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Abstract

This dissertation collects results of my own work about heterostructures with unconven-
tional ferromagnets and superconductors. It both introduces the matter by reviewing part of the
existing literature and it includes original results. In particular charge and spin transport in fer-
romagnet/superconductor bilayer, Josephson effect in superconductor/ferromagnet/superconductor
junctions, and proximity effect in ferromagnet/triplet superconductor stuctures are examined.
All work has been supervised by Prof. Canio Noce and Dr. Cuoco from Dipartimento di Fisica
“E. R. Caianiello”, Università degli Studi di Salerno. I have also benefited from collaborations
with Prof. Alfonso Romano and Dr. Paola Gentile from the same department. Part of the work
has been supervised by Prof. Asle Sudbø and Prof. Jacob Linder from Department of Physics,
Norwegian University of Science and Technology. I have also benefited from collaboration with
Henrik Enoksen from the same department.
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Preliminaries





Introduction

Ferromagnetism and superconductivity are usually competing phenomena in
solid state systems. In spatially homogeneous superconductors the application of
an external magnetic, or the internal field associated with ferromagnetic order, are
known to be detrimental to the stability of the superconducting phase. In most
of the cases, orbital pair-breaking effects lead to the emergence of the Abrikosov
vortex state, eventually making the system become fully normal as the upper crit-
ical field Hc2 is exceeded. However, under very specific conditions a breaking-up
of the translational invariance may allow the superconducting order to remain sta-
ble even in the presence of a polarizing field [1]. The most celebrated example
of an inhomogeneous state where SU(2) and U(1) symmetries are simultaneously
broken, can probably be considered the so-called Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [2, 3, 4, 5]. In this state Cooper pairs acquire a finite center-of-mass
momentum and, as a consequence, the superconducting order parameter and the
magnetization both exhibit a modulation in space. A further peculiar feature of
the FFLO state is that it tends to be stabilized by the mixing of even and odd
parity pairings. Evidence for this behavior has been given by Shimahara [6] for a
quasi-two-dimensional system where singlet pairing interactions coexist with rela-
tively weak triplet ones. Moreover, an enhancement of the stability of the FFLO
state due to the singlet-triplet mixing has also been demonstrated in recent stud-
ies on spin fluctuation-mediated superconductivity performed within the Hubbard
model on a square lattice [7], as well as on two-leg ladders becoming superconduct-
ing away from half filling [8]. Little evidence, however, has so far been reported
of the occurrence of the FFLO state in real systems. This is mostly due to the
fact that the coupling of a magnetic field to the electron spin via Zeeman effect
is required to break Cooper pairs more efficiently than orbital coupling does, a
situation which is typically not encountered in most of the known type-II super-
conductors. Nonetheless, besides the case of systems such as ErRh4B4 [9], where
aligned magnetic impurities generate a very strong internal exchange field, a spin
paramagnetic effect dominating over the orbital one can in principle take place in
quasi two-dimensional layered systems where an external magnetic field is applied
parallel to the planes. In this case orbital effects can be small or even negligi-
ble due to the weakness of the interlayer coupling, and thus the Zeeman effect is
expected to dominate. A further element hindering the formation of the FFLO
state is that it is not robust against the presence of impurities and thus its oc-
currence requires very clean samples. Presently, these rather stringent conditions
are likely to be satisfied in very few superconducting systems, essentially belong-
ing to two classes of systems, the heavy-fermion compounds [10] and the organic
superconductors [11]. Within the former, evidence of the FFLO state has been
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4 Introduction

Figure 1. Supercurrent conversion at the superconductor/metal interface.
(A) Schematic of the process for an unpolarized metal when the Andreev re-
flection is unhindered by a spin minority population at EF . The solid circles
denote electrons and open circles denote holes. (B) Experimental measure-
ment of the I − V and differential conductance dI/dV at T = 1.6K via a
superconducting Nb point contact on Cu. The vertical lines denote the bulk
gap of Nb. (C) Schematic of process for a fully polarized metal when there
is no supercurrent conversion at the interface. (D) Experimental I − V and
dI/dV at T = 1.6K via the Nb point contact on CrO2. Taken from [16].

found in several measurements performed on the compound CeCoIn5 [12], while
in the latter a clearcut signature has been provided by specific heat measurements
on κ-(BEDT-TTF)2Cu(NCS)2 [13] (though it is also conjectured that the FFLO
state is realized in the quasi one-dimensional Bechgaard salts (TMTSF)2X with
X = PF6 [14] and ClO4 [15]).

Even if coexistence of ferromagnetism and superconductivity is still an open is-
sue, their interplay in heterostructures is a well established sub–field. Indeed their
interplay in hybrid systems has been the foundation for developments of several
novel experimental techniques over the last decade or so [16, 17, 139] and, besides
the interest from a fundamental physics viewpoint, such systems hold potential in
terms of electronics and spintronics applications [19]. Versatility of such systems
stems from the fact that Andreev reflection [20, 21], the peculiar process taking
place at the superconductor/non–superconductor interfaces converting quasipar-
ticles into Cooper pairs, is strongly sensitive to spin polarization [134, 171] and
consequently it is modified if non–superconducting layers is a ferromagnet rather
than a normal metal. Andreev reflection process is the main responsible of all un-
conventional phenomena in hybrid structures involving superconductors. Charge
transport, spin transport, proximity effect, Josephson effect, all can be understood
in terms of Andreev reflections. In its simplest realization, this process can be ex-
plained as follows. An electron in the normal metal excited from the Fermi level,
e.g. by an applied voltage, which is trying to entering the superconductor can un-
dergo several scattering processes depending on its energy. It can be transmitted in
the superconductor only if its energy is larger than the gap because accessible single
particle states exist only above this threshold (typical density of states for a normal
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Figure 2. The differential conductance for several spin polarized metals
showing the suppression of Andreev reflection with increasing polarization.
Taken from [16].

metal and a superconductor are compared in panel A of Fig. 1). If its energy is
smaller than the gap instead the electron cannot propagate in the superconductor
as a single particle but only as a Cooper pair. In order to do so it pairs with
another electron in the normal metal leaving beside an hole and the two electrons
enter the superconductor as pair. Considering a singlet conventional superconduc-
tor, it is important to notice that the electron to which the incident one pairs with,
must have opposite spin in order to form a singlet pair. The Andreev reflection
process in which a superconductor reflects electrons as holes allows quasiparticle
to supercurrent conversion. Thus in a normal metal/superconductor bilayer it is
found that the low energy conductance is doubled with respect to same structure
in which the two leads are both non superconducting (panel B of Fig. 1). This
is because when Andreev reflection takes place for every injected unit of charge a
Cooper pair, build up by two elementary charges, is obtained. When a ferromag-
net/superconductor bilayer is considered this picture is modified. To understand
why this is the case consider the extreme case of half metals, e.g. CrO2 (ssee panel
C of Fig. 1). In this case only one spin species exist at the Fermi level and Andreev
reflections cannot take place simply because electrons cannot find an oppositely
polarized partner to form a Cooper pair. As a result low energy conductance of
half metal/superconductor structures is very low (see panel D of Fig. 1). From
this extreme situation one can deduce that when there is spin polarization in a
metal (that is the number of up and down electrons at the Fermi level is different)
not all electrons can be Andreev reflected: the larger the spin polarization, the
lower the probability for electrons to find an oppositely spin polarized partner to
form a Cooper pair, the lower the conductance of the ferromagnet/superconductor
structure. Fig. 2 shows how ferromagnets with increasing spin polarization (from
top to bottom) lead to decreasing low energy conductance for the bilayer. This ef-
fects, together with their generalizations to unconventional superconductors and/or
different geometries and setups, promise to be fundamental for future device ap-
plications in electronics, spintronics, information and communication technologies,
and quantum computation (two examples are shown in Fig. 3). Their usefulness
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Figure 3. Two possible device applications involving F/S. (A) A supercon-
ducting spin valve. Taken from [25]. (B) A Josephson qubit. Taken from [72].

have been exploited in several experimental techniques like Point Contact Andreev
Reflection Spectroscopy and Scanning Tunneling Microscopy. Besides an estima-
tion of the degree of spin polarization in the ferromagnet [24], they can give insight
about the amplitude and phase of superconducting order parameter, being Andreev
reflection phase sensitive. This property has made this kind of measurements funda-
mental in finding clues about the symmetry of the new families of superconductors
discovered, for which there is a general consensus that they cannot be considered as
conventional. Over the last few decades, a remarkable set of unconventional super-
conductors has been found, including p-wave spin-triplet pairing in heavy fermions
and He3, d-wave spin-singlet pairing in superconducting high-temperature cuprates,
and unusual forms of s-wave pairing in the recently discovered iron-pnictides, to
mention a subset [27, 28, 29, 30, 31, 33, 34]. Pairing phenomena related to some
of these have also been discussed in the context of particle physics and high-energy
physics, such as pseudogap phases in the Nambu-Jona Lasinio model [35]. In all
of the above cases, a major challenge is to determine the symmetry of the super-
conducting order parameter. This is generally believed to be the issue to address
when searching for a fundamental understanding of these phenomena. To acquire
information about the order parameter, it is often useful to study how the su-
perconducting correlations behave in hybrid structures considering transport and
proximity effect in order to look for unique signatures of the superconducting order
parameter. When the non-superconducting material is not a simple normal metal
featuring intrinsic properties, such as magnetism, then the heterostructure provide
an arena for studying the interplay between superconductivity and different types
of electronic ordering [36] which can give a deeper insight in underlying physics. For
example, one of the strongest evidences supporting d-wave symmetry for high-Tc

cuprates is the zero bias conductance peak (ZBCP) revealed in ab-plane tunnel-
ing conductance from normal metals [38]. In some cuprates, such as for instance
YBa2Cu3O7−δ [39, 40], the existence of a subdominant component in the order pa-
rameter possibly breaking time-reversal symmetry is still a matter of debate and, in
this respect, exploiting the interplay between magnetism and superconductivity in
tunneling experiments is one of the standard routes to investigate this issue. Gen-
erally, by using a ferromagnetic electrode in tunneling experiments it is possible to
change the relative contributions of up and down electrons to the total density of
states or, in the half-metal limit, to isolate a single spin channel. To interpret the
large amount of tunneling experiments performed on ferromagnet/unconventional
superconductor junctions [41, 42, 43, 44, 45, 46, 47, 48], fundamental theories of
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transport, such as in particular the one by Blonder, Tinkham, and Klapwijk [141],
have been suitably extended to take into account all possible symmetries of the
superconducting order parameter. In this context, the ferromagnetic electrode has
been predominantly described within the Stoner model, relying on the assumption
that the bands associated with the two possible electron spin orientations have
identical dispersion, but are rigidly shifted in energy by the exchange interaction.
However, Stoner model may prove to be insufficient to describe real ferromag-
nets because many terms deriving from Coulomb repulsion are eliminated from
the full Hamiltonian, although in some situations their contribution can be impor-
tant [50, 51]. Indeed the complexity of ferromagnetism in metals is testified by the
wide range of manifestations it exhibits in nature. As relevant examples of this
variety, we mention the ferromagnetic transition metals Fe, Co, and Ni and their
alloys [52], weak metallic ferromagnets such as ZrZn2 [53, 54] and Sc3In [55, 56],
colossal magnetoresistance manganites such as La1−xSrxMnO3 [57], and rare earth
hexaborides such as EuB6 [58, 59]. Therefore, when theoretically modelling ferro-
magnet/superconductor hybrid structures, it may be important to assume for the
magnetism microscopic scenarios other than the Stoner one. Among them, of pecu-
liar interest is a form of itinerant ferromagnetism driven by a gain in kinetic energy
deriving from a spin dependent bandwidth renormalization, or, equivalently, by an
effective mass splitting between up- and down-spin carriers [60, 61, 62, 63, 64, 65].
The interplay of superconductivity with this kinetically driven ferromagnetism has
been recently shown to originate different features compared to the Stoner case,
concerning the phenomena of coexistence and proximity. More precisely, the oc-
currence of the coexistence of ferromagnetism and s-wave singlet superconductivity
within a model where the magnetic moments are due to a kinetic exchange mech-
anism, has been studied and it has been shown that the depaired electrons play
a crucial role in the energy balance, and that when their dynamical effect is such
that to undress the effective mass of the carriers which participate in the pairing,
a coexisting ferromagnet-superconducting phase can be stabilized [66]. Also an
extended version of the reduced BCS model for particles that get paired in the
presence of a polarization arising from spin dependent bandwidths has been solved
and the ground-state phase diagram in the full parameter space of the pair coupling
and the bandwidth asymmetry as a function of filling for different types of spec-
trum topologies has been calculated [67]. The two above-mentioned mechanisms
for ferromagnetism have been shown to lead to different features of proximity effect
in ferromagnet/superconductor bilayers as concerns the formation at the interface
of dominant and sub-dominant superconducting components as well as their prop-
agation in in the ferromagnetic side [68]. Part of this Dissertation is devoted to
the analysis of the bandwidth asymmetry ferromagnetism effect in charge trans-
port and spin transport in bilayers as well as its influence in Josephson effect in
superconductor/ferromagnet/supercondutor junctions. These are systems capable
of sustaining a supercurrent carried by Cooper pairs in the superconducting leads
and by quasiparticles in the ferromagnetic mid-layer. The unique interplay between
ferromagnetic and superconducting orders provides quasiparticles with extra phase
shifts absent in junctions with a non-magnetic mid-layer. This can give rise to the
appearance of the so-called “π−phase” [69]. Under such circumstances, the energy
minimum of the junction is reached at a phase difference of π across the junction,
unlike the standard “0−phase” in junctions with a non-magnetic mid-layer. The
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existence of the π−phase has been experimentally confirmed [70, 71] and promise
to be important for applications. Indeed π-junctions are considered to be one of
the best candidates for realizing solid state qubits [72].

We postpone to appropriate sections more detailed descriptions of ferromag-
netism and superconductivity and their unconventional manifestations hoping that
this discussion has been convincing about the richness of the physics resulting from
the interplay between the two orders. We conclude wishing that results described
in the following may provide a useful contribution to the comprehension of some
relevant phenomena in these hybrid structures. We believe that this rapidly grow-
ing field can become a playground for a wealth of interesting quantum mechanical
effects pertaining to the interplay between spin and charge degrees of freedom, given
the increasing number of investigations and continuous refinements of experimental
techniques allowing physicists to deal with new intriguing systems.

Outline

This Dissertation is organized as follows. In Part I itinerant ferromagnetism,
superconductivity, and their interplay in heterostructures are introduced together
with materials and theoretical models. Part II is devoted to the analysis of charge
and spin transport in ballistic ferromagnet/superconductor bilayers. In Part III
Josephson effect in ballistic superconductor/ferromagnet/superconductor junctions
is analyzed. In Part IV proximity effect in heterostructures involving triplet su-
perconductors and diffusive normal metals and ferromagnets is examined. Part V
is devoted to conclusions, summary and discussion of the results, and analysis of
future works. The last section at the end of the thesis is a List of Symbols and
Acronyms. The reader which might feel confused with the notation is invited to
consult it skipping to the last page of the thesis.



CHAPTER 1

Materials, frameworks, and models

This chapter introduces types of ferromagnets and superconductors which are
analyzed in the Dissertation. We focus on materials and models for both type of
orders and comment about role and description of interfaces in hybrid structures.

1.1. Superconductors and their symmetries

Superconductivity may be defined as conventional or unconventional depend-
ing on the properties of the pairing state and whether or not multiple broken
symmetries are present in the system. In conventional superconductors, the pair-
ing state belongs to the trivial representation of the point-group and the system
ground state breaks the U(1) gauge symmetry. On the other hand, unconven-
tional superconductors display pairing symmetries belonging to higher-dimensional
representations of the point group and may also exhibit multiple broken symme-
tries in the ground state. Since 1970 at least 10 distinct families of superconduc-
tors (Ss) which could hardly be framed in the conventional scenario of electron-
phonon BCS theory have been discovered [73], namely: (1) High-Tc cuprates, hole-
doped (Y Ba2Cu3O7) and electron-doped (Nd1−xCe0xCuO4−y); (2) Heavy fermions
(CeCu2Si2, UBe13, UPt3); (3) Organics (TMTSF2PF6); (4) Strontium-ruthenate
(Sr2RuO4); (5) Fullerenes (K3C60, Cs3C60); (6) Borocarbides (LuNi2B2C, YPd2B2C);
(7) Bismuthates (Ba1−xKxBiO3,BaPb1−xBixO3); (8) Almost heavy fermions (U6Fe,
URu2Si2, UPd2Al3); (9) Iron arsenide compounds (LaFeAsO1−xFx, La1−xSrxFeAs);
(10) Ferromagnetic superconductors (UGe2, URhGe2). In all of the above cases,
a major challenge is to determine the symmetry of the superconducting order pa-
rameter. This is generally believed to be the issue to address when searching for a
fundamental understanding of these phenomena. Only for few of them there is a
general consensus on the effectively realized form of superconductivity, e.g. the or-
bital and spin symmetries of the order parameter. The specification of mechanisms
driving the superconducting states is even more puzzling. We do not deepen these
points here but rather we describe only some particular forms of order parameters
which will be analyzed in the following (see Fig. 1.1).

Cooper pairs can be in spin singlet (S = 0) or spin triplet (S = 1) states.
To respect the overall antisymmetry under exchange of particles, they have to be
associated with even (L = 0, 2, . . . ) and odd (L = 1, 3, . . . ) orbital states, respec-
tively 1. Conventional superconductors are in a singlet states characterized by an
orbital gap function ∆(k), with k a unit vector on the fermi surface, with constant

1This is not true when time (energy) dependence is considered. In that case the overall anti-
symmetry can be obtained with equal parity of spin and orbital parts considering odd parity in the
frequency part.

9
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Figure 1.1. Modulus (left panels) and phase (right panels) of pair potential
in several spin singlet superconductors: s−, dx2−y2 + is−, dx2−y2 + is−,
dx2−y2 + idxy−wave from top to bottom.

phase. Its magnitude can have directional dependence or be constant. In the latter
case (s-wave) simply ∆s(k) = ∆0. High-Tc cuprates are singlet superconductors
with line nodes and sign change in the orbital gap function ∆d(k) = ∆0(k2

x − k2
y).

This state (dx2−y2 -wave) is clearly distinguishable from the conventional case. In-
deed line nodes existence can be catched by several thermodynamical properties,
e.g. discontinuity of specific heat at superconducting transition, behavior of low
temperature specific heat, London penetration depth, nuclear magnetic resonance.
It is generally accepted that for many unconventional superconductors a subdom-
inant component of the order parameter breaking time-reversal symmetry can be
induced whenever translational symmetry is broken, e.g. near surfaces, interfaces
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Figure 1.2. Depiction of coherent process giving rise to Andreev bound states.

and vortices [74, 75, 148]. For some materials, such as e.g. YBCO [40], there is
controversy about the symmetry of the secondary component, namely if the order
parameter is of the dx2−y2 + is- or dx2−y2 + idxy-wave type. The subdominant
components have the effect of removing the line nodes rendering the two possibil-
ities hardly distinguishable through the same measurements which succeeding in
discerning dx2−y2 -wave from s-wave.

The possibility of sign change in unconventional superconductors gap functions
has deep implications in transport properties of hybrid structures. Consider the
dx2−y2-wave case. The sign change implies that electron-like and hole-like quasi-
particles specularly reflected at the interface always find the “right” sign of the pair
potential to be Andreev reflected (see Fig. 1.2). This resonant process opens mid
gap surface states known as Andreev bound states [20, 77, 78] manifested as zero
energy peak in the ab-plane tunneling conductance. If line nodes are perpendicular
(parallel) to the interface all (none of the) trajectories contribute to the formation
of the resonant state. The two broken time reversal states affect differently the
sign change of pure d-wave: when the subdominant component is s-wave the sign
change is eliminated while in the dxy-wave the sign change is still there precisely
along directions of maximum magnitude of superconducting gap. This point will
be deepened in what follows aiming to discerning the two breaking time reversal
states from transport properties. Transport properties and Josephson effect of hy-
brid structures with conventional and unconventional singlet superconductors will
be analyzed in Part II and Part III.

Evidences for spin triplet unconventional superconductivity exist in some mate-
rials. Indeed, apart from the well-known case of superfluid 3He, where the conden-
sate is made of atomic pairs, strong evidences, mainly originating from Knight shift
measurements, exists in favor of triplet superconductivity in the ferromagnetic com-
pound ZrZn2 [79], in the organic system (TMTSF)2PF6 [80], and in several heavy-
fermion compounds which can be non-magnetic (UPt3 [81, 82]), antiferromagnetic
(UNi2Al3 [83, 82]), or ferromagnetic (UGe2, [84] URhGe [85]). A further funda-
mental example of spin-triplet superconductor with a chiral p-wave order parameter
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Figure 1.3. Modulus (left panels) and phase (right panels) of pair potential
in several spin triplet superconductors: px−, py , chiral px + ipy−wave, from
top to bottom.

(See Fig. 1.3) is the layered perovskitic system Sr2RuO4 [86], which for its specific
properties has probably offered in the last years the best opportunity to study the
relevant features of spin triplet pairing. It is also worth mentioning that a peculiar
modification of the superconducting behavior of this compound has been detected
in two types of eutectic solidifications which contain it, i.e. Sr2RuO4/Ru and
Sr3Ru2O7/Sr2RuO4. In the case of Sr2RuO4/Ru, where the critical temperature is
enhanced from Tc = 1.5K of pure Sr2RuO4 to Tc = 3K [87], lamellar microdomains
of metallic ruthenium are embedded in the perovskitic oxide in such a way that a
non-chiral spin triplet component may occur at the interface, or a spin-singlet pair-
ing from the metallic ruthenium is mixed with the spin-triplet one of Sr2RuO4 [88].
On the other hand, for Sr3Ru2O7/Sr2RuO4 an anomalous proximity effect as well
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as multiple superconducting transitions have recently been observed [89, 90]. The
behavior of both kinds of eutectic system underlines the subtle competition be-
tween spin-triplet pairing and translational and orbital symmetry breaking. The
rich phenomenology of the classes of systems mentioned above is intimately re-
lated to the complex evolution of the superconducting state when extra symmetries
other than the U(1) gauge invariance are spontaneously or explicitly broken. In-
deed, time reversal symmetry breaking can lead to inhomogeneous superconducting
states, and the removal of the crystal inversion symmetry opens the possibility of
mixed parity pairings in which singlet and triplet correlations coexist. The inter-
est in superconductors with parity mixing has rapidly increased in the last years
also because of the discovery of superconductivity in several non-centrosymmetric
heavy-fermion compounds. Its first observation in CePt3Si [91] at ambient pres-
sure, and in CeRhSi3 [93] and CeIrSi3 [94] under pressure, has stimulated many
experimental [95, 99, 100, 101, 102] and theoretical [103] studies motivated by the
fact that this class of systems gives a unique opportunity of probing the effect of
parity violation, which is otherwise hard to achieve by imposing specific external
conditions to standard centrosymmetric compounds. When crystal structure lacks
an inversion center, the corresponding asymmetry in the electric potential gives rise
to an antisymmetric Rashba-type spin-orbit coupling. The minimal Hamiltonian
to describe these systems is

H = HN + HSC, (1.1)

where the normal-part Hamiltonian reads

HN =
∑

kσ

εkc†kσckσ + λ
∑

kαβ

c†kα(n̂× k)αβckβ . (1.2)

The antisymmetric Rashba spin-orbit coupling is

gk = λ(n̂× k), (1.3)

where λ denotes the strength of the spin-orbit interaction and n̂ denotes the axis
of broken inversion symmetry. More specifically, the crystallographic structure of
the material does not have a mirror plane with n̂ as normal vector. Above, ckα are
fermion operators satisfying the equal-time anticommutation relation {c†kα, ck′β} =
δk,k′δαβ and all other anticommutators vanish. Moreover, the kinetic energy εk =
ξk − µ is measured with respect to Fermi level µ. The long-lived excitations in the
Fermi liquid picture are helicity eigenstates obtained by diagonalizing Eq. 1.2 as

HN =
∑

kσ

Ekσγ†kσγkσ, Ekσ = εk + σ|gk|. (1.4)

Usually is assumed that the superconducting pairing only occurs within the bands
of these long-lived excitations. Interband pairing is neglected, since it would require
Cooper pairs with a finite center-of-mass momentum. The superconducting part of
the Hamiltonian may therefore be written as

HSC =
∑

kk′σ

Vkk′σγ†kσγ†−k,−σγ−k′,σγk′σ. (1.5)
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This may now be transformed back into the original fermion operators in the non-
diagonalized basis. In general, one then finds that the superconducting order pa-
rameter in the original spin basis may be written as

∆k = ∆siσy + ∆t,k
dk · σ

kF
iσy, dk ∝ gk, (1.6)

where kF is the Fermi wavevector and a singlet ∆s and a triplet ∆t,k gap have been
introduced with the vector dk describing its form as we discuss later. Indeed the
lacking of inversion symmetry prevents the classification of Cooper pairs according
to orbital parity. As a consequence, the superconducting phase is characterized
by order parameters of mixed spin symmetry, consisting of an admixture of spin-
singlet and spin-triplet pairing components [104, 105]. The mixed spin structure
of the order parameter in superconducting non-centrosymmetric systems also leads
to very specific features in the behavior close to interfaces, essentially because the
presence of a strong spin-orbit interaction makes the interface scattering become
spin active [106]. More exotic forms of mixed singlet-triplet superconductivity can
be obtained when pairing time correlations lead to an even-frequency component
in one of the spin symmetry channels and an odd-like frequency dependence in
the other. The interest in this direction has been triggered by the observation
of long-range proximity effect in junctions made of a spin-singlet superconductor
interfaced with a half-metallic ferromagnet [107, 108]. A similar attention has also
been devoted to other hybrid systems where due to interfaces, spin active sources
of scattering or inhomogeneous profiles of the magnetization, a mixing of singlet
and triplet pairing with a non-trivial time dependence may be generated [109, 110,
157, 111].

A triplet (S = 1) superconductor (TS) is described by a pair function like

|ψ〉 = ∆↑↑| ↑↑〉+ ∆↓↓| ↓↓〉+ ∆0 (| ↑↓〉+ | ↓↑〉) . (1.7)

The gap can be described by matrix of functions or by a field d(k) [112] trans-
forming like a vector in spin space as

∆̂k =
(

∆↑↑ ∆↑↓
∆↓↑ ∆↓↓

)
=

(−dx + idy dz

dz dx + idy

)
. (1.8)

All the information about gap function (nodal, orbital, and spin structure) is
coded in d(k). Quasiparticles excitation spectrum can be written as

Ek =
√

εk + d · d∗ + |d× d∗|. (1.9)
When d × d∗ = 0, the state “unitary”, meaning that there is only one energy

gap. In this case the energy gap magnitude

|∆̂k|2 =
1
2
Tr

(
∆̂†∆̂

)
, (1.10)

becomes simply proportional to d ·d∗. For unitary states the direction of d(k) has
immediate physical meaning. Its direction defines the normal to the plane in which
the electrons are equal spin paired (along any quantization axes) and its magnitude
is proportional to that of the energy gap. Part. IV is dedicated to analysis of two
similar triplet superconductors with d(k) ∼ (0, 0, kx + iky) and d(k) ∼ (−ky, kx, 0),
that many experimental studies suggest to be effectively realized in superconducting
phases of Sr2RuO4 and mixed parity non-centrosymmetric CePt3Si, respectively.
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They are both unitary and nodeless with equal gap magnitude ∼ (k2
x + k2

y) but
they point in different directions. We will show how these two possibilities can be
discerned by an STM analysis of proximity effect modified density of states in a
proximate ferromagnet. We also show that the interplay between the exchange field
h and the d(k) vector can generate a spin-sensitive long-ranged proximity effect
even without any magnetic inhomogeneity in the ferromagnetic layer.

1.2. Itinerant ferromagnets: Stoner exchange and spin bandwidth asym-
metry

The origin of itinerant ferromagnetism is nowadays still a controversial ques-
tion. Indeed, it is generally accepted that several distinct mechanisms have to be
invoked to describe ferromagnetism in metals in the wide range of manifestations
that it exhibits in nature. As relevant examples, we mention the ferromagnetic
transition metals Fe, Co, and Ni and their alloys [52], the weak metallic ferromag-
nets such as ZrZn2 and ScIn3 [55], the colossal magnetoresistance manganites such
as La1−xSrxMnO3 [57], and rare earth hexaborides such as EuB6 [58]. The class of
half-metals, defined by the property of having almost 100% transport spin polar-
ization [24], is particularly important. As members of this class we cite CrO2 [113],
La0.7Sr0.3MnO3 [114], Fe3O4 [115], and EuO [116], among others.

Commonly, metallic ferromagnetism has been understood as a competition be-
tween single particle kinetic energy, favoring the paramagnetic state, and the ex-
change energy originated by the Coulomb interaction, favoring the spin-polarized
state [117]. It is argued that in ferromagnets the gain in exchange energy usu-
ally overcomes the cost in kinetic energy due to the Pauli principle that forbids
double occupancy of low kinetic energy states for parallel spins, resulting in an
energy split of the majority and minority spin bands. However, the interplay of
Coulomb repulsion and the Pauli principle driving a metal into a ferromagnetic
state [50], may induce a spin-dependent renormalization of the masses of charge
carriers with opposite spins, i.e. a spin bandwidth asymmetry. A possible realiza-
tion of this mechanism was first proposed to describe ferromagnetism in manganese
oxides [60]. The origin of this effect may be ascribed to the Hund’s rule interaction
in degenerate orbitals that sustains the alignment between electrons in different
orbitals. In this case, the ferromagnetic state does not result from the usual ex-
change interaction but rather is due to a kinetic effect [60]. A different mechanism
not requiring a multi-orbital character may be also invoked as responsible for a
kinetically driven ferromagnetism. This appears in microscopic approaches where
off-diagonal terms of Coulomb repulsion, generally neglected in studies based on
the Hubbard model, are taken into account. A mean-field treatment of these con-
tributions in addition to the exchange and nearest-neighbor pair hopping terms
shows that quasiparticle energies for the two spin species are not simply splitted
but get different bandwidths, i.e. effective masses. The net effect of these interac-
tions is to render the hopping integral in the kinetic term spin dependent through
bond charge Coulomb repulsion factors which are different for spin up and down
carriers [61]. For low enough temperature and depending on Hamiltonian param-
eters, ferromagnetic order can be established only through this spin bandwidth
asymmetric renormalization [32, 62]. In this picture the ferromagnetism should be
understood as kinetically driven, in the sense that it arises from a gain in kinetic
energy rather than potential energy, unlike the usual Stoner scheme. It is worth
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stressing that, in contrast to the double exchange model, the latter mechanism
may develop within a single electronic band [92]. How it is possible to extract ex-
perimentally the contributions of the exchange splitting and spin dependent mass
renormalization that emerge in the two types of ferromagnet mentioned above?
One way is to look at the optical properties [63]; other useful information could
be obtained from angle-resolved photoemission experiments, which can probe band
renormalization effects as a function of temperature and magnetization [64], as well
as from de Haas-van Alphen oscillation measurements [65]. All such experiments
can yield insight on the mechanism behind the origin of ferromagnetism in metals.

Spin bandwidth asymmetry will substantially affect the coexistence of ferro-
magnetism and superconductivity [67], as well as the proximity effect [37] and
transport in ferromagnet/superconductor bilayers [96, 98, 97], and Josephson effect
in superconductor/ferromagnet/superconductor junction. It is also responsible for
an extension of the regime in which FFLO phase can be stabilized in heavy-fermion
systems. [118, 119].

Independently of mechanism generating bandwidth asymmetry ferromagnetism,
see e.g. [61, 118, 119], it can be qualitatively understood as follows. Consider a tight
binding framework on the lattice in its simplest form, i.e. single band of non inter-
acting electrons in a 1D linear lattice with only nearest neighbor hopping. In this
case band dispersion have the form

εk ∼ −t cos(ka) (1.11)

being a the lattice constant, k the quasi-momentum, and t the hopping integral,
i.e. the bandwidth. Note that this kind of band describe normal metals (ferro-
magnetic solutions can be obtained only from interacting electrons). Taking the
continuum limit of this tight binding solution, i.e. ka ¿ 1, one readily obtains
a parabolic dispersion and applying definition of effective mass one can see that
it is constant throughout the band, i.e. it has no k dependence, and its value its
inversely proportional to the bandwidth, m ∼ 1/t.

When considering interacting electrons, the simplest ferromagnetic solution,
i.e. Stoner model, can be written as

εk,σ ∼ −t cos(ka)− ρσU (1.12)

where σ =↑, ↓ is the spin index, ρ↑(↓) = +1(−1), and U the exchange energy. In this
case the bands are rigidly shifted each other and the masses of oppositely polarized
electron are the same (see top panel of Fig. 1.4).

Under certain circumstances [61] spin bandwidth asymmetric ferromagnetic
solutions can be obtained. They have the form

εk,σ ∼ −tσ cos(ka) (1.13)

with t↑ 6= t↓, i.e. up and down electrons bands have different bandwidth (see bot-
tom panel of Fig. 1.4). This is different from Stoner solutions because splitting is
absent even if a spin polarization exists (we calculate it below). Taking the con-
tinuum limit as explained before for a normal metal, one readily obtains that spin
bandwidth asymmetric solutions correspond to two parabolic bands with different
spin dependent effective masses, i.e. m↑ 6= m↓. In general both contributions are
present and dispersion take the form
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Figure 1.4. Comparison of Stoner (a) and spin bandwidth asymmetry (b) ferromagnets.

εk,σ ∼ −tσ cos(ka)− ρσU. (1.14)
The dimensionless spin polarization or magnetization M can be defined as

M = P↑ − P↓, (1.15)
where Pσ is the fraction of carriers with spin σ, i.e.

Pσ =
nσ

n↑ + n↓
, (1.16)

where nσ is the thermal average of number operator for particles with spin σ.
Magnetization takes value in the range [0, 1] with extremes corresponding to a
normal metal and an half-metal, respectively. A generic ferromagnet (F) including
both exchange energy and mass splitting will be characterized by two magnetic
parameters, namely the ratio of exchange energy and Fermi energy X = U/EF ∈
[0, 1], and Y = m↑/m↓ ∈ [0,∞[. At T=0 and for one-, two- and three-dimensional
F one has

M1D =

√
(X+1)Y

1−X − 1
√

(X+1)Y
1−X + 1

, (1.17)

M2D =
X + (X + 1)Y − 1
X(Y − 1) + Y + 1

, (1.18)

M3D =

√
(X + 1)3Y 3 −

√
(1−X)3

−
√

(1−X)3 −
√

(X + 1)3Y 3
. (1.19)

These expressions correctly reduce to known results for a pure Stoner ferromag-
net when Y → 1. On the other hand, for any fixed value of X, when Y → ∞(0)
we precisely reproduce the half-metal limit M → 1(−1). For any 0 ≤ X < 1, the
mass mismatch enhances the net polarization when the up electrons band has a
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Figure 1.5. Density plot of the ground state magnetization as a function of
the mass mismatch and the normalized exchange interaction, for one-, two-
and three-dimensional ferromagnetic electrodes. As shown in the legend on
the right, lighter color regions are associated with larger values of the mag-
netization. For clarity, only three iso-magnetization curves are plotted in all
panels, corresponding to M = 0.25 (solid line), M = 0.50 (dashed line), and
M = 0.75 (dotted line).

smaller bandwidth than the down electrons one (corresponding to Y > 1 and up
electrons “heavier” than down electrons, i.e. m↑ > m↓) and hinders it the other
way around (Y < 1). The situation is illustrated in Fig. 1.5, where a density plot
of the magnetization at T = 0 in the (m↑/m↓, U/EF ) parameter space is shown
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for one-, two- and three-dimensional ferromagnets, together with three isomagne-
tization curves plotted to clarify the magnetization trend. Each colored point on
plots corresponds to a different realization of the ferromagnetic order in the sense
that the relative weights of the exchange splitting and the mass mismatch are de-
termined by the coordinates of that point, while the value of M is fixed along any
isomagnetization curves, e.g. the solid, dashed and dotted lines of Fig. 1.5. Regions
corresponding to M < 0 (indicated in black in Fig. 1.5) are excluded since they
are mirror images of those with positive M . It is clear that in order to obtain a
fixed magnetization the values of exchange and/or mass mismatch needed are larger
for lower dimensionalities. Indeed we see that though the qualitative behavior is
independent on the dimensionality, for the chosen band dispersion in F, one always
finds M3D > M2D > M1D when evaluated for the same m↑/m↓ and U/EF values.
These are simply consequences of the fact that the number of levels in the k−space
at a certain energy grows with dimensionality.

1.3. Modelling interfaces

The quality of interfaces has a dramatic influence on physics of heterostruc-
tures. Complicated details of interfaces which depend on materials constituting
the samples and synthesis technique are usually not included in standard theoreti-
cal models simply because they would render the problem intractable. A possible
model of interface is to consider it as a positive potential energy term in the Hamil-
tonian different from zero only around the interface plane working as a barrier on
particles, i.e. a scattering potential. The simplest case of a constant potential
which is non zero only in the interface plane representing an infinitely thin insula-
tor is usually employed. Within this assumption a ferromagnetic insulator (FI) can
easily be included in the model by using different potential values for up and down
particles along a certain quantization axis. Spin flip scattering at the interface can
also be included introducing a matrix of potentials in spin space with non zero
“off-diagonal” terms describing scattering accompanied by a flipping of the spin.
Interface roughness can be simulated by random sampling of both the location and
the height of the scattering potential in given ranges. In lattice tight binding models
interfaces can be modelled including in the boundary planes hopping terms in the
Hamiltonian which have a different values from the one taken in the surroundings,
e.g. in the bulk. Even in this case one can “spread” the interface on more planes
with position dependent hopping values, and describe a ferromagnetic insulator by
assigning different hopping values for up and down particles. In what follows we
will make use of this simplified models assuming thin interfaces and neglecting any
roughness. This are usual assumptions in the literature and are considered to be
able to reproduce the features of heterostructures whenever the quality of interfaces
is good.

1.4. Bogoliubov–de Gennes equations

Bogoliubov-de Gennes equations (BdG) describe quasiparticle excitations in
clean, i.e. without impurities, superconductors [120]. They can also describe non
superconducting materials, e.g. a normal metal (N) or a ferromagnet (F), so they
can be used to model any component of heterostructures we are interested in. We
derive them here for a 2D F/I/S junction (the interface lies in the y direction
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at x = 0) where F is a general ferromagnet possessing both exchange and spin
bandwidth asymmetry, I is a infinitely thin insulating barrier, and S a generic
superconductor.

The real-space Hamiltonian written in terms of canonical field operators ψ(r, t), ψ†(r, t)
in the Heisenberg picture reads

H =
∑

α,β

∫
drψ†α(r, t)H0

α,β(r,p)ψβ(r, t)

+
1
2

∑

αβ

∫ ∫
drdr′Vαβ(|r− r′|)ψ†α(r, t)ψ†β(r′, t)ψβ(r′, t)ψα(r, t), (1.20)

where α, β are spin index, H0
α,β(r,p) is the single particle Hamiltonian (p = −i~∇r)

and Vαβ(|r−r′|) is the attractive interaction responsible for superconductivity (here
all spin paring channel are assumed to be open). In order to describe a F/I/S
junction superconducting pairing and single particle Hamiltonian in Eq. 1.20 have
to be considered “piecewise”. The superconducting term pairs electron only on the
right side of the junction

Vαβ(|r− r′|) = Θ(x)Ṽαβ(|r− r′|), (1.21)
being Θ the Heaviside step function. Choosing the magnetization in F along the
spin quantization axis 2 the single-particle Hamiltonian is

H0
α,β(r,p) = δαβ

[
HF

α Θ(−x) + HIδ(x) + HSΘ(x)
]
, (1.22)

where δ is the Dirac delta function and

HF
α = −~2∇2/2mα − ραU − EF

F

HI = V

HS = −~2∇2/2m− ES
F , (1.23)

where V is the scattering potential at interface and in F both exchange term and
mass mismatch have been included.

Mean field approximation is employed

ψ†α(r, t)ψ†β(r′) = 〈ψ†α(r, t)ψ†β(r′, t)〉+ δψ†αβ , (1.24)

where the last term describes the fluctuations around the average field. Neglecting
time (energy) dependence, i.e. in the weak coupling limit, the superconducting
order parameter is defined as

∆αβ(r, r′) = Vαβ(|r− r′|)〈ψβ(r′, t)ψα(r, t)〉. (1.25)

The Hamiltonian within these approximation becomes

H =
∑

αβ

∫
drψ†α(r, t)H0

α,β(r,p)ψβ(r, t)

+
1
2

∑

αβ

∫ ∫
drdr′[∆†

αβ(r, r′)ψβ(r′, t)ψα(r, t)

+ ∆αβ(r, r′)ψ†α(r, t)ψ†β(r′, t)]. (1.26)

2This assumption makes the calculation less general when S is a triplet superconductor but in
what follows we will apply BdG only to singlet superconductors.
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where (δψ)2 term has been neglected and a constant term dropped. The equation
of motion for field operators ψ(r, t) = ei Ht

~ ψ(r)e−i Ht
~ are

i~∂tψα(r, t) = [ψα(r, t),H]

=
∑

β

∫
dr′δ(r− r′)H0

αβ(r′,p)ψβ(r′, t)

+
∑

β

∫
dr′∆αβ(r, r′)ψ†β(r′, t),

i~∂tψ
†
α(r, t) = [ψ†α(r, t),H]

=
∑

β

∫
dr′δ(r− r′)[−H0(r′,−p)]Tαβψ†β(r′, t)

+
∑

β

∫
dr′∆†

αβ(r, r′)ψβ(r′, t). (1.27)

The equations can be written in a matrix form introducing a vector of field
operators as follows

i~∂tΨ(r, t) =
∫

dr′H (r, r′)Ψ(r′, t),

Ψ(r, t) = [ψ↑(r, t), ψ↓(r, t), ψ
†
↑(r, t), ψ

†
↓(r, t)]

T,

H (r, r′) =

(
Ĥ0(r′,p)δrr′ ∆̂(r, r′)
−∆̂

∗
(r, r′) [−Ĥ0(r′,−p)]Tδrr′

)
, (1.28)

with gap matrix

∆̂(r, r′) =
(

∆↑↑(r, r′) ∆↑↓(r, r′)
∆↓↑(r, r′) ∆↓↓(r, r′)

)
. (1.29)

Stationary solutions Ψ(r, t) = Ψ(r)e−i Et
~ with E as the wavefunction energy

are solution of
EΨ(r) =

∫
dr′H (r, r′)Ψ(r′). (1.30)

Assuming plane-wave-like solutions and dividing out the fast oscillations on Fermi
wavelength scale the usual form of BdG is obtained

(
Ĥ0(r,p) ∆̂(k, r)

∆̂
†
(k, r) [−Ĥ0(r,−p)]T

)
Ψ(r) = EΨ(r), (1.31)

where the quasiparticle momentum k is the Fourier conjugate of the relative co-
ordinate s = (r − r′)/2. Its modulus is fixed on the Fermi surface, and only its
direction enters in Eq. 1.31, k → kF k̂.

In order to solve BdG for a heterostructure boundary conditions at any inter-
face have to be employed. Precise form of these equations are different depending
on the particular junction. They will be listed in the following for every setup
analyzed. The general recipe is that eigenfunctions have to be continuous at any
interface. The matching of derivatives depends on scattering potential at inter-
faces and the right equation have to be obtained demanding consistency when BdG
are integrated in a finite interval around interface which is successively taken to
zero. This procedure gives continuity of derivatives unless the scattering potential
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is infinite and/or different effective masses are assumed in different layers as in our
case.

1.5. Eilenberger and Usadel equations

Eilenberger [121] and Usadel [122] equations provide quasiclassical Green’s
functions in clean and dirty superconductors, respectively. As BdG they can de-
scribe also a normal metal (N) or a ferromagnet (F) so they are applicable to
systems here considered. Being their derivation quite long, we simply report them
here after a brief introduction in which the formalism of quasiclassical theory of
superconductivity is introduced. We will use units such that ~ = c = 1 and use
. . . for 2 × 2 matrices in spin space and ˆ. . . for 4 × 4 matrices in spin ⊗ Nambu
(electron-hole) space. Using the simplified notation (r1, t1) = 1, (r2, t2) = 2, the
retarded, advanced, and Keldysh Green’s functions are defined as

GR
σ,σ′(1, 2) = −iΘ(t1 − t2)

〈{
ψσ(1), ψ†σ′(2)

}〉
,

GA
σ,σ′(1, 2) = iΘ(t2 − t1)

〈{
ψσ(1), ψ†σ′(2)

}〉
,

GK
σ,σ′(1, 2) = −i

〈[
ψσ(1), ψ†σ′(2)

]〉
.

Superconducting correlations are coded in “anomalous” Green’s functions

FR
σ,σ′(1, 2) = −iΘ(t1 − t2) 〈{ψσ(1), ψσ′(2)}〉 ,

FA
σ,σ′(1, 2) = iΘ(t2 − t1) 〈{ψσ(1), ψσ′(2)}〉 ,

FK
σ,σ′(1, 2) = −i 〈[ψσ(1), ψσ′(2)]〉 .

Both kind of functions are collected in the following matrices

ĜR(1, 2) =
(

GR(1, 2) FR(1, 2)
(FR)∗(1, 2) (GR)∗(1, 2)

)
,

ĜA(1, 2) =
(

GA(1, 2) FA(1, 2)
(FA)∗(1, 2) (GA)∗(1, 2)

)
,

ĜK(1, 2) =
(

GK(1, 2) FK(1, 2)
−(FK)∗(1, 2) −(GK)∗(1, 2)

)
.

Retarded and advanced Green’s function matrices are not independent. Indeed

ĜA(1, 2) =
[
ρ̂3Ĝ

R(2, 1)ρ̂3

]†
, (1.32)

where

ρ̂3 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (1.33)

By passing to center of mass and relative coordinates (both in space and time)
quasiclassical Green’s functions can be introduced. By considering an equilibrium
system, e.g. with no explicit time dependence in the Hamiltonian in the Schrödinger
picture, they are defined as
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ĝ(r,pF , ε) =
i

π

∫ ∞

−∞
dξpĜ(r,p, ε), (1.34)

where ξp = p2/2m, and Ĝ(r,p, ε) is the partial Fourier transform of Ĝ(1, 2) after
coordinates change, i.e. p and ε are conjugate variables of r1 − r2 and t1 − t2,
respectively, and r is the center of mass position. This definition applies to both
retarded, advanced, and Keldysh Green’s functions. Their quasiclassical version
has the following structure

ĝR =

(
gR fR

−f̃
R −g̃R

)
,

ĝA =

(
gA fA

−f̃
A −g̃A

)
,

ĝK =

(
gK fK

f̃
K

g̃K

)
, (1.35)

where

g̃(r,pF , ε) = [g(r,−pF ,−ε)]∗,

f̃(r,pF , ε) = [f(r,−pF ,−ε)]∗. (1.36)

The three types of functions are not independent as

ĝA = − [
ρ̂3ĝ

Rρ̂3

]†
, (1.37)

ĝK = (ĝR − ĝA) tanh
(

βε

2

)
. (1.38)

From now on we choose to use only retarded Green’s function and it will be
simply denoted by ĝ. In clean systems it can be calculated by solving Eilenberger
equation

ivF · ∇ĝ + [ερ̂3 − Σ̂, ĝ] = 0̂, (1.39)

where Σ̂ includes all potential energies, e.g. exchange field and superconducting
pairing.

If impurities exist, and self energy associated with elastic scattering is much
larger than any other, i.e. the dirty limit, the Green’s function is mainly isotropic
depending weakly on direction of Fermi momentum. In this case from Eilenberger
equation the simpler Usadel equation can be obtained which describe the angular
average on Fermi surface of Green’s functions 〈ĝ〉. It reads

D∇(〈ĝ〉∇〈ĝ〉) + i[ερ̂3 − Σ̂], 〈ĝ〉] = 0, (1.40)

where D = v2
F τ/3 is the diffusion constant and

1
τ

=
1
2
nN0

∫
deF |v(pF − q)|2, (1.41)

where n is the impurity concentration, N0 the density of states at the Fermi level,
and v the Fourier transform of impurity potential in real space.
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In order to solve Eilenberger or Usadel equations for heterostructures boundary
conditions for quasiclassical Green’s functions are necessary. They were derived by
Zaitsev for conventional S/N bilayers [185] while Kuprianov and Lukichev [186]
specialized them for the case of tunneling interfaces. They were generalized to the
case of unconventional superconductors by Tanaka [125]. In diffusive media they
are found to depend on resistance of electrodes and not only on properties of the
interface. Their derivation is extremely long and complicated [125] and we will
simply discuss their particular structure when applied to an heterostructure build
up by a diffusive ferromagnet and a triplet superconductor in Part IV.
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Abstract

This part of the dissertation is devoted to the analysis of transport in ferro-
magnet/superconductor ballistic junction. For the ferromagnetic side we assume
that ferromagnetism may be driven by an unequal mass renormalization of op-
positely polarized carriers, i.e. a spin bandwidth asymmetry, and/or by a rigid
splitting of up-and down-spin electron bands, as in a standard Stoner ferromagnet,
whereas the superconducting side is assumed to exhibit a s-wave and d-wave sym-
metry of the order parameter. The latter case is also considered accompanied by
a minority component breaking time-reversal symmetry. The study is performed
within the Blonder-Tinkham-Klapwijk approach and by solving the corresponding
Bogoliubov-de Gennes equations. Chapter 2 focuses on charge transport, Chapter 3
on spin filtering effects, and Chapter 4 on spin transport. Results are summarized
and discussed in the last section of this part at p. 55.
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CHAPTER 2

Charge transport in F/S

This Chapter is devoted to analysis of charge transport in ballistic 2D F/S
junctions. In particular we focus on differences deriving from a different mag-
netic mechanism in F. We will consider both a Stoner ferromagnet (STF) and spin
bandwidth asymmetry ferromagnet (SBAF) with mass mismatch of oppositely po-
larized carriers (see Sec. 1.2). We will consider different symmetries in S, namely
conventional s-wave, dx2−y2 -wave with line nodes perpendicular to the interface,
and broken time-reversal states (BTRSs) with s- or dxy-wave minority component,
e. g. dx2−y2 + is-wave and dx2−y2 + idxy-wave (see Sec. 1.1).

The system under study is built up of two semi-infinite layers connected by an
infinitely thin non magnetic insulator barrier (I) resulting in an interfacial scattering
potential of the form V (r) = Hδ(x). We choose an interface lying along the y
direction at x = 0 (see Fig. 2.1) so that the region x < 0 (from now on the F side)
is occupied by an itinerant ferromagnet (a Stoner or a spin bandwidth asymmetry
ferromagnet, or a combination of the two), while the region x > 0 (from now on
the S side) is occupied by a singlet superconductor (so there is no need to specify
the spin quantization axis). Both conventional and unconventional symmetries will
be considered in the S side.

We describe the excitations propagating through the junction by means of the
single-particle Hamiltonian

Hσ
0 =

[−~2∇2/2mσ − ρσU − EF

]
Θ(−x)

+
[−~2∇2/2m′ − EF

]
Θ(x) + V (r) , (2.1)

where σ =↑, ↓, mσ is the effective mass for σ-polarized electrons in the F side,
ρ↑(↓) = +1(−1), U is the exchange interaction, EF is the Fermi energy of the
ferromagnet, Θ(x) is the unit step function, m′ is quasiparticles effective mass
in the superconductor. When there are no spin flip scattering processes at the
interface and/or a singlet superconductor is considered, it is enough to solve 2× 2
BdG equations (

Hσ
0 ∆

∆∗ −H σ̄
0

)(
uσ

vσ̄

)
= ε

(
uσ

vσ̄

)
, σ =↑, ↓ , (2.2)

where σ̄ = −σ and (uσ, vσ̄) ≡ Ψσ is the energy eigenstate in the electron-hole
space associated with the eigenvalue ε (excitation energies are measured from the
Fermi level). Eqs. 2.2 admit an analytical solution in the approximation of a rigid
superconducting pair potential, i.e. ∆(r) = ∆(θ′)Θ(x), where θ′ is the angular
variable for the S side (see Fig. 2.1). The Hamiltonian invariance under y-directed
translations permits to factorize the part of the eigenstate parallel to the interface,
i.e. Ψσ(r) = eik‖·rψσ(x), reducing the effective dimensionality of the problem.
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Figure 2.1. Scheme of the planar F/I/S junction. Here, θσ, θσ̄ , and θ′σ are in-
jection, Andreev reflection, and transmission angles, respectively, for electrons
and quasiparticles with spin σ. β is the angle formed by the crystallographic
a axis of a d-wave superconductor with the x axis.

2.1. Scattering processes at the interface

At the interface four scattering processes are possible for an electron injected
from the F side with spin σ and momentum k+

σ (k+
σ =

[(
2mσ/~2

)
(EF + ρσU + ε)

]1/2).
They are qualitatively depicted in Fig. 2.1: a) Andreev reflection (AR) resulting in
a hole with momentum k−σ̄ (k−σ̄ =

[(
2mσ̄/~2

)
(EF + ρσ̄U − ε)

]1/2) belonging to the
opposite spin band and a Cooper pair transmitted in the superconductor; b) normal
reflection; c) transmission as electron–like quasiparticle (ELQ) with momentum k′+σ

(k′+σ =
[(

2m′/~2
) (

EF +
√

ε2 − |∆σ+|2
)]1/2

); d) transmission as hole–like quasi-

particle (HLQ) with momentum k′−σ (k′−σ =
[(

2m′/~2
) (

EF −
√

ε2 − |∆σ−|2
)]1/2

),

where ∆σ± = |∆σ±| eiφ±σ is the pair potential felt by electron-like (+) and hole-like
(−) quasiparticles. We notice that the spin dependence of ∆σ± comes out from
the different trajectories followed by up- and down-spin quasiparticles. Which of
these processes actually takes place depends on the energy, momentum and spin
orientation of the incoming electrons, as well as on the interfacial barrier strength,
the spin polarization in the F side and the symmetry of the superconducting order
parameter in the S side. Interestingly there can be also a dependence on magnetic
mechanism in F as we will show.

2.1.1. Snell’s law and critical angles

Angles associates to every scattering processes can be determined by conser-
vation of parallel momentum. For standard low-biased F/S junctions, one has
EF À (ε, |∆|), so that one can apply the Andreev approximation [20] and fix the
momenta on the Fermi surfaces, e.g. k±σ(σ̄) → kF

σ(σ̄) and k′±σ → k′Fσ . We will employ
this approximation in what follows. In this case it is well known that in N/S junc-
tion all outgoing angles are equals to incoming angle. In particular this is true for
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AR angle (this feature is known as “retroreflection”). This property is lost in F/S in
which only normal reflection angle is equal to incoming angle. Andreev reflection
and transmission angles can be determined by

kF
σ sin θ = kF

σ̄ sin θσ̄ = k′F sin θ′σ , (2.3)

where θσ̄ and θ′σ are AR and the transmission angles, respectively, for electrons
with spin σ incoming from an angle θ. From this equation it is easy to verify
the existence of critical angles above which these processes are no more possible,
resulting in virtual AR [126] and normal reflection.

2.2. Solution of Bogoliubov–de Gennes equations

The solutions of Eq. 2.2 can be found by a plane wake like ansatz. In F and S
they read

ψF
σ (x) = eikF

σ,xx

(
1
0

)
+ aσeikF

σ̄,xx

(
0
1

)
+ bσe−ikF

σ,xx

(
1
0

)
(2.4)

ψS
σ (x) = cσeik′Fσ,xx

(
u+

e−iφ+
σ v+

)
+ dσe−ik′Fσ,xx

(
eiφ−σ u−

v−

)
(2.5)

where

u± =

√
ε±

√
ε2 − |∆σ±|2

2ε

v± =

√
ε∓

√
ε2 − |∆σ±|2

2ε
, (2.6)

the superscript F in the wave-vectors denotes that they are taken on the Fermi
surfaces, and eiφ±σ = ∆σ±/|∆σ±|. The coefficients aσ, bσ, cσ, and dσ are prob-
ability amplitudes for an electron with spin σ to undergo AR, normal reflection,
transmission as ELQ, and transmission as HLQ, respectively. They are functions
of dynamical variables ε and θ besides depending on all junction parameters.

2.2.1. Boundary conditions

The boundary conditions at the interface allow for the calculation of the prob-
ability amplitude coefficients aσ, bσ, cσ, dσ for the four scattering processes. The
solutions of BdG (Eq. 2.4) in F and S have to be matched at the interface (x = 0).
The general recipe is that eigenfunctions have to be continuous at any interface.
The matching of derivatives depends on scattering potential at the interface and the
right equation has to be obtained demanding consistency when BdG are integrated
in a finite interval around x = 0 which is successively taken to zero. This procedure
gives continuity of derivatives unless the scattering potential is infinite and/or dif-
ferent effective masses are assumed in different layers as in our case. The fact that
different effective masses are assumed in F for up and down quasiparticles implies
that it is not possible to match the derivatives of the full wavefunction doublet but
their electron σ and hole σ̄ components obey separated equations. The boundary
conditions read
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ψF
σ (0) = ψS

σ (0) (2.7a)
mσ

m′
duS

σ

dx

∣∣∣∣
x=0

− duF
σ

dx

∣∣∣∣
x=0

=
2H mσ

~2
uS

σ(0) (2.7b)

mσ̄

m′
dvS

σ̄

dx

∣∣∣∣
x=0

− dvF
σ̄

dx

∣∣∣∣
x=0

=
2H mσ̄

~2
vS

σ̄ (0) . (2.7c)

Eq. 2.7 show that the mass asymmetry explicitly renormalizes the interface barrier
strength H, giving rise to a dependence of this quantity on the spin of the carri-
ers. This effect, which under suitable conditions leads to a different behavior of
these carriers across the barrier, allows to infer that the presence of spin dependent
electron masses in Eq. 2.7 may mimic a spin active barrier, in the sense that elec-
trons with opposite spin feel different values of the barrier height. A junction with
a mass mismatch ferromagnet can thus induce an effective spin-active interfacial
effect, which for specific choices of H will produce spin filtering effects as we will
show in Chap. 3. This is analogous to the situation where the insulating barriers
are polarized with magnetic moment parallel to the one in the F layer and thus act
with different strength on particles with opposite spin. When only exchange split-
ting is present, i.e. mσ = mσ̄ = m′, the usual form of the boundary conditions is
recovered [126]. The dimensionless parameter Z = 2m′Hπ2/(~2k′F ) in what follows
will conveniently characterize the strength of the interfacial scattering.

2.3. Generalized BTK model and charge differential conductance

Once probability amplitudes are calculated by solving the linear system ob-
tained by imposing Eq. 2.7, the charge differential conductance can be estimated
within an extended Blonder-Tinkham-Klapwijk approach (BTK), here formulated
for a two-dimensional F/S junction. This formalism has been generalized in the
last years to take into account higher dimensionalities, unconventional forms of the
superconducting order parameter, different Fermi energies for the two sides of the
junction, and a spin–flip interfacial scattering [127, 126, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138].

The charge differential conductances at T = 0 and energy ε, i.e. at bias voltage
V = ε/e, e being the electron charge, are calculated from the ratio between the
charge flux across the junction and the incident flux at that bias. It can be easily
obtained from the probabilities associated with the four processes listed above [126],
and for each spin channel it can be written as

Gσ(ε, θ) = Pσ

(
1 +

kF
σ̄,x

kF
σ,x

|aσ(ε, θ)|2 − |bσ(ε, θ)|2
)

, (2.8)

where θ is the angle formed by the momentum of the electrons propagating from
the F side with respect to the normal to the interface (see Fig. 2.1), and the partial
polarization Pσ = nσ/(n↑ + n↓) is the fraction of electrons occupying the σ-spin
band of the metallic ferromagnet. In our case

P↑ = 1− P↓ =
(X + 1)Y

X(Y − 1) + Y + 1
, (2.9)
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where X = U/EF and Y = m↑/m↓. The scalar part of the ratio of Fermi wavevec-
tors in Eq. 2.8 can be shown to be in a one to one correspondence with spin polar-
ization M and has the effect of suppressing the ARs for increasing magnetization.
The sign in front of AR probability shows that whenever ARs take place there is
an enhancement in charge conductance because the Andreev reflected holes has
opposite charge and velocity sign than injected electrons thus their contributions
to charge transport sums up. The junction conductance takes contributions from
a range of angles determined by the experimental conditions. This range is limited
from above due to the conservation of the momentum parallel component as shown
in Eq. 2.3. From this equation it is easy to verify the existence of critical angles
above which these processes are no more possible, resulting in virtual AR [126] and
normal reflection. This implies that depending on spin polarization and effective
masses in F, σ polarized electrons can be Andreev reflected or transmitted only if
their trajectory is not too far from the normal injection. The angularly averaged
differential conductances for given spin orientation are then defined as [126]

〈Gσ(ε)〉 =
∫ θσ

C

−θσ
C

dθ cos θ Gσ(ε, θ)/
∫ θσ

C

−θσ
C

dθ cos θ (2.10)

where θσ
C is the critical angle for the transmission of σ-spin electrons. In what

follows we will consider the same Fermi energy in F and S and whenever mass
mismatch will be considered it will be for m↑/m↓ > 1 which corresponds to the
usual situation where lowest band is narrower than highest band. Under these
conditions critical angles exist only for majority σ =↑ electrons. The measured net
averaged charge conductance is defined as

〈G(ε)〉 = 〈G↑(ε)〉+ 〈G↓(ε)〉. (2.11)

This quantity has been defined dimensionless (we have omitted the 2e2/h factor)
and normalized in the range [0, 2]. For a particular energy the minimum is realized
when ARs and transmission probabilities are both zero, e.g. in the tunneling regime
Z À 1 and far from the energy gap when S is s-wave or far from Fermi energy
when S is d-wave. The maximum is reached when only ARs take place, e.g. for
Z = 0 and subgap energy when S is s-wave assuming only normal injection. In
the literature the conductance of F/S expressed in Eqs. 2.8, and 2.11 sometimes is
divided out with the conductance of F/N. This amounts to multiply our equations
for a voltage independent factor proportional to 1 + Z2. This would extend the
range of conductance values to infinity in the tunneling regime. We do not employ
this choice because otherwise some of the effects that we will show could appear
less clearly. Being the factor independent of the voltage our choice is just a matter
of convention.

2.4. Probing spin bandwidth asymmetry

Degree of spin polarization of F can be estimated by fitting conductance ex-
perimental data taken with Point Contact Andreev Reflection Spectroscopy [16] or
Scanning Tunneling Microscopy [17, 139] with superconducting counter electrodes.
This procedure could in general be used to discriminate existence of spin bandwidth
asymmetry in F (see Sec. 1.2) and to give an estimation of this parameter when
fitting of experimental data is performed using both exchange splitting and mass
mismatch rather than the degree of spin polarization alone.
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However a junction setup in which is possible to focus the current in a par-
ticular direction which in turn can be manipulated, permits to directly measure
both the spin polarization and mass asymmetry, if they exist. This effect could be
obtained in a 2D junctions through the application of three tunable gates on the
top of the structure [140]. In this way one can probe the angular dependence of
conductance, and in particular of AR and transmission probabilities which are the
main contributions for |eV | ¿ ∆0 and |eV | À ∆0 being ∆0 the gap amplitude
in S. In N/S junctions it is well known that conductance decreases continuously
increasing angle of injection with respect to the normal to the interface. Indeed
G(ε, θ) depends on Z through a term ∼ Z/ cos θ. This can be explained simply by
noticing that the length to travel in the insulating layer is minimum for normally
injected quasiparticles and increases for more sloping trajectories. In F/S struc-
tures this mechanism is still present but it is overcome by a stronger effect deriving
from existence of critical angles which can be calculated from the equation

kF
σ sin θ = kF

σ̄ sin θσ̄ = k′F sin θ′σ , (2.12)

by determining injection angle θ values such that AR θσ̄ and transmission θ′σ be-
come π/2. By inspection of equation 2.12 it can be seen that such critical angles
exist only for majority σ =↑ electrons. As a consequence the up channel of the
conductance becomes zero when θ overcomes critical angles. This effect is clearly
distinguishable from the continuous decrease as a function of Z in N/S previously
described appearing it as an abrupt drop in conductance because as soon as critical
angle is reached only the minority channel survives, i.e. G↑(θc) = 0, G↓(θc) 6= 0.
What is more this effect exist even for perfectly transparent interface Z = 0. As
seen by Eq. 2.8 the drop in the total conductance when critical angle is overcome
is related to the partial polarization Pσ and consequently to M . By measuring the
angle at which this drop takes place in the ranges |eV | ¿ ∆0 and |eV | À ∆0 one
can determine AR and transmission critical angles, respectively. A closer look to
Eq. 2.12 reveals that critical angle for AR contains the information about the spin
polarization M . Using expression for spin polarization in 2D (Eq. 1.18) a little
algebra shows that

θAR
c = arcsin

√
1−M

1 + M
, (2.13)

where θAR
c is the critical angles over which AR is no more possible for majority

electrons, and M the spin polarization in F. However existence of bandwidth asym-
metry in F cannot be discriminated, or in general the weight of exchange splitting
and mass mismatch in building up M cannot be separated when critical angle for
AR is measured.

On the other hand critical angle for transmission is sensible to the relative
weights of the magnetization sources. Fig. 2.2 shows the critical angle for the
transmission of up electrons in the superconductor along three iso–magnetization
curves as plotted in the mid panel of Fig. 1.5. These curves are plotted as a function
of the mass mismatch ratio whereas the exchange energy U is varied in such a way
to keep the magnetization constant. If the value of M in F lead is known, e.g.
with spin resolved photoelectron spectroscopy or by measuring the critical angle
for AR as explained before, than it is possible to directly estimate mass mismatch
by measuring the critical angle for transmission. As an example consider that F
has spin polarization M = 0.50 and the critical angles is π/4. Than from red curve
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Figure 2.2. Critical angles for the transmission of spin up electrons in S as
a function of mass mismatch for three different M values.

in Fig. 2.2 it is easy to see that there is mass mismatch and m↑/m↓ = 1.5. In the
general case one can derive the relation between critical angle for transmission and
mass mismatch for arbitrary M from Eq. 2.12.

2.5. SBAF/S vs. STF/S

In this section charge transport through two kinds of F/S junctions differing
only in the magnetic mechanism in F (see Sec. 1.2) will be compared. Our model
enable us to analyze a generic F including both exchange energy and mass splitting.
However in the following subsections we discuss the results only for the six repre-
sentative points highlighted in the mid panel of Fig. 2.3, which correspond to a pure
Stoner ferromagnet (STF), i.e. m↑/m↓ = 1, and a pure spin bandwidth asymmetry
ferromagnet (SBAF), i.e. U/EF=0, for three different values of the magnetization
M = 0.25, 0.50, 0.75 (the corresponding values of m↑/m↓ and U/EF are reported
in Table 2.I). We exclude the regions corresponding to M < 0 (indicated in black
in Fig. 2.3) since they are mirror images of those with positive M , and assume that
m↑/m′ = m′/m↓, m↑/m↓ ≥ 1, and U ≥ 0. These are just conventions that do not
affect our results. F/S conductance spectra will be shown for various symmetries
of the superconducting order parameter, emphasizing the differences in transport
between STF/S and SBAF/S junctions. We notice that spectra change continu-
ously as one moves along an isomagnetization curve from a point corresponding to
a STF to a point corresponding to a SBAF (see Fig. 2.3) so that the case of F with
both contributions can be recovered interpolating the two extreme cases.
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Figure 2.3. Density plot of the ground state magnetization as a function
of the mass mismatch and the normalized exchange interaction for a two-
dimensional ferromagnetic electrode. Lighter color regions are associated with
higher values of the magnetization M ∈ [0, 1]. For clarity, only three iso-
magnetization curves are plotted, corresponding to M = 0.25 (solid line),
M = 0.50 (dashed line), and M = 0.75 (dotted line). We depict six represen-
tative points: A and B correspond to two different microscopic states with the
same macroscopic magnetization M = 0.25, A representing a standard Stoner
ferromagnet (m↑/m↓ = 1), and B a purely spin bandwidth asymmetry ferro-
magnet (U/EF = 0). The same holds for the (C,D) and (E,F) couples of points,
referring to higher values of the magnetization (M = 0.50 and M = 0.75, re-
spectively). The values assumed by the microscopic parameters in the above
mentioned six states are summarized in Table 2.I.

M U/EF m↑/m↓
A STF 0.25 0.25 1
B SBAF 0 5/3

C STF 0.50 0.50 1
D SBAF 0 3

E STF 0.75 0.75 1
F SBAF 0 7

Table 2.I. Values of the normalized exchange interaction U/EF , the mass
mismatch m↑/m↓ and the magnetization M for the six illustrative points dis-
played in the middle panel of Fig. 2.3.

2.5.1. s-wave superconducting electrode

We fix as a reference energy the maximum magnitude of energy gap in S ∆0 > 0.
For s-wave superconducting electrode the pair potential can be chosen simply as
∆σ,± = ∆0. Then the charge conductance can be obtain by using this choice
when evaluating coherence factors of Eq. 2.6. Before we move on to analyze the
F/S case, for comparison we will briefly discuss the N/S case in 1D as calculated
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Figure 2.4. Differential conductance spectra in 1D N/S for a junction with a
s-wave superconducting electrode, for different dimensionless interface barrier
strength Z.

in BTK [141]. As discussed previously we prefer to analyze conductance without
dividing it for the bias independent conductance of the N/N junction. This would
amount to simply multiply our conductance for a factor ∼ (1 + Z2). The reader
can also notice that our definition Z = 2m′Hπ2/(~2k′F ) include a π2 factor which
is absent in BTK paper [141] so in order to compare our results with others one
has to take into account that our values of Z are approximately ten times the ones
in BTK when the same interfacial scattering is considered.

The N/S case in 1D is shown in Fig. 2.4 where conductance as a function of
ε/∆0 is shown. Here ε is the quasiparticle energy with respect to Fermi energy and
is related to bias voltage, i.e. ε = eV . As clear form the Z = 0 curve in Fig. 2.4
for subgap energies only AR is possible and G = 2 while for larger energies single
particle transmission as electron-like quasiparticle (ELQ) and hole-like quasiparti-
cle (HLQ) are possible and they become the only processes for sufficiently large
voltages, i.e. G → 1 for ε À ∆0. The effect of a finite Z is to suppress conductance
everywhere (so it hinders both ARs for subgap energies and single particle trans-
mission for energies above the gap) except at the gap edge, i.e. G(ε = ∆0) = 2, ∀Z.
The last properties in no more true in 2D or 3D because angular average lowers
the conductance being more sloping trajectories more sensitive to Z as explained
before.

We move on to analyze the total angle averaged conductance 〈G〉 = 〈G↑〉+〈G↓〉
in F/S. This is plotted in Fig. 2.5 in the limit of full transparency of the barrier
(left panel) and for an intermediate value of Z (right panel). Three values of
magnetization M and both magnetic mechanisms are considered as shown in the
legend which refers to the six points highlighted in Fig. 2.3 and listed in Table 2.I.
Blue curves are for M = 0.25 (solid lines for a Stoner ferromagnet (STF) and dashed
for a spin bandwidth asymmetry ferromagnet (SBAF)) and so on. Comparing the
behavior of a SBAF/S and a STF/S junction, we find qualitative deviations in the
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Figure 2.5. Averaged differential conductance spectra for a junction with
a s-wave superconducting electrode, evaluated in the states corresponding to
the six points indicated in Fig. 2.3 and listed in Table 2.I, in the metallic limit
Z = 0 (left panel) and for intermediate barrier transparency Z = 5 (right
panel).

subgap charge conductance which become more and more significant as increasing
values of the magnetization and high barrier transparency is considered. Indeed,
in this case the averaged differential conductance is a monotonically increasing
function when the F-side is a SBAF, whereas the same quantity in the STF case an
opposite behavior being a decreasing function of ε/∆0. In general one sees that both
the first and second derivatives of the subgap conductance spectra have opposite
signs for a standard STF and for a SBAF when Z = 0. The net effect of bandwidth
asymmetry is to move the junction towards the tunneling regime, e.g. the junction
behaves as if Z 6= 0, as can be clearly seen by a comparison with the right panel
or with Fig. 2.4. This implies that one can in principle use a F/S junction, in the
metallic limit, as an efficient tool to discriminate the existence of a mass asymmetry
contribution in the F-side of the junction because spectra associated with it should
appear more “tunneling-like” with respect to the case of Stoner exchange. This kind
of consideration is supported from looking at the Z = 5 case in Fig. 2.5 where it is
shown that even if now the spectra associated with the two magnetic mechanism
are qualitatively similar, when a bandwidth asymmetry ferromagnet is considered
the conductance is always lower that the one corresponding to a Stoner ferromagnet
as if the former was referring to a stronger interface scattering. This is indeed the
case because when a mass mismatch is introduced the Fermi velocities in the two
leads are different and this renormalizes the interface scattering Z [140]. Larger Z
values can give rise to spin filtering effects which will be analyzed in Chap. 3.

2.5.2. d-wave superconducting electrode

It is well known [142, 143] that in N/S junctions involving a normal metal and
a d-wave superconductor with line nodes perpendicular to the interface, a zero-
bias conductance peak (ZBCP) develops in the tunneling limit, this peak becoming
narrower and narrower as increasing values of the interfacial barrier strength are
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Figure 2.6. Averaged differential conductance spectra for a junction with a
dx2−y2 -wave superconducting electrode, evaluated in the states corresponding
to the six points indicated in Fig. 2.3 and listed in Table 2.I, in the metallic
limit Z = 0 (left panel) and for intermediate barrier transparency Z = 5 (right
panel).

considered. This ZBCP is the consequence of the presence of an Andreev bound
state [144] (ABS) at the Fermi energy, induced by the change in sign of the pair
potential across line nodes. It implies that electron-like and hole-like quasiparticles
specularly reflected at the interface always find the “right” sign of the pair poten-
tial to be Andreev reflected. In this case the ABS is at the same energy for every
quasiparticle trajectory, i.e. for every angle θ. When the normal metal in the junc-
tion is replaced by a ferromagnet, the ZBCP is lowered because of the presence of
spin polarization which inhibits ARs and can be splitted in two sub-peaks develop-
ing symmetrically at finite energies, [128, 129] depending on interfacial scattering
strength. 3 The splitting of the ZBCP is clearly visible in the angle-resolved charge
conductance, while in the angle-averaged one it is distinguishable only in particular
cases (see Chap. 3). When the interface barrier strength Z is reduced, this structure
becomes better defined since the two peaks get more separated, though less pro-
nounced. We remind that, when the superconducting electrode has d-wave symme-
try, the pair potential felt by electrons (+) and holes (–) is ∆σ,± = ∆0 cos[2(θ′σ∓β)],
where β is the angle formed by the crystallographic a axis of the superconductor
with the x axis (see Fig. 2.1). We here fix β = π/4 to analyze a dx2−y2 -wave super-
conductor with line nodes perpendicular to the interface. In Fig. 2.6 we show the
averaged differential conductance spectra evaluated at the six points highlighted
in Fig. 2.3 and listed in Table 2.I, in the limit of full transparency of the barrier
(left panel) and for an intermediate value of Z (right panel). Comparing the be-
havior of a SBAF/dx2−y2 and a STF/dx2−y2 junction, we find deviations in the
charge conductance which become more and more significant as increasing values
of the magnetization and of the barrier strength are considered. It is found that

3Other causes for peak splitting that do not involve magnetism are line nodes not perpendicular
to the interface or presence of secondary component in superconducting order parameter breaking time
reversal symmetry.
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with the increase of the magnetization the ZBCP is lowered rapidly and eventually
smeared out in the STF case, whereas in the SBAF case the ZBCP is more robust
against the polarization of the F-side and appears more narrow. The drop of the
zero bias conductance may be understood considering that the ARs probability
amplitude decreases with increasing spin polarization (the AR processes for the
incident majority electrons is suppressed while the AR for minority electrons still
contributes to the ZBCP). This is represented in BTK-type models by a suppres-
sion in the Andreev term coefficient of conductance with increasing polarization.
This picture is slightly modified when a SBAF is considered, since in this case the
barrier, according to Eq. 2.7, is renormalized and can assist the conductance of the
two spin channels in a different way. This effect results into a charge conductance
always larger than the one obtained in the corresponding STF case with the same
magnetization M . Finally, we notice that with increasing Z, i.e. when we move
from the metallic limit towards the tunneling one, the averaged charge conduc-
tance here obtained reproduces the well-known behavior previously reported in the
literature [127, 126].

2.5.3. Time reversal breaking superconducting electrodes

It is generally accepted that for many unconventional superconductors a sub-
dominant component of the order parameter breaking time-reversal symmetry can
be induced whenever translational symmetry is broken, e.g. near surfaces, inter-
faces and vortices [74, 75, 148]. For some materials, such as e.g. YBCO [40], there
is controversy about the symmetry of the secondary component, namely if the or-
der parameter is of the dx2−y2 + is- or dx2−y2 + idxy-wave type. Furthermore, the
splitting of the ZBCP, leading to the formation of symmetric peaks at finite bias,
has been interpreted [39, 145, 146] as a signature of the admixture of an imaginary
pair potential component with the dominant dx2−y2-wave one, corresponding to
a time-reversal broken symmetry state [74, 147]. The peak splitting reflects the
fact that the zero-energy states are shifted by a positive or negative amount due
to the Doppler shift of a finite vector potential, and the good agreement between
theory and experiments suggests that the existence of broken time reversal states
(BTRSs) is a plausible explanation for the origin of the peak splitting of the charge
conductance. Thus, motivated by the fact that charge transport in junctions with
a superconducting electrode could be a valuable probe of the order parameter sym-
metry, we compare here transport through F/S junctions having dx2−y2 + is or
dx2−y2 + idxy BTRS states in the S side and a SBAF or a STF in the F side. When
the superconducting electrode has dx2−y2 + is- or dx2−y2 + idxy-wave symmetry, the
pair potential felt by electrons (+) and holes (−) is ∆s

σ,± = ∆1 cos[2(θ′σ∓π/4)]+i∆2

and ∆d
σ,± = ∆1 cos[2(θ′σ ∓ π/4)] + i∆2 sin[2(θ′σ ∓ π/4)], respectively. We have an-

alyzed spectra for several values of ∆1 and ∆2 but for brevity we show here the
results only for ∆1 ≈ 0.968∆0 and ∆2 = 0.25∆0. We notice that for this choice
of ∆1 and ∆2 the gap amplitude is ∆0 for θ′ = π/4. In Fig. 2.7 the averaged
charge conductance is plotted considering the two above-mentioned BTRS super-
conductors for a F/S junction with a STF (left panel) and a SBAF (right panel),
for two representative values of the barrier strength Z and for a magnetization
M equal to 0.5 such that the panels refers to C and D points of Fig. 2.3 listed
in Table 2.I. An inspection of this figure suggests that, for high Z, the junction
exhibits for both kinds of ferromagnet a zero-bias charge response different for the
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Figure 2.7. Averaged differential conductance spectra for a junction with a
dx2−y2 + is (solid lines) and a dx2−y2 + idxy (dashed lines) superconducting
electrode, evaluated at the points C (STF, left panel) and D (SBAF, right
panel) indicated in Fig. 2.3, in the intermediate (Z=5) and high transparency
(Z=1) regime. We recall that the magnetization is M=0.5 for both panels.

two BTRS states, implying that STF/S or SBAF/S junctions are equally useful to
discriminate between BTRS order parameters involved in the S-side. In the low-
barrier limit, the spectra for the two BTRS states almost coincide for a STF, while
for a SBAF they are clearly more distinguishable. Therefore, we can state that in
the high transparency limit a SBAF/S junction may be seen as a more powerful
tool than a STF/S one to discriminate between the two BTRSs. The origin of the
different behavior of the conductance at zero bias for STF and SBAF electrodes
lies in an ABS at zero energy which is present in the case of dx2−y2 + idxy-wave
symmetry (only for particular angles [149]), but not in the dx2−y2 + is one. As
explained In Sec. 2.5.1, this effect is clearly visible for a SBAF, because this kind
of ferromagnetic electrode introduces an extra effective barrier which affects the
charge transport of the hybrid structure, and pushing actually the junction toward
the tunneling regime where ABSs become the dominant channel for transport.





CHAPTER 3

Spin filtering effects in SBAF/S

This Chapter is devoted to analysis of spin filtering effect in ballistic 2D F/S
junctions. In particular we show that when F is a spin bandwidth asymmetry fer-
romagnet (SBAF) these effects exist even if the interface is non magnetic. In this
Chapter we focus on conventional s-wave and unconventional d-wave superconduct-
ing order parameter symmetry in S.

3.1. Physical origin of spin active interface behavior

The physical origin of spin filtering effects in SBAF/S junctions can be seen in
the boundary conditions obeyed by wavefunctions at the interface

ψF
σ (0) = ψS

σ (0) (3.1a)
mσ

m′
duS

σ

dx

∣∣∣∣
x=0

− duF
σ

dx

∣∣∣∣
x=0

=
2H mσ

~2
uS

σ(0) (3.1b)

mσ̄

m′
dvS

σ̄

dx

∣∣∣∣
x=0

− dvF
σ̄

dx

∣∣∣∣
x=0

=
2H mσ̄

~2
vS

σ̄ (0) , (3.1c)

where H is the Hamiltonian parameter quantifying scattering strength at the inter-
face. These equations are a generalization to a spin polarized scenario of boundary
conditions in semicondutor/N and semicondutor/S junctions [140] in which effec-
tive masses, i.e. Fermi velocities, are assumed to be different in the two leads. The
net effect of this mismatch ia a renormalization of interfacial scattering. If the first
electrode manifests spin polarization and it is a Stoner ferromagnet (STF) this ef-
fect is absent while if it is a partial of pure spin bandwidth asymmetry ferromagnet
(SBAF) this effect is doubled in the sense that there are two renormalizations of in-
terfacial scattering which are different for up and down quasiparticles. This case is
analogous to a junction without mass mismatch but with a ferromagnetic insulator
(FI) with spin splitted interfacial scattering potentials, i.e. H → {H↑,H↓}. Conse-
quently mass mismatch may mimic a spin active barrier, in the sense that electrons
with opposite spin feel different values of the barrier height values. While in a STF
spin polarization and spin sensitive interfacial scattering are separated phenomena,
in SBAF they are intimately connected since considering a mass mismatch turns
on both features. Indeed a junction with a mass mismatch ferromagnet can induce
an effective spin active interface, which for specific choices of H will produce spin
filtering effects. The dimensionless parameter Z = 2m′Hπ2/(~2k′F ) in what follows
will conveniently characterize the strength of the interfacial scattering.
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Figure 3.1. Spin-dependent charge conductance spectra and total averaged
conductance spectrum (full lines) for a F/S junction. The left and the right
figures refer to the cases of a Stoner-like ferromagnet (U/EF = 0.75, m↑/m↓ =
1) and of a spin bandwidth asymmetry ferromagnet (U/EF = 0, m↑/m↓ = 7),
respectively. In both cases we have fixed Z = 15 and M = 0.75.

3.2. Spin filtering in junction with conventional superconductors

We start by considering the case of an isotropic s-wave superconductor, i.e.
∆σ± = ∆0, coupled to a STF or a SBAF, assuming a moderately large value of the
interface barrier strength Z (=15) and a fixed value of the magnetization M = 0.75.
From the behavior of the averaged charge conductance, reported in Fig. 3.1 together
with its two spin-resolved contributions, we see that in the SBAF case (right panel)
for energies lower than the energy gap value ∆0, the component 〈G↓〉 associated
with the minority down-spin carriers is larger than the component 〈G↑〉 associated
with the majority up-spin ones, this order relation being reversed for ε larger than
∆0, approximately. This behavior strongly contrasts with the one observed for the
STF case (left panel), where 〈G↓〉 is always lower than 〈G↑〉. The fact that minority
channel can contributes more than majority one to the the conductance as seen for
SBAF/S can be counterintuitive being the number of carriers in the majority band
larger than the one in minority band. However conductance depends on Fermi
velocities and not only on number of carriers this apparently anomalous behavior
can readily be interpreted by noticing that in the SBAF case the barrier acquires
a spin active character and thus the majority electrons, although larger in number
than the minority ones, feel a stronger value of the barrier height, i.e. have a lower
Fermi velocity, resulting in a correspondingly reduced charge conductance. We
point out that the manifestation of this behavior depends on the actual values of Z
and the masses ratio m↑/m↓. To clarify this point, in Fig. 3.2 we report a density
plot for the quantity

∆I =
〈I↓〉 − 〈I↑〉

〈I↑〉 , (3.2)

where
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Figure 3.2. Density plot showing the quantity ∆I, defined in Eq. 3.2, as a
function of the barrier height Z and the mass ratio m↑/m↓. Positive values
of ∆I correspond to values of the minority spin integrated conductance, i. e.
up to ∆0, larger than the corresponding majority ones. Negative values of
∆I indicate that minority down-spin electrons contribute to the current less
than majority up-spin ones (standard case without spin filtering). Colors are
associated with the values taken by the quantity ∆I.

〈Iσ〉 =
∫ ∆0

0

〈Gσ(ε)〉dε , (3.3)

is the current in the σ channel evaluated at ε = ∆0. The quantity ∆I represents the
relative gain of minority charge current with respect to majority one. This quantity
is always negative, i.e. the standard relation 〈I↑〉 > 〈I↓〉 holds, for STF/S while it
can be positive for SBAF/S, i.e. the “anomalous” relation 〈I↑〉 < 〈I↓〉 holds. Fig. 3.2
depicts the values of Z and the masses ratio m↑/m↓ for which the spin filtering effect
exists. The brighter the color the larger ∆I. We deduce that above moderately high
values of the bare barrier height Z, a low degree of the mass mismatch is already
sufficient to give rise to a charge current contribution from minority carriers larger
than the one produced by majority ones. The effect being more pronounced for
large Z and m↑/m↓ values. This effects can be effectively probed in F/S junctions
being possible to measure the majority and minority channels separately [139].

3.3. Spin filtering in junction with unconventional superconductor

When an unconventional d-wave superconductor is considered in the junction
spin filtering effect can be seen yet in the total conductance and there is no necessity
to isolate the up and down channels. Indeed it has been shown [127] that in the
case of a d-wave superconducting electrode with line nodes perpendicular to the
interface, a spin filtering insulating barrier can split the zero bias conductance
peak (ZBCP) that characterize the total charge conductance when a non magnetic
interface is considered (see Sec. 2.5.2). This splitting is symmetrical in N/S and
asymmetrical in F/S and it is created by a downwards (upwards) shifting of ZBCP
for majority (minority) carriers.
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Figure 3.3. Averaged charge conductance curves plotted as a function of the
normalized energy (ε/∆0) for two values of the barrier height Z, namely Z=1
(orange curves) and Z=5 (red curves). The full lines refer to a N/I/S junction,
where the magnetization M=0, whereas the dotted ones correspond to a F/I/S
junction with a strong mass mismatch effect and a very large magnetization
M=0.99. In both cases we consider a dx2−y2 -symmetry superconductor.

The results obtained in the case of a dx2−y2 -wave superconductor, i. e. ∆σ,± =
∆0 cos[2(θ′σ ∓β)] with β = π/4, are presented in Fig. 3.3. The full lines correspond
to the case where the F-side is normal, i.e. the magnetization in the ferromagnet is
zero as a consequence of the combined counteracting effect of the two microscopic
mechanisms, realized here with a suitable combination of the exchange interaction
and a vanishingly small value of the mass spin asymmetry ratio. From this figure
we observe a symmetric splitting with respect to zero bias of the averaged charge
conductance as a consequence of the energy gain for majority spin, and the energy
loss for minority ones, produced by the spin sensitive tunneling processes, with the
peak splitting disappearing as the barrier height is increased. This is consistent
with the results obtained in [127] for N/S with magnetic interface even if in our
case insulator is non magnetic and spin filtering effects are exclusively a consequence
of mass mismatch. The case of an SBAF/S junction is analyzed here assuming a
value of m↑/m↓ large enough to make the ferromagnet behave almost like an half-
metal. In this case the charge conductance profile that we observe (dotted lines
in Fig. 3.3) is characterized by peaks of different heights, which moreover are not
symmetrically shifted with respect to zero energy. Also in this case the splitting
is reduced for larger Z. These results show remarkable similarities to the ones
reported in Ref. [127], and thus support our conjecture that a mass mismatch
ferromagnet produces effects which are qualitatively similar to the ones obtained
with spin active barriers. We also stress that the large value of m↑/m↓ (∼ 102)
required to get a clear spin active behavior in the 2D case analyzed here, gets
considerably reduced in three dimensions. Actually, we have verified that for the
same case of large magnetization considered in Fig. 3.3, it becomes lower by about
one order of magnitude (m↑/m↓ ' 30).
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Figure 3.4. Density plot showing the values of Z and m↑/m↓ for which in
a SBAF/I/S junction an asymmetric splitting of zero bias peak appear as a
signature of spin–active interface. Colors are associated with the values taken
by the discrete right relative increment ∆G = (〈G(ε = 0.1∆0)〉 −
〈G(0)〉)/〈G(0)〉.

We remark that also in the case of a dx2−y2 -wave superconductor, the results
depend on the choice of the microscopic parameters of the model. To clarify this
point in Fig. 3.4 we draw a density plot giving the values assumed by the dis-
crete right increment of the averaged charge conductance at the origin, namely
∆G = (〈G(ε = 0.1∆0)〉 − 〈G(0)〉)/〈G(0)〉, as a function of Z and m↑/m↓. The
quantity ∆G being positive only when ZBCP splitting takes place. We infer that
in the limit of low transparency of the barrier (Z ≥ 3.5), ∆G is always negative
until the masses ratio is as large as ∼ 100 indicating that the peak in the averaged
conductance is easily located at zero bias. On the other hand, for high barrier trans-
parency, the subtle interplay between Z and m↑/m↓ gives rise to the peak splitting
discussed above, which is here signalled by a positive value of ∆G. As a final con-
sideration, we note that the features observed when a dx2−y2-wave superconductor
is considered, differently from the s-wave case, are visible especially in the limit of
high transparency because in the tunneling limit only zero-energy Andreev bound
states contribute to transport and this is unaffected by magnetization and/or spin
active scattering at the interface, as pointed out in Ref. [127].





CHAPTER 4

Spin transport in F/S

This Chapter is devoted to analysis of spin transport in ballistic 2D F/S junc-
tions. In particular we focus on differences deriving from a different magnetic
mechanism in F. We will consider both a Stoner ferromagnet (STF) and spin band-
width asymmetry ferromagnet (SBAF) with mass mismatch of oppositely polarized
carriers (see Sec. 1.2). We will consider different symmetries in S, namely con-
ventional s-wave, dx2−y2 -wave with line nodes perpendicular to the interface, and
broken time-reversal states (BTRSs) with s- or dxy-wave minority component, e.
g. dx2−y2 + is-wave and dx2−y2 + idxy-wave (see Sec. 1.1). System, formalism and
notation is the same of Chapter. 2

4.1. Spin differential conductance

The spin conductance in F/S can be estimated similarly to the charge conduc-
tance when BTK approach is used. Once probability amplitudes aσ, bσ, cσ, and
dσ for an electron with spin σ to undergo AR, normal reflection, transmission as
ELQ, and transmission as HLQ, respectively, are calculated, the spin differential
conductance at T = 0 for spin orientation can be expressed as

Σσ(ε, θ) = Pσ

(
1− kF

σ̄,x

kF
σ,x

|aσ(ε, θ)|2 − |bσ(ε, θ)|2
)

, (4.1)

where θ is the angle formed by the momentum of the electrons propagating from
the F side with respect to the normal to the interface (see Fig. 2.1), and the partial
polarization Pσ = nσ/(n↑ + n↓) is the fraction of electrons occupying the σ spin
band of the metallic ferromagnet. Differently from charge conductance (see Eq. 2.8)
AR contribution has a negative sign, i.e. ARs hinder spin current. This can be
understood as follows: when ARs take place Cooper pairs in S are transmitted and
they are in a singlet state. The situation could appear paradoxical from the point
of view of F because when there is AR spin σ electrons propagating in one direction
results in σ̄ holes propagating in the opposite direction and the two contributions
should sum up rather than cancel out each other. Indeed this is the case if one
consider that σ̄ holes have spin σ, e.g. destroying an electron in the σ̄ band has the
same effect of creating it in σ band. This can be demonstrated as follows: consider
a polarized state |M〉 in F

Sz|M〉 = ~M |M〉. (4.2)

From the commutation relations
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[Sz, c
†
k,σ] = σ

~
2

c†k,σ, (4.3)

[Sz, ck,σ] = −σ
~
2

ck,σ, (4.4)

it follows that the states c†k,σ|M〉 and ck,σ̄|M〉 which represents states with a spin
σ electron and a spin σ̄ hole are still eigenstates of Sz with the same eigenvalue

Sz

(
c†k,σ|M〉

)
= Sz (ck,σ̄|M〉) = ~

(
M +

1
2

)
|M〉. (4.5)

The total net spin conductance is defined as

〈Σ(ε)〉 = 〈Σ↑(ε)〉 − 〈Σ↓(ε)〉 (4.6)

where

〈Σσ(ε)〉 =
∫ θσ

C

−θσ
C

dθ cos θ Σσ(ε, θ)/
∫ θσ

C

−θσ
C

dθ cos θ, (4.7)

and θσ
C is the critical angle for the transmission of σ-spin electrons.

The spin conductance here defined is dimensionless and normalized in the range
[0, 1]. The maximum values is reached for a fully polarized F, i.e. an half metal, no
interfacial scattering, i.e. Z = 0, and energies much larger than the superconducting
gap ε À ∆0. For a generic F with spin polarization M the range of possible
values for spin conductance is [0,M ] as can be seen by Eq. 4.6. The spin current
in our setup is a quasiparticles current and not a spin supercurrent because in
a singlet superconductor only single particle states can be spin polarized having
Cooper pairs zero spin. This is different from charge transport where conversion
from quasiparticles current to supercurrent can take place at the interface and
the charge conductance of F/S is enhanced by S presence with respect to a F/N
junction. Spin conductance in F/S instead is hindered by S with respect to a F/N.
Indeed maximum value of spin conductance in F/S is reached in the limit ε À
∆0 where S behaves mostly like N. Spin supercurrent can be present in junctions
with triplet superconductors and/or spin flip scattering at the interface, the two
favoring the propagation of triplet Cooper pairs in S. Nonetheless the analysis
of spin conductance in F/S with singlet superconductor is important both as an
analysis of possible unconventional symmetries in S and for device applications as
spin current switches which can turn on and off a spin current through the junction
without modifying charge conductance.

4.2. SBAF/S vs. STF/S

We have analyzed the averaged spin conductance defined in Eq. 4.6, for dif-
ferent symmetries in S, namely s-wave, dx2−y2 -wave with line nodes perpendicular
to the interface, and broken time-reversal states (BTRSs) with s- or dxy-wave mi-
nority component, e. g. dx2−y2 + is-wave and dx2−y2 + idxy-wave (see Sec. 1.1).
The amplitudes of majority and minority components are fixed as explained in
Sec. 2.5.3. Although several choices of the magnetization M in the F electrode and
of the barrier strength Z have been considered, in Fig. 4.1 we limit ourselves to the
presentation of the spin conductance curves in the case M = 0.75 and Z = 5. From
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Figure 4.1. Averaged differential spin conductance spectra evaluated at M =
0.75 and Z = 5 for different type of F electrodes. Solid lines are for STF
and dashed lines for SBAF. Conventional and unconventional superconducting
electrodes are considered.

previous discussion it can be easily understood that larger Z (M) values lower (en-
hance) spin conductance. In this figure solid and dashed lines refer to the case of a
junction with a Stoner ferromagnet (STF) and with a spin bandwidth asymmetry
ferromagnet (SBAF), respectively, the different colors being associated with differ-
ent superconducting order parameter symmetries. The averaged differential spin
conductance for a junction with an s-wave superconductor (orange curves) shows
that 〈Σ(ε)〉 is always zero below the energy gap; indeed in such a situation the elec-
trons cannot enter the S side as quasiparticles because there are no quasiparticles
states in the gap. Nevertheless, by Andreev reflection, they can cross the interface
and decay into the singlet Cooper pair condensate, thus preventing a spin current
flow. For dx2−y2 -wave pairing (red curves), the spin conductance is non-vanishing
at every finite bias and its profile exhibits, at low biases, the well-known V-shaped
behavior typically produced by the gapless excitations associated with nodes of the
order parameter. On the other hand, for the two BTRSs considered here (purple
and brown curves) the spin conductance starts being non-zero at a finite bias, cor-
responding to the energy of the time reversal breaking minority component of the
superconducting pair potential. This feature can be exploited to determine if a d-
wave superconductor has minority component breaking time reversal symmetry. We
see that BTRSs behave as s-wave and pure d-wave for voltages smaller and larger
than minority component, respectively. The spin conductance of two BTRS states
is very similar even if only one of them has zero energy Andreev bound state (ABS).
Even in the d-wave case there is no trace of the zero energy peak seen in charge
conductance deriving from ABS. Indeed ABS has no effect on spin conductance
being it related to Andreev reflections which are detrimental for spin transport in
singlet superconductors. For the three kinds of unconventional pairing symmetries
considered here, the spin conductance is always larger for a junction with a STF
than for a junction with a SBAF. Above ∆0 this difference in magnitude gets ap-
preciably larger, and for a given kind of ferromagnet 〈Σ(ε)〉 becomes practically
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Figure 4.2. Relative gain in spin conductance of a SBAF with respect to
a STF, ∆Σ = (〈Σ(SBAF )〉 − 〈Σ(STF )〉)/〈Σ(STF )〉, as a function of the
barrier height Z, at a bias value immediately above the energy gap ∆0, i. e.
ε = 1.01∆0 and M = 0.75.

independent on the specific unconventional pairing symmetry. For conventional S
instead in a limited range of voltages immediately above the energy gap a junction
with a SBAF can support a larger spin current than a junction with a STF. This
point is deepened in Fig. 4.2. It shows the relative gain in the spin conductance of
the SBAF spin conductance 〈Σ(SBAF )〉 with respect to the STF one 〈Σ(STF )〉,
defined as ∆Σ = (〈Σ(SBAF )〉−〈Σ(STF )〉)/〈Σ(STF )〉, as a function of the barrier
height at a fixed bias ε/∆0=1.01 immediately above the energy gap ∆0, and for
M = 0.75. We see that for a barrier height Z lower than approximately 15 the gain
is positive, i.e. spin current in SBAF/S is larger than the one in F/S, only for an
s-wave superconductor and it can be as high as 100%. We have checked that this
peculiar effect is related to the presence of the superconducting electrode. Indeed,
analyzing the spin conductance in STF/N and SBAF/N junctions, i.e. junctions
where the superconductor is replaced by a normal metal, we have found that in
the STF case the spin current is always greater than in the SBAF one. Looking
separately at Andreev and normal reflection probabilities, we have verified that this
extra spin current can be ascribed to the fact that majority electrons coming from
a SBAF have a lower probability of being normally reflected at the gap edge, while
electrons coming from a STF have a finite residual probability to undergo the same
process. Being this probabilities a continuous function of energy, the probability
of transmission immediately above the gap for electrons coming form a SBAF is
larger.



4.3. Spin current switch 53

0.0 0.5 1.0 1.5 2.0

0.6

0.8

1.0

1.2

¶�D0

<
G
>

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

¶�D0

<
S
>

STF

SBAF

STF

SBAF

Figure 4.3. Comparison of charge and spin conductances for s-wave super-
conducting electrode suggesting that such a junction can work as a spin current
switch. See Section 4.3 for more details. Same parameters values of Fig. 4.1
are adopted.

4.3. Spin current switch

For spintronics applications, the ability to perform operations acting on spin
currents but not on charge currents is in general highly desirable. The results
presented above allow to individuate a particular situation where this is possible
using F/S junctions. For an s-wave superconductor in the case of a finite barrier
strength, it has been recognized that the charge conductance is peaked around the
gap edge [96, 131, 126]. On the other hand, we have previously shown that the
spin current is zero below the energy gap ∆0 and rises abruptly just above it. The
charge and spin conductance for the same parameters are compared in Fig. 4.3.
Being the charge conductance peaked around gap edge, it is possible to find two
bias values εoff < ∆0 and εon > ∆0 such that charge conductance is the same
when the junction bias is switched between the two values. This bias values are in
principle different for SBAF and STF but they will always be very close to the gap
edge from the left (εoff) and the right (εon). Right panel of Fig. 4.3 shows that spin
conductance instead is zero below the gap and finite above the gap so by switching
between εoff and εon one activate a spin current while the charge conductance
remains unaffected. Since the upper bias εon corresponding to the “on” state of the
switch falls only slightly above ∆0, we expect that the spin current through the
device will be much larger if it is generated by a SBAF rather than by a STF, given
the appreciable difference between the two cases visible in Fig. 4.2.





Part II results summary and discussion

In this Part of the dissertation we have investigated the charge and spin trans-
port in F/S junctions for different types of itinerant ferromagnets and superconduc-
tors. Such kind of system may be easily realized using well consolidated fabrication
procedures and standard measurements can be performed on it. We have considered
both a Stoner ferromagnet (STF) and a spin bandwidth asymmetry ferromagnet
(SBAF) as F lead and conventional s-wave, dx2−y2 -wave with line nodes perpendic-
ular to the interface, and broken time-reversal states (BTRSs) with s- or dxy-wave
minority component, e.g. dx2−y2 + is-wave and dx2−y2 + idxy-wave, order param-
eter symmetries in S. The analysis has been performed developing an extension
of the standard BTK approach to the case of a ferromagnetic electrode exhibiting
either a standard Stoner exchange mechanism or a mass mismatch-driven ferromag-
netism and solving the corresponding BdG equations. A special emphasis has been
devoted to the different roles played by the exchange splitting and spin dependent
mass asymmetry in F. Our analysis has revealed several differences between the two
cases. Our results suggest that the junction with conventional S can be considered
an efficient device to probe mechanism behind the itinerant ferromagnetism. More-
over we have explained how a direct measurement of spin polarization in F and of
its mass mismatch contribution is possible without a fitting procedure by measuring
with focused currents critical angles for Andreev reflection (AR) and transmission.
When dx2−y2 -wave S is considered, we have found that the zero bias conductance
peak (ZBCP) in charge conductance is narrower and higher when the F lead is
SBAF rather than STF. This finding being potentially useful for the experimental
detection of a mass mismatch contribution to the magnetization. Since AR is phase
sensitive, the onset and amplitude of Andreev bound states (ABSs), manifesting
themselves in the ZBCP, is a signature of the symmetry of the order parameter.
For this reason, we have also investigated the transport properties of a junction
with a superconductor exhibiting a broken time-reversal symmetry of dx2−y2 + is
or dx2−y2 + idxy type motivated by the fact that such realizations can characterize
several high-Tc cuprates. In the high transparency limit, we have found a different
behavior around zero bias of SBAF/dx2−y2+idxy and STF/dx2−y2+idxy junctions,
such that the use of a SBAF allows to discriminate more efficiently between BTRSs
with dx2−y2 + is or dx2−y2 + idxy pairing symmetry than STF does. Indeed, as pre-
viously discussed a SBAF ferromagnetic electrode with mass mismatch introduces
an extra effective barrier which affects the charge transport of the hybrid structure,
driving the junction toward a tunneling regime where ABS (existing in dx2−y2 +idxy

and not in dx2−y2 + is case) is the dominant channel for transport. We have shown
that this spin dependent masses renormalization in F, can give rise to spin filtering
effects in F/S which are not manifested when a standard Stoner ferromagnet is
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considered allowing to conclude that the presence of bandwidth asymmetry in F
may mimic the behavior of a spin active barrier. This is achieved as a consequence
of the fact that the mass asymmetry between up and down spin electrons entering
explicitly the boundary condition equations, make electrons with opposite spin feel
different values of the barrier height, eventually resulting in a spin filtering effect.
When the S side is an isotropic s-wave superconductor, we have shown that for
biases lower than the gap amplitude ∆0, SBAF/S conductance associated with the
minority spin carriers can be larger than for the majority spin ones, this ordering
being reversed when biases larger than ∆0 are considered. This result suggests
that a junction with a mass mismatch ferromagnet induces an effective spin-active
interfacial effect. Nevertheless, this result requires a cooperative effect between the
barrier and the mass mismatch: above moderately high barrier height, low values
of the mass ratio are already able to produce a minority-spin charge conductance
component larger than the corresponding majority-spin one. In general the effect
is more clear in the tunneling limit. When a dx2−y2-wave order parameter for the S
side is considered, splitting of ZBCP of charge conductance is found. This splitting
is symmetric if the F layer has no net spin polarization (by tuning carefully ex-
change splitting and mass mismatch in such a way that they cancel each other out)
and asymmetric in the other case, consistently with well known results for magnetic
insulating interfaces. Also in this case, the splitting found depends on the inter-
play between the barrier height and the mass mismatch, and it may disappear in
specific regions of the corresponding parameter space. In particular we have shown
that these effects are more clear in the metallic limit, differently from the s-wave
case. These results suggest that the junction may work as a spin filtering device
for charge current. As far as the spin transport is concerned, we have shown that
the spin conductance in a STF/S junction is everywhere larger than in a SBAF/S
one for all the unconventional superconducting symmetries analyzed here, except,
occasionally, for the case of a conventional s-wave superconducting electrode. We
have highlighted the relation between spin conductance and existence of nodes and
breaking time reversal symmetries in S showing that while ABSs strongly affect
charge transport, spin transport is mostly independent on it. We have also shown
that a F/S junction with an s-wave superconductor can work as a switch able to
turn on and off a spin current, leaving the charge current unchanged. In particu-
lar, our results show that for a wide range of interfacial barrier strengths, the spin
current passing through the junction when the state of the switch is “on” is larger
if the ferromagnetic electrode is a SBAF rather than a STF. This relative increase
in spin current can be very high, and for particular values of the barrier strength
a gain of up to 100% can be reached. We believe that our findings can turn out to
be relevant for the experimental probe of specific features of magnetic and super-
conducting materials, e.g. the knowledge of the charge response at different values
of the spin polarization may be used to perform high sensitive magnetization or
supercondcuting gap amplitude and phase measurements. Our results suggest also
that an F/S junction with a SBAF may represent an important tool for the manip-
ulation of the spin degrees of freedom in solid state systems, as concerns both spin
and charge transport. They can also prove to be useful in spintronic applications
and devices requiring an efficient way of controlling separately charge and spin cur-
rents. Given the increasing number of experimental investigations in this rapidly
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growing field, we believe that our results may provide a useful contribution to the
comprehension of some relevant phenomena involving spin polarized tunneling.
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Abstract

In this Part of the dissertation we analyze the dc Josephson effect in a ballistic
superconductor/ferromagnet/superconductor junction by means of the Bogoliubov–
de Gennes equations in the quasiclassical Andreev approximation. We consider the
possibility of ferromagnetism originating from a mass renormalization of carriers
of opposite spin, i.e. a spin bandwidth asymmetry. We provide a general formula
for Andreev levels which is valid for arbitrary interface transparency, exchange in-
teraction, and bandwidth asymmetry and analyze the current-phase relation, free
energy, and critical current, in the short junction regime. We compare the phase di-
agrams and the critical current magnitudes of two identical junctions differing only
in the mechanism by which the mid-layer becomes magnetic. The study is per-
formed by solving the corresponding Bogoliubov–de Gennes equations. Chapter 5
focuses on calculation of Andreev levels and Josephson current in limiting cases,
and Chapter 6 is devoted to the analysis of the in fluence of magnetic mechanisms
on the Josephson effect. Results are summarized and discussed in the last section
of this part at p. 87.

61





CHAPTER 5

S/F/S junctions and π phase

In this Chapter we focus on Andreev levels and Josephson current of ballis-
tic superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions with
conventional superconducting leads. These are systems capable of sustaining a su-
percurrent carried by Cooper pairs in the superconducting leads and by quasipar-
ticles in the ferromagnetic mid-layer. The unique interplay between ferromagnetic
and superconducting orders provides quasiparticles with extra phase shifts absent
in junctions with a non-magnetic mid-layer. This can give rise to the appearance
of a so-called “π−phase” [69]. Under such circumstances, the energy minimum of
the junction is reached at a phase difference of π across the junction, unlike the
standard “0−phase” in junctions with a non-magnetic mid-layer. The existence of
the π−phase has been experimentally confirmed [70, 71]. As far as potential ap-
plications are concerned, π-junctions are considered to be candidates for realizing
solid state qubits [72].

Previous theoretical studies on S/F/S junctions [150, 151, 152, 153, 154, 155,
156, 158, 159, 160] have described the F layer using the Stoner model of metallic
ferromagnetism, with oppositely polarized carriers occupying rigidly shifted bands.
However, the interplay of Coulomb repulsion and the Pauli principle driving a metal
into a ferromagnetic state, [50] may induce a spin-dependent renormalization of the
masses of charge carriers with opposite spins, i.e. a spin bandwidth asymmetry (see
Sec. 1.2). This mechanism appears in microscopic approaches where off-diagonal
terms of Coulomb repulsion, generally neglected in studies based on the Hubbard
model, are taken into account. A mean-field treatment of these contributions in
addition to the exchange and nearest-neighbor pair hopping terms shows that quasi-
particle energies for the two spin species are not simply splitted but get different
bandwidths, i.e. effective masses. The net effect of these interactions is to ren-
der the hopping integral in the kinetic term spin dependent through bond charge
Coulomb repulsion terms which are different for spin up and down carriers [61]. For
low enough temperature and depending on Hamiltonian parameters, ferromagnetic
order can be established only through this spin bandwidth asymmetric renormal-
ization [32]. In this picture the ferromagnetism should be understood as kinetically
driven, in the sense that it arises from a gain in kinetic energy rather than poten-
tial energy, unlike the usual Stoner scheme. We notice that this mass-split metallic
ferromagnetism has been experimentally found to be at the origin of the optical
properties of the colossal magnetoresistance manganites [162], of some rare-earth
hexaborides [161], as well as of some magnetic semiconductors [163]. Spin band-
width asymmetry will substantially affect the coexistence of ferromagnetism and
superconductivity [67], as well as the proximity effect [37] and transport in F/S
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Figure 5.1. A sketch of the current-biased S/F/S junction analyzed, along
with notations that are used. The superconductors are treated as reservoirs,
whereas the magnetic mid-layer has a finite width L.

bilayers [96, 97], It is also responsible for an extension of the regime in which
FFLO phase can be stabilized in heavy-fermion systems [118, 119]. In this Part,
we analyze the consequences of this unconventional magnetism in ballistic S/F/S
Josephson junctions by solving the Bogoliubov-de Gennes equations [120] for arbi-
trary spin polarization and interface transparency.

We show that bandwidth asymmetry in the F layer of a S/F/S junction modi-
fies many physical properties such as Andreev levels dispersion, Josephson current
and free energy. We provide a general formula for Andreev levels which holds for
arbitrary interface transparency, exchange interaction, and bandwidth asymmetry
and we calculate the corresponding Josephson current in the short junction regime
for some important limiting cases. Comparing the results for a spin bandwidth
asymmetry ferromagnet (SBAF) with those obtained for a conventional Stoner fer-
romagnet (STF), we demonstrate analytically that the former manifest features
that are only quantitatively different from the latter for low degrees of polarization,
whereas we show numerically that these differences become qualitative in the inter-
mediate/high polarization regime. Then, evaluating the phase diagrams we infer
that the mere mechanism by itself is able to shift the ground state superconduct-
ing phase difference from 0 to π or viceversa, with a spin bandwidth asymmetry
tending to increase the number of possible 0− π transitions in a fixed range of pa-
rameters. We consider also the “mixed” case where in F both magnetic mechanisms
are present showing that the features distinguishing pure spin bandwidth asym-
metry from pure Stoner ferromagnets may exist even though the spin bandwidth
asymmetry contributes only partially to spin polarization.

5.1. Model for ballistic S/F/S

We consider a ballistic Josephson junction composed of a ferromagnetic layer
of width L sandwiched between two conventional s−wave singlet superconducting
electrodes (see Fig. 5.1). Since the S electrodes are isotropic, we will consider an
effective one dimensional model. Moreover, our results are independent on the
direction of the magnetic moment direction in F. The propagation of quasiparticles
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is described by the Bogoliubov-de Gennes equations [120]
(

Hσ
0 ρσ∆

ρσ∆∗ −H σ̄
0

)(
uσ

vσ̄

)
= ε

(
uσ

vσ̄

)
, σ =↑, ↓ , (5.1)

where σ̄ = −σ, ρ↑(↓) = +1(−1), and (uσ, vσ̄) ≡ ψσ is the energy eigenstate in the
electron-hole space associated with the eigenvalue ε. The single-particle Hamilton-
ian is

Hσ
0 = HL + Hσ

F + HR + HI , (5.2)

where

HL =
[−~2∇2/2m− EF

]
Θ(−x)

Hσ
F =

[−~2∇2/2mσ − ρσU − EF

]
Θ(x)Θ(L− x)

HR =
[−~2∇2/2m− EF

]
Θ(x− L)

HI = H [δ(x) + δ(x− L)] . (5.3)

Here, different effective masses mσ for σ-polarized particles in the F layer, mimick-
ing bandwidth asymmetry, has been included and U is the exchange interaction,
EF is the Fermi energy, Θ(x) is the Heaviside step function, m is the effective
mass of the quasiparticles in the superconductors, and the parameter H quanti-
fies scattering strength at S/F and F/S interfaces. We assume rigid supercon-
ducting order parameters with equal gap amplitude on both sides of the junction,
i.e. ∆ = ∆0

[
eiϕLΘ(−x) + eiϕRΘ(x− L)

]
, where ϕL(R) is the phase of the left(right)

superconductor. When considering finite temperature properties, we will assume
the usual BCS dependence and let ∆0 → ∆0 tanh

(
1.74

√
Tc/T − 1

)
, where Tc is

the superconducting critical temperature.
Employing the quasiclassical Andreev approximation [20], the solution of Eqs. (5.1)

may be written as

ψσ(x) =
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u
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)
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[
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(

1
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)
+

[
γσeiqσ̄(x−L) + δσe−iqσ̄x

]
(

0
1

)
, 0 < x < L

cσ

(
u eiϕ/2

ρσv e−iϕ/2

)
eik(x−L) + dσ

(
ρσv eiϕ/2

u e−iϕ/2

)
e−ik(x−L), x > L

(5.4)
where

u =

√
ε +

√
ε2 −∆2

0

2ε
, v =

√
ε−

√
ε2 −∆2

0

2ε
, (5.5)

and k =
√

2mEF /~, qσ =
√

2mσ(EF + ρσU)/~ are Fermi wavevectors in the S and
F electrodes respectively, and ϕ = ϕR − ϕL. The coefficients aσ, bσ, cσ, and dσ

are the probability amplitudes for Andreev reflection as a hole-like quasiparticle
(HLQ), normal reflection as an electron-like quasiparticle (ELQ), transmission to
the right electrode as an ELQ, and transmission to the right electrode as an HLQ
respectively, while coefficients ασ, βσ, γσ, and δσ are associated with right- and
left-going ELQ and HLQ propagating through the ferromagnetic layer. All these
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probability amplitudes can be calculated by solving the linear system resulting from
the boundary conditions

ψσ(0−) = ψσ(0+)
ψσ(L−) = ψσ(L+)

−2H

~2
ψσ(0) =

1
m

ψ′σ(0−)−
(

1/mσ

1/mσ̄

)
ψ′σ(0+)

−2H

~2
ψσ(L) =

(
1/mσ

1/mσ̄

)
ψ′σ(L−)− 1

m
ψ′σ(L+), (5.6)

which are valid for a general ferromagnetic electrode displaying both exchange split-
ting and bandwidth asymmetry. When the latter mechanism is present, electron-
and hole-like parts of the wave function derivatives have to be joined separately
with different masses. This is analogous to the situation where the insulating bar-
riers are polarized with magnetic moment parallel to the one in the F layer and
thus act with different strength on particles with opposite spin [98]. When only
exchange splitting is present, i.e. mσ = mσ̄ = m, the usual form of the boundary
conditions is recovered [151].

Our model enables us to take into account both bandwidth asymmetry and ex-
change interaction in the F layer. Defining the polarization as M = (n↑−n↓)/(n↑+
n↓) and integrating densities of states as calculated from the Hσ

F term in Eq. (5.3),
we find that in one dimension and at T = 0:

M = p+/p− with pσ = −ρσ

[
1− ρσ

√
m↑
m↓

1 + U/EF

1− U/EF

]
. (5.7)

For a fixed value of the exchange splitting U , the effect of mass mismatch is to en-
hance the net polarization for m↑ > m↓, and to hinder it the other way around as
shown in Fig. 5.2. Eq. (5.7) describes a general F where both exchange and band-
width asymmetry are present. We notice that from the same equation we may easily
reduce to the cases of a purely exchange ferromagnet (by putting m↑/m↓ = 1 and
U 6= 0) or a purely bandwidth asymmetry ferromagnet (by putting m↑/m↓ 6= 1 and
U = 0). We will refer to these two cases as a spin bandwidth asymmetry ferromag-
net (SBAF) and Stoner ferromagnet (STF), respectively. Different Josephson effect
features are expected in S/STF/S and S/SBAF/S junctions, even for an equally
polarized F layer. This is so, since specifying a degree of polarization is equivalent
to fix the ratio of Fermi wavevectors q↑/q↓. However, in a SBAF and in a STF the
wavevectors are different, i.e. qSTF

σ 6= qSBAF
σ , and accordingly the center of mass

momentum acquired by Cooper pairs will be different. In the following, we will
also consider finite temperature properties in the range 0 ≤ T ≤ Tc. Even if spin
polarization (Eq. (5.7)) was derived for T = 0, it can be used for T ≤ Tc, since this
quantity varies only slowly on the scale of the superconducting critical temperature
as long as TM À Tc, with TM being the Curie temperature. This condition is easily
fulfilled in a typical experimental situation where the Josephson junction is realized
by a ferromagnetic transition metals compound sandwiched between conventional
superconductors, e.g. Niobium. In our analysis, we fix ∆0 = 1 meV and EF = 5
eV, consistent with the Andreev approximation. The width of the ferromagnetic
layer L is not fixed. However the maximum value used in our analysis is such
that L/ξ ≈ 0.01, such that we are in the short junction regime, corresponding to a
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Figure 5.2. Ground state spin polarization density plot as a function of
magnetic parameters. Three isomagnetization curves at M = 0.25, 0.50, 0.75
are plotted.

width in the range 1–10 nm. We introduce a dimensionless parameter quantifying
the scattering strength at insulating interfaces as Z = 2mH/

(
~2k

)
.

5.2. Andreev levels, free energy, and current–phase relation

We will focus on the short junction regime, i.e. L ¿ ξ where ξ is the super-
conducting coherence length, such that the Josephson current can be estimated by
only considering subgap contributions by Andreev levels [164, 165] as

I(ϕ) =
2e

~
∑

i

f(εi)
d εi

dϕ

= −2e

~
∑

σ

tanh
(

βεσ

2

)
d εσ

dϕ
, (5.8)

where f(x) is the Fermi-Dirac distribution function and β = 1/kBT .
The critical current is defined as Ic = max|I(ϕ)| and the phase of the junction

(0 or π) is determined by the minimum of the ϕ dependent part of the free energy

F (ϕ) = − 1
β

ln

[∏

i

(
1 + e−βεi(ϕ)

)]

= − 1
β

∑
σ

ln
[
2 cosh

(
βεσ(ϕ)

2

)]
. (5.9)
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5.3. General formula for Andreev levels

Inserting the wave function Eq. 5.4 into the boundary conditions Eq. 5.6, we
obtain a homogenous system of linear equations for the scattering coefficients. By
imposing that the system has non-trivial solutions, we can obtain a relation between
energy and phase difference such that the coherent subgap processes can effectively
take place, i.e. Andreev levels with dispersion εi(ϕ), i = {1, ..., 4} [164]. We are able
to provide a general form of the levels which holds for arbitrary transparency of the
insulating barriers, polarization in the ferromagnetic layer, and relative weight of
the exchange and bandwidth asymmetry contributions. We find εi(ϕ) = ε±σ (ϕ) =
±εσ(ϕ) and

εσ(ϕ) = ∆0

√√√√√A2 + B2 −A
(
C + D cos2(ϕ

2 )
)

+ ρσ

√
B2

(
A2 + B2 − (C + D cos2(ϕ/2))2

)

2 (A2 + B2)
,

(5.10)
where A,B, C, D depend on all junction parameters.

The explicit form of A,B, C, D in Eq. (5.10) is

A = 2(a− b) , (5.11)

B = 4c , (5.12)

C = 2(a + b)− d , (5.13)

D = 2d , (5.14)

where

a = − (
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σ + λ2
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, (5.15)
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+ λ2

σλ2
σ̄

+ 2Z
(
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)(
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tan (kLΛσ)
+
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)

− 2Z
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tan (kLΛσ)
+ λ2

σ

λσ̄

tan (kLΛσ̄)

)
, (5.16)

c =
(
1 + Z2

) (
λσ

tan (kLΛσ)
− λσ̄

tan (kLΛσ̄)

)

+ λ2
σ̄(1 + Z)

λσ

tan (kLΛσ)
− λ2

σ(1 + Z)
λσ̄

tan (kLΛσ̄)
, (5.17)

and

d = 8
λσ

sin (kLΛσ)
λσ̄

sin (kLΛσ̄)
, (5.18)
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where

λσ =

√
m

mσ

(
1 + ρσ

U

EF

)
, (5.19)

Λσ =

√
mσ

m

(
1 + ρσ

U

EF

)
. (5.20)

We note that for transparent interfaces, and in the absence of exchange field and
bandwidth asymmetry, Eq. (5.10) reduces to the well known result ε = ∆0 cos(ϕ/2) [166].

5.3.1. Andreev levels in limiting cases

Before exploring the general case, we look closer at the low polarization limit for
the Andreev levels to get an idea of what to expect. Expressing the mass mismatch
in a SBAF and the exchange energy in a STF as a function of polarization yields

√
m↑
m↓

=
1 + M

1−M
, (5.21)

U

EF
=

2M

1 + M2
. (5.22)

From now on to lighten our notation we will refer to S/SBAF/S and S/STF/S as
simply SBAF and STF. The first evidence of different behavior is encountered in
the M ¿ 1, Z ¿ 1 limit. Expanding Eq. (5.10) around U/EF ¿ 1 for STF and√

m↑/m↓ ≈ 1 for SBAF, we obtain

εSTFσ = ∆0

(
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(ϕ

2

)
+ ρσ

kL

2
U

EF
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(ϕ

2

))
(5.23)

for STF and

εSBAFσ = ∆0

(
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2

)
+ ρσ

kL

2

(√
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m↓

− 1
)

sin
(ϕ

2

))
(5.24)

for SBAF when Z = 0. Then, for low polarization and including the first term from
the Z ¿ 1-expansion, both expressions reduce to the same form

εσ = ∆0

(
cos

(ϕ

2

)
+ ρσM sin

(ϕ

2

) (
kL + θZ sin2 kL

))
, (5.25)

where θ = +1(−1) for STF (SBAF). Thus in the low polarization regime we expect
SBAF and STF to show the same behavior for Z = 0, while the θ-factor indicates
that they can be different for nearly transparent interfaces. This is a consequence of
a different interplay between the two ferromagnetic mechanisms and the insulating
barrier strength described by Eq. (5.6).

5.4. Current–phase relation in some limiting cases

By differentiating Eq. (5.25) with respect to ϕ and inserting it into Eq. (5.8),
we obtain the current-phase relation

I(ϕ)
I0

= 2
s1 sin(ϕ/2) sinh[β∆0 cos(ϕ/2)]− s2kLM cos(ϕ/2) sinh[β∆0kLM sin(ϕ/2)]

cosh(βε↑/2) cosh(βε↓/2)
,

(5.26)
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where s1 = sgn (cos (ϕ/2)), s2 = sgn (sin (ϕ/2)), and I0 = e∆0/~. We have
again put Z = 0 for simplicity.

From Eq. (5.26), we see that the current-phase relation contains a cosine term
in addition to the standard sine term. One might think that the cosine term will
create a non-vanishing current at ϕ = 0, π, but this is not the case. The cosine
term will cancel out at ϕ = 0, π due to the Fermi-Dirac distribution function, as
shown in Eq. (5.26). However, in a non-equilibrium situation where levels can be
differently populated, these terms may give rise to exotic features such as fractional
AC Josephson effect [167, 168] or a ϕ-junction [169]. This possibility is matter of
current investigation.

In the tunneling limit it is possible to obtain an analytical form for the current
for an arbitrary degree of polarization. For T = 0 and including only the first term
in the Z À 1 expansion, we find

I(ϕ)
I0

=
1−M2

1 + M2

2 sin(ϕ)

Z4 sin
(

kL
√

(1+M)2

1+M2

)
sin

(
kL

√
(1−M)2

1+M2

) (5.27)

for STF and
I(ϕ)
I0

=
2 sin(ϕ)

Z4 sin
(
kL

√
1+M
1−M

)
sin

(
kL

√
1−M
1+M

) (5.28)

for SBAF. At first glance, one may think that the main difference between the two
cases is the term (1−M2)/(1+M2) which is present only for STF and should damp
the current for high degrees of polarization. We will later see that such an effect
exists for low Z. However, for high Z this is masked by the fact that the current
is small. In fact, the main difference between Eqs. (5.27) and (5.28) is that the
denominator becomes wildly oscillating for large M for SBAF, but not for STF.
We will see later that this effect is clearly manifested also beyond the tunneling
limit. We now move on to describe the S/F/S junction properties upon leaving
aside the limits of low polarization and high/low interface transparency focusing
on the features induced by different magnetic mechanisms in F.



CHAPTER 6

Influence of magnetic mechanism on
Josephson effect

This chapter is devoted to analysis of the influence of magnetic mechanism on
Josephson effect in S/F/S. The extreme cases of SBAF and STF are compared and
the “mixed” case where both mechanisms coexist is analyzed.

6.1. S/SBAF/S vs. S/STF/S

In this section Andreev levels, current and free energy are compared for SBAF
and STF. The values assumed by exchange and mass mismatch magnetic parame-
ters for three different M values are reported in Table 6.I.

6.1.1. Andreev levels dispersion

Fig. 6.1 shows the ϕ dependence of ε↑ and ε↓ in SBAF (solid lines) and STF
(dashed lines) for transparent (left panels) and insulating (right panels) interfaces,
for three values of polarization M . All levels are flat at ϕ = 0, π, which corresponds
to the absence of Josephson current for these phase difference values. This is a well
known property of S/N/S and S/STF/S junctions, which persists in the S/SBAF/S
case. However, the dispersion of the εσ levels are different for STF and SBAF. This
difference is only quantitative for low polarizations, e.g. M = 0.25, as expected
from Eq. (5.25). However, the levels differ qualitatively for higher polarization in
terms of their slope and curvature. The order relation between ε↑ and ε↓ can also
be different for the two magnetic mechanisms in the F layer, e.g. for M = 0.75 and
Z = 1 ε↑ < ε↓ for STF while ε↑ > ε↓ for SBAF.

M U/EF m↑/m↓

0.25 STF 8/17 1
SBAF 0 25/9

0.50 STF 4/5 1
SBAF 0 9

0.75 STF 24/25 1
SBAF 0 49

Table 6.I. Values of the normalized exchange interaction and mass asymme-
try used for three different polarization values.

71
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Figure 6.1. Positive branches of spin-splitted dispersion of the Andreev levels
for different values of polarization and interface barrier strength and for Lk =
10, EF = 5 eV, ∆0 = 1 meV. Solid lines show levels in SBAF and dashed lines
in STF.

6.1.2. Josephson current and free energy

The differences in Andreev levels dispersion manifested for different magnetic
mechanisms in F, affect the Josephson current and free energy, too. As shown in
Fig. 6.2, where, I/I0 and F/∆0 are plotted for different polarization values, different
magnetic mechanisms, and Z = 0 (solid lines), Z = 1 (long-dashed lines), Z = 2
(short-dashed lines). Here Lk = 10, EF = 5 eV, ∆0 = 1 meV, and T/Tc = 0.01. For
low polarization values (not reported in the figure) the current and the energy differ
only quantitatively for STF and SBAF, while for intermediate/high polarization
values a qualitative difference between the effect of the two mechanisms emerges.
For instance, at M = 0.75 the Josephson current exhibits a maximum at ϕ < π for
STF and ϕ > π for SBAF (see panels c) and d)). This means (as shown in panels g)
and h)) that the ground state energy minimum for the two types of junction can be
realized at different superconducting phase difference even though the polarization
in the F layer is the same. Moreover, we see that STF is in a 0−phase while SBAF
is in a π−phase, so that the magnetic mechanism by itself is able to drive 0 − π
transitions. In the following, we will refer to the situations where SBAF and STF
are both in 0− or π−phase as “in phase”, while when one is in the 0−phase and the
other is in the π−phase as “out of phase” junctions. By inspection of panel a), b),
e), f) of Fig. 6.2 it is possible also infer that the interface transparency can play a
role in this bandwidth asymmetry driven phase shift: the STF and SBAF junctions
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Figure 6.2. Current-phase relation and free energy for STF (left panels)
and SBAF (right panels) for intermediate and high polarization values. In
each panel three different interface barrier strengths are considered: Z = 0
(solid lines), Z = 1 (long-dashed lines) Z = 2 (short-dashed lines). Here
Lk = 10, EF = 5 eV, ∆0 = 1 meV, T/Tc = 0.01 are fixed.

are out of phase for Z = 0 and become in phase for Z = 1, 2, since SBAF undergoes
a 0 − π transition for some Z in [0, 1]. We underline that STF can also undergo
such transitions driven by a variation in the strength of the barrier, depending on
L and T values.

In order to ascertain if the realization of out of phase junctions is a rarity or a
common situation, we have compared free energy in SBAF and STF for different
width, temperature, degree of spin polarization, and interface transparency values.
Our analysis shows that the condition of out of phase junctions is mainly determined
by spin polarization: in the low polarization regime, i.e. M . 0.25, SBAF and
STF junctions very often share the same phase while in the intermediate/high
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Figure 6.3. Critical Josephson current as a function of L, M , and T for
SBAF (solid lines) and STF (dashed lines).

polarization regime, i.e. M & 0.50, can be out of phase. Other parameters only
weakly affect these conditions except interface transparency which favors out of
phase situation whenever tunneling limit is considered.

6.1.3. Critical current

Fig. 6.3 shows the Josephson critical current as a function of L, M , and T for
SBAF (solid lines) and STF (dashed lines) for Z = 0, 1, 2. When the L dependence
is considered with a finite polarization, e.g. M = 0.25, the current for both the
STF and SBAF junction appears oscillatory for transparent barriers and displays
complicated patterns when Z ∼ 1. These patterns repeat periodically when Ic is
observed on a larger scale and collapse to a modulated Dirac comb for Z ∼ 10.
The maximum critical currents for the two junctions are very close, but they are
attained for different L values and appear to be weakly affected by the Z value.
The M dependence of the critical current shows a damped oscillatory behavior for
SBAF and STF for Z = 0 and more complicated patterns for Z = 1, 2. The main
difference between the two junctions is that for high polarization values, M & 0.5,
the critical current decreases monotonically for STF, whereas for SBAF it oscillates
rapidly with increasing frequency. This is a signature of the fact that SBAF still
undergoes 0 − π transitions, while STF has settled in either a 0− or a π−phase.
This behavior is consistent with Eqs. (5.27) and (5.28) even if they are strictly
valid only in the tunneling limit. The plots of the temperature dependence of the
critical current in Fig. 6.3 show no particular features. The critical currents in both
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Figure 6.4. Examples of temperature driven 0−π transitions for SBAF (left
panel) and STF (right panel).

STF and SBAF are decaying functions of temperature, but the current in the latter
junction is larger. This is not a general feature but depends on the M and L values
chosen. In general one can have both ISBAFc > ISTFc and ISBAFc < ISTFc as clearly
shown by the plots of critical current as a function of these parameters in Fig. 6.3.
Moreover, a temperature driven 0 − π transition can be seen both for STF and
SBAF by carefully tuning M and L [153], e.g. M = 0.675, Lk = 11.4 for SBAF
and M = 0.935, Lk = 11.4 for STF, as shown in Fig. 6.4. Even a slight change in
one of the two parameters suffices to destroy a temperature driven transition, and
the current simply decays as in Fig. 6.3.

6.2. Comparison of phase diagrams

The analysis of the free energy and critical current has shown that for a given
set of junction parameters such as degree of polarization, width, and insulating
barrier strength, the Josephson effect in SBAF and STF can be different. These
two kinds of ferromagnets can support different critical current magnitudes, can
induce different ground state phases across the junction, and can undergo a different
number of 0−π transitions driven by variations in junction width and polarization.
In order to study these points in more detail, it is convenient to fix a range for these
parameters and then look at the behavior of STF and SBAF in this entire range.
We employ this strategy because the observables are rapidly varying functions of
L and M . We here choose the parameter range 6 ≤ Lk ≤ 28⊗ 0 ≤ M ≤ 0.75 to be
consistent with both our approximations and with typical experimental situations.

6.2.1. Critical current magnitude

First, we look at which of the ferromagnetic mechanisms gives rise to the larger
critical current, by considering the quantity ∆I ≡ (ISBAFc −ISTFc )/I0. This quantity
is plotted for the chosen range of parameters for T = 0 and Z = 10 in Fig. 6.5 where
red-light regions are for ∆I > 0. The maximum value reached is ∆I ' 1.4. Blue-
dark regions are for ∆I < 0, where the minimum value reached is ∆I ' −1.4. At
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Figure 6.5. Density plot of ∆I = (ISBAF
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c )/I0 in the parameter
range 0 < M < 0.75 ⊗ 6 < Lk < 28, and for T = 0 and Z = 10. Red-light
regions are for ∆I > 0. The maximum value reached is ∆I ' 1.4 Blue-dark
regions are for ∆I < 0. The minimum value reached is ∆I ' −1.4. At the
borders of red and blue regions the critical currents are equal and ∆I = 0.

the borders of red and blue regions, the critical currents are equal and ∆I = 0.
The complicated pattern of ∆I shows that even a slight change in mid-layer width
or polarization can reverse the order of critical current magnitudes in SBAF and
STF meaning that ∆I has a strong local character. However while in the low
polarization regime both ∆I < 0 and ∆I > 0 are realized with the same frequency,
∆I > 0 in most of the intermediate/high polarization regime, i.e. a SBAF is
likely to support a larger critical current than a STF when intermediate/strong
ferromagnets are considered. This property being qualitatively independent from
width, temperature, and interface transparency.

6.2.2. 0− π transitions

We now analyze the 0 − π transitions in the same chosen range by plotting
phase diagrams for STF and SBAF at T = 0.01Tc and different values of Z (see
Fig. 6.6).

From Fig. 6.6 it is clear that a larger number of M and L driven 0−π transitions
is generally expected for SBAF than for STF. In particular, this is always the case
for polarization driven transitions at fixed width L, regardless of the value of Z.
For L-driven transitions at fixed polarization, this is the case only when M & 0.5.
Another point to notice is that for both STF and SBAF the number of possible
transitions is larger for higher Z values. At this point the origin of the complicated
patterns seen in Fig. 6.3 for M and L dependence of Ic when Z 6= 0 is clear since
0 − π region boundaries become wavy for finite interface barrier strengths such
that changing only M or L leaving the other fixed, boundaries can be crossed at
a non-uniform frequency. We underline that the phase of the junctions manifests
a strong local character and can be switched by slightly altering the width and/or
the polarization.



6.2. Comparison of phase diagrams 77

0.00

0.25

0.50

0.75

M

STF Z=0 SBAF Z=0

0.00

0.25

0.50

0.75

M

STF Z=1 SBAF Z=1

0.00

0.25

0.50

0.75

M

STF Z=2 SBAF Z=2

10 15 20 25

Lk

0.00

0.25

0.50

0.75

M

STF Z=5

10 15 20 25

Lk

SBAF Z=5

0

Π

Figure 6.6. M − L phase diagram for STF (left panels) and SBAF (right
panels) for T = 0.01Tc and different Z values. White and colored regions
correspond to 0− and π−phases, respectively.

Phase diagrams with respect to temperature shows that T driven 0− π transi-
tions are possible only for particular L and M values [153]. This is a peculiarity of
ballistic systems while diffusive junctions undergo T driven transitions more easily.
Fig. 6.7 shows T −L phase diagram for STF (left panels) and SBAF (right panels)
for different M and Z values. The number of L values for which T driven 0 − π
transitions are possible is larger for large polarization and interface scattering val-
ues, the number being larger for SBAF. These trends are similar for T −M phase
diagram not reported here.
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Figure 6.7. T − L phase diagram for STF (left panels) and SBAF (right
panels) for different M and Z values. White and colored regions correspond
to 0− and π−phases, respectively.

6.2.3. Comparison of ensembles of S/STF/S and S/SBAF/S

Our analysis has shown that for a given set of junction parameters such as
degree of polarization, length, and insulating barrier strength, the Josephson effect
in SBAF and STF can be different. These two kinds of ferromagnets can support
different critical current magnitudes, can induce different ground state phases across
the junction, and can undergo a different number of 0 − π transitions driven by
variations in junction width and polarization.

However as shown in previous discussions, and consistently with the litera-
ture [150, 151, 152, 153, 154, 155, 156, 158, 159, 160], the physics of S/F/S Joseph-
son junctions is very sensible to parameters as width and polarization and many
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features are strongly oscillatory as a function of them (even the S electrodes macro-
scopic phase difference 0 or π). In such a situation differences between S/STF/S
and S/SBAF/S are strongly “local”, e.g. for some fixed value of the parameters
one can have that the first junction has a larger critical current than the second
and then by slightly changing only one parameter the reverse is true. In order to
overcome this strong local dependence of their features we look at some quantities
by averaging on the parameter space, e.g. by considering averages on statistical
ensembles of Josephson junctions. To do so, we employ a Monte Carlo integration
technique in the previously chosen range of parameters 6 ≤ Lk ≤ 28⊗0 ≤ M ≤ 0.75
for different values of Z and T . Estimations are made by averaging results obtained
from 10 samples of 3600 points in the M − L parameter space for each Z and T
values.

First of all we sample the situation of out of phase STF and SBAF junctions,
that is when for a given set of parameters one of them is in 0 phase and the other
in a π phase. Analyzing the free energy, we have seen that this is possible. We
now quantify the probability of this to happen with described statistical procedure.
Results are shown in Fig. 6.8 for three values of T . The probability of out of phase
junctions is in the range 30 − 45% and it is an increasing function of Z except
for 0 < Z < 1. For Z > 10 the probability remains stable and stops increasing.
We see that it is rather probable for a STF and a SBAF to induce different phases
across the junctions in experimentally relevant ranges of degrees of polarization and
widths, with this probability being larger for strong insulating barriers and only
minimally affected by temperature. This means that the phase shifting driven by
magnetic mechanism alone is not infrequent.

A similar analysis is put forth for relative magnitudes of critical current in
SBAF and STF, e.g. for the previously defined quantity ∆I. When ∆I > 0 (∆I <
0), critical Josephson current is larger for SBAF (STF). The probability of having
∆I > 0, that is the fraction of the total area of Fig. 6.5 corresponding to ∆I >
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0, is approximately 0.66 for Z = 10 and tends to decrease for higher interface
transparency until ' 0.62 for for Z = 0 and T = 0.1 or ' 0.55 for T/Tc = 0.9 as
shown in Fig. 6.9. Despite this decrease, the probability of ∆I > 0 will be larger
than 0.5 for all temperatures and interface transparencies thus one one can conclude
that on average, a SBAF is likely to support a larger critical current than a STF.

Both probabilities analyzed consider even the low polarization regime where
STF and SBAF have very similar features. If only the intermediate/high polariza-
tion regime is used for averaging both probabilities becomes larger as a consequence
of the fact that in this regime SBAF and STF have very different behavior. Results
of averaging in a more narrow region considering only intermediate/high polariza-
tion regime, e.g. 6 ≤ Lk ≤ 28 ⊗ 0.5 ≤ M ≤ 0.75, show an enhancement of both
probabilities. In this case the probability of out of phase junctions is about 50%
and probability of SBAF to support a larger critical current than STF in about
70% as shown in Fig. 6.10.

6.3. Mixture of SBAF and STF

When both mechanisms are present there are several combinations of exchange
energy and masses ratio that give the same polarization M . We choose to describe
this mixed case through a parameter W ∈ [0, 1] which quantifies the relative weight
of the two mechanisms without changing the total polarization in such a way that
a pure STF and a pure SBAF will correspond to W = 0 and W = 1, respectively.
Since the polarization is not a separable function with respect to the exchange
interaction and mass mismatch, one cannot immediately obtain the values assumed
by these microscopic parameters when F is a mixture of STF and SBAF. Here we
illustrate how we perform this calculation for a given M and W .

Let us consider the two dimensional (m↑/m↓, U/EF ) space parameter over
which M is defined (see Fig. 5.2). For a given value of the polarization M , and
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Figure 6.10. Probability for STF and SBAF junctions to be out of phase
(top panel) and probability of ISBAF

c > ISTF
c to be realized (bottom panel)

in the parameter range 0.5 < M < 0.75⊗ 6 < Lk < 28 as a function of Z for
three values of temperature.

from Eq. (5.22), STF is represented by the point
(

2M
(1+M2) , 0

)
and, from Eq. (5.21),

SBAF is represented by the point
(

1,
(

M+1
M−1

)2
)
. The distance between these two

points along a constant magnetization path l(M) can be written as

l(M) =
eiπ/4

2
√

2

[
B

(
−1

4

(
M + 1
M − 1

)4

;−1/4, 3/2

)

−B

(
−4

(
M2 + 1
M2 − 1

)4

;−1/4, 3/2

)]
,

where B is the incomplete Euler function

B(z; a, b) =
∫ z

0

ta−1(1− t)b−1dt.

Then the coordinates in parameter space associated with a mixture defined by the
actual W can be evaluated by imposing that the path between the STF and the
sought points is a fraction of the total length equals to W l(M). Consequently, the
mass mismatch value for a degree W mixed F at polarization M can be estimated
by numerically solving the equation
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Figure 6.11. Several realization of mixed F with both Stoner exchange and
spin bandwidth asymmetry. The parameter W changes the relative weights of
the two contributions without altering the spin polarization. A pure STF and
a pure SBAF correspond to W = 0 and W = 1, respectively. For M = 0.25
the points plotted correspond to W = 0, 0.1, ..., 1. For M = 0.50 (M = 0.75)
the points plotted correspond to W = 0, 0.1, ..., 0.8 (W = 0, 0.1, 0.2). The plot
extends on the right and not all the points on the M = 0.50 and M = 0.75 are
depicted.

M U/EF m↑/m↓

0.25
STF 8/17 1
SBAF 0 25/9

STF & SBAF 0.193 1.878

0.50
STF 4/5 1
SBAF 0 9

STF & SBAF 0.287 4.988

0.75
STF 24/25 1
SBAF 0 49

STF & SBAF 0.324 24.99

Table 6.II. Values of the normalized exchange interaction and mass asymme-
try used for three different polarization values. Here STF & SBAF represents
a mixture of the two magnetic mechanism with W = 0.5 (see Fig. 6.11).

eiπ/4

2
√

2

[
B

(
f

(
m↑
m↓

,M

)
;−1/4, 3/2

)

−B

(
−4

(
M2 + 1
M2 − 1

)4

;−1/4, 3/2

)]
= W l(M),

where
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f

(
m↑
m↓

,M

)
= −1

4

(
(M + 1)2 + m↑

m↓
(M − 1)2

M2 − 1

)4

.

Once the sought value of mass mismatch is known, the corresponding value of
exchange interaction can be obtained by inversion of Eq. (5.7).

The procedure is illustrated in Fig. 6.11 for three polarization values and several
choices of W . In Table 6.II, the magnetic parameter values for a STF, a SBAF, and
a mixture of the two with W = 0.5, are reported for three values of the polarization
M = {0.25, 0.50, 0.75}. These will be used in the following.

6.3.1. Josephson current and free energy in the mixed case

We now consider Josephson current and free energy for a mixed F with both
exchange energy and bandwidth asymmetry. We show that to witness previously
discussed features distinguishing SBAF from STF as seen in Fig. 6.2, a mixed
F where bandwidth asymmetry is not the only contribution to spin polarization
can be enough. Indeed the Josephson current and the free energy for mixed F
look very similar to the case of a pure SBAF, when a suitable contribution of
bandwidth asymmetry to total polarization is reached. Fig. 6.12 shows the case
of a mixture of SBAF and STF with W = 0.5 and all other parameters fixed as
in Fig. 6.2. In the mixed case both exchange and masses ratio have non trivial
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Figure 6.12. Josephson current and free energy for a ferromagnet which is
a degree W = 0.5 mixture of STF and SBAF. All parameters are fixed at the
same values of Fig. 6.2.
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values. The values assumed by these parameters for the particular choice W =
0.5 are reported in Table 6.II. As previously discussed for M = 0.75 STF is in
a 0−phase while SBAF is in a π−phase. It is clear from panels b) and d) of
Fig. 6.12 that the particular mixed case considered with W = 0.5 is in a π−phase
as pure SBAF case (corresponding to W = 1). This is true even for mixed F
with smaller bandwidth asymmetry contribution as soon as this reach a sufficient
value depending on junction parameters. For the particular case considered the
mixed F behaves as a pure SBAF for W & 0.3. Comparing SBAF and STF at
M = 0.5 we have pointed out that STF and is in a π−phase while SBAF is in a
0−phase for Z = 0 while for smaller interface transparency SBAF switch to the
same phase of STF. Panels a) and c) of Fig. 6.12 show that even in this case a
partial bandwidth asymmetry in F is enough to observe features of pure SBAF. For
the polarization considered M = 0.5 mixed F behaves as pure SBAF for W & 0.4.
This results are a clear signature of the fact that the bandwidth asymmetry can
induce unusual features also when it is not the main mechanism producing the spin
polarization. We stress that this is an important consideration since, as discussed
later, in real ferromagnetic mid-layers both exchange and bandwidth asymmetry
mechanism may be present.

6.3.2. Number of 0− π transitions in the mixed case

We have shown that partial bandwidth asymmetry in F is enough to switch
Josephson phase. Previously we have shown (see Fig. 6.6) that SBAF undergoes
more transitions than STF. Consequently it is interesting to analyze number of
transitions for a general F which can be a mixture of STF and SBAF. Fig. 6.13
shows the number of L driven 0 − π transitions at fixed polarization for different
mixing degree W ranging from STF to SBAF (see Fig. 6.11). It is shown how
the bandwidth asymmetry tends to increase the number of transitions and that
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Figure 6.13. Number of L driven 0 − π transitions in the range 6 < Lk <
28 as a function of the relative contribution of SBAF to total polarization.
T/Tc = 0.01 and Z = 0 are fixed.
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this effect is more prominent in the high polarization regime where the number
of transitions is almost doubled when moving from pure STF to pure SBAF. One
important point to note is that the same number of transitions observed in a SBAF
(W = 1) can be observed in a mixed F whenever W is large enough, e.g. W = 0.5
for M = 0.75. This is an important point when relating our results with real
materials because in experiments, one usually encounters the mixed F case. Even if
in Fig. 6.13 T/Tc = 0.01 and Z = 0 are fixed, we underline that the general trend of
bandwidth asymmetry increasing number of transitions does not depends on their
particular values.





Part III results summary and discussion

In this Part of the dissertation we have analyzed the Josephson effect in short,
ballistic single channel S/F/S junctions taking into account the possibility for fer-
romagnetism to be driven by a mass renormalization of carriers with opposite spin,
i.e. a spin bandwidth asymmetry. We have compared a junction with this uncon-
ventional kinetically driven ferromagnetism in the F layer with one with the usual
Stoner mechanism considering also their interplay. Analyzing Andreev levels, free
energy and currents, we have shown that the Josephson effect in the two junctions
shows different features especially for intermediate/high polarization values. In
particular, we have shown that the junction with total or partial spin bandwidth
asymmetry in the F layer undergoes a larger number of 0− π transitions driven by
variations in junction width and polarization. By examining free energy and phase
diagrams, we have pointed out how junctions with different magnetic mechanisms in
the F layer can be in different phases even if all junction parameters have the same
values whenever a suitable contribution from bandwidth asymmetry builds up the
spin polarization. We have remarked that this is a likely (rare) situation in the in-
termediate/high (low) polarization regime. By analyzing Josephson critical current
we have shown that bandwidth asymmetry can both enhance and decrease its value,
the former situation being more common for strong ferromagnets. Our findings are
relevant for many interesting magnetic materials which can be hardly framed ex-
clusively within a Stoner scenario. As relevant examples we cite the half-metal
ferromagnets defined by the property to have almost 100% transport spin polariza-
tion [24]. Materials belonging to this class usually have spin polarization M in the
range where bandwidth asymmetry is clearly distinguishable from Stoner exchange,
e.g. CrO2 [113], La0.7Sr0.3MnO3 [114], Fe3O4 [115], and EuO [116], among others.
Their high polarization values can hradly be ascribed only to Stoner exchange, so
that when trying to theoretically model their behavior in a Josephson setup the
inclusion of bandwidth asymmetry is a fundamental ingredient. We would like to
notice that our findings may turn out to be a useful tool to ascertain if a given ferro-
magnetic material has spin bandwidth asymmetry. Furthermore, since a bandwidth
asymmetric F layer can provide more frequent transitions and is likely to support
a larger critical current for a given set of parameters than a Stoner ferromagnet,
it may be used for electronics or spintronics applications and devices based on the
Josephson effect and relying on 0 − π transitions. Moreover, considering experi-
mental and sample production limitations, the choice of magnetization mechanism
may work as an extra degree of freedom which by itself may determine the ground
state phase difference across the junction or the magnitude of Josephson critical
current.
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Proximity effect in F/TS
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Abstract

This part of the dissertation is devoted to the analysis of proximity effect in
ferromagnet/triplet superconductor (F/TS) structures. The study is performed
by solving Eilenberger and Usadel equations for a typical STM setup for local
DOS measurement in the proximate non superconducting region. In Chapter 7
quasiclassical theory of proximity effect in F/TS is introduced and the particular
case of noncentrosymmetric mixed parity superconductor is deepened. Chapter 8 is
devoted to the analysis spin-sensitive long-ranged proximity effect in F/TS. Results
are summarized and discussed in the last section of this part at p. 107.
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CHAPTER 7

Proximity effect theory in F/TS

This Chapter is devoted to the discussion of proximity effect in F/TS within
the quasiclassical formalism. We focus on mixed parity noncentrosymmetric super-
conductors showing how it is possible to obtain information about their supercon-
ducting properties from DOS analysis in proximity hybrid structures.

7.1. Triplet superconductors and probes of their symmetry

The discovery of noncentrosymmetric superconductors (NCSs), such as CePt3Si,
and chiral superconductors, such as Sr2RuO4, calls for experimental methods to
identify the presence of spin-triplet pairing (see Sec. 1.1). While making the dis-
tinction between, say, a d-wave and an s-wave order parameter involves making
the distinction between order parameters of different symmetries, it is quite an-
other matter to distinguish two separate p-wave superconducting order parame-
ters. We here demonstrate a method which accomplishes this in an appealingly
simple manner: a spin-sensitive proximity effect in a ferromagnet/triplet supercon-
ductor (F/TS) bilayer. It is shown how the orientation of the field in F can be
used to unambiguously distinguish between different spin-triplet superconducting
states. Moreover, the proximity effect becomes long-ranged in spite of the presence
of an exchange field and even without any magnetic inhomogeneities, in contrast
to conventional F/S junctions. Our results can be verified by STM-spectroscopy
and could be useful as a tool to characterize the pairing state in unconventional
superconducting materials.

To acquire information about the order parameter, it is often useful to study
how the superconducting correlations behave when placed in proximity to a non-
superconducting material such as a normal metal. This idea has been employed
previously in several works studying e.g. normal metal/non-centrosymmetric super-
conductor (N/NCS) junctions [170, 171, 172, 173] in order to look for unique signa-
tures of the superconducting order parameter. However, the non-superconducting
material does not necessarily have to be a simple normal metal. Instead, it may
feature intrinsic properties, such as magnetism, which then provide an arena for
studying the interplay between superconductivity and different types of electronic
ordering [36]. A natural question arises: could such an interplay be useful in order
to extract information about the superconducting state? In this Part of the disser-
tation, we demonstrate that a ferromagnet/triplet superconductor bilayer provides
an appealingly simple and powerful method to clearly distinguish between different
types of triplet pairing states, thus providing information about the nature of the
superconducting condensate. We show that this is a direct result of a spin-sensitive
long-ranged proximity effect. The interesting features about this effect are that it
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Figure 7.1. The experimental setup proposed for a spin-sensitive proxim-
ity effect: a ferromagnet/triplet superconductor bilayer separated by a thin
insulating barrier. The ferromagnetic layer has a thickness dF and the super-
conducting condensate is characterized by a dk-vector.

provides i) unambiguous signatures in the DOS due to an interplay between the
exchange field h and the dk vector (see Sec. 1.1) and also that ii) the proximity
effect can become long-ranged in spite of the presence of h, thus decaying on a scale
of the normal coherence length ξT =

√
D/T , where D is the diffusion constant and

T is the temperature, rather than the expected decay length in F/S ξF =
√

D/h.
In this way, one may in a controllable way probe experimentally the nature of
the pairing symmetry in unconventional superconducting materials via e.g. STM
measurements in the proximate non-superconducting region. Moreover, this find-
ing suggests an alternative to other methods where measurements are performed
on the superconductor itself in the presence of an external magnetic field, which
can lead to ambiguous interpretations due to e.g. formation of a vortex lattice.
Finally, the effect predicted here constitutes a way of generating a long-range prox-
imity effect without any magnetic inhomogeneity in the ferromagnetic layer. This
is in contrast with the situation considered in conventional F/S structures, where
such a long-ranged proximity effect only occurs in the presence of inhomogeneous
magnetization [174]. We explain the microscopic mechanism responsible for the
discrimination between different triplet states, due to the coupling to the ferromag-
netic exchange field h, which is a general result that can be applied to identify the
dk-vector in arbitrary triplet superconductors. As a concrete application of our
results, we consider two specific cases: dk ∼ (0, 0, kx + iky) and dk ∼ (−ky, kx, 0),
that many experimental studies suggest to be effectively realized in superconducting
phases of Sr2RuO4 and non-centrosymmetric CePt3Si, respectively.

7.2. Quasiclassical formulation of proximity effect in F/TS

Let us introduce the theoretical framework employed here to arrive at our main
results. We will use units such that ~ = c = 1 and use . . . for 2× 2 matrices while
ˆ. . . denotes 4 × 4 matrices. The system under consideration consists of a typical
STM measurement setup where the layers lie in the yz-plane, thus stacked along
the x-axis. The diffusive ferromagnet is interfaced to the triplet superconductor
at x = 0 and to the vacuum at x = dF (see Fig. 7.1). Our calculations assume
translational invariance in the directions parallel to the interface region and are
performed in 2D. However, we underline that the results reported here remain
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equally valid in 3D due to the symmetry of the superconducting order parameters
considered. We will make use of the quasiclassical theory of superconductivity,
where the main assumption is that the Fermi energy is the largest energy-scale
in the system. The approximations behind this model have revealed to be able
to grasp the main low energy experimental features of heterostructures involving
unconventional superconductors as peaks, dips, and plateaus in density of states
and conductance, both for ballistic and diffusive systems. We here sketch the
framework for the specific case of non-centrosymmetric CePt3Si. We will consider
also the non magnetic proximity effect in N/NCS before moving to demonstrate
that proximity effect in F/NCS can become spin-sensitive when the proximity layer
is a ferromagnet.

7.2.1. Bulk Green’s function for NCS

In NCSs it is well known (see Sec. 1.1) that the spin-orbit coupling is antisym-
metric and of Rashba-type, e.g. gk = λ(n̂×k), where λ denotes the strength of the
spin-orbit interaction and n̂ denotes the axis of broken inversion symmetry. More
specifically, the crystallographic structure of the material does not have a mirror
plane with n̂ as normal vector. In what follows, we will consider a situation where
the mirror plane with the [001] direction as normal vector is lost in the crystal, i.e.
n̂ = ẑ. The spin-orbit coupling vector may then be written as gk = λ(−ky, kx, 0).
In general, one then finds that the superconducting order parameter can be written
as [175]

∆k = ∆0iσy + dk · σiσy, dk = ∆t (−ky, kx, 0) /kF , (7.1)

where kF is the Fermi wavevector and ∆0 and ∆t are singlet and triplet gap am-
plitudes for NCS, respectively. The singlet amplitude ∆0 will be used as reference
energy.

We now obtain a general expression for the retarded Green’s function in a
bulk noncentrosymmetric superconductor. Starting out from the second quantized
Hamiltonian in real-space, one finds the following expression for the matrix Green’s
function in Spin ⊗ Nambu space:

Ĝ(p, ε) = (ερ̂3 − ξ̂p − Σ̂p + ∆̂p)−1, ξ̂p = [p2/(2m)]1̂.

Σ̂p =
(
gp · σ 0

0 [g−p · σ]T

)
, ∆̂p =

(
0 ∆p

∆∗
−p 0

)
, (7.2)

where ρ̂3 = diag(1, 1,−1,−1). The quasiclassical Green’s function ĝ(pF , ε) is then
obtained by integrating out the dependence on kinetic energy. The Green’s function
is assumed to be strongly peaked around Fermi level, and one obtains

ĝ(pF , ε) =
i

π

∫ ∞

−∞
dξpĜ(p, ε). (7.3)

In the NCS, a high impurity concentration would suppress completely the odd-
parity spin-triplet component dk of the superconducting order parameter. We
therefore consider a ballistic superconducting region, and make use of the bulk
solution ĝS which may be obtained from the Eilenberger equation (see Sec. 1.5) by
setting the gradient term to zero [175]:

[ερ̂3 − Σ̂pF + ∆̂pF , ĝS ]− = 0. (7.4)
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The Green’s function reads:

ĝS(ϕ) =
1
2

(
C (ϕ) S (ϕ)

S (−ϕ) −C (−ϕ)

)
, [ĝS(ϕ)]2 = 1̂, (7.5)

where

C (ϕ) = c+1 + (σy cos ϕ− σx sin ϕ)c−, (7.6)

S (ϕ) = iσys+ + (1 cos ϕ + σz sinϕ)s−, (7.7)

and . . . denotes a 2×2 matrix in spin-space. Above, we have defined

c± = c+ ± c−, (7.8)

s± = s+ ± s−, (7.9)

being

c± = cosh(θ±), (7.10)

s± = sinh(θ±), (7.11)

with θ± = arctanh(∆±/ε), and ∆± = ∆0 ± ∆t, having chosen real amplitudes for
singlet and triplet components of the gap function. Note that ϕ is the azimuthal
angle in the xy-plane. Features captured by a fully self-consistent calculations
such as superconducting order parameter suppression at the interface would only
quantitatively alter our results and does not affect our conclusions [177, 173]. The
inverse proximity effect, from the ferromagnet into the superconductor, can be
shown to be negligible for a low-transparency barrier and wide superconducting
region [177]. We will concentrate on this regime in what follows.

7.3. Usadel equation and boundary conditions for F/TS

In the non-superconducting region, we consider the diffusive regime of trans-
port which often is the experimentally most relevant one. In order to calculate the
Green’s function ĝ4, we need to solve the Usadel equation with appropriate bound-
ary conditions at x = 0 and x = dF . Since we employ a numerical solution, we have
access to study the full proximity effect regime, and also an, in principle, arbitrary
spatial modulation h = h(x) of an exchange field. The Usadel equation [122] in the
N part reads:

D∂(ĝ∂ĝ) + i[ερ̂3 + diag[h · σ, (h · σ)T], ĝ] = 0. (7.12)

Boundary conditions applicable to diffusive normal metal/unconventional su-
perconductor junctions were derived in [125]. We assume that materials are sepa-
rated by an infinitely thin insulating barrier of the form Hδ(x), corresponding to a
transmissivity

T (ϕ) =
4 cos2(ϕ)

4 cos2(ϕ) + Z2
, (7.13)

where Z = 2mH/kF is a dimensionless parameter quantifying the barrier strength.
Other relevant parameters are the resistance of non-superconducting layer RF and

4For simplicity we use the same symbol ĝ for the Green’s function in the ballistic superconducting
layer and for its angular average 〈ĝ〉 in the diffusive layer (see Sec. 1.5).
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insulating barrier resistance RB = 2R0/t, where

t =
∫ π/2

−π/2

dϕ T (ϕ) cos(ϕ) (7.14)

and R0 is the contact Sharvin resistance. Being it a function of constriction area, it
can be considered an independent parameter with respect to Z [125]. For arbitrary
interface transparency boundary condition at x = 0 can be written as

ΓdF ĝ∂ĝ = 2〈
[
ĝ, B̂(ϕ)

]
〉, (7.15)

where Γ = RB/RF and 〈. . .〉 represents an angular average on Fermi surface:

〈f(ϕ)〉 =
∫ π/2

−π/2

dϕ f(ϕ) cos(ϕ)/t. (7.16)

The matrix B̂(ϕ) can be written as

B̂(ϕ) =
−T ′

(
1̂ + Ĥ−1

−
)

+ T ′2ĝĤ−1
− Ĥ+

−T ′
[
ĝ, Ĥ−1

−
]

+ Ĥ−1
− Ĥ+ − T ′2ĝĤ−1

− Ĥ+ĝ
, (7.17)

where

Ĥ± = (ĝS(ϕ)± ĝS(π − ϕ)) /2, (7.18)

and

T ′(ϕ) = T (ϕ)/
[
2− T (ϕ) + 2

√
1− T (ϕ)

]
. (7.19)

At x = dF the N part borders to vacuum so that the boundary condition simply
read ∂ĝ = 0̂.

We use a Riccati-parametrization of the Green’s functions as follows [178, 179]:

ĝ =
(

N (1− γγ̃) 2N γ

2Ñ γ̃ Ñ (−1 + γ̃γ)

)
, (7.20)

where

N = (1 + γγ̃)−1 Ñ = (1 + γ̃γ)−1. (7.21)

This parametrization facilitates the numerical computations, and also ensures
the normalization condition ĝ2 = 1̂.

In what follows, we analyze the proximity effect in the normal electrode by
examining the quasiparticle density of states (DOS) defined as

N(ε)/N0 = Re[g11 + g22]/2 = Tr{Re[N (1− γγ̃)]}/2, (7.22)

where N0 is the normal-state DOS. We fix Z = 2 and Γ = 0.1 corresponding to
a rather low interface-transparency. To model inelastic scattering, we add a small
imaginary part δ to the quasiparticle energies, where δ/∆0 = 0.01.



98 7. Proximity effect theory in F/TS

z
y

x

NCS

d×ΣD = iDsΣy + iDt Σy

N

ky

k
x

dHkL

STM tip

dN

Figure 7.2. The experimental setup proposed to determine the relative am-
plitude of singlet and triplet gaps in a non-centrosymmetric superconductor.
The normal metal layer has a thickness dN and it is considered in the dirty
limit.

7.4. Proximity effect in N/NCS

Before illustrating our results for a F/NCS structure we analyze the proximity
effect in an N/NCS structure as depicted in Fig. 7.2. We will show how STM
measurements could give insight in superconducting properties of mixed parity
NCS. In particular we show that the qualitative features of the DOS evaluated for
this system strongly depend on the relative amplitude of the singlet and triplet
components: a qualitative change occurs when ∆t exceeds ∆0 in magnitude. We
find that the fully suppressed low-energy DOS transforms into a peak-structure due
to the appearance of zero-energy states resulting from the triplet component [170,
172]. In this way, probing the DOS in a normal metal contacted to a NCS via
e.g. STM-spectroscopy reveals direct information about the triplet contribution in
the superconducting condensate. Indeed an immediate discrimination between the
order of singlet and triplet gaps in mixed parity NCS, e.g. if ∆t > ∆0 or ∆t < ∆0,
is possible while for precise estimation of their ratio a fitting procedure can be
employed.

The DOS is estimated in N by solving the Usadel equation Eq. 7.12 without
the exchange field term. Fig. 7.3 shows the proximity modified DOS evaluated at
the top of diffusive normal metal as depicted in Fig. 7.2 for Γ = 0.1, Z = 2, and
dN = 1.5ξS , being xiS the superconducting coherence length. The energy is referred
to the Thouless energy ETh = D/d2 and several ∆t/∆0 values are considered. In
the N/S case, i.e. ∆t = 0, the usual minigap structure is present. Its width decrease
for increasing ∆t < ∆0 until it collapses to a single point at ε = 0 precisely for
∆t = ∆0 (not shown in Fig. 7.3). The minigap then transforms abruptly into a
well defined zero energy peak (ZEP) for ∆t > ∆0. This peak exist even for pure,
i.e. not mixed-parity, triplet superconductors like px + ipy-wave as reported in the
literature and shown here later.
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Figure 7.3. Proximity modified DOS evaluated at the top of diffusive normal
metal as depicted in Fig. 7.2 for Γ = 0.1, Z = 2, and dN = 1.5ξS . A transition
occurs when ∆t = ∆0, altering the low-energy structure from fully suppressed
to peaked due to unconventional pairing.

Fig. 7.4 shows how these features are modified for different diffusive layer length
and Γ values. It is clear that peak height values for ∆t > ∆0, and DOS suppression
for ∆t < ∆0 are both stronger for short layers and smaller resistance barrier Γ. In
particular ZEP height is larger and DOS suppression is more accentuated in this
regime. In the opposite case, e.g. longer diffusive layer and larger interface resis-
tance, both features are less emphasized until they eventually reach the constant
normal state DOS as the proximity effect becomes negligible. From this section
discussion it is clear that a mixed parity NCS behave very similarly to a pure sin-
glet (triplet) superconductor when its largest gap is the singlet (triplet) one when
proximity effect is considered. This is consistent with experiments [183, 184].
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Figure 7.4. Proximity modified DOS evaluated at the top of diffusive normal
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CHAPTER 8

Spin-sensitive long-ranged proximity effect
in F/TS

This Chapter is devoted to the analysis of the interplay of exchange field in F
and dk vector in TS. We show that in F/TS a long-ranged proximity effect can be
realized.

8.1. Proximity effect for different triplet superconductors

We now describe the spin-sensitive long-ranged proximity effect. We focus
on the setup illustrated previously and depicted in Fig. 7.1. To understand how
this effect works, we demonstrate it on two experimentally relevant examples:
a noncentrosymmetric superconductor with amplitude of gap components fixed
as ∆t = 1.5∆0, and a chiral px + ipy-wave superconductor described by dk =
∆0(0, 0, kx + iky)/kF . Our choice of relative amplitudes of singlet and triplet gaps
in NCS is consistent with specific heat and Knight shift measurements on CePt3Si
which have found a strong triplet character [183, 184].

Bulk Green’s function in the chiral px + ipy-wave superconductor reads

ĝS(ϕ) =




c 0 0 seiϕ

0 c seiϕ 0
0 −se−iϕ −c 0

−se−iϕ 0 0 −c


 , [ĝS(ϕ)]2 = 1̂, (8.1)

where

c = cosh(θ), (8.2)

s = sinh(θ), (8.3)

with θ = arctanh(∆0/ε).
DOS is evaluated by solving Eq. 7.12 in F assuming Eilenberger solution for

Green’s function in TS (Eq. 7.5 for NCS and Eq. 8.1 for chiral px + ipy-wave).

8.1.1. Exchange field dependence of proximity-modified DOS

In Fig. 8.1, the DOSs evaluated at the top of the structure (x = dF ) for different
directions and strength of exchange field in the diffusive ferromagnet are shown.
For h||ẑ, the zero energy peak (ZEP) in the DOS is completely insensitive to the
ferromagnetism in the NCS case (top-left panel): even for very high exchange fields,
the DOS remains virtually unchanged compared to a normal diffusive electrode.
In the case of a superconducting electrode featuring a chiral p-wave symmetry
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Figure 8.1. DOS at x = dF for different pairing states in the triplet su-
perconductor and different directions and strength of exchange field in the
diffusive ferromagnet. Here ∆t/∆0 = 1.5, dF = 1.5ξS , Γ = 0.1, and Z = 2.
Note the insensitivity of the proximity-induced zero-energy peak in the DOS in
the upper left and lower right panels, contrary to the cases shown in the lower
left and upper right panels. Thus, different orientations of the exchange field
suffice to make the subtle distinction between two spin-triplet superconducting
order parameters.

(top-right panel), the situation changes qualitatively: the proximity effect is now
strongly dependent on the exchange field, and vanishes completely when h À ∆0,
which is opposite to the NCS case. To demonstrate the spin-sensitivity of this
proximity effect, we now turn to the case where the field satisfies h||ŷ, as shown
in bottom panels of Fig. 8.1. In order to change the orientation from h||ẑ to h||ŷ,
one could grow two separate samples where the exchange field is locked to different
orientations via e.g. antiferromagnetic coupling, or alternatively grow the layers in
different crystallographic orientations to effectively change the orientation of the
exchange field. As seen in Fig. 8.1, the features of the DOS are now opposite to
the case h||ẑ: the peak appearing for the NCS is destroyed by the exchange field
(bottom-left panel) while the peak in the chiral px + ipy case remains uninfluenced
by the presence of an exchange field (bottom-right panel). In effect, the roles of the
NCS and the chiral superconductor have been reversed. These results suggest that
simply by altering the out-of-plane/in-plane orientation of the exchange field in the
ferromagnet, the proximity-induced DOS serves as a clear discriminator between
different triplet states.

8.1.2. Exchange field dependence of proximity decay length

The zero energy peaks in DOS which are unaffected by exchange fields, are seen
to persist even at distances far inside the ferromagnetic layer (À ξF =

√
D/h),

evidencing that we are dealing with a long-range proximity effect in spite of the
presence of an exchange field. This is shown clearly in Fig. 8.2 where, with the
same pattern of Fig. 8.1, zero energy DOS is plotted as a function of dF /ξS . We
note that the proximity effect is long-ranged, e.g. it decays on a length expected in
normal but not in ferromagnetic layers, even without any magnetic inhomogeneity
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Figure 8.2. Zero energy DOS as a function of dF /ξS for the same pairing
states and exchange fields of Fig. 8.1. Here ∆t/∆0 = 1.5, Γ = 0.1, and Z = 2.
Note the persistence of the zero-energy peak in the DOS in the upper left and
lower right panels, clearly showing the long-ranged character of the proximity
effect in these cases for all fields h, contrary to the cases illustrated in the lower
left and upper right panels where the range of the proximity-effect depends on
h.

in F, in complete contrast to conventional F/S hybrid structures. Indeed we find
that the same configurations of exchange fields and dk-vector which do not suppress
ZEP do not even suppress the decay length of superconducting correlation resulting
from proximity effect.

8.1.3. Odd frequency symmetry of superconducting correlations

In diffusive systems Green’s functions become isotropic due to frequent im-
purities scattering. Consequently superconducting correlations leaking the non-
superconducting material which are coded in anomalous Green’s functions f (see
Sec.1.5) are expected to be odd in frequency (energy) when they are generated by
a triplet superconductor. This is the case in order to respect the overall antisym-
metry in accordance with Pauli principle. Indeed in our case anomalous Green’s
function have even orbital and spin parity (they are isotropic and in a spin triplet
configuration) and in order to be antisymmetric they have to be odd in frequency.
In simple F/S with no magnetic scattering these functions are even in frequency,
i.e. f(−ε) = [f(ε)]∗, meaning that Re(f) is even and Im(f) is odd. Odd frequency
correlations instead are characterized by f(−ε) = [−f(ε)]∗, that is Re(f) is odd
and Im(f) is even. Referring to the usual setup studied in this Part (see Fig. 7.1),
we have analyzed the anomalous parts of the Green’s functions. As an example
consider Fig. 8.3 where real (green) and imaginary (red) parts of the Sz = 0 triplet
anomalous retarded Green’s functions ft = (f↑↓ + f↓↑)/2 propagated in F from
proximity effect of px + ipy superconductor are shown. Anomalous triplet cor-
relations are odd in frequency and have the same spin-sensitive and long-ranged
behavior analyzed previously. Indeed all the correlations analyzed in this Part,
which contribute to the unconventional proximity effect shown, have this frequency
symmetry. The situation is analogous in the F/NCS case.



104 8. Spin-sensitive long-ranged proximity effect in F/TS

-1.0 -0.5 0.0 0.5 1.0

¶�ETh

-4

-3

-2

-1

0

1

2

f t

h=H0,0,0L

-1.0 -0.5 0.0 0.5 1.0

¶�ETh

h=H0,0,15D0L

-1.0 -0.5 0.0 0.5 1.0

¶�ETh

h=H0,15D0,0L

Figure 8.3. Real (green) and imaginary (red) part of the anomalous retarded
Green’s function components propagated in F from proximity effect of px +ipy

superconductor. All functions are evaluated at x = dF and dF = 1.5ξS ,
Γ = 0.1, and Z = 2 are fixed.

8.2. Interpretation and realizability

We now proceed to explain the underlying physics behind these results. The
triplet pairing in the superconducting condensate has a spin-degree of freedom
described by the dk-vector and thus couples to the orientation of the exchange
field. In the NCS case, the net triplet condensate has zero spin-projection, but it
is comprised of two equal contributions of Sz = ±1 pairing gaps. Therefore, an
exchange field applied along the z-direction has no influence on the triplet pairing
since it simply renormalizes the chemical potential. However, applying the field
along the y-direction effectively induces spin-flip scattering which breaks the Sz =
±1 Cooper pairs and thus suppresses the proximity effect. Because of this, the
ZEP is present for h||ẑ but absent for h||ŷ. In the chiral superconducting state,
chosen to model the pairing symmetry believed to be realized in Sr2RuO4, the
triplet component belongs to the Sz = 0 class and thus has a spin confined to the
xy-plane. By a similar argument as above, an exchange field applied in this plane
does not interact destructively with the triplet pairing, while a field applied along
ẑ induces spin-flip scattering detrimental to the Cooper pairs.

This line of reasoning holds quite generally for any triplet state. Although there
exist alternative experimental techniques to probe the triplet pairing symmetry
which are also based on the interaction between a magnetic field and the dk-vector,
such as spin susceptibility and thermal conductance measurements [180, 181], these
techniques are based on applying an external magnetic field directly to the super-
conductor. In contrast, the spin-sensitive proximity effect considered here has an
advantage compared to previous methods in that the superconducting and magnetic
correlations originate with different parts of the system and that the measurements
do not have to be performed on the superconductor, thus avoiding complications
with induced vortex-configurations via an external field. Instead, all the informa-
tion about the triplet condensate can be probed simply by measuring the DOS in
the non-superconducting region. The proximity effect also becomes long-ranged in
the ferromagnet irrespective of whether it has a weak or strong exchange field, such
that one is not restricted to probing the correlations within a few nanometers of the
interface region as in conventional F/S structures. We have also checked numeri-
cally how robust the spin-sensitive proximity effect is against a misalignment of the
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Figure 8.4. DOS at x = dF for NCS (left panel) and px + ipy (right panel)
superconductors. h = 15∆0 is fixed and different curves are associated with
different h direction in the y − z plane determined by the angle θ. From top
to bottom in the left panel and from bottom to top in the right panel θ values
are 0, π/20, π/10, π/8, 3π/8, 2π/5, 9π/20, π/2. Here ∆t/∆0 = 1.5, dF = 1.5ξS ,
Γ = 0.1, and Z = 2.

field, i.e. when it is not fully oriented along the y- or z-axis for our setup, due to
e.g. the presence of stray fields or magnetic inhomogeneities (see Fig. 8.4). Only
small quantitative changes are observed for misalignment angles up to 15-20◦, such
that the effect exhibits some robustness towards imperfections in the orientation of
the field which could be present in real samples. Concerning the experimental re-
alization of the ferromagnet/triplet superconductor junctions considered here, one
would need to couple the ferromagnetic layer to the plane of the superconductor
where the order parameter experiences a sign reversal, in order to produce the
ZEP. Depending on the crystal structure, this could be challenging with respect to
cleaving along an appropriate lattice plane for certain materials, e.g. the ab-plane
for Sr2RuO4. However, we also note that a possible pinning of the dk vector by
spin-orbit coupling in triplet superconductors [180] is not only unproblematic for
our purposes, but actually beneficial since it stabilizes the orientation of the dk

vector.





Part IV results summary and discussion

In this Part of the dissertation we have analyzed proximity effect in ferromag-
net/triplet superconductor (F/TS) structures within the quasiclassical theory of su-
perconductivity. We have focused on particular triplet pairings as the ones realized
in noncentrosymmetric superconductor (NCS) CePt3Si, and chiral superconductor
Sr2RuO4 and considered the standard setup of STM measurement in which a thin
layer of a non superconducting material is placed on top of the superconductor
being subjected to the proximity effect. We have demonstrated that measurement
of proximity modified local DOS with e.g. STM in a diffusive normal metal (N)
put in contact with NCS can give insight in the superconducting structure of mixed
parity NCS. In particular we have shown that the qualitative features of the DOS
evaluated for this system strongly depend on the relative amplitude of the singlet
and triplet gap components: a qualitative change occurs when ∆t exceeds ∆0 in
magnitude. We find that the fully suppressed low-energy DOS , e.g. a minigap,
transforms into a peak-structure due to the appearance of zero-energy states result-
ing from the triplet component. In this way, probing the DOS in a normal metal
contacted to a NCS reveals direct information about the triplet contribution in
the superconducting condensate. Indeed an immediate discrimination between the
order of singlet and triplet gaps in mixed parity NCS, e.g. if ∆t > ∆0 or ∆t < ∆0,
is possible while for precise estimation of their ratio a fitting procedure can be em-
ployed. We have demonstrated the presence of a spin-sensitive proximity effect in
F/TS. In particular, we have shown how the orientation of the exchange field in
the ferromagnet couples to the dk-vector of the proximity-induced triplet super-
conductivity leaking into the F region, providing clearly distinguishable features
in the local density of states. The proximity effect can be completely destroyed
when exchange field and dk-vector are parallel while it is completely unaffected
by magnetism, both in amplitude and in penetration length, when exchange field
and dk-vector are orthogonal. The proximity effect is long-ranged, e.g. it decays
on a length expected in normal but not in ferromagnetic layers, even without any
magnetic inhomogeneity in F, in complete contrast to conventional F/S hybrid
structures. The effect is robust against small misalignment with respect to these
two particular orientations which could be present in real samples. With the ongo-
ing activity of characterizing novel superconducting materials where triplet pairing
is believed to be present, such as heavy-fermion compounds, we believe our results
may serve as a useful tool to experimentally identify the superconducting pairing
state. Indeed we note that our results could be used to identify if the dk-vector in
eutectic Sr2RuO4-Sr3Ru2O7 is stabilized to (−ky, kx, 0) instead of (0, 0, kx + iky)
as in bulk Sr2RuO4, which was suggested very recently in Ref. [182].
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Part V

Concluding remarks





Results summary and discussion

This dissertation has been devoted to analysis of transport and proximity effect
in ferromagnet/superconductor heterostructures considering the possibility of var-
ious unconventional manifestations for both type of orders. In Part I itinerant fer-
romagnetism, superconductivity, and their interplay in heterostructures have been
introduced together with materials and models. Part II has been devoted to the
analysis of charge and spin transport in ballistic ferromagnet/singlet superconduc-
tor junctions (F/S). Such kind of system may be easily realized using well consoli-
dated fabrication procedures and standard measurements can be performed on it.
We have considered both a Stoner ferromagnet (STF) and a spin bandwidth asym-
metry ferromagnet (SBAF) with an unequal mass renormalization of oppositely
polarized carriers as F lead and conventional s-wave and dx2−y2 -wave symmetries
in S. The latter case has also been considered accompanied by a minority component
breaking time-reversal symmetry (BTRS) with s- or dxy-wave minority component,
e.g. dx2−y2 + is-wave and dx2−y2 + idxy-wave. The analysis has been performed
developing an extension of the standard Blonder-Tinkham-Klapwijk approach to
the case of a ferromagnetic electrode exhibiting either a standard Stoner exchange
mechanism or a mass mismatch-driven ferromagnetism and solving the correspond-
ing Bogoliubov-de Gennes equations. A special emphasis has been devoted to the
different roles played by the exchange splitting and spin dependent mass asym-
metry in F. Our analysis has revealed several differences between the two cases.
Our results suggest that the junction with conventional S can be considered an effi-
cient device to probe mechanism behind the itinerant ferromagnetism. Moreover we
have explained how a direct measurement of spin polarization in F and of its mass
mismatch contribution is possible without a fitting procedure by measuring with fo-
cused currents critical angles for Andreev reflection (AR) and transmission. When
dx2−y2-wave S is considered, we have found the zero bias conductance peak (ZBCP)
in charge conductance is narrower and higher when the F lead is SBAF rather than
STF. This finding being potentially useful for the experimental detection of a mass
mismatch contribution to the magnetization. Since the Andreev reflection is phase
sensitive, the onset and amplitude of Andreev bound states (ABSs), responsible
for ZBCP appearance, is a signature of the symmetry of the order parameter. For
this reason, we have also investigated the transport properties of a junction with
a superconductor exhibiting a broken time-reversal symmetry of dx2−y2 + is or
dx2−y2 + idxy type motivated by the fact that such realizations can characterize
several high-Tc cuprates. In the high transparency limit, we have found a different
behavior around zero bias of SBAF/dx2−y2+idxy and STF/dx2−y2+idxy junctions,
such that the use of a SBAF allows to discriminate more efficiently between BTRS
states with dx2−y2 + is or dx2−y2 + idxy pairing symmetry than STF does. Indeed,
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we have shown that a SBAF ferromagnetic electrode with mass mismatch intro-
duces an extra effective barrier which affects the charge transport of the hybrid
structure, driving the junction toward a tunneling regime where zero energy ABS
(existing in dx2−y2 + idxy and not in dx2−y2 + is case) is the dominant channel
for transport. We have shown that this mass mismatch renormalization deriving
by spin dependent masses in F, can give rise to spin filtering effects in F/S which
are not manifested when a standard Stoner ferromagnet is considered allowing to
conclude that the presence bandwidth asymmetry in F may mimic the behavior of
a spin active barrier. This is achieved as a consequence of the fact that the mass
asymmetry between up and down spin electrons entering explicitly the boundary
condition equations, make electrons with opposite spin feel different values of the
barrier height, eventually resulting in a spin filtering effect. When the S side is
an isotropic s-wave superconductor, we have shown that for biases lower than the
gap amplitude ∆0, SBAF/S conductance associated with the minority spin carriers
can be larger than for the majority spin ones, this ordering being reversed when
biases larger than ∆0 are considered. This result suggests that a junction with a
mass mismatch ferromagnet induces an effective spin-active interfacial effect. Nev-
ertheless, this result requires a cooperative effect between the barrier and the mass
mismatch: above moderately high barrier height, low values of the masses ratio
are already able to produce a minority-spin charge conductance component higher
than the corresponding majority-spin one. In general the effect is more clear in the
tunneling limit. When a dx2−y2-wave order parameter for the S side is considered,
splitting of ZBCP of charge conductance is found. This splitting is symmetric if
the F layer has no net spin polarization (by tuning carefully exchange splitting and
mass mismatch in such a way that they cancel each other out) and asymmetric in
the other case, consistently with well known results for magnetic insulating inter-
faces. Also in this case, the splitting found depends on the interplay between the
barrier height and the mass mismatch, and it may disappear in specific regions of
the corresponding parameter space. In particular we have shown that these effects
are more clear in the metallic limit, differently from the s-wave case. These results
suggest that the junction may work as a spin filtering device for charge current. As
far as the spin transport is concerned, we have shown that the spin conductance
in a STF/S junction is everywhere larger than in a SBAF/S one for all the un-
conventional superconducting symmetries analyzed here, except, occasionally, for
the case of a conventional s-wave superconducting electrode. We have highlighted
the relation between spin conductance and existence of nodes and breaking time
reversal symmetries in S showing that while ABS strongly affect charge transport,
spin transport is almost independent on it. We have also shown that a F/S junction
with an s-wave superconductor can work as a switch able to turn on and off a spin
current, leaving the charge current unchanged. In particular, our results show that
for a wide range of interfacial barrier strengths, the spin current passing through
the junction when the state of the switch is “on” is larger if the ferromagnetic elec-
trode is a SBAF rather than a STF. This relative increase in spin current can be
very high, and for particular values of the barrier strength a gain of up to 100%
can be reached. In Part III we have analyzed the Josephson effect in short, ballistic
single channel S/F/S junctions by means of the Bogoliubov–de Gennes equations
in the quasiclassical Andreev approximation. We have again considered also the
possibility of ferromagnetism originating from a mass renormalization of carriers of
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opposite spin. We have compared a junction with this unconventional kinetically
driven ferromagnetism in the F layer with one with the usual Stoner mechanism
considering also their interplay. Analyzing Andreev levels, free energy and currents,
we have shown that the Josephson effect in the two junctions shows different fea-
tures especially for intermediate/high polarization values. In particular, we have
shown that the junction with total or partial spin bandwidth asymmetry in the F
layer undergoes a larger number of 0−π transitions driven by variations in junction
width and polarization. By examining free energy and phase diagrams, we have
pointed out how junctions with different magnetic mechanisms in the F layer can
be in different phases even if all junction parameters have the same values whenever
a suitable contribution from bandwidth asymmetry builds up the spin polarization.
We have remarked that this is a rather common (rare) situation in the interme-
diate/high (low) polarization regime. By analyzing Josephson critical current we
have shown that bandwidth asymmetry can both enhance and decrease its value,
the former situation being more common for strong ferromagnets. In Part IV prox-
imity effect in heterostructures involving triplet superconductors (TS) and diffusive
normal metals and ferromagnets has been examined by solving Eilenberger and Us-
adel equations for a typical STM setup for local DOS measurement in the proximate
non superconducting region. We have focused on particular triplet pairings as the
ones realized in noncentrosymmetric superconductor (NCS) CePt3Si, and chiral
superconductor Sr2RuO4. We have demonstrated that measurement of proximity
modified local DOS with e.g. STM in a diffusive normal metal put in contact with
NCS can give insight in the superconducting structure of mixed parity NCS. In
particular we have shown that the qualitative features of the DOS evaluated for
this system strongly depend on the relative amplitude of the singlet and triplet
gap components: a qualitative change occurs when ∆t exceeds ∆0 in magnitude.
We find that the fully suppressed low-energy DOS, e.g. a minigap, transforms into
a peak-structure due to the appearance of zero-energy states resulting from the
triplet component. In this way, probing the DOS in a normal metal contacted to a
NCS reveals direct information about the triplet contribution in the superconduct-
ing condensate. Indeed an immediate discrimination between the order of singlet
and triplet gaps in mixed parity NCS, e.g. if ∆t > ∆0 or ∆t < ∆0, is possible while
for precise estimation of their ratio a fitting procedure can be employed. We have
demonstrated the presence of a spin-sensitive proximity effect in F/TS. In partic-
ular, we have shown how the orientation of the exchange field in the ferromagnet
couples to the dk-vector of the proximity-induced triplet superconductivity leaking
into the F region, providing clearly distinguishable features in the local density
of states. The proximity effect can be completely destroyed when exchange field
and dk-vector are parallel while it is completely unaffected by magnetism, both in
amplitude and in penetration length, when exchange field and dk-vector are or-
thogonal. The proximity effect is long-ranged, e.g. it decays on a length expected
in normal but not in ferromagnetic layers, even without any magnetic inhomogene-
ity in F, in complete contrast to conventional F/S hybrid structures. The effect
is robust against small misalignment with respect to these two clear orientations
which could be present in real samples.

We believe that our findings on charge and spin transport in F/S can turn
out to be relevant for the experimental probe of specific features of magnetic and
superconducting materials, e.g. the knowledge of the charge response at different
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values of the spin polarization may be used to perform high sensitive magnetization
or superconducting gap amplitude and phase measurements. Our results suggest
also that an F/S junction with a SBAF may represent an important tool for the
manipulation of the spin degrees of freedom in solid state systems, as concerns
both spin and charge transport. They can also prove to be useful in spintronics
applications and devices requiring an efficient way of controlling separately charge
and spin currents. Given the increasing number of experimental investigations in
this rapidly growing field, we believe that our results may provide a useful contri-
bution to the comprehension of some relevant phenomena involving spin polarized
tunneling. Our findings on Josephson effect in S/F/S are relevant for many inter-
esting magnetic materials which can be hardly framed exclusively within a Stoner
scenario. As relevant examples we cite the half-metal ferromagnets defined by the
property to have almost 100% transport spin polarization. Materials belonging to
this class usually have spin polarization M in the range where bandwidth asymme-
try is clearly distinguishable from Stoner exchange. Their high polarization values
can hardly be ascribed only to Stoner exchange, so that when trying to theoretically
model them the inclusion of bandwidth asymmetry is a fundamental ingredient. We
would like to notice that our findings may turn out to be a useful tool to ascertain
if a given ferromagnetic material has spin bandwidth asymmetry. Furthermore,
since a bandwidth asymmetric F layer can provide more frequent transitions and
is likely to support a larger critical current for a given set of parameters than a
Stoner ferromagnet, it may be used for electronics or spintronics applications and
devices based on the Josephson effect and relying on 0 − π transitions. Moreover,
considering experimental and sample production limitations, the choice of magne-
tization mechanism may work as an extra degree of freedom which by itself may
determine the ground state phase difference across the junction or the magnitude
of Josephson critical current. With the ongoing activity of characterizing novel
superconducting materials where triplet pairing is believed to be present, such as
heavy-fermion compounds, we believe our results on spin sensitive proximity effect
in F/TS may serve as a useful tool to experimentally identify the superconducting
triplet pairing states.



Future works

There are several interesting topics connected to the discussed ones which are
worthwhile to explore. It can be important to try to fit experimental data of con-
ductance spectra in F/S with our model including the possibility of spin bandwidth
asymmetry. Indeed very recently it was shown that to fit properly point contact
data of Nb/CrO2 a parameter mimicking spin active interface processes should be
considered. This is in close analogy with bandwidth asymmetry as discussed before,
and carriers mass ratio could be estimated with a fitting procedure. Also charge
and possibly spin supercurrent in structures involving ferromagnets and triplet su-
perconductors is a fundamental topic. The inclusion of spin active and spin flip
processes at the interfaces, together with the analysis of different geometries and
triplet superconductors, can shed light on the conditions favoring existence of spin
current, spin supercurrent, and charge and spin current separation. This analysis
should be performed both in ballistic and diffusive systems. The Josephson effect
in metals or ferromagnets sandwiched between triplet superconductors promise to
be a hot topic due to progress in samples preparation which open the possibility
to effectively look at spin Josephson currents. A unique definition of the latter
is missing in the literature where sometimes it is assumed to be equal simply to
the spin polarization of Josephson current. Before moving to peculiar systems, a
good idea seems just to compare different definitions, trying to understand in which
situations one should choose a definition rather than the other considering ballis-
tic or diffusive regimes, as well as short or long Josephson junctions and interface
properties. Spin sensitive effects are likely to be realized when triplet superconduc-
tors are connected by a ferromagnet. In particular relative orientations between d
vectors, magnetic moments in F and at insulating interfaces can strongly modify
charge and spin transport through the junction opening up the possibility of spin
Josephson current control. This analysis should be performed both in ballistic and
diffusive systems, and also considering non homogeneous magnetism in the mid
layer enhancing under particular conditions the proximity effect. It could be im-
portant also to consider different orbital and spin superconducting symmetries in
each electrode in order to ascertain the conditions for destructive and constructive
interference in both charge and spin Josephson current.
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List of Symbols and Acronyms

ABS Andreev bound state

AR Andreev reflection

BdG Bogoliubov-de Gennes (equations)

BTK Blonder, Tinkham, and Klapwijk (formalism)

BTRS Broken time reversal state

DOS Density of states

ETh Thouless energy

EF Fermi energy

ELQ Electron–like quasiparticle

F Generic ferromagnet

FI Ferromagnetic insulator

HLQ Hole–like quasiparticle

I Generic insulator

M Degree of spin polarization

N Generic normal metal

NCS Noncentrosymmetric superconductor

ξF Magnetic coherence length

ξS Superconducting coherence length

Pσ Fraction of carriers with spin σ
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130 List of Symbols and Acronyms

ρσ ρ↑(↓) = +1(−1)

σ Electrons and holes spin index (“up” or “down”)

σ̄ Opposite of σ

S Generic singlet superconductor

SBAF Spin bandwidth asymmetry ferromagnet

STF Stoner ferromagnet

STM Scanning tunneling microscopy

TS Generic triplet superconductor

U Exchange energy in F

X U/EF

Y m↑/m↓

Z Dimensionless insulating barrier strength

ZBCP Zero bias conductance peak

ZEP Zero energy peak


