
UNIVERSITÀ DEGLI STUDI DI SALERNO

Dipartimento di Informatica

Dottorato di Ricerca in Teorie, metodologie e applicazioni

avanzate per la comunicazione, l’informatica e la fisica

XI Ciclo - Nuova Serie

Tesi di Dottorato

Memetic Algorithms

for Ontology Alignment

Autilia Vitiello

Ph.D. Program Chair Supervisors

Prof. Giuseppe Persiano Prof. Vincenzo Loia

Dott. Giovanni Acampora

November 2012

If we knew what it was we were doing,

it would not be called research, would it?

(Albert Einstein)

Acknowledgements

The work of this thesis would not have been possible without the help,

encouragement, and support of many people.

First, I would like to thank my supervisor, Prof. Vincenzo Loia, for

the possibility to work under his supervision and for allowing me to

follow and develop my ideas freely.

Special thanks go to my daily supervisor, Dr. Giovanni Acampora,

for his guidance, insightful discussion, encouragement throughout the

development of this thesis. The good advice and the useful feedback

have been invaluable on both an academic and a personal level. But

I am even more grateful to him for having increased my passion on

research.

I would also like to thank all my friends, in particular, Federica, for

their encouragement during this challenging time and my Ph.D. mates

and my office friends for making my stay in Salerno enjoyable.

My warmest thanks go to my family, my parents, Margherita and

Cesare, and, my sister, Angela. Without their love and support, I

would not have been equipped to take on this challenge. Last but

not least, I wish to deeply thank my boyfriend, Francesco, for his

constant support, encouragement, understanding, sweetness and love

during this time, but, even more, for his belief in me; ending this

thesis work would not have been really hard without him.

Abstract

Semantic interoperability represents the capability of two or more sys-

tems to meaningfully and accurately interpret the exchanged data so

as to produce useful results. It is an essential feature of all distributed

and open knowledge based systems designed for both e-government

and private businesses, since it enables machine interpretation, infer-

encing and computable logic. Unfortunately, the task of achieving

semantic interoperability is very difficult because it requires that the

meanings of any data must be specified in an appropriate detail in

order to resolve any potential ambiguity. Currently, the best tech-

nology recognized for achieving such level of precision in specifica-

tion of meaning is represented by ontologies. According to the most

frequently referenced definition [60], an ontology is an explicit spec-

ification of a conceptualization, i.e., the formal specification of the

objects, concepts, and other entities that are presumed to exist in

some area of interest and the relationships that hold them [50]. How-

ever, different tasks or different points of view lead ontology designers

to produce different conceptualizations of the same domain of inter-

est. This means that the subjectivity of the ontology modeling results

in the creation of heterogeneous ontologies characterized by termino-

logical and conceptual discrepancies. Examples of these discrepancies

are the use of different words to name the same concept, the use of

the same word to name different concepts, the creation of hierarchies

for a specific domain region with different levels of detail and so on.

The arising so-called semantic heterogeneity problem represents, in

turn, an obstacle for achieving semantic interoperability. In order to

overcome this problem and really taking advantage of the ontologi-

cal representation, the most solid solution is to perform a so-called

ontology alignment process or simply matching. This process leads

two heterogeneous ontologies into a mutual agreement by detecting a

set of correspondences, called alignment, between semantically related

ontology entities [107]. The increasing relevance of performing an on-

tology alignment process in several domains of application such as

knowledge management, information retrieval, medical diagnosis, e-

Commerce, knowledge acquisition, search engines, bioinformatics, the

emerging Semantic Web and so on, has led to develop in years numer-

ous tools, named ontology alignment systems [78][134]. Among all ex-

ploited techniques, due to the complex and time-consuming nature of

the ontology alignment process, approximate methods have emerged

as a successfully methodology for computing sub-optimal alignments

[71]. From this point of view, evolutionary optimization methods

[13][67] could represent an efficient approach for facing the problem,

and, indeed, genetic algorithms have been already applied to solve the

ontology alignment problem as shown in [135][90] by reaching accept-

able results. However, classical genetic algorithms suffer from some

drawbacks such as premature convergence that makes them incapable

of searching numerous solutions of the problem area.

Starting from these considerations, this research work investigates

an emergent class of evolutionary algorithms, named Memetic Al-

gorithms (MAs), to efficiently face the ontology alignment problem.

MAs are population-based search methods which combine genetic al-

gorithms and local refinements. This marriage between global and

local search allows keeping high population diversity and reducing

the likelihood premature convergence. Several different works demon-

strate how MAs converge to high quality solutions more efficiently

than their conventional evolutionary counterparts. In detail, the con-

tribution of this thesis is to propose two ontology alignment systems,

namedMemeOptiMap andMemeMetaMap, which exploit MAs to pro-

duce an ontology alignment by following two different strategies. In

particular, MemeOptiMap uses MAs to directly solve the ontology

alignment problem as a minimum optimization problem. Instead,

MemeMetaMap follows a meta-optimization approach by using MAs

to tune the parameters necessary for performing an ontology align-

ment process. During the evaluation phase, both systems have been

compared with the state of the art by means of a statistical multiple

comparison procedure. The test results show that both approaches

are competitive, and, in particular, MemeMetaMap improves the ca-

pabilities of the current ontology alignment processes by working re-

gardless of the user involvement, data availability and the need of a

priori knowledge about ontology features, and, yielding high perfor-

mance in terms of alignment quality with respect to top-performers of

well-known Ontology Alignment Evaluation Initiative1 (OAEI), i.e.,

a coordinated international initiative aimed at providing means to

compare and evaluate different ontology alignment systems.

1http://oaei.ontologymatching.org/

Contents

Contents vi

List of Figures x

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Contribution . 4

1.3 Thesis Organization . 5

2 The Ontology Alignment Problem 7

2.1 Ontologies . 7

2.1.1 Basic components of an ontology: formal description . . . 10

2.1.2 Languages for ontologies 12

2.1.3 An ontology example . 14

2.1.4 The role of ontologies in different fields 17

2.2 Semantic heterogeneity problem 19

2.3 Ontology Alignment Process . 22

2.3.1 Formal definition . 23

2.3.1.1 Matching dimensions 26

2.3.1.2 Similarity measures 27

2.3.1.3 Aggregation strategies 34

2.3.2 Evaluating ontology alignment quality 34

2.3.2.1 Datasets . 36

2.3.2.2 Evaluation measures 37

2.3.2.3 Alignment format 39

vi

CONTENTS

2.3.3 Use cases . 40

2.3.3.1 Web service integration 40

2.3.3.2 Catalog matching 42

2.3.3.3 P2P information sharing 42

2.3.3.4 Semantic query processing 43

2.3.4 An ontology alignment example 43

2.4 State of the art about the Ontology Alignment 44

2.4.1 Classification . 44

2.4.2 Existing Ontology Alignment Systems 49

2.4.2.1 Deterministic Ontology Alignment Systems . . . 49

2.4.2.2 Computational Intelligence based Ontology Align-

ment Systems . 50

2.5 Ontology Alignment: Open issues 52

3 An Emergent Search Paradigm: The Memetic Algorithms 55

3.1 Introduction . 55

3.2 Local vs Population-based algorithms 56

3.3 Local search methods . 60

3.3.1 Three variants of Hill Climbing 60

3.3.2 Simulated Annealing . 62

3.4 Population-based search: Genetic Algorithms 64

3.5 The Memetic Algorithms . 66

3.5.1 Applications of Memetic Algorithms 69

3.6 A MAs’ extension: Parallel Memetic Algorithms 70

3.7 Performance evaluation of search algorithms 72

3.7.1 Wilcoxon’s signed rank test 72

3.7.2 Friedman’s test . 74

3.7.3 Holm’s test . 75

4 MemeOptiMap: A Memetic Optimization System for the On-

tology Alignment 76

4.1 The Ontology Alignment as Optimization Problem 77

4.2 MemeOptiMap System . 78

vii

CONTENTS

4.2.1 Basic components of MemeOptiMap 79

4.2.1.1 The alignment chromosome structure 80

4.2.1.2 Fitness function 81

4.2.1.3 The integrated local search process 83

4.2.2 Discussions on Matching dimensions 83

4.2.3 Implementative details . 84

4.2.4 Experimental results . 85

4.3 Looking for the best local configuration for MemeOptiMap 88

4.3.1 Experimental results . 89

4.3.2 Case study: Agent Communication 93

4.4 A parallel extension of MemeOptiMap 95

4.4.1 Architecture . 96

4.4.2 Experimental results . 100

5 MemeMetaMap: A Memetic Meta-Matching for the Ontology

Alignment 104

5.1 The ontology meta-matching problem 105

5.2 MemeMetaMap System . 106

5.2.1 Architecture of MemeMetaMap 106

5.2.1.1 The pre-processing Module 107

5.2.1.2 The optimization module 107

5.2.1.3 The alignment module 112

5.2.2 Discussions on Matching dimensions 114

5.2.3 Implementative details . 115

5.2.4 Experimental results . 116

5.3 A fuzzy extension for MemeMetaMap 119

5.3.1 The issue of specific instance fitness parameters 119

5.3.2 A fuzzy logic controller for adapting MemeMetaMap . . . 121

5.3.3 Experimental results . 126

6 Evaluation: Memetic Approaches vs the State of the art 130

6.1 Comparison between MemeOptiMap and MemeMetaMap 130

6.1.1 Alignment quality comparison 131

viii

CONTENTS

6.1.2 Computational cost comparison 132

6.2 Comparison between Memetic Ontology Alignment Systems and

the State of the Art . 134

6.2.1 Friedman’s test results . 135

6.2.2 Holm’s test results . 136

7 Conclusions and Future Works 140

7.1 Summary . 140

7.2 Future works . 142

References 144

ix

List of Figures

2.1 Visual notations . 16

2.2 A graphical representation of an ontology related to a stock of a

car dealer. 16

2.3 Example of ontology . 21

2.4 The ontology alignment process 24

2.5 An example of ontology alignment 45

2.6 A classification of elementary schema-based matching approaches

[118] . 47

3.1 The typical steps of a genetic algorithm. 66

4.1 The general structure of an alignment chromosome: each gene rep-

resents the correspondence (ei, eji) where i = 0, 1, 2, . . . , |O1| − 1

and ji ∈ {0, 1, 2, . . . , |O2| − 1} . 81

4.2 The ontologies O1 and O2 whose the entities are indexed by 0 to

cardinality of the ontology minus one 82

4.3 In a) a possibile alignment chromosome for the ontology O1 and

O2 and in b) the corresponding alignment. 82

4.4 The architecture of MemeOptiMap based on an island parallel

memetic algorithm implemented through collaborative agents . . . 97

x

LIST OF FIGURES

4.5 The general structure of the new chromosome used in the paral-

lel version of MemeOptiMap. The chromosome is an integer vec-

tor where the indices i are equal to 0, 1, 2, . . . , Lmin − 1 with Lmin

equals to the number of entities of the smaller ontology and the

contained integer numbers ji ∈ {0, 1, 2, . . . , Lmax − 1} with Lmax

equals to the number of entities of the greater ontology. 98

5.1 The architecture of our ontology alignment system 108

5.2 Graphical representation of a chromosome 110

5.3 The architecture of the Alignment Module 113

5.4 The general structure of a fuzzy logic controller 122

5.5 Variable diff . 123

5.6 Variable sl . 123

5.7 Variable sw . 124

5.8 Variable ss . 124

5.9 Variable Omega . 125

5.10 Variable Beta . 125

5.11 A simulation of fuzzy logic controller behavior 126

5.12 Control surfaces with variable Ω and β on axis z, respectively, in

a)-b)-c) and d)-e)-f), and variables a)-d) diff and sl, b)-e) diff and

ss, c)-f) diff and sw, on axis x and y 127

xi

Chapter 1

Introduction

In this thesis, we concentrate our attention on semantic interoperability problem

which affects interacting systems characterized by a different knowledge interpre-

tation. When systems model their information domain through ontologies, the

interoperability problem is reduced to the ontology alignment problem. The prin-

cipal aim of this thesis is to face this problem by studying approaches based on

an emergent class of evolutionary algorithms, known as Memetic Algorithms. In

this chapter, we give an overview and the motivations for our research work (see

section 2.1), our contribution (see section 2.2) and the general thesis organization

(see section 2.3).

1.1 Overview and Motivation

Interoperability is an essential feature of all distributed and open knowledge based

systems designed for both e-government and private businesses. The term in-

teroperability has a broad meaning containing within it many of the issues of

effectiveness with which diverse information resources might fruitfully co-exist

in common. In particular, in the Information and Communication Technology

(ICT) society, the term interoperability represents the ability of two or more sys-

tems (which may include organizations, applications, or components) to exchange

information and to render useful this information1. In practice, it is possible to

1Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary:
A Compilation of IEEE Standard Computer Glossaries. New York, NY: 1990.

1

distinguish between two levels of interoperability: syntactic and semantic. In de-

tail, if two or more systems are capable of communicating and exchanging data,

they are exhibiting syntactic interoperability. This level of interoperability in-

volves a common data format and common protocol such as XML or the SQL

standards to define any data so that the manner of processing the information

will be interpretable from the structure. However, once the syntactical correctness

has been verified, the intended meaning of the content of a communication still

cannot be judged without some commonality in methods and procedures that

each system is employing for modeling it. The ability to automatically inter-

pret the information exchanged meaningfully and accurately in order to produce

useful results represents the semantic interoperability. To achieve semantic inter-

operability, the meanings of any information must be specified in sufficient detail

to resolve any potential ambiguity. This requires that both sides must refer to

a common and formal information exchange reference model. The current best

technology for achieving such level of precision in specification of meaning is rep-

resented by ontologies. According to the most frequently referenced definition[60],

an ontology is an explicit specification of a conceptualization, i.e., the formal spec-

ification of the objects, concepts, and other entities that are presumed to exist in

some area of interest and the relationships that hold them [50]. Unfortunately,

different tasks or different points of view lead ontology designers to produce dif-

ferent conceptualizations of the same domain of interest. This means that the

subjectivity of the ontology modeling results in the creation of heterogeneous on-

tologies characterized by terminological and conceptual discrepancies. Examples

of these discrepancies are the use of different words to name the same concept,

the use of the same word to name different concepts, the creation of hierarchies

for a specific domain region with different levels of detail and so on. The aris-

ing so-called semantic heterogeneity problem represents, in turn, an obstacle for

achieving semantic interoperability. In order to overcome this problem, a simple

solution could be that all communicating systems agree on using the same ontol-

ogy. However, this solution is neither always possible nor desirable. For example,

in open environments composed of heterogeneous agents and characterized by

the absence of a central control, the agreement on utilizing the same ontology

represents a case unfeasible since it could strongly limit the fundamental feature

2

of flexibility. Moreover, in enterprise scenarios, a typical attitude of the parts is

the refusal to convert all the content of their ontologies in a target ontology that

is less expressive or not considered as a de facto standard [45]. In both scenarios,

the semantic heterogeneity problem could be overcome having a single standard

ontology containing representations of every term used in every application, but,

because of the rapid evolution of language (e.g. creation of new terms or assign-

ments of new meanings to old terms), the creation of a such ontology is generally

considered an impossible task.

Therefore, since in short the scenario where two systems exploit the same

ontology is almost impossible, the most solid solution for enabling semantic in-

teroperability (even if with a lesser degree than using a common ontology) and

really taking advantage of the ontological representation is to perform a so-called

mapping process which allows overcoming the several forms of heterogeneity which

exist between two ontologies. The recent researches about ontologies are heav-

ily focused in the development of different mapping processes, and in particular,

the so-called ontology alignment process or simply matching able to automati-

cally map the definitions used by one system to those of another by producing

a so-called alignment. Due to the relevance of automatically performing an on-

tology alignment process in several domains of application such as knowledge

management, information retrieval, medical diagnosis, e-Commerce, knowledge

acquisition, search engines, bioinformatics, the emerging Semantic Web and so

on, in years, numerous tools, named ontology alignment systems, have been de-

veloped [78][134]. However, in spite of these research efforts, currently, there is

no integrated solution that is a clear success, which is robust enough to be the

basis for future development, and which is usable by non expert users [117].

By summarizing, computing an alignment is a crucial step for achieving se-

mantic interoperability in several domains of application and with a lot of still

open questions. Therefore, addressing the ontology alignment problem is a really

world-wide interesting research.

3

1.2 Contribution

The ontology alignment process is a necessary step for allowing semantic interop-

erability within distributed systems and web applications. Therefore, designing

an efficient ontology alignment process has a crucial relevance in our competitive

world. In detail, it consists in identifying a collection of similar entities exist-

ing between different ontologies so to lead them in a semantic reconciliation. In

last years, because of the complex and time-consuming nature of this process,

particularly when the considered ontologies are characterized by a significant

number of entities, approximate methods have been widely used for computing

a sub-optimal ontology alignment [71]. From this point of view, evolutionary

optimization methods [13][67] could represent an efficient approach for facing the

problem of how to find semantic correspondences between ontologies. As a matter

of fact, evolutionary methods such as genetic algorithms have been already ap-

plied to solve the ontology alignment problem as shown in [135][90] by achieving

acceptable results. However, the inherent issue of premature convergence charac-

terizing classical genetic algorithms makes them incapable of searching numerous

solutions of the problem area. Starting from these considerations, this research

work investigates an emergent class of evolutionary algorithms, named Memetic

Algorithms (MAs), to face the ontology alignment problem and efficiently pro-

duce an alignment. MAs are population-based search methods which combine

genetic algorithms and local refinements. This marriage between global and lo-

cal search allows keeping high population diversity and reduce the likelihood

premature convergence. Indeed, several different works demonstrate how MAs

converge to high quality solutions more efficiently than their conventional evolu-

tionary counterparts. Hence, the choice of exploring this new class of algorithms.

In detail, the contribution of this thesis is to propose two ontology alignment

systems, named MemeOptiMap and MemeMetaMap, which exploit MAs for ad-

dressing ontology alignment problem by following two different point of views.

In particular, MemeOptiMap uses MAs to directly solve the ontology alignment

problem as a minimum optimization problem. Instead, MemeMetaMap exploits

MAs to address meta-matching problem, i.e., the issue related to determining the

appropriate values for ontology alignment process parameters and, consequently,

4

it produces an alignment by performing a typical matching characterized by the

computed parameters. Both approaches have been compared with the state of art

by means of a statistical multiple comparison procedure. The test results show

that both approaches are competitive. However, in particular, MemeMetaMap

improves the capabilities of the current ontology alignment processes by work-

ing regardless of the user involvement, data availability and the need of a priori

knowledge about ontology features, and, yielding high performance in terms of

alignment quality with respect to top-performers of well-known Ontology Align-

ment Evaluation Initiative campaigns1.

1.3 Thesis Organization

Before we go further in describing our research work, this section gives the reader

a brief overview of the entire thesis:

• Chapter 2 presents an overview of the ontology alignment domain starting

with a brief description of ontologies and their limitations linked to the

semantic heterogeneity problem. It contains the formal definition of the

ontology alignment process and it presents the state of the art about the

systems developed for implementing it. It ends by describing the current

challenges characterizing the ontology alignment problem scenario, giving

more attention to those addressed by this research work.

• Chapter 3 introduces the so-called Memetic Algorithms (MAs) which rep-

resent the main methodology used in our research work for facing the ontol-

ogy alignment problem. The chapter presents the general structure of MAs,

starting with basic concepts about search algorithms and the main compo-

nents combined in a MA template represented by local search methods and

genetic algorithms. Then, a description of one of the extensions existing

of MAs represented by parallel memetic algorithms is given. The chapter

ends with a discussion about the techniques used to execute a performance

comparison among MAs, and, in general, among different approaches.

1http://oaei.ontologymatching.org/

5

• Chapter 4 accurately describes our first contribution to ontology alignment

consisting in designing and implementing a memetic algorithm-based on-

tology alignment system named MemeOptiMap. The chapter includes the

formulation of the ontology alignment problem as an optimization one and

the complete description of all components of system MemeOptiMap. How-

ever, since implementing an efficient memetic algorithm requires to chose a

suitable configuration of parameters, the chapter presents also the research

work aimed at investigating different settings to find the best local config-

uration for MemeOptiMap in a multi-agent system scenario. The chapter

ends by describing a parallel version of the designed system MemeOptiMap

aimed at reducing computational cost.

• Chapter 5 discusses our second contribution consisting in producing satis-

factory alignments by addressing the ontology meta-matching problem. In

detail, the chapter describes all details related to the implementation of a

meta-matching system, named MemeMetaMap, which exploits a memetic

algorithm for optimizing the selection of the best ontology alignment pa-

rameters (weights and threshold). The chapter ends by describing a fuzzy

logic-based improvement designed for managing some specific instance pa-

rameters affecting MemeMetaMap’s behaviour.

• Chapter 6 is aimed at presenting the comparison between our ontology

alignment systems based on memetic algorithms and the existing ones in

literature. This comparison is performed through a statistical multiple com-

parison procedure on a well-known dataset provided by the Ontology Align-

ment Evaluation Initiative.

• Chapter 7 presents conclusions by summarizing strengths of our ontology

alignment systems but also weaknesses to be addressed with future works.

6

Chapter 2

The Ontology Alignment

Problem

In this chapter, we introduce the basic concepts concerning with the main topic of

this thesis: the ontology alignment problem. We start with a brief description of

ontologies (see section 2.1) and their limitations due to the semantic heterogeneity

problem (see section 2.2). Then, we give the formal definition of an ontology

alignment process (see section 2.3) and present the state of the art about the

systems which have been developed so far for implementing it (see section 2.4).

We conclude by describing the current challenges characterizing the ontology

alignment problem scenario, giving more attention to those addressed by this

research work (see section 2.5).

2.1 Ontologies

The word “ontology” is a rather overloaded term, which is used with several dif-

ferent meanings in different communities [62]. Perhaps, the most ancient sense

concerns with the philosophical discipline which considers the “Ontology” as the

study of the nature and structure of the things per se. In particular, in his Meta-

physics1, Aristotle defined the Ontology as the science of “being qua being”, i.e.,

the study of attributes that belong to anything just because of its existence. How-

1http://classics.mit.edu/Aristotle/metaphysics.html

7

ever, in this thesis, we focus on the computational sense of an ontology, i.e., the

notion of ontologies from a Computer Science vision. In detail, Computer Science

gives a meaning to the word “ontology” starting from a point of view completely

different from Philosophy. Indeed, according to [61], “For knowledge-based sys-

tems, what “exists” is exactly that which can be represented”. Therefore, com-

putational ontologies are viewed as means to formally model the structure of a

system, i.e., the relevant entities and relations that emerge from its observation,

and which are useful to achieve prefixed purposes [62].

Precisely, the term “ontology” was introduced to the information sciences

during the 1990s by several Artificial Intelligence (AI) research communities. In

particular, one of the first definitions of a computational ontology (from now

referred only as ontology) was coined by Gruber [60] in the 1993 as follows: “an

ontology is an explicit specification of a conceptualization”. More in detail, an

ontology explicitly provides a specification of a conceptualization viewed as the

objects, concepts, and other entities that are assumed to exist in some area of

interest and the relationships that hold among them [51].

A few years later, Borst [17] redefined an ontology as “a formal specification

of a shared conceptualization”. The adjective “formal” means that the ontology

specification must be expressed in a formal language characterized by a spe-

cific syntax and semantics so as to result in a machine executable and machine

interpretable representation of the world. Hence, a lot of languages have been

developed for allowing an effective use of ontologies (see section 2.1.2). Regarding

the adjective “shared”, it aims at capturing the aspect that an ontology should

express a world view that reaches the consensus of several parts. The reason

which prompted Borst to include this feature was that the ability to reuse an on-

tology is almost null if the conceptualization it defines is not generally approved.

Indeed, just the introduction of this capability to ontologies has allowed their

great diffusion as the most important means for exchanging and reuse of infor-

mation in all modern knowledge based systems (see section 2.1.4). However, the

practical usage of ontologies and their usefulness in the sharing information can

be limited by the so-called ontology heterogeneous problem that will be described

in section 2.2.

Finally, in 1998, Studer et al. [122] joined the previous two definitions result-

8

ing in the following and nowadays most frequently seen definition: “An ontology

is a formal, explicit specification of a shared conceptualization”. However, the

aforementioned definition is assumed to be informal. Section 2.1.1 presents a

mathematical definition of an ontology together with a description of all its basic

components, whereas, for an ontology example see section 2.1.3.

In literature, there are described two main classes of ontologies: the former

explicitly captures “static knowledge” about a domain, in contrast to the latter

that provides a reasoning point of view about the domain knowledge (problem

solving knowledge) [122]. In turn, in these two classes, it is possible to distinguish

other subclasses. In particular, in the first class, a distinction between types is

made on the basis of the level of generality, as summarized below [122]:

• Domain ontologies capture the knowledge valid for a particular type of

domain (e.g. electronic, medical, mechanic, digital domain);

• Generic ontologies are valid across several domains (examples of this kind

of ontology are SUMO1 and DOLCE2);

• Application ontologies contain all the necessary knowledge for modelling a

particular domain (usually a combination of domain and method ontologies)

[52].

• Representational ontologies do not commit to any particular domain. Such

ontologies provide representational entities without stating what should be

represented. A well-known representational ontology is the Frame Ontol-

ogy [61], which defines concepts such as frames, slots and slot constraints

allowing to express knowledge in an object-oriented or frame-based way.

Instead, the second class can be divided in:

• Task ontologies provide terms specific for particular tasks (e.g. hypothesis

belongs to the diagnosis task ontology);

• Method ontologies provide terms specific to particular Problem-Solving-

Methods [52] (e.g. correct state belongs to the Propose-and-Revise method

ontology).

1http://www.ontologyportal.org/
23http://www.loa-cnr.it/DOLCE.html

9

In this thesis, in particular, we deal with domain ontologies named simply

ontologies.

2.1.1 Basic components of an ontology:

formal description

In literature, there are a lot of formal definitions of an ontology [36][43][120].

Typically, a definition is designed for fitting the needs and goals of the researcher.

According to [61], the key components of an ontology are the following ones:

• class or concept : it represents the abstract view of a set of objects which

share common features in the domain of the interest. For instance, “stu-

dent” could be a class which represents all students of a college;

• property or relation: it allows to express relationships between two concepts

in a given domain of interest. More precisely, it describes the relationship

between the first concept, represented in the domain, and the second one,

represented in the range. For instance, “study” could be represented as

a relationship between the concept “student” (which is a concept in the

domain) and “subject” (which is a concept in the range);

• individual or instance: it is the “ground-level” component of an ontology.

Indeed, it represents a specific world object corresponding to a class. For

instance, “Math” could be an instance of the class “subject”;

• function: it represents a special case of relations, in which the last object in

each tuple is unique given the preceding objects. In other words, a function

of N arguments is a relation of N + 1 arguments in which the value of

the last argument is a function of the first N arguments. For instance,

kinds of functions are the specialization which allows to link a class to its

superclasses or the instantiation which allows to relate an instance with its

class. Examples of these functions are: the concept “student” could be a

specialization of the concept “person”, whereas, “Francesco” could be an

instance of the concept “student”;

10

• axiom: it allows to explicitly express propositions that are always true.

It can be used to verify the consistency of the ontology or to infer new

information.

Later, Ehrig [36] gives a formal definition of an ontology by organizing it in a

modular way. Indeed, he defines classes, properties and the specialization func-

tions, respectively, among classes and properties as the Core Ontology, whereas,

he considers instances and the instantiation function as part of a separate knowl-

edge Base. In this way, Ehrig divides the intentional aspects of a domain, enclosed

in the core ontology, from the extensional part, provided by a knowledge base. On

the contrary, in the same period, Euzenat and Shvaiko [43] join the intensional

and extensional components of an ontology giving a definition containing at the

same level each one of the aforementioned components. In addition, apart from

specialization and instantiation functions, Euzenat and Shvaiko explicitly define

other functions, such as disjointness (exclusion) and assignment.

In this thesis, we take a cue from all aforementioned formal approaches for

giving a mathematical definition of an ontology as follows.

Definition 1 (Ontology) An ontology is a 9-tuple

O =< C,P, I, A,≤C ,≤P , ϕCP , ϕCI , ϕPI > such that:

• C is a nonempty set of classes;

• P is a nonempty set of properties;

• I is a set of instances (it can be empty);

• A is a set of axioms, preferably nonempty;

• ≤C is a partial order on C, called class hierarchy or taxonomy;

• ≤P is a partial order on R, called property hierarchy;

• ϕCP : P → C × C is a function which associates a property p ∈ P with

two classes linked between them just through the relation p. We denote with

domain dom(p) := π1(ϕCP (p)) and range ran(p) := π2(ϕCP (p));

11

• ϕCI : C → P(I) is a function which associates a concept c ∈ C with a subset

of I representing the instances of the concept c;

• ϕPI : P → P(I2) is a function which associates a property p ∈ P with a

subset of cartesian product I × I representing the pair of instances related

through the property p.

Similar to Ehrig’s definition, we denote that if c1 ≤C c2, where c1, c2 ∈ C, then

c1 is a subclass of c2 and c2 is a superclass of c1. At the same way, if p1 ≤P p2,

where p1, p2 ∈ P , then p1 is a subproperty of p2 and p2 is a superproperty of p1.

Besides, we also borrow, in part from Ehrig, the term entity to denote a class,

a property or an instance in a generic way. In other words, an entity e in an

ontology verifies this constraint: e ∈ C ∪ P ∪ I.

2.1.2 Languages for ontologies

Ontologies can be encoded by means of many languages that range from hardly

to highly formalized. In particular, different requirements should be satisfied

when the design of an ontology language is addressed. In particular, an ontology

language should have:

• a well-defined syntax;

• a well-defined semantics;

• an efficient reasoning support;

• a sufficient expressive power;

• a convenience of expression.

Since, unfortunately, the more powerful language for expressing the facts, the

higher computational costs, according their purposes, designers of ontology are

constrained to choose language with regard to the trade-off between expressive-

ness and efficiency [123]. This constrain leads to the consideration of different

degrees of formalism for ontology languages [129]:

12

• Highly informal : if ontologies are expressed in natural language. According

to this, a highly informal ontology would not be an ontology, since it is not

machine-readable;

• semi-informal : if ontologies are expressed in a restricted and structured

form of natural language;

• semi-formal : if ontologies are expressed in an artificial and formally defined

language (e.g. RDF graphs);

• Rigorously formal : if the ontology languages provide meticulously defined

terms with formal semantics, theorems and proof of properties such as

soundness and completeness (e.g. Web Ontology Language [OWL]).

Although the informal languages have the advantage to produce simpler and

faster representation, in order to make an ontology machine executable and in-

terpretable a formal language is necessary. The first formal languages used to

express an ontology derives from the knowledge representation1 (KR) subfield of

AI. The most popular languages in the group of KR languages used for ontology

encoding are description logics (DL), i.e., subsets of first-order logic. Instead, one

of the first ontology-dedicated languages was Stanford’s Ontolingua [59] whose

the syntax and semantics are based on a standard notation for predicate calculus

called Knowledge Interchange Format2 (KIF). Since then, the area of ontology

dedicated languages has grown more and more. Relevant examples are Ontol-

ogy Interface Layer (OIL) [44] and XML-based Ontology Exchange Language3

(XOL). However, because of the enormous development of the Web, currently,

the most usual ontology language is the Web Ontology Language4 (OWL). In

detail, OWL is an ontology language developed by the World Wide Web Consor-

tium (W3C) Web Ontology Working Group5 as part of its Semantic Web activity.

The development of OWL was motivated by the key role foreseen for ontologies

1Knowledge representation is an area of AI research aimed at representing knowledge in
symbols to facilitate inferencing from those knowledge elements, creating new elements of knowl-
edge.

2http://www.ksl.stanford.edu/knowledge-sharing/kif/
3http://xml.coverpages.org/xol.html
4http://www.w3.org/TR/owl-guide/
5http://www.w3.org/2001/sw/WebOnt/charter

13

in the Semantic Web (i.e., providing precisely defined and machine processable

vocabularies that can be used in semantically meaningful annotations), and the

recognition that existing web languages, such as RDF, were not expressive enough

for this task [58]. Precisely, OWL has features from several families of represen-

tation languages, including primarily Description Logics. It is defined as three

sublanguages aimed at fulfilling the ontology language requirements that, as de-

scribed above, are in contrast among them. In particular, OWL sublanguages are

[12]:

• OWL Full : it represents the entire language composed by all the OWL

languages primitives. It also allows to combine these primitives in arbitrary

ways with RDF. The disadvantage of OWL Full is the language has become

so powerful as to be undecidable, dashing any hope of complete reasoning

support;

• OWL DL: it restricts the way in which the constructors from OWL and

RDF can be used in order to regain computational efficiency. Therefore,

the advantage of this is that it permits efficient reasoning support, whereas,

the disadvantage is that we loose full compatibility with RDF;

• OWL Lite: it is an ever further restriction limited. The advantage of this is

a language that is both easier to grasp (for users) and easier to implement

(for tool builders). The disadvantage is of course a restricted expressivity.

A more exhaustive overview about ontology languages can be found in [56]. In

this thesis, the used ontologies are encoded in OWL language.

2.1.3 An ontology example

To better illustrate the meaning of an ontology used in this thesis, we present

an ontology example which could be related to a stock of a car dealer [36]. The

example has six classes (object, vehicle, owner, boat, car, speed), two properties

indicating the belonging to somebody and speed, three individuals (Paul, Fiat

500, 160 km/h). There are three specialization relations (between object and

vehicle, between vehicle and boat, between vehicle and car). Each vehicle has an

14

owner and each car has a fixed speed. On instance level, the Fiat 500 belongs

to Paul and is characterized by the speed of 160 km/h. Furthermore, there is

an axiom: every car needs to have at least one owner. Formally, this ontology is

defined as Od =< C,P, I, A,≤C ,≤P , ϕCP , ϕCI , ϕPI > where:

• C = {object, vehicle, owner, boat, car, speed};

• P = {belongsTo, hasSpeed};

• I = {Paul, F iat500, 160km/h};

• A = {∀x∃y : car(x)⇒ belongsTo(x, y)};

• ≤C= {(vehicle, object), (boat, vehicle), (car, vehicle)};

• ≤P= ∅;

• ϕCP = {belongsTo→ (vehicle, owner), hasSpeed→ (car, speed)};

• ϕCI = {owner → Paul, car → Fiat500, speed→ 160km/h};

• ϕPI = {belongsTo→ {(Fiat500, Paul)}, hasSpeed→ {(Fiat500, 160km/h)}}.

Hoverer, in order to give a more immediate reading of an ontology, in this

thesis, we use also a visual language whose the graphical notation is presented

in Fig. 2.1. In detail, classes are depicted as rectangular boxes, properties as

hexagons, and individuals as rounded boxes. Specialization relations are drawn

as solid arrows. A relation has an incoming arrow from its domain and an outgoing

arrow to its range. The instantiations of concepts and relations are depicted as

dotted, arrowed lines. Fig. 2.2 shows the ontology Od in a graphical way.

Finally, as above said, in this thesis, the used language for producing a ma-

chine executable version of considered ontologies is OWL. Therefore, it seems

useful to conclude our example with a fragment (see listing 2.1) of the OWL

representation of the ontology Od. For readability, the namespaces of RDF re-

sources are abbreviated. After the namespace declaration, a class “auto#vehicle”

is defined. This class has the English label “vehicle”. Further, it is defined to

be a subclass of “auto#object” before of the closing class-tag. The other entities

have some more tags, but are built-up accordingly. The axiom is represented as

“owl:Restriction”.

15

Figure 2.1: Visual notations

Figure 2.2: A graphical representation of an ontology related to a stock of a car
dealer.

16

<rdf:RDF

...

xmlns:auto="http :// www.aifb.uni -karlsruhe.de/WBS/meh/

auto1.owl">

<owl:Class rdf:about=‘auto#vehicle ’>

<rdfs:label xml:lang=‘en ’>vehicle </rdfs:label >

<rdfs:subClassOf rdf:resource=‘auto#object ’/>

</owl:Class >

<owl:Class rdf:about=‘auto#car ’>

<rdfs:label xml:lang=‘en ’>car </rdfs:label >

<rdfs:subClassOf rdf:resource=‘auto#vehicle ’/>

<rdfs:subClassOf >

<owl:Restriction >

<owl:onProperty rdf:resource=‘auto#belongsTo ’/>

<owl:minCardinality >1</owl:minCardinality >

</owl:Restriction >

</rdfs:subClassOf >

</owl:Class >

........

<owl:ObjectProperty rdf:about=‘auto#belongsTo ’>

<rdfs:label xml:lang=‘en ’>belongs to </rdfs:label >

<rdfs:domain rdf:resource =‘auto#vehicle ’/>

<rdfs:range rdf:resource=‘auto#owner ’/>

</owl:ObjectProperty >

........

<auto:Owner rdf:about=‘auto#Paul ’/>

........

<auto:Car rdf:about=‘auto#Fiat500 ’>

<rdfs:label xml:lang=‘en ’>Fiat 500</ rdfs:label >

<auto:belongsTo rdf:resource=‘auto#Paul ’/>

<auto:hasSpeed rdf:resource=‘auto #160km/h’/>

</auto:Car >

</rdf:RDF >

Listing 2.1: OWL fragment representing ontology Od

2.1.4 The role of ontologies in different fields

We conclude this section about ontologies by giving a description of their enor-

mous applicability. In years, ontologies have been successfully applied in different

fields such as knowledge management, naive physics, information retrieval, medi-

17

cal diagnosis, natural language processing, e-Commerce, information integration,

knowledge acquisition, search engines, bioinformatics and the emerging Semantic

Web. In particular, in search engine field, ontologies have been used in the form of

thesauri to find synonymous of terms in order to facilitate internet searching [106].

In E-commerce, ontologies contribute to communication between seller and buyer

thanks to human and machine-readable description of merchandise [44][126]. In

naive physics, ontologies have been exploited for formalizing knowledge about

physical objects such as liquids [66] and electrial components [85]. Ontologies are

also exploited for the development of approaches for the extraction of knowledge

from abstracts of scientific articles [132][94] and for supporting systems aimed at

acquiring knowledge from domain experts such as Protégé project1. Moreover,

ontologies have been useful in medical domain thanks to capability of formalizing

diagnosis, therapy planning and patient monitoring [14][35]. In addition, several

bio-ontologies have been defined such as the Gene Ontology2 (GO) and Ontology

for Molecular Biology3 (MBO) in order to extend existing taxonomies related to

biological knowledge. However, the most relevant use of the ontology is surely

in the Semantic Web, whose ontologies represent the backbone. More in detail,

the aim of the Semantic Web is to represent information more meaningfully for

humans and computers alike. Therefore, Semantic Web enables the description

of contents and services in machine-readable form, and enables annotating, dis-

covering, publishing, advertising and composing services to be automated [130].

In this scenario, the task of ontologies is to annotate semantics and provide a

common, comprehensible foundation for resources on the Semantic Web.

In short, it is possible to summarize the role of an ontology in different fields

as:

• Constituting a community reference;

• Sharing consistent understanding of what information means;

• Making possible knowledge reuse and sharing.

1http://protege.stanford.edu/
2http://genome-www.stanford.edu/GO/
3http://igd.rz-berlin.mpg.de/%CB%9Cwww/oe/mbo.html

18

However, in spite of their applicability, the role of ontologies in different fields

can be limited by the so-called semantic heterogeneity problem as described in

the next section.

2.2 Semantic heterogeneity problem

In a distributed and open system, such as the semantic web and many other

applications presented in the previous section, heterogeneity cannot be avoided.

Different actors have different interests and habits, use different tools and knowl-

edge, and most often, at different levels of detail [43]. These various reasons for

heterogeneity lead to diverse forms of heterogeneity, the most obvious types of

heterogeneity are reported below:

• Syntactic heterogeneity : it occurs when two ontologies are not expressed in

the same ontology language. This happens, for example, when two ontolo-

gies are defined through different knowledge representation formalisms, for

instance, OWL and F-logic;

• Terminological heterogeneity : it includes all forms of mismatches that are

related to the process of naming the entities belonging to ontologies at hand.

Typical examples of mismatches at the terminological level are:

– different words are used to name the same entity (synonymy);

– the same word is used to name different entities (polysemy);

– words from different languages (English, French, Italian, Spanish, Ger-

man, Greek, etc.) are used to name entities;

– syntactic variations of the same word (different acceptable spellings,

abbreviations, use of optional prefixes or suffixes, etc.).

• Conceptual heterogeneity : it stands for the differences in modelling the same

domain of interest. In other words, it includes mismatches which have to do

with the content of an ontology. Discrepancies belonging to this category

can be divided in two main classes:

19

– metaphysical differences, which have to do with how the world is “bro-

ken into pieces” (i.e., what entities, properties and relations are de-

scribed in an ontology);

– epistemic differences, which have to do with the assertions that are

made about the selected entities.

In turn, metaphysical differences depend on three important reasons:

– Difference in coverage: it occurs when two ontologies describe differ-

ent, possibly overlapping, regions of the world at the same level of

detail and from a unique perspective. This is, for example, the case

for two partially overlapping geographic maps;

– Difference in granularity : it occurs when two ontologies describe the

same region of the world from the same perspective but at different

levels of detail. For example, this happens when two geographic maps

model the same region with different scales;

– Difference in perspective: it occurs when two ontologies describe the

same region of the world, at the same level of detail, but from a dif-

ferent perspective. This occurs, for example, for maps with different

purposes: a political map and a geological map do not display the

same objects.

• Semiotic heterogeneity : it is concerned with how entities are interpreted

by people. Indeed, entities which have exactly the same semantic inter-

pretation are often interpreted by humans with regard to the context, for

instance, of how they are ultimately used. This kind of heterogeneity is dif-

ficult for the computer to detect and even more difficult to solve, because

it is out of its reach.

Usually, several types of heterogeneity occur together. In this work, we only con-

cern with the terminological and conceptual types of heterogeneity by denoting

them as the so-called semantic heterogeneity problem. To provide an example of

the semantic heterogeneity problem, Fig. 2.3 shows an ontology which describes

the same domain as the ontology depicted in Fig. 2.2, but it uses different terms

20

(terminological heterogeneity), a different coverage of domain and a different

granularity of specialization.

Figure 2.3: Example of ontology

In order to guarantee an appropriate level of interoperability between systems

and really take advantage of the ontology benefits, it is necessary to address

the semantic heterogeneity problem. Currently, the most solid solution to lead

heterogeneous ontologies into mutual agreement is represented by a so-called

mapping process. The recent researches about ontologies are heavily focused in

the development of different mapping processes. In particular, it is possible to

distinguish among three kinds of processes:

• integration: the process of generating a single ontology about a subject

from two or more existing ontologies about different subjects[108];

21

• merging : the process of generating a single, coherent ontology from two or

more existing ontologies related to the same subject[108];

• alignment process or simply matching : the process of detecting correspon-

dences among existing ontologies in order to make them consistent. Differ-

ently from the previous methods, the original ontologies are kept separate.

In particular, our work deals with the matching operation. Therefore, a more

detailed description of this process is given in the next section.

2.3 Ontology Alignment Process

Nowadays, ontologies are recognized as a fundamental component for enabling in-

teroperability across heterogeneous systems and distributed applications thanks

to their capability of formally describing the semantics of a particular domain of

interest. However, in spite of their large exploitation, the ability of ontologies to

manage disparate information could be limited by the so-called semantic hetero-

geneity problem. This problem is caused by the enormous variety of ways that

a domain of interest can be conceptualized which leads to the creation of differ-

ent ontologies with contradicting or overlapping parts [121]. Therefore, in order

to address the semantic heterogeneity problem, a so-called ontology alignment

process or matching process is required. This process aims at detecting a set of

correspondences between semantically related entities of different ontologies [107]

in order to lead them into a mutual agreement. The set of correspondences is

called alignment. The importance of performing an ontology alignment process to

enable communication and data exchange among people, organizations and soft-

ware agents is evident in different scenarios (see section 2.3.3). However, aligning

two ontologies is a tedious process and manually impractical, especially when

involved ontologies are of considerable size (containing hundreds of elements).

Hence, the development of numerous tools, named ontology alignment systems,

capable of performing automatic or semi-automatic ontology alignment process

(see section 2.3 for the state of the art). The increasing number of methods

available for ontology matching has inspired the creation of a coordinated inter-

national initiative, the Ontology Alignment Evaluation Initiative (OAEI), aimed

22

at providing means to compare and evaluate different ontology alignment systems

(see section 2.3.2). In the next section, a formal definition of an ontology align-

ment process is given, whereas, for an ontology alignment example see section

2.3.4.

2.3.1 Formal definition

An ontology alignment process detects matchings between two ontologies O1 and

O2 and produces in output a so-called alignment A. However, in its formal

definition, the ontology alignment process specifies additional and optional inputs,

such as: a partial alignment A′ which is to be completed by the process to obtain

the output alignment A; some parameters p such as weights and thresholds and

some external resources r such as common knowledge or dictionaries. Therefore,

according to [43], the ontology alignment process can be formally defined as

follows:

Definition 2 (Ontology Alignment Process) The ontology alignment process

can be seen as a function f which, from a pair of ontologies O1 and O2 to align,

an input alignment A′, a set of parameters p, a set of resources r, returns a new

alignment A between these ontologies:

A = f(O1, O2, A
′, p, r).

Apart from its inputs, an ontology alignment process is strongly dependent

on a collection of additional features, known as matching dimensions. These

dimensions can be considered as a set of constraints affecting the behavior of

the alignment process and determining its difficulty. Their complete description

is left to the section 2.3.1.1. Graphically, an ontology alignment process can be

represented as in Fig. 2.4.

The output alignment A is a set of so-called mapping elements. Each mapping

element is used for linking an entity belonging to the first ontology with a similar

entity belonging to the second ontology. Formally,

23

Figure 2.4: The ontology alignment process

Definition 3 (Mapping Element) A mapping element is a 4-uple: ⟨e, e′, n, R⟩
where

• e and e′ are the entities (e.g., XML elements, properties, classes) of the

first and the second ontology respectively;

• n represents the confidence value (typically in the [0,1] range) which repre-

sents the closeness existing between the entities e and e′;

• R is a relation (e.g., equivalence (=); disjointness (⊥); overlapping (⊓))
holding between the entities e and e′.

However, since the most typically considered relation is the equivalence, the

mapping element can be reduced to a triple ⟨e, e′, n⟩ where equivalence relation

is implicit. We denote this triple simply as correspondence.

Only correspondences with a confidence value greater than a given threshold

value t ∈ [0, 1] are considered valid and can be inserted in the output alignment

A (filter operation). For this reason, the threshold value represents a critical

parameter for the ontology alignment process which must be opportunely chosen

in order to reduce both the discarding of correct matches and the accepting of

wrong ones.

By summarizing, an alignment A between two ontologies O1 and O2 can be

formally defined as follows:

24

Definition 4 (Alignment) An alignment A is a set of k correspondences de-

fined as follows:

A = {cl = (ei, ej, ηl) with i ∈ {1, 2, . . . , |O1|},
j ∈ {1, 2, . . . , |O2|},
ηl ∈ [0, 1],

ηl > t ∈ [0, 1],

l = 1, 2, . . . , k}

where ei is the ith entity of ontology O1, ej is the jth entity of ontology O2, ηl

is the confidence value of the lth correspondence, t is the threshold value used to

filter valid correspondences and the implied relation is the equality.

In order to compute the confidence value, which represents the closeness be-

tween the two entities composing a correspondence, a so-called similarity measure,

also known as matcher, is used. In literature, there exist different matchers cat-

egorized as lexical, linguistic and structural [112][38]. In detail, lexical matchers

compute a string distance-based similarity between two entities by taking into

account the morphology of the words which characterize them (such as names,

comments, etc.); a linguistic matcher determines a similarity value between two

entities by taking into account semantic relations such as synonymy and hyper-

nymy; structural matchers compute a similarity value between two entities by

considering their kinship (parents and children). See section 2.3.1.2 for a detailed

description of some similarity measures in literature. Since the application of a

single matcher is often not enough to produce an acceptable output alignment,

the common strategy is to combine different matchers to compute a confidence

value as an aggregated similarity value [36]. The process of aggregating different

similarity measures is commonly known as similarity aggregation. Formally, let

consider an alignment A, a correspondence c belonging to the alignment A and

h similarity measures, the aggregated similarity value for c can be defined as

follows:

simaggregate(c) =
h∑

i=1

wi × simi(c) subject to
h∑

i=1

wi = 1 (2.1)

25

where wi is the weight associated to the ith similarity measure and simi(c) is the

similarity value computed for the correspondence c by the ith similarity measure.

In literature, there are several aggregation strategies, some of them are de-

scribed in a more detailed way in section 2.3.1.3. Obviously, the quality of the

alignments is strongly dependent on selecting of the appropriate similarity mea-

sures, weights and thresholds. Therefore, this selection represents a crucial issue

in the ontology alignment scenario known as ontology meta-matching problem [91].

The techniques which try to solve the ontology alignment problem by addressing

the ontology meta-matching problem are referred as meta-matching systems.

2.3.1.1 Matching dimensions

Each of the elements featured in definition 2 of ontology alignment process can

have specific characteristics which influence the difficulty of the alignment task.

It is important to determine and control these characteristics, known as matching

dimensions, for characterizing the ontology alignment systems known or yet to

be invented and then in which situation they are appropriate. We review below

some of the most important dimensions as described in [105]:

• input ontologies :

– heterogeneity of the input languages : are they described in the same

knowledge representation languages? This corresponds to asking for

the non emptyness of the syntactic component of the resulting align-

ment.

– languages : what are the languages of the ontologies (especially in case

of homogeneous languages)? Example of languages are KIF, OWL,

RDFS, UML, F-Logic, etc.

• input alignment :

– complete/update: Is the alignment process required to complete an

existing alignment? (i.e., A is non empty).

– multiplicity: How many entities of one ontology can correspond to

one entity of the others? Usual notations are 1:1, 1:m, n:1 or n:m.

26

However, for ontology alignment, we prefer to note if the mapping is

injective, surjective and total or partial on both side. We then end up

with more alignment arities (noted with, 1 for injective and total, ?

for injective, + for total and * for none and each sign concerning one

mapping and its converse): ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+,

?:*, *:?, 1:*, *:1, +:*, *:+, *:*. These assertions could be provided as

input (or constraint) for the alignment algorithm or be provided as a

result by the same algorithm.

• input parameters :

– oracles/resources : Are oracle authorized? If so, which ones (the answer

can be any)? Is human input authorized?

– training : Can training be performed on a sample?

– proper parameters : Are some parameters necessary? And what are

they? This point is quite important when a method is very sensitive

the variation of parameters. A good tuning of these must be available.

• output alignment :

– multiplicity : The multiplicity of the output alignment is similar to that

of the input alignment (see above).

– relations : Should the relations involved in the correspondences be only

equivalence relations or could they be more complex?

• alignment process :

– resource constraints : Is there a maximal amount of time or space avail-

able for computing the alignment?

– Language restrictions : Is the mapping scope limited to some kind of

entities (e.g., only T-box, only classes)?

2.3.1.2 Similarity measures

Similarity measures or matchers are techniques aimed at evaluating the semantic

closeness between two ontology entities. In literature, it are categorized in lexical,

27

linguistic and structural measures. In the sequel, some distance-based similarity

measures belonging to these three groups and used in our research work are

presented.

In general, lexical matchers compute a string distance between a pair of

ontology entities by taking into account the morphology of the words which char-

acterize them. In details, by considering an ontology modeled through OWL

language, the strings related to ontology entities which can be chosen to compute

a distance are:

• the names of ontology entities;

• the labels which could annotate the ontology entities which occur as rdfs :

label annotations in OWL representation;

• the comments which could be associated to entities in order to describe

them in natural language which are included in an entity through the rdfs :

comment annotation in OWL representation.

In literature, there are a lot of string distance methods. Some of these are

described below.

The Levenshtein distance [84] represents the minimum number of edits needed

to transform one string into the other, with the allowable edit operations being

insertion, deletion, or substitution of a single character. Mathematically, the

levenshtein distance leva,b(|a|, |b|) between two strings a and b is defined as follows:

leva,b(l1, l2) =

0 if l1 = l2 = 0

l1 if l2 = 0 and l1 > 0

l2 if l1 = 0 and l2 > 0

min

leva,b(l1 − 1, l2) = 1

leva,b(l1, l2 − 1) + 1

leva,b(l1 − 1, l2 − 1) + [al1 ̸= bl2]

otherwise

where the first element in the minimum function corresponds to insertion (from

a to b), the second to deletion and the third to match or mismatch, depending

on whether the respective symbols are the same.

28

The Jaro distance [75] between two strings a and b is defined as follows:

d(a, b) =

{
0 if m = 0
1
3
∗ (m
|a| +

m
|b| +

m−t
m

) otherwise

where m is the number of matching characters and t is half the number of trans-

positions.

Therefore, Jaro distance takes into account only the commonalities between

two entities. Instead, in order to compute the closeness between two entities, the

smoa distance [121] considers both commonalities and differences characterizing

the entities at issue. Formally, the smoa distance between two strings s1 and s2

is defined by the following equation:

smoa(s1, s2) = comm(s1, s2)− diff(s1, s2) + winklerImpr(s1, s2)

where comm(s1, s2) stands for the commonality between s1 and s2, diff(s1, s2)

for the difference and winklerImpr(s1, s2) for the improvement of the result using

the method introduced by Winkler in [140]. More in detail, the commonality is

computed by means of the substring string metric. In particular, the biggest

common substring between two strings is computed in a recursive way until no

common substring can be identified. Whenever a substring is found, it is removed

and the process continues by searching again for the next biggest substring. The

sum of the lengths of these substrings is then scaled with the length of the strings

by obtaining the commonality between the original strings. Formally, as defined

in [121]:

comm(s1, s2) =
2×

∑
i length(maxComSubStringi)

length(s1) + length(s2)

where length is a function which computes the number of characters belonging to

a string and maxComSubStringi is the longest common substring between the

strings s1 and s2 computed at iteration i. As for the difference function, this is

based on the length of the unmatched strings that have resulted from the initial

matching step. Formally, as defined in [121]:

diff(s1, s2) =
uLens1 × uLens2

p+ (1− p)× (uLens1 + uLens2 − uLens1 × uLens2)

29

where p ∈ [0,+∞) is a parameter used to give a different importance to the

difference component of the smoa distance (typically is used p = 0.6) and uLens1

and uLens2 represent the length of the unmatched substring from the initial

strings s1 and s2 scaled with the string length, respectively.

In particular, in our research work, three lexical matchers are used, named

Entity Name Distance Matcher, Comment Distance Measure and Entity Text

Distance Matcher. In detail, the former computes the smoa distance between the

names of ontology entities, whereas, the second one computes the smoa distance

between comment texts of ontology entities. The choice of the smoa distance is

tied to experiment results in [121] which show how it is the most performing dis-

tance for ontology alignment problem. As for the Entity Text Distance Matcher,

it returns the minimum value between the distances computed separately be-

tween comments and labels of ontology entities. In particular, a distance based

on the vector space model [115] is used in order to compare labels or comments

of ontology entities. The vector space model is an algebraic model widely used in

information retrieval. It allows to determine the distance between two ontology

entities by representing an entity by a vector in a space where the dimensions

are terms extracted by rdfs : label or rdfs : comment annotations. In detail, let

consider two entities e1 and e2 and the corresponding annotations (label or com-

ment) a1 and a2. For each entity, a set of terms T = {t1, t2, . . . , tn} is extracted
by the corresponding annotations. Then, let consider −→τ = (t1, t2, . . . , tk) be the

vector composed of the set of terms occurring in a1 and a2 with no duplicates.

Finally, the vector representing the ith entity (with i = 1, 2) is as follows:

Vi = {wi1 , wi2 , wi3 , . . . , wih}

where each wij represents the weight of term ti ∈ Ti. There are several ways to

compute the weight values such as boolean approach or TF-IDF scheme [114]. In

our work, a frequency weighting scheme is used, i.e., a weight value represents

the frequency of the corresponding term in the relative annotation text. Once the

annotation texts a1 and a2 are represented by two vectors V1 and V2, it is possible

to compute distance between them by using the cosine of the angle between them.

Let consider ϕ the angle between V1 and V2, the distance between e1 and e2 is as

30

follows:

d(e1, e2) = 1− cosine(ϕ).

In general, a linguistic measure computes the similarity between ontology

entities by considering linguistic relations such as synonymy, hypernymy and so

on. In order to compute the linguistic similarity or inversely the linguistic dis-

tance, a dictionary is needed such as WordNet1. Typically, the linguistic distance

is computed by considering the names of entities, but also entity labels can be

used.

A particular similarity measure used in this research work is referred as

Word Net Synonymy Name Distance Measure. It uses WordNet to compute a

synonymy-based distance by considering the names of entities. In detail, this

distance returns the value 1 if the original strings are synonymous, otherwise it

computes the traditional substring distance between all senses of the first string

with the second one and then it returns the smallest of these distances. Formally,

the traditional substring distance subString between the two strings s1 and s2

can be defined as follows:

subString(s1, s2) = 1− 2× length(maxComSubString)

length(s1) + length(s2)

where length is the function which computes the number of characters belonging

to a string and maxComSubString is the longest common substring between the

strings s1 and s2.

Structural measures compute a similarity or a distance between ontological

entities by considering their kinship (parents and children) within ontologies. In

this work, four different structural measures, referred as Super Hierarchy Distance

Measure, Numbered Hierarchy Distance Measure, Individual Distance Measure

and Domain and Range Restrictions Distance Measure are considered.

In detail, the first one is based on the supersumption relation between entities

in ontologies. In particular, a correspondence between two entities (class or prop-

erty) inherits the confidence value related to the correspondence between their

respective superentities. Formally, let e1 and e2 be entities of different ontologies

1http://wordnet.princeton.edu/

31

O1 and O2 and s1 and s2 be superentities, respectively, of the entities e1 and e2

in O1 and O2, and there is a correspondence c = (s1, s2, η), then the distance

between e1 and e2 computed by means of the Super Hierarchy Distance Measure

is as follows:

dhierarchy(e1, e2) = 1− η.

The second structural measure exploited in this work is based on the number

of superentities and subentities that an entity has in ontologies. Let e1 and e2

be entities of two different ontologies O1 and O2, nsuper1 and nsuper2 be the

number of superentities characterizing, respectively, e1 and e2, and nsub1 and

nsub2 be the number of subentities characterizing, respectively, e1 and e2, then

the distance between e1 and e2 computed by means of the Numbered Hierarchy

Distance Measure is as follows:

dnumhierarchy
(e1, e2) =

rsup + rsub
2

where rsup and rsub represent, respectively, the distance for number of super-

entities and sub-entities, calculated as follows:

rsup =
abs(nsuper1 − nsuper2)

max(nsuper1 − nsuper2)

and

rsub =
abs(nsub1 − nsub2)

max(nsub1 − nsub2)

where abs is a function which computes the absolute value and max is a function

which computes the maximum value.

The third structural matcher used in this work computes an individual based

distance. In detail, let e1 and e2 be entities of different ontologies O1 and O2

and ind1 and ind2 be the number of individuals, respectively, for entity e1 and

e2, then the distance between e1 and e2 computed by means of the Individual

Distance Measure is as follows:

dindividual(e1, e2) = 1− matches

max(ind1, ind2)

32

where matches is the number of identical individuals between e1 and e2. In this

measure, two individuals are considered identical if they are characterized by the

same name.

Finally, the last matcher is based on the domain and range restrictions on

properties in ontologies. In particular, two properties can be considered com-

posing a correspondence, if their domain and range restrictions are similar class

descriptions. Formally, let p1 and p2 be properties of the ontologies O1 and O2

to align. Let D1 and D2 be the sets of domain class descriptions of p1 and p2,

respectively. Similarly, let R1 and R2 be the sets of range class descriptions of p1

and p2, respectively. Besides, let

CD = {(x1, x2) ∈ A|x1 ∈ D1 and x2 ∈ D2}

be the sets of correspondences which involve a domain class description of p1 with

a domain class description of p2. Analogously, let

CR = {(x1, x2) ∈ A|x1 ∈ R1 and x2 ∈ R2}

be the sets of correspondences which involve a range class description of p1 with

a range class description of p2. Starting from these sets, the domain and range

class distance can be computed as follows:

ddomain =

{ ∑
c∈CD

f(c)

|CD|
if |CD| ̸= 0

1 else

drange =

{ ∑
c∈CR

f(c)

|CR|
if |CR| ̸= 0

1 else

. Finally, the Domain and Range Restrictions Distance Measure computes the

distance between the two properties p1 and p2 as follows:

dDomRan(p1, p2) =
ddomain + drange

2
.

33

2.3.1.3 Aggregation strategies

In order to combine all considered similarity measures, an aggregation strategy

is needed. In general, an aggregation function is defined as:

ϕ : −→s (c)×−→w → (0, 1) with
n∑

i=1

wi = 1

where n is the number of considered similarity measures. There are several ag-

gregation strategies, in this work three of these ones are taken in account:

• Minimum aggregation: this kind of strategy choices the minimum between

the computed distances (for this reason this strategy leaves out the vector

of weights). Formally:

ϕ(−→s (c),−→w) = min{s1(c), s2(c), . . . , sn(c)}.

• Weighted average aggregation: this strategy computes the standard weighted

average of all computed distances. Formally:

ϕ(−→s (c),−→w) =
n∑

i=1

wihi(c).

• Ordered weighted average (OWA) aggregation [143]: this strategy is similar

to the weighted average aggregation, but applies a constant vector of weights

to a reordering of the computed distances. Formally:

ϕ(−→s (c),−→w) =
n∑

i=1

wihki(c)

where for i ∈ {1, 2, . . . , n}, ki is a reordering, such that hki(c) < hkj(c) for

i < j.

2.3.2 Evaluating ontology alignment quality

Over years, a lot of ontology alignment systems have been developed in order

to implement an ontology alignment process in an automatic way. However,

34

a crucial step in their adoption in real world applications is represented by the

ability of determining their performances on realistic ontologies in terms of quality

of produced alignments and not only. This has led to numerous researchers for

designing techniques aimed at executing a systematic evaluation of these systems.

Precisely, the aim of these evaluation techniques is twofold: helping users to

estimate the suitability of the ontology alignment systems to their needs and

helping developers of such systems to improve them. The evaluation should be

held over time in order to asses, apart from absolute results, i.e., what are the

properties achieved by a system, relative results, i.e., how these results compare

to the results of other systems [41]. In this scenario, a coordinated international

initiative, named Ontology Alignment Evaluation Initiative (OAEI), was set up in

2005 for forging a consensus on evaluation techniques to be used to asses ontology

alignment systems. The evaluation strategy used by OAEI is benchmarking as

described by Castro et al. [22] and summarized below. A benchmark is a test

that measures the performance of a system or subsystem on a well defined task or

set of tasks1. Evaluation should enable the measure of the degree of achievement

of proposed tasks on a scale common to all methods. Benchmarks should be

reproducible and non ambiguous, so that they can be used repeatedly for: (i)

testing the improvement of a system with certainty and (ii) situating a system

among others. The OAEI task is set up a collection of reference sets of tests,

or benchmark suites, for assessing the strengths and weaknesses of the existing

ontology alignment systems and to compare their evolution with regard to these

references. Building benchmark suites and opportune data sets is valuable not

just for groups of people who participate in the annual campaigns but for all

the community, since system designers can make use of them at any time and

compare their results with those of the other systems [41]. In section 2.3.2.1, a

comprehensive description of the data sets provided by OAEI and exploited in

this research work is given.

Another crucial topic is how to measure the evaluation results returned by

the benchmarking. In literature, there is a wide range of different possible mea-

sures for evaluating ontology alignment systems including both qualitative and

quantitative methods. In section 2.3.2.2, there is a comprehensive description

1Sill, D.: comp.benchmarks frequently asked questions version 1.0 (1996)

35

of the evaluation measures used by OAEI. Finally, section 2.3.2.3 presents the

alignment format defined by OAEI in order to allow ontology alignment systems

to produce “standardized” results aimed at easing the fair comparison.

2.3.2.1 Datasets

Good datasets are a prerequisite for a good evaluation [41]. They should allow to

meet the following desiderata: the coverage of relevant aspects and the fairness

of the evaluation. In the case of ontology alignment process, a dataset typically

consists of at least two ontologies and a reference alignment between them. In

the following, we call the combination of exactly two ontologies and, if present, a

reference alignment between these ontologies a test case. A dataset is composed of

several test cases. In [54], the authors proposed the following criteria for designing

or selecting datasets for ontology matching evaluation:

• Complexity, i.e., how much the dataset is hard for state of the art matching

systems;

• Discrimination ability, i.e., how much the dataset can discriminate suffi-

ciently among various matching approaches;

• Incrementality, i.e., if the dataset allows for incrementally discovering the

weaknesses of the tested systems;

• Monotonicity, i.e., the matching quality measures calculated on subsets

of gradually increasing size converge to the values obtained on the whole

dataset;

• Correctness, i.e., a reference alignment is available for the dataset, which

allows to divide generated correspondences into correct and incorrect ones.

From 2005, OAEI is engaging in developing of several datasets in order to cover

as much as possible the desired criteria discussed above. The first developed

dataset is named benchmark. The benchmark dataset deals with the topic of

scientific publications. It consists of a large set of artificial test cases which alter

an initial ontology in order to match it to one of its variants. Modifications

36

concern both the element labels, e.g., replacing them by random labels, and

the structure, e.g., deleting or inserting classes in the hierarchy. In addition,

the dataset comprises four other real ontologies that have to be matched to the

reference ontology. The ontologies are described in OWL-DL and serialized in the

RDF/XML format. Moreover, each benchmark test case provides also a reference

alignment useful for the evaluation task. Table 2.1 shows the general organization

of the benchmark dataset.

Table 2.1: Benchmark track description

Test case Range Description

101-104
The ontologies under alignment are the same or the first one is
the “OWL Lite restriction” of the second one.

201-210
The ontologies under alignment have the same structure, but dif-
ferent lexical and linguistic features.

221-247
The ontologies under alignment have the same lexical and linguis-
tic features, but different structure.

248-266
The ontologies under alignment have different lexical, linguistic
and structure features.

301-304 The ontologies under alignment are real world cases.

The benchmark dataset will be used in all experiments performed in our re-

search work. It has been chosen for its completeness: it considers both artificial

and real test cases.

2.3.2.2 Evaluation measures

In order to evaluate alignment quality, OAEI considers different evaluation mea-

sures. In particular, in our research work, we consider the following ones:

• compliance measures which evaluate the degree of conformance of the align-

ment ontology systems to what is expected;

• performance measures which measure non functional but important features

of the algorithms (such as speed).

In detail, compliance measures are used for computing the quality of the out-

put provided by a system compared to a reference output. It is worth noting that

37

this reference output is not always available and not always consensual. However,

for the purpose of benchmarking, we can assume that it is desirable to provide

such a reference [39]. The most commonly used and understood compliance mea-

sures are: precision, recall and F-measure. They derive from the information

retrieval field [113] and compute the quality of an ontology alignment by com-

paring it with a reference alignment R, as depicted below:

Definition 5 (Precision) Given a reference alignment R, the precision of an

alignment A is given by

Pr(A,R) =
|R ∩ A|
|A|

.

Definition 6 (Recall) Given a reference alignment R, the recall of an alignment

A is given by

Rec(A,R) =
|R ∩ A|
|R|

.

Definition 7 (F-measure) Given a reference alignment R and a number α be-

tween 0 and 1, the F-measure of an alignment A is given by

Mα =
Pr(A,R) ·Rec(A,R)

(1− α) · Pr(A,R) + α ·Rec(A,R)
.

If α = 1, then the F-measure is equal to precision and if α = 0, the F-measure is

equal to recall. In between, the higher α, the more importance is given to precision

with regard to recall. Very often, the value α = 0.5 is used, i.e.,

M =
2× Pr(A,R)×Rec(A,R)

Pr(A,R) +Rec(A,R)
,

the harmonic mean of precision and recall.

Instead, performance measures (or non-functional measures) asses the re-

source consumption necessary for aligning two ontologies. According [39], they

can be used when the ontology alignment systems are 100% compliant or balanced

against compliance. Unlike the compliance measures, performance measures de-

pend on the benchmark processing environment and the underlying ontology

management system [39] and, as a consequence, it is rather difficult to obtain

objective evaluations. The most common performance measures are:

38

• Speed : it is measured in amount of time taken by the algorithms for ac-

complishing their alignment tasks. If user interaction is required, one has

to ensure to effectively measure the processing time of the machine only.

• Memory : the amount of memory used for accomplishing the alignment

task marks another performance measure. Due to the dependency with

underlying systems, it could also make sense to measure only the extra

memory required in addition to that of the ontology management system

(but it still remain highly dependent).

2.3.2.3 Alignment format

In section 2.3.1, we have given a formal definition of an alignment which is rather

abstract since it does not provide a concrete format that can be used for express-

ing these alignments. “Reifying” alignments in a standardised format can be very

useful for several reasons, for example, for collecting hand-made or automatically

created alignments in libraries that can be used for linking two particular ontolo-

gies or for comparing the results with each other ontology alignment systems or

with possible “standard” results [42]. The desired requirements that an alignment

format should satisfy are [42]:

• being Web ready: in particular using URIs and semantic web languages

(XML, RDF);

• being ontology language independent: this allows alignments between on-

tologies written in different languages;

• being simple so that current ontology matching tools can manipulate it

without having to implement a full-fledged knowledge representation lan-

guage;

• being expressive so that it can cover an important part of the usable rela-

tions between ontologies;

• supporting many different uses, i.e., it should not be committed to one

particular usage.

39

All these features are satisfied by the alignment format proposed in [37] and used

in OAEI campaigns. In detail, this alignment format characterizes an alignment

description with the following components:

• a set of correspondences which express the relation holding between entities

of the first ontology and entities of the second ontology;

• an arity noted with, 1 for injective and total, ? for injective, + for total

and * for none.

The alignment format is expressed in RDF/XML so that it is easy to parse,

but, this requires that entities are identifiable by a URI. A full example of align-

ment format in RDF is reported in listing 2.2. In detail, it describes a many-to-

many alignment between two bibliographic ontologies. In particular, it contains

two correspondences that associate reviewedarticle with article and journalarticle

with journalarticle respectively. These correspondences are characterized by an

equivalence relation and a confidence measure equal to 0.64 in the former case

and 1.0 in the latter.

2.3.3 Use cases

Ontology alignment process is considered to be a crucial preliminary step for a lot

of real-life applications. In this section, we present some of these applications as

described in [38] highlighting the need for and use of ontology alignment process.

2.3.3.1 Web service integration

Web service discovery is the process of finding web services that meet a given

requester goal. Both the requester goal and the service capability, i.e., requested

functionality and provided functionality, are defined declaratively and in a machine-

processable way using one or more domain-specific ontologies. In this scenario,

two different problems can arise:

1. The descriptions of the capability or the goal use several domain ontologies

that are characterized by conflicts due to either the definition of a different

conceptual model or the use of a different ontology language.

40

<?xml version =‘1.0’ encoding=‘utf -8’ standalone=‘no ’?>

<!DOCTYPE rdf:RDF SYSTEM "align.dtd">

<rdf:RDF

xmlns=‘http :// knowledgeweb.semanticweb.org/heterogeneity/

alignment ’

xmlns:rdf=‘http :// www.w3.org /1999/02/22 -rdf -syntax -ns#’

xmlns:xsd=‘http :// www.w3.org /2001/ XMLSchema#’>

<Alignment >

<xml >yes </xml >

<type >**</type >

<onto1 >http :// www.example.org/ontology1 </onto1 >

<onto2 >http :// www.example.org/ontology2 </onto2 >

<map >

<Cell >

<entity1 rdf:resource=

‘http ://www.example.org/ontology1#reviewedarticle ’/>

<entity2 rdf:resource=

‘http ://www.example.org/ontology2#article ’/>

<measure rdf:datatype=‘&xsd;float ’>0.64</ measure >

<relation >=</relation >

</Cell >

</map >

<map >

<Cell >

<entity1 rdf:resource=

‘http ://www.example.org/ontology1#journalarticle ’/>

<entity2 rdf:resource=

‘http ://www.example.org/ontology2#journalarticle ’/>

<measure rdf:datatype=‘&xsd;float ’>1.0</measure >

<relation >=</relation >

</Cell >

</map >

</Alignment >

</rdf:RDF >

Listing 2.2: A full example of alignment format

2. The capability and the goal are expressed using ontologies that describe a

common domain, but are different between them. Obviously, the discovery

process has to find suitable services despite the use of different terminologies

for the goal and the capability.

41

These heterogeneity problems must be solved in order to enable the reuse

of (possibly conflicting) ontologies for goal and capability descriptions, and, an

ontology alignment process is a suitable method for accomplishing this task.

2.3.3.2 Catalog matching

Many e-Commerce applications are based on the publication of electronic catalogs

which present the goods on sale and allow customers to select the goods they need.

However, a very important obstacle to the success of distributed e-Commerce

applications is the problem of interoperating different catalogs. Indeed, many

systems require participant parties to perform very costly operations on their local

catalogs to enter into the system, and this is a tremendous barrier for newcomers.

A typical instance of this situation are e-Marketplaces, i.e., electronic malls where

different sellers provide their goods in a common environment. The problem of

this application is that each provider typically owns a local catalog, in which

goods are organized according to criteria that suit its internal business processes.

However, in order to take part in the marketplace, providers should translate their

catalogs into a common catalog, which will be presented to users as a single access

point to what is sold in the marketplace. Notice that, in principle, this translation

is required for each marketplace in which a company is involved, which means

that a potentially very high number of catalogs should be maintained at the

same time by each company. This is considered one of the strong barriers against

the success of e-Marketplaces. This scenario would be much more appealing if

we could provide means for aligning catalogs so as to strongly reduce efforts for

newcomers.

2.3.3.3 P2P information sharing

In last years, Peer-to-Peer (P2P) information sharing systems have had a variety

of implementations and are widely used on the Web. They use a simple or more

complex schema such as databases or ontologies in order to describe contents to

be exchanged. Currently, most of the systems are based on the use mappings

between peer schema a priori. However, in P2P settings, assumptions that all

parties agree on the same scheme, or that all parties rely on one global scheme

42

(as in data integration) are not possible. Peers come and go, import multiple

schema into the system, and have a need to interoperate with other nodes at run-

time. In this activity, a scheme alignment represents the main process to enable

a full nodes’ interoperation. Namely, when two peers “meet” on the network,

they establish mappings between their schema in a (semi) automatic alignment

discovery process. Automation of the schema alignment discovery process will

create a great advance for the P2P information sharing systems on the Semantic

Web. Peers will be able to bring to the system various schema, “align” them to

the schema of other peers on the network with no (or minimal) user involvement,

and exchange requests and data in a decentralized, collaborative manner.

2.3.3.4 Semantic query processing

Semantic query processing is a run-time scenario where a user specifies the output

of a query (e.g., the SELECT clause in SQL), and the system figures out how

to produce that output (e.g., by determining the FROM and WHERE clauses

in SQL). The user’s specification is stated in terms of concepts familiar to her,

which may not be the same as the names of elements specified in the database

schema. Therefore, in the first phase of processing the query, the system must

map the user-specified concepts in the query output to schema elements. This is

a natural application of the ontology alignment process.

2.3.4 An ontology alignment example

For better understanding an ontology alignment process, let us consider an ex-

ample by using the ontologies depicted in Figs. 2.2 and 2.3, respectively, referred

as O1 and O2. As aforementioned, these two ontologies are related to the same

domain. A reasonable alignment between the two ontologies is given in Table 2.2.

Each line contains the two corresponding entities, each one belongs to one of the

considered ontologies. In Fig. 2.5, the provided alignment is shown graphically.

Whereas the alignment might seem obvious to some readers, others might dis-

agree [36]. The common agreement on alignments is not easy. Hence, the birth

of an organization, the OAEI, aimed to establish common evaluation methods

(see section 2.3.2). In order to complete our example, listing 2.3 presents a frag-

43

ment of the considered alignment in the the RDF-based representation proposed

by OAEI (see section 2.3.2.3). The first lines are dedicated to ontology names

and their URIs. In the following, the description of some cells of the considered

alignment including the kind of relation and the confidence value is given.

Table 2.2: An example of alignment

Ontology 1 Ontology 2

Object Thing

Vehicle Conveyance

Car Car

Speed Speed

HasSpeed HasProperty

Fiat 500 Paul’s Fiat 500

160 km/h Fast

2.4 State of the art about the Ontology Align-

ment

Over years, a lot of strategies have been investigated to perform an ontology

alignment process. Good surveys are provided in [78][111][134]. However, in

this research work, we take in account a new classification of ontology matching

techniques described in [118] and based on (i) general properties of matching

techniques, (ii) interpretation of input information, and (iii) the kind of input

information. A detailed discussion about this classification is given in subsection

2.4.1, whereas, a description of more recent ontology alignment systems is given

in subsection 2.4.2.

2.4.1 Classification

Initially, Shvaiko et al. [118], taking inspiration from [111], distinguish between

elementary (individual for Rahm et al. [111]) and combination techniques. In

44

Figure 2.5: An example of ontology alignment

particular, the former computes alignments based on a single matching criterion,

whereas, the latter performs a combination of individual matchers. Therefore, the

45

<rdf:RDF >

<Alignment >

<xml >yes </xml >

<level >0</level >

<type >11</type >

<onto1 >ontology1.owl </onto1 >

<onto2 >ontology2.owl </onto2 >

<uri1 >http :// aifb.uni -karlsruhe.de/ontology1.owl </uri1 >

<uri2 >http :// aifb.uni -karlsruhe.de/ontology2.owl </uri2 >

<map >

<Cell >

<entity1 rdf:resource=‘ontology1.owl#Object ’/>

<entity2 rdf:resource=‘ontology2.owl#Thing ’/>

<measure rdf:datatype=‘XMLSchema#float ’>1</measure >

<relation >=</relation >

</Cell >

<Cell >

<entity1 rdf:resource=‘ontology1.owl#Vehicle ’/>

<entity2 rdf:resource=‘ontology2.owl#Conveyance ’/>

<measure rdf:datatype=‘XMLSchema#float ’>1</measure >

<relation >=</relation >

</Cell >

.................

</map >

</Alignment >

</rdf:RDF >

Listing 2.3: A fragment in RDF-representation of alignment presented in Fig. 2.5

classification focuses on individual matchings. In turn, elementary matchings can

be divided in instance-based and schema-based : in order to perform a matching

process, the former uses all entities of an ontology including the instances, the

latter uses only entities as classes and properties. For classifying elementary

schema-based matching techniques, Shvaiko et al. [118] introduce two synthetic

classifications (see Fig. 2.6), based on the most salient properties of the matching

dimensions. These two classifications are:

• Granularity/Input Interpretation classification is based on (i) granularity of

match, i.e., element- or structure-level, and then (ii) on how the techniques

generally interpret the input information;

46

• Kind of Input classification is based on the kind of input which is used by

elementary matching techniques.

Figure 2.6: A classification of elementary schema-based matching approaches
[118]

The classification depicted in Fig. 2.6 can be read both in descending (focusing

on how the techniques interpret the input information) and ascending (focusing

on the kind of manipulated objects) way in order to reach the leaves representing

the basic techniques layer. In detail, elementary ontology alignment systems are

classified by the Granularity/Input interpretation layer according to the following

criteria:

47

• Element-level vs structure-level : element-level ontology alignment systems

compute mapping elements by analyzing entities in isolation, ignoring their

relations with other entities, whereas, structure-level techniques compute

mapping elements by analyzing how entities appear together in a structure.

• Syntactic vs external vs semantic: syntactic techniques interpret the input

only in function of its structure following some clearly stated algorithms;

external are techniques exploiting auxiliary (external) resources of a do-

main such as dictionaries and common knowledge in order to interpret the

input; semantic techniques use some formal semantics (e.g., model-theoretic

semantics) to interpret the input and justify their results.

Distinctions between classes of elementary matching techniques in the Basic

Techniques layer are motivated by the way a matching technique interprets the

input information in each concrete case. For example, a label can be interpreted

as a string (a sequence of letters from an alphabet) or as a word or a phrase

in some natural language, a hierarchy can be considered as a graph (a set of

nodes related by edges) or a taxonomy (a set of concepts having a set-theoretic

interpretation organized by a relation which preserves inclusion) [118].

The Kind of Input layer classification deals with the type of input considered

by a particular technique. In detail, it is divided into two levels [118]:

• the first level is categorized depending on which kind of data the algorithms

work on: strings (terminological), structure (structural) or models (seman-

tics). The two first ones are found in the ontology descriptions, the last

one requires some semantic interpretation of the ontology and usually uses

some semantically compliant reasoner to deduce the correspondences;

• the second level of this classification decomposes further these categories

if necessary: terminological methods can be string-based (considering the

terms as sequences of characters) or based on the interpretation of these

terms as linguistic objects (linguistic). The structural methods category is

split into two types of methods: those which consider the internal structure

of entities (e.g., attributes and their types) and those which consider the

relation of entities with other entities (relational).

48

Finally, in Fig. 2.6, techniques which are marked in italic (techniques based

on upper level ontologies and DL-based techniques) have not been implemented

in any ontology alignment system yet. However, Shvaiko et al. [118] introduce

them because their appearance seems reasonable in the near future.

2.4.2 Existing Ontology Alignment Systems

Over the years, the relevant importance of ontology alignment problem and its

complexity have led to need of developing automatic and semi-automatic ontology

alignment systems based on several strategies. However, only recently, some

computational intelligence techniques such as machine learning and evolutionary

algorithms have been investigated for solving the ontology alignment problem.

Hereafter, we give a brief overview of the most known ontology alignment systems

dividing them in two groups according to whether they are based on techniques

belonging to computational intelligence or not.

2.4.2.1 Deterministic Ontology Alignment Systems

One of the first ontology alignment systems has been PROMPT [103], i.e., a semi-

automatic system which does not produce in output an alignment, but rather a

set of suggestions useful to users for matching classes and properties and, as a

consequence, building a mapping file. Among the first automatic ontology align-

ment systems, instead, there is Cupid [87]. It computes a mapping between

two ontologies by choosing pairs of entities with an aggregated similarity value

higher than a specific threshold. The aggregated similarity value is computed by

performing a weighted average of two coefficients obtained, respectively, by com-

puting a linguistic and structural-based matching. The weights and the threshold

are manually set. Since then, several automatic ontology alignment systems have

been implemented by taking into account different techniques. Among the most

recent ones, it is possible to mention COMA++[33], CODI [101], Ef2Match [137],

RiMOM [136], ASMOV [76], CIDER [57] and so on. In particular, COMA++

performs the match operation by iteratively executing three steps: element iden-

tification to determine the relevant schema elements for matching, matcher exe-

cution applying multiple matchers to compute the element similarities, and simi-

49

larity combination to combine matcher-specific similarities and derive a mapping

with the best correspondences between the elements. The aggregation strate-

gies exploited by COMA++ are Max, Min, Average, and Weighted whose the

weighting scheme is manually set. RiMOM is a tool for ontology alignment

that combines different strategies and aims to find the optimal alignment re-

sults: edit-distance based strategy, statistical learning based strategy, and three

similarity-propagation based strategies. Each strategy is based on one kind of

ontological-information/approach. Depending on their label and structure simi-

larity factors, the algorithm will favor one or the other kind of strategy, and for

this purpose, it uses heuristic rules. Finally, ASMOV automates the ontology

alignment process by performing two steps: the computation of a pre-alignment

starting from a similarity matrix and a semantic verification process to ensure

which the pre-alignment does not contain semantic inconsistencies. In detail, the

similarity matrix is built by combining different similarity measures based on four

ontology features (lexical elements such as labels and comments, relation struc-

ture, internal structure such as domain and ranges of properties, and extension)

through a weighted average. The involved weights are chosen experimentally by

using a dataset. For instance, for the OAEI competition 2010, ASMOV optimizes

the weights by exploiting the same dataset provided for the OAEI competition

2008.

2.4.2.2 Computational Intelligence based Ontology Alignment Sys-

tems

In last years, some works have explored computational intelligence techniques for

addressing the ontology alignment problem. In particular, the designed systems

follow two general approaches: 1) facing directly the ontology alignment problem;

2) producing alignments by addressing the nested meta-matching problem.

Among the first class of systems, we can include GLUE [34], i.e., an ontology

alignment system that exploits machine learning to compute semantic mappings

between concepts stored in different ontologies. In detail, by considering two dis-

tinct ontologies, the mapping discovery process between their concepts is based

on the measure of similarity which is defined through the joint probability dis-

50

tribution computed by means of two base learning techniques applied on the

ontology instances. Different from GLUE, in [135], a genetic algorithm-based

ontology matching process, named GAOM, is proposed. In detail, in their work,

the authors model the problem of ontology matching as a maximum optimization

problem of a mapping between two compared ontologies. Each ontology is char-

acterized by an associated set of extensional and intentional features. GAOM

performs a matching process through a genetic algorithm whose the fitness func-

tion is defined as a global similarity measure function based on ontology feature

sets. In addition, in [109], genetic algorithms are exploited in order to intro-

duce an extraction method for searching an optimal or near optimal mapping

between two ontologies. The proposed genetic algorithm employs a structured

based weighting model, named “coincidence based model”, as its fitness function

to score different possible mappings. Finally, MapPSO [16], instead, addresses the

ontology alignment problem as a minimum optimization problem to be resolved

through the discrete particle swarm optimization. In detail, MapPSO exploits

a fitness function depending on the similarity values computed by performing a

combination of lexical, linguistic and structural matchers. MapPSO employs ag-

gregation techniques (minimum, weighted average aggregation, ordered weighted

average aggregation) whose weights are manually set.

Several works also belong to the second class of systems that face how to

efficiently set ontology alignment process parameters. One of the first works

which deals with the similarity aggregation problem by exploiting evolutionary

algorithms is GOAL (Genetics for Ontology Alignments) [90]. This system com-

putes, by means of a genetic algorithm, the optimal weight configuration for a

weighted average aggregation of several similarity measures by considering a refer-

ence alignment. Indeed, GOAL uses a method of evaluation based on one of these

conformance measures: precision, recall and F-measure. The same idea of imple-

menting a meta-matcher to combine multiple similarity measures through genetic

algorithms is developed in a more recent work [98]. In addition, also in [53], the

authors try to optimize the combination of similarity measures by means of a ge-

netic algorithm but, different from the previous works, they focus on optimizing

all ontology alignment parameters, including the threshold value in the chromo-

some. However, these meta-matching methods have a relevant drawback which

51

affects strongly their applicability: they require an a priori knowledge about on-

tologies under alignment in order to select the most suitable set of the weights. In

fact, they align ontologies by using the optimal combination of weights obtained

for a pair of ontologies with the same features whose a reference alignment is

known.

2.5 Ontology Alignment: Open issues

Despite many component matching solutions have been developed so far, there

is no integrated solution that is a clear success, which is robust enough to be

the basis for future development, and which is usable by non expert users [117].

This section aims at analyzing the key trends and open issues of the ontology

matching field, by highlighting the contribution of this research work for facing

some of them. In detail, the open issues discussed in [117] are:

• large scale evaluation: the fast growth of different matching approaches

makes the issues of their evaluation and comparison more stringent. There

are many points to be faced in ontology matching evaluation in order to

empirically prove the matching technology to be mature and reliable. In

particular, there is a need for more accurate evaluation quality measures

(initial steps towards these have been presented in section 2.3.2.2);

• quality : in spite of several ontology matching systems have been developed,

none of them seems capable of producing high quality alignments on differ-

ent domains and different problem instances. Therefore, designing generic

ontology alignment systems which are characterized by acceptable results

is a research challenge [133];

• performance of ontology-matching techniques : although performance is of

prime importance in many dynamic applications, for example, where a user

can not wait too long for the system to respond, it is not yet a trend in this

field. Indeed, the results of the anatomy track of OAEI-2011 [40], where only

two systems take a time under 10 minutes, is a clear aspect of this poor

consideration of performance. However, new application scenarios of the

52

ontology alignment process such as semantic search and Web service com-

position stress the importance of computational complexity considerations,

even if it is always strong the opinion that it is worth doing computational

optimizations only once the underlying basic techniques are stable.

• discovering missing background knowledge: one of the sources of difficulty

for the alignment tasks is that ontologies are designed with certain back-

ground knowledge and in a certain context, which unfortunately do not

become part of the ontology specification, and, thus, are not available to

matchers. Hence, the lack of background knowledge increases the difficulty

of the alignment task, e.g., by generating a lot of ambiguities. Several

strategies have been explored in order to address the problem of the lack

of background knowledge such as declaring the missing axioms manually as

a pre-match effort or reusing previous match results, but, without a clear

success.

• uncertainty in ontology matching : because the syntactic representation of

the ontologies cannot completely describe the semantics of different on-

tologies, automatic matching techniques bring with them a degree of un-

certainty [93] related to correctness of produced alignments. The issue of

handling uncertainty in ontology alignment scenario has been faced with

several strategies such as by using the notion of probabilistic schema map-

pings. However, in spite of the work done, there is still a need to understand

better the foundations of modeling uncertainty in ontology alignment sce-

nario in order to enhance detection of matchings causing inconsistencies.

• matcher selection and self-configuration: there are a lot of matchers that

are available so far. However, often these systems perform well in some

cases and not so well in some other cases. This leads to the following is-

sues: 1) matcher selection, i.e, which similarity measures should be used

for a particular instance of ontology alignment problem; 2) matcher com-

bination, i.e., how selected similarity measures should be combined; and

3) matcher tuning, i.e., how to tune and adapt automatically matching

solutions to the settings in which an application operates. So far, only

53

few ontology alignment systems face the ontology meta-matching problem

[98][53], but performing or semi-automatic process or procedure requiring

a priori knowledge.

• user involvement : another open issue is whether it is possible to produce

accurate alignments without any user intervention or human knowledge?

However, if an ontology alignment system considers user involvement, thus

it must provide a way for users to analyze the results of an ontology match-

ing process and understand the characteristics of the source ontologies. In

other word, there is a need for new human-readable ontology-matching in-

terfaces. So far, there have only been few studies focused on the ergonomic

aspect of elaborating alignments, either for designing them manually or for

checking and correcting them.

In our research work, we focus on second and third issues by attempting to

design an efficient ontology alignment system both in terms of alignment qual-

ity and computational effort. In order to achieve this result, we investigate the

application of a new class of approximate methods, named memetic algorithms,

for facing the ontology alignment problem following two directions: solving di-

rectly the ontology alignment problem as an optimization one and producing

alignments by addressing of nested meta-matching problem. The research is re-

sulted in two systems, respectively, named MemeOptiMap and MemeMetaMap,

which, after some experiments on a well-known dataset, have shown competi-

tive performances. However, in particular, MemeMetaMap allows to address also

other presented open issues such as the self-configuration, and, as side effect, it

deals with the issues related to background knowledge and user involvement by

removing them upstream. Indeed, MemeMetaMap efficiently works regardless of

a priori knowledge about ontologies and user intervention.

54

Chapter 3

An Emergent Search Paradigm:

The Memetic Algorithms

In this chapter, we introduce the so-called Memetic Algorithms (MAs)(see section

3.1) which represent the main methodology used in our research work to address

the ontology alignment problem. MAs are meta-heuristic search methods which

combine genetic algorithms with local search strategies. Therefore, in order to al-

low readers to understand MAs’ general structure (see section 3.5), basic concepts

about search algorithms (see section 3.2), some local search methods (see section

3.3) and genetic algorithms (see section 3.4) will be described. Then, in section

3.6, we present an emergent extension of conventional MAs aimed at overcoming

some their limitations. The chapter ends with a discussion about the techniques

used to execute performance comparisons among MAs, and, in general, among

different approaches (see section 3.7).

3.1 Introduction

Back in the late 80s, the term “Memetic Algorithms” (MAs) was given birth

to denote a wide family of metaheuristics that attempted to merge concepts

from clearly separated methodologies such as Evolutionary Algorithms (EAs)

and Local Search (LS) methods. This marriage makes MAs intrinsically capable

of exploiting all available knowledge about the problem under study [96]. The

55

philosophy of incorporating problem domain knowledge is fully represented by

the term “memetic” coined by Dawkins in [29] for denoting an analogous to the

gene in the context of cultural evolution [95]. Quoting Dawkins:

Examples of memes are tunes, ideas, catch-phrases, clothes fashions,

ways of making pots or of building arches. Just as genes propagate

themselves in the gene pool by leaping from body to body via sperms

or eggs, so memes propagate themselves in the meme pool by leaping

from brain to brain via a process which, in the broad sense, can be

called imitation.

This characterization of a meme inspires that information exchanged in a cul-

tural evolution process is not simply transmitted unaltered between individuals,

but it is processed and enhanced by the communicating parts. This enhance-

ment is accomplished in MAs by incorporating heuristics, approximation algo-

rithms, local search techniques, specialized recombination operators, truncated

exact methods, etc. [96]. Initially, MAs had to suffer, but they are now becom-

ing increasingly popular, as demonstrated by several works applying them (see

section 3.5.1). In the next sections, we provide a in-depth description about MAs

(see section 3.5), focusing on their technical and formal features starting with

basic concepts related to local search and population-based search (see section

3.2 Local vs Population-based algorithms

An algorithm is a detailed step-by-step procedure for solving a computational

problem. As described in [96], a computational problem P denotes a class of

algorithmically-doable tasks characterized by an input domain set of instances

denoted IP . For each instance x ∈ IP , it is possible to denote with solP (x) the

set of feasible solutions for problem P given instance x. The research is expected

to find an algorithm that solves problem P . This means that the designed algo-

rithm, given instance x ∈ IP , must return at least one element y from a set of

answers ansP (x) (also called given solutions) that satisfies the requirements of the

problem. However, depending on the kind of answers expected, computational

problems can be classified into different categories [96]:

56

• finding all solutions in, i.e., enumeration problems.

• counting how many solutions exist in, i.e., counting problems.

• determining whether the set is empty or not, i.e., decision problems.

• finding a solution in maximizing or minimizing a given function, i.e., opti-

mization problems.

In our research work, we focus on the last possibility, that is, a problem

instance will be considered solved by finding a certain feasible solution, i.e. either

finding an optimal y ∈ solP (x) or giving an indication that no such feasible

solution exists. An algorithm is said to solve problem P if it can fulfill this

condition for any given instance x ∈ IP . However, this definition is too wide,

therefore, we give a more restrictive characterization for our problems of interest

resulting in the so-called combinatorial optimization problems. In detail, these

are a special subclass of computational problems characterized by the following

features for each instance x ∈ IP [96]:

• the cardinality of solP (x) is finite;

• each solution y ∈ solP (x) has a goodness integer value mP (y, x) obtained

by means of an associated objective function mP ;

• a partial order ≺P is defined over the set of goodness values returned by

the objective function, allowing determining which of two goodness values

is preferable.

An instance x ∈ IP of a combinatorial optimization problem P is solved

by finding the best solution y∗ ∈ solP (x) i.e., finding a solution y∗ such that no

other solution y ≺P y∗ exists if solP (x) is not empty. Typically, ≺P defines a total

order. In this case, the best solution is the one that maximizes (or minimizes)

the objective function.

In order to find at least one of the optimal solutions for a given instance, a

search algorithm must be used. Before describing search algorithms, it is neces-

sary to discuss three entities: search space, the neighborhood relation, and the

guiding function. The search space for a combinatorial problem P is a set SP (x)

whose elements are characterized by the following properties:

57

• each element s ∈ SP (x) represents at least one answer in ansP (x);

• at least one optimal element y∗ of solP (x) is represented by one element in

SP (x).

Each element of SP (x) is called a configuration and it is related to an answer in

ansP (x) by a growth function g : SP (x) → ansP (x). It is worth noting that the

first requirement refers to ansP (x) and not to solP (x). This implies that some

configurations in the search space may correspond to infeasible solutions. The

role of the search space is to provide a “ground” on while the search algorithm

will act, and of course, indirectly moving in the image set ansP (x) [96]. Impor-

tant properties of the search space are related with the accessibility relationships

between the configurations which, in turn, are dependent of a neighborhood func-

tion NP : SP → 2SP . This function assigns to each element s ∈ SP (x) a set

NP (s, x) ⊆ S of neighboring configurations of s. The set NP (s, x) is named the

neighborhood of s and each member s′ ∈ NP (s, x) is named a neighbor of s.

Typically, the elements of NP (s, x) are not explicitly listed, but it are implicitly

defined by using a set of possible moves, which represent transitions between

configurations. The last entity, the guiding function, associates to each configu-

ration a value that assesses the quality of the solution. Formally, it is a function

Fg : SP → FP where FP is a set whose elements are termed fitness values (typi-

cally FP ≡ R) and it is characterized by a partial order ≺FP
on FP (typically, but

not always, ≺FP
≡<). The behavior of the search algorithm will be “controlled”

by these fitness values. It is worth noting that for optimization problems there is

an obvious direct connection between the guiding function Fg and the objective

function mP [96].

The combination of a certain problem instance and the aforementioned three

entities (search space, neighborhood relation, guiding function) induces a so-called

fitness landscape [77]. Essentially, a fitness landscape can be defined as a weighted

digraph, in which the vertices are configurations of the search space and the arcs

connect neighboring configurations [96]. The weights represent the difference of

the guiding function of the endpoint configurations. Therefore, the search can be

seen as the process of “navigating” the fitness landscape using the information

provided by the guiding function. This very powerful metaphor allows inter-

58

preting the search progress in terms of well-known topographical objects such as

peaks, valleys, mesas, etc.. Associated with this definition of fitness landscape,

there is the important notion of local optimum. In detail, a local optimum is a

vertex of the fitness landscape whose guiding function value is better than the

values of all its neighbors. It is worth noting that the notion of local optimum

is not intrinsic to a problem instance as it is, sometimes, erroneously considered.

This is related to the fact that different moves produce different neighborhoods,

and, as a consequence, different fitness landscapes, even when the same problem

instance is studied.

All aforementioned definitions naturally lead to the notion of local search algo-

rithm. A local search algorithm starts from a configuration s0 ∈ SP (x) generated

at random or constructed by other algorithms. Subsequently, it iterates using

at each step a transition based on the neighborhood of the current configuration

until a certain termination criterion is met. The selection of the particular type

of moves (also known as mutation) to use does certainly depend on the specific

characteristics of the problem and the representation chosen.

Local search algorithms are thus characterized by keeping a single configura-

tion at a time. The immediate generalization of this behavior is the simultaneous

maintenance of k, (k ≥ 2), configurations. The term population-based search al-

gorithms has been coined to denote search techniques behaving this way. The

availability of simultaneously managing several configurations enables the use of

new powerful methods for traversing the fitness landscape in addition to the stan-

dard mutation operator. The most common of these methods is known as the

recombination operator. In essence, recombination can be described as a process

in which a set of n configurations (informally referred to as parents) is manipu-

lated to create a set of m new configurations, called offspring. The creation of

these descendants implies the identification and combination of features extracted

from the parents.

In the next sections, some examples of local search methods (see section 3.3)

and an example of population-based search such as genetic algorithms (see section

3.4) are described in a more detailed way.

59

3.3 Local search methods

The local search paradigm derives its name from the kind of moves computed for

producing a neighbor configuration. Indeed, these moves, known also as muta-

tions, are usually defined as “local” modifications of some part of a configuration,

where “locality” refers to the fact that the move is done on a single solution to

obtain another single solution. Therefore, local search algorithms are character-

ized by keeping a single configuration at a time. All local search approaches are

known for their efficiency, however, they suffer from the same drawback: they

tend to get stuck in local optima (see section 3.2).

In this section, examples of local search methods are given. In particular,

hereafter, we present three variants of the Hill Climbing Search and the Simulated

Annealing.

3.3.1 Three variants of Hill Climbing

In general, the Hill Climbing Search is a greedy strategy which performs iterative

search for optimum solution in the neighborhood of a candidate. The algorithm

starts from an arbitrary candidate solution generated at random or constructed by

other algorithms. At each iteration, the algorithm changes the current solution

by typically applying a mutation operator in order to find a better solution.

If the change improves the current candidate, then the new one becomes the

current one. The algorithm continues until a certain termination criterion is met.

Typical criteria are the realization of a pre-specified number of iterations, not

having found any improvement in the last m iterations, or even more complex

mechanisms based on estimating the probability of being at a local optimum [24].

In literature, there are several variants of Hill Climbing search depending on

how the next solution is tried. In this work, three variants are considered: the

Simple Hill Climbing algorithm (see Table 3.1) which chooses the first closer node

to solution, the Stochastic Hill Climbing search (depicted in the Table 3.2) which

selects a neighbor at random and the Steepest Hill Climbing algorithm (see Table

3.3) which chooses the closest node to the current solution.

60

Table 3.1: The Simple Hill Climbing Algorithm

Input: an individual solution representing the initial solution, termination criteria term crit,
the maximum number of neighbors n.

Output: the individual sol which represents the solution optimized by means of local search.

1: sol← solution;
2: iter ← 0;
3: while (term crit is not reached) do
4: S ← getNeighbors(sol, n);
5: new sol← getFirstBestNeighbor(S);
6: if (evaluate(new sol) < evaluate(sol)) then
7: sol← new sol;
8: end if
9: iter ← iter + 1;
10: end while
11: return sol;

Table 3.2: The Stochastic Hill Climbing Algorithm

Input: an individual solution representing the initial solution, termination criteria term crit.

Output: the individual sol which represents the solution optimized by means of local search.

1: sol← solution;
2: iter ← 0;
3: while (term crit is not reached) do
4: new sol← getRandomNeighbor(sol);
5: if (evaluate(new sol) < evaluate(sol)) then
6: sol← new sol;
7: end if
8: iter ← iter + 1;
9: end while
10: return sol;

61

Table 3.3: The Steepest Hill Climbing Algorithm

Input: an individual solution representing the initial solution, termination criteria term crit,
the maximum number of neighbors n.

Output: the individual sol which represents the solution optimized by means of local search.

1: sol← solution;
2: iter ← 0;
3: while (term crit is not reached) do
4: S ← getNeighbors(sol, n);
5: new sol← getBestNeighbor(S);
6: if (evaluate(new sol) < evaluate(sol)) then
7: sol← new sol;
8: end if
9: iter ← iter + 1;
10: end while
11: return sol;

3.3.2 Simulated Annealing

Simulated Annealing (SA) is a stochastic computational technique that derived

its name from the annealing process used to re-crystallize metals. As in the

physical process, SA lets the solution to vary significantly while the temperature

is high and fixes the changes as the temperature decreases, freezing it when the

temperature reaches a value very near to 0. SA is one of the first metaheuristics

that considers an explicit strategy to avoid local minima. The fundamental idea

is to allow moves resulting in solutions of worse quality than the current solution

(uphill moves) in order to escape from local minima [15].

A general pseudocode for SA is described in the Table 3.4. SA works by

starting with an initial solution sol, and setting the temperature T to an initial

(high) temperature T0. At each iteration, SA randomly generates a neighbor

new sol of sol and compares its fitness value with the fitness value of the current

solution sol. At this point, the neighbor solution new sol is accepted as the new

current solution if it is better than the current one or, in case it is worse, with

a probability that is dependent on both the difference of fitness values delta and

temperature T . The probability is generally computed by using the Boltzmann

distribution e
−delta

T . Finally, SA reduces the temperature by following a predefined

62

Table 3.4: The Simulated Annealing Algorithm

Input: an individual solution representing the initial solution, the initial temperature T0, the
final temperature Tf .

Output: the individual sol best which represents the solution optimized by means of local
search.

1: sol← solution;
2: sol best← solution;
3: T ← T0;
4: while (T > Tf) do
5: new sol← getRandomNeighbor(sol);
6: delta← evaluate(new sol) − evaluate(sol);
7: if (delta <= 0) then
8: sol← new sol;
9: if evaluate(new sol) < evaluate(sol best) then
10: sol best← new sol;
11: end if
12: else
13: r ← getRandomValue();

14: if r < e
−delta

T then
15: sol← new sol;
16: end if
17: end if
18: T ← updateTemperature(T);
19: end while
20: return sol best;

cooling schedule. When the termination criteria are reached, SA returns the found

best solution.

One critical point of the SA is the choice of an appropriate cooling sched-

ule because it strongly affects the performance of the algorithm. In particular,

in order to implement a cooling schedule, the following parameters should be

specified:

• an initial temperature;

• a final temperature;

• a rule for decrementing the temperature.

In this research work, the cooling schedule proposed by Kirkpatrick [79] is

used. In particular, Kirkpatrick suggested that a suitable initial temperature is

63

one that results in an average increase acceptance probability of about 0.8. The

value of T0 will clearly depend on the scaling of fitness function f and, hence, be

problem-specific. It can be estimated by conducting an initial search in which

all increases are accepted and calculating the average objective increase observed

δ−f+ on N trials. Therefore, in our implementation, the T0 is computed by

the following formula: T0 = δ−f+

ln(χ0)
. With regard the final temperature Tf , it

is necessary simply to choose a value very close to 0. The choice of a rule for

decrementing the temperature is more complex. In literature, there are a lot of

different methods. In our implementation, the exponential cooling scheme (ECS)

proposed by Kirkpatrick et al. in [80] has been chosen. In general, this scheme

reduces the current temperature by multiplying it with a constant α close to, but

smaller than, 1. In particular, Kirkpatrick proposed α = 0.95.

3.4 Population-based Search:

Genetic Algorithms

The interest in Genetic Algorithms (GAs) began as early as the 1970s when Hol-

land [67] first proposed them as search methods inspired by the mechanisms of

evolutionary processes in nature. In particular, GAs are based on Darwinian

principle of the natural selection which leads to the survival of the only fittest

individuals. More in detail, in nature, evolution manifests itself as a succession

of changes in species’ features determined by genetic reproduction. The individ-

ual features, represented by chromosomes (formed in turn by genes), determine

the survival capacity of individuals. Indeed, only fittest individuals capable of

adapting to the changing environment survive and reproduce. Hence, the genes of

the fittest individuals survive, while the genes of weaker one die out. Therefore,

the evolution process is derived from the joint action of natural selection and

the recombination of genetic material that occurs during reproduction and that

generates diversity in the gene pool [119]. In detail, evolution is started when the

genetic material from two parents recombines during reproduction. New combina-

tions lead to new genes giving birth to a new gene pool. Precisely, the exchange

of genetic material among chromosomes is named crossover. Segments of the

64

two parent chromosomes are swapped during crossover, arising the possibility of

the “right” combination of genes for better individuals. Repeating selection and

crossover operations leads to the continuous evolution of the gene pool and the

generation of individuals that survive better in a competitive environment [119].

GAs try to solve an optimization (or search) problem by manipulating a popu-

lation of potential solutions by means of reproducing the aforementioned natural

evolution process. Specifically, they operate on encoded representations of the

solutions, called chromosomes, that equivalent to the representations of individ-

ual features in nature. The encoding mechanism strongly depends on the nature

of the problem variables. The algorithm evolution starts from a population of

randomly generated individuals and consists in successive generations. In each

generation, as in nature, a selection process provides the mechanism for selecting

better solutions to survive. Each solution is evaluated by means a fitness function

that reflects how good it is, compared with other solutions in the population. For

maximum problem, the higher (the lower for minimum problem) is the fitness

value of an individual and higher are its chances of surviving. Typically, GAs use

the roulette wheel selection scheme [67]. It consists in giving to each chromosome

a probability of being selected which is directly proportionate to its fitness score.

In detail, if si is the fitness score of ith individual of the population, its proba-

bility pi of being selected is pi =
si∑N

k=1 sk
, where N is the number of individuals

in the population. Therefore, the best solutions will have more possibilities of

belonging to the next generated population. Instead, recombination of genetic

material in GAs is simulated through two operators: crossover that exchanges

portions between two randomly selected chromosomes and mutation that causes

random alteration of the chromosome genes. In literature, there are different

kinds of crossover. Traditionally, GAs use the single-point crossover. Precisely,

this crossover operator randomly selects two chromosomes representing the par-

ents. Then, it chooses a crossover point that can assume values in the range

[1, l− 1], where l is the length of the chromosome. Each point of range has equal

probability to be selected. The portions of the two chromosomes beyond this

crossover point are swapped to form two new chromosomes, named offsprings.

However, crossover is not always executed. As matter of fact, the algorithm per-

forms crossover only if a randomly generated number in the range [0, 1] is greater

65

than pc, i.e., the crossover rate. Mutation, instead, runs through the genes in each

of the chromosome in the population and mutates them in statistical accordance

to the given mutation rate pm. The genes of a chromosome are independently

mutated, i.e, the mutation of a gene does not affect the probability of mutation of

other genes. The algorithm evolution terminates when specified conditions such

as the maximum number of generations or a specific fitness value are reached.

The general GAs’ structure is shown in Fig. 3.1.

Figure 3.1: The typical steps of a genetic algorithm.

Thanks to their capability of exploring and exploiting promising regions of

search space, GAs have the strong benefit not to prone to stalling at local optima.

However, they can take relatively long time to locate the exact local optimum

in a region of convergence (and may sometimes not to find the optimum with

sufficient precision) [104]. For this reason, the idea to create an hybrid paradigm

(see section 3.5) that combines genetic algorithms with the local search methods,

known for their efficiency.

3.5 The Memetic Algorithms

Memetic Algorithms (MAs) are population-based meta-heuristic search methods

inspired by both Darwinian principles of natural evolution (see section 3.4) and

66

Dawkins notion of a meme defined as a unit of cultural evolution that is capable of

local refinements [29]. In detail, according to the philosophical theory of Richard

Dawkins [29], human culture can be decomposed into simple units namely memes.

Thus a meme is a “brick” of the knowledge that can be duplicated in human

brains, modified, and combined with other memes in order to generate a new

meme [99]. Within a human community, some memes are simply not interesting

and will die away in a short period of time, whereas, other ones are relevant and,

similar to an infection, will propagate within the entire community. An example

of this concept is in the gossip propagation within human communities [99]. Some

gossips are, de facto, more interesting than others and persist over time reaching

all the individuals of the community. In addition, gossips can be subject to

slight (or sometimes major) modifications. Sometimes these modifications make

these gossips more interesting and thus more durable and capable to propagate.

This example of life-time learning is also interesting in order to note the difference

between memes and genes. In particular, the latter is not modified during the life-

time of the individual, and is transmitted as they were inherited (of course, genetic

information is mixed during sexual reproduction and can be subject to mutation

as well, but this is a different process not alike to life-time learning). On the

contrary, the former is much more plastic which also explains their comparatively

faster rate of adaptation with respect to biological genes.

This charming interpretation of human culture inspired Moscato and Norman

in late ’80s [102] to define Memetic Algorithms (MAs). In practice, MAs blend

together the most prominently ideas from local search techniques and population-

based search, above all, genetic algorithms, by integrating local search processes

within the global search successive generations in order to refine population in-

dividuals. In general, MAs structure can be seen as an iterated sequence of

the following operations, aimed at converging a population of tentative solution

toward an sub-optimal solution:

1. Selection of parents : as genetic algorithms, selection aims to determine the

candidate solutions that will be used to create new solutions. Typically,

selection for reproduction operates in relation with the fitness value of the

candidate solutions;

67

2. Application of Genetic operators : recombination and mutation aims at cre-

ating new promising candidate solutions by blending existing solutions, a

solution being promising if it can potentially lead the optimization process

to new search areas where better solutions may be found;

3. Update of the population: this step decides whether a new solution should

become a member of the population and which existing solution of the

population should be replaced;

4. Local improvement : the goal of local improvement is to improve the quality

of some or all individuals of the population. Candidate solutions undergo

refinement which correspond the life-time learning of the individuals in the

original metaphor of MAs.

The algorithm evolution terminates when it reaches a maximum number of it-

erations or a maximum of iterations without improvement or a specific target

fitness, too. Representing the marriage between global search and local improve-

ment, MAs have the complementary advantages of genetic algorithms (generality,

robustness and global search efficiency) and local search methods (rapid conver-

gence toward local minima). Without loss of generality, the template of MAs is

summarized in listing 3.5.

MAs have been successfully applied, in recent years, to solve complex real-

world problems (see section 3.5.1). However, despite their enormous benefits

represented by more efficient search and convergence to higher quality solutions,

MAs’ performance strongly suffers the following issue [81]: What is the best trade-

off between local search and the global search provided by evolution? In turn, this

issue leads naturally to questions such as the following ones:

• Local search frequency : How often should local search be applied within the

evolutionary cycle?

• Order respect to genetic operators : When should local search be applied?

• Individual selection mechanism: Which individuals in the population should

be improved by local search?

68

Table 3.5: Template of Memetic Algotirthms.

Input: size of the population pop size, crossover rate pc, mutation rate pm, termination criteria t, local search
parameters lp.

Output: the best chromosome best chromosome.

1: gen← 0;
2: pop← generateInitialPopulation(pop size);

// Generate randomly an initial population pop of pop size chromosomes
3: evaluateFitness(pop); // Evaluate fitness value for each chromosome
4: while termination criteria t are not satisfied do
5: offspring ← executeCrossover(pop, pc);

// Crossover chromosomes according to a crossover rate pc
6: offspring ← executeMutation(offspring, pm);

// Mutate chromosomes with a mutation probability pm
7: evaluateFitness(offspring); // Evaluate fitness value for new chromosomes
8: pop← selectPopulation(pop, offspring,pop size);

// Select pop size chromosomes to generate the next new population pop
9: pop← executeLocalSearch(pop, lp);

// Execute the local search refinement on population
10: best chromosome← getBestChromosome(pop);

// Select the best chromosome of the current population
11: gen← gen+ 1; // Increment number of iterations
12: end while
13: return best chromosome;

• Local search intensity : How much computational effort should be allocated

to each local search?

• Local search method : Which local search procedure should be used?

Typically, answering to these questions is very difficult. The common technique

for giving answers is to perform an extensive phase of tuning aimed to carry out

the best parameters suitable for a specific problem instance.

3.5.1 Applications of Memetic Algorithms

MAs have been shown to be efficient methods for solving several optimization

problems [127]. Indeed, a lot of works have successfully applied MAs for solving

well-known problems such as the classical Traveling Salesman Problem (TSP)

[92][63], the job shop scheduling problem [48][27], the graph coloring problem

[46][86], the non linear integer programming [124] and so on.

In addition, other combinatorial problems have also been addressed by MAs.

For instance, in [131], the authors propose to apply MAs in wireless sensor net-

69

work (WSN) domain to solve the SET K-COVER problem. In detail, in order

to extend the lifetime during which a WSN can cover all targets, an effective

method is to partition the collection of sensors into several covers, each of which

must include all targets, and then to activate these covers one by one. Since

more covers enable longer lifetime, the SET K-COVER consists in finding the

maximum number of covers. Another example is represented by [3], where the

authors exploit MAs to solve an e-learning issue, modeled as the Plant Location

Problem. In detail, this work presents a framework aimed at offering a set of

personalised e-learning experiences (i.e. a structured collection of content and

services able to facilitate learners in acquiring a set of competences about a spe-

cific domain) adapted to learner expectations. In order to achieve this goal, a

convenient way to bind subjects, included in personalised learning paths, with

learning activities (realized with learning services and learning objects) selected

on the base of learner preferences is necessary. Therefore, the authors propose

a multi-island memetic algorithm to face the binding problem formulated as a

Plant Location Problem. Furthermore, in [1], a Tabu-based memetic algorithm

that hybridizes a genetic algorithm with Tabu Search is presented as an improved

method for course and examination timetabling problems. Finally, in [138], the

authors propose a MA, which incorporates genetic algorithms with the variable

neighborhood search algorithm, for the minimization of makespan in the hetero-

geneous multiprocessor scheduling problem. Other problems are vehicle routing

[23][97], task allocation [64], maintenance scheduling problem [19][18].

However, MAs are not limited to solve combinatorial problems, but, they have

successfully been also utilized in other fields. For example, they have been applied

for training neural network [85][100], for selection of features in face recognition

applications [82] and for analyzing microarray data [25].

3.6 A MAs’ extension:

Parallel Memetic Algorithms

As described in the previous section, MAs have been successfully used for a lot

of applications. Indeed, they not only converge to high quality solutions, but

70

also search more efficiently than their genetic counterparts [127]. However, if,

on the hand, the combination of global and local searches characterizing MAs

leads to higher quality solutions, on the other hand, it involves an increment

of the computational effort. One of the ways to face this problem is to develop

parallel architectures for evolutionary optimization. For these reason, a variety of

parallel memetic algorithm (PMA) models have also been studied recently [127].

PMAs extend the conventional MAs by introducing ideas belonging to the class

of parallel genetic algorithms (PGAs). In general, PGA principle is to divide

classical GA tasks across multiple processing nodes. This allows speeding up

the search process and facilitating speciation, i.e., a process by which different

subpopulations evolve in diverse directions simultaneously [127].

In literature, PGAs are categorized in three kinds: master-slave PGAs, fine-

grained PGAs and multiple-population or multiple-deme PGAs [20]. In detail,

master-slave PGAs evolve a single panmictic population without changing the tra-

ditional protocol of GAs, but, unlike conventional GAs, evaluations of individuals

are distributed by scheduling fractions of the population among the processing

slave nodes. Fine-grained PGA consists of a single spatially-structured popula-

tion. Genetic operations such as selection and mating are limited to small groups

of individuals, but group overlapping allows some interactions among all the in-

dividuals so that good solutions may disseminate across the entire population.

Finally, multi-deme PGAs consists of different subpopulations which exchange

individuals occasionally. This procedure is called migration and it is controlled

by several parameters such as the number of individuals to be migrated or the

kind of topology which determines the destination of migrants. Multi-deme PGAs

are also known as island parallel GAs since the subpopulations can be viewed as

relatively isolated demes. This classification can be naturally reported for PMAs.

The most important advantage of parallel MAs is that in many cases, the

multi-population MAs provide better performance than single population-based

algorithms, even when PMA is simulated sequentially, thanks to speciation phe-

nomenon [72]. For this reason, PMAs are recognized as not only an extension

of the traditional MA sequential model, but as a new class of algorithms in that

they search the space of solutions differently [127].

71

3.7 Performance evaluation of search algorithms

In a scenario such as the ontology alignment problem, where a lot of algorithms

for its resolution has been proposed, having techniques for understanding which

approach is better than others is desiderata. In the case of the use of search

algorithms, a comparison of their behaviour could be done attending to the ef-

ficiency and/or effectiveness criteria. However, when theoretical results are not

available, it is necessary to focus on the analysis of empirical results [49]. In last

years, statistical procedures are becoming more and more the most opportune

methodology for performing this comparison. Statistical tests can be categorized

in parametric and non-parametric techniques. Both classes of procedures have

been used to compare algorithm behaviour. However, due to their constraints

(for example, normal distribution of data samples), parametric statistical analy-

sis could not be appropriate for analyzing algorithm behaviour [49]. Therefore,

the current trend is to leave the comparison to the non parametric statistical

tests.

In this section, we present a set of non parametric statistical procedures which

have been used in literature and in this work to compare performances of different

algorithms. In detail, we start with description of a non-parametric statistical

procedure, named Wilcoxon’s signed rank test [139], used for performing pairwise

comparisons between two algorithms. Then, we describe two methods, named

Friedman’s test [47] and Holm’s procedure [68], used for executing comparisons

which include more than two different algorithms. Indeed, when we are interested

in comparisons among several algorithms, pairwise statistical procedures such as

Wilcoxon’s test must not be used since repeating pairwise comparisons leads to an

error which grows agreeing with the number of comparisons done, called family-

wise error rate (FWER), defined as the probability of at least one error in the

family of hypotheses [116].

3.7.1 Wilcoxon’s signed rank test

As described in [49], the Wilcoxon’s signed rank test is a non-parametric pro-

cedure employed in a hypothesis testing situation involving a design with two

samples. It is a pairwise test used for answering this question: do two samples

72

represent two different populations? Therefore, it can be employed to detect sig-

nificant differences between the behavior of two algorithms and so it is suitable for

our experimentation: showing that the our approaches are better than existing

ones for solving ontology alignment problem.

In general, a hypothesis testing as the Wilcoxon’s test is a procedure in which

sample data are employed to evaluate a hypothesis. In detail, in order to evaluate

the research hypothesis, i.e., the statement of what a researcher predicts, two

statistical hypotheses are necessary: the so-called null hypothesis (H0) and the

so-called alternative hypothesis (H1). The null hypothesis is a statement of no

effect or no difference and, in particular, for Wilcoxon’s test is H0 : θD = 0, i.e, in

the underlying populations represented by the two samples of results, the median

of the difference scores equals zero. Instead, the alternative hypothesis represents

a statistical statement indicating the presence of an effect or a difference. For

Wilcoxon’s test the alternative hypothesis can be H1 : θD ̸= 0, but also H1 :

θD > 0 or H1 : θD < 0 by considering directional hypothesis. Since the statement

of a research hypothesis typically predicts the presence of a difference between

two algorithms which are being studied, as result of an experimentation, the null

hypothesis is expected to be rejected in favor of the alternative one.

In the following, we describe the test computation in a detailed way. Let N be

the length of samples, i.e., the number of values (rows) that the samples contain

and let di be the difference between the performance scores of the two algorithms

on ith value. The differences are ranked according to their absolute values. In

case of ties, average ranks are assigned. Let R+ be the sum of ranks for the rows

on which the second algorithm outperformed the first, and R− the sum of ranks

for the opposite. Ranks of di = 0 are split evenly among the sums; if there is an

odd number of them, one is ignored. Formally,

R+ =
∑
di>0

rank(di) +
1

2

∑
di=0

rank(di) (3.1)

R− =
∑
di<0

rank(di) +
1

2

∑
di=0

rank(di) (3.2)

Let T be the smallest of the sums, i.e., T = min(R+, R−). If T is less than or

73

equal to the value of the distribution of Wilcoxon for N degrees of freedom (see

Table B.12 in [144]), the null hypothesis of equality of means is rejected. Another

evaluation of test results can be performed by considering the so-called p-value,

the smallest level of significance that results in the rejection of the null hypothesis.

The most common way for obtaining the p-value associated to a hypothesis is by

means of normal approximations, that is, once computed the statistic associated

to a statistical test or procedure, we can use a specific expression or algorithm for

obtaining a z value, which corresponds to a normal distribution statistics. Then,

by using normal distribution tables, we could obtain the p-value associated with

z. The computation of the p-value in Wilcoxon’s test follows this procedure.

Since, the p-value provides information about whether a statistical hypothesis

test is significant or not, and it also indicates something about “how significant”

the result is: the smaller the p-value, the stronger the evidence against the null

hypothesis. So, an experiment successfully ends if the computed p-value is small.

For example, if the p-value is under the 0.01 value, it is possible to say that our

test rejects null hypothesis at 1% significante level.

3.7.2 Friedman’s test

Friedman’s test is a non-parametric statistical procedure which aims at detecting

if a significant difference among the behavior of two or more algorithms exists. In

particular, under the null-hypothesis, it states that all algorithms are equivalent,

hence, a rejection of this hypothesis implies the existence of differences among

the performance of all studied algorithms [49].

The Friedman’s test ranks the algorithms under comparison for each data set

separately, the best performing algorithm getting the rank of 1, the second best

rank 2, and so on [31]. In case of tied data, the average of the ranks involved is

assigned to all data tied for a given rank [116]. Formally, let rji be the rank of the

j-th of k algorithms on the i-th of N data sets. The Friedman test compares the

average ranks of algorithms, i.e. Rj =
1
N

∑
i r

j
i . The Friedman statistic (referred

as χ2
r) is approximated by means of the chi-square distribution with k−1 degrees

74

of freedom and is reported in equation 3.3.

χ2
r =

12N

k(k + 1)
[

N∑
j=1

R2
j −

k(k + 1)2

4
] (3.3)

where k is the number of compared algorithms, N is the number of data sets,

and Rj is the mean of the ranks for the j-th algorithm.

In order to reject the null hypothesis, the computed value χ2
r must be equal

to or greater than the tabled critical chi-square value at the specified level of

significance [116].

3.7.3 Holm’s test

Holms procedure is a multiple comparison procedure that works by setting a

control algorithm and comparing it with the remaining ones. Normally, the algo-

rithm which obtains the lowest value of ranking in the Friedman’s test is chosen

as control algorithm. Holm’s test works on a family of hypotheses where each one

is related to a comparison between the control method and one of the remaining

algorithms. In details, the test statistic for comparing the ith and jth algorithm

is reported in equation 3.4.

z = (Ri −Rj)/

√
k(k + 1)

6N
(3.4)

The computed z value is used to find the corresponding probability from the

table of the normal distribution (the so-called p-value), which is then compared

with an appropriate level of significance α [31]. In order to perform its evaluation,

Holm’s method sequentially checks the hypotheses ordered by their significance.

In details, it orders the p-values by denoting them as p1, p2, . . . , pk−1 so that

p1 ≤ p2 ≤ . . . ≤ pk−1. Then, it compares each pi with α/(k − i) starting from

the most significant p. If p1 is below α/(k − 1), the corresponding hypothesis is

rejected and we are allowed to compare p2 with α/(k−i). If the second hypothesis

is rejected, the test proceeds with the third, and so on. As soon as a certain null

hypothesis cannot be rejected, all the remaining hypotheses are retained as well

[31].

75

Chapter 4

MemeOptiMap: A Memetic

Optimization System for the

Ontology Alignment

In the previous chapters, we have discussed the ontology alignment problem, i.e.,

the research issue that we want to address, and the memetic algorithms, i.e., the

methodology that we investigate to face the problem at hand. In this chapter,

we describe our first contribution to ontology alignment researches consisting

in designing and implementing a memetic algorithm-based ontology alignment

system, named MemeOptiMap (see section 4.2). In order to achieve this result,

we have reformulated the ontology alignment problem as an optimization one

(see section 4.1). Since implementing an efficient memetic algorithm requires

to choose a suitable configuration of its parameters, in designing our system, we

have investigated different settings in order to find the best local configuration (see

section 4.3). Given the computational cost of the first version of MemeOptiMap,

we have designed its parallel extension (see section 4.4).

76

4.1 The Ontology Alignment as

Optimization Problem

This thesis aims at investigating the application of memetic algorithms to the

ontology alignment problem. Our first idea, presented in [2] [7], is to reformulate

the ontology alignment problem as an optimization problem, and, consequently,

to design an efficient memetic algorithm for solving it. In detail, the formu-

lated ontology alignment optimization problem considers as solution the set of

mapping elements minimizing the distance (or, equivalently, maximizing the sim-

ilarity) among the entities belonging to ontologies under alignment. This result is

achieved by exploiting an objective function that assesses the quality of an align-

ment by summing the distances between ontologies entities composing mapping

elements of alignment at hand. These distances are computed by using a suit-

ability function able to simultaneously evaluate lexical, linguistic and structural

distances between the mapping element entities and aggregate them in an overall

distance value by means of a so-called aggregation strategy.

Formally, by considering the definitions 1 and 4 related to, respectively, on-

tology and alignment, the ontology alignment process can be formulated as an

optimization problem as depicted by the Definition 8. MemeOptiMap exploits

this definition for implementing an efficient research approach capable of com-

puting a sub-optimal ontology alignment and achieving better performances than

other approaches.

Definition 8 (Alignment Optimization Problem) The alignment optimiza-

tion problem is a quadruple (O1, O2, Aset, F) where:

• O1 and O2 are the ontologies to align (the problem instance);

• Aset is the set of all possible alignments between O1 and O2 (the set of

feasible solutions);

• F : Aset → R is the objective function (to be minimized) evaluating the

77

quality of an alignment A ∈ Aset as follows:

F (A) =

|A|∑
i=1

f(ci) with ci ∈ A (4.1)

where f : A → [0, 1] is the suitability function which associates a value in

the [0, 1] interval to each mapping element ci in the alignment A ∈ Aset.

The function f is used to determine the goodness of a mapping element to

achieve an optimal alignment. The function f is computed by aggregating,

in a weighted way, a collection of similarity measures:

f(ci) = ϕ(−→s (ci),−→w) (4.2)

where the function ϕ represents an aggregation strategy which combines the

vector of similarity measures −→s by considering a weights vector −→w .

A list of possible similarity measures and aggregation strategies useful to im-

plement the suitability function f is reported, respectively, in sections 2.3.1.2

and 2.3.1.3. For sake of clarity, in this research work, only distance-based sim-

ilarity measures are taken in account and, consequently, a lower value of F (A)

corresponds to an alignment A nearer to optimal one. Therefore, the considered

alignment problem is a minimum optimization problem.

4.2 MemeOptiMap System

This section aims at presenting a new system able to perform an automatic

matching process based on an emergent hybrid evolutionary approach, named

Memetic Algorithms (MAs). As described in section 3.5, MAs are population-

based search methods which combine evolutionary algorithms (EAs) with local

search (LS) methods. The name is inspired by Richard Dawkins’ concept of a

meme, which represents a unit of cultural evolution that can exhibit local refine-

ment [29]. Indeed, the MAs have the capability of realizing local search processes

within the successive generations characterizing global search methods in order

to refine population individuals. In particular, we design a memetic algorithm

78

which extends a genetic algorithm with the stochastic hill climbing search. In

detail, the designed memetic algorithm based ontology alignment system, named

MemeOptiMap, takes in input two ontologies O1 and O2, and gives in output a

suboptimal alignment A as follows. Initially, the system randomly generates a

population of possible alignments between the input ontologies O1 and O2; in

detail, the algorithm generates a collection of chromosome genes (see Fig. 4.1) by

using an uniform probability distribution. At each iteration, the algorithm com-

putes new alignments by evolving the current population by means of traditional

genetic operators: the crossover and mutation operators. For each iteration, the

number of applications of crossover is determined by the crossover rate value

pc; the crossover operands are randomly selected from the current population by

means of a uniform probability distribution. At the same way, for each chro-

mosome belonging to the current population, the number of gene mutations is

determined by the mutation rate value pm. After these conventional genetic steps

are computed, the system performs a stochastic hill climbing search in order to

refine the best alignment belonging to the current genetic population. Succes-

sively, a genetic selection operator such as the roulette wheel is applied in order

to generate a new alignment population used by the system to start the next it-

eration. At the end of each iteration, if a reference alignment has been provided,

precision, recall and f-measure of the best alignment are computed and stored

for test goals. The system ends its evolution when the termination criteria are

satisfied. The behavior of MemeOptiMap is summarized in pseudocode reported

in Table 4.1.

Hereafter, a detail description of each single component of MemeOptiMap

followed by a discussion on matching dimensions and some implementative details

is given. The section ends with some experimental results.

4.2.1 Basic components of MemeOptiMap

The components of MemeOptiMap which require a more detail description are:

• the chromosome structure used to represent the solution of our problem,

i.e, an alignment;

79

Table 4.1: Ontology Alignment Memetic Algorithm.

Input: two ontologies O1 and O2 to align; GA parameters (size of the population pop size, crossover rate pc,
mutation rate pm), termination criteria term crit; local search parameters lsp.

Output: the best optimized alignment (represented by the final best chromosome) between the ontologies O1

and O2.

1: gen← 0;
2: pop← generatePopulation(pop size);

// Generate randomly an initial population pop of pop size chromosomes
3: evaluateFitness(pop); // Evaluate fitness value for each chromosome
4: best chromosome← getBestChromosome(pop);

// Select the best chromosome of the current population
5: quality ← evaluateAlignment(best chromosome);

// quality contains the information about
// the computed conformance measures on the current best chromosome

6: while (term crit are not satisfied) do
7: executeCrossover(pop, pc); // Crossover chromosomes according to a crossover rate pc
8: executeMutation(pop, pm); // Mutate chromosomes with a mutation probability pm
9: evaluateFitness(pop); // Evaluate fitness value for new chromosomes
10: best chromosome← getBestChromosome(pop);

// Select the best chromosome of the current population
11: local chr ← executeLocalSearchMethod(best chromosome, lsp);

// Execute the local search process on the best chromosome
12: executeSelection(pop, pop size);

// Select pop size chromosomes to generate next new population pop
13: gen← gen+ 1; // Increment number of iterations
14: quality ← evaluateAlignment(local chr); // quality contains the information about

// the computed conformance measures on the current best chromosome
15: end while
16: return best chromosome;

• the employed fitness function which allows the evaluation of the considered

solutions;

• the integrated local search process.

4.2.1.1 The alignment chromosome structure

Let consider that each ontology entity is enumerated from 0 to n + m + k − 1

where m,n, k are, respectively, the cardinalities of the sets C,P, I which compose

an ontology (see definition 1). A chromosome representing an alignment A is

a integer vector where each cell (gene) represents a correspondence between an

entity of the first ontology and any entity of the second one. More in detail, by

considering that the ith vector cell contains the integer j, the cell represents the

correspondence (ei, ej) where ei is the i
th entity of the first ontology and ej is the

80

jth entity of the second one. Given this chromosome structure, its size does not

depend on the cardinality of the second ontology at all, but, precisely, it is equal

to the number of entities belonging to the first ontology. Formally:

Definition 9 (Alignment Chromosome) A chromosome S representing an

alignment A between two ontology O1 and O2 is the set:

S = {(e0, ej0), (e1, ej1), (e2, ej2), . . . , (eh, ejh)}

where h = |O1| − 1 and jl ∈ {0, 1, 2, . . . , |O2| − 1} with l = 0, 1, 2, . . . , h.

Therefore, the chromosome dimension depends on alignment problem in-

stance.

Figure 4.1: The general structure of an alignment chromosome: each gene
represents the correspondence (ei, eji) where i = 0, 1, 2, . . . , |O1| − 1 and ji ∈
{0, 1, 2, . . . , |O2| − 1}

In order to better understand the alignment chromosome structure, let us

consider the two ontologies O1 and O2 presented in Figs. 2.2 and 2.3 whose

entities are indexed as shown in Fig. 4.2 and the possible alignment chromosome

depicted in Fig. 4.3-a). The resulting alignment is shown in Fig. 4.3-b).

It is worth noting that, due to the designed chromosome structure, MemeOp-

tiMap builds alignments characterized by a cardinality (n : 1), i.e., an entity of

the first ontology can be associated with an only entity of the second one, whereas,

an entity of the second ontology can be associated also with more entities of the

first one.

4.2.1.2 Fitness function

Section 4.1 is devoted to formulate the ontology alignment process as a mini-

mization problem based on the evaluation of the objective function provided by

81

Figure 4.2: The ontologies O1 and O2 whose the entities are indexed by 0 to
cardinality of the ontology minus one

Figure 4.3: In a) a possibile alignment chromosome for the ontology O1 and O2

and in b) the corresponding alignment.

82

Eq. (4.1). As a consequence, MemeOptiMap exploits the same function for evalu-

ating the fitness values of the chromosomes composing the population of solutions

evolved by the designed memetic algorithm.

4.2.1.3 The integrated local search process

In order to design a competent [55] MA, a lot of issues must be addressed over

the integrated local search process as described in section 3.5.

Therefore, in order to complete the description of MemeOptiMap, the afore-

mentioned issues must be faced. In detail, MemeOptiMap is characterized by the

following features:

• Local search frequency = 1, i.e., the local search is applied within each

evolutionary cycle;

• Order respect to genetic operators = after, i.e., local refinement is executed

after crossover and mutation operators;

• Individual selection mechanism = only the best, i.e., only the best chromo-

some of population is improved by the local search process;

• Local search intensity = equal to n local search iterations, i.e., each local

search process ends after running n iterations.

• Local search method = stochastic hill climbing, i.e., the selected local search

method is the stochastic version of the Hill Climbing search (see section

3.3).

4.2.2 Discussions on Matching dimensions

Beside the general scheme presented in Definition 2, it is useful to consider a col-

lection of additional features related to the ontology alignment process, known as

dimensions (see section 2.3.1.1). They represent constraints or restrictions on the

ontology alignment process which influence the behavior of ontology alignment

systems and, as a consequence, they can be used for performing their classifica-

tion [43]. This section is devoted to present the dimensions and the corresponding

83

values which characterize the behavior of MemeOptiMap. This description allows

to highlight the features of the produced alignments, and, at the same time,

categorize MemeOptiMap in the state of the art.

By analyzing the features and the behaviour of MemeOptiMap, it is charac-

terized by the following matching dimensions (see section 2.3.1.1):

• languages : The input ontologies are coded by OWL;

• complete/update: a whole ontology alignment is computed from scratch.

Therefore, MemeOptiMap does not take in input an initial partial alignment

or in other words, the initial alignment is equal to emptyset;

• Resources : MemeOptiMap exploits WordNet as dictionary for the linguistic

similarity computation;;

• Proper parameters : A collection of parameters are exploited for controlling

the behavior of the memetic algorithm used by MemeOptiMap for generat-

ing the ontology alignment;

• multiplicity : (n : 1) due to the designed chromosome structure;

• relations of output alignment : currently, MemeOptiMap takes into account

only equivalence relations.

Moreover, as for the high level classification in schema or instance-based ap-

proach [43], MemeOptiMap is hybrid since it can exploit similarity measures

considering both schema and instance-based information.

4.2.3 Implementative details

MemeOptiMap has been implemented in Java1. It is mainly based on two Java

libraries:

• Alignment API2 which serves as an interface to ontologies and alignments;

1http://www.java.com/en/
2http://alignapi.gforge.inria.fr/

84

Table 4.2: Parameters of MemeOptiMap

Kind Name Description

Genetic
parameters

population the number of chromosomes

crossoverRate the probability of crossover operator

mutationRate the problability of mutation operator

termination

the termination criteria to be chosen
among number of iterations, number of
fitness evaluations, convergence, preci-
sion, recall, F-measure

Local search
parameters

intensity
the number of iterations performed by
local search

Local search
selection mechanism

which and how many chromosomes are
selected for local refinement

method the local search method

Ontology alignment
parameters

matchers the used set of similarities measures

aggregation the used aggregation strategy

threshold
the value used to establish the validity
of a computed correspondence

vector of weights
the set of weights used in the aggrega-
tion step

• JGap1 used to implement genetic components such as chromosomes, genetic

operations and so on.

As for the local search methods, we have designed a custom implementation.

MemeOptiMap setting can be configured by a parameter file. The complete list

of parameters is reported in table 4.2.

4.2.4 Experimental results

In this section, in order to investigate the performances of MemeOptiMap and,

as a consequence, show the suitability of memetic algorithms in the ontology

alignment context, a set of experiments is performed. In detail, MemeOptiMap is

used to align ontologies belonging to some test cases of the well-known benchmark

dataset provided by the OAEI (see section 2.3.2.1) shown in Table 4.3. According

to OAEI policies, the benchmark reference alignments take into account only the

1http://jgap.sourceforge.net/

85

matching, respectively, between ontology classes and properties.

Table 4.3: Benchmarks descriptions

Identifier Variant features

101 the ontology itself

103 a generalisation in OWL Lite

104 a restriction in OWL Lite

204 different naming conventions

205 the labels are replaced by synonyms and the comments have been
suppressed

208 some labels are in capital letters

221 all subclass assertions to named classes are suppressed

222 a hierarchy still exists but has been strictly reduced

223 numerous intermediate classes are introduced within the hierarchy

224 all individuals have been suppressed from the ontology

225 all local restrictions on properties have been suppressed from the
ontology

228 properties and relations between objects have been completely
suppressed

229 Some classes have become instances

230 Some components of classes are expanded in the class structure
(flattening entities)

232 no hierarchy and no instance

233 no hierarchy and no property

236 no property and no instance

237 flattened hierarchy + no instance

238 expanded hierarchy + no instance

241 no hierarchy + no instance + no property

The configuration characterizing MemeOptiMap during the experimental ses-

sion has been set as shown in Table 4.4.

In order to complete the description of experiments, the detail about the

hardware configuration used to run MemeOptiMap is provided:

• Processor: Intel Core i5;

• CPU Speed: 2.3 GHz;

86

Table 4.4: Parameter Configuration

Parameter Value

Population size 20 chromosomes

Crossover rate 0.8

Mutation rate 0.02

Local search intensity 300 iterations

Local search individual
Only the best chromosome

selection mechanism

Local search method Stochastic Hill Climbing

Termination condition 5000 evaluations of fitness

Similarity Measures

Entity Name Distance Matcher

Entity Comment Distance Matcher

Super Hierarchy Distance Measure

Word Net Synonymy Name Distance Measure

Domain and Range Restrictions Distance Mea-
sure

Aggregation OWA operator

Weights [0.4, 0.3, 0.15, 0.1, 0.05]

Threshold 0.0

• RAM Capacity: 4GB.

The performances yielded by MemeOptiMap are assessed by means of stan-

dard evaluation measures considered by OAEI: precision (see definition 5), recall

(see definition 6) and F-measure (see definition 7). Table 4.5 shows the results of

the experiments. In particular, the reported values represent the average on ten

runs.

As shown in Table 4.5, MemeOptiMap achieves good results in all considered

test cases. Therefore, these preliminary experiments highlight the suitability of

our proposal. However, there are still relevant margins of improvement which

could be obtained by better tuning the configuration parameters both as for

algorithm parameters (e.g. termination criteria, local search intensity, local search

method, etc.) and ontology alignment parameters (e.g. similarity measures,

weights, etc). For this reason, in the next section, we prove to look for the best

local configuration for MemeOptiMap.

87

Table 4.5: Experimental results for MemeOptiMap

No. precision recall F-measure

101 0,72 0,72 0,72

103 0,73 0,73 0,73

104 0,75 0,75 0,75

204 0,69 0,69 0,69

205 0,64 0,64 0,64

208 0,62 0,62 0,62

221 0,75 0,75 0,75

222 0,73 0,77 0,75

223 0,67 0,67 0,67

224 0,73 0,73 0,73

225 0,76 0,76 0,76

228 0,98 0,98 0,98

230 0,57 0,77 0,66

232 0,75 0,75 0,75

233 0,98 0,98 0,98

236 0,99 0,99 0,99

237 0,74 0,77 0,75

238 0,68 0,68 0,68

241 0,97 0,97 0,97

4.3 Looking for the best local configuration for

MemeOptiMap

The memetic algorithms (MAs) are population-based optimization methods which

combine genetic algorithms with local search processes. As similar to genetic al-

gorithms, MAs try to solve a search problem by evolving an initial random popu-

lation of solutions by means of genetic operators, such as crossover and mutation,

and local search refinements. Therefore, thanks to the marriage between global

search and local improvement, MAs are characterized by a rapid convergence, like

local search methods, but, differently from these, they not to prone to stalling at

local optima due to their capability of exploring and exploiting promising regions

of search space provided by the genetic component.

88

Nevertheless, in spite of their potential benefits, it is strongly accepted that

the efficiency of MAs is affected by the following issue [81]: What is the best trade-

off between local search and the global search provided by evolution? Typically,

answering to this question is very difficult and depends on the specific problem at

hand. Therefore, in [10], we have investigated the combination between genetic

algorithms and different local search methods in order to find the best trade-off

which improves performances of MemeOptiMap. The research work has involved

a particular scenario: the communication in a multi-agent system. In this section,

we present the work done in this research area.

In detail, we investigate different versions of MemeOptiMap system obtained

by combining genetic algorithms and different local search methods. In particu-

lar, the explored local search algorithms are: two variants of the Hill Climbing

Search, i.e., the Simple Hill Climbing Algorithm and the Steepest Hill Climbing

in addition to the already explored Stochastic Hill Climbing, and the Simulated

Annealing. See section 3.3 for a detailed description of these local search meth-

ods. The corresponding versions of system MemeOptiMap will be referred as

MSHC, MStoHC, MSteHC and MSA which represent the combination of genetic

algorithms with, respectively, the Simple Hill Climbing Algorithm, the Stochas-

tic Hill Climbing Search, the Steepest Hill Climbing Search and the Simulated

Annealing. By an implementative point of view, these versions are generated by

replacing the call of function executeLocalSearchMethod() (see Table 4.1)

with the specific local search method.

A set of experiments have been performed in order to investigate the perfor-

mances of different versions of MemeOptiMap in a multi-agent system scenario

by trying to define the best local configuration capable of improving agent inter-

operability.

Hereafter, the precise details about experiments and the explored multi-agent

case study are provided.

4.3.1 Experimental results

The four different versions of MemeOptiMap (MSHC, MStoHC, MSteHC and

MSA) are compared by using some test cases of the well-known benchmark

89

dataset provided by the OAEI (see section 2.3.2.1) and shown in Table 4.3. In

order to compare the performances of the all proposed versions, each system has

been run for a limited time represented by the achievement of a number of fitness

evaluations. Once all systems have computed their alignments, the correspondent

F-measure value (in percentage) is used as feature to compare the quality of the

produced alignments. In detail, the greater the F-measure value and the better

the system performances.

The common parameters characterizing the behavior of the four considered

systems during the experimental session are shown in Table 4.6.

Table 4.6: Parameter Configuration

Parameter Value

Population size 20 chromosomes

Crossover rate 0.8

Mutation rate 0.02

Local search individual
Only the best chromosome

selection mechanism

Termination condition 5000 evaluations of fitness

Similarity Measures

Entity Name Distance Matcher

Entity Comment Distance Matcher

Super Hierarchy Distance Measure

Word Net Synonymy Name Distance Measure

Domain and Range Restrictions Distance Mea-
sure

Aggregation OWA operator

Weights [0.4, 0.3, 0.15, 0.1, 0.05]

Threshold 0.0

Instead, the particular parameters characterizing the single systems are the

following ones:

• The MHC algorithm’s parameters are:

– maximum number of iterations = 100

– maximum number of neighbors = 30

• The MStoHC algorithm’s parameters are:

90

– maximum number of iterations = 300

• The MSteHC algorithm’s parameters are:

– maximum number of iterations = 200

– maximum number of neighbors = 30

• The MSA algorithm’s parameters are:

– number of trials = 20

– final temperature = 0.00000005

These parameters were computed in an empirical way by performing some pre-

liminary experiments and trying to get the best configuration for each particular

algorithm.

In order to complete the description of experiments, details about the hard-

ware configuration used to run the systems are provided:

• Processor: Intel Core i5;

• CPU Speed: 2.3 GHz;

• RAM Capacity: 4GB.

The comparison among the considered systems (MHC, MStoHC, MSteHC,

and MSA) is formally carried out by means of a multiple comparison procedure

which consists in two steps: in the first one, a statistical technique such as the

Friedman’s test (see section 3.7.2) is used to determine whether the results pro-

vided by the considered algorithms present any inequality; in the second one,

which is performed only if in the first step an inequality is found, a post-hoc

test such as Holm’s test (see section 3.7.3) is led in order to determined which

algorithm better outperforms.

As described in section 3.7.2, Friedman’s test is a non-parametric statistical

procedure which, under the null-hypothesis, states that all compared algorithms

are equivalent. Hence, a rejection of the null hypothesis implies the existence of

differences among the performance of all studied algorithms [49]. The rejection

91

Table 4.7: Samples for Friedman’s test. Each value represents the average of
F-measure values (in percentage) on 20 runs. Among round parentheses, there is
the computed rank of each system for benchmark at hand.

benchmark VMSHC VMStoHC VMSteHC VMSA

number

101 77,43 (1) 71,93 (2) 71,13 (3) 63,46 (4)

103 77,09 (1) 72,51 (2) 72,05 (3) 64,49 (4)

104 79,72 (1) 75,03 (2) 70,22 (3) 66,21 (4)

204 72,39 (1) 69,3 (2) 68,5 (3) 61,86 (4)

205 67,7 (1) 63,46 (2) 60,94 (3) 55,33 (4)

208 69,19 (1) 62,43 (3) 64,15 (2) 57,39 (4)

221 79,15 (1) 74,69 (2) 69,87 (3) 66,67 (4)

222 78,83 (1) 74,85 (2) 69,94 (3) 66,67 (4)

223 68,84 (1) 67,24 (2) 62,89 (3) 55,67 (4)

224 78,7 (1) 73,2 (2) 71,59 (3) 68,5 (4)

225 78,46 (1) 75,49 (2) 72,85 (3) 67,12 (4)

228 98,32 (2) 97,64 (3) 98,65 (1) 90,9 (4)

230 68,38 (1) 65,75 (2) 62,46 (3) 58,51 (4)

232 78,81 (1) 75,37 (2) 68,73 (3) 65,06 (4)

233 96,97 (3) 97,64 (2) 98,99 (1) 91,58 (4)

236 98,99 (1) 98,65 (2) 97,31 (3) 92,59 (4)

237 77,31 (1) 75,32 (2) 69,94 (3) 67,72 (4)

238 70,1 (1) 67,93 (2) 63,57 (3) 55,55 (4)

241 96,3 (3) 97,31 (2) 97,98 (1) 92,59 (4)

averages 79,615 (1,26) 76,618 (2,10) 74,303 (2,63) 68,835 (4,00)

of the null hypothesis occurs when the computed value χ2
r is equal to or greater

than the tabled critical chi-square value at the specified level of significance [116].

In our experimentation, a level of significance α equal to 0.05 is chosen. The

samples VMHC , VMStoHC , VMSteHC and VMSA used for the Friedman’s test are

presented in Table 6.5. For each system, the sample is obtained by performing

the average of F-measure values (in percentage) on the 20 runs.

By performing the Friedman’s test, the computed χ2
r value is 45, 06. Since

in our case k = 4, our analysis has to consider the critical value χ2
0,05 for three

degrees of freedom that is equal to 7, 82. Since the computed χ2
r = 45, 06 value

92

Table 4.8: Holm’s test

i System z value unadjusted p-value α/(k − i), α = 0, 05

1 MSA 6,5417 6, 0823 · 10−11 0,00167

2 MSteHC 3,2708 0,0011 0,025

3 MStoHC 2,0055 0,0449 0,0500

is greater than its associated critical value χ2
0,05 = 7, 82, the null hypothesis is

rejected and it is possible to assess that there is a significant difference between

at least two of the four compared systems.

Attending to this result, a post-hoc statistical analysis is needed to conduct

pairwise comparisons in order to detect concrete differences among compared

algorithms. In our experimentation, we use Holm’s procedure. This test is a

multiple comparison procedure that works by setting a control algorithm and

comparing it with the remaining ones. Normally, the algorithm which obtains

the lowest value of ranking in the Friedman’s test is chosen as control algorithm.

In our case, as shown in Table 6.5, the system with the lowest value of ranking is

MHC. As described in section 3.7.3, Holm’s test works on a family of hypotheses

where each one is related to a z-value corresponding to the comparison between

the control method and one of the remaining algorithms. The computed z value

is used for finding the corresponding probability from the table of the normal

distribution (the so-called p-value), which is then compared with an appropriate

level of significance α [31], in our experimentation equal to 0.05. All data com-

puted by the Holm’s procedure are depicted in Table 6.7. By analysing data,

Holm’s procedure rejects all hypothesis. As a consequence, it is possible to state

that the MHC statistically outperforms better than MSA, MStoHC and MSteHC

at 5% significance level.

4.3.2 Case study: Agent Communication

Interoperability is a crucial problem in multi-agent systems where autonomous

artificial entities have to interact and cooperate in order to achieve a common

goal. In the last years, ontologies are become an essential tool for enabling inter-

operability by allowing communication and exchanging information and services

93

within agents environments. In particular, agents use the ontologies as a common

way to represent their “view of the world”. However, ontological representation

of knowledge could not be sufficient to achieve high levels of interoperability be-

cause various agents involved in a given information exchange, may potentially

use different ontologies to represent the same domain of interest.

The simple idea to solve this problem may be to force agents to interact by

exploiting a common ontology. However, open environments (where a central

design is neither possible nor desirable) populated with heterogeneous agents

make the common ontology case unfeasible [45]. Moreover, a typical attitude of

the enterprises is the refusal to convert all the content of their ontologies if the

target ontology is less expressive or not considered as a de facto standard [45].

Therefore, the most solid solution for enabling a real agent interoperability is to

perform an ontology alignment process to lead proprietary ontologies into a mu-

tual agreement. The quality of an alignment directly affects the interoperability:

a more accurate alignment results in a more efficient agent interoperability.

The results of Holm’s test presented in previous section states that the version

of MemeOptiMap which combines genetic algorithms and Hill Climbing (MHC

system) shows better performances than the other considered approaches. The

aim of this section is to quantify the improvement provided by MHC system

in terms of agent interoperability. In order to achieve this aim, the average

F-measure values shown in Table 6.5 are exploited for the interoperability eval-

uation. Indeed, as already mentioned, a more accurate alignment allows agents

a more efficient communication and exchange of information. In particular, the

percentage improvements between the average F-measure values related to the

MHC system and the other methods are computed. The results state that MHC

system improves agent interoperability of 4%, 7% and 15%, respectively, with

respect to MStoHC, MSteHc and MSA systems. By taking in account the high

amount of messagges exchanged within an agent environment, these percentage

improvements represent considerable benefits.

94

4.4 A parallel extension of MemeOptiMap

The memetic algorithms (MAs) are population-based optimization methods which

integrate genetic algorithms with local refinement and, consequently, increase the

convergence speed of the evolutionary process. However, if, on the hand, the

combination of global and local searches leads to higher quality solutions, on the

other hand, it involves an increment of the computational effort. Therefore, in

order to face this issue, we have developed a parallel extension of MemeOptiMap

[11]. This choice is supported by recent studies that have shown how paral-

lel memetic algorithms (PMAs) converge to high quality solutions significantly

faster than canonical parallel genetic algorithms [32] and MAs [72]. In literature,

there exists a lot of PMA models (see section 3.6). Among them, in our research

work, we choose to implement a so-called multi-island parallel memetic algorithm.

This parallel optimization technique 1) evolves a collection of subpopulations to

lead the search process in diverse directions simultaneously and 2) opportunely

migrates individuals among subpopulations with aim of restoring diversity and

preventing premature convergence to a low-quality solution. The choice of this

kind of parallel strategy is due to its advantages derived from the use of semi-

isolated populations which helps preserving diversity and increases the chances

of escaping from local optima: an issue affecting more memetic algorithms than

genetic counterpart.

In order to implement a parallel version of MemeOptiMap, in our research

work, we exploit a Multi-Agent System (MAS) paradigm. MASs allow building

distributed systems, where it is assumed that the computational components,

named agents, are autonomous, i.e., able to control their own behaviour in the

furtherance of their own tasks [141], and interacting for achieving a common

objective. Thanks to the collaborative agents’ behavior, a MAS is capable of

providing different design benefits such as parallelism, robustness, scalability,

geographic distribution and cost effectiveness [30]. These features have led to use

the idea of collaborative agents in order to implement a distributed version of

MemeOptiMap based on a multi-island parallel memetic algorithm.

Hereafter, more details about the designed parallel version of MemeOptiMap

and some experimental results.

95

4.4.1 Architecture

The parallel version of MemeOptiMap is based on a multi-island parallel memetic

algorithm implemented through a multi-agent system. In detail, the designed

multi-agent system (see Fig. 4.4) is composed of two kinds of agents: a coordi-

nator agent and several optimizing agents organized in a ring way. The aim of

the coordinator agent is to start the ontology matching process on a pair of on-

tologies, randomly create the initial subpopulations (collections of chromosomes

where each chromosome represents a candidate ontology alignment) and assign

each one of them to a given optimizing agent. Then, the coordinator agent waits

until optimizing agents end their tasks. Each optimizing agent performs, simulta-

neously with other optimizing agents, a memetic optimization process to produce

an ontology alignment. The memetic optimization process performs two steps:

1) the generation of new individuals through the application of the traditional

genetic operators such as single-point crossover and mutation and 2) the replace-

ment of worst chromosomes of the genetic population with the best individu-

als refined through a local search procedure. All new individuals are evaluated

through an appropriate fitness function. The new population is obtained by using

a genetic selection operator such as the roulette wheel. During its activity, each

optimizing agent checks if the migration moment is achieved. In that case, an op-

timizing agent executes all tasks related to migration procedure such as sending

chromosomes to and receiving new ones from a neighbor optimizing agent. When

an optimizing agent ends its evolution due to the achieving of specific termina-

tion criteria, it sends the best chromosome of its subpopulation to coordinator

agent. When coordinator agent receives a solution from each optimizing agent,

it computes the best solution and returns it in output. The behaviors of the

coordinator agent and an optimizing one are, respectively, summarized in Table

4.9 and 4.10.

The fundamental elements of each optimizing agent necessary for performing

a memetic optimization process and cooperate with other optimizing agent are:

1) the chromosome structure representing an alignment, 2) the employed fitness

function that allows the evaluation of the considered solutions, 3) the several

issues about the integrated local search process, 4) the migration process.

96

Figure 4.4: The architecture of MemeOptiMap based on an island parallel
memetic algorithm implemented through collaborative agents

As for the fitness function, it is the same used by the sequential version of

MemeOptiMap described in section 4.2.1.2. As for the other three first points, the

chromosome structure, the features related to the integrated local search process

and the migration process, they require a description of more details.

As described in section 4.2.1.1, a chromosome representing an alignment is de-

fined as a integer vector where each cell individuates the pair of entities composing

a mapping element of the alignment. More in detail, by considering the entities

of each ontology numbered with integers, if the ith vector cell contains the integer

j, then the cell individuates the mapping element characterized by the pair of en-

tities (ei, ej) where ei is the i
th entity of the first ontology and ej is the j

th entity

of the second one. In order to improve performance of the sequential version of

MemeOptiMap, for the parallel version, we consider the following change: if the

second ontology has a cardinality minor than the first one, then the ith vector

cell containing the integer j corresponds to the mapping element characterized

by the pair of entities (ej, ei) where ej is the jth entity of the first ontology and

ei is the ith entity of the second one. In short, the indices of the integer vector

are related to the ontology with minor cardinality, whereas, the contained integer

numbers are related to the other one. Given this chromosome structure, its size is

97

Table 4.9: Coordinator agent behvior

Input: two ontologies O1 and O2 to align; PMA parameters (size of the subpopulation pop size, number of
subpopulations num pop)).

Output: the best alignment (represented by the final best chromosome) between the ontologies O1 and O2.

1: subpops← generatePopulations(num pop, pop size);
// Initialize randomly num pop subpopulations of size pop size

2: sendSubPopulations(); // Assign each subpopulation to an optimizing agent
3: for i = 1→ num pop do
4: best i← wait(); // Wait the evolution end of each optimizing agent
5: end for
6: return best chromosome← getBestChromosome(best);

// Select the best chromosome among all chromosomes received by optimizing agents

equal to Lmin, i.e. the number of entities belonging to the ontology with a minor

cardinality. A graphical representation of the new chromosome structure is given

in Fig. 4.5.

Figure 4.5: The general structure of the new chromosome used in the parallel
version of MemeOptiMap. The chromosome is an integer vector where the indices
i are equal to 0, 1, 2, . . . , Lmin − 1 with Lmin equals to the number of entities of the
smaller ontology and the contained integer numbers ji ∈ {0, 1, 2, . . . , Lmax − 1}
with Lmax equals to the number of entities of the greater ontology.

As for features related to the local search process, each optimizing agent

performs a local search process characterized by the following features:

• Local search frequency = 1, i.e., the local search is applied within each

evolutionary cycle;

• Order respect to genetic operators = after, i.e., local refinement is executed

after crossover and mutation operators;

• Individual selection mechanism = a portion, i.e., only a portion of popula-

tion (the best chromosomes) is improved by the local search process;

98

• Local search intensity = equal to n local search iterations, i.e., each local

search process ends after running n iterations.

• Local search method = hill climbing, i.e., the selected local search method

is Hill Climbing search.

Table 4.10: Optimizing agent behavior

Input: two ontologies O1 and O2 to align; subpopulation received by coordinator agent subpop, MA parameters
(size of the subpopulation pop size, crossover rate pc, mutation rate pm, termination criteria tm), local search
parameters (local search termination criteria tl, number of the best chromosomes selected for local search
refinement local portion), PMA parameters (migration interval migration interval, number of chromosomes
to be migrated migration rate).

Output: the best alignment (represented by the final best chromosome) between the ontologies O1 and O2.

1: pop← subpop); // Initialize population to the subpopulation
// received by the coordinator agent

2: gen← 0; // Initialize number of iterations
3: while isFalse(tm) do
4: evaluateFitness(pop); // Evaluate fitness value for each chromosome
5: parents← executeSelection(pop); // Select parents to generate new chromosomes
6: pop← executeCrossover(parents, pc); // Crossover chromosomes

// according to a crossover rate pc
7: pop← executeMutation(pop, pm); // Mutate chromosomes with a mutation probability pm
8: evaluateFitness(pop); // Evaluate fitness value for new chromosomes in pop
9: best chromosomes← getBestChromosomes(pop, local portion); // Select the best

// chromosomes of the current subpopulation
10: local chromosomes← executeLocalSearch(best chromosomes, tl); // Execute

// the local search process on the best chromosomes
11: pop← replaceWorstChromosome(pop, local chromosomes); // Replace the worst

// chromosomes with that refined by the local process
12: if mustMigration(gen, migration interval) then
13: best chromosomes← getBestChromosomes(pop, migration rate); // Select the best

// chromosomes to be migrated
14: send(best chromosomes); // send the best individuals

// to next neighbouring subpopulation
15: new chromosomes← receive(); // receive migration interval individuals

// from previous neighbouring subpopulation
16: subpopsi ← replaceWorstChromosome(new chromosomes); // Replace the worst

// chromosomes with that migrated
17: end if
18: gen← gen+ 1; // Increment number of iterations
19: end while
20: return best chromosome← getBestChromosome(pop); // Send the best chromosome

// of proper population to coordinator agent

It is worth noting that the chosen local search method is the Hill Climbing

that, in the previous section, has been shown to be the best local method for the

sequential version of MemeOptiMap.

99

Finally, it is necessary to give more details about the migration process. In

general, migration procedure is a crucial step in PMAs. It is controlled by different

parameters [21]:

• Migration rate which determines how many individuals migrate from a sub-

population to the other one;

• Migration frequency (migration interval) which determines how often mi-

grations occur;

• Migration topology which determines the destination of the migrants;

• Migration policy which determines which individuals migrate and which are

replaced at the receiving deme.

In our architecture, each optimizing agent executes a migration after each gen-

eration. The exchange scheme of chromosomes is a one-way ring topology [128].

Each optimizing agent sends the best chromosomes and replaces the worst ones

with the received migrants. As for the number of migrants, our approach follows

the strategy to select a migration rate equal to the number of individuals that

are improved by local search procedure.

4.4.2 Experimental results

This section is devoted to present a set of experiments performed in order to com-

pare the performances of the parallel and sequential versions of MemeOptiMap.

In detail, the comparison has been carried out by means of Wilcoxons signed rank

test (see section 3.7.1). The experiments have involved the well-known standard

benchmark dataset provided by the Ontology Alignment Evaluation Initiative

(OAEI), related to the OAEI 2010 competition1 (see section 2.3.2.1). The perfor-

mance of compared systems are evaluated in terms of both quality of produced

alignments and computational time. In particular, the quality of the alignments

is computed by using the well-known F-measure (see definition 7). In our tests, in

order to evaluate together the two metrics (alignment quality and computational

time), we have computed the normalized ratio between them in range [0, 1]. This

1http://oaei.ontologymatching.org/2011

100

solution respects the desired requirement that the performances of the compared

approaches result better when alignment quality increases and computational

time decreases. In particular, the F-measure values and the computational times

used to compute the ratio to be used as data samples for our tests are obtained

by computing the average value over ten runs.

In order to perform our experiments, we have implemented parallel version

of MemeOptiMap by considering a coordinator agent and two optimizing agents

characterized by the parameter configuration shown in Table 4.11. This configura-

tion has been chosen in an empirical way by performing preliminary experiments

aimed at achieving good values for F-measure. The collaborative agents have

been implemented on a single machine with a dual-core processor Intel i5 and by

using Jade1 and Ateji libraries2. In order to complete the description of experi-

ments, the detail about the hardware configuration used to run the algorithms is

provided:

• Processor: Intel Core i5;

• CPU Speed: 2.3 GHz;

• RAM Capacity: 4GB.

The sequential version of MemeOptiMap has been implemented and executed

by using the same parameter configuration presented in Table 4.11. As afore-

mentioned, the comparison between parallel version and sequential one is carried

out in terms of ratio between F-measure values and computational times. These

values for each test cases belonging to exploited data set are reported in Table

4.12.

As shown in Table 4.12, parallel proposal outperforms the sequential one

for the 100% of benchmark test cases. However, in order to statistically verify

the validity of this result, we have performed a Wilcoxon’s signed rank test by

considering as sample data the values presented in the Table 4.12. The Wilcoxon’s

test states that the parallel and collaborative approach outperforms the sequential

one at 1% significance level.

1http://jade.tilab.com/
2http://www.ateji.com/

101

Table 4.11: Parameter Configuration

Parameter Value

Population size 60 chromosomes

Subpopulation size 30 chromosomes

Crossover rate 0.8

Mutation rate 0.02

Local search intensity 50 iterations

Local search individual
5% of population size

selection mechanism

Local search method
Hill Climbing with a neighborhood of 50% of pop-
ulation size

Termination condition 10 iterations or no fitness improvements for twice

Migration rate 10% of subpopulation size

Similarity Measures

Entity Name Distance Matcher

Entity Text Distance Matcher

Individual Distance Measure

Numbered Hierarchy Distance Measure

Word Net Synonymy Name Distance Measure

Super Hierarchy Distance Measure

Aggregation OWA operator

Weights [0.2, 0.2, 0.15, 0.15, 0.15, 0.15]

Threshold 0.5

102

Table 4.12: The comparison between parallel and sequential versions of MemeOp-
tiMap

Benchmark Sequential Parallel Rel. Benchmark Sequential Parallel Rel.

No. version version Improv. No. version version Improv.

101 0,078 0,123 57,7% 238 0,086 0,140 62,7%

103 0,077 0,123 59,3% 239 0,600 1,000 66,7%

104 0,079 0,124 57,5% 240 0,098 0,158 61,0%

201 0,072 0,114 58,4% 241 0,527 0,984 86,7%

202 0,047 0,068 46,7% 246 0,578 0,956 65,5%

203 0,123 0,171 39,4% 247 0,100 0,182 81,1%

204 0,076 0,121 58,9% 248 0,035 0,052 48,0%

205 0,074 0,118 59,1% 249 0,045 0,068 50,6%

206 0,071 0,112 57,7% 250 0,340 0,509 49,8%

207 0,077 0,123 59,0% 251 0,054 0,080 48,1%

208 0,118 0,165 40,3% 252 0,042 0,060 42,9%

209 0,089 0,128 44,7% 253 0,038 0,053 40,5%

210 0,087 0,125 44,2% 254 0,127 0,187 47,7%

221 0,093 0,149 59,3% 257 0,287 0,523 82,4%

222 0,093 0,149 60,6% 258 0,055 0,079 43,5%

223 0,089 0,143 60,8% 259 0,042 0,063 48,3%

224 0,080 0,126 57,6% 260 0,445 0,697 56,7%

225 0,079 0,128 61,7% 261 0,063 0,090 43,2%

228 0,376 0,634 68,8% 262 0,122 0,195 60,4%

230 0,090 0,147 63,2% 265 0,480 0,755 57,3%

231 0,076 0,123 61,3% 266 0,058 0,097 67,2%

232 0,093 0,151 63,0% 301 0,122 0,212 74,4%

233 0,569 0,927 63,0% 302 0,280 0,435 55,7%

236 0,452 0,686 51,6% 303 0,072 0,113 56,7%

237 0,089 0,145 63,5% 304 0,079 0,126 59,8%

103

Chapter 5

MemeMetaMap: A Memetic

Meta-Matching for the Ontology

Alignment

The goal of this thesis is to explore the application of memetic algorithms to

face the ontology alignment problem. In the previous chapter, we have presented

our first proposal consisting in using memetic algorithms to perform an ontology

alignment process as an optimization one. In this chapter, instead, we discuss

our second contribution to ontology alignment researches consisting in producing

satisfactory alignments by addressing the nested ontology meta-matching prob-

lem (see section 5.1). In detail, we implement a meta-matching system, named

MemeMetaMap, which exploits a memetic algorithm for optimizing the selection

of the best ontology alignment parameters (weights and threshold). After all de-

tails about the designed system are described (see section 5.2), the chapter ends

by describing one of its possible extensions based on fuzzy logic control theory

implemented to overcome the MemeMetaMap’s dependence from some specific

instance parameters (see section 5.3).

104

5.1 The ontology meta-matching problem

Recent trends in Information and Communication Technology (ICT), such as the

cloud computing, are aimed at providing integrated services by virtualizing the

knowledge spread on the web through a semantic representation of information.

In these application scenarios, ontologies could represent the most appropriate

technology for supporting integration and exchange of knowledge thanks to their

capability of formally representing information and giving a common meaning to

shared resources. However, the ability of ontologies in managing disparate in-

formation is limited by the so-called semantic heterogeneity problem (see section

2.2). This problem is due to the enormous variety of ways that a domain of inter-

est can be conceptualized and, consequently, it leads to the creation of different

ontologies with contradicting or overlapping parts [121]. As a consequence, it is

necessary to define a so-called ontology alignment process whose aim is to detect a

set of correspondences, named alignment, involving semantically related entities

[107] in order to lead the different ontologies into a mutual agreement. A typical

procedure applied by an ontology alignment system is to associate to all possible

pairs of entities (one for each involved ontology) a confidence value, and, succes-

sively, to perform a threshold-based filter operation aimed at retaining only the

pairs of entities with a confidence value such as to estimate it to be correct cor-

respondences. A so-called similarity measure or matcher is used to compute the

confidence value. Depending on the characteristics of ontologies under alignment,

each matcher behaves more or less well in the detecting of semantic matchings

among them. Therefore, the common strategy to compute a confidence value for

a pair of entities is to aggregate different similarity measures through a weighted

approach, where each weight represents to what degree each similarity measure

should impact the alignment result [136]. Since the quality of alignment process

is strongly affected by the weights used for the similarity aggregation task and

the threshold exploited for the filter operation, these parameters should be op-

portunely chosen. The selection of the appropriate ontology alignment process

parameters is known as meta-matching problem.

Over the years, different approaches have been investigated to find the most

appropriate values for ontology alignment process parameters (see Sect. 2.4).

105

Mainly, they can be organized in two groups: heuristic meta-matching systems

which exploits genetic algorithms [90] or greedy strategies [91] and machine learn-

ing meta-matching systems which mainly exploits neural networks [70]. However,

all these methods have their drawbacks: (1) they often do not achieve high quality

results in terms of alignment accuracy; or (2) they rely on inexpert users’ deci-

sions, or (3) they require rich data sets or knowledge about features of ontologies

under alignment usually not available in real application scenarios.

In order to address these issues, in our research work, we design a new ontol-

ogy alignment system based on a memetic meta-matching algorithm [4] , named

MemeMetaMap, which aims at efficiently identifying both the weights for the

similarity aggregation task and the similarity threshold regardless of the knowl-

edge about the ontology features, data availability and user intervention. Since

this new approach mainly deals with the optimization of ontology alignment pro-

cess parameters, it can be considered as a meta-optimization approach, and, as a

consequence, it differs from other evolutionary algorithms based works [135][16],

including our first contribution presented in section 4.2, modeling the ontology

alignment process as a global optimization problem. In the next section, all

details about MemeMetaMap are given.

5.2 MemeMetaMap System

This section aims at presenting a new ontology alignment system based on a

memetic meta-matching algorithm, named MemeMetaMap, capable of tuning the

ontology alignment process parameters (weights and threshold) to produce high

quality alignments. After a detailed description of architecture and its main

components, the section ends with a discussion about the features of produced

alignments in terms of matching dimensions, implementative details and some

experimental results.

5.2.1 Architecture of MemeMetaMap

Our ontology alignment system is characterized by an architecture, presented in

Fig. 5.1, which is composed of four principal components: the pre-processing mod-

106

ule, the optimization module, the matcher database and the alignment module.

Precisely, the pre-processing module allows parsing input ontologies and extract-

ing information necessary for performing the whole ontology alignment process.

The optimization module, which represents the core of MemeMetaMap, performs

a memetic algorithm to optimize weights and threshold necessary to, respectively,

aggregate more similarity measures and to execute a filtering procedure aimed at

selecting only valid correspondences. The matcher database is devoted to store

similarity measures exploited by the alignment module. Finally, the alignment

module is devoted to compute an alignment starting with a sub-optimal solution

computed by the optimization module by using the ontological information pro-

vided by the pre-processing module and the similarity measures stored in the the

matcher database.

Hereafter, a more detailed description of the main components is given.

5.2.1.1 The pre-processing Module

The pre-processing module is devoted to load and parse the two input ontologies

under alignment in order to extract the ontological information useful for the

whole ontology alignment process. In this research work, we consider ontologies

under alignment modeled through OWL language. Therefore, the pre-processing

module extracts information encoded in OWL by performing the following three

steps: extraction of three distinct sets containing classes, properties and individ-

uals; extraction of annotations such as labels and comments; extraction of axioms

such as subclasses, subproperties, etc. These steps allow identifying the local con-

text for each entity of the input ontologies containing textual information (name,

label and comments), structural information (names and number of super or sub

concepts), and instance information (names of individuals if existing). All this

information allows the characterization of an entity by giving it a meaning.

5.2.1.2 The optimization module

The optimization module performs a memetic algorithm (MA) for optimizing

the ontology alignment process parameters (weights and threshold) used by the

alignment module to compute a sub-optimal alignment. Therefore, it is composed

107

Preprocessing Module

Entity
Extraction

Annotation
Extraction

Axiom
Extraction

Weights and Threshold Optimization Module

Genetic Population Creation

Genetic One-Point Crossover

Genetic Mutation

Genetic Selection

G
e
n
e
tic
 M
o
d
u
le

Matcher

Database

Genetic

Population

Local Search Module

Best Chromosomes

Termination Module

YES

NO

U
p
d
a
tin
g
 G
e
n
e
tic
 P
o
p
u
la
tio
n

Weights Threshold

Best Chromosome

Chromosomes
Evaluation

Alignment Module
Final Alignment

Ontology O1

Ontology O2

Chromosomes
EvaluationC

h
ro
m
o
s
o
m
e

A
lig
n
m
e
n
t

Similarity
Measures

Entity, Annotation and
Axiom of O1, O2

ξ

Figure 5.1: The architecture of our ontology alignment system

of a set of sub-modules aimed at implementing the general evolution of a MA.

MAs are population-based search methods which combine evolutionary algo-

rithms (in our specific case, genetic algorithms) with local search strategies. In

108

fact, MAs are able to integrate local search processes within the global search

successive generations in order to refine population individuals. In general, MAs

try to solve an optimization problem by manipulating a population of potential

solutions. Precisely, they operate on encoded representations of the solutions,

called chromosomes. The algorithm evolution progresses successive generations.

In each generation, a selection process provides the mechanism for selecting bet-

ter solutions to survive. Each solution is evaluated by means a fitness function

that reflects how good it is. In each generation, a recombination process of

genetic material is simulated through two operators: crossover that exchanges

portions between two randomly selected chromosomes and mutation that causes

random alteration of the chromosome genes. Moreover, different from genetic

algorithms, MAs execute a local search process within each generation. The

algorithm evolution terminates when prefixed conditions such as the maximum

number of generations are reached. See section 3.5 for a more detailed description

of MAs.

In our approach, a MA is exploited to evolve and refine a population of chro-

mosomes, encoding the weights and threshold values used by the ontology align-

ment process to build a corresponding alignment. At the end of the evolutions,

the algorithm will return a suitable configuration of the ontology alignment pa-

rameters, and, consequently, a sub-optimal alignment. The whole optimization

task is performed by using the following sub-modules: genetic population cre-

ation module, fitness function module, genetic module, local search module and

termination module.

The genetic population creation module The genetic population creation

module is devoted to build a random population by following the chromosome

structure presented in Fig. 5.2. In detail, by considering that each chromosome

represents a potential solution to problem of optimizing the ontology alignment

process parameters, it contains a possible combination for the set of weights,

indicating the contribution of each similarity measure, and the threshold value t,

used to filter correspondences between the ontologies under alignment. Because

all the considered values (weights and threshold) are numbers belonging to the

interval [0, 1], the chromosome can be represented as a double vector where the

109

first genes represent the weights and the last gene represents the threshold. Hence,

by considering h similarity measures, our chromosome has a length equal to h+1.

Figure 5.2: Graphical representation of a chromosome

The Fitness Module The fitness module is devoted to compute a fitness score

for each chromosome of the population by using a fitness function ξ. In detail, ξ

evaluates the goodness of a chromosome by estimating the quality of the corre-

sponding alignment. In order to achieve this goal, the fitness module is supported

by the alignment module which builds an alignment starting from the chromosome

under evaluation (see Sect. 5.2.1.3). Different from other approaches [98][53], the

alignment quality is not based on common measures such as precision, recall and

F-measure, but, it takes into account the number of the correspondences belong-

ing to the alignment and their confidence values. This choice allows our approach

not to require the exploitation of a reference alignment to work, and as a con-

sequence, it can be applied into real world scenarios. More in detail, similar to

[16], the quality of an alignment is calculating by taking into account these two

reasonable observations:

• the higher the average of the confidence values of the correspondences and

the better the alignment quality;

• by considering the same average of the confidence values, the higher the

number of correspondences and the better the alignment quality.

Hereafter, a formal definition of the fitness function ξ can be given. Let

consider a chromosome σ and the corresponding alignment A, the fitness score

for the chromosome σ is defined as follows:

ξ(σ) = 2 · (β · Φ(|A|) + (1− β) · f(A)) (5.1)

110

where |A| is the number of correspondences of the alignment corresponding to

the chromosome under evaluation, Φ is a function of normalization in range [0, 1]

and f is the function which computes the average of confidence values of the

correspondences belonging to the alignment A. Precisely, f is defined as follows:

f(A) =

∑|A|
i=1 ηi
|A|

where ηi is the confidence value of the i
th correspondence belonging to the align-

ment A. In short, the function ξ is a sum weighted by β, a real value in [0, 1],

acting as tuning parameter useful for generating ontology alignments character-

ized by high precision (β < 0.5) or high recall (β > 0.5).

The Genetic Module The genetic module is devoted to perform the global

search process by applying the following traditional genetic operators: single-

point crossover and mutation. In general, the crossover operator takes two chro-

mosomes called parents and produces two new chromosomes, called children, by

exchanging the genes of the parents. In literature, there exist different kinds of

crossover. In this work, we exploit the traditional single-point version. More in

detail, the crossover operator randomly selects two chromosomes from the pop-

ulation and “mates” them by randomly picking a gene and then swapping that

gene and all subsequent genes between the two chromosomes. The crossover op-

erator is applied with a certain rate rc. Therefore, it is performed 1/rc as many

times as there are chromosomes in the population. Instead, the mutation oper-

ator runs through the genes in each of the chromosome in the population and

mutates them in statistical accordance to the given mutation rate pm. Therefore,

the number of mutation operations is not deterministic.

The application of these genetic operators produce a set of new chromosomes.

They are added to the population and evaluated by means of the fitness module.

After these conventional genetic steps, our algorithm applies a genetic selection

operator to generate the new population whose the best chromosomes will be

involved in the local search procedure. Compliant with conventional genetic algo-

rithm design, our approach uses as selection operator the roulette wheel selection

method. It consists in giving to each chromosome a probability of being selected

111

which is directly proportionate to its fitness score. In detail, if si is the fitness

score of ith individual of the population, its probability pi of being selected is

pi =
si∑N

k=1 sk
, where N is the number of individuals in the population. Therefore,

the best solutions will have more possibilities of belonging to the next generated

population.

The Local Search Module The local search module is devoted to perform a

local search process in order to refine the population deriving from the application

of the genetic operators. Many issues must be addressed about the integrated

local search process in order to design an efficient MA as described in section 3.5.

Our local search module is characterized by the following features:

• Local search frequency : Our local search module performs a local refinement

within each evolutionary cycle;

• Individual selection mechanism: Our local search module improves only a

portion of the population composed of the best chromosomes;

• Local search intensity : Our local search module executes a local search

process which takes n iterations;

• Local search method : Our local search module performs the stochastic ver-

sion of the Hill Climbing search (see section 3.3).

5.2.1.3 The alignment module

The alignment module, whose a more detailed architecture is shown in Fig.

5.2.1.3, is devoted to build an alignment starting with a chromosome by using the

ontological information extracted by the pre-processing module and the similarity

measures stored in the matcher database. It performs its task both to support

the fitness module and to produce in output the final alignment starting from the

optimal solution (the best chromosome of the population after the achievement

of termination criteria) computed of designed memetic algorithm.

In detail, the alignment module computes the following steps:

112

Alignment Module

Chromosome

Weights Threshold

Weights Scaling
Operator

Similarities
Computation > Pruning

Pre
Alignment

Post
Alignment

Final
Alignment

Matcher

Database
Preprocessing Module

Ontology O1

Ontology O2

Entity, Annotation and
Axiom of O1, O2

Similarity
Measures

Figure 5.3: The architecture of the Alignment Module

• scaling of the weights by following the equation 5.2. Indeed, as defined in

2.1, the sum of all weights has to be equal to 1. Therefore, in order to obtain

the real value of weights to be used in the similarity aggregation task, it will

be necessary a scaling procedure. In detail, each one of the first h values of

the chromosome (representing weights) has to be scaled conforming to the

sum of all first h values. Formally:

wi =
gi∑h
i=1 gi

(5.2)

where gi is the ith value of the chromosome and wi is the ith weight will be

used to perform the similarity aggregation task;

• building of a pre-alignment by setting for each pair of entities between the

two ontologies to be aligned a confidence value calculated as the aggregated

113

similarity simaggregate defined in equation 2.1. In detail, the similarity aggre-

gation task involves the scaled weights and the similarity measures present

in the matcher database;

• building of a post-alignment by filtering the pair of entities with a confi-

dence value greater or equal to the threshold value (the last gene of the

chromosome);

• building of a final alignment by performing a pruning procedure which

consists in selecting only a correspondence for each entity of the so-called

goal ontology. The selected correspondence has the highest confidence value.

If there are more correspondences with the highest confidence value, the

procedure executes a random choice. The goal ontology is represented by

the ontology with the minor number of entities.

By analyzing the performed steps, the alignment module produces alignments

injective with regard to no-goal ontology, i.e., all the entities of the goal ontology

are part of at most one correspondence of the produced alignment. In other

words, by using a usual notation, the produced alignments are characterized by

a multiplicity ? : ∗ or ∗ :?, respectively, depending on whether the goal ontology

is the first one or the second one.

However, a more detailed discussion on matching dimensions is given in the

next section.

5.2.2 Discussions on Matching dimensions

Beside the general scheme presented in Definition 2, it is useful to consider a col-

lection of additional features related to the ontology alignment process, known as

dimensions (see section 2.3.1.1). They represent constraints or restrictions on the

ontology alignment process which influence the behavior of ontology alignment

systems and, as a consequence, they can be used for performing their classifica-

tion [43]. This section is devoted to present the dimensions and the corresponding

values which characterize the behavior of MemeMetaMap. This description al-

lows to highlight the features of the produced alignments, and, at the same time,

categorize MemeMetaMap in the state of the art.

114

In detail, the dimensions and the corresponding values which characterize

MemeMetaMap are:

• heterogeneity of input ontologies : the input ontologies must be coded by

the same language since MemeMetaMap does not provide a mechanism for

converting them in a common language;

• language of input ontologies : MemeMetaMap supports RDF and OWL

models;

• complete/update of input alignment : MemeMetaMap computes a whole on-

tology alignment from scratch. Therefore, our algorithm does not take in

input an initial partial alignment or in other words, the initial alignment is

equal to ∅;

• Resources : MemeMetaMap exploits WordNet as dictionary for the linguistic

similarity computation;

• Proper parameters : MemeMetaMap needs a collection of parameters for

tuning the behavior of the memetic algorithm performed by the memetic

module;

• multiplicity of output alignment : MemeMetaMap produces alignments with

multiplicity ? : ∗ or ∗ :?, respectively, related to cases: cardinality of the

first ontology lesser than cardinality of the second one and vice versa;

• relations of output alignment : currently, MemeMetaMap takes into account

only equivalence relations.

Moreover, as for the high level classification in schema or instance-based ap-

proach [43], MemeMetaMap is hybrid since it can exploit similarity measures

considering both schema and instance-based information.

5.2.3 Implementative details

MemeMetaMap has been implemented in Java1. It is mainly based on two Java

libraries:
1http://www.java.com/en/

115

Table 5.1: Parameters of the designed Memetic Algorithm for meta-matching
problem

Kind Name Description

Genetic
parameters

population the number of chromosomes

crossoverRate the probability of crossover operator

mutationRate the problability of mutation operator

termination

the termination criteria to be chosen
among number of iterations, number of
fitness evaluations, convergence, preci-
sion, recall, F-measure

Local search
parameters

intensity
the number of iterations performed by
local search

Local search
selection mechanism

which and how many chromosomes are
selected for local refinement

method the local search method

Ontology alignment
parameters

matchers the used set of similarities measures

aggregation the used aggregation strategy

• Alignment API1 which serves as an interface to ontologies and alignments;

• JGap2 used to implement genetic components of designed memetic algo-

rithm such as chromosomes, genetic operations and so on.

As for the local search methods, we have designed a custom implementation.

The algorithm setting can be configured by a parameter file. The complete list

of parameters is reported in table 5.1.

Once all details about MemeMetaMap have been described, in the following

section, some experimental tests show the suitability of our approach and its high

performances.

5.2.4 Experimental results

This section presents a set of experimental results aimed at showing the suit-

ability of MemeMetaMap to address the ontology alignment problem. The whole

experimental session involves the standard benchmark track3 provided by OAEI

1http://alignapi.gforge.inria.fr/
2http://jgap.sourceforge.net/
3http://oaei.ontologymatching.org/2010/

116

(see section 2.3.2.1), i.e., a set of test cases built around a reference ontology

which is dedicated to model the domain of bibliography and many variations of

it [73]. According to OAEI policies, our system computes alignments containing

only correspondences, respectively, between ontology classes and properties, and

excluding individual matching. The performances yielded by MemeMetaMap are

assessed by means of standard evaluation measures considered by OAEI: preci-

sion (see definition 5), recall (see definition 6) and F-measure (see definition 7).

Table 6.2 shows the configuration of MemeMetaMap used in the experiments.

It represents a trade-off setting obtained in empirical way. Instead, Table 5.3

shows the results of the experiments in terms of precision, recall and F-measure

with respect to the given reference alignment. In particular, the reported values

represent the average on ten runs.

Table 5.2: Memetic Meta-matching Configuration

Parameter Value

Population size 30 chromosomes

Crossover rate 0.9

Mutation rate 0.02

Maximum number of local iterations 20

Local search selection mechanism 15% of population

Termination condition 250 fitness evaluations

β 0.2

Similarity Measures

Entity Name Distance Matcher

Entity Text Distance Matcher

Word Net Synonymy Name Distance Measure

Super Hierarchy Distance Measure

Numbered Hierarchy Distance Measure

Individual Distance Measure

aggregation strategy OWA operator

As shown in the Table 5.3, MemeMetaMap achieves the best performances

in the first and third test case ranges (# 101-104 and # 221-247). Besides, it

yields good results also as for the second test case range (# 201-210), except for

the test case #202 which presents some difficulties regarding the use of random

labels and the abolition of an important feature such as comments in the involved

117

Table 5.3: Experimental results for the standard benchmark track

No. Precision Recall F-measure No. Precision Recall F-measure

101 1 1 1,00 238 1 1 1,00

103 1 1 1,00 239 0,97 1 0,98

104 1 1 1,00 240 0,81 0,94 0,87

201 1 0,95 0,97 241 1 1 1,00

202 0,59 0,29 0,39 246 0,97 1 0,98

203 1 1 1,00 247 0,88 0,99 0,93

204 1 1 1,00 248 0,69 0,15 0,25

205 1 0,98 0,99 249 0,53 0,33 0,41

206 0,98 0,94 0,96 250 0,5 0,5 0,50

207 0,99 0,94 0,96 251 0,62 0,22 0,32

208 0,98 0,98 0,98 252 0,45 0,25 0,32

209 0,7 0,69 0,69 253 0,43 0,24 0,31

210 0,76 0,75 0,75 254 0,14 0,14 0,14

221 1 1 1,00 257 0,5 0,5 0,50

222 1 1 1,00 258 0,54 0,24 0,33

223 1 1 1,00 259 0,3 0,3 0,30

224 1 1 1,00 260 0,31 0,31 0,31

225 1 1 1,00 261 0,16 0,32 0,21

228 1 1 1,00 262 0,12 0,12 0,12

230 0,94 1 0,97 265 0,24 0,25 0,24

231 1 1 1,00 266 0,16 0,32 0,21

232 1 1 1,00 301 0,94 0,81 0,87

233 1 1 1,00 302 0,7 0,54 0,61

236 1 1 1,00 303 0,61 0,78 0,68

237 1 1 1,00 304 0,88 0,95 0,91

varied ontology. As for the real test cases (# 301-304), the results are good but

not optimal due to the cardinality of the reference alignment (it is not ?:* or *:?

for all test cases) or to kind of involved matchings including also subsumption

relations. The worst results are obtained in the fourth test case range (# 248-266)

because of the decreasing number of features available in the ontologies.

118

5.3 A fuzzy extension for MemeMetaMap

As described in the previous section, MemeMetaMap is not capable of produc-

ing alignments with the same high quality on all alignment task instances. This

weakness is mainly due to dependence of its behavior on a set of specific instance

parameters affecting the behaviour of the designed fitness function (definition

5.1). In order to overcome this dependence, fuzzy logic theory and its most com-

mon application, i.e., Fuzzy Logic Controllers (FLCs), seem to be suitable by

means of allowing to adapt MemeMetaMap’s parameters to each specific align-

ment task instance. In detail, our idea is to exploit a Mamdani FLC [88] capable

of analyzing the characteristics of the ontologies involved in a specific alignment

task in order to adaptively regulate the specific instance fitness parameters, and

as a consequence, improve the quality of the produced alignments. In this section,

we present the work done in this research area.

5.3.1 The issue of specific instance fitness parameters

MemeMetaMap uses a memetic algorithm characterized by a fitness function (def-

inition 5.1) whose behaviour strongly depends on the value of parameter β. As

described, this parameter is useful for generating ontology alignments character-

ized by high precision (β < 0.5) or high recall (β > 0.5). However, since typically

the desideratum is to produce alignments with a good trade-off between precision

and recall, i.e., with a high F-measure values, β must be chosen in an oppor-

tune way in order to achieve this goal. Unfortunately, the most opportune value

for β capable of reaching high F-measure values is different from alignment task

to another one. In other words, the parameter β is a specific instance parame-

ter whose value depends on features of ontologies composing the alignment task

at hand. Moreover, the designed fitness function implicitly tries to maximize

the number of correspondences until to achieving the number of correspondences

composing the ideal optimal alignment that we denote with Θ. However, since Θ

is not known during the execution of a real ontology alignment process, currently

MemeMetaMap tries to maximize until to achieving the number of entities con-

tained in the smaller ontology to be aligned, as described in 5.2.1.3 and reflected

from cardinality of possible produced alignments. Unfortunately, this approxi-

119

mation of Θ might be very far from the truth. Therefore, the performance of

MemeMetaMap could be improved by a better approximation technique. Let

formulate the value Θ for an alignment task composed of ontologies O1 and O2

as follows:

Θ = Ω ∗min(|O1|, |O2|) (5.3)

where |O1| and |O2| represent, respectively, the cardinality of ontologies O1 and

O2, min is a function which computes minimum between two values and Ω ∈ [0, 1]

is a tuning parameter which allows better approximating the value for Θ. By

using this new idea to approximate the value for Θ, the fitness function ξ for a

chromosome σ in the meta-matching algorithm must be changed as follows:

ξ(σ) = β · (1− Φ(abs(Θ− |A|))) + (1− β) · f(A) (5.4)

where Θ represents the number of correspondences composing the optimal align-

ment, |A| is the number of correspondences composing the alignment under eval-

uation, Φ is a function of normalization in range [0, 1], abs is a function which

computes the absolute value, f is the function which computes the average of dis-

tances characterizing the correspondences belonging to the alignment A, β is a

specific instance parameter used to balance between the two addends composing

the fitness function. The new fitness function continues to have to be maximized.

Obviously, the formulation of this new method of approximation for the value

Θ introduces a new issue: which is the optimal value for the parameter Ω in

equation 5.3?. This value, like β, strongly depends on features characterizing the

ontologies under alignment.

Starting from these considerations, the next section presents an extension of

MemeMetaMap which consists in regulating the parameters (β and Ω) influencing

the behavior of the designed fitness function (definition 5.4) through a Mamdani

fuzzy logic controller taking into account characteristics of the specific ontology

alignment problem instance.

120

5.3.2 A fuzzy logic controller for adapting MemeMetaMap

Fuzzy control theory can be considered as the most active and fruitful research

area in the application of fuzzy logic. Its realization, i.e., a Fuzzy Logic Con-

troller (FLC), is an adequate methodology for capturing and managing the ap-

proximate, inexact nature of the real world. From this point of view, FLCs let

controller designers to describe complex systems using their knowledge and ex-

perience by means of linguistic IF-THEN rules differently from others controller

design methodologies such as proportional-integral-derivative (PID) controllers

using complex math equations. In general, the high-level structure of a FLC is

shown in Fig. 5.4 [8]. The main components of a fuzzy controller are:

• fuzzy knowledge base;

• fuzzy rule base;

• inference engine;

• fuzzification subsystem;

• defuzzification subsystem.

In detail, the fuzzy knowledge base manipulates the variables used in the con-

trolled system (such as temperature, pressure, etc.), corresponding to the knowl-

edge used by human experts. The Fuzzy Rule Base represents the set of relations

enclosed in rules between input fuzzy variables and output ones defined in the

controlled system. More in detail, each rule has an if-then format, and formally

the if-side is called the antecedent part and the then-side is called the consequent

part. It is worth noting that the nature of consequent part of fuzzy rules permits

to define two kinds of fuzzy controller: the Mamdani controller and the Takagi-

Sugeno-Kang (TSK) controller [125]. The Mamdani controller uses a fuzzy set

to model the consequent part of rule, whereas, the TSK controller uses the linear

function of input variables. The Inference Engine is the fuzzy controller compo-

nent able to extract new knowledge from fuzzy knowledge base and fuzzy rule

base. Moreover, since the controlled system works with real numbers, whereas

the fuzzy controller system works with fuzzy concepts, the last two subsystems,

121

the fuzzification subsystem and the defuzzification subsystem, are necessary to

bridge this gap. More in detail, the former permits to transform the real numbers

used by controlled systems into a fuzzy set used by fuzzy controller. The latter

transforms the fuzzy set generated by fuzzy controller into real numbers usable

by controlled system.

Figure 5.4: The general structure of a fuzzy logic controller

In our case, a FLC allows computing values for the parameters β and Ω

influencing the behavior of the MemeMetaMap’s fitness function (definition 5.4)

by managing the uncertainty related to features of ontologies under alignment.

In detail, we design a Mamdani FLC composed of two output variables, named

Beta and Omega, and four input variables, named diff, sl, sw, ss, representing

factors affecting output values. In detail, diff represents the relative difference in

percentage between the number of entities composing the two ontologies under

alignment; sl represents how much the ontologies to be aligned are identical under

a lexical point of view; sw represents how much the ontologies to be aligned are

identical under a linguistic point of view; ss represents how much the ontologies

to be aligned are identical under a structural point of view. Figs. 5.5-5.8 show

fuzzy sets of input variables, whereas, Figs. 5.9 and 5.10 depict fuzzy sets of

output ones. As you can see from Figs. 5.5-5.10, input variables are modeled

with trapezoidal fuzzy sets, whereas, output ones are described with triangular

fuzzy sets. As for rule base, it is composed of 81 rules. The designed inference

122

engine computes the conventional Mamdani’s inference method [89] consisting

of min-max operations. As for the process of defuzzification, the designed FLC

uses the mean of maxima method [83] which takes the mean of the points with

the strongest possibility, i.e. maximal membership. This method disregards the

shape of the fuzzy set, but the computational complexity is relatively good [74].

Figure 5.5: Variable diff

Figure 5.6: Variable sl

The designed FLC has been implemented in an XML-based language for mod-

eling fuzzy controllers, named Fuzzy Markup Language [5][6], thanks to support of

a Visual Tool [9]. Then, FML code has been integrated in the presented memetic

ontology alignment system. A portion of the rulebase modeled in FML is depicted

in listing 5.1.

123

Figure 5.7: Variable sw

Figure 5.8: Variable ss

Inputs necessary to the designed FLC to compute output values for the pa-

rameters β and Ω related to a specific alignment task are calculated starting from

input ontologies O1 and O2 under alignment as follows:

diff =
abs(|O1| − |O2|)
max(|O1|, |O2|)

∗ 100

sl =
#iden ent label

min(|O1|, |O2|)

sw =
#syn ent label

|O1 ×O2|

ss =
#sub ent

|O1 ×O2|

124

Figure 5.9: Variable Omega

Figure 5.10: Variable Beta

where |O1| and |O2| represent, respectively, the cardinality (number of entities) of

the two ontologies under alignment, |O1×O2| represents the number of pairs com-

posing the Cartesian product between the two ontologies under alignment, abs

is a function which computes the absolute value, #iden ent label represents the

number of identical name pairs in the entity’s names of two ontologies under align-

ment, #syn ent label represents the number of name pairs in the entity’s names

of two ontologies under alignment which are synonymous; #sub ent represents

the number of pairs between the two ontologies under alignment characterized by

entities with the same number of super- and subentities. Fig. 5.11 shows output

values for β and Ω starting with the following input values: diff = 40, sl = 0, 26,

sw = 0, 43, ss = 0, 09.

125

Figure 5.11: A simulation of fuzzy logic controller behavior

Finally, the general behaviour of the designed FLC is highlighted by control

surfaces presented in Fig. 5.12.

5.3.3 Experimental results

This section is devoted to show how MemeMetaMap enhanced with the de-

signed fuzzy logic controller yields better performance. The experiments involve

the alignment tasks belonging to the well-known OAEI dataset named standard

benchmark track (see 2.3.2.1). The improvement provided by the designed fuzzy

extension has been investigated in terms of quality of produced alignments by

using a well-known conformance measure, called F-measure (see definition 7).

The comparison is carried out with the original version of MemeMetaMap which

does not involve the fuzzy adaptation achieved through the designed fuzzy logic

controller. It executes the Wilcoxons signed rank test (see section 3.7.1).

The configuration of parameters used for running MemeMetaMap in both

versions is the following one:

• population size = 30 chromosomes;

• crossover rate = 0.9;

• mutation rate = 0.02;

126

Figure 5.12: Control surfaces with variable Ω and β on axis z, respectively, in
a)-b)-c) and d)-e)-f), and variables a)-d) diff and sl, b)-e) diff and ss, c)-f) diff
and sw, on axis x and y

• maximum number of local iterations = 70;

• termination condition = 250 fitness evaluations;

• similarity measures = Entity Name Distance Measure, Comment Distance

Measure, Hierarchy Distance Measure, Domain and Range Restrictions Dis-

tance Measure and Word Net Synonymy Name Distance Measure.

Table 5.4 shows F-measure values obtained by computing the average value

127

over fifteen runs for both compared ontology alignment systems.

Table 5.4: The comparison between the original MemeMetaMap and its fuzzy
extension.

Benchmark Fuzzy Original Rel. Benchmark Fuzzy Original Rel.

No. version version Improv. No. version version Improv.

101 1 1 0% 238 1 1 0%

103 1 1 0% 239 0,98 0,98 0%

104 1 1 0% 240 0,96 0,87 10,34%

201 0,95 0,97 -2,06% 241 1 1 0%

202 0,44 0,39 12,82% 246 0,98 0,98 0%

203 1 1 0% 247 0,96 0,93 3,23%

204 1 1 0% 248 0,35 0,25 40,00%

205 0,99 0,99 0% 249 0,44 0,41 7,32%

206 0,96 0,96 0% 250 0,48 0,5 -4,00%

207 0,96 0,96 0% 251 0,36 0,32 12,50%

208 0,98 0,98 0% 252 0,32 0,32 0%

209 0,68 0,69 -1,45% 253 0,34 0,31 9,68%

210 0,76 0,75 1,33% 254 0,3 0,14 114,29%

221 1 1 0% 257 0,43 0,5 -14,00%

222 1 1 0% 258 0,36 0,33 9,09%

223 1 1 0% 259 0,28 0,3 -6,67%

224 1 1 0% 260 0,5 0,31 61,29%

225 1 1 0% 261 0,33 0,21 57,14%

228 1 1 0% 262 0,27 0,12 125,00%

230 0,97 0,97 0% 265 0,47 0,24 95,83%

231 1 1 0% 266 0,3 0,21 42,86%

232 1 1 0% 301 0,87 0,87 0%

233 1 1 0% 302 0,64 0,61 4,92%

236 1 1 0% 303 0,79 0,68 16,18%

237 1 1 0% 304 0,93 0,91 2,20%

As shown in Table 5.4, the fuzzy enhanced version of MemeMetaMap outper-

forms the original version for the 90% of test cases. However, in order to statis-

tically verify the validity of the designed fuzzy extension, we have performed a

Wilcoxon’s signed rank test by considering as sample data the F-measure values

presented in the Table 5.4. The Wilcoxon’s test states that the fuzzy enhanced

version of MemeMetaMap outperforms original system at 1% significance level.

128

Listing 5.1: FML code to model a portion of the rule base
<?xml ve r s i on=”1.0” encoding=”UTF−8”?>
<FuzzyContro l l e r name=”FLC” i p=”127.0.0.1”>
. . . .

<RuleBase name=”RB1” andMethod=”MIN” orMethod=”MAX”
act ivat ionMethod=”MIN” type=”mamdani”>

<Rule name=”RULE1” connector=”and” operator=”MIN” weight=”1.0”>
<Antecedent>

<Clause>
<Variable>s l </Variable>
<Term>medium</Term>

</Clause>
<Clause>

<Variable>ss</Variable>
<Term>medium</Term>

</Clause>
<Clause>

<Variable>d i f f </Variable>
<Term>medium</Term>

</Clause>
<Clause>

<Variable>sw</Variable>
<Term>medium</Term>

</Clause>
</Antecedent>
<Consequent>

<Clause>
<Variable>Omega</Variable>
<Term>medium</Term>

</Clause>
<Clause>

<Variable>Beta</Variable>
<Term>B1</Term>

</Clause>
</Consequent>

</Rule>
<Rule name=”RULE2” connector=”and” operator=”MIN” weight=”1.0”>

<Antecedent>
<Clause>

<Variable>s l </Variable>
<Term>low</Term>

</Clause>
<Clause>

<Variable>ss</Variable>
<Term>medium</Term>

</Clause>
<Clause>

<Variable>d i f f </Variable>
<Term>medium</Term>

</Clause>
<Clause>

<Variable>sw</Variable>
<Term>low</Term>

</Clause>
</Antecedent>
<Consequent>

<Clause>
<Variable>Omega</Variable>
<Term>low</Term>

</Clause>
<Clause>

<Variable>Beta</Variable>
<Term>B4</Term>

</Clause>
</Consequent>

</Rule>
.

</RuleBase>
</FuzzyContro l ler>

129

Chapter 6

Evaluation: Memetic Approaches

vs the State of the art

In the previous chapters, we described the development of two new ontology align-

ment systems based on memetic algorithms, MemeOptiMap and MemeMetaMap,

and, their performances by executing some experiments. The aim of this chapter

is to present, firstly, the comparison between MemeOptiMap and MemeMetaMap

(see section 6.1), and then, between these memetic approaches and the existing

methods in literature (see section 6.2). As shown by the led statistical tests, the

exploitation of memetic algorithms results effective to face the ontology alignment

problem.

6.1 Comparison between MemeOptiMap and

MemeMetaMap

This section is devoted to present the statistical comparison executed between the

two proposed ontology alignment systems based on memetic algorithms, named

MemeOptiMap (see chapter 4) and MemeMetaMap (see chapter 5). The per-

formances of the two ontology alignment systems are investigated both in terms

of alignment quality and computational cost. The compared systems, MemeOp-

tiMap and MemeMetaMap, are executed with configurations reported, respec-

tively, in Tables 6.1 and 6.2. They represent a trade-off setting obtained in

130

empirical way which allow both systems to achieve the highest alignment quality

average on all test cases of exploited dataset.

Table 6.1: Configuration for MemeOptiMap

Parameter Value

Population size 30 chromosomes

Crossover rate 0.8

Mutation rate 0.02

Local search intensity 50 iterations

Local search individual selection mechanism 6% of population

Local search method
Hill Climbing with a neighborhood of 30 chro-
mosomes

Termination condition
20 iterations or no fitness improvements for
twice

matchers

Entity Name Distance Matcher

Entity Text Distance Matcher

Word Net Synonymy Name Distance Measure

Super Hierarchy Distance Measure

Numbered Hierarchy Distance Measure

Individual Distance Measure

aggregation OWA operator

weights [0.2, 0.15, 0.15, 0.2, 0.15,0.15]

threshold 0.5

Hereafter, the details about the carried out comparison in terms of alignment

quality and computational effort.

6.1.1 Alignment quality comparison

The first test intends to compare MemeOptiMap and MemeMetaMap in terms

of quality of produced alignments. In order to achieve this aim, we use the

conformance measure F-measure described in section 2.3.2.2. Table 6.3 shows

the comparison. The reported values represent the average F-measure on ten

runs.

As shown in Table 6.3, MemeMetaMap outperforms MemeOptiMap for the

86% of test cases. However, in order to statistically verify the validity of these

131

Table 6.2: Configuration for MemeMetaMap

Parameter Value

Population size 30 chromosomes

Crossover rate 0.9

Mutation rate 0.02

Local search iterations 20

Local search individual selection mechanism 15% of population

Termination condition 250 fitness evaluations

β 0.2

matchers

Entity Name Distance Matcher

Entity Text Distance Matcher

Word Net Synonymy Name Distance Measure

Super Hierarchy Distance Measure

Numbered Hierarchy Distance Measure

Individual Distance Measure

aggregation OWA operator

results, we have performed a Wilcoxon’s signed rank test by considering as sample

data the F-measure values presented in the table 6.3. The Wilcoxon’s test states

that MemeMetaMap outperforms MemeOptiMap at 1% significance level.

6.1.2 Computational cost comparison

The second test intends to compare MemeOptiMap and MemeMetaMap in terms

of computational effort. In order to achieve this aim, we use the performance

measure, named speed, described in section 2.3.2.2. Table 6.4 shows the compar-

ison. The reported values represent the average speed (measured in seconds) on

ten runs.

As shown in Table 6.4, MemeMetaMap outperforms MemeOptiMap for the

100% of test cases. However, in order to statistically verify the validity of these

results, we have performed a Wilcoxon’s signed rank test by considering as sample

data the F-measure values presented in the table 6.3. The Wilcoxon’s test states

that MemeMetaMap outperforms MemeOptiMap at 1% significance level.

However, we think that relevant improvements for both systems in terms of

132

Table 6.3: Comparison between MemeMetaMap (MMM) and MemeOptiMap
(MOM) in terms of F-measure

No. MMM MOM Rel. Improv. No. MMM MOM Rel. Improv.

101 1 0,99 1,01% 238 1 1 0,00

103 1 1 0% 239 0,98 0,98 0%

104 1 1 0% 240 0,96 0,77 24,68%

201 0,95 0,97 -2,06% 241 1 1 0%

202 0,44 0,35 25,71% 246 0,98 0,98 0%

203 1 1 0% 247 0,96 0,76 26,32%

204 1 0,99 1,01% 248 0,35 0,25 40,00%

205 0,99 0,91 8,79% 249 0,44 0,35 25,71%

206 0,96 0,96 0% 250 0,48 0,42 14,29%

207 0,96 0,97 -1,03% 251 0,36 0,38 -5,26%

208 0,98 0,98 0% 252 0,32 0,3 6,67%

209 0,68 0,64 6,25% 253 0,34 0,27 25,93%

210 0,76 0,72 5,56% 254 0,3 0,16 87,50%

221 1 1 0% 257 0,43 0,42 2,38%

222 1 1 0% 258 0,36 0,38 -5,26%

223 1 1 0% 259 0,28 0,3 -6,67%

224 1 1 0% 260 0,5 0,49 2,04%

225 1 1 0% 261 0,33 0,31 6,45%

228 1 1 0% 262 0,27 0,16 68,75%

230 0,97 0,96 1,04% 265 0,47 0,49 -4,08%

231 1 0,99 1,01% 266 0,3 0,31 -3,23%

232 1 1 0% 301 0,87 0,83 4,82%

233 1 1 0% 302 0,64 0,64 0%

236 1 1 0% 303 0,79 0,68 16,18%

237 1 1 0% 304 0,93 0,89 4,49%

computational cost could be still obtained by stressing and exploring parallel

approaches.

133

Table 6.4: Comparison between MemeMetaMap (MMM) and MemeOptiMap
(MOM) in terms of speed (measured in seconds)

No. MMM MOM Rel. Improv. No. MMM MOM Rel. Improv.

101 118,6 536,0 77,86% 238 165,7 515,8 67,88%

103 120,0 529,9 77,35% 239 25,3 37,3 32,26%

104 117,5 541,9 78,31% 240 76,8 171,7 55,27%

201 113,8 582,7 80,47% 241 22,1 38,1 41,82%

202 72,1 276,9 73,96% 246 27,4 40,2 31,89%

203 70,9 294,9 75,97% 247 75,0 159,8 53,08%

204 118,9 523,2 77,28% 248 69,6 287,4 75,78%

205 115,5 2037,8 94,33% 249 73,7 308,0 76,06%

206 115,6 1255,3 90,79% 250 18,7 37,1 49,60%

207 118,2 546,2 78,37% 251 69,8 269,4 74,10%

208 73,9 274,0 73,04% 252 100,5 297,9 66,26%

209 71,9 256,6 72,00% 253 70,0 278,6 74,87%

210 72,2 637,5 88,67% 254 12,8 31,6 59,67%

221 104,0 414,9 74,93% 257 19,2 33,1 41,99%

222 112,6 403,2 72,07% 258 70,5 269,1 73,80%

223 163,3 483,5 66,23% 259 107,5 304,7 64,72%

224 120,3 547,4 78,02% 260 15,1 28,7 47,24%

225 118,5 554,8 78,63% 261 45,6 119,7 61,92%

228 32,1 59,4 46,00% 262 12,0 32,1 62,51%

230 95,3 354,9 73,14% 265 14,9 27,2 45,29%

231 118,1 532,1 77,81% 266 45,5 120,0 62,06%

232 106,4 463,6 77,05% 301 78,4 137,1 42,80%

233 21,1 40,0 47,31% 302 42,3 56,0 24,46%

236 32,4 53,5 39,51% 303 155,1 485,0 68,01%

237 113,3 439,1 74,20% 304 102,7 410,6 74,99%

6.2 Comparison between Memetic Ontology

Alignment Systems and the State of the Art

This section is devoted to describe the statistical comparison carried out between

our proposals and the existing ontology alignment systems. The whole experi-

134

mental session involves the standard benchmark track1 provided by OAEI (see

section 2.3.2.1). In our experimental scenario, F-measure (see definition 7) is

used for evaluating the quality of produced alignments. The compared ontol-

ogy alignment systems are the participants in OAEI competition 2010, whose

F-measure values of the alignments produced for the standard benchmark track

are well-known2. In particular, they are AgrMaker [26], AROMA [28], ASMOV

[76], CODI [101], Eff2Match [137], Falcon [69], GeRMeSMB [110], MapPSO [16],

RiMOM [136], SOBOM [142], TaxoMap [65]. Moreover, in the comparison, also

a baseline ontology alignment system, named edna, using only an edit distance

algorithm on labels is considered [73]. According to [40], ASMOV represents the

current top-performer as for the standard benchmark track. The F-measure val-

ues for our proposals are computed by running the algorithms with configurations

reported in Tables 6.1 and 6.2.

In detail, the comparison has involved two steps: in the first one, a statis-

tical technique such as the Friedman’s test [47] is used to determine whether

the performances provided by the considered ontology alignment systems present

any inequality; in the second one, which is performed only if in the first step an

inequality is found, a post-hoc test such as Holm’s test [68] is led in order to

determined which ontology alignment system better outperforms.

Hereafter, the precise details about this statistical multiple comparison pro-

cedure are provided.

6.2.1 Friedman’s test results

Friedman’s test is a non-parametric statistical procedure which aims at detecting

if a significant difference among the behavior of two or more algorithms exists. In

particular, under the null-hypothesis, it states that all algorithms are equivalent,

hence, a rejection of this hypothesis implies the existence of differences among the

performance of all studied algorithms [49]. In order to reject the null hypothesis,

the computed value χ2
r must be equal to or greater than the tabled critical chi-

square value at the specified level of significance [116]. See section 3.7.2 for a

1http://oaei.ontologymatching.org/2010/
2http://oaei.ontologymatching.org/2010/results/

135

deeper description.

In our experimentation, a level of significance α equal to 0.05 is chosen. Since

in our case we are comparing 14 algorithms (12+2), our analysis has to consider

the critical value χ2
0,05 for thirteen degrees of freedom that is equal to 22, 36. The

sample data (see Table 6.5) for each ontology alignment system is represented

by the F-measure values computed for each benchmark test case. In particular,

the reported values represent the average on ten runs. In case of not computable

F-measure (when both precision and recall are zero), a value equal to zero has

been considered.

Table 6.6 shows the ranking obtained for each compared ontology alignment

system. The computed Friedman’s statistics is χ2
r = 247, 76. Since it is greater

than its associated critical value χ2
0,05 = 22, 36, the null hypothesis is rejected and

it is possible to assess that there is a significant difference between at least two

of the compared ontology alignment systems.

Attending to this result, a post-hoc statistical analysis is needed to conduct

pairwise comparisons in order to detect concrete differences among compared

ontology alignment systems and presented below.

6.2.2 Holm’s test results

Holm’s procedure is a multiple comparison procedure that works by setting a

control algorithm and comparing it with the remaining ones. Normally, the algo-

rithm which obtains the lowest value of ranking in the Friedman’s test is chosen

as control algorithm. In our experimentation, as shown in the Table 6.6, the

algorithm with the lowest value of ranking is ASMOV.

Holm’s test works on a family of hypotheses where each one is related to a

comparison between the control method and one of the remaining algorithms. In

details, the test statistic for comparing the ith and jth algorithm named z value

is used for finding the corresponding probability from the table of the normal

distribution (the so-called p-value), which is then compared with an appropriate

level of significance α [31], in our experimentation equal to 0.05.

All data computed by the performed Holm’s procedure are depicted in Table

6.7. By analysing the data, Holm’s procedure rejects hypothesis from 1 to 11.

136

T
ab

le
6.
5:

S
am

p
le
s
fo
r
F
ri
ed
m
an

’s
te
st
.
E
ac
h
va
lu
e
re
p
re
se
n
ts

th
e
F
-m

ea
su
re

va
lu
e
co
m
p
u
te
d
fo
r
ea
ch

b
en
ch
m
ar
k

te
st

ca
se
.
F
or

sa
ke

of
p
re
se
n
ta
ti
on

,
M
O
M

st
an

d
s
fo
r
M
em

eO
pt
iM

ap
an

d
M
M
M

st
an

d
s
fo
r
M
em

eM
et
aM

ap
.

N
o
.

e
d
n
a

A
g
r
M

a
k
e
r

A
R
O

M
A

A
S
M

O
V

C
O

D
I

E
f2

M
a
t
c
h

F
a
lc

o
n

G
e
R

M
e
S
M

B
M

a
p
P
S
O

R
iM

O
M

S
O

B
O

M
T
a
x
o
M

a
p

M
O

M
M

M
M

1
0
1

1
,0
0

0
,9
9

0
,9
8

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

0
,9
9

1

1
0
3

1
,0
0

0
,9
9

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

1
1

1
0
4

1
,0
0

0
,9
9

0
,9
9

1
,0
0

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

1
1

2
0
1

0
,0
4

0
,9
2

0
,9
5

1
,0
0

0
,1
3

0
,7
7

0
,9
7

0
,9
4

0
,4
2

1
,0
0

0
,9
5

0
,5
1

0
,9
7

0
,9
5

2
0
2

0
,0
3

0
,8
9

0
,0
0

0
,8
8

0
,0
0

0
,0
8

0
,0
0

0
,3
9

0
,0
5

0
,8
1

0
,6
4

0
,0
2

0
,3
5

0
,4
4

2
0
3

1
,0
0

0
,9
8

0
,8
0

1
,0
0

0
,8
6

1
,0
0

1
,0
0

0
,9
8

1
,0
0

1
,0
0

1
,0
0

0
,4
9

1
1

2
0
4

0
,9
3

0
,9
7

0
,9
7

1
,0
0

0
,7
4

0
,9
9

0
,9
6

0
,9
8

0
,9
8

1
,0
0

0
,9
9

0
,5
1

0
,9
9

1

2
0
5

0
,3
4

0
,9
2

0
,9
5

0
,9
9

0
,2
8

0
,8
4

0
,9
7

0
,9
9

0
,7
3

0
,9
9

0
,9
6

0
,5
1

0
,9
1

0
,9
9

2
0
6

0
,5
4

0
,9
3

0
,9
5

0
,9
9

0
,3
9

0
,8
7

0
,9
4

0
,9
2

0
,8
5

0
,9
9

0
,9
6

0
,5
1

0
,9
6

0
,9
6

2
0
7

0
,5
4

0
,9
3

0
,9
5

0
,9
9

0
,4
2

0
,8
7

0
,9
6

0
,9
6

0
,8
1

0
,9
9

0
,9
6

0
,5
1

0
,9
7

0
,9
6

2
0
8

0
,9
3

0
,9
6

0
,5
8

1
,0
0

0
,6
1

0
,9
5

0
,9
8

0
,9
5

0
,7
9

1
,0
0

1
,0
0

0
,4
4

0
,9
8

0
,9
8

2
0
9

0
,3
5

0
,8
8

0
,3
7

0
,9
2

0
,2
2

0
,4
7

0
,6
5

0
,5
9

0
,1
6

0
,8
7

0
,7
1

0
,1
4

0
,6
4

0
,6
8

2
1
0

0
,5
4

0
,9
3

0
,1
8

0
,9
6

0
,2
4

0
,3
8

0
,6
6

0
,5
8

0
,3
2

0
,8
5

0
,8
2

0
,1
5

0
,7
2

0
,7
6

2
2
1

1
,0
0

0
,9
7

0
,9
9

1
,0
0

0
,9
8

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

1
1

2
2
2

0
,9
8

0
,9
8

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,9
9

1
,0
0

1
,0
0

1
,0
0

0
,4
6

1
1

2
2
3

1
,0
0

0
,9
5

0
,9
3

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,9
6

0
,9
8

0
,9
8

0
,9
9

0
,4
5

1
1

2
2
4

1
,0
0

0
,9
9

0
,9
7

1
,0
0

1
,0
0

1
,0
0

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

1
1

2
2
5

1
,0
0

0
,9
9

0
,9
9

1
,0
0

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

1
1

2
2
8

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
1

2
3
0

0
,8
5

0
,9
0

0
,9
3

0
,9
7

0
,9
8

0
,9
7

0
,9
7

0
,9
4

0
,9
8

0
,9
7

0
,9
7

0
,4
9

0
,9
6

0
,9
7

2
3
1

1
,0
0

0
,9
9

0
,9
8

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

0
,9
9

1

2
3
2

1
,0
0

0
,9
7

0
,9
7

1
,0
0

0
,9
7

1
,0
0

0
,9
9

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,5
1

1
1

2
3
3

1
,0
0

1
,0
0

1
,0
0

1
,0
0

0
,9
4

1
,0
0

1
,0
0

0
,9
8

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
1

2
3
6

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
1

2
3
7

0
,9
8

0
,9
8

0
,9
7

1
,0
0

0
,9
9

1
,0
0

0
,9
9

1
,0
0

0
,9
9

1
,0
0

1
,0
0

0
,4
6

1
1

2
3
8

1
,0
0

0
,9
4

0
,9
2

1
,0
0

0
,9
9

1
,0
0

0
,9
9

0
,9
6

0
,9
7

0
,9
8

0
,9
8

0
,4
5

1
1

2
3
9

0
,5
0

0
,9
8

0
,9
8

0
,9
8

0
,9
8

0
,9
8

1
,0
0

0
,9
8

0
,9
8

0
,9
8

0
,9
8

0
,9
4

0
,9
8

0
,9
8

2
4
0

0
,5
5

0
,9
1

0
,8
3

0
,9
8

0
,9
5

0
,9
8

1
,0
0

0
,8
5

0
,9
2

0
,9
4

0
,9
8

0
,8
8

0
,7
7

0
,9
6

2
4
1

1
,0
0

1
,0
0

0
,9
8

1
,0
0

0
,9
4

1
,0
0

1
,0
0

0
,9
8

1
,0
0

1
,0
0

1
,0
0

1
,0
0

1
1

2
4
6

0
,5
0

0
,9
8

0
,9
7

0
,9
8

0
,9
8

0
,9
8

1
,0
0

0
,9
8

0
,9
8

0
,9
8

0
,9
5

0
,9
4

0
,9
8

0
,9
8

2
4
7

0
,5
5

0
,8
8

0
,8
0

0
,9
8

0
,9
8

0
,9
8

1
,0
0

0
,9
1

0
,8
9

0
,9
4

0
,9
8

0
,8
8

0
,7
6

0
,9
6

2
4
8

0
,0
3

0
,7
2

0
,0
0

0
,8
7

0
,0
0

0
,0
2

0
,0
0

0
,3
7

0
,0
5

0
,6
4

0
,4
8

0
,0
2

0
,2
5

0
,3
5

2
4
9

0
,0
3

0
,8
8

0
,0
2

0
,8
8

0
,0
2

0
,0
8

0
,0
0

0
,3
5

0
,0
5

0
,7
8

0
,6
4

0
,0
2

0
,3
5

0
,4
4

2
5
0

0
,0
2

0
,5
6

0
,0
0

0
,6
2

0
,0
0

0
,1
1

0
,0
0

0
,0
6

0
,0
3

0
,7
3

0
,2
0

0
,0
0

0
,4
2

0
,4
8

2
5
1

0
,0
5

0
,7
8

0
,0
0

0
,8
6

0
,0
0

0
,0
8

0
,0
0

0
,4
4

0
,0
6

0
,6
8

0
,4
7

0
,0
2

0
,3
8

0
,3
6

2
5
2

0
,0
2

0
,7
8

0
,0
0

0
,8
6

0
,0
0

0
,0
8

0
,0
0

0
,3
7

0
,0
2

0
,6
8

0
,5
0

0
,0
2

0
,3

0
,3
2

2
5
3

0
,0
3

0
,7
2

0
,0
2

0
,8
7

0
,0
2

0
,0
2

0
,0
0

0
,4
2

0
,0
7

0
,6
1

0
,4
7

0
,0
2

0
,2
7

0
,3
4

2
5
4

0
,0
2

0
,5
6

0
,0
0

0
,4
3

0
,0
0

0
,0
0

0
,0
0

0
,0
6

0
,0
3

0
,5
6

0
,0
0

0
,0
0

0
,1
6

0
,3

2
5
7

0
,0
0

0
,5
6

0
,0
0

0
,5
0

0
,0
0

0
,1
1

0
,0
0

0
,0
6

0
,0
7

0
,7
1

0
,2
5

0
,0
0

0
,4
2

0
,4
3

2
5
8

0
,0
4

0
,7
8

0
,0
2

0
,8
6

0
,0
2

0
,0
8

0
,0
0

0
,2
8

0
,0
7

0
,6
6

0
,4
7

0
,0
2

0
,3
8

0
,3
6

2
5
9

0
,0
2

0
,7
8

0
,0
2

0
,8
6

0
,0
2

0
,0
8

0
,0
0

0
,2
9

0
,0
4

0
,6
4

0
,5
0

0
,0
2

0
,3

0
,2
8

2
6
0

0
,0
0

0
,6
1

0
,0
0

0
,5
7

0
,0
0

0
,1
3

0
,0
0

0
,0
0

0
,1
2

0
,6
7

0
,0
6

0
,0
0

0
,4
9

0
,5

2
6
1

0
,0
0

0
,5
4

0
,0
0

0
,5
7

0
,0
0

0
,1
1

0
,0
0

0
,0
6

0
,0
3

0
,5
5

0
,0
9

0
,0
0

0
,3
1

0
,3
3

2
6
2

0
,0
5

0
,5
6

0
,0
0

0
,4
3

0
,0
0

0
,0
0

0
,0
0

0
,0
6

0
,0
4

0
,5
3

0
,0
0

0
,0
0

0
,1
6

0
,2
7

2
6
5

0
,0
3

0
,6
1

0
,0
0

0
,4
6

0
,0
0

0
,1
3

0
,0
0

0
,0
0

0
,0
4

0
,6
3

0
,0
6

0
,0
0

0
,4
9

0
,4
7

2
6
6

0
,0
0

0
,5
4

0
,0
0

0
,4
4

0
,0
0

0
,1
1

0
,0
0

0
,0
6

0
,0
6

0
,5
2

0
,0
5

0
,0
0

0
,3
1

0
,3

3
0
1

0
,5
9

0
,5
9

0
,7
3

0
,8
6

0
,3
8

0
,7
1

0
,7
8

0
,7
1

0
,6
4

0
,7
3

0
,8
4

0
,4
3

0
,8
3

0
,8
7

3
0
2

0
,4
3

0
,3
2

0
,3
5

0
,7
3

0
,5
9

0
,7
1

0
,7
1

0
,4
1

0
,0
4

0
,7
3

0
,7
4

0
,4
0

0
,6
4

0
,6
4

3
0
3

0
,0
0

0
,7
8

0
,5
9

0
,8
3

0
,6
5

0
,8
3

0
,7
7

0
,0
0

0
,0
0

0
,8
6

0
,5
0

0
,3
6

0
,6
8

0
,7
9

3
0
4

0
,8
3

0
,8
6

0
,8
4

0
,9
5

0
,7
4

0
,9
5

0
,9
4

0
,7
7

0
,7
2

0
,9
4

0
,9
1

0
,5
2

0
,8
9

0
,9
3

137

Table 6.6: Rankings obtained through Friedman’s test for each one of the com-
pared ontology alignment systems

System Rank

edna 9,48

AgrMaker 6,97

AROMA 11,02

ASMOV 3,43

CODI 10,28

Ef2Match 6,76

Falcon 7,87

GeRMeSMB 7,73

MapPSO 8,27

RiMOM 4,04

SOBOM 5,75

TaxoMap 12,17

MemeMetaMap 5,09

MemeOptiMap 6,14

Table 6.7: Holm’s test

i System z value unadjusted p-value α/(k − i), α = 0, 05

1 TaxoMap 10,4463 1, 5236 · 10−25 0,0038

2 AROMA 9,0718 1, 1708 · 10−19 0,0042

3 CODI 8,1873 2, 6712 · 10−16 0,0045

4 edna 7,2311 4, 7898 · 10−13 0,0050

5 MapPSO 5,7849 7, 2553 · 10−9 0,0056

6 Falcon 5,3068 1, 1156 · 10−7 0,0063

7 GeRMeSMB 5,1395 2, 7550 · 10−7 0,0071

8 AgrMaker 4,2311 2, 3254 · 10−5 0,0083

9 Ef2Match 3,98019 6, 8883 · 10−5 0,0100

10 MemeOptiMap 3,2391 0,0012 0,0125

11 SOBOM 2.,7729 0,0056 0,0167

12 MemeMetaMap 1,9841 0,0472 0,0250

13 RiMOM 0,7291 0,4659 0,0500

138

As a consequence, it is possible to state that ASMOV statistically outperforms

TaxoMap, AROMA, CODI, edna, MapPSO, Falcon, GeRMeSMB, AgrMaker,

Ef2Match, MemeOptiMap and SOBOM at 5% significance level but not RiMOM

and MemeMetaMap.

By concluding, the statistical comparison states that MemeMetaMap has the

same performances of ASMOV, which is, as declared by OAEI [40], currently the

top-performer as for the standard benchmark track. In addition, as described in

Sect. 5.2.1.2, our system has the significant advantage of not requiring a priori

information about ontologies under alignment and data availability, unlike other

existing approaches including ASMOV (as described in Sect. 2.4.2).

139

Chapter 7

Conclusions and Future Works

In this chapter, we conclude this thesis by, firstly, giving a summary with the

contributions of our research work (see section 7.1), and, then, discussing some

ideas for future works (see section 7.2).

7.1 Summary

In this thesis, we present our research work about the ontology alignment problem,

i.e., the issue to identify semantic matchings between heterogeneous ontologies.

Finding solutions which solve this problem is very important task in several in-

dustrial and academic application domains such as knowledge management, infor-

mation retrieval, medical diagnosis, e-Commerce, knowledge acquisition, search

engines, bioinformatics, the emerging Semantic Web and so on. However, in spite

of the enormous number of ontology alignment systems which have been devel-

oped in order to face this problem, there is no an integrated solution that is a

clear success, which is robust enough to be the basis for future development, and

which is usable by non expert users [117]. Starting from this consideration, we

have researched a new innovative approach to address this relevant problem con-

sisting in the exploitation of an emergent class of evolutionary algorithms, named

memetic algorithms.

In particular, in this thesis, firstly, we have studied the ontology alignment

problem and all its aspects: its relevance, its causes, the current techniques used

to address it, the open issues (Chapter 2). Successively, understood the complex

140

nature of the problem, we are interested for its resolution in a class of approxima-

tion methods, i.e., the memetic algorithms, with aim of producing sub-optimal

alignments. After a detailed study of memetic algorithms (Chapter 3), we have

developed two ontology alignment systems based on this category of algorithms,

named MemeOptiMap and MemeMetaMap, which address the ontology align-

ment problem by two different point of views. In detail, the former, presented

in Chapter 4, uses memetic algorithms to directly solve the ontology alignment

problem as a minimum optimization problem, whereas, the latter, presented in

Chapter 5, exploits memetic algorithms to address meta-matching problem, i.e.,

the issue related to determining the appropriate values for ontology alignment

process parameters and, consequently, it produces an alignment by performing a

typical matching characterized by the computed parameters.

Both systems are the result of an evolving development process having the

aim of making changes in order to achieve relevant improvements in terms of

both alignment quality and effort performance. In detail, the process, initially,

has involved, for both systems, the definition of all their basic modules which are

mainly related to the elementary components of a memetic algorithm: chromo-

some structure, fitness function and integrated local search procedures. Then,

we have studied the initial versions of developed systems in order to identify

their weaknesses. During this phase, in particular, we found that MemeOp-

tiMap was strongly affected by the high computational cost of directly optimizing

the ontology alignment problem, whereas, MemeMetaMap’s behavior was highly

dependent by specific instance parameters. Hence, the current final version of

MemeOptiMap is based on a hybrid parallel model, named multi-island paral-

lel memetic algorithm, which allows to distribute ontology alignment task across

multiple processing nodes, and, as a consequence, speed up the search process

and to preserve population diversity useful to increase the chances of escaping

from local optima. As for MemeMetaMap, in its current final version, it has been

enhanced with an expert fuzzy systems capable of adaptively regulating the spe-

cific instance parameters affecting its behaviour by means of the analysis of the

features of ontologies composing the alignment task at hand.

In Chapter 6, both systems in their final versions have been compared with

the state of the art by means of a statistical multiple comparison procedure.

141

The test results show that both approaches are competitive, and, in particu-

lar, MemeMetaMap improves the capabilities of the current ontology alignment

processes by working regardless of the user involvement, data availability and

the need of a priori knowledge about ontology features, and, yielding high perfor-

mance in terms of alignment quality with respect to top-performers of well-known

OAEI1.

7.2 Future works

Our future work lies in extension of the implemented ontology alignment sys-

tems, MemeOptiMap and MemeMetaMap, in order to furthermore improve their

performance both in terms of alignment quality and computational effort. Re-

garding MemeOptiMap, we plan to improve both computational cost and align-

ment quality by actually implementing a multi-agent system composed of more

numerous optimizing agents in order to massively distribute computational effort

and strongly increase benefits provided by the migration process. Moreover, by

analiysing this approach, it suffers from the so-called meta-matching problem, i.e.,

determining ontology alignment parameters that should be properly set to get the

best possible match results. This drawback can be faced by supporting MemeOp-

tiMap with machine learning techniques or evolutionary approaches such as that

investigated in our second approach. As forMemeMetaMap, due to the composite

nature of the exploited fitness function, we plan to investigate the possibility to

improve alignment quality by performing a multi-objective optimization approach

in order to simultaneously optimize the two considered objectives: the number

of correspondences to be found and the similarity average. Besides, in order to

improve computational cost, an idea could be to distribute MemeMetaMap by

using a global parallel strategy capable of organizing the computation of fitness

functions, which is the most effort, over several nodes. Finally, in order to further

improve the quality of produced alignments for both systems, our idea is to enable

the proposed ontology alignment systems to use similarity measures character-

ized by a higher semantic power and to detect not only equivalence mappings but

1http://oaei.ontologymatching.org/

142

also other kinds of correspondences based on relations such as subsumption and

mismatch.

143

References

[1] S. Abdullah and H. Turabieh. On the use of multi neighbourhood

structures within a tabu-based memetic approach to university timetabling

problems. Inf. Sci., 191:146–168, May 2012. 70

[2] G. Acampora, P. Avella, V. Loia, S. Salerno, and A. Vitiello.

Improving ontology alignment through memetic algorithms. In FUZZ-IEEE

2011, IEEE International Conference on Fuzzy Systems, pages 1783–1790,

2011. 77

[3] G. Acampora, M. Gaeta, E. Muñoz Ballester, and A. Vitiello.

An adaptive multi-agent memetic system for personalizing e-learning expe-

riences. pages 123–130, 2011. 70

[4] G. Acampora, U. Kaymak, V. Loia, and A. Vitiello. Hybridizing

genetic algorithms and hill climbing for similarity aggregation in ontology

matching. In Computational Intelligence (UKCI), 2012 12th UK Workshop

on, pages 1 –6, sept. 2012. 106

[5] G. Acampora and V. Loia. Fuzzy control interoperability and scalabil-

ity for adaptive domotic framework. Industrial Informatics, IEEE Trans-

actions on, 1[2]:97 – 111, may 2005. 123

[6] G. Acampora, V. Loia, C.-S. Lee, and M.-H. Wang, editors. On

the Power of Fuzzy Markup Language. Studies in Fuzziness and Soft Com-

puting. Springer Berlin Heidelberg, 2013. 123

144

REFERENCES

[7] G. Acampora, V. Loia, S. Salerno, and A. Vitiello. A hybrid

evolutionary approach for solving the ontology alignment problem. Int. J.

Intell. Syst., 27[3]:189–216, 2012. 77

[8] G. Acampora, V. Loia, and A. Vitiello. Hybridizing fuzzy control

and timed automata for modeling variable structure fuzzy systems. In Fuzzy

Systems (FUZZ), 2010 IEEE International Conference on, pages 1 –8, july

2010. 121

[9] G. Acampora, V. Loia, and A. Vitiello. An enhanced visual en-

vironment for designing, testing and developing fml-based fuzzy systems.

In G. Acampora, V. Loia, C.-S. Lee, and M.-H. Wang, editors,

On the Power of Fuzzy Markup Language, Studies in Fuzziness and Soft

Computing, pages 17–31. Springer Berlin Heidelberg, 2013. 123

[10] G. Acampora and A. Vitiello. Improving agent interoperability

through a memetic ontology alignment: A comparative study. In FUZZ-

IEEE 2012, IEEE International Conference on Fuzzy Systems, pages 1–8,

2012. 89

[11] G. Acampora and A. Vitiello. Collaborative memetic agents for en-

abling semantic interoperability. In 2013 IEEE Symposium Series on Com-

putational Intelligence (SSCI 2013), April 2013. 95

[12] G. Antoniou and F. van Harmelen. Web ontology language: Owl. In

S. Staab and R. Studer, editors, The Handbook on Ontologies. Springer,

2004. 14

[13] T. Bäck. Evolutionary algorithms in theory and practice: evolution strate-

gies, evolutionary programming, genetic algorithms. Oxford University

Press, Oxford, UK, 1996. iv, 4

[14] V. Bertaud-Gounot, R. Duvauferrier, and A. Burgun. Ontology

and medical diagnosis. Inform Health Soc Care, 37[1]:22–32, 2012. 18

145

REFERENCES

[15] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Comput. Surv., 35[3]:268–308,

September 2003. 62

[16] Jurgen Bock and Jan Hettenhausen. Discrete particle swarm opti-

misation for ontology alignment. Information Sciences, 192[0]:152 – 173,

2012. 51, 106, 110, 135

[17] W. Borst. Construction of Engineering Ontologies. PhD thesis, University

of Tweenty, Enschede, The Netherlands, 1997. 8

[18] G. Budai-Balke, R. Dekker, and U. Kaymak. Genetic and memetic

algorithms for scheduling railway maintenance activities. Econometric In-

stitute Report EI 2009-30, Erasmus University Rotterdam, Econometric

Institute, 2009. 70

[19] E. K. Burke and A. J. Smith. A Memetic Algorithm to Schedule

Planned Grid Maintenance. ACM Journal of Experimental Algorithms,

1999. 70

[20] E. Cantú-Paz. A survey of parallel genetic algorithms. CALCULATEURS

PARALLELES, 10, 1998. 71

[21] E. Cantú-Paz. On the effects of migration on the fitness distribution of

parallel evolutionary algorithms. In Workshop on Evolutionary Computa-

tion and Parallel Processing at GECCO 2000, pages 3–6, 2000. 100

[22] R.G. Castro, D. Maynard, D. Foxvog, H. Wache, and

R. Gonzlez-Cabero. D2.1.4: Specification of a methodology, general

criteria, and benchmark suites for benchmarking ontology tools. Technical

report, Knowledge web NoE, 2004. 35

[23] C. H. Che, Z. Zhang, and A. Lim. A memetic algorithm for solving

multiperiod vehicle routing problem with profit. In Proceedings of the 13th

annual conference companion on Genetic and evolutionary computation,

GECCO ’11, pages 45–46, New York, NY, USA, 2011. ACM. 70

146

REFERENCES

[24] C. Cotta, E. Alba, and J. M. Troya. Stochastic reverse hillclimb-

ing and iterated local search. In In Proceedings of the 1999 Congress on

Evolutionary Computation, pages 1558–1565. IEEE, 1999. 60

[25] C. Cotta, A. Mendes, V. Garcia, P. França, and P. Moscato.

Applying memetic algorithms to the analysis of microarray data. In Pro-

ceedings of the 2003 international conference on Applications of evolution-

ary computing, EvoWorkshops’03, pages 22–32, Berlin, Heidelberg, 2003.

Springer-Verlag. 70

[26] I. F. Cruz, C. Stroe, M. Caci, F. Caimi, M. Palmonari, F. Pa-

landri Antonelli, and U. C. Keles. Using agreementmaker to align

ontologies for oaei 2010. In Proceedings of the 5th International Workshop

on Ontology Matching, 2010. 135

[27] R. Qing dao-er ji and Y. Wang. A new hybrid genetic algorithm for job

shop scheduling problem. Computers & Operations Research, 39[10]:2291

– 2299, 2012. 69

[28] J. David. AROMA: une méthode pour la découverte d’alignements orientés

entre ontologies à partir de règles d’association. PhD thesis, Université de

Nantes, France, 2007. 135

[29] R. Dawkins. The Selfish Gene. Oxford University Press, September 1990.

56, 67, 78

[30] K.A. De Jong. Evolving intelligent agents: A 50 year quest. Computa-

tional Intelligence Magazine, IEEE, 3[1]:12 –17, february 2008. 95

[31] J. Demšar. Statistical comparisons of classifiers over multiple data sets.

J. Mach. Learn. Res., 7:1–30, December 2006. 74, 75, 93, 136

[32] J. Digalakis, K. Margaritis, and K. G. Margaritis. A performance

comparison of parallel genetic and memetic algorithms using mpi. Technical

report, Distributed Processing Laboratory, University of Macedonia, 2000.

95

147

REFERENCES

[33] H.-H. Do and E. Rahm. Matching large schemas: Approaches and eval-

uation. Inf. Syst., 32[6]:857–885, September 2007. 49

[34] A.i Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology

Matching: A Machine Learning Approach. In Handbook on Ontologies in

Information Systems, pages 397–416, 2003. 50

[35] C. Eccher, A. Ferro, and D.M. Pisanelli. An ontology of therapies.

In Patty Kostkova, Ozgur Akan, Paolo Bellavista, Jiannong

Cao, Falko Dressler, Domenico Ferrari, Mario Gerla, Hisashi

Kobayashi, Sergio Palazzo, Sartaj Sahni, Xuemin (Sherman)

Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, and Geoffrey

Coulson, editors, Electronic Healthcare, 27 of Lecture Notes of the In-

stitute for Computer Sciences, Social Informatics and Telecommunications

Engineering, pages 139–146. Springer Berlin Heidelberg, 2010. 18

[36] Marc Ehrig. Ontology Alignment: Bridging the Semantic Gap, 4 of

Semantic Web And Beyond Computing for Human Experience. Springer,

2007. 10, 11, 14, 25, 43

[37] J. Euzenat. An api for ontology alignment. In Proc. 3rd international

semantic web conference, pages 698–712, 2004. 40

[38] J. Euzenat, T. Le Bach, J. Barrasa, P. Bouquet, J. De Bo,

R. Dieng, M. Ehrig, M. Hauswirth, M. Jarrar, R. Lara, and

et al. State of the art on ontology alignment. In Deliverable D2.2.3 v1.2.

Knowledge Web, 2008. 25, 40

[39] J. Euzenat, R. Garca Castro, and M. Ehrig. D2.2.2 specification of

a benchmarking methodology for alignment techniques. Technical report,

KnowledgeWeb Networkl of Excellence, 2005. 38

[40] J. Euzenat, A. Ferrara, W. Robert van Hage, L. Hollink,

C. Meilicke, A. Nikolov, F. Scharffe, P. Shvaiko, H. Stuck-

enschmidt, O. Svab-Zamazal, and C. Trojahn. Final results of the

ontology alignment evaluation initiative 2011. In Proceedings of the 6th

International Workshop on Ontology Matching, 2011. 52, 135, 139

148

REFERENCES

[41] J. Euzenat, C. Meilicke, H. Stuckenschmidt, P. Shvaiko, and

C. Trojahn dos Santos. Ontology alignment evaluation initiative: Six

years of experience. J. Data Semantics, 15:158–192, 2011. 35, 36

[42] J. Euzenat, F. Scharffe, and L. Serafini. Specification of the deliv-

ery alignment format. In Deliverable D2.2.6. Knowledge Web, 2006. 39

[43] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, Hei-

delberg, 2007. 10, 11, 19, 23, 83, 84, 114, 115

[44] D. Fensel. Ontologies: Silver Bullet for Knowledge Management and

Electronic Commerce. Springer, 2001. 13, 18

[45] Muller J.P.-Muller J. Odell J. Berre A.J. Fischer, K. Agent-

based technologies and applications for enterprise interoperability. Lecture

Notes in Business Information Processing, 5, 2009. 3, 94

[46] C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for

graph coloring. Annals of Operations Research, 63:437–461, 1996. 69

[47] M. Friedman. The use of ranks to avoid the assumption of normality

implicit in the analysis of variance. Journal of the American Statistical

Association, 32[200]:pp. 675–701, 1937. 72, 135

[48] L. Gao, G. Zhang, L. Zhang, and X. Li. An efficient memetic al-

gorithm for solving the job shop scheduling problem. Comput. Ind. Eng.,

60[4]:699–705, May 2011. 69

[49] S. Garćıa, D. Molina, M. Lozano, and F. Herrera. A study on

the use of non-parametric tests for analyzing the evolutionary algorithms’

behaviour: a case study on the cec’2005 special session on real parameter

optimization. Journal of Heuristics, 15[6]:617–644, December 2009. 72, 74,

91, 135

[50] M. R. Genesereth and N. J. Nilsson. Logical foundations of artificial

intelligence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1987. iii, 2

149

REFERENCES

[51] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial

Intelligence. Morgan Kaufmann, Los Altos, CA, 1987. 8

[52] J.H. Gennari, S.W. Tu, T.E. Rothenfluh, and M.A. Musen. Map-

pings domains to methods in support of reuse. Int. J. on Human-Computer

Studies, 41:399–424, 1994. 9

[53] A.-L. Ginsca and A. Iftene. Using a genetic algorithm for optimizing

the similarity aggregation step in the process of ontology alignment. In

Roedunet International Conference (RoEduNet), pages 118–122, 2010. 51,

54, 110

[54] F. Giunchiglia, M. Yatskevich, P. Avesani, and P. Shivaiko. A

large dataset for the evaluation of ontology matching. Knowl. Eng. Rev.,

24[2]:137–157, June 2009. 36

[55] D. E. Goldberg. The Design of Innovation: Lessons from and for Com-

petent Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA,

USA, 2002. 83

[56] A. Gómez-Pérez and O. Corcho. Ontology languages for the semantic

web. IEEE Intelligent Systems, 17[1]:54–60, 2002. 14

[57] J. Gracia, J. Bernard, and E. Mena. Ontology matching with cider:

evaluation report for oaei 2011. In Proceedings of the 6th International

Workshop on Ontology Matching, 2011. 49

[58] B. C. Grau, I. Horrocks, B. Parsia, P. Patel-Schneider, and

U. Sattler. Next steps for owl. OWL Experienced and Directions, 2006.

14

[59] T. R. Gruber. Ontolingua: A mechanism to support portable ontologies,

version 3.0. Technical Report, KSL 91-66, Knowledge Systems Laboratory,

Department of Computer Science, 1992. 13

[60] T. R. Gruber. Towards principles for the design of ontologies used for

knowledge sharing. Formal Ontology in Conceptual Analysis and Knowledge

150

REFERENCES

Representation. Kluwer Academic Publishers, Deventer, The Netherlands,

1993. iii, 2, 8

[61] T. R. Gruber. A translation approach to portable ontologies. Knowledge

Acquisition, 5[2]:199–220, 1993. 8, 9, 10

[62] N. Guarino, D. Oberle, and S. Staab. What is an ontology? In The

Handbook on Ontologies. Springer-Verlag, 2009. 7, 8

[63] G. Gutin and D. Karapetyan. A memetic algorithm for the generalized

traveling salesman problem. 9[1]:47–60, March 2010. 69

[64] A. B. Hadj-Alouane, J. C. Bean, and K. G. Murty. A hybrid

genetic/optimization algorithm for a task allocation problem. Journal of

Scheduling, 2:189–201, 1999. 70

[65] F. Hamdi, B. Safar, N. B. Niraula, and C. Reynaud. Taxomap

alignment and refinement modules: Results for oaei 2010. In Proceedings

of the 5th International Workshop on Ontology Matching, 2010. 135

[66] P. J. Hayes. Naive physics: Ontology for liquids. In J. R. Hobbs and

R. C. Moore, editors, Formal Theories of the Commonsense World, pages

71–107. Norwood, New Jersey: Ablex Publishing Corporation, 1985. 18

[67] J. H. Holland. Adaptation in Natural and Artificial Systems. University

of Michigan Press, Ann Arbor, MI, USA, 1975. iv, 4, 64, 65

[68] S. Holm. A simple sequentially rejective multiple test procedure. Scandi-

navian Journal of Statistics, 6[2]:pp. 65–70, 1979. 72, 135

[69] W. Hu, J. Chen, G. Cheng, and Y. Qu. Objectcoref & falcon-ao:

Results for oaei 2010. In Proceedings of the 5th International Workshop on

Ontology Matching, 2010. 135

[70] J. Huang, J. Dang, J. M. Vidal, and M. N. Huhns. Ontology

matching using an artificial neural network to learn weights. In IJCAI

Workshop on Semantic Web for Collaborative Knowledge Acquisition, 2007.

106

151

REFERENCES

[71] T. C. Hughes and B. C. Ashpole. The Semantics of Ontology Align-

ment. In I3CON. Information Interpretation and Integration Conference,

2004. iv, 4

[72] Tang J., M. H. Lim, and Y. S. Ong. A parallel hybrid GA for combi-

natorial optimization using grid technology. In IEEE Congress on Evolu-

tionary Computation, 2003. 71, 95

[73] C. Meilicke J. Pane F. Scharffe P. Shvaiko H. Stuckenschmidt

O. Švab-Zamazal V. Svatek J. Euzenat, A. Ferrara and C. Tro-

jahn dos Santos. Final results of the ontology alignment evaluation ini-

tiative 2010. In Proceedings of the 5th International Workshop on Ontology

Matching, 2010. 117, 135

[74] J. Jantzen. Design of fuzzy controllers. Technical report, Department of

Automation, Technical University of Denmark, Denmark, 1998. 123

[75] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics

in Medicine, 14:491–498, 1995. 29

[76] Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka. On-

tology matching with semantic verification. Web Semant., 7[3]:235–251,

September 2009. 49, 135

[77] T. Jones. Evolutionary algorithms, fitness landscapes and search. Working

Papers 95-05-048, Santa Fe Institute, May 1995. 58

[78] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state

of the art. Knowl. Eng. Rev., 18[1]:1–31, January 2003. iv, 3, 44

[79] S. Kirkpatrick. Optimization by simulated annealing: Quantitative stud-

ies. Journal of Statistical Physics, 34:975–986, 1984. 63

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by

simulated annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–

680, 1983. 64

152

REFERENCES

[81] N. Krasnogor and J. Smith. A tutorial for competent memetic algo-

rithms: model, taxonomy, and design issues. IEEE Trans. Evolutionary

Computation, 9[5]:474–488, 2005. 68, 89

[82] D. Kumar, S. Kumar, and C. S. Rai. Memetic algorithms for feature

selection in face recognition. In Proceedings of the 2008 8th International

Conference on Hybrid Intelligent Systems, HIS ’08, pages 931–934, Wash-

ington, DC, USA, 2008. IEEE Computer Society. 70

[83] C.C. Lee. Fuzzy logic in control system: Fuzzy logic controller - part

ii. IEEE Transactions Systems, Man & Cybernetics, 20[2]:404–435, march

1990. 123

[84] I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady, 10:707, 1966. 28

[85] B. Liu, L. Wang, Y. Jin, and D. Huang. Designing neural networks

using pso-based memetic algorithm. In Proceedings of the 4th international

symposium on Neural Networks: Advances in Neural Networks, Part III,

ISNN ’07, pages 219–224, Berlin, Heidelberg, 2007. Springer-Verlag. 18, 70

[86] Z. Lü and J.-K. Hao. A memetic algorithm for graph coloring. European

Journal of Operational Research, 203[1]:241 – 250, 2010. 69

[87] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema match-

ing with cupid. In Proceedings of the 27th International Conference on Very

Large Data Bases, VLDB ’01, pages 49–58, San Francisco, CA, USA, 2001.

Morgan Kaufmann Publishers Inc. 49

[88] E. H. Mamdani. Applications of fuzzy algorithms for simple dynamic

plants. Proceedings of IEE, 121[12]:15851588, 1974. 119

[89] E.H. Mamdani and S. Assilian. An experiment in linguistic synthe-

sis with a fuzzy logic controller. International Journal of Man-Machine

Studies, 7[1]:1 – 13, 1975. 123

153

REFERENCES

[90] J. Martinez-Gil, E. Alba, and J. F. A. Montes. Optimizing Ontol-

ogy Alignments by Using Genetic Algorithms. In Christophe Guéret,

Pascal Hitzler, and Stefan Schlobach, editors, Nature inspired Rea-

soning for the Semantic Web (NatuReS), 419. CEUR Workshop Proceed-

ings, October 2008. iv, 4, 51, 106

[91] J. Martinez-Gil and J. F. Aldana-Montes. Evaluation of two heuris-

tic approaches to solve the ontology meta-matching problem. Knowl. Inf.

Syst., 26[2]:225–247, February 2011. 26, 106

[92] P. Merz and B. Freisleben. Memetic algorithms for the traveling

salesman problem. Complex Systems, 13:297–345, 1997. 69

[93] R. J. Miller, L. M. Haas, and M. A. Hernández. Schema mapping

as query discovery. In Proceedings of the 26th International Conference on

Very Large Data Bases, VLDB ’00, pages 77–88, San Francisco, CA, USA,

2000. Morgan Kaufmann Publishers Inc. 53

[94] D. Milward, M. Bjäreland, W. Hayes, M. Maxwell, L. Öberg,

N. Tilford, J. Thomas, R. Hale, S. Knight, and J. Barnes.

Ontology-based interactive information extraction from scientific abstracts:

Conference papers. Comp. Funct. Genomics, 6[1-2]:67–71, February 2005.

18

[95] P. Moscato. On evolution, search, optimization, genetic algorithms and

martial arts - towards memetic algorithms, 1989. 56

[96] P. Moscato and C. Cotta. A gentle introduction to memetic algo-

rithms. In Handbook of Metaheuristics, pages 105–144. Kluwer Academic

Publishers, 2003. 55, 56, 57, 58

[97] Y. Nagata and O. Bräysy. Edge assembly-based memetic algorithm for

the capacitated vehicle routing problem. Netw., 54[4]:205–215, December

2009. 70

[98] J.M. Vázquez Naya, M. Mart́ınez Romero, J.P. Loureiro, C.R.

Munteanu, and A. Pazos Sierra. Improving ontology alignment

154

REFERENCES

through genetic algorithms. In Soft Computing Methods for Practical En-

vironment Solutions: Techniques and Studies, pages 240–259. IGI Global,

Hershey, PA, USA, 2010. 51, 54, 110

[99] F. Neri and C. Cotta. Memetic algorithms and memetic computing

optimization: A literature review. Swarm and Evolutionary Computation,

2[0]:1 – 14, 2012. 67

[100] F. Neri, N. Kotilainen, and M. Vapa. An adaptive global-

local memetic algorithm to discover resources in p2p networks.

In Proceedings of the 2007 EvoWorkshops 2007 on EvoCoMnet,

EvoFIN, EvoIASP,EvoINTERACTION, EvoMUSART, EvoSTOC and

EvoTransLog: Applications of Evolutionary Computing, pages 61–70,

Berlin, Heidelberg, 2007. Springer-Verlag. 70

[101] J. Noessner and M. Niepert. Codi: Combinatorial optimization for

data integration results for oaei 2010. In Proceedings of the 5th Interna-

tional Workshop on Ontology Matching, 2010. 49, 135

[102] M. G. Norman and P. Moscato. A competitive and cooperative ap-

proach to complex combinatorial search. Technical Report Caltech Concur-

rent Computation Program, Report. 790, California Institute of Technology,

Pasadena, California, USA, 1989. 67

[103] N. F. Noy and M. A. Musen. Prompt: Algorithm and tool for au-

tomated ontology merging and alignment. In Proceedings of the Seven-

teenth National Conference on Artificial Intelligence and Twelfth Confer-

ence on Innovative Applications of Artificial Intelligence, pages 450–455.

AAAI Press, 2000. 49

[104] Y. S. Ong, Q. H Nguyen, M. H. Lim, and T. Jing. A development

platform for memetic algorithm design. In Joint 3rd International Con-

ference on Soft Computing and Intelligent Systems and 7th International

Symposium on Advanced Intelligent Systems, 2006. 66

155

REFERENCES

[105] E. Franconi L. Serafini G. Stamou S. Tessaris P. Bouquet,

J. Euzenat. D2.2.1: Specification of a common framework for character-

izing alignment. Technical report, NoE Knowledge Web project delivable,

2004. 26

[106] M. Paolucci, T. Kawamura, T.R. Payne, and K.P. Sycara. Se-

mantic matching of web services capabilities. In Proceedings of International

Semantic Web Conference, pages 333–347, 2002. 18

[107] S. Pavel and J. Euzenat. Ontology Matching: State of the Art and Fu-

ture Challenges. IEEE Transactions on Knowledge and Data Engineering,

99[PrePrints], 2012. iv, 22, 105

[108] H. Sofia Pinto, A. Gomez-Perez, and J. P. Martins. Some issues

on ontology integration. In Proc. of IJCAI99s Workshop on Ontologies and

Problem Solving Methods: Lessons Learned and Future Trends, 1999. 21,

22

[109] V. Qazvinian, H. Abolhassani, S. H. Haeri, and B. B. Hariri.

Evolutionary coincidence-based ontology mapping extraction. Expert Sys-

tems, 25[3]:221–236, 2008. 51

[110] C. Quix, A. Gal, T. Sagi, and D. Kensche. An integrated matching

system: Geromesuite and smb results for oaei 2010. In Proceedings of the

5th International Workshop on Ontology Matching, 2010. 135

[111] E. Rahm and P. A. Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal, 10[4]:334–350, December 2001. 44

[112] E. Rahm and P.A. Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal, 10[4]:334–350, December 2001. 25

[113] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,

Newton, MA, USA, 2nd edition, 1979. 38

[114] G. Salton and C. Buckley. Term-weighting approaches in automatic

text retrieval. Inf. Process. Manage., 24[5]:513–523, August 1988. 30

156

REFERENCES

[115] G. Salton, A. Wong, and C. S. Yang. A vector space model for

automatic indexing. Commun. ACM, 18[11]:613–620, November 1975. 30

[116] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical

Procedures. Chapman & Hall/CRC, 4 edition, 2007. 72, 74, 75, 92, 135

[117] P. Shvaiko and J. Euzenat. Ten challenges for ontology matching.

In Proceedings of the OTM 2008 Confederated International Conferences,

CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the Move to

Meaningful Internet Systems, OTM ’08, pages 1164–1182, Berlin, Heidel-

berg, 2008. Springer-Verlag. 3, 52, 140

[118] P.l Shvaiko and J. Euzenat. A survey of schema-based matching ap-

proaches journal on data semantics iv. In Stefano Spaccapietra and

Stefano Spaccapietra, editors, Journal on Data Semantics IV, 3730

of Lecture Notes in Computer Science, chapter 5, pages 146–171. Springer

Berlin / Heidelberg, Berlin, Heidelberg, 2005. x, 44, 46, 47, 48, 49

[119] M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE

Comput., 27[6]:17–26, 1994. 64, 65

[120] R. Stevens, C. Goble, and S. Bechhofer. Ontology-based Knowl-

edge Representation for Bioinformatics. Briefings in Bioinformatics.,

1[4]:398–414, 2000. 10

[121] G. Stoilos, G. Stamou, and S. Kollias. A string metric for ontology

alignment. In Proceedings of the 4th international conference on The Se-

mantic Web, ISWC’05, pages 624–637, Berlin, Heidelberg, 2005. Springer-

Verlag. 22, 29, 30, 105

[122] R. Studer, R. Benjamins, and D. Fensel. Knowledge engineering:

Principles and methods. Data & Knowledge Engineering, 25[1]. 8, 9

[123] O. Svab-Zamazal. Pattern-based Ontology Matching and Ontology Align-

ment Evaluation. PhD thesis, University of Economics, Prague, 2010. 12

157

REFERENCES

[124] T. Taguchi, T. Yokota, and M. Gen. Reliability optimal design prob-

lem with interval coefficients using hybrid genetic algorithms. Computers

amp; Industrial Engineering, 35[1-2]:373 – 376, 1998. 69

[125] T. Takagi and M. Sugeno. Fuzzy identification of systems and its

applications to modeling and control. IEEE Transactions Systems, Man &

Cybernetics, 15[1]:116–132, 1985. 121

[126] V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge. Ontolo-

gies for supporting negotiation in e-commerce. Engineering Applications of

Artificial Intelligence, 18[2]:223 – 236, 2005. 18

[127] J. Tang, M. H. Lim, and Y. S. Ong. Diversity-adaptive parallel

memetic algorithm for solving large scale combinatorial optimization prob-

lems. Soft Comput., 11[9]:873–888, April 2007. 69, 71

[128] J. Tang, M.H. Lim, Y.S. Ong, and M.J. Er. Study of migration topol-

ogy in island model parallel hybrid-ga for large scale quadratic assignment

problems. In Control, Automation, Robotics and Vision Conference, 2004.

ICARCV 2004 8th, 3, pages 2286–2291, dec. 2004. 100

[129] M. M. Taye. Ontology Alignment Mechanisms for Improving Web-based

Searching. PhD thesis, De Montfort University, Leicester, UK, 2009. 12

[130] M. M. Taye. Understanding semantic web and ontologies: Theory and

applications. Journal of Computing, 2, 2010. 18

[131] C.-K. Ting and C.-C. Liao. A memetic algorithm for extending wireless

sensor network lifetime. Inf. Sci., 180[24]:4818–4833, December 2010. 69

[132] P. E. van der Vet, P.-H. Speel, and N. J. I. Mars. Ontologies for

very large knowledge bases in materials science: A case study. In N. J. I.

Mars, editor, TowardsVery Large Knowledge Bases: Knowledge Building

and Knowledge Sharing, pages 73–83. IOS Press, 1995. 18

[133] M. Vargas-Vera and M. Nagy. Towards intelligent ontology alignment

systems for question answering: Challenges and roadblocks. Journal of

Emerging Technologies in Web Intelligence, 2[3]:244–257, 2010. 52

158

REFERENCES

[134] H. Wache, T. V’́ogele, U. Visser, H. Stuckenschmidt, G. Schus-

ter, H. Neumann, and S. H’́ubner. Ontology-based integration of in-

formation - a survey of existing approaches. In Proceedings of the workshop

on Ontologies and Information Sharing at the International Joint Confer-

ence on Artificial Intelligence (IJCAI), pages 108–117, 2001. iv, 3, 44

[135] J. Wang, Z. Ding, and C. Jiang. Gaom: Genetic algorithm based

ontology matching. In Proceedings of the 2006 IEEE Asia-Pacific Confer-

ence on Services Computing, APSCC ’06, pages 617–620, Washington, DC,

USA, 2006. IEEE Computer Society. iv, 4, 51, 106

[136] Z. Wang, X. Zhang, L. Hou, Y. Zhao, J. Li, Y. Qi, and J. Tang.

Rimom results for oaei 2010. In Proceedings of the 5th International Work-

shop on Ontology Matching, 2010. 49, 105, 135

[137] W. Wei, K. Chua, and J.-J. Kim. Eff2match results for oaei 2010. In

Proceedings of the 5th International Workshop on Ontology Matching, 2010.

49, 135

[138] Y. Wen, H. Xu, and J. Yang. A heuristic-based hybrid genetic-variable

neighborhood search algorithm for task scheduling in heterogeneous multi-

processor system. Information Sciences, 181[3]:567 – 581, 2011. 70

[139] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics

Bulletin, 1[6]:pp. 80–83, 1945. 72

[140] W. E. Winkler. The state of record linkage and current research prob-

lems. Technical report, Statistical Research Division, U.S. Census Bureau,

1999. 29

[141] M. Wooldridge. An Introduction to MultiAgent Systems - Second Edi-

tion. John Wiley & Sons, Reading, MA, 2009. 95

[142] P. Xu, Y. Wang, L. Cheng, and T. Zang. Alignment results of sobom

for oaei 2010. In Proceedings of the 5th International Workshop on Ontology

Matching, 2010. 135

159

REFERENCES

[143] R.R. Yager. On ordered weighted averaging aggregation operators in

multicriteria decisionmaking. Systems, Man and Cybernetics, IEEE Trans-

actions on, 18[1]:183 –190, jan/feb 1988. 34

[144] J.H. Zar. Biostatistical Analysis. Prentice Hall, 1999. 74

160

