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1 Introduction

This thesis deals with economic models in the presence of externalities. Fol-
lowing Laffont (1988), we provide below the definition of externality.

An externality is any “indirect effect” that a consumption or a production
activity has on individual preferences and on consumption or production
possibilities.

“Indirect effect” means that the effect is created by an economic agent different
from the one who is affected, and the effect is not produced through the price
system. In this case the price system only plays the role of matching demand
and supply. 3 The definition above shows that the presence of externalities
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requires a new description of agents’ characteristics (individual preferences,
consumption sets and production technologies).

The thesis consists of three chapters. Chapter 1 deals with the existence of
competitive equilibria in a general production economy with externalities. In
Chapter 2, we provide some regularity results in production economies with
externalities. In Chapter 3 we study some testable restrictions in a specific
model with externalities and public goods. One finds below an introduction
of the three chapters.
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1.1 Chapter 1 – “Existence of Equilibria in a General Equilibrium model with
Production and Externalities: A Differentiable Approach”

In Chapter 1, we consider a general model of production economy with con-
sumption and production externalities. In a differentiable framework, our pur-
pose is to prove the non-emptiness and the compactness of the set of compe-
titive equilibria with consumptions and prices strictly positive.

Why do we care about the existence of equilibria from a differentiable view-
point? The starting point of studying the set of regular economies is the non-
empty and compact set of equilibria in a differentiable setting. The relevance of
regular economies and issues related to the global approach of the equilibrium
analysis are discussed in the following subsection.
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Our model of externalities is based on the seminal works by Laffont and
Laroque (1972), Laffont (1977,1978,1988), where individual consumption sets,
individual preferences and production technologies depend on the choices of
all households and firms. We provide below some economic examples of this
dependency.

• (Externalities on preferences). Building of a mall in a residential area
is an example of positive (or negative) externalities created by a firm on the
preferences of people living in that area.

• (Externalities on consumption sets). As in general equilibrium mo-
dels à la Arrow–Debreu, each individual has to choose a consumption in
his consumption set which describes the set of all consumption alternatives
which are a priori possible for the individual. In the following examples,
externalities affect individual consumption sets and do not directly affect
preferences. i) In the case of internet or electricity, the congestion due to the
global consumption limits the physically possible individual consumption,
ii) an increase in the production of transport services decreases the minimal
threshold of consumption of fuel, (iii) an increase of polluting production
makes worse the individual health, and consequently it increases the survival
threshold of consumption of medicines.

• (Externalities on production technologies). In counterpart, externali-
ties may be created by consumers on firms. For instance, an over consump-
tion of air-conditioner and consequently of electricity, might produce an
electrical breakdown, decreasing all the production activities. Finally, ex-
ternalities may be created by firms on firms. For example, (i) the polluting
production of a firm that damages the land used by an agricultural firm
might cause a reduction of the production of the agricultural firm, (ii) a
firm that extracts oil from a land can affect another firm that extracts
oil from a nearby land whenever the oil comes from an joint underground
reservoir.

In Chapter 1, we consider a private ownership economy with a finite num-
ber of commodities, households and firms. Each firm is characterized by a
technology described by an inequality on a differentiable function called the
transformation function. 4 Each household is characterized by a consumption
set, preferences and an initial endowment of commodities. Each consumption
set is described by an inequality on a differentiable function called the possibi-
lity function. The same idea is used in recent works on restricted participation
in financial markets where portfolio sets are described by linear or differen-

4 For production technologies described by transformation functions, see for in-
stance Mas-Colell et al. (1995).
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tiable functions. 5 Individual preferences are represented by a utility function.
Firms are owned by households. Utility, possibility and transformation func-
tions depend on the consumption of all households and on the production
activity of all firms.

Facing a price system, each firm chooses in his production set a production
plan which solves his profit maximization problem taking as given the choices
of the others, i.e. given the level of externality created by the other firms
and households. Each household chooses in his consumption set a consump-
tion bundle which solves his utility maximization problem under the budget
constraint taking as given the choices of the others, i.e. given the level of ex-
ternality created by the other households and firms. The associated concept of
equilibrium is nothing else than an equilibrium à la Nash, the resulting allo-
cation being feasible with the initial resources of agents. This notion includes
as a particular case the classical equilibrium definition without externalities
at all.

The main result of Chapter 1 is Theorem 12 which states that for all initial
endowments which satisfy appropriate survival conditions, the set of compet-
itive equilibria with consumptions and prices strictly positive is non-empty
and compact.

Following the seminal work by Smale (1974), and more recent works by Vil-
lanacci and Zenginobuz (2005) and Bonnisseau and del Mercato (2010), we
prove Theorem 12 using Smale’s extended approach and homotopy argu-
ments. 6 The homotopy idea is that any economy with externalities is con-
nected by an arc to some economy without externalities at all. Along this arc,
equilibria move in a continuous way without sliding off the boundary.

Smale’s extended approach differs from the one based on the aggregate excess
demand function by the feature that equilibria are described in terms of first
order conditions and market clearing conditions. In the presence of external-
ities, this approach overcomes the following difficulty: the individual demand
functions depend on the individual demand functions of the others, which de-
pend on the individual demand functions of the others, and so on. So, it would
be impossible to define an aggregate excess demand function which depends
only on prices and initial endowments.

We now compare our contribution with previous works. Villanacci and Zengi-
nobuz (2005) focus on a specific kind of externalities, namely pubic goods.
Bonnisseau and del Mercato (2010) consider a pure exchange economy where

5 See for instance, Siconolfi (1986,1988), Balasko, Cass and Siconolfi (1990), Pole-
marchakis and Siconolfi (1997), Cass, Siconolfi and Villanacci (2001), Carosi and
Villanacci (2005), Aouani and Cornet (2009).
6 The reader can find a survey of this approach in Villanacci et al. (2002).
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only consumption externalities are studied. So, Chapter 1 extends the latter
one to the case of externalities in a production economy.

In Kung (2008) and Mandel (2008), each consumption set coincides with the
positive orthant of the commodity space. So, concerning the consumption side,
our result is more general since it also allows externalities on general consump-
tion sets. Furthermore, in Kung (2008) firms produce private and public goods
but there are no private externalities on the production side. Concerning the
existence proof, differently from our contribution, Mandel (2008) uses an ap-
proach based on the aggregate excess demand and the Brouwer degree. But,
in order to use aggregate excess demand’s approach the author has to enlarge
the commodity space treating externalities as additional variables. Further-
more, following Chapter 4 of Milnor (1965), our proof is based on the theory
of degree modulo 2. The degree theory modulo 2 is simpler than the Brouwer
degree that requires the concept of oriented manifold in order to deduce the
existence result from regularity properties and from the Index Theorem.

Finally, the result by Bonnisseau and Médecin (2001) is more general than
ours since in that work individual consumption sets and firms technologies are
represented by correspondences, and the existence proof is based on fixed point
arguments. Moreover, in Bonnisseau and Médecin (2001) non-convexities are
allowed on the production side. For this reason, their existence result involves
more sophisticated techniques than those we use. Since we are interested in a
model where one can perform comparative static analysis, at the cost of loosing
generality, to describe individual consumption sets and firms technologies we
choose to use an inequality on differentiable functions instead of more general
correspondences. Furthermore, in order to use Smale’s extended approach and
standard first order conditions, fixing the externalities we require classical
convexity assumptions to be satisfied. In this mild context, we provide an
existence proof simpler than that of Bonnisseau and Médecin (2001).

1.2 Chapter 2 – “Externalities in Production Economies: Regularity results”

In Chapter 2, we consider a production economy with consumption and pro-
duction externalities. Our propose is to provide sufficient conditions for the
generic regularity of such economies.

Why do we care about regular economies? We recall that an economy is regular
if it has a finite set of equilibria and if every equilibrium locally depends in a
continuous or differentiable manner on the parameters describing the economy.
Therefore, at a regular economy, it is possible to perform comparative static
analysis. The relevance of regular economies and issues related to the global
approach of the equilibrium analysis can be found in Smale (1981), Mas-Colell
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(1985), Balasko (1988).

Regular economies are also important for two key aspects listed below.

(1) Pareto improving policies. It is well known that several sources of market
failures such as incomplete financial markets, public goods and external-
ities prevent competitive equilibrium allocations to be Pareto optimal.
In recent works, the achievement of Pareto improving policies is based
on the set of regular economies. In different settings, see for instance
Geanakoplos and Polemarchakis (1986, 2008), Citanna, Kajii and Vil-
lanacci (1998), Citanna, Polemarchakis and Tirelli (2006), Villanacci and
Zenginobuz (2006, 2010).

(2) Testable restrictions. An economic model is testable if it generates re-
strictions that must be satisfied by the observable data. It is well known
that there are two ways to construct testable restrictions. The “non-
parametric” approach is based on the general revealed preferences axiom
(GARP) or related axioms. On the other hand, the “parametric” ap-
proach is based on differentiable techniques which give rise to conditions
remindful Slutsky conditions. This approach focuses on the local struc-
ture of the equilibrium manifold, that is, on regular economies, see for
instance Chiappori, Ekeland, Kübler and Polemarchakis (2004).

It is an important and still open issue to study Pareto improving policies in the
presence of externalities. Furthermore, before implementing any public policy
one should verify whether the observed data are consistent with the economic
model. So, Chapter 2 is a first step to study testable restrictions and Pareto
improving policies in production economies with externalities.

As in Chapter 1, we consider a private ownership economy with consumption
and production externalities. But, we restrict our attention to the case in which
all the consumption sets coincide with the positive orthant of the commodity
space. So, concerning the consumption side the model discussed in Chapter 2
is less general than the one considered in Chapter 1.

Now we describe our contributions. We provide an example of a production
economy with externalities and an infinite set of equilibria for all the initial
endowments. The example shows that regularly fails because of the first order
external effect on transformation functions. So, in order to avoid situations
such as the one shown by the example, we consider a displacement of the
boundary of the production sets, that is, simple perturbations of the trans-
formation functions. But, as shown by Bonnisseau and del Mercato (2010) in
the case of only consumption externalities, regularity may fail whenever the
second-order external effects are too strong. So, the basic assumptions and the
perturbations mentioned above may be not sufficient to control the second-
order external effects thereby preventing the regularity result. Thus, we also
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introduce two additional assumptions on the second-order external effects.

Our main result is Theorem14 which states that almost all perturbed economies
are regular, where the term almost all means in a open and full measure. 7

As a consequence of Theorem 14, we get Corollary 19 which states the non-
emptiness and the openness of the set of regular economies in the space of
endowments and transformation functions.

Finally, we compare our contribution with previous contributions. As in Chap-
ter 1, we follow Smale’s extended approach. Concerning recent works on public
goods and externalities, Villanacci and Zenginobuz (2005), Kung (2008) and
Bonnisseau and del Mercato (2010) also use Smale’s extended approach. Vil-
lanacci and Zenginobuz (2005) focus on a specific kind of externalities, namely
public goods. In Kung (2008), differently from our model, there are no exter-
nalities on the production side. Furthermore, in order to get a regularity result,
the author does not make any additional assumptions on utility functions, but
perturbations of utility functions are also needed. In Bonnisseau and del Mer-
cato (2010), only consumption externalities are considered. So, our regularity
result extends the latter one to the case of production economy.

The model in Mandel (2008) is more general than ours since the author allows
for non-convexity on the production side. But, as stressed in Chapter 1, differ-
ently from our contribution, the author has to enlarge the commodity space
treating externalities as additional variables. Moreover, the author assumes
that a small change in the externalities created by all the agents on a agent
does not generate changes in the choices of the latter agent which would in turn
involve the exact same change on the behavior of the others, see Assumption
TR2 in Mandel (2008). But, differently from our assumptions, Assumption
TR2 involves endogenous variables, more precisely the derivatives of house-
holds’ demands and firms’ supplies. So, this assumption implicitly involves the
Lagrange multipliers, that is the equilibrium prices.

1.3 Chapter 3 – “Testable restrictions in a specific model with externalities
and public goods: The collective consumption model”

As we emphasized in the previous subsection, it is important to study testable
restrictions in general equilibrium models in the presence of externalities.

Testable restrictions on the classical general equilibrium model have been
widely studied in literature, see for example the seminal paper of Brown and
Matzkin (1996), and Chiappori, Ekeland, Kübler and Polemarchakis (2004).

7 See Smale (1981).
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The first testable restrictions in a model that involves externalities and public
goods are provided by Browning and Chiappori (1998) for a collective con-
sumption model. More precisely, the authors consider a non-unitary household
model in which the decisions taken by the two intra-household members are
Pareto efficient. In the last decades, the collective consumption model for the
analysis of household decisions has become increasingly popular. The reasons
for this interest stand in that individuals within a household are heteroge-
neous (i.e. they have different preferences) and an intra-household decision
process takes place within a household. The standard unitary model considers
a household as a single decision maker who maximizes his preferences sub-
ject to his budget constraint. But, there exists empirical evidence showing
that the unitary model does not hold for household decisions. So, the uni-
tary model is obviously too restrictive, since it implicitly endows households,
rather than individuals, with preferences over consumption goods. In particu-
lar, the well-known properties of the classical demand function and especially
the symmetry of the Slutsky matrix are often rejected. 8

In Browning and Chiappori (1998), one does not observe what goods are pri-
vately consumed and what goods are publicly consumed within the household.
The authors assume that only prices and aggregate demand with respect to
some power distribution between the two intra-household members are ob-
served. Using a “parametric” approach based on differentiable techniques, the
authors prove that the aggregate demand is compatible with the Pareto op-
timal decision behavior if it satisfies some restrictions on a “Pseudo-Slutsky”
matrix. The “Pseudo-Slutsky” matrix is the sum of the classical Slutsky ma-
trix which measures the change in demand induced by the variation of prices
and income, and another matrix which measures the change in demand in-
duced by the variation of power distribution. Furthermore, the authors show
that a collective model with two intra-household members can be rejected if
at least five goods are present in the economy.

Successively, Chiappori and Ekeland (2006) generalize the previous model con-
sidering a group with many individuals and production, and provide necessary
and sufficient restrictions in terms of “Pseudo-Slutsky” matrix. Importantly,
using the “parametric” approach, the authors show that the private and
public nature of consumption is not testable. More precisely, the au-
thors show that the collective consumption model has exactly the same testa-
bility implications as two more specific collective models, i.e. a first benchmark
case where all goods are publicly consumed within the household and a sec-
ond benchmark case, without externalities at all, where all goods are privately
consumed within the household.

8 See for example, Browning and Meghir (1991) and Browning and Chiappori
(1998).
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Differently from Browning and Chiappori (1998), Cherchye, De Rock, Ver-
meulen (2007) provide a “non-parametric” characterization of the collective
consumption model. The “non-parametric” approach in the tradition of Afriat
(1967) and Varian (1982) contributions. This approach does not rely on any
functional specification regarding the group consumption process, and it typ-
ically focuses on revealed preference axioms (i.e. GARP or related axioms).
In Cherchye, De Rock, Vermeulen (2007), assuming positive externalities the
authors derive necessary and sufficient conditions for a rationalization of a
data set consistent with the collective consumption model. Furthermore, the
authors show that it is sufficient to have a data set with three observations and
three goods to reject collective rationality for a household with two members.

In Chapter 3, using the “non-parametric” restrictions found by Cherchye, De
Rock, Vermeulen (2007), we provide examples showing that the private and
public nature of consumption have testable implications.

So, in contrast with the previous literature, we find that the “non-parametric”
approach does imply testability of privateness versus publicness of consump-
tion, even if one only observes the aggregate group consumption. Furthermore,
we obtain that the case where all the goods are publicly consumed within the
household is independent from the case where all the goods are privately
consumed within the household. More precisely, a data set that satisfies the
restrictions for the first case does not necessarily satisfy the restrictions for
the second case, and vice versa.

How can we interpret this difference between the testability conclusions of
our approach and the ones of the “parametric” approach? Our explanation is
that, unlike Chiappori and Ekeland’s approach, our “non-parametric” restric-
tions involve personalized prices à la Lindahl and personalized consumptions,
although we do not require personalized prices and personalized consump-
tions to be observable. Under this view, the nature of the “non-parametric”
approach seems to imply stronger testability restrictions.
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Chapter 1
—–

Existence of equilibria in a general
equilibrium model with production and
externalities: A differentiable approach 1

Vincenzo Platino 2

DISES, Universitá degli Studi di Salerno, Italy

Key words: externalities, production economies, competitive equilibrium, Smale’s
extended approach, homotopy approach.

1 Long abstract

We consider a general model of a private ownership economy with consumption
and production externalities. Each firm is characterized by a technology de-
scribed by an inequality on a differentiable function called the transformation
function. Each household is characterized by a consumption set, preferences
and an initial endowment of commodities. Each consumption set is described
by an inequality on a differentiable function called the possibility function.
Individual preferences are represented by a utility function. Firms are owned
by households. Utility, possibility and transformation functions depend on the
consumption of all households and on the production activities of all firms.

Using Smale’s extended approach and homotopy arguments, under differentia-
bility and boundary conditions, we prove the non-emptiness and the compact-
ness of the set of competitive equilibria with consumptions and prices strictly
positive.

1 This chapter is based on del Mercato and Platino (2010).
2 Dipartimento di Scienze Economiche e Statistiche (DISES), Universitá degli
Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy. E-mail: vin-
cenzo.platino@gmail.com.
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The homotopy idea is that any economy with externalities is connected by
an arc to some economy without externalities at all. Along this arc, equilibria
move in a continuous way without sliding off the boundary. Smale’s extended
approach differs from the one based on the aggregate excess demand function
by the feature that equilibria are described in terms of first order conditions
and market clearing conditions. In the presence of externalities, this approach
overcomes the following difficulty: the individual demand functions depend on
the individual demand functions of the others, which depend on the individual
demand functions of the others, and so on. So, it would be impossible to define
an aggregate excess demand function which depends only on prices and initial
endowments.

Chapter 1 is organized as follows. In Section 2, we present the model and the
assumptions. In Section 3, the concept of competitive equilibrium is adapted
to our economy. Then, we focus on the equilibrium function which is built on
first order conditions associated with households and and firms maximization
problems. In Section 4, we present our main result, Theorem 12.

In Appendix A we provide some technical details. In Appendix B, the reader
can find the characterization of Pareto optimal allocation without externali-
ties.

2 The model and the assumptions

There is a finite number C of physical commodities or goods labeled by
the superscript c ∈ C := {1, . . . , C}. The commodity space is RC . There
is a finite number H of households or consumers labeled by the subscript
h ∈ H := {1, . . . , H}. Each household h is characterized by an endowment
of commodities, a possibility function and preferences described by a util-
ity function. There is a finite number J of firms labeled by the subscript
j ∈ J := {1, . . . , J}. Each firm j is owned by the households and it is char-
acterized by a technology described by a transformation function. Individual
utility, possibility and transformation functions are affected by the consump-
tion choices of all households and the production activities of all firms which
represent the externalities created on individual agents (households and firms)
by all the other agents. The notations are summarized below.

• yj := (y1j , .., y
c
j , .., y

C
j ) is the production plan of firm j. As usual, the output

components are positive and the input components are negative; y−j :=
(yz)z "=j denotes the production plan of firms other than j and y := (yj)j∈J
denotes the production of all the firms.

• xc
h is the consumption of commodity c by household h;

xh := (x1
h, .., x

c
h, .., x

C
h ) denotes household h’s consumption; x−h := (xk)k "=h
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denotes the consumption of households other than h and x := (xh)h∈H
denotes the consumption of all the households.

• For each j ∈ J , the technology of firm j is described by an inequality on a
function tj called the transformation function. This description is usual for
smooth production economies, see for instance Mas-Colell et al. (1995). An
innovation of this chapter comes from the dependency of the production set
with respect to the production activities of other firms and the consumption
of households. That is, given y−j and x, the production set of the firm j is
described by the following set,

Yj(y−j, x) :=
{
yj ∈ RC : tj(yj, y−j, x) ≥ 0

}

where the transformation function tj is a function from RC×RC(J−1)×RCH
++

to R. So, tj describes the way firm j’s technology is affected by the actions
of the other agents.

• As in general equilibrium models à la Arrow–Debreu, each household h has
to chose a consumption in his consumption set Xh. Analogously to the pro-
duction side, each consumption set Xh is described in terms of an inequality
on a function χh. 3 We call χh the possibility function of households h. The
main innovation of this chapter comes from the dependency of the consump-
tion set with respect to the consumptions of the other households and the
production activities of firms. So, given x−h and y the consumption set of
household h is given by

Xh(x−h, y) :=
{
xh ∈ RC

++ : χh(xh, x−h, y) ≥ 0
}

where the possibility function χh is a function from RC
++ × RC(H−1)

+ × RCJ

to R. Thus, χh describes the way in which the set of all consumption alter-
natives which are a priori possible for household h is affected by the actions
of the other agents.

• Each household h ∈ H has preferences described by a utility function,

uh : (xh, x−h, y) ∈ RC
++ × RC(H−1)

+ × RCJ −→ uh(xh, x−h, y) ∈ R

uh(xh, x−h, y) is the utility level of household h associated with (xh, x−h, y).
So, uh describes the way household h’s preferences are affected by the con-
sumption and the production of the other agents.

• sjh ∈ [0, 1] is the share of firm j owned by household h; sh := (sjh)j∈J ∈
[0, 1]J denotes the vector of the shares of all firms owed by household h;
s := (sh)h∈H ∈ [0, 1]JH . The set of all shares is

S := {s ∈ [0, 1]JH : ∀ j ∈ J ,
∑

h∈H
sjh = 1}

3 In same spirit, see Smale (1974), and Bonnisseau and del Mercato (2010).
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• ech is the endowment of commodity c owned by household h;
eh := (e1h, .., e

c
h, .., e

C
h ) denotes household h’s endowment; e := (eh)h∈H.

• E := ((uh,χh, eh, sh)h∈H, (tj)j∈J ) is an economy.

• pc is the price of one unit of commodity c; p := (p1, .., pc, .., pC) ∈ RC
++;

prices of goods are expressed in units of account.

• Given w = (w1, .., wc, .., wC) ∈ RC , we denote

w\ := (w1, .., wc, .., wC−1) ∈ RC−1

We make the following assumptions on the transformation functions (tj)j∈J .

Assumption 1 For all j ∈ J ,

(1) The function tj is a C1 function.
(2) For each (y−j, x) ∈ RC(J−1) × RCH

++ , tj(0, y−j, x) ≥ 0.
(3) For each (y−j, x) ∈ RC(J−1) × RCH

++ , the function tj(·, y−j, x) is differen-
tiably strictly decreasing, i.e.

∀ (y−j, x) ∈ RC(J−1) × RCH
++ and ∀ y′j ∈ RC , Dyj tj(y

′
j, y−j, x) % 0

(4) For each (y−j, x) ∈ RC(J−1)×RCH
++ , the function tj(·, y−j, x) is C2 and it is

differentiably strictly quasi-concave, i.e. for every yj ∈ RC, D2
yj tj(yj, y−j, x)

is negative definite on kerDyj tj(yj, y−j, x). 4

We remark that, given the externalities, the assumptions on tj are standard
in “smooth” general equilibrium models. Indeed, from Point 1 of Assumption
1 the production set is closed and from Point 4 of Assumption 1 it is convex.
Point 2 of Assumption 1 states that inactivity is possible. As usual Point
2 of Assumption 1 implies that for any price system p ∈ RC

++ and for any
given externalities, the optimal profit of firm j is non-negative. 5This property
ensures that every consumer has a positive wealth, since the aggregate profit
is non-negative. Consequently the individual budget constraint is non-empty
for any given externality and price system. Point 3 of Assumption 1 represents
the “free disposal” property.

4 Let v and v′ be two vectors in Rn, v · v′ denotes the inner product of v and v′.
Let A be a real matrix with m rows and n columns, and B be a real matrix with
n rows and l columns, AB denotes the matrix product of A and B. Without loss of
generality, vectors are treated as row matrices and A denotes both the matrix and
the following linear application A : v ∈ Rn → A(v) := AvT ∈ R[m] where vT denotes
the transpose of v and R[m] := {wT : w ∈ Rm}. When m = 1, A(v) coincides with
the inner product A · v, treating A and v as vectors in Rn.
5 Indeed, by Point 2 of Assumption 1 the production plan 0 is in the production
set of form j whatever are the externalities.
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Define the set Y of all production plans which are in the production sets
whatever are the externalities, that is

Y :=
{
y′ ∈ RCJ | ∃ (x, y) ∈ RCH

++ × RCJ : tj(y
′
j, y−j, x) ≥ 0, ∀ j ∈ J

}
(1)

The following assumption on Y can be interpreted as the asymptotic irre-
versibility and “no free lunch” assumption at the aggregate level.

Assumption 2 If y′ ∈ CY and
∑

j∈J
y′j ≥ 0, then y′j = 0 for every j ∈ J . 6

The assumption above ensures that the set of feasible allocation of the economy
E is bounded. Furthermore, Assumption 2 guarantees that the set of feasible
allocation is bounded for any fixed externalities. As a consequence of this
assumption, one gets the boundedness of the set of feasible allocations along
all the arc associated with the homotopy defined in Subsection 4.2 (see Lemma
16 and Step 2.1 of Lemma 17). One should notice that Assumption 2 is in the
same spirit as Assumption UB (Uniform Boundedness) of Bonnisseau and
Médecin (2001) and Assumption P3 of Mandel (2008).

We make the following assumptions on the utilities functions (uh)h∈H.

Assumption 3 For all h ∈ H,

(1) The function uh is continuous in its domain and it is C1 in the interior
of its domain.

(2) For each (x−h, y) ∈ RC(H−1)
++ ×RCJ , the function uh(·, x−h, y) is differen-

tiably strictly increasing, i.e.

∀ (x−h, y) ∈ RC(H−1)
++ × RCJ and ∀ x′

h ∈ RC
++, Dxh

uh(x
′
h, x−h, y) & 0

(3) For each (x−h, y) ∈ RC(H−1)
++ ×RCJ , the function uh(·, x−h, y) is C2 and it

is differentiably strictly quasi-concave, i.e., for every xh ∈ RC
++, D

2
xh
uh(xh, x−h, y)

is negative definite on kerDxh
uh(xh, x−h).

(4) For each (x−h, y) ∈ RC(H−1)
+ × RCJ and for each u ∈ Im uh(·, x−h, y),

clRC{xh ∈ RC
++ : uh(xh, x−h, y) ≥ u} ⊆ RC

++

So, fixing the externalities, the assumptions on uh are standard in “smooth”
general equilibrium models. In Points 1 and 4 of Assumption 3 we consider
consumption x−h in the closure of RC(H−1)

++ , just to look at the limit of a
behavior (see Steps 1.2 and 2.2 of Lemma 17).

We make the following assumptions on the possibility functions (χh)h∈H.

6 CY denotes the asymptotic cone of Y .
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Assumption 4 For all h ∈ H,

(1) χh is continuous in its domain and it is C1 in the interior of its domain.

(2) (Convexity of the consumption set) For each (x−h, y) ∈ RC(H−1)
+ × RCJ ,

the function χh(·, x−h, y) is quasi-concave. 7

(3) (Survival consition) There exists xh ∈ RC
++ such that χh(xh, x−h, y) ≥ 0

for every x−h ∈ RC(H−1)
+ and for every y ∈ RCJ .

(4) (Individual desiderability) (a) For each (x−h, y) ∈ RC(H−1)
+ ×RCJ the func-

tion χh(·, x−h, y) is differentiable and for every xh ∈ RC
++, Dxh

χh(xh, x−h, y) $=
0; (b) for each (x−h, y) ∈ RC(H−1)

++ × RCJ and for every xh ∈ RC
++,

Dxh
χh(xh, x−h, y) /∈ −RC

++.

We remark that, fixing the externalities, from Points 1 and 2 of Assumption 4,
one gets the usual assumptions on the closedness and on the convexity of the
consumption set. Point 3 of Assumption 4, is called the “survival condition”
since it guarantees that there exists at least a consumption bundle which
belongs to the consumption set Xh(x−h, y), whatever are the externalities.
Point 4(a) in Assumption 4 means that the consumption set is “smooth” while
Point 4(b) implies that household h can increase the consumption of at least
one commodity remaining in his consumption set. Consequently, according to
Point 2 of Assumption 3 (that is stricly increasing utility functions), Point 4(b)
of Assumption 4 means each household can increase his utility remaining in his
consumption set, from which one classically deduces that the individual budget
constraint is binding. In Assumption 4, we consider consumption bundles x−h

in the closure of RC(H−1)
++ , just to look at limit of a behavior (see Proposition

7 which is used in Step 2.2 of Lemma 17).

T denotes the set of t := (tj)j∈J satisfying Assumption 1 and Assumption 2,
U denotes the set of u := (uh)h∈H satisfying Assumption 3, and X denotes the
set of χ := (χh)h∈H satisfying Assumption 4.

Remark 5 From now on, we take u ∈ U , χ ∈ X , t ∈ T and s ∈ S as
given. So, an economy is complete characterized by the individual endowments
e = (eh)h∈H.

We define now the set of endowments which satisfy the Survival Assumption
for given possibility functions. As it is well known, the Survival Assumption
states that each household can dispose of a strictly positive quantity of every
commodity from his initial endowment still remaining in the interior of his
consumption set.

7 Since χh is C1 in the interior of its domain, then for each (x−h, y) ∈ RC(H−1)
++ ×

RCJ , the function χh(·, x−h, y) is differentiably quasi-concave.
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Definition 6 Let χ ∈ X . Define the set Eχ :=
∏

h∈H
Eχh

⊆ RCH
++ where

Eχh
:=

{
xh ∈ RC

++ : χh(xh, x−h, y) ≥ 0, ∀ (x−h, y) ∈ RC(H−1)
+ × RCJ

}
+ RC

++

From Point 3 of Assumption 4, Eχ is nonempty and it is open by definition.
From Points 3 and 4(a) of Assumption 4, the Survival Assumption is satisfied
on the set Eχ since for all e ∈ Eχ the following property holds true for every
h ∈ H. 8

∀(x−h, y) ∈ RC(H−1)
+ ×RCJ , ∃x̂h ∈ RC

++ : χh(x̂h, x−h, y) > 0 and x̂h ' eh (2)

As a direct consequence of Points 1 and 2 of Assumptions 4 and (2) we get the
following proposition. The continuous selection functions given by Proposition
7 will play a fundamental role in the construction of the continuous homotopy
used to show our main result (see Theorem 12). Specifically, we use Proposition
7 to define the homotopies given by (16) and (17).

Proposition 7 For all h ∈ H, there exists a continuous selection function
x̂h : RC(H−1)

+ ×RCJ ×Eχh
→ RC

++ such that for each (x−h, y, eh) ∈ RC(H−1)
+ ×

RCJ × Eχh
, χh(x̂h(x−h, y, eh), x−h, y) > 0 and x̂h(x−h, y, eh) ' eh.

3 Competitive equilibrium with externalities

In this section, we first provide the notion of competitive equilibrium associa-
ted with our economy. Second, we define the equilibrium function using the
first order conditions associated with firms and households maximization prob-
lems.

Without loss of generality, commodity C is the numeraire good. So, given
p\ ∈ RC−1

++ with innocuous abuse of notation, we denote p := (p\, 1) ∈ RC
++.

Definition 8 (x∗, y∗, p∗\) ∈ RCH
++ × RCJ × RC−1

++ is a competitive equilibrium
for the economy e = (eh)h∈H if

8 Let eh ∈ Eχh . Thus, eh = xh + v with xh given by Point 3 of Assumption 4 and
v ) 0. Fix the externalities and consider x̂h := xh + εDxhχh(xh, x−h, y). By Point
4(a) of Assumption 4 and the definition of differentiable function, property (2) is
satisfied for some ε > 0.
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(1) for all j ∈ J , y∗j solves the following problem

max
yj∈RC

p∗ · yj

subject to tj(yj, y∗−j, x
∗) ≥ 0

(3)

(2) For all h ∈ H, x∗
h solves the following problem

max
xh∈RC

++

uh(xh, x∗
−h, y

∗)

subject to χh(xh, x
∗
−h, y

∗) ≥ 0

p∗ · xh ≤ p∗ · (eh +
∑

j∈J
sjhy

∗
j )

(4)

(3) (x∗, y∗) ∈ RCH
++× ∈ RCJ satisfies market clearing conditions, that is

∑

h∈H
xh =

∑

h∈H
eh +

∑

j∈J
yj (5)

In the following propositions, using Karush–Kuhn–Tucker’s conditions we char-
acterize the solutions of firms and households maximization problems.

Proposition 9 Given y∗−j ∈ RC(J−1), x∗ ∈ RCH
++ and p∗\ ∈ RC−1

++ ,

(1) if y∗j is a solution to problem (3), then it is the unique solution.

(2) y∗j ∈ RC is the solution to problem (3) if and only if there exists α∗
j ∈ R++

such that (y∗j ,α
∗
j ) is the unique solution to the following system






p∗ + αjDyj tj(yj, y
∗
−j, x

∗) = 0

tj(yj, y∗−j, x
∗) = 0

(6)

Proposition 10 Given eh ∈ Eχh
, x∗

−h ∈ RC(H−1)
++ , y∗ ∈ RCJ and p∗\ ∈ RC−1

++ ,

(1) if p∗ ·
∑

j∈J
sjhy

∗
j ≥ 0, then there exists a unique solution to problem (4).

(2) x∗
h ∈ RC

++ is the solution to problem (4) if and only if there exists
(λ∗

h, µ
∗
h) ∈ R++ × R such that (x∗

h,λ
∗
h, µ

∗
h) is the unique solution to the

following system






Dxh
uh(xh, x∗

−h, y
∗)− λhp∗ + µhDxh

χh(xh, x∗
−h, y

∗) = 0

−p∗ · (xh − eh −
∑

j∈J
sjhy

∗
j ) = 0

min
{
µh,χh(xh, x∗

−h, y
∗)
}
= 0

(7)
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Define the set of endogenous variables as

Ξ :=
(
RC

++ × R++ × R
)H

×
(
RC × R++

)J
× RC−1

++

with generic element ξ := (x,λ, µ, y,α, p\) := ((xh,λh, µh)h∈H, (yj,αj)j∈J , p\).

We can now describe equilibria using the propositions above and market clear-
ing conditions (5). One should notice that, due to the Walras law and the
second equation in (7), the market clearing condition for commodity C is “re-
dundant”. Therefore, in the following remark we omit in (5) the condition for
commodity C.

Remark 11 ξ∗ = (x∗,λ∗, µ∗, y∗,α∗, p∗\) ∈ Ξ is an extended competitive equi-
librium for the economy e ∈ Eχ if and only if

(1) (x∗
h,λ

∗
h, µ

∗
h, ) solves system (7) for all h ∈ H,

(2) (y∗j ,α
∗
j ) solves system (6) for all j ∈ J ,

(3) (x∗\, y∗\) satisfies the following market clearing conditions

∑

h∈H
x\
h −

∑

h∈H
e\h −

∑

j∈J
y\j = 0

For a given economy e ∈ Eχ, the equilibrium function Fe : Ξ → RdimΞ,

Fe (ξ) := ((F h.1
e (ξ) , F h.2

e (ξ) , F h.3
e (ξ))h∈H(F

j.1
e (ξ) , F j.2

e (ξ))j∈J , F
M
e (ξ)) (8)

is defined by F h.1
e (ξ) := Dxh

uh(xh, x−h, y)− λhp+ µhDxh
χh(xh, x−h, y),

F h.2
e (ξ) := −p · (xh − eh −

∑

j∈J
sjhyj), F h.3

e (ξ) := min {µh,χh(xh, x−h, y)},

F j.1
e (ξ) := p + αjDyj tj(yj, y−j, x), F j.2

e (ξ) := tj(yj, y−j, x), and FM
e (ξ) :=

∑

h∈H
x\
h −

∑

j∈J
y\j −

∑

h∈H
e\h.

By Remark 11, ξ∗ ∈ Ξ is an extended equilibrium for the economy e ∈ Eχ

if and only if Fe (ξ∗) = 0. With innocuous abuse of terminology, we call ξ∗

simply an equilibrium.

4 Existence of competitive equilibria

In this section we prove our main result, that is competitive equilibria with
consumptions and prices strictly positive exist, and the set of equilibria is
compact.
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Theorem 12 (Existence and compactness) Given (u,χ, t) ∈ U ×X × T
and s ∈ S, for each economy e ∈ Eχ, the set of equilibria is non-empty and
compact.

In order to prove Theorem 12, following the seminal paper by Smale (1974),
we use homotopy arguments, namely Theorem 13 which is a consequence of
the homotopy invariance of the topological degree. More specifically, following
Chapter 4 of Milnor (1965), Theorem 13 is based on the topological degree
theory of degree mod 2. The reader can find a survey of this approach in
Villanacci et al. (2002). The theory of degree mod 2 is simpler than the one
used in Mas-Colell (1985) that requires the concepts of oriented manifold and
the associated topological degree – the Brouwer degree – in order to deduce
the existence result from regularity properties of equilibria and from the Index
Formula.

Theorem 13 (Homotopy Theorem) Let M and N be two C2 boundaryless
manifolds of the same dimension, y ∈ N and f, g : M → N be such that: 1.
f and g are C0; 2. #g−1(y) is odd, and g is C1 in an open neighborhood of
g−1(y); 3. y is a regular value for g; 4. there exists a continuous homotopy
L from g to f such that L−1(y) is compact. Then, f−1(y) is compact and
f−1(y) $= ∅.

To apply Theorem 13, we consider the equilibrium function Fe defined in
Section 3 which plays the role of the function f . In order to construct the
required homotopy and the function that will play the role of the function g,
we proceed as follows. First, we construct the so called “test economy”. The
test economy will be built using a Pareto optimal allocation of an appropriate
production economy à la Arrow–Debreu without externalities at all. Second, we
construct the equilibrium function G associated to the test economy playing
the role of the function g. Finally, we provide the required homotopy He from
G to Fe playing the role of L.

The test economy and the equilibrium function G are defined in Subsection
4.1. The homotopy He is given in Subsection 4.2. In Subsection 4.3, we verify
that all the assumptions of Theorem 13 are satisfied. More specifically, G−1(0)
is a singleton, G is C1 in an open neighborhood of G−1(0), 0 is a regular value
of G and H−1

e (0) is compact.

One should notice that, as a consequence of the properties above, one gets
that degree mod 2 of G is equal to 1. Since the homotopy He is continuous
and H−1

e (0) is compact, the homotopy invariance of the topological degree
implies that the degree mod 2 of the equilibrium function Fe is equal to 1.
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4.1 Test economy

In order to construct the test economy, fixing the externalities, we first consider
a Pareto optimal allocation of a standard production economy à la Arrow–
Debreu. Second, we construct the equilibrium function G using the Second
Welfare Theorem in such a way that, at the test economy, the equilibrium
exists and it is unique.

Let x := (xh)h∈H ∈ RCH
++ be an arbitrary consumption and y := (yj)j∈J ∈ RCJ

be an arbitrary production. Fixing the externalities at (x, y), define uh(xh) :=
uh(xh, x−h, y), tj(yj) := tj(yj, y−j, x), and the corresponding production eco-
nomy à la Arrow–Debreu, namely

E := ((RC
++, uh)h∈H, (tj)j∈J ,

∑

h∈H
eh) (9)

where all the consumption sets coincide with the strictly positive orthant of
the commodity space, that is Xh = RC

++. Since there are no externalities at all,
the notions of feasibility and Pareto optimality are standard. It is well known
that, under Assumptions 1, 2 and 3, there exists a Pareto optimal allocation
of the economy E , denoted by

(x̃, ỹ) ∈ RCH
++ × RCJ

and there exist Lagrange multipliers (θ̃, γ̃, β̃) = ((θ̃h)h #=1, γ̃, (β̃j)j∈J ) ∈ RH−1
++ ×

RC
++ × RJ

++ such that (x̃, ỹ, θ̃, γ̃, β̃) is the unique solution to the following
system. 9






Dx1u1(x1, x−1, y)− γ = 0

θhDxh
uh(xh, x−h, y)− γ = 0, ∀ h %= 1

uh(xh, x−h, y)− uh(x̃h, x−h, y) = 0, ∀ h %= 1

γ + βjDyj tj(yj, y−j, x) = 0, ∀ j ∈ J

tj(yj, y−j, x) = 0, ∀ j ∈ J
∑

h∈H
xh −

∑

j∈J
yj −

∑

h∈H
eh = 0

(10)

It is well known that the Pareto optimal allocation (x̃, ỹ) can be supported by
some price system p̃. That is, using Debreu’s vocabulary, (x̃, ỹ) is an equilib-
rium relative to some price system p̃. 10 From system (10), one easily deduces

9 For a formal proof, see Appendix B.
10 See Section 6.4 of Debreu (1959).
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below the supporting price p̃ and the equilibrium equations satisfied by (x̃, ỹ)
for appropriate Lagrange multipliers.

More precisely, there exists (λ̃, µ̃, α̃) := ((λ̃h, µ̃h)h∈H, (α̃j)j∈J ) ∈ (R++×R)H×
RJ

++ such that






Dxh
uh(x̃h, x−h, y)− λ̃hp̃ = 0, ∀ h ∈ H

p̃ · x̃h = p̃ · (ẽh +
∑

j∈J
sjhỹj), ∀ h ∈ H

p̃+ α̃jDyj tj(ỹj, y−j, x) = 0, ∀ j ∈ J

tj(ỹj, y−j, x) = 0, ∀ j ∈ J
∑

h∈H
x̃h −

∑

j∈J
ỹj −

∑

h∈H
eh = 0

(11)

where

λ̃1 := γ̃C , λ̃h :=
γ̃C

θ̃h
∀ h %= 1, α̃j :=

β̃j

γ̃C
, p̃\ :=

γ̃\

γ̃C

and

ẽh := x̃h −
∑

j∈J
sjhỹj (12)

We call test economy the economy defined below

Ẽ := ((RC
++, uh, ẽh, sh)h∈H, (tj)j∈J )

The test economy Ẽ is a standard private ownership economy à la Arrow–
Debreu with no externalities at all. By system (11), since Karush–Kuhn–
Tucker conditions are sufficient to solve the classical firms and households
maximization problems, (x̃, λ̃, ỹ, α̃, p̃\) is a competitive equilibrium for the
economy Ẽ . Importantly, as will be shown in Lemma 14 of Subsection 4.3, the
economy Ẽ has a unique equilibrium. 11

Using the Pareto optimal allocation (x̃, ỹ) and the Lagrange multipliers defined
above, consider the vector

ξ̃ := (x̃, λ̃, µ̃, ỹ, α̃, p̃\) ∈ Ξ (13)

11 One should notice that the endowments given by (12) are not necessarily posi-
tive. There are different redistributions that give rise to positive endowments. For

example, s̃jh =
p̃ · x̃h

p̃ ·
∑

h∈H x̃h
and ẽh = s̃jh

∑
h∈H eh. But, in the latter case, the

uniqueness of the equilibrium is not so obvious since the redistribution depends on
the supporting price and on the Pareto optimal consumption allocation. For details,
see the proof of Lemma 14.
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where µ̃h = 0 for all h ∈ H. In a natural way, from system (11), one deduces
the equilibrium function G satisfying G(ξ̃) = 0. The function G : Ξ → RdimΞ,

G (ξ) := ((Gh.1 (ξ) , Gh.2 (ξ) , Gh.3 (ξ))h∈H, (G
j.1 (ξ) , Gj.2 (ξ))j∈J , G

M (ξ))
(14)

is defined by Gh.1 (ξ) := Dxh
uh(xh, x−h, y) − λhp, Gh.2 (ξ) := −p · (xh −

ẽh −
∑

j∈J
sjhyj), Gh.3 (ξ) := min {µh,χh(x̂h(x−h, y, eh), x−h, y)}, Gj.1 (ξ) := p +

αjDyj tj(yj, y−j, x), G
j.2 (ξ) := tj(yj, y−j, x), and GM (ξ) :=

∑

h∈H
x\
h −

∑

j∈J
y\j −

∑

h∈H
e\h. We remark that the continuous function x̂h is given by Proposition 7

and Gh.3(ξ̃) = µ̃h = 0 since χh(x̂h(x−h, y, eh), x−h, y) > 0.

4.2 The homotopy

The basic idea is to homotopize endowments and externalities by an arc from
the equilibrium conditions given in the economy Ẽ to the ones associated to
our economy E . But, one finds the following difficulty.

At equilibrium, the individual wealth is positive at the beginning and at the
end of the arc. Indeed, in the economy Ẽ , the budget constraint in system
(11) and the endowment defined by (12) imply that the individual wealth
p̃ · x̃h is positive. In the economy E , the individual wealth is also positive
by inactivity assumption and standard arguments from profit maximization.
But, the individual wealth might not be positive along the homotopy arc, and
consequently the individual budget constraint might be empty. We illustrate
the reason below.

If one homotopizes the endowments, then the individual wealth is given by
p · [τeh + (1− τ)ẽh] + p ·

∑

j∈J
sjhyj which is by (12) equal to

p · [τeh + (1− τ)x̃h] + p ·
∑

j∈J
sjh[yj − (1− τ)ỹj] (15)

So, the individual wealth is positive if p · yj ≥ p · (1 − τ)ỹj for every j ∈ J .
Using standard arguments from profit maximization, this condition is satisfied
if the production plan (1 − τ)ỹj belongs to the production set of firm j. On
the other hand, if, at the same time, one homotopizes the externalities, then
the production set along the arc is given by

Yj(τy−j + (1− τ)y−j, τx+ (1− τ)x)

13



But, one cannot be sure that the production plan (1 − τ)ỹj belongs to the
production set above. Consequently, the individual wealth given by (15) might
not be positive.

Thus, to overcome this difficulty, we will define the homotopy Hein two times
by two homotopies. Namely, in the first homotopy Φe, we homotopize the
initial endowments, and in the second homotopy Γe we homotopize the exter-
nalities in the production sets. Finally, we remark that if one assume strong
convexity assumption on the production set Yj, i.e. the function tj is quasi-
concave also with respect to externalities, one does not need two homotopies
since initial endowments and externalities can be homotopized at the same
time.

Define the following convex combinations

x(τ) := τx+ (1− τ)x

y(τ) := τy + (1− τ)y

eh(τ) := τeh + (1− τ)ẽh

and the following two homotopies, Φe : Ξ× [0, 1] → RdimΞ defined by

Φe (ξ, τ) := ((Φh.1
e (ξ, τ) ,Φh.2

e (ξ, τ) ,Φh.3
e (ξ, τ))h∈H, (Φj.1

e (ξ, τ) ,Φj.2
e (ξ, τ))j∈J ,ΦM

e (ξ, τ))

Φh.1
e (ξ, τ) := Dxh

uh(xh, x−h(τ), y(τ))− λhp

Φh.2
e (ξ, τ) := −p · [xh − eh(τ)−

∑

j∈J
sjhyj]

Φh.3
e (ξ, τ) := min {µh,χh(x̂h(x−h, y, eh), x−h, y)}

Φj.1
e (ξ, τ) := p+ αjDyj tj(yj, y−j, x)

Φj.2
e (ξ, τ) := tj(yj, y−j, x)

ΦM
e (ξ, τ) :=

∑

h∈H
x\
h −

∑

j∈J
y\j −

∑

h∈H
e\h

(16)

and Γe : Ξ× [0, 1] → RdimΞ defined by

14



Γe (ξ, τ) := ((Γh.1
e (ξ, τ) ,Γh.2

e (ξ, τ) ,Γh.3
e (ξ, τ))h∈H, (Γj.2

e (ξ, τ) ,Γj.2
e (ξ, τ))j∈J ,ΓM

e (ξ, τ))

Γh.1
e (ξ, τ) := Dxh

uh(xh, x−h, y)− λhp +

τµhDxh
χh(τxh + (1− τ)x̂h(x−h, y, eh), x−h, y)

Γh.2
e (ξ, τ) := −p · [xh − eh −

∑

j∈J
sjhyj]

Γh.3
e (ξ, τ) := min {µh,χh(τxh + (1− τ)x̂h(x−h, y, eh), x−h, y)}

Γj.1
e (ξ, τ) := p+ αjDyj tj (yj, y−j(τ), x(τ))

Γj.2
e (ξ, τ) := tj (yj, y−j(τ), x(τ))

ΓM
e (ξ, τ) :=

∑

h∈H
x\
h −

∑

j∈J
y\j −

∑

h∈H
e\h

(17)

where the continuous function x̂h is given by Proposition 7.

Now, define the homotopy He : Ξ× [0, 1] → RdimΞ,

He(ξ,ψ) :=






Φe(ξ, 2ψ) if 0 ≤ ψ ≤ 1
2

Γe(ξ, 2ψ − 1) if 1
2 ≤ ψ ≤ 1

(18)

Observe thatHe is a continuous function. Indeed, Φe and Γe are continuous be-
cause they are composed by continuous functions (see Point 1 of Assumptions

1, 3 and 4, and Proposition 7). Moreover, He

(
ξ, 12

)
is well defined since

Φe(ξ, 1) = Γe(ξ, 0)

Finally, observe that

He (ξ, 0) = Φe (ξ, 0) = G(ξ) and He (ξ, 1) = Γe (ξ, 1) = Fe (ξ)

4.3 Properties of the homotopy

To verify the assumptions of Theorem 13, we provide the three following lem-
mas, namely Lemmas 14, 15 and 17.

Lemma 14 G−1(0) = {ξ̃} where ξ̃ is given by (13), and G is C1 in an open
neighborhood of ξ̃.

Proof. By (11) and (14), ξ̃ ∈ G−1(0). Let ξ′ ∈ Ξ be such that G(ξ′) = 0, we
show that ξ′ = ξ̃.
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Claim 1. (x′, y′) = (x̃, ỹ). Otherwise, suppose that (x′, y′) != (x̃, ỹ). Consider
the convex combination

(x∗∗, y∗∗) :=
1

2
(x′, y′) +

1

2
(x̃, ỹ)

We first prove that (x∗∗, y∗∗) is a feasible allocation of the economy E defined
by (9). Indeed, since Gj.2(ξ′) = Gj.2(ξ̃) = 0 and the function tj(·, y−j, x) is
strictly quasi-concave (see Point 4 of Assumption 1), we get

tj(y
∗∗
j , y−j, x) > 0, ∀ j ∈ J (19)

From (12) and Gh.2(ξ′) = 0, summing over h we get

∑

h∈H
x′ C
h −

∑

j∈J
y′ Cj −(

∑

h∈H
x̃C
h−

∑

j∈J
ỹCj ) = −p′\·[

∑

h∈H
x′\
h−

∑

j∈J
y′\j −(

∑

h∈H
x̃\
h−

∑

j∈J
ỹν\j )]

Since (x̃, ỹ) is a Pareto optimal allocation, from the last equation of system
(10) we have that

∑

h∈H
x̃h −

∑

j∈J
ỹj =

∑

h∈H
eh. Therefore, we obtain

∑

h∈H
x′ C
h −

∑

j∈J
y′ Cj −

∑

h∈H
eCh = −p′\ · [

∑

h∈H
x′\
h −

∑

j∈J
y′\j −

∑

h∈H
e\h] which is equal to zero by

GM(ξ′) = 0. Thus,
∑

h∈H
x′
h −

∑

j∈J
y′j =

∑

h∈H
eh, and consequently

∑

h∈H
x∗∗
h −

∑

j∈J
y∗∗j =

∑

h∈H
eh (20)

Thus, (19) and (20) imply that (x∗∗, y∗∗) is a feasible allocation of E .

Second, we show that for all h ∈ H,

uh(x
′
h, x−h, y) ≥ uh(x̃h, x−h, y) (21)

Indeed, by (12) Gh.1(ξ′) = Gh.2(ξ′) = 0 and Karush-Kuhn-Tucker sufficient
conditions, x′

h solves the following maximization problem

max
xh∈RC

++

uh(xh, x−h, y)

subject to p′ · xh ≤ p′ · x̃h +
∑

j∈J
s̃jh p′ · (y′j − ỹj)

Notice that x̃h belongs to the budget constraint of the problem above since∑

j∈J
sjhp

′ ·(y′j− ỹj) ≥ 0. Indeed, from Gj.1(ξ′) = Gj.2(ξ′) = 0 and Karush-Kuhn-

Tucker sufficient conditions, y′j solves the following optimization problem

max
yj∈RC

p′ · yj

subject to tj(yj, y−j, x) ≥ 0
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From Gj.2(ξ̃) = 0, ỹj belongs to constraint set of the problem above, and so
p′ · (y′j − ỹj) ≥ 0. Therefore, (21) is completely proved.

Finally, (21) and the strict quasi-concavity of uh(·, x−h, y) (see Point 3 of
Assumption 3) imply that for all h ∈ H

uh(x
∗∗
h , x−h, y) > min{uh(x

′
h, x−h, y), uh(x̃h, x−h, y)} = uh(x̃h, x−h, y)

which contradicts the Pareto optimality of (x̃, ỹ).

Claim 2. (λ′, µ′,α′, p′\) = (λ̃, µ̃, α̃, p̃\). By Gh.1(ξ′) = Gh.1(ξ̃) = 0, we get

λ′
h = DxC

h
uh(x

′
h, x−h, y) = DxC

h
uh(x̃h, x−h, y) = λ̃h

So, for every commodity c $= C,

p′ c =
Dxc

h
uh (x′

h, xh, y)

λ′
h

=
Dxc

h
uh(x̃h, xh, y)

λ̃h

= p̃c

Proposition 7 and Gh.3(ξ′) = Gh.3(ξ̃) = 0 imply µ′
h = 0 = µ̃h. By Gj.1(ξ′) =

Gj.1(ξ̃) = 0, we get

α′
j = − p′ c

Dycj
tj(y′j, y−j, x)

= − p̃c

Dycj
tj(ỹj, y−j, x)

= α̃j

Claim 3. G is C1 in a open neighborhood of G−1(0) = ξ̃. Since χh and x̂ are
continuous functions, the function gh defined below is continuous

gh : ξ ∈ Ξ → gh : (ξ) := (χh(x̂h(x−h, y, eh), x−h, y)− µh) ∈ R

For all h ∈ H, gh(ξ̃) > 0 since χh(x̂h(x̃−h, ỹ, eh), x̃−h, ỹ) > 0 and µ̃h = 0. Thus,
in some open neighborhood I(ξ̃) ⊆ Ξ of ξ̃ we get gh(ξ) > 0 for all h ∈ H.
Therefore, in the open neighborhood I(ξ̃), the component Gh.3(ξ) = µh for all
h ∈ H while the components Gh.1(ξ), Gh.2(ξ), Gj.1(ξ), Gj.2(ξ) and GM(ξ) are
given by (14). So, G(ξ) is obviously a C1 function in I(ξ̃).

Lemma 15 DξG(ξ̃) has rank dimΞ.

Proof. The computation of DξG(ξ̃) is described below,

where uh and tj are given in (9) and Î := [IC−1|0](C−1)×C . Define

∆ :=
(
(∆xh,∆λh,∆µh)h∈H, (∆yj,∆αj)j∈J ,∆p\

)
∈ RH(C+2)×RJ(C+1)×RC−1
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In order to prove that DξG(ξ̃) has full rank, we show that if DξG(ξ̃)(∆) = 0
then ∆ = 0. DξG(ξ̃)(∆) = 0 is given by the following system.






(h.1) D2
xh
uh(x̃h, x−h, y)(∆xh)−∆λhp̃− λ̃hÎT (∆p\) = 0 ∀ h ∈ H

(h.2) p̃ · (
∑

j∈J
sjh∆yj)− p̃ ·∆x̃h = 0 ∀ h ∈ H

(h.3) ∆µh = 0 ∀ h ∈ H

(j.1) α̃jD2
yj tj(ỹj, y−j, x)(∆yj) +∆αjDyj tj(ỹj, y−j, x) + ÎT (∆p\) = 0 ∀ j ∈ J

(j.2) Dyj tj(ỹj, y−j, x) ·∆yj = 0 ∀ j ∈ J

(M)
∑

h∈H
∆x\

h −
∑

j∈J
∆y\j = 0

(22)
We first prove that if ∆xh = 0 for every h ∈ H, then ∆ = 0. In this case,
Equation (h.1) in system (22) becomes −p̃·∆λh−λhÎT (∆p\) = 0. Considering
commodity C, we obtain ∆λh = 0 for all h ∈ H. So, −λ̃hÎT (∆p\) = 0 implies
∆p\ = 0 since λ̃h > 0. Equations (j.1) and (j.2) in system (22) can be now
written as follows




α̃jD2

yj tj(ỹj, y−j, x) Dyj tj(ỹj, y−j, x)
T

Dyj tj(ỹj, y−j, x) 0








∆yj

∆αj



 =




0

0



 (23)

Since tj(·, y−j, x) is strictly quasi-concave, (see Point 4 of Assumption 1), and
Dyj tj(yj, y−j, x) $= 0, (Point 3 of Assumption 1), the following matrix has full
rank. 12 


α̃jD2

yj tj(ỹj, y−j, x) Dyj tj(ỹj, y−j, x)
T

Dyj tj(ỹj, y−j, x) 0





12 A differentiably strictly quasi-concave function with gradient different from zero
has the bordered Hessian with determinant different from zero.

xh λh µh yj αj p\

Dxhuh(xh)− λhp D2
xh
uh(x̃h) −p̃T −λ̃hÎT

−p · [xh − ẽh −
∑

j∈J
sjh(yj − ỹj)] −p̃ p̃sjh

µh 1

p+ αhDyj tj(yj) α̃jD2
yj tj(ỹj) Dyj tj(ỹj)

T ÎT

tj(yj) Dyj tj(ỹj)
∑

h∈H
x\h −

∑

j∈J
y\j −

∑

h∈H
e\h Î −Î
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Therefore, (∆yj,∆αj) = (0, 0) by (23). So, one gets ∆ = 0.

Second, we prove that ∆xh = 0 for every h ∈ H.

Suppose by contradiction that there is h ∈ H such that ∆xh "= 0. We first
claim that

∑

h∈H
∆xh

D2
xh
uh(x̃h, x−h, y)

λ̃h

(∆xh) < 0 (24)

Multiplying both sides of Gj.1(ξ̃) = 0 by sjh∆yj, we get

p̃ · sjh∆yj +Dyj tj(ỹj, y−j, x) · sjh∆yj = 0 (25)

So, p̃ · sjh∆yj = 0 by equation (j.2) in system (22). Summing over j, for each
h ∈ H, one gets p̃ · (

∑

j∈J
sjh∆yj) = 0 which implies

p̃ ·∆xh = 0 (26)

by equation (h.2) in system (22). Multiplying Gh.1(ξ̃) = 0 by ∆xh, one obtains

Dxh
uh(x̃h, x−h, y) ·∆xh = 0

From Point 3 of Assumption 3 and λ̃h > 0, one gets

∆xh
D2

xh
uh(x̃h, x−h, y)

λ̃h

(∆xh) ≤ 0, ∀ h ∈ H

with a strict inequality for h, since ∆xh "= 0. Summing over h, one obtains
(24).

Second, we claim that
∆p\ · (

∑

h∈H
∆x\

h) < 0 (27)

From (26), multiplying (h.1) in system (22) by
∆xh

λ̃h

and summing over h, one

gets
∑

h∈H
∆xh

D2
xh
uh(x̃h, x−h, y)

λ̃h

(∆xh) = ∆p\ · (
∑

h∈H
∆x\

h)

Thus, (27) follows from (24).

Finally, we show below that ∆p\ ·(
∑

h∈H
∆x\

h) ≥ 0 which leads to a contradiction

taking into account (27), and consequently ∆xh = 0 for all h ∈ H which
complete the proof of the lemma.
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By (M) in system (22), one has

∆p\ · (
∑

h∈H
∆x\

h) = ∆p\ · (
∑

j∈J
∆y\j )

By (j.2) in system (22), multiplying (j.1) in system (22) by ∆yj and summing

over j one has ∆p\ · (
∑

j∈J
∆y\j ) = −

∑

j∈J
α̃j∆yjD

2
yj tj(ỹj, y−j, x)(∆yj). Thus,

∆p\ · (
∑

h∈H
∆x\

h) = −
∑

j∈J
α̃j∆yjD

2
yj tj(ỹj, y−j, x)(∆yj)

Therefore, ∆p\ · (
∑

h∈H
∆x\

h) ≥ 0 since tj(·, y−j, x) is strictly quasi-concave (see

Point 4 of Assumption 1).

Lemma 16 For each r ∈ RC
++, the following sets are bounded.

At,r :={(x′, y′) ∈ RCH
++ × RCJ | ∃ (x, y) ∈ RCH

++ × RCJ : tj(y
′
j, y−j, x) ≥ 0

∀ j ∈ J and
∑

h∈H
x′
h −

∑

j∈J
y′j ≤ r}

(28)

Āt,r := {(x′, y′) ∈ RCH
++×RCJ : tj(y

′
j, y−j, x) ≥ 0, ∀j ∈ J and

∑

h∈H
x′
h−

∑

j∈J
y′j ≤ r}

(29)

Proof. We prove that At,r is bounded. Consequently, Āt,r is bounded since it
is included in At,r. Let (x′, y′) ∈ At,r. Since x′

h ( 0 for every h ∈ H, we have
that x′ is bounded from below by zero. Therefore for every h ∈ H

0 ) x′
h )

∑

h∈H
x′
h ≤ r +

∑

j∈J
y′j

Thus, to show that At,r is bounded it is enough to prove that the set Y ∩Mr

is bounded where the set Y is defined by (1) and

Mr := {y′ ∈ RCJ :
∑

j∈J
y′j + r ≥ 0}

Since a subset of Rn is bounded if and only if its asymptotic cone is reduced to
zero, we show now that C(Y ∩Mr) = {0}. One should notice that C(Y ∩Mr) ⊆
CY ∩CMr. 13 Since the asymptotic cone of a set is immune to translation, we
get CMr = CM0, where M0 := {y′ ∈ RCJ :

∑

j∈J
y′j ≥ 0}. M0 is a closed cone

with vertex 0, thus CM0 = M0. So, in order to prove that CY ∩CMr we have
to show that CY ∩M0 = {0} which directly follows from Assumption 2.

13 Let (Bi)i∈I ⊆ Rn be a family of subsets of Rn, C(∩i∈IBi) ⊆ ∩i∈ICBi.
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Lemma 17 For each e ∈ Eχ, H−1
e (0) is compact.

Proof. Let e ∈ Eχ. Observe that H−1
e (0) = Φ−1

e (0) ∪ Γ−1
e (0). Since the union

of a finite number of compact sets is compact, it is enough to show that Φ−1
e (0)

and Γ−1
e (0) are compact.

Claim 1. Φ−1
e (0) is compact.

We prove that, up to a subsequence, every sequence (ξν , τ ν)ν∈N ⊆ Φ−1
e (0) con-

verges to an element of Φ−1
e (0), where ξν := (xν ,λν , µν , yν ,αν , pν \)ν∈N. First

observe that, since {τ ν : ν ∈ N} ⊆ [0, 1], up to a subsequence, (τ ν)ν∈N con-
verges to some τ ∗ ∈ [0, 1]. From Steps 1.1, 1.2, 1.3 and 1.4 below, we have that
up to a subsequence, (ξν)ν∈N converges to some ξ∗ := (x∗,λ∗, µ∗, y∗,α∗, p∗ \) ∈
Ξ. Since the homotopy Φe is continuous, taking the limit, we get the desired
result, that is (ξ∗, τ ∗) ∈ Φ−1

e (0).

Step 1.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . We first prove that the sequence (xν , yν)ν∈N belongs to the set Āt,r given
by (29) of Lemma 16. Using a similar strategy as in Claim 1 of Lemma 14, by
(12), Φh.2

e (ξν , τ ν) = 0 and ΦM
e (ξν , τ ν) = 0 one easily gets

∑

h∈H
xν
h −

∑

j∈J
yνj =

∑

h∈H
eh, ∀ ν ∈ N

So, (xν , yν)ν∈N ⊆ Āt,r by Φj.2
e (ξν , τ ν) = 0. Consequently, the sequence (xν , yν)ν∈N

belongs to cl Āt,r which is compact by Lemma 16. Up to a subsequence,
(xν , yν)ν∈N converges to some (x∗, y∗) ∈ cl Āt,r ⊆ RCH

+ × RCJ , and thus
(x∗, y∗) ∈ RCH

+ × RCJ .

Step 1.2. The consumption allocation x∗ is strictly positive, i.e. x∗ ' 0.
The proof is based on Point 4 of Assumption 3. By (12) and Φh.1

e (ξν , τ ν) =
Φh.2

e (ξν , τ ν) = 0, xν
h solves the following problem for every ν ∈ N. 14

max
xh∈RC

++

uh(xh, x
ν
−h(τ

ν), yν(τ ν))

subject to pν · xh ≤ pν · [τ νeh + (1− τ ν)x̃h] + pν ·
∑

j∈J
sjh(y

ν
j − (1− τ ν)ỹj)

(30)
We claim first that for every ν ∈ N, the point

τ νeh + (1− τ ν)x̃h (31)

belongs to the budget constraint of the problem above. By Φj.1
e (ξν , τ ν) =

Φj.2
e (ξν , τ ν) = 0 and Karush–Kuhn–Tucker sufficient conditions, yνj solves the

14 Karush–Kuhn–Tucker conditions are sufficient to solve problem (30).
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following problem for every ν ∈ N.

max
yj∈RC

pν · yj

subject to tj(yj, y−j, x) ≥ 0
(32)

Since inactivity is possible, tj(0, y−j, x) ≥ 0 by Point 2 of Assumption 1. Since
(x̃, ỹ) is a Pareto optimal allocation, tj(ỹj, y−j, x) = 0 by system (10). Since
tj(·, y−j, x) is strictly quasi-concave, we get

tj(τ
ν0 + (1− τ ν)ỹj, y−j, x) = tj((1− τ ν)ỹj, y−j, x) ≥ 0

So, the production plan (1 − τ ν)ỹj belongs to the constraint set of problem
(32), and thus pν · (yνj − (1− τ ν)ỹj) ≥ 0. Therefore,

pν ·
∑

j∈J
sjh(y

ν
j − (1− τ ν)ỹj) ≥ 0

which completes the proof of the claim.

We claim now that x∗
h belongs to the closure of some upper contour set. Ob-

viously, for every ν ∈ N

uh(x
ν
h, x

ν
−h(τ

ν), yν(τ ν)) ≥ uh(τ
νeh + (1− τ ν)x̃h, x

ν
−h(τ

ν), yν(τ ν))

By Point 2 of Assumption 3, for every ε > 0 we have that

uh(x
ν
h + ε1, xν

−h(τ
ν), yν(τ ν)) > uh(τ

νeh + (1− τ ν)x̃h, x
ν
−h(τ

ν), yν(τ ν))

where 1 := (1, . . . , 1) ∈ RC
++. So, taking the limit for ν → +∞ and using the

continuity of uh given by Point 1 of Assumption 3, we get

uh(x
∗
h + ε1, x∗

−h(τ
∗), y∗(τ ∗)) ≥ uh(τ

∗eh + (1− τ ∗)x̃h, x
∗
−h(τ

∗), y∗(τ ∗)) := u

That is, for every ε > 0 the point (x∗
h + ε1) belongs to the following set

{xh ∈ RC
++ : uh(xh, x

∗
−h(τ

∗), y∗(τ ∗)) ≥ u}

So, the point x∗
h belongs to the closure of set above which is included in RC

++

by Point 4 of Assumption 3. Therefore, x∗
h ∈ RCH

++ . One should notice that,
since τ ∗ ∈ [0, 1], x∗

−h(τ
∗) is not necessarily strictly positive. For that reason,

in Point 4 of Assumption 3 we consider x−h in RC(H−1)
+ .

Step 1.3. Up to a subsequence, (αν , pν \)ν∈N converges to some (α∗, p∗ \) ∈
RJ

++ × RC−1
++ . By Φj.1

e (ξν , τ ν) = 0, considering commodity C, we get

αν
j = − 1

DyCj
tj(yνj , y−j, x)

, ∀ ν ∈ N
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Taking the limit for ν → +∞ and using the continuity of Dtj and the “free
disposal” property (see Points 1 and 3 of Assumption 1), the sequence (αν

j )ν∈N
converges to

α∗
j := − 1

DyCj
tj(y∗j , y−j, x)

> 0

By Φj.1
e (ξν , τ ν) = 0, for every commodity c $= C and for all ν ∈ N we have

pν c = −αν
jDycj

tj(y
ν
j , y−j, x)

Taking the limit and using Points 1 and 3 of Assumption 1, for all c $= C we
get

p∗ c = −α∗
jDycj

tj(y
∗
j , y−j, x) > 0

Therefore, p∗ \ ∈ RC−1
++ .

Step 1.4. Up to a subsequence, (λν , µν)ν∈N converges to some (λ∗, µ∗) ∈ RH
++×

RH
+ . By Φh.3

e (ξν , τ ν) = 0 and Proposition 7, we have µν
h = 0 for every ν ∈ N.

Taking the limit, we get µ∗
h = 0.

By Φh.1
e (ξν , τ ν) = 0, considering commodity C, for every ν ∈ N we get

λν
h = DxC

h
uh(x

ν
h, x

ν
−h(τ

ν), yν(τ ν))

Taking the limit and using the continuity of Duh (see Point 1 of Assumption
3) we have

λ∗
h = DxC

h
uh(x

∗
h, x

∗
−h(τ

∗), y∗(τ ∗))

which is strictly positive since fixing the externalities the function uh is strictly
increasing (see Point 2 of Assumption 3).

Claim 2. Γ−1
e (0) is compact.

Let (ξν , τ ν)ν∈N be a sequences in Γ−1
e (0). As in Claim 1, (τ ν)ν∈N converges

to τ ∗ ∈ [0, 1]. From Seps 2.1, 2.2, 2.3 and 2.4 below, we have that, up to a
subsequence, (ξν)ν∈N converges to an element ξ∗ := (x∗,λ∗, µ∗, y∗,α∗, p∗\) ∈ Ξ.
Since Γe is a continuous function, taking limit one gets (ξ∗, τ ∗) ∈ Γ−1

e (0).

Step 2.1. Up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ RCH
+ ×

RCJ . By Γj.2
e (ξν , τ ν) = 0, we have that for every ν ∈ N and for every j

tj(y
ν
j , y

ν
−j(τ

ν), xν(τ ν)) = 0

Summing Γh.2
e (ξν , τ ν) = 0 over h, by ΓM

e (ξν , τ ν) = 0 we get
∑

h∈H
xν
h −

∑

j∈J
yνj =

∑

h∈H
eh for all ν ∈ N. Therefore, (xν , yν)ν∈N belongs to the set At,r given by (28).

Consequently, the sequence (xν , yν)ν∈N belongs to clAt,r which is compact by
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Lemma 16. So, up to a subsequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈
clAt,r ⊆ RCH

+ × RCJ , and thus (x∗, y∗) ∈ RCH
+ × RCJ .

Step 2.2. The consumption allocation x∗ is strictly positive, i.e. x∗ $ 0. The
argument is similar to the one used in Step 1.2 of Claim 1. It suffices to replace

(1) the problem (30) with the following problem

max
xh∈RC

++

uh(xh, x
ν
−h, y

ν)

subject to χh(τ
νxh + (1− τ ν)x̂h(x

ν
−h, y

ν , eh), x
ν
−h, y

ν) ≥ 0

pν · xh ≤ pν · eh + pν ·
∑

j∈J
sjhy

ν
j

according to Γh.1
e (ξν , τ ν) = Γh.2

e (ξν , τ ν) = Γh.3
e (ξν , τ ν) = 0,

(2) the point given by (31) with x̂h(xν
−h, y

ν , eh) given by Proposition 7,

(3) the problem (32) with the following problem

max
yj∈RC

pν · yj

subject to tj(yj, yν−j(τ
ν), xν(τ ν)) ≥ 0

(33)

according to Γj.1
e (ξν , τ ν) = Γj.2

e (ξν , τ ν) = 0.

Next, as in Step 1.2 of Claim 1 one easily shows that x∗
h belongs to the closure

of {xh ∈ RC
++ : uh(xh, x∗

−h, y
∗) ≥ u := uh(x̂h(x∗

−h, y
∗, eh), x∗

−h, y
∗)}. One should

notice that although x∗
−h may not be positive, Assumption 4 and consequently

Proposition 7 ensure that x̂h(x∗
−h, y

∗, eh) is well defined and strictly positive.

Step 2.3. Up to a subsequence, (αν , pν \)ν∈N converges to some (α∗, p∗ \) ∈
RJ

++ × RC−1
++ . Using Points 1 and 3 of Assumption 1, the proof is similar to

the one of Step 1.3 in Claim 1.

Step 2.4. Up to a subsequence, (λν , µν)ν∈N converges to some (λ∗, µ∗) ∈ RH
++×

RH
+ . We have two possible cases, in Case a), τ ∗ = 0, and in Case b), τ ∗ ∈ (0, 1].

Case a). τ ∗ = 0. Using Γh.3
e (ξν , τ ν) = 0, we first claim that there exists ν∗ ∈ N

such that for every ν ≥ ν∗,
µν
h = 0

Since τ ∗ = 0, the sequence

(τ νxν
h + (1− τ ν)x̂h(x

ν
−h, y

ν , eh), x
ν
−h, y

ν)ν∈N

converges to (x̂h(x∗
−h, y

∗, eh), x∗
−h, y

∗). By Proposition 7,

χh(x̂h(x
∗
−h, y

∗, eh), x
∗
−h, y

∗) > 0
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So, the continuity of the functions x̂h and χh (see Proposition 7 and Point 1
of Assumption 4) imply that there is ν∗ ∈ N such that for every ν ≥ ν∗,

χh(τ
νxν

h + (1− τ ν)x̂h(x
ν
−h, y

ν , eh), x
ν
−h, y

ν) > 0

which proves the claim. Thus, the sequence (µν
h)ν∈N converges to µ∗

h = 0.

By Γh.1
e (ξ, τ) = 0, considering commodity C, we get λν

h = DxC
h
uh(xν

h, x
ν
−h, y

ν)
for every ν ≥ ν∗. Taking the limit and using the continuity of Duh (Point 1
of Assumption 3), we get

λ∗
h = DxC

h
uh(x

∗
h, x

∗
−h, y

∗)

which is strictly positive by Point 2 of Assumption 3.

Case b). τ ∗ ∈ (0, 1]. We first claim that up to a subsequence, (λν , µν)ν∈N ⊆
RH

++ × RH
+ converges to some (λ∗, µ∗) ∈ RH

+ × RH
+ . Second, we show that

λ∗ & 0.

In order to prove the claim above, it is enough to show that (λν
h, µ

ν
h)ν∈N is

bounded for every h ∈ H. Otherwise, suppose that there is a subsequence
that without loss of generality we continue to denote with (λν

h, µ
ν
h)ν∈N such

that ‖(λν
h, µ

ν
h)‖ diverges to +∞. Consider the following sequence in the sphere

which is a compact set. 15

(
(λν

h, µ
ν
h)

‖(λν
h, µ

ν
h)‖

)

ν∈N

Up to a subsequence,

(
(λν

h, µ
ν
h)

‖(λν
h, µ

ν
h)‖

)

ν∈N
converges to some (λh, µh) )= (0, 0). 16

Obviously, λh ≥ 0 and µh ≥ 0, since λν
h > 0 and µν

h ≥ 0 for all ν ∈ N.

Dividing both sides of Γh.1
e (ξν , τ ν) = 0 by ‖(λν

h, µ
ν
h)‖, and taking the limit, we

get
λhp

∗ = τ ∗µhDxh
χh(τ

∗x∗
h + (1− τ ∗)x̂h(x

∗
−h, y

∗, eh), x
∗
−h, y

∗) (34)

Notice that µh > 0 and λh > 0. Indeed from Point 4(a) of Assumption 4, we
know that

Dxh
χh(τ

∗x∗
h + (1− τ ∗)x̂h(x

∗
−h, y

∗, eh), x
∗
−h, y

∗) )= 0

Thus, µh > 0 because if µh = 0, from (34) we get λh = 0 which contradicts
the fact that (λh, µh) )= (0, 0). Finally, µh > 0, τ ∗ > 0, p∗ ∈ RC

++ and (34)
imply λh > 0.

15 Since ‖(λν
h, µ

ν
h)ν∈N‖ diverges to +∞ , without loosing of generality, we suppose

that ‖(λν
h, µ

ν
h)‖ > 0 for every ν.

16 Observe that (λh, µh) )= (0, 0) since ‖(λh, µh)‖ = 1.
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We prove now that

λhp
∗ · x̂h(x

∗
−h, y

∗, eh) < λhp
∗ · x∗

h (35)

Since λh > 0, Proposition 7 implies that

λhp
∗ · x̂h(x

∗
−h, y

∗, eh) < λhp
∗ · eh (36)

Multiplying Γh.2
e (ξν , τ ν) = 0 by λν

h, for every ν ∈ N we get λν
hp

ν · eh + λν
hp

ν ·∑

j∈J
sjhy

ν = λν
hp

ν · xν
h. Thus, dividing both sides by ‖(λν

h, µ
ν
h)‖ and taking the

limit, we get
λhp

∗ · eh + λhp
∗ ·

∑

j∈J
sjhy

∗
j = λhp

∗ · x∗
h (37)

Therefore, (35) follows from (36) and (37) since

λhp
∗ ·

∑

j∈J
sjhy

∗
j ≥ 0

The inequality above follows by Γj.1
e (ξν , τ ν) = Γj.2

e (ξν , τ ν) = 0 and the possibi-
lity of inactivity (Point 2 of Assumption 1). Indeed, Karush-Kuhn-Tucker
sufficient conditions imply that yνj solves problem (33), and consequently pν ·
yνj ≥ 0 for every ν ∈ N. Multiplying both sides by λν

h, dividing by ‖(λν
h, µ

ν
h)‖

and taking the limit, we get λhp∗ · y∗j ≥ 0 for every j ∈ J .

Finally, we show that

λhp
∗ · x̂h(x

∗
−h, y

∗, eh) ≥ λhp
∗ · x∗

h (38)

which combined with (35) leads to a contradiction. Therefore, our claim is
completely proved.

Since µh > 0, there exists n ∈ N such that µν
h > 0 for every ν ≥ n. From

Γh.3
e (ξν , τ ν) = 0, we get χh(τ νxν

h + (1 − τ ν)x̂h(xν
−h, y

ν , eh), xν
−h, y

ν) = 0 for
every ν ≥ n. Taking the limit, one gets

χh(τ
∗xh + (1− τ ∗)x̂h(x

∗
−h, y

∗, eh), x
∗
−h, y

∗) = 0

Therefore, (34) and the Karush-Kuhn-Tucker sufficient conditions imply that
x∗
h solves the following problem.

min
xh∈RC

++

λhp
∗ · xh

subject to χh(τ
∗xh + (1− τ ∗)x̂h(x

∗
−h, y

∗, eh), x
∗
−h, y

∗) ≥ 0
(39)

By Proposition 7, x̂h(x∗
−h, y

∗, eh) belongs to the constraint of this problem,
and so (38) holds true.
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Therefore, one concludes that the sequence (λν
h, µ

ν
h)ν∈N is bounded, and con-

sequently it admits a subsequence converging to some (λ∗, µ∗) ∈ RH
+ × RH

+ .

Now we show that λ∗ # 0. From Γh.1
e (ξν , τ ν) = 0, taking the limit, we get

λ∗
hp

∗ = Dxh
uh(x

∗
h, x

∗
−h, y

∗)+τ ∗µ∗
hDxh

χh(τ
∗x∗

h+(1− τ ∗)x̂h(x
∗
−h, y

∗, eh), x
∗
−h, y

∗)

Since µ∗
h ≥ 0, by Point 2 of Assumption 3 and Point 4 of Assumption 4, we

have

λ∗
hp

∗ c = Dxc
h
uh(x

∗
h, x

∗
−h, y

∗)+τ ∗µ∗
hDxc

h
χh(τ

∗x∗
h+(1−τ ∗)x̂h(x

∗
−h, y

∗, eh), x
∗
−h, y

∗) > 0

for some commodity c. Since p∗ c > 0, λ∗
h > 0 which completes the proof of

the step.

Appendix A

Proof of Proposition 7. For all h ∈ H, the correspondence φh : RC(H−1)
+ ×

RCJ × Eχh
⇒ RC

++ defined by

φh(x−h, y, , eh) := {xh ∈ RC
++ : χh(xh, x−h, y) > 0 and xh & eh}

is non-empty convex valued by (2) and by Point 2 of Assumption 4. From
Point 1 of Assumption 4, for all xh ∈ RC

++, the following set

φ−1
h (xh) := {(x−h, y, eh) ∈ RC(H−1)

+ ×RCJ×Eχh
: χh(xh, x−h, y, ) > 0 and xh & eh}

is open in RC(H−1)
+ ×RCJ×Eχh

. Moreover, RC(H−1)
+ ×RCJ×Eχh

equipped with
the metric induced by the Euclidean distance is metrizable, thus paracompact.
Then, we have the desired result since the correspondence φh satisfies all the
assumptions of Michael’s Selection Theorem. 17

Proof of Proposition 9. Since the externalities are fixed, the proof is stan-
dard as in the case without externalities.

Proof of Proposition 10. By (2), that is the Survival Assumption, there
exists x̂h such that χh(x̂h, x∗

−h, y
∗) ≥ 0 and x̂h & eh. If p∗ ·

∑

j∈J
sjhy

∗
j ≥ 0, then

x̂h belongs to the constraint set of problem (4). In order to apply Weierstrass’s

17 See Florenzano (2003), Proposition 1.5.1, page 29.
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Theorem, one replaces problem (4) with the following problem.

max
xh∈RC

++

uh(xh, x∗
−h, y

∗)

subject to χh(xh, x∗
−h, y

∗) ≥ 0

p∗ · xh ≤ p∗ · (eh +
∑

j∈J
sjhy

∗
j )

uh(xh, x∗
−h, y

∗) ≥ uh(x̂h, x∗
−h, y

∗)

(40)

It is an easy matter to show that problems (4) and (40) are equivalent. Further-
more, by the continuity of the functions uh and χh (see Point 1 of Assumptions
3 and 4) and by Point 4 of Assumption 3, the constraint set associated with
problem (40) is a compact set included in RC

++. Since uh(·, x∗
−h, y

∗) is continu-
ous, from Weierstrass’s theorem, a solution of problem (40) exists, and it also
a solution to problem (4).

The solution to problem (4) is unique, since the objective function is strictly
quasi-concave (see Point 3 of Assumption 3), χh(·, x∗

−h, y
∗) is quasi-concave

(see Point 2 of Assumption 4) and the budget set is convex. So, point (1) is
completely proved.

Point (2) follows showing that problem (4) satisfies the Karush-Kuhn-Tucker
necessary and sufficient conditions. We define g1(xh) := −p∗ · (xh − eh −∑

j∈J
sjhy

∗
j ) and g2(xh) := χh(xh, x∗

−h, y
∗). Karush-Kuhn-Tucker necessary con-

ditions are satisfied. Indeed, Slater’s condition holds true since g1(x̂h) > 0,
g2(x̂h) > 0, and g1 and g2 are pseudo-concave. 18 By Point 2 of Assumption
3 and Point 4(b) of Assumption 4, the Lagrange multiplier λ∗

h associated to
the budget constraint is strictly positive. Karush-Kuhn-Tucker sufficient con-
ditions are satisfied. Indeed, uh(·, x∗

−h, y
∗) is pseudo-concave, and g1 and g2

are quasi-concave. 19

Finally, using Point 4 of Assumption 4 and Proposition 7, one shows the
uniqueness of the Lagrange multipliers. 20

Appendix B

Characterization of Pareto optimality without externalities

18 Since g1 is linear, it is pseudo-concave. From Points 2 and 4(a) of Assumption 4,
g2 is quasi-concave with gradient different from zero, then it is pseudo-concave.
19 From Point 3 of Assumption 3, uh(·, x∗−h, y

∗) is differentiable strictly quasi-
concave, then it is pseudo-concave. Since g1 is linear, it is quasi-concave. Finally,
from Point 2 of Assumption 4, g2 is quasi-concave.
20 For additional details, we refer to the proof of Proposition 5 in del Mercato (2006).
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Let E := ((RC
++, uh)h∈H, (tj)j∈J , r) be the economy defined by (9) where r :=∑

h∈H
eh. Define the following sets

Ur := {(uh)h∈H ∈ ∏
h∈H Im uh : ∃ (x, y) ∈ RCH

++ × RCJ , tj(yj) ≥ 0 ∀ j ∈ J ,
∑

h∈H
xh −

∑

j∈J
yj ≤ r and uh(xh) ≥ uh ∀ h ∈ H}

Ûr := {(uh)h "=1 ∈
∏

h "=1 Im uh : ∃ u1 ∈ Im u1, (u1, (uh)h "=1) ∈ Ur}

By Point 2 of Assumption 1, the set Āt,r defined by (29) is non-empty. Thus,
the sets Ur and Ûr are non-empty. Let (u′

h)h "=1 ∈ Ûr. Consider the following
optimization problem

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to tj(yj) ≥ 0 for every j ∈ J
uh(xh) ≥ u′

h for every h (= 1
∑

h∈H
xh −

∑

j∈J
yj ≤ r

(41)

Proposition 18 There exists a unique solution (x̃, ỹ) to problem (41).

Proof. In order to apply Weierstrass’ Theorem, one replaces problem (41)
with the following problem

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to tj(yj) ≥ 0 for every j ∈ J
uh(xh) ≥ u′

h for every h (= 1

u1(x1) ≥ u′
1∑

h∈H
xh −

∑

j∈J
yj ≤ r

(42)

where u′
1 ∈ Im u1 is given by the definition of Ûr. Since (u′

h)h∈H ∈ Ur, there
exists (x′, y′) ∈ RCH

++ ×RCJ such that tj(y′j) ≥ 0 for all j ∈ J ,
∑

h∈H
x′
h−

∑

j∈J
y′j ≤

r and uh(x′
h) = u′

h, ∀ h ∈ H.

Denote K1 the constraints set associated with problem (42). K1 is non-empty
since (u′

h)h∈H ∈ Ur. We first claim that K1 is a compact set included in
RCH

++ × RCJ . We notice that K1 = N ∩ Āt,r where

N := {(x, y) ∈ RCH
++ × RCJ : uh(xh) ≥ u′

h ∀ h ∈ H}

and Āt,r is defined by (29). So, from Lemma 16 we have that K1 is bounded.
Furthermore,K1 is closed. Indeed, take a sequence (xν , yν)ν∈N inK1 converging
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to some (x, y). Since (xν , yν)ν∈N ⊆ N , (x, y) belongs to the set clRCH×RCJ N
which is included in RCH

++ × RCJ by Point 4 of Assumption 3. So, (x, y) ∈
RCH

++ ×RCJ . Since the function uh are continuous (see Point 1 of Assumption
3), (x, y) ∈ N . Since the functions tj are continuous (see Point 1 of Assumption
1), (x, y) ∈ Āt,r and so (x, y) ∈ K1 which completes the proof of the claim.

By Weierstrass’ Theorem, there exists a solution (x̃, ỹ) to problem (42). The
solution to problem (42) is unique since the objective function is strictly quasi-
concave (see Point 3 of Assumption 3) and the constraints set is convex (see
Point 4 of Assumption 1 and Point 3 of Assumption 3).

We complete the proof showing that problems (41) and (42) are equivalent.
Denote with K the constraints set associated with problem (41). Let (x̃, ỹ)
be a solution to problem (41), one gets u1(x̃1) ≥ u1(x′

1) = u′
1 since (x′, y′) ∈

K. Thus, (x̃, ỹ) ∈ K1 and (x̃, ỹ) solves problem (42) since since K1 ⊆ K.
Viceversa, suppose that (x̃, ỹ) is a solution to problem (42), obviously (x̃, ỹ) ∈
K. Let (x, y) ∈ K. If u1(x1) ≥ u′

1, then (x, y) ∈ K1 and so u1(x̃1) ≥ u1(x1).
If u1(x1) < u′

1, then u1(x̃1) ≥ u′
1 > u1(x1). Thus, (x̃, ỹ) solves problem (41),

which complete the proof of the lemma.

Proposition 19 Let (x̃, ỹ) be the allocation given by Lemma 18. There exists
(θ̃, γ̃, β̃) := ((θ̃h)h $=1, γ̃, (β̃j)j∈J ) ∈ RH−1

++ × RC
++ × RJ

++ such that (x̃, ỹ, θ̃, γ̃, β̃)
is the unique solution to the following system.






Dx1u1(x1)− γ = 0

θhDxh
uh(xh)− γ = 0, ∀ h '= 1

uh(xh)− uh(x̃h) = 0, ∀ h '= 1

γ + βjDyj tj(yj) = 0, ∀ j ∈ J

tj(yj) = 0, ∀ j ∈ J

r −
∑

h∈H
xh +

∑

j∈J
yj = 0

(43)

Proof. The result follows showing that Karush-Kuhn-Tuker’ conditions are
necessary conditions to solve problem (41). The Lagrangean function associa-
ted with problem (41) is given by

L(x, y, θ, γ, β) = u1(x1)+
∑

h $=1

θh(uh(xh)−u′
h)+

∑

j∈J
βjtj(yj)+γ(r−

∑

h∈H
xh+

∑

j∈J
yj)

where (θ, γ, β) := ((θh)h $=1, γ, (βj)j∈J ) ∈ RH−1
+ ×RC

+ ×RJ
+ is the vector of the

Lagrange multipliers associated with the constraints set of problem (41). So,
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the Karush-Kuhn-Tuker conditions are given by






(1) Dx1u1(x1)− γ = 0

(2) θhDxh
uh(xh)− γ = 0, ∀ h #= 1

(3) γ + βjDyj tj(yj) = 0, ∀ j ∈ J

(4) min{θh, uh(xh)− u′
h} = 0, ∀ h #= 1

(5) min{βj, tj(yj)} = 0, ∀ j ∈ J

(6) min{γ, r −
∑

h∈H
xh +

∑

j∈J
yj} = 0

(44)

It is enough to show that the Jacobian matrix associated with the constraints
functions of problem (41) has full row rank. The Jacobian matrix is described
below.

x2 . . . xI x1 y1 . . . yJ

u2(x2)− u′
2

...

uH(xH)− u′
H

r −
∑

h∈H
xh +

∑

j∈J
yj

t1(y1)
...

tJ(yJ)





Dx2u2(x2) . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . DxHuH(xH) 0 0 . . . 0

−IC . . . −IC −IC IC . . . IC

0 . . . 0 0 Dy1t1(y1) . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 0 0 . . . DyJ tJ(yJ)





The matrix above has full row rank since Dxh
uh(xh) % 0 and Dyj tj(yj) & 0

(see Point 3 of Assumption 1 and Point 2 of Assumption 3) imply that the
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determinant of the square sub-matrix D defined below is different from zero.

x1
2 . . . x1

H x1 y1J . . . y1J

D :=





Dx1
2
u2(x2) . . . 0 0 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . Dx1
H
uH(xH) 0 0 . . . 0

−1

0
. . .

−1

0
IC

−1

0
. . .

−1

0

0 . . . 0 0 Dy11
t1(y1) . . . 0

...
. . .

...
...

...
. . .

...

0 . . . 0 0 0 . . . Dy1J
tJ(yJ)





Therefore, the conditions given by (44) are necessary to solve problem (41).
By Lemma 18 and equations (1), (2) and (3) in system (44), the Lagrange
multipliers are unique. Furthermore, Point 3 of Assumption 1 and Point 2
of Assumption 3 imply that the Lagrange multipliers satisfying system (44)
are strictly positive, and consequently, all the constraints in problem (41) are
binding. So, in particular one gets

uh(x̃h) = u′
h ∀ h "= 1

Therefore from system (44) one deduces system (43) and the lemma is com-
pletely proved. Using Proposition 19, one easily proves the following propo-
sition.

Proposition 20 If (x̃, ỹ) is a solution of problem (41), then (x̃, ỹ) solves the
problem below

max
(x,y)∈RCH

++×RCJ
u1(x1)

subject to tj(yj) ≥ 0 for each j ∈ J
uh(xh) ≥ uh(x̃h) for h "= 1
∑

h∈H
xh −

∑

j∈J
yj ≤ r

(45)

Proof. It follows from system (43) in Lemma 19 and the fact that Karush-
Kuhn-Tucker conditions are sufficient to solve problem (45). Indeed, by Points
2 and 3 of Assumption 3 the function u1 is quasi-concave with gradient differ-
ent from zero, and by Point 4 of Assumption 1 and Point 3 of Assumption 3,
the constraint functions associated with problem (45) are quasi-concave.
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We remind that (x̃, ỹ) ∈ RCH
++ × RCJ is Pareto optimal allocation of the pro-

duction economy E if there is no other allocation (x̂, ŷ) ∈ RCH
++ × RCJ such

that

(1) tj(ŷj) ≥ 0 for all j ∈ J and
∑

h∈H
x̂h ≤ r +

∑

j∈J
ŷj

(2) uh(x̂h) ≥ uh(x̃h) for all h ∈ H and uk(x̂k) > uk(x̃k) for some k ∈ H.

Proposition 21 (x̃, ỹ) solves problem (45) if and only if it is a Pareto optimal
allocation of E .

Proof. By definition of Pareto optimal allocation, if (x̃, ỹ) is a Pareto opti-
mal allocation then (x̃, ỹ) solves problem (45). Suppose now that (x̃, ỹ) solves
problem (45), we prove that (x̃, ỹ) is a Pareto optimal allocation. By contra-
diction, suppose that there is an allocation (x̂, ŷ) ∈ RCH

++ × RCJ such that
tj(ŷj) ≥ 0 for all j ∈ J ,

∑

h∈H
x̂h ≤ r +

∑

j∈J
ŷj, uh(x̂h) ≥ uh(x̃h) for all h ∈ H

and uk(x̂k) > uk(x̃k) for some k ∈ H. If k = 1, then we get a contradiction
since (x̃, ỹ) solves problem (45). If k %= 1, by the continuity of uk (see Point 1
of Assumption 3), there exists ε > 0 such that uk(x̂k − ε1c) > uk(x̃k) where
1c ∈ RC

+ has all the components equal to 0 except the component c which is
equal to 1. Thus, the allocation (x, y) ∈ RCH

++ × RCJ defined below

x1 := x̂1 + ε1c

xk := x̂k − ε1c

xh := x̂h ∀ h ∈ H \ {1, k}
yj := ŷj ∀ j ∈ J

(46)

satisfies the constraints of problem (45) and u1(x1) > u1(x̃1) since u1 is strictly
increasing (see Point 2 of Assumption 3). So, once again we get a contradiction
since (x̃, ỹ) solves problem (45).
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Chapter 2
—–

Externalities in production economies:
Regularity results 1

Vincenzo Platino 2

DISES, Universitá degli Studi di Salerno, Italy
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economies.

1 Long abstract

We consider a general model of a private ownership economy with consumption
and production externalities. Each firm is characterized by a technology de-
scribed by an inequality on a differentiable function called the transformation
function. Each household is characterized by a consumption set, preferences
and an initial endowment of commodities. In this chapter, we assume that
all the consumption sets coincide with the positive orthant of the commod-
ity space. Individual preferences are represented by a utility function. Firms
are owned by households. Utility and transformation functions depend on the
consumption of all households and on the production activities of all firms.

As in Chapter 1, we follow Smale’s extended approach. Our purpose is to
provide sufficient conditions for the regularity of such economies. Showing by
an example that basic assumptions are not enough to guarantee a regularity
result in the space of initial endowments, we provide sufficient conditions for
the regularity in the space of endowments and transformation functions.

Chapter 2 is organized as follows. Section 2 is devoted to the model and basic
assumptions. In Section 3, we briefly resume the definitions of competitive

1 This chapter is based on del Mercato and Platino (2011).
2 Dipartimento di Scienze Economiche e Statistiche (DISES), Universitá degli
Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy. E-mail: vin-
cenzo.platino@gmail.com.
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equilibria and of the equilibrium function. In Section 4, we state the definition
of a regular economy and we recall its properties. In Section 5, we provide our
example and the notion of a perturbed economy. In Section 6, we introduce
two additional assumptions. In Section 7, we present our main results, namely
Theorem 14 which states the regularity result for for almost all perturbed
economies. In Section 8, we provide an important consequence of Theorem
14, namely Corollary 19 which states the regularity result in the space of
endowments and transformation functions.

In Appendix A, one finds classical results from differential topology used in
our analysis. In Appendix B, the reader can find a comparison of our results
with those of Mandel (2008).

2 The model and the assumptions

There is a finite number C of physical commodities or goods labeled by the
superscript c ∈ C := {1, . . . , C}. The commodity space is RC . There are
a finite number J of firms labeled by the subscript j ∈ J := {1, . . . , J}
and a finite number H of households or consumers labeled by the subscript
h ∈ H := {1, . . . , H}. Each firm j is owned by the households and it is
characterized by a technology described by a transformation function. Each
household h is characterized by preferences described by a utility function,
shares on the firms profits and an endowment of commodities. In Chapter
2, we assume that all consumption sets coincide with the positive orthant of
the commodity space. Utility and transformation functions are affected by the
consumption choices of all households and by the production activities of all
firms. The notations are summarized below.

• yj := (y1j , .., y
c
j , .., y

C
j ) is the production plan of firm j. As usual, the output

components are positive and the input components are negative, y−j :=
(yz)z "=j denotes the production plan of firms other than j and y := (yj)j∈J
denotes the production of all the firms.

• xc
h is the consumption of commodity c by household h,

xh := (x1
h, .., x

c
h, .., x

C
h ) denotes household h’s consumption, x−h := (xk)k "=h

denotes the consumption of households other than h and x := (xh)h∈H
denotes the consumption of all the households.

• For each j ∈ J , the technology of firm j is described by an inequality
on a function tj called the transformation function. An innovation of this
chapter comes from the dependency of the production set with respect to
the production activities of other firms and the consumption of households.
That is, given y−j and x, the production set of the firm j is described by

2



the following set,

Yj(y−j, x) :=
{
yj ∈ RC : tj(yj, y−j, x) ≥ 0

}

where the transformation function tj is a function from RC×RC(J−1)×RCH
++

to R, t := (tj)j∈J . So, tj describes the way firm j’s technology is affected
by the actions of the other agents.

• Each household h ∈ H has preferences described by a utility function,

uh : (xh, x−h, y) ∈ RC
++ × RC(H−1)

+ × RCJ −→ uh(xh, x−h, y) ∈ R

uh(xh, x−h, y) is the utility level of household h associated with (xh, x−h, y),
u := (uh)h∈H. So, uh describes the way household h’s preferences are affected
by the actions of the other agents.

• sjh ∈ [0, 1] is the share of firm j owned by household h; sh := (sjh)j∈J ∈
[0, 1]J denotes the vector of the shares of all firms owed by household h;
s := (sh)h∈H ∈ [0, 1]JH . The set of all shares is given by

S := {s ∈ [0, 1]JH : ∀ j ∈ J ,
∑

h∈H
sjh = 1}

• ech is the endowment of commodity c owned by household h;
eh := (e1h, .., e

c
h, .., e

C
h ) denotes household h’s endowment; e := (eh)h∈H.

• E := ((uh, eh, sh)h∈H, (tj)j∈J ) is an economy.

• pc is the price of one unit of commodity c, prices are expressed in units of
account, p := (p1, .., pc, .., pC) ∈ RC

++.

• Given w = (w1, .., wc, .., wC) ∈ RC , we denote

w\ := (w1, .., wc, .., wC−1) ∈ RC−1

We make the following assumptions on the transformation functions t =
(tj)j∈J .

Assumption 1 For all j ∈ J ,

(1) The function tj is a C2 function.
(2) For each (y−j, x) ∈ RC(J−1) × RCH

++ , tj(0, y−j, x) ≥ 0.
(3) For each (y−j, x) ∈ RC(J−1) × RCH

++ , the function tj(·, y−j, x) is differen-
tiably strictly decreasing, i.e.

∀ (y−j, x) ∈ RC(J−1) × RCH
++ and ∀ y′j ∈ RC , Dyj tj(y

′
j, y−j, x) ' 0

(4) For each (y−j, x) ∈ RC(J−1)×RCH
++ , the function tj(·, y−j, x) is C2 and it is

differentiably strictly quasi-concave, i.e. for every yj ∈ RC, D2
yj tj(yj, y−j, x)
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is negative definite on kerDyj tj(yj, y−j, x). 3

We remark that, given the externalities, the assumptions on tj are standard
in “smooth” general equilibrium models. Indeed, from Point 1 of Assumption
1 the production set is closed and smooth, from Point 4 of Assumption 1 it is
convex. Point 2 of Assumption 1 states that inactivity is possible. Point 3 of
Assumption 1 represents the “free disposal” property.

Define the set Yt of all production plans which are on the production sets
whatever are the externalities, that is

Yt :=
{
y′ ∈ RCJ | ∃ (y, x) ∈ RCH

++ × RCJ : tj(y
′
j, y−j, x) ≥ 0, ∀ j ∈ J

}
(1)

The following assumption can be interpreted in a similar way as Assumption
2 in Chapter 1, that is the asymptotic irreversibility and “no free lunch” as-
sumptions at the aggregate level for any possible displacement of the boundary
of the production sets.

Assumption 2 Let b := (bj)j∈J ∈ RJ and t+ b := (tj + bj)j∈J . For all b ≥ 0,
if y′ ∈ CYt+b and

∑

j∈J
y′j ≥ 0, then y′j = 0 for every j ∈ J . 4

The assumption above ensures that the for all possible displacements of the
boundary of the production sets, the set of feasible allocation is bounded, see
Lemma 15.

We make the following assumptions on the utilities functions u = (uh)h∈H.

Assumption 3 For all h ∈ H,

(1) The function uh is continuous in its domain and it is C2 in the interior
of its domain.

(2) For each (x−h, y) ∈ RC(H−1)
++ ×RCJ , the function uh(·, x−h, y) is differen-

tiably strictly increasing, i.e.

∀ (x−h, y) ∈ RC(H−1)
++ × RCJ and ∀ x′

h ∈ RC
++, Dxh

uh(x
′
h, x−h, y) & 0

(3) For each (x−h, y) ∈ RC(H−1)
++ ×RCJ , the function uh(·, x−h, y) is C2 and it

is differentiably strictly quasi-concave, i.e., for every xh ∈ RC
++, D

2
xh
uh(xh, x−h, y)

3 Let v and v′ be two vectors in Rn, v · v′ denotes the inner product of v and v′.
Let A be a real matrix with m rows and n columns, and B be a real matrix with
n rows and l columns, AB denotes the matrix product of A and B. Without loss of
generality, vectors are treated as row matrices and A denotes both the matrix and
the following linear application A : v ∈ Rn → A(v) := AvT ∈ R[m] where vT denotes
the transpose of v and R[m] := {wT : w ∈ Rm}. When m = 1, A(v) coincides with
the inner product A · v, treating A and v as vectors in Rn.
4 CYt+b denotes the asymptotic cone of Yt+b.

4



is negative definite on kerDxh
uh(xh, x−h).

(4) For each (x−h, y) ∈ RC(H−1)
+ × RCJ and for each u ∈ Im uh(·, x−h, y),

clRC{xh ∈ RC
++ : uh(xh, x−h, y) ≥ u} ⊆ RC

++

Fixing the externalities, the assumptions on uh are standard in “smooth”
general equilibrium models.

T denotes the set of t = (tj)j∈J satisfying Assumption 1 and Assumption 2,
and U denotes the set of u = (uh)h∈H satisfying Assumption 3.

Remark 4 From now on, u ∈ U and s ∈ S are kept fixed and an economy is
parameterized by transformation functions and initial endowments (t, e) taken
in the following set T × RCH

++ .

3 Competitive equilibrium with externalities

This section summarizes the notions and the main result of Chapter 1.

Without loss of generality, commodity C is the numeraire good. So, given
p\ ∈ RC−1

++ with innocuous abuse of notation, we denote p := (p\, 1) ∈ RC
++.

Definition 5 (x∗, y∗, p∗\) ∈ RCH
++ × RCJ × RC−1

++ is a competitive equilibrium
for the economy (t, e) ∈ T × RCH

++ if

(1) for all j ∈ J , y∗j solves the following problem

max
yj∈RC

p∗ · yj

subject to tj(yj, y∗−j, x
∗) ≥ 0

(2)

(2) For all h ∈ H, x∗
h solves the following problem

max
xh∈RC

++

uh(xh, x∗
−h, y

∗)

subject to p∗ · xh ≤ p∗ · (eh +
∑

j∈J
sjhy

∗
j )

(3)

(3) (x∗, y∗) ∈ RCH
++× ∈ RCJ satisfies market clearing conditions, that is

∑

h∈H
xh =

∑

h∈H
eh +

∑

j∈J
yj (4)

In the following propositions, using the Karush–Kuhn–Tucker necessary and
sufficient conditions, we characterize the solutions of firms and households
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maximization problems.

Proposition 6 Given y∗−j ∈ RC(J−1), x∗ ∈ RCH
++ and p∗\ ∈ RC−1

++ ,

(1) if y∗j is a solution to problem (5), then it is the unique solution.

(2) y∗j ∈ RC is the solution to problem (5) if and only if there exists α∗
j ∈ R++

such that (y∗j ,α
∗
j ) is the unique solution to the following system






p∗ + αjDyj tj(yj, y
∗
−j, x

∗) = 0

tj(yj, y∗−j, x
∗) = 0

(5)

Proposition 7 Given x∗
−h ∈ RC(H−1)

++ , y∗ ∈ RCJ and p∗\ ∈ RC−1
++ ,

(1) if p∗ ·
∑

j∈J
sjhy

∗
j ≥ 0, then there exists a unique solution to problem (5).

(2) x∗
h ∈ RC

++ is the solution to problem (5) if and only if there exists λ∗
h ∈

R++ such that (x∗
h,λ

∗
h) is the unique solution to the following system






Dxh
uh(xh, x∗

−h, y
∗)− λhp∗ = 0

−p∗ · (xh − eh −
∑

j∈J
sjhy

∗
j ) = 0

(6)

Let Ξ := (RC
++×R++)H × (RC ×R++)J ×RC−1

++ be the set of endogenous vari-
ables with generic element ξ := (x,λ, y,α, p\) := ((xh,λh)h∈H, (yj,αj)j∈J , p\).

We can now describe equilibria using the propositions above and the market
clearing conditions (4). One should notice that, due to the Walras law and
the second equation in (6), the market clearing condition for commodity C is
“redundant”.

For a given economy (t, e) ∈ T × RCH
++ , the equilibrium function Ft,e : Ξ →

RdimΞ,

Ft,e (ξ) := ((F h.1
t,e (ξ) , F h.2

t,e (ξ))h∈H(F
j.1
t,e (ξ) , F j.2

t,e (ξ))j∈J , F
M
t,e (ξ)) (7)

is defined by F h.1
t,e (ξ) := Dxh

uh(xh, x−h, y) − λhp, F h.2
t,e (ξ) := −p · (xh − eh −∑

j∈J
sjhyj), F j.1

t,e (ξ) := p + αjDyj tj(yj, y−j, x), F j.2
t,e (ξ) := tj(yj, y−j, x), and

FM
t,e (ξ) :=

∑

h∈H
x\
h −

∑

j∈J
y\j −

∑

h∈H
e\h.

ξ∗ ∈ Ξ is an extended equilibrium for the economy (t, e) ∈ T × RCH
++ if and

only if Ft,e (ξ∗) = 0. We call ξ∗ simply an equilibrium.

Theorem 8 (Existence and compactness) For every economy (t, e) ∈ T ×
RCH

++ , the equilibrium set F−1
t,e (0) is non-empty and compact.

6



4 Regular economy and its properties

In this section, first we recall the notion of a regular economy. Second, we
provide the main properties of a regular economy, see Proposition 10 below.

Definition 9 (t, e) ∈ T ×RCH
++ is a regular economy if for each ξ∗ ∈ F−1

t,e (0),

(1) Ft,e is a C1 function around ξ∗. 5

(2) The differential mapping DξFt,e(ξ∗) is onto.

R denotes the set of regular economies.

Our main result is Theorem 14 in Section 7 which states the regularity result
for almost all perturbed economies.

Now, define B := RCJ × RCH
++ , and endow the set C2(B,R) with the C2

Whitney topology (see Definition 21 in Appendix A), the set RCH
++ with the

Euclidean topology, and the set T × RCH
++ with the topology induced by the

product topology on C2(B,R)J × RCH
++ .

As a consequence of Theorem 14, the set R is a non-empty open subset of
T × RCH

++ , see Corollary 19 in Section 8. So, one easily deduces the following
proposition from Theorem 8, Corollary 19, Lemma 20 in Section 8, a conse-
quence of the Regular Value Theorem and the Implicit Function Theorem (see
Corollary 23 and Theorem 26 in Appendix A).

Proposition 10 (Properties of regular economies) For each (t, e) ∈ R,

(1) the equilibrium set associated with the economy (t, e) is a non-empty finite
set, i.e.,

∃ r ∈ N \ {0} : F−1
t,e (0) = {ξ1, ..., ξr}

(2) there exist an open neighborhood I of (t, e) in T × RCH
++ , and for each

i = 1, . . . , r an open neighborhood Ui of ξi in Ξ and a continuous function
gi : I → Ui such that

(a) Uj ∩ Uk = ∅ if j '= k,
(b) gi(t, e) = ξi,
(c) for all (t′, e′) ∈ I, F−1

t′,e′(0) = {gi(t′, e′) : i = 1, . . . , r},
(d) the economies (t′, e′) ∈ I are regular.

5 Ft,e is a C1 function around ξ∗ means that there exists an open neighborhood
I(ξ∗) of ξ∗ in Ξ such that the restriction of Ft,e to I(ξ∗) is a C1 function.
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5 An example and perturbations of production sets

In this section, first we provide an example of a production economy with ex-
ternalities and an infinite set of equilibria for all initial endowments. Second,
in order to avoid situations such as the one shown by the example, we con-
sider displacements of the boundaries of the production sets, that is, simple
perturbations of the transformation functions.

Consider one household, two firms and two commodities. Let x = (x1, x2) be
the consumption of the household and yj = (y1j , y

2
j ) be the production plan of

firm j = 1, 2. We denote with e = (e1, e2) the initial endowment. The utility
function is given by

u(x1, x1) =
1

2
ln x1 +

1

2
ln x2

In this example, each firm uses commodity 2 to produce commodity 1. More-
over, the production set of firm j is affected by the output of the other firm.
The production set of firm j is the following set.

Yj(y
1
−j) = {(y1j , y2j ) ∈ R2 : y2j ≤ 0 and tj(y

1
j , y

2
j , y

1
−j) := 2

√
−y2j − y1−j − y1j ≥ 0}

We remark that all the basic assumptions to get the existence of equilibria
are satisfied except Point 2 of Assumption 1. Although Point 2 of Assumption
1 is not satisfied, the existence result holds true since, at equilibrium, the
aggregate profit is non-negative. See the aggregate profit given by condition
(10) below, and related comments at page 7 of Chapter 1.

Normalize the price of commodity 2. At equilibrium, firm j solves the following
maximization problem

max
y1j>0, y2j<0

p∗y1j + y2j

subject to 2
√
−y2j − y∗1−j − y1j ≥ 0

For each firm j = 1, 2, the associated Karush-Kuhn-Thucker conditions are
given by

p∗ = αj, 1 = αj
1

√
−y2j

, 2
√
−y2j − y∗1−j − y1j = 0

Thus, at equilibrium, one gets

y∗11 = 2p∗ − y∗12 and y∗21 = −(p∗)2 (8)

and

y∗12 = 2p∗ − y∗11 and y∗22 = −(p∗)2 (9)

8



By (8), at equilibrium, the aggregate profit is given by

2∑

j=1

(p∗y∗1j + y∗2j ) = p∗(2p∗ − y∗12 )− (p∗)2 + p∗y∗12 − (p∗)2 = 0 (10)

So, household’s maximization problem is given by

max
x∈R2

++

1
2 ln x

1 + 1
2 ln x

2

subject to p∗x1 + x2 ≤ p∗e1 + e2

The associated Karush-Kuhn-Thucker conditions are given by

1

2x1
= λp∗,

1

2x2
= λ, p∗x1 + x2 = p∗e1 + e2

Thus, at equilibrium, one gets

x∗1 =
1

2p∗
(p∗e1 + e2) and x∗2 =

1

2
(p∗e1 + e2) (11)

Using market clearing condition for commodity 1, one finds the equilibrium
price

p∗ =
1

8

(√
(e1)2 + 16e2 − e1

)
(12)

Finally, using (8), (9), (11) and (12), any bundle

((p∗, 1), x∗, y∗1, y
∗
2) ∈ R2

++ × R2
++ × R2 × R2 such that y∗12 ∈ [0, 2p∗]

is a competitive equilibrium. Thus, we have an infinite set of equilibria which
are parametrized by y∗12 ∈ [0, 2p∗].

One should notice that without externalities at all, if the output price in-
creases then the output supply of both firms increases too. 6 So, equilibria are
completely determined. In our example, we have an infinite set of equilibria
since, for given y∗12 , if the output price p∗ increases by k units then the output
supply y∗11 of firm 1 increases by 2k units, and consequently the output supply
y∗12 of firm 2 does not change since the price increase is compensated by firm
1’s output increase. Therefore, the output supply of firm 2 is indeterminate
since the two effects offset each others.

So, in order to overcome the effects described above, we consider simple pertur-
bations of the transformation functions. The definition of a perturbed economy
for a given t ∈ T is provided below.

6 In this case, the transformation function of firm j is given by tj(y1j , y
2
j ) :=

2
√
−y2j − y1j .
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Definition 11 (Perturbed economies) Let t ∈ T , a perturbed production
economy (t+ b, e) is parametrized by transformation levels b := (bj)j∈J ∈ RJ

++

and endowment e ∈ RCH
++ where

t+ b := (tj + bj)j∈J

Λt := RJ
++ × RCH

++ denotes the set of perturbed production economies.

It an easy matter to show that for every (b, e) ∈ Λt, the perturbed production
economy (t+ b, e) ∈ T × RCH

++ since t+ b satisfies Assumptions 1 and 2.

6 Two additional assumptions

One should notice that in the previous example,

(1) the perturbations of the production sets are sufficient to control the first-
order external effects,

(2) there are no second-order external effects since the derivatives of the
marginal productions with respect to the choices of the others are equal
to zero.

But, as shown in Bonnisseau and del Mercato (2010), in the case of only
consumption externalities, regularity may fail when the second-order exter-
nal effects are too strong. So, the basic assumptions and the perturbations
introduced in the previous paragraph may be not sufficient to control the
second-order external effects thereby preventing the regularity result. Thus,
we introduce the following two additional assumptions.

Assumption 12 Let (x, y, z) ∈ RCH
++×RCJ×RCJ such that z ∈

∏

j∈J
kerDyj tj(yj, y−j, x)

and
∑

j∈J
zj = 0. Then, zj

∑

f∈J
D2

yfyj
tj(yj, y−j, x)(zf ) < 0 whenever zj #= 0.

Assumption 13 Let (x, v, y, z) ∈ RCH
++ × RCH × RCJ × RCJ such that v ∈∏

h∈H
kerDxh

uh(xh, x−h, y), z ∈
∏

j∈J
kerDyj tj(yj, y−j, x) and

∑

h∈H
vh =

∑

j∈J
zj, then

(1) vh
∑

k∈H
D2

xkxh
uh(xh, x−h, y)(vk) < 0 whenever vh #= 0,

(2) zj
∑

k∈H
D2

xkyj
tj(yj, y−j, x)(vk) ≤ 0 whenever vk ∈

⋂

j∈J
kerDyj tj(yj, y−j, x)

for every k ∈ H.

Assumptions 12 and 13 can be interpreted in a similar way as Assumption 9
in Bonnisseau and del Mercato (2010). More specifically,

10



• Assumption 12 means that the effect of changes in the production plans
(yf )f !=j of firms other than j on the marginal production Dyj tj(yj, y−j, x)
is “dominated” by the effect of changes in the production plan yj of firm
j. Indeed, under Point 4 of Assumption 1, Assumption 12 states that the
absolute value of zjD2

yj tj(yj, y−j, x)(zj) is larger than the remaining term

zj
∑

f !=j

D2
yfyj

tj(yj, y−j, x)(zf ).

• Points 1 of Assumption 13 means that the effect of changes in the con-
sumptions (xk)k∈h of the households other than h on the marginal utility
Dxh

uh(xh, x−h, y) is “dominated” by the effect of changes in the consump-
tion xh of household h. Under Point 3 of Assumption 3, Points 1 of Assump-
tion 13 means that the absolute value of vhD2

xj
uh(xh, x−h, y)(vh) is larger

than the remaining term vh
∑

k !=h

D2
xkxh

uh(xh, x−h, y)(vk).

We provide below an example of transformation functions which satisfy As-
sumption 12. In the example, there are two firms and two commodities. Let
yj = (y1j , y

2
j ) be the production plan of firm j = 1, 2. Each firm uses com-

modity 2 to produce commodity 1, so y1j > 0 and y2j < 0 for every j = 1, 2.
Each production technology is affected by the output of the other firm in the
following way.

t1(y1, y2) := 2
√
(−y21)ρy

1
2 − y11 and t2(y2, y1) := 2

√
(−y22)δy

1
1 − y12

with ρ > 0 and δ > 0. An example of utility function which satisfies Point
1 of Assumption 13 is provided in Section 4 of Bonnisseau and del Mercato
(2010).

7 Regularity for almost all perturbed economies

In this section, we prove the following theorem which is our main result. Let
t ∈ T , consider the set of perturbed economies Λt given by Definition 11.

Theorem 14 (Regularity for almost all perturbed economies) The set
Λr

t of (b, e) ∈ Λt such that (t + b, e) is a regular economy is an open and full
measure subset of Λt.

In order to prove the theorem above, we introduce the following notations and
we provide three auxiliary lemmas, namely Lemmas 15, 16 and 17.

For given (b, e) ∈ Λt, by Point 1 of Assumptions 1 and 3 the equilibrium
function Ft+b,e is C1 everywhere. So, by Definition 9 the economy (t+ b, e) is
regular if

∀ ξ∗ ∈ F−1
t+b,e(0), rankDξFt+b,e(ξ

∗) = dimΞ

11



Define the following set

C̃ :=
{
(ξ, b, e) ∈ F̃−1(0) : rankDξF̃ (ξ, b, e) < dimΞ

}

where the function F̃ : Ξ× Λt → RdimΞ is defined by

F̃ (t, b, e) := Ft+b,e(ξ)

and denote with Π the restriction to F̃−1(0) of the projection of Ξ× Λt onto
Λt, that is

Π : (ξ, b, e) ∈ F̃−1(0) → Π(ξ, b, e) := (b, e) ∈ Λt

We can now express the set Λr
t given in Theorem 14 as

Λr
t = Λt \ Π(C̃)

So, in order to prove Theorem 14, it is enough to show that Π(C̃) is a closed
set in Λt and Π(C̃) is of measure zero.

We first claim that Π(C̃) is a closed set in Λt. From Point 1 of Assumptions 1
and 3, F̃ is a continuous function on Ξ×Λt andDξF̃ is a continuous function on
F̃−1(0). The set C̃ is characterized by the fact that the determinant of all the
square submatrices of DξF̃ (ξ, b, e) of dimension dimΞ is equal to zero. Since
the determinant is a continuous function and DξF̃ is continuous on F̃−1(0),
the set C̃ is closed in F̃−1(0). Thus, Π(C̃) is closed since the projection Π is
proper. 7 The properness of the projection Π is provided in Lemma 16 given
below.

Furthermore, we also provide Lemma 15 which states that the set of feasible
allocations is bounded and it is used to prove Step 1 in the proof of Lemma
16.

Lemma 15 For every (t, r) ∈ T × RC
++, the following set is bounded.

Ft,r := {(x, y) ∈ RCH
++×RCJ | tj(yj, y−j, x) ≥ 0, ∀ j ∈ J and

∑

h∈H
xh−

∑

j∈J
yj ≤ r}

(13)

Proof. The set Ft,r is bounded since it is included in the set At,r defined in
Lemma 16 of Chapter 1 which is bounded by Assumption 2.

Lemma 16 The projection Π : F̃−1(0) → Λt is a proper function.

Proof. We show that any sequence (ξν , bν , eν)ν∈N ⊆ F̃−1(0), up to a sub-
sequence, converges to an element of F̃−1(0), knowing that the sequence
Π(ξν , bν , eν)ν∈N = (bν , eν)ν∈N ⊆ Λt converges to some (b∗, e∗) ∈ Λt.

7 See Definition 25 in Appendix A.
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We recall that ξν = (xν ,λν , yν ,αν , pν\). In order to simplify the notation,
define

tν(yj, y−j, x) := t(yj, y−j, x) + bν

Step 1. Up to a subsequence, (xν , yν)ν∈N converges to (x∗, y∗) ∈ RCH
+ × RCJ .

The idea of the proof is to show that for an appropriate (t, r) ∈ T ×RC
++, the

sequence (xν , yν)ν∈N belongs to the set Ft,r defined by Lemma 15.

Consider the following set {bν : ν ∈ N} ∪ {b∗} which is obviously compact,
and define

b := max {bν : ν ∈ N} ∪ {b∗} and t := t+ b

By definition, we get t(yj, y−j, x) ≥ tν(yj, y−j, x) for every (yj, y−j, x) ∈ RC ×
RC(J−1) ×RCH

++ and for every ν ∈ N. Since F̃ j.2(ξν , bν , eν) = 0, for every ν ∈ N
we get

tj(y
ν
j , y

ν
−j, x

ν) ≥ 0

Now, for every commodity c consider the following compact set {eνc : ν ∈
N} ∪ {e∗c}, and define

rc := max
ec∈{eνc:ν∈N}∪{e∗c}

∑

h∈H
ech and r := (rc)c∈C

Summing F̃ h.2(ξν , bν , eν) = 0 over h, by F̃M(ξν , bν , eν) = 0 we have that∑

h∈H
xν
h −

∑

j∈J
yνj =

∑

h∈H
eνh for all ν ∈ N. So, by definition for all ν ∈ N, we get

∑

h∈H
xν
h −

∑

j∈J
yνj ≤ r

Thus, (xν , yν)ν∈N ⊆ Ft,r. Consequently, the sequence (xν , yν)ν∈N belongs to
clFt,r which is compact since it is bounded by Lemma 15. So, up to a sub-
sequence, (xν , yν)ν∈N converges to some (x∗, y∗) ∈ clFt,r ⊆ RCH

+ × RCJ , and
thus (x∗, y∗) ∈ RCH

+ × RCJ .

Step 2. The consumption allocation x∗ is strictly positive, i.e. x∗ ( 0.

The proof is based on Point 4 of Assumption 3. By F̃ h.1(ξν , bν , eν) = F̃ h.2(ξν , bν , eν) =
0 and Karush–Kuhn–Tucker sufficient conditions, xν

h solves the following prob-
lem for every ν ∈ N.

max
xh∈RC

++

uh(xh, x
ν
−h, y

ν)

subject to pν · xh ≤ pν · eνh + pν ·
∑

j∈J
sjhy

ν
j

13



We first claim that for every ν ∈ N, the point eνh belongs to the budget
constraint of the problem above. By F̃ j.1(ξν , bν , eν) = F̃ j.2(ξν , bν , eν) = 0 and
Karush–Kuhn–Tucker sufficient conditions, yνj solves the following problem for
every ν ∈ N.

max
yj∈RC

pν · yj

subject to tνj (yj, y
ν
−j, x

ν) ≥ 0
(14)

Since inactivity is possible, tνj (0, y
ν
−j, x

ν) ≥ 0 by Point 2 of Assumption 1. So,
pν · yνj ≥ pν · 0 = 0. Therefore,

pν ·
∑

j∈J
sjhy

ν
j ≥ 0

which completes the proof of the claim.

We claim now that x∗
h belongs to the closure of some upper contour set. Ob-

viously, for every ν ∈ N

uh(x
ν
h, x

ν
−h, y

ν) ≥ uh(e
ν
h, x

ν
−h, y

ν)

By Point 2 of Assumption 3, for every ε > 0 we have that uh(xν
h+ε1, xν

−h, y
ν) >

uh(eνh, x
ν
−h, y

ν) where 1 := (1, . . . , 1) ∈ RC
++. So, taking the limit for ν → +∞

and using the continuity of uh given by Point 1 of Assumption 3, since (eνh)ν∈N
converges to e∗h ∈ RC

++ we get uh(x∗
h+ε1, x∗

−h, y
∗) ≥ uh(e∗h, x

∗
−h, y

∗) := u. That
is, for every ε > 0 the point (x∗

h + ε1) belongs to the following set

{xh ∈ RC
++ : uh(xh, x

∗
−h, y

∗) ≥ u}

So, the point x∗
h belongs to the closure of set above which is included in RC

++

by Point 4 of Assumption 3. Therefore, x∗
h ∈ RCH

++ .

Step 3. Up to a subsequence, (αν , pν \)ν∈N converges to some (α∗, p∗ \) ∈
RJ

++ × RC−1
++ .

By F̃ j.1 (ξν , bν , eν) = 0, considering commodity C, we get

αν
j = − 1

DyCj
tνj (y

ν
j , y

ν
−j, xν)

, ∀ ν ∈ N

Define t∗ := t + b∗, where b∗ is the limit of the sequence (bν)ν∈N. Taking the
limit for ν → +∞, by Points 1 and 3 of Assumption 1, the sequence (αν

j )ν∈N
converges to

α∗
j := − 1

DyCj
t∗j(y

∗
j , y

∗
−j, x∗)

> 0

By F̃ j.1 (ξν , bν , eν) = 0, for every commodity c (= C and for all ν ∈ N we have

pν c = −αν
jDycj

tνj (y
ν
j , y

ν
−j, x

ν)
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Taking the limit, by Points 1 and 3 of Assumption 1, for all c != C we get

p∗ c = −α∗
jDycj

t∗j(y
∗
j , y

∗
−j, x

∗) > 0

Therefore, p∗ \ ∈ RC−1
++ .

Step 4. Up to a subsequence, (λν)ν∈N converges to some λ∗ ∈ RH
++.

By F̃ h.1 (ξν , bν , eν) = 0, considering commodity C for every ν ∈ N we get

λν
h = DxC

h
uh(x

ν
h, x

ν
−h, y

ν)

Taking the limit and using the continuity of Duh (see Point 1 of Assumption
3) we have

λ∗
h = DxC

h
uh(x

∗
h, x

∗
−h, y

∗)

which is strictly positive since fixing the externalities the function uh is differ-
entiably strictly increasing (see Point 2 of Assumption 3).

To complete the proof of Theorem 14, we claim now that Π(C̃) is of measure
zero in Λt. The result follows by Lemma 17 given below and a consequence
of Sard’s Theorem (see Theorem 24 in Appendix A). Indeed, Lemma 17 and
Theorem 24 imply that there exists a full measure subset Ω of Λt such that for
each (b, e) ∈ Ω and for each ξ∗ such that F̃ (ξ∗, b, e) = 0, rankDξF̃ (ξ∗, b, e) =
dimΞ. Now, let (b, e) ∈ Π(C̃), then there exists ξ ∈ Ξ such that F̃ (ξ, b, e) =
0 and rank DξF̃ (ξ, b, e) < dim Ξ. So, (b, e) /∈ Ω. This prove that Π(C̃) is
included in the complementary of Ω, that is in ΩC := Λt \ Ω. Since ΩC has
zero measure, so too does Π(C̃). Thus, the set of regular perturbed economies
Λr

t is of full measure since Ω ⊆ Λr
t which completes the proof of Theorem 14.

Lemma 17 0 is a regular value for F̃ .

Proof. It is enough to prove that for each (ξ∗, b∗, e∗) ∈ F̃−1(0), the Jacobian
matrix Dξ,b,eF̃ (ξ∗, b∗, e∗) has full row rank.

Let ∆ := ((∆xh,∆λh)h∈H, (∆yj,∆αj)j∈J ,∆p\) ∈ RH(C+1) × RJ(C+1) × RC−1.
We need to show that ∆Dξ,b,eF̃ (ξ∗, b∗, e∗) = 0 implies ∆ = 0. Consider the
computation of the partial Jacobian matrix with respect to the following vari-
ables. 8

((xh,λh, eh)h∈H, (yj,αj, bj)j∈J , p
\)

8 The computation of Dξ,b,eF̃ (ξ∗, b∗, e∗) is described in Appendix B.
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The partial system ∆Dξ,b,eF̃ (ξ∗, b∗, e∗) = 0 is written in detail below.






∑

h∈H
∆xhD2

xkxh
uh(x∗

h, x
∗
−h, y

∗)−∆λkp∗ +
∑

j∈J
α∗
j∆yjD2

xkyj
tj(y∗j , y

∗
−j, x

∗)+

∑

j∈J
∆αjDxk

tj(y
∗
j , y

∗
−j, x

∗) +∆p\ [IC−1|0] = 0, ∀ k ∈ H

−∆xh · p∗ = 0, ∀ h ∈ H
∑

h∈H
∆xhD2

yfxh
uh(x∗

h, x
∗
−h, y

∗) +
∑

h∈H
∆λhsfhp

∗ +
∑

j∈J
α∗
j∆yjD

2
yfyj

tj(y
∗
j , y

∗
−j, x

∗)+

∑

j∈J
∆αjDyf tj(y

∗
j , y

∗
−j, x

∗) +∆p\ [IC−1|0] = 0, ∀ f ∈ J

∆yj ·Dyj tj(y
∗
j , y

∗
−j, x

∗) = 0, ∀ j ∈ J

∆λhp∗ −∆p\ [IC−1|0] = 0, ∀ h ∈ H

−
∑

h∈H
λ∗
h∆x\

h −
∑

h∈H
∆λh(x

∗\
h − e∗\h −

∑

j∈J
sjhy

∗\
j ) +

∑

j∈J
∆y\j = 0

∆αj = 0, ∀ j ∈ J

Since p∗C = 1, we get

∆λh = 0 for each h ∈ H and ∆p\ = 0

So, the above system becomes





(1)
∑

h∈H
∆xhD2

xkxh
uh(x∗

h, x
∗
−h, y

∗) +
∑

j∈J
α∗
j∆yjD2

xkyj
tj(y∗j , y

∗
−j, x

∗) = 0, ∀ k ∈ H

(2) −∆xh · p∗ = 0, ∀ h ∈ H

(3)
∑

h∈H
∆xhD

2
yfxh

uh(x
∗
h, x

∗
−h, y

∗) +
∑

j∈J
α∗
j∆yjD

2
yfyj

tj(y
∗
j , y

∗
−j, x

∗) = 0, ∀ f ∈ J

(4) ∆yj ·Dyj tj(y
∗
j , y

∗
−j, x

∗) = 0, ∀ j ∈ J

(5) −
∑

h∈H
λ∗
h∆x\

h +
∑

j∈J
∆y\j = 0

(15)

Multiplying both sides of equation F̃ j.1(ξ∗, b∗, e∗) = 0 by ∆yj and using equa-
tion (4) in system (15), we get ∆yj · p∗ = −α∗

j∆yj · Dyj tj(y
∗
j , y

∗
−j, x

∗)=0.

Summing over j and considering commodity C, we obtain −
∑

j∈J
∆y\j · p∗\ =

∑

j∈J
∆yCj . Multiplying equation (2) in system (15) by λ∗

h, summing over h and

considering commodity C, we obtain
∑

h∈H
λ∗
h∆xC

h = −
∑

h∈H
λ∗
h∆x\

h · p∗\. Finally

using equation (5) in system (15), we get
∑

h∈H
λ∗
h∆xC

h = −
∑

j∈J
∆y\j · p∗\ =
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∑

j∈J
∆yCj . From the previous result and equation (5) in system (15), we obtain

∑

h∈H
λ∗
h∆xh =

∑

j∈J
∆yj

Observe that from F̃ h.1(ξ∗, b∗, e∗) = 0 and equation (2) in system (15), we get

(∆xh)h∈H ∈
∏

h∈H
kerDxh

uh(x
∗
h, x

∗
−h, y

∗)

From equation (4) in system (15) , we obtain

(∆yj)j∈J ∈
∏

j∈J
kerDyj tj(y

∗
j , y

∗
−j, x

∗)

Multiplying both sides of equation F̃ j.1(ξ∗, b∗, e∗) = 0 by ∆xk and using equa-
tion (2) in system (15), one obtains

∆xk ∈
⋂

j∈J
kerDyj tj(y

∗
j , y

∗
−j, x

∗), ∀ k ∈ H

Now, for every h ∈ H and for every j ∈ J define

vh := λ∗
h∆xh and zj := ∆yj (16)

From the previous arguments it follows that the vector ((x∗
h, vh)h∈H, (y

∗
j , zj)j∈J )

satisfies the following conditions.
∑

h∈H
vh =

∑

j∈J
zj (17)

(vh)h∈H ∈
∏

h∈H
kerDxh

uh(x
∗
h, x

∗
−h, y

∗) (18)

(zj)j∈J ∈
∏

j∈J
kerDyj tj(y

∗
j , y

∗
−j, x

∗) (19)

vk ∈
⋂

j∈J
kerDyj tj(y

∗
j , y

∗
−j, x

∗), ∀ k ∈ H (20)

Multiplying both sides of equation (1) in system (15) by vk, we get
∑

h∈H
∆xhD

2
xkxh

uh(x
∗
h, x

∗
−h, y

∗)(vk) = −
∑

j∈J
α∗
j∆yjD

2
xkyj

tj(y
∗
j , y

∗
−j, x

∗)(vk)

Since λ∗
h $= 0 for all h ∈ H, then it follows by (16) that for each k ∈ H

∑

h∈H

vh
λ∗
h

D2
xkxh

uh(x
∗
h, x

∗
−h, y

∗)(vk) = −
∑

j∈J
α∗
jzjD

2
xkyj

tj(y
∗
j , y

∗
−j, x

∗)(vk)

Summing over k ∈ H, we get

∑

h∈H

vh
λ∗
h

∑

k∈H
D2

xkxh
uh(x

∗
h, x

∗
−h, y

∗)(vk) = −
∑

j∈J
α∗
jzj

∑

k∈H
D2

xkyj
tj(y

∗
j , y

∗
−j, x

∗)(vk)
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From (17), (18) and (19), all the conditions of Assumption 13 are satisfied.
Since α∗

j > 0 for each j ∈ J , the equality above, (20) and Point 2 of Assump-
tion 13 imply that

∑

h∈H

1

λ∗
h

vh
∑

k∈H
D2

xkxh
uh(x

∗
h, x

∗
−h, y

∗)(vk) ≥ 0

Since λ∗
h > 0 for all h ∈ H, Point 1 of Assumption 13 implies that vh = 0 for

all h ∈ H, and by (16) we get

∆xh = 0, ∀ h ∈ H

So, condition (17) becomes ∑

j∈J
zj = 0 (21)

and equation (3) in system (15) becomes

∑

j∈J
α∗
jzjD

2
yfyj

tj(y
∗
j , y

∗
−j, x

∗) = 0, ∀ f ∈ J

Multiplying both sides by zf and summing up f ∈ J , we obtain

∑

j∈J
α∗
jzj

∑

f∈J
D2

yfyj
tj(y

∗
j , y

∗
−j, x

∗)(zf ) = 0

By (19) and (21), all the conditions of Assumption 12 are satisfied. Since
α∗
j > 0 for each j ∈ J , Assumption 12 implies that zj = 0 for each j ∈ J ,

and so by (16), we get
∆yj = 0, ∀ j ∈ J

Thus, ∆ = 0 which completes the proof.

The following remark is an easy consequence of Theorem 14.

Remark 18 Since Λr
t is a full measure subset of Λt = RJ

++ ×RCH
++ , then it is

dense in Λt. Thus, one easily deduces that Λr
t is dense in RJ

+ × RCH
++ .

8 Regularity in the space of endowments and transformation func-
tions

In the following corollary, we provide an important consequence of Theorem
14, that is the set of regular economies is a non-empty open subset of the
space of endowments and transformation functions.

As in Section 4, we recall that B = RCJ ×RCH
++ , C

2(B,R) is endowed with the
C2 Whitney topology (see Definition 21 in Appendix A) and the set T ×RCH

++

18



is endowed with the topology induced by the product topology on C2(B,R)J×
RCH

++ .

Corollary 19 The set R of regular economies is a open subset of T × RCH
++

and it contains the following set
⋃

t∈T
{(t+ b, e) : (b, e) ∈ Λr

t}. 9

In order to prove the corollary above, we introduce the following notation and
we provide an auxiliary lemma, namely Lemma 20. Describe the set of regular
economies as

R = {(t, e) ∈ T × RCH
++ : ∀ ξ ∈ F (·, t, e)−1(0), rankDξF (ξ, t, e) = dimΞ}

where the global equilibrium function F : Ξ × T × RCH
++ → RdimΞ given by

F (ξ, t, e) := Ft,e(ξ). Using the definition of open set and the following lemma,
one easily checks that the set R is a open subset of T × RCH

++ .

Lemma 20 The functions F and DξF defined on Ξ× C2(B,R)J × RCH
++ are

continuous.

Proof. We prove that F is continuous. In a analogous way one easily shows
that DξF is a continuous function. Since C2(B,R) is a linear space and F is
a linear function with respect to t ∈ C2(B,R)J , it is enough to prove that
F is continuous at any point (ξ, 0, e) with t = 0 ∈ C2(B,R)J and (ξ, e) ∈
Ξ×RCH

++ . Since F is continuous at (ξ, 0, e) if and only if all its components are
continuous, we show that the component F j.1(ξ, t, e) = p+ αjDyj tj(yj, y−j, x)
is continuous at (ξ, 0, e). Using the same strategy, one easily proves that all
the other components of F are continuous.

Fix a commodity c ∈ C and ε > 0, we claim that there exists an open neigh-
borhood I of (y, x,αj, pc, 0) in B × R2

++ × C2(B,R) such that

∀ (y, x,αj, p
c, t) ∈ I, |pc + αjDycj

tj(yj, y−j, x)− pc| < ε

Fix ε2 > 0 and ε3 > 0 such that ε′ :=
ε− ε3
αj + ε2

> 0, and a continuous and

strictly positive function δ defined on B such that

δ(y, x) < ε′

Since δ is continuous at (y, x), for given η := ε′ − δ(y, x) > 0 there exists an
open neighborhood I(y, x, ε1) of (y, x) in B such that

∀ (y, x) ∈ I(y, x, ε1), δ(y, x) < η + δ(y, x) = ε′ (22)

9 The set Λr
t is given by Theorem 14.
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Consider now the open neighborhood N(0, δ) of the function 0 determined by
δ in the C2 Whitney topology, that is

N(0, δ) ={t ∈ C2(B,R) : |t(y, x)| < δ(y, x) and

‖Dkt(y, x)‖ < δ(y, x), ∀ (y, x) ∈ B and ∀ k = 1, 2}

By (22), for every t ∈ N(0, δ) and for every (y, x) ∈ I(y, x, ε1) we get

|Dycj
tj(yj, y−j, x)| ≤‖ Dyj tj(yj, y−j, x)‖ < ε′

Define now the following open neighborhood of (y, x,αj, pc, 0) in B × R2
++ ×

C2(B,R)
I := I(y, x, ε1)× I(αj, ε2)× I(pc, ε3)×N(0, δ)

For every (x, y,αj, pc, t) ∈ I we get

|pc + αjDycj
tj(yj, y−j, x)− pc ≤ |pc − pc|+ αj|Dycj

tj(yj, y−j, x)| <
ε3 + (αj + ε2)|Dycj

tj(yj, y−j, x)| ≤ ε3 + (αj + ε2)‖Dyj tj(yj, y−j, x)‖ <

ε3 + (αj + ε2)ε
′ = ε3 + (αj + ε2)

ε− ε3
αj + ε2

= ε

So, the claim is completely proved.

Appendix A

Whitney topology

Let B := RCJ × RCH
++ . We are interested on C2 functions defined on B (see

Point 1 of Assumption 1), C2(B,R) denotes the set of C2 functions from B to
R. We provide below the definition of the C2 Whitney topology on C2(B,R).
Since C2(B,R) is a linear space, in order to define the C2 Whitney topology
on C2(B,R), it is sufficient to define neighborhood basis of the function zero.
For additional details, see for instance Allen (1981, p. 284), Smale (1974, p.
4) and Golubitsky and Guillemin (1973, p. 42).

Definition 21 Let δ : B → R be a continuous and strictly positive function.
The open neighborhood N(0, δ) of the function 0 ∈ C2(B,R) is defined as

N(0, δ) :={g ∈ C2(B,R) : |g(z)| < δ(z) ∀ z ∈ B and

‖Dkg(z)‖ < δ(z) ∀ z ∈ B and ∀ k = 1, 2}

Neighborhoods of f ∈ C2(B,R), for f (= 0 can be constructed for translation,
that is the neighborhood of f determined by δ is given by N(f, δ) = f +
N(0, δ). For every f ∈ C2(B,R), the collection of {N(f, δ)}δ∈C0(B,R++) forms
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a neighborhood basis of the function f in the C2 Whitney topology, where δ
varies in the space of all continuous and strictly positive functions.

The C2 Whitney topology on C2(B,R) is not necessarily metrizable. However,
if the set B is compact, the C2 Whitney topology coincides with the topology
of the C2 uniform convergence on compacta. 10

Regular values and transversality

The theory of general economic equilibrium from a differentiable prospective
is based on results from differential topology. Following are the ones used in
our analysis. These results, as well as generalizations on these issues, can be
found for instance in Guillemin and Pollack (1974), Hirsch (1976), Mas-Colell
(1985) and Villanacci et al. (2002).

Theorem 22 (Regular Value Theorem) Let M , N be Cr manifolds of di-
mensions m and n, respectively. Let f : M → N be a Cr function. Assume
r > max{m− n, 0}. If y ∈ N is a regular value for f , then

(1) if m < n, f−1(y) = ∅,
(2) if m ≥ n, either f−1(y) = ∅, or f−1(y) is an (m − n)-dimensional sub-

manifold of M .

Corollary 23 Let M , N be Cr manifolds of the same dimension. Let f :
M → N be a Cr function. Assume r ≥ 1. Let y ∈ N a regular value for f
such that f−1(y) is non-empty and compact. Then, f−1(y) is a finite subset of
M .

The following results is a consequence of Sard’s Theorem for manifolds.

Theorem 24 (Transversality Theorem) Let M , Ω and N be Cr manifolds of
dimensions m, p and n, respectively. Let f : M × Ω → N be a Cr function.
Assume r > max{m−n, 0}. If y ∈ N is a regular value for f , then there exists
a full measure subset Ω∗ of Ω such that for any ω ∈ Ω∗, y ∈ N is a regular
value for fω, where

fω : ξ ∈ M → fω(ξ) := f(ξ,ω) ∈ N

Definition 25 Let (X, d) and (Y, d′) be two metric spaces. A function π :
X → Y is proper if it is continuous and one among the following conditions
holds true.

(1) π is closed and π−1(y) is compact for each y ∈ Y ,

10 We recall that by definition, fn → f in the topology of C2 uniform convergence
on compacta if and only if (fn)n∈N, (Dfn)n∈N and (D2fn)n∈N converge uniformly
to f , Df and D2f respectively on any compact set included in B.
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(2) if K is a compact subset of Y , then π−1(K) is a compact subset of X,
(3) if (xn)n∈N is a sequence in X such that (π(xn))n∈N converges in Y , then

(xn)n∈N has a converging subsequence in X.

The above conditions are equivalent.

Theorem 26 (Implicit Function Theorem) Let M , N be Cr manifolds of the
same dimension. Assume r ≥ 1. Let (X, τ) be a topological space, and f :
M × X → N be a continuous function such that Dξf(ξ, x) exists and it is
continuous on M × X. If f(ξ, x) = 0 and Dξf(ξ, x) is onto, then there exist
an open neighborhood I of x in X, an open neighborhood U of ξ in M and
a continuous function g : I → U such that g(x) = ξ, f(ξ′, x′) = 0 holds for
(ξ′, x′) ∈ U × I if and only if ξ′ = g(x′), and Dξf(ξ′, x′) is onto for every
(ξ′, x′) ∈ U × I such that f(ξ′, x′) = 0.

Appendix B

The computation of Dξ,b,eF̃ (ξ∗, b∗, e∗) is described below, where 0C×(C−1) is a

zero matrix and Î := [IC−1|0](C−1)×C
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Î
0
T

..
.

Î
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Comparison with Mandel (2008)

In this section we compare the results obtained in Chapter 2 with the regularity
result in Mandel (2008).

As discussed in Introduction, Mandel (2008) has to enlarge the commodity
space treating externalities as additional variables. Moreover, fixing the pro-
duction technologies, in order to provide a regularity result for almost all initial
endowments, the author assumes that a small change in the externalities cre-
ated by all the agents on an agent does not generate changes in the choices
of the latter agent which would in turn involve the exact same change on
the behavior of the others, see Assumption TR2 at page 1395. As stressed in
Introduction, Assumption TR2 involves endogenous variables, more precisely
the derivatives of consumers’ demands and firms’ supplies.

We now show that Assumption TR2 implicitly involves the Lagrange multipli-
ers, that is the equilibrium prices. Furthermore, we show that this assumption
is equivalent to assume that the partial Jacobian matrix of the following com-
ponents

((F h.1
t,e (ξ) , F h.2

t,e (ξ))h∈H, (F
j.1
t,e (ξ) , F j.2

t,e (ξ))j∈J )

of the equilibrium function defined in (7), with respect to the variables ((xh,λh)h∈H,
(yj,αj)j∈J ) has full rank, which implies that the Jacobian matrix DξFt,e(ξ∗)
given in Definition 9 is onto.

For simplicity, we prove this equivalence by considering the simple case of
one household, two firms and production externalities among firms. In order
to state Assumption TR2 of Mandel (2008) in this context, one needs to
enlarge the commodity space introducing the additional variables ηj ∈ R2 for
j = 1, 2 which represent the externalities created by firm j. Furthermore, one
requires that at equilibrium the supply yj(p, η−j) of firm j must be equal to
the externalities ηj created by firm j, that is

ηj − yj(p, η−j) = 0

A simple case: Assumption TR2, Mandel (2008). The square matrix C
given below has full rank.

η11 η21 η12 η22

η11 − y11(p, η2)

η21 − y21(p, η2)

η12 − y12(p, η1)

η22 − y22(p, η1)





1 0 −Dη1
2
y11(p, η2) −Dη2

2
y11(p, η2)

0 1 −Dη1
2
y21(p, η2) −Dη2

2
y21(p, η2)

−Dη1
1
y12(p, η1) −Dη2

1
y12(p, η1) 1 0

−Dη1
1
y22(p, η1) −Dη2

1
y22(p, η1) 0 1





We claim that the assumption above is equivalent to assume that the matrix
A defined below has full rank. The matrix A is nothing else that the partial
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Jacobian matrix of the components (F j.1
t,e (ξ) , F j.2

t,e (ξ))j=1,2 of the equilibrium
function defined in (7), with respect to the variables (yj,αj)j=1,2.

y11 y21 α1 y12 y22 α2

p1 + α1Dy11
t1(y1, y2)

p2 + α1Dy21
t1(y1, y2)

t1(y1, η2)

p1 + α2Dy12
t2(y2, y1)

p2 + α2Dy22
t2(y2, y1)

t2(y2, η1)





α1D2
y11
t1 α1D2

y21y
1
1
t1 Dy11

t1 α1D2
y12y

1
1
t1 α1D2

y22y
1
1
t1 0

α1D2
y11y

2
1
t1 α1D2

y21
t1 Dy21

t1 α1D2
ya12y

2
1
t1 α1D2

y22y
2
1
t1 0

Dy11
t1 Dy21

t1 0 Dy12
t1 Dy22

t1 0

α2D2
y12
t2 α2D2

y22y
1
2
t2 0 Dy12

t2 α2D2
y11y

1
2
t2 α2D2

y21y
1
2
t2

α2D2
y12y

2
2
t2 α2D2

y22
t2 0 Dy22

t2 α2D2
η11y

2
2
t2 α2D2

η21y
2
2
t2

Dy11
t2 Dy21

t2 0 Dy12
t2 Dy22

t2 0





In order to prove that matrix A has full rank if and only if matrix C has full
rank, we consider an auxiliary matrix B which is the partial Jacobian matrix
of the following system.






(h.1) Dxh
uh(xh)− λhp = 0

(h.2) − p · (xh − eh −
2∑

j=1

yj) = 0

(j.1) p+ αjDyj tj(yj, y−j) = 0, j = 1, 2

(j.2) tj(yj, y−j) = 0, j = 1, 2

(M) x\
h −

∑

j=1,2

y\j − e\h = 0

(E) ηj − yj = 0, j = 1, 2

We recall that equation (E) means that at equilibrium the supply yj of firm
j must be equal to the externalities ηj created by firm j. The matrix B given
below is the partial Jacobian matrix of the left side of equations (j.1), (j.2),
(M) and (E) with respect to the variables (yj,αj, ηj)j=1,2.
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y11 y21 α1 y12 y22 α2 η11 η21 η12 η22

p1 + α1Dy1
1
t1(y1, η2)

p2 + α1Dy2
1
t1(y1, η2)

t1(y1, η2)

p1 + α2Dy1
2
t2(y2, η1)

p2 + α2Dy2
2
t2(y2, η1)

t2(y2, η1)

η11 − y11

η21 − y21

η12 − y12

η22 − y22





α1D2
y1
1

t1 α1D2
y2
1
y1
1

t1 Dy1
1
t1 0 0 0 0 0 α1D2

η1
2
y1
1

t1 α1D2
η2
2
y1
1

t1

α1D2
y1
1
y2
1

t1 α1D2
y2
1

t1 Dy2
1
t1 0 0 0 0 0 α1D2

η1
2
y2
1

t1 α1D2
η2
2
y2
1

t1

Dy1
1
t1 Dy2

1
t1 0 0 0 0 0 0 Dη1

2
t1 Dη2

2
t1

0 0 0 α2D2
y1
2

t2 α2D2
y2
2
y1
2

t2 Dy1
2
t2 α2D2

η1
1
y1
2

t2 α2D2
η2
1
y1
2

t2 0 0

0 0 0 α2D2
y1
2
y2
2

t2 α2D2
y2
2

t2 Dy2
2
t2 α2D2

η1
1
y2
2

t2 α2D2
η2
1
y2
2

t2 0 0

0 0 0 Dy1
2
t2 Dy2

2
t2 0 Dη1

1
t2 Dη2

1
t2 0 0

−1 0 0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0 1 0

0 0 0 0 −1 0 0 0 0 1





It is easy to check that matrix A has full rank if and only if matrix B has full
rank. So, in order to prove our claim it is enough to show that matrix B has
full rank if and only if matrix C has full rank.

First of all, one should notice that Dη−jyj(p, η−j) given in matrix C can be
obtained differentiating the Karush-Kuhn-Tucker necessary and sufficient con-
ditions associated with the profit maximization problem of firm j and using
the Cramer rule. Now, consider the square submatrix B1 obtained by taking
the first three rows and the first three columns of matrix B. The submatrix
B1 has full rank. 11 So, multiplying the first three rows of matrix B by the
inverse matrix of B1 and summing row 1 to row 7 and row 2 to row 8 one gets
the following matrix. 12

11 We recall that a differentiably strictly quasi-concave function with gradient dif-
ferent from zero has a bordered Hessian with determinant different from zero (see
Points 3 and 4 of Assumption 1).
12 One should notice that also Dη−jαj(p, η−j) is obtained differentiating the Karush-
Kuhn-Tucker necessary and sufficient conditions associated with the profit maxi-
mization problem of firm j and using the Cramer rule.
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y11 y21 α1 y12 y22 α2 η11 η21 η12 η22



1 0 0 0 0 0 0 0 −Dη1
2
y11(p, η2) −Dη2

2
y11(p, η2)

0 1 0 0 0 0 0 0 −Dη1
2
y21(p, η2) −Dη2

2
y21(p, η2)

0 0 1 0 0 0 0 0 −Dη1
2
α1
1(p, η2) Dη2

2
α1
1(p, η2)

0 0 0 α2D2
y1
2

t2 α2D2
y2
2
y1
2

t2 Dy1
2
t2 α2D2

η1
1
y1
2

t2 α2D2
η2
1
y1
2

t2 0 0

0 0 0 α2D2
y1
2
y2
2

t2 α2D2
y2
2

t2 Dy2
2
t2 α2D2

η1
1
y2
2

t2 α2D2
η2
1
y2
2

t2 0 0

0 0 0 Dy1
2
t2 Dy2

2
t2 0 Dη1

1
t2 Dη2

1
t2 0 0

0 0 0 0 0 0 1 0 −Dη1
2
y11(p, η2) −Dη2

2
y11(p, η2)

0 0 0 0 0 0 0 1 −Dη1
2
y21(p, η2) −Dη2

2
y21(p, η2)

0 0 0 −1 0 0 0 0 1 0

0 0 0 0 −1 0 0 0 0 1





Similarly, consider the square submatrixB2 obtained by taking the 4th, the 5th
and the 6th rows and the 4th, the 5th and the 6th columns. The submatrix
B2 has full rank. So, multiplying the 4th, the 5th and the 6th rows of the
previous matrix by the inverse matrix of B2 and summing row 4 to row 9 and
row 5 to row 10 one gets the following matrix.

y11 y21 α1 y12 y22 α2 η11 η21 η12 η22



1 0 0 0 0 0 0 0 −Dη1
2
y11(p, η2) −Dη2

2
y11(p, η2)

0 1 0 0 0 0 0 0 −Dη1
2
y21(p, η2) −Dη2

2
y21(p, η2)

0 0 1 0 0 0 0 0 −Dη1
2
α1
1(p, η2) Dη2

2
α1
1(p, η2)

0 0 0 1 0 0 −Dη1
1
y12(p, η1) −Dη2

1
y12(p, η1) 0 0

0 0 0 0 1 0 −Dη1
1
y22(p, η1) −Dη2

1
y22(p, η1) 0 0

0 0 0 0 0 1 −Dη1
1
α2(p, η1) −Dη2

1
α2(p, η1) 0 0

0 0 0 0 0 0 1 0 −Dη1
2
y11(p, η2) −Dη2

2
y11(p, η2)

0 0 0 0 0 0 0 1 −Dη1
2
y21(p, η2) −Dη2

2
y21(p, η2)

0 0 0 0 0 0 −Dη1
1
y12(p, η1) −Dη2

1
y12(p, η1) 1 0

0 0 0 0 0 0 −Dη1
1
y22(p, η1) −Dη2

1
y22(p, η1) 0 1





Finally, it is easy to check that the matrix above has full rank if and only if
matrix C has full rank. Consequently, B has full rank if and only if C has full
rank which completes the proof of our claim.
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1 Long abstract

We consider the collective consumption model with the two intra-household
members. We present the “non-parametric” methodology to test two bench-
mark cases of the collective consumption model, that is

• the case where all goods are publicly consumed within the household and

• the case where all goods are privately consumed within the household and
the individual preferences are egoistic.

Differently from the the previous literature, we find that the private and
public nature of consumption does have testable implications, even if one
only observes the aggregate group consumption. We believe that such “non-
parametric” approach is able to obtain stronger testability conclusions since
it focuses on conditions which involves personalized prices à la Lindahl and
personalized consumptions. Importantly, we do not require personalized prices
and personalized consumptions to be observable. Also, we derive the minimum

1 This Chapter is based on Cherchye, De Rock and Platino (2010).
2 Dipartimento di Scienze Economiche e Statistiche (DISES), Universitá degli
Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy. E-mail: vin-
cenzo.platino@gmail.com.
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number of observations that enables us to distinguish between the collective
model and the two benchmark cases.

Chapter 3 is organized as follows. Section2 sets the stage by briefly recap-
turing “non-parametric” tests of the unitary model. Section 3 introduces the
necessary and sufficient conditions for the collective rationalization. Section 4
focuses on the two benchmark cases. In Section 5 we describe our main results
and Section 6 contains some concluding remarks.

In Appendix one finds the proofs of the results.

2 The Unitary Model

The unitary approach consider a household as a single decision maker that
maximizes its utility function subject to the budget constraint. Suppose to
observe T choices of n-valued bundles. For each observation t, qt ∈ Rn

+ denotes
the consumption bundle and pt ∈ Rn

++ the associate price vector. Let S :=
{(pt, qt); t = 1, . . . , T} be the set of observations.

In this Section, we want to investigate if the data set has been generated by a
concave, continuous and monotonically increasing utility function U . We start
defining the concept of unitary rationalization of a data set as follows:

Definition 1 Let S = {(pt, qt); t = 1, . . . , T} be a set of observations. A utility
function U provides a unitary rationalization of S if for each qt

U(qt) ≥ U(q)

for all q ∈ Rn
+ such that pt · q ≤ pt · qt.

A unitary rationalization of the data set S requires that, for each observation
t, quantity qt maximizes the utility function subject to the budget constraint
pt · qt.

Varian (1982) shows that there exists a concave, continuous and monotonically
increasing utility function that rationalizes the data set S if and only if the
the data set S satisfies the Generalize Axiom of Revealed Preference (GARP).

Definition 2 (GARP) Let S = {(pt, qt); t = 1, . . . , T} be a set of observa-
tions. The set S satisfies the Generalize Axiom of Revealed Preference (GARP)
if there exist relations R0, R such that

(i) if ps · qs ≥ ps · qt then qsR0qt;
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(ii) if qsR0qu, quR0qv, . . . , qzR0qt for some (possibly empty) sequence (u, v, ...,
z) then qsRqt;

(iii) if qsRqt then pt · qt ≤ pt · qs.

Rule (i) states that the consumption vector qs is ‘direct revealed’ over qt (i.e.
qsR0qt) if qs was chosen when the consumption vector qt was available (i.e.
ps · qs ≥ ps · qt). R is the transitive closure of R0 and it is known as the
‘revealed preference’ relation; see rule (ii). Finally rule (iii) states that each
consumption vector qt is expenditure minimizing (i.e. pt · qt ≤ pt · qs) with
respect to all the revealed preferred vectors qs (i.e. qsRqt).

This leads to the following proposition:

Proposition 3 Let S = {(pt, qt); t = 1, . . . , T} be a set of observations. The
following conditions are equivalent:

(i) there exists a concave, continuous and monotonically increasing utility
function U that provide a unitary rationalization of S;

(ii) The data set S satisfies GARP.

Finally, one should observe that unitary rationality can be tested if we have
a data set with at least two observations and two goods.

A data set S with only one observation and/or one good always satisfies
GARP. More precisely, if T = 1 it is not possible to specify the set of the
revealed preferred bundles, that is the ‘better than’ set. Therefore it is not
possible to reject GARP. Moreover, if qt ∈ R+ all the scalar products in
Definition 2 are scalar multiplications. This implies that qsR0qt if and only if
qs ≥ qt and obviously also qsRqt if and only if qs ≥ qt. Thus, the quantity qt
is always cost minimizing. It follows that it is not possible to reject GARP.

3 General Collective Consumption Model

The collective approach assumes that members within a household are het-
erogeneous and have own preferences. Browing and Chiappori (1998) consider
a non-unitary household model in which the decisions taken by the two intra-
household members are Pareto efficient, without specifying a particular point
on the Pareto frontier. The authors assume that all the goods can be con-
sumed privately, publicly or both, yet only prices and aggregate demand with
respect to some power distribution between the two intra-household members
are observed. Using a parametric approach, Browning and Chiappori (1998)
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prove that the aggregate demand is compatible with the Pareto optimal deci-
sion behavior if it satisfies some restrictions on a Pseudo-Slutsky matrix. The
Pseudo-Slutsky matrix is the sum of the classical Slutsky matrix which mea-
sures the change in demand induced by the variation of prices and income,
and another matrix which measures the change in demand induced by the
variation of power distribution. In addition, Browning and Chiappori (1998)
show that a collective model with two intra-household members can be tested
if we have a data set with at least five goods.

This section recaptures the principal results of Cherchye, De Rock, Vermeulen
(2007) . More precisely, the authors, using a nonparametric approach, provide
testable conditions involving personalized prices à la Lindahl and personalized
consumptions. However, the authors do not require that personalized prices
and personalized consumptions are observable data.

3.1 General Collective Rationality

We consider one household with two members (A and B) that purchases a
vector of goods q ∈ Rn

+ with corresponding prices p ∈ Rn
++. All goods can be

consumed privately, publicly or both.
We assume that the empirical analyst has no information on the decomposi-
tion of the observed quantities q into the bundles of private and public con-
sumptions. Therefore, we need to introduce (unobserved) feasible personalized
quantities x that comply with the (observed) aggregate quantities q. More
formally, we define:

x = (xA, xB, xG) with xA, xB, xG ∈ Rn
+, and xA + xB + xG = q (1)

The feasible personalized quantities x capture a possible feasible decomposi-
tion of the (observed) aggregate consumption q in the (unobserved) private
quantities xA and xB and in the public consumption xG.

Suppose to observe T choices of n-valued bundles. For each observation t the
vector qt ∈ Rn

+ records the quantities chosen by the group under the prices
pt ∈ Rn

++. We denote with S = {(pt, qt); t = 1, . . . , T} the corresponding set of
T observations (i.e. the data set). Collective rationality in terms of the general
collective model (general-CR) of a set of observations S requires the existence
of utility functions UA and UB such that each observed quantity bundle can
be characterized as Pareto efficient. Thus, we get the following definition:

Definition 4 (general-CR) Let S = {(pt, qt); t = 1, . . . , T} be a set of ob-
servations. A pair of utility functions UA and UB provides a general-CR (i.e.
a collective rationalization in terms of the general collective model) of S if for
each observation t there exist feasible personalized quantities xt = (xA

t , x
B
t , x

G
t )

4



and µt ∈ R++ such that:

UA(xt) + µtU
B(xt) ≥ UA(x) + µtU

B(x)

for all x = (xA, xB, xG) with xc ∈ Rn
+, c = A,B,G and pt · (xA + xB + xG) ≤

pt · qt.

The weight µt represents the relative bargaining power of member B with
respect to member A. It reflects the Pareto efficient characterization of the
optimal intra-household allocation. A general-CR of the data set S requires
the existence, for each observation t, of feasible personalized quantities xt that
maximize a weighted sum of the intra-household member utilities subject to
the household budget constraint pt · qt. 3

3.2 Revealed preference characterization

Following Cherchye, De Rock, Vermeulen (2007), we define feasible personal-
ized prices (pAt , p

B
t ) for the (observed) prices pt as follows

pAt = (pAA
t , pAB

t , pAG
t ) and pBt = (pt − pAA

t , pt − pAB
t , pt − pAG

t )

with pAA
t , pAB

t , pAG
t ∈ Rn

+ and pct ≤ pt, c = A,B,G
(2)

where pAt and pBt captures the fractions of the price for the feasible person-
alized quantities xt paid respectively by members A and B. More precisely,
pAA
t and pAB

t are respectively the price paid by member A for the own private
consumption and for the private consumption of member B, and pAG

t is the
price paid by member A for the public consumption. The interpretation of pBt
is similar. One should notice that pAt and pBt can be interpreted as the Lindahl
prices of member A and B respectively.

Proposition 6 states that collective rationality requires GARP consistency for
each individual member:

Definition 5 Consider feasible personalized prices and quantities for a set of
observations S = {(pt, qt); t = 1, . . . , T}. For m = A,B, the set {(pmt , xt);
t = 1, ..., T} satisfies GARP if there exist relations Rm

0 , R
m such that

(i) if pms · xs ≥ pms · xt then xsRm
0 xt;

3 It is immediate to note that collective rationalization of a data set S is more
general that unitary rationalization. In fact, if µt = 0 and xAt = qt, for each obser-
vation t, we get back to unitary rationalization. However, following Cherchye, De
Rock, Vermeulen (2007), we did not allow for this possibility. Therefore, we assume
µt ∈ R++ for each observation t.
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(ii) if xsRm
0 xu, xuRm

0 xv, . . . , xzRm
0 xt for some (possibly empty) sequence (u,

v, ..., z) then xsRmxt;

(iii) if xsRmxt, then pmt · xt ≤ pmt · xs.

The following Proposition is due to Cherchye, De Rock, Vermeulen (2007). It
provides the necessary and sufficient conditions for a collective rationalization
of the data set S in terms of feasible personalized prices and quantities.

Proposition 6 Let S = {(pt, qt); t = 1, . . . , T} be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of concave, continuous and monotonically in-
creasing utility functions UA and UB that provide a general-CR of S;

(ii) there exist feasible personalized prices and quantities such that for each
member m = 1, 2, the set {(pmt , xt); t = 1, ..., T} satisfies GARP.

Proof. See Cherchye, De Rock, Vermeulen (2007), Proposition 1, page 557.

Collective rationality (i.e. Proposition 6) differs from unitary rationality (i.e.
Proposition 1), since it requires GARP consistency for each intra-household
member m in terms of the (unobserved) feasible personalized prices and quan-
tities (i.e. pmt and xt, m = A,B) and not at the (observed) aggregate level
S.

One should notice that, for each observation t, it is possible to construct
infinite feasible personalized prices and quantities, (pAt , p

B
t , xt). Therefore, col-

lective rationality requires that there exists at least one feasible personalized
data set Ŝ := {(pAt , pBt , xt); t = 1, . . . , T} such that the the necessary and
sufficient conditions given in Proposition 6 are satisfied.

Since the necessary and sufficient conditions given in Proposition 6 are ex-
pressed in terms of the (unobservable) variables, it is however difficult to use
them in empirical work. Cherchye, De Rock, Vermeulen (2007) construct nec-
essary and sufficient conditions expressed in terms of the (observed) aggregate
prices and quantities S. 4

Finally, one should observe that collective rationality can be tested if we have
a data set with at least three observations and three goods.

A data set S with two observations and/or two goods always fulfils the con-

4 See Cherchye, De Rock, Vermeulen (2007), Proposition 2, page 561 and Proposi-
tion 4, page 564.
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ditions given in Proposition 2. Suppose to have T = 2 and n ≥ 2. In this
case, one can always assign one observation to each individual, say for exam-
ple xA

1 = q1, xB
2 = q2, and consider the following personalized prices pAA

t = pt,
pAB
t = pAG

t = 0 for each observation t = 1, 2. Using this setting, GARP cannot
be rejected. In fact one always has x1RA

0 x2 (or equivalently pA1 ·q1 = p1 ·q1 ≥ 0)
and 0 ≤ pA2 · q1 = p2 · q1. Similar arguments hold for member B. Suppose now
to have T ≥ 2 and n = 2. In this case, we can always assign one good to each
individual, say for example (xA

t )1 = (qt)1, (xB
t )2 = (qt)2, and define pAA

t = pt,
pAB
t = pAG

t = 0 for each observation t = 1, . . . , T . Since all scalar products
are scalar multiplications, it is easy to show that it is not possible to reject
GARP.

4 Two benchmark models

In the previous Section, we have considered a model that takes into account
intra-household externalities and public consumption. In this section we will
focus on two benchmark cases. Specifically, we will consider a model in which
all the the goods are publicly consumed and another model in which all the
goods are privately consumed and individuals have egoistic preferences (i.e.
egoistic model). Due to complexity of the general model, these two special
cases are mostly used in standard economic theory.

Chiappori and Ekeland (2006), using a parametric approach, show that the
public or private nature of household consumption does not have testable
implications.

4.1 All Goods are Publicly Consumed

In the first benchmark we assume that all the consumption is public. We for-
malize this by assuming individuals preferences that are represented by a con-
cave, continuous and monotonically increasing utility functions Um

pub(x
G) :=

Um(0, 0, xG). Clearly, in this case we have xG = q (or xA + xB = 0). So,
the actual personalized quantities are effectively observed. Thereby, we de-
fine collective rationality in terms of the collective model with only public
consumption (public-CR) as follows:

Definition 7 (public-CR) Let S = {(pt, qt); t = 1, . . . , T} be a set of ob-
servations. A pair of utility functions UA

pub and UB
pub provides a public-CR of

S (i.e. a collective rationalization in terms of the collective model with only
public consumption), if for each observation t there exists µt ∈ R++ such that

UA
pub(qt) + µtU

B
pub(qt) ≥ UA

pub(q) + µtU
B
pub(q)
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for all q ∈ Rn
+ and pt · q ≤ pt · qt.

A public rationalization of the data set S requires that each consumption
vector qt maximize a weighted sum of the intra-household member utilities
subject to the household budget constraint pt · qt.

As for the collective model, the analyst does not observe the fraction of the
price paid by the two members for the quantities qt. To characterize non-
parametric conditions for public rationalization, we need to define feasible
personalized prices (pAt , p

B
t ). Obviously, the Lindahl prices pAG

t and pt − pAG
t

are the only relevant components to get the desired characterization.

Proposition 8 Let S = {(pt, qt); t = 1, . . . , T} be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of concave, continuous and monotonically in-
creasing utility functions UA

pub and UB
pub that provides a public-CR of S;

(ii) there exist feasible personalized prices and quantities, with xA
t = xB

t = 0,
such that for each member m = A,B, the set {(pmt , xt); t = 1, ..., T} satisfies
GARP.

The above proposition follows directly from Proposition 6. A public-CR re-
quires GARP consistency for each intra-household member m in terms of
(unobserved) feasible personalized prices and (observed) quantities (i.e. pmt
and qt, m = A,B).

Proposition 8 is different from Proposition 6. More precisely, the conditions
for general-CR are nonlinear since all scalar multiplications are expressed in
terms of (unobserved) feasible personalized prices (pAt , p

B
t ) and quantities, qt.

Differently, the conditions for public-CR are linear since all scalar multipli-
cations are in terms of (unobserved) feasible personalized prices (pAt , p

B
t ) and

(observed) quantities qt. This difference suggests that these two models have
different testable implications.

4.2 Egoistic Model

In the second benchmark case, all the goods are privately consumed i.e.
xA + xB = q. In addition, the individuals have egoistic preferences, which
implies that they only care for their own consumption (i.e. no consumption
externalities). We formalize this by assuming that individual preferences are
represented by concave, continuous and monotonically increasing utility func-
tions UA

ego(x
A) := UA(xA, 0, 0) and UB

ego(x
B) := UB(0, xB, 0). The correspond-

ing concept of collective rationality in terms of the collective model with all
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private consumption is the following:

Definition 9 A pair of utility functions UA
ego and UB

ego provides an egoistic-CR
of S (i.e. a collective rationalization in terms of the collective model with all
consumption private and egoistic preferences), if for each observation t there
exist feasible personalized quantities xt, with xG

t = 0 and µt ∈ R++ such that

UA
ego(x

A
t ) + µtU

B
ego(x

B
t ) ≥ UA

ego(x
A) + µtU

B
ego(x

B)

for all x = (xA, xB, 0) with xm ∈ Rn
+, m = A,B and pt · (xA + xB) ≤ pt · qt.

Egoistic-CR of the data set S requires that there exist, for each observation
t, ‘private’ quantities xA

t and xB
t that maximize a weighted sum of the intra-

household member utilities subject to the household budget constraint pt · qt.

The econometrician does not observe the true private quantities (qAt , q
B
t ). Dif-

ferently from the previous case, the (observed) prices pt are exactly the prices
paid for each individual for own consumption. More precisely, for each ob-
servation t, pAA

t = pt, and pAB
t = 0. Proposition 10 gives the necessary and

sufficient conditions for a egoistic-CR of the data set S:

Proposition 10 Let S = {(pt, qt); t = 1, . . . , T} be a set of observations. The
following conditions are equivalent:

(i) there exists a combination of concave, continuous and monotonically in-
creasig utility functions UA

ego and UB
ego that provide an egoistic-CR of S;

(ii) there exist feasible personalized prices, with pAA
t = pt and pAB

t = 0, and
feasible personalized quantities, with xG

t = 0, such that for each member m =
A,B, the set {(pmt , xt); t = 1, ..., T} satisfies GARP.

Egoistic-CR (Proposition 10) requires GARP consistency at individual level
in terms of the (observed) prices pt and the (unobserved) feasible personalized
quantities xt. The necessary and sufficient conditions are different with respect
to those of general-CR and public-CR. In particular these conditions are linear
in terms of the (unobserved) feasible personalized quantities xt. Therefore, this
difference suggests that the three models have different testable implications.

5 Testing the nature of goods

In this section we first provide two examples that show that the nature of goods
is testable even if one observes only aggregate data. Our results thus imply
that consistency with the general model does not necessarily imply consistency
with the two benchmark models. Secondly, our examples also show that the
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two benchmark models are independent from each other. More precisely, if
the aggregate data set is consistent with one of the two benchmark models, it
need not be consistent with the other benchmark model.

5.1 Collective Rationality does not imply public-CR

In this subsection we provide an example that contains a data set that satisfies
general-CR but not public-CR.

Example 1 Suppose that the data set S contains the following 3 observations
of bundles consisting of 3 quantities:

q1 = (5, 2, 2), q2 = (2, 5, 2), q3 = (2, 2, 5)

p1 = (4, 1, 1), p2 = (1, 4, 1), p3 = (1, 1, 4)

This data set S satisfies the conditions in Proposition 6 (i.e. there exists a
general-CR), but it fails to satisy the conditions in Proposition 8 (i.e. there
does not exist a public-CR).

See the Appendix for the explanation of the example.

This example leads to two remarkable results. Firstly, as discussed in the in-
troduction, it contrasts with the results of Chiappori and Ekeland (2006).
These authors, following a parametric approach, show that the general collec-
tive model and the collective model with only public consumption are indistin-
guishable if one only observes aggregate data. More precisely, the authors show
that, when only aggregate data are available, the general collective consump-
tion model has exactly the same testability implications. Example 1 shows
that this is no longer the case if one adopts our revealed preference approach.

Secondly, this example shows that a data set with only three goods and three
observations is enough to distinguish between the general collective model
and the collective model with only public consumption. Moreover, one should
notice that, as the general collective consumption model, it is not possible
to reject public-CR if the number of observations or the number of goods is
smaller than three.

Suppose T = 2 and n ≥ 2. One can always consider the following personalized
prices: pAG

1 = p1 and pAG
2 = 0. It is easy to verify that, using these feasible

personalized prices, GARP conditions in Proposition 8 cannot be rejected.
Next, if n = 2 and T ≥ 2, one can always suppose that each individual pay for
one good, say for example (pAG

t )1 = (p1)1 and (pAG
t )2 = 0, for each observation

t = 1, ..., T . Again, it is immediate to verify that it is a solution for the GARP
conditions in Proposition 8.
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Thus, three observations and three goods represent the lower bounds for the
collective models to have testable implications.

Finally, it should be noted that the parametric approach needs a data set with
at least five goods to test the collective consumption model characterized
in Propositions 8; see Browning and Chiappori (1998) and Chiappori and
Ekeland (2006). Thus, our revealed preference approach requires a smaller
number of goods than the parametric approach.

5.2 General-CR does not imply egoistic-CR

In this section, we provide an example with contains a data set that satisfies
general-CR but not an egoistic-CR.

Example 2 Suppose that the data set S contains the following 4 observations
of bundles consisting of 4 quantities:

q1 = (1, 0, 0, 0), q2 = (0, 1, 0, 0), q3 = (0, 0, 1, 0), q4 = (0, 0, 0, 1)

p1 = (7, 4, 4, 4), p2 = (4, 7, 4, 4), p3 = (4, 4, 7, 4), p4 = (4, 4, 4, 7)

This data set S satisfies the conditions in Proposition 6 (i.e. there exists a
general-CR), but it rejects the conditions in Proposition 10 (i.e. there does
not exist an egoistic-CR).

See the Appendix for the explanation of the example.

As for the previous examples, we have two remarks. First, in contrast to the
differentiable approach, our ‘revealed preference’ methodology makes it possi-
ble to distinguish between the general collective model and the egoistic model.
Thus, we can conclude that the private nature of the goods is testable. Sec-
ondly, in our example we considered a data set with four observations and
four goods. However, we conjecture that it is possible to figure out examples
for data set for with four observations and three goods. For mathematical
elegance we have used many zeros in our data set.

Finally, one should notice that we considered a data set with four observations.
We prove in Proposition 11 that this is the minimum number of observations
that we need to test egoistic-CR.

Proposition 11 Let S = {(pt, qt); t = 1, 2, 3} be a set of three observations.
Suppose that there exists a general-CR of S, then there always exists a com-
bination of concave, continuous and monotonically increasig utility functions
UA
ego and UB

ego that provides an egoistic-CR of S.
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5.3 Independence of egoistic-CR and public-CR

In the previous subsection, we have shown that the general collective model is
distinguishable from the two specific benchmark models. In the Appendix we
argue that it is possible to distinguish between the two benchmark models.
More precisely, in the Appendix we show that the data set in Example 1
satisfies the testable conditions for a egoistic-CR, and the data set in Example
2 satisfies the testable conditions for a public-CR. Thus, we can conclude
that if the data set is consistent with one benchmark model, this does not
necessarily imply that it is also consistent with the other benchmark model.

It is enough have a data set with four observations and four goods 5 to be
able to test the nature of the goods. Moreover, this result could directly carry
over to ‘intermediate’ collective models that stand between the two benchmark
cases, i.e models which assume that part of the goods is privately consumed
(without externalities) while all other goods are publicly consumed. See Cher-
chye, De Rock, Vermeulen (2010) for a detailed discussion.

6 Conclusion

Chapter 3 has adopted the nonparametric ‘revealed preference’ methodology
due to Cherchye, De Rock, Vermeulen (2007) for analyzing the testable restric-
tions for the two benchmark cases of the collective consumption model. That
is, the case in which all the goods are publicly consumed and the case in which
all the goods are privately and individuals have egoistic preferences. These two
polar cases were analyzed previously by Chiappori and Ekeland (2006). Using
a parametric approach, the authors showed that these two benchmark cases
have the same testable restrictions than the general model (i.e. all goods can
be consumed privately, publicly or both). So, their main result is that it is
not possible to test the nature of the goods from aggregate data on group
behavior.

Differently from Chiappori and Ekeland (2006), using a nonparametric char-
acterization which involve personalized prices à la Lindahl and feasible per-
sonalized consumptions, we show that the nature of goods is testable. More
precisely, we obtain different testable restrictions as soon as we have a data
set with four observations and four goods. Importantly, in our approach, we
do not require that Lindahl prices and personalized quantities are observable.
Therefore, this approach could be useful for empirical applications.

5 We think that it should be enough a data set with four observations and three
goods.
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We want to conclude this chapter considering a possible extension. This basic
framework could be extended considering many group members. Of course,
this generalization will not affect the core of our results.

Appendix

Example 1

There exists a general-CR of S. Consider the following personalized quantities
and prices:

x1 = (q1, 0, 0), pA1 = (p1, 0, p1), pB1 = (0, p1, 0)

x2 = (
1

2
q2,

1

2
q2, 0), pA2 = (p2, 0, p2), pB2 = (0, p2, 0)

x3 = (0, q3, 0), pA3 = (p3, 0, p3), pB3 = (0, p3, 0)

It is easy to show that the GARP conditions in Proposition 6 are satisfied
for both members. So, one can conclude that the data set at hand satisfies
general-CR.

There exists an egoistic-CR of S. It is immediate to see that these personalized
feasible prices and quantities satisfy the conditions in Proposition 10. So, we
can conclude that the data set in this example is consistent with an egoistic-
CR.

There does not exist a public-CR of S. Let us prove this ad absurdum and
assume that we have a construction of feasible prices that satisfies condition
(ii) in Proposition 8.

One should notice that for any t, s = 1, 2, 3, with t != s, the structure of the
data set in this example implies that pt · qt > pt · qs. Therefore we must have
feasible prices such that either pAG

t ·qt > pAG
t ·qs or (pt−pAG

t )·qt > (pt−pAG
t )·qs.

GARP conditions in Proposition 8 require that if pAG
t · qt ≥ pAG

t · qs, then
pAG
s · qs ≤ pAG

s · qt. So, since for any t, s = 1, 2, 3 with t != s, ps · qs > ps · qt
and pAG

s · qs ≤ pAG
s · qt one gets (ps − pAG

s ) · qs > (ps − pAG
s ) · qt. Therefore,

if xtRA
0 xs, we must have xsRB

0 xt. Given that this holds for any t, s = 1, 2, 3,
with t != s, we conclude that (i) x1RA

0 x2 and x2RA
0 x3 for member A, and (ii)

x3RB
0 x2 and x2RB

0 x1 for member B is a possible solution of public-CR.

Assume that pAG
2 = (π1, π2, π3). The GARP condition for member A in Propo-

sition 8 requires that
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pAG
2 · q2 ≤ pAG

2 · q1 ⇔ 2π1 + 5π2 + 2π3 ≤ 5π1 + 2π2 + 2π3

⇔ 0 ≤ π1 − π2.

The GARP condition for member B in Proposition 8 requires that

(p2 − pAG
2 ) · q2 ≤ (p2 − pAG

2 ) · q3 ⇔ 2(1− π1) + 5(4− π2) + 2(1− π3)

≤ 2(1− π1) + 2(4− π2) + 5(1− π3)

⇔ 3 ≤ π2 − π3.

Overall, this implies that 3 ≤ π2 ≤ π1, which gives us the desired contradiction
since by construction π1 ≤ 1. Of course, all the other possible solutions of
public-CR lead to the same contradictions. Therefore, we conclude that there
cannot exist a public-CR of the data set in Example 1.

Example 2

There exists a general-CR of S. Consider the following personalized quantities
and prices with pAG

2 = (4, 3.5, 0, 0) and pAG
3 = (4, 4, 3.5, 0).

x1 = (0, 0, q1), pA1 = (p1, p1, p1), pB1 = (0, 0, 0);

x2 = (0, 0, q2), pA2 = (p2, p2, p
AG
2 ), pB2 = (0, 0, p2 − pAG

2 );

x3 = (0, 0, q3), pA3 = (p3, p3, p
G
3 ), pB3 = (0, 0, p3 − pAG

3 );

x4 = (0, 0, q4), pA4 = (0, 0, 0), pB4 = (0, 0, p4).

It is easy to show that the GARP conditions in Proposition 6 are satisfied
for both members. So, one can conclude that the data set at hand satisfies
general-CR.

There exists a public-CR of S. It is immediate to see that these personalized
feasible prices and quantities satisfy the conditions in Proposition 8. So, we
can conclude that the data set in this example is consistent with a public-CR.

There does not exist an egoistic-CR of S. Let us prove this ad absurdum and
assume that we have a construction of feasible prices that satisfies condition
(ii) in Proposition 10.

Again, one should notice that for any t, s = 1, 2, 3, with t $= s, the structure
of the data set in this example implies that pt · qt > pt · qs. Therefore, with no
loss of generality, we can assume that the solution of feasible prices leads to
(i) x1RA

0 x2, x2RA
0 x3 and x3RA

0 x4 for member A, and (ii) x4RB
0 x3, x3RA

0 x2 and
x2RB

0 x1 for member B.
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Assume that xA
2 = (0,α, 0, 0) and xA

3 = (0, 0, β, 0). The GARP conditions for
the two members in Proposition 10 require that the following holds:

pA2 · x2 ≤ pA2 · x1 ⇔ 7α ≤ 4;

pA3 · x3 ≤ pA3 · x2 ⇔ 7β ≤ 4α ≤ 4;

pB2 · x2 ≤ pB2 · x⇔ 7(1− α) ≤ 4(1− β) ≤ 4;

pB3 · x3 ≤ pB3 · x4 ⇔ 7(1− β) ≤ 4.

This implies that 3
7 ≤ α ≤ 4

7 ,
3
7 ≤ β ≤ 4

7 and 7β
4 ≤ α and thus also that

α ≥ 3
4 . Thereby we obtain the desired contradiction and we conclude that

there cannot exist an egoistic-CR of the data set in Example 2.

Proof of Proposition 4. Example 1 of Cherchye, De Rock, Vermeulen
(2007) shows that we cannot have a general-CR if we have a data set with
the following structure: p1 · q1 ≥ p1 · (q2 + q3), p2 · q2 ≥ p2 · (q1 + q3) and
p3 · q3 ≥ p3 · (q1 + q2) hold simultaneously. With no loss of generality, we
assume that p2 · q2 < p2 · (q1 + q3).

Consider the following personalized quantities and prices for an α ∈ [0, 1]:

x1 = (q1, 0, 0), pA1 = (p1, 0, p1), pB1 = (0, p1, 0)

x2 = (αq2, (1− α)q2, 0), pA2 = (p2, 0, p2), pB2 = (0, p2, 0)

x3 = (0, q3, 0), pA3 = (p3, 0, p3), pB3 = (0, p3, 0)

These feasible prices and quantities are consistent with the collective model
with only private goods (i.e. xG

t = 0) and egoistic preferences (i.e. pAA
t = pt

and pAB
t = 0).

In order to prove that this is a solution for egoistic-CR, we need to check
GARP for the sets {(pAt , xt); t = 1, 2, 3} and {(pBt , xt); t = 1, 2, 3}.
We start considering member A. We need to verify that condition (iii) in
Definition 5 is satisfied. First, for each observation t, we construct the set of
the revealed preferred bundles (i.e. Opening Conditions) and after we check if
every observation t is cost minimizing over the revealed preferred set (Closing
Conditions).

Opening Conditions:

(i.1) pAA
1 · xA

1 ≥ pAA
1 · xA

2 ⇒ p1 · q1 ≥ αp1 · q2;

(ii.1) pAA
1 · xA

1 ≥ pAA
1 · xA

3 ⇒ p1 · q1 ≥ 0;

(iii.1) pAA
2 · xA

2 ≥ pAA
2 · xA

3 ⇒ αp2 · q2 ≥ 0.
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Closing Conditions:

(iv.1) pAA
2 · xA

2 ≤ pAA
2 · xA

1 ⇒ αp2 · q2 ≤ p2 · q1;

(v.1) pAA
3 · xA

3 ≤ pAA
3 · xA

1 ⇒ 0 ≤ p3 · q1;

(vi.1) pAA
3 · xA

3 ≤ pAA
3 · xA

2 ⇒ 0 ≤ αp3 · q2.

We consider now member B. The conditions to satisfy the GARP are given
by:

Opening Conditions:

(i.2) (p3 − pAB
3 ) · xB

3 ≥ (p3 − pAB
3 ) · xB

2 ⇒ p3 · q3 ≥ (1− α)p3 · q2;

(ii.2) (p3 − pAB
3 ) · xB

3 ≥ (p3 − pAB
3 ) · xB

1 ⇒ p3 · q3 ≥ 0;

(iii.1) (p2 − pAB
2 ) · xB

2 ≥ (p2 − pAB
2 ) · xB

1 ⇒ (1− α)p2 · q2 ≥ 0.

Closing Conditions:

(iv.2) (p2 − pAB
2 ) · xB

2 ≤ (p2 − pAB
2 ) · x3 ⇒ (1− α)p2 · q2 ≤ p2 · q3;

(v.2) (p1 − pAB
1 ) · xB

1 ≤ (p1 − pAB
1 ) · xB

3 ⇒ 0 ≤ p1 · q3;

(vi.2) (p1 − pAB
1 ) · xB

1 ≤ (p1 − pAB
1 ) · xB

2 ⇒ 0 ≤ (1− α)p1 · q2.

Conditions (ii.m), (iii.m),m = A,B are trivially satisfied. So, x1RA
0 x3, x2RA

0 x3,
and x3RB

0 x1, x2RB
0 x1. One should notice that also the corresponding closing

conditions, i.e. (v.m), (vi.m), m = A,B are trivially satisfied.
We do not know if x1 belongs to the set of the revealed preferred bundles of x2

(i.e. if x1RA
0 x2), and if x3 belongs to the set of the revealed preferred bundles

of x2 (i.e. if x3RA
0 x2), or equivalently if conditions (i.m), m = A,B hold true.

However, given that p2 · q2 < p2 · (q1 + q3), there must exists an α ∈ [0, 1] such
that αp2 · q2 ≤ p2 · q1 and (1− α)p2 · q2 ≤ p2 · q3. This implies that conditions
(iv.m), m = A,B are satisfied. So, all closing conditions are satisfied.
Therefore GARP is satisfied and we cannot reject egoistic-CR.
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