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The main purpose of this introductory chapter is to provide a brief 

review of the basic ideas behind compression techniques. In detail, we 

start from the main motivations and essence of Data Compression. 

Subsequently, we briefly introduce the two main categories of data 

compression techniques: the lossless and the lossy strategies. Finally, we 

outline our contribution and the organization of this Thesis. 
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1.1. Introduction  

 

The main aim of data compression techniques is to reduce the space related to 

the representation of digital information. In particular, the compression process 

is the process that allows to transform an input data stream (a video, an 

image, an audio file, etc.) from one representation into another (the 

compressed data stream). The size of the compressed data stream is less than 

the size of the input one. From the compressed data stream, it is possible to 

either recover the input data stream or an approximation of the latter. The 

primary ability of a compression algorithm is to exploit the redundancy of the 

input data stream.  

Despite the exponential decrease in the cost of digital storage as well as the 

growing interest in novel Internet-based technologies (i.e., Cloud, P2P 

networks, etc.), it is easy to think that compression strategies could appear to 

be less relevant than in the past. In fact, the simplest solution, which could 

appear plausible, is to store an input data stream “as is”, in raw format, 

without the application of any compression approaches. However, it is 

important to consider that even the size of the data has exponentially grown, 

since new or upgraded technologies have been developed. Clearly, the 

acquisition technologies, which produce increasingly large data, as well as the 

decreasing costs of the (remote and local) storage space are continuously 

evolving. Therefore, Data Compression is a very actual problem, when also 

considering, for instance, portable devices (with reduced capabilities in terms of 

storage spaces).  
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Many research teams are currently involved in the development of novel 

techniques, which allow to obtain better compression performances as well as 

compress new types of data. 

There are two main compression techniques: 

• Lossy Compression; 

• Lossless Compression. 

 

In particular, when using lossy compression techniques, is not possible to 

recover the original data from the compressed data through the decompression 

process, but only their approximation.  

On the other hand, when considering lossless compression approaches, the 

original data can be easily extracted from the compressed data by using the 

decompression algorithm. 

 

1.1.1. Lossy Compression 

 

Lossy compression strategies are widely used for the compression of 

multimedia data, since data loss can be tolerated. It is important to note that 

the obtained approximation is “similar” to the original data, since only the 

information, which are not relevant (or not perceptible to the end-users), are 

not considered. Lossy compression algorithms have generally higher 

compression performances than lossless ones. Images, videos, audio are just 

some examples of multimedia data. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1.1: The Lena image: (a) uncompressed, JPEG compressed  

at quality of 100% (b), 50% (c) and 25% (d). 

For instance, in the case of the images, one of the most used approaches, 

especially on the World Wide Web, is the JPEG (Joint Photographic Experts 

Group) lossy compression algorithm [56]. 

Basically, JPEG uses the Discrete Cosine Transform (DCT), which permits 

to convert the image from the spatial domain to the frequency domain (or 

transform domain). After the conversion, a quantization process is performed. 

Through quantization, the high-frequency coefficients are discarded, since this 

information is not relevant to the Human Visual System (HVS). The quantized 

coefficients are finally encoded through a lossless compression algorithm (a 

Run-Length Encoding (RLE) schema [57]. 

Generally, JPEG implementations permit to define the quality of the output 

(see Figure 1.1), which will be achieved after the decompression process. It is 
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important to note that, in general, outputs with higher quality need more 

space than outputs with lower quality. 

Figure 1.1.a shows the original “Lena” (or “Lenna”) image, while Figures 

1.1.b, 1.1.c and 1.1.d show the output of the decompression process, where the 

Lena image is compressed through the JPEG compression at 100%, 50% and 

25%, respectively.  

Various strategies are currently being adopted, in order to compress digital 

data. For example, MPEG-1 or MPEG-2 Audio Layer III (known as MP3) 

[55] and MPEG-4 [55] are two of the most popular lossy compression 

algorithms and are widely diffused for audio and video data.  

 

1.1.2. Lossless Compression 

 

Lossless compression techniques are preferred in all those areas in which any 

information loss may compromise the value of the data. Through such 

approaches, the original data can be exactly restored. One of the main goals of 

lossless compression techniques is related to exploiting the possible 

redundancies.  

For example, consider the following string s: AAAAAXXBBBBBBBZZZZ. It 

is easy to note that s has a length of 18 characters. In detail, only 4 symbols 

are used (i.e., ‘A’, ‘X’, ‘B’ and ‘Z’) and all of them are repeated in s. Supposing 

that each symbol of s requires 8 bits, then the required space by s is 144 bits.  

The string s can be represented in a more compact form, by preceding each 

symbol by its number of future occurrences. Therefore, the string s can be then 
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compacted into the new representation as 5A2X7B4Z. By supposing that an 

integer can be represented through 8 bits, the required space for the new string 

is 64 bits. Thus, in this example, the required space for the new representation 

is 55% less than the space of the original string s.  

This idea is exploited by the Run-Length-Encoding (RLE) algorithm. RLE is 

a well-suited strategy for the compression of palette-based images (i.e., icons, 

etc.). Furthermore, the RLE scheme, coupled with other approaches, is used by 

fax machines, in which the documents produced are generally composed of a 

white background and some textual information, in black. However, the RLE 

algorithm is not efficient with static images. 

On the other hand, lossless image compression strategies are generally based 

on a predictive model. A predictive-based strategy consists of two independent 

and distinct phases: 

• Context-modeling; 

• Prediction residual coding. 

In the context-modeling phase, the current pixel, �(0), is substantially guessed 

in a deterministic manner, by considering a subset of previous coded pixels (the 

prediction context). The result of this phase is the predicted pixel, �(̂0).  

The prediction residual (or prediction error), 
(0), related to the current 

pixel, is modeled and encoded by sending it to an entropy coder. It is 

important to note that 
(0) is obtained by means of the equation (1.1).  


�(0) = ⌊�(0) − �(̂0)⌋ (1.1) 

Once computed, the prediction error is sent to an entropy or statistical 

encoder. 
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The prediction phase plays the main role, since it is delegated to exploiting 

all the redundancy among the pixels. 

 

1.2. Our Contribution and the Organization of the 

Thesis 

 

The main goal of this dissertation is to understand and introduce novel 

approaches for the compression and protection of multidimensional data.  

In Chapter 2, first the formal structure of the multidimensional data (Section 

2.1) is described, with some synthesized examples: 3-D medical images (Section 

2.2), hyperspectral images (Section 2.3), 3-D microscopy images (Section 2.4) 

and 5-D functional Magnetic Resonance Images (fMRI – Section 2.5). 

In Chapter 3, the focus is on the delicate task related to the compression of 

3-D medical images. In this case, we review a novel approach, introduced in 

[20] and denoted as Medical Images Lossless Compression algorithm(MILC). 

MILC is a lossless compression algorithm, which is based on the 

predictive model and is characterized to provide a good trade-off between the 

compression performances and reduced usage of the hardware resources. The 

results achieved by the MILC approach are comparable with other approaches 

in the current state-of-art. In addition, the MILC algorithm is suitable for 

implementations on hardware with limited resources (Section 3.1). It is 

important to note that in the medical and medical-related fields, the execution 

speed of an algorithm, could be a “critical” parameter. Starting from this 
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consideration, we review a redesigned and parallelized implementation of the 

compression strategy of the MILC algorithm, which is referred to as Parallel 

MILC (Section 3.2). In detail, Parallel MILC, introduced in [47] exploits the 

capabilities of the Parallel Computing and can be executed on heterogeneous 

devices (i.e., CPUs, GPUs, etc.). The achieved results, in terms of speedup, 

obtained by comparing the execution speed of Parallel MILC with respect to 

the MILC, are significant. In addition, the design choices related to the 

compression strategy of Parallel MILC allow to use the same decompression 

strategy of MILC. It is therefore possible to compress a 3-D medical image by 

using the MILC or Parallel MILC algorithms as well as the decompress the 

coded stream, using the same strategy for both.  

In Chapter 4, we consider the important aspect of the protection of two 

sensitive types of multidimensional data: 3-D medical images and 3-D 

microscopy images. First, a hybrid approach is reviewed, introduced in [37], 

allowing for the efficient compression of 3-D medical images as well as the 

embedding of a digital watermark (see Section 4.1 for more details on the 

digital watermark), at the same time as the compression (Section 4.2). 

Subsequently, we focus on the protection of 3-D microscopy images (Section 

4.3). 3-D microscopy images are extremely sensitive, since they can be used in 

different and delicate contexts (i.e., forensic analysis, chemical studies, etc.). In 

detail, we review a novel watermarking scheme that allows for the 

simultaneously embedding of two watermarks, in order to protect the data. It 

is important to emphasize that, to the best of our knowledge, our approach, 
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presented in [8], is the first that addresses the protection of 3-D microscopy 

images. 

In Chapter 5, we review a predictive structure that can be used for the 

compression of different types of multidimensional data [44]. In detail, we use 

our predictive structure for the lossless compression of multidimensional data. 

We successfully carry out our experiments on different datasets of 3-D medical 

images, hyperspectral images and 5-D fMRI images, which are publicly 

available. The experimental results show that our approach obtains results in 

line with, and often better, with respect to other current state-of-art 

approaches, in the case of both 3-D medical and hyperspectral images. On the 

other hand, to the best of our knowledge, there are no existing approaches, 

which are tested on the two datasets we used, in relation to the two 5-D fMRI 

datasets.  

Finally, we draw our conclusions and the future research perspectives, by 

explaining possible future directions for each one of the discussed techniques. 

The description of all the used datasets is provided in Appendix A, by 

reporting only the useful details for the purpose of the techniques discussed. 
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During the last decades, digital data are rapidly diffused and used in 

wide range of areas, ranging from industrial and research contexts to 

medical applications, etc.. This chapter focusses on the description of 

multidimensional digital data, which are constituted by a N-dimensional 

collection of 2-D components. Such components can be images, data 

matrices, etc.. 

3-D medical images, 3-D microscopy images, hyperspectral images, and 

5-D functional Magnetic Resonance Images are some examples of 

multidimensional data, which are briefly outlined in this chapter. 

It is important to point out that such data need a large amount of 

memory space for their storage as well as a significant amount  of time 

to be transmitted. In general, multidimensional data are sensitive, 

expensive and precious. 
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2.1. Introduction  

 

Informally speaking, we can define a multidimensional dataset as a  

� -dimensional (with � ≥ 3) collection of highly-related bi-dimensional 

components [1]. It is important to observe that a component can be an image, 

a data matrix, etc.. In detail, all of these bi-dimensional components have the 

same size. Formally, we can describe the size of a multidimensional (� -D) 

dataset by means of Definition 2.1.  

 

Definition 2.1 (Size of a Multidimensional Dataset). 

< �1,�2,… ,�
−2,�,  > is a sequence of integers that is used to define the 

size of a � -D dataset, where �� indicates the size of the �-th dimension 

(1 ≤  � ≤  � − 2), � and   indicate respectively the width and the height of 

each bi-dimensional component. □ 

 

The atomic elements of a multidimensional dataset are the samples, which 

are the elements that compose a component. For example, a sample can be a 

pixel of an image, an element of a matrix, etc..  

Therefore, by considering a scenario in which we have a � -D dataset of size 

< �1,�2,… ,�
−2,�,  >, we can easily observe that each component is 

composed by � ×   samples and the whole dataset contains �1 × �2 × … ×

�
−2 × � ×   samples. 

In particular, it is possible to identify a sample, through its coordinates, 

and a component, through a vector of � − 2 elements. In detail, Definition 2.2 
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and Definition 2.3 define the formal notations we used for the unambiguous 

identification of a sample and the unambiguous identification of a component, 

respectively.   

 

Definition 2.2 (Sample Identification). (�1, �2,… , �
−2, �, �) (where 

1 ≤ �� ≤ ��, 1 ≤ � ≤ �, 1 ≤ � ≤   and 1 ≤ � ≤ � − 2) are integer 

coordinates that unequivocally identify a sample, in a � -D dataset of 

dimensions < �1,�2,… ,�
−2,�,  >. □ 

 

Definition 2.3 (Component Identification). [�1, �2, … , �
−2] (where  

�� ∈ {1, 2,… , ��} and 1 ≤ � ≤ � − 2) is a vector that univocally identifies a 

component in a � -D dataset of dimensions < �1,�2,… ,�
−2,�,  >. □ 

 

In the following subsections, we briefly discuss various types of 

multidimensional data: 3-D Medical Images (Section 2.2), 3-D Microscopy 

images (Section 2.3), Multispectral and hyperspectral data (Section 2.4) and 5-

D functional Magnetic Resonance Images (Section 2.5). 

 

2.2. 3-D Medical Images 

 

Nowadays, medical digital imaging techniques are continuously evolving and 

most research focusses on the improvement of such techniques, in order to 

obtain greater acquisition accuracy. It is important to point out that thanks to 
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the widespread diffusion of inter-connections, new services are provided to 

medical staff. For examples, the exchange of medical data among different 

entities/structures connected by networks (e.g. trough Internet, Clouds 

services, P2P networks, etc.), telemedicine, tele-radiology, real-time tele-

consultation, PACS (Picture Archiving and Communication Systems), etc..  

In such scenarios, one of the main disadvantages is related to the significant 

amount of storage space required as well as time for the transmission. 

It should be noted that such costs are growing proportionally to the size of 

the data (i.e. images, etc.). It is important to emphasize that the future 

expectations in medical applications will increase the requests for memory 

space and/or transmission time. 

Different medical imaging methodologies produce multidimensional data. For 

instance, Computed Tomography (CT) and Magnetic Resonance (MR) imaging 

technologies, which produce three-dimensional data (� = 3).  

In detail, a 3-D CT image is acquired by means of X-rays, in order to obtain 

many radiological images. The overall acquisition process is supported by a 

computer, which is able to obtain different cross-sectional views. 3-D CT 

images are an important tool for the identification of normal or abnormal 

structures of the human body. It is important to emphasize that an X-ray 

scanner allows for the generation of different images, by considering different 

angles around the body part, which is undergoing analysis. Once processed by 

the computer, the output is a collection of the cross-sectional images, often 

referred to as slices.   
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3-D MR images are an important source of information in different medical 

applications and, especially, in medical diagnosis (ranging from neuroimaging 

to oncology). It is important to note that MR images are preferred in most 

cases. In fact, in the case where both CT and MR images produce the same 

clinical information, the latter are preferred, since MR acquisitions do not use 

any ionizing radiation. On the other hand, in presence of subjects with cardiac 

pacemakers and/or metallic foreign bodies, MR techniques cannot be used. 

Figures 2.1 and 2.2 show five slices, respectively, of a 3-D CT 

(“CT_carotid”) image and a 3-D MR image (“MR_sag_head”).  

 

 

 

 

Figure 2.1: Graphical representation of five slices of a CT image. 

 

 

Figure 2.2: Graphical representation of five slices of a MR image. 
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Figure 2.3: A zoomed portion of a slice of a CT image. 

 

Starting from the consideration that medical data need to be managed in an 

efficient and effective manner, it is clear that data compression techniques are 

essential, in order to improve the transmission and storage aspects. Basically, 

due to the importance of such data, the choice of lossless compression 

strategies is often required and, in many situations, indispensable. In fact, the 

acquired data are precious or often obtained by means of unrepeatable medical 

exams. Lossy compression techniques could be considered, but it is necessary 

take into account that that the lost information due to such methods, might 

lead to either an incorrect diagnosis or it could affect the reanalysis of data, 

with future techniques. 

It is important to emphasize that 3-D medical images present substantially 

two types of correlation: intra-slice correlation and inter-slice correlation.  

In particular, it is worth noting that adjacent samples are generally related to 

the same tissue and may have similar intensity (intra-slice correlation). Figure 

2.3 shows a zoomed portion of a slice (of the “CT_carotid” image), outlined 
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with a red border, in which it is possible to observe the similarity of the 

intensity of the samples. In addition, consecutive slices of a 3-D medical image 

are generally related (inter-slice correlation).  

In Figure 2.4, the Pearson’s Correlation [36] coefficients for a CT image 

(“CT_wrist”) are graphically reported. In detail, the red color indicates a high 

correlation, while the violet indicates a low correlation. Furthermore, the slices 

are indicated on the X and Y-axis. In particular, the color assumed by each 

point is related to the correlation value, between the slice on the X-axis and 

the slice on the Y-axis. Thus, it is possible to note that the graph is symmetric 

on the secondary diagonal. The graph in Figure 2.4, highlights that the 

consecutive slices are strongly related, observing the area around the secondary 

diagonal, which is completely red. 

 

 

Figure 2.4: A graphical representation of the matrix of  

the correlation of a CT image. 
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2.3. 3-D Microscopy Images 

 

The microscope is an essential scientific tool and is extremely used in many 

fields and for various purposes.  

In particular, it is widely used in chemistry, especially for the analysis of 

polymer and plastics, catalyst evaluation and testing, etc.. In the industrial 

field such images are precious and helpful for the designing and development of 

nanomaterials and biotechnology as well as the analysis of fibres, fabrics and 

textiles. In addition, such technology plays an important role in medical and 

biological fields, in which such data is used in different types of analysis 

concerning pathologies (histopathology, cytopathology, phytopathology). In 

forensic science, microscopy images are used to study specimens, which  are 

generally acquired at the crime scene.  

It is important to highlight that several microscopy imaging techniques 

commonly produce digital data, namely, images or image sequences that can be 

processed later. For instance, confocal microscopy is an optical imaging 

technique that can be essential for the study of different structures, since it is 

possible to obtain their three-dimensional (3-D) representation.  

In particular, through conventional Laser Scanning Confocal Microscope 

(LSCM) a high intensity source of light is used: a laser. Such a laser is able to 

excite the molecules of the evaluated sample [5]. In addition, the laser light is 

reflected through a dichroic mirror. The reflected light is then directed towards 

two mirrors, which can rotate. 
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More precisely, the fluorescent sample is excited by the light, by traversing 

the microscope objective. In  detail, the excited light emitted by the sample 

passes back through the microscope objective and is then  

de-scanned by the two previously used mirrors. 

Subsequently, the emitted light traverses the dichroic mirror onto a pinhole, 

which is placed onto a conjugate focal plane of the sample under analysis. For 

these reasons, this kind of microscope is known as confocal (conjugate focal). 

Finally, the light reaches a photomultiplier tube (a detector), which is able to 

convert the measured light into electronic signals. This detector is connected to 

a computer, which is able to create the final image by considering one pixel at 

time. In detail, a confocal microscope is not able to have the complete image of 

the sample. In fact, only one point is observed at any time. One of the main 

advantages that a confocal microscope presents is related to its ability in 

rejecting out-of-focus fluorescent light [5, 6], by means of the confocal pinhole, 

which prevents the out-of-focus light reaching the detector. 

 

2.4. Multispectral and Hyperspectral Data 

 

The main aim of multispectral and hyperspectral imaging is to collect 

information from a scene through the exploration of the electromagnetic 

spectrum. Differently to the human eye and traditional camera sensors, which 

can only perceive visible light, spectral imaging techniques allow to cover a 

significant portion of wavelengths. In particular, the spectrum is subdivided 

into different spectral bands. 
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Thus, it is possible to identify and/or classify materials, objects, etc.. These 

capabilities are related to the fact that some objects have a unique signature (a 

sort of fingerprint) in the electromagnetic spectrum, which can be employed for 

identification purposes.  

Multispectral and hyperspectral data, produced by airborne and spaceborne 

remote sensing acquisitions, play an important role in a large and growing 

range of real-life applications. In particular, such data are used in different 

fields, varying from environmental studies to mineralogy, from astronomy to 

physics, etc.. 

For instance, in some geographical areas, the monitoring of the Earth’s 

surface is provided through the hyperspectral remote sensing technologies 

coupled with other technologies. Hyperspectral scanning methodologies are also 

employed in military applications. In particular, for aerial surveillance purposes 

such types of information can be helpful in many scenarios. Recently, by means 

of such imaging techniques, it is possible to improve the accuracy in food 

processing activities. 

The multispectral remote sensors are characterized for their capability to 

acquire information from few spectral bands: from 4 to about 30, for example 

LANDSAT [2], MODIS [3]. Instead, the hyperspectral sensors are able to 

acquire information up to few hundreds of bands. It should be noted that 

hyperspectral sensors (e.g. AVIRIS, Hyperion, etc. allow for the measurement 

of narrow and contiguous wavelength bands.  

It is important to emphasize that the spectral resolution (i.e. the width of a 

measured spectral band), is generally one of the most important parameters to 
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evaluate the precision of a sensor. Nevertheless, also the spatial resolution is a 

significant aspect and needs to be considered. Informally speaking, the spatial 

resolution indicates how extensive the geographical area mapped by the sensor 

into a pixel is. It is also worth noting that it could be difficult to recognize 

materials from a pixel, if a too wide an area is mapped into it.  

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral 

sensors, developed by NASA Jet Propulsion Laboratory [4], for instance, make 

it possible to measure from 380  to 2500 nanometers (nm) of the 

electromagnetic spectrum. In detail, the spectrum is segmented into 224 

spectral bands, where each one has a width of about 10 ().  

Figure 2.5 shows an RGB graphical representation of an AVIRIS 

hyperspectral image (“Lunar Lake – Scene 03”), in which the 140-th band is 

associated to the red component, the 65-th band is associated to the green 

component and the 28-th band is associated to the blue component. Whereas, 

Figures 2.6.a, 2.6.b, 2.6.c and 2.6.d show a graphical representation 

respectively of the 30-th, 100-th, 150-th and 200-th band, of an AVIRIS image 

(“Lunar Lake – Scene 03”). 
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Figure 2.5: A RGB graphical representation of an  

AVIRIS hyperspectral image. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.6: A graphical representation respectively of the 30-th (a), 

100-th (b), 150-th (c) and 200-th (d) band of an hyperspectral image. 
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Figure 2.7: A false-color graphical representation of an  

AVIRIS datacube. 

It should be observed that the result of a hyperspectral acquisition is a 3 − � 

data collection (often denoted as a datacube). In particular, the output is a 

multidimensional data (where � = 3), which is constituted by the collection of 

bi-dimensional images. It is important to highlight that each image is related 

to each measured spectral band. In Figure 2.7, a graphical representation (in 

false-color) of an AVIRIS datacube is shown. 

Hyperspectral datacubes need a large amount of memory space in order to be 

stored and transmitted. Due to these implicit costs, in many scenarios, only a 

subset of bands can be stored directly “on board” and successively analyzed, 

by limiting the potentiality of hyperspectral remote sensing. For such reasons, 

efficient data compression techniques are essential, thus allowing for efficient 

storing and transmission.  

Such 3-D data present significant redundancies, which can be exploited by th 

compression algorithms. In particular, there are two types of correlation: intra-

band correlation and inter-band correlation. Basically, adjacent pixels are 

associated to adjacent geographical areas, which are, generally, constituted of 
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the same materials. Thus, adjacent pixel values are effectively correlated in the 

space (intra-band correlation). Similarly, it is observable that consecutive 

spectral bands show a high correlation (inter-band correlation). In Figure 2.8, a 

graph of the Pearson’s correlation among all the bands of an AVIRIS 

hyperspectral image is shown. In detail, on the Y-axis the value assumed by 

the Pearson’s correlation, obtained by considering the i-th and the (� − 1)-th 

bands (the bands are reported on the �-axis), is reported. 

It is noticeable that the correlation assumes high values (around 0.999) in 

most of the cases. Only a subset of bands, which are affected by noise, present 

low correlation values. 

 

 

 

Figure 2.8: The trend of the Pearson’s correlation among the spectral band of 

an AVIRIS datacube (the “Lunar Lake scene 03” image). 
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2.5. 5-D Functional Magnetic Resonance Imaging 

(fMRI)  

 

Over recent years, many methods have been proposed with the main objective 

being to investigate the functioning of the human brain. Mainly, the research 

activities have focused on specific brain regional and functional features. One 

of the main objectives is to identify and, consequently, evaluate the 

distribution of the neural activities in the brain as a whole at a given moment. 

Functional Magnetic Resonance Imaging (functional MRI or fMRI) allows to 

measure the hemodynamic response (change in blood flow), related to neural 

activity in the brain.  In detail, through fMRI techniques, it is possible to 

observe the neuronal activities, characterized by neuroactivation task, which 

need metabolic oxygen support. It is important to point out that a fMRI 

scanner is a type of specialized MRI scanner.  

The fMRI technique is a fundamental tool for assessing the neurological 

status and neurosurgical risk of a patient and, through its capabilities, the 

brain anatomical imaging is extended. Furthermore, by analyzing these data, it 

is possible to determine the regions of the brain that are activated by a 

particular task. In particular, a fMRI scanner is able to map different 

structures and specific functions of the human brain.  

Different clinical applications use fMRI for the localization of brain functions, 

the searching of markers of pathological states, etc.. In particular, fMRI 

techniques are helpful in identifying preclinical expressions of diseases and 

developing new treatments for them [7]. 
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Consequently, a fMRI scanner produces a dataset, which is composed of a 

collection of 3-D data volumes (T dimension). Each volume is substantially a 

collection (on the Z dimension) of bi-dimensional images (X and Y 

dimensions). In general, multiple trials of observation are performed (R 

dimension), in order to improve the accuracy of the examination. It is evident 

that such data can be viewed a multidimensional data (where �  can be equal 

to 4 or equal to 5). 
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In this chapter, we describe a predictive-based approach for lossless 

compression of 3-D medical images (such as 3-D MR, 3-D CT, etc.). In 

detail, our method is characterized by the low usage of computational 

resources and the parsimonious usage of memory. Furthermore, it is 

easily implementable and provides a good trade-off between 

computational complexity and compression performances.  

By considering the medical and medical-related contexts, in which the 

time could be a critical parameter, we focus on the improvement of the 

execution time of our approach. In particular, we exploit the capability of 

the parallel computing, in order to design a parallelized version of the 

compression strategy of the proposed method.     
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3.1. Lossless and Low-Complexity Compression of  

3-D Medical Images 

 

In different medicine and healthcare scenarios, it could be relevant to consider 

the efficiency of an algorithm in terms of execution time, which is involved in 

the analysis and/or processing of medical data. In particular, this aspect might 

be fundamental in many medical applications. Generally, algorithms with a low 

usage of computational resources are efficient in terms of execution time. In the 

case of lossless compression algorithms, it is important to take into account the 

trade-off between the compression performances and the execution 

time/computational complexity.  

Considering the delicate medical circumstances, during the design phases of a 

compression scheme, it is essential to take into account and examine, which 

strategy, between lossless and lossy, could be employed. In particular, the lossy 

compression strategies are used only in a few cases, while lossless compression 

techniques are generally preferred. In fact, starting from the coded data, it is 

possible to get back the original data through lossless strategies. 

In this section, we describe a lossless compression technique for 3-D medical 

images, we referred to it as Medical Images Lossless Compression algorithm 

(MILC). In detail, MILC uses limited resources in terms of computational 

power and memory.  
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Figure 3.1: The MILC diagram block (adapted from [20]). 

Figure 3.1 shows the MILC diagram block, with our approach being based on 

the predictive model and using  two predictors:  

• 2-D Linearized Median Predictor (2D-LMP); 

• 3-D Distances-based Linearized Median Predictor (3D-DLMP). 

In particular, MILC processes each sample, �(0), of the input 3-D medical 

image. It should be noted that the 2D-LMP predictor (described in Section 

3.1.1) is used only for the first slice, which has no previous reference slices. 

Thus, the 2D-LMP exploits only the intra-slice correlation. 

On the other hand, the 3D-DLMP predictor (explained in Section 3.1.2) is 

used for all the samples of all the slices (except for the first). It is important to 

point out that both the intra-slice and inter-slice correlations are exploited by 

the 3D-DLMP.  

Finally, once a sample is predicted, the related prediction error is computed 

by calculating the difference between the sample, �(0), and the predicted 
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sample, �(̂0). Then, the prediction error is modeled and coded, as explained in 

Section 3.1.3. 

 

3.1.1. The 2-D Linearized Median Predictor (2D-LMP) 

 

The 2D-LMP predictive structure uses a prediction context composed only by 

samples, which belong to the same slice of the current sample, �(0). 

In particular, three neighboring samples of �(0) are used, namely, �(1), �(2) 

and �(3). Figure 3.2 shows a graphical example of the prediction context used 

by the 2D-LMP. It should be noted that the light blue samples are already 

processed and coded.  

 It is important to point out that the prediction of �(0) is obtained by means 

of the equation (3.1).  

 

�(̂0) = 2(�(1) + �(2))
3 − �(3)

3  (3.1) 

 

 

 

Figure 3.2: A graphical example of the prediction context used by  

the 2D-LMP predictor. 
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In detail, this predictive structure is derived from the well-known predictive 

structure of the Median Predictor [24, 38], used in the JPEG-LS algorithm. 

 

�(̂0) =
⎩{⎨
{⎧ min(�(1), �(2))

max(�(1), �(2))
�(1) + �(2) − �(3)

�� �(3) ≥ max(�(1), �(2))
�� �(3) ≤ min(�(1), �(2))

� ℎ"#$�%"
 (3.2) 

 

As may be observed from the equation (3.2), which reports the predictive 

structure of the Median Predictor, one of three possible options is used by the 

latter predictor for the computing of the prediction. The capability of the 2D-

LMP predictor is to combine all of these three options, as explained by 

equation (3.3). 

 

�(̂0) = 1
3 (max(�(1), �(2)) + min(�(1), �(2)) + (�(1) + �(2) − �(3)) = 

     = 1
3 ((�(1) + �(2)) + (�(1) + �(2) − �(3))) = 

     = 1
3 (2 (�(1) + �(2)) − �(3)) = 

     = 2(�(1) + �(2))
3 − �(3)

3  

 

(3.3) 

It is noticeable that the third line of the equation (3.3) is obtained because  

min(�(1), �(2)) + max(�(1), �(2)) = �(1) + �(2). 
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3.1.2. The 3-D Distances-based Linearized Median 

Predictor (3D-DLMP) 

 

The 3D-DLMP predictor exploits the inter-slice and intra-slice correlations. In 

particular, the used prediction context is composed by neighbors of the current 

sample, �(0), in the current slice as well as the previous slice. In detail, three 

adjacent samples of the current sample in the same slice (i.e., �(1), �(2) and 

�(3)) and three adjacent samples in the previous slice (i.e., �(1)(−1), �(2)(−1) 
and �(3)(−1)), compose the prediction context. Moreover, also the sample, with 
the same spatial coordinates of the current sample of the previous slice 

(�(0)(−1)), is used.  
Figure 3.3 shows a graphical representation of the prediction context, used by 

the 3D-DLMP. It is important to note that the light blue samples are already 

coded.  

 

Figure 3.3: A graphical example of the prediction context used by  

the 3D-DLMP predictor. 
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Basically, three main steps are needed to implement the 3D-DLMP: 

1) Computing of the distances; 

2) Computing of a sort of average distance; 

3) Computing of the prediction.  

In step (1), the distances between the samples of the current slice and the 

samples of the previous slice are computed, by means of the equations (3.4), 

(3.5) and (3.6). 

)*(1) = �(1) − �(1)(−1) (3.4) 

)*(2) = �(2) − �(2)(−1) (3.5) 

)*(3) = �(3) − �(3)(−1) (3.6) 

 

These differences are used in step (2), in which a sort of “average distance”, we 

denoted as ), is obtained. The equation (3.7) defines how ) is computed. 
) = 2()*(1) + )*(2))

3 − )*(3)
3  (3.7) 

 

In step (3), the prediction of the current sample is performed, as explained in 

the equation (3.8). In detail, the above computed distance, ), is added to the 
sample �(0)(−1). 

�(̂0) = �(0)(−1) + ) (3.8) 

 

It is easy to note that the 3D-DLMP predictor is based on the 

2D-LMP predictive structure, which is described in the previous subsection. 

Moreover, the 3D-DLMP predictor can be further optimized, in terms of the 

number of operations related to the prediction of a sample.  



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 3 University of Salerno 

 

 38  

 

 

In equation (3.9), we report the optimized predictive structure, in which only 

1 division and 7 additions/subtractions are involved, by also taking into 
account the computing of )*(1)*(2) .  

 

�(0) = �(0)(−1) + )*(1)*(2) + )*(1)*(2) − )*(3)
3  (3.9) 

 

In particular, the computation of )*(1)*(2) is performed by means of the 

equation (3.10). 

)*(1)*(2) = )*(1) + )*(2) (3.10) 

 

3.1.3. Error Modeling and Coding  

 

The prediction error related to the current sample, �(0), is obtained by means 

of the equation (3.11).  

"*(0) = ⌊�(0) − �(̂0)⌋ (3.11) 

 

 In detail, the prediction error is first mapped, by using the mapping function 

of the equation (3.12), and then the mapped error is encoded through the 

Prediction by Partial Matching with Information Inheritance (PPMII or 

PPMd) encoding scheme [29].  

 

2("*(0)) =  { 2 × |"*(0) | �� "*(0) > 0
2 × |"*(0) | − 1 � ℎ"#$�%" (3.12) 
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It is important to remark that the PPMd algorithm improves the efficiency of 

PPM [30]. In particular, its complexity is comparable with other compression 

schemes, for example LZ77 [31], LZ78 [32], BWT Transform [33]. 

It is important to emphasize that all the prediction residuals constitute a 

residual image [55]. Figures 3.4.a and 3.4.b show two graphical examples of 

residual images in false-color, of a slice of a CT image (“CT_carotid”) and of a 

MR image (“MR_liver_t2e1”), respectively. Such residual images are obtained 

by using the 3D-DLMP predictive structure. The positive errors are 

represented through a gradient of color, which varies from white to red, and 

the negative errors are represented through a gradient, which varies from white 

to blue. It is important to point out that the color intensity proportionally 

grows with respect to the value of the prediction error. 

In Figure 3.5, we graphically report the distribution of prediction errors 

related to a slice of a MR image (the “MR_liver_t1” image). It should be 

noted that such distribution follows a skewed Laplacian-like distribution, 

centered on zero. In general, we obtain similar distributions for all the slices of 

a 3-D medical image, by using our predictive structures. In literature, 

Laplacian-like distributions of prediction errors are efficiently modeled and 

coded [18].  
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(a) (b)  

Figure 3.4: A false-color residual image of a slice of a CT image (a)  

and of a MR image (b) (from [20]). 

 

 

Figure 3.5: The prediction error distribution of a slice  

of a MR image (from [20]) 

3.1.4.  Experimental Results 

 

This section focusses on the experimental results achieved by using our 

approach on the dataset described in Appendix A.1, which is composed of four 

3-D CT images and four 3-D MR images. It is important to point out that we 
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experimentally performed our approach by using two different orders (i.e., 2 
and 4) for the coding of the prediction errors through the PPMd algorithm.  
 In detail, Table 3.1 reports the experimental results, in terms of BPS, for 

each one of the CT images. In particular, the first column reports the images, 

while the second and third columns report the results by using the order equal 

to 2 and the order equal to 4 for the coding of the prediction errors, 
respectively. Analogously to Table 3.1, in Table 3.2 we report the achieved 

experimental results on the MR images.  

It is easy to note that our approach obtains better results when the order is 

set to 4. However, the computational complexity of PPMd is affected by 
increasing the order.  

In addition, we analyzed the coding of prediction errors in terms of required 

memory through the PPMd scheme, for both the used orders. 

 

Table 3.1: Experimental results achieved on the CT images. 

Images 
MILC 

(PPMd o = 9) 
MILC 

(PPMd o = :) 
CT_skull 2.0683 2.0306 

CT_wrist 1.0776 1.0666 

CT_carotid 1.4087 1.3584 

CT_Aperts 0.8473 0.8190 

Average 1.3505 1.3187 

 

 

 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 3 University of Salerno 

 

 42  

 

 

Table 3.2: Experimental results achieved on the MR images. 

Images 
MILC 

(PPMd o = 9) 
MILC 

(PPMd o = :) 
MR_liver_t1 2.1839 2.1968 

MR_liver_t2e1 1.7749 1.7590 

MR_sag_head 2.1201 2.0975 

MR_ped_chest 1.6612 1.6556 

Average 1.9350 1.9272 

 

Table 3.3: Memory usage for the coding of prediction errors  

on the CT images. 

Method /  

Images 
CT_skull CT_wrist CT_carotid CT_Aperts Average 

PPMd  

(order =  4) 9.90 0.70 2.50 1.40 3.63 

PPMd  

(order =  2) 0.40 0.10 0.30 0.10 0.23 

 

Table 3.4: Memory usage for the coding of prediction errors  

on the MR images. 

Method /  

Images 
MR_liver_t1 MR_liver_t2e1 MR_sag_head MR_ped_chest Average 

PPMd  

(order =  4) 1.50 3.60 4.10 0.70 2.48 

PPMd  

(order =  2) 0.10 0.20 0.30 0.10 0.18 

 

In Tables 3.3 and 3.4, we report the used memory (in terms of Megabytes), 

related to the coding of the errors. In particular, the first column indicates the 
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used order for the PPMd scheme, the columns from the second to the fifth 

indicate the images and the last column indicates the average. 

In Figures 3.6 and 3.7, we graphically represent the information contained in 

Table 3.3 and Table 3.4, respectively.  

 

Figure 3.6: A graphical representation of Table 3.3. 

 

Figure 3.7: A graphical representation of Table 3.4. 
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The figures show how by setting the order equal to 4 for the PPMd scheme, 
MILC uses 16 times (CT images) and 14 times (MR images) more memory 
with respect to the case in which the order is set to 2.  

 

3.1.5. Discussion of Results  

 

We compare the results achieved by using the MILC algorithm with respect to 

other currently used approaches.  

In Table 3.5, we report the results in terms of bits-per-sample (BPS), for each 

one of the CT images (the columns from the second to the fifth), obtained by 

using different methods (first column) and, in the last column, the average of 

the results related to a method is reported. 

Similarly to Table 3.5, in Table 3.6 we report the achieved results for the MR 

images.  

 

Table 3.5: Memory usage for the coding of prediction errors  

on the MR images. 

Methods CT_skull CT_wrist CT_carotid CT_Aperts Average 

3D-ESCOT [22] 1.8350 1.0570 1.3470 0.8580 1.2743 

MILC (PPMd o = 4) 2.0306 1.0666 1.3584 0.8190 1.3187 

MILC (PPMd o = 2) 2.0683 1.0776 1.4087 0.8473 1.3505 

AT-SPIHT [15] 1.9180 1.1150 1.4790 0.9090 1.3553 

3D-CB-EZW [13] 2.0095 1.1393 1.3930 0.8923 1.3585 

DPCM+PPMd [11] 2.1190 1.0290 1.4710 0.8670 1.3715 

3D-SPIHT [22] 1.9750 1.1720 1.4340 0.9980 1.3948 

3D-EZW [13]  2.2251 1.2828 1.5069 1.0024 1.5043 

JPEG-LS [14] 2.8460 1.6531 1.7388 1.0637 1.8254 
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Table 3.6: Memory usage for the coding of prediction errors  

on the MR images. 

Methods MR_liver_t1 MR_liver_t2e1 MR_sag_head MR_ped_chest Average 

3D-ESCOT 2.0760 1.5100 1.9370 1.6180 1.7853 

MILC (PPMd o=4) 2.1968 1.7590 2.0975 1.6556 1.9272 

MILC (PPMd o=2) 2.1839 1.7749 2.1201 1.6612 1.9350 

3D-SPIHT 2.2480 1.6700 2.0710 1.7420 1.9328 

3D-CB-EZW 2.2076 1.6591 2.2846 1.8705 2.0055 

DPCM+PPMd 2.3900 2.0250 2.1270 1.6890 2.0578 

3D-EZW 2.3743 1.8085 2.3883 2.0499 2.1553 

JPEG-LS 3.1582 2.3692 2.5567 2.9282 2.7531 

 

 

 

As can be observed from the tables, the results achieved, on average, for the 3-

D CT images are slightly worse than the 3D-ESCOT approach, which is the 

most performing schema. In detail, our approach outperforms 3D-ESCOT only 

in the case of the “CT_Aperts” image. Regarding the case of the 3-D MR 

images, the results achieved by the MILC algorithm, are significantly worse 

with respect to the 3D-ESCOT algorithm. 

On the other hand, the MILC approach presents different advantages related 

to the trade-off between the computational complexity and the compression 

performances. In particular, the possibility to easily implement our approach 

and the low resources usage, with our approach being preferable  in various 

scenarios, even in the case of hardware restrictions. 
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3.2. Parallel Low-Complexity Lossless Compression 

of 3-D Medical Images  

 

In this section, we focus on the review of a novel design and implementation 

for the MILC compression algorithm, which is denoted as “Parallel MILC” 

[15]. In particular, Parallel MILC is able to exploit the features and  

capabilities of the parallel computing paradigm. It is important to consider 

that our approach can be executed on several heterogeneous devices, which 

support the OpenCL framework. Currently, there are many types of devices 

that support the OpenCL framework, for example Central Processing Units 

(CPUs), Graphic Processing Units (GPUs), Field Programmable Gate Arrays 

(FPGAs), etc.. The main aim of Parallel MILC is to improve the execution 

time of the compression algorithm. 

In detail, our objective is the redesigning of the MILC compression strategy, 

according to the OpenCL framework. The key points of this framework are 

briefly reviewed in the following subsection. 

 

3.2.1. Review of the OpenCL Framework 

 

The Open Computing Language (OpenCL) allows to design parallelized 

applications. An Open CL-based application can be executed across 

heterogeneous platforms, i.e., CPUs, GPUs, FPGAs as well as many others. It 

is important to point out that OpenCL supports both task-based and data-

based parallelism.  
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Regarding the OpenCL platform model, it is easy to note that only a single 

Host entity is included in the model. In detail, as shown in Figure 3.8, the Host 

is connected to one or more device(s). The devices connected to the Host, need 

to support the OpenCL framework, and are denoted as OpenCL devices. 

In this case, the Host serves as a sort of “connection point” between the 

OpenCL devices and the external environment (i.e. I/O, interactions with the 

end-user, etc.). On the other hand, an OpenCL device is able to execute a 

stream of instructions or a function (denoted as the kernel).  

By focusing on the logical architecture of an OpenCL device (graphically 

represented in Figure 3.9), it is easy to find out that such device can be 

composed by one or more Compute Units (CUs). Furthermore, a CU can be 

composed of different Processing Elements (PEs).  

 

Figure 3.8: Graphical representation of the OpenCL platform model. 

 

Generally, an application based on the OpenCL framework is characterized 

by two main components: 
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• The host program; 

• One or more kernels. 

The host program has to be executed on the Host entity, while the kernel(s) 

have to be executed on the OpenCL device(s). In detail, the OpenCL standard 

has no explicit definitions on how a host program works [39]. Nevertheless, the 

interactions with the OpenCL objects are well defined [39]. While, the kernel 

is substantially a sort of function, which is charge of implementing all (or a 

significant portion) of the application logic of a program. In particular, through 

the kernel is possible to perform the logical work of such programs [39, 40].  

 Two main types of kernels are defined by the OpenCL framework, namely, 

OpenCL kernels and native kernels. An OpenCL kernel is characterized by the 

possibility to program it through the embedded C-based programming 

language (i.e. the OpenCL C language). Furthermore, it can be compiled 

through an OpenCL compiler and executed over any OpenCL device. 

Regarding a native kernel, it can be composed of one or more external 

functions, which can be accessed by OpenCL through a specific function 

pointer [39]. 

 It is important to take into account another fundamental aspect of the 

OpenCL framework, relating to the manner in which a kernel is executed. 

Considering a basic example, in which a host program has been defined a 

kernel. The host program is able to invoke, by using a proper command, the 

execution of the kernel on one or more OpenCL devices. 

 In particular, once an OpenCL device has received such a command, the 

relative “runtime environment” enables it to create an integer index space, 
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which is denoted as NDRange [39].  It is important to emphasize that an 

instance of NDRange characterizes a < -dimensional index space. The current 
version of the OpenCL framework (1.2) allows to create an < -dimensional 
instance of NDRange, with < ∈ {1, 2, 3}. Thus, the simplest type of instance of 
NDRange can describe a 1-dimensional integer space (< =  1). In this case, 
the instance of NDRange is defined as a sort of linear array of a given size. 

Subsequently, in each “point” of the instance, a kernel is instantiated. It 

should be noted that a kernel under execution is denoted as “work-item”, and 

can be addressed through its <  global identifiers (global IDs), where <  is the 
number of the dimensions of the instance. For example, in a bi-dimensional 

NDRange (where < =  2), it is possible to address a work-item through two 
global IDs (each one related to a dimension).   

The work-items can be organized into groups (work-groups), which can be 

identified by their group identifier (work-group ID). 

 Another main point of OpenCL is the memory model. Substantially, two 

main types of objects are defined by the framework, namely, the buffer and the 

image objects. Basically, a buffer object can be viewed as a portion of memory 

provided by the kernel, which the programmer can use as wanted (i.e. to store 

data structure, arrays, matrices, etc.). While an image object can be used for 

the management of images.  
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Figure 3.9: Graphical representation of the logical architecture of an OpenCL 

device. 

 Furthermore, five memory regions are defined by the memory model and can 

be used in OpenCL-based applications: 

• Host Memory; 

• Private Memory; 

• Local Memory; 

• Global Memory; 

• Constant Memory. 

In particular, the Host Memory is a memory region accessible and modifiable 

only by the host. Whereas, the other regions are accessed by the OpenCL 

devices. The Private and Local Memory can be only accessed/modified 

respectively by a work-item and a work-group. Furthermore, the Global 

Memory is accessible/modifiable by all the work-items. Analogously to the 
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Global Memory, the Constant Memory is accessible by all the work-items with 

the limitation that this region is not modifiable. 

 

3.2.2.  Description of the Parallel MILC 

 

As discussed in Section 3.1, the MILC algorithm processes each sample of the 

input 3-D medical image, in the raster-scan order. In particular, each sample is 

predicted and its related prediction error is mapped and sent to the PPMd 

encoding scheme. On the other hand, from the coded stream the MILC 

decompression algorithm is able to process the next prediction error (after it 

has been performed both the PPMd decoding and the inverse mapping phases). 

By using the obtained prediction error, the inverse prediction is performed and 

the reconstructed sample is then written to the decoded stream. 

Thus, the final decoded stream will be equal to the original uncompressed 

image. It is worth noting that the order in which the prediction errors are 

stored is essential, because is the same as the original uncompressed image. 

The basic idea behind the Parallel MILC compression strategy is related to 

the assumption that each sample can be “independently predicted”, provided 

that the whole 3-D medical image has been acquired. In such scenario, it is 

noticeable that several samples are processed at the same time, in different 

manner with respect to the MILC. Thus, it is not possible an “a priori” 

estimation in relation to the order, in which the prediction errors will be 

generated. However, by using some information related to the data format (i.e. 
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about the storing order of the samples) of the input 3-D medical image, such 

an issue can be solved.  

In detail, through the coordinates of a sample, it is possible to store its 

related prediction error into a specific position (A) of a temporary buffer. This 
buffer maintains the residual image. Once the prediction of all the samples is 

computed, the whole temporary buffer is sent to the PPMd scheme. 

It is important to emphasize that MILC does not need any information about 

the data format and does not require any buffer for the maintaining of the 

residual image. The latter are the main differences and drawbacks of Parallel 

MILC with respect to MILC. 

Since it is generally easy to identify the data format of the input 3-D medical 

image, and, consequently, the processing order of the samples, the first one 

should not always be considered a drawback. It is important to remark that in 

medical and medical-related environments in which time may be a “critical” 

parameter, the effective speedup obtained in the Parallel MILC execution 

performance could justify such issues.  

An important aspect related to the operation logic of  the Parallel MILC 

decompression algorithm is that it is the same as the one used by MILC. Thus, 

it is possible to encode a medical image transparently, by using MILC or 

Parallel MILC. Thus, the coded stream can be decoded always in the same 

way. 

It is important to note that Parallel MILC is an OpenCL application, 

therefore, it is characterized by the host program and an OpenCL kernel.  
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The following subsections focus on the details related to the novel 

compression algorithm, especially emphasizing the design and implementation 

details of both the above defined Parallel MILC components. 

 

3.2.3. The Host Program  

 

Despite most of the logical work is being in charge of the OpenCL kernel, the 

host program plays a significant role. In detail, this program is able to locate 

the OpenCL device(s) and permits to define the characteristics of an instance 

of the NDRange. The main steps of the host program of Parallel MILC can be 

synthesized in the following (adapted from [47]):  

 

1. Detection and identification of the platforms supporting OpenCL; 

2. If no platforms are found, notification of the end-user and execution of 

the MILC scheme; 

3. Selection of the preferred OpenCL platform among the several available 

ones. Since a platform may contain more than one device (e.g. multiple 

CPUs or multiple GPUs), such a choice can be automatically made by 

estimating the best-performing device among all the available platforms. 

Alternatively, the user can select a specific device of a given platform 

through the appropriate parameters; 

4. Selection of the OpenCL device; 

5. Reading from the file and loading in the Host Memory of the three-

dimensional medical image (BC) taken as input; 
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6. Creation of a buffer object on the OpenCL device. In detail, BC is 
copied from the Host Memory to the Constant Memory of the OpenCL 

device; 

7. Allocation of a sufficient-sized buffer object in the Global Memory of 

the OpenCL device. Such buffer maintains the residual image; 

8. Retrieving from the OpenCL device of the work group maximum size 

(2D�E�F"GH). Such information is used in order to optimize the 
number of work-items per work-group; 

9. Enqueuing of a three-dimensional instance of the NDRange (where 

< =  3) of the same size of BC, to be instantiated on the OpenCL 
device. In particular, in this case, the NDRange is logically mapped onto 

the whole BC. Thus, each sample is independently processed by a single 
work-item. In detail, BC is subdivided into several “sub-cubes”, each of 
them is mapped into a work-group, as shown in Figure 3.10. Therefore, 

the dimensions of a sub-cube depend on the 2D�E�F"GH parameter. 
For example, if 2D�E�F"GH is equal to 256, then the dimensions of a 
sub-cube are of 8 as width, 8 as height and 4 relating to the third 
dimension (8 ×  8 ×  4 =  256). 

10. Copying of the residual image from the Global Memory of the OpenCL 

device to the host program once the execution of the kernel is 

completed, and sending of such image to the PPMd encoding scheme. 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 3 University of Salerno 

 

 55  

 

 

 

Figure 3.10: Graphical representation of the mapping of BC into  
work-groups (from [47]). 

3.2.4. The OpenCL Kernel 

 

The OpenCL device is in charge of carry out all the computational work of the 

Parallel MILC. As previously discussed, a work-item executes an instance of 

the kernel.  

In our approach, each work-item independently performs the prediction of 

the relative associated sample. Essentially, since the whole input medical image 

is mapped into the instance of the NDRange, the sample, associated to the 

work-item, is the one that has the same coordinates of the work-item. 
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In the following, we describe the most important steps, which are performed 

by the OpenCL kernel (adapted from [47]): 

 

1. Obtaining of the �, K and F coordinates of the work-item $� in the 
instance of the NDRange. Such coordinates univocally identify the 

associated sample of BC, denoted as �(0). Thus, �(0) is processed by $�; 
2. Retrieving of �(0); 

3. If F is equal to 0, then retrieving of the appropriate bi-dimensional 
prediction context, since �(0) is a sample of the first slice of BC, and 
performing of the 2D-LMP predictor; Go to step 5; 

4. Otherwise, retrieving of the three-dimensional prediction context and 

performing of the 3D-DLMP predictor; 

5. Computing of the prediction error "*(0) ; 

6. By using the coordinates of $� and the information of the data format 
of BC, locating of the position A in which the prediction error "*(0) will 

be stored.  

7. Storing of the prediction error into the buffer at position A. The buffer 
is used for maintaining the residual image and it is located in the Global 

Memory. 

 

3.2.5.  Experimental Results 

 

In this subsection, we focus on the experimental results, which are obtained by 

the testing of the Parallel MILC algorithm. All the experiments are performed 
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on the dataset, which is outlined in Appendix A.1. It is important to remark 

that the main aim of such testing is to show the speedup provided by Parallel 

MILC, with respect to MILC, in terms of time execution performance.  

In detail, we implemented the MILC algorithm and the host program for 

Parallel MILC through the C programming language and both are compiled by 

using the same environment. Furthermore, both the implementations manage 

the input data and the prediction errors in the same manner. The main 

objective of this design choice is to consider only the application logic of both 

algorithms during the testing.  

Thus, the errors are sent to PPMd in a non-optimized way. Thus, we used 

PPMd with an order equal to 8, instead of using the order equal to 4 (default 
order), as described in Section 3.1.3. 

In order to evaluate the effectiveness of Parallel MILC, each image of the 

dataset was first compressed by using the MILC and the Parallel MILC  

approaches. In particular, Parallel MILC is executed over the CPU and the 

GPU on three hardware configurations.  

In Tables 3.7, 3.8 and 3.9 the used configurations are respectively described, 

denoted Configuration 1, Configuration 2 and Configuration 3. It is important 

to consider that during the testing phase, we estimated the time execution in 

terms of milliseconds.  
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Table 3.7: Description of Configuration 1. 

Configuration 1 

Secondary Memory HDD 1000 GB 

Operating System Microsoft (TM) Windows (R) 8.1 - 64 bit 

OpenCL version 1.2 (CPU and GPU) 

CPU 

Type 
Intel(R) Core(TM) i5-4200M CPU @ 

2.50GHz 

RAM 8 GB DDR (PC3-12800) 

Max CUs 4 

Max Work Group Size 1024 

GPU 

Type Intel(R) HD Graphics 4600 

RAM 2 GB DDR3 (Shared) 

Max Clock Frequency 600 MHz 

Max CUs 20 

Max Work Group Size 512 

 

 

Table 3.8: Description of Configuration 2. 

Configuration 2 

Secondary Memory eMMC 32 GB 

Operating System Microsoft (TM) Windows (R) 8.1 - 32 bit 

OpenCL version 1.2 (CPU and GPU) 

CPU 

Type 
Intel(R) Atom(TM) CPU - Z3740 @ 

1.33GHz 

RAM 2 GB DDR3 

Max CUs 4 

Max Work Group Size 1024 

GPU 

Type Intel(R) HD Graphics 

RAM 1 GB DDR3 (Shared) 

Max Clock Frequency 200 MHz 

Max CUs  4 

Max Work Group Size 256 
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Table 3.9: Description of  Configuration 3. 

Configuration 3 

Secondary Memory HDD 500 GB (5400 RPM) + SSD 8 GB 

Operating System Microsoft (TM) Windows (R) 8.1 - 64 bit 

OpenCL version 1.2 (CPU and GPU) 

CPU 

Type Intel (R) Pentium(R) 3556U @ 1.70GHz 

RAM 4 GB DDR3 (PC-12800) 

Max CUs 2 

Max Work Group Size 1024 

GPU 

Type Intel(R) HD Graphics 

RAM 2 GB DDR3 (Shared) 

Max Clock Frequency 1000 MHz 

Max CUs  10 

Max Work Group Size 256 

 

 

 Table 3.10 reports the experimental results achieved by Parallel MILC in 

terms of execution performances over Configuration 1. The table is logically 

subdivided into three “macro sections”, each of them is related to one of the 

main phases of the MILC algorithm and the Parallel MILC algorithm, namely, 

the prediction and the error coding phases. 

In particular, regarding the MILC, the execution time (evaluated as 

milliseconds (2%)), the relative throughput (evaluated in megabytes per 
seconds (BL/%)) are reported for each image of the dataset (first column), in 
the second and third columns, respectively. Whereas, regarding Parallel MILC, 

the execution time, the throughput and the relative speedup (with respect to 

MILC) are respectively reported in the fourth, fifth and sixth columns in 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 3 University of Salerno 

 

 60  

 

 

relation to the execution over the CPU and are respectively reported in the 

seventh, eighth and ninth columns in relation to the execution over the GPU.  

Furthermore, since the prediction errors are managed in the same manner by 

both MILC and Parallel MILC, the phase related to the error coding has 

substantially similar execution times in both cases. Therefore, in the tenth 

column a single execution time is reported, concerning the error coding phase 

of both algorithms. 

Analogously to Table 3.10, in Table 3.11 and Table 3.12, the results achieved 

by the execution of MILC and Parallel MILC, respectively on Configuration 2 

and Configuration 3 are reported. 

Table 3.13 focuses on the achieved results related to the execution 

performances of the decompression algorithm of Parallel MILC/MILC. In 

detail, for each image of the dataset (first column), the execution time (in 2%) 
of the error decoding, the execution time and the processed megabytes per 

second (BL/%) of the inverse prediction phase are reported. In particular, 
these results are obtained by using Configuration 1 (from the second to the 

fourth column), Configuration 2 (from the fifth to the seventh column) and 

Configuration 3 (from the eighth to the tenth column) respectively. 
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Table 3.10: Achieved results by the compression algorithm on Configuration 

1. 

Images 

Prediction Phase Errors  

Coding 
MILC 

Parallel MILC 

CPU GPU 

Execution  

(ms) 
MB/s 

Execution  

(ms) 
MB/s Speedup 

Execution  

(ms) 
MB/s Speedup 

Execution  

(ms) 

CT_skull 6906 1.74 578 20.76 12 344 34.88 20 1032 

CT_wrist 6157 1.79 594 18.52 10 265 41.51 23 422 

CT_carotid 2235 1.79 390 10.26 6 125 32.00 18 265 

CT_Aperts 3423 1.75 422 14.22 8 156 38.46 22 422 

MR_liver_t1 1672 1.79 376 7.98 4 125 24.00 13 250 

MR_liver_t2e1 1688 1.78 359 8.36 5 110 27.27 15 266 

MR_sag_head 1672 1.79 375 8.00 4 125 24.00 13 328 

MR_ped_chest 2219 1.80 375 10.67 6 141 28.37 16 250 

 

 

 

 

 

 

Table 3.11: Achieved results by the compression algorithm on Configuration 

2 (adapted from [47]). 

Images 

Prediction Phase Errors  

Coding 
MILC 

Parallel MILC 

CPU GPU 

Execution  

(ms) 
MB/s 

Execution  

(ms) 
MB/s Speedup 

Execution  

(ms) 
MB/s Speedup 

Execution  

(ms) 

CT_skull 17376 0.69 1907 6.29 9 2641 4.54 7 3047 

CT_wrist 15720 0.70 1640 6.71 10 1719 6.40 9 1406 

CT_carotid 5782 0.69 1219 3.28 5 687 5.82 8 813 

CT_Aperts 8704 0.69 1328 4.52 7 984 6.10 9 859 

MR_liver_t1 4297 0.70 1187 2.53 4 720 4.17 6 672 

MR_liver_t2e1 4375 0.69 1219 2.46 4 704 4.26 6 890 

MR_sag_head 4282 0.70 1219 2.46 4 860 3.49 5 985 

MR_ped_chest 5704 0.70 1187 3.37 5 735 5.44 8 656 
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Table 3.12: Achieved results by the compression algorithm on Configuration 

3 (adapted from [47]). 

Images 

Prediction Phase Errors  

Coding 
MILC 

Parallel MILC 

CPU GPU 

Execution  

(ms) 
MB/s 

Execution  

(ms) 
MB/s Speedup 

Execution  

(ms) 
MB/s Speedup 

Execution  

(ms) 

CT_skull 12204 0.98 844 14.22 14 391 30.69 31 1688 

CT_wrist 11157 0.99 813 13.53 14 313 35.14 36 672 

CT_carotid 4015 1.00 625 6.40 6 172 23.26 23 453 

CT_Aperts 6016 1.00 672 8.93 9 203 29.56 30 453 

MR_liver_t1 3016 0.99 610 4.92 5 157 19.11 19 329 

MR_liver_t2e1 3015 1.00 610 4.92 5 172 17.44 18 469 

MR_sag_head 3015 1.00 609 4.93 5 156 19.23 19 531 

MR_ped_chest 4015 1.00 641 6.24 6 172 23.26 23 343 

 

 

 

 

Table 3.13: Achieved results by the decompression algorithm on 

Configurations 1, 2 and 3 (adapted from [47]). 

Images 

Configuration 1 Configuration 2 Configuration 3 

Errors  

Decoding 

Inverse 

Prediction Phase 

Errors 

Decoding 

Inverse 

Prediction Phase 

Errors 

Decoding 

Inverse 

Prediction 

Phase 

Execution  

(ms) 

Execution  

(ms) 
MB/s 

Execution 

(ms) 

Execution 

(ms) 
MB/s 

Execution 

(ms) 

Execution  

(ms) 

MB/

s 

CT_skull 1203 7047 1.70 3516 18235 0.66 1906 12578 0.95 

CT_wrist 562 6438 1.71 1704 16673 0.66 953 11516 0.96 

CT_carotid 328 2360 1.69 969 5969 0.67 500 4187 0.96 

CT_Aperts 343 3485 1.72 1094 8766 0.68 531 6328 0.95 

MR_liver_t1 265 1751 1.71 781 4375 0.69 422 3141 0.96 

MR_liver_t2e1 359 1735 1.73 1000 4422 0.68 516 3126 0.96 

MR_sag_head 407 1750 1.71 829 4547 0.66 546 3125 0.96 

MR_ped_chest 297 2375 1.68 1024 5938 0.67 453 4187 0.96 
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Figures 3.11, 3.12 and 3.13 graphically represent the information of Tables 

3.10, 3.11 and 3.12, respectively. It is important to point out that each graph 

reports the execution time and speedup of Parallel MILC over the CPU 

(orange column and dark red line) and over the GPU (light blue column and 

violet line), respectively by using Configuration 1 (Figure 3.11), Configuration 

2 (Figure 3.12) and Configuration 3 (Figure 3.13).  

The figures highlight how the speedup provided by Parallel MILC varies from 

a minimum of 4 times faster to 36 times faster than MILC. 
 

 

 

Figure 3.11: Graphical representation of Table 3.10. 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 3 University of Salerno 

 

 64  

 

 

 

Figure 3.12: Graphical representation of Table 3.11. 

 

Figure 3.13: Graphical representation of Table 3.12. 
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This chapter focuses on the protection, through Digital Watermarking 

techniques, of sensitive multidimensional data (e.g. 3-D medical images, 

3-D microscopy images, etc.). 

First, we investigated the possibility to protect and, simultaneously, 

compress 3-D medical images. Therefore, we presented a novel hybrid 

approach that is suitable for the compression of such data, and, 

optionally, permits the embedding, at the same time of the compression. 

Subsequently, we investigated the possibility to protect the copyright of 

3-D microscopy images. It should be noted that microscopy images can 

be used for different sensitive applications (e.g. research studies, digital 

forensic, etc.). Starting from these considerations, we presented a 

protection schema, based on watermarking techniques. 
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4.1. Introduction  

 

In this section, we explore the basic ideas upon which digital watermarking 

techniques rely. Such techniques can be used on multimedia objects (i.e., 

images, videos, etc.) for their protection as well as to hide information in the 

data. 

 

4.1.1. Review of Watermarking Techniques on Images 

 

With the increasing diffusion of the Internet, Cloud Computing and other 

networking technologies, the problem of image protection has been particularly 

felt. In fact, the intellectual property rights of multimedia digital objects (i.e. 

images, videos, etc.) can be easily violated, if adequate protections are not 

adopted. In such scenarios, digital watermarking techniques play an important 

role, in order to protect and preserve the copyright and value of an image. In 

detail, the main objective of such techniques is related to hiding data in digital 

objects (i.e. images, videos, audio, etc.), so as to protect their value.  

We can define a digital watermark �  as a sequence of �  symbols (bits). For 
instance, a textual message or a simple logo can be characterized as a short 

sequence of bits. 

A watermark can be classified in terms of its “visibility”, if the embedded 

object is visible or not to the end-user. In particular, a digital watermarking 

technique falls under two main categories:  

• Visible watermark; 
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• Invisible watermark; 

In detail, a visible watermark is perceptible to the end-user, who is able to 

easily determine whether a watermark is present or not. Whereas, invisible 

watermarks are not visible by the end-user. In particular, if an object is 

affected by an invisible watermark, it is necessary to use an appropriate 

algorithm to extract/detect it. In this manner, the owner can prove his 

ownership. It is important to point out that if a digital object, in which a 

watermark is embedded, is copied unauthorized, the watermark is also 

maintained on the copy. 

Several watermark attacks have been currently proposed. The main objective 

of a watermark attack is to compromise the embedding algorithm of the 

invisible watermark, by trying to remove/modify the embedded watermark, 

with minor alterations of the perceptual quality of the image, in order to not 

invalidate its value.  

In [48] and [49] a benchmark suite, which simulates the most common 

watermark attacks, is proposed. In detail, such a suite simulates several 

attacks, such as geometrical transformation (i.e. rotation, scaling, etc.), lossy 

compression, filter applications and many others. 

It is important to note that an invisible watermark can be categorized in 

relation to its resistance against a watermark attack. The main categories are 

the following: 

• Fragile watermark; 

• Robust watermark. 
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If an image, affected by a fragile watermark, is altered the embedded 

watermark cannot be extracted, even by using the extraction algorithm.  In 

other words, a fragile watermark is “defeated”, if any manipulations occur on 

the image [50]. Generally, a robust watermark is resistant against a subset of 

the aforementioned attacks. It is important to note that if the image, in which 

a robust watermark is embedded, is heavily altered, the watermark may not be 

resistant enough. However, it is easily noticeable that heavy alterations 

drastically alter the image and its value. 

It is possible to measure the robustness of a robust watermark, by verifying 

the “similarities” between the original watermark �  and the watermark � ∗. 
In particular, � ∗ is the watermark string extracted from the watermarked 
image which suffered a watermark attack. Different similarities measures have 

been introduced, we considered the one described in [51] and outlined by the 

equation (4.1). 

���(�, � ∗) = ∑ �(�) × � ∗(�)√�(�) × � ∗(�)
�

�=1
 (4.1) 

 

It is important to note that �(�) and � ∗(�) indicate the �-th bit of �  and of 

� ∗, respectively. In addition, �  is the length of �  and � ∗.  
It should be noted that invisible watermarks can be classified in relation to 

the way in which a watermark can be extracted, once embedded into an image. 

We can denote a watermark as a blind watermark, if its extraction, from a 

watermarked image, is permitted without the original image. Otherwise, if the 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 4 University of Salerno 

 

 

 

 

 71  

 

 

extraction is possible only with the original image, then such a watermark can 

be called a non-blind watermark. 

 

4.2. Protection and Compression of 3-D Medical 

Images 

 

In this section, we review the approach we introduced in [37] and [52], which 

permits to compress 3-D medical images and optionally embed, at the same 

time of the compression process, a digital watermark. In particular, we outline 

the compression strategy adopted (Section 4.2.1) and the watermarking scheme 

(Section 4.2.2). 

 

4.2.1. The Compression Strategy  

 

Regarding the compression strategy, the compression algorithm is based on the 

predictive model. In particular, a novel configurable inter-slice prediction 

model is used, which takes advantage of the three-dimensional redundancy. 

In detail, for the prediction of the first slice of the image taken as input, we 

use the well-established 2-D Median Edge Detector (MED) predictor (reviewed 

in Section 4.2.1.1). In addition, the other slices are predicted by using the 

proposed inter-slice prediction model (described in Section 4.2.1.2), which is 

derived by the Linear Predictor (LP) (introduced in [9]). 
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4.2.1.1. The MED (Median Edge Detector) Predictor 

 

The MED Predictor uses a context of three neighboring pixels, namely, �(1), 
�(2) and �(3), of the current pixel �(0), as shown in Figure 4.1. The prediction, 
�(̂0), is performed by means of the equation (4.2).  

�(̂0) =
⎩{⎨
{⎧ min(�(1), �(2))

max(�(1), �(2))
�(1) + �(2) − �(3)

�# �(3) ≥ max(�(1), �(2))
�# �(3) ≤ min(�(1), �(2))'(ℎ*+,��*

 (4.2) 

 

In detail, if one of the two conditions: �(3) ≥ max(�(1), �(2))  or 
�(3) ≤ min(�(1), �(2)), is verified, it means that the MED predictor has detected 
a horizontal or vertical edge, thus, it is highly probable that �(0) follow the 
identified trend. Otherwise, if no edge is detected, the MED predictor returns a 

combination of the three neighboring pixels intensity. 

 

 

 

Figure 4.1: A graphical example of the prediction context used by  

the MED predictor. 

 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 4 University of Salerno 

 

 

 

 

 73  

 

 

4.2.1.2. The Adaptive Inter-slice Predictive Model 

 

The proposed adaptive inter-slice predictive model uses a three-

dimensional prediction context composed by 2 ×  � +  1 pixels (where 
3 ≤ � ≤ 8), in order to exploit the significant correlation between two 
consecutive slices. Such a context is composed of �  neighboring pixels of 
�(0), in the current slice (denoted as the 1-th slice), and � + 1 pixels, in 
the previously coded reference slice (denoted as the +-th slice). It is 
important to point out that �  of the � + 1 pixels of the +-th slice have 
the same spatial coordinates of the ones of the 1-th slice.  
Furthermore, also the sample with the same spatial coordinates of �(0), 
in the +-th slice, is used. An example of the prediction context, by 
considering � = 8, is shown in Figure 4.2. 

 

Figure 4.2: A graphical example of the prediction context used by  

the proposed inter-slice predictor. 
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The prediction �(̂0), of the current sample �(0), is performed by means of the 
equation (4.3).  

�(̂0) = �(0)(−1) + ( 1� ∑(�(�) − �(�)(−1))�
�=1

) (4.3) 

 

The basic idea upon which such predictive structure relies is to consider the 

distances between the pixels of the prediction context in the 1-th slice and the 
ones in the +-th. Afterwards, the average of such distances is computed. Such 
an average is then added to �(0)(−1), which is the pixel which has the same 
spatial coordinates of �(0), in the +-th slice. 
 

 

4.2.1.3. Error Modeling and Coding  

 

The error distributions produced by the two outlined predictive structures 

generally follow the Laplacian one. As previously mentioned, such errors can 

be efficiently managed. 

In particular, prediction errors are mapped by using an invertible mapping 

function, in order to have only non-negative values. It should be noted that 

that the redundancy among errors is not altered, even if a mapping is 

applied. Finally, each mapped prediction error is coded through the PPMd 

scheme.  
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4.2.2. The Embedding and the Extraction of the 

Watermark 

 

The reviewed embedding procedure is based on the one introduced in [54]. In 

detail, our procedure is suitable for bi-dimensional images instead of three-

dimensional ones.  

Such a design choice is derived from the consideration that only a subset of 

slices can be significant and can be, consequently, extracted from the 

considered 3-D medical image. Through the proposed approach when such 

cases occur, the hidden information can be still independently extracted even 

by a single slice. In fact, we enable the embedding of a watermark inside all 

the slices or in a user-defined subset of them. In addition, it should be noted 

that the low computational complexity required to embed a watermark and the 

possibility to embed it during the compression process, without any significant 

overhead, makes our approach helpful in many scenarios.  

Algorithm 4.1 synthesizes the phases of the proposed approach. In particular, 

we assume that all the underlined functions in such algorithm use the 

+*456��*78479* auxiliary procedure, which is delegated to read a specific 
sample value. In addition, the 2:_<=: and the 3:_>?(*+@7�A*6+*5�('+ 
procedures implement the MED predictor (reviewed in Section 4.2.1.1) and our 

adaptive inter-slice predictor (explained in Section 4.2.1.2), respectively. 

As highlighted by line 2, the side information (i.e., �  and +) are written to 
the B@ output stream. In particular, such data are the first information of the 
stream. In this manner, the decoder is able to perform the decompression. 
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Subsequently, the coordinates in which the bits of ,� (the watermark string) 
will be embedded are randomly generated, by using the 6�? as a seed (lines 
from 3 to 5).  
By means of the �# statement (line 9), Algorithm 4.1 checks if the sample, 

which is being processed, is delegated or not to hide a bit of ,s. In particular, 
if such a check is verified, the Least-Significant-Bit (LSB) of the current 

sample is altered, by substituting such bit with the one of ,�.  
It should be noted that the modified value of the current sample needs to be 

used for the future predictions of the other samples, due to the fact that this 

sample may be a neighbor of other samples and the decoder has only the 

modified information (line 12). Therefore, the future invocation of the 

+*456��*78479* procedure, on the current sample, returns the modified value 
(simulating the decompression algorithm behavior), instead of the original one.  

On the other hand, if the condition is not satisfied, then the value of the 

current sample can be extracted from the image without any further processing 

(lines from 14 to 16).  
The user-defined set of slices, denoted as ,4(*+�4+1@7�A*�@*( in Algorithm 

4.1, contains the indices of the slices, in which ,� will be embedded. Therefore, 
only the slices that belong to such subset will be affected by the watermark.  

In Algorithm 4.2, we outline the extraction procedure, which allows to 

extract the watermark string from watermarked data. In detail, such a 

procedure needs to know the 6�? (the same used for the embedding), in order 
to identify the coordinates of the samples that hide the watermark of a given 

slice (�7�A*>?5*�), as highlighted in line 2. 
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Subsequently, each bit of the watermark is extracted and concatenated to ,�, 
which is initially empty (lines from 3 to 7). 
It is important to note that the raster scan order is used to generate the 

coordinates of the H+I''+5�?4(*� set, in the same way as with the embedding 
procedure. Furthermore, the extraction procedure can be easily integrated 

within the decompression algorithm. 

 

 

 

 

 

 

 

 

Algorithm 4.1 (a): Input and Output of the Hybrid procedure for 

the compression and extraction (adapted from [52]). 
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Algorithm 4.1 (b): The Hybrid procedure for the compression and 

extraction (adapted from [52]). 
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Algorithm 4.2 (a): Input and Output of the Watermark procedure for 

the extraction (adapted from [52]). 

 

 

 

 

 

 

Algorithm 4.2 (b): The Watermark procedure for the extraction 

(adapted from [52]). 
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4.2.3. Experimental Results  

 

We performed our experiments on the dataset, described in Appendix A.1. In 

particular, Tables 4.1 and 4.2 report the experimental results achieved by 

considering different values for the �  parameter (i.e., from 3 to 8), on the CT 
and MR images, respectively. In our experiments, the previous slice (the (1 −
1)-th slice), with respect to the current (the 1-th slice), is used as the reference 
slice (+ = 1 − 1). 
In detail, in the first column of Tables 4.1 and 4.2 the value of the �  

parameter is indicated, while, in the columns from the second to the fifth, the 

achieved results are reported for each one of the CT images (Table 4.1) and 

MR images (Table 4.2). In both the tables, the last column reports the average 

results. It is important to note that all the results are reported in BPS. 

 

Table 4.1: Experimental results achieved on the CT images  

(without the embedding of a watermark). 

J CT_skull CT_wrist CT_carotid CT_Aperts Average 

3 2.1039 1.0599 1.4318 0.8296 1.3563 

4 2.0720 1.0260 1.3942 0.8038 1.3240 

5 2.1075 1.0351 1.4251 0.8289 1.3492 

6 2.1168 1.0612 1.4447 0.8328 1.3639 

7 2.1441 1.0733 1.4727 0.8515 1.3854 

8 2.1563 1.0869 1.4880 0.8578 1.3973 
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Table 4.2: Experimental results achieved on the MR images  

(without the embedding of a watermark). 

J MR_liver_t1 MR_liver_t2e1 MR_sag_head MR_ped_chest Average 

3 2.2727 1.8985 2.0755 1.6909 1.9844 

4 2.2132 1.8670 2.0283 1.6706 1.9448 

5 2.2587 1.8989 2.0448 1.6906 1.9733 

6 2.2914 1.9165 2.0481 1.7203 1.9941 

7 2.3243 1.9384 2.0625 1.7387 2.0160 

8 2.3430 1.9572 2.0705 1.7530 2.0309 

 

Figures 4.3 and 4.4 show the histogram related to the average BPS (on the X-

axis), by considering the tested values of the �  parameter (on the Y-axis) for 
the tested CT and MR images, respectively. 

 

 

Figure 4.3: Histogram of the average results (CT images). 
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Figure 4.4: Histogram of the average results (MR images). 

It is evident from the figures that the best results, for both types of 3-D 

medical imagery, are achieved when the �  parameter is equal to 4. It should 
be observed that the results are slightly worse with respect to MILC. However, 

the proposed predictor is configurable and can be adapted to different 

hardware characterizations. 

 Furthermore, we performed experiments of our approach by considering the 

compression and simultaneous embedding of a watermark. In detail, for testing 

purposes, we used two different randomly generated watermark strings, 

composed of 100 and 200 bits, respectively. In addition, we set � = 4, 
+ =  1 − 1 (where 1 is the currently analyzed slice) and the numeric Pin is set 
to 12345. The results, in terms of BPS, we achieved from such experiments are 
very similar to the ones obtained without the embedding of a watermark 

string.  
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It is important to note that once a medical image is affected by a watermark, 

is obviously slightly different with respect to the original. Therefore, we used 

the Peak Signal-to-Noise Ratio (PSNR) metric to measure the distortion 

between the original image and the watermarked one, obtained through the 

decompression process.  

In Figures 4.5 and 4.6, we plot the histograms related to the slice-by-slice 

average PSNR. In detail, on the X-axis the CT and MR images are reported, 

while, on the Y-axis the average PSNR is reported. The cyan and red columns 

indicate the average (slice-by-slice) PSNR obtained, by comparing the original 

image with respect to the watermarked one, affected by the watermark of 100 
bits and 200 bits, respectively. 
 

 

Figure 4.5: Histogram of the slice-by-slice average PSNR (MR images). 
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Figure 4.6: Histogram of the slice-by-slice average PSNR (MR images). 

 

 

 

From the figures, it is possible to observe that the average PSNR is sufficiently 

high in all the cases. This aspect guarantees a high fidelity of the watermarked 

image, with respect to the original one. In particular, the average PSNR is 

about 79 and about 76 for the 3-D medical images in the case in which the 
embedded watermark is composed of 100 and 200 bits, respectively. It is 
important to note that, through our technique, the hidden information is not 

perceptible by humans. However, the end-users need to be conscious of such 

modifications, in order to extract the watermarked information. 
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4.3. Protection of 3-D Microscopy Images by using 

Digital Watermarking Methods 

 

A  3-D microscopy image can be considered a 3-D datacube, composed of a 

collection of 2-D slices. Starting from the consideration that in these types of 

data, only a subset of slices can be relevant and extracted from the datacube, 

we observed that it is important to preserve the integrity of the whole 3-D 

image as well as of a single slices. 

The approach we proposed permits to simultaneously protect both the 

characterizations of 3-D microscopy images, by embedding two invisible 

watermarks, one of them is embedded into the whole 3-D microscopy image, 

while the other one is independently embedded into each slice. 

The design choices for our approach are outlined in order to permit an easy 

implementation as well as use less resources as possible, in terms of CPU 

computations and memory. In this manner, even devices with limited hardware 

capabilities (i.e., industrial devices, etc.) are suitable for the implementation of 

our approach. 

 

4.3.1. The EmbeddingEmbeddingEmbeddingEmbedding Procedure 

 

In Algorithm 4.3, we highlight the key points related to the embedding 

procedures of our scheme. In detail, two invisible watermarks are embedded: a 
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3-D watermark, embedded in the whole 3-D microscopy image, and a 2-D 

watermark, independently embedded in each slice.  

In particular, the former is intended to protect the whole 3-D microscopy 

image, while the latter is intended to independently protect each slice. The 

design choice, which considers the protection of  each slice, is motivated by the 

fact that only a subset of slices might be important and, consequently, 

extracted from the whole 3-D microscopy image. These watermarks are 

embedded into the spatial domain and are sufficiently robust against lossy 

compression attacks. It is important to note that both of them can be 

extracted through a blind extraction approach, which permits, in different 

scenarios, to save storage space, by avoiding to memorize the original image. 

As it is possible to observe from Figure 4.7, several procedures are used by 

the Embedding procedure. Such a procedure takes the following parameters 

as input: 

• <>: 3-D microscopy image; 
• L*M: Key used for the embedding of 3-D watermark; 
• A: Parameter used for the embedding of the 3-D watermark; 
• N, O : Parameters used for the embedding of the 2-D watermark.  

First, in the whole <> a 3-D watermark is embedded, through the  
3-D Embedding procedure (described in Algorithm 4.4). It is important to 

point out that <>3P is the output of the 3-D Embedding procedure. 
Subsequently, each slice of <>3P (�7�A*Q3P) is extracted through the 
ExtractSlice procedure. The ExtractSlice procedure extracts a specific 

slice from <>3P, we do not report its pseudo-code, since such a procedure is 
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often implemented by ad-hoc libraries for the management of microscopy 

images or its implementation can vary depending to the microscopy image 

format. Furthermore, by means of the 2-D Embedding procedure (described 

in Algorithm 4.5), a 2-D watermark is embedded into the considered slice, 

�7�A*Q3P. It is important to note that the 2-D Embedding procedure outputs 
in  �7�A*Q3PR2T . In the last step, the final output, <>Q3PR2T , is returned by 

the Embedding procedure. 

 

Figure 4.7: The used procedures by the Embedding procedure. 

 

Algorithm 4.3: The Embedding procedure 

(from [52]). 

 

 



Compression and Protection of Multidimensional Data Raffaele Pizzolante 

Ph.D. Thesis – Chapter 4 University of Salerno 

 

 

 

 

 88  

 

 

4.3.2. The 3333----D EmbeddingD EmbeddingD EmbeddingD Embedding procedure 

 

The 3-D Embedding procedure, highlighted in Algorithm 4.4, takes as input 

the following parameters: 

• <>, L*M: 3-D microscopy image and key used for the embedding of 3-D 
watermark; 

• A: Parameter used for defining the robustness of the embedding. 
In particular, the 3-D Embedding procedure is composed by two main 

phases: 

1. The generation phase; 

2. The embedding phase. 

Algorithm 4.4: The 3-D Embedding procedure 

(from [52]). 
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In the generation phase, the watermark is generated, by using a Pseudo-

Random Generator (PRG) [53]. However, as explained in [54], a Chaotic Map 

can also be used.  

Formally, let 7(∙) be a polynomial and let V be a deterministic polynomial-

time algorithm. In detail, for any input string � ∈ {0, 1}Z the V algorithm 
outputs a string of �′ ∈ {0, 1}ln(Z). It is possible to say that V is a PRG if the 
following two conditions are held: 

 

1. Expansion: ∀? it holds that 7(?)  >  ?; 
2. Pseudorandomness: For all probabilistic polynomial-time distinguishers :, 

there exists a negligible function ?*`7 such that: |6+[:(+) =  1] −
 6+[:(V(�)) =  1]| ≤  ?*`7(?), where + is chosen uniformly from {0, 1}l(n) 
and � is the seed, which is chosen uniformly at random from {0, 1}Z. The 
probabilities are taken over the random coins used by : and the choice of 
+ and �. 

 

The function 7(?) is referred to as the “expansion factor” of V. Thus, starting 
from an initial “seed”, through a PRG, it is possible to obtain an output 

sequence of a specified size. It is important to note that in the scheme we 

propose, the seed is represented by the input parameter key (i.e., L*M). 
Furthermore, this output sequence is “not invertible”, therefore, it is not 

possible to reconstruct the key even in the case of this sequence being known. 
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Regarding the 3-D Embedding procedure, the watermark string is 

generated in order to take into account the whole <>: ,� ∈ {−1,1}�f�ghij 
(where �6��*7� is the number of the samples of <>). 
In the embedding phase, the effective embedding of ,� into <> is performed. 

In particular, all the samples of <> are converted from the RGB to the YUV 

format. After that, the luminance component (the Y component) of each 

sample is modified, according to the current symbol of ,�. In detail, each pixel 
is modified, by adding the product between the current symbol of ,� and A. In 
order to define what the current symbol of ,�,is A9++*?(�@@M�, it is 
important to specify an appropriate order, in which ,� is considered (i.e. the 
raster scan order, etc.) [54]. 

It is important to note that the function 6  permits to obtain the triple 
related to the Y, U and V components, of a specified sample. The functions Y, 

U and V are used respectively for the extraction of the luminance and the 

chrominance components of a given triple.  

 

4.3.3. The 2222----D EmbeddingD EmbeddingD EmbeddingD Embedding procedure 

 

In Algorithm 4.6, we outline the pseudo-code related to the 2-D Embedding 

procedure. This procedure takes as input the following input parameters: 

• @7�A*: Slice of a 3-D microscopy image; 
• L*M: Key used for the embedding of the 2-D watermark; 
• N, O : Parameters used for defining the robustness of the embedding. 
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The 2-D Embedding procedure is based on the procedures described in [37] 

and [45]. The basic idea behind such a procedure is that each symbol of the 

watermarks string, ,� (generated through a PRG along with the relative L*M), 
is diffused over the whole @7�A*Q2P. In detail, the first step is related to the 
copying of @7�A* into @7�A*Q2P. @7�A*Q2P will store the watermarked slice and 
will be returned at the end of the procedure. After that, all the sample of 

@7�A*Q2P are converted from the RGB to the YUV domain.  
Subsequently, each bit of ,� will be embedded into each one of the pseudo-

randomly selected 8 × 8 blocks. It is important to note that the JPEG lossy 
compression algorithm is “simulated”, in order to improve the robustness of 

the watermark against lossy compression attacks. In particular, one of the 

aforementioned blocks is selected (denoted as k in Algorithm 4.5). Therefore, 
the quality of the block k is reduced, by using the ReduceQuality 
procedure (explained in Algorithm 4.5). The ReduceQuality procedure takes 

as input the block k and a quantization matrix l and outputs a reduced-
quality block, referred to as km . Subsequently, the product N × kn, where kn 
is a pseudo-randomly generated block through the 

GeneratePseudoRandomBlock procedure (of the same dimensions of k 
and each entry can assumes 0 or 1 as value) and N is an integer parameter 
(used for defining the robustness of the watermark), is added or subtracted, 

depending on the value of the bit. Until the specified threshold O  is reached (if 
the bit assumes 1 as value) or −O  (if the bit assumes 0 as value), the described 
operations are repeated. 
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Algorithm 4.5: The 2-D Embedding procedure 

(from [8]). 
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Algorithm 4.6: The ReduceQuality procedure 

(from [8]). 
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4.3.4. The Detection Procedures 

 

The 3-D Detection procedure is outlined in Algorithm 4.7. In particular, the 

procedure takes the following parameters as input: 

• <>Q3P: 3-D microscopy image (in which embed a 3-D watermark is 
embedded through the Embedding procedure); 

• L*M: Key used by the Embedding procedure. 
 

Basically, as can be noted by its name, the procedure is delegated to detect the 

3-D watermark, by considering the whole <>Q3P. 
In particular, once all the samples of <>Q3P are converted from the RGB 

domain to the YUV domain, the procedure generates the watermark string, ,� 
again. Clearly, the watermark string is the same as the one generated through 

the Embedding procedure (in presence of the same L*M). 
 

Algorithm 4.7: The 3-D Detection procedure 

(from [8]). 
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Algorithm 4.8: The ComputeR procedure 

(from [8]). 

 

 

 

It should be noted that the 3-D Detection procedure uses the ComputeR 

procedure. In particular, the ComputeR procedure (outlined in Algorithm 

4.8) is in charge of implementing the function o, defined in equation (4.4). 
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o(<>Q3P, ,�)
= ( 1|@0|  × ∑ q (6(<>Q3P, �, M, 1))

f(rmR3T,g,u,v)∈w0
)

− ( 1|@1|  × ∑ q (6(<>Q3P, �, M, 1))
f(rmR3T,g,u,v)∈w1

) 
(4.4) 

@0 and @1 are two sets, explained through the following equations, respectively: 
@0 = {6(<>Q3P, �, M, �) | =�(+4A(@M�{'7(,�, �, M, �) == 1} 

@1 = {6(<>Q3P, �, M, �) | =�(+4A(@M�{'7(,�, �, M, �) == −1} 
The function permits to detect the presence of a watermark or not. As 

explained in [54], if the output of the o function is nearly zero (o(∙)  ≈ 0), 
the watermark is not detected. On the other hand, if the output of the function 

is nearly the double of the A parameter (o(∙)  ≈  2 × A), the watermark is 
detected. 

In our 3-D Detection procedure, in order to verify if a watermark is 

detected or not, we use a threshold (denoted as 3 − :}ℎ�hjℎ�i�). In particular, 
if the output of the ComputeR procedure is greater than the 3 − :}ℎ�hjℎ�i�, 
the watermark is detected (in this case the procedure returns (+9*). Otherwise, 
the watermark is not detected (in this case the procedure returns #47�*).  
Algorithm 4.9 outlines the pseudo-code of the 2-D Extraction procedure, 

which takes the following parameters as input: 

• @7�A*Q2P: Slice of a 3-D microscopy image, watermarked through the 
Embedding procedure; 

• L*M: Key used for the embedding. 
The 2-D Extraction procedure extracts the 2-D watermark from a 

watermarked slice (@7�A*Q2P). In particular, all the samples of @7�A*Q2P are 
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converted from the RGB to the YUV domain. Analogously to the 2-D 

Embedding procedure, a sequence of 8 ×  8 blocks is pseudo-randomly 
generated, by using a PRG coupled with the input key, L*M. Once a block k 
is selected, the block kn (of the same dimensions of k) is pseudo-randomly 
generated (through the GeneratePseudoRandomBlock procedure). By 

considering the blocks k and kn, the >1 and >0 averages and their difference, 
:, are computed. : is used for the extraction of the bit of the watermark 
string, which is embedded into k. In this case, if : is greater than zero, the bit 
has 1 as a value. On the other hand, if : is less or equal than zero, the bit has 
0 as a value. Finally, the extracted watermark string (referred to as 
*�(+4(*A*5�@) is returned. 
Through the 2-D Detection procedure (Algorithm 4.10), the watermark 

string is extracted from a watermarked input slice (@7�A*Q2P), through the 2-
D Extraction procedure. Afterwards, by considering the ��� metric 
(defined in the equation (4.1)), the extracted watermark is compared with the 

embedded one, which is generated again. Finally, if the result of the 

comparison lies within the 2 − :}ℎ�hjℎ�i�, then (+9* is returned by the 
procedure (the watermark is detected). Otherwise, #47�* is returned, the 
watermark is not detected. 
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Algorithm 4.9: The 2-D Extraction procedure 

(from [8]). 

 

Algorithm 4.10: The 2-D Detection procedure 

(from [8]). 
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4.3.5. Experimental Results 

 

We experimentally performed the testing phase of our method on a dataset 

composed of five 3-D confocal images of cells, which is described in Appendix 

A.2.  

The parameters used in our experiments are the following:  

• L*M = 12345; 
• A = 3; 
• 2:�4(*+�4+1�*?`(ℎ = 20; 
• N = 8; 
• O = 1.  

 

In Table 4.3, we report the obtained slice-by-slice average PSNR value (second 

column), for each one of the images (first column). 

 

Table 4.3: The PSNR achieved between the watermarked and the original 

microscopy image. 

Images PSNR 

Image1 40.51 

Image2 40.89 

Image3 40.35 

Image4 40.54 

Image5 40.64 

 

Figure 4.8.a reports a portion of a slice of a tested microscopy image, while, 

Figure 4.8.b reports the same portion but of a watermarked microscopy image. 
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(a) 

 

(b) 

Figure 4.8: A portion of a slice extracted from (a) an unaltered microscopy 

image and from (b) a watermarked and JPEG compressed microscopy image. 

 

Furthermore, all the slices of the evaluated images are compressed by using 

the JPEG algorithm, with the quality factor parameter equal to 100%. Thus, 
for each 3-D microscopy image, we tried to extract the watermark related to 

the whole image, by using the 3-D Detection procedure, as well as from 

each slice composing the image, by using the 2-D Detection procedure. In 

particular, in the testing, we used the following parameters: 

• 2 − :}ℎ�hjℎ�i� =  0.75; 
• 3 − :}ℎ�hjℎ�i� =  3 (the same of the A parameter). 
In all the cases, as can be seen in Table 4.4, the watermark is successfully 

detected. 

In Figure 4.9, we plot the results achieved by observing the behavior of the 

3-D Detection procedure, which is applied to each one of the evaluated 

images (reported on the X-axis). It is important to note that on the Y-axis the 

value is the value of the variable o (the light blue point), returned by the 
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execution of the ComputeR procedure (Algorithm 4.8). In particular, the 

value of o is graphically compared with 3 − :}ℎ�hjℎ�i� (the green dotted line). 
From the  figure, it is noticeable that the difference between the variable o 

and the 3 − :}ℎ�hjℎ�i� varies by about 0.50 to 1.00. It is important to consider 
that by setting a 3 − :}ℎ�hjℎ�i� to a value smaller than A, the 3-D watermark 
can be made robust even when the JPEG compression quality factor decreases. 

 

Table 4.4: Achieved results for the Detection procedures. 

Images 2-D  Detection 3-D Detection 

Image1 Detected in all the slices Detected 

Image2 Detected in all the slices Detected 

Image3 Detected in all the slices Detected 

Image4 Detected in all the slices Detected 

Image5 Detected in all the slices Detected 

 

 

 

Figure 4.8: Graphical representation of the 3-D Extraction 

Procedure results (from [8]). 
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In this chapter, we focus on the description of a predictive structure well 

suited for the efficient and lossless compression of multidimensional 

data. As previously mentioned, a multidimensional dataset can be 

defined as a N-dimensional (with N ≥ 3) collection of highly-related 2-D 

components. It is important to highlight that a component can be an 

image, a data matrix, etc..  

We implemented our approach and experimentally tested its 

effectiveness, by considering different scenarios for the coding of 

prediction errors. In our experiments, we consider different types of N-

data: 3-D medical images, hyperspectral images and 5-D functional 

Magnetic Resonance Images (fMRI). 
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5.1. The Predictive Structure for Multidimensional 

Data 

The predictive model we propose is based on the least squares optimization 

technique. In particular, in order to perform the prediction of the current 

sample, a prediction context, composed of the neighboring samples of the 

current component and one (or more) reference component(s) is used. It is 

important to point out that that the reference component(s) can be of different 

dimension(s), with respect to the current component. Thus, the prediction is 

performed by using a multidimensional prediction context. 

 

5.1.1. Definitions and Notations 

Without loss of generality, for the following definitions, we assume that the � -

D dataset, which we have to compress, has the following size 

< �1,�2,… ,��−2,
, � >. In addition, the sample that is under process and 

will be predicted (referred to as the current sample) has the following 

coordinates (�1, �2,… , ��−2, �, �) and the component to which it belongs 

(referred to as the current component) is identified through the following 

vector [�1, �2,… , ��−2] (where 1 ≤ �� ≤ ��, 1 ≤ � ≤ 
 and 1 ≤ � ≤ � ).  

 

Example 5.0: Assuming that we have a 3-D dataset (where � = 3) of size 
< 30, 100, 100 >, where �1 = 30 (� dimension), 
 = 100 and � = 100. 
Furthermore, the current sample has (10, 20, 30) as coordinates and the current 
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component is identified through the vector [10]. The characterization of this 
dataset, the current component and the current reference are used in the 

following examples of this section. □ 

 

As outlined above, our predictive model uses one or more reference 

components, which will be specified through the Sets of References, described 

in Definition 5.1.  

 

Definition 5.1 (Sets of References): A Set of References is denoted for 

each one of the � − 2 dimensions. In particular, the Set of References related 

to the �-th dimension is denoted as �� = { 1� ,  2� ,… ,  !"
� }, where  

 $�  ∈ {1, 2, … ,��} ∪ {−1,−2,… ,−��}, (� = |��| and 1 ≤ * ≤ (�. It is 

important to point out that ∣⋃ ���−2�=1 ∣ > 0 is always verified. Thus, at least 
one of the Sets of References should be not empty.  

In order to univocally associate a component of the multidimensional dataset 

to an element of a Set of References, we adopt the following notation: the 

reference component is identified through the vector 

[�1, �2,… , ��−1,  $� , ��+1, ��−2] when  $� > 0, while it is identified through the 
following vector [�1, �2,… , ��−1, �� − ∣ $� ∣, ��+1, ��−2] when  $� < 0 (where 

 $� ∈ ��, 1 ≤ � ≤ � − 2). It is important to observe that in both cases, the 

vectors related to the reference components are obtained by the vector that 

identifies the current component. □ 
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We can highlight the concepts related to the Sets of References by reporting 

three examples, Examples 5.1.a, 5.1.b and 5.1.c. These examples show the 

effective use of the sets in three scenarios, in which the characterizations of the 

dataset, the current sample and component, specified in Example 5.0, are used. 

In detail, Example 5.1.a reports a simple instance in which all the elements of 

the Set of References, �1 (related to the �1 dimension), are less than zero, 

and Example 5.1.b reports a similar scenario in which all the elements of �1 
are greater than zero. Whereas, Example 5.1.c reports a scenario in which some 

elements of �1 are less than zero and some elements are greater than zero. 

 

Example 5.1.a: For example, if we set up the Set of References, related to the 

�1 dimension, as �1 = {−1,−2, −3}, it means that for the prediction, the 

reference components identified respectively through the vector [9], [8] and [7] 
are used. It is important to note that such vectors are obtained through the 

elements of the �1 set. In particular, the vector [9] is obtained as [10 − |−1|], 
by using the first element of �1 (which is −1 < 0). Analogously, the vectors [8]  
and [7] are obtained by using respectively the second, −2 (< 0), and the third 
element, −3 (< 0), of �1. □ 
 

Example 5.1.b: Assuming that we set up the Set of References, for the �1 
dimension, as �1 = {5, 6}. In this scenario, the reference components used for 

the prediction are respectively identified through the vectors [5] and [6], which 
are obtained respectively by using the first element, 5 (> 0), and the second 
element, 6 (> 0), of the �1 set. □ 
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Example 5.1.c: For example, consider a Set of References defined as �1 =
{−1, 3, 7}. In this scenario, the prediction context is formed by using the 

reference components identified through the vectors [9], [3] and [7], which are 
obtained respectively by using the elements of �1: −1 (< 0), 3 (> 0) and [7] 
(> 0). □ 
 

In order to refer to a sample without the use of its coordinates, we define an 

enumeration (Definition 5.2). Its main objective is the relative indexing among 

all the samples (or a subset of them) of the same component. In particular, by 

fixing a sample, namely the reference sample, all the other samples of the 

component will be indexed with respect to it. Therefore, it is possible to 

address a sample by using its relative index. The relative indexing of the 

samples is used for the definition of the multidimensional prediction context 

involved in our predictive model. In Example 5.2, we consider an example of a 

simple enumeration, which uses the current sample as a reference sample. 

 

Definition 5.2 (Enumeration): 5(61,62,…,6:−2,;,<) is a bi-dimensional 

enumeration that is used to define a relative integer indexing of the 

neighboring samples with respect to a specified reference sample, which have 

(=1, =2,… , =�−2, >,?) as coordinates (where 1 ≤ =� ≤ ��, 1 ≤ > ≤ 
, 

1 ≤ ? ≤ �  and 1 ≤ � ≤ � − 2). It is important to point out that the 

neighboring and reference sample can belong to the same component. In detail, 

an enumeration needs to satisfy two requirements: 
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• The reference sample has 0 as an index; 

• If two samples have different coordinates, then they have different 

enumeration indices. □ 

Example 5.2: In Figure 5.1, we graphically report an example of the 

enumeration 5(10,20,30) (for the first three samples), which uses the current 

sample as the reference sample (identified by its relative index equal to zero 

and highlighted in the figure). According to the enumeration, for example, the 

sample that has (10, 19, 30) as coordinates, can also be referred to its relative 
index, 1, with respect to the current sample. Analogously, the samples with 

coordinates (10, 20, 29) and (10,19,29) can be identified by their relative 
indices (respectively of 2 and 3), with respect to the current sample. □ 

 

Figure 5.1: A graphical example of an enumeration. 

 

Through Definitions 5.3.a and 5.3.b, we introduce the formal notations by 

means of which it is possible to refer to samples by using their relative 

indexing according to an enumeration 5, with respect to a reference sample. In 
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Example 5.3, we focus on these latter definitions and report an example of 

their use. 

 

 

Definition 5.3.a: Let �$(B)( C$) (where  C$ ∈ �$) identifies the sample that have 

D as an index, according to the enumeration 5(F1,F2,…,FG−1,HIG ,FG+1,… F:−2,J,K) when 
 C$ > 0, and according to the enumeration 5(F1,F2,…,FG−1,HIG,FG+1,… F:−2,J,K) when 
 C$ < 0. It is important to emphasize that, in both cases, the coordinates of the 

reference samples related to the enumerations are obtained by using the 

coordinates of the current sample. □ 

 

Definition 5.3.b: Let �(B) identifies the sample that has D as an index, 
according to the enumeration 5(F1,F2,… F:−2,J,K), where (�1, �2,… , ��−2, �, �) 
are the coordinates of the current sample. It is worth noticing that �(0) 
precisely identifies the current sample, according to Definition 5.2. □ 
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Figure 5.2: A graphical example of the use of an enumeration. 

 

Example 5.3: In Figure 5.2, we graphically show an explicative scenario, in 

which the use of Definitions 5.3.a and 5.3.b is involved. In particular, we 

consider the enumeration 5(10,20,30), graphically defined in Example 5.2, and 

the Sets of References, specified in Example 5.1.a. 

It is possible to observe from Figure 5.2, �(0)(−3) refers to the sample that 

has the same spatial coordinates, � and � (respectively of 20 and 30), of the 
current sample, in the component identified through the vector [7]. In detail, 
the coordinates of �(0)(−3) are (7, 20, 30). 
Whereas, as can be noted in the figure, �(1) addresses a sample that is a 

neighbor of the current sample, in the same component. In particular, the 

coordinates of �(1) are (10, 19, 30). □ 
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5.2. The Predictive Structure 

According to the definitions and notations of Section 2.1 and Section 5.1, we 

introduce how the prediction is performed.  

Analogously to Section 2.1.1 and without loss of generality, we assume that 

we have a � -D dataset of size < �1,�2,… , ��−2,
, � >, the current sample 

(referred to as �(0)) has (�1, �2,… , ��−2, �, �) as coordinates and then the 
current component is identified through the vector [�1, �2,… , ��−2] (where 
1 ≤ �� ≤ ��, 1 ≤ � ≤ 
 and 1 ≤ � ≤ � ).  

Furthermore, assuming that the Sets of References and the enumeration 

5(F1,F2,…,F:−2,J,K) are previously defined. In particular, both, which can be user-
specified and need to be set up before computing the prediction.  

In detail, the M -order prediction is performed by means of the equation (5.1), 

in which �(̂0) denotes the prediction of the current sample (where  

M = ∑ (��−2�=1 = ∑ |��|�−2�=1 ). It is important to point out that M  indicates the 

number of the reference components which are involved in the prediction. 

 

�(̂0) = ∑ ∑ Q�$��(0)( $�)HG"∈T"

�−2
�=1

 (5.1) 

 

In detail, the coefficients Q0 = [Q11,… , Q1!1 ,… , Q�1,… , Q�!" ,… , Q�−21 ,… , Q�−2!:−2]W
 

are chosen with the aim to minimize the energy of the prediction error, which 

is obtained by means of the equation (5.2). 
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X = ∑(�(�) − �(̂�))2Y
�=1

 (5.2) 

 

It is important to point out that the Z parameter denotes the number of 

samples for each one of the reference components and the current component, 

which will be used for the prediction.  

Similarly to [9], the optimal coefficients, Q0, are obtained through the 
optimal linear prediction method and, in particular, as previously mentioned, 

through the least squares optimization technique. In detail, it is possible to 

rewrite the equation (5.2) in the form of the equation (5.3), by using the 

matrix notation. [ and \, which are respectively a matrix and a vector, are 

defined by means of the equation (5.4).  

 

([W [)Q0 = ([W \) (5.3) 

 

[ = 
⎣⎢
⎡�1(1)( 11) ⋯ �1(1)( !1

1 )⋮ ⋱ ⋮�1(Y)( 11) ⋯ �1(Y)( !1
1 )

⋯
⋯

��(1)( 1� ) ⋯ ��(1)( !"
� )⋮ ⋱ ⋮��(Y)( 1� ) ⋯ ��(Y)( !"
� )

⋯
⋯

��−2(1) ( 1�−2) ⋯ ��−2(1) ( !:−2
�−2)⋮ ⋱ ⋮��−2(Y) ( 1�−2) ⋯ ��−2(Y) ( !:−2
�−2)⎦⎥

⎤,  

\ = [�(1)
⋮�(Y)

] (5.4) 

 

It is worth noting that by computing the vector Q0, which solves the system 

of linear equations (5.3), is possible to obtain the prediction of the current 

sample �(̂0), through the equation (5.1). It is important to outline that 

Z × (M + 1) + Z samples are used to perform the prediction. In all the cases, 
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if our predictive structure involves only by past information, there is no need 

to send any side information to the decompression algorithm. 

 

5.3. Complexity Analysis 

 

The computational complexity of the prediction is related to the two 

configurable parameters: Z and the Sets of References. In detail, it is possible 

to model the multidimensional prediction context, by specifying its wideness 

and the number of the reference components. Thus, it is possible to define a 

prediction context in order to minimize as much as possible the use of the 

computational resources or refine the accurateness of the prediction, by using 

more computational resources. It is important to take into account that, in the 

first scenario, our approach is suitable even in scenarios in which the resources 

can be limited or restricted. 

However, it is important to point out that the most important computational 

costs are due to the linear system of the equation (5.3), in Section 5.2. There 

are many techniques that are able to solve linear systems. For example, by 

using the normal equation method [16], our linear system can be solved 

through (Z + M/3) × M 2 operations. 
 

5.4.  The Exceptions  

 

It is important to note that, in some situations, our predictive structure can be 

ineffective. In particular, when the linear system of equations (5.3) cannot be 
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solved, if it has no solutions. Furthermore, the linear system can have infinitely 

many solutions. In these scenarios, referred to as exceptions, the predictive 

structure is not able to perform the prediction.  

In presence of a sample that cannot be predicted through the proposed 

predictive structure (because an exception is verified), an alternative predictive 

structure (for example, Median Predictor, etc.) can be used.  

Furthermore, it is important to take into account that our predictor needs to 

use at least one reference component. The samples that belong to a 

component with no reference component (for example, the first component of a 

multidimensional dataset) need to be predicted by using an appropriate bi-

dimensional predictive structure.  

 

5.5.  Error Modeling and Coding 

 

The prediction error (or prediction residual) related to the current sample is 

obtained by means of the difference between the current sample, �(0),  and its 
prediction, �(̂0), by means of the equation (5.5). 

 

D(F1,F2,…,F:−2) = �(0) − �(̂0) (5.5) 

 

It should be noted that a prediction error can assume a positive or negative 

value. It can optionally use a mapping function [18], in order to have only 

non-negative values. 

An example of mapping function, ?(D) outlined by the equation (5.6).  
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?(D) = { 2 × |D| �k D > 02 × |D| − 1 l(ℎD n�oD (5.6) 

 

Finally, the error (or eventually the mapped error) is coded by using an 

entropy coder. 

 

5.6. Experimental Results 

 

In this section, we will report the experimental results achieved by using our 

predictive structure on different multidimensional datasets:  

• 3-D Medical Images (Section 5.6.1); 

• Hyperspectral Images (Section 5.6.2);  

• 4-D and 5-D functional Magnetic Resonance Images – fMRI (Section 

5.6.3). 

For each dataset, we used different configurations in terms of the Z 

parameters and the Sets of References. 

In Figure 5.3, we graphically describe the enumeration E used, related to the 

first 32 samples with respect to the current sample, which is identifiable 

through its index equal to zero (in parenthesis). 

Three different schemes are used for the coding of prediction errors: 

• The Prediction by Partial Matching with Information Inheritance 

scheme (PPMd or PPMII); 

• The PAQ8 scheme [17]; 

• The Arithmetic Coding scheme (AC) [55]. 
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  32 26 24 27    

 29 20 16 14 17 21 30  

31 19 11 8 6 9 12 22  

25 15 7 3 2 4 10 18 28 

23 13 5 1 (0)     

 

Figure 5.3: A graphical representation of the used enumeration. 

 

5.6.1.  3-D Medical Images 

 

We performed our experiments on a dataset composed of eight 3-D Medical 

Images, described in Appendix A.1. 

In Tables 5.1 and 5.2, we respectively report the achieved experimental 

results on the CT data and MR data, by considering the PPMd encoding 

scheme (with default order equal to 4) for the coding of prediction errors. It is 
important to note that we experimentally tested our approach by using 

different values for the Z parameter (i.e. 8, 16, 24 and 32) and several values 
for the Set of References. It should be noted that all the results are reported in 

bits-per-sample (BPS).  

In particular, the first column indicates either the CT image (Table 5.1) or 

MR image (Table 5.2), from the second to the fifth columns report the 

achieved results for each of the tested Sets of Reference. The results are 

reported for each used value for the Z parameter, which characterizes the 

vertical subdivision of the tables. 
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Table 5.1: Achieved results on the 3-D CT images. The coding of prediction 

errors is performed through the PPMd scheme. 

CT Images qr = {−s} qr = {−s,−t} qr  = { −s,−t, −u } qr  = { −s,−t,−u, −v } 
w = x 

CT_Aperts 0.8507 0.7870 0.8140 0.8557 

CT_carotid 1.4535 1.4208 1.4130 1.4849 

CT_skull 2.1417 1.7159 1.7260 1.8255 

CT_wrist 1.0958 1.0562 1.0521 1.1194 

Average 1.3854 1.2450 1.2513 1.3214 w = sy 
CT_Aperts 0.8646 0.7768 0.7850 0.7988 

CT_carotid 1.4770 1.4128 1.3650 1.3816 

CT_skull 2.1552 1.6604 1.6237 1.6532 

CT_wrist 1.1109 1.0129 0.9674 0.9770 

Average 1.4019 1.2157 1.1853 1.2027 w = tv 
CT_Aperts 0.8705 0.7757 0.7788 0.7874 

CT_carotid 1.4799 1.4046 1.3478 1.3552 

CT_skull 2.1547 1.6350 1.5855 1.6018 

CT_wrist 1.1144 0.9954 0.9429 0.9437 

Average 1.4049 1.2027 1.1638 1.1720 w = ut 
CT_Aperts 0.8751 0.7778 0.7786 0.7836 

CT_carotid 1.4850 1.4052 1.3455 1.3478 

CT_skull 2.1603 1.6287 1.5735 1.5832 

CT_wrist 1.1129 0.9895 0.9344 0.9314 

Average 1.4083 1.2003 1.1580 1.1615 
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Table 5.2: Achieved results on the 3-D MR images. The coding of prediction 

errors is performed through the PPMd scheme. 

MR Images qr = { −s } qr  = { −s,−t } qr  = { −s,−t, −u } qr  = { −s,−t, −u, −v } 
w = x 

MR_liver_t1 2.2970 2.0224 2.0722 2.2136 

MR_liver_t2e1 1.9721 1.4332 1.4240 1.5076 

MR_ped_chest 1.6736 1.5245 1.5197 1.5969 

MR_sag_head 2.0916 1.7127 1.7061 1.5969 

Average 2.0086 1.6732 1.6805 1.7288 w = sy 
MR_liver_t1 2.3295 1.9804 1.9563 1.9977 

MR_liver_t2e1 2.0014 1.4073 1.3619 1.3976 

MR_ped_chest 1.6856 1.4587 1.3956 1.4091 

MR_sag_head 2.0992 1.6750 1.6308 1.6563 

Average 2.0289 1.6304 1.5862 1.6152 w = tv 
MR_liver_t1 2.3460 1.9713 1.9281 1.9450 

MR_liver_t2e1 2.0118 1.3949 1.3423 1.3674 

MR_ped_chest 1.6908 1.4350 1.3542 1.3529 

MR_sag_head 2.1017 1.6561 1.6025 1.6194 

Average 2.0376 1.6143 1.5568 1.5712 w = ut 
MR_liver_t1 2.3618 1.9731 1.9231 1.9298 

MR_liver_t2e1 2.0186 1.3930 1.3366 1.3573 

MR_ped_chest 1.6952 1.4282 1.3391 1.3318 

MR_sag_head 2.1049 1.6477 1.5892 1.6031 

Average 2.0451 1.6105 1.5470 1.5555 

 

 

 

 

Similar to Tables 5.1 and 5.2, Tables 5.3 and 5.4 synthesize the experimental 

results achieved by using the PAQ8 algorithm for the coding of prediction 

errors.  
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Table 5.3: Achieved results on the 3-D CT images. The coding of prediction 

errors is performed through the PAQ8 scheme. 

CT Images qr = {−s} qr = {−s,−t} qr  = { −s,−t, −u } qr  = { −s,−t,−u, −v } 
w = x 

CT_Aperts 0.7829 0.7268 0.7501 0.7889 

CT_carotid 1.3838 1.3456 1.3376 1.4055 

CT_skull 2.0291 1.6139 1.6191 1.7132 

CT_wrist 1.0496 1.0066 0.9998 1.0612 

Average 1.3114 1.1732 1.1767 1.2422 w = sy 
CT_Aperts 0.7968 0.7198 0.7261 0.7393 

CT_carotid 1.4060 1.3417 1.2930 1.3084 

CT_skull 2.0365 1.5645 1.5247 1.5525 

CT_wrist 1.0645 0.9691 0.9244 0.9326 

Average 1.3260 1.1488 1.1171 1.1332 w = tv 
CT_Aperts 0.8019 0.7187 0.7204 0.7291 

CT_carotid 1.4075 1.3342 1.2767 1.2828 

CT_skull 2.0330 1.5423 1.4901 1.5054 

CT_wrist 1.0667 0.9539 0.9021 0.9017 

Average 1.3273 1.1373 1.0973 1.1048 w = ut 
CT_Aperts 0.8063 0.7205 0.7198 0.7253 

CT_carotid 1.4116 1.3343 1.2739 1.2755 

CT_skull 2.0372 1.5366 1.4786 1.4880 

CT_wrist 1.0646 0.9486 0.8935 0.8898 

Average 1.3299 1.1350 1.0915 1.0947 
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Table 5.4: Achieved results on the 3-D MR images. The coding of prediction 

errors is performed through the PAQ8 scheme. 

MR Images qr = { −s } qr  = { −s,−t } qr  = { −s,−t, −u } qr  = { −s,−t, −u, −v } 
w = x 

MR_liver_t1 2.2013 1.9443 1.9870 2.1173 

MR_liver_t2e1 1.8760 1.3437 1.3311 1.4102 

MR_ped_chest 1.5801 1.4576 1.4577 1.5272 

MR_sag_head 1.9606 1.5960 1.5888 1.6571 

Average 1.9045 1.5854 1.5912 1.6780 w = sy 
MR_liver_t1 2.2304 1.9062 1.8823 1.9223 

MR_liver_t2e1 1.9051 1.3196 1.2739 1.3072 

MR_ped_chest 1.5869 1.3917 1.3406 1.3548 

MR_sag_head 1.9676 1.5609 1.5179 1.5431 

Average 1.9225 1.5446 1.5037 1.5319 w = tv 
MR_liver_t1 2.2436 1.8962 1.8547 1.8715 

MR_liver_t2e1 1.9140 1.3092 1.2559 1.2794 

MR_ped_chest 1.5898 1.3668 1.2985 1.2986 

MR_sag_head 1.9697 1.5438 1.4903 1.5078 

Average 1.9293 1.5290 1.4749 1.4893 w = ut 
MR_liver_t1 2.2568 1.8973 1.8485 1.8560 

MR_liver_t2e1 1.9201 1.3079 1.2504 1.2697 

MR_ped_chest 1.5932 1.3591 1.2822 1.2766 

MR_sag_head 1.9720 1.5360 1.4768 1.4917 

Average 1.9355 1.5251 1.4645 1.4735 
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Similar to Tables 5.3 and 5.4, Tables 5.5 and 5.6 report the experimental 

results achieved by using the AC encoding scheme for the coding of prediction 

errors.  

 

 

 

Table 5.5: Achieved results on the 3-D CT images. The coding of prediction 

errors is performed through the AC scheme. 

CT Images qr = {−s} qr = {−s,−t} qr  = { −s,−t, −u } qr  = { −s,−t,−u, −v } 
w = x 

CT_Aperts 1.3088 1.0223 1.0352 1.0808 

CT_carotid 2.0882 1.8385 1.7573 1.8312 

CT_skull 2.7651 1.9926 1.9539 2.0497 

CT_wrist 1.6744 1.2757 1.2383 1.3023 

Average 1.9591 1.5323 1.4962 1.5660 w = sy 
CT_Aperts 1.3772 1.0394 1.0195 1.0287 

CT_carotid 2.1729 1.8861 1.7324 1.7432 

CT_skull 2.8392 1.9747 1.8708 1.8897 

CT_wrist 1.7779 1.2588 1.1709 1.1728 

Average 2.0418 1.5398 1.4484 1.4586 w = tv 
CT_Aperts 1.4270 1.0579 1.0246 1.0239 

CT_carotid 2.2181 1.9112 1.7304 1.7309 

CT_skull 2.8808 1.9746 1.8472 1.8492 

CT_wrist 1.8497 1.2591 1.1568 1.1481 

Average 2.0939 1.5507 1.4398 1.4380 w = ut 
CT_Aperts 1.4638 1.0743 1.0327 1.0260 

CT_carotid 2.2509 1.9311 1.7389 1.7349 

CT_skull 2.9127 1.9824 1.8437 1.8380 

CT_wrist 1.8937 1.2650 1.1553 1.1428 

Average 2.1303 1.5632 1.4427 1.4354 
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Table 5.6: Achieved results on the 3-D CT images. The coding of prediction 

errors is performed through the AC scheme. 

MR Images qr = { −s } qr  = { −s,−t } qr  = { −s,−t, −u } qr  = { −s,−t, −u, −v } 
w = x 

MR_liver_t1 2.6977 2.0652 2.0787 2.2012 

MR_liver_t2e1 2.5707 1.7326 1.6953 1.7867 

MR_ped_chest 1.8374 1.5481 1.5341 1.6070 

MR_sag_head 2.4853 1.8932 1.8606 1.9401 

Average 2.3978 1.8098 1.7922 1.8838 w = sy 
MR_liver_t1 2.8301 2.0679 1.9993 2.0289 

MR_liver_t2e1 2.6616 1.7243 1.6395 1.6766 

MR_ped_chest 1.8979 1.4949 1.4203 1.4315 

MR_sag_head 2.5419 1.8745 1.7881 1.8115 

Average 2.4829 1.7904 1.7118 1.7371 w = tv 
MR_liver_t1 2.9242 2.0888 1.9897 1.9941 

MR_liver_t2e1 2.7164 1.7303 1.6284 1.6520 

MR_ped_chest 1.9418 1.4806 1.3850 1.3807 

MR_sag_head 2.5843 1.8733 1.7668 1.7784 

Average 2.5417 1.7933 1.6925 1.7013 w = ut 
MR_liver_t1 2.9963 2.1107 1.9959 1.9895 

MR_liver_t2e1 2.7561 1.7414 1.6297 1.6476 

MR_ped_chest 1.9723 1.4799 1.3735 1.3633 

MR_sag_head 2.6168 1.8785 1.7610 1.7678 

Average 2.5854 1.8026 1.6900 1.6921 
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5.6.1.1. Results Discussion 

 

In this section we focus on the analysis of the experimental results, by 

considering the average results of the two whole datasets. In detail, in Tables 

5.7 and 5.8, we outline the average results of all the CT images as well as all 

the MR images, respectively. The results are obtained by considering the 

PPMd scheme for the coding of prediction errors. Furthermore, the 2-D 

Linearized Median Predictor (2D-LMP), described in Section 4.1.1, and the 3-

D Distances-based Linearized Median Predictor (3D-DLMP), described in 

Section 4.1.2, are used for the prediction of samples of the first slice and the 

management of the exceptions, respectively. 

In particular, the first column indicates the Z parameter and from the 

second to the forth columns show the average results for each tested Set of 

References, respectively. 

 

 

 

Table 5.7: Average results on the CT Images. The coding of prediction 

errors is performed through the PPMd scheme. 

w qr  = { −s } qr  = { −s,−t } qr  = { −s,−t, −u } qr = { −s,−t, −u, −v } 
8 1.3854 1.2450 1.2513 1.3214 

16 1.4019 1.2157 1.1853 1.2027 

24 1.4049 1.2027 1.1638 1.1720 

32 1.4083 1.2003 1.1580 1.1615 
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Table 5.8: Average results achieved on the MR Images. The coding of 

prediction errors is performed through the PPMd scheme. 

w qr = { −s } qr = { −s,−t } qr = { −s,−t, −u } qr = { −s,−t,−u, −v } 
8 2.0086 1.6732 1.6805 1.7288 

16 2.0289 1.6304 1.5862 1.6152 

24 2.0376 1.6143 1.5568 1.5712 

32 2.0451 1.6105 1.5470 1.5555 

 

 

 

 

 

 

Figures 5.4 and 5.5 plot the information of Tables 5.7 and 5.8, respectively. 

In detail, on the X-axis, the tested Set of References are indicated, while on the 

� -axis the average BPS is indicated. The blue, dark red, green and violet lines 

highlight the trend in correspondence to the average results when Z = 8, 
Z = 16, Z = 24 and Z = 32, respectively. 
As can be noted in the figures, the best trend of the average results is 

delineated when the Z parameter is equal to 32, except for the configuration in 
which �z = {−1}. In particular, the best results are obtained when the 
previous three slices are used (i.e. when the Set of References is defined as 

�z = {−1,−2,−3}). 
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Figure 5.4: A graphical representation of Table 5.7. 

 

 

Figure 5.5: A graphical representation of Table 5.8. 
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Tables 5.9 and 5.10 (similarl to Tables 5.7 and 5.8) emphasize the average 

results achieved by considering the PAQ8 approach for the coding of prediction 

errors. It should be noted that thanks to the general best compression 

performances (paid with higher computational costs), the average results are 

better than the ones obtained by using the PPMd scheme.  

 

 

 

Table 5.9: Average results on the CT Images. The coding of prediction 

errors is performed through the PAQ8 scheme. 

w qr = { −s } qr = { −s,−t } qr = { −s,−t, −u } qr = { −s,−t, −u, −v } 
8 1.3114 1.1732 1.1767 1.2422 

16 1.3260 1.1488 1.1171 1.1332 

24 1.3273 1.1373 1.0973 1.1048 

32 1.3299 1.1350 1.0915 1.0947 

 

 

 

Table 5.10: Average results on the MR Images. The coding of prediction 

errors is performed through the PAQ8 scheme. 

w qr  = { −s } qr  = { −s,−t } qr  = { −s,−t, −u } qr  = { −s,−t,−u, −v } 
8 1.9045 1.5854 1.5912 1.6780 

16 1.9225 1.5446 1.5037 1.5319 

24 1.9293 1.5290 1.4749 1.4893 

32 1.9355 1.5251 1.4645 1.4735 
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In Figures 5.6 and 5.7, we graphically show the information of Tables 5.9 and 

5.10, respectively. In detail, also in this scenario and in both the cases, it is 

possible to note that the best average results trend is obtained when the Z 

parameter is equal to 32 (except for the case in which �z = {−1}) and, the 
best results, are obtained when �z = {−1,−2,−3}.  
 

 

 

 

 

 

 

Figure 5.6: A graphical representation of Table 5.9. 
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Figure 5.7: A graphical representation of Table 5.10. 

 

Tables 5.11 and 5.12 report the average results concerning the coding of 

prediction errors through the AC scheme. In the scenario, the average results 

are worse than the coding of the prediction errors via PPMd and PAQ8.  

 

 

Table 5.11: Average results on the CT Images. The coding of prediction 

errors is performed through the AC scheme. 

w qr  = { −s } qr = { −s, −t } qr = { −s,−t, −u } qr  = { −s,−t, −u, −v } 
8 1.9591 1.5323 1.4962 1.5660 

16 2.0418 1.5398 1.4484 1.4586 

24 2.0939 1.5507 1.4398 1.4380 

32 2.1303 1.5632 1.4427 1.4354 
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Table 5.12: Average results on the CT Images. The coding of prediction 

errors is performed through the PAQ8 scheme. 

w qr  = { −s } qr  = { −s,−t } qr = { −s,−t, −u } qr = { −s,−t, −u, −v } 
8 2.3978 1.8098 1.7922 1.8838 

16 2.4829 1.7904 1.7118 1.7371 

24 2.5417 1.7933 1.6925 1.7013 

32 2.5854 1.8026 1.6900 1.6921 

 

Figures 5.8 and 5.9, which graphically show the information of Table 5.11 and 

Table 5.12, highlight that the best average results are obtained with the 

following configuration: the Z parameter equal to 32 and 

�z = {−1,−2,−3, −4} (for the CT images) and �z = {−1,−2, −3} (for the 
MR images).  

 

 

Figure 5.8: A graphical representation of Table 5.11. 
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Figure 5.9: A graphical representation of Table 5.12. 

 

 

In Tables 5.13 and 5.14, we compare the experimental results achieved by our 
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the CT images (Table 5.13) as well as each of the MR images (Table 5.14). 

The results are reported for each compared method (first column). Whereas, 
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Table 5.13: Comparison with other state-of-art approaches (CT images). 

Methods CT_skull CT_wrist CT_carotid CT_Aperts Average 

Proposed (PPMd) 1.5735 0.9344 1.3455 0.7786 1.1580 

Proposed (PAQ8) 1.4786 0.8935 1.2739 0.7198 1.0915 

Proposed (AC) 1.8437 1.1553 1.7389 1.0327 1.4427 

3D-ESCOT 1.8350 1.0570 1.3470 0.8580 1.2743 

MILC 2.0306 1.0666 1.3584 0.8190 1.3187 

AT-SPIHT 1.9180 1.1150 1.4790 0.9090 1.3553 

3D-CB-EZW 2.0095 1.1393 1.3930 0.8923 1.3585 

DPCM+PPMd 2.1190 1.0290 1.4710 0.8670 1.3715 

3D-SPIHT 1.9750 1.1720 1.4340 0.9980 1.3948 

3D-EZW 2.2251 1.2828 1.5069 1.0024 1.5043 

JPEG-LS 2.8460 1.6531 1.7388 1.0637 1.8254 

 

Table 5.14: Comparison with other state-of-art approaches (MR images). 

Methods MR_liver_t1 MR_liver_t2e1 MR_sag_head MR_ped_chest Average 

Proposed (PPMd) 1.9231 1.3366 1.5892 1.3391 1.5470 

Proposed (PAQ8) 1.8485 1.2504 1.4768 1.2822 1.4645 

Proposed (AC) 1.9959 1.6297 1.7610 1.3735 1.6900 

3D-ESCOT 2.0760 1.5100 1.9370 1.6180 1.7853 

MILC 2.1968 1.7590 2.0975 1.6556 1.9272 

3D-SPIHT 2.2480 1.6700 2.0710 1.7420 1.9328 

3D-CB-EZW 2.2076 1.6591 2.2846 1.8705 2.0055 

DPCM+PPMd 2.3900 2.0250 2.1270 1.6890 2.0578 

3D-EZW 2.3743 1.8085 2.3883 2.0499 2.1553 

JPEG-LS 3.1582 2.3692 2.5567 2.9282 2.7531 

 

 

Figures 5.10 and 5.11 graphically show the histograms related to the average 

results reported in Tables 5.13 and 5.14, respectively.  

From the figures and the aforementioned tables, it is possible to note that the 

obtained results outperform the other approaches in the state-of-art, when 
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PPMd and PAQ8 are coupled with our predictive model. In the scenarios, 

singularly and on average, our approach performs better with respect to the 

other competitors. Whereas, when the AC scheme is used on the MR images, 

the results are better than the other state-of-art approaches. On the other 

hand, the results are significantly worse with respect to the compared 

approaches on the CT images. For example, in the case of the CT_Aperts 

image, our predictor coupled with the AC scheme achieves 1.0327 (in terms of 

BPS), while 3D-ESCOT achieves 0.8580, which is significantly better.  

 

 

 

 

 

Figure 5.10: Histogram of Table 5.13. 
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Figure 5.11: Histogram of Table 5.14. 

 

5.6.2.  Hyperspectral Images 
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to 8 and �z = {−1}, �z = {−1,−2} and �z = {−1,−2,−3}, respectively. 
Whereas, in Tables 5.18, 5.19 and 5.20, the experimental results achieved by 

using the Z parameter equal to 16 are reported. 
 

Table 5.15: Achieved results on the hyperspectral images 

(Z = 8, �z = {−1}). 
Scenes 

Lunar 

Lake 

Moffett 

Field 

Jasper 

Ridge 
Cuprite 

Low 

Altitude 

Scene 01 5.0560 5.1463 5.0602 4.9699 5.3784 

Scene 02 5.0099 5.1023 5.0524 5.0457 5.4015 

Scene 03 4.9963 4.9672 5.0987 4.9930 5.3066 

Scene 04 N.P. 5.1888 5.1160 5.0380 5.3341 

Scene 05 N.P. N.P. 5.0532 5.0358 5.3810 

Scene 06 N.P. N.P. 5.0525 N.P. 5.3145 

Scene 07 N.P. N.P. N.P. N.P. 5.3110 

Scene 08 N.P. N.P. N.P. N.P. 5.3268 

Average 5.0207 5.1012 5.0722 5.0165 5.3442 

 

 

Table 5.16: Achieved results on the hyperspectral images 

(Z = 16, �z = {−1}). 
Scenes 

Lunar 

Lake 

Moffett 

Field 

Jasper 

Ridge 
Cuprite 

Low 

Altitude 

Scene 01 5.0212 5.1407 5.0547 4.9334 5.3658 

Scene 02 4.9767 5.1083 5.0485 5.0194 5.3906 

Scene 03 4.9645 4.9654 5.0952 4.9579 5.2892 

Scene 04 N.P. 5.1843 5.1158 5.0064 5.3158 

Scene 05 N.P. N.P. 5.0488 5.0002 5.3701 

Scene 06 N.P. N.P. 5.0463 N.P. 5.2963 

Scene 07 N.P. N.P. N.P. N.P. 5.2936 

Scene 08 N.P. N.P. N.P. N.P. 5.3131 

Average 4.9875 5.0997 5.0682 4.9835 5.3293 
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Table 5.17: Achieved results on the hyperspectral images 

(Z = 8, �z = {−1,−2}). 
Scenes 

Lunar 

Lake 

Moffett 

Field 

Jasper 

Ridge 
Cuprite 

Low 

Altitude 

Scene 01 5.0141 5.0934 5.0140 4.9364 5.3295 

Scene 02 4.9689 5.0172 5.0072 5.0326 5.3491 

Scene 03 4.9558 4.8890 5.0501 4.9625 5.2648 

Scene 04 N.P. 5.1254 5.0654 5.0105 5.2881 

Scene 05 N.P. N.P. 5.0095 5.0012 5.3281 

Scene 06 N.P. N.P. 5.0162 N.P. 5.2707 

Scene 07 N.P. N.P. N.P. N.P. 5.2732 

Scene 08 N.P. N.P. N.P. N.P. 5.2927 

Average 4.9796 5.0313 5.0271 4.9886 5.2995 

 

 

 

 

Table 5.18: Achieved results on the hyperspectral images 

(Z = 16, �z = {−1,−2}). 
Scenes 

Lunar 

Lake 

Moffett 

Field 

Jasper 

Ridge 
Cuprite 

Low 

Altitude 

Scene 01 4.9175 5.0206 4.9397 4.8387 5.2482 

Scene 02 4.8743 4.9513 4.9341 4.9483 5.2689 

Scene 03 4.8632 4.8160 4.9755 4.8679 5.1799 

Scene 04 N.P. 5.0496 4.9940 4.9194 5.2017 

Scene 05 N.P. N.P. 4.9358 4.9047 5.2491 

Scene 06 N.P. N.P. 4.9418 N.P. 5.1859 

Scene 07 N.P. N.P. N.P. N.P. 5.1883 

Scene 08 N.P. N.P. N.P. N.P. 5.2108 

Average 4.8850 4.9594 4.9535 4.8958 5.2166 
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Table 5.19: Achieved results on the hyperspectral images  

(Z = 8, �z = {−1,−2,−3}). 
Scenes 

Lunar 

Lake 

Moffett 

Field 

Jasper 

Ridge 
Cuprite 

Low 

Altitude 

Scene 01 5.1060 5.1815 5.1037 5.0324 5.4238 

Scene 02 5.0621 5.0919 5.0968 5.1363 5.4414 

Scene 03 5.0479 4.9649 5.1374 5.0618 5.3610 

Scene 04 N.P. 5.2085 5.1523 5.1084 5.3831 

Scene 05 N.P. N.P. 5.0999 5.0963 5.4202 

Scene 06 N.P. N.P. 5.1138 N.P. 5.3656 

Scene 07 N.P. N.P. N.P. N.P. 5.3707 

Scene 08 N.P. N.P. N.P. N.P. 5.3918 

Average 5.0720 5.1117 5.1173 5.0870 5.3947 

 

 

 

 

 

Table 5.20: Achieved results on the hyperspectral images  

(Z = 16, �z = {−1,−2,−3}). 
Scenes 

Lunar 

Lake 

Moffett 

Field 

Jasper 

Ridge 
Cuprite 

Low 

Altitude 

Scene 01 4.9243 5.0206 4.9413 4.8494 5.2546 

Scene 02 4.8822 4.9383 4.9353 4.9667 5.2731 

Scene 03 4.8704 4.8052 4.9739 4.8823 5.1887 

Scene 04 N.P. 5.0445 4.9919 4.9320 5.2093 

Scene 05 N.P. N.P. 4.9379 4.9149 5.2528 

Scene 06 N.P. N.P. 4.9510 N.P. 5.1935 

Scene 07 N.P. N.P. N.P. N.P. 5.1980 

Scene 08 N.P. N.P. N.P. N.P. 5.2214 

Average 4.8923 4.9522  4.9552 4.9091 5.2239 
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5.6.2.1. Results Discussion 

 

In this section, we analyze the experimental results, which are achieved on the 

used dataset. In particular, in Tables 5.21, the average results of all the tested 

hyperspectral images are reported.  

It is important to point out that all the results are obtained by considering 

the AC scheme for the coding of prediction errors. It is important to note that 

the 2D-LMP predictor (described in Section 4.1.1) and the 3D-DLMP predictor 

(described in Section 4.1.2) are used for the prediction of all the samples of the 

first band as well as the management of the exceptions, respectively. 

In detail, the first column indicates the Z parameter and from the second to 

the fourth columns the average results for each tested Set of References, 

respectively. 

 

 

 

 

Table 5.21: Average results of the hyperspectral images. 

w qr  = { −s } qr = { −s,−t } qr = { −s,−t,−u } 
8 5.1110 5.0652 5.1565 

16 5.0936 4.9821 4.9865 
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Figure 5.12: Graphical representation of Table 5.21. 

 

From Figure 5.12, it is possible to observe that the best results are achieved 

when the Z parameter is equal to 16 and �z = {−1,−2}. On the other hand, 

the worst results are obtained in the case in which the Z parameter is equal to 

8 and �z = {−1,−2,−3}.  
We also tested the PAQ8 and the PPMd schemes for the coding of the 

prediction errors. In detail, by using the PAQ8 scheme, the results are better 

with respect to those achieved by using the AC scheme. On the other hand, 

the results obtained by using the PPMd scheme are slightly worse than those 

obtained by using the AC scheme. 

In the case of the Scene 02 of the “Cuprite” image, 4.9693 and 5.1702 are 

achieved in terms of BPS (with the following parameters, Z = 8 and 

�z = {−1,−2}), respectively. 
It is important to note that the achieved results are comparable with other 

state-of-art approaches. 
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5.6.3. 5-D functional Magnetic Resonance Images (fMRI) 

 

We focus on the experimental testing of our approach on the data produced 

through the functional Magnetic Resonance Imaging (fMRI) technology. In 

particular, we perform our experiments on two datasets (referred to as Dataset 

1 and Dataset 2, respectively), provided by the OpenfMRI project [19], which 

are described in Appendix A.4.  

For brevity, in order to denote how many and which dimensions of an fMRI 

image will be used, by the predictive structure to perform the prediction, we 

will use a notation similar to the following, 4-D (T, Z). In detail, we can 

describe this latter configuration as the configuration for the Sets of 

References, which permits to use the previous slice of each one of four 

dimensions of a fMRI image, namely, the T dimension and Z dimension (the T 

and the Z dimensions are highlighted in the parenthesis), the X and the Y 

dimensions. For the 5-D configuration, there is no need to indicate the used 

dimensions, in the parenthesis, since all the dimensions of a fMRI image are 

exploited. 

 

5.6.3.1. Experimental Results on Dataset 1 

 

In this section, we focus on the experimental results achieved by our approach 

on Dataset 1. In particular, we used the PPMd scheme for the coding of 

prediction errors and the 2D-LMP is used, for the prediction of all the samples 

of slices, with no reference slices as well as for the management of the 
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exceptions. Furthermore, we experimentally tested our method by using 

different configurations and several values for the Z parameter. In detail, 

Tables 5.22, 5.23, 5.24 and 5.25 report the results obtained by using Z = 8, 
Z = 16, Z = 24 and Z = 32, respectively.  
The tables are organized as follows: the first column indicates the studied 

subjects, the columns from the second to the sixth (each one related to a tested 

configuration of the Sets of References) is subdivided into two sub-columns, 

concerning the results achieved on the task001 image as well as  the task002 

image. It should be noted that the last row indicates the average results, with 

all the results being reported in terms of BPS. 

 

Table 5.22: Achieved results on Dataset 1 (Z = 8). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

task001 task002 task001 task002 task001 task002 task001 task002 task001 task002 

sub001 6.9997 7.0008 5.6130 5.6096 5.6998 5.6968 5.6225 5.6117 5.7221 5.7100 

sub002 7.3306 7.3176 5.6828 5.6796 5.7803 5.7755 5.6739 5.6786 5.7806 5.7814 

sub003 7.0545 7.0536 5.6488 5.6057 5.7337 5.6937 5.6490 5.6159 5.7488 5.7170 

sub004 7.5926 7.6049 6.0364 6.0532 6.1345 6.1479 6.0381 6.0324 6.1477 6.1427 

sub005 7.1849 7.1867 5.7291 5.7098 5.8200 5.8015 5.7578 5.7155 5.8617 5.8195 

sub006 7.1406 7.1288 5.7727 5.7776 5.8619 5.8658 5.7868 5.8079 5.8866 5.9097 

sub007 7.5192 7.4989 5.7170 5.7308 5.8210 5.8359 5.7366 5.7509 5.8508 5.8648 

sub008 7.1334 7.1337 5.5801 5.5773 5.6754 5.6733 5.5801 5.5914 5.6754 5.6981 

sub009 7.4563 N.P. 5.6954 N.P. 5.7991 N.P. 5.7305 N.P. 5.8448 N.P. 

sub010 7.2435 7.2387 5.7055 5.6958 5.7979 5.7884 5.7322 5.7353 5.8369 5.8417 

sub011 7.0940 7.0854 5.5904 5.5759 5.6823 5.6673 5.6114 5.6340 5.7147 5.7362 

sub012 7.3039 7.3253 5.7278 5.7727 5.8281 5.8727 5.7309 5.8094 5.8407 5.9227 

sub013 7.1662 7.1592 5.7608 5.7595 5.8453 5.8448 5.7609 5.7749 5.8587 5.8719 

sub014 7.2792 7.2987 5.7751 5.7937 5.8649 5.8854 5.7883 5.8322 5.8890 5.9379 

sub015 7.0624 7.0582 5.7245 5.7148 5.8102 5.8012 5.7456 5.7469 5.8445 5.8460 

Average 7.2374 7.2208 5.7173 5.7183 5.8103 5.8107 5.7296 5.7384 5.8335 5.8428 
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Table 5.23: Achieved results on Dataset 1 (Z = 16). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

task001 task002 task001 task002 task001 task002 task001 task002 task001 task002 

sub001 6.9895 6.9924 5.5733 5.5698 5.5985 5.5950 5.5409 5.5295 5.5891 5.5763 

sub002 7.3264 7.3125 5.6435 5.6403 5.6757 5.6715 5.5897 5.6059 5.6409 5.6513 

sub003 7.0418 7.0408 5.6133 5.5689 5.6363 5.5949 5.5712 5.5365 5.6187 5.5855 

sub004 7.5895 7.5997 5.9977 6.0165 6.0296 6.046 5.9554 5.9483 6.0053 6.0021 

sub005 7.1784 7.1809 5.6891 5.6688 5.7159 5.6971 5.6749 5.6314 5.7252 5.6820 

sub006 7.1360 7.1217 5.7341 5.7388 5.7562 5.7605 5.7056 5.7258 5.7501 5.7713 

sub007 7.5162 7.4948 5.6776 5.6910 5.7142 5.7293 5.6522 5.6665 5.7088 5.7235 

sub008 7.1275 7.1242 5.5397 5.5364 5.5705 5.5678 5.5397 5.5068 5.5705 5.5590 

sub009 7.4541 N.P. 5.6567 N.P. 5.6943 N.P. 5.6474 N.P. 5.7057 N.P. 

sub010 7.2311 7.2257 5.6646 5.6548 5.6940 5.684 5.6494 5.6513 5.7000 5.7033 

sub011 7.0816 7.0742 5.5489 5.5344 5.5764 5.5614 5.5372 5.5478 5.5826 5.5957 

sub012 7.2995 7.3227 5.6868 5.7328 5.7225 5.7675 5.6569 5.7256 5.7085 5.7804 

sub013 7.1562 7.1476 5.7235 5.7215 5.7467 5.7447 5.6804 5.6932 5.7258 5.7378 

sub014 7.2672 7.2886 5.7359 5.7540 5.7628 5.7821 5.7063 5.7497 5.7532 5.8004 

sub015 7.0467 7.0403 5.6830 5.6723 5.7060 5.6960 5.6609 5.6614 5.7064 5.7075 

Average 7.2294 7.2119 5.6778 5.6786 5.7066 5.7070 5.6512 5.6557 5.6994 5.7054 

 

Table 5.24: Achieved results on Dataset 1 (Z = 24). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

task001 task002 task001 task002 task001 task002 task001 task002 task001 task002 

sub001 6.9830 6.9842 5.5554 5.5514 5.5586 5.5545 5.5086 5.4969 5.5281 5.5148 

sub002 7.324 7.3088 5.6262 5.6234 5.6359 5.6320 5.5574 5.5775 5.5792 5.5953 

sub003 7.0382 7.0364 5.5970 5.5521 5.5983 5.5558 5.5402 5.5049 5.5596 5.5253 

sub004 7.5877 7.5981 5.9812 6.0005 5.9889 6.0074 5.9246 5.9179 5.9446 5.9401 

sub005 7.1755 7.1778 5.6714 5.6508 5.6762 5.6566 5.6422 5.5986 5.6639 5.6199 

sub006 7.1318 7.1186 5.7170 5.7215 5.7173 5.7215 5.6739 5.6936 5.6898 5.7105 

sub007 7.5145 7.4923 5.6601 5.6732 5.6733 5.6880 5.6198 5.6340 5.6464 5.6607 

sub008 7.1270 7.1219 5.5221 5.5184 5.5295 5.5264 5.5221 5.4737 5.5295 5.4961 

sub009 7.4509 N.P. 5.6394 N.P. 5.6542 N.P. 5.6153 N.P. 5.6440 N.P. 

sub010 7.2238 7.2179 5.6477 5.6379 5.6550 5.6451 5.6184 5.6196 5.6401 5.6425 

sub011 7.0753 7.0685 5.5323 5.5176 5.5369 5.5217 5.5093 5.5154 5.5269 5.5340 

sub012 7.2985 7.3213 5.6706 5.7167 5.6834 5.7289 5.6296 5.6945 5.6536 5.7197 

sub013 7.1502 7.1406 5.7061 5.7034 5.7072 5.7045 5.6492 5.6614 5.6650 5.6766 

sub014 7.2632 7.2837 5.7200 5.7382 5.7249 5.7439 5.6757 5.7188 5.6939 5.7405 

sub015 7.0378 7.0317 5.6655 5.6546 5.6664 5.6561 5.6287 5.6288 5.6454 5.6462 

Average 7.2254 7.2073 5.6608 5.6614 5.6671 5.6673 5.6210 5.6240 5.6407 5.6444 
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Table 5.25: Achieved results on Dataset 1 (Z = 32). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 }, �W = { −1 }, �z = { −1 } 

task001 task002 task001 task002 task001 task002 task001 task002 task001 task002 

sub001 6.9843 6.9838 5.5487 5.5449 5.5446 5.5404 5.4970 5.4850 5.5080 5.4942 

sub002 7.3265 7.3114 5.6196 5.6168 5.6219 5.6180 5.5452 5.5668 5.5585 5.5763 

sub003 7.0380 7.0367 5.5911 5.5460 5.5848 5.5422 5.5290 5.4936 5.5397 5.5052 

sub004 7.5893 7.6013 5.9750 5.9945 5.9745 5.9936 5.9129 5.9065 5.9240 5.9200 

sub005 7.1770 7.1791 5.6647 5.6438 5.6620 5.6419 5.6303 5.5862 5.6430 5.5986 

sub006 7.1327 7.1198 5.7107 5.7152 5.7034 5.7075 5.6623 5.6819 5.6695 5.6902 

sub007 7.5165 7.4937 5.6536 5.6667 5.6584 5.6733 5.6079 5.6221 5.6251 5.6397 

sub008 7.1303 7.1251 5.5157 5.5118 5.5151 5.5118 5.5157 5.4617 5.5151 5.4749 

sub009 7.4549 N.P. 5.6331 N.P. 5.6400 N.P. 5.6038 N.P. 5.6234 N.P. 

sub010 7.2238 7.2183 5.6410 5.6313 5.6407 5.6309 5.6068 5.6077 5.6197 5.6220 

sub011 7.0782 7.0694 5.5259 5.5108 5.5224 5.5071 5.4987 5.5033 5.5075 5.5128 

sub012 7.2994 7.3238 5.6638 5.7103 5.6687 5.7145 5.6187 5.6828 5.6340 5.6990 

sub013 7.1509 7.1422 5.6998 5.6970 5.6935 5.6906 5.6380 5.6500 5.6455 5.6568 

sub014 7.2643 7.2823 5.7137 5.7318 5.7112 5.7301 5.6642 5.7074 5.6738 5.7204 

sub015 7.0373 7.0314 5.6587 5.6476 5.6518 5.6415 5.6167 5.6165 5.6245 5.6251 

Average 7.2269 7.2085 5.6543 5.6549 5.6529 5.6531 5.6098 5.6123 5.6208 5.6239 

 

5.6.3.2. Experimental Results on Dataset 2 

 

We outline the experimental results concerning Dataset 2. In particular, Tables 

5.26, 5.27, 5.28 and 5.29 report the results obtained by using Z = 8, Z = 16, 
Z = 24 and Z = 32, respectively. The reported results are obtained by using 
the PPMd scheme for the coding of prediction errors. The tables are organized 

as follows: the studied subjects are reported in the first column and from the 

second to the sixth columns, the achieved results are reported, respectively for 

each of the tested configurations. It is important to note that the last row 

indicates the average results, with all the results being reported in terms of 

BPS. 
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Table 5.26: Achieved results on Dataset 2 (Z = 8). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

sub001 7.0549 5.7922 5.8692 5.8353 5.9310 

sub002 7.0856 5.6474 5.7265 5.6794 5.7762 

sub003 7.4676 5.7845 5.8843 5.8073 5.9196 

sub004 7.4145 5.7471 5.8440 5.7633 5.8750 

sub005 7.2733 5.6911 5.7887 5.7257 5.8387 

sub006 6.7643 5.3771 5.4652 5.3942 5.4958 

sub007 7.0518 5.5917 5.6866 5.6046 5.7124 

sub008 7.1476 5.7128 5.8086 5.7234 5.8311 

sub009 6.9215 5.5518 5.6373 5.5699 5.6705 

sub010 7.3652 5.7123 5.8134 5.7168 5.8300 

sub011 7.2508 5.6701 5.7653 5.7115 5.8197 

sub012 7.0680 5.6733 5.7614 5.6575 5.7580 

sub013 7.5672 5.9481 6.0552 5.9556 6.0758 

sub014 7.0996 5.7208 5.8069 5.7299 5.8307 

Average 7.1809 5.6872 5.7795 5.7053 5.8118 

 

 

Table 5.27: Achieved results on Dataset 2 (Z = 16). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

sub001 7.0516 5.7572 5.7733 5.7470 5.7947 

sub002 7.0821 5.6136 5.6337 5.5941 5.6437 

sub003 7.4694 5.7476 5.7815 5.7176 5.7750 

sub004 7.4131 5.7105 5.7421 5.6716 5.7301 

sub005 7.2722 5.6545 5.6868 5.6376 5.6952 

sub006 6.7544 5.3380 5.3642 5.3047 5.3567 

sub007 7.0456 5.5538 5.5845 5.5156 5.5710 

sub008 7.1395 5.6751 5.7029 5.6330 5.6871 

sub009 6.9110 5.5133 5.5368 5.4786 5.5300 

sub010 7.3647 5.6765 5.7113 5.6262 5.6854 

sub011 7.2444 5.6330 5.6649 5.6201 5.6769 

sub012 7.0564 5.6360 5.6597 5.5670 5.6160 

sub013 7.5621 5.9086 5.9427 5.8603 5.9201 

sub014 7.0872 5.6808 5.7040 5.6362 5.6871 

Average 7.1753 5.6499 5.6777 5.6150 5.6692 
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Table 5.28: Achieved results on Dataset 2 (Z = 24). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

sub001 7.0476 5.7416 5.7357 5.7131 5.7304 

sub002 7.0805 5.5986 5.5983 5.5607 5.5815 

sub003 7.4699 5.7321 5.7432 5.6840 5.7106 

sub004 7.4111 5.6950 5.7044 5.6374 5.6653 

sub005 7.2692 5.6380 5.6483 5.6038 5.6313 

sub006 6.7500 5.3206 5.3253 5.2699 5.2924 

sub007 7.0417 5.5374 5.5459 5.4822 5.5071 

sub008 7.1352 5.6581 5.6639 5.5982 5.6220 

sub009 6.9074 5.4963 5.4979 5.4436 5.4645 

sub010 7.3659 5.6605 5.6727 5.5917 5.6202 

sub011 7.2385 5.6161 5.6261 5.5849 5.6112 

sub012 7.0504 5.6191 5.6201 5.5317 5.5503 

sub013 7.5563 5.8909 5.9009 5.8246 5.8510 

sub014 7.0785 5.6629 5.6643 5.5999 5.6205 

Average 7.1716 5.6334 5.6391 5.5804 5.6042 

 

 

Table 5.29: Achieved results on Dataset 2 (Z = 32). 
Subjects 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

sub001 7.0477 5.7362 5.7233 5.7010 5.7094 

sub002 7.0824 5.5935 5.5861 5.5494 5.5615 

sub003 7.4737 5.7266 5.7299 5.6721 5.6896 

sub004 7.4146 5.6894 5.6913 5.6254 5.6443 

sub005 7.2689 5.6322 5.6352 5.5919 5.6105 

sub006 6.7531 5.3145 5.3119 5.2573 5.2712 

sub007 7.0429 5.5313 5.5321 5.4700 5.4858 

sub008 7.1366 5.6520 5.6505 5.5857 5.6009 

sub009 6.9099 5.4903 5.4845 5.4311 5.4431 

sub010 7.3692 5.6549 5.6593 5.5796 5.5987 

sub011 7.2383 5.6100 5.6122 5.5723 5.5895 

sub012 7.0516 5.6128 5.6061 5.5186 5.5282 

sub013 7.5576 5.8844 5.8862 5.8113 5.8283 

sub014 7.0776 5.6562 5.6497 5.5862 5.5976 

Average 7.1732 5.6275 5.6256 5.5680 5.5828 
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5.6.3.3. Results Discussion 

 

Table 5.30 synthesizes the average results obtained on Dataset 1. In particular, 

the values of the Z parameter are reported in the first column, while from the 

second to the sixth columns, the average results are reported, respectively for 

each of the tested configurations. It is important to point out that the latter 

columns are subdivided into two sub-columns, relating to task001 image and 

task002 image. 

Similarly to Table 5.30, Table 5.31 shows the average results of Dataset 2. In 

detail, the first column indicates the values of the Z parameter, while the 

second to the sixth columns indicate the average results, respectively for each 

of the tested configurations. 

 

 

 

 

Table 5.30: Average results of Dataset 1. 

H 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

task001 task002 task001 task002 task001 task002 task001 task002 task001 task002 

8 7.2374 7.2208 5.7173 5.7183 5.8103 5.8107 5.7296 5.7384 5.8335 5.8428 

16 7.2294 7.2119 5.6778 5.6786 5.7066 5.7070 5.6512 5.6557 5.6994 5.7054 

24 7.2254 7.2073 5.6608 5.6614 5.6671 5.6673 5.6210 5.6240 5.6407 5.6444 

32 7.2269 7.2085 5.6543 5.6549 5.6529 5.6531 5.6098 5.6123 5.6208 5.6239 
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Table 5.31: Average results of Dataset 2. 

H 

3-D (Z) 3-D (T) 4-D (Z, T) 4-D (T, R) 5-D 

�z = { −1 } �W = { −1 } �z = { −1 }, �W = { −1 } �T = { −1 }, �W = { −1 } 
�T = { −1 },  �W = { −1 }, �z = { −1 } 

8 7.1809 5.6872 5.7795 5.7053 5.8118 

16 7.1753 5.6499 5.6777 5.6150 5.6692 

24 7.1716 5.6334 5.6391 5.5804 5.6042 

32 7.1732 5.6275 5.6256 5.5680 5.5828 

 

Figures 5.13 and 5.14 graphically show the information of Table 5.30, for 

task001 image and task002 image of Dataset 1, respectively. Furthermore, 

Figures 5.15 graphically show the information of Table 5.31. 

In particular, the configurations are reported on the X-axis, while on the Y-

axis, the average results are reported. The blue, dark red, green and violet lines 

outline the trend in correspondence to the average results, in the cases in 

which Z = 8, Z = 16, Z = 24 and Z = 32, respectively.  
From the figures, it is worth noting that the best results are obtained when 

the Z parameter is equal to 32, even if similar results are obtained, but 

slightly worse (except for the 3-D (Z) configuration) when the Z parameter 

assumes a value equal to 24. 
By focusing on the analysis of the average results, it is possible to observe 

that when only the Z dimension is explored (i.e. the 3-D (Z) configuration), the 

worst results are obtained.  

Regarding the case in which the Z dimension as the third dimension and the 

T dimension as the fourth dimension are used (i.e. the 4-D (T, Z) 

configuration), the results are slightly better, with respect to the 3-D (T) 

configuration, when only the Z parameter is equal to 32. For the other values 
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of the Z parameter (i.e. 8, 16 and 24), the results are worse than the 3-D (T) 

configuration. 

On the other hand, the results achieved by the 4-D (T, R) configuration are 

better than the other configurations. In detail, through the 5-D configuration 

similar, but slightly worse, results, with respect to 4-D (T, R) configuration, 

are obtained, especially when the Z parameter is set to 32.  
 

 

 

 

Figure 5.13: Graphical representation of Table 5.30. 
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Figure 5.14: Graphical representation of Table 5.30. 

 

Figure 5.15: Graphical representation of Table 5.31. 
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In this thesis, we reviewed several novel strategies for the efficient 

compression and protection of different types of multidimensional data. It is 

important to emphasize that all the ideas of this work have been developed 

and published on different peer-reviewed international journals as well as the 

proceedings of various peer-reviewed international conferences, during the PhD 

programme. The references of all the paper are reported in the Reference 

section.  

First of all, we synthesized the basic aspects and main highlights of the 

different multidimensional data: 3-D medical images, hyperspectral images, 3-D 

microscopy images and 5-D fMRI images. 

Subsequently, we focused on the lossless compression of medical images, by 

considering the MILC algorithm, which is designed to obtain a good trade-off 

between computational complexity and compression performances. In addition, 

we reviewed a parallelized version of the compression strategy of the MILC 

algorithm, denoted as Parallel MILC. The main aim of the Parallel MILC 

algorithm is the improvement of the performance, in terms of execution time. 

It is important to note that only the compression strategy is modelled in order 

to exploit the capabilities of the parallel computing. Therefore, it is possible to 

perform the decompression independently without knowing which compression 

strategy is used between MILC or Parallel MILC. 

Then, we reviewed a novel hybrid approach for the protection, through the 

embedding of a digital invisible watermark, and the simultaneous compression 

of 3-D medical images. In many scenarios, the hiding of some information in a 

3-D medical image, at the same time as their compression, could be significant. 
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In addition, we provided a description of the key points of an approach related 

to the protection of the 3-D microscopy images. This approach is suitable to 

embed two invisible watermarks: the former is used for the protection of each 

slice of a 3-D microscopy image, while the latter is used for the protection of 

the whole 3-D microscopy image. To the best of our knowledge, there are no 

proposed approaches for the protection of 3-D microscopy images. 

Finally, we described a predictive structure, which we used for the efficient 

and lossless compression of multidimensional data. We experimentally tested 

our approach, by considering different types of multidimensional data: 3-D 

medical images, hyperspectral images and 5-D functional Magnetic Resonance 

Images (fMRI). 

There are several future research directions, which might include the 

following ideas: 

• The design of a parallelized version of the decompression strategy of the 

Parallel MILC algorithm; 

• The extension, for the 5-D fMRI data, of the hybrid approach for the 

embedding of a digital watermark and the simultaneous compression of 

3-D medical images; 

• The parallelization of the strategies related to the compression and the 

decompression of multidimensional data; 

• The design of approaches for the efficient compression of 3-D 

microscopy images; 

• The design of lossy compression schemes for the compression of 

multidimensional data. 
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Appendix Appendix Appendix Appendix ––––    AAAA    

Description of the Datasets 
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A.1. 3-D Medical Images 

 

The dataset used, related to the 3-D Medical Images, is publicly available and 

composed of eight images. It is important to point out that the images are 

produced by two different technologies. In particular, the dataset is composed 

of four 3-D Computed Tomography (3-D CT) images and four 3-D Magnetic 

Resonance (3-D MR) images.  

 Tables A.1 and A.2 synthetize the 3-D CT and 3-D MR images of the 

dataset, respectively. 

It is important to emphasize that each slice has 256 columns and 256 lines. 

In detail, each sample is stored through an 8-bits unsigned integer.  

 

Table A.1: Description of the used dataset (3-D CT images) 

3-D Computed Tomography Images 

Description / Age / Gender Image Name # of Slices 

Tripod fracture / 16 / M CT_skull 192 

Healing scaphoid dissection / 20 / M  CT_wrist 176 

Internal carotid dissection / 41 / F CT_carotid 64 

Apert’s syndrome / 2 / M CT_Aperts 96 

 

Table A.2: Description of the used dataset (3-D MR images) 

3-D Magnetic Resonance Images 

Description / Age / Gender Image Name # of Slices 

Normal / 38 / F MR_liver_t1 48 

Normal / 38 / F MR_liver_t2e1 48 

Left exophthalmos / 42 / M MR_sag_head 48 

Congenital heart disease / 1 / M MR_ped_chest 64 
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A.2. 3-D Microscopy Images 

 

The dataset is composed of five 3-D Confocal Images of cells, which was kindly 

provided by Dr. Pasquale Del Gaudio (Department of Pharmacy, University of 

Salerno, Italy) and Dr. Veronica Granata (MUSA Laboratory, SPIN Institute 

of CNR, Physics Department of the University of Salerno, Italy).  

In detail, Table A.3 reports the description of the structure of the dataset. In 

the first column the mnemonic name, we denote each 3-D microscopy image 

with, is reported. The second and third columns indicate the width and height, 

respectively. Whereas, in the fourth column, the number of slices for each 

image is reported. 

It should be noted that each slice is stored by using 8 bits per RGB channel 

(24 bits per pixel) and has been stored as the Bitmap Format. 

 

 

 

 

 

Table A.3: Description of the dataset structure. 

Images Width Height # of Slices 

Image1 1025 1025 10 

Image2 1025 1025 7 

Image3 1025 1025 5 

Image4 1025 1025 3 

Image5 1025 1025 2 
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A.3. Hyperspectral Images 

 

The dataset used is publicly available and is composed of five Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral images [23]. 

The data are provided by the NASA’s Jet Propulsion Laboratory (JPL) [4]. In 

particular, an hyperspectral image is subdivided into many scenes. Each scene 

presents 614 columns, 512 lines and 224 spectral bands. It should be noted 

that the last scene of an image can be composed of less than 512 lines. In 

addition, each sample is stored as a 16 bits integer. 

In Table A.4, we indicate, for each image (in the first column), the number of 

scenes (in the second column). 

 

 

 

Table A.4 : Description of the dataset structure. 

Images # of Scenes 

Lunar Lake 3 

Moffett Field 4 

Jasper Ridge 6 

Cuprite 5 

Low Altitude 8 
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A.4. 5-D fMRI Images 

 

The datasets of fMRI images used are provided by the OpenfMRI project site 

[19]. In detail, the used datasets are denoted as “Stop-signal task with 

unconditional and conditional stopping” and “Living-nonliving decision with 

plain or mirror-reversed text” (from now on, we denoted as Dataset 1 and 

Dataset 2, respectively). 

Dataset 1 is composed of thirty 5-D fMRI images and structured as follows: 

two 5-D fMRI images namely, task001 and task002, are related to each subject. 

While, Dataset 2 is composed of fourteen 5-D fMRI, each one produced by the 

analysis of each subject. It is important to note that, in both Dataset 1 and the 

Dataset 2, each sample is stored by using 16 bits. 

Tables A.5.a and A.5.b synthesize only the relevant information, for our 

experimental testing, related to Dataset 1 and the Dataset 2, respectively. In 

particular, Table A.3.a reports the sizes of the task001 image (second column) 

and the sizes of the task002 image (third column), of each subject (first 

column). Table A.3.b shows the sizes of each fMRI image (second column) 

related to each subject (first column). 
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Table A.5 : Description of the structure of (a) Dataset 1 

and (b) Dataset 2. 

(a) 

 

Subjects 
task001 

< 	, � , �, , � > 

task002 

< 	, � , �, , � > 

sub001 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub002 < 3, 182,30,64,64 > < 2, 176,30,64,64 > 

sub003 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub004 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub005 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub006 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub007 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub008 < 1, 182,30,64,64 > < 3, 176,30,64,64 > 

sub009 < 3, 182,30,64,64 > Not Present 

sub010 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub011 < 2, 182,30,64,64 > < 3, 176,30,64,64 > 

sub012 < 2, 182,30,64,64 > < 3, 176,30,64,64 > 

sub013 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub014 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

sub015 < 3, 182,30,64,64 > < 3, 176,30,64,64 > 

 

 

(b) 

 

Subjects < 	, � , �, , � > 

sub001 < 6,205,25,64,64 > 

sub002 < 6,205,25,64,64 > 

sub003 < 5,205,25,64,64 > 

sub004 < 6,205,25,64,64 > 

sub005 < 5,205,25,64,64 > 

sub006 < 5,205,25,64,64 > 

sub007 < 5,205,25,64,64 > 

sub008 < 6,205,25,64,64 > 

sub009 < 6,205,25,64,64 > 

sub010 < 6,205,25,64,64 > 

sub011 < 6,205,25,64,64 > 

sub012 < 6,205,25,64,64 > 

sub013 < 6,205,25,64,64 > 

sub014 < 6,205,25,64,64 > 
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