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Preface 
 

This thesis presents some of the main results of my research 

performed at Department of Chemistry and Biology at 

University of Salerno during the period 2011-2013. The 

contents are divided in three parts, where the first constitutes 

the theoretical background of the particle-field method. The 

second contents consist in the study of the interface of 

polymer matrix with silica nanoparticle. The third part covers 

the investigation of polymer aggregates interacting with 

biomembrane. 
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1 
Introduction 

 
“Development of Multiscale Models for Complex Chemical Systems” 

Martin Karplus, Michale Levitt, Arieh Warshel 
Nobel Prize in Chemisry 2013 

 

 

 

1-1 Polymer Composite Materials  

 

Polymer composite materials have been widely studied for a 

long time. They can be defined as material made by two 

different phases in which distinct interfaces separate different 

phases. When one of the phases becomes nanosized (of the 

order 0.1-100 nm), they are defined nanocomposites. The 

constituent of the continuous phase is called “matrix”. Usually 

the matrix is more ductile and less hard phase. Instead, the 

“dispersed” phase is embedded in the matrix in a 

discontinuous form1. Such materials combine the advantages 

of the inorganic material (e.g., rigidity, thermal stability) and 

the organic polymer (e.g., flexibility, dielectric, ductility, and 

processability). 

The peculiar features of polymer nanocomposite can be 

explained on the basis of the combined behavior of the 
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reinforcing element (nanofillers)/polymer matrix interface. It 

is immediately clear that the understanding of the links 

between the microstructure and the macroscopic properties is 

critical for the successful development of polymer composite 

materials. 

A very relevant task in the theoretical material science is 

to build up models able to reproduce and predict the 

macroscopic properties of materials based on their 

constituent. Due to the nature of polymer nanocomposite, is 

well known that the fillers are in principle mobile. This 

implies that they can form clusters, of different size, having 

effects on the polymer matrix/nanoparticle interfaces that paly 

a strong role on the average properties of the material2. 

 

1-2 Multiscale of soft matter material 

 

“Properties of soft matter systems are determined by a variety 

of processes and interactions originating from a wide range 

of time and length scales.” 

      K. Kremer5 

 

Though this holds for many physical systems, it is of special 

importance for soft matter, where the relevant energy scale is 

the thermal energy kBT. Processes occurring on rather 
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different scales often are governed by rather similar energy 

scales. As a characteristic example let us mention phase 

segregation effects in polymers or block copolymers. While 

the local dynamics on the monomer level is dominated by 

bond angle, torsion, and excluded volume interactions, all 

typically of the order of a few kBT, the free energy difference 

of the whole polymer in the homogeneous mixture and the 

segregated state is typically also of the orderof a few kBT. 

Whereas the former processes occur on a ps or at most ns time 

scale (if far enough away from the glass transition 

temperature, which we will not discuss here), the latter can 

take up to seconds or more if only the chains are long enough. 

Consequently molecular simulation approaches to soft matter 

phenomena require a wide range of simulation methods, 

which appropriately deal with different levels of resolution. 

Coming back to the above example, generic aspects of 

polymer dynamics as well as certain aspects of 

conformational properties like chain stiffness can be studied 

by highly simplified and idealized models, while specific 

amplitudes and prefactors, which easily can vary by orders of 

magnitude, or local arrangements of groups usually require 

detailed microscopic input. Thus a variety of different models 

and simulation schemes has been developed, where 

microscopic structure information is employed to 
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parameterize higher level more coarse models3-6. While this 

defines length scaling factors rigorously by the very 

construction, it is not at all clear how to do that for dynamical 

quantities in a rigorous way. Actually for most molecular 

systems this might be even impossible. In the following we 

will focus on these problems. In this context we also will 

discuss a more pragmatic ansatz, which allows us to deduce 

dynamical information from coarse-grained models without 

any adjustable parameter not coming from the simulations 

themselves. 

 

1-3 What This Thesis is About 

 

The main aim of this thesis is to study, by simulation tools, 

the interfaces of different systems. In particular we want to 

investigate the role of the interface of both polymer matrix 

with silica nanoparticles and biological systems interacting 

with polymers. In both cases to approach to these problems 

we adopted a multiscale scheme in developing of models able 

to keep the nature of such problems. Specific models, using 

the hybrid Particle-Field Molecular Dynamic technique (PF-

MD), have been developed. The features of PF-MD models 

allow us to study, with chemical detail, phenomena involving 

huge time and length scales otherwise not accessible with 
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standard MD techniques. 

The thesis is organized in the following way. In the 

Chapter 2 a briefly description of the theoretical scheme of 

the hybrid PF-MD approach is reported. The main advantages 

of this approach will be described jointly with the 

implementation of this scheme to the MD.  

In the Chapter 3 a strategy to obtain well-relaxed 

atomistic structure of polymer melt, employing the PF 

models, is reported. In particular a procedure to obtain well 

relaxed structure of polymethylmethacrylate (PMMA) and 

polyethylene oxide (PEO) is shown. Furthermore, as 

application, a study to characterize the interface of composite 

material of PMMA melt with Silica Nanoparticle is reported.  

In the Chapter 4 the development and validation of PF 

models of different phospholipids is reported. In particular, 

the models have been tested and validated on the reproduction 

of lamellar and non-lamellar phase (i.e. micellar, hexagonal 

and inverse micelle). In order to validate such models, the 

main structural properties, calculated from the simulations, 

have been compared with experiments. 

The development and validation of block-copolymer 

models is reported in the Chapter 5. In particular, models of 

Pluronic L64 and L62 have been developed and tested on the 

reproduction of phase behaviour in polymer/water mixture. 
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Furthermore, a study to understand the interaction between a 

Pluronic micelle and a lipid bilayer is reported. 



 

 

7 

 
References: 

 
(1) Amrita Saritha; Sant Kumar Malhotra; Sabu Thomas; Kuruvilla 
Joseph; Koichi Goda; Sreekala, M. S. Polymer Composites Boschstr. 12, 
69469 Weinheim, Germany, 2013; Vol. 2. 
(2) Langner, K. M.; Sevink, G. J. A. Soft Matter 2012, 8, 5102. 
(3) Tschöp, W.; Kremer, K.; Batoulis, J.; Bürger, T.; Hahn, O. Acta 
Polymerica 1998, 49, 61. 
(4) Muller, M.; Schmid, F. In Advanced Computer Simulation 
Approaches for Soft Matter Sciences Ii; Holm, C., Kremer, K., Eds.; 
Springer-Verlag Berlin: Berlin, 2005; Vol. 185, p 1. 
(5) Praprotnik, M.; Delle Site, L.; Kremer, K. Annual Review Of 
Physical Chemistry 2008, 59, 545. 
(6) Ayton, G. S.; Voth, G. A. Current Opinion in Structural Biology 
2009, 19, 138. 
 

 

 



 

 8 

2 
Hybrid Particle-Field Molecular Dynamics 

 
 

 

 

 

The main idea of Self Consistent Field (SCF) techniques is to 

split up the calculation of multibody interactions in two 

procedures: i.e. to find the ensemble averaged conformation 

distribution and to find the segment potentials based on the 

segment distribution. For this aim, a set of partial differential 

equations are solved numerically using lattice approximations 

and a discrete set of coordinates, onto which segments can be 

placed, has to be defined. Parameters are defined so that the 

results of the Molecular Dynamic (MD) simulations are 

reproduced by those of the SCF simulations1. 
Müller and Schick2 proposed a novel approach developing an 

off lattice representation of the field theory; they obtained the 

single-chain partition function via a partial enumeration3 over 

a large set of molecular conformations of a lipid chain with 

RIS statistics.  
More recently, the single chain in mean field (SCMF) method 

introduced by Müller et al, in which a density field is kept 

static for a number of Monte Carlo steps, has been 



 

 9 

successfully applied to homopolymer and block copolymer 

systems4-6. 
One of the advantages of this hybrid approach is the lack of 

any limitation in treating complex molecular architectures 

and/or intramolecular interactions. In the frame of the hybrid 

scheme proposed by Müller, this approach has recently been 

extended to MD simulations. In particular, the MD method 

has been combined with SCF description (MD-SCF); an 

implementation suitable for the treatment of atomistic force 

fields and/or specific CG models has been reported and 

validated7,8. 
After the introduction of the MD-SCF approach, this kind of 

hybrid model, due to its computational efficiency, is also 

gaining popularity for biomembranes modeling. Very 

recently, Sevink et al introduced a hybrid scheme, combining 

Brownian dynamics (BD) and dynamic density functional 

theory (DDFT), that is able to model efficiently complete 

vesicles with molecular detail9. 
In the following the basic theoretical scheme of MD-SCF 

simulations and its implementation will be described. 

2-1 Theoretical scheme 

In this section, a description of the hybrid particle–field MD 

simulation scheme is given. For further details and a complete 

treatment of this approach the readers can refer to7,8 where the 
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derivation and the implementation have been introduced and 

to7,10 for a general aspect of SCF methods. 
The main issue, according to the spirit of SCF theory, 

will be to derive the partition function of a single molecule in 

an external potential V(r) and to obtain a suitable expression 

of the V(r) and its derivatives. In this formulation, the most 

computationally expensive part of the MD simulations, i.e., 

the evaluation of the non bonded force and its potential 

between atoms of different molecules, can be replaced by 

evaluation for each atom of those with an external potential 

that depends on the local density at position r. 
In the framework of the SCF theory, a molecule is regarded to 

be interacting with the surrounding molecules not directly but 

through a mean field. According to this picture, we can split 

the Hamiltonian of a system of M molecules into two parts: 

 
Ĥ (Γ) = Ĥ0 (Γ)+Ŵ (Γ),      (1) 

 
where Γ is used as shorthand for a set of positions of all atoms 

in the system, which specifies a point in the phase space. In 

Eq. (1) and also in the following, the symbol ˆ(hat) indicates 

that the associated physical quantity is a function of the 

microscopic states described by the phase space Γ.  

Ĥ0 (Γ)  is the Hamiltonian of a reference ideal system 
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composed of M non interacting chains but with all the 

intramolecular interaction terms (bond, angle, non bonded) 
that are usually considered in molecular simulations. On the 

other hand, the deviation from the reference system due to the 

intermolecu !lar non bonded interactions is accounted for by 

the term Ŵ (Γ)  in Eq. (1).  

!Assuming the canonical (NVT) ensemble, the partition 

function of this system is given by: 

 

Z =
1
M !

dΓ exp −β Ĥ
0
Γ( ) +Ŵ Γ( )#

$
%
&{ },∫    (2) 

 

The density distribution of atoms from microscopic point of 

view can be obtained considering that the microscopic density 

distribution can be defined as a sum of delta functions 

centered at the center of mass of each particle as: 

φ̂ r;Γ( ) = δ r− ri
p( )( )

i=0

NM

∑
p=1

M

∑ ,      (3) 

 

where M is the total number of molecules in the system, NM is 

the number of particles contained in p-th molecule, r
i

p( )
is the 

position of the i-th particle in p-th molecule.  

The deviation Ŵ(Γ) from the reference state Ĥ
0

, Eq. 1, 
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originates from the interactions between molecules. To 

calculate the interaction term Ŵ(Γ) we need to introduce 

several assumption. First of all, we assume that Ŵ(Γ) depends 

on Γ only through the segment number density φ̂  (r;Γ) as: 

 

Ŵ Γ( ) =W φ̂ r;Γ( )"
#

$
%,       (4) 

 

Using the assumption of Eq. (4) and the property of δ 

functional that obeys 

 

D f r( ){ }∫ δ f r( )− g r( )#$ %&F g r( )#$ %&= F f r( )#$ %&,   (5) 

 

we can rewrite the partition function of the Eq. (2) as: 

 

Z = 1
M !

dΓ D ϕ (r){ }∫∫ δ ϕ (r)−φ̂(r;Γ)'
(

)
*

×exp −β Ĥ0 (Γ)+W ϕ r( )( )'
(

)
*{ }.

   (6) 

 

Using the Fourier representation of the delta functional, we 

obtain 
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δ ϕ r( )− φ̂ r;Γ( )#
$

%
&=

D w r( ){ }∫ exp i w r( ) ϕ r( )− φ̂ r;Γ( ){ }dr∫#$ %
&.

  (7) 

 

Inserting Eq. (7) into Eq. (6) leads to 

Z = 1
M !

dΓ D ϕ(r){ }∫∫ D w r( ){ }∫

×exp i w r( ) ϕ r( )− φ̂ r;Γ( ){ }dr∫%& '
(

×exp −β Ĥ0 (Γ)+W ϕ r( )( )%
&

'
({ }.

    (8) 

 

At that point we define z, as the partition function of a system 

made of a single molecule in an external potential 

V (r) ≡ i / β(w(r))  as: 

 

z V (r)[ ] = dΓexp −β Ĥ0 Γ( )+ φ̂∫ r,Γ( )V (r)dr$
%

&
'{ }∫ .  (9) 

 

Using this definition Eq. (9) and rearranging Eq. (8) we obtain 

 

Z = 1
M !

dΓ D w r( ){ }exp −β −
1
β
ln z

#

$
%

&
'
(

∫∫ +W ϕ r( )( )

− V r( )ϕ r( )dr∫ *
+}.

 (10) 

 

In terms of this partition function, the mean field 

approximation is obtained by replacing the sum over the 
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canonical ensemble in Eq. (10) with a Gaussian integral 

around the most probable state that minimizes the argument of 

the exponential function on the right side of Eq. (10).  

The condition for the determination of the most probable state 

is given using functional derivatives: 

 

δ
δφ(r)

−β −
1
β
ln z+W ϕ(r)( )− V (r)∫ ϕ(r)( )dr

#

$
%

&

'
(

)
*
+

,
-
.
= 0

δ
δV (r)

−β −
1
β
ln z+W ϕ(r)( )− V (r)∫ ϕ(r)( )dr

#

$
%

&

'
(

)
*
+

,
-
.
= 0.

)

*

/
/

+

/
/

 (11) 

 

This lead to 

 

V (r) =
δW φ[ ]
δφ(r)

φ(r) = − 1
zβ

δz
δV (r)

= φ̂ r,Γ( ) = φ(r).
   (12) 

 

According to the derivation given above, now it is possible to 

obtain an expression for a density dependent external 

potential acting on each molecule. 

If we assume that the interaction term W, where each 

component species is specified by an index K, the density 

dependent interaction potential takes the following form: 
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W φK r( ){ }"# $%=

dr∫ kBT
2

χKK '
KK '
∑ φK r( )φK ' r( )+

1
2κ

φK r( )
K
∑ −1
+

,
-

.

/
0

2+

,
-
-

.

/
0
0

"

#

1
1

$

%

2
2
,
 (13) 

 

where the second addend of the integrand of Eq. (13) is the 

relaxed incompressibility condition and κ is the 

compressibility that is assumed to be sufficiently small. The 

corresponding mean field potential can be given by: 

 

VK r( ) =
δW φK r( ){ }!" #$

δφK r( )
=

= kBT χKK '
K '
∑ φK ' r( )+

1
κ

φK r( )
K
∑ −1
'

(
)

*

+
,.

  (14) 

 

In the case of a mixture of two components A and B, the mean 

field potential acting on a particle of type A at position r is 

given by: 

 

VA r( ) = kBT χAAφA r( )+ χABφB r( )!" #$

+
1
κ
φA r( )+φB r( )−φ0( ).

   (15) 

 

In a similar way can be derived the expression for the mean 

field potential acting on a particle of type B. Then the force 
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acting on a particle A at position r, due to the interaction with 

the density field is: 

F
A
r( ) = −

∂V
A
r( )

∂r
=

−k
B
T χ

AA

∂φ
A
r( )

∂r
+ χ

AB

∂φ
B
r( )

∂r

#

$

%
%

&

'

(
(
−
1
κ

∂φ
A
r( )

∂r
+
∂φ
B
r( )

∂r

#

$

%
%

&

'

(
(
.

 (16) 

 

2-2 Implementation scheme 

 

As described by Milano and Kawakatsu7,8, the implementation 

scheme for such approach is briefly described in follow. What 

is necessary in order to connect particle and field models is a 

scheme to obtain a smooth coarse-grained density function 

φ(r) directly from the particle positions Γ. Let us denote this 

procedure as: 

 

S φ̂ r,Γ( ){ }= φ(r),      (17) 

 

where S is a symbolic name of the mapping from the particle 

positions to the coarse-grained density φ(r). The iteration 

scheme used, in the described particle-field approach, is 

reported in Figure 2-1.  

The starting value of the density dependent mean field 
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potential is obtained from the initial configuration of the 

system (at the starting time t0). The external potential due to 

the density dependent mean field potential can be evaluated. 

The potential energy is the sum of the intramolecular 

interaction potentials (bond, angle, torsion and intramolecular 

non bonded). 

 
Figure 2-1. Iteration scheme proposed for the hybrid MD-SCF simulations. 

 

A new configuration is obtained by integrating the equation of 

the motion of the particles from time t0 to time t0+Δt. At every 

prefixed density update time (Δtupdate) the density is updated 

according to the new position of the particles in the system. 
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From the updated value of the density, a new value of the 

potential energy is calculated and then new forces acting on 

particles are obtained. The iteration scheme converges when 

the density and the potential become self-consistent. 

It is immediately clear that the way to obtain a coarse-grained 

density, from the particle positions, is crucial in such 

approach. As shown by Milano and Kawakatsu7,8, a simple 

and efficient way to obtain a coarse-grain density consist in to 

divide into ncell=nx*ny*nz cells (where nx, ny, nz are the 

number of cells in the x, y and z directions) the simulation 

box. According to their positions in the simulations box, all 

the particles are distributed among these cells. In the 

implementation proposed, the cell structure has been obtained 

using the method of “linked lists” that assures a rapid sorting 

of the particles. 

The density and its derivatives used for the calculation of the 

forces and the potential energy due to particle-field 

interactions are both defined on three-dimensional lattice 

points obeying the periodic boundary conditions. The values 

of the density function at position r between lattice points are 

evaluated using linear interpolation of the values at neighbor 

lattice points. 

Fractions of a particle are assigned to its neighbor mesh points 

according to the distances from the particle to the mesh 

points. There are several choices for this procedure. The 
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lowest order choice is to assign each particle to its nearest 

neighbor mesh point. This procedure means that the system is 

divided into cubic cells whose centers locate at the lattice 

points and assign all the particles inside a cell to its center 

lattice point. A higher order alternative is to consider also the 

position of each particle inside the cell and to assign a fraction 

of this particle to each vertex of the cell. 
In order to explain such procedure, a simpler two-dimensional 

case is reported in Figure 2-2A. As example we consider a 

phospholipid molecule depicted on a grid used to evaluate the 

coarse-grained density. 

 
Figure 2-2. (A) Assignment of coarse-grained density to the lattice points for a molecule of 
phospholipid. (B) Criterion for assignment to a particle fraction to lattice points. 

 

As shown in Figure 2-2B, the fraction of a particle assigned to 
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a given lattice point is proportional to the area of a rectangle 

showed in the figure. For example, for a particle with 

coordinates x and y a fraction (l-x)*(l-y)/l2 will be assigned to 

the mesh point 1 and a fraction of x*y/l2 at mesh point 4 (for 

simplicity l is the length of the cell both in x and y directions). 

Thus, the density at every mesh point is the sum of all 

fractions assigned from all the cells that share a given lattice 

point. According to the procedure described above, the size of 

the cell l is a parameter defining the density coarse-graining. 

Larger is the value of l, more particles will be included in 

every cell and coarser will be the calculated density.  

Once the coarse-grained density has been calculated from 

particle positions, the spatial derivatives of the density field 

can be evaluated. Spatial derivatives can be obtained by 

differentiation of the density lattice. In this way the lattice 

where the derivatives are defined is staggered with respect to 

the lattice where the density is defined. As schematized in 

Figure 2-2B, the squares indicate the lattice points where the 

density is defined. Correspondingly, the density gradients are 

defined on the centre of each edge (staggered lattice points 

indicated by crosses in Figure 2-2B) of the square surrounding 

the density lattice points. 

Once that both density and derivatives have been computed 

on their corresponding lattices, the potential energy and forces 

acting on the particles can be calculated using values obtained 
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by interpolation of the density and of its spatial derivatives in 

equations 15 and 16. 

It is worth noting that the most time consuming part of 

the simulation (i.e. the evaluation of intermolecular forces 

calculated in a double loop over particle pairs) has been 

skipped completely; it is replaced, as pointed at the begin of 

the chapter, by an evaluation of a particle–field interaction 

term originating from the interaction of individual molecules 

with the density field ϕ(r). Furthermore, due to the coarse 

grain nature of a collective field, it is possible to fix a time 

interval update without loss of accuracy. This choice is in 

agreement with the concepts behind the quasi-instantaneous 

field approximation discussed by Daoulas et al in the 

framework of SCMF Monte Carlo simulations5. The main 

assumption is that the field, as a collective variable with 

respect to particle coordinates, has a slow change with respect 

to a particle’s displacement in one or more time-steps. 
In this way, in MD-SCF simulations there are two time- steps. 

The first ‘microscopic time-step’ is the usual one for the 

particle’s displacement used in MD simulations and the 

second ‘mesoscopic time-step’ is for the field update. The 

quasi-instantaneous field approximation can be compared 

with methods using different time-integration steps for ‘stiff’ 

and ‘soft’ degrees of freedom, albeit not in the context of a 

field-theoretical representation of interactions. A popular 
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example of this is MD algorithms with multiple time scales, 

introduced by Tuckerman et al11. The optimal value of the 

updated frequency depends on the density resolution (i.e. the 

size of the subcell where the particles are grouped), the 

system’s nature and its conditions. 
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3 
Polymer Nanocomposites 

 

 

 

 

 

3-1 Generation of Well Relaxed Atomistic Models of 

Polymer Melt. 

 

High molecular weight polymer chains are difficult to relax. 

The longest relaxation of an entangled polymer melt of length 

N scales at least as N3, giving at last N4 in CPU time, which is 

only feasible for relatively short chain lengths. Although 

computational power increases 10-fold every five years, the 

huge number of degree of freedom limits fully atomistic 

approaches when it comes to investigating long polymer 

chains.  

One way to circumvent this problem is to reduce the degree of 

freedom by coarsening the models and keeping only those 

degree of freedom that are deemed relevant for the particular 

range of interest. Simple models for the study of meso- and 

macroscale phenomena in polymers have been used 
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extensively1,2.  

On a larger length scale, dissipative particle dynamics (DPD) 

and smoothed particle dynamics (SPD) are frequently used to 

tackle hydrodynamic problems. The main drawback of these 

models is connected with their generic nature. Most of them, 

in fact, do not distinguish between chemically different 

polymers.  

A useful method that is able to reproduce highly accurate 

physical properties is base on the mapping of atomistic 

features to mesoscopic models. Such approach, called 

“Coarse-graining” is able to keep the physical properties of 

different length scale of a polymer by adjusting force fields to 

relative length scale of interest. This approach have been 

applied, with success, to various polymers3-7. The most 

drawback of such approach is that for every length scale in 

which we are interested to simulate our polymer systems, the 

relative force-field must be adjusted. This request limits the 

applicability of the method to different length scales and, the 

procedure to tune the force-field at different length scales, is 

not trivial. 

We report in the following section an application of particle-

field approach to obtain well relaxed configurations of 

polymer melt at atomistic level. Differently from the standard 

“Coarse-grained” approach, the advantage of this approach 
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consists in easy way in which the scale length can be chose.  

 

3-1.1 Procedure to obtain well-relaxed polymer melt 

configuration 

 

To illustrate the procedure to obtain a well-relaxed 

configuration of a polymer melt, the atactic poly(methyl 

methacrylate) PMMA has been chose. The chemical structure 

of the PMMA, jointly with atoms definition, is reported in 

Figure 3-1. 

 

 
Figure 3-1. chemical structure of poly(methyl methacrylate). 

 

We chose to apply the following procedure to four different 

molecular weights: 500 MW (corresponding to 5 repeating 
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units of PMMA), 1000 MW, 2000 MW and 180000 MW 

(corresponding to 180 repeating units), respectively. The 

composition of all simulated systems is reported in Table 3-1. 

 
Table 3-1. Composition of simulated systems. 

System M.W. 
(g/mol) 

Rep. 
units 

Nr. 
Particles 

Box 
Size 

x=y=z 
 (nm) 

Temp. 
(K) 

Time 
(ns) 

I 500 5 4620 3.63 500 20.0 

II 1000 10 4560 3.68 500 20.0 

III 2000 20 4530 3.65 500 20.0 

VI 18000 180 8106 4.45 500 40.0 

 

In order to validate this procedure we compared the results of 

standard atomistic simulation with the results obtained from 

particle-field simulations. Each system reported in Table 3-1 

has been simulated with standard particle-particle atomistic 

model and with particle-field model. The force-field of 

particle-particle reference model has been took from the 

model of Maranas8,9. All intramolecular parameters, such 
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bond and angle interactions terms, of the particle-particle 

model have been used also for the particle-field model. 

According to the spirit of the particle-field approach, as 

described in Chapter 2, the pair-pair intermolecular 

interaction are replaced by particle-field interactions. In such 

way each particle interacts with a field. According to the 

position of the particles in the system, a field is build and 

defined on a grid. Tuning the resolution of the grid, the 

representation of a molecule interacting with field changes. In 

other words, tuning the mesh size of the grid we can tune the 

smoothness of the intermolecular interactions. In particular, 

bigger is the mesh size and smoother is the intermolecular 

potential. 

With this picture in mind, we performed for all systems in 

Table 3-1 three particle-field simulations by decreasing the 

mesh size from 0,8 nm to 0,4 until 0,2 nm. We studied the 

systematic effect of the grid size in the reproduction of 

properties, dynamics and statics, of the polymer bulk in 

comparison with particle-particle reference model. 

 

3-1.2 Results and discussion 

 

In order to compare the results of particle-field simulations 

with the particle-particle reference model, several properties, 
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statics and dynamics, have been calculated. 

As important structural property, the radius of gyration (RG) 

has been calculated for all simulations of PMMA melts at T= 

500 K with different chain lengths. In Figure 3-2, as function 

of molecular weight, the RG of particle-field and particle-

particle simulations compared with experimental values are 

reported. 

 

 
Figure 3-2. Radius of gyration for particle-field simulation, with different grid size, 

compared with particle-particle and experimental values. 

 

The behaviour of the RG as function of molecular weight for 

the particle-field simulations show that smaller is the mesh 

size of a particle-field simulation and better is the agreement 

with particle-particle reference model. Starting from a mesh 
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size of 0.4 nm the agreement of RG of particle-field 

simulations is strictly close to particle-particle simulations. A 

small difference is found with a mesh size of 0.8 nm. 

To characterize the efficiency of the particle-field approach in 

the global relaxation of the chains, the relaxation time τ of the 

autocorrelation function of the end-to-end vector, R, was 

calculated. In Figure 3-3 the time τ is reported for all 

simulations. 

 
Figure 3-3. End-to-End relaxation time for particle-field and particle-particle simulations. 

 

The behaviour of relaxation time as function of molecular 

weight shows that for the particle-field simulation the 

relaxation process is faster compared whit particle-particle 
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simulation. In particular, for high molecular weight the 

difference, in terms of τ, between particle-particle and 

particle-filed is about two orders of magnitude. In other 

words, this means that practically a standard particle-particle 

model is inaccessible to relax long chains. 

Look at the fine structuration of the polymer melt, we can 

compare the reproduction of that one, for particle-field and 

particle-particle simulation, in terms of radial distribution 

function (RDF). In Figure 3-4 a comparison between particle-

field, at different grid size, and particle-particle RDF calculate 

for the backbone is reported. 

 
Figure 3-4. comparison of radial distribution function of the backbone calculate for particle-
field (0.2 , 0.4 , 0.8 nm) and particle-particle. The definition of type of atom is reported in 
Figure 3-1. 
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What we found is that with small mesh size the particle-field 

simulations show a good agreement in the reproduction of 

local structure (non continuous red and blue curve of Figure 

3-4). 

In conclusion, considered all static and dynamic properties 

calculated for the particle-field simulations, we can select, by 

tuning the mesh size, the time scale that we want to relax. For 

example, with mesh size of 0.8 nm we are able to efficiently 

relax the end-to-end autocorrelation function. If we are 

interested to obtain a very accurate reproduction of local 

structuration of chains, we can achieve it by reducing the 

mesh size. Differently from a standard “coarse-grained” 

approach, the particle-field approach does not need to adjust 

ad-hoc the force-field to keep the properties of different 

length scale of a polymer. 

In the following sections a particular application of particle-

field approach, to obtain a well-relaxed melt polymer 

embedding a silica nanoparticle, will be show.  
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3-2 Study of interface of Polymer matrix with Silica 

Nanoparticle 

 

Polymer reinforced with nanoparticles comprises an emerging 

class of materials due to their extraordinary enhanced 

properties. Compared to neat polymers, certain polymer 

nanocomposites exhibit a significant increase in tensile 

modulus and strength without loss of impact resistance and 

heat temperature10. Polymer nanocomposites offer new 

multifunctional properties, which are not observed with 

micrometer size fillers. For example, compared to the pure 

poly(methyl methacrylate) (PMMA), a higher transparency, 

an increase in the tensile strength, storage elastic modulus and 

surface hardness, an improvements in the thermal stability in 

the PMMA-silica nanocomposites, are reported11. Also, 

addition of such fillers as carbon nanotubes to the PMMA 

increases the Young modulus, and the hardness of the 

composite12. 

Among polymers, PMMA is the most commercially important 

acrylic polymer, used in many applications. Because of its 

high transparency and low density, PMMA is an ideal 

replacement for glass. Being compatible with human tissue 

makes PMMA an important material for transplants and 
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prosthetics, especially in the field of ophthalmology. Also 

because of similarity of its elastic modulus to natural bone, 

PMMA is used as bone cement on orthopaedic surgery. Due 

to the widespread applications of PMMA, nanocomposites 

have been prepared from it by the addition of nanoparticles 

such as organically modified clays, layered double 

hydroxides13, layered hydroxyl salts14, silica15 and carbon 

nanotubes16. Despite the improvements achieved, the 

development of polymer nanocomposites is still largely 

empirical. Therefore, a better understanding of structure-

property relationships between polymer and filler is still 

needed in the improvement of different classes of 

nanocomposites. 

Computer modelling and simulation play an important role in 

predicting and designing material properties, and guiding 

synthesis and characterization. These methods are of 

particular importance in elucidating the molecular 

understanding of the structure and dynamics at the interface 

between nanoparticles and polymer matrix and, hence, the 

molecular origins of such phenomena as reinforcement, and 

the impact on the mechanical, thermal, fire, and barrier 

properties. Although Monte Carlo (MC) and Molecular 

Dynamics (MD) simulation methods have been widely 

applied to study the structure and dynamics of model bead-
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spring polymer chains in contact with model (spherical) 

nanoparticles17, simulations of realistic polymer-nanoparticle 

systems are relatively scarce. 

Of the limited reports on the MC and/or MD simulations of 

realistic polymer chains in contact with particle surface we 

may address to the works by Barbier et al.18 od the MD 

simulation of interface between poly(ethylene oxide) and 

silica, MD simulations on the interphase structure and 

dynamics of polystyrene near bare and coated Au 

nanoparticles, by Milano et al.19,20 and that of polyimide near a 

silica nanoparticle, by Komarov et al.20. In addition some 

study about atomistic21 and coarse-grained22 MD simulations 

of polystyrene-silica nanoparticle have been recently 

published. 

The results of all of these studies indicate that the filler 

modifies the polymer structure in its neighbourhood. 

We performed detailed atomistic simulations of PMMA and 

its monomer MMA in contact with spherical silica 

nanoparticles. 

 

3-2.1 Models: MMA, PMMA and Silica Nanoparticle 

 

MD simulations were performed on both, MMA and PMMA 

systems containing a spherical Silica nanoparticle of diameter 
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of 3 nm. The spherical Silica nanoparticle were made 

according to the crystal structure of α-quartz applying the 

same procedure described by Brown22,23 and Muller-Plathe22. 

In such way all silicon atoms lying outside a spherical surface 

as well as oxygen atoms not bonded to the retained silicon 

atoms were deleted. All surface silicon atoms bonded with 

three surface oxygen atoms were deleted and all the remaining 

surface oxygen atoms were saturated with hydrogen to satisfy 

their chemical valence. 

The PMMA chains were composed of 5 repeating units, for 

which the chemical structure is shown in Figure 3-1. The 

force-field parameter were taken from Maranas8,9. 

For the MMA molecule a starting set of parameters based on 

the OPLS-AA have been considered. The starting set of 

parameters has been tuned to better reproduce both, the 

density of bulk and the enthalpy of vaporization. 

For both systems, MMA/NP and PMMA/NP, the simulations 

have been performed at 303 K. The temperature and pressure 

(101.3 kPa) were kept constant by coupling the system to a 

Berendsen thermostat and barostat. All nonbonded 

interactions were truncated at 0.80 nm and the Culombic 

interactions are evaluated by reaction field correction. All 

simulation have been performed with GROMACS(ver. 4.5.4). 

The composition of the systems is reported in table 3-2. 
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Table 3-2. Details about Simulated Systems 
Composition 

No. of 

MMA 

No. of 

PMMA 

No. of Silica 

NP 

Total No. of 

Particles 

Temp. 

(K) 

Simulated 

time (ns) 

3981 - 1 61116 303 60 

- 757 1 59690 303 60 

 

3-2.2 Discussion and Results 

 

Due to the complexity of the system, a key point to study the 

polymer/NP structure in the interphase is to obtain a well-

relaxed initial configuration. Differently from all examples 

reported in the introduction section, we prepared the initial 

configuration using the particle-field approach. As shown in 

the section 3-1 the particle-field approach allows us to obtain 

well-relaxed structure, with atomistic detail, of polymer melts. 

A similar procedure has been applied to obtain the initial 

configuration of both systems, PMMA/NP and MMA/NP. 

From those initial configurations, standard NPT simulations 

have been preformed. 

For the systems tabulated in Table 3-2, the radial distribution 

function (RDF) are reported in Figure 3-5. The RDF are 

calculated considering both, the center of mass (CoM) of each 

PMMA repeating units and the CoM of each MMA molecule. 

The results are time-averaged (over the last 2 ns of 
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trajectories) and reported as a function of distance, d, from the 

CoM of silica nanoparticles. 

 

 
Figure 3-5. Radial distribution function for PMMA (blue curve) and MMA (red curve). 0 nm 
corresponds to the center of mass of silica nanoparticle. 

 

The plot in Figure 3-5 indicates that a bigger adsorption of 

PMMA, respect to the monomer MMA, on the silica surface 

is found. At 1.5 nm of the plot, corresponding to the surface 

of silica nanoparticle, the value of RDF for the MMA is less 

than the bulk density (1 corresponds to the bulk density). The 

PMMA, instead, shows a bigger structuration on the silica 

surface, more than those one present in bulk. 

The interface region between silica NP and polymer bulk can 
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be evaluated from the RDF in Figure 3-6, in which is clear 

that the external hydrogen atoms are located in a narrow 

region of about 0.5 nm. Such hydrogen atoms on the surface 

are able to interact with polymer bulk. 

 
Figure 3-6. Radial distribution function of: silicon atoms (black continuous curve), oxygen 
atoms (red curve) and hydrogen atoms (blue curve) calculated respect the center of mass of 
silica nanoparticle. 

 
A distinct feature of the polymer/monomer nanocomposite 

reported is the possibility of hydrogen bond (HB) formation 

between the O-H hydrogens of the silica nanoparticle surface 

and the carbonyl oxygen atoms O of both, PMMA and MMA. 

In our study the hydrogen bonds are counted based on a 

geometric criterion in which H!!!O bond distance is 0.35 nm 

and the donor-acceptor angle θOH!!!O is 130°. Based on these 
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criteria, we have counted the number of hydrogen bonds 

between silica-nanoparticle and both, PMMA and MMA. In 

Figure 3-7 the comparison between PMMA and MMA is 

reported. To better understand the behaviour of hydrogen 

bonds formation, we performed two additional simulations at 

higher temperature (333 and 353K).  

 

 
Figure 3-7. Percentage of HB normalized respect to the number of hydrogen donors present 

on the silica surface. 

 

Only few papers are present in literature about simulation, at 

atomistic detail, of polymer-nanoparticle systems capable to 

form HB’s18,24. Moreover, to our knowledge, none of them 

investigated and compared the hydrogen bond formation 
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between silica nanoparticle surface of both, PMMA and its 

monomer MMA. What we found, as confirm of RDF 

comparison, is the presence of HB’s only in PMMA/silica NP 

system. In fact the MMA is less adsorbed on the silica surface 

not only respect to the PMMA but also compared with its 

bulk density. These results have been preliminary confirmed 

by experimental FTIR-ATR spectra in which the presence of 

broad peak at 1719 for the silica NP/PMMA and the absence 

of the same peak in silica NP/MMA (Figure 3-8). This is a 

strong indication of the different between the polymer and the 

monomer molecules.   

 

 
Figure 3-8. Experimental FITR-ATR spectra of silica nanoparticle in: MMA, PMMA6, 

PMMA9 and PMMA19. 
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3-3 Conclusions 

 

Atomistic molecular dynamics simulation for a nanoparticle 

in poly(methyl methacrylate) and methyl methacrylate, for a 

long time, up to 60 ns, are performed. The simulated systems 

contain a nanoparticle of diameter 3 nm. Polymer chains have 

been found in a more structured layer closer to the silica 

nanoparticle surface, compared with the monomer molecules. 

Moreover, we found that polymer chains form hydrogen 

bonds with the surface. Differently the monomers have been 

found to form not hydrogen bonds. The results obtained from 

the atomistic simulations have been preliminarily confirmed 

by experimental FTIR performed on similar system.  

Thanks to the particle-field approach, the hardest task, that is 

the obtaining of an initial configuration well relaxed at the 

correct density, can be easily got. In such way also a very 

complex system as nanocomposite made by nanoparticle in a 

polymer matrix can be prepared at atomistic detail in a very 

easy way. This approach opens the way to study at the 

different levels (time and length scales) complex 

nanocomposite systems at atomistic detail. 
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4 
Particle-Field Model of Phospholipids 

 

 

 

 

 

4-1. Introduction to Phospholipid Bilayer 

 

Phospholipids are an important class of biomolecules. Their 

amphiphilic nature allows them, when they are dissolved in 

water, to self-assemble into a lipid bilayer with lipid tails 

shielded from water and polar head groups exposed to the 

polar environment. In living organism, lipid bilayers form 

cellular membranes. Biological membranes are complex 

structures, and despite the considerable amount of information 

accumulated, experimental methods able to follow their 

dynamics with details at the atomic level are not yet 

available1-5. For these reasons, lipid bilayers have attracted the 

interest of the computational biophysics community, and 

atomistic molecular dynamics (MD) simulations of these 

systems have been performed for a long time6-9. However, 

these simulations are still computationally very expensive to 
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study processes occurring on the mesoscopic time (> μs) and 

length scales (> 100 nm)10. Therefore, to overcome this 

problem, alternative computational methods aiming to bridge 

the time and length scales involved in the relevant phenomena 

are constantly proposed. In the past few years, coarse-grained 

(CG) simulations became a very popular method for studying 

these systems. The CG approach involves the reduction of 

degrees of freedom in the atomic model of the simulated 

system by combining several atoms to a single particle 

(“effective bead”). CG methods have been successfully 

applied to several problems involving polymers,
11 

biomolecules2, and more in general soft matter12. 

For phospholipids, different types of CG models have been 

developed. Sintes and Baumgartner13,14 developed a coarse-

grained model for lipid bilayers where the solvent is implicitly 

taken into account. Later, Lenz and Schmid developed this 

implicit-solvent model to pure lipid bilayers composed of 

saturated lipids15. On the other hand, Goetz and Lipowsky16 

introduced an explicit-solvent CG model for lipid membranes 

where a binary Lennard-Jones fluid for the solvent and a short 

chain of beads for the amphiphilic molecules are used. 

The degree of coarse-graining of a simulated system is related 

to the type of process that one wants to investigate. 

Minimalist CG models (e.g., having a very low discrimination 
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of the chemical details of the molecule) can be successfully 

applied to study self-assembly phenomena involving many 

molecules when the structure and dynamics on atomistic 

length scales can be considered irrelevant for the process, and 

systems can be conveniently described by only a small 

number of key properties, e.g., the amphiphilic nature of the 

molecule. Usually for membrane systems, a clear separation 

in length, time, and energy scales assumed by this approach is 

often missing, and the chemical specificity of the models have 

to be taken into account. Furthermore, these simple models 

can fail to reproduce more complex phenomena involving 

specific interactions of membrane with other molecular 

systems (e.g proteins, polymers). In these cases, the generic 

nature of the minimal coarse-grain models limits their 

application. 

To possibly avoid these problems, more specific CG models 

can be developed. These CG models usually employ several 

different types of beads (not just hydrophobic and 

hydrophilic). A successful and very widely explored example 

of this approach is the MARTINI CG model developed by 

Marrink and co-workers17. In the MARTINI force field, beads 

having different Lennard-Jones interactions, that can 

smoothly modulate their hydrophobic/hydrophilic character, 

describe the phospholipids. In addition, water molecules are 
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treated explicitly with a coarse-grained reduction scheme of 

four molecules to one. Despite its simplicity, the MARTINI 

force field is able to reproduce with surprisingly good 

accuracy the properties of the self-assembly of lipid 

bilayers7,18,19.  

On the other hand, different computational approaches based 

on field representations have been proposed to model soft 

matter systems. In particular, in the framework of the self-

consistent field (SCF) theory, the model systems are not 

represented by particles but by density fields, and the mutual 

interactions between segments are decoupled and replaced by 

an interaction between the segments and static external 

fields20. In the SCF theories, these external fields depend on 

the statistical average of the spatially inhomogeneous density 

distributions of segments of independent molecules, which are 

interacting only with these fields. Such external fields and the 

particle density distributions have to be determined self-

consistently.  

Several models have been reported in the literature to study 

mixtures of phospholipids and water using a field-based 

approach. Marcelja21 proposed the first field model. In this 

model, the head groups of the lipid molecules are modeled as 

a boundary to which the tails of the lipid molecules are 

anchored. The intramolecular degrees of freedom are sampled 
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using the rotational isomeric state (RIS) model, where the 

segments interact through an anisotropic aligning potential21. 

The inequivalence of tail, head, and solvent segments allows 

the modeling of bilayers as preassembled structures, and it 

does not allow the study of self- assembly. Later, a fully self-

consistent framework that is capable of describing stable, 

tensionless, self-assembled bilayers has been proposed. Both 

random-chain and the RIS-chain models result in membranes 

with qualitatively similar segment distributions and with 

similar thermodynamic properties22. Quantitatively, however, 

this approach underestimates the experimentally measured 

membrane thickness by about 50%23. More recently, 

molecular-level SCF theories that are able to treat 

phospholipids have been proposed24. The main point of these 

SCF techniques is to split up the calculation of multibody 

interactions into two procedures: i.e., to find the ensemble 

averaged conformation distribution and to find the segment 

potentials based on the segment distribution. For these 

purposes, differential equations have to be solved numerically 

using lattice approximations, and a discrete set of coordinates 

onto which segments can be placed has to be defined. Layers 

are defined imposing reflecting boundary conditions to mimic 

a multi-lamellar system. Parameters are defined so that the 

results of the MD simulations match those of the SCF 
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simulations. Müller and Schick25 proposed an alternative 

approach developing an off-lattice representation of the field 

theory and obtained the single-chain partition function via a 

partial enumeration26 over a large set of molecular 

conformations of a lipid chain with the RIS statistics. As the 

partition function of a single lipid in an external field cannot 

be obtained analytically for a realistic molecular architecture, 

one has to approximate the probability distributions of the 

conformations of non-interacting lipid molecules by a 

representative sample of single lipid conformations. 

More recently, Müller and Smith27 introduced a hybrid 

approach in the framework of SCF theory by combining it 

with a Monte Carlo simulation of a coarse-grained model of 

polymer chains to study phase separation in binary polymer 

mixtures. This approach has been widely and successfully 

applied by Müller and co-workers to coarse-grained models of 

diblock copolymer thin films28 and polymer nanocomposites29. 

One of the advantages of this hybrid approach is the lack of 

any limitation in treating complex molecular architectures 

and/or intramolecular interactions.  

Particle-based CG models like MARTINI are still 

computationally expensive compared to SCF approaches. In 

the following, we will refer to these models as particle-

particle (PP) models. On the other hand, SCF approaches 
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ensure accessibility to definitely larger length and time scales 

but at the cost of very low chemical specificity. The idea 

behind the combined MD- SCF method is to obtain a strategy, 

as far as will be possible, having the main advantages and 

avoiding the main disadvantages of both techniques. 

In this chapter, will be reported the development of coarse-

grained specific models for biologically relevant 

phospholipids that are suitable for the hybrid MD-SCF 

techniques. In the following, we will refer to these models as 

particle-field (PF) models. 

In the Chapter 2, a description of the theoretical approach of 

the hybrid MD-SCF method is reported.  
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4-2. Particle Field Models of Phospholipids 

 

As described in Chapter 2, according to the formulation of 

hybrid PF models, the intramolecular bonded interactions 

(bond, angles) can be modeled using usual force fields 

suitable for molecular simulations. Our choice is to develop a 

hybrid PF model based on a description able to retain the 

chemical specificity. The coarse-graining scheme proposed by 

Marrink and co-workers is suitable for this purpose. The 

advantages of this model are that the parameterization of the 

interaction potentials is not tailored to a specific lipid and 

different phospholipids can be modeled from a small set of 

bead types. 

In Figure 4-1, the MARTINI coarse-graining mapping scheme 

of the atomistic structures is exemplified for the phospholipid 

dipalmitoylphosphatidylcholine (DPPC). 
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Figure 4-1. Adopted CG mapping scheme for the DPPC phospholipid. One CG bead 

corresponds about to 4 atoms. 

 

According to the formulation of the MD-SCF method, bond 

and angle interaction potentials have the same functional form 

and parameters as those in the original MARTINI force 

field17. All types of nonbonded intramolecular interactions are 

assumed to be repulsive, while the intermolecular interactions 

are calculated using the assumption that each coarse-grained 

bead interacts with the density fields. According to Eq. (1), in 

order to calculate the PF potential, several mean field 
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parameters χKK’ between a particle of type K with the density 

field due to particles of type K’ are needed. A simple choice 

of these parameters can be obtained by following the Flory 

Huggins approach for the calculation of χ parameters for 

lattice models: 

 

χKK ' =
ZCN
KBT

2uKK ' − (uKK +uK 'K ' )
2

#

$%
&

'(
.    (1) 

 

Where uKK’ is the pairwise interaction energy between a pair 

of adjacent lattice sites occupied by the beads of types K and 

K’. These interaction energies have been set as uKK ' = −εKK ' , 

where εKK’ is the Lennard-Jones ε parameter for the 

corresponding PP interactions. The parameter ZCN in Eq. (1) 

is the coordination number, which takes a value of 6 for a 

three-dimensional lattice. Another way to obtain the 

coordination number is from integration of the radial 

distribution function between all possible pairs. As the initial 

state for the MD simulations, we prepare a randomly mixed 

state of 208 DPPC and 1600 CG water molecules. Then, this 

mixture is subjected to an energy minimization procedure in 

order to avoid particle overlapping. This procedure gives an 

average number of neighbors per particle calculated at a 
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distance equal to 1.20σ close to 6.0. With the choices 

described above, it is possible, given the particle-particle ε 

parameters and the value of ZCN, to obtain the corresponding 

PF parameters. According to our choice, the χ parameters 

have been obtained considering the interactions between the 

different particle types classified according to the four types 

polar, nonpolar, apolar, and charged interactions considered in 

the MARTINI force field17. 

Using the models and the PF parameters described above, we 

simulated a system of DPPC and water using small values of 

both grid size (l = 0.587 nm, corresponding to 1.25σ) and 

update frequency (0.3 ps, corresponding to 10 time steps). 

In order to determine the value of the parameter κ, which 

regulates the strength of the incompressibility condition 

imposed in Eq. (14) of the Chapter 2, we analyzed the 

behavior of density fluctuations in the reference PP 

simulation. The criterion is the reproduction of the value of 

the average density fluctuations, calculated as mean square 

deviation between the average total density and instantaneous 

value averaged over all lattice points using the same grid size 

used in PF simulations. In particular, using values of 1/κ of 

about 8RT (where R is the gas constant and T temperature), 

average density fluctuations, in agreement with the reference 

PP simulation, are found to be smaller than 1%. 
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The system has been simulated for 60 ns. In Figure 4-2, snap- 

shots of the simulations together with calculated electron 

density profiles are reported. Here, the electron density 

profiles are obtained by multiplying the particle number 

density by the number of electrons contained in a given bead. 

As shown in Figure 4-2C, similarly to the reference PP 

simulation, the hybrid PF simulation leads to a successful 

formation of a lipid bilayer. Further comparisons between the 

results of PP and PF MD simulation have been used to refine 

the set of initial χ parameters obtained using Eq. (1). 

 

 
Figure 4-2. Water and DPPC density profiles and snapshots for (A) reference PP simulation, 
(B) PF simulation using a χCW parameter 2.5 times larger than the value calculated by Eq. (1), 
(C) PF simulation using χCW parameter calculated by Eq. (1). 

 
In Figure 4-2, electron density profiles calculated by PP and 

PF MD simulations for the DPPC/water system (bottom panel 
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of Figure 4-2) have been compared. 

From a comparison of the density profiles of Figures 4-2A 

and B, it is clear that the PF model gives a weaker phase 

separation between DPPC and water molecules with respect 

to the MD simulation. Furthermore, the snapshot of Figure 4-

2C shows that, for the system simulated with the hybrid PF 

method, the phospholipid plane lies along the diagonal of the 

simulation box. This indicates the tendency of the lipid 

molecules to occupy a larger area for the lipid. This tendency 

can be connected to a different size of the lipid molecules in 

the PF simulations from that of the PP simulations. To show 

this, the radius of gyration and the angle between two tails 

obtained from PP and PF simulations have been compared.  

As a result, both weak phase separation between the lipid and 

water and the tendency to occupy a larger area per lipid can 

be mainly ascribed to an underestimation of repulsion 

between the DPPC molecules and water in PF models with 

respect PP ones. Following this idea, several simulations were 

conducted to refine the interaction parameter between the 

hydrophobic tails of lipids and water molecules (namely the 

χCW parameter). Test simulations show that starting from 

values of χCW parameter 2.5 times larger than the value 

calculated by Eq. (1), the lipid bilayer does not occupy a 

larger area per lipid than the PP simulations and lies parallel 
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to the xy plane of the simulation box. In Figure 4-3, density 

profiles of DPPC, water, and the phosphate group (P) 

obtained from simulations, in which the repulsion between 

water and hydrophobic tail is further increased to 3 times that 

obtained with Eq. (1), are reported. 

 
Figure 4-3. Comparison between reference PP and PF simulations using different values of 
the χCW parameter for electron density profiles of water (A), DPPC (B), and the phosphate 
group (C). Total density profiles for DPPC water system calculated from PP (red circles) and 
PF (blue triangles) simulations in comparison with experiments (black curves; D) are shown. 
The density profiles evaluated using the χCW parameter, which is scaled 2 to 3 times the value 
obtained from Eq. (1), are compared with those of the reference PP simulation. 

 

From Figure 4-3, it is clear that using a value of the χCW 

parameter that is 2.5 times larger than that evaluated by Eq. 

(1) gives electron density profiles very close to that in the 

reference PP simulations. In Figure 4-3D, the total electron 
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density profiles of the DPPC/water system calculated from PP 

and PF simulations are compared with those obtained by 

fitting X-ray diffraction experiments of Kucerka and co-

wokers30. The behavior of the calculated density profiles is 

smoother than the experimental one. In particular, in both PP 

and PF density profiles, the height of the peaks located at 

about 2 nm from the center of the bilayer is slightly 

underestimated. This effect, similar in PP and PF simulations, 

can be ascribed more to the coarse-grained nature of the 

models (reduction of degrees of freedom into one effective 

bead) than to the field description in the hybrid PF models; a 

similar behavior is found comparing the behavior of the 

calculated and experimental density profiles for the phosphate 

group (Figure 4-3C). The optimized set of χ parameters for all 

PF interactions is reported in Table 4-2. 

According to Eq (1), the interaction matrix is symmetric, and 

the χ parameter between the same type of particles is zero. 
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4-3. Phospholipid Bilayers: Simulations and Results 

 

In Figure 4-4, self-assemblies of DPPC/water systems 

simulated using PP and PF models are compared. For 

simulations, the initial configuration and the simulation 

conditions are the same (see Table 4-1). The starting 

configuration for both simulations is made up of randomly 

mixed DPPC and water molecules. 

 
Figure 4-4. Comparison of the self-assembly process of DPPC and water in a bilayer phase 
obtained from PF (A) and PP simulations (B). In the figure, the time behavior of particle-
field intermolecular potential in the PF MD simulation is compared with the behavior of the 
non-bonded Lennard Jones potential in the PP simulation. Potential units are kilojoules per 
mole. 
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It is worth noting that in the PF simulations the formation of 

the lipid bilayer as stable equilibrium state, as shown by the 

snapshots reported in Figure 4-4A, is observed already after 

about 7 ns. From Figure 4-4B it can be noted that in the same 

time interval the PP simulation shows only an initial stage of 

phase separation and a stable lipid bilayer phase is formed 

only after 30 ns. 

 

4-3.1 Structural Properties  
 

As described in Chapter 2, coarse-grained density fields 

φK(r), obtained from particle positions for every particle type 

K, are used to calculate PF potentials and forces.  

According to the scheme described above, two parameters, 

the cell size l and the update frequency Δtupdate, regulate the 

degree of coarse-graining of the density fields. Larger cell 

sizes lead to more collective density fields. As for the value of 

the update frequency, it has to be chosen in a way that the 

approximation of slow variation of the field with respect to 

the particle displacement is valid between two density 

updates. In this section, simulation results using different 

density update frequencies and cell sizes will be discussed and 

compared with the results of reference PP simulations. 

Several test simulations have been performed to understand 
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the effect of the cell size l on the quality of calculated electron 

density profiles of the DPPC water bilayer. In Figure 4-5, 

partial density profiles corresponding to water and to the four 

different bead types (N, P, G, and C) present in DPPC 

obtained using l ranging from 1.25 and 2.5σ (corresponding to 

0.59 and 1.17 nm) and using the same update frequency 

(Δtupdate = 10 timesteps) are reported.  

 

 
Figure 4-5. Partial density profiles for water and DPPC obtained from (A) PP simulations 
and PF simulations using l=(B) 1.25σ, (C) 1.50σ, (D) 1.60σ, (E) 2.0σ, and (F) 2.5σ. In all PF 
simulations, the update frequency Δtupdate is 10 time steps. 

 

From Figure 4-5 it is clear that PF simulations reproduce the 

structure of the lipid bilayer phase obtained from reference PP 

simulations well (Figure 4-5A). Values of l larger than 2.5σ 

give rise to stronger phase separation between water and 

DPPC with a narrowing of the density profiles. The grid size 

is larger, and this effect is more pronounced. 
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In Figure 4-6, electron partial density profiles for a mixture of 

water and DPPC molecules obtained for different values of 

the density update and using the same grid size (l = 1.25 σ) 

are compared with those obtained from reference PP 

simulations. In particular, the behaviors for Δtupdate ranging 

from 10 (0.3 ps) to 1300 (39 ps) time steps are compared. 

 
Figure 4-6. Partial density profiles for water and DPPC obtained from (A) PP simulations 
and PF simulations using Δtupdate = (B) 10, (C) 300, (D) 700, (E) 900, and (F) 1300 time 
steeps. In all PF simulations, the grid size has been kept constant at l=1.25σ. 

 

As expected, the agreement between PP and PF density 

profiles worsens as the Δtupdate grows. For an update 

frequency between 10 and 700 time steps, water and DPPC 

density profiles are quite similar (see Figure 4-6B_D) and 

reproduce the behavior of the reference PP simulation well. 

Starting from update frequencies of 900 time steps (see Figure 

4-6E), artificial undulations in the lipid bilayers are obtained. 
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This causes a smoothing of the calculated density profiles. In 

particular, when large updates are used, the central depletion 

in the density profile of the hydrophobic beads of type C is 

absent (Figures 4-6E,F). Further- more, the density profiles of 

the DPPC head groups N and P and of the bead types G are 

very shallow (Figure 4-6E,F). 

The reproduction of the spatial organization of the head 

groups and in particular the phosphate group (type P) is 

important for the quality of the model. In fact, the bilayer 

thickness (DHH), obtained by calculating the distance between 

the two peaks of the density profile corresponding to the 

phosphate group, can be compared with the values obtained 

from X-ray and/or neutron diffraction measurements. In the 

case of DPPC at 323 K, a value of DHH of 3.7 nm is obtained 

from PF simulations using update frequencies from 10 to 700 

time steps. This value is equal to the one obtained from PP 

simulations and close to the experimental value of 3.8 nm 

measured at the same temperature31. For larger values of 

density update frequency, the electron density profile of P 

groups becomes broader, and a correct evaluation of DHH 

becomes unreliable. 

In order to understand the behavior of the systems as a 

function of the frequency of the density update, it is useful to 

compare the mean square displacement (MSD) of the particles 



 

 

 

65 

as a function of time. In Figure 4-7, we present the behavior 

of the square root of the mean square displacement for water 

and the DPPC in units of cell length ((MSD)1/2/l where l is the 

cell length) as function of time for different values of update 

frequencies. 

 
Figure 4-7. Normalized displacement of water, DPPC, and P beads as a function of time. 

 

This is a direct way to understand the validity of the 

approximation of slow variation of the field with respect to 

the particle displacement between two density updates. In 

fact, the plot of Figure 4-7 quantifies how many cells a 

particle can cross in a given amount of simulation time. From 

Figure 4-7, it is clear that for update frequencies between 500 

and 700 steps (corresponding to 15 and 21 ps) both water and 

DPPC beads have a displacement smaller than or equal to the 
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cell size. For larger update time intervals, the displacement is 

larger than the size of a cell. This result agrees well with the 

good reproduction of density profiles and a bilayer thickness 

for update frequencies smaller than 700 steps. 

This kind of analysis of PF simulations can be useful in 

general to set a suitable value for the update frequency also in 

the absence of reference simulations data. 

 

4-3.2 Dynamical Properties  
 

From the comparison of the self- assembly processes of a 

lipid bilayer obtained in the simulations shown in Figure 4-4, 

it is clear that the dynamics of the system simulated by the PF 

method are faster. This is due to smoother potentials and 

forces characterizing the PF Hamiltonian. In particular, PF 

models include the effect of excluded volume interactions 

between particles using the incompressibility condition 

described in Eq (14) of the Chapter 2. Forces acting on the 

particles then depend on the derivatives of the density fields 

that change smoothly over the length scale at larger than 

average distances between particle pairs. 

In order to compare more quantitatively the different 

dynamics in PP and PF simulations, diffusion coefficients 

have been calculated from the MSD behaviors of water and 
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DPPC particles as functions of time. 

In Figure 4-8, values of the ratio D* between the diffusion 

coefficients calculated from the PF simulations using different 

update frequencies and the one calculated from the reference 

PP simulation are reported. In all of the cases and for both 

water and DPPC, the diffusion coefficients calculated from 

the results of PF simulations are larger than those obtained 

from the results of the PP simulation.  

 
Figure 4-8. Ratio between PP and PF diffusion coefficients as a function of the update 

frequency calculated for water (black curve) and DPPC (red curve). 

 

The diffusion of water is 3.5 to 4 times faster for PF 

simulations. The increase of the diffusion coefficient of the 

DPPC lipid ranges from about 3.5 to 7 times the value 

obtained from the reference PP simulation. This behavior is in 

agreement with the faster formation of a stable lipid bilayer as 

obtained from the comparison between PF and PP simulations 
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reported in Figure 4-4. 

In Table 4-3, the values of diffusion coefficients and their 

components calculated from PP and PF simulations using 

different density update frequencies are reported. 

Results of the test simulations obtained using different grid 

sizes l and the same update frequency (300 time steps) are re- 

ported in Figure 4-9. In particular, the values of the diffusion 

coefficients of water and DPPC increase according to the 

increase in the grid size. This is reasonable because a coarser 

density will give rise to smoother particle-field potentials and 

forces. 

 
Figure 4-9. Diffusion coefficients of water and DPPC vs. the CG density grid size. 

 

In the case of water, there is a small decrease in the diffusion 

coefficient for the largest grid sizes (2.0σ). This effect is due 

to the deviation from the reference density profile obtained 
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when a larger grid size is used. As described in the previous 

paragraph, large grid sizes give rise to stronger phase 

separation between water and DPPC. The x and y components 

of the diffusion tensor of the water parallel to the bilayer 

plane show small variation as a function of the grid size, and 

they are practically constant within the error bar. In contrast, 

the z component of the diffusion tensor of water going from a 

grid size of 1.5 to 2.0σ is reduced by a factor of 2. 

 

4-3.3 Extension to other Phospholipids  
 

One of the advantages of our reference PP coarse-grained 

model is that the parameterization of the interaction potentials 

is not tailored to a specific lipid, and different phospholipids 

can be modeled, taking into account different chemical 

structures, using a small set of bead types. 

In this section, simulations aiming to test the transferability of 

the model developed for DPPC and the relative PF χKK’ 

parameters are reported. Electron density profiles and bilayer 

thickness are compared between PF and PP models and with 

experiments.  

In particular, further test simulations are conducted for three 

biologically relevant lipids, i.e. dimyristoyl-

phosphatidylcholine (DMPC), distearoyl-phosphatidylcholine 
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(DSPC), and dioleoylphosphatidylcholine (DOPC). In Figure 

4-10, the chemical structures of these three phospholipids are 

shown along with the structure of DPPC. 

The advantage of our reference PP coarse-grained models lies 

in the straightforward way in which the corresponding 

atomistic structure can be represented.  

 
Figure 4-10. Structure formulas of the four phospholipids considered in the present study. 
The mapping scheme adopted for the CG models is the one depicted in Figure 4-1. For the 
DOPC phospholipid, the mapping for beads of type D including carbon atoms involved in 
double bonds is shown. 

 

The differences between lipids depend on the molecular 

structure on the atomistic level. For instance, the main 

difference between DMPC, DPPC, and DSPC is in the 

numbers of carbon atoms present in the hydrophobic tails. In 

this case, at the CG level, the PP models differ only in the 
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number of beads of type C (see Figures 4-1 and 4-10) that 

compose the tails, while the parameters for the nonbonded 

bond and angle potentials are the same. Differently, in the 

case of DOPC, the presence of a double bond in each 

hydrophobic chain requires an extra particle type 

corresponding to four atoms including a double bond (see 

Figure 4-10, particle type D). For this reason, in the DOPC 

CG model, some of the angles and nonbonded potentials are 

different. In particular, the C-C-C harmonic angle potential 

has a minimum at 180°, while the C-D-C harmonic angle 

potential has a minimum at 120°. In the same way, nonbonded 

interactions of beads of types C and D are different. 

Correspondingly, the particle-field models of DMPC, DPPC, 

and DSPC have the same bonded, intramolecular nonbonded, 

and the χ (see Table 4-2) parameters, and they differ only in 

the number of beads. In the case of DOPC, having an extra 

bead type D and particle-field interactions involving only this 

new bead type introduces the use of different χ parameters. Of 

course, the interactions involving beads of type C are treated 

in the same manner as in DMPC, DPPC, and DSPC lipids.  

Other details about simulated systems are reported in Table 4-

1. Simulation temperatures have been chosen according to the 

available experimental data; temperatures of both experiments 

and simulations are listed in Table 4-4. 
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From these simulations, total electron density profiles and 

bilayer thicknesses (DHH) have been calculated and compared 

with those of the reference PP simulations and available 

experimental data. In Table 4-4 the calculated values of DHH 

are reported together with the reference PP simulations and 

experimental data. We want to stress that experimental values 

of DHH lie in a very narrow range going from the smallest 

value of 3.6 nm for DPPC to the largest one of 4.0 nm for 

DSPC, and good reproduction of these values can be proof of 

the transferability of the chosen PF model. As previously 

discussed, DSPC and DOPC give very similar density profiles 

with both PP and PF models. This leads to the calculation of 

the same values of DHH = 4.1 nm for these two lipids using PP 

models. Using PF models, according to the experimental 

trend, a larger value is obtained for the DHH of DSPC (4.4 nm) 

and a smaller one for DOPC (4.0 nm). 

In Figure 4-11, the total electron density profiles obtained by 

Kucerka et al. from X-ray scattering data for DOPC32 and 

DMPC33, the ones obtained from PP and PF simulations, are 

plotted. In particular, the behavior of electron density of 

DOPC and DMPC is compared. As already found for DPPC 

(see Figure 4-3D), the behavior of the calculated density 

profiles is smoother than the experimental ones. Furthermore, 

for DOPC, the position of the maximum of electron density 
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profile of both PP and PF is shifted of about 0.5 nm. This is 

consistent with an overestimation of the DHH (4.1 and 4.0 nm 

for PP and PF, respectively) with respect to the experimental 

value of 3.6-3.7 nm. For DMPC, the position of the maximum 

of the electron density profile of both PP and PF simulations 

is similar to the experimental one. In this case, the 

experimental value of DHH is well reproduced (see Table 4-4). 

 

 
Figure 4-11. Total electron density profiles for (A) DOPC and (B) DMPC phospholipid 

bilayers. 

 

4-3.4 Simulation Details 
 

Classical MD simulations used to obtain reference PP 

simulations have been performed using the program 

GROMACS (ver. 3.3). The time step used for the integration 

of the equations of motion was 0.03 ps. The temperature and 

pressure were kept constant using Berendsen’s weak coupling 
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method (τT = 0.1 ps and τP = 1 ps). Target temperatures have 

been chosen according to the available experimental data and 

are listed in Table 4-1. A cutoff of 1.5 nm has been used to 

truncate nonbonded interactions. To equilibrate the system 

with NPT simulations, the target pressure was fixed to 1 bar, 

and semi-isotropic coupling has been employed. In order to 

achieve a better comparison between the results of PP and 

those of NVT PF simulations, NVT MD simulations have been 

performed using the average box lengths (see Table 4-1) 

obtained from the equilibrated NPT simulations. In particular, 

NPT simulations were performed for all systems for at least 

120 ns. In the case of the DPPC lipid, the equilibrium 

area/lipid at 323 K for the PP model is 0.64 nm2. This value 

was reported by Marrink et al.34 and is in agreement with the 

experimental value reported by Nagle et al.35 and later by 

Kucerka et al.30 In order to simulate systems having a correct 

value of area/lipid, NVT PF simulations have been performed 

using average box lengths (see Table 4-1) that are 

corresponding to those obtained in the reference PP 

simulations. 

The molecular dynamics program OCCAM36 was used for 

hybrid particle-field MD simulations. PF simulations have 

been performed using a time step of 0.03 ps. NVT simulations 

have been conducted keeping the temperature constant using 
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an Andersen thermostat with a collision frequency of 5 ps_1. 

All density profiles, for both PP and PF simulations, have 

been calculated from simulations equilibrated at least for 10 

ns. Density profiles have been averaged over further 2 ns after 

equilibration. The composition of lipid water systems has 

been set in the range of stability of the bilayer phase. Details 

about systems sizes and compositions are summarized in 

Table 4-1. 

 
Table 4-1. Details about Simulated Systems 

Lipid 

Type 

Box lengtha (nm)  Composition 

x y z  No. of 

lipids 

No. of CG 

water 

T 

(K) 

DPPC 8.18 8.18 6.95  208 1600 325 

DMPC 6.60 6.60 9.47  208 1600 303 

DOPC 7.21 7.21 9.63  208 1600 303 

DSPC 8.03 8.03 7.76  208 1600 335 
avalues of box length in x, y, and z directions have been fixed using averages obtained from 

NPT simulations of the reference PP models. 
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Table 4-2. Particle-Field Interaction parameters  

χ N P G C W 

N 0.00 -1.50 6.30 9.00 -8.10 

P -1.50 0.00 4.50 13.50 -3.60 

G 6.30 4.50 0.00 6.30 4.50 

C 9.00 13.50 6.30 0.00 33.75 

W -8.10 -3.60 4.50 33.75 0.00 

χ‘×RT (kJ/mol) for particles of type K interacting with fields due to particle of type K’.  

 
Table 4-3. Diffusion coefficients calculated using different Update Freq.a 

Update 

Freq. 

[timesteps] 

Water (cm2/s × 105)  DPPC (cm2/s × 105) 
Total x y z  Total x y z 

PP 1.27 1.63 1.63 0.43  0.08 0.13 0.12 0.01 

10 4.40 6.5 6.6 0.04  0.28 0.45 0.43 0.03 

100 4.67 7.1 6.8 0.04  0.27 0.43 0.44 0.03 

300 4.82 7.3 7.1 0.04  0.26 0.38 0.38 0.04 

500 5.13 7.6 7.6 0.05  0.35 0.52 0.50 0.03 

700 5.53 8.4 8.4 0.05  0.55 0.079 0.078 0.09 

aThe grid size l is equal to 1.25σ for all simulations. 

 
 
Table 4-4. Calculated Bilayer Thickness 

Phospholipid DHH PP  
(nm) 

DHH PF  
(nm) 

DHH Experimental  
(nm) 

DMPC 3.7 (303 K) 3.7 (303 K) 3.837-3.533 (303 K) 
DPPC 3.5 (323 K) 3.5 (323 K) 3.637 (323 K) 
DOPC 4.1 (303 K) 4.0 (303 K) 3.737-3.632 (303 K) 
DSPC 4.1 (333 K) 4.4 (333 K) 4.037-4.138 (333 K) 
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4-4 Particle-Field CG Model of Phospholipids in 

Non-lamellar Phase. 

 

In this section the validation of particle-field models of 

phospholipids in non bilayer phases is reported. In particular, 

the transferability of the model to systems different water 

contents has been validated against reference simulations. 

 

4-4.1 Simulation Details 
 

For the use of a reference system for the CG simulations, 

classical PP MD simulations have been performed using the 

program GROMACS39 (ver. 3.3). The timestep used for 

integration of equation of motion was 0.03ps. The 

temperature was kept constant using the weak coupling 

method with τT=0.1 ps, where the target temperatures are 

listed in Table 4-2. A cut-off of 1.5 nm has been used to 

truncate the non-bonded interactions. 

The parallel molecular dynamics program OCCAM36 was 

used for PF MD simulations. PF MD simulations have been 

performed using a timestep of 0.03ps with the NVT ensemble 

by keeping the temperature constant using Andersen 

thermostat with a collision frequency of 5ps-1. 
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Details on the systems size and composition used in the 

simulations in the present study are summarized in Table 4-5. 
 

Table 4-5. Composition of systems used to investigate phases different 

from lamellar one. 
System Box Size 

(nm) 

Composition T 

(K) 

 x=y=z No. of 

Particles 

No. of 

DPPC 

No. of 

Water 

Water/DPPCa 

Ratio 

 

1 7.923 3,876 20 3,636 182 325 

2 8.176 4,096 320 256 0.8 325 

3 12.964 21,216 1,664 1,248 0.75 318 

4 13.486 24,128 1,664 4,160 2.5 318 

5 12.376 18,600 300 15,000 50 318 

6 17.309 42,588 208 40,092 192.7 318 
aIn the reference PP model each CG water bead corresponds to 4 molecules, in the text of the 

manuscript and in the figures this factor has been taken into account. 

 

4-4.2 Model Validation: PP vs. PF simulations 
 

According to the coarse-graining strategy explained in the 

section 4-2, pair interactions between particles are replaced by 

the calculation of the interactions of single particles in an 

external field. In principle, coarse-grain parameters are not 

always transferable, in particular, χ parameters can be 

temperature and composition dependent. This dependency 

cannot be known a priori and needs to be investigated for 



 

 

 

79 

every coarse-grained model. This feature of coarse-grained 

models is general and is relevant also for particle-particle 

coarse-grained models. 

In order to validate the PF MD-SCF simulations, the results 

between PF and PP simulations are compared. 

In Figure 4-12 self assemblies of DPPC/water systems 

simulated using PP and PF models at two different water 

contents (systems 1 and 2 of Table 4-5, respectively) are 

compared. In the reference PP model each CG water bead 

corresponds to 4 real water molecules. In the present study, 

this factor has been taken into account. For example, ratio 

between CG water beads and DPPC molecules reported in 

table 4 is for system 1 is 182 and for system 2 is 0.8. In terms 

of real water molecules these ratios would be 728 and 3.2.  

For both of these simulations the initial configuration and the 

simulation conditions are the same. The starting configuration 

used in both simulations is a random mixture of DPPC and 

water molecules. For high water concentration (system 1), for 

PP and PF simulations, the formation of a micelle is observed. 
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Figure 4-12. Comparison of the self assembling process of a DPPC micelle in water for PF 
(A) and PP simulations (B). Comparison of self assembling process of a reverse micellar 
phase for PF (C) and PP simulations (D) is given. In the figures the time behavior of particle-
field intermolecular potential in the PF MD simulation are compared with the behavior of the 
non-bonded Lennard-Jones potential in the PP MD simulation. Potential units are kJ/mol. 

 

In the case of PF simulation the self assembling process of the 

micelle takes about 15 ns, which is faster than the PP 

simulation (see Fig. 4-12A), where the micelle is obtained 

after 25ns (see Fig. 4-12B). In Figure 4-13 the radial density 

profiles of the micelle obtained in the PF (Fig. 4-13A) and PP 

(Fig. 4-13B) simulations are compared.  
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Figure 4-13. Radial density profiles of the micelle obtained in the PF (A) and PP (B) 

simulations on system 1. 

 

Radial density profiles obtained in the PP and PF simulations 

are similar. The main difference is observed in the slopes of 

the curves. A further validation of the proposed particle-field 

models can be done calculating the average number of lipid 

per micelle. These calculations can be reliable only using 

larger systems in which two more micelles are in equilibrium 

with free lipid molecules. 

The system at low water concentration (system 2) shows a 

different behavior; in both PP and PF simulations a formation 

of reverse micelles is observed. In particular, from Fig. 4-12C 

it is clear that at about 12ns the system reaches a stable 

reverse micellar phase. In this reverse micellar phase, polar 
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head groups of the lipids and the water molecules form 

cylinders included in the hydrophobic majority phase made of 

lipid tails. This result is in agreement with the formation of a 

hexagonal reverse-cylindrical phase. The formation of this 

phase structure is more clearly observed in Fig. 4-14A where 

structures obtained from PF and PP simulations are compared.  

Differently from PF simulations, the cylinders obtained in the 

PP simulation are less regular and the water beads are not 

included in the cylinders but they form clusters with different 

sizes inside the hydrophobic phase formed by the lipid tails. 

We expect that, in this case, the simulated system is “trapped” 

in a metastable phase and the slower dynamics of PP 

simulations does not allow the system to escape from such a 

metastable phase to become more stable hexagonal structure. 

In order to confirm this point, the equilibrium structure 

obtained in the PF simulation is used, after a short energy 

minimization is performed, as the initial state for the PP 

simulation.  
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Figure 4-14. Comparison of self-assembling process of cylinders in the reverse micellar 
phase obtained in the PF and PP simulations (A). Comparison between time behavior of 
Lennard-Jones non-bonded potential (kJ/mol) of PP simulations obtained in a spontaneous 
assembling process from a uniformly mixed state (black curve) and that of PP simulation 
starting from the self-assembled structure obtained in the PF simulation (red curve) (B). 
Snapshot of the system showing the hexagonal arrangement of cylinders in the reverse 
micellar phase (C). 

 
In this case, as shown in Fig. 4-14B the non-bonded 

interaction energy is lower and the structure is stable during 

all the simulations. In Figure 4-14C this structure is depicted 

in a view showing the hexagonal arrangement. 
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4-4.3 Effects of Density Coarse Graining on Structure and 

Dynamics 

 

According to the theoretical formulation described in Chapter 

2, two parameters, i.e. the cell size l and the update frequency 

Δtupdate, regulate the degree of coarse-graining of the density 

fields. Larger cell sizes lead to more collective density fields. 

As for the value of the update frequency, it has to be chosen 

in a way that the approximation of slow variation of the field 

with respect to the displacements of the particles is valid 

between two density updates.  

In Figure 4-15 the structures obtained using different density 

update frequencies and cell sizes are summarized. In 

particular, for high and intermediate water concentrations the 

formation of a micelle and lipid bilayer is always observed 

using large values of field update interval (up to 900 

timesteps) and the grid size (up to 2.5σ = 1.175 nm). 

Differently, the hexagonal phase expected at low water 

concentration can be obtained for grid sizes smaller than 2σ (l 

≈ 1 nm) and update interval shorter than 500 timesteps. For 

larger values of the update interval or of the grid size, the 

cylinders are not formed and instead irregular reverse micelles 

are obtained as shown in Figure 4-15 (labeled as im). 
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Figure 4-15. Graphical matrix summarizing the structures obtained using different density 

updates intervals (y axis, time steps unit) and cell sizes l (x axis, unit of σ). 

 

This behavior can be explained by comparing the size of the 

grid with the lengthscale of the self-assembling structure. The 

diameter of the micelle and the bilayer thickness are both 

about 4 nm, while the diameter of the tubes present in the 

hexagonal phase is smaller (≈ 1 nm). Then in this case when 

the size of the grid used for the density coarse-graining starts 

to approach the size of the cylindrical tubes, these structures 

cannot be described correctly. Similar considerations can be 

made for the density update interval. In figure 6 is reported 

the behaviour of the mean square displacement as a function 

of time for different values of the density update intervals for 

the two different systems reported in Figure 4-12. In 

particular, in order to compare the displacements with the size 
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of the structures, the square root of the mean square 

displacement (MSD) normalized by the grid size is reported. 

This is a quantitative way to understand the validity of the 

approximation of slow variation of the field with respect to 

the particle displacement between two density updates. In fact 

the plots showed in Figure 4-16 quantify how many cells a 

particle can across in a given amount of simulation time.  

 
Figure 4-16. Square root of normalized the mean square displacement of water, DPPC and 

water beads as function of time. 

 

From Figure 4-16 it is clear that for update intervals between 

500 and 900 steps (corresponding to 15 and 36 ps) both water 

and DPPC beads undergo a displacement equal to or larger 

than a cell size (i.e. larger than 0.6 nm). 

From the comparison of the self assembling processes 

obtained in the simulations shown in Figure 4-12, it is clear 
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that the dynamics of the system simulated in the PF method is 

faster than the PP method. This is due to the smoother 

potentials and forces characterizing the PF Hamiltonian. In 

particular, the models used in the PF simulation include the 

effect of excluded volume interactions between particles by 

using incompressibility condition as described in Eq. (14) of 

Chapter 2. Then, forces depend on the derivatives of the 

density fields with a change much more smoother than 

distances between particles pairs. 

In order to compare more quantitatively the different 

dynamics in PP and PF models, diffusion coefficients have 

been calculated from the behaviour of the MSD for water and 

DPPC particles versus time. In particular in Figure 4-17 the 

ratio D* between diffusion coefficients calculated in the PF 

simulations (update interval of 300 timesteps and grid size l 

=2.0σ) and the one calculated in the reference PP simulation 

are reported. From the figure it is clear that for all considered 

systems the diffusion coefficients calculated in the PF 

simulations are always larger than ones calculated in the PP 

simulations. In particular, for DPPC they are from 4 to 6 times 

larger than those in the PP simulations and for water they are 

from 1.25 to 2.5 larger.  

Absolute values of diffusion coefficients calculated using 

different grid sizes and update interval for both water and 
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DPPC are reported in tables 4-6 to 4-9. 

 

  
Figure 4-17. Ratio between PF and PP diffusion coefficients as function of water/DPPC 

ration calculated for water (black curve) and DPPC (red curve). 

 
The ratios between the diffusion coefficients obtained in the 

PF and PP simulations can be regarded as scaling factors to 

connect the dynamics of the PF simulations with that of the 

reference PP ones. This kind of comparison has been made 

also for the reference PP simulations to connect their 

dynamics with atomistic ones and according to this 

comparison we can estimate that the reference PP models 

have a dynamics that is about 4 times faster than atomistic 

simulations. Considering this point, the dynamics in PF 

simulations should about 20-25 times faster than that in the 

atomistic simulations. It is interesting to note that the scaling 

factors between the PP and PF simulations are functions of 

water concentrations. In particular, they become larger as the 
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water content becomes smaller. This behaviour, from practical 

purposes, is very convenient because we can simulate with a 

largely improved efficiency the very slow dynamics in 

atomistic systems whose equilibration is difficult with the PP 

coarse-grained or the atomistic simulations. 

 

Table 4-6. Diffusion coefficients calculated using different update intervals and 
different grid sizes for water in system 1 

Update Freq. Water 

[time steps] [cm2/s×105] 

 l = 1.25 σ l = 1.50 σ l = 2.0 σ l = 2.5 σ 

Particle-Particle 2.45 ± 0.06 - - - 

10 3.04 ± 0.06 3.02 ± 0.02 3.04 ± 0.02 2.93 ± 0.07 

100 3.06 ± 0.07 3.07 ± 0.01 2.9 ± 0.1 2.94 ± 0.06 

300 3.05 ± 0.01 3.12 ± 0.02 3.05 ± 0.05 3.04 ± 0.03 

500 3.15 ± 0.03 3.18 ± 0.05 3.08 ± 0.04 3.06 ± 0.01 

700 3.23 ± 0.02 3.02 ± 0.05 3.12 ± 0.05 3.08 ± 0.05 

 

Table 4-7. Diffusion coefficients calculated using different update intervals and 
different grid sizes for DPPC in system 1 
Update Freq. DPPC 

[timesteps] [cm2/s×105] 

 l = 1.25 σ l = 1.50 σ l = 2.0 σ l = 2.5 σ 

Particle-Particle 0.024 ± 0.003 - - - 

10 0.085 ± 0.004 0.090 ± 0.003 0.132 ± 0.002 0.093 ± 0.001 

100 0.12 ± 0.01 0.118 ± 0.008 0.091 ± 0.002 0.992 ± 0.008 

300 0.09 ± 0.02 0.12 ± 0.04 0.14 ± 0.05 1.01 ± 0.03 

500 0.076 ± 0.004 0.14 ± 0.02 0.089 ± 0.003 1.03 ± 0.03 

700 0.089 ± 0.006 0.088 ± 0.003 0.096 ± 0.001 1.14 ± 0.09 

Update Freq. Water 
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 Table 4-8. Diffusion coefficients calculated using different update intervals and 
different grid sizes for water in system 2 

 

Table 4-9. Diffusion coefficients calculated using different update intervals and 
different grid sizes for DPPC in system 2 

Update Freq. DPPC 

[timesteps] [cm2/s×105] 

 l = 1.25 σ l = 1.50 σ l = 2.0 σ l = 2.5 σ 

Particle-Particle 0.032 ±  0.002 - - - 

10 0.12 ± 0.01 0.14 ± 0.02 0.20 ± 0.01 0.24 ± 0.05 

100 0.132 ± 0.002 0.148 ± 0.004 0.196 ± 0.004 0.24 ± 0.01 

300 0.135 ± 0.002 0.155 ± 0.008 0.183 ± 0.001 0.25 ± 0.01 

500 0.153 ± 0.007 0.158 ± 0.002 0.16 ± 0.02 0.24 ± 0.01 

700 0.16 ± 0.01 0.156 ± 0.003 0.186 ± 0.001 0.25 ± 0.04 

 

 

 

[timesteps] [cm2/s×105] 

 l = 1.25 σ l = 1.50 σ l = 2.0 σ l = 2.5 σ 

Particle-Particle 0.3813 ± 0.0007 - - - 

10 1.02 ± 0.06 0.85 ± 0.02 0.98 ± 0.05 1.42 ± 0.02 

100 0.957 ± 0.005 0.61 ± 0.08 0.84 ± 0.06 1.61 ± 0.04 

300 0.88 ± 0.09 0.90 ± 0.07 0.6 ± 0.3 1.36 ± 0.06 

500 0.87 ± 0.08 0.8 ± 0.2 0.859 ± 0.003 1.02 ± 0.04 

700 1.07 ± 0.04 0.46 ± 0.03 0.936 ± 0.008 1.340 ± 0.007 
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4-4.4 Simulations on Larger Systems 
 

On the basis of the results presented in the previous 

subsection, PF MD simulations on larger systems have been 

performed using a grid size l=1.5σ and the density update 

interval of 300 timesteps. In particular, we simulated the 

spontaneous self-assembling processes in several DPPC/water 

systems for 1.2µs using a cubic box with the side lengths that 

are about double of those used in the simulations reported in 

the previous subsections. For all considered systems the 

starting configuration is made up of randomly mixed lipid and 

water molecules.  

In Figure 4-18 the time behaviors of PF potential together 

with some snapshots for four DPPC/water systems at different 

water concentration have been shown (systems 4-6), while the 

details of these systems are shown in Table 4-5. 

For all of the systems shown in Figure 4-18 after 500ns the 

equilibrium is achieved and a stable phase-separated structure 

is formed. In particular for the system at lower water 

concentration shown in Figure 4-18A (system 3, 3 water/lipid) 

after 400 ns a stable reverse hexagonal phase is formed. At 

intermediate water content (system 4, 10 water/lipid) a stable 

bilayer phase is formed before 500ns (Figure 4-18B). 
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Figure 4-18. Time behaviors of the PF potential together with some snapshots for (A) system 
3 forming a reverse-micellar hexagonal phase, (B) system 4 forming a lipid bilayer phase, 
(C) system 5 forming a single bicelle, and (D) system 6 forming a micellar phase. 

 

Differently, in system 5 (Figure 4-18C), where the water 

content is higher, after a rapid initial local clustering after 

100ns there is a coalescence to a bilayer structure with curved 

edges (bicelle) leaving a small single spherical micelle beside 

it. Between 100 and 200ns a process of fusion starts to give a 

stable bilayer structure with curved edges involving all 300 

DPPC molecules present in the simulation box. Finally, the 

simulation of the system 6 with the water content of 771 

water/lipid, after an initial clustering, the formation of two 
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nearly spherical micelles is obtained.  

 

 
Figure 4-19. Time behaviours of number of clusters (black line) and average number of 
lipids per cluster/micelle (red line) (A). Number of lipids/cluster distribution system (B) 
Snapshots of PF and PP micellar systems (C). 

 

A further validation of the proposed models can be done 

considering the average number of lipids/micelle. In the 

Figure 4-19A is reported the time evolution of the number of 

clusters together with the average number of lipid per cluster 

for a system having 771 water/lipids. Two lipids are 

considered to be in the same cluster if at least one distance 

between their beads is smaller than 1.2 nm. According to this 

choice the average number of lipids/cluster (micelle) is about 

80. This value has been averaged starting from 400 ns, when 
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the system shows to be in equilibrium. As for available 

experimental data, Sodium dodecyl sulfate (SDS) in 

physiological conditions forms micelles with an aggregation 

number ranging from 50 to 80. In Figure 4-19B, the micelle 

size distribution, averaged from 400 to 600 ns has been also 

reported. From the figure it is clear that the distribution is 

trimodal, showing three peaks, the first one corresponding to 

free lipid molecules, a second one corresponding to a smaller 

micelle of about 50 lipids and a bigger one of about 150 

lipids. This distribution can be also visualized looking at some 

representative simulation snapshot like the one depicted in 

Figure 4-19C. Analogous behavior has been found from 

particle-particle simulations, very similar structures can be 

obtained as shown in Figure 4-19C. 
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4-5. Conclusions 

 

Specific CG models for phospholipids and water suitable for 

hybrid particle field molecular dynamics simulations have 

been developed. These models and the set of parameters 

needed to evaluate interactions of particles with density fields 

are optimized to reproduce structural properties of reference 

PP simulations. These parameters are transferable also to 

other phospholipids, different from the DPPC, in the 

reproduction of lipid bilayer structure properties. The 

transferability, depending on the temperature and water/lipid 

content, has been already tested and validated in the 

reproduction of phases different from the lamellar one. As 

expected, due to the smoothness of the PF interactions, the 

dynamics is faster in PF simulations. In particular, the ratio 

between diffusion coefficients calculated from PP and PF 

simulations, for the bilayer systems, goes from 3 to 7 

depending on the degree of coarse-graining of the density 

field.  

The proposed model is also able to correctly describe 

morphologies, different from lamellar one, i.e. from micelles 

(at high water concentration) to reverse micelles (at low water 

concentration), obtained by varying the water content. 
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The lower computational costs of the hybrid MD-SCF 

approach, together with a faster dynamics due to the 

smoothness of the potentials and forces, enable us to perform 

simulations with a considerably improved efficiency. The 

hybrid MD-SCF scheme is particularly efficient in parallel 

simulations, especially for large systems when the use of a 

large number of CPUs is efficient.36  

In conclusion, the development of specific coarse-grained 

models suitable for hybrid PF simulation opens the way 

toward the simulation of large-scale systems employing 

models with chemical specificity. 
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5 
Particle-Field Models of Block-Copolymer 

 

 

 

 

 

5-1 Particle-Field model of Pluronic® Block-

Copolymers to study phase morphologies 

 
The triblock-copolymers of poly(ethylene oxide)m-

poly(propylene oxide)n-poly(ethylene oxide)m (PEOm-PPOn-

PEOm), are an important family of amphiphilic polymers. 

They are commercially known and available as Pluronic® or 

Poloxamer. The hydrophilic-lipophilic character of these 

block-copolymers can be tuned varying the blocks length and 

the molecular weight of both, PEO and PPO blocks. Such 

adaptability allowed to employ these copolymers in many 

fields, like foaming, detergency, dispersion stabilization, 

emulsification1, lubrication, cosmetic formulation, 

modification of surface for biocompatibility for medical 

applications2. The Pluronic micelles used for the drug delivery 

are one of the most studied for medical applications2. Such 
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micelles have the capability to include hydrophobic drugs 

inside the PPO core3 and transport them in the body. Recently, 

the Pluronic micelles have been also used in the cancer 

therapy4. For these reasons the micellar phase has been 

investigated in deep by numerous experimental techniques. 

For example, critical micelle concentration (CMC) and 

critical micelle temperature (CMT) have been studied with 

dynamic light scattering and fluorescence spectroscopy5. 

Extensive experimental studies of Pluronic phase behavior in 

water has been reported by Alexandridis6-9 and Zhou10,11.  

A study of the kinetic process of micellization of Pluronic 

L64 in water, measured with dynamic light scattering 

technique, shows that the self-assembly process is a complex 

multistep phenomenon that occurs on a time scale of the order 

of µs12. Atomistic simulations, due to the large length and 

timescale involved, cannot be directly applied to study these 

self-assembly phenomena. Just to have an idea about the size, 

if we consider a simulation of 300 Pluronic L62 chains 

hydrated by 56,000 water molecules, i.e. the smallest system 

reported in the present investigation, it would involve about 

200,000 particles. Atomistic simulations, due to their 

computational costs, usually are confined to systems on time 

and length scales of ns and few nm. 

On the other hand, different computational approaches based 
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on mean field density functional theory have been proposed 

for these systems13,14. Fraaije15 proposed a model to study the 

morphologies of non dilute water/Pluronic solution. In the 

framework of self-consistent field (SCF) theory, the model 

systems are not represented by particles but by density fields, 

and the mutual interactions between the segments are 

decoupled and replaced by interaction between the segments 

and static external fields. Such approaches are 

computationally less expensive and reach time and length 

scales able to reproduce the morphologies of different phases. 

Their disadvantage is that in such models the chemical 

specificity and the link with atomic structure are difficult to 

achieve. 

A different approach, based on reference atomistic data, using 

a coarse-grained (CG) implicit solvent model has been 

reported by Bedrov16, while a similar CG model for 

symmetric triblock-copolymers, but having explicit water 

beads, has been reported by Faller17. Such CG models are 

computationally less expensive compared with atomistic 

models but are still expensive compared with SCF approaches 

and are of quite limited use for the investigation of phase 

patterns formation. 

We present a computational study of the phase behavior of 

binary Pluronic-water mixtures, based on the hybrid particle-
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field (PF) molecular dynamics method18,19. The idea behind 

the hybrid PF molecular dynamics approach is to obtain a 

strategy, as far as will be possible, having a similar 

accessibility to large time and length scales of pure SCF 

methods, and including at the same time the chemical 

specificity of atomistic and CG models. As shown in Chapter 

3, PF models of phospholipids have been reported to study the 

phase behaviour of phospholipid/water mixtures. In particular, 

we investigate the phase behaviour, as function of the 

composition and temperature, for the Pluronics PEO6-PPO34-

PEO6 (L62) and PEO13-PPO30-PEO13 (L64). 

At low polymer concentration, in a water solution, Pluronic 

chains self-assembly in micellar phases. The micelles are 

formed by a hydrophobic core, mainly composed by PPO 

blocks, and by a hydrophilic corona, formed by hydrated PEO 

blocks. At higher polymer wt% content the Pluronic chains 

self-assembly in different phases, passing through the lamellar 

phase to isotropic solutions at high polymer contents6. 

In the next subsections we want to present and validate the PF 

coarse-grained model for micellar and non-micellar phases. In 

particular, the transferability of the model to systems at 

different polymer content has been investigated. 
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5-1.2 Model and Parameters 

 

The CG model used in this study is parameterized on the basis 

of the results of atomistic models reported by some of us in a 

previous paper20. Moreover we tested the reproduction of 

structural properties of a single micelle of Pluronic L64 

compared with experimental data.  

The model of Pluronics employed in this study can be 

considered an extension of the GC model reported in 

reference21, from which the bonds and angle distributions 

have been used to parametrize the intramolecular interactions. 

Differently from the models already reported, in the 

framework of PF models, here the intermolecular interactions 

have been evaluated using a field theoretic approach18,19 (see 

the Chapter 2). 

The mapping scheme adopted for the CG model in the present 

work is depicted in Figure 5-1. Each bead of the CG model 

for EO and PO corresponds to three (C-O-C) and four 

(C(CH3)-O-C) heavy atoms, respectively. Oxygen atoms 

(depicted in red in Figure 5-1) were considered as centers of 

each bead for both EO and PO repeating units.  
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Figure 5-1. The mapping scheme used for the model of Pluronic. Each EO bead corresponds 
to three heavy atoms. For PO, each bead corresponds to four heavy atoms. The effective 
beads are centered on oxygen atoms (depicted in red) for both EO and PO types. The bead 
type W corresponds to four real water molecules. 

 

According to this, the bond length between two beads 

corresponds to distance between two oxygen atoms of two 

consecutive repeating units. The angle formed between two 

adjacent vectors corresponds to angle formed between three 

consecutive oxygen atoms of three consecutive monomers. 

The target distributions of bond and angle are calculated from 

atomistic simulations20. 

The force field parameters of the CG model, for 

intramolecular part, were taken from the references20-22. Such 

CG force field has been based on the reproduction of both, 

bond and angle distributions, of atomistic simulations23,24, in 

which small oligomers of PEO and PPO have been simulated 
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in water and different solvents. Force-field parameters for 

intramolecular interactions are summarized in Tables 5-1 and 

5-2. In particular, the bond is described by a harmonic 

potential of the form: 

 

Vbond (r) =
1
2
Kbond (r − rbond )

2     (1) 

 

where rbond is the equilibrium bond length and Kbond is the force 

constant. The stiffness of the chains is also taken into account 

by a harmonic bending potential Vangle(θ ) that depends on the 

cosine of the angle θ between two successive bonds. 

 

Vangle(θ ) =
1
2
Kangle cos(θ )− cos(θ0 ){ }

2   (2) 

 

where Kangle is the force constant and θ0 is the equilibrium 

bond angle. Angle parameters adopted for the models of this 

paper are reported in Table 5-2.  

The particle-field parameters χKK’ required to calculate the 

interactions between a particle of type K and the density field 

due to the particles type K’ are listed in Table 5-3.  

The particle-field interaction parameters between PEO/water 

and PPO/water have been tuned to reproduce the radius of 
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gyration of aqueous solution of PEO and PPO polymer, at 

different molecular weights21. 

 
Table 5-1. Parameters for bond potential. 

Bond Type rbond 
(nm) 

Kbond 
(kJ mol-1 nm-2) 

PEO-PEO 0.28 8000.00 

PPO-PPO 0.28 5000.00 

PEO-PPO 0.28 6500.00 

 

Table 5-2. Parameters for angle potential. 

Angle Type θ  
(deg) 

Kθ  
(kJ mol-1) 

PEO-PEO-PEO 155.00 40.00 

PEO-PPO-PPO 140.00 40.00 

PEO-PEO-PPO 140.00 30.00 

PPO-PPO-PPO 140.00 30.00 

 

Table 5-3. Particle-field interaction matrix. χKK’RT (kJ mol-1) 

χ  Water PEO PPO 

Water 0.00 1.50 4.60 

PEO 1.50 0.00 16.00 

PPO 4.60 16.00 0.00 
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5-1.3 Computational Details 

 

The parallel program OCCAM was used for molecular 

dynamics simulations. All simulations have been performed 

using a time steep of 0.03 ps, with NVT ensemble by keeping 

the temperature constant using Andersen thermostat with a 

collision frequency of 7 ps-1. Details about the composition of 

the systems are summarized in Table 5-4. 

 
Table 5-4. System Compositions 
Systems Composition  

(no. of molecules) 
Polymer  

wt% 
Temp. Box size Simulated 

 time 

 L62 L64 Water Particle 
no. 

 (K) (nm) (µs) 

I 304 0 56016 70000 20 303 20x20x20 2.7 

II 791 0 33614 70000 52 303 20x20x20 3.3 

III 1065 0 21010 70000 70 303 20x20x20 3.5 

IV 1370 0 6980 70000 90 303 20x20x20 3.5 

V 0 250 56000 70000 20 303 20x20x20 3.5 

VI 0 650 33600 70000 52 303 20x20x20 3.7 

VII 0 875 21000 70000 70 303 20x20x20 4.3 

VIII 0 1125 7000 70000 90 303 20x20x20 3.3 

IX 0 1 8500 8556 24 303a 10x10x10 0.3 

X 0 3696 23000 230000 90 303 30x30x30 6.0 

aThe system IX has been simulated also at the temperature of: 288, 293, 
298 K. 
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5-1.4 Morphology of different phases  

 

In principle, the parameters of a coarse-grained model are not 

easily transferable. In particular, χKK’ parameters required to 

calculate the interactions between a particle of type K and the 

density field due to the particles type K’ can depend on 

composition and temperature. This dependency cannot be 

known a priori and need to be investigated for every coarse-

grained model.  

The main purpose of this study is to study and validate the PF 

model for both micellar and non micellar phases 

corresponding to low and high block-copolymer contents, 

respectively. In particular, two different block-copolymers, 

Pluronic L62 and Pluronic L64, have been chosen. Although 

the molecular weights of Pluronic L62 and L64 are 

comparable (~2900) the ratio PEO/PPO is quite different, and 

consequently the Hydrophobic Lipophilic Balance (HLB), 

that summarizes the structural differences, assumes values of 

7 for L62 and 15 for L64. The HBL is defined as the ratio of 

lengths of the EO on PO blocks. It can be expressed by the 

following empirical form: 

HBL = −36.0 NPPO

NPEO + NPPO

+33.2    (3) 

We investigate a binary block-copolymer/water system of 
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both, Pluronic L62 and L64, to observe the spontaneous 

formation of different morphologies as function of 

concentration and temperature. To this aim, four different 

polymer concentrations have been considered (20, 52, 70, 90 

wt% of polymer content).  

 

Micellar and Hexagonal Phases: The time behaviour of SCF 

potentials of systems at different concentrations is reported in 

Figure 5-2.  

 

 
Figure 5-2. Time behavior of SCF potential for the composition of 20 wt% polymer content. 
(a) System I of Pluronic L62 (b) System V of Pluronic L64 (c) Representative snapshot of 
micellar phase in which the system has been extended in the xy plane. Only hydrophobic 
PPO blocks are depicted. The different colors, orange and green, assigned to the PEO beads 
of Pluronic L64 and L62 has been done to easily distinguish the L62 and L64 in the 
snapshots of simulations. No difference in the mapping scheme or interaction parameters 
exists. The water beads W are omitted for clarity. 
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Representative snapshots of systems are included above the 

plots. The compositions of the simulated systems are reported 

in Table 5-4. At low concentration of Pluronic (20 wt%), in 

agreement with experimental phase behavior9, a micellar 

morphology has been found. At that concentration the block-

copolymer molecules self-assemble into spherical micelles for 

both L62 and L64 (Figure 5-2a and 2b). The micellar phase 

reproduction is not surprising because the model used in this 

work was parameterized at similar concentration and tuned to 

reproduce the experimental radii, of core and corona, of a L64 

micelle. In Figure 5-2c a representative snapshot of micellar 

phase has been reported. To favor the visualization, the 

system has been extended in the one plane. 

The time behaviors of both, number of clusters and number of 

chains/cluster (i.e. aggregation number, Nagg), are reported in 

Figure 5-3. From the plots is clear that starting from 2 µs for 

both L62 and L64 the number of clusters and the aggregation 

number are fluctuating around a constant value. The time 

needed for the formation of stable micellar structures is of the 

same order of magnitude of the one reported from 

experiments25. 
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Figure 5-3. Time behavior of: (a) Number of Pluronic L62 clusters for the system I. (b) 
Number of Pluronic L62 chains per cluster for the system I. (c) Number of Pluronic L64 
clusters for the system V. (d) Number of Pluronic L64 chains per cluster for the system V. 
The number of cluster is calculated on the basis of a cut off value (1 nm) on the shortest 
distance between PPO units of two different L64 chains. 

 

The temperature dependence of the cluster size has been also 

investigated. The calculated Nagg 24 at 303 K is comparable 

with the experimental value of 19 found at the same 

temperature8,26 . As reported by Alexandridis6,8,9,25 for a diluite 

solution of Pluronic L64 (2.5 wt%) the Nagg. increases from 37 

to 54 in the temperature range 37-55 °C. In non diluite 

water/L64 solution (31.9 wt%) an increase of Nagg. from 1 up 

to 69 in the temperature range 8-35°C has been reported by 
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Wu26. A similar behavior of temperature dependency of Nagg. 

has been found for different Pluronics, P85, F88, F68, F127.  

As pointed out by Alexandridis et al. the hydrophobic block 

of the Pluronics (PO) is responsible for the micellization due 

to diminishing hydrogen bonding between water and (PO) 

with increasing temperature. Correspondingly the PEO-water 

and PPO-water χ interaction parameters increase with 

tempereature27 and the PEO-PPO interaction parameter 

decreases28.  

We found a different behavior for our model, in fact, as 

shown in the Figure 5-4a, the average number of Pluronic 

L64/cluster decreases by increasing the temperature. The 

same behavior has been found for the Pluronic L62. The 

origin of this disagreement between experiments and 

simulations can be ascribed to the use of fixed χKK’ parameters 

at different temperatures. A better agreement could be 

obtained using a more flexible model allowing the correct 

temperature dependency of χPEO,W and χPPO,W (of the type 

χ = χ0 A1−
B1
T

#

$
%

&

'
( ) and for the χPEO,PPO (of the type χ = χ0 A2−

B2
T

"

#
$

%

&
' ), 

where Ai and Bi can be tuned to reproduce the correct 

experimental behavior. 

In addition the Rg of a single L64 chain in water has been 

calculated at different temperatures, and the results have been 
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compared with experimental value29. In Figure 5-4b the 

temperature behavior of Rg is reported. The red cross 

represents the experimental value of Rg measured by light 

scattering for a water solution of Pluronic L64 with a 

concentration below the CMC. We found for our model at 

283K a Rg of 2.3 nm, larger than the experimental one (1.8 

nm)29. Also in this case, temperature dependent χ parameters 

would lead to a better agreement. 

 

 
Figure 5-4. (a) Average number of Pluronic chains per cluster depending on the temperature 
for both, L62 and L64. (b) Radius of gyration of a L64 single chain in water calculated at 
different temperatures (system IX). The red cross represents the experimental value. 

 
The experimental phase diagram9 of both, Pluronic L62 and 

Pluronic L64, shows that the morphologies corresponding to 
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phases in the range of 50~80 wt% are different for L62 and 

L64. In particular, for the Pluronic L62 the lamellar 

morphology is stable in a range of 60~70 wt%. Differently, 

the Pluronic L64 having similar PPO block to that of L62 but 

longer PEO blocks, shows the presence of an additional 

hexagonal phase that is rather narrow and extends from 46~52 

wt% L64 content. Although the wt% content of the system II 

for the Pluronic L62 is not representative of a hexagonal 

phase, we studied that composition for both, L62 and L64, to 

test the specificity of our model in the reproduction of this 

peculiar phase behavior.  

 

 
Figure 5-5. Time behavior of SCF potential for the composition of 52 wt% polymer content. 
(a) System II of Pluronic L62 (b) System VI of Pluronic L64 

 

In Figure 5-5a and 5b the time behaviors of SCF potential are 

reported. In order to speed up the self-assembly process, an 

annealing procedure has been applied for both Pluronics. The 

systems have been heated up to 830 K and cooled down to 
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303 K in about 0.6µs for both. Then the temperature of the 

systems has been kept constant, by Andersen thermostat, at 

303 K. The temperature time behaviors, together to significant 

snapshots of the systems, are reported in Figure 5-6a and 6b.  

 
Figure 5-6. Temperature time behavior: (a) System VI Pluronic L64 forming a hexagonal 
morphology. (b) System II Pluronic L62 forming a lamellar morphology. (c) Detail of 
hexagonal morphology obtained for the Pluronic L64. The experimental value[45] of apolar 
cylinder radius R is reported on the picture. 

 

For the Pluronic L62, according to experimental phase 

behavior, the hexagonal morphology is not obtained. 

Differently, for the Pluronic L64 a hexagonal morphology, 

according to experimental phase diagram9, is reached after 2.1 

µs. In that phase the Pluronic chains self-assemble in 

cylindrical structures with a well defined periodicity. A 
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structural parameter of the hexagonal morphology, depending 

on the periodicity, is the apolar cylinder radius (R) of the PPO 

block. In Figure 5-6c is clear that simulated structure well 

agrees with the experimental value of R = 4.1 nm reported by 

Alexandridis9. 

 

Lamellar phase and High Polymer content isotropic 

solution: According to the phase diagram, the composition of 

70 wt% of polymer has been chosen, for both Pluronics. In 

Figures 5-7a and 7b time behavior of SCF potential is 

reported. During the simulations, the SCF potential quickly 

reaches the equilibrium and a well structured lamellar 

morphology, according to experimental behavior,[8] has been 

found for both Pluronic L62 and L64. We extended the 

investigation of phase behavior reproduction of our model 

also in the phase with polymer content higher than 70 wt%. 

To this aim the composition of 90 wt% of polymer has been 

chosen. In the Figure 5-7c and 7d the time behaviors of SCF 

potential are reported for both Pluronics. For the L62 we 

obtain, at equilibrium, a lamellar morphology instead of 

complex interconnected structures as postulated from the 

experiments. Similarly, for the Pluronic L64 we obtained a 

morphology close to the lamellar one, but with defects. 

Probably, these results are affected by finite size effects, due 



 

 

 

117 

to periodic boundary conditions (PBC) favoring the lamellar 

morphologies. 

 
Figure 5-7. Time behavior of SCF potential for the compositions of 70 and 90 wt% polymer 
content. (a) Sistem III of Pluronic L62 (b) System IV of Pluronic L64 (c) System VII of 
Pluronic L62 (d) System VIII of Pluronic L64. 

 

The behavior of the radius of gyration (Rg) as function 

polymer composition has been also investigated. In particular, 

we report in Figure 5-8 the Rg of the entire chain of Pluronic 

and the partial Rg calculated for PEO and PPO segments 

separately. As expected, the high water content of the systems 

I and V plays a strong role in the PPO segregation, resulting 

in the smallest Rg found for all composition studied. Instead, 

at higher block-copolymer content we observe an increasing 
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of total Rg and PPO. Not a significant variation of Rg of the 

PEO blocks has been observed (Figure 5-8c).  

 
Figure 5-8. Average radius of gyration, depending on the wt% polymer content, of: (a) total 
chain of Pluronic. (b) PPO block. (c) PEO blocks. The empty black circle represents the 
Pluronic L64. The red whole circle is used to the Pluronic L62. 

 

All the morphologies obtained at different contents of 

polymer and different temperatures for both Pluronic L62 and 

L64, together with the experimental phase diagram are 

depicted in Figure 5-9.  

For the Pluronic L62 the morphologies found at 303 K are in 

agreement with the experimental phase diagram9. In fact, at 
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low polymer content we found spherical micellar 

morphology, as expected. A lamellar morphology has been 

observed at 52, 70 and 90 Pluronic L62 wt% content, as 

expected. Differently from the phase diagram, for the 90 wt% 

we still found the lamellar morphology instead of complex 

interconnected structures. 

 
Figure 5-9. Phase diagrams for Pluronic L62 in (A) and Pluronic L64 in (B). For any 
composition and temperature studied, a snapshot of the obtained morphology has been 
depicted on the diagram. The phase diagrams are redrawn from the ref.[8]. 

 

For the Pluronic L64 a similar figure has been shown. At 303 

K we found micellar, hexagonal and lamellar morphologies 

according to phase diagram9. At temperature higher than 303 

K we found a stable micellar morphology for 20 wt% of L64. 

Instead, at 52 wt% the hexagonal morphology is not stable, 

according to phase diagram, and a lamellar morphology with 

defects has been observed.  

At 90 wt% of L64 content, as observed for L62, we found a 

lamellar morphologies instead of the more complex structures 

postulated from experiments. Probably, as discussed above, 
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simulation results are affected by finite size effects, due to 

PBC favoring the lamellar morphologies. In order to reduce 

such effect we simulated a system in which the box lengths 

are increased by a factor 1.5 (system X in Table 5-4). In 

Figure 5-10 snapshots at different times for the system X are 

depicted. The water beads and PEO blocks are excluded from 

the snapshots. Complex and interconnected structures at 1.5 

and 3.0 µs start to be formed.  

 
Figure 5-10. Snapshots of the system X (see Table 5-4) taken at different time. The box 
lengths is 1.5 times (30x30x30 nm) larger than those ones used for systems studied in the 
present work. 

 
The system evolves, in 6 µs, in a morphology having 

interconnected lamellae formed by PPO blocks. These 

complex structures, probably, are characterized by 
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lengthscales of the same order of the box size and further 

investigation with systems larger than those ones studied in 

the present work should be considered.  

One of the important uses of CG models is to obtain well-

relaxed structures useful for generating configurations at a 

higher level of chemical detail. An example is the generation 

by local relaxation of structure of dense polymer melts at the 

atomistic level starting from mesoscale models30,31. 

The Pluronic CG model presented in this work has been based 

on the atomistic models. The mapping scheme proposed for 

that model is strictly connected to atomistic scale. In fact, 

every EO and PO bead includes 3 and 4 heavy atoms, 

respectively. Differently from Pure SCF or DPD approaches, 

our model is still very close to an atomistic one. Such feature 

allows reintroducing, by reverse-mapping procedures, the 

atomistic details. More detail about the reverse-mapping 

procedure can be found in the Appendix A. 

Moreover, as shown previously, we are able to obtain 

morphology patterns typically of the mesoscale length. 

Combining the possibility of our model to reintroduce 

atomistic detail with morphologies obtained from the CG 

model on the scales of µs and nm, we report an example of 

reverse mapping for the hexagonal morphology. The full 

atomistic configuration obtained is formed by ~600.000 
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particles. In Figure 5-11a both structures, atomistic and 

coarse-grained, are depicted. From the atomistic structure the 

scattering factors (q) are calculated and compared with SAXS 

spectrum9 as shown in Figure 5-11b. 

 
Figure 5-11. (a) Atomistic structure, obtained after backmapping procedure, and CG 
structure of the hexagonal morphology for the Pluronic L64. Each EO and PO beads 
correspond to 3 and 4 heavy atoms, respectively. (b) Calculated scattering factor q for the 
atomistic structure of hexagonal morphology obtained for the Pluronic L64. The blue points 
represent the experimental values of SAXS spectra9.
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5-2 Interaction Between Pluronic Micelle and 

Biomembranes  

 

In medicine the use of nanosized tools for the diagnosis, 

prevention and treatment of diseases is becoming more and 

more popular32. First generation nanomedicines, nowadays, 

are in routine clinical use and include both “blockbuster” 

drugs and certain specific products33. In this context the use of 

polymeric materials is very broad34 and polymer based 

formulations are among the most successful nanomedicines34-

38. 

Among several diseases, cancer is a major target of the 

development of new drugs with many clinical trials ongoing 

and involving nanomedicines39. Technologies include 

liposomes40-42, polymer conjugates34-36 and block copolymer 

micelles2,37,38,43. Tumor angiogenesis creates the gateway for 

tumor access of nanosized objects. Matsumura and Maeda 

described the enhanced permeability and retention effect 

(EPR) in the 1980s44, the “gaps” created by angiogenesis can 

be much larger (100 nm to 2 μm) than those reported in 

normal tissues. For this main reason, nanosized drugs tend to 

accumulate in tumor tissue much more than they do in normal 

tissues. Due to EPR effect, for these drug vectors, it is clear 
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that the smaller is considered to be the better and constructs in 

the size range of 5-30 nm are considered optimal, and thus the 

control of the size of systems for drug delivery is very 

important. 

Block copolymer micelles including drugs by physical 

entrapment are undergoing phase I/II studies as anticancer 

agents32. Pluronics as micellar aggregates have been employed 

to store several drugs45-48. Pluronics are amphiphilic linear 

triblock copolymers having the central block of hydrophobic 

polypropylene oxide (PPO) covalently bond with two blocks 

of hydrophilic polyethylene oxide (PEO). An example of 

successful Pluronics application is the doxorubicin 

formulation SP1049C developed using a combination of two 

Pluronics, L61 and F12749. 

Despite the large interest in Pluronics block copolymers in 

cancer therapy, only recently they became the subject of 

molecular simulation studies involving biomembranes21,23,24,50-

52. The understanding of the interaction mechanisms of these 

synthetic polymers with biomolecules needs a description at 

atomic level of both structure and dynamics of the systems. 

Atomistic models can provide very accurate descriptions by 

using suitable force fields are potentially able to give 

consistent information. Atomistic models suitable for 

Pluronics have been proposed and validated in water and 
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several solvents20,22,53 and in several organic solvents20,22. 

These models have been used to study the percolation and 

distribution of PEO chains using steered molecular dynamics, 

PEO and PPO oligomers23,50 and Pluronics inside model 

biomembranes51,52. So far, none of these simulation studies 

have been addressed to understand the interaction of Pluronics 

self-assembled structures like micelles with models of cell 

membranes. These studies are difficult because they involve 

the simulation of systems on length and time scales not 

accessible by the current atomistic simulation methods. To 

this aim specific coarse-grained models that are able to keep 

molecular specificity can be used in order to reach time and 

length scales relevant for this systems. The dynamics of these 

processes at molecular level is so far not easily accessible also 

to experimental measurements and therefore many questions 

are still undisclosed on the molecular details of the interaction 

mechanisms.  

We report the development and validation of coarse-grained 

models of Pluronics that are able to describe micellar 

assemblies and their interactions with phospholipids. These 

models have been employed for large scale simulations of 

Pluronic L64 micelles interacting with 

dipalmitoylphosphatidylcholine (DPPC) lipid bilayers. Due to 

the relevance of these block-copolymers assembled 
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nanostructures for drug delivery applications, the role of 

embedded drug molecules has been also considered. In 

particular, we focused on the interplay between the 

interactions of drug molecules with the hydrophobic core of 

the micelle and their mutual influence on the micelle and lipid 

bilayer structures. 

 

5-2.1 Models and Parameters 

 

Hybrid models, due to their computational efficiency are 

gaining popularity also for biomembranes modeling. In 

particular, solvent-free, a coarse-grained model for lipid 

bilayer membranes where nonbonded interactions were 

treated by a weighted-density functional has been introduced 

by Hömberg and Müller.54 Very recently, Sevink et al.55 

introduced a hybrid scheme, combining Brownian dynamics 

(BD) and dynamic density functional theory (DDFT), that is 

able to model efficiently complete vesicles with molecular 

detail. The coarse-grained model adopted in this study for 

lipids has been extensively described and validated in two 

previous papers56,57. For the models used in this work for 

Pluronics, intramolecular bonded interactions, bond and angle 

potentials have been taken from the ones reported in 

reference21, while non-bonded interactions are described using 
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a field theoretic approach. 

The parametrization of the hybrid particle-field models of 

Pluronics has been done considering different reference 

systems. Models of PEO and PPO chains have been 

developed considering effective particles each of them 

grouping the atoms of one repeating unit. The mapping 

scheme adopted in this work is depicted in Figure 5-12. The 

scheme can be considered a 4:1 mapping, i.e. four atoms are 

grouped in one bead. Bonds and angles are described by a 

harmonic potentials, respectively Eq. (1) and Eq. (2). 

Parameters adopted for all bond and angle types are reported 

in Table 5-5 and Table 5-6. 
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Figure 5-12 Mapping scheme adopted for the models of DPPC, Pluronic L64, Water and 
Ibuprofen. Basically the mapping scheme can be considered as 4:1. 

 

In order to calculate the MD-SCF potential, several mean 

field parameters χKK’ between a particle of type K with the 

density field due to particles of type K’ are needed.  

In Τable 4−7 the set of χKK’ parameters used in this study are 

reported. Lipid bilayers models have been full validated in 

references 56 and 57. Mean field χKK’ parameters for the 

interaction of ethylene oxide (EO) and propylene oxide (PO) 

repeating units with water and lipid bilayers have been tuned 

to reproduce several reference data from atomistic 
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simulations23. More details about the parameterization will be 

given in following. 

 

Table 5-5. Force field bond parameters according to the Eq. (1) 

Bond type rbond 
(nm) 

Kbond 
(kJ mol-1nm-2) 

N-P 0.470 1250.0 
P-G 0.470 1250.0 
G-G 0.370 1250.0 
G-C 0.470 1250.0 
C-Ca 0.470 1250.0 

EO-EO 0.280 8000.0 
PO-PO 0.280 5000.0 
EO-PO 0.280 6500.0 

E-B 0.310 7500.0 
B-B 0.270 8000.0 
B-C 0.310 7500.0 

a These parameters have been used also for trimer model. 

Table 5-6. Force field angle parameters according to Eq. (2) 

Angle type θ  
(deg) 

Kθ
 

 (kJ mol-1) 
P-G-G 120.0 25.0 
P-G-C 180.0 25.0 
G-C-C 180.0 25.0 
C-C-C 180.0 25.0 

EO-EO-EO 155.0 40.0 
EO-PO-PO 140.0 40.0 
EO-EO-POa 140.0 30.0 
PO-PO-PO 140.0 40.0 

E-B-B 150.0 50.0 
B-B-B 120.0 50.0 
B-B-C 150.0 50.0 

a  These parameters have been used also for trimer model 
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Table 5-7. Particle-field interaction matrix. χAB × RT(kJ mol-1) for 
Systems I-III. 

 N P G C Water EO PO 
N 0.00 -1.50 6.30 9.0 -8.10 -5.25 2.60 
P -1.50 0.00 4.50 13.50 -3.60 -0.75 7.55 
G 6.30 4.50 0.00 6.30 4.50 5.00 0.00 
Ca 9.00 13.50 6.30 0.00 33.75 7.80 -1.60 

Water -8.10 -3.60 4.50 33.75 0.00 1.50 4.60 
EOb -5.25 -0.75 5.00 7.89 1.50 0.00 16.00 
PO 2.60 7.55 0.00 -1.60 4.60 16.00 0.00 
a) same parameters have been used for the particle of type B of IBU 

molecules. b) same parameters for particle of type E of IBU molecules 

 

5-2.2 L64 Single Chains and Micelle in Water 

 

Mean field interaction parameters (χKK’, Table 5-7) between 

EO and PO beads and water have been tuned to reproduce the 

behavior of the gyration radius with respect to the chain 

length obtained from atomistic simulations. An initial set of 

parameters for the interaction of EO and PO with water 

(χPEO,W × RT = 2.1 and χPPO,W × RT = 3.4 kJ/mol) has been 

taken starting from aij parameters used in Dissipative Particle 

Dynamics (DPD) models reported by Cao et al.58 and using 

the linear relation introduced by Groot and Warren59 

connecting χ and a  (χ’=0.286 Δa). These initial values have 

been adjusted to the values reported in Table 5-7 to reproduce 

chain dimensions obtained from atomistic simulations of PEO 

and PPO single chains in water. In Figure 5-13A the 
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behaviors of gyration radius as function of molecular weight 

(MW) calculated using MD simulations of atomistic and 

particle field coarse-grained models of PEO and PPO are 

reported. 

 
Figure 5-13. (A) Radius of gyration vs. molecular weight for PEO (upper) 
and PPO (bottom) chains in water. In the plots values obtained from 
atomistic (red squares), experiments (blue triangles) and coarse-grained 
MD-SCF models (empty circles) are compared. (B) Radial density profile 
calculated for a L64 micelle (system I) after 4.5 ms of MD-SCF 
simulation. Arrows indicate experimental values of core and corona radii. 

 

A further validation of the proposed models has been done 

considering the size and the stability of micelles. In particular, 

the Pluronic L64 represented by the formula (EO)13-(PO)30-

(EO)13 has been considered. In Figure 5-13B, together with a 
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snapshot of simulated system I of the Table 5-8, the radial 

density profiles calculated for a L64 micelle having 38 block 

copolymer chains (corresponding to the experimental 

aggregation number) is reported. Experimental values of core 

and corona radius8 are indicated by arrows in the plot.  

 

Table 5-8. Simulated Systems 
Systems Composition (no. of molecules) Box size Simulated 

time 
 L64 Water DPPC Embedded 

Molecule 
Particle 

no. 
(nm) (µs) 

I 38 222200 0 0 224328 30x30x30 6 
II 38 222200 2812 0 258072 30x30x34 5 

IIIa 38 222200 2812 5 258097 30x30x34 13 
IV-Ab 38 222200 2812 8 258096 30x30x34 5 
IV-Bb 38 222200 2812 8 258096 30x30x34 5 
IV-Cb 38 222200 2812 8 258096 30x30x34 6 
IV-Db 38 222200 2812 8 258096 30x30x34 21 
IV-Eb 38 222200 2812 8 258096 30x30x34 15 
IV-Fb 38 222200 2812 8 258096 30x30x34 18 
IV-Gb 38 222200 2812 8 258096 30x30x34 18 

aEmbedded molecules used for this system are Ibuprofen. bSystem IV 
having embedded trimers of increasing hydrophobicity λ ranging from 
0.16 (IV-A) to 1 (IV-G). 

 

The radial density profiles of PO and EO blocks calculated 

from a simulation of a system I at 2.5 wt % of L64 in water 

well compare with the experimental values of core and corona 

radius obtained in the same conditions8. 

The critical micelle concentration (CMC) of the L64 model 

has been investigated considering the stability of the system 

as function of L64 concentration. In particular, fractions of 

assembled L64 chains have been calculated for systems at 
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different concentrations (Table 5-9). In Figure 5-14 the 

fraction of assembled L64 chains compared with the 

experimental value of the CMC are reported.  

 

Table 5-9. Composition of systems used for the CMC calculation.a 

System Composition              Box Size 
 no. L64 no. Water no. Particles [mM] (nm) 

A 19 223264 224328 1.122 30x30x30 
B 9 223824 224328 0.532 30x30x30 
C 6 223992 224328 0.354 30x30x30 
D 5 224048 224328 0.295 30x30x30 
E 4 224104 224328 0.236 30x30x30 

aThe experimental value of CMC reported by Alexandridis6 is 0.344mM at 
313 K. 

 

From the plot of Figure 5-14 a good agreement with the value 

of 0.344 mM reported by Alexandridis6 is clear. Further 

validations on micelles behavior (aggregation number) are 

reported in the supporting information section. The Pluronics 

model reported here give a correct reproduction of micellar 

and non micellar phases for Pluronics L62 and L64 as 

function of water concentration. In particular, the proposed 

models are able to correctly describe the different 

morphologies (such us hexagonal micellar, lamellar and 

complex interconnected) that have been found 

experimentally.60 
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Figure 5-14 Fraction of assembled L64 chains at different concentrations, corresponding to 
the systems described in Table 5-9. Chains are counted as assembled if the number of 
neighboring chains is different from zero. The number of neighbors is calculated on the basis 
of a cut off criterion (1 nm) on the shorter distance between PO units of two different L64 
chains. Each point in the plot corresponds to an average obtained from the last 100 ns of each 
simulation. 

 

5-2.3 Micelle in contact with DPPC bilayer 

 

The parameterization of the interaction parameters χKK’ 

between EO and PO beads with phospholipids (Table 5-7) has 

been based on the reproduction of density profiles from 

reference atomistic simulations of PEO and PPO oligomers in 

contact with lipid bilayers24. An initial set of χ for EO and PO 

interactions with lipids head and tail have been obtained from 

a systematic DPD study of Groot on polymer-surfactant 

systems. In particular, set 1 (according to the notation of ref 
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59) for EO/lipid head and EO/lipid tail and intermediate 

values between sets 6 and 7 for PO/lipid head and PO/lipid 

tail, have been chosen. Further adjustments of these 

parameters have been done to better reproduce reference 

partial density profiles obtained from atomistic simulations. 

According to the experimental data the diameter of the 

micelle is around 12 nm8. For this reason, in order to avoid 

large finite size effects, in the simulations reported here, a box 

size of 2.5 times larger than micelle diameter in the x and y 

directions (30 nm) and 2.8 in z direction (34 nm) has been 

considered. This implies simulations of quite large scale 

systems having more than 250.000 particles (see Table 5-8). 

In Figure 5-15A several snapshots of the MD simulation of 

system II made of one L64 micelle in contact with a DPPC 

lipid bilayer are reported (water beads are not shown for 

clarity). The simulation performed on the µs scale reveals that 

the behavior of the polymeric micelle is strongly influenced 

by the presence of lipid bilayer. In particular, from the 

beginning of the simulation chains are released from the 

micelle to the water phase and starting from about 1 µs 

insertions of triblock chains inside the bilayer can be 

observed. This behavior is in agreement with the experimental 

one reported by Pemboung et al.61 In particular, 1H-NMR and 

spin labeled probes results suggest a release of L64 chains 
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inside dodecylphosphocoline (DPC) and DPPC micelles. 

 
Figure 5-15 (A) Snapshots of system II (258.072 coarse-grained beads corresponding to ∼ 
3.000.000 of atoms) having a L64 micelle in contact with DPPC lipid bilayer (water beads 
are omitted for clarity) (B) Time behavior of L64 chains assembled as micelle (red curve), 
inside lipid bilayer (black curve) and in water (blue curve). L64 chains, for a given 
configuration, are counted as inside bilayer if at least one PO bead is located between the 
average heights of upper and lower lipid layers. The remaining chains are counted as free or 
assembled according to the number of neighboring chains (zero neighbors free chains, at 
least one neighbor assembled chains). The number of neighbors is calculated on the basis of a 
cut off value (1 nm) on the shortest distance between PO units of two different L64 chains. 
(C) Detail of insertion of a Pluronic L64 chain inside phospholipid bilayer. The green beads 
correspond to EO units, while the purple beads correspond to PO units. The aliphatic chains 
of phospholipids are shown in transparency. The head groups of DPPC are shown. 

 
Simulations snapshots show that chains attach to the lipid 

bilayer inserting the segment made of PO beads in the 

hydrophobic portion of the bilayer. In Figure 5-14C a detail of 

an inserted L64 chain of system II is depicted. In agreement 

with the findings of Firestone et. al62,63, chains are inserted 

partially inside the bilayer with the PPO block, while the PEO 

blocks point toward the water phase from the same side of the 

lipid bilayer. The chain release process continues until the 

micelle dissolves in the water phase. This behavior can be 
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ascribed to an effective concentration of L64 in the water 

phase lower than the CMC due to a subtraction of polymer 

chains from the micellar assembly and from water inside lipid 

bilayer. From the plot of Figure 5-15B is clear that in about 3 

µs the L64 chains are unassembled with a fraction 0.2 present 

as free chains and the remaining L64 chains inserted inside 

the lipid bilayer. 

For coarse-grained models, usually, the dynamics is faster 

because there is a reduced effective bead friction due to 

smaller energy barriers and/or a smoother energy landscapes. 

In order to connect the results with less coarse models 

(atomistic or CG but based on particle-particle potentials) or 

with experiments it is necessary to connect the timestep used 

in coarse-grained simulations and to derive a scaling factor for 

the time64. Methods to match time scales have been applied to 

quantitatively understand and predict dynamics of several 

systems by coarse-grained models using a comparison 

between dynamical properties calculated at coarse-grained 

and atomistic level. In particular, diffusion coefficients 

calculated from the coarse-grained and atomistic simulations 

can be compared. From comparison of diffusion coefficients a 

factor of about 15 can be obtained56. The complications in soft 

matter systems are the multitude of fluctuating energy barriers 

of similar height and a common problem is that usually all 
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barriers are not lowered in the exact same way that the ratios 

of transition times remain the same.  

In order to better define a scaling factor for the process of a 

chain insertion into a lipid bilayer, a closer timescale 

connection can be done comparing the time needed for an 

insertion of a single chain using MD-SCF and MD using 

traditional models based on Lennard-Jones pair potentials. 

Ideally, the exchange process of L64 chains between the 

micelle and the lipid bilayer, reported in the present paper, 

can be divided in three elementary processes. In particular, we 

can consider three processes: Pluronic chain detachment from 

the micelle, chain diffusion in water, chain insertion into the 

lipid bilayer. Reasonably, the diffusion process is the slowest 

one and it governs the rate of the observed process. In order to 

prove this, we performed three independent simulations 

similar to the one reported in Figure 5-16. In particular, we 

analyzed the velocity of L64 chain insertion from the time 

behavior of z component (perpendicular to the bilayer plane) 

of the distance between the geometric center of the PPO block 

and the hydrophobic sector of the lipid bilayer. According to 

this analysis, chain insertion is fast (takes about 8-10 ns) and 

it shows similar velocities for both particle-particle and 

particle field simulations. More details about this are reported 

in the supporting information section.  
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Figure 5-16. Snapshots of single L64 chain insertion process for an MD-SCF simulation. 
The insertion of PPO hydrophobic block is observed starting from 39 ns. The L64 chain after 
insertion shows the hydrophobic block inside the aliphatic region of phospholipid bilayer, 
while PEO blocks point toward the water phase from the same side. 

 

We can reasonably conclude that the slowest process 

governing the chain exchange between the micelle and the 

bilayer is the diffusion of L64 chains. In this way, a 

reasonable estimate of the order of magnitude of the scaling 

factor, for the observed process, could be the ratio between 

diffusion coefficients of particle-particle and particle-field 
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simulations (a factor 15). 

These feature allows to fully observe on the scale of our 

simulations the exchange of polymer chains between the 

micelle and the bilayer and the dissolution process of the 

micelle in presence of the lipid bilayer. Furthermore, 

equilibrium values of the distribution of L64 chains inserted 

into the bilayer and dissolved in water phase can be reached.  

In absence of a lipid bilayer the micelle is stable. In particular, 

in Figure 5-17A, several snapshots of a MD simulation for 6 

µs of a system having a L64 micelle in water (system I) are 

reported. Furthermore, the time behavior of radius of gyration 

of the micelle in water is reported in Figure 5-17B. 

Differently from system II the micelle is stable and an 

exchange of few chains between micelle and water phase is 

only observed. 

In Figure 5-18A we report snapshots of system III, analogous 

to system II, but having four molecules of ibuprofene (IBU) 

encapsulated into hydrophobic core of the micelle. In Figure 

5-12 the mapping scheme used of IBU molecule together with 

its chemical structure is reported. In particular, the isopropyl 

group has been modeled by a bead of type C, the benzene ring 

using three beads of type B (having the same χ parameters of 

beads of type C) and the carboxylic group (COOH) with a 

bead of type E (having the same χ parameters of beads of type 
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EO). Further details about intramolecular interactions (bonds 

and angles) of beads of type B and E are reported in Tables 5-

5 and 5-6. The number of IBU molecules corresponds to 

0.25wt% with respect to the quantity of L64. This value, as 

reported from Foster et al. is consistent with the aggregation 

number of 48 chains3. 

 
Figure 5-17. (A) Snapshots of system I having an L64 micelle in water (the beads of water 
are omitted for clarity). (B) Time behaviour of radius of gyration of L64 micelle in water. 
The red curve corresponds to the total radius of gyration of micelle while the blue curve 
corresponds to the radius of gyration of hydrophobic core. Snapshots of some configurations 
of the L64 micelle are shown at different times. 

 

Similarly to the system II, previously described, after about 

1µs (Figure 5-18B) the insertion of triblock chains into the 

bilayer takes place, but differently from the previous system 
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II, although a reduction of micelle size is observed (Figure 5-

18C), the micellar assembly is not dissolved. In particular, 

after 5 µs the micellar aggregate becomes stable, and starting 

from 5 up to 8 µs only a slow repartition between chains free 

and in bilayer occurs. After 8 µs up to the end of simulation 

(about 5 µs) the system remains in equilibrium state. 

 
Figure 5-18. (A) Snapshots of system III (258.072 coarse-grained beads corresponding to 
∼3.000.000 of atoms) having an L64 micelle in contact with DPPC lipid bilayer (water beads 
are omitted for clarity) (B) Time behavior of L64 chains assembled as micelle (red curve), 
inside lipid bilayer (black curve) and in water (blue curve). For a complete definition of 
assembled, free and inside bilayer chains the reader can refer to the caption of Figure 5-14. 
(C) Time behaviour of radius of gyration of L64 micelle with ibuprofen molecules embedded 
in the hydrophobic core. Red curve corresponds to the total radius of gyration of micelle 
while the blue curve corresponds to the radius of gyration of hydrophobic core. Snapshots of 
relevant configuration of L64 micelle are shown at different times. 

 

From these results it is clear that the hydrophobic nature of 

the encapsulated molecule influences the stability of the 

micellar assembly in the presence of a lipid bilayer. Small-

angle neutron scattering and pulsed-field gradient stimulated-

echo nuclear magnetic resonance (NMR) have shown that 

addition of hydrophobic molecules to solutions of Pluronics 
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and water changes the micellar structure. In particular, high 

hydrophobic molecule concentrations favor micellization, 

leading to an increase of aggregation numbers, fraction of 

polymer micellized, and core radius of the micelle.3 This 

behavior can be ascribed to the hydrophobic nature of the 

molecule encapsulated inside the micelle and the resulting 

favorable interactions with the micelle core. 

In our simulations the presence of the lipid bilayer changes 

the micelle aggregation state. In particular, in absence of IBU 

molecules, the 80% of L64 chains are adsorbed inside the 

DPPC bilayer. This causes a drop of L64 concentration in 

water phase and then a destabilization of micellar aggregate. 

In contrast, in the presence of hydrophobic IBU molecules, 

L64 chains are still assembled. This behavior shows a 

complex interplay between drug/micelle core and L64/bilayer 

interactions modulating the structural modifications of both 

micelle and bilayer. The main effect of the drug molecule 

seems to be related to its hydrophobicity. 

Whit this in mind, further simulations aimed to study 

systematically the effect of the hydrophobicity of the 

encapsulated molecule have been performed. In particular, 

trimers of increasing hydrophobicity have been included in 

the hydrophobic core of the L64 micelles. The number of 

trimers included in the micelle core is 8, this choice has been 
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done to keep the number of particle similar to system III in 

which 5 IBU molecules (represented 5 by coarse-grained 

beads) have been included.  

Table 5-10. Particle-field interaction matrix. χAB × RT(kJ mol-1) for 
Systems IV. 

λ  N P G C Water EO PO 
1.00 9.00 13.50 6.30 0.00 33.75 7.80 -1.60 
0.90 7.28 11.79 6.12 3.37 30.37 7.22 -0.98 
0.80 5.57 10.80 5.94 7.75 27.00 6.64 -0.36 
0.60 2.14 6.66 5.58 13.50 20.25 5.84 0.88 
0.50 0.43 4.95 5.40 16.87 16.87 4.90 1.50 
0.20 -4.70 -0.18 4.86 27.00 6.75 3.16 3.61 
0.16 -5.39 -0.86 4.79 28.35 5.40 2.93 3.61 

 

The hydrophobicity of the trimers has been varied changing 

linearly the χ parameters from the values assigned to the most 

hydrophobic particles (type C of lipid molecules) to those 

ones of water using a single parameter λ. In this way λ= 1 

corresponds to a particle of type C and λ= 0 of a particle of 

water. For the intermediate cases, a linear combination has 

been used for all parameters. Simulations have been 

performed for seven different systems (IV-A to IV-G) having 

values of λ (0.16, 0.2, 0.5, 0.6, 0.8, 0.9, 1.0). In Table 5-10 the 

corresponding χ parameters for interaction between the beads 

of the trimers and the fields corresponding to the other 

particle types are reported. 

In Figure 5-19 representative snapshots for some of these 
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systems have been reported. For trimers having λ larger than 

0.5 the micelles are stable during MD simulations. After 10 µs 

the micelle aggregate does not change and it still remains 

stable up to the end of simulation. The behavior observed for 

values of λ lower than 0.5 is very similar to the one obtained 

for an “empty” micelle.  

 
Figure 5-19. Snapshots of systems IV (258.072 coarse-grained beads corresponding to 
∼3.000.000 of atoms) at different values of λ having an L64 micelle in contact with DPPC 
lipid bilayer. 

 

For lower values of λ (from 0.16 to 0.2) after about 10 ns all 

the inserted molecules diffuse out from the micelle and are 

stably present in the water phase. This is not surprising 

because the properties of the beads forming trimers at these 

values of λ are very close to water. In the case of λ = 0.5 a 

partial release of molecules is observed in the water phase, 



 

 

 

146 

after 4 µs the number of trimers included in the micelle is 2. 

For values larger than 0.5 all the included trimers are stably 

inside the micelle from the beginning to the end of the 

simulation. In Figure 5-20 the time behavior of L64 chains 

distributions inside the bilayer, assembled and free are 

reported for all systems with λ larger than 0.5 (0.6, 0.8, 0.9, 

1.0). The plots of other systems are reported in the supporting 

information section. 

 
Figure 5-20. Time behaviour for systems IV D-G of L64 chains assembled as micelle (red 
curve), inside bilayer (black), in water (blue). 

 
We observe that higher is the hydrophobicity and slower is 

the chain release process from the micelle to the water phase. 

In particular, for the systems at λ=0.16 and 0.20 the micelle 

dissolution process takes 1 and 2µs, respectively. Differently, 
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the systems having trimers with λ=0.5 take longer (between 4 

and 5µs) to reach the equilibrium. Micelles including trimers 

of larger hydrophobicity (λ from 0.6 to 1.0) take 8-12 µs, 

depending on the system, to reach equilibrium. After that time 

the micelles still remain stable and slow process of chains 

repartition between water and lipid bilayer occurs. 

It is worth noting that an increase of hydrophobicity 

corresponds to an increase of assembled chains. It is 

interesting to observe that the radius of the micelle shows an 

abrupt increase around λ=0.6 (Figure 5-21A). In particular, 

when going from λ=0.5 to λ=0.6, an increase in the micelle 

radius of about nine times can be obtained. Moreover, we 

observe that the number of assembled chains, for systems in 

which the micellar aggregate is present, does not change 

significantly (Figure 5-21B).  

To better understand the role played by hydrophobicity in the 

shape and size of the micellar aggregate, radial density 

profiles have been performed. In particular, for the system III, 

and systems IV-(D,G), we calculate the radial density 

distribution on assembled chains at equilibrium together with 

IBU or trimer molecules (Figure 5-22). As results from the 

plots, the radial distribution of chains embedding IBU or 

trimer molecules, does not change significantly with 

hydrophobicity.  
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Figure 5-21. (A) Behavior of the radius of gyration of L64 micelle at different value of λ. 
Total radius (red curve), hydrophobic core radius (black curve). (B) Behavior of assembled 
(red curve), in bilayer (black curve) and free (blue curve) L64 chains as functions of 
hydrophobicity (λ) of encapsulated trimers. 

 

In particular, for both, hydrophobic EO blocks and 

hydrophilic PO block, only slightly differences between 

different systems have been found (Figure 5-22A-B). Also for 

the IBU and trimer molecules inside the PO core the radial 

distributions have been calculated. From the comparison, in 

Figure 5-22C, we found that the position of IBU or trimer 

molecules inside the PO core is almost the same for all 

systems. In the supporting information section the  density 

profile of all systems discussed below are reported. 
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In Figure 5-23 some of density profiles of lipid bilayer have 

been reported. In particular we compared the density profiles 

of the system II (without IBU), system III (with IBU 

molecules inside micelle) and system IV-G (with trimer 

molecules having λ=1.0). 

-  
Figure 5-22. Radial density profile of: (A) EO blocks, (B) PO block, (C) IBU and trimer 
embedded molecules. Each profile is calculated with respect to the centre of the mass of IBU 
or trimer molecules. The profiles have been calculated from the data during the last 500.0 ns 
of the equilibrium state of each system. 

 

Such profiles have been calculated after each system goes in 

equilibrium. From the plots we observe that the lipid bilayers 

have not strong distortion of the profile. The distributions of 

the head and tails of the lipids are very close each other and 

seem to be insensitive to the hydrophobicity. About the 
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distribution of pluronic chains inside the lipid bilayer we have 

the same behavior. No significant difference between the 

systems has been found (in the supporting information section 

are reported the others systems). 

 
Figure 5-23. Number density profiles calculated for: (A) system II, (B) system III and (C) 
system IV-G with λ = 1.0. The density profiles have been calculated for the data during the 
last 500.0 ns of the equilibrium state of each system. 
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5-3 Conclusions 

 

A hybrid PF coarse-grained model has been reported for 

Pluronic L62 and L64. The reproduction of morphologies 

depending on the concentration and temperature for water 

mixture solution of polymer has been tested. In particular, 

micellar and non micellar morphologies reproduced by the 

model have been found in agreement with the experimental 

phase diagram. Furthermore, the reproduction of the 

hexagonal morphology specific for the Pluronic L64 has been 

obtained. In fact, in a narrow range of composition, between 

46~55 wt%, the hexagonal phase is stable for the Pluronic 

L64 and, at the same composition, is absent in the Pluronic 

L62 phase diagram. At polymer content higher than 52 wt% 

we obtain a lamellar morphology for both, L62 and L64. In 

particular, at 90 wt% of L64 we observe also a complex 

lamellar morphology. The features of the proposed model 

allows the possibility to link the CG configurations to the full 

atomistic configurations, due to the mapping 1:3 and 1:4 for 

EO and PO beads. An example of reverse mapping of the 

peculiar hexagonal morphology of Pluronic L64 has been 

shown to this aim.  
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Moreover, the development and validation of coarse-

grained models of Pluronics that are able to describe micellar 

assemblies and their interactions with phospholipids have 

been reported. Molecular dynamics simulations of large scale 

coarse-grained models (typically ∼260.000 coarse-grained 

beads corresponding to ∼3.000.000 of atoms) of Pluronic L64 

block copolymers micelles and their interactions with lipid 

bilayers suitable to reach time (µs) and length (nm) scales 

relevant for the self assembly phenomena for several systems 

have been reported. Simulations show, in agreement with 

several previous experiments, a release of triblock chains 

from the micelle inside the bilayer. This release changes the 

size of the micelles. The presence of a drug molecule inside 

the hydrophobic core of the micelle has a strong influence on 

this process. In particular, the micelle stability is a result of a 

complex interplay between drug/core and block-co-

polymer/bilayer interactions modulating the structural 

modifications of both micelle and bilayer. An interesting 

finding is that the micelle size shows an abrupt increase 

(about nine times) in a very narrow range of encapsulated 

molecule hydrophobicity. Changes in aggregate size and 

structure are critical in determining the mechanism of drug 

delivery from micellar structures. According to the paradigm 

of EPR effect, the understanding of the physico-chemical 



 

 

 

153 

mechanism of the drug vector size and the important role of 

drug micelle interactions in it, is fundamental to improve the 

design of systems for cancer therapy. The models presented in 

this study are not generic, but still very close to atomistic ones 

and are able to represent specific molecular architectures. This 

important feature opens the way to a detailed understanding of 

the molecular mechanisms underlying the drug delivery 

processes. 
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6 
Conclusions 

 

 

 

 

The main result of this thesis is to show how the particle-field 

approach is able to reproduce the effect of chemical details in 

several systems properties. One of the questions I tried to 

answer from the beginning of the doctoral project is:  

“Are particle-field models able to keep chemical details?” 

This is not a trivial question because the chemical details are 

extremely important in specific models. The interactions that 

regulate the protein folding are a typical example of specific 

interactions. Only models with chemical details can keep the 

peculiar aspects of specific phenomena. 

I think that the answer to this question, considering all results 

shown in the previous Chapters, is “yes”. 

For example, the models of phospholipids, reported in the 

Chapter 4, are able to describe correctly an important 

structural property like the correct reproduction of the 

thickness of the bilayer, as result of small differences 

chemical structures. Moreover, the proposed model is also 

able to correctly describe the phase behaviour at different 
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water contents. 

Pluronic particle-field models give another example 

illustrating the role of chemical specificity on a larger scale 

such as the phase structures. In particular, the reproduction of 

the hexagonal morphology, specific for the Pluronic L64, has 

been obtained. This result is not obvious because only in a 

narrow range of composition, between 46~55 wt%, the 

hexagonal phase is stable for the Pluronic L64. At the same 

composition, instead, such phase is completely absent for 

Pluronic L62. It is worth noting that the difference between 

Pluronic L64 and L62 consists in a different length of PEO 

and PPO blocks. As shown in the Chapter 5, this slight 

difference is well reproduced by the proposed model. 

Differently from pure Self Consistent Field (SCF) approach, 

in the hybrid MD-SCF scheme the particles are an explicit 

ingredient of the model. This implies that the density field and 

then intermolecular interaction potential, depending on the 

particles positions, is correlated in a straightforward way to 

the chemical structure of the model. With this in mind, is 

reasonable how we can reproduce very fine local correlations 

also in atomistic models. In fact, as shown in Chapter 3, by 

tuning the mesh size and then the density field resolution, it is 

possible to describe with good approximation both the local 

rearrangements of an atomistic structure of a polymer melt, 
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and to allow, at the same time, a fast relaxation of polymer 

chains with high molecular weight. Moreover, the explicit 

presence of particles in the models, gives us the possibility to 

reintroduce, by a reverse mapping procedure, the local pair-

wise interactions that are replaced by particle-field ones. This 

capability is very important, basically because the pure SCF 

methods have not such possibility, not having explicit 

particles. 

MD-SCF techniques are less expensive, from the 

computational point of view, this enable to simulate a very 

large system, on time scale not easily accessible to other 

conventional techniques with comparable chemical details. 

This allows us to study phenomena, with molecular detail, on 

the scales of µs and hundreds of nm. An example of such 

system, Pluronic micelle interacting with phospholipid 

bilayer, has been discussed in the Chapter 5. 

In conclusion, the MD-SCF approach opens a route towards 

study complex phenomena on large time and length scales. 
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Appendix A 
 

A.1 Reverse-mapping Procedure 

To further details about the reverse-mapping procedure can be 

found at the references1,2. 

Basically, the reverse-mapping procedure is founded 

on rigid superposition of the target atomistic model on the 

coarse-grained ones obtained from the mesoscale simulations. 

A library of atomistic structure of the target molecule is built 

by independent atomistic simulation. Then, for a given 

coarse-grained molecule several trial of atomistic structures, 

belonging to the library, are superimposed and the root mean 

square deviation (RMSD) between the centre of the coarse-

grained beads and the corresponding atomic site is calculated. 

If the RMSD of a trial is less than the chosen tolerance (a 

reasonable value of tolerance is 10-2 nm), the structure is 

accepted and the CG molecule is replaced. The procedure is 

complete until all CG molecules are replaced by atomistic 

configurations. The flow chart of the reverse-mapping 

procedure is reported in Figure A1. 
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Figure A1. Flow chart of the reverse-mapping procedure 

 

A.2 Superposition Method 

As above-mentioned the reverse-mapping strategy is based on 

the Structure superposition methods. In particular the 

superposition is obtained by rigid rotation of atomistic 

structures on the coarse-grained ones. Such methods can give 

a quantitative measure of shape similarity as the RMSD of 

distances between corresponding atoms.  
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Finding the optimal orthogonal transformation can solve the 

Structure superposition problem. This implies that the rotation 

matrix T and a translation vector that will superimpose two 

sets of coordinates should be determined. A possible method, 

that we chose, is based on quaternions introduced by 

Kearsley3. 

Quaternions can be viewed as a non-commutative extension 

of complex numbers. They have been already used to describe 

rotations in classical mechanics as well as quantum and 

relativistic physics. It can be shown that a quaternion can be 

used as a rotation operator for a vector. The vector can be 

considered as a quaternion with zero scalar components: 
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As Kearsley3 has shown, the rotation matrices that minimize 

the sum of the squared distances between corresponding 

particles for two structures can be calculated by posing a 

constrained least-squares problem in terms of quaternion 

parameters.  
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Considering:! x− = x '− x; x+ = x '+ x  and in a similar way  

we define y_, y+, z_ and z+, the resulting equations can be 

rewritten in the following eigenvalue problem: 
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In the elements of 4 x 4 of the equation above, the summation 

is made over all! centers to superimpose. The eigenvalues, 

obtained from the diagonalization of the matrix, give the 

value of the residual for the rotation produced by application 

of the corresponding eigenvector. The RMSD is given by 

(λ/n)1/2 where n is the number of atoms compared. The 

smallest eigenvalue gives the rotations that minimize the sum 

of the distances between all corresponding atoms. 
 

A.3 Reverse-mapping code 

To apply the reverse-mapping procedure described in the 

section A.1, specific code has been developed. The interface 

of the code has been completely rewritten to work as an 

external code. The subroutines to evaluate the superposition 

between atoms have been taken from the TINKER 
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(http://dasher.wustl.edu/ffe/) and have been written by Jay 

William Ponder. The complete algorithm is reported below. 
 

 

c ################################################### 

c ##  written  by:  Antonio De Nicola  ## 

c ################################################### 

 

  Program ReverseMapping 

      IMPLICIT NONE 

      include 'sizes.i' 

      include 'align.i' 

      include 'inform.i' 

 

      Real*8 toll,rmsimp,c1,c2,c3,c4,c5,c6, toll1 

      Real*8 x1(maxatm),y1(maxatm),z1(maxatm) 

      Real*8 x2(maxatm),y2(maxatm),z2(maxatm) 

      Real*8 MSE,MSEx,MSEy,MSEz,sump,p(maxatm),MSEmax 

      Integer i,j,ind,n1,n2,k,nm,natomo(maxatm),ind2, 

      Integer m, stbk, frms, cnt1, cnt2   

      Character*5 ch1(maxatm),ch2(maxatm) 

      Integer nmcg, natomocg,count, mol1, mol2 

      Character*5 ch1cg,ch2cg 

 

 

      integer argcount, IARGC 

      character*80 wq_char 

      character*80 filein0, filein1, param, fileout 

 

      argcount = IARGC() 

 

      do i=1,argcount 

         call getarg(i,wq_char) 

         if(INDEX(wq_char,'--help').ne.0) then 

           write(6,*) '-t1 Atomistic traj' 

           write(6,*) '-t2 CG configuration' 

           write(6,*) '-param parameter file' 
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           write(6,*) '-toll tollerance (nm)' 

           write(6,*) '-out output configuration (gro format)' 

           write(6,*) '-----parameter file ------------------' 

           write(6,*) 'part_CG, mol_CG' 

           write(6,*) 'part_atomistic, mol_atomistic' 

           write(6,*) 'number of sites to fit' 

           write(6,*) 'CG_ind, atomistic_ind, w_fit' 

           goto 30 

         endif 

         if(INDEX(wq_char,'-toll').ne.0) then 

           call getarg(i+1,wq_char) 

           read(wq_char,*) toll  

         end if 

         if(INDEX(wq_char,'-t1').ne.0) then 

           call getarg(i+1,wq_char) 

           read(wq_char,*)  filein1 

         end if 

         if(INDEX(wq_char,'-t2').ne.0) then 

           call getarg(i+1,wq_char) 

           read(wq_char,*)  filein0 

         end if 

         if(INDEX(wq_char,'-out').ne.0) then 

           call getarg(i+1,wq_char) 

           read(wq_char,*)  fileout 

         end if 

         if(INDEX(wq_char,'-param').ne.0) then 

           call getarg(i+1,wq_char) 

           read(wq_char,*) param 

         end if 

       enddo 

 

      open(1,file=fileout, status='unknown')  

      open(2, file=filein0, status="old")  

      open(3, file=filein1, status="old")  

      open(4, file=param, status="old")  

      open(7, file='log.txt', status='unknown')  

 

      read(4,*) n1, mol1  
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      read(4,*) n2, mol2, frms  

      read(4,*) nfit  

 

      do i=1,nfit 

        ifit(1,i)=0   

        ifit(2,i)=0 

        wfit(i)=1 

      end do 

 

      do i = 1, nfit  

         read(4,*) ifit(1,i), ifit(2,i), wfit(i) 

      enddo 

 

 

      write(1,400) 'TRITON' 

      write(1,500) n2*mol1 

 

      stbk = 0 

      cnt1 = 0 

      cnt2 = 0 

 

      read(2,*)                    

      read(2,*) 

      write(7,*)' Mol.   toll,    new-toll,     RMS,    atm. 

struct.' 

      do m = 1, mol1               

         stbk = 0 

         toll1 = toll 

         do i=1, n1                

           read(2,100) 

nmcg,ch1cg,ch2cg,natomocg,x1(i),y1(i),z1(i) 

c          write(*,100) 

nmcg,ch1cg,ch2cg,natomocg,x1(i),y1(i),z1(i) 

         end do 

40       rewind 3 

         do k = 1, frms            

           read(3,*) 

           read(3,*) 
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           do l = 1, mol2          

 

             do j = 1, n2          

                read(3,100) 

nm,ch1(j),ch2(j),natomo(j),x2(j),y2(j),z2(j) 

             end do 

 

             if(stbk.lt.1)then              

               call impose(n1,x1,y1,z1,n2,x2,y2,z2,rmsimp) 

             endif 

 

             if(rmsimp.le.toll1.and.stbk.lt.1)then 

                do j=1,n2          

                   write(1,300) nmcg,ch1(j),ch2(j),j+((m-

1)*n2), 

     $                          x2(j),y2(j),z2(j) 

                end do 

                write(7,700) m, toll, toll1, rmsimp, k 

c               write(*,*)  

                write(*,*) 'Melecule CG nr.:', m  

c               write(*,*) 'Tollerance (nm):', toll1 

c               write(*,*) 'Current RMS:', rmsimp 

c               write(*,*) 'Atomist str. in frame:', k 

                write(*,*) '* * * backmapped * * *' 

                stbk = 1 

                cnt1 = cnt1 + 1 

             endif 

           enddo                    

           read(3,*)                

20       enddo  

             if(stbk.eq.0)then 

c              write(*,*) 'Molecule', m,' * * * NOT BACKMAPPED 

* * *' 

               cnt2 = cnt2 + 1 

               toll1=toll1 + 0.01d00 

c              write(*,*) 'New toll.', toll1 

               go to 40 

             endif 
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      enddo                         

      read(2,600) c1,c2,c3  

      write(1,600) c1,c2,c3    

 

      Close(1)                     

      Close(2) 

      Close(3) 

 

 

      write(*,*)'-------------------------------------' 

      write(*,*)' END ' 

 

 

100   Format(I5,2A5,I5,3F8.3,3F8.3) 

300   Format(I5,2A5,I5,3F8.3) 

200   Format(F8.1,6F8.4) 

400   Format(A3) 

500   Format(I8) 

600   Format(3F10.5) 

700   Format(i5, 3f8.4, 3x, i5) 

 

30    end Program 

 
c     ################################################### 

c     ##  COPYRIGHT (C)  1990  by  Jay William Ponder  ## 

c     ##              All Rights Reserved              ## 

c     ################################################### 

c 

c     

############################################################## 

c     ##                                                          

## 

c     ##  subroutine center  --  superimpose structure 

centroids  ## 

c     ##                                                          

## 

c     

############################################################## 
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c 

c 

c     "center" moves the weighted centroid of each coordinate 

c     set to the origin during least squares superposition 

c 

c 

      subroutine center 

(n1,x1,y1,z1,n2,x2,y2,z2,xmid,ymid,zmid) 

      implicit none 

      include 'sizes.i' 

      include 'align.i' 

      integer i,k,n1,n2 

      real*8 weigh,norm 

      real*8 xmid,ymid,zmid 

      real*8 x1(*),x2(*) 

      real*8 y1(*),y2(*) 

      real*8 z1(*),z2(*) 

c 

c 

c     find the weighted centroid of the second 

c     structure and translate it to the origin 

c 

      xmid = 0.0d0 

      ymid = 0.0d0 

      zmid = 0.0d0 

      norm = 0.0d0 

      do i = 1, nfit 

         k = ifit(2,i) 

         weigh = wfit(i) 

         xmid = xmid + x2(k)*weigh 

         ymid = ymid + y2(k)*weigh 

         zmid = zmid + z2(k)*weigh 

         norm = norm + weigh 

      end do 

      xmid = xmid / norm 

      ymid = ymid / norm 

      zmid = zmid / norm 

      do i = 1, n2 
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         x2(i) = x2(i) - xmid 

         y2(i) = y2(i) - ymid 

         z2(i) = z2(i) - zmid 

      end do 

c 

c     now repeat for the first structure, note 

c     that this centroid position gets returned 

c 

      xmid = 0.0d0 

      ymid = 0.0d0 

      zmid = 0.0d0 

      norm = 0.0d0 

      do i = 1, nfit 

         k = ifit(1,i) 

         weigh = wfit(i) 

         xmid = xmid + x1(k)*weigh 

         ymid = ymid + y1(k)*weigh 

         zmid = zmid + z1(k)*weigh 

         norm = norm + weigh 

      end do 

      xmid = xmid / norm 

      ymid = ymid / norm 

      zmid = zmid / norm 

      do i = 1, n1 

         x1(i) = x1(i) - xmid 

         y1(i) = y1(i) - ymid 

         z1(i) = z1(i) - zmid 

      end do 

      return 

      end 

############################################################## 

c     ##                                                          

## 

c     ##  subroutine impose  --  superimpose two coordinate 

sets  ## 

c     ##                                                          

## 

c     
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############################################################## 

c 

c 

c     "impose" performs the least squares best superposition 

c     of two atomic coordinate sets via a quaternion method; 

c     upon return, the first coordinate set is unchanged while 

c     the second set is translated and rotated to give best 

fit; 

c     the final root mean square fit is returned in "rmsvalue" 

c 

c 

      subroutine impose(n1,x1,y1,z1,n2,x2,y2,z2,rmsvalue) 

      implicit none 

      include 'sizes.i' 

      include 'align.i' 

      include 'inform.i' 

      include 'iounit.i' 

      integer i,n1,n2 

      real*8 xmid,ymid,zmid 

      real*8 rmsvalue,rmsfit 

      real*8 x1(*),x2(*) 

      real*8 y1(*),y2(*) 

      real*8 z1(*),z2(*) 

c 

c 

c     superimpose the full structures if not specified 

c 

      if (nfit .eq. 0) then 

         nfit = min(n1,n2) 

         do i = 1, nfit 

            ifit(1,i) = i 

            ifit(2,i) = i 

            wfit(i) = 1.0d0 

         end do 

      end if 

c 

c     if the weights are all zero, set them to unity 

c 
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      do i = 1, nfit 

         if (wfit(i) .ne. 0.0d0)  goto 10 

      end do 

      do i = 1, nfit 

         wfit(i) = 1.0d0 

      end do 

   10 continue 

c 

c     find the rms fit of input coordinates 

c 

      if (verbose) then 

         rmsvalue = rmsfit (x1,y1,z1,x2,y2,z2) 

         write (iout,20)  rmsvalue 

   20    format (/,' IMPOSE  --  Input Coordinates',12x,f12.6) 

      end if 

c 

c     superimpose the centroids of active atom pairs 

c 

      call center (n1,x1,y1,z1,n2,x2,y2,z2,xmid,ymid,zmid) 

      if (verbose) then 

         rmsvalue = rmsfit (x1,y1,z1,x2,y2,z2) 

         write (iout,30)  rmsvalue 

   30    format (' IMPOSE  --  After Translation',12x,f12.6) 

      end if 

c 

c     use a quaternion method to achieve the superposition 

c 

      call quatfit (n1,x1,y1,z1,n2,x2,y2,z2) 

      rmsvalue = rmsfit (x1,y1,z1,x2,y2,z2) 

      if (verbose) then 

         write (iout,40)  rmsvalue 

   40    format (' IMPOSE  --  After Rotation',15x,f12.6) 

      end if 

c 

c     translate both coordinate sets so as to return 

c     the first set to its original position 

c 

      do i = 1, n1 
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         x1(i) = x1(i) + xmid 

         y1(i) = y1(i) + ymid 

         z1(i) = z1(i) + zmid 

      end do 

      do i = 1, n2 

         x2(i) = x2(i) + xmid 

         y2(i) = y2(i) + ymid 

         z2(i) = z2(i) + zmid 

      end do 

      return 

      end 

##############################################################

#### 

c     ##                                                              

## 

c     ##  subroutine quatfit  --  quaternion superposition of 

coords  ## 

c     ##                                                              

## 

c     

##############################################################

#### 

c 

c 

c     "quatfit" uses a quaternion-based method to achieve the 

best 

c     fit superposition of two sets of coordinates 

c 

c     literature reference: 

c 

c     S. K. Kearsley, "On the Orthogonal Transformation Used 

for 

c     Structural Comparisons", Acta Crystallographica Section 

A, 

c     45, 208-210 (1989) 

c 

c     adapted from an original program written by D. J. 

Heisterberg, 
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c     Ohio Supercomputer Center, Columbus, OH 

c 

c 

      subroutine quatfit (n1,x1,y1,z1,n2,x2,y2,z2) 

      implicit none 

      include 'sizes.i' 

      include 'align.i' 

      integer i,i1,i2,n1,n2 

      real*8 weigh,xrot,yrot,zrot 

      real*8 xxyx,xxyy,xxyz 

      real*8 xyyx,xyyy,xyyz 

      real*8 xzyx,xzyy,xzyz 

      real*8 q(4),d(4) 

      real*8 work1(4),work2(4) 

      real*8 rot(3,3) 

      real*8 c(4,4),v(4,4) 

      real*8 x1(maxatm),x2(maxatm) 

      real*8 y1(maxatm),y2(maxatm) 

      real*8 z1(maxatm),z2(maxatm) 

 

  

c 

c 

c     build the upper triangle of the quadratic form matrix 

c 

       

 

 xxyx = 0.0d0 

      xxyy = 0.0d0 

      xxyz = 0.0d0 

      xyyx = 0.0d0 

      xyyy = 0.0d0 

      xyyz = 0.0d0 

      xzyx = 0.0d0 

      xzyy = 0.0d0 

      xzyz = 0.0d0 

      do i = 1, nfit 

         i1 = ifit(1,i) 
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         i2 = ifit(2,i) 

         weigh = wfit(i) 

         xxyx = xxyx + weigh*x1(i1)*x2(i2) 

         xxyy = xxyy + weigh*y1(i1)*x2(i2) 

         xxyz = xxyz + weigh*z1(i1)*x2(i2) 

         xyyx = xyyx + weigh*x1(i1)*y2(i2) 

         xyyy = xyyy + weigh*y1(i1)*y2(i2) 

         xyyz = xyyz + weigh*z1(i1)*y2(i2) 

         xzyx = xzyx + weigh*x1(i1)*z2(i2) 

         xzyy = xzyy + weigh*y1(i1)*z2(i2) 

         xzyz = xzyz + weigh*z1(i1)*z2(i2) 

      end do 

      c(1,1) = xxyx + xyyy + xzyz 

      c(1,2) = xzyy - xyyz 

      c(2,2) = xxyx - xyyy - xzyz 

      c(1,3) = xxyz - xzyx 

      c(2,3) = xxyy + xyyx 

      c(3,3) = xyyy - xzyz - xxyx 

      c(1,4) = xyyx - xxyy 

      c(2,4) = xzyx + xxyz 

      c(3,4) = xyyz + xzyy 

      c(4,4) = xzyz - xxyx - xyyy 

c 

c     diagonalize the quadratic form matrix 

c 

      call jacobi (4,4,c,d,v,work1,work2) 

c 

c     extract the desired quaternion 

c 

      q(1) = v(1,4) 

      q(2) = v(2,4) 

      q(3) = v(3,4) 

      q(4) = v(4,4) 

c 

c     assemble rotation matrix that superimposes the molecules 

c 

      rot(1,1) = q(1)**2 + q(2)**2 - q(3)**2 - q(4)**2 

      rot(2,1) = 2.0d0 * (q(2) * q(3) - q(1) * q(4)) 
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      rot(3,1) = 2.0d0 * (q(2) * q(4) + q(1) * q(3)) 

      rot(1,2) = 2.0d0 * (q(3) * q(2) + q(1) * q(4)) 

      rot(2,2) = q(1)**2 - q(2)**2 + q(3)**2 - q(4)**2 

      rot(3,2) = 2.0d0 * (q(3) * q(4) - q(1) * q(2)) 

      rot(1,3) = 2.0d0 * (q(4) * q(2) - q(1) * q(3)) 

      rot(2,3) = 2.0d0 * (q(4) * q(3) + q(1) * q(2)) 

      rot(3,3) = q(1)**2 - q(2)**2 - q(3)**2 + q(4)**2 

c 

c     rotate second molecule to best fit with first molecule 

c 

      do i = 1, n2 

         xrot = x2(i)*rot(1,1) + y2(i)*rot(1,2) + 

z2(i)*rot(1,3) 

         yrot = x2(i)*rot(2,1) + y2(i)*rot(2,2) + 

z2(i)*rot(2,3) 

         zrot = x2(i)*rot(3,1) + y2(i)*rot(3,2) + 

z2(i)*rot(3,3) 

         x2(i) = xrot 

         y2(i) = yrot 

         z2(i) = zrot 

      end do 

      return 

      end 

c########################################################## 

c     ##                                                        

## 

c     ##  subroutine jacobi  --  jacobi matrix diagonalization  

## 

c     ##                                                        

## 

c     

############################################################ 

c 

c 

c     "jacobi" performs a matrix diagonalization of a real 

c     symmetric matrix by the method of Jacobi rotations 

c 

c     variables and parameters: 
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c 

c     n     logical dimension of the matrix to be diagonalized 

c     np    physical dimension of the matrix storage area 

c     a     input with the matrix to be diagonalized; only 

c              the upper triangle and diagonal are required 

c     d     returned with the eigenvalues in ascending order 

c     v     returned with the eigenvectors of the matrix 

c     b     temporary work vector 

c     z     temporary work vector 

c 

c 

      subroutine jacobi (n,np,a,d,v,b,z) 

      implicit none 

      include 'iounit.i' 

      integer i,j,k 

      integer n,np,ip,iq 

      integer nrot,maxrot 

      real*8 sm,tresh,s,c,t 

      real*8 theta,tau,h,g,p 

      real*8 d(np),b(np),z(np) 

      real*8 a(np,np),v(np,np) 

c 

c 

c     setup and initialization 

c 

      maxrot = 100 

      nrot = 0 

      do ip = 1, n 

         do iq = 1, n 

            v(ip,iq) = 0.0d0 

         end do 

         v(ip,ip) = 1.0d0 

      end do 

      do ip = 1, n 

         b(ip) = a(ip,ip) 

         d(ip) = b(ip) 

         z(ip) = 0.0d0 

      end do 
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c 

c     perform the jacobi rotations 

c 

      do i = 1, maxrot 

         sm = 0.0d0 

         do ip = 1, n-1 

            do iq = ip+1, n 

               sm = sm + abs(a(ip,iq)) 

            end do 

         end do 

         if (sm .eq. 0.0d0)  goto 10 

         if (i .lt. 4) then 

            tresh = 0.2d0*sm / n**2 

         else 

            tresh = 0.0d0 

         end if 

         do ip = 1, n-1 

            do iq = ip+1, n 

               g = 100.0d0 * abs(a(ip,iq)) 

               if (i.gt.4 .and. abs(d(ip))+g.eq.abs(d(ip)) 

     &                    .and. abs(d(iq))+g.eq.abs(d(iq))) 

then 

                  a(ip,iq) = 0.0d0 

               else if (abs(a(ip,iq)) .gt. tresh) then 

                  h = d(iq) - d(ip) 

                  if (abs(h)+g .eq. abs(h)) then 

                     t = a(ip,iq) / h 

                  else 

                     theta = 0.5d0*h / a(ip,iq) 

                     t = 1.0d0 / 

(abs(theta)+sqrt(1.0d0+theta**2)) 

                     if (theta .lt. 0.0d0)  t = -t 

                  end if 

                  c = 1.0d0 / sqrt(1.0d0+t**2) 

                  s = t * c 

                  tau = s / (1.0d0+c) 

                  h = t * a(ip,iq) 

                  z(ip) = z(ip) - h 
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                  z(iq) = z(iq) + h 

                  d(ip) = d(ip) - h 

                  d(iq) = d(iq) + h 

                  a(ip,iq) = 0.0d0 

                  do j = 1, ip-1 

                     g = a(j,ip) 

                     h = a(j,iq) 

                     a(j,ip) = g - s*(h+g*tau) 

                     a(j,iq) = h + s*(g-h*tau) 

                  end do 

                  do j = ip+1, iq-1 

                     g = a(ip,j) 

                     h = a(j,iq) 

                     a(ip,j) = g - s*(h+g*tau) 

                     a(j,iq) = h + s*(g-h*tau) 

                  end do 

                  do j = iq+1, n 

                     g = a(ip,j) 

                     h = a(iq,j) 

                     a(ip,j) = g - s*(h+g*tau) 

                     a(iq,j) = h + s*(g-h*tau) 

                  end do 

                  do j = 1, n 

                     g = v(j,ip) 

                     h = v(j,iq) 

                     v(j,ip) = g - s*(h+g*tau) 

                     v(j,iq) = h + s*(g-h*tau) 

                  end do 

                  nrot = nrot + 1 

               end if 

            end do 

         end do 

         do ip = 1, n 

            b(ip) = b(ip) + z(ip) 

            d(ip) = b(ip) 

            z(ip) = 0.0d0 

         end do 

      end do 
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c 

c     print warning if not converged 

c 

   10 continue 

      if (nrot .eq. maxrot) then 

         write (iout,20) 

   20    format (/,' JACOBI  --  Matrix Diagonalization not 

Converged') 

      end if 

c 

c     sort the eigenvalues and vectors 

c 

      do i = 1, n-1 

         k = i 

         p = d(i) 

         do j = i+1, n 

            if (d(j) .lt. p) then 

               k = j 

               p = d(j) 

            end if 

         end do 

         if (k .ne. i) then 

            d(k) = d(i) 

            d(i) = p 

            do j = 1, n 

               p = v(j,i) 

               v(j,i) = v(j,k) 

               v(j,k) = p 

            end do 

         end if 

      end do 

      return 

      end 

c########################################################### 

c     ##                                                       

## 

c     ##  function rmsfit  --  rms deviation for paired atoms  

## 
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c     ##                                                       

## 

c########################################################### 

c 

c 

c     "rmsfit" computes the rms fit of two coordinate sets 

c 

c 

      function rmsfit (x1,y1,z1,x2,y2,z2) 

      implicit none 

      include 'sizes.i' 

      include 'align.i' 

      integer i,i1,i2 

      real*8 rmsfit,rmsterm 

      real*8 xr,yr,zr,dist2 

      real*8 weigh,norm 

      real*8 x1(*),x2(*) 

      real*8 y1(*),y2(*) 

      real*8 z1(*),z2(*) 

c 

c 

c     compute the rms fit over superimposed atom pairs 

c 

      rmsfit = 0.0d0 

      norm = 0.0d0 

      do i = 1, nfit 

         i1 = ifit(1,i) 

         i2 = ifit(2,i) 

         weigh = wfit(i) 

         xr = x1(i1) - x2(i2) 

         yr = y1(i1) - y2(i2) 

         zr = z1(i1) - z2(i2) 

         dist2 = xr**2 + yr**2 + zr**2 

         norm = norm + weigh 

         rmsterm = dist2 * weigh 

         rmsfit = rmsfit + rmsterm 

      end do 

      rmsfit = sqrt(rmsfit/norm) 



 

 

 

183 

      return 

      end 
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