Finally, Ginsberg characterizes #éclosed valuations in
theoretic bilattice terms by showing that a valoti is W-closed if and only if

1. if Bis a consequence of thenv(a) <, V()

2.v(atp) zv(a)Tv(p)
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3.v(=a) = (D).

In accordance with the fact that tidéclosed valuations coincide with the fixed pointsDpf this paper
gives a further characterization of téclosed valuations by the conditions

i) V(@) 2Truefor everyallLA ;

i) v(a) >Falsefor everyall- LA ;

i) v(B) 2« v(a)wv(a - L) True;

iv) v(B) 2 v(a)hv(a - iP)False ;

V) V(= a) = 0v(a).

This means that our formalisms give a semanticsaadéduction system in Pavelka's style (as in the
tradition of logic) for Ginsberg’s notion &¥-closure.

It is evident that several open questions exist.aA example, an open question is to find suitable
conditions on abt-system to obtain that the associated canonical rzraand canonic deduction
apparatus are related by a completeness theoresn, pérhaps it is interesting to investigate altbeat
connections of these logics with the notions ofessity and possibility in fuzzy set theory (see])17
Indeed, by referring to the produmttsystem considered in Section 13, we have thatdk#iye part of a
theoryv is a theory of the generalized necessity logic psed in [17].

However, the main open question is that, in spft¢he possible interest of the logics proposed in
Sections 8-13, every serious investigation aboaitctnnection between fuzzy logic and bilattice theo
leads to face up with the valuation structures Ws@ansidered in many-valued logic (see for exampl
[6]). While suggestions to connect these structwiés bilattice theory are in [8], as far as we wnthese

connections are not investigate in the framewortoohal logic.

85



CHAPTER 5
PRESERVATION THEOREMS

1. The cuts of a fuzzy structure

A natural modification of a fuzzy structure is tarisform it into a crisp structure by a cutting rapien.
This is done everytime one decides that truth wwahgyond a given level are sufficient to claim that

vague property is satisfied. A precise definitisihie following.

Definition 1.1. Let 0 and 1 be the minimum and the maximum in @myivaluation structurg and ACV.

Then the functiomr, : V - {0,1} is defined by setting
a(x)=1 ifx=A
ci(x) =0 otherwise.

Given a fuzzy subsat: S - V, theA-cut of sis the crisp fuzzy subsst=c,° s.

Equivalently, thel-cuts, is the characteristic function of the subset
C(s,A) = {xOS: 9(X) =24}
As usual, we identifys; with C(s,A). A fuzzy subses is completely determined by the associate family
(s)).ov Of its cuts. Indeed, we have that, for eveniS,
S(X) = supioy ATSx(X) =sud A OV : xC(s,1)}.
Observe that the familyC(s,A)) ;ovis continuousi.e.

C(s,1) = Uy, L(s1).

Definition 1.2. Given a fuzzy structur® andAJV, the A-cut ofM is the interpretatioM, = (D, {0,1}, 1,)
in which the constants and the operation symbadrderpreted as itf and such that, for every relation

symbolr, I,4(r) is theA-cut ofI(r), i.e. , for evenyd,,...d, inD

Li()(dy,... dn) = Ca(1(r)(dy,... An)).-

Equivalently we can defind/, as the classical structure with the same algelstaicture ag and in

which
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12(r) = {(dy,...dy) : 1(r)(dy,...dn) = A}.
It is evident that a fuzzy structure is completdgtermined by the family of its cuts. Also, we can

characterize the homomorphism fréfo M’ by referencing to the cuts of these structures.

Proposition 1.3.LetM = (D, V, I) andM’ = (D’,V’,I') be two fuzzy structure$y a homomorphism from
Al(M) into Al(M) andk a homomorphism fronAL(M) into VAL(M’). Then

(h, K) is a weak homomorphism
= his a weak homomorphism frobfy to M’y for everyACIV.
Assume thak is an isomorphism, then
(, K) is a homomorphism

= his a homomorphism froM, to M’y for everyADV.

Proof. To prove the first part of the proposition, assuh# h,k) is a weak homomorphism, lebe a
relation symbol andd,...,d,)0J D". Then,

(dy,...,dn)OC((r),A) < 1()(dy,....d)=2A = k(I(r)(dy,...,dn)) = k(A)
= I"(nN(h((dy,...,dn) = k(1)
= h(dy,...,d)OC(I" (r), k(A)).
This proves thah is a weak homomorphism froff, to M. Vice versa assume that, for evdrilV, h
is a weak homomorphism frof, to M’5. Then, by settingl = I(r)(d,,...,d,), since @, ...,d,)0C(I(r),1),
it is h(dy,...,d,) O C(I' (r), k(1)) and therefore
(D)(h((dy,-...dh) 2 k(A) =k(I(r)(dy,....dy)).
This proves thath(k) is a weak homomorphism frolfito M'.

To prove the second part of the propositamsume that is an isomorphism. Then, in the cabg)

is @a homomorphism,
(d,....d)OCA(1),0) = 1(N)(Thy...d)2A = KI@)(d,...,d) = k(A)
= IO (N(dy,...,0) = k()
< h(dy,...,d)OC(I (r), k(A)).
This proves thalh is a homomorphism fromd, to M.

Conversely, assume thais a homomorphism fro, to M, for everyA 0OV. Then, since we have
just proved that Hk) is a weak homomorphism, we have only to prove th@)(h(d,...,dy)) <
k(I(r)(dy,...,dn)). Let A be an element iV such thatk(A) = I' (r)(h(dy,...,dy)), thenh(dy,...,d,)dC(l’ (r),
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k(1(r)(dy,...,dn)) 2 k(1) = I" (r)(h(d, ... ,dn)).
We can describe the connection among a fuzzy madelthe associated family of cuts in terms of

category theory. The objects of such a categorglefiaed as follows.

Definition 1.4. A continuous chain of first order structures a family M,),nvy of crisp first order
interpretations of a given language with the saomanD and such that] {(r))ov is a continuous chain

in D" for everyn-ary relationr.

The morphisms of our category are defined as falow

Definition 1.5. A weakmorphismfrom a continuous chairM;) 5y into a continuous chai ;)4 IS a
pair (h,k) such thatk is a homomorphism fro'wAL(M) into VAL(M’), andh is a weak homomorphism
from M, to M’y for everyALIV.

Definition 1.6. The category of continuous chains of first order sturesis the category whose objects
are the continuous chains of first order structames whose morphisms are the weak morphisms given i
Definition 1.5.

To proof of the following proposition is immediate.

Proposition 1.7.Let H be the map associating every fuzzy structdneith the related familyM;) oy of
A-cuts and every morphisrh,k) with (h,k). ThenH is a functor from the category of fuzzy structum®i

the category of continuous chains of first ordencures.

Proposition 1.8.Let K be the map associating every continuous chainrsf dirder structures\;) ov
with the fuzzy structureld,l) whose algebraic part coincides with the commaeladaic part of M) oy

and such that, for everyary relation symbol

[(r)(dy,...,dy) = SupisdA(r) (dy,...,d).
Also, assume thd associate every morphistn, k) with (h, k). ThenK is a functor from the category of

the continuous chains of first order structures the category of the fuzzy structures. Moreokeis the

inverse ofH.
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2. Properties preserved by a cut

Usually a fuzzy structure does not satisfy the sfirmeorder properties of its cuts. Nevertheldssr¢ is
an important class of fuzzy formulas for which th@ds true. To show this, at first we emphasizaeo

properties of the mag,.

Proposition 2.1.The functionc, is monotone with respect tband therefore

c(xady) < c(x)0cea(y). (2.1)
Assume thafl is idempotent, then
c(xdy) = c;(x)0ca(y). (2.2)

Proof. It is immediate that, is monotone and therefore that, sim€éy < x andxy <y, c,(xOy) <
ci(X) andc,(xy) < ci(y). So, c(xdy)< c(X)Tcy(y). Let A be idempotent, then to prove the inequality

ci(x0y) = ci(x)0c,(y) we observe that
c(X¥0cay) =1 = x 24andy 24 = xUy=2A04A=A= c,;(xUy) = 1.

we will consider the atomic formulas.

Proposition 2.2.Let M be a fuzzy structure amtflV. Then, for every atomic formula,
vallM,,aq, di,...d,) =ca(vallM,a, dy,...dy) (2.3)
Consequently, givep [1V,
ME <ayu> = M,k aforeveryd<s u (2.4)
Proof.To prove (2.2) observe thatdf=r(ty,... ty), then
val(M;, a, di,...d,) = L) (1(t)(d,... o)., Li(tn) (D, ... )
G (t)(dy,... dn),..., 1(tm) (dy, ... n)))
=cy(val(M,a,dy,... dy)).

To prove (2.4) assume thbt satisfies <, 1~ and therefore thatal(M,a, di,...d,) = u for every
dy,...,d,in D. Then

val(M,,a,dy,...dn) =ci(vallM,a,dy,...d)) = ci(w) =1

and this proves thai, satisfiesa. Assume thaM, £ a and therefore that,(val(M,a, d,,...dy)) = 1 for

everyA<yu. Thenval(M,a, dy,...d,) = A for everyA<y and this proves tha@al(M,a, d,,...d,) = .
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Theorem 2.3.LetM be a fuzzy structure and letrs~> be a positive fuzzy clause. Then

ME <a,> = M, E a. for every idempotemt such thal < . (2.5)

In the case all the elementsn V are idempotent, then

ME <ayu> = M,k aforeveryd<s u (2.6)

Proof. In the casea is an atomic formula both (2.5) and (2.6) are imiated consequences of

Proposition 2.2. Assume thatis the positive claus@x,..0x,(40... 04 — B and thatM r <a,.>.
Then,

valM, B, dy,...d,)0...0val(M, B, di,...d)Ou< valM, B, dy,...dn)
and therefore, sinag(1) = 1 and/ is idempotent, by (2.2)

val(My, B, ... dn)0...0val(M,, B, di,...dn) < val(M,, B, .. dn)

and this proves thd#, k a.

To prove (2.6), assume that all the element¥ are idempotent and th#t; - a for everyA < 1.
Then, for everyd,,...d,00D,
val(M;, B, d,...dn)0...0val(M,, B, dy,...dy) < val(M,, B, dy,....dn)
and therefore, by (2.2),
ci(val(M, By, dy,...dn))0...Oc(val(M, B, di,...dn) < ci(val(M, S, dy,...dn)).
SetA =vallM, £, dy,...d,)0...0valM, 3, di,...dn) 0, thenAsu and
ci(val(M, By, dy,...dy) = ... =c,(val(M, B, dy,...d,) = 1.
Consequentlg,(val(M, £, d,...dy) = 1 and therefore
val(M, B, dy,...d,) = A=valM, B, dy,...d)0..0valM, B, di,...dn) O

Thus,M k <a,1&.

Corollary 2.4. Assume that all the elememtsn V are idempotent, |€® be a positive program adibe a

fuzzy structure. Then

MeP = M,k PforeveryAdOV. (2.7)

Consequently, the map$ andK defined at end of Section 1 defines two functoeenf the category of

fuzzy models oP into the category of continuous chain of modelB.of
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In particular, in the case all the elemesis V are idempotent, given an algebraic structui@nd a fuzzy
subsek of A,

(A,9) is a fuzzy subalgebra- all the cuts of are subalgebras &f

Moreover, the functor$l and K defined in Section 1 enable us to identify a fuseypsgroup with a

continuous chain of fuzzy subgroups. Likewis&5ii$ a set an@é a binary fuzzy relation i, then
(S € is a similarity = all the cuts o€ are equivalence relations.

Moreover we can identify a similarity with a contwus chain of of equivalence relations.

3. Connecting valuations and homomorphisms

It is possible to extend to fuzzy logic some presgy theorems of classical first order logic. To thds,
we consider particular classes of formulas. Wethay a logical connective jgositivein the valuation
structureV, if its interpretation iV is an order preserving function. A matrixpasitive inV, if is defined
only by positive connectives M. An universal formula ipositive inV provided that its matrix is positive

in V. We say that a formula s identity-freein the case there is no occurrenceriaf the identity symbol

Proposition 3.1.Let (h,K) be a weak homomorphism fravhto M'. Then the following claims hold true.
i) For every matrixa which is positive with respect ¥ andd,...,d,(]D
k(vallM, a, dy, ...,dy)) < val(M’, a, h(dy),...,h(dm)) (3.1)
ii) Leth be surjective and lat be an universal formula which is positive with resptoV’ and such
that bothval(M, a) andval(M’, @) are defined. Then
k(val(M, a)) < val(M’, a) (3.2)

Proof. We provei) by induction on the complexity @f. Indeed, ifa is the atomic formula(ty,... t,),

then
Kval(M, r(ty,... t), di,....c)
((r)(1(t)(dy, .. ,On), .. | (£2) (s, .. Ar)
< I'(n)(h(I(t)(dy, - ,dm)),-.. (I (t) (dy, ... Ar)))
I'£r)(I" (tu)(h(dy),....h(dn)),... )" (ta)(h(dy),... h(dm)))
val(M', r(ty,... tn), h(dy),...,h(dm)
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and this proves that satisfies (3.1). Assume that (3.1) is satisfieddyy..,a, and letc be ann-ary

logical connective which is positive. Then
k(vallM , c(ay,...,a), di,...,dn)
=(k(c)(val(M, ay, dy,...,dw),...,val(M, an,dy,...,dn) )
= ([©)(k(val(M , ay, dy,...,dy)),..., k(val(M, ay, d,...,dn)))
<I'(o)(valM’, an, h(dy),..., h(dy)),...,val(M’, a,, h(d,),...,h(dy)))
val(M,, c(an, ..., aw), h(dh),...,n(0)
and this proves that (3.1) is satisfieddfyn,...,a,).
To proveii), let a = Ox,...,0xy(8) wherefis a positive matrix, then
Kval(M, @) = k(Inf{val(M, 3, dy,...,d) : d:(ID,... dw CID})
< Inf{k(val(M, B, di,...,dw)) : ciID,...,dm D}
< Inf{val(M’, B, h(dy),...,h(dw)) : kD, ...,dm 0D}
= Inf{val(M’, B, d's,....d"s) : d",0D,....d'w OD'} = val(M’, ).

Definition 3.2. A homomorphismi{,k) from M to M’ is calledinf-preserving in weak sengeovided that,

for every formulaa such that botinf(V(a))) andinf k(V(a)) exist,
k(Inf(V(a))) = Inf k(V(a)).
We say thatl{K) is inf-preservingprovided thak is inf-preservingi.e.
k(Inf(X)) = Inf k(X)
for every subseX of V such that bothnf(X) andinf k(X) exist.

Proposition 3.3.Let (h,k) be a homomorphism froM to M’ and leta be a formula. Then the following

claims hold true.
i) If ais an identity-free matrix, then for evedly,...,d,[1D
vallM’, a, h(dy),...,h(d)) =k(val(M, a, di,...,dy)) (3.3)
i) If kis inf-preserving in a weak sense amds an identity-free universal formula, then if both
val(M ,a) andk(val(M, a)) exist,
vallM’, a) < k(val(M, a)) (3.4)
iii) Assume thak be inf-preserving in a weak sense and thiatsurjective, then ity is any identity-
free formula such that botlal(M’, a, h(d,),...,h(d.)) andval(M, a, di,...,d;) exist, then
val(M’, a, h(dy),...,h(dm)) =k(val(M, a; d,,...,dw)). (3.5)
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Proof. The proof ofi) is an obvious modification of the proof Bfin Proposition 3.3. To provi),

assume thatr = Ox;...,0x(H) whereBis an identity-free matrixThen
k(val(M, @)) = k(Inf{val(M, S, di,...,dn) : d,00D,...,d, OD})
= Inf{k(val(M, g, dy,...,dy)) : d:.(ID,...,dy, D}
wf{val(M’, B, h(dy),...,h(dy) : dLOD,...,dy 0D}
> Inf{valM’, B8, d'y,....d"y) : d",0D’,...,d", OD'} = val(M’, a).
To proveiii) we observe that, by (3.3), equation (3.5) issfiatl by all the atomic formulas. Assume that

(3.5) is satisfied by, ...,a, and letc be am-ary logical connective. Then
k(val(M, c(a,...,a,),04,...,0w)
= k(l(c)(val(M ,a, dy,...,dy),... val(M ,a,, dy,...,dy) )
= (©)(k(val(M , a1, du,...,0)), ..., K(val(M , G, dh, ... Cw))
=I'(¢)(val(M’, a1, h(dy),..., h(dy)),....val(M’, a,, h(dy),...,h(dy)))
val(M’, c(an, ..., an), N(dy),... h(dn)).
This proves that (3.5) is satisfied &y,...,a,). Assume that (3.5) is satisfied ByThen
k(val(M, 0x(f), dh, .. 0w) = k(Inf{val(M, B, ds,...,0.1,d,0hs1,...0) : dCIDY)
= Ifik(val(M, B, dy,...,01,d,0he 1,... O)) © dCID}
mf{val(M’, B, n(dy), ..., h(d.1), h(d), h(dis1),..., h(dw) : dTID)}
= Inf{val(M’, B, h(dy), ..., h(d.1), &', h(dis1),..., h(dw), &’ D’}
val(M’, a, h(dy),..., h(d)).
This proves that (3.5) it is satisfied b (5).

An obvious extension of the proof of Propositior8 &nables us to prove the following theorem

emphasizing that every pair of isomorphic fuzzuctinres areélementary equivalent”

Theorem 3.4.Let (h, k) be an isomorphism between two save fuzzy strastdrandM'. Then, for every

formulaa andd,,...,d,00D,
k(val(M, a, di,...,dy)) =valM’, a, h(dy),...,h(dy)) (3.9
In particular, for every closed formuta

k(val(M, a)) =vallM’, q) (3.10)

As an example the malp defined in Example 1 is a valuation isomorphismween the fuzzy

subgroupd/ss andM’ss and this entails that these fuzzy structuresagielly equivalent. Notice that if in
93



Chapter 5: Preservation theorem

the valuation structure we consider also the opmeraf defined by settindx = 1%, thenk is not an
isomorphism at all. Indedd[D.5) =k(0.5) = 0.9 while[k(0.5) = 0.1. This is in accordance with the fact

that a formula agXx(s(X) -~ = S(X)) is satisfied inlM and it is not satisfied if’se.

Proposition 3.5.Let (h, k) be a homomorphism froMd to M’ such thath is surjective and letr be an

universal formula which is either identity-free gsitive, then
valM, o) =1=vallM’, a) =1 (3.11)
Proof. Assume thatr = Ox;....0%(f) and thatvallM, a) = 1, i.e. thawvallM ,5, dy,...,dy)) = 1 for
everyd,,...,d, OOD. Then in the case is positive by (3.2) in Proposition 3.1

val(M’, a) = k(val(M, a)) = k(1) = 1.
In the casex is identity-free, since by (3.3)
val(M, B, h(dy),....,n(dw) = k(val(M , B, ds,....0w),
we have
val(M, a, ) = Inf{val(M’, B, h(dh),...,n(d)), A, ... .G CID}
= Inf{k(val(M, B, dy,...,0n)) : On,...,dm OD } = 1.

4. Preservation theorems for fuzzy formulas

We can reformulate the results in Section 2 in $eofifuzzy properties preserved by homomorphisms.

Proposition 4.1.Let (h, k) be a weak homomorphism frobhto M’ with h surjective. Then, for every
universal fuzzy formula g A> which is positive with respect 8¢’ and such that bothal(M’, @) and

val(M, a) are defined,
M e<aA>= M E <a, k(1)> (4.1)

Proof. Assume thaM F <a,A> and therefore thatval(M, a) =A. Then, byii) of Proposition 3.1,

val(M’, a) = k(val(M, a)) = k(A) and this proves th&f' k <a, k(1)>.

Proposition 4.2.Let (h, k) be a homomorphism froMto M’. Then
i) if kis injective and inf-preserving in a weak sensenthor every identity-free universal fuzzy formula
<a,A> such that bothal(M’, a) andval(M, a) are defined,
M E<a, k(A)>=M E <a,A> 4.2)
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ii) if kis injective and inf-preservingp a weak sense ardis surjective, then, for every identity-free

fuzzy formula <a,A> such that botkal(M’, @) andval(M, a) are defined,
ME<ald> = M E<a,k(A)> (4.3)
Proof. To prove), assume thd?’ k <a, k(A)>. Then, by (3.4)k(vallM, a)) = valM’, a) = k(A).

Sincek is injective, this entails thail(M, @) = A and therefore thdl £ <a,A>.

To proveii), observe that, byi) in Proposition 3.2,
ME<aA> < valM,a) =1 < k(valM, a))=k(1) = vallM, a)=k(A)

- M E<a k(A)>.

Theorem 4.3.Let (h, k) be an isomorphism from the safe structMrimto the safe structure td’. Then,

for every fuzzy formula ¢,4>,

ME <ad> = M E<a kA)>. (4.4)

As an immediate consequence of Proposition 3.6ht&n:

Proposition 4.4.Let (h, k) be a homomorphism froM to M’ with h surjective and letr be an universal

formula which is either identity-free or positive V' and such that bothal(M’, @) andval(M, a) are
defined. Then

Mea= MEka (4.5)

5. Quotients and preservation theorems

Notice that if= is a congruence in a valuation structureéhen every logical connective which is positive
in V is positive in the quotient/=, too. Consequently, every formuawhich is positive irnV is positive

in V/=.

Proposition 5.1.Let= be a congruence in a fuzzy structbteérhen the following claims hold true.
i) If ais a positive matrix, then for evedy,...,d,[0D
[val(M, a, dy,...,dy] < vallM/=, a, [dy],...,[d]). (5.1)
i) If ais a positive universal formula such that bothal(M, a) andval(M/=, a) exist, then,
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[val(M, a)] < val(M/=, a). (5.2)
i) If ais an identity-free matrix, then, for evatly,...,d,[ID,

[Val(M, a, di,...,dwm)] = valiM /=, @, [du],...,[dk])- (5.3)

Proof. Claimsi), ii) andiii) are consequencesidfandii) of Proposition 3.1 anig of Proposition 3.3,

respectively.

The following is an immediate consequence ofofiProposition 3.2.

Theorem 5.2.Let = be a congruence in a fuzzy structtdewhose canonical homomorphism is inf-

preserving in a weak sense. Then, for every idefriie formulaa,

val(M /=, a, [di],...,[dw]) = [valiM, @, dy,....dw)]. (5.4)

There is a simple characterization of the congreemehose canonical homomorphism is inf-preserving.

Proposition 5.3. Let = be a congruence in a valuation structethen the associated canonical
homomorphism isnf-preserving if and only if all the complete classes closed with respect to the

operator.

Proof. Assume that the canonical homomorphism is inf-présg and assume thad )i, is a family
of elements in a class][ Then sincelpf(A)io] = Infig [A] = [c], Inf(A)in is in the classd]. Conversely,
assume that all the complete classes are closad&gpect to the inf operator, then siltéA)io < A; it
is also [nf(A)io] € [A] and this shows thatrif(A)ig] is a lower bound of the family A]])i. Let [m] be a
lower bound of such a family. Then, for everyl, mClA; = m. Consequentlylnf;, mCl4 = m and, since
Infi, MCA; = mO(Infig A;) it is alsom(Infig; A) = m. In turn this implies thatni] < [Inf(A)ig]. Thus,
[Inf(A)ia] = Infig [A].

Proposition 5.4.Let a be an universal formula which is either identitgdror positive iV and= be a

congruence i, then

Mt a= M=skra (5.5)

Such a theorem entails, for example, that theiepiobf a fuzzy subgroup is a fuzzy subgroup.

Indeed, the fuzzy subgroups are the models of zyftireory whose formulas are either equations (whic
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are positive universal formulas) or identity-freerfiulas. Again, it entails that the quotient ofraikarity
is a similarity.

Further preserving properties for quotients avemgiin the next theorem.

Theorem 5.5.Let = be a congruence in a fuzzy structtdeThen for every positive universal fuzzy

formula <a,1>,

Mk <al>= MI= k <a, [A]> (5.6)
Assume that for everyl1V the class 4] is closed with respect to thef operator. Then, for every
identity-free fuzzy formula g,1>,

ME<al> = M= E<a,[A]> (5.7)

Proof. Implication (5.6) is a consequenceiigfof Proposition 5.1. Equivalence (5.7) followsrfro
Theorem 5.2.

6. Properties preserved by products and ultraproduts

In this section we will examine the properties presd by the products and the ultraproducts. At fire
will examine the behavior of thaf operator with respect to the direct product amdutiraproduct of the

family of valuation structures.

Lemma 6.1.If (S, O)i4 is a family of semilattices ar€ll] //i; S be such thalnf(pri(2)) exists for every
idl. ThenZ admits a greatest lower bound and

Inf(2) = <Anf(pri(2))>in- (6.1)
Moreover, if U is an ultrafilter inl andZ is a rectangle, i.& = //ip Z; whereZ; is a subset of for every

i0l, then ] ={[ 7 : z O0Z} admits a greatest lower bound and

Inf([Z]) = [<Inf(Z)>ia]. (6.2)

Proof. If <z>50Z then, for every /1, zOpr(Z) and thereforg= Inf(Z). This proves that lnf(pri(2))>ig

is lower bound foZ. Letm= <m>;5 be a lower bound fd and letilll. Then for everxOpri(2Z) there is
Z = <z>i5 in Z such thatz = x. Sincemz, it is m<z = x. Thenm < Inf(pri(Z2))) and thereforem <

<Inf(pri(2)>ic.
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To prove the second part of the proposition olesehat it is evident that [rf(Z)>5] is an lower
bound of f]. Let [m] = [<xm>i5] be a lower bound forZ] and assume that<Inf X>g ] = [m] is
false, i.e. {01 : (Inf X)Om # m} O U. Letz = <z>; be a family in//; Z such thatz satisfies the
conditionxm # m if such a condition is satisfied by some eleman iand such that is any element in
Z otherwise. Then sincénf Z)Om # m entails the existenxe af1Z; such thatCm # m, {idl : zOm #
m} O{idl : (Inf X)Om # m} and therefore Il : zOm# m} O “U. This proves thatf is an element in
[Z] such that#]O0m] # [m], in spite of the fact thanj] is a lower bound forZ].

In accordance with such a lemm&(M,);, is a family of fuzzy models such that all the vdilom

structuresvAL (M;) are complete, then the valuation structure

Il VAL(M)) of the product//i M; is complete, too. This is not true in the caseaof ultraproduct. As

an example if all the valuation structures coinsidégth a valuation structure defined in the conmlet
lattice [0,1], then the valuation structure in tiitraproduct is defined in the non-standard intef0dl]

and such an interval is not complete.

Theorem 6.2.Let (M)in be a family of safe fuzzy models ardd= /74 M, its direct product. Therl is

safe, and for every formula,

valM, a, i,....£) = <val(M,, &, fii),..., £i)>i (6.3)

for fy,....fil0 /fig Di. ConsequentiW(a) = I/ Vi(a) whereV(a) andVi(a) are the range afin M and
in M; respectively. In particular, for every closedfiolaa,
val(M, ) = <val(Mi, &)>in (6.4)
Proof. We operate by induction on the complexityxof

Let a=r(ty,... tn), then

SO CIEGIO IR A ()RR UV GO R A () kg
2val(Mi, a, fa1(i),...,fa(1)>io -
Assume that (6.3) is satisfied by,...,a;. We have to prove thafo,,...,o) is valued inM and that such a

formula satisfies (6.3). Indeed,
val(M, c(aa, ..., fa, .. f)
He)(val(May, f1,....fo),... . val(M,a, fi,...,fn))
He)(<val(M;, oy, f1(i),....fn()=i0r ..., <val(M,, a, f1(i), ... f(1)>i0)
= wal(M, c(oq, ... ), f1(i),....fn(0)) >0 -
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Now suppose that is valued and that (6.3) is true tarThen by (6.1),
val(M, Oxa, f1,....f,) = Inf{val(M, «, f, f,,... f,): f{OD}
laf{<valM, a, f(i),...f,())> : f{OD}
<Inf{val(M,, a, f(i),... f(i)) : f()OD}>n
= <val(M;,, Oxa, f1(i),...fa(1))>i0

Note. (6.2) looks to be in contrast with the fact theclassical model theory only particular first order

properties are preserved by the direct productge ddntrast is only apparent since in the approach
proposed in this thesis the prodittof a family ) of normal crisp models is not a crisp normal model
and therefore it is not the usual product. As atenatdf fact, the usual product is the 1-8tof M. Then,

in accordance with Theorem 1.6, only in the caiea positive clause we can claim that

Mk o foreveryill « Mk a =Mk a. (6.5)

Theorem 6.3.Let (M) be a family of safe fuzzy models afld be an ultrafilter inP(l). Then the
ultraproduct\“ of (M)i;; modulo“U is safe and
vallM, a, [fi],...,[f]) = [<val(M;, a, f1(i),..., f())>ia] (6.6)

for every formulax and fi],...,[f,]OD.

Proof. We prove (6.6) by induction on the complexitynof

Let a=r(ty,... tn), then

=1 (1) (), f (), i) (), Fe0)))>i0]
=N&l(M;, a, f1(0),..., fn(1))>i].
Assume that,...,a, are valued and th§6.6) is satisfied by, ...,o«. Then, given a logical connectige

we have to prove tha(as,...,0) is valued and that it satisfies (6.6). Indeed,

vaI(M“, Q(al, cen ,(Xt), [fl]a ree ’[fn])

Now suppose that is valued and: satisfies (6.6). Then
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val(MY, Oxqa, [fa],...,[fa]) = Inf{val(M¥, a, [f], [ f],....[f]) : fOD}
Inf{[< val(M;, &, (i), ..., f.(i))>in] : fOD).
In turn, if we seV(a) = {val(M, a, d,..., fy(i)) : dOD}, then, by Lemma 6.1,
Inf{[< val(M;, &, (i), ..., ()] : fOD}
IRE(( TZicr Vi(@)]) = [<Inf(Vi(@)>ia]
[=Inf{val(M,, a, f(i),....fa(i)) : () ODi}> il
= [< vallM;, Oxqa, f1(i), ... fu(i)) >ioil-

7. Modifying the valuation-scale of the predicates

In this section we will analyze the question of greperties preserved after a “deformation” of azfu
model. More in particular, after a modificationtbke valuation part of such a structure. In Secfione
early considered such a question after the drastidification obtained by “cutting” a fuzzy structuat a

given level.

Definition 7.1. Let M = (D,V,I) be a fuzzy interpretationy’ = (V’, I') be a valuation structure atd:
V—V' an order-preserving map such thgil) = 1. Then we -calk-deformationof (D,V,l) the
interpretationM, = (D, V’,l,) defined by settingi(A) = I'A), 1) =1I'(0) , I(c) =1(c) andl(h) = I(h) for
every constant and operation symbdl and

[(r)(dy,...dy) = k(1(r)(dy,...dr)) (7.1)

for everyn-ary relation symbat (different from =) andl,...d, in D.

Such a definition extends Definition 1.3, obviouslhe idea is that we can modify the valuationha t
predicates in an uniform way. The question we aterésted in is to individuate the propertieshbf

inherited byM,. A first immediate result is the following one.

Proposition 7.2.Let My be the deformation dff by k. Then, for every atomic formula,

val(My, @, di,...d) = k(val(M, @, d,...dy). (7.2)

Proof. Assumea equal tor(ty,... £p), then

val(Mk, r(ts,... 1), oh,...0h) = L(r)(I(t)(dy,... dn),..., I(tp) (Ch, ... An))
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Ir)(1(t)(dy, ... ), -, 1 (t) (O, Gr))
KEH(r) (1(t) (A ... Ao, -, [t (.. )
=k(val(M, r(ty,... o), da,... o).

To obtain more interesting results we have to asstimtk is an homomorphism. In such a case the

following proposition holds true.

Proposition 7.3.Let M = (D,V,l) be a fuzzy structure andbe a homomorphism from the valuation
structureV into another valuation structuk&. Thenk defines a valuation homomorphism frdto M,

and therefore:

i) for every universal fuzzy formulaggA> which is positive with respect ¥
M E <a,A>= M E <a, k(A)> (7.3)
ii) assume thdtis an isomorphism, then for every fuzzy formula A>,
M E<aA> = M E <a, k(1)> (7.4)
iii ) for every universal fuzzy formulagsA> which is either identity-free or positive with pest toV’

Mea= M Fa (7.5)

Proof. Claimi) is a consequence of Proposition 4.1. Claj)nollows from Theorem 4.3. Claiii) is

a consequence of Proposition 4.4.

Observe that in Proposition 7.3 it is requiredt thth the operations in the considered valuation

structure are preserved kyln the case of fuzzy clauses more simple conutare sufficient.

Proposition 7.4.Let V be a residuated latticé/ = (D,V,I) be a fuzzy structure and Ilktbe an order-
preserving map such thketA0) = k(A)Ok(w) for every A, p OV. Then for every positive fuzzy clause

<. Oa-al>
Me<ad.. .Oa-ar>= M F<ad...0a - a, k(A)> (7.6)
Consequently, iM is a model of a fuzzy program thenMy is a model of théuzzy progrank-p.

Assume thatk is injective,[J-preserving and such thiet1 1) < k(A)Ok() for everyA, x4 0OV. Then,
ME<aD..Oa - aA><= M £ <and...0a - a, k(A)> (7.7)

and therefore il is a model of théuzzy progrank - pthenMis a model of a fuzzy program
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Proof. By Proposition 1.2 in Chapter 3, Mfsatisfies @, ... a— a,A> then
val(M, ay, dh,...d)0...0val(M, a, dh,...d)0A < valiM, @, dh,...d)
for everyd,,...,d,in D. Consequently
Kval(M,ay, di,... ) 0...Ok(val(M, @, dh,...d))TK(A)
< k(val(M,an, dh,...d)0...0val(M, a, dh,...c)) k()
< k(val(M, @, dy,...dh)
and therefore, by (7.2),
val(My, @y, dh, .. d)0...Oval(My, at, ... d))IK(A) < val(My, @, di,...dn)).
In turn, this means that, satisfies end...0 a; — a, k(A)>
To prove the second part, assume Mak <o ...0 oy - a, k(A)>, i.e.
k(val(M, s, dh,...d))0...Ok(val(M, a, dh,...d))IK(A) < k(val(M, a, db,... du))
Then
kval(M, ay, dy,... dn))0...0val(M, i, dh,...ch))0)
< k(val(M,an, dy,...dn))O...0k(val(M, &, di,... dn))OK(A)
< k(val(M, a, dy,...dh)
Consequently, sindeis injective andpreserving,

val(M,ay, dy,...d))O...0vallM, &, di,...d.))0A < val(M, a, dy,...d,)

and thereforeM £ <an0...0 o - a,A>.

Example 1. Let O be a triangular norm, and define tHen-power A™ by settingA = A and A®™ = A™

Y0, Then, trivially, by settind,(A) = A™, we obtain a map such tHatA0 ) = ky(A)Oki(z) and which is
[Fpreserving. In the cadeé is the usual product, such a map is injectivevefsetk(d) = A" andO is the
product of Lukasiewicz, then it is possible to mrdatatk(A0 L) = k(A)Ok(L). In accordance, ifge) is a
O-similarity, then we obtain a similaritg, by setting ey (Xy) = e(xy)". In the cased is the

Lukasiewicz product another similarity is obtaidgdsettinge,(x,y) = e(x,y)".

Example 2. To show an example of property which is not presgyeonsider the valuation structure ({0,

%, 1}, 00, -, =, 0, 1) wherell is the minimum,- is the corresponding implication ardis the 1-ary

operation such that(x) = 1x. Also, consider the fuzzy subgroif defined in the additive groug4, + ,

"1 1) of integers modulo 4 by the fuzzy subse®, — {0, %, 1} such thas(0) = 1,5(1) = 0,5(2) = %,

s(3) = 0. Finally, denote bk: {0, 2, 1} - {0, ¥, 1} the function such thait(0) = 0 ; k(1/2) = 1 ; k(1) =

1. Then, the deformation & by k is a fuzzy subgroup which is not a model[&s(x) - = s(x)). This is
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in accordance with the fact thfas not a homomorphism since it is not compatiblthwine interpretation
of the negation.

8. Further results on the deformation

Another way to modify a model is to consider a et of the valuation part of a structure and by
applying the results in Section 5. Notice that gt possible to obtain the following very simple

characterization of the congruences in the stradfa;1],00, -, 0, 1).

Proposition 8.1. Consider the valuation structure ([0,1], -, 0, 1) wherelis the operation of
minimum and- the related residuum. Then we can identify thegoaences in such a structure with the

partitions in which a class is an interval contagnl and the remaining classes are singletons.

Example 1.For instance consider the fuzzy subgréipdefined in Example 1 of Section 2 and define
in ([0,1], 4, -,0,1) the congruence generated by the pair (0.3, 1). Thens the congruence whose
classes are the interval [0.3, 1] together withsingletons £} with x 0 [0.3,1]. The related quotient is

Z 0 1 2 3 4 5 6 7

G [0.31] {01} {02} {01}y [0.3,1] {01} {02y {o.1}

Z 8 9 10 11 12 13 14 15

G [0.31] {01} {02} {01}y [0.3,1] {01} {02} {o.1}

Equivalently, if we denote by 0.3 the whole cla&38] and we identify a singletoxf with x, then we can

identify the quotient of the valuation structuraw{0, 0.3],00, —, 0, 0.3) and therefore to represent the

guotient as follows:

z 0 1 2 3 4 5 6 7

9@ |03 |01 0.2 0.1 03 | 01 0.2 0.1

z 8 9 10 11 12 13 14 15

9@ |03 |01 0.2 0.1 03 | 01 0.2 0.1

Up to now we considered homomorphisms and, iriquéat, endomorphisms. Unfortunately there are
basic valuation structures which anigid, i.e. in which the only endomorphism is the idgntinap.

Consider for example the interval [0,1] equippethwhe Lukasiewicz normil and the related residuum
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and negation. Then Kis an endomorphism, all the rational numbers atedfipoints. Indeed, taking in
account of the fact th&tpreserves also the operatidngivenmCIN-{0}, since
1 =k(1) =k(m/m) = k(I/m O...01/m) = k(1/m) O...0Ok(1/m) = mk{1/m)
we have thatk(1/m) = 1/im. Also, for everyn,
k(n/m) =k(1/mO...01/m) =k(L/m)d...Ok(1/m) =n/m

Sincek is order-preserving, this entails that all the maibers in [0,1] are fixed points. Thus thereds n

non-trivial endomorphism in the Lukasievicz valoatistructure.

These considerations suggest a different strategywhich we admit also a modification of the

operations in a valuation structure.

Definition 8.2. LetV = (V,l) be a valuation structure aikd V - V be an order-preserving one-to-one
map. Then we denote By, the valuation structureV(l,) whose domain i& and in which am-ary

logical connective is interpreted by setting, for evely,...,A,inV,

L(©) (A1, A) =K(I(©) (K (A),..., K'(A))

Notice that, in account of the fact thgpreserves the meet operate)) = 1(0)). As an example, consider
a valuation structure as ([0,1]}, 00, 0, 1) wherel = I(0) is the interpretation of a binary logical
connectivel and assume that: [0,1] - [0,1] is an order-preserving one-to-one map. Then,a [}

automorphism and the operatiap = I,(0) is define by
X0y = k(K (QOK*(Y))-

The proof of the following proposition is trivial

Proposition 8.3.Let V = (V,I) be a valuation structure akd V - V be an order-preserving one-to-one

map. Therkis an isomorphism betwe&handV..

Observe that from such a proposition it follow&lifs a triangular norm they is a triangular norm, too.

Definition 8.4. Let M = (D,V,I) be a fuzzy structure and let V - V be an order-preserving one-to-one
map. Then we catbtal k-deformatiorof (D,V,I) the fuzzy modeM, which is thek-deformation by the

isomorphismk from V to V..

The proof of the following proposition is obvious.
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Theorem 8.5.Let M = (D,V,I) be a fuzzy structure akdt V -V be an order-preserving, one-to-one map.

Then, for everyl1V and every formulaz,

ME <aA> = M E <a, k(A)>.

As an example, if we considerlasimilarity e S xS - [0,1] andk : [0,1]-[0,1] an one-to-one order
preserving map, then by settirgy(x,y) = k(e(x,y)) we obtain dl,-similarity. We can verify directly such
a fact since

a(xX) =k(e(xX)) =k(1) =1 and a(xy) = k(e(xy)) = k(&(y.x)) = a{y.X).

Moreover, since(x,y))0ely,2) < &(X,2),

k(e(x.y)) Ue(y.2) < k(e(x,2)
and therefore

k(e(x,)) O« k(e(y,2)) = k(K (k(e(x,y)) O K'(k(e(y,2))

kee(x,y) O &(y,2) < k(e(x,2)).
This proves that
a(x.y) Ok ady.2) < edx.2)

Likewise, we have that the flexible deformation affuzzy subgroup with respect to the valuation

structureV = ([0,1], [, T, O, 1) is a fuzzy subgroup with respect to thesgabn structuréd/, = ([0,1], [,
Oy 0, 1).
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