
UNIVERSITÀ DEGLI STUDI DI SALERNO 
 

DIPARTIMENTO DI FARMACIA 
 

 
 

 
DOTTORATO DI RICERCA IN SCIENZE FARMACEUTICHE 

XIV CICLO (X-Ciclo Nuova Serie) 
2008-2012 

 
 
 
 
 

“Proteomic profiles of cultured cells stimulated with VEGFs 

dimers and search for natural compounds angiogenesis inhibitors” 

 
 
 
 

Tutor                                                  PhD Student 
Prof. Fabrizio Dal Piaz       Mariasabina Pesca 
Prof. Sandro De Falco 

 
 

 
 

Coordinator  
Prof.ssa Nunziatina De Tommasi 

 



List of abbreviations 

 

 

Abbreviations: 

 

2-DE = two-dimensional gel electrophoresis 

Akt = Protein Kinase B 

AMD = age-related macular degeneration 

Bcl-2 = B-cell lymphoma 2 

BF-2 = Brain Factor 2 

CAM = chicken chorioallantoic membrane 

CHCl3 = Chloroform 

CRC = colorectal cancer 

DTT = dithiothreitol 

ECD = Electronic Circular Dicroism 

ECs = endothelial cells 

ECM = extracellular matrix 

EGF = epidermal growth factor 

ELISA = Enzyme-Linked Immunosorbent Assay 

eNOS = endothelial nitric oxide synthase 

ERK1/2 = Extracellular Regulated Kinase 1 and 2 

FDA = Food & Drug Administration 

FGF = fibroblast growth factors 

Flk-1 = fetal liver kinase 1 

Flt-1= fms-related tyrosine kinase 1 

FOXD1 = forkhead box D 1 

HEK-293hFlt-1 = Human Embryonic Kidney 293 cells expressing human 

Flt-1 

HIF= hypoxia-inducible factor 

HNF3B = Hepatocyte nuclear factor 3-beta 



List of abbreviations 

HPLC = High Performance Liquid Chromatography 

HRE = hypoxia responsive element 

HSA = human serum albumin 

HSCs = hematopoietic stem cells 

HTS = High Throughput Screening 

HUVECs = Human Umbilical Vein Endothelial Cells 

HRP = enzyme horseradish peroxidase  

IEF = isoelectric focusing 

IL = interleukin 

KDR = kinase insert domain receptor 

LPLC = Low Pressure Liquid Chromatography 

m/z = Mass-to-charge ratio 

Mab = monoclonal antibody 

MAPK = mitogen activated protein kinase 

MeOH = Methanol 

MBC = metastatic breast cancer 

MCF-7 = breast cancer cell line 

MMPs = matrix metalloproteinase 

MPLC = medium pressure liquid chromatography 

MS/MS = Tandem Mass Spectrometry 

MTF-1 = metal transcription factor  

Mw = apparent molecular weight 

NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells 

NIH 3T3 = Mouse embryonic fibroblast cell line 

NMR = Nuclear magnetic resonance spectroscopy 

NP = neuropilin 

NSCLC = non-small-cell lung cancer 

ORF = open reading frame 

PAs = plasminogen activator system 



List of abbreviations 

PDGF = platelet-derived growth factor 

pI = isoelectric point 

PI 3-kinases = Phosphatidylinositide 3-kinases 

PKC = protein kinase C 

PLC = phospholipase C 

PlGF = placental growth factor 

PlGF/VEGF = heterodimer between VEGF-A and PlGF (also written 

VEGF/PlGF) 

Q-TOF = quadrupole-time of flight 

Ras/Raf/MEK/Map kinase pathway = a group of cellular proteins that play 

a key role in cellular growth and proliferation 

RTKs = receptor tyrosine kinases 

RTKIs = receptor tyrosine kinases inhibitors 

SDS-PAGE = Sodium Dodecyl Sulphate - PolyAcrylamide Gel 

Electrophoresis 

SPR = Surface Plasmon Resonance 

Shb = SH2 domain-containing adapter protein B 

sFlt-1 = soluble Flt-1 

TGF = transforming growth factors 

TSAd = T cell specific adapter 

VEGFs = vascular endothelial growth factors 

VEGFR = vascular endothelial growth factors receptor 

VHL = von Hippel-Lindau 

VPF = vascular permeability factor 

Y = phosphorylated tyrosine residues. 

 

 

 

 



List of abbreviations 

 



 Abstract   

 

ABSTRACT 

 

Some members of the vascular endothelial growth factor (VEGF) family, such 

as VEGF and PlGF, and related receptors (KDR and Flt-1) play a key role in 

the modulation of angiogenesis, both physiological and pathological. For this 

reason they are considered valid therapeutic targets. Anti-angiogenesis 

therapy, despite the scientific efforts and promising results, is still suffering of 

some limitations. 

In the attempt to produce a research that can facilitate the future development 

of new antiangiogenic therapy strategies, we realized these goals: 1) carry out 

an expression proteomic study of cell coltures, after their treatment with some 

dimers of VEGF family; 2) identify new natural compounds able to inhibit the 

axis of interaction VEGF/Flt-1 and PlGF/Flt-1. 

We used gel-based proteomics to detect the differentially expressed proteins 

by VEGF, PlGF and VEGF/PlGF, in HUVECs and HEK-293-hFlt-1. Gels 

variability was also determined by principal component analysis (PCA). 

Statistically significant spots were enzimatically digested and analyzed by 

nano-LC-ESI-MS/MS analysis, allowing to achieve protein identifications.. 

Different treatments shared the modulation of a number of proteins. This 

aspect was particularly marked in HUVECs. This implies that in HUVEC, 

more biological events, due to the presence of both receptors involved in 

angiogenesis, might be found. For some of identified proteins, few data were 

already reported in the literature thus confirming the reliability of all the 

collected data. The functional annotation clustering evidenced the different 

physiology between the two cell cultures, and the different endothelial roles 

exerted by the selected VEGF dimers and related receptors. All the achieved 

data will pave the way for future studies on understanding the functional 
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mechanism of endothelial cells in response to different vascular endothelial 

growth factors. 

In order to identify plant compounds able to interfere in the VEGFs/VEGFR-1 

(Flt-1) recognition by VEGFs family members, we screened a small libraries 

of plant extracts. By using this bioassay-oriented approach five 

proantocyanindins, including the new natural compounds (2S)-4',5,7-

trihydroxyflavan-(4β→8)-afzelechin (1) and (2S)-4',5,7-trihydroxyflavan-

(4β→8)-epiafzelechin (2), and the known geranin B (3), proanthocyanidin A2 

(4), and proanthocyanidin A1 (5), were also isolated. The study of the 

antiangiogenic activities of compounds 1-5 using ELISA and SPR assays 

showed compound 1 as being the most active. The antiangiogenic activity of 1 

was also confirmed in vivo by the chicken chorioallantoic membrane (CAM) 

assay. Our results indicated 1 as a new antiangiogenic compound inhibiting 

the interaction between VEGF-A or PlGF and their receptor VEGR-1. 
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1.1 Formation of blood vessels 
 

In vertebrates, transport of nutrient, oxygen and cells is mediated by extensive 

and highly organized tubular network that is mainly formed by endothelial 

cells (ECs). 

Blood vessels are responsible for systemic circulation, while the lymphatic 

vasculature drains extravasated plasma, proteins, particles, and cells from the 

interstitium. In particular, blood vessels supply oxygen and nutrients and 

produce instructive signals to promote organ morphogenesis and allow 

haematopoietic cells to patrol the organism for immune surveillance 

(Carmeliet and Jain, 2011). 

The three known processes aimed to blood vessels formation and remodeling 

are: “vasculogenesis”, “angiogenesis” and “arteriogenesis” (figure 1) 

(Carmeliet, 2004). The term “vasculogenesis” identifies de novo blood vessels 

formation. During embryogenesis, endothelial progenitor cells migrate to sites 

of vascularization and differentiate into ECs forming the initial vascular 

plexus (Semenza, 2007). Already at this stage capillaries are endowed with an 

arterial and venous character, thus showing that vascular-cell specification is 

genetically programmed and not only determined by haemodynamic factors. 

During angiogenesis, the vascular plexus progressively expands by means of 

the formation of new blood vessels starting from the pre-assembled ones. 

Pericytes and smooth muscle cells cover the nascent endothelial-cell channels 

committed to the arterial fate allowing the vessels perfusion. This process is 

named “arteriogenesis”(Carmeliet, 2005). 

The lymphatic system develops differently, as most lymphatic vessels 

transdifferentiate from a subset of veins (Alitalo et al., 2005). 
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Fig. 1. Development of the vascular systems: during vasculogenesis, endothelial progenitors 

give rise to a primitive vascular labyrinth of arteries and veins; during subsequent 
angiogenesis, the network expands, pericytes (PCs) and smooth muscle cells (SMCs) cover 

nascent endothelial channels, and a stereotypically organized vascular network emerges. 
Lymph vessels develop via transdifferentiation from veins (adopted and modified by 

Carmeliet, 2005). 
 

 

1.2 Basic aspects of angiogenesis 

 

Angiogenesis is a complex multistep process that requires an extensive 

interplay between a variety of cells, soluble factors, and extracellular matrix 

(ECM) components. 

At the onset of sprouting, endothelial cells of existing blood vessels degrade 

the underlying basement membrane and invade into the stroma of the 

neighboring tissue. This process requires the cooperation of the plasminogen 

activator system (PAs) and the matrix metalloproteinases (MMPs). These 

activate plasmin, an important enzyme present in blood that degrades several 

ECM components. Angiogenic growth factors, cytokines and other proteins 

control the activity and the expression of both PAs and MMPs. PAs and 

MMPs are secreted together with their inhibitors, ensuring a strict control on 

local proteolytic activity, thus preserving the tissue structure (Mignatti and 
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Rifkin, 1996; Bikfalvi et al. 1997; Blasi 1997; Westermarck et al., 1999). 

Following proteolytic disintegration of basement membrane, a variety of 

growth factors stimulates ECs migration and proliferation. These angiogenesis 

inducers can be divided into three classes: the first one consists of the vascular 

endothelial growth factors (VEGFs) family and the angiopoietins, specifically 

acting on ECs; the second class includes many direct-acting molecules, such 

as cytokines, chemokines, and angiogenic enzymes that activate many target 

cells; the third group of angiogenic molecules is represented by the indirect-

acting factors, whose effect on angiogenesis is the release of direct-acting 

factors from macrophages, endothelial or tumor cells. 

The processes of ECs invasion, migration, and proliferation not only depend 

on angiogenic enzymes, growth factors and their receptors, but also on cell– 

cell contacts and cell–ECM interactions, mediated by specific adhesion 

molecules. These are classified on the base of their biochemical and structural 

characteristics into four families as follows: the selectins, the immunoglobulin 

supergene family, the cadherins, and the integrins (Liekens et al., 2001). 

 

 

1.3 Physiological and pathological angiogenesis 

 

After birth, angiogenesis contributes to organ growth but during adulthood 

most of the blood vessels remain quiescent. However, ECs keep their 

remarkable ability of dividing rapidly and under some conditions, such as the 

cycling ovary, the pregnancy, the physical exercise, the wound healing, or in 

response to a specific stimulus (for example hypoxia); therefore angiogenesis 

can be reactivated. The normal and healthy body controls angiogenesis 

through a series of “on” switches, known as angiogenesis factors (cytokines) 

and “off” switches, known as endogenous angiogenesis inhibitors (table 1). 
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Tab. 1. Endogenous positive and negative regulators of angiogenesis. 

 

In many disorders, the perfect balance between angiogenesis modulators is 

compromised;  angiogenesis has been implicated in more than 70 disorders so 

Stimulators Inhibitors

Growth Factors

Angiogenin
Angiotropin

Epidermal growth factor (EGF)
Fibroblast growth factor (acidic and basic) (FGF)

Granulocyte colony-stimulating factor (G-CSF)
Hepatocyte growth factor/scatter factor (HGF/SF)

Placental growth factor (PlGF)
Plateled-derived endothelial cell growth factor (PD-

ECGF)
Platelet-derived growth factor-BB (PDGF-BB)

Transforming growth factor alpha and beta (TGF-
alpha/beta)

Tumor necrosis factor-alpha (TNF-alpha)
Vascular endothelial growth factor/Vascular 

permeability factor (VEGF/VPF)

Transforming growth factor beta 
(TGF-beta)

Tumor necrosis factor-alpha (TNF-
alpha)

Proteases and Protease 
Inhibitors

Cathepsin
Gelatinase A, B

Stromelysin
Urokinase-type plasminogen activator (uPA)

Heparinases
Plasminogen activator-inhibitor-1 

(PAI-1)
Tissue inhibitor of metalloprotease 

(TIMP-1, TIMP-2)

Endogenous Modulators

Alpha v Beta 3 integrin
Angiopoietin-1

Endothelin (ETB receptor)
Erythropoietin

Follistatin
Hypoxia
Leptin

Midkine (MK)
Nitric oxide synthase (NOS)

Platelet-activating factor (PAF)
Pleiotropin (PTN)
Prostaglandin E
Thrombopoietin

Angiopoietin-2
Angiostatin

Caveolin-1, caveolin-2
Endostatin

Fibronectin fragment
Heparin hexasaccharide fragment
Human chorionic gonadotropin 

(hCG)
Interferon-alpha, beta, gamma

Interferon inducible protein (IP-10)
Isoflavones

Kringle 5 (plasminogen fragment)
2-Methoxyestradiol

Placental ribonuclease inhibitor
Platelet factor-4

Prolactin (16 Kd fragment)
Proliferin-related protein (PRP)

Retinoids
Tetrahydrocortisol-S

Thrombospondin
Troponin-1

Vasculostatin

Cytokines
Interleukin-1
Interleukin-6
Interleukin-8

Interleukin-10
Interleukin-12

Signal Transduction Enzymes
Thymidine phosphorylase

Farnesyl transferase
Geranylgeranyl transferase

Oncogenes c-myc , ras , c-src , v-raf, c-jun p53, Rb
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far and the list is ever growing. In particular, when angiogenic growth factors 

are produced in excess over angiogenesis inhibitors, the balance is moved in 

favor of blood vessels growth. Vice versa, when inhibitors exceed stimulators, 

angiogenesis is stopped. Persistent and up-regulated angiogenesis is often a 

diagnostic factor of severe pathologies such as cancer, atherosclerosis, and 

diabetic retinopathy. Instead, insufficient angiogenesis is a characteristic of 

coronary artery disease (CAD), cardiac failure, tissue injury, etc. Angiogenesis 

has been implicated in more than 70 disorders so far and the list is ever 

growing. (Carmeliet 2003; Carmeliet, 2005). 

 

 

1.4 VEGF family 

 

New vessels growth and maturation require the sequential activation of a 

series of receptors by means of numerous ligands. However, among these 

VEGF signaling represents the key rate-limiting step (Ferrara et al., 2003). 

In mammalians, five VEGF ligands (occurring in several different splice 

variants and processed forms) have been identified: 

 VEGF-A 

 VEGF-B 

 PlGF (placental growth factor) 

 VEGF-C 

 VEGF-D 

All these factors are secreted as dimeric and glycosilated proteins of 

approximately 40 kDa. Structurally (figure 2) they are characterized by a 

common motif represented by eight cysteine residues specifically spaced in a 

conserved domain. This is called “cysteine –knot motif”. The crystal structure 

of VEGF-A shows that the dimer is formed by two monomers ordered in an 

anti-parallel fashion, with the receptor-binding site located at each pole of the 
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dimer. The VEGFs form also heterodimers if co-expressed in the same cell. 

Proteins that are structurally related to the VEGFs exist in parapoxvirus 

(VEGF-E) and snake venom (a group of proteins known as VEGF-Fs). 

 

a) b)  
Fig. 2. a) Structure of human Vascular Endothelial Growth Factor (PDB code: 1VPF); b) The 
crystal structure of human Placenta Growth Factor-1 (PLGF-1), an angiogenic protein at 2.0a 

resolution (PDB code: 1FZV) 
 

The VEGF family presents different biological and physical properties. 

VEGF-A, VEGF-B and PlGF are mainly involved in the angiogenesis, while 

VEGF-C and VEGF-D in the lymphangiogenesis. Their biological activities 

are due to the interactions with the extracellular domains of receptor tyrosine 

kinases (RTKs) (figure 3). These receptors are known as: 

 VEGFR-1 (also known as Flt-1, fms-like tyrosine kinase) 

 VEGFR-2 (also named KDR, kinase domain receptor, in human and 

Flk-1, Fetal liver kinase-1, in mouse) 

 VEGFR-3 (also known as Flt-4)  

Some ligand isoforms are able to bind also co-receptors such as neuropilins 

(NP-1 and NP-2), other than heparin sulphate proteoglycans (HSPGs). The 

binding induces the RTKs dimerization. Each protein kinase monomer 

phosphorylates a distinct set of tyrosine residues in the cytosolic domain of its 

dimer partner (a process termed autophosphorylation) and finally a cascade of 
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downstream proteins is activated. Through this fine mechanism, diverse 

angiogenic signals, including cell migration, survival and proliferation, are 

propagated. Thus, VEGRs play a key role in the signal transduction aimed at 

the formation of the new vessels and the regulation of vascular permeability 

(Rahimi , 2006; Roy et al., 2006; Otrock et al., 2007; Koch et al., 2011). 

 

 
Fig. 3. Schematic representation of the Vascular Endothelial Growth Factors family members 

involved in angiogenesis. 
 

A detailed description of some members of VEGF family is here after 

reported. 

 

 

1.5 VEGF-A 

 

VEGF-A (also known as VEGF) is the the most studied member of VEGF 

family. It plays a key role in the onset of angiogenesis, vasculogenesis and 
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lymphangiogenesis. The vegf gene is located in the short arm of chromosome 

6, formed by approximately 14 kb and containing 8 exons and 7 introns. 

VEGF-A transcription is up-regulated in hypoxia condition through a fine 

mechanism. In particular, hypoxia-inducible factor–1α (HIF–1α) binds to the 

hypoxia responsive element (HRE) in the VEGF-A gene promoter region, 

which in turn increases the transcription of VEGF-A. Through the same 

mechanism, the transcription of other genes implicated in glucose transport, 

glycolysis and angiogenesis is also activated. Recent studies report the role of 

von Hippel-Lindau (VHL) tumor suppressor gene in HIF-1-dependent hypoxic 

responses. Also other pathways involving different growth factors can increase 

the expression of VEGF-A (Semenza, 2002; Mole at al. 2001). For instance, 

epidermal growth factor (EGF), transforming growth factors (TGF-α, TGF-β), 

keratinocyte growth factor, insulin-like growth factor-1, fibroblast growth 

factors (FGF) and platelet-derived growth factor, are able to up-regulate 

VEGF mRNA expression. This suggests that paracrine or autocrine systems 

deal with local hypoxia by regulating VEGF release. Some inflammatory 

cytokines (IL-1α, IL-6α) also induce VEGF-A gene expression supporting the 

hypothesis that VEGF-A is a mediator of permeability in inflammatory 

disorders. Finally, it has been also demonstrated that VEGF-A is up-regulated 

by mutations or amplification of Ras (Rat sarcoma) (Neufeld et al., 1999; 

Ferrara et al., 2003; Otrock at al., 2007). 

VEGF exists in four different isoforms (comprising 121, 165, 189 and 206 

amino acids in humans), which are generated by alternative splicing of a single 

pre-mRNA species. Among these, VEGF165 is the predominant isoform. 

However, isoforms that are expressed at lower extent were also identified 

(VEGF145 and VEGF183). Isoforms differ in their ability to bind to heparin 

sulfate and extracellular matrix (ECM) (Park et al., 1993; Ferrara et al., 2003). 

VEGF-A exerts its biologic effects through interaction with the receptors Flt-1 

and KDR/Flk-1 and with the co-receptors NP-1 and NP-2. It is the most potent 
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pro-angiogenic protein. VEGF-A induces proliferation, sprouting and tube 

formation of endothelial cells (ECs) and exerts many effects on a broad range 

of not-ECs types. It is also a potent survival factor, both in vitro and in vivo. In 

ECs it induces the expression of antiapoptotic proteins (Bcl-2 and A-1). 

VEGF-A was originally described as vascular permeability factor (VPF) but it 

is also involved in vascular leakage (a key process in inflammation and other 

pathological conditions) through the formation of intercellular gaps, vescico-

vascular organelles, vacuoles and fenestration in some vascular beds. 

Furthermore, it increases the hydraulic conductivity of isolated microvessels, 

through an accentuation of calcium influx. This growth factor causes 

vasodilatation through the release of nitric oxide by inducing the endothelial 

nitric oxide synthase (eNOS). VEGF-A promotes the mobilization of 

hematopoietic stem cells (HSCs) from the bone marrow, monocyte 

chemotaxis, osteoblast-mediated bone formation and neuronal protection. 

Furthermore, it stimulates inflammatory cell recruitment and the expression of 

proteases implicated in pericellular matrix degradation in angiogenesis.  

VEGF-A is essential mainly during embryonic and early postnatal 

development. The loss of a single vegf allele is lethal in the mouse embryo 

between days 11 and 12. These embryos present some developmental 

anomalies, not well-vascularized organs and a low number of nucleated red 

blood cells. Inhibition of VEGF during early postnatal life, increases mortality, 

stunts the body growth and impairs organ development and skeletal growth. In 

juvenile primates it results in abnormalities in physiological angiogenesis. On 

the other hand, transgenic mice with over-expression of VEGF-A in the skin, 

develops a psoriasis-like skin condition and accelerates experimental tumor 

growth. In humans, VEGF-A is expressed in most of all solid tumors as well 

as in some hematological malignancies. VEGF is also implicated in the 

pathogenesis of diabetes mellitus, having a major role in the onset of vitreous 

hemorrhages, retinal detachment, neovascular glaucoma and blindness 
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correlated with this pathology. Recent studies showed the presence of VEGF 

in choroidal neovascular membranes of age-related macular degeneration 

(AMD) patients. It has been reported that this presence is correlated to 

neovascularization and vascular leakage that cause AMD. Finally, VEGF is 

involved in many inflammatory disorders and it cooperates in induction of 

angiogenesis associated to polycystic ovary syndrome, endometriosis and 

preeclampsia. (Ferrara et al., 2003; Tammela et al., 2005; Otrock et al., 2007; 

Roy et al. 2006). 

 

 

1.6 PlGF 

 

The human plgf gene is located on chromosome 14q24 and is formed by 7 

exons spanning on 12 qD. Using alternative splicing processe, PlGF can be 

expressed in four isoforms, named PlGF-1, -2, -3 and -4 composed by 131, 

152, 203 and 224 amino acids, respectively. They differ in the ability to bind 

heparan sulfate proteoglycans (Maglione et al., 1993a; DiPalma et al., 1996). 

Although some reports indicated an upregulation of PlGF in cells exposed to 

hypoxia, the analysis of promoter/enhancer region of PlGF did not show active 

HRE sequence as observed also for VEGF-A (Green et al., 2001; Oura et al., 

2003; Selvaraj et al., 2003). However, PlGF gene promoter includes many 

recognition sequences for metal transcription factor 1 (MTF-1) and for NF-κB. 

These sequences are typically involved in the modulation of PlGF expression 

in hypoxic condition (Green et al., 2001). Moreover, overexpression of HIF-1α 

in endothelial cells or in primary cardiac and vascular cells up-regulates the 

expression of PlGF. Moreover, PlGF expression is modulated also by the 

forkhead/winged helix transcription factor FoxD1 (BF-2) in the developing 

kidney stroma. This is possible given the presence of a conserved HNF3b 

binding site on PlGF promoter region (Zhang et al., 2003). Finally, PlGF 
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expression is also post-transcriptionally regulated by other growth factors and 

oncogenes (Maglione et al., 1993b). 

The pro-angiogenic activity of PlGF is exerted through the binding and the 

activation of VEGFR-1. This growth factor shows the highest affinity if 

compared to those of the other members of the same family. 

PlGF may also activate VEGFR-2 indirectly, using one of the following 

mechanisms:  

 VEGFR-1, once activated by PlGF, can transphosphorylate VEGFR-2 

 PlGF, upon binding to VEGFR-1, makes VEGF-A available for the 

binding and activation of VEGFR-2 

 PlGF and VEGF-A, if co-expressed from the same cells, can form 

heterodimers able to activate VEGFR-1 or to induce VEGFR-

1/VEGFR-2 heterodimerization.  

Furthermore PlGF-2 is able to bind the two coreceptors NP1 and NP2 (Autiero 

et al., 2003). 

PlGF was originally discovered in placenta. It is also expressed in 

throphoblastic giant cells associated with the parietal yolk sac, during early 

embryonic development. At cellular level, the expression of PlGF was 

demonstrated in endothelial cells, thyroid transformed mouse embryonic 

fibroblast, NIH 3T3 cells and a limited number of tumor-derived cell lines. 

PlGF knockout mice do not have an evident phenotype. They born at medelian 

frequency, are healthy and fertile but present an impaired angiogenesis when 

pathological conditions are induced such as tumor growth, heart or limb 

ischemia, choroid neovascularization. This strongly indicates that PlGF is 

involved only in pathological angiogenesis and not in physiological 

angiogenic process. Overexpression of PlGF in the skin of transgenic mice 

results in a significant increase in the number and size of skin blood vessels, in 

number of mature smooth muscle-coated vessels and in enhanced vascular 

permeability. Accordingly, adenovirus-mediated PlGF transfer in the ischemic 
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heart and limb was able to induce a strong angiogenic response, forming 

numerous larger vessels, with an efficacy almost comparable to that of VEGF-

A (Luttun et al., 2002). The same approach used in xenograft tumors did not 

show an increase of tumor volume and vessel density, however it generated an 

increment of the vessel lumen, of the inflammatory infiltrate and of the vessel 

maturation (Tarallo et al., 2010). Recombinant PlGF homodimer or 

PlGF/VEGF heterodimer significantly promoted angiogenesis in ischemic 

conditions (Luttun et al., 2002; Autiero et al., 2003). 

Futher studies demonstrated that PlGF promoted pathological angiogenesis by 

stimulating vessel growth and maturation. In particular, it acts on the growth, 

migration and survival of endothelial cells, increases the proliferation and 

recruitment of smooth-muscle cells and supports the proliferation of 

fibroblasts. Finally, PlGF is crucial for the recruitment and maturation of bone 

marrow derived progenitors and the differentiation and activation of 

monocyte-macrophage (De Falco, 2012). 

 

 

1.7 VEGFR-1 and VEGFR-2 

 

Human VEGFR-1 and VEGFR-2 are transmembrane glycoproteins of 180 and 

200 kDa, respectively. They are structurally related to the platelet-derived 

growth factor (PDGF) receptor family and contain (figure 4):  

 an extracellular domain of 7 extracellular immunoglobulin (Ig) like 

domains 

 a single transmembrane region 

 a regulatory juxtamembrane domain 

 an intracellular tyrosine kinase domain, interrupted by a kinase insert 

domain. 
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Figure 4. Representative structure of vascular endothelial growth factor (VEGF) tyrosine 

kinase receptors. The VEGF receptor family is represented by seven immunoglobulin-like 
loops in the extracellular domain, which binds VEGF. Ligand induces the formation of 
receptor dimer to activate autophosphorylation of tyrosine residues on the cytoplasmic 

domain. Ig = immunoglobulin; VEGF = vascular endothelial growth factor; Y- = 
phosphorylated tyrosine residues. 

 

Both the receptors bind VEGF with high affinity. The ligand-binding region is 

localized within the second and third Ig domains, while the fourth Ig domain is 

essential for dimerization of VEGF receptors. In addition, Flt-1 also acts as a 

receptor for VEGF-B and PlGF, whilst KDR also binds to VEGF-C and 

VEGF-D and the viral homolog VEGF-E. 

Upon ligand binding, the tyrosine kinase activity of VEGFR1 is ten-fold 

weaker than that of VEGFR-2. This information prompts further investigations 

to understand at molecular level the different biological roles of these 

receptors. 

VEGFRs undergo alternative splicing to generate soluble forms of the 

receptors. Soluble VEGFR-1 (sFlt-1) is composed by the first six domains of 

extracellular portion of the receptor. This form binds VEGF-A and PlGF with 

the same affinity of the full length receptor, it functions as an endogenous 

VEGF inhibitor (Tugues et al., 2011; Shibuya, 2013). As recently reported, it 

plays a pivotal role to maintain cornea avascularity. However, when an injury 
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of cornea occurs with an increase of VEGF-A level, it titles sFlt-1 and binds to 

Flk-1 inducing angiogenesis (Ambati et al., 2006; Shibuya, 2013). Similarly, 

soluble VEGFR-2 (sKDR) is important in ocular lymphoangiogenesis context 

(Pavlakovic et al., 2010). 

KDR and Flt-1 are both expressed in endothelial cells. VEGFR1 is also 

expressed in monocyte/macrophages, dendritic cells, osteoclasts, pericytes, 

trophoblasts, in mesangial cells, smooth muscle cells and also in bone marrow 

stem/progenitors derived cells. Its transcription is up-regulated by hypoxia, via 

a HIF-1-dependent mechanism and upon activation of macrophages. Non 

endothelial expression of VEGFR-2 has been observed in vascular endothelial 

progenitors, retinal progenitor cells, hematopoietic stem cells, neuronal cells, 

osteoblasts, pancreatic duct cells, and megakatyocytes. 

VEGFR-1 knock out mices die at embryonic day 8.5-9.0, due to the over-

growth and disorganization of blood vessels. This suggested that VEGFR-1, 

trapping VEGF-A and preventing activation of VEGFR-2, plays a negative 

regulatory role during the development of primitive vascular network. 

Several tyrosine residues in VEGFR-1 intracellular domain have been 

identified as autophosphorylation sites using various experimental approaches. 

For instance, phosphorylation of Y1169 allows the binding and in turn the 

activation of phospholipase C (PLC)γ1 regulating endothelial cell proliferation 

via the mitogen activated protein kinase (MAPK) pathway. It is worth noting 

that VEGF-A and PlGF don’t induce the same autophosphorylations in 

VEGFR-1. This suggests that the two ligands stabilize two distinct 

conformations of the receptor intracellular domain in the activated VEGFR1 

dimer or induce distinct modes of association with accessory molecules, such 

as heparin sulfated proteoglycans or neuropilins,. As a result, the availability 

of VEGFR-1 tyrosine residues as substrates for the kinase is different in 

response to the diverse ligand bound (Shibuya 2006). Finally, it has been 
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demonstrated synergy between VEGFR-1 and VEGFR-2, by a “cross-talking 

mechanism” (Tjwa et al., 2003). 

VEGFR-2 null mices die at embryonic day 8.5-9.0, due a lack of 

vasculogenesis and very poor hematopoietic development. This means that 

VEGFR-2 plays an essential role in survival, growth and differentiation of 

endothelial cell progenitors. 

Thus, during early embryogenesis, the two VEGFRs have opposite roles in 

angiogenesis: VEGFR-2 is a positive signal transducer, whereas VEGFR-1 is a 

suppressor. It is necessary a coordinated signaling between the two receptors 

to obtain a balanced expansion and differentiation of the endothelial precursor 

pool.  

VEGFR-2 activity is also important for migration of ECs during adulthood. 

Several studies have been carried out in order to clarify the signal transduction 

by VEGFR-2. Therefore some autophosphorilation sites have been identified. 

Y951 mediates the binding to T cell specific adapter (TSAd), which in turn 

binds to Src, thus regulating actin cytoskeleton and cell migration. 

Phosphorilation of Y1175 induces the activation of PLCγ that in turn 

stimulates the protein kinase C(PKC) pathway leading to inositol phosphate 

formation and calcium mobilization. Furthermore, Raf-MEK-MAP kinase 

pathway and subsequent DNA synthesis are regulated through the 

phosphorylation at this site. Y1175 also binds to the adapter molecule Shb, 

that is also implicated in the activation of PI3-kinase and its downstream 

effector Akt and MAPK p38 via VEGFR-2. This site is also involved in the 

differentiation of hemangioblasts. (Shibuya 2006, Shibuya 2013) 

Recent studies give the first indications about the role of heterodimerization 

between VEGFR-1 and VEGFR-2 in the regulation of endothelial cell 

homeostasis. According to this research VEGFR1 − 2 activation mediates 

VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube 

formation and vasorelaxation via the nitric oxide pathway, but not 
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proliferation or endothelial tissue factor production, confirming that these 

functions are controlled by VEGFR-2 homodimers. Moreover VEGFR1 − 2 

inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 

MAP kinase and mobilization of intracellular calcium from primary 

endothelial cells. These findings indicate that VEGFR-1 subunits modulate 

VEGF activity predominantly by forming heterodimer receptors with VEGFR-

2 subunits and such heterodimers regulate endothelial cell homeostasis 

(Cudmore et al., 2012). 

 

 

1.8 Anti-angiogenic therapy in cancer 

 

Expanding tumor tissues rapidly exhaust the available oxygen supply and 

become hypoxic. As described partially above, the activation of hypoxia-

inducible factor (HIF) signaling triggers VEGF expression, not only in tumor 

cells but also in tumor-associated stromal cells. VEGF, meets the tumor’s 

oxygen requirements and promotes therefore tumor growth and metastasis, by 

stimulating vascular growth. For this reason tumor tissue is often characterized 

by a superficial dense vascular network (Kubota, 2011). 

With the aim of suppressing tumor progression and metastatic spread, in the 

last years anti-angiogenic therapy has been developed. Most current anti-

cancer chemotherapeutic drugs, used in the clinical setting, indiscriminately 

target all rapidly dividing cells (e.g., at the level of DNA replication and 

protein synthesis) and therefore cause severe adverse effects, such as 

immunosuppression, intestinal problems and hair loss. Also if anti-angiogenic 

agents theoretically may have fewer side effects, the clinical practice has 

evidenced the appearance of important side effects  such as bleeding, 

thrombotic events, hypertension, proteinuria, leucopenia, lymphopenia, 

hypothyroidism. They are due to physiological angiogenesis blockage. 
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Blocking VEGF appeared immediately a reasonable anti-angiogenic modality. 

Several studies of angiogenesis inhibition by administration of VEGF blockers 

have demonstrated significant tumor-suppression effects in various types of 

cancers. Treatment of mice carrying human tumors with an anti-VEGF 

neutralizing Mab (monoclonal antibody) significantly inhibited xenograft 

tumor growth. In 2003, the Food & Drug Administration (FDA) approved 

Bevacizumab (Avastin; Genentech Inc.), a humanized variant of a VEGF 

neutralizing Mab, as the first anti-angiogenic agent for combination treatment 

with chemotherapeutic agents  in metastatic CRC (colorectal cancer)  and 

subsequently for treatment of NSCLC (non-small-cell lung cancer) or MBC 

(metastatic breast cancer). VEGF-TrapR1R2 (Aflibercept; Regeneron Inc.), a 

chimeric soluble receptor that neutralizes circulating VEGFs, is currently in 

clinical trials. Additionally, blockade of VEGF receptors inhibits tumor 

growth. Receptor tyrosine kinases inhibitors (RTKIs), such as sunitinib 

(SU11248; Sugen), pazopanib (Votrient; GSK), sorafenib (Bay 43-9006; 

Nexavar) vendatanib (Caprelsa; AstraZeneca), cabozantinib (XL184; 

Exelixis), axitinib, tivozatinib and linifanib have recently been developed, for 

the treatment of many types of cancer. A number of studies have reported their 

significant therapeutic efficacy (Shojaei, 2012). 

Recently also PlGF becomes an interesting target. An antibody against 

placental growth factor (PlGF) inhibits growth of VEGF-resistant tumors 

without affecting healthy vessels; interestingly, targeting PlGF not only 

inhibits vessel growth but also the recruitment of angiogenic macrophages 

(Fischer, 2007).  

Despite the encouraging conditions, it is well to report that anti-angiogenesis 

therapy is facing three major challenges nowadays (figure 5): 

 inherent/acquired resistance 

 enhanced invasiveness during treatment with AIs  
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 lack of validated predictive biomarkers to select patient population and 

to monitor tumors responses to the therapy 

 

 
Fig. 5. Three major challenges of antiangiogenic therapy 

 

Many patients show a lack of response to inhibitors of angiogenesis . 

Certainly, this is in part due to the very modest doses that are given to patients 

(5 mg/kg body weight, once every 2 weeks), compared to mice in preclinical 

study (10 mg/kg body weight, twice a week), to reduce possible off-target 

toxicities, such as hemorrhagic and thrombotic events . However, the extent of 

refractoriness is highly variable from one cancer to another. Mechanisms 

underlying resistance and/or enhanced invasiveness during treatment with AIs 

have been extensively studied and can be resumed in the following main 

points: 

 both tumor and non-tumor compartments contribute to resistance to 

anti-angiogenic agents 

 resistance to AIs may occur independent of class of agents i.e. 

antibodies or small molecule inhibitors  
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 resistance occurs independently of affinity of the anti-VEGF antibody  

 limited bioavailability of therapeutic agent in tumor mass might 

account for lack of response to the therapy  

 in absence of VEGF signaling, other mechanism (mediated for 

example by FGFs, angiopoietins, NRP1) can offset with their 

proangiogenic effects 

 in tumors, some blood vessels are covered with a dense pericyte coat 

(whose recruitment is mainly regulated by platelet-derived growth 

factor (PDGF)-B/PDGF receptor-β, transforming growth factor-β 

(TGF-β) and angiopoietin/Tie signaling) that could represent a reason 

of a minor responsiveness to VEGF blockers by these vessels ] 

 hypoxia-tolerant cancer cells, called cancer stem cells, survive in 

poorly oxygenated niches and elicit tumor adaptation to anti-

angiogenesis; some reports suggest that the resultant selection of tumor 

cells renders tumors even more invasive and metastatic 

 chronic exposure of endothelial cells to anti-VEGF drugs may lead 

epigenetic modulation of expression of anti-apopotic genes such as bcl-

2 and survivin. Absence of the proapoptotic Bcl-2 homology 3 (BH3)-

only Bcl-2 family member Bim in endothelial cells completely 

abolishes the effect of VEGF blockade macrophages are also involved 

in vascular development, independently of VEGF signaling; 

histological test of various cancer tissues reveals a vast accumulation 

of macrophages, that coordinate various aspects of tumor angiogenesis 

Given and modest responses observed to antiangiogenesis therapy in the 

clinic, it is essential to identify a set of biomarkers to select populations of 

likely responders and/or to monitor disease progression and response over the 

course of treatment in the clinic. From some studies, CD31 expression has 

been proposed as biomarker of response in breast cancer patients treated with 

bevacizumab and chemotherapy. Quantification of circulating endothelial 
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progenitor cells, cytokines and/or growth factor in serum could also be another 

strategy to monitor response to angiogenesis inhibitors. Because of VEGF 

inhibition results in a reduction in NO (nitric oxide) synthesis, leading to 

vasoconstriction and increase in blood pressure, hypertension is another 

biomarker of response to these drugs. 

In conclusion, in order to surmount several challenges associated with anti-

angiogenesis therapy, advances in understanding the molecular and cellular 

bases of tumor angiogenesis are required, as well as new drugs are required to 

pave the path towards a more efficient and successful clinical application 

(Tonra and Hicklin, 2007; Hsu and Wakelee, 2009; Shojaei, 2012). 
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2.1 Project aims 

 

The work presented in this thesis was aimed to support a rational design of 

new antiangiogenic drugs or treatment strategies. To this end, the whole work 

was focused on the following objectives: 

 Performing an expression proteomic study of cell cultures treated with 

some dimers of VEGF family. In particular, following the incubation 

of Human Umbilical Vein Endothelial Cells (HUVECs) and Human 

Embryonic Kidney 293 cells, over-expressing stably human Flt-1, 

(HEK-293hFlt-1) with VEGF, PlGF, VEGF/PlGF, we meant to 

identify the proteins and differentially modulated following each 

treatment. Information relating to functional genomics can represent a 

valuable contribution to the further understanding of the molecular 

bases of angiogenesis and for the development of therapeutic strategies 

more effective and safer than those currently approved. 

 Identifying novel putative inhibitors of angiogenesis, performing a 

small library of natural compounds screening. On the basis of the 

experimental evidence reported in the literature on their involvement in 

pathological angiogenesis, we chose the axis VEGF/Flt-1 and 

PlGF/Flt-1,as target for this study. 

 

 

2.2 Proteomic approach 

 

“Proteomic” (term coined in 1994) is the science that describes the entire set 

of proteins expressed by the entire genome of a cell in the lifetime or, in a less 

universal sense, at any one time, under specific conditions. Providing these 

informations, proteomic promises to bridge the gap between our understanding 
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of genome sequence and cellular behavior (Wilkins et al., 1996; Patterson et 

al., 2003). 

The completion of human genome sequencing represented undoubtedly one of 

the most exciting biological achievement. One of the interesting aspects of this 

effort is the finding that, though they’re very different organisms from the 

phenotypic point of view, the number of protein-encoding genes found for 

humans (~30000) is not extremely different from those calculated for 

phylogenetically remote organism, such as a yeast cell (~6000), a fly 

(~13000), a worm (~18000), a plant (~26000). It’s clear that the physiological 

complexity of an organism is not a consequence of a mere genes number. 

Indeed, the existence of an open reading frame (ORF) doesn’t imply perforce 

that the gene is functional (Pandey and Mann, 2000). Many studies document 

the disparity between the relative expression levels of mRNA (transcriptome) 

and those of their corresponding proteins; in facts, through gene splicing 

mechanism, a single gene can code for multiple proteins and each protein can 

undergo numerous post-translational modifications, including 

phosphorylation, acetylation, ubiquitylation, SUMOylation, palmitoylation, 

transglutamination and proteolytic cleavage (Mann and Jensen, 2003). These 

aspects, not predictable from genome, increase the functional diversity of a 

cell system. Moreover, the complexity of an organism is also due to the ability 

of intracellular signaling pathways to interact with each other forming 

complex networks. This complexity is due to the overlapping functions of 

some proteins, to their connections, and to their spatio-temporal relationship in 

the cell. Finally, many cellular processes are very often performed not by 

individual proteins, but by protein macromolecular complexes (Pieroni et al., 

2008; Preisinger, et al., 2008).  

Proteomic analysis is certainly a valid first step in functional annotating the 

genome. In particular, differential proteomics, that consists in the comparison 

of distinct proteomes (for example: normal versus diseased cells, diseased 
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versus treated cells and so on) is of paramount importance, in all areas of 

biological research (cancer research, toxicology, pharmacology and so on) 

(Patterson et al., 2003). 

Several approaches can be used to achieve this type of study. They typically 

involve electrophoresis and/or chromatography combined with chemical or 

metabolic labeling and mass spectrometry (Gevaert and Vandekerckhove, 

2000; Fuchs et al. 2005). 

In this work, the proteomic profiles of cultured cells stimulated with VEGF 

dimers have been studied by a gel-based approach (Rabilloud, 2002; 

Wulfkuhle et al. 2003; Monteoliva and Albar, 2004). Classically this strategy 

involves the achievement of then following steps (figure 6): 

1. Separation of complex protein mixtures, usually by two-dimensional gel 

electrophoresis, 2-DE 

2. Protein visualization and image analysis 

3. Excising the spots for following analyses 

4. In gel digestion of proteins and pooling of the released peptides 

5. Analysis of the peptide mixtures by mass spectrometry 

6. Matching peptide masses against protein databases to obtain proteins 

identification 

2-DE is a relatively simple but powerful method for high-resolution analysis 

of complex protein mixtures.  

All proteins in an electric field migrate at a speed that is dependent on their 

conformation, size and electric charge. 2DE uses the latter two characteristics 

to allow high-resolution separation of proteins. As first described by O’Farrel 

and J. Klose in 1975, isoelectric focusing (IEF) separates proteins on the basis 

of their charge (separation in first dimension), while Sodium Dodecyl Sulphate 

- PolyAcrylamide Gel Electrophoresis (SDS-PAGE) on the basis of their 

molecular weights (separation in second dimension). The result is an array of 
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protein spots, characterized by precise coordinates x and y: isoelectric point 

(pI) and apparent molecular weight (Mw), respectively.  

Separated proteins can be visualized by staining or autoradiography. 

Subsequently computer-based analysis is needed to detect differentially 

expressed proteins. The most known commercial software are: Progenesis, 

Nonlinear Dynamics; Image Master 2D Platinum and Melanie Software, 

Amersham Biosciences; PDquest, Bio-Rad. 

 

 
Fig. 6. Proteomic approach workflow. 

 

A reliable protein separation by 2 DE depends on some parameters. First the 

choice of sample preparation protocol: it is the critical influential factor for 
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isoelectric focusing which in turn affects the two-dimensional gel result in 

terms of quality and protein species distribution (Shaw and Riederer, 2003; 

Monteoliva and Albar, 2004). Since immobilized ph gradient strips (IPG-strip) 

were developed variability in experimental conditions has greatly decreased; 

this is now undoubtedly the most widespread strategy for comparing distinct 

states of more proteomes (Weiss and Görg 2009; Görg et al., 2009). 

Protein identification is based on mass spectrometry data. The starting point is 

a protein spot, which may be a single protein or a complex mixture of proteins. 

An enzyme, often trypsin, digests the proteins to peptides. Chromatography is 

used to regulate the flow of peptides into the mass spectrometer. Peptides 

selected are then induced to fragment, possibly by collision, to capture an 

MS/MS spectrum. For each MS/MS spectrum, software is used to determine 

which peptide sequence in a database of protein or nucleic acid sequences 

gives the best match. Each entry in the database is digested, in silico, using the 

known specificity of the enzyme, and the masses of the intact peptides 

calculated. If the calculated mass of a peptide matches that of an observed 

peptide, the masses of the expected fragment ions are calculated and compared 

with the experimental values. The result is a list of candidate proteins with 

different confidence levels (Fenn et al. 1989; Henzel et al. 1993; Aebersold 

and Mann, 2003; Roepstorff, 2012) 

 

 

2.3 Natural product for drug discovery 

 

Natural compounds have been the source of inspiration for chemists and 

physicians for millennia, representing the richest font of novel compound 

classes and an essential wellspring of drugs and drug leads (figure 7). 

According to a recent survey by David J. Newman, Gordon M. Cragg, and 

Kenneth M. Snader of the national cancer institute, 61% of the 877 small-
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molecule new chemical entities introduced as drugs worldwide during 1981–

2002 can be traced to or were inspired by natural products (Newman et al. 

2003). These include natural products (6%), natural product derivatives (27%), 

synthetic compounds with natural-product-derived pharmacophores (5%), and 

synthetic compounds designed on the basis of knowledge gained from a 

natural product (that is, a natural product mimic; 23%). In certain therapeutic 

areas, the output is higher: 78% of antibacterials and 74% of anticancer 

compounds are natural products or have been derived from, or inspired by, a 

natural product. These numbers are not surprising since it is know that natural 

products evolved for self-defence. Despite that record of productivity, the use 

of natural products as a starting point for drug discovery was de-emphasized in 

many big pharmaceutical companies in 1990s, when combinatorial chemistry 

had place and the reasons were primarily practical. However, after several 

years it was clear that database of natural products have a major number of 

unused scaffolds, and couldn’t be discarded as starting points for new drugs 

discovery. The differences between synthetic compounds and natural products 

are remarkable, especially in their structural properties (Dobson, 2004; Rosén 

et al., 2009). On average, natural products have higher molecular weights; 

incorporate fewer nitrogen, halogen, or sulphur atoms, but more oxygen atoms 

and are sterically more complex, with more bridgehead tetrahedral carbon 

atoms, rings, and chiral centres. This gives them a high “sterical complexity” 

due to the fact that the enzymes used for biosynthesis, as well as their 

molecular targets, are inherently three-dimensional and chiral. Furthermore, 

nature has a limited palette of building blocks at its disposal, and thus has to 

generate novelty by branching out common intermediates into different 

scaffolds.  

Moreover natural compounds are a really good starting point for the set up of 

libraries to be tested for drug discovery (figure 7), not only for their complex 

and diversified chemical space but also for their ability to interact with 
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biomolecules. Lynn H. Caporale in her book "Darwin in the genome" 

(Caporale, 2002), writes: “even though natural products may not have 

coevolved with human proteins, they have emerged in nature to interact with 

biomolecules….varied genomes, based on similar chemistry, have spread 

across the earth. Indeed we share our gene families with other organisms. 

Whether inside bacteria or inside us, there is a limited number of ways that the 

structural components of proteins, such as -helices and -sheets, can arrange 

themselves in space and interact with each other and with other molecular 

structures”. Herbert Waldmann, from Max Planck institute for molecular 

physiology, offers a similar analysis, based on the premise that natural 

products evolved to perform a function that is achieved by binding to proteins. 

Therefore, natural products should be able to penetrate biological barriers and 

make their way to certain cells or organs in which they will exert the effect. 

Thus, natural products are already biologically validated to reach and bind 

specific proteins. Looking at all proteins and analyzing them for structural 

features, elements of conservatism and diversity may be found. The 

conservative elements are the domains: the parts that fold to compact 

secondary structures. Among the hundreds of thousands of human proteins, 

the number of distinct domains is only about 600 to 8,000. Consequently, 

proteins that may seem altogether different are quite similar when viewed 

structurally, but diversity lies in the precise details since similar domains may 

have very different amino acid sequences (Kirkpatrick, 2003). 

 

 
Fig. 7. The current lead-discovery process 
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A number of bioactive plant compounds have been recently tested for their 

antiangiogenic potential. Among the known angiogenesis inhibitors 

compounds derived from natural sources, like flavonoids, sulphated 

carbohydrates, or triterpenoids are playing a prominent role. The underlying 

mechanisms are complex and in part unknown. In this regard, we should recall 

the recent work by Tarallo et al which proved an interesting antiangiogenic 

activity of amentoflavone. This biflavonoid can bind to VEGFs preventing the 

interaction and phosphorylation of VEGF receptor 1 and 2 (VEGFR-

1,VEGFR-2) and to inhibit endothelial cell migration and capillary-like tube 

formation induced by VEGF-A or placental growth factor 1 (PlGF-1) at low 

μm concentration. In vivo, amentoflavone is able to inhibit VEGF-A-induced 

chorioallantoic membrane neovascularization as well as tumor growth and 

associated neovascularization, as assessed in orthotropic melanoma and 

xenograft colon carcinoma models (Tarallo et al., 2011). 

Finally, ASA404, a flavonoid compound, is a “vascular disrupting agent” 

capable of induction of apoptosis in tumor associated endothelial cells, 

resulting in the inhibition blood flow in tumor mass. ASA404 is currently in 

advance stage of clinical development in combination with chemotherapic 

drugs in NSCLC patients. 

For all these reasons natural products are considered: a valid source for 

investigational new antiangiogenic agents to treat many disorders. 
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3.1 Proteomic study 

 

In order to identify differentially expressed proteins both in endothelial cells 

and tumor cells stimulated by VEGF, PlGF and VEGF/PlGF, separation and 

quantification of relative protein extracts have been performed by a gel-based 

proteomic approach. 

At the outset of this work, no comparative proteomic analysis of the selected 

cells expressing one or both VEGF receptors and treated with PlGF and 

VEGF/PlGF had been produced, while few works can be found on VEGF-

treated cells (such as HUVECs). Data produced by others, as discussed below, 

report some findings corroborating our data. 

 

3.1.1 Electrophoretic separation of proteins 

In the present study, alterations in the cellular proteome induced by VEGF, 

PlGF, and heterodimer treatments have been investigated using HUVECs and 

HEK-293 cells stably overexpressing hFlt-1 (HEK-293-Flt-1). Both cell lines 

underwent serum-starvation, followed by incubation with the selected growth 

factors for 24 hours. Total protein extracts were separated by 2-D 

electrophoresis (2DE) in order to obtain consistently well-separated protein 

profiles. For HEK-293Flt-1 protein extracts, it has been necessary to optimize 

the classical protocol of sample preparation, a crucial step for a successful 2 

DE. Replacing sulphydryl reductants dithiothreitol DTT, the most common 

reductant agent, with tris (2-carboxyethyl) phosphine TCEP, we were able to 

solubilize the samples more effectively to get 2D maps better resolved and 

more easily analyzable (figure 8). 

Silver staining compatible with mass spectrometry have been used for a 

sensitive detection of separated proteins (figures 9, 10).  
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Fig. 8. 2D gel of HEK-293Flt-1 protein extracts; a) Gel obtained with utilization of DTT; b) 
Gel obtained with utilization of TCEP.  
 

 
Fig. 9. 2D gel of protein extracts of HEK-293Flt-1, following the treatment with: b) VEGF, c) 
PlGF, d) heterodimer; a) represents the control (not induced). Each gel has been produced in 
triplicate. 
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Fig. 10. 2D gel of protein extracts of HUVECs, following the treatment with: b) VEGF, c) 
PlGF, d) heterodimer; a) represents the control (not induced). Each gel has been produced in 
triplicate. 
 

3.1.2 Image analysis and statistics 

In order to perform image analysis, 2D gel images must be converted into 

digital data. This has been addressed acquiring images by charge-coupled 

device (CCD) camera systems and then analyzing them using commercial 

image processing software. 

Schematically, workflow approach to 2D image analysis was: 

 Step 1. 2D gel images, once loaded, had automatically examined from 

"quality control" application of the software. In general, the output of 

3 310 10pH pH

Mw Mw

High

LowLow

High A B

3 310 10pH pH

Mw Mw

High

LowLow

High C D
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this operation is a description of the properties of the image and of the 

problems (for example: saturation of the image, due to a wrong 

staining of the gel) associated with it. Thanks to the high quality of 

resolution of our gels, no problems were revealed. 

 Step 2. The most appropriate reference image to which align all the 

other images was selected. 

 Step 3. In this phase a mask of disinterest was placed on the image to 

exclude specific areas from the analysis (figure 11). In our work only 

the extremely lateral margins of the gels had been masked. 

 

 
Fig. 11.Page of Progenesis SameSpots. Masked area are evidenced in pink 

 

 Step 4. Image alignment was the process of matching gel images with 

the reference image. In order to achieve the best possible results, it was 

crucial that the alignment was highly accurate. Even if the gels showed 

very good resolution in the separation of proteins, as a starting point 

we needed to align a few spots manually. These spots, acting as "guide 
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vectors" for the subsequent automatic alignment, contributed to a very 

consistent global matching among gels (figura 12). 

 
Fig 12 Alignment with Progenesis SameSpots. Vectors are colored in blu. A) Gels are not 

aligned; B) Gels are perfectly aligned. 
 

A

B
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 Step 5. After reviewing the alignment quality, all spots in every gel 

were detected and quantified. Among these, some were removed based 

on position, area, normalized volume and combinations of these spot 

properties. Anyway, the most important process of this step, essential 

to determine the volume of the protein in the spot, was the background 

subtraction and normalization. Background subtraction was performed 

by software, subtracting the lowest intensity value of the image pixels 

outside the spot's outline from the intensity value of every pixel inside 

the spot outline. Normalization was performed using the “total spot 

volume” method, which results in all spot volumes being expressed as 

a fraction of the total spot volume within a gel (figura 13). This 

allowed to correct for protein loading differences between gels and to 

identify any differences in expression due to only biological change. 

 

 
Fig. 13. Background subtraction performed by 

 

 Step 6. At this phase one or more groups for analyzed images were 

built up. For this study, we grouped the gel images to reflect the 

biological groupings (figure 14); thus we assembled the group of three 

gels, representing a specific treatment (VEGF, PlGF, Heterodimer), 
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and that relating the control (CN). After selecting two groups (control 

vs treatment), software calculated the data of differential protein 

expression (Fold-change and relative p-value). 

 Step 7. At this stage results had been revised, changing detection 

zones, using a set of tools, such as editing, splitting, merging of spots. 

This software permits to process a single image, but the effects are 

applied across all images in the experiment. 

 
Fig. 14. Scheme: every block represents a group of three gels relateve to a specific biological 

condition. We compared each specific treatment block to control. This strategy have been 
applied to both cell cultures. 

 

 Step 8. Finally it was possible to perform multivariate statistics on  

selected spots. The statistical analysis of the differentially expressed 

proteins (only statistically significant spots, p<0.05) was presented in a 

form of interactive graphical representations. In particular, for 

“Principal Component Analysis” (PCA), the software used spot 

expression levels across gels to determine the principle axes of 

expression variation. Transforming and plotting the most significant 

CN
(triplicate gels)

VEGF
(triplicate gels)

PlGF
(triplicate gels)

Heterodimer
(triplicate gels)
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expression data in principle component space, gels were separated 

according to expression variation. PCA plot allowed us to observe if 

gels group according to the experimental conditions and to identify gel 

outliers. 

In this study, protein spots showing a fold change higher than 1.3 and  

statistically significant (p value < 0.05), were considered as differentially 

expressed proteins. Achieved data (tables 2, 3) showed that following the 

VEGF treatment, HUVECs exhibit significantly altered expression, compared 

to the control, of a total of 23 protein spots (figure 15); in particular, 2 protein 

spots are down-regulated and 21 up-regulated. Instead, in HEK-293Flt-1, after 

the same treatment, 24 protein spots show a significant variation of their 

abundance (figure 16) and specifically 19 proteins were down-regulated and 5 

proteins showed up-regulated expression. PlGF modifies the expression of 61 

protein spots (17 down-regulations and 44 up-regulation) in HUVECs (figure 

17) and of 30 protein spots (18 down-regulations and 12 up-regulation) in 

HEK-293Flt-1 (figure 18). Finally, due to VEGF/PlGF treatment, 43 protein 

spots were found to show markedly altered expression in HUVECs (figure 

19); among these regulated protein spots, 8 were down-regulated and 35 up-

regulated; in HEK-293Flt-1 instead, 36 protein spots modify their abundance 

(figure 20), with 30 spots showing a significative down-regulation and 6 spots 

a significative down-regulation.  

Examples of some spot patterns are shown in figures 21, 22: 

 in HUVECs spot 5, spot 20 and spot 33 decrease their abundance after 

the treatment with VEGF, PlGF or the heterodimer, respectively, while 

spot 29, spot 56 and spot 46 show a significantly higher abundance.  

 in HEK-293Flt-1 spot 40, spot 63 and spot 75 decrease their abundance 

after the treatment with VEGF, PlGF or the heterodimer, respectively, 

while spot 37, spot 17 and spot 68 show a significantly higher 

abundance. 
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Some of the protein level changes observed for specific protein spots is shared 

by multiple treatments. 

 

 
Tab. 2. 2DE analysis of VEGFs treated HUVECs 

CN VEGF CN PlGF CN VEGF/PlGF
5 0.004 5.01 5221312113 1019143857 80 0.022 2.01 28536186308 13850683947 16 0.013 3.07 6431815198 1753089077

33 0.033 1.09 8068445302 4201902896 30 0.041 3.07 16175038112 4420831300 17 0.030 3.06 5211441366 1433141000
39 0.043 1.07 779700292 1305002985 44 0.008 3.00 14472161855 4860457281 8 0.011 5.05 4435373552 812796104

681 0.053 1.03 2020118703 2701230422 87 0.007 1.09 17186702012 8878096989 885 0.052 1.03 17157293792 13583287960
25 0.013 2.00 999552990 2007538163 99 0.039 1.07 15161367569 8694770874 2 0.006 8.05 3730514070 439157393
36 0.030 1.07 2235486608 3780236673 51 0.003 2.07 10035207662 3686625029 33 0.012 2.04 1623874624 679648122
34 0.028 1.07 2392299756 4073039087 35 0.015 3.03 8614290880 2611661437 78 0.009 1.04 2530726210 1834369304
41 0.005 1.05 3324597956 5106738530 8 0.002 7.02 6444567768 897532726 52 0.050 1.09 1305275681 692822993

510 0.051 1.05 3813154970 5726218664 75 0.029 2.02 7974807175 3705474970 168 0.053 2.07 534812165 1452820330
27 0.028 1.09 2102707342 4073860829 20 0.008 5.00 5221477422 1050544977 59 0.027 1.07 1354185885 2363380582
43 0.031 1.03 7130582286 9121489132 58 0.050 2.05 6479529317 2556780590 24 0.030 2.07 697102088 1860900285
35 0.042 1.07 3212604106 5442152459 27 0.011 4.01 4636528914 1134034552 42 0.050 2.02 1407069646 3095098403
20 0.006 2.05 1990072466 4908389151 108 0.026 1.06 9294300617 5817516048 40 0.047 2.02 1437262657 3163097840
32 0.047 1.08 3817382728 6789537272 29 0.030 3.07 4444745863 1197448131 57 0.049 1.08 2373594192 4194915401
42 0.007 1.04 8469146596 11553274432 40 0.030 3.00 1546627446 509104966 21 0.049 2.09 1018322725 2990337531
17 0.040 2.06 2323569767 6061386360 90 0.014 1.09 1626661062 854041105 41 0.039 2.02 1692555014 3724217547
29 0.008 1.09 4191314066 8085409914 77 0.041 2.01 1307793115 613700864 65 0.034 1.06 3207412620 5252416692
31 0.006 1.09 4535150890 8439979891 109 0.046 1.05 2020179004 3076214823 51 0.006 1.09 2398839248 4561143760
33 0.023 1.07 5824188335 10042146218 102 0.024 1.07 1855754814 3143909291 46 0.009 2.01 2087801330 4331730851
22 0.026 2.02 5857082107 12623371415 97 0.012 1.08 1695406067 3018162586 62 0.001 1.07 3318937259 5630018997
45 0.032 1.03 27991344970 35117926843 31 0.001 3.06 535685083 1914408825 44 0.030 2.01 2425824963 5047159262
26 0.020 1.09 9419505341 18341655494 56 0.013 2.06 993943102 2577475892 32 0.014 2.04 1986412542 4760706222
24 0.008 2.00 16350948960 33492385430 61 0.037 2.05 1409562552 3484745315 15 0.005 3.08 991948812 3767081320

22 0.003 4.07 612958841 2850894720 30 0.017 2.06 1921922083 4939513723
85 0.028 1.09 2488146176 4840545208 19 0.034 3.03 1348637815 4423078809
104 0.020 1.07 3736479226 6167661187 71 0.036 1.06 6203067956 9717110610
101 0.007 1.07 3324680403 5766282352 73 0.009 1.05 7118344591 10693088461
112 0.019 1.04 6213977409 8885835542 64 0.016 1.06 6966139668 11490992360
62 0.042 2.04 1918976052 4688112083 39 0.003 2.02 3806735477 8434842634
105 0.049 1.07 4386004190 7238344936 79 0.011 1.02 22550100531 27269700813
88 0.036 1.09 3212687113 6191388292 70 0.004 1.06 8454637917 13286995902
68 0.005 2.02 2403021174 5392026540 11 0.031 4.05 1439723032 6447730061
483 0.052 1.06 5544892634 9092002288 56 0.039 1.08 6920297470 12250432396
100 0.023 1.07 5013379644 8724404150 72 0.045 1.05 10702480055 16493294238
43 0.032 3.00 1924772893 5818801397 54 0.020 1.08 6923412896 12780674518
81 0.014 2.00 3813260348 7782188211 47 0.026 2.01 5847918550 12000033513
103 0.021 1.07 6978302698 11818595239 77 0.029 1.04 16097043889 22569081081
430 0.052 1.07 7088683962 12220337884 29 0.026 2.06 4184574377 10795803396
66 0.039 2.03 4531274824 10496936421 35 0.038 2.03 5018921013 11740990026
71 0.048 2.02 5028835961 11187916957 28 0.017 2.06 9404219418 24407027838
94 0.008 1.08 8469393484 15257796751 45 0.022 2.01 15211403716 31645600421
84 0.005 2.00 6935396073 13842519200 48 0.038 2.00 16322091586 33341498598
83 0.037 2.00 6932636338 13969462068 58 0.010 1.08 23959921660 42069179094
52 0.016 2.07 4191363322 11401686061
59 0.035 2.05 5149400842 12983975451
57 0.017 2.06 5857202727 15096237413
356 0.051 1.09 10719786669 20206510933
91 0.024 1.08 11581500463 21225242953
111 0.047 1.05 23854329328 34623604556
89 0.015 1.09 13151922821 25091045727
92 0.026 1.08 15238877215 27924116232
93 0.004 1.08 16125259415 29501571057
107 0.035 1.06 22589823492 36485344108
110 0.021 1.05 27939484984 41959419292
63 0.040 2.04 9825314072 23871691399
55 0.005 2.07 9419793510 25034580571
46 0.014 2.09 8136825687 23954467323
106 0.042 1.06 29977839775 48991151810
72 0.023 2.02 16351589716 36272533025
95 0.020 1.08 26280340428 47312000316
96 0.041 1.08 34528943083 62021250865

P value Fold Average Normalised 
HUVEC

Rank P value Fold Average Normalised Rank P value Fold Average Normalised Rank



Results and discussion 

44 
 

 

 
Tab. 3. 2DE analysis of VEGFs treated HEK-293Flt- 

1 

CN VEGF CN PlGF CN VEGF/PlGF
48 0.003 1.06 12292924338 7698563805 57 0.038 1.09 4841037870 2572130694 15 0.027 3.04 18910728760 5641557319
44 0.011 1.07 9084545885 5360950790 41 0.004 2.02 4073979987 1894115654 121 0.038 1.03 25958130382 19398805015
52 0.041 1.05 8435926721 5654328757 52 0.045 2.00 4198121558 2090067969 62 0.011 2.01 9084545885 4248264077

761 0.053 1.05 6895054959 4471725954 54 0.033 2.00 4273289323 2182600405 63 0.004 2.01 8210711480 3852930654
39 0.049 1.09 5084195645 2707187733 40 0.007 2.02 3006710314 1397855328 80 0.008 2.00 8435926721 4305659363
26 0.049 2.02 4198121558 1882233522 47 0.023 2.01 3066168162 1486958995 92 0.003 1.07 8496199374 4869744797
51 0.019 1.05 6097278510 4004767350 62 0.035 1.09 3151397231 1699582512 27 0.021 2.08 5084195645 1807099860
59 0.002 1.03 7432565355 5628679160 89 0.018 1.06 3307510668 2022500902 119 0.002 1.03 11746243268 8751290847
25 0.002 2.02 3006710314 1346286949 25 0.004 2.05 1939044808 774689396 78 0.049 2.00 5861043021 2955175865
32 0.032 2.00 2594300824 1269101826 65 0.047 1.08 2594300824 1434265662 111 0.010 1.05 8441694889 5636494529
46 0.026 1.07 2884147939 1746398820 95 0.007 1.05 3406194278 2336548699 75 0.005 2.00 5271920569 2642525111
53 0.004 1.05 3259108389 2201454862 63 0.012 1.08 2293076840 1255884382 35 0.011 2.05 4273289323 1718195000
50 0.013 1.06 2756787554 1768240707 69 0.003 1.09 2090677030 1127504572 609 0.053 1.07 5784973179 3401834089
34 0.041 2.00 1531249554 759150895 63 0.014 1.09 1857780276 977952029 107 0.036 1.05 5319421704 3495674760
60 0.004 1.02 4990504607 4283560153 72 0.019 1.07 1707606050 991855372 116 0.045 1.04 5942181008 4154195489
49 0.026 1.06 1595426359 1006819308 50 0.025 2.00 1335239438 652008130 118 0.023 1.04 6045003985 4445969375
58 0.024 1.03 2216859648 1657433245 53 0.012 2.00 861023213 435709110 125 0.036 1.02 8015140758 6571155138
55 0.014 1.04 1707606050 1223456665 55 0.044 1.09 751847640 388233401 108 0.034 1.05 4198121558 2775298578
33 0.047 2.00 861023213 424849355 90 0.018 1.04 673945398 918980067 599 0.055 1.07 3259108389 1910810725
16 0.024 2.06 1493577132 3949371220 26 0.002 2.05 496273303 1228329366 21 0.026 3.01 1813369880 590401020
37 0.476 2.00 3334026541 6527826514 89 0.050 1.04 2059798028 2817597376 1159 0.051 1.03 5001364669 3799197010
41 0.011 1.08 4521357507 8085647270 88 0.037 1.04 2990994526 4140147507 96 0.043 1.06 2913007777 1774785884
13 0.022 2.08 4489650296 12550477313 44 0.002 2.01 1159572141 2451804746 91 0.022 1.07 2334192941 1334731149
30 0.016 2.01 8123401719 16762143124 70 0.005 1.07 1946042058 3380387775 53 0.049 2.02 1621411424 728259006

91 0.025 1.04 4330889838 5895711332 109 0.026 1.05 2419110925 1610822582
68 0.032 1.08 2073010140 3649009781 39 0.027 2.04 1258488887 522987142
69 0.017 1.07 2792594546 4868946840 122 0.006 1.03 2960013073 2234316012
86 0.005 1.04 8497137479 12002488658 124 0.029 1.03 2966860580 2337296993
77 0.049 1.07 8149199967 13773092914 99 0.028 1.06 1595426359 993818339
17 0.004 2.07 4521357507 12411291016 123 0.035 1.03 2216859648 1701937503

95 0.048 1.07 1598785230 2655116531
105 0.005 1.06 2139371105 3322346578
113 0.017 1.05 4330889838 6388156554
68 0.002 2.01 3334026541 7009196258
106 0.012 1.06 12010889459 18640771150
29 0.011 2.07 4521357507 12374089314

P value Fold Average Normalised 
293-hFlt-1

Rank P value Fold Average Normalised Rank P value Fold Average Normalised Rank
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Fig. 15. 2DE gel of VEGFs-reated HUVECs 

 

 
Fig. 16. 2DE gel of VEGF-treated HEK-293hFlt-1 
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Fig. 17. 2DE gel of PlGF-treated HUVECs 

 

 
Fig. 18. 2DE gel of PlGF-treated HEK-293hFlt-1 
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Fig. 19. 2DE gel of heterodimer-treated HUVECs 

 

 
Fig. 20. 2DE gel of heterodimer-treated HEK-293hFlt-1 
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Fig. 21. HUVECs: Examples of some spot patterns 

 

 
Fig. 22. HEK-293Flt-1: Examples of some spot patterns 

 

A “principal component analysis” (PCA) of the 2DE results has been used to 

determine whether there are any outliers in the data and also look at how well 

the samples group. PCA reduces the complexity of a multidimensional 
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analysis into two principal components, PC1 and PC2, which orthogonally 

divide the samples based on the two largest sources of variation in the dataset 

(figure 23). Each data point in our PCA plot represents the global expression 

value for all spots with a significant statistic value (p ≤ 0.05). 

 

 
Fig. 23. Simplified representation of a PCA plot 

 
For each comparison group, PCA plot (figures 24, 25) shows that 2D gel 

images cluster into two discrete groups, differentiated by two principal 

components (PC1 and PC2). 

This means that there is: 

 a clear differentiation between the expression of every specific 

treatment and that in the control 

 a lack of outliers. 
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Fig. 24. Clustering of VEGFs treated HUVECs according to their protein profile. 
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Fig. 25. Clustering of VEGFs treated HEK-293Flt-1cells according to their protein profile. 

 

3.1.3 Protein identification 

Triple replicates of 217 spots were manually cut, trypsin digested and 

processed for nano-LC-ESI-MS/MS analysis, allowing us to obtain both 

peptide mass mapping and amino acid sequencing for the more abundant 

peptides. The sets of peptide masses or peptide sequences obtained were used 
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to query biological sequence data banks, with the aim of identifying the 

corresponding protein or DNA sequence entries. 

With this approach, we were able to identify the 13, 43, 30 unique proteins for 

VEGF, PlGF and heterodimer treated-HUVECs (table 4) and 15, 8, 23 

proteins for VEGF, PlGF and heterodimer  treated-HEK-293Flt-1 cells (table 

5), respectively. 

 

HUVECs: CV vs VEGF 

Rank SwissProt Code Score Mass Matches pI Regulation 
Sequence 
Coverage 

(%) 
Name 

41 HNRH1_HUMAN 99 49484 4 5,89 up 10 Heterogeneous nuclear 
ribonucleoprotein H 

510 

GRP78_HUMAN 178 72402 5 5,07 

up 

11 78 kDa glucose-regulated 
protein  

HS71L_HUMAN 75 70730 2 5,76 4 Heat shock 70 kDa protein 
1-like 

HNRPK_HUMAN 75 51230 2 5,39 7 Heterogeneous nuclear 
ribonucleoprotein K  

35 ANXA5_HUMAN 158 35971 2 4,94 up 9 Annexin A5  

42 PSA3_HUMAN 69 28643 3 5,19 up 14 Proteasome subunit alpha 
type-3  

17 PDIA6_HUMAN 94 48490 3 4,95 up 10 Protein disulfide-
isomerase A6  

29 G3P_HUMAN 77 36201 3 8,57 up 12 Glyceraldehyde-3-
phosphate dehydrogenase 

31 
ENOA_HUMAN 177 47481 8 7,01 

up 
22 Alpha-enolase 

ENOG_HUMAN 88 47581 2 4,91 7 Gamma-enolase 

26 IF5A1_HUMAN  106  17049  4 5,08 up 23 Eukaryotic translation 
initiation factor 5A-1  

24 
LEG1_HUMAN 67 15048 9 5,34 

up 
57 Galectin-1  

THIO_HUMAN 67  12015 2 4,82 12 Thioredoxin  

HUVECs: CV vs PlGF 

Rank SwissProt Code Score Mass Matches pI Regulation 
Sequence 
Coverage 

(%) 
Name 

30 GFAP_HUMAN 69 49907 2 5,42 down 7 Glial fibrillary acidic 
protein  

87 
RCN3_HUMAN 88 37470 3 4,74 

down 
8 Reticulocalbin-3  

PLAK_HUMAN 82 82434 2 5,75 2 Junction plakoglobin  

8 CALR_HUMAN 65 48283 2 4,29 down 6 Calreticulin  

75 BASP1_HUMAN 83 22680 5 4,64 down 29 Brain acid soluble protein 
1  

58 NDKA_HUMAN 112 17309 12 5,83 down 48 Nucleoside diphosphate 
kinase A  

108 RCN1_HUMAN 76 38866 3 4,84 down 10 Reticulocalbin-1  

http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=acc;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=mass;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=matches;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=desc;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=acc;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=mass;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=matches;qo.sortdir=asc#tc:rf:reportbuilder
http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=desc;qo.sortdir=asc#tc:rf:reportbuilder


Results and discussion 

53 
 

29 VDAC1_HUMAN 79 30868 4 8,62 down 19 Voltage-dependent anion-
selective channel protein 1  

77 FUBP1_HUMAN 76 67690 2 7,18 down 2 Far upstream element-
binding protein 1  

109 

G3P_HUMAN 139 36201 4 8,57 

up 

20 Glyceraldehyde-3-
phosphate dehydrogenase 

PLAK_HUMAN 110 82434 8 5,57 15 Junction plakoglobin 

DESP_HUMAN 108 334021 9 6,44 5 Desmoplakin  

1433S_HUMAN 87 27871 3 4,68 14 14-3-3 protein sigma  

H2B1B_HUMAN 69 13942 2 10,3 11 Histone H2B type 1-B 

CALL5_HUMAN 67 15883 2 4,34 23 Calmodulin-like protein 5  

FILA_HUMAN 67 435036 3 9,24 0 Filaggrin 

97 ANXA1_HUMAN 66 38918 2 6,57 up 4 Annexin A1  

31 

ACTB_HUMAN 191 42052 17 5,29 

up 

49 Actin, cytoplasmic 1  

G3P_HUMAN 179 36201 13 8,57 41 Glyceraldehyde-3-
phosphate dehydrogenase 

POTEE_HUMAN 110 122882 7 5,83 6 POTE ankyrin domain 
family member E 

UBXN1_HUMAN 134 33149 3 5,23 13 UBX domain-containing 
protein 1  

56 PSB4_HUMAN 80 29242 2 5,72 up 12 Proteasome subunit beta 
type-4  

61 
G3P_HUMAN 91 36201 3 8,57 

up 
12 Glyceraldehyde-3-

phosphate dehydrogenase  

PDIA6_HUMAN 73 48490 3 4,95 6 Protein disulfide-
isomerase A6  

101 HNRH1_HUMAN 99 49484 4 5,89 up 10 Heterogeneous nuclear 
ribonucleoprotein H 

105 

TBA1B_HUMAN 78 50804 3 4,94 

up 

10 Tubulin alpha-1B chain 

TBA1A_HUMAN 69 50788 3 4,94 10 Tubulin alpha-1A chain 

PLAK_HUMAN 66 82434 2 5,75 2 Junction plakoglobin  

68 PDIA1_HUMAN 265 57480 10 4,76 up 25 Protein disulfide-
isomerase 

81 

GRP78_HUMAN 178 72402 5 5,07 

up 

11 78 kDa glucose-regulated 
protein 

HS71L_HUMAN 75 70730 2 5,76 4 Heat shock 70 kDa protein 
1-like 

HNRPK_HUMAN 75 51230 2 5,39 7 Heterogeneous nuclear 
ribonucleoprotein K 

71 TBB5_HUMAN 84 50095 8 4,78 up 28 Tubulin beta chain  

83 
TPIS_HUMAN 415 31057 20 5,65 

up 
57 Triosephosphate isomerase  

GALK1_HUMAN 91 42702 6 6,04 16 Galactokinase  

52 G3P_HUMAN 77 36201 3 8,57 up 12 Glyceraldehyde-3-
phosphate dehydrogenase  

356 
G3P_HUMAN 341 36201 14 8,57 

up 
25 Glyceraldehyde-3-

phosphate dehydrogenase 
ANXA2_HUMAN 155 38808 6 7,57 23 Annexin A2  

91 ALDOA_HUMAN 315 39851 19 8,3 up 48 Fructose-bisphosphate 
aldolase A 

111 ENOA_HUMAN 236 47481 13 7,01 up 34 Alpha-enolase 

92 
TBB5_HUMAN 944 50095 38 4,78 

up 
58 Tubulin beta chain  

TBB4B_HUMAN 569 50255 28 4,79 51 Tubulin beta-4B chain  
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TBB3_HUMAN 317 50856 14 4,83 22 Tubulin beta-3 chain  

93 

G3P_HUMAN 392 36201 14 8,57 

up 

17 Glyceraldehyde-3-
phosphate dehydrogenase 

ANXA2_HUMAN 97 38808 3 7,57 8 Annexin A2  

IGHA1_HUMAN 69 38486 2 6,08 9 Ig alpha-1 chain C region  

63 RLA2_HUMAN 107 11658 3 4,42 up 26 60S acidic ribosomal 
protein P2  

55 IF5A1_HUMAN  106  17049  4 5,08 up 23 Eukaryotic translation 
initiation factor 5A-1  

106 PPIA_HUMAN 113 18229 10 7,68 up 65 Peptidyl-prolyl cis-trans 
isomerase A 

72 
LEG1_HUMAN 67 15048 9 5,34 

up 
57 Galectin-1  

THIO_HUMAN 67  12015 2 4,82 12 Thioredoxin 

95 PPIA_HUMAN 120 18229 13 7,68 up 65 Peptidyl-prolyl cis-trans 
isomerase A 

96 COF1_HUMAN 261 18719 18 8,22 up 60 Cofilin-1  

HUVECs: CV vs HETERODIMER 

Rank SwissProt Code Score Mass Matches pI Regulation 
Sequence 
Coverage 

(%) 
Name 

16 CALR_HUMAN 65 48283 2 4,29 down 6 Calreticulin  

8 VDAC1_HUMAN 79 30868 4 8,62 down 19 Voltage-dependent anion-
selective channel protein 1  

885 
RCN3_HUMAN 88 37470 3 4,74 

down 
8 Reticulocalbin-3  

PLAK_HUMAN 82 82434 2 5,75 2 Junction plakoglobin 

2 ENOA_HUMAN  95 47481 2 7,01 down 6 Alpha-enolase 

52 FUBP1_HUMAN 76 67690 2 7,18 down 2 Far upstream element-
binding protein 1  

42 
G3P_HUMAN 91 36201 3 8,57 

up 
12 Glyceraldehyde-3-

phosphate dehydrogenase 

PDIA6_HUMAN 73 48490 3 4,95 6 Protein disulfide-
isomerase A6 

40 

AK1A1_HUMAN  226 36892 7 6,32 

up 

15 Alcohol dehydrogenase 
[NADP(+)] 

ANXA1_HUMAN 192 38918 5 6,57 22 Annexin A1 

G3P_HUMAN   68 36201 4 8,57 17 Glyceraldehyde-3-
phosphate dehydrogenase  

57 
ALDH2_HUMAN 215 56859 10 6,63 

uo 
19 Aldehyde dehydrogenase, 

mitochondrial  
TBA1B_HUMAN 148 50804 4 4,94 10 Tubulin alpha-1B chain 

41 ANXA1_HUMAN 66 38918 2 6,57 uup 22 Annexin A1 

65 ANXA5_HUMAN 158 35971 8 4,94 up 9 Annexin A5  

51 PDIA1_HUMAN 265 57480 10 4,76 up 25 Protein disulfide-
isomerase  

46 GRP78_HUMAN 282 72402 13 5,07 up 15 78 kDa glucose-regulated 
protein 

62 HNRH1_HUMAN 99 49484 4 5,89 up 10 Heterogeneous nuclear 
ribonucleoprotein H 

15 PSB4_HUMAN 80 29242 2 5,72 up 12 Proteasome subunit beta 
type-4  

39 
GRP78_HUMAN 178 72402 5 5,07 

up 
11 78 kDa glucose-regulated 

protein  

HS71L_HUMAN 75 70730 2 5,76 4 Heat shock 70 kDa protein 
1-like 

http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=acc;qo.sortdir=asc#tc:rf:reportbuilder
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HNRPK_HUMAN 75 51230 2 5,39 7 Heterogeneous nuclear 
ribonucleoprotein K  

70 PSA3_HUMAN 69 28643 3 5,19 up 14 Proteasome subunit alpha 
type-3  

11 
G3P_HUMAN 145 36201 8 8,57 

up 
30 Glyceraldehyde-3-

phosphate dehydrogenase  
TBB5_HUMAN 121 50095 9 4,78 21 Tubulin beta chain  

56 
TPIS_HUMAN 415 31057 20 5,65 

up 
57 Triosephosphate isomerase  

GALK1_HUMAN 91 42702 6 6,04 16 Galactokinase 

72 
G3P_HUMAN 341 36201 14 8,57 

up 
25 Glyceraldehyde-3-

phosphate dehydrogenase  
ANXA2_HUMAN 155 38808 6 7,57 23 Annexin A2  

77 

G3P_HUMAN 392 36201 14 8,57 

up 

17 Glyceraldehyde-3-
phosphate dehydrogenase  

ANXA2_HUMAN 97 38808 3 7,57 8 Annexin A2  

IGHA1_HUMAN 69 38486 2 6,08 9 Ig alpha-1 chain C region  

29 G3P_HUMAN 77 36201 3 8,57 up 12 Glyceraldehyde-3-
phosphate dehydrogenase 

35 TBB5_HUMAN 84 50095 8 4,78 up 28 Tubulin beta chain  

28 IF5A1_HUMAN  106  17049  4 5,08 up 23 Eukaryotic translation 
initiation factor 5A-1 

45 

TBB5_HUMAN 944 50095 38 4,78 

up 

58 Tubulin beta chain  

TBB4B_HUMAN 569 50255 28 4,79 51 Tubulin beta-4B chain 

TBB3_HUMAN 317 50856 14 4,83 22 Tubulin beta-3 chain 

48 
LEG1_HUMAN 67 15048 9 5,34 

up 
57 Galectin-1  

THIO_HUMAN 67  12015 2 4,82 12 Thioredoxin 

58 PDIA1_HUMAN 161 57480 13 4,76 up 28 Protein disulfide-
isomerase 

Tab. 4. List of identified proteins in HUVECs 
 

HEK-293hFlt-1: CV vs VEGF 

Rank SwissProt Code Score Mass Matches pI Regulation 
Sequence 
Coverage 

(%) 
Name 

48 
CH60_HUMAN 1077 61187 37 5,7 

down 
50 60 kDa heat shock protein, 

mitochondrial 

HNRPK_HUMAN 418 51230 13 5,39 32 Heterogeneous nuclear 
ribonucleoprotein K 

44 

GRP75_HUMAN 359 73920 12 5,87 

down 

22 Stress-70 protein, 
mitochondrial 

TCPG_HUMAN 111 61066 2 6,1 4 T-complex protein 1 
subunit gamma 

HSP71_HUMAN 86 70294 4 5,48 8 Heat shock 70 kDa protein 
1A/1B 

52 

HNRPK_HUMAN 103 51230 4 5,39 

down 

15 Heterogeneous nuclear 
ribonucleoprotein K 

INO1_HUMAN 98 61542 4 5,52 10 Inositol-3-phosphate 
synthase 1 

TCPE_HUMAN 77 60089 5 5,45 14 T-complex protein 1 
subunit epsilon 

CH60_HUMAN 75 61187 2 5,7 7 60 kDa heat shock protein, 
mitochondrial 

761 EF2_HUMAN 109 96246 11 6,41 down 16 Elongation factor 2 

http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=acc;qo.sortdir=asc#tc:rf:reportbuilder
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26 DHSA_HUMAN 359 73672 19 7,06 down 40 
Succinate dehydrogenase 
[ubiquinone] flavoprotein 

subunit, mitochondrial 

51 SERA_HUMAN 328 57356 16 6,29 down 40 D-3-phosphoglycerate 
dehydrogenase 

50 IDH3A_HUMAN 112 40022 4 6,47 down 15 
Isocitrate dehydrogenase 

[NAD] subunit alpha, 
mitochondrial 

49 SYG_HUMAN 96 83854 5 6,61 down 8 Glycine--tRNA ligase 

37 ACTB_HUMAN 79 42052 3  5,29 down 12 Actin, cytoplasmic 1 

13 

IMB1_HUMAN 200  98420 10 4,68 

up 

13 Importin subunit beta-1 

HS90B_HUMAN 135 83554 7 4,97 10 Heat shock protein HSP 
90-beta 

HS90A_HUMAN 107  85006 7 4,94 10 Heat shock protein HSP 
90-alpha 

HEK-293hFlt-1: CV vs PlGF 

Rank SwissProt Code Score Mass Matches pI Regulation 
Sequence 
Coverage 

(%) 
Name 

41 TCPD_HUMAN 151 58401 5 7,96 down 11 T-complex protein 1 
subunit delta 

52 DHSA_HUMAN 359 73672 19 7,06 down 40 
Succinate dehydrogenase 
[ubiquinone] flavoprotein 

subunit, mitochondrial 

47 TCPD_HUMAN 169 58401 8 7,96 down 18 T-complex protein 1 
subunit delta 

54 SC23A_HUMAN 104 87018 5 6,64 down 9 Protein transport protein 
Sec23A 

88 
RAN_HUMAN 210 24579 15 7,01 

up 
43 GTP-binding nuclear 

protein Ran 

ES1_HUMAN 147 28495 9 8,5 36 ES1 protein homolog, 
mitochondrial 

70 PIMT_HUMAN 66 24792  3 6,7 up 18 
Protein-L-isoaspartate(D-

aspartate) O-
methyltransferase 

91 PDCD5_HUMAN 199 14276 6 5,5 up  
Programmed cell death 

protein 5 
69 PFD2_HUMAN 91 16695 3 6,2 up 33 Prefoldin subunit 2 

HEK-293hFlt-1: CV vs HETERODIMER 

Rank SwissProt Code Score Mass Matches pI Regulation 
Sequence 
Coverage 

(%) 
Name 

15 ALDOA_HUMAN 113 39851 9 8,3 down 29 Fructose-bisphosphate 
aldolase A 

62 

GRP75_HUMAN 359 73920 12 5,87 

down 

22 Stress-70 protein, 
mitochondrial 

TCPG_HUMAN 111 61066 2 6,1 4 T-complex protein 1 
subunit gamma 

HSP71_HUMAN 86 70294 4 5,48 8 Heat shock 70 kDa protein 
1A/1B 

63 
LDHA_HUMAN 136 36950 8  down  

L-lactate dehydrogenase A 
chain 

ROA2_HUMAN 93 37464 6  down  
Heterogeneous nuclear 

ribonucleoproteins A2/B1 

80 

HNRPK_HUMAN 103 51230 4 5,39 

down 

15 Heterogeneous nuclear 
ribonucleoprotein K 

INO1_HUMAN 98 61542 4 5,52 10 Inositol-3-phosphate 
synthase 1 

TCPE_HUMAN 77 60089 5  5,45 14 T-complex protein 1 
subunit epsilon 

http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=acc;qo.sortdir=asc#tc:rf:reportbuilder
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CH60_HUMAN 75 61187 2 5,7 7 60 kDa heat shock protein, 
mitochondrial 

78 EIF3M_HUMAN 115 42932 7  down  

Eukaryotic translation 
initiation factor 3 subunit 

M 

35 SC23A_HUMAN 104 87018 5 6,64 down 9 Protein transport protein 
Sec23A 

107 GLRX3_HUMAN 67 37693 6 5,31 down 24 Glutaredoxin-3 

116 
DX39A_HUMAN 83 49611 8 5,46 down 18 ATP-dependent RNA 

helicase DDX39A 

KAD2_HUMAN 82 26689 6 7,67 down 27 Adenylate kinase 2, 
mitochondrial 

118 SPEE_HUMAN 193 34373 9 5,3 down 44 Spermidine synthase 

108 DHSA_HUMAN 359 73672 19 7,06 down 40 
Succinate dehydrogenase 
[ubiquinone] flavoprotein 

subunit, mitochondrial 
122 SEPT2_HUMAN 323 41689 12  down  Septin-2 

99 SYG_HUMAN 96 83854 5 6,61 down 8 Glycine--tRNA ligase 

105 PRDX1_HUMAN 65 22324 3 8,27 up 15 Peroxiredoxin-1 

113 PDCD5_HUMAN 199 14276 6 5,5 up  
Programmed cell death 

protein 5 
68 ACTB_HUMAN 79 42052 3 5,29 up 12 Actin, cytoplasmic 1 

106 PPIA_HUMAN 451 18229 22 7,68 up 72 Peptidyl-prolyl cis-trans 
isomerase A 

Tab. 5. List of identified proteins in HEK-293hFlt-1 
 

For the majority of the identified proteins, the molecular masses and 

isoelectric points determined by 2D gel were consistent with the theoretical 

values. In some cases, the same protein was identified in different spots across 

the 2D gel with different molecular mass and isoelectric point suggesting the 

presence of post-translational modifications and/or protein isoforms. In certain 

spots, more than one protein was identified. Sometimes, MS/MS data allowed 

the identification of a particular protein isoform (for example Annexin A1, A2 

and A5) or subunit (for example Proteasome subunit alpha type-3, Proteasome 

subunit beta type-4). 

The sharing of some proteins by the different groups of analysis is shown 

schematically in the figure 26, that allows to immediately note how the 

numbers related to the HEK-293Flt-1 system are more reduced, compared to 

those detected in HUVEC. This would implies that, while in HEK-293Flt-1 

only the proteomic profiles modulated by phosphorylation and activation of a 

http://www.matrixscience.com/cgi/master_results_2.pl?file=..%2Fdata%2F20120513%2FFtGcIncah.dat;pr.show=reportbuilder;qo.sort=mass;qo.sortdir=asc#tc:rf:reportbuilder
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single receptor by the three different VEGFs dimers can be appreciated, in 

HUVEC, other more complex situations should be covered, such as: 

 Activation of KDR 

 Transfosphorilation between Flt-1 and KDR 

 Receptor heterodimerization between Flt-1 and KDR 

 

 
Fig. 26. VENN diagrams of proteins identified for HUVECs a) and HEK-293hFlt-1 b), with 
areas drawn to represent number of identified proteins. Numbers of proteins identified in each 
experiment, as well as number of common proteins 
 

The differentially expressed proteins in VEGF treated HUVEC are: 

HNRH1_HUMAN, GRP78_HUMAN, HS71L_HUMAN, HNRPK_HUMAN, 

ANXA5_HUMAN, PSA3_HUMAN, PDIA6_HUMAN, G3P_HUMAN, 

ENOA_HUMAN, ENOG_HUMAN, IF5A1_HUMAN, LEG1_HUMAN, 

THIO_HUMAN; these proteins are all up-regulated. Some of these data have 

already been reported in the literature. For example, the up-regulation of 

ANXA5 and ENOA_HUMAN in HUVECs after 48 hours of incubation with 

VEGF have been descripted by Katanasaka et collaborators in 2007. 

Pawlowska et al. through analysis of two-dimensional gel patterns of human 

endothelial cells before and after stimulation with VEGF165, revealed 

differences in 85 protein spots, including heat shock proteins (HSPs; HSP-27, 

HSP-60, HSP-70p5, HSP-70p8, HSP-90, and HSP-96), proteins showing 

either chaperone activity or which participate in assembly of multimolecular 
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structures (TCP-1, desmoplakins, junction plakoglobin, GRP-94, thioredoxin 

related protein, and peptidylprolyl isomerase), components of the proteolytic 

machinery for the degradation of misfolded proteins (ER-60, cathepsin-D, 

proteasome subunits, and protease inhibitor-6), structural proteins (T-plastin, 

vimentin, α tubulin, actin, and myosin) that could account, at least in part, 

migration of endothelial cells. Authors rationalized these data explaining that 

VEGF induce a number of genes and multiple endogenous pathways that seem 

to be engaged in restoring cellular homeostasis (Pawlowska et al., 2005).. 

These findings fit partially with our data. In fact, as displayed in the previous 

tables, some of the proteins just described, seem to be modulated rather by 

PlGF or by heterodimer. 

 

3.1.4 Data validation 

2D-gel analysis results were then validated performing western blotting 

experiments using Ab against some of the proteins identified  by MS. As an 

example, in fig. 27 results achieved using the anti-Annexin 1 antibody are 

shown, confirming the protein over-expression following exposure to each 

growth factor.  
 

 

Fig. 27 Relative fold change of Annexin A1 in HUVEC compared to control 
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3.1.5 Functional annotation clustering of differentially regulated proteins 

In gel-based proteomics, data generated from global expression and 

differential expression profiles can be explored by application of Gene 

Ontology (GO; http://www.geneontology.org/), for functional characterization 

of the cells. Gene Ontology is a part of the Open Biomedical Ontologies 

(OBO), which is the most widely used ontology in biomedical research 

community (Smith et al., 2007). The major aim of GO is to create a controlled 

and unified vocabulary for genes and gene products, such as proteins. GO 

annotation categorizes genes or gene products into hierarchical order based on 

3 categories:  

 cellular component (that describes the localization of gene products in 

the cells or its extracellular environment) 

 biological process (that describes the biochemical reaction of gene 

products in the cells) 

 molecular function (that describes the elemental activities of gene 

products at molecular levels) 

By using the Database for Annotation, Visualization and Integrated Discovery 

(DAVID) v6.7 Bioinformatics Resource 

(http://david.abcc.ncifcrf.gov/home.jsp) we performed a “functional 

annotation clustering” of the proteins modulated by VEGFs dimers. DAVID, 

indeed uses many tools with which it can recognize enriched biological themes 

(mainly GO terms), determine enriched functional-related gene groups and 

cluster redundant annotation terms. A typical output of a functional annotation 

clustering is done as in figure 28. 

With the highest classification stringency, we found 4, 14 and 15 principal 

functional clusters for HUVECs and 9, 1 and 7 functional clusters for HEK-

293Flt-1cells, following the treatments with VEGF, PlGF and heterodimer, 

respectively. These data have been organized in tables (tables 6, 7), in which 

clusters are listed with the most enriched at top. To represent each cluster, it 

http://www.geneontology.org/
http://david.abcc.ncifcrf.gov/home.jsp
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has been reported the GO term with the lowest p value and the number of 

identified proteins related to it, useful to evaluate the reliability of the 

modulation of a specific cellular function. For example, in the case of HUVEC 

cells exposed to VEGF, 3 of the 13 proteins detected in the proteomic analysis 

(i.e. ENOA_HUMAN, ENOG_HUMAN and G3P_HUMAN) belong to the 

cluster “glycolysis”. The p value at 6.4E-4 indicates that this function is 

significantly over represented among the 13 proteins analyzed. Similarly, also 

the other identified clusters (“intracellular organelle lumen”, “regulation of 

apoptosis”, “cytosolic part”) were significant. Some of the identified proteins 

belong to more than one category since they possess multiple functions.  

 

 
Fig.28. Output of a functional annotation clustering performed by DAVID 

 

Likewise, the clusters “endoplasmic reticulum lumen”, “glycolysis”, “protein 

polymerization”,… or “phospholipase inhibitor activity”, “cell redox 
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homeostasis”, “endoplasmic reticulum lumen”,… resulted to be modulated in 

HUVEC following PlGF or VEGF/PlGF heterodimer treatment, respectively. 

Comparing the results obtaining in this clusters analysis, some indication can 

be deduced: first of all, the treatments with the three different VEGF dimers 

stimulates some common clusters , such as “intracellular organelle lumen” and 

“regulation of apoptosis” in HUVECs, whereas “glycolysis” is common to 

with VEGF and PlGF treatment.  

However, the effect of heterodimer treatment on HUVEC functions appears to 

be more similar to that induced by PlGF; indeed in both PlGF and VEGF/PlGF 

the terms “endopalsmic reticulum lumen”, “protein polymerization”, “cell 

redox homeostasis”, “regulation of apoptosis”, “intracellular organelle lumen”, 

“proteinaceous extracellular matrix” are present, whereas these functions were 

not significantly affected by VEGF.  

Due to the binding properties of the heterodimer these data indicate that also if 

it may induce VEGF receptor heterodimerization, the main activity is due to 

activation of VEGFR-1, as normally do PlGF in a specific way. 

 

HUVEC: CN vs VEGF 

Funct Ann Clust Cluster N ̊ of Involved Prot P_Value  

GOTERM_BP_FAT  glycolysis  3 6.4E-4  

GOTERM_CC_FAT  intracellular organelle 
lumen  4 1.2E-1  

GOTERM_BP_FAT  regulation of 
apoptosis  3 1.4E-1  

GOTERM_CC_FAT  cytosolic part  3 4.8E-3  

HUVEC: CN vs PlGF 

Funct Ann Clust Cluster N ̊ of Involved Prot P_Value  

GOTERM_CC_FAT  endoplasmic 
reticulum lumen  6 2.7E-6  
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GOTERM_BP_FAT  glycolysis  4 2.4E-4  

GOTERM_BP_FAT  protein 
polymerization  4 2.7E-4  

GOTERM_BP_FAT  cell redox 
homeostasis  3 1.2E-2  

GOTERM_BP_FAT  keratinocyte 
differentiation  4 6.5E-4  

GOTERM_BP_FAT  regulation of 
apoptosis  8 4.0E-3  

GOTERM_CC_FAT  intracellular organelle 
lumen  12 7.8E-3  

GOTERM_MF_FAT  GTP binding  5 2.3E-2  

GOTERM_CC_FAT  sarcomere  3 3.1E-2  

GOTERM_BP_FAT  negative regulation of 
apoptosis  4 6.3E-2  

GOTERM_MF_FAT  ribonucleotide 
binding  10 7.9E-2  

GOTERM_CC_FAT  proteinaceous 
extracellular matrix  3 2.3E-1  

GOTERM_MF_FAT  ATP binding  6 4.4E-1  

GOTERM_BP_FAT  apoptosis  3 4.7E-1  

HUVEC: CN vs VEGF/PlGF 

Funct Ann Clust Cluster N ̊ of Involved Prot P_Value  

GOTERM_MF_FAT  phospholipase 
inhibitor activity  3 2.1E-4  

GOTERM_BP_FAT  cell redox 
homeostasis  3 5.5E-3  

GOTERM_CC_FAT  endoplasmic 
reticulum lumen  5 9.6E-6  

GOTERM_CC_FAT  ribonucleoprotein 
complex  3 2.2E-1  

GOTERM_CC_FAT  intracellular organelle 
lumen  10 1.7E-3  

GOTERM_BP_FAT  protein complex 
assembly  6 1.7E-3  

GOTERM_BP_FAT  cellular protein 
complex assembly  4 2.8E-3  
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GOTERM_BP_FAT  regulation of 
apoptosis  6 1.2E-2  

GOTERM_BP_FAT  protein 
polymerization  3 3.4E-3  

GOTERM_CC_FAT  melanosome  4 4.6E-4  

GOTERM_BP_FAT  anti-apoptosis  3 5.1E-2  

GOTERM_BP_FAT  
negative regulation of 

cellular protein 
metabolic process  

3 4.0E-2  

GOTERM_CC_FAT  proteinaceous 
extracellular matrix  3 1.0E-1  

GOTERM_MF_FAT  purine ribonucleotide 
binding  6 2.5E-1  

GOTERM_MF_FAT  calcium ion binding  6 2.4E-2  

Tab. 6. Functional annotation clustering of data obtained for HUVECs 
 

A similar approach of functional clusters analysis was also applied to VEGFs 

dimers treated-HEK-293Flt-1 cells.  

Contrary to what we observed in HUVEC, in this case VEGF and VEGF/PlGF 

heterodimer activate common cellular function, differently from PlGF. This 

indicate that when cells express only VEGFR-1, the activity of VEGF shifts to 

other targets if compared to cellular function activated when both VEGF 

receptors are expressed on cell surface. These differences are expected due to 

the diverse origin of cell line used in this study, HEK-293Flt-1is a transformed 

cell line while HUVECs are primary endothelial cells. 

 

HEK-293Flt-1: CN vs VEGF 

Funct Ann Clust Cluster N ̊ of Involved Prot P_Value  

GOTERM_MF_FAT  purine ribonucleotide 
binding  10 5.0E-5  

GOTERM_MF_FAT  adenyl nucleotide 
binding  10 1.4E-5  
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GOTERM_MF_FAT  ATP binding  9 8.5E-5  

GOTERM_BP_FAT  response to unfolded 
protein  4 6.0E-5  

GOTERM_CC_FAT  intracellular organelle 
lumen  8 7.9E-4  

GOTERM_CC_FAT  
cytoplasmic 

membrane-bounded 
vesicle  

4 1.6E-2  

GOTERM_MF_FAT  coenzyme binding  3 1.8E-2  

GOTERM_BP_FAT  cellular protein 
complex assembly  3 1.4E-2  

GOTERM_BP_FAT  negative regulation of 
apoptosis  3 5.7E-2  

HEK-293Flt-1: CN vs PlGF 

Funct Ann Clust Cluster N ̊ of Involved Prot P_Value  

GOTERM_CC_FAT  
cytoplasmic 

membrane-bounded 
vesicle  

3 2.5E-2  

HEK-293Flt-1: CN vs VEGF/PlGF 

Funct Ann Clust Cluster N ̊ of Involved Prot P_Value  

GOTERM_MF_FAT  purine ribonucleotide 
binding  9 5.8E-3  

GOTERM_MF_FAT  adenyl nucleotide 
binding  9 2.2E-3  

GOTERM_MF_FAT  ATP binding  8 6.7E-3  

GOTERM_BP_FAT  regulation of 
apoptosis  5 2.8E-2  

GOTERM_BP_FAT  negative regulation of 
apoptosis  3 9.5E-2  

GOTERM_CC_FAT  mitochondrial inner 
membrane  3 7.5E-2  

GOTERM_BP_FAT  positive regulation of 
apoptosis  3 1.3E-1  

Tab. 7. Functional annotation clustering of data obtained for HEK-293hFlt-1 
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3.2 Searching for natural compounds with antiangiogenic activities 

 

In order to identify new compounds able to interfere in Flt-1 recognition by 

PlGF and VEGF-A, we employed a highly sensitive competitive ELISA to 

screen plant extracts, fractions and pure compounds, performing a target based 

High Throughput Screening (HTS). 

To carry out this study, a small library of plant extracts to be tested in HTS 

was built up. The plants were selected on the basis of their reported use in 

traditional folk medicine. The creation of a library of crude natural product 

extracts has several advantages: inexpensive to prepare, minimal sample 

preparation time, moderate overall size, high degree of diversity. 

In our ELISA based approach, drug targets were exposed to crude extracts 

and, when some evidence of an inhibitory activity of the sample occurred, the 

extract was fractionated leading to the isolation of pure compounds which 

were singularly tested again. The active compounds then underwent to 

complete structural characterization by spectroscopic and spectrometric 

techniques. 

The fractionation process adopted for the deconvolution of active extracts was 

chosen on the basis of the number of compounds in the original crude extract, 

the resulting fractions can differ widely in complexity from a mixture of 

multiple compounds to a single major compound of > 90% purity. Each 

extract was subjected to different separation techniques, such as solid-phase 

extraction, liquid-liquid partitioning, and column chromatography methods 

like silica gel flash chromatography and sephadex, resulting in several sub-

fractions. These sub-fractions were then tested again and, when a hit 

notification is shown, the active sub-fraction are further fractionated. Finally, 

if one of these fractions is found to be active, the individual components were 

separated by HPLC and the resulting pure compounds were tested. This 
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process is attractive because only compound structures from the active 

fractions are elucidated. 

 

3.2.1 Screening of a small library of plant extracts 

An ELISA-based assay has been used to identify molecules able to inhibit the 

interaction of VEGFs with the immobilized Flt-1 receptor (De Falco, et al. 

2001). In the first step we tested some plant extracts (table 6) 
 

 
Tab. 8. The small library of  natural extracts screened in this study. 
 

The plant material was extracted with solvents at increasing polarity by using 

classical techniques, such as maceration at room temperature, and/or 

Plants Abb. Plant part Extracts

Feretia apodanthera 
Del. (Rubiaceae) 

FA aerial parts

FA-H (Ex n Hexane)                         
FA-C (Ex CHCl3)                                     
FA-CM (Ex CHCl3:MeOH 9:1)          
FA-M (Ex MeOH)

Campsiandra 
guayanensis  B. Stergios 

(Caesalpiniaceae) 
 CAG aerial parts

CAG-H (Ex n Hexane)                         
CAG-C (Ex CHCl3)                                     
CAG-CM (Ex CHCl3:MeOH 9:1)          
CAG-M (Ex MeOH)

Vernonia nigritiana 
Oliv. & Hiern 
(Compositae)

VN aerial parts

VN-H (Ex n Hexane)                         
VN-C (Ex CHCl3)                               
VN-CM (Ex CHCl3:MeOH 9:1                                  
VN-M (Ex MeOH)

Salvia palaestina 
Bentham (Lamiaceae)

SPA aerial parts

SPA-H (Ex n Hexane)                         
SPA-C (Ex CHCl3)                                     
SPA-CM (Ex CHCl3:MeOH 9:1)          
SPA-M (Ex MeOH)

Astronium graveolens 
Jacq (Anacardiaceae) AG leaves

AG-H (Ex nHexane)                          
AG-C (Ex CHCl3)                                       
AG-M (Ex MeOH)

Cachrys ferulacea  (L.) 
Calest. (Apiaceae)

CFU aerial parts

CFU-H (Ex n Hexane)                    
CFU-C (Ex CHCl3)                                     
CFU-CM (Ex CHCl3:MeOH 9:1)  CFU-
M (Ex MeOH)

Salvia multicaulis  Vahl. 
(Lamiaceae) SMU aerial parts

SMU-H (Ex nHexane)                    
SMU-C (Ex CHCl3)                                       
SMU-M (Ex MeOH)

Salvia sclarea  L., 
(Lamiaceae) SS roots

SS-H (Ex nHexane)                              
SS-C (Ex CHCl3)                                       
SS-M (Ex MeOH)
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instrumental approaches, such as ASE (Accelerated Solvent Extraction) and 

Naviglio, which are less time and solvent consuming. 

We selected an increasing polarity extraction to obtain extracts with 

compound at similar polarity. This is important when fractions with wide 

range of polarities are going to be tested. 

A critical point in a screening program is the amount of sample consumed by 

the assay process. For our ELISA assay, only small amounts of sample (200 

μg) is required for the initial screening, while the dose-response curves 

required approximately 120 μg of sample, depending on chemical-physical 

sample characteristics and its activity range. 

Preliminary, the binding of VEGF-A and PlGF in presence of 1 mg/mL of 

each plant extract was evaluated. Results were expressed as % of binding 

respect to the positive control, which is the binding of the growth factor 

without plant extract. Peptide 4-23-23, a previously described VEGFs/Flt-1 

inhibitor (Ponticelli, et al., 2008), was used as negative control at 30 mg/L. 

The extracts which caused a reduction of the binding percentage below 20% 

were assayed in a dose-dependent competition test at the concentrations of 

500, 100, 20 mg/L. Therefore the most active extracts were further 

fractionated through chromatographic methods as LPLC, MPLC, HPLC in 

order to isolate the main components. Specific purification techniques were 

chosen upon the nature of the compounds to be isolated. The structural 

determinations were carried out using spectroscopic methods. 

Below, we discuss the deconvolution of the extracts that gave the best results 

in a greater detail. 

 

3.2.2 Bioassay-guided isolation of natural compounds with antiangiogenic 

activities 
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By ELISA assay, the CHCl3-MeOH extract of C. guyanensis (aerial parts) and 

the MeOH extract of F. apodanthera (aerial parts) exhibited activity in the 

inhibition of both PlGF/Flt-1 and VEGF-A/Flt-1 interactions (Figure 29). 

 

 

Fig. 29. Inhibitory effect of F. apodanthera and C. guyanensis extracts on PlGF/Flt-1 (A) and 
VEGF/Flt-1 interaction (B). The extracts were tested at 500 mg/L, 100 mg/L and 20 mg/L. A 
specific inhibiting peptide (4-23-23) was used as control.7 Each experiment was performed 
three times and average values ± SD were reported. FA-CM = F. apodanthera CHCl3-MeOH 
extract. FA-M = F. apodanthera MeOH extract. CAG-C = C. guayanensis CHCl3 extract. 
CAG-CM = C. guayanensis CHCl3-MeOH extract. 
 

Therefore, these extracts were submitted to a bioassay-oriented fractionation 

using Sephadex LH-20. The fractions were tested on both PlGF/Flt-1 and 

VEGF-A/Flt-1. Only fraction 10 of the C. guayanensis CHCl3-MeOH extract 
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and fractions 10 and 11 of the F. apodanthera MeOH extract showed 

inhibitory activity (data not shown). Chromatographic separation of active 

fractions led to the isolation of five proanthocyanidins (figure 30), the new 

(2S)-4',5,7-trihydroxyflavan-(4β→8)-afzelechin (1) and (2S)-4',5,7-

trihydroxyflavan-(4β→8)-epiafzelechin (2) from C. guayanensis and the 

known compounds geranin B (3), proanthocyanidin A2 (4), and 

proanthocyanidin A1 (5), from F. apodanthera (Calzada et al 1999) 
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Fig. 30. Active proanthocyanidins, isolated from F. apodanthera and C. guayanensis. 
 
Compound 1 was assigned a molecular formula, C30H26O9, as determined by 

its positive HRESIMS data (m/z 529.1485, [M – H]–). The ESIMS of 1 

showed an [M – H]– ion at m/z 529 and prominent fragments at m/z 511 [M – 

H – 18]– and 289 [M – H – 240]–. The 1H NMR spectrum of 1 (table 9) 
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suggested its structural similarity to dimeric proanthocyanidins. Resonances of 

seven aromatic protons comprised two A2X2 spin systems of 1,4-disubstituted 

benzene rings (δ 7.11, d, J = 8.0 Hz, H-2'/H-6' (U and L), 6.77, d, J = 8.0 Hz, 

H-3'/H-5' (L), 6.72, d, J = 8.0 Hz, H-3'/H-5' (U)), ascribable to the B- and E-

rings of the dimeric structure, two meta-coupled doublets at δ 6.24 and 6.17 (J 

= 1.8 Hz) attributed to the A-ring, and one singlet of a pentasubstituted 

benzene ring (δ 6.04) ascribed to the D-ring. 1D TOCSY and DQF-COSY 

spectra suggested the presence of two 4-spin systems attributable to a -CH-

CH2-CH- moiety (δ 5.30 [(1H, dd, J = 6.0, 2.5 Hz, H-2 (U)], 4.45 [1H, dd, J = 

7.0, 6.0 Hz, H-4 (U)], 2.40 [1H, br dd, J = 12.0, 2.0 Hz, H-3a (U)], and 2.24 

[1H, ddd, J = 12.0, 7.0, 6.0 Hz, H.3b (U)] and to a -CH-CHOH-CH2- group [δ 

4.30 (1H, d, J = 8.0 Hz, H-2 (L)], 4.02 [1H, ddd, J = 8.5, 8.0, 4.0 Hz, H-3 (L), 

2.95 (1H, dd, J = 16.0, 4.0 Hz, H-4a (L)], and 2.53 [1H, dd, J = 16.0, 8.0 Hz, 

H-4b (L)]. The methylene protons of the latter 4-spin system are assignable to 

those of the terminal flavan-3-ol unit, and therefore, the former 4-spin system 

was attributed to the upper flavan unit. Direct evidence of the substituent sites 

was derived from the HSQC and HMBC correlations, which also allowed the 

assignment of all the resonances in the 13C NMR spectrum (table 9). The 

configuration of the stereogenic carbons was obtained by means of chemical 

shifts, multiplicity, values of the coupling constants, in the 1H NMR spectrum, 

and Electronic Circular Dicroism (ECD) analyses. A 2,4-trans C-ring 

configuration was deduced by the shielded C-2 signal (76.8 ppm) compared to 

the carbon chemical shifts of analogues with 2,4-cis configuration. The ECD 

spectrum of 1 exhibited a high-amplitude positive Cotton effect near 240 nm, 

indicating a 4β C-ring substituent and supported the 2S,4R absolute 

configuration. The 1H and 13C NMR values of H-2 (F-ring) (δH 4.30, d, J = 8.0 

Hz, δC 82.6) indicated 2,3-trans configuration of the lower flavan-3-ol moiety. 

Moreover, the ECD negative Cotton effect near 280 nm supported 2R 
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configuration and hence an afzelechin moiety (i.e. 2R,3S configuration in ring 

F). Thus, compound 1 was identified as (2S)-4',5,7-trihydroxyflavan-(4β→8)-

afzelechin. 

The molecular formula of compound 2 (C30H26O9) was established by 13C 

NMR and ESIMS spectra (m/z 529 for [M – H]–). In the ESIMS spectrum one 

main fragment was observed at m/z 289 [M – H – 240]–, suggesting that 2 was 

an isomer of 1. Its NMR data (table 9) suggested that the structure of 2 

resembled that of 1, but differed in the F-ring chemical shifts of the lower 

flavan-3-ol unit. Comparison of the chemical shifts of 2 with those of 1 

suggested a 2,3-cis F-ring relative configuration [δ 4.64, br s, H-2 (L)]. The 

positive Cotton effect near 240 nm again was reminiscent of a 4β C-ring 

substituent and supported the 2S, 4R absolute configuration of the upper flavan 

unit. Again, the high-amplitude negative Cotton effect near 280 nm in the 

ECD spectrum supported 2R configuration and hence an epiafzelechin moiety 

(i.e. 2R,3R configuration in ring F). Thus, compound 2 was determined as 

(2S)-4',5,7-trihydroxyflavan-(4β→8)-epiafzelechin. 

 

 1  2  

position δH δC δH δC 

Upper unit 
 

    
2 5.30 dd (6.0, 2.5) 

 
 
 
 
 
 

 
 

76.8 5.41 dd (6.0, 2.5) 
 
 
 
 
 
 

 
 

76.7 
3a 2.40 br dd (12.0, 2.0) 

 
36.3 2.57 br dd (12.0, 2.0) 

 
35.6 

3b 2.24 ddd (12.0, 7.0, 
 

 2.22 ddd (12.0, 7.0, 
 

 
4 4.45 dd (7.0, 6.0) 29.5 4.50 m  28.7 
5  156.4  155.7 
6 6.24 d (1.8) 108.7 6.22 d (1.8) 108.6 
7  157.5  157.4 
8 6.17 d (1.8) 104.0 6.27 d (1.8) 103.6 
9  153.8  153.4 
10  119.6  119.7 
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1'  134.0  134.6 
2'/6' 7.11 d (8.0) 128.6 7.16 d (8.0) 128.2 
3'/5' 6.72 d (8.0) 115.9 6.72 d (8.0) 115.8 
4'  156.0  155.8 

Lower unit 
 

    
2 4.30 d (8.0) 82.6 4.64 br s 79.5 
3 4.02 ddd (8.5, 8.0, 4.0) 68.4 4.22 br m 66.6 
4a 2.95 dd (16.0, 4.0) 28.8 2.92 br d (16.0) 29.5 
4b 2.53 dd (16.0, 8.0)  2.77 dd (16.0, 2.0)  
5  155.0  155.0 
6 6.04 s 96.3 6.03 s 96.7 
7  156.8  156.8 
8  111.8  111.5 
9  155.0  156.5 
10  101.0  100.5 
1'  132.0  129.9 

2'/6' 7.11 d (8.0) 128.6 7.16 d (8.0) 128.2 
3'/5' 6.77 d (8.0) 115.8 6.72 d (8.0) 115.8 
4'  156.0  155.8 

Tab. 9. 1H and 13C NMR Data of Compounds 1-2 (Methanol-d4, 600 MHz)a 
a J values are in parentheses and reported in Hz; chemical shifts are given in ppm; 

assignments were confirmed by DQF-COSY, 1D-TOCSY, HSQC, and HMBC 
experiments. 

 

The pure compounds were tested in a dose dependent manner on VEGFs/Flt-1. 

Compounds 1-5 showed antiangiogenic activity in the Elisa assay on both 

PlGF-1/VEGFR-1 and VEGF-A/VEGFR-1. As shown in figure 31, compound 

1 inhibited in a dose-dependent manner PlGF-1/VEGFR-1 interaction with an 

IC50 of 15 ±0.6 µM; 1 was also capable of inhibiting the VEGF-A/VEGFR-1 

interaction but with reduced efficacy (IC50 = 50 ± 4.3 µM). As negative 

control, an inactive fraction from the same extract was used. An inhibitory 

activity was also shown by compound 3 with an IC50 of 28 ± 3.0 µM and 65 ± 

5.4 µM in PlGF-1/VEGFR-1 and VEGF-A/VEGFR-1 interactions, 

respectively. 
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Fig. 31. Inhibitory effect of compounds 1-5 on PlGF/Flt-1 (A) and VEGF/Flt-1 interaction 
(B). Compound 1 was tested at 12.5 µM, 25 µM, 50 µM, and 100 µM while compounds 2-5 at 
25 µM, 50 µM, and 100 µM. A specific inhibiting peptide (4-23-23) was used as control. Each 

experiment was performed three times and average values ± SD were reported. 
 

3.2.3 SPR experiments 

A surface plasmon resonance (SPR) based binding assay was used to 

investigate the interactions between the VEGRFs/VEGFs and compounds 1-5. 

SPR allowed the measurement of kinetic and thermodynamic parameters of 

ligand-protein complex formation (Cooper, 2003). Amentoflavone, a potent 

VEGRFs/VEGFs inhibitor, was used as positive control (Tarallo et al., 2011). 

Recombinant PlGF-1, VEGF-A Fc-VEGFR-1 chimera, and tubulin and human 

serum albumin (HSA), as controls, were coated to a Biacore chip and 
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incubated with increasing concentrations of compounds 1-5, starting from 

0.025 to 4 µM, measuring the association and dissociation to the coated 

proteins. Compound 1 interacted with PlGF-1 and VEGF-A, as demonstrated 

by the concentration dependent responses and the clear exponential curves 

during both the association and dissociation phases (figure 32). 

Thermodynamic dissociation constants (KD ± SD) of 11 ± 0.3 nM and 16 ± 

0.2 nM were measured for the PlGF-1/1 and VEGF-A/1 interactions, 

respectively (table 10). Interestingly, thermodynamic dissociation constants 

measured for 1 were similar to those previously observed for the well known 

antiangiogenic compound amentoflavone (Tarallo et al., 2011). No significant 

interaction was detected with HSA or other controls (data not shown). Since 

compounds 1 and 3 have in their skeleton an afzelechin or catechin moiety, 

respectively, we also assayed these compounds, but no interaction was 

observed with the PlGF-1 or VEGF-A in SPR experiments (data not shown).  

 

Compound KD (nM) vs PlGF KD (nM) vs VEGF 
1 11 ± 3 16 ± 2  
2 NBa NBa 
3 23 ± 5 48 ± 8 
4 NBa NBa 
5 394 ± 86 476 ± 98 

Amentoflavone 8.2 ± 0.3 16.5 ± 0.6 
Tab. 10. Thermodynamic Constants Measured by SPR for the Interaction of Compounds 

1-5 with Immobilized PlGF or VEGF 
a  For this compound no interaction with the immobilized protein was observed 
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Fig. 32. Sensorgrams obtained injecting different concentration (25nM, 100 nM, 500 nM, 2 
µM) of compounds 1 (A-B) or 2 (C-D) on immobilized PlGF (A-C) or VEGF (B-D). 

 

3.2.4 Cytotoxic activity 

Compounds 1-5 were tested for their cytotoxic activity against human 

lymphocyte cells T (Jurkat) and human breast adenocarcinoma (MCF7) cell 

lines. All compounds showed IC50 values higher than 70 µM. 

 

3.2.5 Chicken embryo chorioallantoic membrane (CAM) assay 

The antiangiogenic activity of 1 was investigated in vivo in the chicken 

embryo chorioallantoic membrane (CAM) assay model. The CAM of chicken 

eggs is a biological model to study the angiogenic and antiangiogenic activity 

of molecules, which interfere with physiological angiogenesis (Ribatti et al., 

1996; Ribatti et al., 2001) The antiangiogenic activity, expressed as the 

percentage of inhibition, is reported in figure 33; compound 1 showed the 

highest inhibitory effects on the growth of CAM blood vessels at 10 µg with a 

significant inhibition percentage (56.19%, p < 0.05). The dose required for 

half-maximal inhibition (IC50) was determined to be 9.79 µg. Retinoic acid (2 

µg/egg), used as positive standard, confirmed its anti-angiogenesis activity (p 

< 0.01) with 75.47% inhibition. figure 34 shows the images of representative 
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microscopical observations of the CAMs exposed to different treatments. 

After four days of incubation, the CAM of control eggs showed the presence 

of a clear vascular network with large vessels converging towards the embryo. 

When the CAMs were treated with 1 (10µg/egg), a marked decrease in the 

number, length, size, and junctions was observed as compared with the 

controls. A strong inhibitory effect on capillary formation was evidenced in 

the CAM treated with retinoic acid (2 µg/egg) (figure 34).  

 

 

Fig. 33. Antiangiogenic activity of compound 1 in the chick embryo chorioallantoic 
membrane (CAM) assay. Retinoic acid (RA) was used as positive control. Each group 
contained at least 5 eggs. Each column represent mean ± SD of three experiments. *P< 0.05 
and **P< 0.01 compared with control group (Student’s t-test). 

 

 

Fig. 34. Antiangiogenic activity of compound 1 in CAM assay. (A) = CAM vehicle control. 
(B) = CAM treated with retinoic acid at dose of 2 µg/egg.(C) = CAM treated with 1 at dose of 

10 µg/egg. 
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4.1 Conclusions 

 

Angiogenesis is a complex biological process, important for the embryonic 

development and the post-natal growth. In adult life, it is a tightly regulated 

event and occurs only during the menstrual cycle or after prolonged and 

sustained physical exercise, in heart and skeletal muscles. Angiogenesis is also 

re-activated during several pathological conditions, such as cancer, 

atherosclerosis, arthritis, diabetic retinopathy and age-related macular 

degeneration. The proangiogenic members of the vascular endothelial growth 

factor (VEGF) family and related receptors play a central role in the 

modulation of both physiological and pathological angiogenesis In the last 

years they have been validated as diagnostic and prognostic markers, other 

than as therapeutic targets. Despite the many positive responses, nowadays 

anti-angiogenesis therapy is facing some challenges, such as inherent/acquired 

resistance, enhanced invasiveness during the treatment, lack of validated 

predictive biomarkers to select patient population and to monitor tumors 

responses to the therapy. 

The aim of the present study was to produce data that could be useful for the 

future development of new antiangiogenic drugs or treatment strategies. Thus, 

we focused on the following objectives: 

 Producing an expression proteomic study of cell coltures (HUVECs 

and HEK-293hFlt-1), following their treatment with VEGFA, PlGF 

and VEGFA/PlGF.  

 Identifying natural compounds acting as inhibitors of angiogenesis, by 

the inhibition of the interaction between the proangiogenic members of 

VEGF family and related receptors. 
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For the realization of the first point, gel-based proteomics was confirmed as a 

very effective strategy. Both in HUVECs and in HEK-293hFlt-1 cellswe were 

able to detect a discrete number of differentially expressed proteins, correlated 

to treatment with each specific VEGFs dimer selected for this study. Gels 

variability was also determined by principal component analysis (PCA). PCA 

plot showed that produced gels grouped according to the set experimental 

conditions. Only statistically significant spots (p<0.05) were manually cut, 

trypsin digested and processed for nano-LC-ESI-MS/MS analysis, allowing us 

to obtain protein identifications. The Mw and pI determined by 2D gel were 

consistent with the theoretical values, confirming the protein identity. In some 

cases, the same protein was identified in different spots across the 2D gel: this 

suggests the occurrence of post-translational modifications and/or protein 

isoforms. In certain spots, more than one protein was identified. In any cell 

culture, different treatments had in common the modulation of a number of 

proteins This phenomenon was less marked in HEK-293Flt-1 compared to the 

HUVEC. This would implies that, while in HEK-293Flt-1 only the proteomic 

profiles modulated by phosphorylation and activation of a single receptor by 

the three different VEGFs dimers can be appreciated, in HUVEC a complex 

situations occurs due to the presence of both VEGF receptors . Some of 

identified proteins were already reported in the literature; this represents a 

further confirmation of the reliability of all the data produced. By using the 

DAVID Bioinformatics Resource we performed a functional annotation 

clustering of the identified proteins for both cell culture. The partly different 

functions identified in the two different kind of cells may partly explain the 

different physiology of these cells, but above the different endothelial roles 

exerted by the selected VEGF dimers and related receptors. The achieved data 

will facilitate future studies on understanding of endothelial cells functions in 

response to different vascular endothelial growth factors. This aspect is 

extremely interesting, especially if we consider that literature gives us even 
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very few informations for the heterodimer. This proteomic profiling study will 

help researchers to elucidate connections between broad cellular 

pathways/molecules that were neither apparent nor predictable through 

traditional biochemical analysis in the past. 

To achieve the second objective, we screened a small libraries of plant 

extracts with the aim of identifying small molecules with the capability to 

prevent the initial event required for the pro-angiogenic activity of the VEGF 

family members, the binding and activation of related receptor. As a result, we 

isolated two proantocyanidins, (2S)-4',5,7-trihydroxyflavan-(4β→8)-

afzelechin (Compound 1) and geranin B (Compound 3), as antiangiogenic 

bioactive molecules. Indeed, we demonstrated that both are able to bind 

VEGF-A and PlGF-1, preventing the interaction with VEGFR-1. The 

antiangiogenic activity of Compound 1 was also confirmed in vivo by the 

chicken chorioallantoic membrane (CAM) assay. Compound 1 inhibited 

chorioallantoic membrane neo-vascularization. Monomeric flavan-3-ols like 

catechin and afzelechin did not interact with the VEGFs as determined by SPR 

assays. Taking into account these results and our previous reported data on the 

potent antiangiogenic activity of the biflavone amentoflavone, the 

antiangiogenic activity of compounds 1 and 3 may depend on dimeric and 

stereochemical features. Therefore, these compounds could be a promising 

scaffold to develop by medicinal chemistry approaches new antiangiogenic 

small molecules. We also reported for the first time the antiangiogenic activity 

of proanthocyanidins (Pesca et al,. 2012) 
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5.1 Proteomic study 

 

 

5.1.1 Cell cultures and protein extracts 

Whole protein extracts were prepared from human embryonic kidney 293 

(HEK-293) (American Type Culture Collection) cells that stably overexpress 

hVEGFR-1 (HEK-293hFlt-1) and from human umbilical vein endothelial cells 

(HUVECs) (American Type Culture Collection) that express both VEGFR-1 

and VEGFR-2. HEK-293hFlt-1cells were grown in Dulbecco’s modified 

Eagle medium (DMEM) supplemented with 10% inactivated fetal bovine 

serum (FBS) (Euroclone) and antibiotics, while HUVECs were cultured in 

EBM supplemented with EGM2. Both cell lines were maintained at 37°C and 

at a fixed concentration of CO2 (5%) in a humidified atmosphere. They were 

starved 16 hours at 37°C in serum free medium (1% FBS defined for 

HUVEC). After starvation, cells were incubated for 24 hours at 37°C with 100 

ng/ml of PlGF-1, 100 ng/ml of VEGF-A and 100 ng/ml of VEGF-A /PlGF-1. 

Then they were lysed in a buffer containing 2 mM Tris-HCl at pH 8, 5 mM 

EDTA, 150 mM NaCl, 1% Triton-X 100, 10% glycerol, 10 mM zinc acetate, 

100μM Na3VO4 and a protease inhibitor cocktail (Sigma-Aldrich) for 1 hr at 

4°C in agitation. Then the samples were centrifuged for 10 min at 12000 x g 

and supernatants were recovered and stored at -80°C. The protein 

concentration was determined by the Bradford method using the BioRad 

reagent.  

 

5.1.2 2-DE and image analysis 

200 µg of protein extracts from HUVECs were resuspended in a buffer 

containing urea (8 M), CHAPS (4% w/v), DTT (65 mM) (Sigma–Aldrich), 
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bromophenol blue (0.05%) (BioRad), and carrier ampholytes (1.7% v/v IPG 

buffer 3–10 NL) (GE Healthcare). Mixtures were applied to 18 cm IPG strips 

pH 3-10 NL (GE Healthcare), by active in-gel rehydration. Focusing was 

performed with an IPGphor system (Amersham Biosciences) at 50 mA max, 

programming a gradient voltage (8000 V max) for a total of 70 kVh. Instead 

250 µg of proteins extracts from HEK-293hFlt-1 were first precipitated by 

acetone. The obtained dry residue was dissolved in the rehydration solution 

containing 8M urea, 2M thiourea (Sigma–Aldrich), 4% CHAPS, 0,05% 

Zwittergent (Calbiochem) and 40mM TRIS and reduced with TCEP 5mM 

(Sigma-Aldrich) for 1 hour at room temperature. Subsequently, DeStreak 

Reagent (GE Healthcare), 2% IPG buffer 3-10NL (GE Healthcare) and 0.05% 

bromophenol blue were added. Samples were applied on 18 cm 3-10 NL 

Immobiline Dry Strip gels (GE Healthcare) through passive rehydration 

overnight at room temperature. After rehydration, the first dimension was 

performed with Ettan IPGphor Manifold (GE Healthcare) proceeding with a 

gradient voltage (8000 V max) for a total of 90 kVh. All strips were then 

equilibrated for 15 min in 50mM pH 8.8 Tris-HCl buffer containing 6 M urea, 

30% glycerol, 2% SDS and 2% DTT, then for 15 min in the same buffer 

replacing DTT by 2.5% iodoacetamide (Sigma–Aldrich). Afterwards they 

were transferred onto 9–16% gradient acrylamide SDS-PAGE gels (20 x 20 

cm) to run the second-dimension separation (60 mA/gel for 5 h). 

Electrophoretically separed proteins were visualized by high sensitive and MS 

compatible silver stain (Hochstrasser et al., 1988; Mortz et al., 2001). Gel 

images were acquired using a ProXpress scanner (Perkin Elmer), in a 16-bit 

TIF format, and 2-DE protein patterns were analyzed using Progenesis 

SameSpots (Nonlinear Dynamics). Each analytic experiment was carried out 

in triplicate. 
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5.1.3 Protein identification.  

Differentially expressed protein spots were excised and trypsin-digested 

(Shevchenko et al., 2007); resulting peptide mixtures underwent high 

resolution nano-LC/MS-MS analysis. Chromatographic separation was 

achieved using a nano Acquity LC system (Waters Corporation): on a 1.7 μm 

BEH C-18 column (Waters Corporation) at a flow rate of 200 nl/min. A linear 

gradient (Solution A: 0.1% formic acid, solution B: 0.1% formic acid, 100% 

ACN) from 5% to 50% B over 55 min was used. MS and MS/MS data were 

acquired using a Q-TOF Premier mass spectrometer (Waters Corporation, 

Micromass ). Doubly and triply charged peptide-ions were automatically 

chosen by the MassLynx software and fragmented. MS data were 

automatically processed and peaklists for protein identifications by database 

searches were generated by the ProteinLynx software. Database searches were 

carried out with MASCOT server using the SwissProt protein database 

(http://www.matrixscience.com/search_form_select.html). The SwissProt 

human database (514212 sequences; 180900945 residues) was searched 

allowing 2 missed cleavages, carbamidomethyl (C) as fixed modification, 

oxidation (M) as variable modifications. The peptide tolerance was set to 80 

ppm and the MS/MS tolerance to 0.8 Da. 

 

5.1.4 Western blot analysis  

Some proteins were also detected and quantified by western blotting. Protein 

extracts (80µg) were resolved on 12 or 15% SDS-PAGE, electrotransferred 

onto polyvinylidene fluoride (PVDF) (GE Healthcare) membranes (100 V for 

1 h) and incubated with Abs against some of the proteins identified by MS at 

the concentrations indicated by related data sheets in no fat milk 5% in Tris 

buffered saline (overnight at 4°C), followed by incubation with the secondary 

antibody, conjugated to HRP, diluted 1:10,000. Immunoreactive bands were 

detected using ECL reagents (GE Healthcare). Densitometry analysis to 
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evaluate the degree of protein expression was performed using NIH ImageJ 

software, using β-tubulin as house-keeping. 

 

5.1.5 Protein categorization 

The identified proteins were classified into groups according to cellular 

compartmentalization, biological process, and molecular function based on the 

information annotated in the Gene Ontology (GO) Consortium databases 

(http://www.geneontology.org/). This classification analysis was performed 

using the DAVID functional annotation tool (http://david.abcc.ncifcrf.gov/). 

 
 

5.2 Bioassay oriented isolation study 

 

5.2.1 General Experimental Procedures 

Optical rotations were measured on a Perkin-Elmer 241 polarimeter equipped 

with a sodium lamp (589 nm) and a 1 dm microcell. UV spectra were recorded 

on a Perkin-Elmer-Lambda spectrophotometer. ECD spectra were measured 

on a JASCO J-810 spectropolarimeter with a 0.1 cm cell in DMSO at room 

temperature under the following conditions: speed 50 nm/min, time constant 1 

s, bandwidth 2.0 nm. NMR experiments were performed on a Bruker DRX-

600 spectrometer at 300 K. All the 2D NMR spectra were acquired in 

methanol-d4 in the phase-sensitive mode with the transmitter set at the solvent 

resonance and TPPI (Time Proportional Phase Increment) used to achieve 

frequency discrimination in the ω1 dimension. Standard pulse sequences and 

phase cycling were used for DQF-COSY, TOCSY, HSQC, HMBC, and 

ROESY experiments. NMR data were processed on a Silicon Graphic Indigo2 

Workstation using UXNMR software. HRESIMS spectra were acquired in the 

positive ion mode on a Q-TOF premier spectrometer equipped with a 

nanoelectrospray ion source (Waters-Milford, MA, USA). Column 

http://www.geneontology.org/
http://david.abcc.ncifcrf.gov/
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chromatographies were performed over Sephadex LH-20. HPLC separations 

were conducted on a Waters 590 series pumping system equipped with a 

Waters R 401 refractive index detector and U6K injector on a C18 µ-Bondapak 

column (30 cm x 7.8 mm, 10 µm Waters, flow rate 2.0 mL/min). TLC 

analyses were carried out using glass-coated silica gel 60 F254 (0.20 mm 

thickness) plates (Merck). 

 

5.2.2 Plant Materials 

The aerial parts of C. guayanensis were collected in August 2001 near Rio 

Cuao, Municipio Autana, in the Amazonian Region of Venezuela, and were 

identified by Prof. Anibal Castillo, Universidad Central de Venezuela, 

Caracas, Venezuela. A voucher specimen (No. VEN 299.338) was deposited 

at the Herbario Nacional de Venezuela, Caracas, Venezuela 

The aerial parts of F. apodanthera were collected in March 2007 in Kolokanì 

(Koulikoro region, Mali), and were identified by Mr. Mamadou S. Dembele of 

the Departement Medicine Traditionelle (DMT), Bamako, Mali, where a 

voucher specimen (No. 1000) has been deposited. 

 

5.2.3 Extraction and Bioassay-guided Isolation Procedures 

All plants were extracted as previously reported (Braca et al. 2006)  

The CHCl3-MeOH extract of dried powdered aerial parts of C. guayanensis 

(560 g) showed a moderate inhibitory activity on VEGFs/Flt-1 interaction at a 

100 mg/L concentration. Part of the CHCl3-MeOH residue (10.0 g) was 

chromatographed on Sephadex LH-20 using MeOH as eluent; fractions of 8 

mL were collected and grouped into 10 major fractions. The obtained fractions 

were assayed at 100-20 mg/L on VEGFs/Flt-1 complex and only fraction 10 

showed inhibitory activity (100 mg/L, 70% of binding reduction). Thus, 

fraction 10 (276.4 mg) was separated through RP-HPLC with MeOH-H2O 
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(2:3) as eluent to yield pure compounds 1 (14 mg, tR = 25 min) and 2 (20 mg, 

tR = 28 min). 

Dried powdered aerial parts of F. apodanthera (300 g) were successively 

extracted for 48 h with n-hexane, CHCl3, CHCl3-MeOH (9:1), and MeOH, by 

exhaustive maceration (3 x 2 L), to yield 7.0, 13.0, 8.0, and 18.0 g of the 

respective residues. The MeOH extract showed good inhibitory activity on 

VEGFs/Flt-1 interaction at a concentration of 100 mg/L. This residue was 

fractionated by Sephadex LH-20 column chromatography, using MeOH as 

eluent to obtain 12 major fractions, combined on the basis of TLC analyses. 

The fractions were assayed at 100-20 mg/L on both hPlGF/Flt-1 and hVEGF-

A/Flt-1 complexes. Fractions 10 and 11 were the most active, provoking at 

100 mg/L a reduction of 60% of the binding of both PlGF/Flt-1 and VEGF-

A/Flt-1. The fractions were further separated by RP-HPLC with MeOH-H2O 

(38:62) to give pure compound 3 (5 mg, tR = 18 min) from fraction 10 and 

pure compounds 4 (7 mg, tR = 15 min) and 5 (8 mg, tR = 16 min) from 

fraction 11, respectively. 

Compound 1: red amorphous powder; [ ]25
Dα  +40.8 (c 0.03, MeOH); UV 

(MeOH) λmax (log ε) 230 (3.85), 280 (4.36) nm; CD (MeOH) [θ]278 – 10145, 

[θ]276 – 8700, [θ]246 11828.  1H and 13C NMR, see Table 1; HRESIMS m/z 

529.1485 [M – H]– (calcd. for C30H25O9, 529.1499); ESI-MS m/z 529 [M – 

H]–, 511 [M – H –18]–, 289 [M – H – 240]–. 

Compound 2: red amorphous powder; [ ]25
Dα  +219.6 (c 0.01, MeOH); UV 

(MeOH) λmax (log ε) 226 (3.90), 282 (4.06) nm; CD (MeOH) [θ]276 – 8450, 

[θ]246 + 7440.  1H and 13C NMR, see Table 1; HRESIMS m/z 529.1480 [M – 

H]– (calcd. for C30H25O9, 529.1499); ESI-MS m/z 529 [M – H]–, 289 [M – H – 

240]–. 
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5.2.4 Competitive ELISA Assays. 

The competitive ELISA based assay for the screening of plant extracts and for 

dose-dependent experiments was performed by coating, on 96-well plates a 

recombinant form of Fc/VEGFR-1 at 0.5 µg/mL, 100 µL/well (the same 

volume was used for all subsequent steps), 16 h at room temperature. The 

plate was then blocked for 3 h at RT with 1% Bovine Serum Albumin (BSA) 

and the recombinant form of PlGF-1 at 5 ng/mL or the VEGF-A at 10 ng/mL 

concentration in PBS containing 0.1% BSA, 5 mM EDTA, 0.004% Tween 20 

(PBET), was added and incubated for 1 h at 37 °C followed by 1 h at RT. A 

biotinylated anti PlGF-1 polyclonal antibody diluted in PBET at 300 ng/mL, 

or biotinylated antibody anti-VEGF-A diluted at 500 ng/mL, was added to the 

wells and incubated for 1 h at 37°C followed by 1 h at RT. A solution 

containing an avidin and biotinylated HRP macromolecular complex was 

prepared as suggested by the manufacturer (Vectastain elite ABC kit, Vector 

Laboratories, Burlingame, CA, USA) and added to the wells and incubated for 

1 hr at RT followed by the HRP substrate composed of 1 mg/mL of o-

phenylenediamine in 50 mM citrate phosphate buffer pH 5, 0.006% of H2O2, 

incubated for 40 min in the dark at RT. The reaction was blocked by adding 30 

µL/well of 4 N H2SO4 and the absorbance measured at 490 nm on a 

microplate reader (BenchMark, Biorad Hercules, CA, USA). Plant extracts, 

extract fractions or purified compounds dissolved in DMSO were properly 

diluted and added to the wells along with the ligand. Each point was done in 

triplicate and the experiments were repeated two times. 

 

5.2.5 Surface Plasmon Resonance Analyses 

SPR analyses were performed using a Biacore 3000 optical biosensor 

equipped with research-grade CM5 sensor chips (Biacore AB, Uppsala, 

Sweden). Using this platform, two separate recombinant Hsp90 surfaces, a 

BSA surface and an unmodified reference surface, were prepared for 
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simultaneous analyses. Proteins (100 µg/mL in 10 mM NaOAc, pH 5.0) were 

immobilized on individual sensor chip surfaces at a flow rate of 5 µL/min 

using standard amine-coupling protocols27 to obtain densities of 8–12 kRU. 

Compounds 1-5, as well as 17-DMAG and shepherdin used as positive 

controls, were dissolved in 100% DMSO to obtain 4 mM solutions, and 

diluted 1:200 (v/v) in PBS (10 mM NaH2PO4, 150 mM NaCl, pH 7.4) to a 

final DMSO concentration of 0.5%. Compounds were prepared as twofold 

dilutions into running buffer: for each sample, the complete binding study was 

performed using a six-point concentration series, typically spanning 0.025–1 

µM, and triplicate aliquots of each compound concentration were dispensed 

into single-use vials. Included in each analysis were multiple blank samples of 

running buffer alone. Binding experiments were performed at 25 °C, using a 

flow rate of 50 µL/min, with 60 s monitoring of association and 200 s 

monitoring of dissociation. Simple interactions were adequately fit to a single-

site bimolecular interaction model (A+B=AB), yielding a single KD. 

Sensorgram elaborations were performed using the Biaevaluation software 

provided by Biacore AB.  

 

5.2.6 Cell Culture, Proliferation, and Viability. 

MCF-7 (Human breast adenocarcinoma cell line) and human lymphocyte cells 

T (Jurkat) were maintained in Dulbecco’s modified Eagle medium (DMEM) 

supplemented with 10% (v/v) fetal bovine serum (FBS), 2 mM L-glutamine 

and antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin) at 37 °C in a 

humidified atmosphere with 5% CO2. To ensure logarithmic growth, cells 

were subcultured every two days. Cells were seeded in 96 well-plates at a cell 

density of 1 x 104/well (100 µl of a 1 x 105 cells/mL) and allowed to grow in 

the absence and in the presence of different concentrations of compounds 1-5. 

At 24, 48, and 72 h, the number of cells was quantified by using an MTT 

conversion assay.28 
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5.2.7 Chicken Chorioallantoic Membrane (CAM) Assay 

The effect of 1 on angiogenesis was evaluated using the CAM assay, 

following a method described previously29 with minor modifications. 

Fertilized chicken eggs were kept in a humidified egg incubator at 37 °C. The 

eggs were positioned horizontally and rotated several times. After 4 days of  

incubation, a 1 cm2 window was carefully created on the broad side of the egg 

to assess the extent of embryonic blood vessels. The normal development was 

verified and embryos with malformations or dead embryos were excluded. 

Then, about 2 mL of albumen was aspirated from each egg through the small 

window. After removement of albumen, compound 1 (2.5, 5, and 10 µg) 

previously suspended in albumen, was applied (100 µL/egg) directly to the 

CAM surface through the small window. At least five eggs were used for each 

dose. Control eggs were treated with albumen (100 µL/egg). Retinoic acid (2 

µg/egg) was used as positive control. After treatment, the eggs were 

reincubated for two days. At the end of incubation, each egg was observed 

under a Zeiss Stemi 2000-c microscope equipped with Axiocam MRc 5 Zeiss 

and the blood vessels were photographed. The antiangiogenic effects of 1 on 

the CAMs were quantified by counting the number of blood vessel branch 

points which were marked using an artistic software and finally expressed as 

percentage of inhibition using the following equation:  

 

Antiangiogenic activity (%) =   1- (T/C)×100 

 

T=  number of blood vessel branch points in the CAMs treated with 1. 

C= number of blood vessel branch points in the CAMs treated with albumen. 

Statistical Analysis. All the reported values represent the mean ± standard 

deviation (SD) of at least two independent experiments performed in triplicate. 

Where necessary, data were statistically compared by t-test. 
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6.1 Premise 

 

During my PhD course, I was also involved in a project on “Ceruloplasmin 

oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity 

and promotes cellular iron retention” in the proteome biochemistry laboratory 

(San Raffaele Scientific Institute, Milan, Italy) of Prof. Massimo Alessio. This 

work was focused on the analysis of the modifications induced by the pro-

oxidative environment of the cerebrospinal fluid from Parkinson’s and 

Alzheimer’s disease on ceruloplasmin. My contribution in this work has been 

recognized with the co-authorship in an article published in a peer-reviewed 

journal of primary importance in the field of neuroscience (Olivieri et al., J. 

Neurosci, 2011). 

 

 

6.2 Project overview 

 

Parkinson’s disease is a neurodegenerative disorder caused by oxidative 

damage, excitotoxicity, and inflammation (Dawson and Dawson, 2003; Litvan 

et al., 2007a, 2007b). 

Oxidative stress is characterized by an imbalance between reactive oxygen 

species (ROS) and scavenging factors. Latter are represented principally by 

enzymes, low molecular weight antioxidant species and metal (iron and 

copper) transport systems (Carri et al., 2003). In the brain substantia nigra 

(SN), the most vulnerable region in Parkinson’s disease, there is a high iron 

concentration (Gotz et al., 2004); therefore it is especially sensitive to 

oxidative stress. Moreover, the dopamine metabolism of nigral neurons leads 
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to the production of hydrogen peroxide, which in turn can convert to hydroxyl 

radical when ferrous iron co-occurs (Lotharius and Brundin, 2002). 

In PD, SN neuronal degeneration is related to increases in protein oxidation 

and in iron concentration (Oakley et al., 2007). Red-ox systems, such as 

protein-containing metal ions, exploit cyclical changes in their red-ox status as 

a way to resist oxidative stress.  

One of these proteins is the copper-protein ceruloplasmin, which is secreted by 

the liver into plasma and by cells of the choroid plexus into cerebrospinal fluid 

(CSF) (Vassiliev et al., 2005). It is an extracellular ferroxidase that regulates 

cellular iron loading and export, and hence protects tissues from oxidative 

damage. It is resonable to think that in CSF modification of ceruloplasmin, 

which affect enzymatic activity, may be correlated to Parkinson’s disease 

neurodegeneration (Rathore et al., 2008). 

Using two-dimensional electrophoresis, we investigated ceruloplasmin 

patterns in the cerebrospinal fluid of human Parkinson’s disease patients. 

Parkinson’s disease ceruloplasmin profiles proved more acidic than those 

found in healthy controls and in other human neurological diseases (peripheral 

neuropathies, amyotrophic lateral sclerosis and Alzheimer’s disease); degrees 

of acidity correlated with patients’ pathological grading (figure 35). 

Applying an unsupervised pattern recognition procedure to the two-

dimensional electrophoresis images, we identified representative pathological 

clusters (figure 35). 

In vitro oxidation of cerebrospinal fluid in two-dimensional electrophoresis 

generated a ceruloplasmin shift resembling that observed in Parkinson’s 

disease, and co-occurred with an increase in protein carbonylation. 

Likewise, increased protein carbonylation was observed in Parkinson’s disease 

cerebrospinal fluid, and the same modification was directly identified in these 

samples on ceruloplasmin.  
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These results indicate that ceruloplasmin oxidation contributes to pattern 

modification in Parkinson’s disease. From the functional point of view, 

ceruloplasmin oxidation caused a decrease in ferroxidase activity, which in 

turn promotes intracellular iron retention in neuronal cell lines as well as in 

primary neurons, which are more sensitive to iron accumulation. Accordingly, 

the presence of oxidized-ceruloplasmin in Parkinson’s disease cerebrospinal 

fluid might be used as a marker for oxidative damage, and might provide new 

insights into the underlying pathological mechanisms. 

 

 
Fig.35. Cerebrospinal fluid (CSF) ceruloplasmin (Cp) 2DE profile discriminates Parkinson’s 
disease (PD) from Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), peripheral 

neuropathies (PN) and control subjects (CN). A) Representative results for Western Blot (WB) 
analysis performed with anti-Cp on 2DE-resolved proteins. On the basis of pI threshold value, 

Cp signal distribution was divided into two distinct areas, Regions A and B. B) Analysis of 
WB signal optical density value distribution in Region A, evaluated as a percentage of the 

total Cp signal. Data were analysed both by Student’s t-test and by ANOVA. Single patient 
distributions as well as means and standard error are shown (PD n=14, CN n=15, AD n=14, 
ALS n= 16, PN n= 13) (*= p<0.05; **= p<0.005; ***= p<0.001). C) Unsupervised cluster 



Other activity 

102 
 

identification discriminates Cp pattern of PD patients from other groups. Dimensionality 
reduction of the anti-Cp WB images data set executed by Principal Component Analysis (the 

first two principal components, PC1 and PC2, are shown), and clusters of homogeneous 
subjects were identified by unsupervised affinity propagation cluster analysis. Red clusters are 

for PD attribution, blue and black clusters for non-PD attribution. Markers associated with 
sample names indicate the exemplars for the respective cluster. An original 2DE-WB image is 

displayed for each exemplar. a) Clustering of PD and CN. Sample cn13 proved to be 
misclassified. b) Clustering of PD, CN, PN, and ALS subjects. Five out of 58 samples were 

misclassified, from left to right, als7, als5, pn4, als10, pn6. c) Clustering of PD and AD 
patients. Four out of 28 samples proved to be misclassified (from left to right, ad8, pd13, 

pd14, pd11). 
 

 

 

6.3 Material and methods  

 

Patients 

Having secured approval from the hospital’s ethical review board, and 

informed consent from patients, we collected CSF samples (0.8-1 ml) by 

means of lumbar puncture. The analysed groups were: sporadic PD (n= 14), 

sporadic amyotrophic lateral sclerosis (ALS, n= 16), peripheral neuropathies 

(PN, n= 13), Alzheimer’s disease (AD, n= 14) and healthy controls (CN, n= 

15). Table 1 summarizes the demographic and clinical features of the patients 

and control subjects enrolled on this discovery study. All patients were at first 

diagnosis and drug-free. Current criteria for the diagnosis of PD (Italian-

Neurological-Society, 2003), of ALS (Brooks, 1994) and of AD were used for 

the admission of patients into the study. PN diagnosis was as described in 

(Conti et al., 2005). The Unified Parkinson’s Disease Rating Scale (UPDRS)) 

was used to grade the disease. ALS and PN samples were from aliquots 

collected for previous studies (Conti et al., 2005), while CSF from AD patients 

derived from the 

Institute of Experimental Neuroscience bio-bank (INSPE, San Raffaele 

Scientific Institute). Exclusion criteria consisted in: HIV or HCV 
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seropositivity; the appearance of other neurodegenerative diseases or previous 

cerebral ischemic events; severe metabolic disorders (e.g. diabetes). Control 

CSF was obtained from patients who underwent lumbar puncture on account 

of a suspected neurological disease and who proved to be normal and free 

from pathological alterations after complete CSF analysis and thorough 

clinico-neuroimaging assessment. Sample selection ensured that age and 

gender distributions were homogeneous with those of the PD patients. 

 

Two dimensional electrophoresis (2DE), Western blot and Image Analysis 

Immediately after collection, the CSF samples were centrifuged at 4°C to 

eliminate cells, and protein concentrations were determined. The samples were 

then either immediately processed, or stored after acetone precipitation at -

80°C in an N2- supplemented atmosphere in order to avoid oxidation. Protein 

samples (30 μg) were resuspended in 2DE buffer (8M Urea, 4% w/v CHAPS, 

65 mM DTT, 0.2% v/v IPGbuffer 3-10 NL), and applied to 7cm IPG strips pH 

3-10NL (GE Healthcare, Milan, Italy). The 2DE separations were performed 

as described in (Conti et al., 2008). 

Proteins resolved by 2DE or by SDS-PAGE were electro-transferred onto 

nitrocellulose membranes and Western blot (WB) performed as described in 

(Conti et al., 2008) with an anti-human Cp antibody (Abcam, Cambridge, 

UK). Images were acquired by means of a laser densitometer (Molecular 

Dynamics, Sunnyvale, CA), and evaluation of relative abundance of Cp 

isoforms consisted in the analysis of optical density normalized to percentage 

by means of Progenesis PG240 software (Nonlinear dynamics, Newcastle, 

UK). 

 

CSF oxidation by treatment with Fe-citrate and H2O2. 

Proteins (100 μg) were oxidized by incubation (3 hrs at 37°C) with differing 

concentrations of hydrogen peroxide (1, 5 and 10 mM), and were subsequently 
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resolved by 2D-E or SDS-PAGE; Cp profile was identified by WB. For the 

assessment of correlation between specific oxidative modifications 

(carbonylation) and Cp pI shift, CSF proteins were incubated (5 hrs at 37°C) 

with 25 mM sodium ascorbate with or without 100 μM ferrous chloride to 

induce protein carbonylation (as indicated by the OxyBlot kit manufacturer) 

(Musci et al., 1993). Carbonylation was analyzed by means of the OxyBlot 

Protein Oxidation Detection Kit (Chemicon, USA) on the basis of carbonyl 

group derivatization with 2,4-dinitrophenilhydrazine (DNPH). Cp 

carbonylation was analyzed in 2 pools of CSF that were respectively harvested 

from all PD patients and from all CN subjects. Equal amounts (5μg) of CSF 

proteins were taken from each patient to generate a total 70μg of proteins per 

pool. After derivatization with DNPH, proteins were resolved either by 2DE or 

by SDS-PAGE, and carbonyl groups were detected by Western blot with an 

anti-DNPH antibody, while Cp profiles were detected by means of an anti-CP 

antibody on the same nitrocellulose membrane. 

 

Densitometric analysis 

Anti-Cp reactivity was quantified by laser densitometric analysis (Molecular 

Dynamics), as normalized by protein loading and total protein staining. The 

distribution of the Cp isoforms was evaluated by densitometric analysis of 2D 

spot optical density, which in turn was normalized as a percentage of total 

anti-Cp antibody reactivity. Signals obtained from Oxyblot were quantified by 

means of densitometric analysis, and normalized by total protein loading. 

Ferritin expression was evaluated by densitometric analysis, and normalized 

by β-tubulin expression for SH-SY5Y cell line, and by βIII-tubulin expression 

for primary neuron. 
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Statistical Analysis 

Gender distribution was assessed by 2x2 contingency table analysis, which in 

turn used Fisher’s exact test and two-tailed p value. Continuous data (age 

distribution, CSF protein concentration, and spot/band volume) were evaluated 

by unpaired Student’s t-test, if the data passed the normality test for Gaussian 

distribution as assessed by the Kolmogorov-Smirnov test, or were evaluated 

by Mann Whitney test; two-tailed p value was used for the comparison of two 

means and standard error. Parametric one-way analysis of variance (ANOVA) 

was used to evaluate the statistical difference between three or more 

independent groups; post-analysis performed with Tukey’s multiple 

comparison tests was included. The receiver operating characteristic (ROC) 

curve was used to define the ability of the assay to discriminate between 

groups, and to define the threshold value at which optical density (OD) gave 

the best ratio between sensitivity and specificity. Correlation analysis was 

evaluated as Pearson’s coefficient (r). In all analyses, p<0.05 was considered 

to be statistically significant. The analysis was performed with Prism V4.03 

software (GraphPad Inc., SanDiego, CA). 

 

Image processing and unsupervised machine learning techniques for 

2DEWestern 

Denoising was executed by nonlinear spatial adaptive image filtering, and 

background removal was obtained by 3D-morphological operators 

(Cannistraci et al., 12 2009). After preprocessing, each 2DE-WB image was 

aligned by raw vectorization of its pixel intensity; each pixel intensity 

accordingly became a feature in a vector that characterized the Cp image 

sample. In order to implement the subsequent machine learning analysis, 

features (pixels) with small profile variance were filtered out to reduce the 

number of low informative features. Classification of Cp profiles was provided 

by the combined application of (i) unsupervised machine learning approaches 
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designed to reduce linear dimensionality and executed by principal component 

analysis (PCA), and of (ii) affinity propagation clustering as a clustering 

analysis tool (Cannistraci et al., 2010). Said tool was applied to the 

twodimensional projection space obtained as the outcome of dimensionality 

reduction. 
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