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Summary

The present dissertation illustrates the completecadure of
developing a model-based diagnosis algorithm amgvshts application
to a pre-commercial Solid Oxide Fuel Cell (SOFC¥teyn. The main
motivations of this work can be found in the incieg demand for
diagnostic techniques aimed at both ensuring sysggimal performance
and required lifetime. The purpose of a diagnoalgorithm is to detect
and isolate undesired states (i.e. faults) witlhma system under study
(e.g. both the stack and balance of plant — BOBmponents of an SOFC
system). The understanding of the main mechanismducing
malfunctions or, in the worst case, abrupt intetions (i.e. failures) of
the system allows the definition of suitable cohstrategies to avoid
these events and to ensure the required systeoripenice.

Among all the diagnostic techniques available iaréiture, a model-
based fault diagnosis methodology is taken intooaect According to
this technique, a process model is exploited tatttke data measured
during the system operation to obtain insightfuligators of the system
state. More in details, the measured data are camup# simulated
variables to extract features, i.e. mathematicaiduals, which are
representative of the monitored variables behavibhe residuals
computation is performed during th@nitoring processThe detection of
undesired or unexpected system behaviors is caoigdthrough the
comparison of the collected residuals to referéhpeshold values. These
values are suitably tuned to take into account reg¢wencertainties, like
model inaccuracy and measurement noise, and thessigc to detect
incipient faults. The comparison of the computedidgals to these
thresholds allows the generation of analytical sigms, which indicate
whether an undesired event is occurring or not. ditiee of a symptom
points out that the behavior of the related vaeald abnormal,
completing thedetection processAt this stage, although the occurrence
of a fault is observed, its type is still unknowlro accomplish this last
task, a reference set of information is exploited the identification of
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the malfunction nature and for the isolation of fhalty component(s)
(isolation process These information comprise the main faults the
system can be affected by and the variables comnéidi by the occurrence
of these faults. The symptoms collected duringdisiection phase, which
are representative of the variables showing amyutee (or unexpected)
behavior, are compared to the reference informatiionorrectly locate
the fault on the system.

The first part of this manuscript entails the desgrocedure of a
generic model-based diagnosis algorithm, describingdetail the
development of the mathematical model and the iein of the
reference information required by the methodoloye presented model
derives from an SOFC system model, developed byeBtmo et al.
[1][2]. This model is based on a lumped approadh iarable to simulate
both steady and dynamic behaviors of the systeme st@riables. The
stack is assumed planar and co-flow and its volthghavior is
represented by a non-linear regression, functidelfutilization, current
density, excess of air and the temperatures astdek inlet and at the
stack outlet. On one hand, the temperature regulaif the stack inlet
flows is achieved by means of two by-pass valves, at the anode side
and one at the cathode side. On the other hand,sthek inner
temperature control is fulfilled through a PI catfier, which acts on the
air blower power to regulate the inlet air flow. efmovelty of the
presented model consists in several sub-modelsfispg developed to
simulate the considered system both in normal anfdulty conditions.
This feature allows the utilization of the modet the offline definition
of the reference information exploited for the &amn process.

The reference information help in the isolation tbe undesired
event(s) occurring in the system during its normpération. This task
can be achieved through the correct identificatbdrnthe relationships
among the symptoms, generated during the detegtiooess, and the
possible faults the system can cope with. In thesgmt work, a Fault
Signature Matrix (FSM) developed by Arsie et al. fdllowing a Fault
Tree Analysis (FTA), is considered as the basistlier development of
the aforementioned reference information. This AShhproved through
the simulation of different kind of faults in order understand both the
direct and the indirect correlations among the tfaw@nd the system
variables. Moreover, the real effects induced kg ¢bnsidered fault on
the affected variables are defined in terms of Gtative drifts of the
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variables values from the normal condition. To aehithis task, the fault
sub-models previously introduced are exploiteditwutate the effects of
several faults.

For the purpose of this work, five different fautedated to an SOFC
system are simulated, that are i) an increasedrathblower mechanical
losses, i) an air leakage, iii) a temperature et failure, iv) a pre-
reformer heat exchange surface corrosion and wW)@gase in cell ohmic
resistance. Through the faults simulation, a setesfduals is collected
and its comparison with different threshold levdigghlights the
guantitative relationships among the faults andcihveditioned variables.
In this way, it is possible to point out the difece between an FSM
developed through a heuristic approach (i.e. th&)F&ccounting only
for the qualitative relationships among the faaltel the symptoms, and
the one developed considering also the system teatysio the faults
magnitude.

The second part of this thesis entails the chatiaateon and the
validation of the developed diagnostic algorithm amre-commercial
micro-Combined Heat and Powet-CHP) SOFC system, the Galileo
1000N, manufactured by the Swiss company HEXIS ACdedicated
experimental activity has been performed in oradeintduce controlled
faulty states in the system. The further origineattire of this work
consists in the design of well-defined proceducesitmic faults on a real
SOFC system. In some cases, the procedure invaiwés suitable
maneuvers via software control system, whereagharaases, specific
hardware modifications are required.

Before applying the developed diagnostic algorittonthe Galileo
1000N, an adaptation process is performed, in aamauit each part of
the algorithm to the system under analysis. The fieea fast and handy
model, which can be rapidly tuned by the algorithser, led to the
development of a maps-based model to simulate yhers in normal
conditions and to extract residuals. This model@tgpthe average values
of the monitored variables through numerical magsch are function of
the operating condition set-point values. Additibnahe FSM improved
off-line via faults simulation is further modifiedking into account the
number of variables practically monitorable and thestem control
strategies. Moreover, a statistical hypothesisiteshplemented in order
to evaluate the probability of false alarm and edstault. These analysis
is significant for the correct interpretation ofetlyenerated symptoms
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during the detection phase.

Concerning the impact of the present researchiggtihe developed
algorithm aims at improving both the performancd #re lifetime of an
SOFC system by its implementation into a comprekengontrol
strategy. In this way it is possible to associatehe diagnosis of the
system status specific counteractions performethbéysystem controller.
In this way, both the manufacturer and the finakrsscan obtain
significant advantages in terms of management cosdsiction (i.e.
maintenance and materials costs) and overall effayi increase.

To summarize, the main contributions and innovateagures of this
research activity are listed in the following:

* the development of a diagnostic algorithm followiagmodel-
based approach;

* the improvement of an FSM, based on an FTA, throtigh
exploitation of fault models simulation to evalu#ite sensitivity
of the monitored variables to the faults magnitydes

* the implementation of a statistical hypothesis tést the
evaluation of false alarm and miss detection proibgb

» the design of specific procedures and hardware fiwations to
mimic faults in a controlled way on a real SOFCteys(i.e. the
Galileo 1000N) for the diagnostic algorithm validat

» the offline and the online validation of the propdsalgorithm
implemented on-board and controlled through a dcapiser
interface.

It is worth noting that the innovative featuresganeted in this manuscript
are a pioneering contribution in the availabler#éitare. Most of the
results presented in this dissertation have beenedaout within the

framework of the European Project GENIUS (Generiagaosis

instrument for SOFC systems) and received fundioghfthe European
Community’s Seventh Framework Programme (FP7/2@XBP for the

Fuel Cell and Hydrogen Joint Technology Initiativender grant

agreement N° 245128.



CHAPTER 1 Introduction

Nowadays the increasing interest in renewable emerglrives
researchers’ activity towards new energy poweresyst such as Solid
Oxide Fuel Cells (SOFCs). It is well known in tlitedature that an SOFC
is one of the most promising energy conversionesyst and this is
mainly due to several positive features: (i) highergy conversion
efficiency, (ii) low pollutant emissions (only GOs released during the
reforming process), (iii) high flexibility and molduity, (iv) low acoustic
emissions and (v) potential use in cogenerationliGgmns, as a
consequence of the high operating temperatures.th@noimportant
advantage is the possibility to exploit the inténmedorming capabilities
of SOFCs, thus simple pre-reformers can be impléedeallowing the
practical use of conventional fuels (e.g. Diesdtural gas, methanol,
propane, etc.), and achieving in this way a reducibf components
manufacturing and system management costs [1][2][2F]. On the
other hand, a wide commercial diffusion of thesergp systems is
hindered by materials and production costs anduilityeissues.

Current SOFC systems are characterized by lowbiktia of both
stack and balance of plant (BOP) due to a largeéetyaiof possible
degradation mechanisms and malfunctions that mayraa real world
operation [1]. Indeed, due to higher degradatidas;athe SOFC system
lifetime is still not long enough with respect teetdurability requirements
of either stationary (about 40,000 h) and trangpion (about 20,000 h)
applications [4][5]. In order to meet these lifetintargets, to improve
degradation prevention capabilities and to optim@mtrol actions,
specific diagnostic methodologies coupled with +teak system
monitoring are needed. The development of an e¥ectiagnostic
algorithm, suitably coupled with adaptive contrdfagegies, allows to
modify the control laws while the system is runnitigis resulting in both
lifetime and performance improvement. Moreover, tlueéheir intrinsic
features, adaptive control algorithms require teeetbpment of dynamic
models, with high prediction accuracy and fast cotaional time. The
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same characteristics are essential also for maaksée diagnosis. This
methodology entails developing a reliable and aateumodel, which can
simulate the monitored system in all its operatingditions. Through the
comparison between the measured signals and thelased ones, a
specific inference process leads to the estimatiothe current system
status. Compared to traditional methods, like nawimg and automatic
protection, the fault diagnosis supervision is thrdy one capable to
detect incipient faults (early detection), with imigccuracy both during
steady and transient states and for several systanponents (process
components, sensors, actuators, etc.) [9][21].

Generally, ensuring safe operation of a complextesysentails
accounting not only for the optimal operating seiqps of the main
variables and parameters, but also for the dinedtiadirect interactions
among the different devices along with their pdesfhulty states. In this
context, the availability of a reliable and accaradiagnostic algorithm
enables checking and monitoring the system behaftier condition
monitoring as well as inferring on its state of health, adlowing to
perform on-board modification of system control $awocusing on the
diagnosis, to prevent the complete failure of aegensystem (e.g.
mechanical and electric devices, energy conversigsiems, etc.) the
most obvious decision is to shut it down whenever abnormal
functioning is observed. Nevertheless, even if #agon could seem the
most logical one, in many cases it is not the noostvenient or even
feasible. In these cases the remedial action mestaken while the
system is in operation according to the specifigeticonstrains and the
whole repairing costs [24]. Therefore, the capsgbilio detect the
occurrence of any faulty state and to identifyciésises is a critical task
[4], which is strongly related to the design praoedof the diagnostic
algorithm. Indeed, the faulty states that can b&isd in the system are
only those included in the model and in the infeeeprocess [26].

1.1 Model-Based Diagnosis Methodology

Fault detection and isolation (FDI) issues havenbeeestigated since
the early 1970s, in parallel with the increaseystesm automation degree,
by reason of the development of cheaper and mor@able
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microcomputers, for sensors and actuators produ¢ti@]. These studies
started from the investigation into several apphheac such as analytical
redundancy methods, which are quite different frdme traditional
physical redundancy ones [31]. Actually, accordittg these Iatter,
redundant physical devices are equipped on a syst@perate in case a
fault occurs in regular components, whereas amalytredundancy
methods exploit mathematical or signal models toutate the process
behavior. The treatment of the data extracted ftoenmodels helps the
detection and isolation of the malfunctions, witleas advantages with
respect to the physical redundancy methods. Onhamel, the use of
models allows to avoid using additional equipmevith a consequent
reduction in system hardware costs, but, on therdthnd, high reliability
and accuracy of the models is strongly required.

As stated by many authors, such as Isermann [1@zék [11] and
Simani et al. [31], théault diagnosisprocess is generally characterized
by three consecutive tasks:fault detectionthrough which the presence
of a fault is determined; iffault isolation which defines the kind of fault
and its spatial and time location; ifiqult identification through which
the fault size and time-variant behavior are edtwoha Within the
diagnosis process, the results obtained from eask are strongly
dependent on the basis from which the whole praeechas been
developed. This basis is clearly defined startiognfa deep study of the
system itself (e.g. system structure, normal opegatconditions,
components interactions, etc.) and of the posddl#s or malfunctions
the system can be affected by.

However, more clarity should be first given upore ttifferences
among the terminology adopted in this field in ortedistinguish among
the different kinds of abnormal states in whicheaayic system can run.
Many efforts have been made to come to standarohiti@hs, which
would be common for different technological areesdone, for example,
through the Reliability, Availability and Maintaibdity (RAM)
Dictionary [32]. Although the terms fault, malfurast and failure are
often confused, there is a great difference amdmgnt According to
many renowned authorsfault is considered as a deviation of at least one
characteristic system property from the normal dood whereas a
malfunctionis an intermitted irregularity in the desired ftionality of
the system, while dailure is the permanent interruption of system
performance [10][11][31]. Thus, the tefflault diagnosiss defined as the
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capability to determine the type, location, timel aize of the system
unexpected or undesired deviations from acceptabiditions.

To achieve the objectives of the aforementionedkstaspecific
features can be extracted from the cross-compao$alata acquired on
the system and the ones replicated by the andly&iD& algorithm. The
features extraction process can be carried out bpns of specific
methodologies, e.g. model-based, signal-based owlkalge-based. On
one hand, thenodel-base@pproach exploits a mathematical model (i.e.
state-space, multidimensional, lumped, neural né¢wetc.) for the
simulation of the normal behavior of the system &mel generation of
system variables values at different operating ttmms$. On the other
hand, thesignal-basedpproach treats directly the signals acquired en th
system to extract the required features, whereaskitiowledge-based
approach is mainly developed starting from the dimgpof the heuristic
knowledge hold by human experts. These aspects maane cases the
development of botkignal- andknowledge-basedlgorithms faster than
that of themodel-basednes. However, it is essential to keep in mind tha
signat and knowledge-basedapproaches require a large amount of
complex experiments to be performed also in fautnditions to
correlate either signals or information to the fdtates. From time to
time, these experiments could not be performecaltigeir complexity or
the lack of knowledge on the faults to be reprodudgonsequently,
experiments feasibility, costs and time issues fimai the development
of signal and knowledge-basediagnosis algorithms. These drawbacks
headed the interest of this research activity tdeaa model-based
approach, which, despite its design complexity, w&hoa greater
generalizability as compared with the previous orthge to its lower
reliance on experimental data.

As previously asserted, tmeodel-basedanethodology is grounded on
a mathematical model required for the simulatiomthef system behavior.
Therefore, it is possible to deduce that the rdltgtof the approach is
mainly due to the accuracy of the model. Despite tieed for a
preliminary “a priori knowledge of the system”, testablishment of the
model structure can be primarily defined followiggneral physical laws.
Moreover, since the model is based on proven palygquations, its
validation can be performed with a reduced amo@i@xperimental data
in comparison with the other methodologies.

To better understand which model fits better thguirements of a
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specific model-based diagnosis application, thecrjgson of the main
modelling approaches is reported in the following.

Commonly, the most frequent models classificatiosasent in the
literature consists of three categories, knownvhge-box grey-boxand
black-box On one handyhite-boxmodels (i.e. multi-dimensional, multi-
physic, etc.) are based on a deep knowledge gdtiisical properties and
laws which characterize the system under study,tlaeg usually exhibit
a great generalizability and require few experiraerdata for their
development and validation. On the other hand, tlaek-box models
(e.g. regressions, neural networks, etc.) aredessralizable due to their
reduced physical background and require a largeuatmaf experimental
data. However, the application white-boxmodels is limited mainly to
the design process due to the high computationadeouwhich implies
slow computational time, whereatack-boxmodels are faster and more
suitable for real-time applications, i.e. controfptimization and online
diagnosis. Anyhow, a good compromise among theeafentioned
models can be found in thgrey-boxones, which can be considered a
trade-off between the accuracy of thdite-box models and the fast
computational time of thblack-boxmodels. A qualitative representation
of the correlation between experimental data andiehcomplexity is
given in Figure 1.1 [33]. In this picture two classof experimental data
are taken into account: the training and the tesh.dThe first are
exploited to design the model in accordance with $lstem it should
represent, whereas the latter are used for the Imealeation. As
expected, the more complex the model (i.e. physioherence), the less
experimental data are required for the trainingcpss. Whereas, the less
model complexity, the more both training and tespezimental data
amount must be exploited.

To overcome the difficulties related to the expenital activity (e.qg.
high costs and technical limitationsyhite-boxmodels could be used to
simulate the real system. In such a case, perfgrmitual experiments
allows to gather a high amount of data with a ddasieduction of time
and costs, for both training and test. For diaghgairposes, such an
option may allow to reproduce those operating doores which might be
complicated or even impossible to replicate onst beench. From the
assessments stated above it can be understoodhthanathematical
model represents the core of the methodology anduist be able to
simulate the system in its global behavior. Thentgtobal highlights the



34 CHAPTER 1 Introduction

capability of the model to take into account bolkte tdirect and the
indirect correlations among the system componentgrder to extract
suitable features required by the methodology tofopm a correct
diagnosis [27]. However, it must be kept in mindttkthe extraction of
specific features is only one part of the wholecpdure.

I Amount of training data
I Amount of test data

Model complexity

Black-box

Experimental burden

Figure 1.1 Qualitative dependency of required experimentad dat
training and test procedures on model complexdgpted from [33].

In the scheme presented in Figure 1.2, all thendistic tasks are
represented in more details. According to a sttéegivard approach, the
mathematical model can be run in parallel to tre sgstem [9][20], in
order to monitor the system and to generate theiined) features.
Referring to the scheme in Figure 1.2, the systaputi and output
variables are expressed respectivelyXasnd Y, and these latter are
considered affected by noid¢ The output variables measured on the
system are compared to those simulated by the nibaglfunction of the
input variablesX. This comparison leads to the evaluation of tlaulies,
which are in this caseesiduals They are defined as the difference
between the variables measured on the sy3temd those simulated by
the modelY [4][9][10][11][17][20][21]:
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VIR (1.1)

Equation (1.1) can be used either if the teffhand Y are scalars or
vectors. With the residuals evaluation thenitoringtask is concluded.
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Figure 1.2Model-based diagnosis scheme, adapted from X.@hdY
are the control and the measured system variaieigectivelyN is the
measurement noise afdre the variables simulated by the mathematical
model.

Afterwards, the distinction between normal and tfautonditions
represents the following task. To achieve this diye, the residuals
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values are analyzed. Theoretically, when the systemn normal
conditions, any residual should be equal to zerbereas, in faulty
conditions, some of them could diverge from thikigaHowever, due to
both the model intrinsic inaccuracy and the measard uncertainties,
residuals can show non-zero values even in nortatd.g~or this reason a
tolerance range, characterized by a threshold leyak introduced.
Considering a scalar value, if the residual falihim the tolerance range,
the system behaves normally, however, if the redidwercomes this
value, a faulty state is detected.

Translating this qualitative description in a morormal
representation, another feature, calladalytical symptom can be
introduced. Thus, if the residual module is equdkss than the defined
threshold levet, the symptom is 0, otherwise, when the residuateds
the threshold, it becomes 1, as shown below [17]:

o if rsr 15
Tl it >t (1:2)

When a symptom is active, an undesired (faultylesgoccurring in the
system. According to this definition, each monitbrxariable is simulated
through the model and all drifts from normal beloadre collected into a
symptoms vector. After the establishment of thistee the detection
process ends with the following status check: & symptom vector has
all 0, the system is working in normal conditiomgile, if at least one
symptom is 1, an undesired behavior is occurrintpénsystem.

It is worth noticing that the design of proper 8ireld levels is a very
crucial task. These levels must take into accowtih Imodel inaccuracy
and measurement disturbances (i.e. signal noisg)lokw noise level, a
simple threshold value (i.e. a fixed scalar) candb@ned, whereas, for
high noise level, a more advanced approach (eatjstits, fuzzy-logic,
Kalman filters, etc.) should be implemented [21][2Burthermore, the
threshold design process must also satisfy theetofidbetween robust
diagnosis and early detection [20]. The knowledigd® accuracy and the
resolution of all the devices installed on the regtem is undoubtedly
significant. If the measurement devices exhibit rpasolutions due to,
e.g., cheap instruments or low sensitivity, theidwss could always
overcome a low threshold, resulting in a continufawsty state detection.
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On the other hand, the thresholds must be setnaadq@ossible to be able
to detect incipient faults.

An example of how a symptom arises is given in Fégl.3. On one
hand, the comparison of the residual time behaviarth the threshold
level 7 leads to the generation of the symptom time bem&/i (dashed
line), in which two faulty states are detected. Da other hand, if the
residual is compared to the threshold levelthe symptom time behavior
S” (straight line) is shaped, showing only one fasgligte. Thus, with the
same residual time behavior, two different symptgmasterns can be
induced varying the reference threshold level. Haewe it worth
remarking that the first faulty state of the symmptpatternS’ might not
be a faulty state but only a false alarm, inducgdnleasurement errors or
other external causes.
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FR — Fault Region Time
SR — Safe Region

Figure 1.3Example of symptom time behavior at different thidd
levels.

For this reason, another crucial aspect of thesttulel design process
deals with the capability to distinguish among daddarms and missed
faults. Generally speaking, the variables measared real system show
probabilistic features rather than deterministienAs an example, in
steady state condition, the measured value of a&rgenariable might
oscillate around its local mean value and can peesented by statistical
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indicators [7]. In some cases, the statisticalridhstion of the values can
be represented by a normal probability density tionc(pdf). To perform
the diagnosis the measured values can be compaeeddt of thresholds.
Moreover, in case of probabilistic correlations agdhe variables, the
occurrence of false alarms and missed fault detesthould be taken into
account. In Figure 1.4 a comparison between detestd and
probabilistic residual evaluation is presented.

DETERMISTIC Threshold
Fault Region
Normal state Faulty state
Residual
PROBABILISTIC Probability of missed fault
: Probability of false alarm

d

\Q;

_

Residual

Figure 1.4Comparison between deterministic (upper) and pntibab
(lower) residual evaluation process for the anetsymptoms
generation via threshold setting, adapted froml}|

On one hand, in case of deterministic residualsalbee nopdf is

considered either in normal or faulty conditiong robability of missed
fault or false alarm cannot be computed. On therdtland, assuming for
each residual a stochastic behavior the probaslitf missing a fault or
having a false alarm can be defined. The probghaitmissed fault is
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computed by intersecting thmlf of the residual in faulty state with the
threshold value (green dashed area in Figure WHgreas the probability
of false alarm is computed by intersecting taf of the residual in
normal state with the aforementioned threshold ¢&shed area in Figure
1.4) [7][13]. These features should be taken imoant during both the
threshold design process, which clearly affectdpemptoms generation,
and the diagnostic algorithm application.

Once an abnormal state is detected, in order ttifgiehe location of
the malfunction(s)igolation proceskg the symptoms vector is compared
to reference information, which links faults to gyioms. According to
Isermann [9], these relations can be determinederaxpntally by
inducing specific faults on the real system. Aftardy the affected
variables are singled out to form explicit knowledge basélowever, an
a priori knowledgecan be also exploited to find these relationships,
avoiding complex experimental activities, which awg always feasible.
Indeed, in many cases all the system componentkrasen and the
literature provides details on their behavior amderactions. This
knowledge significantly helps identifying the cdateons among possible
faults or failures and their corresponding symptoite definition of the
causal relationships among faults and symptoms lmanperformed
through different approaches, such as the Fault Araalysis (FTA). The
FTA is a heuristic methodology which correlates aaltf to a set of
symptoms. At the end of this process a matrix, kmaw Fault Signature
Matrix (FSM), is built and then used to developiaferential isolation
algorithm. More details about the FTA and the FS®¥l given in Chapter
3. It is worth noting that the availability of rable reference information,
embedded into the FSM, is mandatory to performedfettive diagnosis.
Moreover, an univocal link among the monitored ables deviating from
the normal state (i.e. symptoms) and the faultedsired. The accuracy
of theisolation processglepends on the knowledge of both the physical
behavior of each system component and the possial&unctions that
may occur. Once these references have been defthedsymptoms
vector gathered during tltetection process compared to this basis (i.e.
the FSM) in order to identify the location of tleufty component.

By using the information gathered during the infiee process, the
controller can act on the system inputs (see Figu® to drive the
system towards safe operating states, if any. bhdeprecise
counteractions can be taken to keep the system meva operating
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condition, e.g. to prevent the system shut downafntenance is needed.
As an example, rather than an abrupt shutdown,itabde controller
might slowly drive the SOFC system towards othegraping conditions,
so as to reduce inefficiency and maintenance costs.

In Figure 1.5 a schematic representation of thdéajlonteractions
among all the components of a generic system withembedded
diagnostic algorithm is given. From this schemeait be evinced that the
diagnostic algorithm diagnosi3 works in parallel with the controller
(control) to perform an online — or at least a real-timiaference on the
system status.

Power
electronics

MONITORING

Figure 1.5Representation of the mutual interactions amonthall
components of a generic system with an embeddeghatstic algorithm.

The core of the plant is characterized by the systemponents and
the power electronics, whereas the sensors prdlgl@xternal modules
(i.e. monitoring control and diagnosi$ with the required signals. The
monitoringblock receives the signals from the sensors aadisféoth the
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control and thediagnosisblocks, which work in parallel. Thdiagnosis
block handles the data, coming up with an inferemtehe system state.
This block communicates with tle®ntrol block providing the location of
the faults and the counteractions that should kentaFinally, thecontrol
block acts on the system components through theatws, varying for
example the set- points of specific components.

A mutual interaction between thmntrol and thediagnosisblocks
could be also considered: indeed, the knowledgéhef control rules
chosen for the system supervision must be takenaotount during the
diagnostic algorithm development, as better explhim the following
chapters. The concepts presented so far well kighlihe need for a
reliable and effective diagnostic methodology abe quickly detect
degradation behavior and/or malfunctioning stateshe whole system
and which can be coupled with an adaptive contrakteyy able to bring
the system to the optimal operation whenever reguir

Concerning the studies currently available in therdture, many
authors have presented model-based diagnosis apeand algorithms
for several types of conventional systems, suclntsnal combustion
engines [9][20][28], gas turbines [21] and othermpiex systems
[22][23][24][25]. This approach is also widely amua to fuel cells
systems, e.g. SOFCs [1][13][16] and Polymer Eldgteo Membrane
(PEM) fuel cells [17][18][19]. Furthermore, it isosth remarking that a
certain number of models developed for diagnosipgmes are not only
developed from physical equations (i.e. mass coafien equations,
momentum equations, etc.) but are also based oivadgpot circuit
elements coupled with electrochemical impedance ctepscopy
measurements, such as in [16] and [19].

The present work focuses on Solid Oxide Fuel Cgjistems and
their main characteristics are presented in tHevia@hg section.

1.2 Solid Oxide Fuel Cell Systems

A Solid Oxide Fuel Cell (SOFC) is a complete sdltdte
electrochemical device, which converts the chengoargy of a fuel and
an oxidant gas (oxygen) into electrical and therpwber, without being
limited by a thermodynamic cycle [5][34][35]. Anah significant
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advantage of an SOFC (and of all the other fudé ¢elgeneral) consists
in having zero-pollutants emission when fed witheplaydrogen.

Generally speaking, SOFCs are characterized byaanieelectrolyte
typically Yttria-Stabilized Zirconia (YSZ), whichces as a oxide ions
conductor. This element is the most critical orexduse it has to ensure
high ionic conductivity and electric insulation tite same time. The
exploitation of the YSZ as electrolyte material uiggs high operating
temperatures, ranging from 600°C up to 1000°C, uargntee oxygen
ions transport [5]. These high temperatures obWoumpose rigorous
requirements for the cell materials [35], e.g. tthermal expansion
coefficients of all the components should matchheather to reduce
thermal stresses [42]. The ceramic electrolyte lecqa between two
porous electrodes: thenodeand thecathode The most frequently used
materials for the anode and cathode structures anekel-YSZ cermet
and strontium-doped lanthanum manganite ¢ kB 19MNO3; (LSM)
respectively [34]. Both anode and cathode matemalst satisfy specific
requirements, such as high electric conductivitghhcatalytic activity
(for fuel oxidation — anode — and oxygen reductionathode) [5]. The
other components that complete the structure o5@#C cell are the
interconnectsand thesealing materialsThe interconnects have the main
function of electrically connect the single cellsdaseparate the reactant
gases within the cell stack (e.g. bipolar platesplanar configurations).
Their properties are usually chosen in agreementh whe stack
configuration, but some basic requirements are commi) high
electronic and thermal conductivities, ii) low iorgonductivity, iii) high
mechanical strength, and iv) chemical stabilityhwitther components.
The material used for the interconnectors struati@@ends mainly on the
operating temperature, e.g. perovskite-type oxelarmics based on rare
earth chromites for temperatures higher than 900f @etallic alloys for
lower temperatures [5]. Finally, the sealing matisrare mainly required
for planar SOFC stack configurations, where thdlehge of sealing the
oxidant from the fuel takes on a significant mattgsually, glasses
having a transition temperature close to the opwydaemperature of the
cell are employed for this purpose [35]. Indeedsirdy warm up, the
temperature rising induces a softening of the nasgmwhich form seals
in the required locations [34].

Coming to the description of the basic electrocluainieaction, which
is common to all the hydrogen-based fuel cell tgges, what takes
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place is the oxidation of the hydrogen, descridedugh the following
equation:

H, +%o2 L H,0 (1.3)

Particularly, for an SOFC, the hydrogen is iniyiaidsorbed and ionized
at the anode side, and the released electrons tllomugh the external
circuit, where a final user (e.g. an electroniadl@a other devices) draws
electric power. The first anode reaction can beesged as:

H, - 2H" +2¢” (1.4)

On the other hand, the oxygen atoms are adsorlide aathode side and
ionized by the electrons coming from the exteriralut:

%Oz +2e" - 0% (1.5)

Then, the oxide ions flow through the electrolyggching the anode side
and reacting with the hydrogen ions, with consetjgeneration of water
molecules:

2H*+0% - H,0 (1.6)

If the SOFC is fed with hydrogen-rich fuel (i.e. tm@ne) instead of pure
hydrogen, reforming reactions occur at anode sid&e oxygenolisis
reactions (see equation (1.7), referred to methane) andas®ciated

water gas shift (WGS) reaction (equation (1.8))malty take place over
a supported nickel catalyst [34]. The global reaxtiare expressed as:

CH, +H,0 — CO+3H, (1.7)

CO+H,0 - CQ +H, (1.8)
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The main issue with the direct use of methane berohydrocarbons is
the risk of coke formation, which blocks and conitzates the anode [5].

Generally, two main SOFC designs can be found @ ltierature,
known as planar and tubular design. The first aneharacterized by
square plates fed from the edges, or even cirdigas, fed with fuel from
the central axis. Two further classifications fbe tplanar design can be
done according to the gas flow configuration arelghpport type. On one
hand, the gas flow configuration could be eithefflo or counter-flow,
or even cross-flow [5]. On the other hand, the suptype could be self-
supporting, where one of the cell components seagesell support (i.e.
electrolyte-supported, anode-supported or cathagpested), or
external-supporting, where the cell is manufactuasda thin layer leant
on the interconnect or on a porous substrate [5].

A detailed scheme of the structure of a planar arsaghported SOFC,
directly fed with methane at anode side, is giverFigure 1.6. Three
close-ups offer an insight into the electrochemiesdctions previously
described. The first close-up (a) refers to thegexyreduction reaction
occurring at cathode side, expressed by equati&). (Lhe second close-
up (b) is located at the anode side, focusing am hlgdrogen ions
formation — equation (1.4) — and the water genemati equation (1.6).
The last close-up (c) refers to the reforming lieast expressed by
equations (1.7) and (1.8).

It is worth observing that the scheme represemtdeigure 1.6 refers
to a square design, whereas in Figure 1.7 an exaofphn SOFC with
circular design is presented. About tubular desigmsose schematic
representation is given in Figure 1.8, their classion can be done
according to their diameter size, i.e. large dianetlls, if the diameter
length is higher than 15 mm, or microtubular caflshe diameter length
is lower than 5 mm [5].

To provide the required amount of power outputglgircells can be
electrically connected to each other, in a so datackdesign. However,
it is important to remark that an SOFC stack caroprate without a
dedicated balance of plant (BOP). The BOP typicafgludes fuel
processor, heat exchanger, thermal insulationsyeslsy pipes, power
conditioning and control system. The main movinga this plant are
the blowers, together with a fuel pump, if preszedlifuel is not supplied

[5]
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Figure 1.6 Detailed scheme of an anode supported Solid Oxie¢ Cell
directly fed with methane, adapted from [36].
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Figure 1.7 Planar SOFC with circular design [34].
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Figure 1.8 Schematic representation of a tubular SOFC deadgpted
from [5] and [37].

Clearly, the SOFC design must be chosen accordiitg aipplication.
It is worth noting that the high temperatures, &iclr an SOFC usually
works, induce two main binding features, i.e. sibymamic response and
high temperature byproduct heat [33]. The formatdee makes SOFCs
less appealing for automotive applications, charaztd by high
fluctuations of power demand. On the contrary, lttter feature drives
SOFCs towards stationary applications, such asriltised power
generation systems, cogeneration (Combined HeatPawvder — CHP)
plants and Auxiliary Power Units (APUs). These amgilons often
exploit the SOFC stack in combination with otherwpo generation
system, e.g. internal combustion engines or gaSiney as done by
Siemens Westinghouse [5][34][38]. Neverthelesspitiesshowing slow
dynamic responses, the advantage given by thelr fugl flexibility,
along with the absence of water management issalesys SOFCs
exploitation as APUs even for automotive appliaagion order to match
the power demand of the auxiliary components artdnekthe vehicle
range [64].

Actually, the exploitation of SOFCs for automotiapplications
already exists since years, however not for povesregation purposes.
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Indeed, the capability of the YSZ to easily detegiygen allows its
application as oxygen sensor device in the exhaasifold on traditional
internal combustion enginesA (sensor). To guarantee the optimal
operation of the exhaust catalyst, the oxygen semsasurements are
exploited to keep the exhaust gas mixture nearstbehiometric ratio

[5].

1.3 Motivations, objectives and contributions

As previously stated, to increase reliability anm@time of SOFC
systems, suitable adaptive control strategies, remggoptimal operating
conditions at any power request level, should tsgied. The shift from
one operating point to another, especially foriGtary systems designed
to work at fixed operating conditions, or the oceuce of any
unexpected event may accelerate the system deigradatinduce other
phenomena, which can lead to system fault, or woosgystem failure.

Starting from these concepts, the present worktilites the complete
procedure of developing a model-based diagnosaittigh and shows its
application to a pre-commercial SOFC system. Kirstl brief overview
on the state of the art available in the literattwacerning modeling and
diagnosis on SOFC systems is given in the following

1.3.1 State of the art

The research efforts concerning SOFC diagnosisraialy oriented
towards the understanding of the degradation mesimsn and
malfunctions which affect the cell components ahd twhole stack.
Generally speaking, the stack performance can teetafl by different
mechanisms, which involve single components or ¢edmutual effects,
such as electrode delamination, thermo-chemicaltbeano-mechanical
phenomena and electrode poisoning, just to metifaw. However, due
to the equivalence of their effect on the stackfquerance, it is not
possible to univocally identify a specific mechami®nly through the
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analysis of the output voltage at constant currgeqjuiring more
advanced diagnostic techniques [44]. For this reaBarelli et al. [44]
analyzed the different degradation mechanisms wbh affect SOFCs
and the diagnostic methodologies currently avadablliterature for their
detection. To better describe stack degradatiomgrhena, Virkar [45]
developed an SOFC stack model capable of simulatdiegradation
induced by the increase of the resistance of datesbcell (or few cells).
As stated by this author, some causes leadingisoptitenomenon could
be: i) formation of local hot spots, which can indithe modification of
material properties and microstructures, ii) fuelogidant non-uniform
distribution, iii) seals degradation or iv) eleceodelamination induced
by thermal cycling. Virkar [45] also highlights theeed for estimating
how long the cell requires to cause a stack faiimee the deviation sets
in. To the same purpose, Larrain et al. [46] dgvetban SOFC repeat
element model for the investigation of stack degtiath due to
interconnect degradation and anode reoxidationnpiate In the work
carried out by Gemmen and Johnson [47] the attensidocused on the
correlation between SOFC system efficiency and atbgion, with a
major concern about the role played by the auxdgar

Aside the last cited and other few available woekdgeeper study on
the influence of all the SOFC system componengs ¢tack and BOP) on
the system behavior during normal and faulty coodits lacking in the
current literature. Besides, a limited number ofthats developed
mathematical models to simulate systems malfunstiaults or failures
[17][58], and few works coupled this activity wighfocused experimental
activity, where controlled fault are induced on #stem under study
[59].

Concerning SOFC stack and system modeling, in thailadble
literature, many papers deal with this topic, raggirom 3-D (e.g. white
box) models to 0-D (e.g. black box) models in adaoce with design,
the former, or control, the latter, purposes [#9.an example, Kakac et
al. [40] presented a detailed overview of the stadh SOFC models,
classifying them in two main categories, i.e. minrodels, in which the
micro-scale behavior is described, and macro-modelswhich the
overall system behavior is considered. In Bove dbdrtini’'s work [41],
an SOFC model is presented, taking into accouffiéréifit approaches,
from 3-D to 0-D, and validating each model agaegberimental data.
Faghri et Guo [42] gave a brief overview on the mlsdnd operations of
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low temperature and high temperature fuel cell&grimg to thermal
management issues and materials requirementscitarty for SOFCs,
they highlight the importance of cell and systersigie with attention to
materials compatibility and components interactioim, order to
understand the optimal operating conditions fohtefficiency and long-
term operation. The SOFC thermal management isssealso been
addressed by Tsikonis [43], who developed a dynanadel of an SOFC
HotBox™ commercialized by HTceramix and SOFCpower. In rthei
works, Sorrentino et al. proposed a 1-D model [F][and a lumped
model [1][2] of a planar SOFC, in order to desighierarchical structure
for the definition of low-level control strategiés transient operations.

1.3.2 Motivations and objectives

In the last decade, the researchers attention heo®me more
sensible towards the aforementioned topics, inargaseir efforts so as
to accelerate the improvements on fuel cells ardtdgen technologies,
especially for market introduction. An example bisteffort is the Fuel
Cells and Hydrogen Joint Undertaking (FCH JU), anropean
partnership between public and private stakeholdenged at supporting
research, technological development and demormirdRTD) activities
oriented towards fuel cells and hydrogen techne®d48]. By means of
this partnership many projects were founded frofd8through 2013 on
several research topics, e.g. long-term, breakgirauwiented and pre-
normative. Despite the variety of the applicati@mopes, some projects
focused on fuel cell diagnosis, such as GENIWsneric diagnosis
instrument for SOFC systejr{g9] and DESIGN Degradation signature
identification for stack operation diagnosti¢s0], concerning SOFCs,
and D-CODE DC/DC converter-based diagnostics for PEM sys)ems
[51], concerning polymer electrolyte membrane (PEM) cells.

The work described in the present dissertation desuon the
objectives evaluated by the GENIUS project, witlihose framework
part of the diagnostic methodology, the algorithmd &s application have
been carried out. The scope of the GENIUS projectails the
development of a “generic” diagnostic algorithm f8OFC systems,
which exploits process values to perform systengribais both offline
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and online. The main targets of the project arersure maintenance
reduction to yearly intervals and to help SOFCayslifetime to increase
towards market requirements (e.g. 40,000 h) [4%le hovelty of the
proposal resides in two main aspects: on one haedjirect exploitation
of the stack and the auxiliary components as sersmild overcome the
constraints of current methodologies (e.g. absehemticipation and low
accuracy) and reduce system complexity (i.e. noaiseirther specific
sensors); on the other hand, the term “generic@rsefo the flexibility of
the diagnostic methodology to be applied to diifiei@OFC systems.

The main objective of this work is the definitiondathe application of
a detailed procedure to develop a model-based dstignalgorithm for
online diagnosis. The description of this procedexplains in detail the
steps that should be followed and draws the atterdn the problems that
can come up and what are the possible ways to siblgen. The
diagnostic algorithm development and applicatiooncpdure entails two
phases: i) an offline design phase and ii) an ne-pplication phase, as
showed in Figure 1.9, where a scheme of the proeadgiven.

d ] 2
DESIGN PROCESS I———-I V] I
CONTROLLER | J L OFFLINE

(SETPOINTS)
{} | MODEL | 9 l THRESHOLDS | {b I FTA |
REAL SYSTEM |
ONLINE
—
{} N/ ‘VV N7

MEASURED N] . m FAULT
RESIDUALS l:: >| Y MPTO) ':: >| FSM :
T VARIABLES y)i SYMPTOMS LOCATION

1 MONITORING [~ DETECTION [~ ISOLATION [

Figure 1.9Development and application procedure scheme afdein
based diagnosis algorithm.

The offline design phase involves the developmerit tioe
mathematical model, the reference thresholds aead8M, whereas the
online application phase involves the applicatioh tbe complete
algorithm on the real system, once a communicgirotocol between the
system and the algorithm is defined. Focusing @ dbsign phase, as
previously stated, a model-based approach has dexsen as reference
methodology for the algorithm development. Accogdino what
expressed in paragraph 1.2, the diagnostic algorithcharacterized by
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three main elements: i) a mathematical model, witah simulate the
system behavior at several operating conditionfgywalg residuals
calculation fnonitoring, ii) specific threshold levels, required for the
generation of analytical symptoms from the resislidétection and iii)
an inferential isolation tool, i.e. an FSM develdgeom an FTA, which
helps locating the faults in the system.

It is worth highlighting that the methodology hetescribed can be
considered generic, since it lists all the stepsheofollowed for the
development of a complete model-based diagnosaitigh, apart from
the system the algorithm is related to. Howeveg, development of the
algorithm elements requires the knowledge of thecifig monitored
system, i.e. the number and type of componentsaviadable measured
variables, the controller strategies, the faultsctvhcan occur in the
system, etc.

Clearly, to perform the design process a certainowarnh of
experimental data, both in normal and faulty ststeequired. These data
are mandatory for the development of the model teddefinition of
missed faults and false alarm probabilities. Furtltge, as further
explained in Chapter 3, the mathematical modelbzaalso used, coupled
with specific threshold levels, during the off lingrocess to help
developing the FSM.

A “standard” FSM developed following a FTA approaxfers only a
gualitative relationship among faults and symptamithout taking into
account all the direct and indirect correlationsoam the system
components. These correlations could be enhandad asnathematical
model able to simulate the system in both normal falty states. By
means of this simulation process it is possiblevaluate the drift of the
monitored variables from their normal behavior, ,akdmparing the
obtained residuals with different threshold levedl®e sensitivity of the
system to faults magnitude can be also examinegrowng the
reliability of the developed FSM.

Once the offline design process is completed, thgnbstic algorithm
can be built and applied to the monitored systenpdrform an online
fault diagnosis. Clearly, to ensure the correctrapen of the diagnostic
algorithm, a communication protocol between the@algm and the real
system must be defined.
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1.3.3 Expected contributions of the research

The novelty of this work and its main contributioreside in four
features:

1) the development of fault sub-models, implementdd @ pre-
existing SOFC system model:

2) the exploitation of faulty states simulation foettlevelopment of
an FSM, evaluating the sensitivity of the monitokedtiables to
the faults magnitude;

3) the design of specific procedures and hardware ficatons to
mimic faults in a controlled way on a real SOFCtaeys

4) the offline and the online validation of the propdsalgorithm.

The procedures presented in this thesis have besigretd within the
framework of the GENIUS project to test the diadmmoalgorithm on an
SOFC u-CHP system, the Galielo 1000N, manufactured by Skess
company HEXIS AG (one of the industrial partnerstoé GENIUS
project) [52]. The experimental activity accompéshwith this system
has been performed in a close collaboration amtegUniversity of
Salerno, the European Institute for Energy Rese@&®tRER) and the
HEXIS AG company. The experiments have been caroed at the
EIFER laboratories in the frame of an exchangeetugrogram between
the University of Salerno and EIFER. The resultstro§ experimental
activity and the on-line application of the diagihoslgorithm described
in this work have already been presented duringsthBundamentals &
Development of Fuel Cells (FDFC) Conference -18" April 2013,
Karlsruhe, Germany — and for further details thedezs are addressed to
the corresponding references [53][54].

1.4 Thesis outline

This dissertation is organised into seven chapigfter the current
introductive chapter, Chapter 2 gives a theoretegblanation of the
mathematical SOFC system model, derived from a jpnedel developed
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by Sorrentino et al. [1][2][3], with the definitioaf the main equations
and the description of the faults sub-models deaeowithin this work.
In Chapter 3, the bases of the FTA approach asdlydiscussed. Then,
the improvement of a former FSM, developed by Arsieal. [4], is
presented. This improvement has been obtained laysnef faulty state
simulations with the developed model. In this wéye limitations of
adopting a purely heuristic approach to developismhation tool are
clarified. Chapter 4 presents the experimentalviagtperformed on the
Galileo 1000N in order to mimic controlled faultages on a real system.
In Chapter 5, first the characterization of thegdiastic algorithm on the
Galileo 1000N system is described, focusing on t¢bhenmunication
protocol between the algorithm and the system andtle tuning
procedure of all the algorithm elements. Then réseilts of the algorithm
validation are presented and discussed. Finallyctmelusions are drawn
in Chapter 6, whereas the Chapter 7 gives a brisight into the
additional experimental activity performed on thali®@o 1000N system
within the GENIUS project framework.






CHAPTER 2 SOFC System Model

In this chapter a dynamic model of a methane-fu8@&d&C system,
able to reproduce both normal operations and failjes, is presented.
This model has been derived from an SOFC-APU |lumpsatel
previously developed by Sorrentino et al. [1][2][3]

As a rule, an SOFC system is usually designed a@m suway as to
ensure normal stack operation through a proper iguanation and
optimized control of the auxiliary components. Aseault, the behavior
of the whole system does not depend only on thek gtarformance but
also on the behavior of the BOP, which is pronamafunctions and
failures due to the large number of mechanical aldctronic
components.

A block diagram of a methane-fueled SOFC systerprésented in
Figure 2.1, where both the mass and the energysflake represented
[2][5]. It is worth noting that this scheme reproeds a generic SOFC
system, whose application is suitable fop-&€HP system as well. The
whole system, enclosed in a dashed frame, is sgplith air and fuel
from an external line and provides electric eneagy useful heat to the
final user.

The fuel (i.e. methane — in this case — or anyrollyelrogen-reach
fuel) flows through a steam pre-reformer to prodhbgdrogen via partial
reforming reactions (see equations (1.7) and (1.8}j)ich require a
specific amount of water and heat. The former carptovided by an
external line (e.g. a water tank joint with a colled pump), whereas the
latter is recovered from the post-burner exhausegaAt the air side, an
air blower supplies the system with the necessarguat of air, which
flows through an air pre-heater to reach the reguimlet set-point
temperature.

Once both the fuel and the air flows reach the SQ&ELK, the
electrochemical reactions (see equations (1.4).8)) take place and the
electric energy demand is fulfiled. However, befaeaching the final
user, power conditioning devices are usually ned¢detbnvert the stack
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DC power to AC power and to boost the voltage (poedectronics
block). Sometimes, in APUs a battery pack is alssoaiated to supply
electric energy during warm-up maneuvers or peakep@hases, in order
to reduce the risk of thermal stresses, and tce stmergy during low
power demand periods [2].

The gases leaving the stack are burned into alposer to increase
the temperature of the exhausts. The hot gaseseateto the fuel pre-
reformer, to control the reaction temperature bymseof a heat exchange
process. Then they flow through a heat exchangdreat up the fresh air
provided by the blower. The residual heat couldibally recovered for
co-generation uses.
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Figure 2.1Block diagram of a methane-fueled SOFC system milss
and energy paths, adapted from [2] and [5].

Taking the block diagram presented in Figure 2.5k asference, in this
work both the static and dynamic behaviors of h# aforementioned
elements are simulated, but power electronics aad tecovery are not
modeled. Moreover, with respect to the model degyedioby Sorrentino et
al. [1][2][3], the present model includes the siatidn of gas flow

through the intake manifolds, both at air and feide, and several sub-
models representing specific faulty states, whigh affect the stack and
the BOP components.
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In the next paragraphs, a detailed descriptionhef hain physical
equations representing normal and faulty behaviofsthe SOFC
components is given. As already mentioned, thecbaguations have
been retrieved from the reference papers of Soneet al. [1][2][3].

2.1 Methane-fueled SOFC system model

A detailed scheme of the SOFC system componentleadn the
present work is given in Figure 2.2. It is worthselving that two pipes
are present at the air side, one linking the blaewé¢he pre-heater and one
located between the pre-heater and the stack. ©mwttier hand, at the
fuel side one pipe connects the pre-reformer aadstack. Following the
same approach of Sorrentino et al. [1][2], the it@rmanagement of the
system is fulfilled by means of two by-pass valvesge at the pre-
reformer side (Wre-reforme) @Nd oNe at the pre-heater sidgréVeate-

H.ZO inlet p ‘ \ évpre-remrnwr SOFC Stad: 'L‘
LR >

C0ntroller[| T ” Pipe ”.’ﬂ } g
gmemnnes P Pre-reformer 1
CH, inlet Om = =

Air inlet

Post-burner

|
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— Air flow == !
----- » Fuel flow v
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= Electricenergy flow
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Flue gas Output power

Figure 2.2Plant scheme of the SOFC system model with the
representation of the energy and mass flows. Cosdgarthe one
presented by Sorrentino et al. [1][2], three pipage been added.

These valves are controlled in feed-forward modelagting look-up
tables function of the required current. Moreoweproportional-integral
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(PI) controller, designed in feedback mode, actdhenblower speed to
ensure the required amount of air mass flow in otdekeep the stack
temperature near the set-point value.

The specifications of the SOFC system and the gssoins made for
the development of the model are listed below:

« the stack is planar and co-flow;

« single cell performance is assumed extendablectavtiole stack;

e a lumped model approach is applied: each compongnt
represented by a specific lumped volume in which #patial
variations are neglected;

» electrochemical reactions and mass transfer areumesh
instantaneous;

» all the components are considered adiabatic (@édeat exchange
with the surroundings);

« the WGS reaction is considered at equilibrium;

e« The methane is assumed completely reformed beéanarg the
stack;

To better distinguish between normal and faultyestaa dynamic model
is required. Indeed, with a steady-state model dayiation from a
stationary condition might be interpreted eitheadsansient maneuver or
as a deviation from a safe condition. An examplsuwafh a case is given
in Figure 2.3. In this picture a transient maneufrem one operating
condition to another is sketched. Initially, the miored signal,
represented by a straight line, lies within thesrece threshold range
related to the first operating condition, represdnby two dashed lines.
Once the transient maneuver starts, the signatgkgefrom the previous
operating condition, leaving the related threshaldge at’ and entering
the second one, represented by two dot-dashed lhE's Between this
two moments, since no dynamic model is definedtridu@sient maneuver
might be interpreted as an unexpected event. Torvexefo avoid the risk
of misunderstanding, the use of a dynamic modeleisessary [27]. An
example of transient maneuver performed on a redém can be found
in Chapter 7, where the description of experimed#h measured on the
Galileo 1000N system is given.
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Figure 2.3Example of transient maneuver not distinguish&iole a
faulty event with a diagnostic algorithm based @temdy-state model.

In the specific, paragraph 7.3.1 details the temtsprocedure followed to
bring the system from one operating condition tother. In this case, the
availability of a suitable dynamic model allows tiight interpretation of

such maneuver as an expected change in the ogpratirdition rather

than a faulty state.

2.1.1 SOFC stack

In accordance with the approach presented by Sorceet al. [1][2],
the SOFC stack is modeled as a single control velerthanging mass
and energy with the surroundings. Applying the gpeconservation
equation to this volume, the following lumped capamodel equation
can be derived:

ATeorc o .
KSOFC%C’t = ESOFC,in(TSOFC,in)_ ESOFC,out(TSOFC,oul) + (21)

- ‘]ASOFCVSOFC

where Tsorc outiS the temperature at the stack outl&orc is the stack
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heat capacity, Tsorcin IS the temperature at the stack inlet,
Esorci{Tsorciy and EsorcofTsorcon) are the inlet and outlet energy
rates respectively (depending on the stack tempes)tJ is the stack
current densityAsorc is the electro-active area aMiorc is the stack
voltage, evaluated through the following regres$ijn

TSOFC out
Veore = Neyrd 0.1844-0.081%, —1.2352) — 0.00411T0'O +

(2.2)

+ 0.8594] TSOFC,out+ 0.7153TSOFC,in
1000 1000

wherengs Is the number of celld); is the fuel utilization and is the
excess of air. The inlet and outlet energy ratescamputed as follows:

ESOFCk = z N h (TSOFCk)

i =[H,,H,0,CH,,CO,CO,,0,,N,] k=[in,ouf

(2.3)

In equation (2.3), the enthalpy of each specienmputed as function of
the stack temperature [2]. Furthermore, the inlefamflows derives from
the operating behavior of the BOP components (axried in the

following), whereas the outlet flows are evaluassdfunction of current
and temperature and their composition is consisteitlth the WGS

reaction equilibrium assumption [2]. Finally, theack heat capacity is
computed with the following expression:

KSOFC = pcerccerVOLSOFC (24)

in which the termvVOLsorc represents the volume of the solid parts (i.e.
electrolyte, electrodes and interconnectiopgy; is the ceramic density
(6600 kg i) andceer is the ceramic specific heat (400 J*K§™). The
evaluation of the stack heat capacity through egugR.4) is motivated
by the simplifying assumptions made for the develept of the model
(i.e. neglecting the gases heat capacity) and éyithited availability in
the literature of experimental data for its dinelentification [2].
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2.1.2 Air blower

The air blower represents the main moving parthef éntire SOFC
system and it can be considered the most energguagng device [4]. Its
main function is to provide the stack with the resagy amount of air, in
order to guarantee the electrochemical reactidakie place and to ensure
the stack cooling. The processed air mass flowmsputed as function of
current densityl and excess of airas follows [2]:

. J Mo,
mAIR = j'%OTOSEnceIIS (25)

whereF is the Faraday constant (96,487 C Maind Mo, is the oxygen

molar mass. The temperature at the blower outletevisluated as a
function of the temperature at the blower inleg thower efficiency and
the pressure ratio:

Teout = Tawrin [1"' i(ﬁy; - 1}] (2.6)
n

B

The required power is evaluated as:

y-1
PB = i, Cp,AIRTAIR,in (ﬂ y _1] (2-7)
Helem

in which g is the pressure ratid@ar,n IS the temperature at the blower
inlet, ¢, air is the air specific heat at constant pressuig,the polytropic
coefficient, nem andzg are the electric motor efficiency and the blower
efficiency respectively. For the purpose of thegdstic algorithm
design, a volumetric blower has been considereaseltefficiency and
speed are evaluated through the maps represent&igime 2.4 and
Figure 2.5, respectively [55]. The efficiency istiesmted through the
efficiency map presented in Figure 2.4 functiontleé electric motor
speed and the blower pressure ratio.
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Moreover, the speed of the electric motor is eualdidrough a feed-
forward control map, in which the speed dependthemequired air flow,
evaluated through equation (2.5) and the blowessune ratio.

As a final point, since the blower can be considehe main parasitic
loss [2], the whole ancillary power request is esgnted by its absorbed
electric power, and the evaluation of the net outpawer can be
performed as follows:

PNET :VSOFC‘JASOFC - PB (2-8)

through which the whole SOFC efficiency can be waled:

_ Pr
- NET 2.9
Mer = . Y, (2.9)

The denominator of equation (2.9) represents tHet ifuel power
evaluated considering the inlet methane mass flew, and its higher

heating value (HHV).

2.1.3 Air pre-heater

Following the Zero-Capacity Approach (ZCA), presehby Ataer et
al. [29] and exploited by Sorrentino et al. [1][2he air pre-heater is
modeled assuming a cross-flow configuration. Thergy balances for
the hot fluid and cold fluid sides lead to equati@i10) and equation
(2.11) respectively, in which the hot fluid is thes-reformer hot exhaust,
whereas the cold fluid is the cathode inlet flow:

dT,
% = Eh,HE,in (Th,HE,in) - Eh,HE,out(Th,HE,Out) + (210)

“UpeAe (Th,HE - Tc,HE)

(KHE +Ch,HE)
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dT. e
dt

= E'c,HE,in(Tc,HE,in)_ E'c,HE,out(-l-c,HE,oul)-'-
+UneAe (Th,HE _TC,HE)

C
GHE (2.11)

In these equations, the terMgye and T, e represent the average hot and
cold temperatures respectively, evaluated as tkieveetic average of the
inlet and outlet temperatures of the two fluids:

Tewen T,
Tone = k.HE.in . k.HE out k:[h,C] (2.12)

Differently from the work of Sorrentino et al. [2ihe gas heat
capacities of both hot and cold fluids are congidein addition to the
solid heat capacity for the evaluation of the hesthanger dynamic
response. The energy flow terms are evaluated aemsg the
mathematical product between the fluid heat capaaitd the related
temperature, whereas the last term of both thetemsarepresents the
heat flow exchanged between the hot and cold fluitlsis worth
observing that equations (2.10) and (2.11) repteseystem of coupled
ordinary differential equations. The behaviors othbthe hot and cold
temperatures affect one another through the exeuahegat flow term.

Following what done by Sorrentino et al. [2], theguct between the
heat transfer coefficieriye and the heat exchange surf#¢g has been
identified as a function of the fluid heat capadtiand exchanger
efficiency (i.e. estimated inlet and outlet temperas) by means of the
Kays and London efficiency maps [56]. Furthermattee solid heat
capacityKye is also evaluated through equation (2.4), appraithe heat
exchanger volume through a surface to volume Gft26500 m', once the
exchange surface is defined considering as referangas to gas heat
exchange coefficient of 200 WK™ [2].

Finally, the outlet temperatures are regulated a@tipy a by-pass
valve (Vpre-neaterin Figure 2.2), to guarantee the stack thermapegtts
and proper temperatures at the stack inlet [1]s Tailve is controlled in
feed-forward mode through a look-up table functairthe SOFC stack
current density, as shown in Figure 2.6. Obsentirg plant scheme in
Figure 2.2, this valve directly regulates the Hatdf flow coming from
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the fuel pre-reformer and passing through the eat lexchanger.

Vpre—heater

opening [%]
100 ’

90F - 4----4----
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50—/ 74‘ 777777777777777777777777777777
01 02 03 04 05 06 07

Current density [A cm

Figure 2.6 Feed-forward control map for the air pre-heatephgs valve,
located at the hot fluid line, as function of therent density.

Moreover, in accordance to the statements madeogr@ino et al.
[1], the maximum valve opening is achieved at aentrdensity of 0.8
A-cm?, corresponding to the operating point where theimam gross
electric power is generated. The same observaaarbe also referred to
the control map for the fuel pre-reformer by-pasdve, depicted in
Figure 2.8, presented in the next paragraph.

2.1.4 Fuel pre-reformer

The fuel pre-reformer modeled in this work is oolyaracterized by
an evaporator and a reactor, as assumed by Sooegttial. [2]. On one
hand, the heat required for the complete reformeagtion is taken from
the post-burner exhaust gases and the inlet fael, fivhich is a mixture
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of methane and vapor, is evaluated consideringanstto carbon ratio
equal to 2.5 and exploiting the following equations

; IAsorc Mex
=—=—="n 2.13
n’]CH4 8F U f cells ( )
M
My o = 25—, (2.14)

CH,

On the other hand, the mass flow leaving the pi@meer is evaluated
through equation (2.15), considering the outlet andtaction of each
species after the complete reaction as functionthef pre-reformer
temperature (as shown in Figure 2.7), in agreematht the statements
made by Sorrentino et al. [2].

. _ m:H4 + mHZO M (T )

rnref out — Z M (T ) iXi,ref,out cref out
i Z iXi ref,out\" cref,out

i

i =[H,,H,0,CH,,CO,CQ]

(2.15)

The pre-reformer temperature considered for theanfohction evaluation
is estimated following the same approach expldibedhe air pre-heater.
Indeed, applying the energy conservation equationtwo control
volumes, one for the post burner exhaust line (fat) and one
containing the reactor and the evaporator (colddfluthe thermal
dynamics of both hot and cold sides can be destake

dT, : :
(Kref +C h,ref )% = Eh,ref,in(Th,ref,in)_ Eh,ref,out(Th,ref,oul)+

(2.16)
-u ref A’ef (Th,ref - Tc,ref )



CHAPTER 2 SOFC System Model 67

e =Bl Enlland
— Y ref,in\'c,ref,in c,ref,out\ ' c,ref,ou

Cc ref
o dt
+ U ref Aef (Th,ref - Tc,ref )

(2.17)

Concerning the design parameters, i.e. the sohd ¢epacity and the heat
transfer coefficient, similar criteria as thosecdissed in paragraph 2.1.3
have been used. Moreover, even in this case thegwenot and cold
temperatures have been calculated by means oftamatic average (see
equation 2.12).
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Figure 2.7 Pre-reformer outlet molar fractions of each ousjatcies (i.e.
H,, H,O, CH,, CO and CQ) expressed as a function of the pre-reformer
temperature.

In conclusion, the temperature regulation of the-mggformer is
achieved with a by-pass valve ¥/ eformerin Figure 2.2) similar to the one
used for the pre-heater hot fluid line. This valegulates the post-burner
exhausts flow entering the pre-reformer to cortinel temperatures of the
reformer reaction, the outlet cold fluid and thee @ntering the air pre-
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heater. As done for the air pre-heater, the vabrdrol is achieved with a
feed-forward control map, showed in Figure 2.8,which the valve
opening is defined as function of the current dgnsi

opening [%]
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Figure 2.8 Feed-forward control map for the air pre-reforigpass
valve, located at the hot fluid line, as functidritee current density.

2.1.5 Post-burner

As explained in the previous paragraphs, the hempiired to achieve
the complete reformer reaction, taking place atdhede side, and to
warm up the inlet air flow at the cathode side Idamed driving the
anode and cathode outlet flows into the post-burfilee incoming flows
are mixed together and a combustion (assumed ctergotel adiabatic) of
the residual molecules of HCO and CH takes place [1][2]. This
reaction produces the aforementioned required hehich is further
exploited to provide also an additional amountherinal energy for the
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final users. From the previous assumption of a detapcombustion of
the residuals | CO and CH, the outlet molar flows can be estimated as
function of the inlet ones [2]:

Ny, out = Neo, out = Mo, out = 0 (2.18a)
Neg, out = Neoyin F Neojn + Mew, in (2.18b)
Ny oout = NMroin + M, in T 2Mck, in (2.18¢c)
o, on = Mo — % A~ % o — 2o (2.18d)
A, out = My (2.18€)

Once all the species outlet molar flows are conthutiee temperature at
the post-burner outlélipg oyt is evaluated iteratively solving the following
energy balance, which holds only under the adiababmbustion
assumption [1][2]:

EPB,in(TSOFC,ou) = E.F’B,Out(-I-F’B,Out) (219)

The inlet and outlet energy flows of equation (2.4& estimated through
equation (2.3) with respect to the temperaturaheattack and the post-
burner outlet, respectively.

2.1.6 Pipes

The supply of the inlet gases through the auxiliapmponents
located at the SOFC stack inlet (i.e. air blowarpee-heater and fuel pre-
reformer) is modeled introducing three distributjgipes, as can be seen
in Figure 2.2. In the present work the attentios haen focused only on
the inlet side, neglecting the flue gas pipes atdtack and post-burner
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outlet. This choice is mainly motivated by the némrdthe introduction of
a fault sub-model at the inlet side, whereas atotliéet side no fault is
considered. A deeper explanation on this point@nthe reasons leading
to the fault sub-models is given in Chapter 3.

The connection between two system components x@ample the air
blower and the air pre-heater, is guaranteed throagipe, which is
assumed horizontal and with constant section. &melic representation
of the pipe is given in Figure 2.9, in whiEhis the pipe diametel, is the
pipe length andmi, and mg, are the inlet and outlet pipe flows
respectively.

To design the characteristic equations of the prmelel, two main
assumptions are made: i) the gas is assumed ide#he gas flow is
assumed isentropic with friction acting only betwélee gas and the inner
pipe surface; ii) no heat exchange among the pipe, gas and the
ambient is considered (i.e. the pipe control volusmassumed adiabatic
and isothermal). These assumptions guarantee #dintiomputational
burden of the model.

< >

AL A/_L:]ITIAIEAAEINNNL

Figure 2.9 Schematic representation of a straight pipe.

Considering the scheme of Figure 2.9, the masseceaison equation can
be written as follows:

M, =My, (2.20)

Assuming a straight pipe (i.e. no curves or flonediion changes) with a
constant section, equation (2.20) becomes:
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pinvin = poutvout (221)

wherev is the component of the velocity vector in theeain direction

(i.e. normal to the pipe section). Differentiatibgth equation (2.21) and
the ideal gas law in isothermal conditions and domb them together,
the following equation is obtained:

vdv = -v? dp (2.22)
p

Substituting equation (2.22) into the mechanicalergp equation
expressed in differential form neglecting the heidliference between
pipe inlet and outlet, and taking into account tteal gas law, the
following differential equation is obtained [63]:

%pz pdp—d—5+%dz=0 (2.23)

wheref is the friction factor and represents the generic distance from the
pipe inlet, with assumption of turbulent flow [63htegrating equation
(2.23) between pipe inlet and outlet and rearrapgin the following
relationship is obtained:

2 ( p2TD* ) (p 2 D flL
R—( in ] ( out] -1 _|n(ﬂj+z(6jzo (2.24)
pin pin

32
through which the outlet pressure can be calcujatedn the knowledge
of the pipe length and diameter and the gas inpaditions (i.e. density
pin, Mass flowmn;, and pressurpy,). It is important to remark that equation
(2.24) applies to any gas flow (both air or fuektare) and to any pipe
location, i.e. between the air blower and the egrlpeater, between the air
pre-heater and the SOFC stack at cathode side etagdn the fuel pre-
reformer and the SOFC stack at anode side. Moreotrexr pipe
temperature required in equation (2.24) is assucoedtant and equal to
the gas inlet temperature.
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2.2 Fault sub-models

In this section the main equations developed toukita specific
faulty states are presented. The faults chosemisnatork derive from the
ones listed in the Fault Signature Matrix developgdArsie et al. [4],
which has been considered as a reference for thelggenent of an
improved one to be used for the inference prodesgher details about
the improvement process of the considered FSM waltyf states
simulation is given in Chapter 3. The consideredt$aare:

» air blower fault induced by an increase in its nagbtal losses;

» air leakage between the air blower and the aiheaer;

* temperature controller failure;

» pre-reformer fault produced by its heat exchangefasa
corrosion;

» stack fault caused by an increase in its ohmictasce;

It is worth stating that in this chapter only thault sub-models
features are described, whereas the results of rathsimulation are
presented in the next chapter in conjunction wité tlescription of the
FSM improvement process.

2.2.1 Air blower fault

The first fault considered in this work entails tinerease in the air
blower mechanical losses. As explained more inildeta paragraph
3.1.1, this fault can be ascribed to different esusThe blower
performance decrease is mainly due to its rotato@gmponents
degradation. For instance, bearings and surfacekl d@e contaminated
by dirt, dust and oils, leading to motor windinggedheating and failure
[13]. However, other causes could be an increasthenblower motor
friction, due to the wear, as well as an excessoxerheating,
corresponding to lack of lubrication oil [4][13].sAa consequence, the
increase in blower mechanical losses results irgtbweth of the required
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electric power, provided by the SOFC stack, andthed air outlet
temperature.

To model these effects, when the fault occurs i@ $iystem, a
decrease in the electric motor mechanical effigiemg introduced
according to the following law:

Nemr = Mewm (1_5) (2.25)

where¢ is a coefficient restricted to the range [0,1] #nd related to the
fault magnitude. If the system is behaving normdilg. no fault is
occurring into the system) the coefficiehts equal to 0, whereas, if the
fault occurs¢ is higher than 0, with a maximum value equal tevhich
corresponds to a complete failure of the systemsTthe fault magnitude
can be expressed as a percentagé 1. Substituting the faulty electric
motor efficiency (equation (2.25)) into equation7(2 the blower power
in faulty condition can be evaluated as:

c e
Per :mAlRLAIRn)(,B V- J (2.26)

B
’75’7EM(1 ¢ 1-

The increase in the blower power can be causedeoirie motor friction,
resulting in energy dissipation as a thermal IoBsis latter can be
computed as the difference between the blower pawerormal and
faulty state, as follows:

Q=P -P, =PB—(1S/:) (2.27)

To define the outlet temperature in faulty condlitigdhe following
assumption is made: a fraction of the thermal lassnputed with
equation (2.27), is transferred to the gas flowihigpugh the blower as
thermal energy. Thus, assuming that half of thenthéloss is transmitted
(i.e. 50% ofQ), it is possible to write:
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% = MyrCpar (TB,out,F - TB,out) (2.28)

Reorganizing equation (2.28) and considering eqoafR.6), equation
(2.7) and equation (2.27), the outlet temperatufaulty condition can be
defined as:

I O o e 2.29
TB,out,F TAIR,m [l+ ]78 [IB 1}[1*- 2(1‘(_,5)775,% j] ( )

Observing equation (2.26) and equation (2.29) i6 equal to 1 the
variables diverge (i.e. become infinite), meaningt ta failure occurs and
the system must be shut down.

2.2.2 Air leakage between air blower and air pre-heater

The second considered fault consists in an airalgaletween the air
blower and the air pre-heater. The causes leadinlgi$ fault are mostly
related to the mechanical degradation of the swadsjunctions or of the
pipe surface.

To simulate this fault, a model of gas release ughoa hole is
implemented. Starting from the pipe scheme of MEgWw.9, a
representation of the pipe configuration in fauttyndition is given in
Figure 2.10. In this scheme it is possible to idgrihree main control
volumes: the volumes 1 and 2, which represent #its pf the pipe not
affected by leakage, and the volume in betweermnrackexrized by a length
Dy representing the diameter of the hole through e leaked gas is
released.

The outlet properties of the volumes 1 and 2 caedsly evaluated
through equation (2.20) and equation (2.24), umtentifying the inlet
properties. On the other hand, the intermediateimel of lengthDy,
where the hole is located, is characterized bydhewing mass balance:
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r‘hz,in = r‘nl,out_rhl-| (230)

whererny is the hole outlet flow, which can be evaluatethwhe nozzle
equations for compressible flow either in subsamicsonic conditions
(i.e. un-choked or choked) [14][15].

WW ------------ &\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\N
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Figure 2.10Schematic representation of a gas leakage fromaiglst
pipe: the leakage is modeled as a gas figythrough a hole of diameter
Dn.

To distinguish between these two different condsio the Critical
Pressure Ratio (CPR) must be considered:

r
cpr=[ -2 | (2.31)
y+1

This parameter is taken as reference for the ifaiwveen the pressure
outside the pipepy and the pressure at the volume inietou:
Consequently, if this ratio is higher théne CPR the flow is subsonic and
the flow through the hole can be modeled as:

y-1

=C _TH Py ou e — 11— _MH (232a)
™ 7 m - t[ pl,outj y-1 [ P1out
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whereas, if the considered ratio is equal or leas the CPR, the flow is
sonic (choked condition) and the flow through tipeeps computed as:

r+l

D} 2 2
m, =C, —— ol —— 2.32b
1 =Coy rRV/P t(yﬂj (2.32b)

Once the leaked gas flow is computed, the resifioxl can be evaluated
through equation (2.30). To compute the other igbet properties for the
volume 2, the assumption of a constant velocitypasle (i.eVi out = V2,in)-

2.2.3 Temperature controller failure

The third fault considered in this work is relatedthe failure of the
temperature controller installed on the system. mantioned in the
paragraph 2.1, the stack temperature is contréfieslgh a feedback PI
controller, which reads the stack temperature $igmal acts on the
regulation of the air blower outlet mass flow toegethe stack
temperature within the desired set-point range.oAsjble cause of the
controller failure can be ascribed to an electran@function or to an
improper sensor behavior.

In this work, the controller fault is not modeley means of a fault
sub-model. To simulate this occurrence the Pl odietris disabled, upon
reaching a steady state condition. Afterwards, andard load change
maneuver is imposed. The idea is to study the systaction to a current
step-change when it is in uncontrolled conditiordded, the PI controller
removal prevents the system from correctly adapinidpe new operating
condition.

2.2.4 Pre-reformer heat exchange surface corrosion

The fourth modeled fault consists in the pre-refermeat exchange
surface corrosion/erosion. This fault can be mainbused by the
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occurrence of operating temperatures higher thasethrelated to the
design point and the presence of sulfur [4][13].r&an details, the

generation of corrosion products may foul the heathange surface,
changing its thermal features [61]. For example,dgloducts adhesion on
the surface can induce an increase in the heatfénaresistance [61]. To
simulate this event, the heat exchanger surfaca Axg is reduced

according to the following equation:

Acir = Au (1= 1) (2.33)

where the coefficient is a coefficient limited within the range [0,1]chit
is related to the fault magnitude, as seen for dbefficient £ The
reduction of this surface through equation (2.38dally affects the outlet
hot and cold fluid temperature, according to equea(R.16) and equation
(2.17). Moreover, the induction of a variation ihet pre-reformer
temperature also affects the outlet fuel compasifsee Figure 2.7).

2.2.5 Increase in cell ohmic resistance

While the former modeled faults take place at dmecBOP
components, the fifth and last fault analyzed is thork is related to the
SOFC stack. In more detail, this fault concernsitioeease in the stack
ohmic resistance, which can be ascribed to mangesador instance the
growth at cathode side of an electrically less cmtisle oxide layer
between the electrode and the interconnection glabe chromium
deposition on the interconnection surfaces [4]. eDtbauses can be
identified in cell components deformation (e.g. dtachment), leading
to contact degradation between the interconnectlaédlectrodes, and in
undesired thermal cycling and gradients [4][13]tHe current work, the
exploitation of ablack-boxregression (see equation (2.2)) for modeling
the SOFC stack voltage, instead of a detailed relgoemical model,
hinders the possibility to model this fault in detelowever, an increase
in the stack ohmic resistance corresponds to aedserin the stack
voltage at constant current, due to the growthhefrelated ohmic losses
[5]. For this reason, the specific fault is modeldidectly as a stack
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voltage reduction, according to the following redaship:
Vsorcr :VSOFC(l_S) (2.34)

whereeg, as in the case df andy, is a coefficient varying in the range
[0,1] and it is related to the fault magnitudeisltworth emphasizing that
the choice of using black-boxrelationship to describe the SOFC voltage
behavior reduces the model generalizability andpltgsical coherence.
However, it allows the exploitation of the modet those applications in
which the computational time has to be kept lowg. dor control
strategies and diagnostic applications both fomenand real time uses,
without a sensible reduction of the accuracy amadistness.

2.3 Model simulation in normal operating conditions

As a final point, the results of the methane-fue3€FC system model
simulation in normal operating conditions are heq@esented. In Figure
2.11 the same plant scheme of Figure 2.2 is aggmictebd, but with the
representation of the values associated to the maimtored variables,
referring to a current request of 25 A. These tegeffer to the parameters
listed in Table 2.1.

The representation given in Figure 2.11 has beaptad from the
illustration provided by Sorrentino et al. in thepapers [1][2].
Considering the values conveyed in [1] and [2] (Is&ted here for the
sake of conciseness), the present model suitalpsodaces the same
behavior of the model of Sorrentino et al. [1][Epr further details the
reader is addresses to the aforementioned worKg][1Clearly, the
values depicted in Figure 2.11 refer to the stestdye condition for a
current request of 25 A. To ensure the desiredkstamperature level,
here set equal to 825°C, the PI controller actshenblower speed to
regulate the inlet air flow, changing in this wag texcess of air value. At
steady state, for this specific operating poing thached excess of air
corresponds to 4.81. Furthermore, it is possibleotapute the net electric
system efficiency through equation (2.9) obtainengalue of 0.39 for a
methane HHV of 55,530 J Kg
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Figure 2.11 Methane-fueled SOFC plant scheme with descriptiothe
main monitored variables values related to a ctmesguest of 25 A.

Table 2.1Methane-fueled SOFC system model specificatiohs [2

Parameter Description Value Unit
Asorc electroactive area 100 ém
Neells cells number 150 -

Ksorc stack solid heat capacity 8234 3K

Ut fuel utilization 0.7 -

Tairin inlet air temperature 25 °C
PAIR,ir inlet air pressure fo Pa

S blower pressure ratio 1.3 -

NEM electric motor efficiency 0.9 -

Une pre-heater coefficient 200 whK?
Ane pre-heater surface 0.3 ’m

Kue pre-heater heat capacity 316 JK
Ures pre-reformer coefficient 200 WhK?
Aret pre-reformer surface 0.06 ’m

Kref pre-reformer heat capacity 59 FK

The simulation results presented in this paragephexploited in the
next chapter as reference for the analysis of tlmitored variables
behavior during the system simulation in faulty dibions.
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As a final point, examples of the dynamic resporees current step
change of the single cell voltage, the stack teatpes and the excess of
air are given in Figure 2.12, Figure 2.13 and FegRrl4 respectively. In
these pictures the variables behaviors in both ninctled (i.e PI
disabled) and controlled (i.e. Pl enabled) condgiare represented. The
step change corresponds to an increase of theedraurrent from 25 A
to 40 A.

In Figure 2.12 it can be observed that, in corgbltonditions (red
dashed line), the voltage drops from 0.772 V tocsin®.718 V. On the
other hand, in uncontrolled condition (blue strailgie), it decreases only
to 0.747 V, but with a larger undershoot and a éwndynamics. The
higher voltage level reached in uncontrolled caodistrictly depends on
the stack temperature behavior.

As can be seen in Figure 2.13, in uncontrolled gand(blue straight
line), the stack temperature increases, inducing tibserved less
reduction in the cell voltage.

Single cell voltage [V]

0.8 I
— Uncontrolled

0.78--| Controlled
0.76f -~ ------ e
0.74F - P
0.72--------- bomem -

07—~ b |
0.68f-------- P -

2300 2400

Figure 2.12Comparison between uncontrolled and controlledlsinell
voltage response to a current step change from @64Q A.

The initial temperature undershoot is caused bystidglen increment in
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the air and fuel flows, which are algebraicallyated to the current
through equation (2.5) and equation (2.13) respelgti This
instantaneous variation of the cold gas flows (he. mass transport
dynamics has been implemented in this model) dyrentpacts on the
cold fluid outlet temperatures of both the air pester and the fuel pre-
reformer (mainly at the valves outlet mixing pojnthich in turn affect
the stack temperature. Nevertheless, the fuel atnoarease leads to a
growth in the inlet energy flow, with a consequasé of the temperature
at the stack outlet, driven by the stack thermalaghyics.

Stack temperature [C]
880 I T

— Uncontrolled

870

860

850

840

830

820

Figure 2.13Comparison between uncontrolled and controllecksta
temperature response to a current step change2fsofnto 40 A.

Concerning the stack temperature behavior in ctettocondition
(red dashed line), it does not diverge from therddsset-point value, as
expected. In such a case, the excess of air, whichgulated by the PI
controller, changes to adapt the air flow so askéep the stack
temperature near the set-point. Indeed, in Figutd & can be seen that
the excess of air initially decreases (controlletdition — red dashed
line), to contrast the stack temperature drop (lslwaight line in Figure
2.13), which is induced by the sudden increasehefdir and the fuel
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flows. Afterwards, it rises to ensure the stackliogoin order to prevent
the following temperature increase.

Excess of air [-]

6 T T
— Uncontrolled i i
----- Controlled | |
Bl -
R e .
1 N 1
| V! |
| H !
L e o .
l ' l
2%00 2400 2500 2600 2700

Figure 2.14Comparison between uncontrolled and controllecdsxof
air response to a current step change from 25491A.

On the other hand, in uncontrolled condition (bkteaight line) the
excess of air remains constant.
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The mathematical model developed in the previouspiEt can be
considered the core element of the model-basedndsig algorithm.
Without a proper designed model no residual canctwputed, the
related monitoring process cannot be accomplishetl so the whole
diagnosis procedure cannot begin. However, as equlain details in
Chapter 1, even though the mathematical modelitaldy developed, but
an accurate inference procedure is not designeddidgnosis procedure
cannot be completed.

In this work the Fault Signature Matrix (FSM) deygtd by Arsie at
al. [4], following a Fault Tree Analysis (FTA), nsidered as a starting
reference to develop an improved FSM by means witsfasimulation
through the methane-fueled SOFC system model (basdtie work of
Sorrentino et al. [1][2]) herein developed. As skadwn the following
paragraphs, this model is exploited to simulate gistem in normal
operating conditions, so as to define the valugb®imonitored variables
in normal state, and in faulty operating conditiomsorder to compute
the variables values in faulty state.

The comparison of the variables values in theseesti®ads to the
computation of residuals, which are later analyzetbducing specific
thresholds to generate analytical symptoms. Thea,symptoms vector
obtained for each simulated fault is compared ®dhe included in the
FSM of Arsie et al. [4]. In this way, it is posstbto appreciate the
differences between the FSM developed through adtieuapproach (i.e.
the FTA) and the one obtained considering alscsyistem sensitivity to
the faults magnitude. The former accounts only fgualitative
relationships among the faults and the symptomereds the latter takes
into account both the direct and indirect correlasi among the system
variables.

As emphasized in paragraph 1.3, the direct usehef RSM as
developed only through the FTA may lead to a notimuped isolation
process, and its enhancement can be achieved waiatigiive model-
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based simulations [27]. A schematic representabiothe guidelines of
this approach is given in Figure 3.1.

System faults
knowledge

HEURISTIC MODE-BASED
APPROACH p————————diiiiiiiiinanns . IMPROVEMENT

S i S—

Faults simulation

b |

1

Fault Tree Analysis 1
through models :
L

approach

Monitored variables Fault Signature
definition Matrix

Figure 3.1 Integration of heuristic and model-based approsébeFSM
development, by means of Fault Tree Analysis ambr@ad specific
faults simulation through mathematical models.

The idea of using a model to simulate a system dising faulty
states is exploited by several authors. As an elgngscobet et al. [17]
improved a PEM fuel cell system simulator model ibgluding sub-
models, simulating an increase in the compressailomioiction, the
compressor overheating, a leakage in the air supppifold and the
temperature controller failure. Ingimundarson et[&B] developed an
hydrogen leakage model for a PEM fuel cell stachkemas Simani et al.
[21] proposed a turbine prototype model, which udels sub-models
simulating the compressor blades failure, a redaciin the turbine
efficiency and a fault in the thermocouple senswd & the controller
actuator.

In the following, a brief description of the mairharacteristics
concerning the FTA approach is given, with an exampf the
development procedure of a fault tree for an aielr. Then, the FSM
developed by Arsie et al. [4] is presented, folldviay the aforementioned



CHAPTER 3 Improved FSM 85

improvement process by means of faults simulatoough the SOFC
system model presented in Chapter 2. It is wonhar&ing that the main
issue discussed in this chapter concerns onlyhberetical development
of a FSM through the exploitation of faults modelsd simulations,
whereas in the next chapters the application of dbeeloped FSM,
embedded into a comprehensive diagnostic algorithemd the
experimental induction of controlled faulty statea real SOFC system is
presented.

3.1 Fault Tree Analysis approach

The FTA is an analytical deductive technique trat outline all the
possible ways in which a malfunction or undesiretidvior can occur in
the system [4][12]. This methodology allows the erstianding of how a
sudden fault can occur in a system and how it oflnence the system
devices [13]. The main outcome of the FTA is atféngle, which consists
in a graphic representation of the logical conmadilinking precise
events to a specific undesired fault. It is worthimg that a fault tree does
not represent all possible system faults and tbairses, but only those
assessed by the analysts [12].

The design process of a fault tree starts fromegiip fault (which is
the top event) and investigates all the possiblses (which are the basic
events, or symptoms), from which the considerett tan result [4]. This
process is based on the physical knowledge of yees and follows a
top-down approach, going from the fault to the siongs through
intermediate events. The higher level of the fenek is the top event (i.e.
the fault or malfunction under study), while thehet levels are
represented by intermediate events, which are atheor faults that
occur due to the previous causes. The bottom Isuwapresented by the
basic events (the symptoms), which may also coore$po specific faults
that are not further developable [12]. A schemagipresentation of a
generic fault tree is given in Figure 3.2, whereheaforementioned
element is depicted. In this picture it is also giole to distinguish
between the design and the diagnosis proceduredirght one, required
for the fault tree development, starts from the leyel (the considered
fault) and goes through the lower levels (interratli events and
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symptoms), identifying each correlation leadingthie basic symptoms;
on the other hand, the diagnosis process followsteom-up approach,
gathering symptoms and observing which fault ikdoh to them. The
connections among all the considered events areessgd through
Boolean operators (i.e. gates), which allow or preévthe flow through
the fault tree from one level to another. In Fig@r2 an example of an
AND gate is given, which connects the two symptamsthe upper
intermediate event. This gate means that the spexiént occurs only if
all the related symptoms arise.

Top Fault AN
LEVEL au
i Event =
Z INTERMEDIATE N
) LEVEL A
2! Z
~ )
= Z
7
BASIC
LEVEL

Figure 3.2 Schematic representation of a generic fault treeedesign
process follows a top-down approach — from thel@opl (fault) to the
basic level (symptoms) — whereas the diagnosisggsofollows a bottom-

up approach — from the symptoms to the fault.

It is worth noting that in a complex system the eaymptoms can be
related to different faults, consequently propengtoms redundancy is
required [13]. Furthermore, it must be recalledt ttths methodology
gives only qualitative correlations among the faudnd the symptoms
[12]. For this reasons, the major drawback of thé Ean be identified in
the inability to detect faults that are not constdeinto the analysis and to
distinguish between incipient and severe faulty.[Z® overcome these
limitations, an exhaustive and deep knowledge efsystem components
and their most probable undesired behavior, in ¢oation with
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improved diagnostic methodologies, is required.

The drawing of fault trees for undesired eventsicivican occur into a
complex system, is particularly significant for tleelection of the
variables that must be measured or estimated (ehgn a specific
measurement device is not available or the variagblaot physically
measurable). This methodology leads to the seleaifothe monitored
variables through a balance among their signifiea(tbe number and
type of faults whom is related to) and measurengests and feasibility.
Once all the considered fault trees for a spesystem are developed, a
complete list of the variables to be monitored. gmptoms) during the
diagnosis process is defined. Afterward, the cafi@hs among these
symptoms and the considered faults can be merdgediimatrix, known
as Fault Signature Matrix (FSM).

The FSM is a two-dimensional matrix, in whose rdivs considered
faults are listed, whereas the columns list allabkected symptoms, each
one referring to a specific monitored system vdelallhe FSM herein
introduced denotes the FTA approach final outconm @an be directly
exploited as a reference for the isolation procedaf a diagnostic
algorithm. Concerning the methane fueled SOFC sysiescribed in
paragraph 2.1, the application of the FTA approtcihis system had
been already performed by Arsie et al. [4] and Dippi [13]. Their
results are herein exploited to develop the imptoW&8M, starting from
the one obtained from an FTA approach and explpitite mathematical
model introduced in the previous chapter. As alyeadlplained, this
model simulates specific faulty states to evaluhte sensitivity of the
monitored variables to the specific faults andrtineagnitude through the
introduction of several threshold levels.

In the following paragraphs an example of fauletdevelopment for
the air blower dedicated to the aforementioned SGi€lem is given.
Then, the FSM developed by Arsie et al. [4], by neaf an FTA
approach is presented, followed by the improvemenbcedure,
performed via faulty states simulation. This allows identify the
guantitative correlations among faults and symptantto obtain a more
robust and reliable FSM.
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3.1.1 Air blower fault tree example

The application of the FTA to the aforementionedF80system
requires a deep knowledge of the interaction antbagnain components
(i.e. stack and BOP). Furthermore, the complexitghese correlations
suggests analyzing the faults at the component [dyeAn example of
fault tree for the air blower is depicted in Fig@8. As previously stated,
the air blower feeds the stack with the requirecbamh of air at ambient
conditions (i.e. pressure, temperature and hunjjdibyensure the oxygen
amount needed for the electrochemical reaction thedstack cooling.
Due to the high volume flow, the blower can be ided as the most
energy consuming device and it is usually pronseteeral types of faults
and malfunctions. As specified in paragraph 2.2tthe blower
performance decrease is mainly caused by its ngtatomponents
degradation. As an example, bearings and surfeme$e contaminated
by dirt, dust and oils, leading to motor windingedheating and failure.

Air blower fault

A

Increase in blower Excessive Air leakage in inlet
motor friction overheating blower manifold

Bearings wear Q Cj
Lubrication
problems

Increase in e
i echanical losses
mechanical losses mechanical losses

Increase in
air outlet
temperature,

Figure 3.3Example of a fault tree for an air blower dedidai®an SOFC
system, adapted from [4] and [13].

Increase in

Decrease in
blower
downstream
pressure

Increase in Reduction
air outlet

temperature

in air pipe
flow




CHAPTER 3 Improved FSM 89

Moreover, an increase in the system pressure drmopncluce a rise in the
blower absorbed power at the same flow amount [@8her possible
faults can be associated to an increase in thérielewotor friction, due to
the wear, as well as an excessive overheating ey the lack of
lubrication oil [4][13]. Observing the fault tre&etched in Figure 3.3, the
specific faults considered in this study consistsi) the increase in the
blower motor friction, ii) an excessive overheatangd iii) an air leakage
in the inlet blower manifold. Neglecting the noisgensification, it is
clear that both the motor friction increase and ¢keessive overheating
induce a growth in the air outlet temperature anthe blower absorbed
power, whereas the leakage in the inlet manifoddi$eto the decrease in
the downstream pressure and the pipe flow.

From Figure 3.3, the monitoring variables requii@dthe detection of
the considered blower faults can be identified)atsie temperature at the
blower outlet, ii) the absorbed power, iii) the dwtream pressure and iv)
the outlet gas flow. With the definition of thesariables, the description
of the fault tree design procedure is completed.

3.1.2 Fault Signature Matrix

Following the same procedure explained in the previsection, Arsie
et al. [4] developed several fault trees for ak ttomponents of the
aforementioned SOFC system, accounting for theraot®ns among
each device. Subsequently, the correlations amieagdonsidered faults
and the collected symptoms have been merged irffaudt Signature
Matrix, presented with some adaptations in Tahle 3.

As previously explained, an FSM is a two-dimensiometrix, in
which the considered faults are listed on the rams the collected
symptoms on the columns. When a symptom is reladed fault, the
corresponding element in the matrix is equal totlherwise is 0. Further
details about the build-up process of the FSM dyped by Arsie et al.
can be found in the work listed in the refereneds |

From this initial FSM, the one presented in Tablé Bas been
obtained by mean of several modifications, necgsdar meet the
specifications required for the experimental vdlma of the diagnostic
algorithm. The first accomplished modification s in the association
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of the pre-reformer fault (i.e. faulf in Table 3.1) to an undesired event
caused by heat exchange surface corrosion rathan tbatalyst
degradation. According to the pre-reformer faubietpresented by Arsie
et al. [4], the variables (i.e. the symptoms) a#ddby these faults are the
same except for a possible increase in the pressape However, since
this last variable is not monitored, the symptoraster proposed in [4]
can be used as a reference for both the catalgsadigtion and the heat
exchanger surface corrosion. The second modificationsists in the
association of the stack fault to an increase endiack ohmic resistance
instead of a reduction in the electrochemical &ctikea. Again, according
to the related fault tree, presented in [4], thdyowariation in the
symptoms vector is showed by the current densitypsgm, which turns
from 1 to O.

Table 3.1Fault Signature Matrix developed following only EhA
approach, adapted from the work of Arsie et al. [4]
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Air leakage between air
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Temperature controller
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It is worth recalling that all the rows in the FSkust be different
from one another, to allow the correct isolatiorire considered faults in
the system. In other words, the number of symptomst be chosen also
considering that each fault must be univocally tded by its
corresponding symptoms vector. However, observihg two last
symptoms vectors of the FSM presented in TabletBel, show the same
pattern. For this reason, the FSM as here presardedot be directly
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implemented

into a comprehensive diagnostic algaritTherefore, the

choice of further variables to be monitored in fystem can overcome

this problem.

Nevertheless a quantitative studthefcorrelations among

faults and symptoms through a fault simulation pesccan be effective in
the same way. This statement is proved in the aflg where the
complete improvement procedure is described. Maeoit is worth
noting that the current density column in Table 3% all zeroes, but this
symptom is not deleted in order to prove that theukation results are in

accordance with what expected. According to the k8Mable 3.1, the

faults taken into account in this work, and alreadgsented in paragraph
2.2, consist of:

« Faultf;
losses;
« Faultf

. air blower fault induced by an increase in itschranical

. air leakage between the air blower and the &irh@ater;

» Fault f3: temperature controller failure;
* Fault f4: pre-reformer fault produced by its heat exchasggace
corrosion;

* Fault f5

. stack fault caused by an increase in its ohnsistance;

whereas the monitored variables to which the symptare related are:

* Symptom s stack gross power;

* Symptom s blower absorbed power;

* Symptoms$ net electric power;

» Symptom g stack temperature;

* Symptomss excess of air;

* Symptom s fuel temperature at anode inlet;

* Symptoms post burner exhaust temperature;
*  Symptomg air temperature at blower outlet;

* Symptomg hot fluid temperature at air pre-heater inlet;
* Symptomgg: air temperature at cathode inlet;
e Symptoms: current density;

* Symptoms: stack voltage;

* Symptomg: air mass flow at cathode inlet;

* Symptom s temperature at anode outlet;
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* Symptomsg: air temperature at cathode outlet.

From the faults listed into this FSM it is now pibés to justify the choice
of the fault sub-models described in paragraph RaZzh sub-model must
reproduce the same effects induced by the relaigdt dn the real system.
On the other hand, the list of the monitored vdesbhas given a
reference on the properties from which the symptomst be generated.
In the following section, the results of the simida of faulty states
through the SOFC model of Chapter 2 is presentgdmBans of this
simulation the quantitative correlations among tbasidered faults and
the monitored variables is evaluated, taking irtooaint both the direct
and indirect links among the variables, which canbe completely
identified through only a heuristic approach.

3.2 FSM improvement via faults simulation

The simulation of the aforementioned faults alloweriving a
quantitative relationship linking the monitored iadtes variation and the
faults magnitude. In this context, the model présgin Chapter 2 is used
to simulate both the normal and the faulty behawfdhe system.

The process starts with the generation of the gatig¢he monitored
variables (i.e. the symptoms listed in the FSM ablé 3.1) in normal
operating condition. The same operating conditiefingd for the model
simulation results presented in paragraph 2.3 rsidered: the current
request is set to 25 A and the other parametetesare those presented
in Table 2.1. The values obtained for this speaifperating condition
have already been presented in Figure 2.11 andgreposed in Table
3.2 for all the monitored variables. It must be aeked that these values
are meaningful not only for the residuals compatatbut also for the
definition of the reference threshold values reeglifor the analytical
symptoms generation.

As showed in the following, the threshold level asated to each
symptom is chosen proportional to the value of ithlated monitored
variable in normal condition (i.e. equal to a spegbercentage of this
value).
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The main advantage of this choice is the definitmin variable
thresholds (instead of fixed ones), defined asrectian of the current
operating condition. Moreover, in this way it issgihle to set the same
value (i.e. the same percentage) for each thresledel, to allow a
uniform interpretation of the results.

Table 3.2Monitored variables values for the reference djrega
condition: the current request is set to 25 A deddther model
parameters values are chosen according to thosabid 2.1.

No. Variable Value  Unit

S stack gross power 2.8955 kW
) blower absorbed power 0.4692 kW
S net electric power 2.4263 kW
Sy stack temperature 825.00 °C
S excess of air 4.8124 -

S fuel temperature at anode inlet 700.01 °C
S post burner exhaust temperature 1065.6 °C
S air temperature at blower outlet 85.68 °C
S hot fluid temperature at air pre-heater inlet  8@2. °C

Sic air temperature at cathode inlet 700.22 °C
si1 current density 025 Ach
S12 stack voltage 11582 V

S13 air mass flow at cathode inlet 23.126 kb h
Si4  temperature at anode outlet 825.00 °C
Sis air temperature at cathode outlet 825.00 °C

This choice motivates the calculation of the residuas a relative
difference, not as an absolute one as describedquation (1.1), as
follows:

Y -Y

7 (3.1)

r=

where the termY corresponds to the monitored variables simulated i
faulty state, whereas the terfhcorresponds to the monitored variables
simulated in normal state. This approach gives dach monitored
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variable a uniform evaluation of the deviation fréime normal conditions
and the same choice of the thresholds values, esopsly suggested.
Furthermore, due to the binary coding of the gdedraymptoms (see
equation (1.2)), the residuals evaluation is pentd neglecting their sign
and observing only if they overcome or not the redi thresholds.

For a suitable fault simulation process, the SORStesn model,
whose block diagram developed in the MATLAB/Simufirenvironment
is presented in Figure 3.4, is provided with a dawid block fault
generation block) allowing the induction of the chosen faulis the
desired time.

- FUEL

PRE-REFORMER L PIPE 1

- AIR BLOWER [ PIPE B

CURRENT Bl PIPE [ SOFC STACK [» POST-BURNER

AIR
PRE-HEATER

Figure 3.4 Block diagram of the SOFC system model developed i
MATLAB/Simulink® environment.

From Figure 3.4 it is also possible to appreciatg the block diagram
has been designed to reproduce the same strudtthre plant scheme of
Figure 2.2, so as to preserve the correspondenteeahodel blocks to
the real system components. All the simulations @erformed
considering the assumption that only one fault atn@ can occur in the
system.

3.2.1 Fault f1: air blower fault simulation

The increase in the air blower mechanical lossegnsilated inducing
a reduction in the electric motor mechanical edingy, according to the
equations presented in paragraph 2.2.1. In thisulaiton, the fault
magnitude is set equal to 10%, which means thatathlé coefficient¢ is



CHAPTER 3 Improved FSM 95

raised from O to 0.1. This value may correspondrtancipient fault. The

effects which can be immediately identified whee fault takes place
consist in the increase in the blower power anthentemperature at the
blower outlet, as expected from equation (2.26) agdation (2.29),

herein presented in Figure 3.5.
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Figure 3.5Increase in the blower absorbed power (a) andarotitlet
temperature (b) due to the occurrence of a reducti@bout 10% of the
mechanical efficiency.

From Figure 3.5-a it is possible to notice thatewhhe fault occurs at
2500 s, the blower power suddenly diverges fron6@4kW, reaching at
steady state a value of 0.5223 kW. This increasg3df W represents a
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variation of about 11.3% of the value in normal dition. On the other

hand, the outlet temperature variation, reporte&igure 3.5-b, consists
in a rapid growth from 85.68°C to 89.42°C, corraginog to a variation

of around 1% (evaluated in Kelvin) at steady stBi.gathering all the

steady state values of the monitored variables treéault has occurred,
the residuals are calculated taking into accoust \thlues in normal

condition listed in Table 3.2. In particular, itugrth noting that all the

residuals related to the temperatures are evaluaesidering these last
expressed in Kelvin.

The results of this simulation in terms of residuate summarized in
Figure 3.6, where the blue bars represent the peresiduals computed
with equation (3.1), once every monitored valueehesached the steady
state. On the x-axis the number of each monitogthble, and thus its
related symptom, is listed with reference to théeorfollowed in Table
3.2. In this picture two threshold values are alsetched, set respectively
to +1% (red straight-dot line) and 5% (green daddires).

Residuals [%]
10

-10

9 10 11 12 13 14 15
Symptom No.

Figure 3.6 Air blower fault simulation results: comparison@mgy the
residuals and the defined thresholds at £1% (mreaigsit-dot line) and at
1+5% (green dashed line) of the monitored variablesined for a fault

magnitude of 10%.

Apart from the two threshold levels, in Figure 8.8 possible to observe
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that a sensible variation is showed only for thewar power (symptom
$), the net electric power (symptor) and the temperature at the blower
outlet (symptom g, all exceeding the +1% threshold, whereas theroth
variables exhibit a really small deviation, if aijowever, from the three
aforementioned symptoms, only the blower power cwaes the +5%
threshold. For this reason, the assumption of tweshold levels leads to
the definition of two different symptoms vectors, represented in Table
3.3, which are both compared to the symptom veaftdhe starting FSM
of Table 3.1 (first row — FSM). The differences ailgdhe two symptoms
vectors obtained through the fault simulation wiéispect to the initial
FSM are highlighted using a grey background cotorthe cells of the
vectors.

Table 3.3Symptoms vectors related to an air blower fault@¥o of
magnitude obtained for two threshold levels of tA86 +5%.

Faultf, | & | & | S | & | S| S| S| S| S | So| S| Sz | Si3| S| Ss

FSM 0 1 1 0 0 0 0 1 0 1 0 0 @ @ D

t=1% | O 1 1 0 0 0 0 1 0| O 0 0 0 0 0

T=5% | O 110 0 0 0 0| O 00 0 0 0 0| O

From Table 3.3 it is possible to point out that Hyenptoms vector
related to a threshold level of 1% shows only tfaiation of the
symptom related to the air temperature at cathaodiet i(Sg), which
changes from 1 to 0. This means that this symp®moimore involved
into the isolation of the specific fault.

The motivation for this discrepancy resides in sheall increment in
the air flow (about 0.048 kg'h barely visible in Figure 3.6 — symptom
s13) induced by the controller to keep the stack tenaijpee near the set-
point. This increment leads to the compensatiotheftemperature at the
blower outlet, which could induce, in uncontrolleahdition, an increase
in the stack temperature. This latter comment Umsker the needs for a
deep knowledge of the system under study, includhmg controlled
behavior.

Observing the symptoms vector related to a threkleslel of +5%, it
differs from the one of the starting FSM not omytihe air temperature at



98 CHAPTER 3 Improved FSM

cathode inlet (symptom;8, as for the previous one, but also in the
temperature at the blower outlet (symptagnand the net electric power
(symptom g), which all change from 1 to 0. However, this a#ion is
motivated by the small residuals values of the eaf@mntioned variables,
which are all lower than 5%.

3.2.2 Fault f,: air leakage simulation

The air leakage between the air blower and thepesrheater is
simulated through the fault sub-model describegaragraph 2.2.2. The
fault induction is achieved imposing at a spedifice a value for the hole
diameterDy, required for the evaluation of the released nflsg by
means of equation (2.32a) — un-chocked condition equation (2.32b) —
chocked condition. Moreover, the pressure outidepipepy is assumed
equal to the ambient pressure.

The results presented in the following refer tookerdiameter of 2.5
mm, which induces a mass release of 2.526 kgQonsidering that the
air mass flow rate in normal condition correspotm€3.126 kg H, the
leaked mass is 10% of the normal amount, thusdbk magnitude can
be assumed as that of an incipient fault. The dbefiect of the gas
release entails the reduction in the excess ofnagrasured at the stack
inlet) as showed in Figure 3.7-a at 2500 s. In picsure it is possible to
identify an immediate decrease in the excess otlaér to the air flow
reduction at the cathode inlet induced by the lgakdHowever, this
variation results in the stack temperature sudderease, which induces
the PI controller to act on the blower speed t@aase the outlet air mass
flow (Figure 3.7-b) and, as a consequence, to khegstack temperature
back to the desired set-point. Thus, the inletraass flow at cathode side
rises again to the normal operating value, as @amrchecked from the
excess of air behavior (Figure 3.7-a).

The residuals computed through this simulation presented in
Figure 3.8. As previously described in Figure 3t®& blue bars are the
residuals values computed with equation (3.1) after whole system
reached the steady state. The threshold valuesbeare chosen equal to
the previous ones, that are +1% (red straight-oh&) land +5% (green
dashed line) of the monitored variables valuesoatal condition. From
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Figure 3.8 it can be observed that the only vagsllearly affected by
this fault are the blower power (symptory),sdue to the temperature
controlled counteraction, and, consequently, thé @lectric power
(symptom g).
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Figure 3.7 Transient variation of the excess of air (a) aratease in the
outlet blower mass flow (b) induced by an air legkaetween the air
blower and the air pre-heater of about 10% of thenass flow at normal

condition

However, the latter shows a smaller variation camegpdo that of the
blower power, which rises from 0.4629 kW to 0.5148 (an increment
of about 12%). The comparison of the obtained tedglwith the defined
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thresholds led to the generation of the two sympgtesttors presented in
Table 3.4, where the differences among them angytimptoms vector of
the FSM of Table 3.1 are highlighted. It can beeobsd that the only
discrepancy can be found in the symptom vectortgeldao a threshold
value of £5%. Indeed, the percent variation of tie¢ electric power is
about -1.9%, thus triggering a symptom only for #1686 threshold value.
This difference is highlighted in Table 3.4 witlyie@y background for the
symptom s.
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Figure 3.8 Air leakage simulation results: comparison amdrgy t
residuals and the defined thresholds at £1% (mreaigsit-dot line) and at
1+5% (green dashed line) of the monitored variablesined for a fault

magnitude of 10%.

Table 3.4Symptoms vectors related to an air leakage of @0%
magnitude obtained for two threshold levels of zAf6 +5%.

Faultf | 81 | & | S | & | S | S | S| S| S | Swo| S| Si2 | Si3 | S| Sis
FSM | 0| 12| 1| ol o| ol o of of o o d Q ( (l)

t=1% | 0| 1| 1| 0| 0| 0| ol o[ of o o g Q « (L

t=5% | 0| 1|0 0| 0| O| Of 0| 0/ Oof of o o Q
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This result supports the statement that the exgtioit of an FSM
developed only with a heuristic approach can leadatnon-optimal
isolation procedure. Indeed, as explained in tlevipus paragraphs, the
FTA approach considers only qualitative relatiopshiamong the
variables and the fault. It must be stressed atjainif a fault affects a
variable, a symptom arises. To achieve a propéatiea on a real system
the need for specific threshold levels and the Kadge of a quantitative
relationship among faults and symptoms become #akevoreover, to
improve the diagnostic capabilities of the faultedtion, especially for
incipient faults, the knowledge of measurementssa@oand model
uncertainty is also required.

3.2.3 Fault f3: temperature controller failure simulation

Differently from the other faults simulated in thiwork, the
temperature controller failure does not requirepactic sub-model, as
explained in paragraph 2.2.3, but it is induced dwjtching off the
controller block (see Figure 3.4) at a certain teme changing afterwards
the required current. In this case, the detectiothe fault is performed
comparing the variables values obtained after tmdroller switch off to
their expected values (i.e. obtained with the adlgr switched on) at the
new operating condition. In this way, the controli@ilure can be
identified considering the different adaptationtteé monitored values. In
the specific, the load is changed from 25 A to 40TAe list of the
expected values of the monitored variables at tmesv operating
condition is given in Table 3.5.

The results presented in the following cannot bated to a specific
fault magnitude because of its binary nature, the. controller can be
either on or off. The amplification of the effectan only be affected by
the current step change. The simulation procedumesists in the
controller switch off at 2500 s and in the followicurrent increase from
25 A to 40 A. According to what observed in Fig@r&3 and Figure 2.14,
the system reaction to a current variation in utradled condition
consists in the stack temperature sudden incredsereas the excess of
air remains constant. The same results are heagneldtand presented in
Figure 3.9. Specifically, in Figure 3.9-a it is pitde to appreciate that, as
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expected, even though the current request is iseceiiom 25 A to 40 A,
the excess of air measured at the stack inlet doeshange. Since the air
mass flow is evaluated through equation (2.5) etheess of air measured
at the stack inlet remains the one imposed forptevious operating
condition. On the other hand, the stack temperahareases from 825°C
to 849.4°C (Figure 3.9-b), which corresponds toaaiation of 2.2%.
Additionally, from the same picture we can obsethat the stack
temperature exhibits the same dynamic transierth@sone showed in
Figure 2.13, further confirming that the whole syst behaves in
uncontrolled condition.

Table 3.5Monitored variables values for the second refezeaperating
condition: the current request is set to 40 A deddther model
parameters values are chosen according to thosabdé 2.1.

No. Variable Value  Unit

S1 stack gross power 4.3095 kW
S blower absorbed power 0.7696 kW
S3 net electric power 3.5399 kW
S stack temperature 825.00 °C
S5 excess of air 5.1908 -

S fuel temperature at anode inlet 707.64 °C
S post burner exhaust temperature 1050.2 °C
S air temperature at blower outlet 82.68 °C
S hot fluid temperature at air pre-heater inlet  286. °C

Sic air temperature at cathode inlet 683.63 °C
si1  current density 0.4 A ch
Sz stack voltage 107.74 V

sz air mass flow at cathode inlet 39.911 kbh
Si4  temperature at anode outlet 825.00 °C
Sis air temperature at cathode outlet 825.00 °C

In Figure 3.10 the comparison of the computed tedgl with two
threshold levels of £1% (red straight-dot line) atfsbo (green dashed
line) of the monitored variables values of Tablg & presented. From
this representation, we can straightway observeatdhe residuals but
two diverge from zero. The excess of air (symptgjnsslower than its
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expected value, because it remains equal to 4.842ad of rising to
5.1908, leading to a residual of -7.3%. As previpabserved, the stack
temperature residual (sympton) grows, reaching a steady state value of
+2.2%. In line with the statements done in refeeetec Figure 2.12, the
stack voltage value in uncontrolled condition ighar than that in
controlled condition. For this reason, the relatesidual (symptoms)
shows a drift of +4%.
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Figure 3.9 Excess of air (a) and stack temperature (b) resgmto a
current variation from 25 A to 40 A: their behavaearly prove that the
system is operating in uncontrolled conditionsit aan be seen from the

results in Figure 2.13 and Figure 2.14.

Another relevant effect consists in the blower povesluction compared



104 CHAPTER 3 Improved FSM

to that expected for a current request of 40 Acdntrolled condition, the
blower power is almost 0.77 kW (see Table 3.5), &g in uncontrolled
condition it reaches only 0.72 kW, with a differenof nearly -6.5%
(symptom s in Figure 3.10). This variation is induced by tloaver
excess of air, which directly affects the air m#ew through equation
(2.5), as done by the current requégkorc and thus the blower power
with equation (2.7). Moreover, the air mass flowuetion with respect to
that expected for a current of 40 A is represefgdhe related residual
(symptom ss3), which exhibits a value of -7.3%.
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Figure 3.10Temperature controller failure simulation resuttsmparison
among the residuals and the defined threshold$%it (ted straight-dot
line) and at +5% (green dashed line) of the moadorariables referred to
a load request of 40 A and to the steady stateenede values of Table

3.5.

The symptoms vectors related to the residuals gtirei 3.10 are
showed in Table 3.6 referring to two thresholdslswf +1% and +5%.
Even in this case, the differences among them ladymptoms vector of
the FSM of Table 3.1 are represented with a griypaekground color.
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Table 3.6 Symptoms vectors related to a temperature coatrtallure
obtained for two threshold levels of £1% and +5%.

Faultf; | s | & | &S | &% | S | S | S| S| S [ Swo| S| Si2 | Si3| Sa | Sis

FSM 1 0 1 1 0| 1 1 0 1 1 0 1 (0 ] 1

T=1% | 1 1 1 111 |0 1 0 1 1 0 11 1 1

t=5% (0| 1|1 |0|1]0]|O0 0| 0] O 0] 0|1|]0)|O0

What emerges from this comparison is that bothtweenew symptoms
vectors show several discrepancies. First of b#, fuel temperature at
anode inlet (symptomgsbecomes 0 in both cases. This difference is due
to its residual value lower than 1%. However, thbssantial differences
belong to the blower absorbed power (symptain the excess of air
(symptom g) and the air mass flow at cathode inlet (symptesh which
become all 1. The explanation could reside in tlatroller fault
simulation process. Compared to the detection basdtle FTA of Arsie
et al. [4], the simulation entails a current demaadation, which is not
considered by the FTA in [4]. The other differencgsowed only by the
symptoms vector for = £5%, are due to the related low residuals values

3.2.4 Fault f4: fuel pre-reformer fault simulation

The pre-reformer heat exchange surface corrosiorsinsulated
reducing the characteristic pre-reformer surfAgeaccording to equation
(2.33). As explained in paragraph 2.2.4, this edamtctly affects the pre-
reformer outlet cold fluid temperature (see equa(®.17)), used as the
reference pre-reformer temperature for the comjmutadif the outlet fuel
composition through equation (2.15). Differentlyorfr the other
simulations, the fault magnitude is chosen equ&0%, due to the small
impact of this specific event on the obtained nesisl values, as showed
in the following. The fault coefficient is risen from 0 to 0.5 at 2500 s,
causing a reduction i from 0.06 Mto 0.03 M.

As a result, the pre-reformer temperature (i.e.lebutold fluid
temperature) instantly decreases at a steady sidte of 604.41°C,
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which is about 9.8% less than the reference temperdFigure 3.11-a).
This reduction causes a variation into the outletl fcomposition, as
showed in Figure 3.11-b, where the hydrogen mdtaw fvariation is
depicted.
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Figure 3.11Pre-reformer reference temperature decrease @a) an
hydrogen molar fraction variation (b) induced brieduction in the pre-
reformer surface of about 50%.

The resulting residuals for this simulation arerespnted as blue bars
in Figure 3.12. As already stated, only the fuelperature at anode inlet
(symptoms g is substantially affected by this fault, whera#ighe other
residuals are quite small, even though the faujmtade is 50% (which
can be barely considered related to an incipiarit)fa
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The reduction in the temperature at the anode cdeses a drop in
the stack temperature (symptom),swhich is compensated by the
decrease of the inlet air mass flow (symptopg smposed by the
controller, with a consequent variation of the béoywower (symptoms)s
and the increase in the air temperature at catimbete(symptom g.

In Table 3.7 the two symptoms vectors obtained @mg the
residuals values to two threshold levels of £1% &B%o, represented in
Figure 3.12 with a pair of red straight-dot linesla pair of green dashed
lines respectively, are presented.

Concerning the symptom vector for a threshold lefett1%, four
symptoms change from 1 to O: the blower power (3pmps), the excess
of air (symptom g, the post-burner exhaust temperature (symptgm s
and the air mass at cathode inlet (symptegh s
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Figure 3.12Fuel pre-reformer fault simulation results: conigam
among the residuals and the defined threshold$%t (ted straight-dot
line) and at +5% (green dashed line) of the moadorariables obtained

for a fault magnitude of 50%.

Nonetheless, the only significant difference resigethe post-burner
exhaust temperature, which seems not to be affégtéiis fault, whereas
all the other differences are due to the low resliglwvalues. Actually, the
post-burner exhaust temperature increases onlgdsythan 1°C, resulting
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in a residual near zero. This effect can be jestifby the fact that the
stack temperature is kept constant and the vanmiaiio the fuel

composition has a negligible influence on the fmster inlet molar
flow.

Table 3.7Symptoms vectors related to a pre-reformer fauit08o of
magnitude obtained for two threshold levels of 4846 £5%.

Faultfy, | s | 9 | S | & | S | S| S | S| 9 | So| S| Si2| Si3| Sia| Sis

FSM 1 1 1 0 1 1 1 0 1 1 0 1 ] q

t=1% | 1 0 1 (O 0] 110 |0 1 1 0 1 0| 0| O

t=5% (0| 00| 0|01 }|0|O0O|O0O]jJO|O0O|J0O|O0|O0]|O

The same conclusions can be extended also to tex symptoms
vector (i.e. 5% threshold level), which shows fmere symptoms being
zeroed. These results help again remarking the ritawpce of a
quantitative study for the development of a diagieoalgorithm to be
applied to a real system.

3.2.5 Fault f5: stack fault simulation

The last fault considered in this study involves tBOFC stack in
terms of increase in its ohmic resistance. As eagas section 2.2.5, to
simulate this undesired event the stack voltag&uated through equation
(2.2) is reduced according to the coefficiefisee equation (2.34)), which
represents the fault magnitude. Even for this fahk considered
magnitude level is 10%, which means thatdleeset equal to 0.1, so as to
observe the system response to an incipient fault.

The direct effect of this fault is the sudden daftthe stack voltage
from 115.82 V, reaching at steady state a valuk0@f14 V, as presented
in Figure 3.13-a. This reduction exceeds the 10%ichvis the fault
magnitude level, and the motivation can be founthénstrong interaction
among each system component. Indeed, the stacdgeottecrease affects
the stack temperature through equation (2.1), iedute electric power
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generation and, thus, leading to a temperatureeaser. To restrain the
temperature drift, the controller reacts increasihg excess of air
demand, as showed in Figure 3.13-b. This lattegsrisom 4.8124 to
5.5031 at steady state, with a variation of moenth4%. The related
effects comprise the increase in the air mass fmd in the blower
power.
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Figure 3.13Stack voltage reduction (a) and increase in tloessof air
(b) caused by a growth in the stack ohmic resistdnyc10%.

The residuals associated to this fault are predant&igure 3.14 as blue
bars, in comparison with two threshold levels ofat{red straight-dot
line) and at +5% (green dashed line). The effemsipusly described are
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here highlighted. The most evident variations akated to the stack
power (symptom 3, the blower absorbed power (symptog), she net
electric power (symptomsk the excess of air (symptorg),sthe stack
voltage (symptom;g) and the air mass flow at cathode inlet (symptom
s13). Only the stack temperature (symptog), she temperatures at the
cathode and anode outlet (symptoms and ss respectively) are not
affected by the occurrence of this fault. Moreoasp the stack current
density (symptom ;3) shows a residual equal to zero, as expected,
because the stack voltage fault does not involgestbctrochemical active
area and the current request is kept constant.
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Figure 3.14 Stack fault simulation results: comparison amdregg t
residuals and the defined thresholds at £1% (medigit-dot line) and at
+5% (green dashed line) of the monitored variabl#sined for a fault

magnitude of 10%.

The symptoms vectors generated from the previoggluals are
exposed in Table 3.8. What immediately leaps outhet only the
symptoms vector related to a threshold level of xh&bches perfectly the
one of the starting FSM. The symptoms vector rdlédea threshold level
of 5%, shows, instead, four symptoms being zerdéolever, this
difference is only due to the small residuals valuelated to those
monitored variables.
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Table 3.8Symptoms vectors related to a stack fault of 1@%hagnitude
obtained for two threshold levels of £1% and +5%.

Faultfs | s | & | &S | & | S | S | S| S| S [ Swo| Suu | Si2 | Si3| Sa | Sis

FSM 1 1 1 0 1 1 1 0 1 1 0 1 1 @

T=1% | 1 1 1 0 1 1 1 0 1 1 0 1 1 @

T=5% | 1 1 1 0 1{ 0|0 0| 0] O 0 1 1 0 0

3.2.6 Summary of the faults simulation results

The faults simulation results described in the jes paragraphs can
be summarized into two different FSMs, one relatethe threshold level
of 1% and the other related to the threshold lesel+t5%. These
improved FSMs are presented in Table 3.9 and Takl@ respectively. In
these matrixes, the differences with the starti®&MFof Table 3.1 are
again highlighted with a gray cell background.

Concerning the FSM of Table 3.9, the first obseovatvhich can be
made is that all the rows are different from eathen allowing the
univocal identification of the considered faults,hish cannot be
performed with the starting FSM. Furthermore, omlp rows are rather
modified (fault § and fault §), whereas other two are kept unchanged
(fault f, and fault §). The last comment concerns the current density
(symptom g;) column, which shows all zeroes. This result isivated
by two reasons: first, the current request is gutrof the model and,
second, all the considered faults do not affect ¢lextro-active area
Asorc These two conditions imply a current density alsvaqual to the
one expected for each operating condition. For rséson, this variable
can be cleared from the FSM because it is no meg&lfor the isolation
process.

The FSM of Table 3.10 is instead quite differemnirthe starting
FSM. All the rows have been changed with respeth¢oFSM of Table
3.1. Only one row (faultyj has only one symptom changed, whereas all
the others present at least three different sympteaiues. Moreover, the
rows associated to the faultsand $ present the same pattern hindering
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the possibility to exploit this FSM for an accurgelation procedure.

Table 3.9Improved FSM obtained for a threshold level of £1%

T=1% | S | S | S | M| S| S| S| S| 9| Sw0| S| S2| S| Su| Ss

f1 0 1 1 0 0 0 0 1 o[ O 0 0 0 0 0

fa 0 1 1 0 0 0 0 0 0 0 0 0 0 q

f3 1 1 1 11| 0 1 0 1 1 0 111 1 1

fq 1 0 1 0| 0 110 0 1 1 0 1|1 0 0 0

fs 1 1)1 0 1 1 1 0 1 1 0 1 1 0 (0

Table 3.10Improved FSM obtained for a threshold level of £5%.

T=5% | s | | S| S| S| S| S| S| 9| S0| S| S| Ss| S| Ss

fi 0 10 0 0 0 010 0| 0 0 0 0 0 0

f, 0 110 0 0| O 0 0| O 0 0 0 O 0 a

fa 0|1 1,0(1]0;0|O0}|0]|O0 0j0|1|]0]|O0

faq 0O(0|0)|] 0O 110|000 00| 0| O 0

fs 1 111 0 10| 0 0[O0 O 0 1 1 0 0

In conclusion, the results here presented highligatimportance of
the quantitative evaluation of the relationshipsoag faults and
symptoms, especially when facing real system agiptins. Indeed, the
investigation of the real faults effects on the mamed variables allowed
to overcome the redundancy problem in the FSM @id 8.1 (see faults
f, and §) imposing a threshold level of +1%. It has beesoaroved that
the isolation accuracy is strictly related to theswaned thresholds: the
exploitation of measurement devices with high noleeels or the
utilization of a low accuracy model drive the cheoitowards high
threshold levels, hindering sometimes the univasalation of single
faults. Moreover, according to [10] and [62], atistecal analysis can
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improve the effectiveness of any diagnostic methamgiowhen applied to

real systems, coupled with measurement devices lanthaccuracy (i.e.

high noise). For this reason, a statistical hypsithdest has been
considered for the implementation of the algoritbma real system, as
will be presented in Chapter 5.






CHAPTER 4 Experimental Activity

The improved FSM development process describedhenprevious
chapter closes the diagnostic algorithm design qotoce. Clearly, once
the whole algorithm is assembled, a dedicated @xpeatal activity is
required for the characterization and the validataf the diagnostic
algorithm, before its application on the systendeled, a preliminary
experimental characterization allows the understandf which actions
must be performed to adapt the algorithm (which gtesents “generic”
features) to the system under study.

As mentioned in Chapter 1, the experimental agtipresented in this
chapter and the validation procedure exposed iméxt one have been
performed within the framework of the European @cbjGENIUS [49].
More in details, a pre-commercial micro CombinecaHand Powerpt
CHP) SOFC system, the Galielo 1000N, manufacturedthe Swiss
company HEXIS AG [52] (one of the industrial paref the GENIUS
project), has been experimentally characterizedunderstand which
variables can be monitored, both offline and onliaed which kind of
faults can be induced in controlled mode. Therefthre design of specific
procedures to mimic experimentally controlled fawh the real system
can be considered one of the main novelties optasented work.

In the next paragraph a brief presentation of tladiléd 1000N and
the test bench setup of the EIFER’s fuel cell labanies is given. Then,
the procedure and the hardware modifications, reduifor the
experimental induction of the considered faultg, ilustrated in details.
It is worth noting that the presented activity Heeen part of a larger
experimental plan, illustrated in more details ime@ter 7.

The entire experimental activity has been accoretisin a close
collaboration among the University of Salerno, Bngopean Institute for
Energy Research (EIFER) and the HEXIS AG company.
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4.1 The Galileo 1000N system and the experimental
test bench

The Galileo 1000N system is a u-CHP generationesystwhose
picture is presented in Figure 4.1-a. This systerbdsed on an SOFC
stack characterized by 65 cells with 100%cactive area each [54]. A
scheme of the main components, the mass and thgyeflews is
illustrated in Figure 4.1-b. On one hand, the irlegl flow (i.e. Natural
Gas) is provided from an external grid and it flowsough two
desulphurizing units before entering the catalpiactial oxidizer (CPO)
to obtain the hydrogen amount required for thescellectrochemical
reaction. On the other hand, the air flow is retpdaby a dedicated
blower. The gas mixture leaving the CPO reachextiyrthe SOFC stack
at anode side, whereas the air flow at the catlsatieis regulated by the
exhaust blower.

EXHAUSTS
AR FUEL

>
X §§X AIR

AIR

R’l) CPO

Figure 4.1 Galileo 1000N system picture (a) and scheme {gpted
from [54].
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The produced electric energy is converted by a Céanverter before
reaching the electric grid. The reacted gases ldavestack before being
mixed and burned into a post-burner chamber (Pvihich surrounds the
stack, to keep the stack at the required temperailre burned gases are
then driven into a gas-liquid heat exchanger (H.#&hich provides the
required amount of heat to the external user. & pinoduced thermal
power is less than the requested one, an additiomaler (A.B.) can
provide a further amount of hot gases. The totadwamof hot fluid enters
the heat exchanger and delivers the required tHgoower to the cold
liquid line (usually water). The flue gases arentlsent to a condenser
before leaving the system.

The Galileo 1000N stack is controlled in potentist mode and
under nominal operating conditions it delivers 1 kWC) electric and 2.5
kW thermal power, which can be increased to 23 ki ¥he additional
burner [53][54]. A dedicated test bench has beémpsat the EIFER fuel
cell laboratories to ensure the correct fulfillmesft the experimental
characterization of the Galileo 1000N system. Avfichart of the EIFER
test bench is provided in Figure 4.2. It has a mahtgas supply line,
whose flow is controlled with a solenoid and a shffitvalve, and sensors
for energy and power monitoring. The inlet air idtefed and
characterized through temperature and flow rats@sn The only output
gas is the flue gas released by the Galileo 1000%&h is sent through a
water trap and then to a ventilation system. Tleential load is regulated
by means of a heating loop, in order to dissiph&e generated thermal
power. It plays the role of the final user, througHiquid-liquid heat
exchanger. The hot liquid coming from the Galil&®QN is regulated by
an internal intermitted pump, whereas the colditigentering the heat
exchanger on the other side with respect to theflbmt, comes from a
pressurized cooling water line and is regulatedugh a valve.

The output electric power generated by the Gallle@ON is directly
fed to the electric grid since the system has aegmted DC/AC
converter. The net electric power is measured byedicated power
monitoring system, as shown in Figure 4.3, whemgcéure of the test
bench, with the Galileo 1000N and some of the otiferementioned
components, is given.
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The Galilo 1000N is controlled and regulated thiowy dedicated
software, the HexisView, developed by the HEXIS As®mpany,
installed on a standard PC directly connected & system [54]. This
software allows the regulation of the system seattgoand other
controlled variables and gives useful informatitwowat the system status.
In addition, the EIFER test bench is provided wither dedicated
measurement devices controlled by LabVIES3].

4.2 Experimental faults design and system
modifications

To validate the diagnostic algorithm developedha present work, a
set of controllable faulty states to be experimintanduced on the
Galileo 1000N must be defined. According to thosesented in the
previous chapters, the following faults are consde

e Fault f;: increase in blower mechanical losses;
e Fault f,: leakage;

e Fault f3: temperature controller failure;

* Fault f;: CPO surface degradation;

« Fault fs: stack ohmic resistance increase,

It is worth noting that the faults listed above d&dveen chosen with
respect to those accounted for the diagnostic iéhgordevelopment and
considering what was actually feasible on the syst®oreover, the

induction of the aforementioned faults requireddlse understanding of
the system controller behavior. As the PI contrallescribed in Chapter
2, the Galileo 1000N controller keeps the stackperature near the set-
point value acting on the exhaust blower power dggutate the inlet

cooling air flow. This information has been of pang importance for the
diagnostic algorithm adaptation procedure, exptiimethe next chapter.
Coming to the details of the fault induction prasesnvo faults (the

leakage — fault,f— and the ohmic resistance increase — fgulefjuired a

modification of the system hardware, whereas thmareing three are

mimicked by acting on the system via the HexisVaaitware.
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The increase in blower mechanical losses is mindickeitching on
some electrical heaters surrounding the stacktddcaearby the system
air intakes, which allow to raise the inlet air frmature. The growth of
the air temperature is one of the considered effefcthis specific fault, as
described in paragraph 2.2.1 and paragraph 3.2d,itainduces the
exhaust blower to adapt to the new condition.

The second fault consists in a gas leakage atidlok sutlet. The fault
location is chosen according to the system condigom and specific
mechanical constrains. Indeed, for its implemeotatisome hardware
modifications have been required: a valve betweerstack and the gas-
liquid heat exchanger has been installed, as showhigure 4.4. To
install this valve, a hole has been drilled rigiteathe stack exhausts

Figure 4.4 Installation phases of the leakage valve: drilieté view
from the inside exhaust duct (at stack outletlaa from the outside (b);
pipe connection (c) and faucet (d).
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A clear view of the drilled hole is given in Figuded-a and Figure 4.4-b.
The first picture offers a top view of the exhadstt inside, visible only
upon removal of the stack and CPO block, whereaexéernal view is
proposed in the second one. In both the picturesitie is clearly visible
and its location is highlighted with a red arrowheThole has been then
connected with a metallic pipe, showed in Figuré-c.to the faucet
(Figure 4.4-d), required for the control of thekage amount.

The temperature controller failure is mimicked otliyough software
maneuvers. In this case, the temperature contnslldisabled switching
the exhaust blower control logic from automatiartanual and changing
its operating set-point in order to reach anothgarating condition. This
procedure is along the lines of the one definegharagraph 2.2.3 and
3.2.3, where the controlled failure is detectedrupbange in the system
operating condition.

As the previous one, also the CPO fault is induoaty through
software maneuvers. To mimic the CPO surface degjad the
characteristic oxygen to carbon rafigeo is varied with respect to its
normal operating value. The direct consequenchisfrhaneuver consists
in the variation of the outlet fuel composition atitus in its energy
content, as assumed in paragraph 2.2.4 and palagrag.

The last fault considered in this experimental \atgticoncerns the
ohmic resistance increase of the Galileo 1000Nkstaae to the several
constrains which limited the technical actions tloe fault design, some
hardware modifications have been again requireeéséhestrictions also
drove the fault choice to this specific one, rattiem the surface active
area reduction, justifying the FSM changes presemearagraph 3.1.2.
Since the inside part of the SOFC stack is notssibke, a resistance box
has been built in-house and inserted between #o& sind the inverter on
the positive terminal. The utilization of this boxmics the same effects
considered for the fault simulation sub-model pnésg in paragraph
2.2.5. A simplified scheme of the box structurskstched in Figure 4.5,
whereas a picture of the external connections hedrternal resistances
are given in Figure 4.6-a and Figure 4.6-b respelsti More in details,
the maximum resistance which can be added in serigs stack should
not exceed 100 ®&. Furthermore, to avoid abrupt changes, the etectri
box has been equipped with a manual switch so elsange the stepwise
variation of the resistance by 2Q0meach step. Indeed, this latter value
represents the value of the single electric restgtawhich allows the
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utilization of a maximum of five resistances iniesy as shown in Figure
4.5 and Figure 4.6-b. Moreover, a dedicated vdrgilasystem has been
sized in order to ensure the required heat digsipat

GALILEO
STACK
DC

INVERTER
DC/AC

LX)

Ventilation

Figure 4.5Electric resistance box scheme [53].

Figure 4.6 External connections (a) and internal resistanoe$iguration
(b) of the manufactured electric resistance bo}.[53
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4.3 Experimental faults induction results

The faults described in the previous paragraph heesn induced on
the Galileo 1000N system in a controlled way, sacasinderstand the
system response to specific faults magnitudes @apdadperly manage the
system behavior to avoid its abrupt failure.

The results here presented are exploited in the clexpter for the
validation procedure of the diagnostic algorithnveleped in this work.
In the following a brief description of the systeasponse to the induced
faults is given, with particular attention to tharmbles expected to be
mainly affected by the undesired events. It is tvdrighlighting that the
considered variables are chosen among those mdasytae HexisView
software. Indeed, this choice is motivated by thedhfor defining a set of
monitored variables among those currently availabiethe system, to
allow an effective on-line application of the diagtic algorithm, as
explained in the next chapter.

4.3.1 Blower fault induction results

The first fault consists in the induction of thdeets related to an
increase in the blower mechanical losses by turomglectrical heaters
surrounding the stack and located at the coldraét.i The aim of this
approach was to reproduce the same theoreticattefief this fault,
illustrated in paragraph 3.2.1, since no direct ifncation of the blower
efficiency was achievable. The induction procedoasically consists of
two steps: i) the heaters are manually switchethoough the HexisView
control panel and then ii) their power is graduatigreased up to 20% of
its maximum value.

An example of the effects of this maneuver on th® tmain
influenced system variables is given in Figure &rfbm this picture it is
possible to observe that the exhaust blower poweapréssed as a
percentage of its maximum value) increases. ThHexetan be linked to
the inlet air temperature growth, which leads taremement in the stack
temperature, regulated by the controller whichtiumm, acts on the blower
power.
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Electrical heaters on Electrical heaters off
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Figure 4.7 Exhaustblower power and ©exhaust concentration response
to the blower fault induction: once the electrioehters at the air inlet are
switched on the exhaust blower power increasesicing a small
increment also in the {exhaust concentration.

Moreover, the increase in the exhaust blower panguces also an
increment in the @exhaust concentration, meaning that also thdaar f
is affected by this fault. However, this effectlimited and in line with
the results carried out in paragraph 3.2.1.

4.3.2 Leakage induction results

The second fault entails a leakage induced by meértbe valve
represented in Figure 4.4, which allows the cordfdhe leakage amount
to avoid system abrupt failure due to substan@aiables drifts from the
safe region. The induction procedure is quite samphce the system is in
steady state the faucet is gradually opened uphéontaximum. The
effects of this maneuver are depicted in Figure, 4Bere both the
exhaust blower power and the €haust concentration are analyzed.
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Figure 4.8 Exhaust blower power and,®xhaust concentration response
to the leakage induction: the opening of the leakaave induces a slow
increase in the exhaust blower power, whereas thexaust
concentration reacts faster both at the valve ogeand closing.

The faucet opening induces a reduction in thelaw ft the stack inlet,
with a consequent stack temperature increase. Hawghis increment is
controlled through an increase in the blower poavet a resulting growth
in the air flow. Since the faucet is located at itack outlet, a direct
effect on the @concentration measurement is visible.

It is clear from Figure 4.8 that both the exhaueter power and the
O, exhaust concentration rise once the faucet is espeHowever, the
exhaust blower power increment is slower and |lesdeat than that of
the @ exhaust concentration, and, due to the slow sydieenmal
dynamics, the effects are still noticeable aftarndle due to the controller
actions.
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4.3.3 Controller failure induction results

The induction of the temperature controller failigg@erformed following
a precise maneuver, made only through the Hexis\Wewtrol panel,
which is characterized by two consecutive stepsfirst, the exhaust
blower control logic is manually switched from autatic (i.e.

temperature controller enabled) to manual (i.e.ptnature controller
disabled), and then ii) the exhaust blower powegrafing set-point is
changed by increasing its speed, so as to reacthanoperating
condition (following a similar approach to that delsed in paragraph
2.2.4). The main effects of this fault are représénn Figure 4.9, where
the stack temperature and the stack power behaaiersketched.
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Figure 4.9 Stack temperature and stack power response twttieoller
failure induction: once the controller is disablbdih the stack
temperature and the stack power clearly diverge

Once the exhaust blower set-point is changed, tistersm controller
cannot keep anymore the stack temperature witle@éfined boundaries,
with a consequent cooling down of the SOFC staek arsudden gross
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power decrease. It is worth noting that, sinceténeperature controller is
kept disabled, the system is not able to reacheadsgt state and its
variables drift with a constant rate from the noroy@erating condition.

4.3.4 CPO fault induction results

As explained in paragraph 4.2, the induction of @RO surface
degradation is performed mimicking its effects tlgb the stepwise
variation of the oxygen to carbon ratio set-poiftis choice is mainly
motivated by the inability to access the CPO irdéstructure. Thus, the
only way to reproduce the same effects of this tfaakides in the
variation of thelcpo set-point, which, in turn, affects the outlet fuel
composition and its energy content. In Figure 4itl@s possible to
appreciate the response of #laeo and the stack power measured values.

Acpo decreased Aepo increased
|

Stack power [W]

Time [s]

Figure 4.10Response of theppo and the stack power to the CPO fault
induction: as a direct effect of thiepo Set-point variation, its measured
value changes as well, with a consequent increaeistack power.
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This value decreases from 0.29 to 0.27 and th& stawer grows from
960 W (DC) to almost 990 W (DC), as expected frm tesults of the
fault simulation presented in paragraph 3.2.4. &heffects are in line
with those described in paragraph 2.2.4.

4.3.5 Stack fault induction results

The last fault considered in this work concerns itherease in the
stack ohmic resistance. The induction of this faslperformed through
the exploitation of the electric resistance boxspnted in Figure 4.5 and
Figure 4.6, which is inserted between the stack thedinverter on the
positive terminal.

Before describing the maneuver done for the faudluction, it is
worth mentioning that during the entire faults iotlon activity
performed at the EIFER laboratories, an accidespalipt shut down of
the Galileo 1000N system occurred, as mentiong83h This event was
caused by the system controller, which broughtdystem in a “safety
mode” after reaching a certain stack temperatwel,lén order to avoid a
severe system damage. This condition remained estainitil the
temperature controller was again enabled, followsd a complete
recovery of the system.

Unfortunately, the effects of the system “safetydeioled to a small
drift in the stack power value at normal operatompdition. Indeed, as
can be seen from Figure 4.9 and Figure 4.10, iisevis almost 960 W
(DC), whereas, after the system recovery, the gtaeker is lower than
950 W (DC). This last value can be observed in fegull, where the
stack power and the exhaust blower power behawiong the stack fault
induction are sketched.

This effect can be related to some degradation gghena affecting
the system, which had been subject to several tesfsired for the
GENIUS project and described in Chapter 7, befai@d exploited for
this experimental campaign.

The variation of the stack power at normal opegationdition also
affected the diagnostic algorithm adaptation preces explained in
paragraph 5.1.2.

Coming to the stack fault induction procedure, flllowed maneuver
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is characterized by a stepwise increase in thérgldmox resistance value,
with a minimum step of 20 €, as showed in Figure 4.11. In this picture
it is possible to observe the effects of the rasis¢ increase on the stack
power and on the exhaust blower power.
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Figure 4.11 Stack power and blower power response to the $satk

induction: the resistance value of the electric isoswitched stepwise

from 0 M2 to a maximum of 60 @, with a step of 20 &, inducing a
decrease in the stack power and an increase ioldiner power.

Moreover, the maximum resistance reached during tiést is 60 12,
even though the maximum resistance value of thei®d@00 nf. This
choice is mainly due to the high influence of tluerent fault on the stack
power, as observable from Figure 4.11. On the oltfzerd, the blower
power increase is less evident than the stack posekrction, especially
for the high measurement noise level.






CHAPTER 5 Diagnostic Algorithm

Application and Validation

The present chapter describes the validation proeedf the
diagnostic algorithm developed in this work throutghapplication to the
Galileo 1000N system. It is again important to reqthat the procedures
and the results herein described have been camiedithin the GENIUS
project framework, in a close collaboration amohg tUniversity of
Salerno, the EIFER institute and the HEXIS AG compa

Before applying the diagnostic algorithm on the il8al 1000N
system, it is worth recalling that a specific addiph process is required,
in order to suit each part of the algorithm to Hystem under analysis.
Indeed, the features related to the mathematicalemand the FSM
should be intended as *“general’, since they havenbdeveloped
considering a generic SOFC system scheme, derivath heuristic
knowledge and literature reviews, instead of réfgrrto a real
manufactured system.

5.1 Diagnostic algorithm tuning

According to the scheme sketched in Figure 1.9, diegnostic
algorithm design procedure is an offline procedsictv exploits the data
gathered during the dedicated experimental actosityhe Galileo 1000N.
Such a procedure is described in the following gaghs and its tasks
are listed below. More in details, to perform thagtostic algorithm
tuning, several steps are taken into account. Fobt all, the
communication protocol between the Galileo 1000 #re diagnostic
algorithm is defined, in order to exploit onlineetdata acquired on the
system in real time. Then, the mathematical modejuired for the
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residual calculation is specified, followed by tliefinition of the

threshold levels, necessary for the symptoms gaaerdinally, the FSM

required for the isolation procedure is characestistarting from the
approach described in Chapter 3. It must be retdhat, since all the
measured data exhibit probabilistic features, erdanistic inference
process should be coupled with a statistical ore definition of this

kind of procedure increases the robustness of mifierence process,
exploiting a formal algorithm to distinguish betwerormal and faulty
status. Once all the tuned components of the deignalgorithm are
presented, the validation process, based on thdoi@atpn of the

experimental results showed in the previous chageliscussed.

5.1.1 Communication protocol definition

The establishment of a proper communication prdtscan essential
task, because this protocol allows the real-timéa daansfer to the
diagnostic algorithm, in order to perform an onlieealuation of the
system state. As already mentioned in the prevahapter, the Galileo
1000N is controlled and regulated through the Hé#&ew software,
developed by HEXIS AG, which runs on a dedicated #&itectly
connected to the system. Through this software piassible to regulate
the system set-points and to retrieve informatiooua the controlled and
monitored variables. Moreover, an HexisView subeftion, called
HexisViewLogger, allows gathering the monitorediables and saving
them in a text file. For this reason, the HexisMiegger is suitable for
the development of a communication protocol based ihe
aforementioned text file, which can be read bydiagnostic algorithm to
retrieve the required data. More in details, thaisMiewlLogger reads the
measured signals, related to specific monitoredchbbas, and saves them
in the text file, with a log frequency of 0.2 Hz4]5 This text file is
periodically refreshed according to its maximumesizvhich cannot
exceed 5 MB. The variables saved in the text file eead by the
diagnostic algorithm and then treated to compute rssiduals values
during the monitoring process. A clear represeoatiof the
communication protocol scheme is presented in Ei§ut.
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Figure 5.1 Communication protocol scheme, adapted from.[54]

To perform a proper diagnosis of the system statusal time, the data
reading and the entire data treatment processegdsiduals calculation,
symptoms generation and fault isolation) shouldcompleted within a
time period lower or equal to that related to thexidViewLogger data
saving frequency. This condition can be fulfilleg means of a fast
computational model, as the one presented in fl@ing.

5.1.2 Mathematical model and threshold level definition

The mathematical model presented in Chapter 2 isexploited for
the validation process of the whole diagnostic atlgo. This choice has
been mainly motivated by the need for a fast amdij)anodel, which can
be rapidly tuned by the algorithm user. Indeedcesithe considered
system is a pre-commercial one, the SOFC stackactarstics might
promptly change due to further improvements on pghaduction line,
which can be mandatory for the market release efittal version of the
system. For this reason, a model defined on a qusvversion of the
system may not guarantee the required accuracy iomgemented into
the diagnostic algorithm for the on-field applicati Therefore, to
simulate the system in normal operating conditidghese considerations
drove towards a model whose development does gatreeeither a large
number of experimental data (i.e. long term expents) or the
computation of specific parameters (sometimes basedformation hard
to retrieve).

This model exploits numerical maps, taking as irthetvalues of the
controlled set-points at a specific operating ctadi and returning as
output the values of the monitored variables at dpeerating condition.
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To build these maps, the monitored variables haaenbmeasured at a
specific operating condition, and the acquired aigrhave been treated
offline to calculate their average values, thenhgedd into numerical
maps for each monitored variable.

In this work, only one operating condition has beensidered, both
for the experimental activity described in the poeg chapter and the
validation procedure herein illustrated. This ofiagacondition, assumed
from here on as the Galileo 1000N normal operatiogdition, can be
represented by the set-points values of the cdetralariables, listed in
Table 5.1, which are regulated through the HexigMmontrol panel.
Once defined these values, the monitored varidide® been measured
and treated.

Table 5.1Normal operating condition set-point values [54]

Set-point Value  Unit

Stack temperature 820 °C
Single cell voltage 0.8 V
Gas input power 3300 W
Acpc 0.29 -

However, not all the system variables measuredéyHexisView can be
considered suitable for the model development,doly those matching
the variables listed into the FSM exploited for tiselation process.
Among those variables (see paragraph 3.1.2 ancTaB) only three are
available in the HexisView, that are: i) the stgmkwer, ii) the blower
power and iii) the stack temperature. The stackagel measurement is
also available but it does not vary during the ralroperation due to the
potentiostatic control of the system.

The chosen monitored variables have been measunéagdsteady
state at normal operating condition and then thayehbeen treated to
evaluate their average valugsand their standard deviatioas listed in
Table 5.2. A representation of the raw signalshef measured variables
(i.e. stack power, blower power and stack tempegtis given in Figure
5.2, whereas thedf related to each raw dataset is sketched as ahasto
in a separate window on the right side of each pMatreover, the average
valuesu and the standard deviation intervatss of each monitored value
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are represented by a dashed red line and a cob@iggamht-dot green
lines respectively. From thedf shape it is possible to affirm that each
monitored variable exhibits a normal distributiofhis conclusion is
supported by thecentral limit theorem(CLT), which states that the
probability distribution of the averages of sampielated to independent
random variables can be well approximated by a abdistribution if the
number of samples is sufficiently large [57]. Aadiog to Montgomery et
al. [57], in many applications it has been obsertieat the normal
distribution is quite suitable for datasets made aipmore than 30
samples. The raw data plots presented in Figurare2elated to a time
space of 7000 s, which corresponds to a size dof eéaaset of about 1400
samples (i.e. acquisition frequency of 0.2 Hz). €&guently, a normal
distribution can be assumed for each monitorechibéei

Table 5.2Average valueg and standard deviatioasof the monitored
values referring to the set-point values of Table(Bormal operating

condition).
Variable 1 c
Stack power [W] 962.5 4.44
Blower power [%)] 544 0.54

Stack temperature [°C] 820 0.25

The averageg presented in Table 5.2 are essential for the digfini
of the map-based model, whereas the standard medaé can be
exploited as guidelines for the definition of thetimal threshold levels
for the symptoms generation. Another crucial aspleat must be taken
into account for the thresholds setting is the itpalf the measured
signals. From the raw signals presented in Figwi2eibcan be observed
that the measured data, especially the blower poaer affected by
guantization errors. In other words, the measuratlies have been
automatically rounded according to the precisioit (ire. quantization
unit) of the measurement devices. According toréive data distributions,
the quantization unit associated with the stack power, the blower power
and the stack temperature are equal to 1 W, 0.5n¥ @125°C
respectively. Upon the knowledge of each quanbtmatiunit, the
guantization error can be evaluated as half ofjtrentization unit [60].
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Figure 5.2 Raw signals, average valyeand standard deviation intervals
uto related to the measured monitored variables, refigrence to the
set-points of Table 5.1 (normal operating conditifam a time window of
almost 2 hours.

It is worth highlighting that the stack power awggavalue presented in
Table 5.2 is used for the validation procedure weference to the faults
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induced before the system “safety mode recovergume, which are the
temperature controller failure and the CPO suridegradation. For the
other faults, a stack power average value equ&4®8 W should be
used, according to the comments expressed in [@guiagd.3.5.
Considering this assumption, the average valueBabfe 5.2 are saved
into a numerical map, becoming function of the agiag condition set-
points, as sketched in Figure 5.3. The values etedafrom the map can
be exploited, during the online monitoring task et@luate the residuals
through equation (3.1). Also in this case, thedwesls are evaluated as
percent residuals, wher¥ is the monitored variable value acquired
online, wheread is the average value of the considered variati@ebed
from the numerical maps.

O.C. SET-POINTS MAPS SIMULATED VARIABLES

Stack temperature®C]
Single cell voltage [V]
Gas input power [W]

Acpo

: Stack power [W]
—»- u —_—] Blower power [W]
: Stack temperature°C]

Figure 5.3 Map-based model scheme.

The choice of percent residuals allows the impldaaten of percent
threshold levels as well. The standard deviatidnesof Table 5.2 and
the quantization errors, evaluated for each momitovariable, are
exploited to design the proper threshold required the symptoms
generation. As already mentioned, in the right safle~igure 5.2, the
measured values distributions, with the averagaeslred dashed line)
and the standard deviation interval related sovadth (green straight-dot
lines), are represented for each monitored variablee uto range
includes the 68.27% of the measured samples [57].

A first useful indicator for the threshold level fubtion is the
Coefficient of Variation (CV), which represents themalized dispersion
of a probability distribution and is expressedas[65]. According to the
values listed in Table 5.2, this coefficient issléean 0.5% for the stack
power, less than 1% for the exhaust blower powdrl@ss than 0.05% for
the stack temperature.

A second indicator can be obtained through the uatiain of the
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guantization error. Considering a uniform scalaargizer with a small
step sized and a negligible overload distortion, the mean-sgueror
distortion can be approximated &%12 and can be assumed limited into
the range p/2, /2] [66]. For each monitored variable, the previoaisge
limits of 6/2 can be normalized with respect to the relatedalbe
average as$)/2u. Considering the signals sketched in Figure 5h2, t
previous expression leads to a value of 0.05%herstack power, almost
0.5% for the exhaust blower power and a 0.008% tfer stack
temperature.

From the evaluation of the CV, the calculation bé tquantization
error limits and considering the interest in detegtncipient faults levels,
a threshold range of £1% can be assumed, ensumagthe standard
deviation rangeitos and the quantization error rang#d/2 are included
within the threshold range [-1%, +1%]. Moreovelisttange ensures the
best FSM characterization process, as describ#égkifollowing section.

5.1.3 FSM characterization

The characterization of an FSM suitable for theil&é@l1000N system
is accomplished following the entire procedure dbsd in Chapter 3
with reference to a threshold level of +1%, definedthe previous
paragraph. This procedure leads to the same FS$&med in Table 3.9,
which is then updated recalling that the only aa#é variables, which
can be online monitored on the Galileo 1000N, hoseé listed in Table
5.2. As a result, the FSM of Table 5.3 is finalbtained.

As explained in Chapter 3, to perform a properagsoh procedure by
means of an FSM, the fault patterns listed in t&&FRows should be
independent from each other, so as to allow theogal isolation of the
occurring fault. However, the FSM of Table 5.3, releéerized by five
faults and only three symptoms, shows two rows whi same pattern
(surrounded by bold edges in Table 5.3), that laeeiricrease in blower
mechanical losses and the leakage at stack oatethis reason, it is not
possible with the available number of symptoms (henitored variables)
to perform an univocal isolation procedure for thetwo faults.
Consequently, the two aforementioned faults areggd into a common
fault cluster, represented with the symhel f
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Table 5.3Improved FSM characterized for the Galileo 100@5tam
with reference to a threshold level of +1%.

w | & 3| ¢
SR 1
a |22l
1=1% E|x|S5/88
S g W32 o %
a (%] = -
FAULTS s | 9| s
Increase in blower f
mechanical losses 1
Leakage f,] O 1|0
Temperature controller
failure fa 1 1 1
CPO surface degradation| f, | 1 | O | O
Stack ohmic resistance
increase fs 1 1 0

The FSM presented in Table 5.3 is the most suitahke attainable
with the available measurements. The choice ofeshtold level of +1%
limited the number of fault clusters to one, withlyotwo faults within.
Indeed, setting a higher threshold value, for eXxam®%, would have
led to an FSM characterized by one fault clustaul{ § and $ grouped
together) and the removal of the faultdince the symptoms related to the
monitored variables are all zero (see Table 3.10).

With the FSM defined in Table 5.3, the isolatiorogedure can be
performed. However, before comparing any symptoswor with those
of the considered FSM, it is mandatory to undecstdrall the arising
symptoms are generated by a faulty state or theyfalse alarms. The
discrimination between these two events is achiebgdmeans of a
statistical hypothesis test, as described in thevitng.

5.1.4 Statistical hypothesis test

As mentioned in the previous sections, a detertninisterpretation
of the results should be avoided in favor of a pholistic analysis. As
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explained in Chapter 1 (i.e. Figure 1.4), statssatlows to distinguish if
any arisen symptom, related to a single measuradt,pbas been
determined by a faulty state or is just a falsenaldMoreover, it is also
possible to confer a specific probability of misdadlt to each system
state inference.

For these reasons, to achieve a robust inferentieeosystem status, a
statistical hypothesis test on the averages of sammples is exploited
[10][57][62]. This test infers on the unknown awgeau; andu, of two
independent populations, in order to verify a sfpetiypothesis on their
differenceus-uz. This procedure uses the information obtained ftoum
samples, extracted from the aforementioned poustiln this work, all
the monitored variables (i.e. stack power, exhblstier power and stack
temperature), either in normal operating conditwnn faulty state, are
stochastic variables, whose measured values represe populations of
the observations.

Focusing on just one variable, the collection &f values both in
normal operating condition and in faulty state sagtstwo independent
populations. One sample is extracted from the djmd referring to the
normal operating condition, whereas the other sangplextracted from
the population referring to the faulty state.

Before applying the hypothesis test theory, twauiaggions have to
be made. The first one is on which kind of disttibn the two
populations refer to. In this case, tbentral limit theoremCLT can be
used: if the sizesy and n, of the samples extracted from the two
populations are larger than 30 samples, the papuokatlistribution can be
considered normal [57]. The second assumption ighenpopulations
variances ;° and o,°, which are considered unknown but equal
(61°=0,°=¢°). This last hypothesis is reasonably consisterth vthe
characteristics of the measured signal. From thevexhentioned
assumptions, thietestis considered [57].

Once the previous assumptions have been made,othplete test
procedure can be defined. The first step consisthe statement of the
relevant null hypothesid, and alternative hypothedit. By rejecting the
null hypothesisHy it can be stated that the system is in faultyestat
whereas by rejecting the alternative hypotheki# can be stated that the
system is in normal conditions. Assuming th&f is the reference
difference of the populations averages:



CHAPTER 5 Diagnostic Algorithm Application and Validation 141

Ho:|/11_luz|:Ao (5.1)
H1:|,U1_/12| >A,
The alternative hypothesid; has been defined as an unilateral one and
states that the average lies out of the rangeu-Ao,u>tAo]. This choice
is justified considering that the aim of the testto refuse the null
hypothesis, so as to assert with a certain prabalflat the system is in
faulty state. For this reason, the denial of thd hypothesis implies
refusing that the average lies within the rangeub-Ao,u2+Ao).

Since two populations with equal unknown varianmesanalyzed, &
distribution statistic has to be taken into accoéwor this reason, to refuse
the null hypothesis the statisticcan be defined as [57]:

:Usampl - :Usampz‘ - A0
Sp\/l +i
n n
where the termsusamp; and psampz are the averages of the samples

extracted from the two populations amdandn, their sizes. The terr§,
is the pooled standard deviation estimated fronptiaded variance [57]:

t, =

(5.2)

SZ - (nl - 1)Jszamp1 + (nz - 1)0-szamp,2 (53)

p

n+n,—-2

The pooled variance provides an estimation of thgufations variances,
exploiting the standard deviatioBgamp; andosampe Of the two extracted
samples.

In the frame of this work, the reference differegecan be defined
recalling that one sample refers to a normal opegyatondition, whereas
the other refers to a faulty state. Definingiasnp, the average of the
normal operating condition sample, correspondingaoch value listed in
Table 5.2 A¢ can be expressed as:

A0 = lusampZT (54)
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wheret is the percent threshold value defined as +1%he frevious
paragraph. This choice ensures that the null hgsihcan be refused for
all thoseusamp; Values laying outside the reference thresholdeang

The statistidy has a probability distribution withn;+n,-2 degrees of
freedom [57]. The rejection region Ef can be defined as [57]:

tO > tz7/,nl+n2—2 (55)

wherea is the significance level of the test. This legetresponds to the
probability of incorrectly rejecting the null hypasis, which corresponds
in this case to the probability of false alarm, dedte set equal to 0.01
(i.e. a confidence interval of 99%).

The remaining parameters to be set are the sarsiglesh; andn,. To
set these values, ttaperating characteristic§OC) curves can be used
[57]. These curves are function of two parametgrthe false negative
rate, which represents the probability of erroneouslyirfg in reject the
null hypothesis when it is false (which can be ailsrpreted as the
probability of missed fault), and ii) a scaling tiaicd defined as:

d :% (5.6)

According to equation (5.6), the scaling facwris function of the
reference populations averages differengand the population standard
deviations. The former can be easily computed through egugfod),
whereas the latter, because it is unknown, mustestemated. The
standard deviations of Table 5.2 can be used averefe values to
compute the scaling factor corresponding to eachitmi@d variable.

From [57], a high scaling factor, associated tmwa false negative
rate, leads to a low sample size. Neverthelessmihenum sample size
should be greater than 30 to ensure that the pogudapresent a normal
probability distribution. For this reason, the I@wscaling factor, chosen
among those computed with respect to all the muoadtorariables, is
considered. According to a threshold level of +18d ¢he values listed in
Table 5.2, the lowest scaling factor is that refdrto the exhaust blower
power:



CHAPTER 5 Diagnostic Algorithm Application and Validation 143

g =il i _[5440008 o (5.7)
20 20 2[0.54

From the OC curves sketched in [57], the assumpidfce false negative

rate equal to 0.01, coupled with a 0.5 scalingdiadeads to a theoretical

sample size of 90 samples. According to Montgomenal. [57] and

assuming that;=n,, the evaluation of the real sample size is:

n=n,= %ﬂ =455=46 (5.8)

Considering the sample size computed through emugf.8) and a
significance level of 0.01, equation (5.5) becomes:

ty >t 0100 = 2326 (5.9)

The evaluation of the statistiy, and the consequent verification or
refusal of the null hypothesis, allows the intetatien of the nature of
each arisen symptom. With the definition of the f@scedure, the tuning
of the diagnostic algorithm is completed. In théofeing paragraph, the
results of the experimental validation processpaesented.

5.2 Diagnostic algorithm validation

The validation procedure of the diagnostic algonitis performed
exploiting the data gathered during the experimetavity presented in
Chapter 4. For each considered fault, the acqusigaals are treated to
compute residuals and generate analytical sympt&ash symptom is
associated to the result of the hypothesis tesntterstand if it has been
caused by a faulty state or it is only a falseralar

If the test ensures that a fault is occurring, ¢chenplete symptoms
vector is assembled and compared to the rows oF8M presented in
Table 5.3. In case of a complete match, the isolelt type is compared
to the one induced on the real system, to undeafsthm successful
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detection and isolation has been obtained.

An example of the procedure followed for the getieraand analysis
of a symptom is sketched in Figure 5.4. It is im@ot to remark that,
although every generated symptom is related tonglesimeasurement
point, the hypothesis test is performed with a dam@onsidering the
generic residual time behavior drawn on the tog-iglire 5.4, each dot
represents a measured point. When a residual goicgeds the £1%
threshold, a symptom arises.

t*  Time

Figure 5.4 Example of symptom generation and analysis through
hypothesis test.

Since the hypothesis test requires the extractiom sample, this
sample is defined selecting the point under amalysid all the 45
previous measured points, in accordance with the defined through
equation (5.8). This means that the inference ersgimptom nature at a
specific moment is influenced by all the previousasured points. The
sample extraction induces an initial gap in thstatistic evaluation. This
gap is caused by the fact that the first 45 meadspnts cannot be
analyzed with the hypothesis test since the laclkrelvious measured
points hinders the extraction of significant sarsple

In the example given in Figure 5.4, two residuahf(one at’ and
another at” ) have been chosen to explain how the hypothesismarks.
Both points induce a symptom, but only the second elates to &
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statistic higher than thid, rejection regiontg> 2.326), which allows the

rejection of the null hypothesis. This means the first considered

symptom should be taken as a false alarm, wheteasdcond one as
caused by a faulty state. This conclusion highsigtitat, to perform a
reliable and efficient isolation task, both the ggyoms and the related
statistics should be considered. Indeed, a symji@ing 1 is a necessary
but not sufficient condition to state that a fawtate is occurring in the
system. However, coupling this information with tatistic higher than

theHy rejection region, a necessary and sufficient doomlis obtained.

It is worth noting that every conclusion on the gyom nature is
always associated to a significance lexedf 0.01 and a false negative
rate of 0.01, which represent the probability dedaalarm and missed
fault, respectively.

5.2.1 Blower fault validation results

The first fault considered for the validation preseconsists of an
increase in the exhaust blower absorbed power. Sdithe experimental
data obtained during the fault induction have besented in paragraph
4.3.1. The acquired signals are exploited for tlaécutation of the
residuals, by means of equation (3.1) and the geevalues of Table 5.2,
which are then compared to a 1% threshold rangéhfo generation of
the related analytical symptoms. The symptoms ratudeduced through
the hypothesis test results. The resulting symptomstor is then
compared to the rows of the FSM presented in Talde

The obtained residuals, analytical symptoms #ndstatistics are
presented in Figure 5.5, Figure 5.6 and Figure f17the stack power,
the exhaust blower power and the stack temperataspectively. The
residual plots show two horizontal red dashed |ingsich represent the
threshold region of +1%, whereas the statistic plots have a single
horizontal red dashed line, which is the limit loéHo rejection region of
2.326.

About the stack power residual behavior in FigurB, 5t is well
included within the defined threshold range, legdime related symptoms
to be zero in most cases, except for few pointsvéder, taking a look at
the tp statistic trend, it is always lower than tHg rejection limit. This
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result allows to assert that the few arisen symptare false alarms.

Differently from the stack power, the blower powesidual, shown in
Figure 5.6, clearly exceeds the +1% limit after &@bb000 s, with a
maximum variation of almost +8.5%, in line with tfeult simulation
results exposed in paragraph 3.2.1. This trend ceslwall the related
symptoms to be 1 after this time. Before 5000 s, mbsidual crosses
repeatedly both the threshold boundaries, but avgmall amplitude, with
the related symptoms being alternatively 0 and g&vextheless, the
evaluation of they statistic gives a clearer interpretation of thsutts.
Indeed, by perceiving its trend, it can be assetttatd only the symptoms
arisen after 5000 s can be related to a faulty stahereas the previous
ones can be assumed as false alarms. An interestimgnent can be
made on a symptom being 0 at around 8500 s in &i§Ld. In this work,
the requirements to state that a fault is occunng specific moment are
both a symptom being 1 and the relatgdstatistic exceeding thel
rejection limit. For this reason, although thestatistic related to the
aforementioned symptom point is higher than 2.3B& point is not
considered a fault. Thus, this event might be diaslsas a missed fault.

The last results to be evaluated are those comaprthie stack
temperature, presented in Figure 5.7. The anabfsill the displayed
trends yields to the conclusion that the stack traipre remains in
normal condition for the whole duration of the cdesed time window.

Summing up the obtained results, it can be condutat, when the
fault occurs, the only affected variable is the adt blower power,
whereas both the stack power and the stack tenperatemain
unchanged. The evaluation of the symptoms trenuispled with thety
statistics, lead to the univocal symptoms vectat fI}. From this vector it
Is already possible to affirm that an unexpectedamr is occurring in
the system, because at least one symptom is 1.

To infer which kind of fault corresponds to thishbgior, the obtained
symptoms vector is compared to each row of the p&dented in Table
5.3, obtaining a perfect match with the one relatethe fault cluster;$.
Since this fault cluster includes the induced faiilis possible to assert
that the diagnostic algorithm is capable of colyedaetecting and
isolating the expected fault cluster. This cond@usis quite satisfactory,
although it is not possible to isolate the singhaltf with the current
monitored variables.
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Figure 5.5 Stack power residual, analytical symptom #ystatistic

related to an increase in the exhaust blower mechldnsses.
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Figure 5.6 Exhaust blower power residual, analytical symptordty

statistic related to an increase in the exhaustdidanechanical losses.
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Figure 5.7 Stack temperature residual, analytical symptomtasthtistic
related to an increase in the exhaust blower mechldnsses.

A last comment can be made on the time requiretiale a first
detection. Looking at th& statistic trend of Figure 5.6, it exceeds the
limit of 2.326 at 5200 s. Considering that the fasarted right after 4000
s (see Figure 4.7), it took around 20 minutes teale¢he fault for the first
time. Moreover, it is also possible to assert teatce all the symptoms
arisen before this stage must be considered f#sms, the algorithm is
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also capable of correctly categorizing the obtaiagshptoms. The only
discrepancy occurs between 4000 s and 5200 s, wheresystem is

actually in faulty state but the algorithm stilleitifies the symptoms as
false alarms. This event is due to the detectidaydaf 20 minutes, but it

can be considered acceptable since the fault kas magnitude. On one
hand, this delay could be reduced with a diffetantng of the algorithm

parameters, but this may lead to an accuracy rextucdn the other hand,
the delay reduction could also be achieved by asirg the sampling rate
of the measurement devices, so as to reduce tieewindow keeping the
same samples number.

5.2.2 Leakage validation results

Concerning the leakage between the SOFC stack lamdesthaust
blower, the same validation procedure describedthia previous
paragraph is followed. The signals acquired durihg experimental
activity described in paragraph 4.3.2 are exploftadthe calculation of
the residuals, by means of equation (3.1) and vkeage values of Table
5.2. These residuals are then compared to a +1éshbld range for the
generation of the related analytical symptoms, whiosture is deduced
through the hypothesis test. The resulting symptamastor is then
compared to the rows of the FSM of Table 5.3.

The attained residuals, analytical symptoms @grefatistics related to
the stack power, the exhaust blower power and tdek gemperature are
presented in Figure 5.8, Figure 5.9 and Figure Ee%pectively.

Concerning the stack power (Figure 5.8), its resicaehavior lies
within the £1% threshold range for the whole dumatof the considered
timespan, except for one point around 1100 s, wisitcbws a related
symptom equal to 1. However, thg statistic trend ensures that the
aforementioned symptom is only a false alarm.

On the contrary, the blower power residual, presemt Figure 5.9,
exceeds the threshold boundaries clearly after E5@dth almost all the
related symptoms being 1. The maximum residualatian is around
+3.9%, in line with the fault simulation resultsp@sed in paragraph
3.2.2. It is interesting to observe that this maximis reached right after
the leakage valve closure at around 1600 s (sesd-#8).
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This behavior highlights the slow response of tkx@aest blower
power to the current fault, due to the slow systeermal dynamics (see
paragraph 4.3.2). Before 1500 s, the residual esosgveral times the
+1% range, inducing a sequence of 0 and 1.
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Figure 5.8 Stack power residual, analytical symptom &ystatistic
related to a leakage between the SOFC stack arekttaist blower.
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Figure 5.9 Exhaust blower power residual, analytical symptordty
statistic related to a leakage between the SOR stad the exhaust
blower.

Also in this case, the analysis of the reldiestatistic trend can help
to recognize the symptoms nature. Thstatistic exceeds thdy rejection
limit right after 1500 s. This means that only #hgmptoms arisen after
this time can be assumed as generated by a fdaly, svhereas all the
other should be classified as false alarms.
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The results concerning the stack temperature amostlthe same
obtained for the stack power. Indeed, the residbalved in Figure 5.10
remains always within the £1% threshold range. Thossymptom arises
during the whole considered period. Also the reldte statistic trend
remains much lower than tl rejection limit.
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Figure 5.10Stack temperature residual, analytical symptomtand
statistic related to a leakage between the SORR stad the exhaust
blower.
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From the presented results, it can be stated beabhly monitored
variable clearly affected by the current faulthe £xhaust blower power.
The evaluation of the symptoms trends during thesicered time
window, coupled with thd, statistics, leads to the univocal symptoms
vector [0 1 0]. Since at least one symptom is edqodl, the algorithm
detects an abnormal state. The inference procees/é@s the comparison
of the obtained symptoms vector to each row ofRB& of Table 5.3,
obtaining a perfect match with the fault clustes. fAs explained in
paragraph 5.1.3, due to the reduced number of orabie variables, the
leakage fault has been included into a fault clusfeecifically the cluster
f12. Thus, the isolation of the expected fault clustenfirms that the
diagnostic algorithm is capable of performing arect detection and fault
cluster isolation. As asserted for the previoudtfathis conclusion is
quite acceptable, although it is not possible toarally isolate the single
fault due to the low number of monitored variables.

In conclusion, concerning the time required to haviest detection,
the ty statistic trend in Figure 5.9 exceeds the limit2ad326 right after
1500 s. This means that a first detection is peréa almost 20 minutes
after the valve opening (see Figure 4.8). Whahteresting to observe is
that the symptoms trend starts to become 1 morpémly after 750 s
(Figure 5.9), and thg statistic shows a monotone increase at that time,
almost reaching thely rejection limit at 1250 s, but without crossing it
On the other hand, it decreases right after thiatpprobably due to an
increment in the exhaust blower power fluctuatiamsich might induce a
growth in the samples variance. This event may lestended the real
detection delay, but, as stated for the previoul,fa delay of 20 minutes
can be considered satisfactory for a fault with roagnitude.

5.2.3 Controller failure validation results

The third fault entails the temperature controlferlure, whose
experimental induction and the related effects @ims of stack
temperature and stack power have been describearagraph 4.3.3. The
obtained residuals, the symptoms and thetatistics associated to the
stack power, the exhaust blower power and the stawciperature are
illustrated in Figure 5.11, Figure 5.12 and Figbir&3 respectively. More
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in details, the first variable to be analyzed is $itack power. Its residual
behavior, presented in Figure 5.11, shows a slow rbonotonous
decrease after 1100 s, passing through the -1%ftbick limit right before
1500 s.
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Figure 5.11Stack power residual, analytical symptom &ystatistic
related to a temperature controller failure.
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Figure 5.12Exhaust blower power residual, analytical symptordt,
statistic related to a temperature controller failu

At that time, as a direct consequence, the symptetag to arise,
stabilizing at 1 around 1600 s. Moreover, thestatistic trend starts to
monotonously increase around 1400 s, going beybedHp rejection

limit after 1700 s. From Figure 5.12 it is possilite observe that the
exhaust blower power residual increases abruptB0ats, right after the
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fault induction (see Figure 4.9), reaching a maxmalue of +15% at
steady state.
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Figure 5.13Stack temperature residual, analytical symptomtand
statistic related to a temperature controller failu

This growth is a direct effect of the manual chanfée exhaust blower
operating set-point, done right after the controbbeing disabled. This
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trend induces the related symptoms to be 1 froms7&0til the end of the
considered time window (see Figure 5.12). Howebefpre this stage,
the symptoms trend is already 1 in most casestalaestrong oscillation
of the blower power signal, which frequently crassige threshold limits
in both the directions. Also in this case, thstatistic should be used for
the interpretation of the symptoms nature. Indaedtrend shows an
abrupt increase at 900 s, as the associated resytirag almost instantly
beyond theH, rejection limit. According to this trend, all tleymptoms
arisen before 900 s should be classified as fédsma.

The same comments made for the stack power calsbexended to
the stack temperature results, sketched in Figuf.5The stack
temperature residual starts to decrease monotgnafist 900 s, and goes
through the -1% threshold limit at around 1200 sthat time, the related
symptoms behavior becomes 1 and remains at thaé wadtil the end of
the considered timespan. Concerning the statistic, it shows an
increasing monotonous trend, going beyond 2.326nabst 1400 s.

Summing up the obtained results, it is possiblestade that all the
monitored variables are affected by this fault. ffrahe symptoms
behavior here illustrated, coupled with the relatedtatistics trend, the
obtained symptoms vector is [1 1 1]. Actually, stworth highlighting
that this pattern has been reached only after &ineperiod of time,
because the symptoms related to each monitoredblarhave become 1
at different moments. Initially, the first obtainedttern is [0 1 0], at 920
s, followed by the pattern [0 1 1] at 1400s. Thelffipattern [1 1 1] is
reached only at 1700 s. Comparing this final patteith each row of the
FSM of Table 5.3, a perfect match with the oneteeldo the faultfis
obtained. Differently from the two previous validet procedures, since
the third row of the considered FSM presents amimguous symptoms
vector pattern, the fault is univocally isolatechid result ensures the
correct detection and isolation of the expectedt.faAnother difference
which can be identified with respect to the presgioalidation procedures
Is the time discrepancy between the detection afreexpected event and
the isolation of the correct faulty state. On orandy the detection is
obtained at 920 s, when a symptoms being 1 is ededdo a faulty state
through the related, statistic, with a delay of about 3 minutes with
respect to the fault induction at 700 s (see Figueg.

On the other hand, the isolation of the correcltfisuachieved only at
1700 s, with a further delay of about 13 minutdsug, the whole delay
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between the fault induction and its isolation i©wnd 16 minutes,
comparable to the delays computed for the previaufis. This result
highlights the importance of waiting a certain amoof time before
performing a reliable inference on the system staieclusion drawn also
by Escobet et al. [17] in their work.

5.2.4 CPO fault validation results

Concerning the CPO surface degradation, the relaiguebrimental
induction has been described in paragraph 4.3.4.c0ltained results in
terms of residuals, analytical symptoms dpdtatistics are showed in
Figure 5.14 for the stack power, in Figure 5.15 tog exhaust blower
power, and in Figure 5.16 for the stack temperature

As already illustrated in Figure 4.10, the direohsequence of the
variation of thelcpo set-point consists in the increase in the stackepo
whose related residual abruptly increases fromd&aand +2.8% (Figure
5.14), exceeding the +1% threshold limit at 95Mereover, the residual
shows a following abrupt return within the +1% thield range at 1730 s,
in conjunction with thelcpo set-point decrease to the normal condition.
The residual behavior induces the related symptorbg equal to 1 in the
time window between 950 s and 1730 s. However, rolvge the to
statistic trend, it is possible to associate ohly ¢vents after 1070 s to a
faulty state.

About the blower power results showed in Figure55.the strong
oscillations, measured during the fault inductitead the associated
residual to cross repeatedly the +1% thresholdeangooth directions,
with an alternation of 0 and 1. However, accordiogthe relatedt
statistic trend, the arisen symptoms should besified as false alarms.

Concerning the results presented in Figure 5.1@&arit be clearly
stated that the stack temperature is not affecyetiib fault.

According to the conclusions here drawn, the ole@imunivocal
symptoms vector is [1 0 0], meaning that an abnbrstete has been
detected. Through the comparison of the attain@spsyms vector with
the rows of the FSM of Table 5.3, a perfect matdih whe one related to
the fault f, is obtained. From this result it is possible @testthat, also in
this case, the diagnostic algorithm performed aesgful detection and
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isolation of the correct fault. Furthermore, thaedéon is delayed by
only 2 minutes.

10 T T T T

| | I I

| | | |
g S5p--------- ‘:F ********** fmmmm - R ':F **********

—_ | | |
g O_" VIATY e et vt "7;:_77777_:777;7:_777 v ANV

o ] | | ]

(%] | | | |
g Bt I i

| | | |

10 l l l l

0 500 1000 1500 2000

2 T T T T

I I I I

| | | |

| | | |

— | | | |
- 1-----=-=-=--- S e foe ———— = — — —

£ | | | |

8 | | | I

g— I I I !

£ 0 ‘ Nt CTT ‘

wn | | | |

| | | |

| | | |

1 I I I I

0 500 1000 1500 2000

to statistic [-]

Time [s]

Figure 5.14 Stack power residual, analytical symptom &ystatistic
related to a surface degradation of the CPO.
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Figure 5.16 Stack temperature residual, analytical symptomtand
statistic related to a surface degradation of tR®©C

What might be also interesting to notice is thahaugh thet, statistic
related to the stack power is still beyond Hierejection limit also after
the fault ending at 1730 s, no detection is obthisiace the symptoms
are all O after that moment. This conclusion reraagain the importance
to combine both the symptoms and thestatistic trend to perform a
reliable detection.
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5.2.5 Stack fault validation results

The last considered fault entails the increasehm s$tack ohmic
resistance, described in details in paragraph 4Thé results concerning
the stack power, the exhaust blower power and tdek gemperature are
presented in Figure 5.17, Figure 5.18 and Figul® %espectively, in
terms of residuals, analytical symptoms &nstatistics.

In accordance with the experimental results deedriln paragraph
4.3.5, the stack power residual presented in Fidguf& is evidently
affected by the induced fault. Indeed, it showsupbichanges, as those
displayed in Figure 4.11 by the stack power meaksignal. The residual
goes under the -1% threshold limit at 600 s, ardunadnute after the first
electrical box resistance switch (see Figure 4.¥g¢pching then a
minimum value of about -7%, in correspondence to eectrical
resistance of 60 . It finally returns into the £1% threshold range a
3000 s. This residual behavior leads all the symgtavithin 600 s and
3000 s to be 1. But, according to thestatistic trend, only those after
760s can be ascribed to a faulty state.

Concerning the exhaust blower power residual shawédgure 5.18,
it exhibits strong oscillations which induce theeated crossing of both
the +1% thresholds limits during the whole consedertimespan.
Furthermore, the residual values are located meaguéntly around the
+1% threshold level, especially in the first half the time window,
showing a maximum value of +3.8% around 1750 s thed returning
between the +1% threshold range after 3000 s. Aéhswior is due to the
lower sensitivity of the exhaust blower power t@ timduced fault, as
described in paragraph 4.3.5. The direct conseguehthis trend is that
most of the symptoms values are equal to 1. Howewserlearer
interpretation of the fault effects on the exhablktwer power can be
achieved through the relateg statistic trend. From Figure 5.18 it is
possible to observe that tiestatistic crosses one time thig rejection
limit at 875 s, going again under this value uh@D0O s. Then it crosses
this limit for the second time at 1000 s, with artial fluctuation, which
induces few points to go under 2.326 at 1300s.
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After this moment, they statistic remains over thd, rejection limit
until 2300 s, when it goes again under this val#) a last crossing at
2540 s. After this time, thig statistic remains lower 2.326 until the end of
the considered timespan.

About the stack temperature results presentedgar€i5.19, no effect
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induced by this fault is visible, thus the stacknperature remains
unchanged during the entire time window.
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Figure 5.19Stack temperature residual, analytical symptomtand
statistic related to an increase in the stack ohlgsistance.

From the evaluation of the obtained results itasgible to state that
the variables affected by the current fault are steck power and the
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exhaust blower power. From the symptoms behavioe hiustrated,
coupled with the correspondimgstatistics trends, the obtained symptoms
vector is [1 1 0]. As happened for the controllaiture validation, this
pattern has been reached after a certain periotined because the
symptoms related to the stack power became 1 bafose of the exhaust
blower power. The initial pattern reached at 7613 $1 0 0]. Then it
alternates between [1 0 0] and [1 1 0] from 87,8l 1300 s, when it
becomes steadily [1 1 0]. This pattern is keptIl#8D0 s, after which it
alternates again between [1 0 0] and [1 1 0] @840 s, when it becomes
[1 O O] until 3000 s. Comparing the pattern [1 Iwdfh each row of the
FSM of Table 5.3, a perfect match with the onetegldo the fault{is
obtained. Since the fifth row of the considered F3ivesents an
unambiguous symptoms vector pattern, the faultnisacally isolated,
ensuring that the algorithm correctly detects aswmlates the expected
fault. In this case the delay between the deteaifan faulty state and the
isolation of the correct fault is 9 minutes, whichn be considered an
acceptable amount of time. What should be also megdais that the
current induced fault can be univocally detectedhy algorithm only if
the electric resistance is 4Qnor higher. However, such a value can be
considered still representative of an incipienttfau

With this last result, the complete successful dalon of the
presented diagnostic algorithm has been performed.

5.3 Graphic User Interface for the diagnostic
algorithm online application

The validation process presented in the previowagpaphs has been
successfully performed both offline and online be Galileo 1000N at
the EIFER’s laboratories. Nevertheless, befor@itiine implementation,
the developed diagnostic algorithm required furtsaptations.

The first tackled issue concerned the algorithm matational speed.
Indeed, the online data treatment processes @i ikading, residuals
calculation, symptoms generationy statistic evaluation and fault
isolation) should be performed with a frequencyhbigor at least equal to
the one required by the HexisViewLogger for theadsdving (which is
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0.2 Hz). This constraint is mandatory to avoid theting/reading

superimposition of the diagnostic algorithm and thestem control
software during data transfer (see paragraph 5.Edr)this purpose, by
means of an optimized software programming, theeld@ed diagnostic
algorithm has been capable to perform the datantexa process with a
frequency higher than 0.2 Hz on a PC with an I@ete 2, Duo CPU
(3.16 GHz), 3.46 GB of RAM and Microsoft Windows X8 operating
system.

Another crucial issue has been the verification tké onboard
algorithm implementation. For this purpose, thegda@stic algorithm has
been coupled with a dedicated Graphic User Interf@&Ul) and
embedded into a comprehensive executable file imghed on board
(i.e. on the same PC running the Galileo 1000Nrcbsbftware).

The development of a GUI has been mainly motivatethe need for
a rapid and easy tuning of the algorithm and ferréml time checking of
its functionalities and the diagnosis results. Tise of such a GUI has
been also a proof of the easiness of use of thelaleed algorithm.

In Figure 5.20 the flow chart of the whole onlineghostic algorithm
is presented, whereas in Figure 5.21 and Figur2 the screenshots of
the GUI during its application are showed, for nafmand faulty
behaviors of the Galileo 1000N, respectively. liMsrth noting that the
flow chart describes step by step the diagnosticenture, including the
interaction with the user and the possible resoltsthe diagnosis.
Moreover, the blocks presented in Figure 5.20 Fed#rect coincidence
with the buttons and the panels in Figure 5.21Rigdre 5.22.

After starting the algorithm (i.e. lunching the extable file —Start
block in the flow chart), the first step consiststhe verification of the
communication protocol between the algorithm anel Galileo 1000N
control software. This task is accomplished by mghthe Connect
button in the upper left corner of the GUI (i.ee thonnectblock in the
flow chart): if the communication text file is fodnthe CONNECTION
STATUS panel, located in the lower left part of G&I, displays the
string “System Connected”; on the other hand, #& text file is not
present in the defined path, the panel displaysriiiig: File Missing”.

The second step consists in the definition of theeshold levels
(Threshold selectionblock in the flow chart). TheTHRESHOLD
SELECTION panel allows the user to select the thresholdsvinways:
one for all for a common value for all the monitored variablandone
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by one for a specific value for each monitored varialitethe proposed
examples (Figure 5.21 and Figure 5.22) the sameshioid levels are
chosen for all the variables and they have beermaal to +1%. If the
user does not manually select the threshold levbks,thresholds are

automatically set equal to +1% for all the monitbxariables.

Connect

Y
Fault
Isolation

Unknown
Fault

System
Connected
™
N
A 4
WARNING Threshold
file missing selection
J—
1=1%
—_—
Y
FDI
A 4
Residual
calculation
N
System OK
s=0 >
J

Figure 5.200nline diagnostic algorithm flow chart.
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Figure 5.21Diagnostic algorithm GUI during system monitoring
normal operating condition.

Once the communication protocol is establishedthadhresholds are
set, the entire diagnosis procedure can be stdayedushing the FDI
button in the upper left side of the GUI. During @nline application, the
algorithm can always be paused or closed by pustnegSTOP or the
QUIT buttons, respectively. During the diagnosike tresiduals are
computed by the algorithniRésidual calculatiorblock in the flow chart)
and then compared to the threshold levels: if adves lies within the
threshold range, the related symptom is 0, othenwtibecomes 1. If all
the considered symptoms are 0, the system is assumenormal
condition and the SYSTEM STATUS panel displaysgtieng “STATUS
OK”. Moreover, if one or more symptoms are equal téo understand if
a fault is occurring or the event can be classisdh false alarm, the
statistic related to each symptom is investigaltei.is lower than 2.326,
the symptom is relate to a false alarm, otherwitsuli is taking place. In
the first case, the SYSTEM STATUS panel also digpléhe string
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“STATUS OK”. In the other case, the SYSTEM STATU&npI displays
the string “WARNING FAULT” and all the arisen syngpbhs are
gathered into a symptoms vector, then comparedetd-EM Fault block

in the flow chart). If a match occurbdult isolationblock), the specific
fault is isolate: the FAULT DESCRIPTION panel disyp the string with
the fault type. On the other hand, if no match e€dqWnknown fault
block) the FAULT DESCRIPTION panel displays the irsir
“UNKNOWN FAULT".
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Figure 5.22Diagnostic algorithm GUI during system monitoring
faulty operating condition: the CPO fault is cothg¢solated.

Considering the GUI screenshot in Figure 5.21,sitpossible to
observe that in the central part of the GUI thdsplif the residuals, with
the £1% threshold range, the symptoms behaviors thad, statistic
trends of the three monitored variables are shoMedeover, under each
plot, the current acquired value (REAL SYSTEM pandhe current
simulated value (EXPECTED panel) and the currersidteal value
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(RESIDUAL panel) of the monitored variables arepthyed, coupled
with a control square. When a symptom being 1 s®aated to a faulty
state through thg statistic, the square becomes red, otherwisegiteien,
meaning that the variable is in faulty or in norraahdition, respectively.
In the proposed example, the diagnostic algoritlomectly identifies the
system normal operating condition, showing in théSSEM STATUS
panel the string “STATUS OK”. Moreover, the contsgjuares, located at
the right side of each RESIDUAL panel, are all grde this case, all the
arisen symptoms are classified as false alarms.

In Figure 5.22, instead, the correct online isolatf the CPO fault is
presented. In this case, it can be observed tlaSMSTEM STATUS
panel displays the string “WARNING FAULT” and theABLT
DESCRIPTION panel displays correctly the isolatadltf type. Indeed,
the only control square which becomes red is tliahe stack power
residual, which is the only variable influencedthg considered fault, in
accordance with what presented in paragraph 5.2.4.

The same successful results have been obtainedyirmgppthe
diagnostic tool online during the induction of tlmher faults (not
displayed here for the sake of brevity).
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In this manuscript the complete procedure for tieetbpment and the
application of a model-based diagnosis algorithrented towards Solid
Oxide Fuel Cell (SOFC) systems has been preseRtatl.of the results
presented in this dissertation have been carri¢dviahin the framework
of the European Project GENIUS (Generic diagnosstrument for
SOFC systems — grant agreement n° 245128). The obgctives of this
work have been the characterization of the basemehts of the
diagnostic algorithm and the organization of thecedure required for
their development and implementation, aiming ahbat offline and an
online diagnosis. Furthermore, an experimentaviagthas been carried
out for the induction of controlled faulty states @ pre-commercial
micro-Combined Heat and Power-CHP) SOFC system, the Galileo
1000N, manufacture by the Swiss company HEXIS Al $ame system
has been also exploited for the validation of tlewedoped diagnostic
algorithm.

A model-based approach has been followed for tiveldpment of a
reliable diagnostic algorithm. Several elementsehbeen identified as
mandatory components: i) a mathematical model ter dalculation of
residuals during the monitoring phase, ii) spedifieshold levels for the
generation of symptoms during the detection phas# ia) a Fault
Signature Matrix (FSM) for the location of the fgutomponent during
the isolation phase. A specific methodology hasnbdefined for the
offline design and characterization of the wholgoathm and its further
application on the Galileo 1000N.

First of all, the improvement of an SOFC system ebodvailable in
literature [1][2], has been performed, so as toutate the behaviors of a
generic SOFC system both in normal and faulty dooms. Five sub-
models have been developed, with respect to thewiwlg faults: 1) an
increase in the air blower mechanical losses, nijaa leakage, iii) the
failure of the temperature controller, iv) the cmion of the pre-reformer
heat exchange surface and v) an increase in theloaic resistance.
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The simulation of the aforementioned faults allowee@riving
quantitative relationships linking the monitorediables variations and
the faults magnitudes. This analysis represented oh the main
innovations brought by the presented research igctithe obtained
results have been exploited for the improvementmfexisting Fault
Signature Matrix (FSM), developed by Arsie et dl following a Fault
Tree Analysis (FTA) approach. Both the direct arte tindirect
correlations among the faults and the monitoredesysvariables have
been also considered. Residuals have been firstpuimeh for each
monitored variable, comparing the values simuldtgdhe SOFC system
model both in normal and faulty conditions. Thdre bbtained residuals
have been compared to percent threshold levelsti% and £5% of the
variable values at normal condition, to understtrel sensitivity of the
monitored variables to the considered faults.

The obtained results highlighted that the develagnmed an FSM
following only a heuristic approach might lead tonan-optimal fault
isolation. Indeed, the knowledge of the real effeaf a fault on the
influenced variables become essential to meetdfaeirements and cope
with the limitations of real system applications¢ls as the monitoring of
only a limited number of variables, or the availi#piof measurement
devices with low resolution. Especially in thistlasse, the exploitation
of such kind of measurement devices drives thecehtowards high
threshold levels, which might hinder the univocsblation of single
faults, as showed assuming a threshold level of.#5%the other hand,
by setting low threshold levels, such as *1%, itpassible to avoid
redundancy problems and detect incipient faults, fugh resolution
devices (i.e. high costs) and accurate monitoringdets (i.e. high
computational burdens) could be necessary.

Once identified all the algorithm components, a rabgerization
procedure has been followed to adapt the wholerigthgo on the Galileo
1000N. Primarily, the available monitored variablggh respect to those
listed in the FSM have been identified as: i) staoWwer, ii) blower power
and iii) stack temperature. Then, the mathematicadel required for the
simulation of the aforementioned variables in ndromndition has been
characterized. The need for a fast and handy muadhéth can be rapidly
tuned by the algorithm user, led to the choice ahap-based model
rather than a more complex one, such as that usedthk FSM
improvement. Indeed, especially for pre-commersiagtems, the SOFC
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stack characteristics might rapidly change dueaitthér improvements on
the production line, which can be mandatory fornarket release of the
final version of a system. The map-based modelagsphumerical maps,
taking as input the values of the controlled setqgsoat a specific
operating condition and returning as output theieslof the monitored
variables for that operating condition. For thisgmse, the monitored
variables have been measured at a specific opgratindition, and the
averages of the acquired signals have been compiited procedure
allowed the development of a model without reqgrigither a large
number of experimental data (i.e. long term expernts) or the
computation of specific parameters (sometimes basadformation hard
to retrieve).

The computation of the variables standard deviadioth quantization
error allowed setting a threshold level of +1% ftire symptoms
generation. This value and the list of the mondovariables have been
exploited for the FSM characterization. Howeveg #vailability of only
three symptoms for the isolation of five differefdults (i.e. those
accounted into the FSM) led to two faults with #zne pattern, that are
the increase in the blower mechanical losses aadldahkage at stack
outlet. Consequently, they have been grouped intmramon cluster,
hindering the possibility to perform a univocal let@on of these two
faults.

A further element has been included into the atboriin order to
perform a probabilistic analysis of the resultsteasl of a deterministic
one. Indeed, the probability of false alarm andseudsfault have been
included within the symptoms evaluation procedim®ugh a statistical
hypothesis test. This test allowed associatingresem symptom to a real
faulty state or to a false alarm evaluating a stiatwith at distribution.
The comparison of this statistic to a specific nwpothesis rejection
level allowed this discrimination.

For the validation of the developed diagnostic atgm a dedicated
experimental activity has been performed. Thisvédgtidealt with the
induction of controlled faulty states on the Galil@OOON. The further
original feature of this work consisted in the desof specific procedures
to mimic faults on a real SOFC system. For the atida of three faults,
that are the increase in the blower losses, thepdesture controller
failure and the degradation of the catalytic padidizer (CPO) surface,
the procedure involved only software maneuverstt@nother hand, the
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air leakage and the increase in the cell ohmistasce required specific
hardware modifications. More in details, a hole besn drilled right after
the stack exhausts for the leakage induction. Hole has been then
connected to a faucet in order to regulate the é@a&unt. The location of
the leakage has been chosen with respect to thensyonfiguration and
specific mechanical constrains. Moreover, the iaseein the cell ohmic
resistance has been mimicked by means of a redistorconnected in
series with the positive terminal of the stack. Tdesign of the faults
experimental induction has been performed considethat in some
cases only the faults effects were reproducibléeatds of mimicking the
causes.

The signals measured during the faults experimanthlction have
been exploited for the algorithm validation. EanHuced fault has been
correctly detected and univocally isolated, exdeptthe increase in the
blower losses and the leakage. Since these faats lbeen grouped into a
fault cluster, their isolation was not univocal,tthe expected fault
cluster has been correctly isolated in both caBesse results proved the
capability of the designed algorithm to perfornehable and precise fault
diagnosis. It has been demonstrated that a comlimesgpretation of the
symptoms and the hypothesis test statistics ledrabust detection of the
faulty events. Moreover, the analysis of the déeacand isolation delays
remarked the importance of waiting a certain amaointime before
performing a reliable inference on the system statu

The validation has been performed both offline antine. For the
online algorithm application, a specific communigatprotocol has been
developed, connecting the Galileo 1000N controltvemfe with the
developed algorithm by means of a text file. Mompva dedicated
graphic user interface has been developed to adlloveasier algorithm
management and a real-time interpretation of thelte
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7.1 Introduction

In this chapter, an insight into the further adyivoerformed on the
Galileo 1000N system within the framework of therdpean project
GENIUS is given. This activity was carried out imld#tion to the
experiments described in Chapter 4 and it was pedd at the EIFER
laboratories in the frame of a student exchang@rpm between the
University of Salerno and the EIFER institute.

More in details, the work dealt with the contrilmuti to the 2™
Experimental Test Planscheduled on the Galileo 1000N in the
Description of Work of the GENIUS project. The maiccomplishments
concerned the acquisition of experimental datactrérol of the Galileo
1000N operating conditions through the HexisViewitwgare and the
collection of EIS spectra by means of a dedicatd® Ktation,
manufacture by the ltalian company MaterialsMatiedia®. The data
gathered during this activity have been useful ndaustand the system
behaviors and to highlight significant issues toe tliagnostic algorithm
development. In particular, the measurement of §8ctra has been
worthwhile for the periodic evaluation of the systetatus. Indeed, as
stated in [44], the evaluation of an EIS spectrumpg gives direct
information about the status of the SOFC stack. ddmaparison of these
spectra in time has been a further indicator usédirwthe GENIUS
project to evaluate if the Galileo 1000N systemrapen was still normal
after specific experimental maneuvers, as showgaiagraph 7.3.4.

A detailed description of the Galileo 1000N systand the EIFER
test bench has been given in paragraph 4.1. Tomperfhe EIS spectra
acquisition, the Galileo 1000N system is connedtedn EIS station,
developed by the MaterialsMates It&liwompany. This station is
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characterized by two electronic loads and a deelicdIS software,
installed on a standard PC. Figure 4.3 gives aumactof the
aforementioned EIFER test bench with the Galile@0NDsystem, the EIS
station and other components. Because the El®stetiseparated from
the electrical feed/supply system, to perform the §pectra measurement
a specific switching procedure has to be followEdr this purpose, a
customized switch is located between the GalileBOND stack and the
inverter. By using this switch it is possible t@cbnnect the stack output
from the inverter and to connect it to the eledtcolvad of the EIS
spectrometer.

7.2 2" Test Plan Description

The purpose of the"™ Experimental Test Plawas the collection of
the monitored variables values at different opatatonditions, as the
one presented in paragraph 5.1.2. It is worth gothmat the working
operating points were defined following a randorm@a methodology.
The control parameters are those listed in Taldle@bd here recalled:

Stack temperature;
Single cell voltage;
Gas input power;

* lcro

As shown in Figure A.1, 52 operating points weresgn within a
triangular domain according to the Galileo 1000Ntegn limitations,
defined by the manufacturer (i.e. HEXIS AG limitree). The points
labelled with a green X are the corner points, kile one labelled with
the yellow X is the nominal operating condition responding to that
represented in Table 5.1, which was chosen asefieeence one for the
diagnostic algorithm validation.

Only the nominal condition and the corner pointgevivestigated
with EIS, while the other points (i.e. generic ciioths) were measured
to give as much information as possible on the I&alLOOON system
operation. More in details, the values of the foantrol parameters for
each operating condition are given in Table A.l.e Téolumn EIS
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specifies if the EIS measurement was performetadtdpecific operating
condition, whereas the last column defines the tpoype: nominal
condition point (NC), generic condition point (GG) domain corner
point (DC).

3400 i\
[ L - X
3200 B B = [ [ ] L] -
. [ u _—
<3000 = .
2 2800 - . . _
o —o—Hexis limit \.\ - L
b [ |
= 2600 + & Test Plan Points \< - .
2 m
£ 2400 + X domain corner points - .
)
8 2200 nominal condition point .\. ]
2000 .
1800 \

0.75 0.77 0.79 0.81 0.83 0.85
Cell Voltage (V)

Figure A.1 2" Experimental Test Pladomain and DOE operating
points.

Table A.12" Experimental Test Plaset-point values.

Operating Stack Cell Gas input A Operating
point temperature | voltage power (C_';O EIS point
(#) Q) V) (W) type
01 820 0.8000 3300 0.29 yes NC
02 850 0.8569 3220 0.28 ng GC
03 850 0.8406 2200 0.29 ng GC
04 850 0.8385 2565 0.30 ng GC
05 850 0.8409 2361 0.31 ng GC
06 850 0.865 3300 0.32 yes DC
07 850 0.8422 3200 0.28 ng GC
08 850 0.8305 2850 0.29 ng GC
09 850 0.8281 2508 0.30 ng GC
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10 850 0.8541 2534 0.31 ng GC
11 850 0.865 1800 0.27 yes DC
12 850 0.8210 2898 0.28 ng GC
13 850 0.8102 2770 0.29 ng GC
14 838 0.8004 2980 0.30 ng GC
15 840 0.7952 2900 0.31 ng GC
16 820 0.8000 3300 0.29 yes NC
17 827 0.7799 3031 0.28 ng GC
18 840 0.8055 2675 0.29 ng GC
19 835 0.8200 2731 0.30 ng GC
20 827 0.8370 2941 0.31 ng GC
21 800 0.865 3300 0.32 yes DC
22 830 0.8200 3244 0.28 ng GC
23 834 0.8433 2812 0.29 ng GC
24 841 0.7992 3150 0.30 ng GC
25 841 0.7747 3300 0.31 ng GC
26 800 0.7500 3300 0.27Y yes DC
27 828 0.8517 3066 0.28 ng GC
28 841 0.8506 2160 0.29 ng GC
29 841 0.8610 2005 0.30 ng GC
30 833 0.8570 2264 0.31 ng GC
31 820 0.8000 3300 0.29 yes NC
32 838 0.8581 3116 0.28 ng GC
33 827 0.8090 2926 0.29 ng GC
34 832 0.8560 2655 0.30 ng GC
35 840 0.8284 2385 0.31 ng GC
36 850 0.7500 3300 0.32 yes DC
37 838 0.8315 3250 0.28 ng GC
38 841 0.8237 2614 0.29 ng GC
39 836 0.8360 3115 0.30 ng GC
40 826 0.8210 3092 0.31 ng GC
41 800 0.8650 3300 0.27Y yes DC
42 839 0.7936 3283 0.28 ng GC
43 840 0.7590 3280 0.29 ng GC
44 836 0.7719 3167 0.30 ng GC
45 838 0.7872 3105 0.31 ng GC
46 820 0.8000 3300 0.29 vyes NC
47 837 0.8059 3221 0.28 ng GC
48 831 0.7809 3168 0.29 ng GC
49 836 0.8310 2710 0.30 ng GC
50 828 0.8570 2818 0.31 ng GC
51 820 0.8000 3300 0.29 vyes NC




CHAPTER 7 Appendix 181

Before undergoing the test measurements, the Gali®ON had been
run through a start-up phase, characterized bydobrphases: reduction,
activation, initialization and conditioning. FigureA.2 gives a
representation of the procedure, focusing on theralagas power input
and the DC and AC power output.

Start Up Phase Stabilisation Phase ——

1500 ‘ 3 ! T 3750
1400 ] 1 = 3500
m7' 1 |
1300 Pyss = 3300 W r T e 3250
T, =820°C r / n r
1200 Uy=52,0V I i J 3000
[3] Activati
1100 Pyos = 1800 W / : 2750
Tq=820°C -
3 1000 Uy=553V I 1 : 2500
~ 900 -\ I/ I 2250§
£ [2] Reduction | / I / o o N 5
o 800 1 © 2000 @
g Pgas = 1500 W l / 1 \N6] stabilisation H
® 700 |{T«@788°C )\ Pggs = 3330 W 1750 @
g Uy = OCV I> l 1 |Taze20°c Py
S 600 / / U= 52,0V 1500 §
Qo [
W 500 (a=x : ‘ 1250
_J 1 —a—Stack P,el (DC) HexView
400 ] - . ff 1000
] | —&—Stack Pel (DC) LabView
300 -{[1]Heating Up . = —e—CHP P,el (AC) HexView [T 750
Pgas =0 W [5] Conditioning 1 )
200 1Ty =RT-820°C Pgas = OW 1 T CHP Pl (AC) LabView L. 500
Uy=0V Ty = 740°C | —+—CHP P,Ngas HexView
100 1 _ Us=0CV-0V 1 ——CHP P\Ngas LabView || 250
0 — T T T T ! T T T f T T 0
S e 823838923838~ RISSIBBIRED S

© © ~ N~ O O

23.02.12 Operating Hours [h
10:30 h P 9 i

Figure A.2 Example of the natural gas power input and DC a@d A
power output behaviors during the Galileo 1000Mtaip phase, acquired
by both the HexisView software and a LabVIEW actjiais algorithm
developed by EIFER.

- v - v v v v = v

After the conditioning, the system reached theiktaltion phase and was
kept at a fixed operating condition for more thad0 7hours, before
starting the2™ Experimental Test Plameasurements.

The standard procedure for each operating pointovasacterized by
a transient manoeuver from a condition to anothecdrding to the order
of Table A.1l), followed by a stabilization phasedaa long term
acquisition at steady state. Then, the EIS spegta acquired when
planned.
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7.3 Examples of data plots

The information gathered during tB& Experimental Test Plarefer
to four different kinds of data: transients, lorggnh acquisitions, V-l
curves and EIS spectra. The transient data cortberchange from one
operating condition to another; the long term dafar to the stabilization
and steady state phases at each point; the V-eswffer a representation
of the stack characteristic as the stack voltagéqd against the current
drawn from the electric load; finally, the EIS spacare those collected
by means of the MaterialsMates Itdlisompany EIS station at the
designed operating conditions.

7.3.1 Transient

An example of data plot related to a transient mmaeeis given in
Figure A.3. Here the change from the operating tp@#into the operating
point #6 is considered (see Table A.1 for furthetads).

32000 ——-—-- Fom———F------ oo

|
5 3000~ - - - - - - e

|
£ 2800 - - - - b ‘
S | |
&2600------- : ! :
o v
2 2400 it 1

1 1

\ l

| |
=565 - : 1
3] | |
g | |
g 56— ————~ [ [ | i T
~ | | | | |
5] | | | | | |
o] | v |
ST pp—— MWWWWWWJ .
i i AR | |

0 02 04 0.6 0.8 1 12
Time [h]

Figure A.3 Example of transient manoeuver from operating toiénto
operating point #6.
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To properly drive the system from one operatingdtiion to another,
only one parameter at a time is changed, waiting tfee system
stabilization before each change. This precaut®ressential to avoid
unexpected or dangerous states, leading the systdire safety mode
alarm and to a consequent shut-down. All the patf@mere changed
following a specific rate, e.g. 0.35 W/s for thesgaput power and 0.01
V/s for the stack voltage.

As explained in Chapter 2, taking into account symbcedure
becomes essential for the development of a dynamoidel in order to
avoid the wrong interpretation of a transient maeewas an undesired or
faulty condition.

7.3.2 Long Term

The long term data give an overview of the systeariables
behaviour during the steady state at a specificratipgg condition.
Furthermore, these data contain also EIS spectesunements as part of
the same data matrices. An example is given inrEigu4, where the
long term plots of the stack voltage and the stagkent are presented for
the operating point #6.

In this plot, it is possible to observe the switghiprocedure done
before performing EIS spectra measurements. Duting normal
operation, the fuel cell stack is connected toitiverter and the system
delivers power directly to the electrical grid. Tecord EIS spectra, the
stack is first brought to OCV (almost 63 V) and timeverter is
disconnected, using a dedicated electrical swifiden, the stack is
connected to the EIS station electronic loads aedvbltage is driven to
its minimum value (i.e. around 52.5 V). This progetlis done with the
purpose of acquiring a V-I curve. Then, the voltagbrought up to OCV
again (i.e. another V-l curve measurement) and steck is then
reconnected to the inverter.

In Figure A.4, four EIS spectra are recorded rampip the voltage to
OCV: two at 0.8 V/cell, one at 0.865 V/cell and aate0.9 V/cell. It is
worth remarking that the EIS measurements wereopegd in order to
have a side evaluation of the system status.
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Stack Voltage [V]

Stack current [A]

[ S B B

Figure A.4 Example of long term data for condition #6 andghgtching
procedure from the inverter to the EIS device.

7.3.3 V-| curves

As described in the previous paragraph, V-l cunwese measured
bringing the voltage from OCV to the minimum andrlramping it back
to OCV. The ramps are both at a constant rateof//s. An example
of V-1 curves measured at the operating point #fiven in Figure A.5.

The horizontal and vertical voltage-current picksrespond to the
EIS spectra measurements and are related to thigwhepof the EIS AC
signal injected into the stack. It is importantdioserve that the two V-I
curves show the same slope, meaning that the sybtmvior was
normal during both the ramps and also after eacB Epectrum
measurement. Coupled with the EIS spectrum shamdysas, the
evaluation of the V-l curves characteristics helpg system state
monitoring and allows the evaluation of the systgradation in time.
Indeed, the time comparison of the stack voltaghetsame current is an
indicator of the degradation progress. Howevegyrderstand which kind
of mechanism might induce the system performandecat®n, the V-I
curve is not sufficient and the analysis of theate EIS spectra is
required.



CHAPTER 7 Appendix 185

a1 o1 (o2} (2}
» (o] o N

Stack Voltage [V]

ul
A

a1
N
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Figure A.5 Example of V-1 curves data for the Galileo 100QaCk at
condition #6.

7.3.4 EIS spectra

The EIS spectra acquisition was performed followihg switching
procedure described in paragraph 7.3.2. An exaofgdS spectra plot is
given in Figure A.6 and Figure A.7.

The spectra sketched in these figures were all mnedsat the
reference point at 0.8 V/cell and at 0.9 V/cellpextively. In both the
examples, it is possible to observe that the siagkedance shows a
different behavior at 2478 hours and 2808 hourspaoed to the initial
and final part of the tests. This discrepancy migkt due to some
problems experienced with the measuring equipntémivever, almost at
the end of the tests, the stack impedance showavlmeh closer to those
of the initial spectra.

As previously mentioned, the study of the EIS shdudps the
understanding of the system status, since its ctarstics are strictly
related to the physical phenomena occurring inte tells. The
exploitation of such analysis might be coupled witie diagnostic
algorithm presented in this manuscript in ordgpeédorm a more detailed
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diagnosis on the stack behavior. This might betaréuimprovement for
the SOFC diagnosis, aiming at a comprehensive astm of both the
system behavior (i.e. the stack and the BOP) coduplgh a detailed
insight into the SOFC inner status.

EIS in Nominal Condition at 0.80 V/Cell EIS in Nominal Condition at 0.80 V/Cell
3 0,75,
-’
- sash Phd —o s6h
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Figure A.6 Stack EIS spectra at 0.8 V/cell acquired at daffeitimes:
global plot (a) and close-up (b).
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Figure A.7 Stack EIS spectra at 0.9 V/cell acquired at d#ffeitimes:
global plot (a) and close-up (b).
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