
UNIVERSITÀ DEGLI STUDI DI SALERNO

Department of Computer Science

PhD in Computer Science

XIII Ciclo - Nuova Serie

PhD Thesis in Computer Science

Teamwork Collaboration around

Simulation Data in an Industrial Context

Author

Donato Pirozzi

PhD Program Chair Supervisor
Prof. Giuseppe Persiano Prof. Vittorio Scarano

Academic Year 2013-2014

i

Supervisor
Prof. Vittorio Scarano, Dip. di Informatica,
Università degli Studi di Salerno, Italy

Graduate Group Chair
Prof. Giuseppe Persiano, Dip. di Informatica,
Università degli Studi di Salerno, Italy

Dean
Prof. Vincenzo Loia, Dip. di Informatica,
Università degli Studi di Salerno, Italy

Date of defense
April 22th, 2015

Donato Pirozzi
ISISLab, Dip. di Informatica
Università degli Studi di Salerno
Via Giovanni Paolo II, 84084 Fisciano (Salerno), Italy
E-mail: dpirozzi@unisa.it

Acknowledgements

I am using this opportunity to express my gratitude to University of Salerno that has
provided to me and my colleagues a great environment with all the infrastructures to
study and live over ten years since my first day in Lancusi on September 2004. In
particular, I would like to thank professor Vittorio Scarano and ISISLab to be involved
in an active and stimulating research group for my bachelor, master and this PhD thesis.

I have to thank Fiat Chrysler Automobiles (FCA) for this great opportunity to do
a multidisciplinary PhD and be involved at same time in both academic and industrial
contexts. In particular, I thank Claudio Gargiulo for the interesting and stimulating
long discussions about very different technical and non-technical topics.

I’d like to thank University of Brighton to host me over three months providing all
the facilities to do research in an international environment with a mix of different cul-
tures. Especially, I want thank Andrew Fish for his continuous support.

A great good luck to everyone I met during my PhD.

And ... of course a special thanks to my parents and Teresa :)

All software licenses (e.g., CD-adapcoTM STAR-CCM+R⃝, BETACAETM ANSAR⃝,
modeFrontierR⃝), software documentation and training materials to make this thesis have
been provided by Fiat Chrysler Automobiles (FCA) and Università degli Studi di Salerno
(Unisa).

ii

Abstract

Nowadays even more small, medium and large enterprises are world-wide and com-
pete on a global market. In order to face the new challenges, industries have multiple
co-located and geographically dispersed teams that work across time, space, and organ-
isational boundaries. A virtual team or a dispersed team is a group of geographically,
organisationally and/or time dispersed knowledge workers who coordinate their work
using electronic technologies to accomplish a common goal. The advent of Internet and
Computer Supported Cooperative Work (CSCW) technologies can reduce the distances
between these teams and are used to support the collaboration among them. The topic
of this thesis concerns the engineering dispersed teams and their collaboration within
enterprises. In this context, the contributions of this thesis are the following: I was
able to (1) identify the key collaborative requirements analysing a real use case of two
engineering dispersed teams within Fiat Chrysler Automobiles; (2) address each of them
with an integrated, extensible and modular architecture; (3) implement a working in-
dustrial prototype called Floasys to collect, centralise, search, and share simulations as
well as automate repetitive, error-prone and time-consuming tasks like the document
generation; (4) design a tool called ExploraTool to visually explore a repository of sim-
ulations provided by Floasys, and (5) identify the possible extensions of this work to
other contexts (like aeronautic, rail and naval sectors).

The first research aim of this work is the analysis of the key collaborative require-
ments within a real industrial use case of geographically dispersed teams. In order to
gather these requirements, I worked closely with two geographically separated engineer-
ing teams in Fiat Chrysler Automobiles (FCA): one team located in Pomigliano D’Arco
(Italy) and the other one in Torino (Italy). Both teams use computer numerical Compu-
tational Fluid Dynamic (CFD) simulations to design vehicle products simulating physical
phenomenons, such as vehicle aerodynamic and its drag coefficient, or the internal flow
for the passengers thermal comfort. The applied methodology to collect the collabo-
rative and engineering requirements is based on an extensive literature review, on site
directly observations, stakeholders’ interviews and an user survey. The identified key
collaborative requirements as actions to perform to improve the collaboration among
dispersed teams are [1]: centralise simulation data, provide metadata over simulation
data, provide search facility, simulation data versioning, and data sharing. Engineers, in
the analysed field, use multiple simulator software, so in order to centralise simulation
data, it is fundamental to collect data from multiple heterogeneous sources avoiding

iii

iv

the Vendor Lock-In Anti-Pattern [2]. In according to the gathered collaborative and
engineering requirements, a working real prototype called Floasys has been developed.
The Floasys target customers are industries who use CFD simulators to design their
products. Floasys [1, 3] collects, centralises, and stores simulation data in open format
(e.g., XML). Floasys provides additional services over collected data like a simulator
independent SearchTool, that is very useful to get simulations performed by different
engineers, and compare the found simulations performances over multiple design revi-
sions. In addition, the system allows the data sharing through URLs exchange.

From architectural point of view, Floasys meets the extensibility and modularity
Non-Functional requirements to be tailored to the customers needs, accommodate future
requirements and be used in other departments. In order to meet the extensibility and
modularity Non-Functional Requirements, the architecture is based on the concept of
plug-in [3]. In this way, each module of the architecture is a plug-in that can be replaced
with another equivalent implementation. The Floasys uses a three layers approach. It
integrates on the bottom layer the data source wrappers (e.g., simulators software that
generates simulation data, or test-beds that generates experimental data). The middle
layer abstracts and manages the data source heterogeneities. On the top layer there are
the tools that provide collaborative and engineering functionalities to users.

Although this research activity concerns an automotive use case, issues faced within
this sector seem to be very common issues also in other sectors as highlighted in the
existing literature [4,5], especially for the list of gathered requirements. Therefore, many
of the considerations and design decisions described through this work could be used also
for other type of simulations and experiments in other contexts (i.e., aeronautic, rail and
naval sectors).

Collecting a huge amount of data from multiple sources and centralising them in
open format, introduces the need to have an overview, and at same time, explore and
query the dataset to get the desired data. Therefore, another contribution of this work is
an interactive tool to visualise, explore and query simulations repositories called briefly
EsploraTool that is a Floasys tool. Although the tool idea was born in the context of
simulation and experimental data, it is enough general to be used with any dataset so
that it has been tested with the amazon.co.uk clothing catalogue to demonstrate its
generality. The tool is based on the Euler Venn diagrams. The tool represents the data
items in a hierarchical way. The user can explore the dataset through drill-down and
roll-up operations to get more or less dataset details. Going down through the hierarchy
the user is filtering items within the dataset and making a graphic query. Using the
experimental data, the idea is that engineers explore the available experiments and get
two or more experiments to compare together. After the tool design and implementation
stages, now the tool is under testing with real users [6] to perform a User Experience
and Performance test as well as Usability test. In addition, the tool its self can be the
test-bed for other features, such as, the opportunity to merge two ellipses performing a
logic AND operation between two properties of the dataset.

Abstract (Italiano)

Oggigiorno le piccole, medie e grandi imprese operano e competono su un mercato globale
e mondiale. Per affrontare le nuove sfide ed essere competitive sul mercato, le industrie
hanno più sedi e team geograficamente lontani. In questo contesto, membri dello stesso
team o afferenti a team differenti si ritrovano a lavorare assieme indipendentemente dal
fuso orario, dal posto in cui si trovano e delle strutture aziendali. Un team virtuale è
costituito da gruppi di persone geograficamente lontane che coordinano il loro lavoro us-
ando le nuove technolgie per raggiungere un obiettivo comune. L’avvento di Internet e le
nuove tecnologie a supporto del lavoro cooperativo (CSCW) possono ridurre le distanze
tra i team geograficamente lontani e possono supportare la collaborazione tra essi. Il
tema principale di questa tesi è relativo ai team virtuali di ingegneri e al modo in cui
collaborano all’interno dell’industria automotive. In tale contesto, i contributi di questo
lavoro di tesi possono essere sintetizzati nel seguente modo: (1) sono stati identificati i
principali requisiti collaborativi ed ingegneristici facendo riferimento ad un caso d’uso
reale all’interno di Fiat Chrysler Automobiles; (2) ogni requisito è stato soddisfatto im-
plementando un’architettura integrata, modulare ed estendibile; (3) è stata progettata,
implementata e testata una piattaforma chiamata Floasys di raccolta, centralizzazione e
condivisione di simulazioni; (4) è stato progettato un tool denominato ExploraTool per
esplorare visivamente un repository di simulationi all’interno di Floasys (5) sono state
identificate le possibili estensioni della piattaforma in altri contesti quali l’aeronautico,
il ferroviario ed il navale.

L’obiettivo di questo lavoro è la raccolta dei requisiti collaborativi e delle relative
necessità che sopravvengono nel momento in cui differenti team geograficamente lontani
(virtual teams) si ritrovano a collaborare per perseguire un risultato comune. Per cui si è
considerato un caso d’uso industriale e reale di team geograficamente lontani, lavorando
a stretto contatto con due team di ingegneri di Fiat Chrysler Automobiles (FCA): un
team presso la sede di Pomigliano D’Arco (Italia) e l’altro team presso la sede di Torino.
Entrambi i team di analisti utilizzano le simulazioni al calcolatore (Computational Fluid
Dynamic simulations) per progettare automobili simulando fenomeni fisici, quali ad es-
empio l’aerodinamica esterna dell’autoveicolo. La metodologia applicata per la raccolta
dei requisiti si basa su osservazioni dirette sul campo, interviste agli utenti, la somminis-
trazione di un questionario on-line ed il confronto con la letteratura esistente. I requisiti
collaborativi identificati come azioni da compiere per supportare la collaborazione tra
team geograficamente lontani sono: centralizzare i dati delle simulazioni, fornire la possi-

v

vi

bilità di annotare ed aggiungere metadati ai file, fornire un motore di ricerca per ottenere
simulazioni completate da altri analisti, fornire il versioning dei dati e supportare la loro
condivisione. In accordo ai requisiti individuati è stato sviluppato un prototipo chiamato
Floasys che è il secondo contributo di questo lavoro. I clienti finali di Floasys sono tutte
le industrie che utilizzano le simulazioni di CFD per progettare i loro prodotti, quindi, le
industrie automotive, aeronautiche e navali. Floasys colleziona i dati delle simulazioni,
li memorizza in formato aperto XML e li centralizza in un repository condiviso. Floasys
fornisce servizi aggiuntivi sui dati raccolti e memorizzati in formato aperto, ad esempio
la possibiltà di annotare i file oppure di cercare all’interno del repository delle simulationi
indipendentemente dal simulatore con cui sono stati generati i file. È molto utile ottenere
le simulazioni effettuate da altri membri dello stesso team o di team diversi, questo è
particolarmente utile quando si vogliono confrontare le prestazioni di più prodotti rela-
tivamente a più revisioni di progetto. Infine, Floasys offre la possibilità di condividere
le simulazioni tramite lo scambio di URL univoche.

Nel cercare di fornire concretamente questi servizi differenti sfide vanno considerate:
sicuramente i servizi appena elencati debbono essere immersi in un contesto aziendale
già esistente con relative pratiche, workflow e sistemi software esistenti. Per portare un
esempio concreato la sola centralizzazione dei dati delle simulazioni implica la comuni-
cazione con i software di simulazione esistenti mitigando il problema del Vendor Lock-In
ovvero la forte dipendenza stessa dai simulatori stessi.

Da un punto di vista architetturale, Floasys soddisfa i requisiti non funzionali di
estendibilità e modularità. In questo modo il sistema può essere adattato alle necessità
dei clienti, aperto a soddisfare necessità future ed essere usato in altri dipartimenti.
L’architettura modulare ed estendibile di Floasys è stata ottenuta basandosi sul concetto
di plug-in. Sebbene l’attività di ricerca riguarda direttamente il settore automotive, i
requisiti raccolti e le difficoltà descritte sono comuni anche ad altri settori come descritto
in letteratura [4]. Per cui molte delle considerazioni fatte in questo lavoro e le soluzioni
adottate possono essere riutilizzate per altri tipi di simulazione oltre che per i dati
ottenuti da esperimenti.

Infine, all’interno di Floasys è stato integrato un tool interattivo detto “ExploraTool”
per la visualizzazione, l’esplorazione e l’interrogazione di repository di simulazioni. Seb-
bene l’idea di questo tool sia nata nel contesto della navigazione dei repository di sim-
ulazioni, esso è abbastanza generico per essere utilizzato con qualsiasi dataset. Il tool
è basato sui diagrammi di Eulero Venn. L’universo è l’insieme di tutte le simulazioni
memorizzate in uno o più repository. I gruppi di simulazioni vengono rappresentati
mediante ellissi innestate. Usando tale tool, gli analisti possono esplorare il repository
attraverso operazioni di drill-down e roll-up per ottenere più o meno dettagli. Andando
giù nella gerarchia l’utente filtra gli item all’interno del dataset effettuando a tutti gli
effetti una query grafica. In questo modo l’utente esplora il repository ottenendo alla
fine due o più simulazioni da comparare. Dopo la fase di ideazione, progettazione ed
implementazione, ora il tool è in fase di testing con utenti reali allo scopo di ottenere
dati sulla sua usabilità [6].

Publications

The content of this thesis has been published in the following conferences and journal:

1. Gargiulo, Claudio; Pirozzi, Donato; Scarano, Vittorio. An architecture for
CFD Workflow Management. In Proceedings of the 11th IEEE International
Conference on Industrial Informatics (INDIN), Bochum, Germany, July 29-31,
2013, pp. 352-357.

2. Gargiulo, Claudio; Pirozzi, Donato; Scarano, Vittorio; and Valentino, Giuseppe.
A platform to collaborate around CFD simulations. In Proceedings of the
23rd IEEE International Conference on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Parma, Italy, June 23-25, 2014, pp. 205–
210.

3. Gargiulo, Claudio; Malandrino, Delfina; Pirozzi, Donato; Scarano, Vittorio Sim-
ulation Data Sharing to foster Teamwork Collaboration. Journal on Scal-
able Computing: Practice and Experience, Scientific International Journal for Par-
allel and Distributed Computing 2014.

4. Fish, Andrew; Gargiulo, Claudio; Pirozzi, Donato; Scarano, Vittorio. Simulation
Repository Visualisation and Exploration. In Proceedings of the 13th IEEE
International Conference on Industrial Informatics (INDIN), Cambridge, UK, 22-
24 July, 2015.

vii

Abbreviations

This section is a list of abbreviations and acronyms used through the thesis.
They are listed in alphabetic order.

API Application Programming Interface

BOM Bill of Materials

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CAM Computer-Aided Manufacturing

CBS Cloud-Based Simulation

CFD Computational Fluid Dynamics

CLI Command Line Interface

CRM Customer Relationship Management

CSCW Computer Supported Collaborative Work

CSW Comma-separated values

DM Data Management

DNS Domain Name System

DOE Design Of Experiments

ERP Enterprise Resource Planning

FCA Fiat Chrysler Automobiles

FEA Finite Element Analysis

FEM Finite Element Method

GUI Graphical User Interface

HCI Human Computer Interaction

HPC High Performance Computing

ICT Information and Communication Technology

IDE Integrated Development Environment

JAR Java ARchive

JSON JavaScript Object Notation

MRP Material Resource Planning

M&S Modeling and Simulation

NFR Non-Functional Requirement

NPD New Product Development Process

PDM Product Data Management

PLM Product Lifecycle Management

RPM Revolutions Per Minute

SCM Supply Chain Management

SME Small and Medium Enterprise

SMEs Small and Medium Enterprises

SSH Secure SHell

TTM Time-To-Market

UI User Interface

WBS Web-Based Simulation

WWW World Wide Web

XML eXtensible Markup Language

viii

Contents

Acknowledgements ii

Abstract vi

Pubblications vii

Abbreviations ix

1 Introduction 1
1.1 Enterprise Collaboration . 1

1.1.1 Virtual Teams Collaboration . 2
1.1.2 Enterprise 2.0 . 4
1.1.3 Trialogic Learning . 5

1.2 Dissertation Goals and contributions . 6
1.3 Dissertation Roadmap . 8

2 Collaborative Requirements 10
2.1 Introduction . 11
2.2 Related Works . 13
2.3 Methodology . 13

2.3.1 Stakeholders identification . 14
2.3.2 Domain understanding . 15
2.3.3 Impact of the a new system in the organisation 16

2.4 Collaborative Requirements Survey . 16
2.5 Simulation data centralization . 17
2.6 Provide search facility . 19
2.7 Provide metadata over simulation data . 21
2.8 Simulation data versioning . 22
2.9 Support data sharing . 22
2.10 Simulator independence . 23
2.11 Extensibility and modularity . 24
2.12 Social network . 24
2.13 Conclusions . 26

ix

CONTENTS x

3 Engineering Requirements 27
3.1 Introduction . 28

3.1.1 Introduction to the Simulation Workflow 28
3.1.2 Metrics used to evaluate an engineering software 30

3.2 Requirements Overview . 32
3.3 Functional Requirements . 33
3.4 Non-Functional Requirements . 34

3.4.1 Support multiple simulators . 34
3.4.2 Simulator selection . 35
3.4.3 Concurrent simulators use . 35
3.4.4 Headless simulators integration . 36

3.5 Related Works . 39
3.5.1 New Product Development Process 39
3.5.2 Engineering Use Case . 41
3.5.3 CFD Simulation Workflow . 43
3.5.4 Existing platforms for CFD simulations 45

3.6 Future works . 46
3.6.1 Automatic Simulation Workflows Management 48
3.6.2 Experiment Data Management . 50

3.7 Conclusions . 50

4 Floasys 51
4.1 Introduction . 51
4.2 Floasys Graphical User Interface . 52
4.3 Collaborative Features . 53

4.3.1 Repository Tool and Simulations Tagging 54
4.3.2 Search tool and Data sharing . 55
4.3.3 Web-based 3D Model Visualisation 57

4.4 Engineering Features . 58
4.4.1 Simulation Controller Tool . 58
4.4.2 Monitoring Tool . 61
4.4.3 Documentation Tool . 62
4.4.4 Parametric Exploration Tool . 63

4.5 Conclusions . 64

5 Floasys Platform Architecture 66
5.1 Introduction . 67
5.2 Floasys Architecture Overview . 68
5.3 Server-side software architecture . 70
5.4 Simulation Model . 75
5.5 Simulation Data Management . 77
5.6 Collaborative Requirements Traceability 79
5.7 Code Snippets . 79

5.7.1 How to run a simulation . 80

CONTENTS xi

5.7.2 Extension by plug-in . 83
5.8 Remote Application Platform . 85
5.9 Conclusions . 87

6 Floasys Simulations Exploration 88
6.1 Introduction . 89
6.2 Related Works . 90
6.3 ExploraTool features . 92

6.3.1 Data Exploration: in-depth navigation 92
6.3.2 How should I use the colours? . 93

6.4 ExploraTool Software Architecture . 94
6.5 Simulation Repository Model . 95
6.6 Hierarchical representation for tabular data 96

6.6.1 BuildHierarchy Algorithm Overview 98
6.6.2 BuildHierarchy Algorithm Description 98
6.6.3 Analysis of BuildHierarchy algorithm 99

6.7 Conclusions and Future Works . 102

7 Conclusions & Future Works 103
7.1 Summary . 103
7.2 Future Works . 104

Appendices 113

A Requirements elicitation Survey 114

List of Figures

1.1 CSCW Quadrants . 2
1.2 Team-based organisation . 3
1.3 Virtual teams characteristics. 4
1.4 Trialogic Learning elements. 5
1.5 Monologic, Dialogic and Trialogic Learning. 6
1.6 Dissertation Goals, Contributions and Chapters. 7

2.1 Collaboration among geographically distributed teams. 11
2.2 Participants’ roles and their working place 17
2.3 Participants’ experience. 17
2.4 Co-located vs distributed workers . 18
2.5 Geometries and simulations file size . 18
2.6 Information stored in the file names . 19
2.7 Rules followed to store files . 20
2.8 Search based on file content . 20
2.9 Technologies to search simulations . 21
2.10 Version control . 22
2.11 Actual use of private social networks . 25
2.12 Introduction of social networks within the enterprise 25

3.1 CFD Workflow: software used by analysts. 29
3.2 Simulation software used to simulate vehicles. 30
3.3 Participants’ experience. 30
3.4 Criteria used to evaluate a CFD solver . 31
3.5 Criteria used to evaluate an engineering software 32
3.6 CFD Workflow and Floasys Tools . 34
3.7 Simulation Model Mapping. 35
3.8 Simulator black-box interaction. 37
3.9 Interaction with a simulator through a macro. 37
3.10 Product Development Process (PDP) and CFD Workflow. 39
3.11 Product Lifecycle Management Evolution 41
3.12 Product Lifecycle . 42
3.13 CFD Simulation Workflow. 44

xii

LIST OF FIGURES xiii

3.14 CFD Simulation Workflow detailed phases. 45
3.15 Multiple Workflows Management. 48
3.16 Multidisciplinar, mutliobjects and automatic CFD workflows. 49

4.1 Floasys Graphical User Interface. 52
4.2 Example of a typical workflow supported by Floasys. 53
4.3 Repository tool to navigate and tag a simulation repository. 54
4.4 Example of structured data. 55
4.5 Search Tool . 56
4.6 CSCW Quadrants. 56
4.7 Floasys 3D model visualisation. 57
4.8 CFD Workflow and tools provided by Floasys. 58
4.9 A typical engineering workflow. 59
4.10 Simulation Controller Tool. 60
4.11 Simulation Tool Toolbar . 60
4.12 Screenshots from the Run Simulation Wizard. 61
4.13 MonitoringTool to check the simulation convergence. 62
4.14 Generation of documents from simulation data. 62
4.15 Example of a template and a generated document. 63
4.16 An example of Parametric Study. 64
4.17 Parametric Exploration Tool . 65

5.1 Floasys Architectural Solution General Idea 68
5.2 Floasys Client/Server Architecture. 69
5.3 Floasys Agile Development and blocking bugs. 70
5.4 Alternative architectural solution comparison. 71
5.5 Execution of the Macro to extract data from a simulation file. 72
5.6 How the STAR-CCM+R⃝ wrapper extracts simulation data. 72
5.7 Floasys Server-side architecture. 73
5.8 Floasys projects within the Eclipse IDE. 74
5.9 Simulation Model Class Diagram . 76
5.10 Simulation Data versioning. 78
5.11 Mapping of requirements, solutions and technologies. 80
5.12 Run Simulation Workflow supported by Floasys 81
5.13 A code snippet: how solve a simulation within Floasys. 82
5.14 Search a simulator able to handle the simulation file. 82
5.15 Floasys Framework: (a) SimulationPack and (b) Simulator. 83
5.16 Eclipse Extension Point and Extension concepts. 83
5.17 How to define an extension point within Eclipse. 84
5.18 Floasys Simulator Wrapper Plug-In Eclipse Project. 84
5.19 Plug-in Simulator Wrapper Extension Definition. 85
5.20 Eclipse RAP Client-Server Architecture. 86
5.21 Half Object Plus Protocol in RAP. 86

LIST OF FIGURES xiv

6.1 The AppName ’s Graphical User Interface 90
6.2 Original treemap visualisation technique. 91
6.3 Drill-down and roll-up operations. 93
6.4 ExploraTool prototype client/server architecture. 94
6.5 ExploraTool rendering process . 95
6.6 Class Diagram to describe a typical repository of simulations. 96
6.7 Example of hierarchy extraction from a tabular dataset. 97

List of Tables

2.1 Stakeholders’ Collaborative Requirements. 12
2.2 Overview of research methodology characteristics. 15

3.1 Stakeholders’ key engineering Functional Requirements. 33
3.2 Stakeholders’ key engineering Non-Functional Requirements. 33

6.1 Colours used to draw the ellipses within the ExploraTool. 94
6.2 Notations used to describe the BuildHierarchy Algorithm. 99

xv

Chapter 1

Introduction

Contents

1.1 Enterprise Collaboration . 1

1.1.1 Virtual Teams Collaboration 2

1.1.2 Enterprise 2.0 . 4

1.1.3 Trialogic Learning . 5

1.2 Dissertation Goals and contributions 6

1.3 Dissertation Roadmap . 8

This introductory chapter provides an overview of the thesis content. It introduces
briefly the terminology used since the title page and through the entire work. It evolves
around the concepts of virtual teams, Enterprise 2.0 and Trialogic learning discussed
in a real industrial use case. The chapter aims to discuss the dissertation goals and
contributions giving to the reader a link between them and the next chapters.

1.1 Enterprise Collaboration

Nowadays small and medium enterprises (SMEs) as well as large industries are world-
wide and work in a global market. Their organisation is often spread over multiple
nations and companies face time, space and cultural barriers. In a high competitive
world market and economy, companies face the need for a fast time-to-market, low cost
and rapid product development [7]. The introduction of Internet, new communication
technologies and the variety of computer-mediated communication systems can enable
the collaboration among dispersed team members overcoming geographical, temporal,
cultural and organisational boundaries.

The term collaboration refers to the process of two or more parties who work jointly
towards a common goal [8]. In according to it, we define the collaborative technology
as computer tools that support communication, coordination, and/or information pro-
cessing needs of two or more people working together on a common task [8]. Computer

1

CHAPTER 1. INTRODUCTION 2

Supported Cooperative Work (CSCW) and groupware are well-known computer tech-
nologies to collaborate together, and study how people use technology to work together.

Enterprise collaboration refers to communication among the employees of a cor-
porate that may encompass the use of collaborative technologies like collaboration plat-
forms, enterprise social networks and corporate Internet. For instance, within the en-
terprise well-established communication tools are the e-mails and the video-conferencing
systems.

In according to the collaborative technology there are two dimensions: space and
time. Space means where the persons who collaborate together are located. For instance,
persons could be in the same room discussing face-to-face or they can be geographically
distant each other discussing through a video-conference system. Time concerns whether
the persons collaborate at same time or can collaborate also in different moments, so the
key terms are respectively synchronous and asynchronous collaboration. To further
understand this distinction it is really useful to consider the CSCW Quadrants. The
combination of the time and space dimensions generates four quadrants useful to classify
the existing or future collaborative technologies. For instance, the e-mail is a tool that
supports the asynchronous communication among distant people and people who work
in the same room. The communication is asynchronous just because the sending and
receiving events occur in different times. Instead a video conference system is mainly
used by users that are far from each other and communicate together at same moment.

Figure 1.1: CSCW Quadrants (Adapted form [8]).

In the context of Enterprise Collaboration, another very common keyword is virtual
team that encompasses all the collaboration within the enterprise among teams that
are geographically far from each other.

1.1.1 Virtual Teams Collaboration

In according to Bruegge at al [9], through this thesis the participants are all the persons
involved in a project. In team-based organisations, participants are grouped into teams
(Fig. 1.2). A team is a group of people with a full set of complementary skills who

CHAPTER 1. INTRODUCTION 3

work on the same activity or tasks towards a common goal [9, 10]. The term team-
work highlights exactly the concept of people (a team) who work together toward the
same goal. Their actions are interdependent, but they are fully committed to a single
result. Teamwork1 means that people will try to cooperate, using their individual skills
providing constructive feedback, despite any personal conflict between individuals.

Figure 1.2: A team-based organisation consists of teams, which consist of participants
(adapted from Bruegge at al. [9]).

When the members of a team are geographically distributed over different places
and use the modern communication technologies to coordinate their work we talk about
virtual teams also known as dispersed or dispersed teams. In literature, different
definitions of virtual teams exist. For instance, the authors of the paper “Virtual teams:
a literature review” [7] identified a list of at least five existing definitions. Based on the
existing definitions, a team is virtual when all the following characteristics are true:

• geographically dispersed teams sometimes over different time zones;

• driven by common purpose;

• enabled by communication technologies [11], such as e-mail, video-conferencing,
telephone, etc.

Of course, today complex products like automotive products are designed in collab-
oration with the suppliers2 directly involved in the design process. Hence, also teams
belong different organisations can collaborate together. Therefore, additional character-
istics for virtual teams could be:

• they can belong to different companies;

• the teams are not necessary permanent;

• often the teams have small size, and

• the team members are knowledge workers.

The knowledge workers are the employees who have their main capital in the knowl-
edge whose job is to “think for a living” [12]. Examples of knowledge workers are:
engineers, doctors, architects, scientists, academics, etc.
Summarising these characteristics, the definition of virtual team is:

1Teamwork source definition: http://www.businessdictionary.com
2Supplier: a party that supplies goods or services to the company. For instance, a supplier that

provides components to an automotive industry. [Source: http://www.businessdictionary.com]

CHAPTER 1. INTRODUCTION 4

Virtual Team definition [7]: (small temporary) groups of geographically,
organizationally and/or time dispersed knowledge workers who coordinate
their work predominantly with electronic information and communication
technologies in order to accomplish one or more organization tasks.

Figure 1.3: Virtual teams characteristics.

An important keyword of the Virtual Team Definition 1.3 is the coordination pre-
dominantly with electronic technologies so all interactions are virtual.

Of course, it is important to highlight also the virtual teams disadvantages or their
difficulties [7]. The lack of physical interactions, reduced face-to-face synergies and
the lack of social interactions are difficulties to take into account. The introduction of
Virtual Teams within an enterprise is not easy and, as known in literature [13], requires
a heavy change in the project management. Hence, difficulties are both technological
and non technological, and must be evaluated before to leverage on a virtual team.
One difficult is the initial social relationships development among team members, and
it is possible to overcome it organising face-to-face meetings. Another difficult is the
need to reinforce project objectives because the geographically separated members can
inadvertently change or misunderstand the project objectives. When team members are
in the same office, it is very easy to ask directly to a colleague and have a fast answer.
Finally, it is evident from literature that another drawback of Virtual Teams is the
increase of workload in communications because the team members tend to exchange
formal e-mails for everything.

1.1.2 Enterprise 2.0

The term Web 2.0 was coined in 2004 to describe the internet’s capability to allow people
to connect together and contribute with content. Examples of emergent social software
platform are Facebook, Twitter, YouTube, and Wikipedia. Enterprise 2.0, coined by
Professor McAfee, is the use of Web 2.0 technologies within enterprises.

The Enterprise 2.0 known also as E2.0 is the use of emergent social software plat-
forms within an organisation to pursue its goals [14]. Social software supports the ren-
dezvous, connection, and collaboration among users who form online communities. The
term emergent, used in the previous paragraph, refers to the use of E2.0 software that is

CHAPTER 1. INTRODUCTION 5

freeform, optional, without predefine workflows and indifferent to formal hierarchies. In
contrast, enterprises usually use software that have standard workflows. For instance,
Customer Relationship Management (CRM) and Enterprise Resource Planning (ERP)
software are two type of system that every enterprise uses within and outside its organ-
isation. They define exactly the workflows to follow, the roles and what and when does
everyone. On the opposite side E2.0 are completely free without predefine structure.

Of course, Enterprise 2.0 technologies can be used with Virtual Teams to overcome
their limitations. For instance, E2 aims to introduce social interactions within the en-
terprise that is exactly a virtual team limitation. Of course, the introduction of E2.0
technology must be carefully evaluated and actually not all industries have installed it.

1.1.3 Trialogic Learning

In the Trialogic Learning [15] learners collaborate around shared objects developing,
transforming, or creating other shared objects in a systematic fashion for some later use.
The triad in the Trialogic Learning definition is made by:

1. the subjects or learners,

2. the collaboratively development, transformation or object creation

3. for later use or other users.

Figure 1.4: Trialogic Learning elements.

Trialogic learning concentrates on the interactions among people through develop-
ing common shared objects. The community gets collaboratively insight into knowledge
objects and also collaboratively works with knowledge artefacts to develop other knowl-
edge objects or transform the previous ones. The manipulation of knowledge objects
differentiates the Trialogic Learning from the Monologic and Dialogic learning as shown
in Figure 1.5.

CHAPTER 1. INTRODUCTION 6

Figure 1.5: Monologic, Dialogic and Trialogic Learning.

Specifically, shared objects [15] are knowledge artefacts, practices or processes de-
veloped collaboratively for later use. Artefacts can be conceptual or concrete. Examples
of conceptual artefacts are ideas, plans and designs, whereas concrete artefacts are pro-
totypes. These objects have a knowledge content and one can perform actions on them
transforming objects and their knowledge content. The representative example of Tri-
alogic Learning is Wikipedia. The shared objects are the wikipedia articles that are
updated by the communities of users for communal use.

In the context of this thesis the three elements of the Trialogic Learning exist. In the
engineering context, multiple engineers collaborate together to simulate products (the
shared objects) to use later to make the products.

1.2 Dissertation Goals and contributions

In large industries, such as automotive industries, the engineering teams are distributed
over multiple locations. The geographically separation among workers introduces new
requirements that are not covered by existing engineering software, and introduces new
challenges for software engineers. This thesis is related to a real use case of two separated
engineering teams of Fiat Chrysler Automobiles (FCA) that collaborate together with
the aim to design automotive products.

The first goal of this work is to get insight into the real use case understanding the
engineering context and providing an overview of the actual collaboration among team
members. In order to be compliant to a standard methodology, this step refers to the
standard software engineering methodology for the requirements elicitation. Therefore,
the main outcomes of this requirements elicitation activity is a list of collaborative
and engineering requirements gathered within a real use case and compared with the
existing literature. The availability of this real use case is a really valuable aspect
of this work because the reporting of collaborative requirements within the simulation
engineering context represents a significant distinction and novelty compared to the
existing work published in literature. The interaction with end-users has potentially
enormous advantages for the immediate feedback, but at same time introduces different

CHAPTER 1. INTRODUCTION 7

Figure 1.6: Dissertation Goals, Contributions and Chapters.

issues to face, such as the multidisciplinary and the need to get insight into an engineering
field that initially seems to be far from the computer science.

The systematic collection, classification and analysis of both collaborative and engi-
neering requirements has been performed through an agile methodology that involves
directly, immediately and continuously the end-users and stakeholders from the begin-
ning through short, repetitive and close steps directly on the field. Three approaches
have been used: on-site observations working directly with simulation analysts in FCA,
stakeholders interviews and a user survey between two dispersed teams. Of course, this
requirements elicitation is not a one-shot activity but it has been performed continuously
from the beginning until the end of the project.

The collection, classification and analysis of gathered requirements is only the first
step, the next step is to design, implement and test a platform to deploy in a real setting
like FCA. This work contributes with Floasys a collaborative web-based platform useful
to collect, centralise and share simulations among engineers of different dispersed teams.

A collaborative platform is not an isolated island but it must be integrated with the
industrial ecosystem. Therefore, the development of a new platform and its deployment
within the industry implies the integration of the existing software, procedures, best
practices and so on. In addition, different issues must be take into account like the

CHAPTER 1. INTRODUCTION 8

integration of existing software, heterogeneities among software and already existing
internal workflows and practices.

To summarise, the main goals achieved through this work are:

1. Collection, identification and analysis of the key collaborative requirements of dis-
persed teams within a real industrial use case (FCA use case);

2. Design of an integrated, extensible and modular software architecture;

3. Design, implementation and testing of a real working prototype called Floasys with
its collaborative and engineering functionalities;

4. Design, implement and test a generic tool called ExploraTool to visually explore
large datasets in hierarchical way;

5. Identify the possible extensions to different contexts (like aeronautic, rail and naval
sectors).

Figure 1.6 shows the mapping among the dissertation goals, contributions and chap-
ters. The picture reports on the left the achieved goals. From each goal, the picture
tracks the relative contribution and the dissertation chapter in which the topic has been
described.

1.3 Dissertation Roadmap

This thesis has been organised logically starting from the requirements elicitation activity
and the gathered collaborative and engineerig requirements. Then, it introduces Floasys,
the Web-based platform designed to address the key stakeholders’ requirements and able
to collect, centralise and share simulations among engineers. A part of the thesis is
allocated to describe the Floasys architecture and how it solves the data heterogeneity
issue through a modular and extensible architecture. The last chapter discusses an
interactive tool to visualise, explore and query repository of simulations and experiments.

The overall dissertation has been organised as follows:

• Chapters 2 and 3 introduce, describe and analyse respectively the collaborative
and engineering requirements gathered through on site observations, stakeholders
interviews and an on-line survey.

• Chapter 4 introduce Floasys, its features and its graphical user interface (GUI).
Of course, the functionalities have been divided in two parts: collaborative and
engineering features.

• Chapter 5 describes the Floasys integrated, extensible and modular architecture
and maps the architecture features with the provided functionalities and the gath-
ered requirements.

CHAPTER 1. INTRODUCTION 9

• Chapter 6 introduces the problem of large dataset navigation and exploration like
simulation and experimental repositories and describes the general idea behind the
ExploraTool.

• The last chapter 7 concludes the thesis reporting the possible future directions to
investigate.

Chapter 2

Collaborative Requirements

Contents

2.1 Introduction . 11

2.2 Related Works . 13

2.3 Methodology . 13

2.3.1 Stakeholders identification . 14

2.3.2 Domain understanding . 15

2.3.3 Impact of the a new system in the organisation 16

2.4 Collaborative Requirements Survey 16

2.5 Simulation data centralization 17

2.6 Provide search facility . 19

2.7 Provide metadata over simulation data 21

2.8 Simulation data versioning . 22

2.9 Support data sharing . 22

2.10 Simulator independence . 23

2.11 Extensibility and modularity 24

2.12 Social network . 24

2.13 Conclusions . 26

Small and medium enterprises (SMEs) as well as large industries are organised in
multiple geographically distributed teams that collaborate together. Fiat Chrysler Au-
tomobiles is a large industry. It has many engineering teams around the world that
collaborate together to design vehicle products. The goal is to work closely with a team
of professionals to get insight and gather the key collaborative requirements in the engi-
neering field. It is a challenging goal due the different involved stakeholders but at same
time represents a significant and relevant use case. This chapter reports, analyses and
discusses the key collaborative Functional and Non-Function requirements to design a
platform to foster the collaboration among industrial simulation practitioners and pro-
mote the sharing of models, results and know-how. These requirements come from a

10

CHAPTER 2. COLLABORATIVE REQUIREMENTS 11

relevant literature study and an extensive requirements elicitation performed working
closely with two engineering teams in Fiat Chrysler Automobiles (FCA) in Pomigliano
D’Arco (Napoli) and Torino. The requirements are gathered through observations, stake-
holders interviews and a user survey (see Appendix A).

This chapter is organised as following. It introduces synthetically the main collabora-
tive requirements in the Section 2.1. The Section 2.3 describes the existing methodologies
for the requirements elicitation activity describing how these have been conducted in the
Fiat Chrysler Automobiles use case. Then, it deeply discusses every single requirement
providing the survey results and user comments collected during the interviews and
meetings.

2.1 Introduction

Fiat Chrysler Automobiles (FCA), as many other large industries, is organised in mul-
tiple geographically distributed teams that collaborate together. Through the survey
analysis, we get that all analysts collaborate at least with another engineer in the same
office and more than half analysts collaborate with at least one engineer who works in
another location. They collaborate together sharing file geometries (CAD files), simula-
tions and documents (e.g., slides, spreadsheets).

Figure 2.1: Collaboration among geographically distributed teams.

Large industries have multiple locations around the world and are internally orga-
nized in multiple structures of different types. One type of structure is the functional
area. Functional areas have technical know-how about a specific sector (i.e., engineer-
ing, cost engineering, marketing, commercial). Specifically, engineering functional areas
perform tasks to design products and constantly invest in Research and Development
(R&D) to improve their know-how and to be ready to provide innovative design solu-
tions. The Computational Fluid Dynamics (CFD) unit is the engineering functional

CHAPTER 2. COLLABORATIVE REQUIREMENTS 12

area with highly skilled engineers, called CFD analysts, who perform numerical com-
puter simulations to analyse problems that involve fluid flow and other related physical
phenomena, such as aerodynamic, aerothermal and aeroacoustic automotive product
behaviour. CFD is widely adopted in many industrial sectors, such as automotive, aero-
space, high-tech and chemical sectors. CFD analysts perform simulations following the
CFD Workflow [16] that is iterative and consists of three phases: (1) pre-processing to
prepare simulation, (2) solving and (3) post-processing to analyse results. The CFD
unit and the CFD Workflow are the use cases. In each CFD unit, there are analysts
and a technical manager who is responsible for the internal team organisation, resources
monitoring and their allocations.

In a large industry, many CFD units collaborate together (Fig. 2.1). The collabora-
tion is among geographically distributed CFD units and, among CFD units and other
industrial teams, such as the product style designers and the performance engineers. In
order to design an automotive product many engineers collaborate together. Especially,
to perform aerodynamics/aerothermal analyses, CFD analysts, automotive designers,
and performance engineers collaborate together.

The prerequisite to enable the collaboration among analysts is the simulation data
centralisation. Industries perform many simulations per year, therefore, in order to
foster the model reuse and promote the data sharing, it is fundamental how easy
it is to retrieve the needed data stored in multiple repositories with different formats
(often in closed file format). In order to improve data retrieval, users aim to annotate
simulation files with additional metadata over data, such as free tags or structured
data, and to have a search tool able to get desired data. Search tools should support
at least the search through files’ names, annotated metadata and simulations’ contents.
Simulation data version control is another desired feature. The aim is to have a
history of modifications made to simulations. It is a desired feature because the same
simulation is often performed changing only some parameters (e.g., inlet velocity).

Requirement Notes

Req. 1 Simulation Data centralisation
Req. 2 Metadata over simulation data Free tags, structured information.
Req. 3 Search facility based on file names, content and tags.
Req. 4 Version control over data
Req. 5 Data sharing
Req. 6 Integrate multiple simulators Avoid Vendor Lock-In.
Req. 7 Extensibility and modularity
Req. 8 Do not change how engineers work

Table 2.1: Stakeholders’ Collaborative Requirements.

Through, the survey and interviews many requirements have gathered. All of them
were filtered to get the list of key collaborative requirements shown in Table 2.1. These
key collaborative requirements drive the design of a collaborative platform to foster
collaboration among group of engineers who perform simulations. Nevertheless, the
analysed context considers mainly simulations practitioners, many of these requirements
could be valid also in other engineering contexts (i.e., aerospace, naval).

CHAPTER 2. COLLABORATIVE REQUIREMENTS 13

2.2 Related Works

Aberdeen Group conducts market research studies to help businesses worldwide to im-
prove performance1. They use a research methodology called P.A.C.E. to classify com-
panies in three categories: best-in-class, average and laggard. Then they identify and
compare companies using the internal and external pressures, their capabilities and the
actions used to face the market challenges. The market research “Getting Product De-
sign Right the First Time with CFD” [4] by Aberdeen Group studied the experience of
704 companies that perform simulations to design their products. Specifically, they use
the Computational Fluid Dynamics (CFD) simulations to design the products. Their
leading market research question is how the CFD simulations impact the product design
and which are the key advantages of using them. The white paper includes a list of
“actions” that are the steps to perform in order to increase the competitiveness of the
companies on the market. Some of the actions are: capture and document best practices
for conducting simulations, centrally manage the simulation results and the best prac-
tices, take advantage of predefined wizards or templates to guide less experienced users.
The market research provides some starting points that must be further investigated,
such as “promote the collaboration” among engineers, ensure the right people have access
to the results and offer version control. Obviously, the market research does not discuss
the technical solutions to achieve these actions. We had the opportunity to work closely
with professionals in Fiat Chrysler Automobiles (FCA) who use CFD simulations to
design vehicle products. The work further investigates the collaborative requirements
of dispersed teams and co-located engineers gathered using interviews and a survey.
Here, we analyse the survey requirements results enriching them with the stakeholders
observations and feedback. The work contributes also with technical solutions to meet
the reported requirements. In [5], authors conducted a survey to understand the needs
and perception of practitioners about the Cloud-based simulation (CBS). In their survey
results come to light the need to share, store and retrieve models in CBS.

2.3 Methodology

As already known in literature, the requirements elicitation is not an easy activity. This
section aims to review the existing literature methods to gather stakeholders’ require-
ments and summaries the used method along its advantages and drawbacks. In this
way, the work can be replicated in the same field or another field following the same
methodology.

The used methodology involves the stakeholders since the beginning in the following
activities: plan, design, and test. The used requirements elicitation methodology has
the following main steps:

1. stakeholders identification;

2. domain understanding;

1Aberdeen Group official web site http://www.aberdeen.com/

CHAPTER 2. COLLABORATIVE REQUIREMENTS 14

3. tasks identification.

The previous requirements elicitation activities are not one shot activities but I
followed an agile methodology with short iterations of two weeks each. For each itera-
tion, stakeholders, simulation analysts and technical managers have been immediately
involved in the requirements elicitation process. The main tools that I have used are:

• direct on field observations;

• open discussions and informal meetings with a small group of simulation analysts;

• requirements elicitation survey;

• discussions using mockups and system prototypes of the gathered requirements.

In the following I focus on two steps: the stakeholders identification and the domain
understanding.

2.3.1 Stakeholders identification

The stakeholders are the people affected introducing a new system in an organisation.
System stakeholders are not limited to top management that pays for the system, but
more important are the people (actors [9]) that will directly use the system. In
addition, also people that do not directly use the system and are indirectly affected by
it must be considered as stakeholders. For instance, customers that will place the phone
orders will be affected and must be considered as stakeholders. The stakeholders identifi-
cation and their classification are fundamental activities to perform before requirements
elicitation. Of course, the list of stakeholders can change and be updated many times.
The CUSTOM approach [17] as explained by Dix et al. [6] classifies the stakeholders in
four groups: primary, secondary, tertiary and facilitating. One should be sure to meet
the requirements of all stakeholders but often they can be complex and in conflict each
other [6].

One could ask why it is important to identify all the stakeholders. In the book
“Human-Computer Interaction” [6], the authors described an example of organisation
with different departments, each one with its computer system, and the decision of the
top management to integrate them together to share sales, marketing and stock data.
The introduction of the system without taking care of salesmen, responsible for market-
ing and storekeeper, leads to a paradoxical situation, in which, for instance, salesmen
are unhappy to share their customers contacts with the marketing and keep them in
personal files. The main concern is that all organisations have formal and informal com-
munication structures that contribute to the overall organisation working. Identifying
correctly the stakeholders uncovers hidden information transfers and highlights how the
information flow across the structures. One must be really careful to not disrupt these
communication schemes, like the hierarchy, introducing a new system.

CHAPTER 2. COLLABORATIVE REQUIREMENTS 15

2.3.2 Domain understanding

Software Engineers often need to deal with new domains that are far from their field
of studies. Therefore, they need to learn a new technical language and identify the
correct keywords to establish an efficient communication with the identified stakeholders.
It is exactly the case described here, stakeholders are Computational Fluid Dynamics
simulation domain experts. The first step is to learn how they work everyday. This has
iteratively done through: (1) workday observation, (2) open discussions, (3) stakeholders
interviews, (4) meetings, and (5) a survey [6]. To get a deep insight into the domain,
all the previous activities must be performed. In addition, these activities involve the
stakeholders from the beginning so they are aware about the design decisions.

It is fundamental to identify the purpose of the research study. There are four types
of purposes [18] although sometimes it is really difficult to effectively classify a study:

• Exploratory: to find out what is happening and seek new insights as well as
generate new ideas;

• Descriptive: to describe a phenomenon;

• Explanatory: to seek an explanation of a situation or a problem

• Improving: to improve an aspect of the studied phenomenon.

In this work, the research study aims to report how engineers daily work, and identify
collaborative requirements to improve their work. Therefore, it can be classified as a
descriptive and improving study. In according to the existing literature, the following
research methodologies exist:

Methodology Primary objective Primary data Design

Survey Descriptive Quantitative Fixed
Case study Exploratory Qualitative Flexible
Experiment Explanatory Quantitative Fixed
Action research Improving Qualitative Flexible

Table 2.2: Overview of research methodology characteristics.

Case studies are by definition conducted in real world settings, and thus have a
high degree of realism [18]. Of course, the high realism corresponds to a low level of
variables control. In contrast, controlled experiments usually conducted in laboratory
aims to fix all the parameters and change only one at time to measure qualitatively or
quantitatively their effect. Conducting case studies usually researches get qualitative
data. On the other side the using of a survey is very interesting because it can give
quantitative data. As reported in [18], the research methodologies are depicted in Table
2.2.

CHAPTER 2. COLLABORATIVE REQUIREMENTS 16

2.3.3 Impact of the a new system in the organisation

One reason for which the introduction of new systems fails is due to the mismatch
between information systems and organisational and social factors [6]. Another consid-
eration is the impact of the technology introduction within the organisation. The impact
should be assessed and evaluated before its introduction [6] as well as its acceptance.
Aspects like free rider problem and critical mass must be evaluated. The free rider
problem concerns persons that participate, for instance in a meeting, but they do not
give any contribution. On the other side, the users will join a system only if they have
a benefit. The critical mass is the number of users that join the system in which the
benefits of using the system became equal or grater then costs.

2.4 Collaborative Requirements Survey

In order to gather the collaborative requirements (Table 2.1), we worked closely with a
team of professionals in Pomigliano D’Arco (Italy) who extensively use CFD simulations
to design automotive products. We observed their daily work annotating, collecting and
analysing their tasks and workflows. We constantly discussed with analysts and technical
managers trying to get a deep understanding of their work and answer to the questions.
Requirements are refined through continuous iterations. FCA has multiple geographi-
cally distributed teams, therefore in order to get the collaborative requirements directly
from stakeholders, we issued an electronic survey (shown in Appendix A) created with
Google Forms2. The survey questions were divided in the following main sections: partic-
ipants’ experience, collaboration among engineers and data sharing, data centralisation
and data search, and simulation data versioning. The survey responders are seventeen
FCA professionals half from Pomigliano D’Arco (Naples, Italy) and half from Orbassano
(Turin, Italy). Both groups design products using Computational Fluid Dynamics sim-
ulations. Through the paper we sometimes differentiate the technical managers and the
analysts because they have different roles and requirements. Technical managers usu-
ally ask management features, such as the opportunity to monitor resources, projects
timeline and performance goals. On the other hand, CFD analysts, who perform sim-
ulations, require engineering features (e.g., simulation monitoring, automatic document
generation). Of course, both roles aim to collaborate over centralised data at different
granularity. Floasys has been designed to also support engineering tasks, such as the
simulation convergence monitoring, engineering wizards to automate repetitive tasks,
simulation templates and so on.

An important consideration is the impossibility to change how the employers ac-
tually work. Any architectural software solution to meet the requirements shown in
Table 2.1 must rely on existing internal procedures and must not change them. During
the requirement elicitation activity we also tried to understand the ways on how a col-
laborative platform could be introduced and deployed over existing practices without
hardly change how the engineers work but at same time improving their work.

2http://www.google.com/google-d-s/createforms.html

CHAPTER 2. COLLABORATIVE REQUIREMENTS 17

Figure 2.2: Participants’ roles and their working place (questions Q1 and Q2).

The following section will analyse each requirement listed in Table 2.1.
The survey participants are CFD analysts and technical managers (Figure 2.2a). One

survey participant is an academic who works daily with CFD analysts. In order to get the
participants experience in the simulation field, the survey asks the years of experience
and the number of performed simulations per year. More than 50% of participants
perform at least one hundred simulations per year. This gives an idea about the total
number of simulations per year, about one thousand simulations per year considering
only the survey participants. Technical managers have a high experience in the CFD
field but they perform less simulations per year because their tasks concern mainly the
team organization.

Figure 2.3: Participants’ experience.

All analysts collaborate with at least one other engineer in the same office (Fig.
2.4a). More than half analysts collaborate with at least one engineer who works in an-
other location (Fig. 2.4b). Analysts collaborate together sharing file geometries (CAD),
simulations and documents (e.g. slides, spreadsheets).

2.5 Simulation data centralization

In order to support the collaboration among engineers (Fig. 2.1) they must access to
centrally available simulation data (Req. 1, Table 2.1). Data centralisation means to
collect data from different sources over time (i.e., from different simulators) and store

CHAPTER 2. COLLABORATIVE REQUIREMENTS 18

Figure 2.4: Co-located (question Q8) vs distributed workers (question Q9).

them in an open format.
Data centralisation and the open format give an additional advantage: data and

results can be aggregated in different ways, possibly in real time through an interactive
user interface. Data aggregation means that analysts could compare simulations results
performed on the same project or about multiple projects. Performance engineers and
technical managers need to work on aggregate data (e.g., statistical data, trends about
performances) whereas CFD analysts access to fine grain simulation data (e.g., model,
simulation case) and their results to perform comparison. Obviously, data aggregation
is not feasible with classic shared network folders that store data in a closed file format.

In according to Aberdeen Group’s whitepaper “Getting Product Right the First Time
with CFD” [4], in order to improve the company competitiveness, they should centralise
simulations results. The aim is to centralise not only the results but all the related data
such as the 3D geometries, simulation setup parameters and the documents allowing
their easy retrieval.

Based on the presented study, in order to centralise data and provide additional
service over them, software designers should consider: the file size, the total number of
performed simulations and eventually the closed file format.

Figure 2.5: Geometries and simulations file size (question Q10 and Q11).

In the use case, both geometries and simulations are very large files. In according

CHAPTER 2. COLLABORATIVE REQUIREMENTS 19

to the on-field observations and through the survey, we asked which are usually the
geometries and the simulations file sizes (questionsQ8 and Q9 in the Survey in Appendix
A). Figure 2.5a shows that the CAD file size is about one gigabyte in the fifty percent of
answers. The file geometry can contain also the surface mesh and/or the volume mesh,
explaining the differences of file size answers depicted in the chart in Fig. 2.5a. Instead,
the simulation file size (Fig. 2.5b) is more than ten gigabyte in the 80% of answers.
Simulations are so large because they contain the entire detailed vehicle geometry, the
surface and the volume mesh as well as the physical/mathematical data to describe the
model. The large file size and the huge number of performed simulations exclude the use
of a relational database to store data and provide additional services such as data search
(see the following section) or results aggregation. In order to perform a simulation, its
file must be stored on the file system. The use of a database leads to continuous transfers
of data from the database to the file system and vice versa, compromising performance
and response time.

2.6 Provide search facility

The aim is to provide a search tool able to find data using simulation file names, simu-
lation content (e.g., its model, parameters, etc.) and metadata (e.g., tags).

Simulators software often store simulation data as binary files in a closed file format.
In addition, the used CFD simulator does not have an export functionality to an open
format. Therefore, classical search tools are not useful to find simulation files based
on their content (files are in binary format). For instance, the search utility of the
Windows OS can not be used to search within the file content. To overcome this issue,
users actually insert a lot of information in the simulation file name that will be useful
the next time to find the data.

Figure 2.6: Information stored in the file names (question Q20).

As shown in Fig. 2.6, the main information inserted in the file name are (questions
Q21-Q28): the project name, the release, the revision number, the engine model and
the vehicle trimming. Users decide to put the most important information, regarding
their personal opinion, in the file name with the drawback to have very long file names.

CHAPTER 2. COLLABORATIVE REQUIREMENTS 20

In addition, not all information can be stored in the file name so a lot of data remains
within the simulation closed file and can not be used for next retrievals.

Figure 2.7: Rules to store files (questions Q19, Q21, Q22).

More than half analysts follow roughly some rules to store files in the shared file
system trying to follow them over time. Here, the term “rules” mainly means how engi-
neers give a name to a file and how they decide the directories structures to improve its
future retrieval. Nevertheless these rules are mostly a personal choice (82%), engineers
add essentially the same information to the file names because the analysed engineering
field is very specific. The limitation of this approach emerges when an engineer must
search a simulation performed by other employees, mostly because he can not use the
existing search tools (e.g., the Windows Serach tool) to search simulations based on the
file content. An example of query is: “search all simulations performed at inlet velocity
X [km/h] that has the spoiler”. Unfortunately these data are not inserted in the file
name but are inside the closed file. This limits also the aggregation, based on specific
keywords, of data at different levels, results comparison of multiple different simula-
tions and generation of performance history charts about data of the entire simulation
repository.

Figure 2.8: Search based on file content (questions Q27 and Q28).

To further explore the search of files, we asked to stakeholders (question Q27) whether
they have a tool to search simulation based on the simulation file content such as the
parameters (e.g. inlet velocity, which parts compose the simulated model). About 60%
of participants said that they do not have such tool (Fig. 2.8a). In addition we asked
whether they desire a tool to support the searching based on simulation content (question
Q28); about 75% of participants assert that they desire it (Fig. 2.8b).

CHAPTER 2. COLLABORATIVE REQUIREMENTS 21

An interesting consideration is about the technologies used to search files on the
shared network folders. Analysts usually work on a specific project so they are confident
with it and they try to remember where the files are stored. So, in order to find a
file the most used approach are: try to remember where it is stored, navigate the file
system seeing the file names and finally ask to a colleague. The most surprising (for
the technical managers) survey result is that many analysts open the simulation file.
The simulation file open requires a lot of seconds considering the heavy content. The
less used techniques (in average) are the file history because the data are accessed from
different workstations so the file history is not updated and the Unix and Windows find
tools.

Figure 2.9: Technologies to search simulations (question Q31).

It is evident that an improvement can be done on the data search and retrieval. The
most difficult and challenging part is that analysts use multiple simulators; each one
stores files in different way, some of them in closed file format. The availability of a
search tool enables the selection of multiple simulations based on the inserted criteria
and the opportunity to extract statistics on the data.

2.7 Provide metadata over simulation data

Engineers use multiple simulators software, some of them store data in closed file format.
As stated in the previous section, the file content can not be used to retrieve the files
using the classical search tools such as using the Operating System find tool. Actually,
to overcome this issue, engineers insert a lot of information in the simulation file name
such as project name, revision and engine type (Fig. 2.6). Obviously, the file name
can not host too many data, so other useful data are not annotated with simulations
(e.g., comments and feedback). These data are very important both to improve the

CHAPTER 2. COLLABORATIVE REQUIREMENTS 22

next retrieval but even more important to give a description of what the analyst did,
his considerations and comments. To get this requirement through interviews and the
survey, we asked to engineers whether they desire to link other data to the files (question
Q25). All analysts (100%) desire a system to link other information to the files, such as
the file tagging.

2.8 Simulation data versioning

Figure 2.10: Version control (question Q30).

As reported in the Aberdeen Group market research [4], an action to improve the
company competitiveness is to provide the version control over data. The survey aims
to investigate further this need to understand its value for stakeholders. Here, version
control means that the user can track modifications made to a simulation over time. It is
interesting because engineers usually do not start simulations from scratch but they copy
an existing file changing some parameters. In addition, with the same simulation file,
could be performed many simulations changing each time few model parameters (e.g.,
the inlet velocity). According to the survey, more than 60% of participants declared that
they do not have a tool to track the simulations modifications. In addition more than
80% of participants said that this kind of tool could be useful.

2.9 Support data sharing

CFD analysts need a mechanism to exchange references about data. On Internet a
common way to share resources is exchanging URLs. Hence, the idea is to univocally
identify simulation data with URLs and use them to share data among engineers. An
important aspect of this technique is “who can see what data”. Multiple industrial roles
exists (Fig. 2.1), so an access control is important to control the sharing of confidential
data.

CHAPTER 2. COLLABORATIVE REQUIREMENTS 23

2.10 Simulator independence

The previous requirements must work independently by specific used simulators to gen-
erate data. For instance, the tagging and search function must work on a repository of
heterogeneous simulations coming from multiple simulators. This requirement is very
important because in the analysed context, analysts use multiple CFD software and ac-
tually one single software can not be used to perform all simulation types. In the FCA
use case and large industries, there are different teams that use different software to
perform tasks. For instance, a team is responsible for the CAD design whereas another
team simulates the model using other software. Obviously, in other contexts both design
and simulations can be done by the same team with an all-in-one CAD/CAE software.

Through the survey, we asked (multiple choices question Q31) to indicate which
simulator software analysts use, to give an idea about their multiplicity. All analysts use
STAR-CCM+R⃝ and more than half of them use OpenFoamR⃝. Other used software are:
CFD++ (35%) and PowerFlow (18%). Analysts have used software over the years and
they are confident with them. Moreover, industries are unwilling to invest in training
engineers on other software products. Therefore, in order to meet the requirements is
fundamental to support and collect data from multiple daily used CFD simulators. This
is a key difference with other platforms (i.e., e-Science) that often integrate simplified
or in-house developed solvers [19].

It is evident that any platform must consider the integration of multiple simula-
tors. The integration of multiple simulators (Req. 6 in Table 2.1) has some difficulties
especially because CFD analysts use often proprietary software and actually a lack of
simulator standardisation exists so that many software do not have function to export
data in open format. The import/export in open format are functions to evaluate during
the choose of a CAD/CAE [20] otherwise simulation data are locked in the vendor soft-
ware. Vendor Lock-In is a well-known Anti-Pattern [2] [21] [22]: the phenomenon that
causes customer dependency on given vendor about a specific good or service [23] with
high switching costs [24]. Vendor Lock-In occurs both in terms of services and data.
Vendor Lock-In Anti-Pattern in terms of services occurs when the architecture heavily
relies on a closed vendor software and strictly depends by the vendor choices, so the ar-
chitecture is product-dependent [25]. Data Lock-In occurs when the only way to access
to the data is by using the Vendor Software because data are stored in a proprietary file
format or they are stored on the vendor server and it does not provide an export func-
tionality to an open format or a public customer API. The exporting and importing of
geometric data are well-established functionalities for the CFD software, simply because
they must commercially support the interaction with other CAD software. Instead, it
is not the same for the entire simulation data such as the case setup, the simulation
results etc. Data Lock-In is very common in Cloud Environments [26] and is an obstacle
to cloud computing [27]. Vendors lock users in to make harder for them to leave the
product because they cannot get their data; despite, as reported in literature, giving the
opportunity for the customers to get their data increases their trust in the product [28].
A design solution useful to mitigate the Vendor Lock-In is to design the system with an

CHAPTER 2. COLLABORATIVE REQUIREMENTS 24

additional layer called isolation layer [2].

2.11 Extensibility and modularity

The combination of modularity and extensibility [29, 30] system qualities allow final
customers to compose a system with the only needed modules and to create their own
modules to automatise specific tasks keeping them private to protect their know-how.
In addition, an extensible and modular architecture allows the introduction of new func-
tionalities tailored to the customers needs. Extensibility is the ability of a software
system to allow and accept significant extension of its capabilities without major rewrit-
ing of code [29] [30]. Extensibility is a quality architecture attribute useful during the
development and especially in future when more and more simulators’ features will be
integrated in the architecture [31].
Industries want deploy the same system with different features. Modularity “is the de-
gree to which a system or computer program is composed by discrete components such
that a change to one component has minimal impact on other components” [29]. The
architecture must be modular enough to allow both the adding of new simulators and
the removing of existent simulators. The modularity requirement has an interesting
advantage for the architecture design: the engineering tools and simulators are loosely
coupled. An important consideration concerns also the software license. Two opposite
needs must be taken into account: on one hand, industries want protect their know-how,
on the other hand, the architecture must be adopted also in other contexts. Based on the
presented use case, modularity, extensibility and Eclipse Public License (EPL3 license)
are the right mix because the architecture, the framework and some other modules are
open source but at same time industries can protect their know-how developing their
own private and closed modules.

2.12 Social network

Centralisation of data, metadata and easy retrieval are required to enable the sharing
of data among multiple teams. An interesting idea is to enable the discussion around
simulation data using a kind of private social network (e.g., elgg4). So, through the
survey we investigated also this opportunity trying to understand what the users think
about it. Actually, in the analysed context do not use a private social network as shown
in Figure 2.11a and as stated by 95% of survey participants. Furthermore, more then
65% of participants actually are not involved in discussions about industrial topics about
their work as shown in Figure 2.11b.

The previous survey questions investigated the existence of a private social network
within the company, a further step is to evaluate how the users are prone to use a private
social network to discuss around simulation data, issues and interesting topics. Of course,

3EPL license web site http://www.eclipse.org/legal/epl-v10.html
4Elgg official web site: http://elgg.org/

CHAPTER 2. COLLABORATIVE REQUIREMENTS 25

Figure 2.11: Actual use of private social networks (Questions Q31 and Q32).

nowadays users are widely exposed to the Social Network platforms (e.g., Facebook), so
the term Social Network is a well-known. More than half of survey participants (65%)
consider useful to involve other coworkers in discussions about interesting industrial
topics. Moreover the 82% of participants consider this opportunity useful to improve
their know-how (Figure 2.12b).

Figure 2.12: Introduction of social networks (Questions Q33 and Q34).

About the use of social networks to dicuss on simulation data, through the survey
(question Q35) and interviews we asked to the users what they think about their use. We
get interesting considerations. A new employer declared that a social platform is useful
to increase his know-how becoming immediately productive. Another useful comment
is about the discussions traceability as the opportunity to find information about a
previous faced issue. Therefore, traceability do not means to trace and use social as
official place to make decisions or against employers (for it there are the official meeting
memorandum) but to use it as a know-how repository.

CHAPTER 2. COLLABORATIVE REQUIREMENTS 26

2.13 Conclusions

This Chapter provides a deep analysis of collaborative requirements to design a platform
to collaborate around simulation data and promote the share of models. Through obser-
vations, interviews and a user survey we collected many requirements, so through further
screening we were able to identify the key and essential collaborative requirements. In
addition, it opens further investigation towards the use of social networks.

Chapter 3

Engineering Requirements

Contents

3.1 Introduction . 28

3.1.1 Introduction to the Simulation Workflow 28

3.1.2 Metrics used to evaluate an engineering software 30

3.2 Requirements Overview . 32

3.3 Functional Requirements . 33

3.4 Non-Functional Requirements 34

3.4.1 Support multiple simulators . 34

3.4.2 Simulator selection . 35

3.4.3 Concurrent simulators use . 35

3.4.4 Headless simulators integration 36

3.5 Related Works . 39

3.5.1 New Product Development Process 39

3.5.2 Engineering Use Case . 41

3.5.3 CFD Simulation Workflow . 43

3.5.4 Existing platforms for CFD simulations 45

3.6 Future works . 46

3.6.1 Automatic Simulation Workflows Management 48

3.6.2 Experiment Data Management 50

3.7 Conclusions . 50

This chapter introduces, analyses and discusses the engineering Functional and Non-
Functional requirements to support daily engineers simulation activities automating
repetitive, time consuming and error prone tasks. These engineering requirements have
been gathered through interviews with stakeholders, daily work observations and an
on-line survey. In the considered use case in Fiat Chrysler Automobiles, engineers de-
sign vehicles using computer simulation following a standard simulation workflow called

27

CHAPTER 3. ENGINEERING REQUIREMENTS 28

Computational Fluid Dynamic (CFD) Workflow. Through the extensive interviews ac-
tivities with stakeholders, the observations, a survey and the existing literature [4], the
main gathered engineering functional requirements can be divided in the following main
points:

• provide industrial templates and wizards for less experienced users and conform
the process followed by the engineers to perform simulations;

• provide tools to automatise, support and improve manual, repetitive and error-
prone engineering daily tasks;

• integrate industrial software, HPC resources and industrial know-how.

These features must be provided directly within the simulation workflow and their
achievement represents the basic foundation to provide a service that automatically
performs the Multi-Disciplinary and Multi-Objective simulations.

This chapter is organised as follows. It introduces briefly the engineering context
and the simulation workflow. Then, the chapter provides an overview of both Func-
tional and Non-Functional requirements with a detailed description for some of them.
Finally, the chapter provides the possible future works especially in terms of a plat-
form to automatically manage multiple simulation workflow iterations considering both
Multi-Disciplinary and Multi-Objective simulations.

3.1 Introduction

Through the closely work with engineers to gather the Collaborative Requirements,
stakeholders highlighted additional engineering requirements to improve their daily work.
Practically during the discussions with the engineers it is very difficult to get what they
desire in terms of collaborative features but instead they are more likely to discuss about
their daily work and the issues that practically they face. And, of course, collaborative
requirements within an engineering context can not be completely separated from the
engineering needs. Based on these motivations, this chapter introduces the engineering
context and the engineering requirements that are related mainly to tools to automate
repetitive, time consuming and error-prone tasks. Of course, the aim is not to replace
existing simulator software and functionalities, but instead to integrate them together
to provide new services.

3.1.1 Introduction to the Simulation Workflow

Briefly the Simulation Workflow is made by three steps (Figure 3.6): pre-processing,
solving and post-processing phases. In the pre-processing phase engineers setup the
simulation, in the solving phase engineers use the clusters to solve the simulation and in
post-processing they collect, analyse and summarise results generating documents.

CHAPTER 3. ENGINEERING REQUIREMENTS 29

Figure 3.1: CFD Workflow: software used by analysts.

In order to perform simulations, engineers use different software, such as Computer-
Aided Design and Simulator software. In addition, they use High Performance Com-
puting Resources (e.g., Cluster) to run simulations. As known in large industries the
Computational Fluid Dynamic workflow is not covered by only one software especially
for large industries that design complex products, but multiple software are required.
For instance, industries use at least a CAD software, a simulator and a post-processor
software. In addition, large industries simulate different parts of the vehicle so they use
multiple simulators, each one for the specific simulation type.

Typically CFD analysts start from the geometry that describes the vehicle shapes.
This geometry is not suitable to be used in the simulators software. Therefore, it is
imported in another CAE software called pre-processor. In the analysed use case, engi-
neers use ANSAR⃝1 developed by BETA CAE Systems S.A. Another motivation to use a
pre-processor is the need to clean up the geometry and create both the surface and vol-
ume mash indispensable to simulate the vehicle physical properties. The volume mesh is
then imported into the simulator software (e.g. OpenFoamR⃝ or STAR-CCM+R⃝). The
Fig. 3.1 shows the CFD Workflow with software tools used at each workflow step. At
the end of the tree steps, the simulation results (e.g. contour-plots and tables) are used
to build the documents.

Engineers use multiple CFD software in the solving phase. Therefore, through the
survey we asked to the analysts which software they use. The answers have been depicted
in Figure 3.3. All analysts use CD-adapcoTM STAR-CCM+R⃝ as main simulator software
and more than half analysts use OpenFoamR⃝.

Of course the described workflow is usually performed within a large industry like
Fiat Chrysler Automobiles; for small enterprises the workflow essentially is the same but

1The ANSA official web site is http://www.beta-cae.gr/.

CHAPTER 3. ENGINEERING REQUIREMENTS 30

Figure 3.2: Simulation software used to simulate vehicles.

the number of software can be reduced in number as well as the product complexity. Of
course, for simple products it is possible to use one integrated software environment to
design the product, simulate it on a single computer and process the results.

Another difference between small and large enterprises are the number of performed
simulations. In the automotive sector as well as in the aerospace each engineer performs
many simulations for year. As reported in Figure 3.3, more than half of survey partici-
pants in FCA perform at least one hundred of simulations per year. This is very normal
because usually engineers perform multiple simulations on the same product changing
only some parameters, such as the inlet velocity (the velocity of the air fluid in the
wind tunnel) or the position of a component. The repetition of these operations (e.g.,
simulation running, generation of documentation, etc.) executed mainly manually raise
the need to have an automatic tool to perform them, and Figure 3.6 shows on top the
main services to provide within the CFD Simulation Workflow.

Figure 3.3: Participants’ experience.

3.1.2 Metrics used to evaluate an engineering software

It is very interesting to understand which criteria the engineers use to evaluate a CFD
solver. This gives a rough idea on which should be the features important for end-users.

CHAPTER 3. ENGINEERING REQUIREMENTS 31

Therefore, we asked to CFD analysts which are the criteria used to evaluate and choose
a CFD solver. Engineers judge a CFD solver considering the commercial support, its
reliability and the validation over many common industrial contexts. Another important
criterion is the software product dissemination especially considering solutions used by
the competitors.
CFD software are used in many industrial sectors such as automotive, aerospace, high
tech, oil/gas and so on. The same CFD software usually is generic enough to be used
in multiple sectors. So, end-users (40% of respondents) seek for standard templates
and wizards for their specific configurations and simulation setup. In this way, instead
to start a simulation from scratch every time, the wizards guide end-users to setup the
simulation giving only the basic information. Wizards are useful also for less experienced
users reducing the training costs. Moreover, both templates and wizards guarantee that
every one in the team works in the same manner.

The “Getting Product Design Right the First Time with CFD” [4] market research
shows the same result and advises the use of templates and wizards as a way to increase
the company competitiveness. In 2010 the 27% of Best-in-Class companies report plans
to implement these facility. In the cited market research [4], Best-in-Class are the indus-
tries with a high performance index based on likely to release product on time, reduction
of development time, meeting of quality and cost targets.

Figure 3.4: Criteria used to evaluate a CFD solver (Question Q32).

In addition, it is interesting to understand the criteria used by analysts to evaluate
an engineer tool in general (not only the CFD solvers as in the previous question). The
question outcome is shown in Fig. 3.5. Obviously, the most of analysts consider the
solver accuracy the most important software feature. The accuracy value emerges also
in the market research “Getting Product Design Right the First Time with CFD” [4], the
Best-in-Class companies place high value on CFD simulation accuracy so that the 58%
of responders aim to have simulations as accurate as possible and they are not willing
to sacrifice accuracy. But more accuracy requires more running and solving time. So,
in order to reduce the running time a way could be the model simplification but this
generates less accurate results.

CHAPTER 3. ENGINEERING REQUIREMENTS 32

Other criteria to evaluate a software are the Easy to use and the GUI. Through the
survey introduced in the Chapter 2 and performed within FCA, half of analysts think
that the system usability is important. In particular, the 76% of respondents consider
the software easy to use as a criteria to choose or judge an engineering software. This
shows an increase importance of the software usability than in the past. In contrast, the
Aberdeen Group market research (2010) reports that only the 23% of their responders
considered the easy to use of a CFD software important. Therefore, the usability is
becoming important also in the engineering field where the end-users are usually very
experts, and they daily use software with many options and are prone to accepts also
complicated software to perform their tasks.

Figure 3.5: Criteria used to evaluate an engineering software (Question Q33).

The last criteria is the software costs but obviously this not affect directly the analysts
because usually the technical manager are involved in the software purchase.

An interesting survey outcome is that the set of software functionality seems to be
less relevant of the accuracy. Finally, another respondent has proposed further criteria
to evaluate an engineering software: the customer support and whether the software is
used by the competitors.

3.2 Requirements Overview

Requirements have been divided in two main categories [9]: Functional and Non-Functional
requirements. Functional requirements define the system functions so they concern
mainly the system behaviour and what kind of functionalities the system provides. Non-
Functional requirements are criteria used to evaluate the system often from a quality
point of view, therefore, they are often defined as Quality Requirements.

The table 3.1 lists briefly the main functional requirements gathered within the use
case, instead the table 3.2 lists the Non-Functional requirements.

The table 3.2 of Non-Functional requirements, contains also additional constraints to
follow that come to light during the discussions with engineers and stakeholders. Engi-

CHAPTER 3. ENGINEERING REQUIREMENTS 33

Requirement

Req. 9 Repository Tool, Simulation tagging and search
Req. 10 Run Simulation Wizard
Req. 11 Monitor Simulation Convergence
Req. 12 Results Comparison & Statistics generation
Req. 13 Automatic Document Generation

Table 3.1: Stakeholders’ key engineering Functional Requirements.

neers use different simulator software so the platform must integrate multiple simulators
(Req. 14) and multiple users that work with the platform in according to the available
resources (e.g., computing resources). The simulator must be replaceable because usu-
ally enterprises especially in the engineering sector change the used software to get more
competitive products. Some simulators are open source so from technical point of view
is easy to integrate them because one could change it, but one constraint is to avoid
the change of the available source code (Re. 18). The motivation is simple, when one
change the source code of a software than it is difficult to be updated with the latest
software release because each time a merge operation is required. The integration of this
simulators is feasible because engineering software run “headless” that means without
user interface interacting with it directly through the command line.

Requirement

Req. 14 Support multiple simulators
Req. 15 Simulator selection
Req. 16 Concurrent simulators use
Req. 17 Headless simulators integration
Req. 18 Do not change simulators source code
Req. 19 Support real-time and batch interactions
Req. 20 Avoid Vendor Lock-In
Req. 21 Extensibility and modularity

Table 3.2: Stakeholders’ key engineering Non-Functional Requirements.

3.3 Functional Requirements

This section describes briefly the Functional requirements gathered in the Fiat Chrysler
Automobiles spa use case.

In according to the Simulation Workflow, the first step is the selection of an existing
simulation, and, in order to do this, Floasys has the Repository Tool to navigate the
simulation repository and select the target simulation. It is important to remember
that the creation of a simulation is made within a proper Simulation Software. After the
selection of the simulation, usually engineers use the command line to run the simulations
on the industrial High Performance resources. A need is to provide a wizard to run the
simulations in an easy way. Therefore, Figure 3.6 shows above the pre-processing phase
the Run simulation, a wizard of multiple pages to information like the cluster to user

CHAPTER 3. ENGINEERING REQUIREMENTS 34

Figure 3.6: CFD Workflow and Floasys Tools

and the number of processors. The provided wizard is not only a direct replacement of
the command line but provides additional pages that depend on the simulation to run.

CFD simulations runs on HPC resources and they usually run for many hours, some-
times also an entire day. In addition, the tuning of simulations is a non-trivial task
due the high number of parameters and specifically the geometry quality. For instance,
the geometry quality is very important because if an engineer is simulating the external
vehicle aerodynamic that has some invisible holes especially between two surfaces, the
simulator tries to solve the fluid equations in that space and could diverge.

Therefore, as observed in this thesis use case and as noticed also in literature [32], it
is very important and useful to have a tool that connects to the HPC cluster to monitor
the running simulations convergences. Commercial simulator products already have a
GUI made by real-time charts to monitor the simulation convergence. Other products,
especially open source, that runs only from the Command Line Interface, do not have a
monitor GUI but they write convergence data in appropriate files.

Finally, the last group of functionalities are: the collection of results, the results
comparison and the automatic document generation.

3.4 Non-Functional Requirements

This section introduces and describes the Non-Functional requirements.

3.4.1 Support multiple simulators

CFD analysts perform different types of simulations on the same vehicle product (i.e.
external aerodynamics, aeroacoustics, air conditioning and engine thermal analysis).
Therefore, they use different simulator software, each one suitable and validated inter-

CHAPTER 3. ENGINEERING REQUIREMENTS 35

nally for its own application. Briefly, in the FCA use case, at time of writing, the most
used software are (Fig. 3.2): STAR-CCM+R⃝ (commercial product) and OpenFoamR⃝

(open source).
In order to reduce costs or to have better features, industry can decide to change CFD

simulator in future. So, the architecture must support and integrate multiple simulators
software with the opportunity to remove each one and introduce other implementations.

3.4.2 Simulator selection

The support and the integration of multiple simulators (Req. 6) leads to the issue of
selecting the right simulator to perform a specific simulation type. These selection can
be done automatically by the system or manually by the user.
Based on the performed tasks or the simulation type, the system must automatically
select or recommend the appropriate available simulator software.
Obviously, engineers must be aware about the selected simulator, so the system must
show or give the easy access to feature (at least the name) of the used CFD software.

3.4.3 Concurrent simulators use

Analysts use many instances of the same simulator software opening multiple files and
running many solving jobs. The platform must support consider two cases: the sup-
port of multiple different simulators concurrently and multiple instances for the same
simulator.

Figure 3.7: Simulation Model Mapping.

CHAPTER 3. ENGINEERING REQUIREMENTS 36

For instance, the Convergence Monitoring Tool (Monitoring Tool) shows the charts
about the convergence of multiple running simulations. So, the tool is able to access and
show the chart basing on the data generated by multiple running simulations.
Another example is the Automatic Documentation Generation Tool that extracts and
collects data from different simulations and merge them in spreadsheets and slides. So,
it need to manage multiple simulations file and consequently multiple simulators, also
of different types.

Concurrent simulators use

Engineers use many instances of the same simulator software opening multiple files. For
instance Floasys Automatic Document Generation Tool extracts and collects tabular
data from different simulations, and merges them in Excel and Power Point documents.
Data are shown in the front-end workbench GUI. Documentation tool needs to manage
multiple simulation files and multiple instances of the same simulator software.

The architecture must support multiple CFD simulators used concurrently. Same
tools must access to multiple simulators concurrently. For instance the monitoring tool
shows charts about the convergence of the running simulations. Engineers monitors the
convergence of running simulations from different CFD software.

3.4.4 Headless simulators integration

CFD simulators can run “headless” without the Graphical User Interface (GUI). This
is a built-in simulators feature because they must run on High Performance Comput-
ing (HPC) resources such as computer clusters. For instance, OpenFoamR⃝ is an open
source simulator made by a set of command line tools and text-based input/output
files. OpenFoamR⃝ does not have the GUI, so the aim of many projects both open and
commercial is to design and provide a GUI [33] for OpenFoamR⃝. Another example is
the simulator CD-adapcoTM STAR-CCM+R⃝, a commercial software to perform CFD
simulations. It can run either with GUI or without it. In addition, it has a Java-based
scripting language to provide additional custom features called Macro.

Simulators often do not have public APIs to allow other applications to interact with
them. Therefore, the only way for another application to exchange data with the sim-
ulator is to wrap it. Idea is to think about the simulator as a black box with its input
and output.
Fortunately, in the CFD field the software have been designed to run also on the com-
mand line. Third commercial products rely on this assumption to work and integrate
simulators features. For instance, Esteco modeFrontier2, a commercial Design Of Exper-
iments (DOE) software for optimization, has a graphic workflow made by nodes. Among
the different node types, modeFrontier has a specific node to integrate external software
trough calling to the executable software from command line. It relies on this mechanism
providing input and getting the output trough files.

2Esteco modeFrontier Official Web site: http://www.esteco.com/modefrontier

CHAPTER 3. ENGINEERING REQUIREMENTS 37

Figure 3.8: Simulator black-box interaction.

The integration among simulators and external applications could be a bit difficult
nevertheless they run from the Command Line Interface (CLI). Not all functionalities are
available through the CLI and what you can perform significantly varies. For instance,
simulators sometimes give a less control on the simulation model changes. Therefore, the
interaction with the simulators is more restrictive because they do not have public APIs
and do not support sufficient interactions through the command line. Another limita-
tions is the closed file format: it is impossible to access to simulation data without the
vendor software and binary files are meaningless to an external application. Generated
simulation files are binary files limiting the interactions with external software.

Figure 3.9: Interaction with a simulator through a macro.

In these cases, the interaction among simulators and external applications are limited
so some workaround are needed. One possible workaround concerns the exploitation of
the provided scripting language used in combination with command line options.

Do not change simulators source code

The aim is to integrate both open source and closed simulators. For open source software,
we do not change the source code to be always up-to-date with the original software
avoiding continuous changes of source code at each release or in the worst case to remain
with and old simulator version because the upgrade is too expensive in term of changes.
In addition, the overall platform must be designed in a way that the upgrade of the
simulator can not heavy impact on the overall platform and tools. So, the aim is to
reduce the coupling between the simulators and the platform.

CHAPTER 3. ENGINEERING REQUIREMENTS 38

Support real-time and batch interactions

Architecture must handle both real-time and batch interactions. Batch interactions are
mainly the Job submissions to solve simulations. At same time, engineers monitors the
running simulation using the Monitoring Tool that shows real-time data.

Avoid Vendor Lock-In

This requirement is very important because CFD analysts use proprietary software.
Vendor Lock-In is a well-known Anti-Pattern [2] [21] [22]: the phenomenon that causes
customer dependency on given vendor about a specific good or service [23] with high
switching costs [24]. Vendor Lock-In occurs both in terms of services and data. Vendor
Lock-In Anti-Pattern in terms of services occurs when the architecture heavily relies on
a closed vendor software and strictly depends by the vendor choices. So, the system
architecture is product-dependent [25] because it wraps some or all the vendor software
functionalities and there is not clear distinction between them. Data Lock-In occurs when
the only way to access to the data is by using the Vendor Software because data are
stored in a proprietary file format or they are stored on the vendor server and there is not
an export functionality to an open format or a public customer API. CFD analysts use
proprietary software that store data in closed file format. The exporting and importing
of geometric data are well-established functionality for the CFD software, simply because
they must commercially support the interaction with other CAD software. Instead, it
is not the same for the entire simulation data such as the case setup, the simulation
results etc. Data Lock-In is very common in Cloud Environments [26] and is an obstacle
to cloud computing [27]. Vendors lock users in to make harder for them to leave the
product because they cannot get their data; despite, as reported in literature, giving the
opportunity for the customers to get their data increase their trust in the product [28].

Extensibility & Modularity

Architecture should be extensible to allow and simplify the introduction of new function-
alities. Extensibility is the ability of a software system to allow and accept significant
extension of its capabilities without major rewriting of code [29] [30]. Extensibility is an
important Non-Functional requirement during the system development because systems
are constantly under change and, adopting the Continuous Delivery [31], they need to
wrap incrementally vendor software functionalities. Extensibility is a quality architec-
ture attribute useful during the development and especially in future when more and
more simulators’ features will be integrated in architecture.

Industries want deploy the same system with different features. The architecture
must be modular enough to allow both the adding of new simulators and the removing
of existent simulators. The modularity requirement has an interesting advantage for
the architecture design: the application or custom engineering tools and simulators are
loosely coupled. Modularity “is the degree to which a system or computer program is
composed by discrete components such that a change to one component has minimal
impact on other components” [29].

CHAPTER 3. ENGINEERING REQUIREMENTS 39

Industries have command line macros that are designed, developed and tested over
the years that must be integrated in the architecture. But at same time the system
architecture should be deployed in different contexts, so it is very important to identify
exactly which system modules contain the industrial know-how and separate them.

3.5 Related Works

This section introduces the process called New Product Development Process (NDP) to
conceive a new product and bring it on the market. Within this process we will focus on
the engineering activities, especially the simulation workflow to design vehicle products.

3.5.1 New Product Development Process

Manufacturers aim is to bring products on market quickly within the budget and per-
formance constraints [4]. The New Product Development Process (PDP) describes the
process adopted to design, develop and bring products on the market [34] and involves
a continuous information exchange among many tasks. As shown in Figure 3.10 it is
made by the following steps: concept, design, prototyping, manufacturing.

Figure 3.10: Product Development Process (PDP) and CFD Workflow.

Nowadays, in a world wide and highly competitive market, enterprises face short
time to market (TTM), continuous innovations, global collaborations and complex risk
management [35]. Enterprises are global and have different organisations around the
world. Therefore, intellectual assets, data and know-how must be accessible to anyone
within the enterprise and sometimes also outside the enterprise. In order to design
products, enterprises collaborate with other external enterprises. For instance, along the
supply chain, enterprises get the raw materials to make products or they externalises
tasks performed by external consultants.

In this context the use of software systems is very important. From historical point of
view two main systems have been evolved separately: the Product Lifecycle Management

CHAPTER 3. ENGINEERING REQUIREMENTS 40

systems and Product Data Management, although today the aim is to integrate them
together to have a unique system.

The Product Lifecycle Management (PLM) is the process to manage the product
life cycle from its inception, through the design and manufacturing, to customer service
until the product disposal. PLM gained even more interest in the last years as a business
approach to integrate people, processes, business systems and information to manage the
product life cycle management.

As stated in [35] the PLM has two roots:

• enterprise management;

• management of product information.

The enterprise management concerns the material resource planning (MRP), en-
terprise resource planning (ERP), customer relationship management (CRM) and supply
chain management (SCM). It is evident that across the years different management sys-
tems have created so its essential to integrate them through a PLM system.

The management of product information concerns the product and its related
information, know-how and so on. Therefore, the management of product information
refers essentially to the Product Data Management systems. Enterprises design
their products using different systems in different phases. Generically they use authoring
tools called authorware to create new content. Authoring tools are not programming
languages and do not require programming skills but they rely on the graphical user
interface (GUI) to create content.

Industries design products through Computer-Aided Design (CAD) systems and sim-
ulate them through Computer-Aided Engineering (CAE). These Design, Manufacturing
and Engineering (CAD, CAM and CAE) software are daily used and generate a lot of
data. Therefore, during 1980s, Product Data Management (PDM) systems appeared
to control and manage the product information created using engineering authoring
tools [36]. PDM systems were born in the engineering field and they used mainly to
store information like geometric models, Bill of materials (BOM) and FEA models.
Nevertheless, very similar needs arose also within non-engineering area, such as sales,
marketing and supply chain management, PDM systems failed to address these similar
needs, mainly because they designed for engineers to manage engineering data. Later,
in the 1990s, with the introduction of Internet and WWW, vendors adopted these new
technologies to the implement PDM systems. In this way, PDM became web-based and
took advantage of universal, inexpensive and ubiquitous nature of Internet to provide
their services throughout the enterprises. Nevertheless, PDM were web-enabled, their
use were still about the engineering field and they essentially managed engineering doc-
uments. In the past, product were designed using pencil and papers; instead, nowadays
product are mainly designed using CAD systems to create the geometric models. Pencil
and papers are not completely replaced in the concept and more creative phases. Of
course, during the years the volume of geometric models is very huge and can get out of
control. Therefore, products data must be managed through a Product Data Man-
agement (PDM) that its self must be integrated with the CAD and other software.

CHAPTER 3. ENGINEERING REQUIREMENTS 41

PDM mainly gained their success in the engineering field to manage geometric data,
bill of materials (BOM) and finite element analysis models. Product Data Management
systems are well-integrated with CAD software, but it is not the same for simulation
software that are actually almost isolated islands. A goal of this thesis is to explore how
integrate simulator software especially because a lack of interoperability exist; so the
idea is to reduce the gap between the simulator software and other software like Product
Data Management systems.

Figure 3.11: Product Lifecycle Management Evolution

From historical point of view, the evolution of PLM and PDM is tracked roughly in
the Figure 3.11. It is evident the concurrent evolution of PDM to manage engineering
data and other solutions to manage specific aspects of the enterprises, such as ERP,
CRM, SCM systems that were integrated together within PLM systems. In the paper
[36], the authors identified both internal and external enterprises forces that led the
PLM evolution and adoption. The internal forces are: the need for innovation, customer
intimacy and operations excellence. The external forces are: globalisation, product
complexity, shrinkage in product lifecycle, push into supply chain and environmental
issues. An example of Product Lifecycle Management is Aras3 an open source product,
but many other product exist.

3.5.2 Engineering Use Case

Large industries have multiple locations around the world and are internally organized
in multiple structures of different types. One type of structure is the functional area.
Functional areas have technical know-how about a specific sector (i.e. engineering, cost
engineering, marketing, commercial). Specifically, engineering functional areas perform

3Aras official web-site http://www.aras.com/

CHAPTER 3. ENGINEERING REQUIREMENTS 42

Figure 3.12: Product Lifecycle

tasks to design products and constantly invest in R&D activities to improve their know-
how and to be ready to provide innovative design solutions. Platform area is a transversal
area that has a global view on the product and leads the product development from the
concept to the final product to sell as well as customers feedback and satisfaction.

The CFD unit is the engineering functional area with highly skilled engineers called
CFD analysts who perform simulations to analyse the aerodynamic and aerothermal
automotive product behaviour. This functional area is this thesis use case. In a big
industry, many CFD unit exists that collaborate together (Fig. 2.1). The collabora-
tion happens among dispersed CFD units and among CFD units and the other industry
teams such as the product style designers and the performance engineers. In order to
design an automotive product many engineers collaborate together. Specifically, in the
automotive sector and for the aerodynamics/aerothermal analyses, CFD analysts, auto-
motive designers, and performance engineers collaborate together. Each CFD unit has
a technical manager who is responsible for the internal team organization and needs.
Briefly, style designers design the product style concept that is used by other functional
area. CFD analysts perform CFD simulations using the 3D vehicle model and finally the
performance engineers are responsible for the meeting of performance targets. The thesis
use case focuses on the CFD functional area and its relationships within the Product
Development Process (PDP). CFD is a numerical computer simulation able to solve and
analyse problems that involve the fluid flow and other related physical phenomena. CFD
is widely adopted in many industrial sectors such as automotive, aerospace, high-tech
and chemical sectors. CFD benefits are a “better insight into product behaviour” [4],
product optimization in according to the performance goals, the simulation of extreme
environmental conditions (i.e. low or high temperatures) and a cost reduction due less
number of physical prototypes. Experimental tests, on the other hand, with real proto-
types are very expensive (i.e. wind tunnel infrastructure).

Style designers create the exterior and interior product design with manual drawings
that will become 3D models using CAD software. CFD engineers use the 3D model to
simulate and analyse the product performances (e.g. aerodynamics, aerothermal, aeroa-
coustic, air conditioning and cabin climatisation) with CFD simulators. CFD analysts
perform simulations and report data in documents. In order to meet the engineering
targets, performance engineers use simulation results to decide the changes to make and

CHAPTER 3. ENGINEERING REQUIREMENTS 43

constraints for the next style revisions (style constraints). At this stage, engineers decide
which prototypes to build and test in the wind tunnel infrastructure. Finally, experi-
mental data are correlated to numerical simulation data, and additional style constraints
are defined in according to the performance goals. CFD Workflow is iterative and con-
sists of three phases (Fig. 3.10): pre-processing, solving and post-processing. In the
pre-processing phase, CFD analysts take the vehicle geometries from stylists, and per-
form clean-up and meshing (both surface and volume mesh) tasks. Vehicle geometry is
inserted into a virtual wind tunnel. So, CFD analysts define the geometric and physical-
mathematical models to simulate. The physical-mathematical model contains the solid
materials and fluid flow characteristics as well as the boundary and initial conditions.
Volume mesh is a spatial discrete representation of the geometric domain. At each simu-
lation step, physical values (i.e. velocity and pressure) are computed for each mesh cell.
The size, shape and number of volume cells determine how many time and how many
computational resources (e.g. the number of processors) are required by the simulation.
Solving phase consists in running model simulation using HPC resources. The tuning
of CFD simulations is a time consuming task because geometries are complex and the
number of parameters to set is high. The simulation running takes about several hours
(currently up to 12 hours with at least 40 processors). It is very important to monitor
the running simulation to check periodically the simulation convergence. CFD analysts
monitor the residual and the physical quantities about the examined phenomena (i.e. the
pressure forces under the vehicle body). In post-processing, CFD analysts use simulation
results to create documents about the simulated product. Simulation results are tabular
data, contour-plots and streamline images. The document creation (e.g. spreadsheets
and slides) requires manual copy-and-paste operations to obtain artifacts compliant to
the industrial templates.

3.5.3 CFD Simulation Workflow

Figure 3.13 shows the classical simulation workflow mainly made by three steps:

• Pre-Processing : usually concerns the creation of the model (e.g. geometric model)
and the setup of the simulation (e.g. simulation parameters);

• Solving : the simulation runs on HPC resources;

• Post-Processing may include the calculation of additional quantities, the plotting
of results, the visualization of simulations pictures, the analysis of results and the
creation of documents.

The Simulation Workflow is a step-wise and iterative process. The same product has
always multiple variants and during the design process multiple revisions are created.
So, for the same product the Simulation Workflow is iterate many times. The final
outcomes are documents that describe the product performances. These documents are
used as a support to exchange results and to collaborate among analysts and performance

CHAPTER 3. ENGINEERING REQUIREMENTS 44

Figure 3.13: CFD Simulation Workflow.

engineers. One aim of this work is to improve the data management especially when
many simulations exist and engineers perform a lot of simulations per year.

The Pre-Processing (Fig. 3.14) is essentially done manually. The most of time is
spent cutting and cleaning the vehicle geometry using a CAD/CAE software (e.g. BETA
CAE Systems ANSA4). Also the Post-Processing requires a lot of manual work especially
to create the documents compliant to the industrial templates. Many accomplished tasks
both in the pre and post processing are repetitive and error prone tasks. One aim of
this work is to automatise many of tasks.

The Pre-Processing and the Solving phases can be accomplished by one engineer who
creates the model, setups and runs the simulation. Nowadays, products are becoming
very complex integrating may components, so industries have a specific design team who
is responsible to design the product concept and its style. So, more often the geometric
model already exists as CAD file. The CFD analyst task is to cut the geometric shapes
to remove the unnecessary part for the specific simulation. This has also another goal:
to simplify as much as possible the geometric model and reduce the later simulation
time. For instance, to simulate the external vehicle aerodynamic, all the internal vehicle
components are removed to have only the vehicle surface. Another important task is the
geometry clean-up. For instance, some space in the front of vehicle that is negligible for
the mere visualization can be destructive for a simulation solver that tries to simulate
the fluid within the hole.

Nevertheless, here the main use case is about the CFD, the Simulation Workflow
follows roughly the same steps also for other type of simulations. In addition, it is usual
to use separate software applications for each step [37].

4ANSA BETA CAE Systems SA website http://www.beta-cae.gr/ansa.htm.

CHAPTER 3. ENGINEERING REQUIREMENTS 45

Figure 3.14: CFD Simulation Workflow detailed phases.

3.5.4 Existing platforms for CFD simulations

Many Web-based platforms have been created over the years to support Computational
Fluid Dynamics. The “e-Science Aerospace Integrated Research System” (e-AIRS) [19]
is an educational Web portal developed in Korea to help students to understand the
aerodynamic simulation process [38]. EDISON CFD [39] is the e-AIRS improvement
in terms of stability, faster data response time and waiting time [40, 41]. Such systems
have remarkable differences with our use case requirements and with Floasys. The
systems target is the first difference, both e-AIRS and EDISON CFD have an educational
target, instead Floasys aims to industrial sectors (e.g., automotive sector). The e-AIRS
target is educational and therefore it has been used in undergraduate and graduate
classes. This have an impact on the integrated tools, that is the other difference. e-
AIRS integrates custom in-house meshing tools and solvers. It operates with its own
Fortran-based in-house CFD solvers [19]. Industries use widely adopted and validated
CFD software, so Floasys platform aim is to integrate existing both commercial and open
source solvers (Req. 6). In addition, the meshing is very important because it impacts on
simulation quality results and running times. e-AIRS adopts a custom software called
e-AIRSmesh to mesh the geometry storing the mash in a specific custom file format.
Each CFD simulator works with a specific mesh topology. A Floasys requirement is to
integrate multiple industrial adopted and validated CFD solvers (Req. 6). Industries
have assistance contracts with CFD software vendors, so industrial platforms can not
ignore their integration. In addition the aim is to avoid Vendor Lock-In adopting open
format data.

Many other platforms proposed to manage simulations on HPC resources but they
do not focus on collaboration among engineers. For example, a Web-based system for
Management of CFD simulations for Civil Engineering was proposed with the goal to

CHAPTER 3. ENGINEERING REQUIREMENTS 46

develop tools for civil engineers who are not CFD experts but need to perform CFD anal-
ysis [42]. It allows the “dispatching and controlling of long-running simulations” [42].
The system targets are civil engineers and CFD beginner users. The system was tested
with a group of students in civil engineering class. The main differences concern the
system end-user target and the correlated requirements to achieve. The system target
is automotive industry where CFD analysts need to collaborate, share data, result and
knowledge, simulation data and result centralisation with the aim to promote collabora-
tion. An interesting emerged common requirement is the need to use templates both for
expert and beginner users. The nature of CFD simulations with high number of param-
eters to consider forces the creation of standard templates both to support beginner and
expert users. Another research avenue comes from the Semantic Web field. Many works
in literature proposed software platforms for modelling and simulation. Simantics [43]
is ontology based modelling; it uses ontologies to semantically describe the simulation
model and the data. The two mainly applications that have built on Simantics platform
are: the proprietary Apros6 for power plant M&S and an open source Simantics Sys-
tem Dynamics Tool based on Melodica language and the OpenMelodica environment.
The Simantics’s [43] developers are working on the integration of OpenFoamR⃝, an open
source CFD software package.

3.6 Future works

This section describes the future works that can be further investigated starting from
the previous described engineering requirements. These future works have been system-
atically gathered through the interviews with the stakeholders.

SimulationWorkflow is usually made by three main steps (Figure 3.15): pre-processing,
solving and post-processing. In the pre-processing phase, engineers setup simulation
(e.g., geometries, mathematical model) to be solved in the next Solving phase using
HPC resources. Finally, in the post-processing phase, the data in different format are
collected and analysed to understand the product behaviour. For more details about the
Simulation Workflow phases see the Section 3.5.3.

The Simulation Workflow is iterative. Actually, each iteration takes hours to be
completed (sometimes 24hours) and requires the engineers manual actions. Therefore,
analysts perform few workflow iterations about the same vehicle product. At each iter-
ation, the vehicle geometry is the same but placed in different positions. For instance,
analysts simulate the same vehicle with different ground clearance also called ride height5

(the amount of space between the base of an automobile tire and the underside of chas-
sis) or, for example, with different spoiler positions. In addition, at each iteration also
the simulation parameters can be changed. For instance, the inlet velocity usually is
one parameter to change (i.e., common values are 20 km/h, 30 km/h, 50 km/h). For
aerodynamic analysis, considering all the vehicle configurations, the number of simula-
tions to perform is very high. Actually the simulation setup is performed manually. For

5Ride height explanation http://en.wikipedia.org/wiki/Ride_height

CHAPTER 3. ENGINEERING REQUIREMENTS 47

instance, engineers manually move the spoiler along the vehicle solving a simulation for
each discrete spoiler position. One interesting idea is to use the parametric geometry
morphing supported by many CAD software (e.g., BETACAE ANSA) to automatically
change the spoiler position and perform all simulations without the engineers actions.

The geometric and simulation parameter is only one of parameters to control. In ad-
dition, analysts perform different types of simulations. For instance, in the automotive
context, engineers perform aerodynamic, aeroacoustic, underhood cooling, internal air
conditioning and other aerothermal simulations. These use of different types of simula-
tion is called Multi-Disciplinary simulations. To perform these analysis, engineers
use different simulator software because each one is suitable, validated and adapt to
simulate a specific physical phenomena. Another example is Multi-Scale simulations
where the analysed system is simulated at different scales with different simulators. Fi-
nally, another important aspect is the Muti-objective optimisation.

Therefore, analysts firstly demand for the integration of existing tools to get fea-
tures not covered by one single product. The most well-known integration requirement
in literature is the integration between CAD and CAE/CFD software, but also other
integration requirements are becoming even more important. For instance, the integra-
tion between a Design Of Experiment (DOE) system and simulators to change the input
parameters or the opportunity to use more than one software to perform the simulations.

Industries aim to integrate existing simulators, repositories as well as hardware and
infrastructures together to have a unique platform to manage multiple simulation work-
flow automatically (Fig. 3.15). Idea is to integrate existing industrial facilities (e.g.,
repositories, simulators, DOE, HPC resources, etc.) and automatically manage multiple
simulation workflow through a unique, Multi-Disciplinary, Muti-objective and easy to
use platform. Product Lifecycle Management (PLM) and Product Data Management
(PDM) systems aim to collect data and aggregate them within the company and do not
focus on the simulation management.

Looking at the big picture made by many CFD workflow iterations, stakeholders
aim to have a platform to cover requirements that raise when analysts perform multiple
simulation iterations 3.15.

Some requirements that are not currently covered by the existing software are: the
data management with tools to automate the data analysis, the automatic execution
of multiple multidisciplinary simulations (e.g. underhood cooling, aerodynamics, cabin
climatisation etc.) on different simulators, the monitoring of multiple simulations from
different simulators. For instance, an interesting feature to provide is the results com-
parison of multiple simulations. Idea is to provide an interactive visualization tool that
collects results form multiple simulations and compare them using a chart. In addition,
the aggregation of simulations results gives useful feedback about the overall projects
performances, especially to understand the targets achievement.

Unfortunately, a lack of interoperability among CFD software exists. Actually they
do not provide export functionality in open format. For instance, the export of geometry
data in open format is a well-established functionality (e.g. in STL format) but is not
available for the entire simulation case, setup and parameters. Nevertheless the existence

CHAPTER 3. ENGINEERING REQUIREMENTS 48

Figure 3.15: Multiple Workflows Management.

of technologies to guarantee interoperability (i.e., SOA architectures, restful and so on),
commercial CAD and CAE software often do not provide open access to their services
and data. Therefore, in order to provide new functionality (e.g. collaboration among
engineers) over existing engineering software the only way is to wrap the software. The
main drawback of the software wrapping is the possibility to run into the Vendor and
Data Lock-ins AntiPatterns [2].

The integration of CFD software, engineering tools and existing infrastructures as
well as the collection of data from different sources provide the base to build new value-
added service that can not exist without such integration. For instance, the collaboration
around simulation data and results make sense only within an integrated environment.
In order to successfully integrate software in one end-user environment it is important
to integrate software and hardware both syntactically and semantically. We experienced
that the main difficulties concern the semantic aspect of the software and the data
representation.

3.6.1 Automatic Simulation Workflows Management

The idea is to automatically manage a set of Multi-Disciplinary and Multi-Objective
simulations. Of course, some tasks are manual and actually they are difficult to au-
tomatise. For instance, the vehicle geometries CAD manipulations are mainly manual
activities.

The aim is to semi-automatise the workflow performing automatically some itera-
tions. Considering the simulation workflow phases, the first step is to prepare the mesh
(e.g., mesh clean-up), essentially a manual activity that requires the engineer actions.
Therefore, it can not be automatised and must be done manually. The geometry CAD
can be parametrised so the geometry parts can be modified passing a numeric value
such as the absolute position or numeric value that identify the geometry part transla-
tion and rotation. For instance, the spoiler can change the position in according to the
specific parameters. Then, engineers decide which simulations must be executed and

CHAPTER 3. ENGINEERING REQUIREMENTS 49

the parameters to use. In this way, the platform is able to setup the case to simulate,
run the simulations on the cluster with different parameters both geometric and sim-
ulation parameters. Platform must be able to monitor the simulation jobs over time
providing statistical information. At the end, the platform collects data and makes the
documentation (e.g. spreadsheet and slides).

Figure 3.16: Multidisciplinar, mutliobjects and automatic CFD workflows.

An engineering challenge is the time required to perform and complete all the sim-
ulations. It is mainly a CFD task to optimise the different simulations and complete
them within a useful period in according to the industrial targets. For instance, the
industry could decide to get all results within two weeks. From the information technol-
ogy point of view the aim is to integrate all these software and be able to communicate
with them exchanging the data especially because a lack of interoperability exist. For
instance, it is important to be able to set simulation parameters and submit the jobs on
the cluster. At same time, the simulation control and monitoring is another important
feature. For instance, a CFD simulation can diverge so the platform must be able to
monitor the simulation and block the execution of the next jobs. Of course, as described
previously, CAD software interaction is important mainly to manipulate the geometry
mesh leveraging on the morphing changes of the geometry shape within a continuous
range.

Figure 3.16 shows an example of the use case compared with the simulation work-
flow phases on the top. The platform submits different jobs over the time changing the
simulation input parameters in according to the values provided by a Design Of Experi-
ments (DOE) system (e.g., modeFrontier, Dakota). The platform is able to monitor and
control the simulation jobs. The platform is integrated with the other internal systems
such as the CAD software, the simulators and HPC resources.

CHAPTER 3. ENGINEERING REQUIREMENTS 50

3.6.2 Experiment Data Management

Engineers perform experiments in real settings. For instance, in the automotive field,
experiments are extremely important. Vehicle engines are constantly tested in controlled
environments. A single engine run generates a huge amount of data stored usually in
text format (e.g., Comma-separated values - CSV file format). Engineers usually run
multiple experiments with different conditions (e.g., experimenting different paths) for
many hours. Actually, it does not exist a unique common format to store the experiment
data: any test-bed engine system generates data in different format. Later, engineers
analyse these experimental data through comparisons.

Sometimes unexpected events can occur. For a real engine, a unexpected event is a
high pressure value inside combustion cylinder for particular setting conditions. In this
context, engineers face the problem to understand in which conditions the event occurs
and why. Therefore, they needs to explore experiments dataset and compare thousands of
experiments together. Automatic features as well as exploring and query features to get
insight into the experiments will be really useful for engineers. For instance, experiments
data aggregation by pressure values gives the opportunity to cluster experiments and
identify outliers.

This use case conceptually is very similar to the simulation use case. Instead to
have simulation data, engineers deal with experimental data. In both cases, users assert
that they deal with big data and they require to explore datasets and compare data.
The requirement to explore datasets has pushed the design and development of the
Exploration and Visualisation tool further described in the next Chapters.

3.7 Conclusions

This section has described the main engineering Functional and Non-Functional require-
ments gathered in the Fiat Chrysler Automobiles use case. The integration of existing
software is a relevant topic for the practitioners especially because for simulator soft-
ware a lack of interoperability exist. In addition, the interaction with the engineering
software allows the potential automatic management of the simulation Workflow. The
requirements described here have been implemented in a prototype (described in the
next Chapter 4) used within the Aerothermal CFD of Pomigliano D’Arco (NA).

Chapter 4

Floasys

Contents

4.1 Introduction . 51

4.2 Floasys Graphical User Interface 52

4.3 Collaborative Features . 53

4.3.1 Repository Tool and Simulations Tagging 54

4.3.2 Search tool and Data sharing 55

4.3.3 Web-based 3D Model Visualisation 57

4.4 Engineering Features . 58

4.4.1 Simulation Controller Tool . 58

4.4.2 Monitoring Tool . 61

4.4.3 Documentation Tool . 62

4.4.4 Parametric Exploration Tool 63

4.5 Conclusions . 64

4.1 Introduction

This chapter describes the Floasys functionalities and shows its graphical user interface
(GUI). Floasys functions have been divided in two groups: collaborative and engineering
functionalities.

From collaboration point of view, Floasys provides a simulator independent repository
tool to navigate simulation repositories and annotate selected files through free and
structured tags (Req. 2). Floasys has a structured and assisted Search tool to get
simulations performed by different engineers (Req. 3) and share them (Req. 5). Floasys’s
screenshots contain CFD related data but its GUI and its ideas are general to be reused
in other engineering areas (e.g., ergonomics).

51

CHAPTER 4. FLOASYS 52

From the engineering point of view, Floasys provides the following services to support
the CFD Workflow. It provides a service to run, solve and monitor simulation as well
as automatic document generation like slides and spreadsheet documents.

The chapter is mainly organised in two parts to reflect the Floasys functionalities
subdivision and to describe them in a homogeneous way. Both parts describe a typical
workflow and then the Floasys graphical user interface to support it. For instance, the
Section 4.3 describes the typical collaborative workflow supported by Floasys.

4.2 Floasys Graphical User Interface

Figure 4.1: Floasys Graphical User Interface.

Floasys provides a re-configurable GUI based on Perspectives and Views concepts
provided by Eclipse Remote Application Platform (RAP) [44]. The idea is that the
virtual workbench changes according to the engineering tasks. In this way, the system
is able to show only relevant functionalities to perform the actual task. A perspective is
a specific configuration of the workbench and contains many views to show information.
A perspective provides well-organized software functionalities access because it divides
them in semantically homogeneous sections. In each perspective the content is organised
in multiple views. Each view effectively contains the data using the available widgets.
For instance Figure 4.1 shows the “Simulation Controller Perspective” with four views:
Simulation Tree Explorer, Property, Outcome View and Console.

CHAPTER 4. FLOASYS 53

4.3 Collaborative Features

Figure 4.2: Example of a typical workflow supported by Floasys.

Floasys is a Web-based platform to support both engineering tasks (e.g., run simula-
tion, monitor simulations, generate documentation automatically etc.) and data sharing
among dispersed engineers. Floasys centralises simulation data in open format and
provides a search tool able to browse and query the simulation database using tags
identifying versions, interesting features and open comments. The Figure 4.2 depicts
a real-world Floasys workflow that is difficult or time-consuming without the designed
Floasys platform. It is composed by six tasks executed in sequence. In Task 1, user
finds a simulation using keywords like project name, revision, velocity and so on. The
velocity is an internal simulation parameter. It is embedded in the closed file format,
so the task to search by velocity can not be accomplished without Floasys or at least,
as come to light in Section 2, the user can remember where he stored the simulation
file and open it to check the velocity value. In addition, Operating System find tool
can not be used to get the simulation because velocity is not included in the simulation
file name (Fig. 3.2). With Tasks 2 and 3, the user selects a simulation from the list
of results to get the original simulation file and open it with the proprietary software.
Unfortunately, the original simulation file is not in the repository. Using Floasys, nev-

CHAPTER 4. FLOASYS 54

ertheless the original file was deleted, the user can get the simulation data, setup and
results. Of course, these data can not be used directly to simulate it again. Anyway,
an expert engineer can recreate the simulation starting from the provided surface mesh
and simulation setup (boundary conditions, physical model, used parameters, previous
reports and so on). The Task 6 concerns the sharing of a simulation URL to another
user via a preferred medium (e.g., e-mail, chat). Of course, the shared URL is available
only within the industry’s Intranet.

4.3.1 Repository Tool and Simulations Tagging

Figure 4.3: Repository tool to navigate and tag a simulation repository.

The Repository tool supports the navigation of central simulation repositories. Floasys
integrates multiple simulators, so data heterogeneity is one of the issues to face. For
instance, OpenFoamR⃝ stores data in a well-defined directories structure of three fold-
ers (e.g., system, constant and iteration directories) and data are stored in multiple
files. Instead, STAR-CCM+R⃝ stores all simulation data in one single-vendor format file.
OpenFoamR⃝ files are plain-text readable without the software, instead STAR-CCM+R⃝

files are in closed format and they can be read only using the vendor software. The
Repository tool, relaying on Floasys framework services, is simulator independent and
is able to manage data from different simulators. The Repository tool inherits the user
file system access permissions, so logged user can access only to files he/she has autho-
rised. Floasys can access to network folder through a server using a SSH connection
with logged user credentials.

The Repository tool provides file annotation and tagging features. The idea is to

CHAPTER 4. FLOASYS 55

enrich simulations files with metadata: a user can annotate a simulation file and provide
additional information useful to retrieve and share it in future. Examples of free tag
categories are: brand, project name, revision and engine type; all information that can
not be stored directly within simulation files, whereas Floasys allows it. Analysts are free
to add any tag to files. In order to uniform the provided tags, during typing, Floasys
suggests the tags to use (Fig. 4.3). Tags are both unstructured with free tags and
structured inserted filling out standard forms like in Figure 4.4.

Figure 4.4: Example of structured data.

4.3.2 Search tool and Data sharing

The Search tool (Fig. 4.5) is a Floasys perspective developed to provide the search of
simulation data stored in central repositories. The tool supports the search by file name,
simulation content, free tags and structured data (Req. 3 in Table 2.1). When a user
types the search keywords, Floasys recommends further keywords to refine the search
(Fig. 4.5). In this way, the tool supports the search activity suggesting further search
keys to reduce the total number of potential results. The system performs search using
only indexed data without accessing (e.g., open) to original closed format files. The
results are displayed in a list. In order to display the revisions history, the user can
select a simulation from the list of results.

In order to avoid data Lock-In and to manage the search over closed file format, we
decide to extract some other important simulation data (e.g., the names of components,
simulation parameters) and to store them in XML files. In this way, the search operation
is faster because it does not need the direct access to the closed files format and it does
not require to open the simulation file using the proprietary software. Every time the
analyst opens a simulation through Floasys, the platform automatically extracts the
simulation data storing them in open format. The data extraction is already required
to support the engineering tasks.

Each simulation file has a unique ID within Floasys and all relevant data (e.g.,
documents, simplified 3D geometry, surface mesh and so on) are linked to this ID. Both

CHAPTER 4. FLOASYS 56

Figure 4.5: Search Tool

Figure 4.6: CSCW Quadrants.

repository and search tools provide a unique URL for each selected simulation. The
idea is to share data by simply exchanging unique reference to the specific simulation
data. URLs identify simulation data and inherits file system permissions. The URL is
private and is accessible only within the industry boundaries. Considering the Computer
Supported Cooperative Work (CSCW) space-time quadrants [45], Floasys supports the
asynchronous data sharing for both co-located and distributed teams.

CHAPTER 4. FLOASYS 57

4.3.3 Web-based 3D Model Visualisation

Figure 4.7: Floasys 3D model visualisation.

Floasys shows a reduced 3D geometry of the simulated vehicle. Through this tool,
engineers can quickly discover which components have been used to simulate the product
without opening the CAD software. The tool shows a list of components with their
Property IDs (PID) on the left (Fig. 4.7). The user can activate or deactivate some parts
and can perform the basic zoom and pan operations. Figure 4.7 shows the simplified
3D surface geometry of a FCA production vehicle. The 3D vehicle geometries usually
are very complex. To give an idea, each geometric model takes up ten gigabytes and
engineers use very performing hardware to open and manipulate them.

An important requirement for any engineering platform is the visualisation of 3D
geometric data. As many other platforms, Floasys is a Web-based platform. The vehicle
geometries are impossible to render in the browsers using WebGL because they are
very detailed and heavy; also the quantity of data to transfer from the server to the
clients is very huge. To overcome this common issue and considering that the geometric
representation is useful to give an immediate feedback on which components are included
in the simulation, Floasys generates a simplified geometry representation to be rendered
in the browser. Engineers need to have numerical tabular data, contour-plots and the 3D
geometric model in the same view. Floasys provides a reduced geometry visualisation
allowing engineers to quickly check which are the vehicle components at a glance. For
instance, an engineer can visually check if the vehicle is simulated with the spoiler.

CHAPTER 4. FLOASYS 58

4.4 Engineering Features

This section describes the Floasys engineering functionalities to support the engineering
activities. The CFD workflow is made by three parts: pre-processing, solving and post-
processing. Floasys has at least one function in any of the CFD workflow phase. The
Figure 4.8 shows the CFD Workflow and for each step shows the functionality supported
by Floasys.

Figure 4.8: CFD Workflow and tools provided by Floasys.

In order to understand how the users interact with the system, the Figure 4.9 shows
a typical CFD workflow with the tasks and, for each of them the used Floasys Tools.
For instance, after the log-in and at beginning of the pre-processing phase, engineers use
the “Repository Tool” to navigate the simulation repository and select a simulation file
(Task B, Fig. 4.9). Then, the “Simulation Controller Tool” opens the simulation and
shows its content and details (Task C, Fig. 4.9).

In order to solve a simulation, Floasys has multiple “Run simulation” wizards. In
the engineering field, the simulation running takes long time (hours) so it is important
to monitor them during the solving phase. CFD simulations are numerical simulations
so engineers look to convergence charts (Task E, Fig. 4.9) to understand whether the
simulation is converging or not.

Finally, the tools available in the last Post-Processing step are the “Simulation Re-
sults Compare tool” (Task F, Fig. 4.9) and the tool to generate the documentation
automatically (Task E, Fig. 4.9).

4.4.1 Simulation Controller Tool

The Simulation Controller Tool shows data of a simulation and provides functionality
to interact with it. Obviously, previously the user has selected the simulation using

CHAPTER 4. FLOASYS 59

Figure 4.9: A typical engineering workflow.

the “Repository Tool”. The screenshot in Figure 4.10 shows data about a simulation
example provided by CD-adapcoTM STAR-CCM+R⃝: AHMED-25. The Controller Tool
shows on the left an overview of the simulation data. The data structure is tree-based
and has rendered through a tree widget. For instance, the picture shows on the left the
geometric boundaries: the wind tunnel boundaries such as the Floor, Inlet, Outlet and
the Side as well as the AhmedBody placed in the middle of the wind tunnel. The same
picture shows on the right the Cx value that is the simulation running result and the
value in which the engineers are interested.

The tool is based on the Simulation Model concept that contains all the data about
the selected simulation in a tree-data structure. Simulation data have a tree hierarchy
structure made by nodes that represent the single data. Simulation data are the regions,
the boundaries, the interfaces between regions, the physical properties, the outcomes
and so on. The tool shows this data in the Simulation Tree Explorer on the left side.

For each simulation model node that is selected in Simulation Tree Explorer (left),
the Property view shows all information about the node for example the node name.
On the right side the system shows other detailed information on the selected node. In
the simulation tool the focus is on the selected simulation. The toolbar provides the
functionalities related to the selected simulation. The toolbar shows on the left the
simulation name, so the engineer is aware about which simulation he has chosen.

CHAPTER 4. FLOASYS 60

Figure 4.10: Simulation Controller Tool.

Figure 4.11: Simulation Tool Toolbar

Figure 4.11 shows the Simulation Controller Tool toolbar: the main entry to other
functionality of the Selected Simulation. This toolbar continuously evolves providing
new features, currently it contains the following functionalities:

1. Selected Sim: it shows the selected simulation name, if the simulation is stored
in a file than the selected simulation is the file name;

2. Refresh model: to refresh data shown, it extracts the simulation data and shows
them in the simulation tree under the toolbar;

3. Run simulation: it solves the simulation; usually it uses HPC resources to run
the simulation.

In particular, Floasys has a wizard of three pages to run a simulation (Fig. 4.12
shows two of them). In the first page the user can choose among multiple standard
running types (e.g., Cx simulation running, MassFlow run and so on). The Wizard’s
pages and input parameters change in according to the selected simulation type and for
each choice, Floasys configures the simulation. For instance, the Figure 4.12 shows the
parameters to solve a simulation that calculates the Drag Coefficient (Cx value). The
running of a simulation requires the access to High Performance Computing resources,

CHAPTER 4. FLOASYS 61

Figure 4.12: Screenshots from the Run Simulation Wizard.

so the last Wizard page always asks the cluster name or IP address (industries usually
have multiple clusters), the number of processors to use and the user credentials.

4.4.2 Monitoring Tool

The Monitoring Tool is used to monitor the running simulations. It is generally used
when the simulations run on a computer cluster. In order to use the Monitoring Tool
the user must connect to the HPC resource by clicking on the Connect button. To
login the user must insert the IP address or the DNS, and the password. The available
usually hosts are fixed at configuration time so the user can select it from the list of
available hosts.

After the authentication, the monitoring tool shows the jobs submitted on the cluster.
The monitoring perspective is divided into two columns. On the left side there is the
job list. The list contains both the running and waiting jobs. When the user clicks on a
job in the list, Floasys shows on the right the convergence chart. For example, the list
shown in the Figure 4.13 contains three jobs. The user can select a job from the list to
show the chart on the right. Of course, everything is configurable simply clicking on the
Change Graph button. Floasys reads for each simulation, its log file and extracts the
quantities to show in the chart. The X axis usually shows the number of iterations.

CHAPTER 4. FLOASYS 62

Figure 4.13: MonitoringTool to check the simulation convergence.

Figure 4.14: Generation of documents from simulation data.

4.4.3 Documentation Tool

In order to generate documents the first approach is to write a specific procedure for
each document to get the simulation data and make the document. This approach has
the drawback that the document structure is stored within the generator program so to
change it, the generator source code must be changed; an activity that can not perform
the system end-user. Therefore, this approach is not flexible. Another approach uses a
template document with marker elements inside. These markers will be replaced by data
during the document generation process. Figure 4.14 shows the document generator, a
black box from the design point of view, with the template and simulation data as input
and the generated document as output. This approach is flexible compared to the first
one because it is possible to change the document template to change the format of the
generated document, but still, for complex documents, it needs to write some code, an
operation that end-users can not perform.

The idea behind the Documentation Tool is to generate automatically the documents
from the document template and the simulation data. The template has the same
original format with special tags or keywords within the document template. The tags
within the template use a specific language, like Velocity or Freemarker that are two

CHAPTER 4. FLOASYS 63

Figure 4.15: Example of a template and a generated document.

Java template engines. Figure 4.15 shows two screenshots, the first one on top shows
the Excel document with the tags and the second one shows another document generated
by the Documentation Tool with simulation data.

The same idea has been used also for the Power Point presentations. The template
has on each slide a keyword or tag formatted properly that will be replaced by the
content during the generation phase. Also for pictures on slides there is a tag that will
be replaced by images.

4.4.4 Parametric Exploration Tool

Engineers perform multiple simulations for the same product with different parameters.
In literature already exist Design Of Experiments software, two examples are modeFron-
tier1 and Dakota2. Formally, in a design of experiment we have X that is the set of input
variables to explore. Of course, for each variable only a set of values is valid. The set
Vx is the set of values for the variable x. The set of experiments is E ⊆ (Vx1x...xVxn).
The number of experiment usually is very high and it is impossible to perform all of
them within the budget and time constraints. Therefore, engineers need to choose a
subset of experiment to perform. For instance, Figure 4.16 shows a pipe with two inlet

1Esteco modeFrontier official web-site: http://www.esteco.com/modefrontier
2Dakota official web-site: https://dakota.sandia.gov/

CHAPTER 4. FLOASYS 64

Figure 4.16: An example of Parametric Study.

fluids and one outlet fluid. In order to design this pipe multiple experiments must be
performed changing for instance the inlet velocity. The table shown in Figure 4.16 shows
four experiments with the relative inlet velocities.

The Parametric Study Tool (Fig. 4.17) allows the design of experiments. It shows
the simulation data with its parameters on the left and the experiments on the right.
The user can choose and drag a parameter from the simulation tree on the left and
drop it on the right and set the values. In this way the tool knows which parameters
must have each simulation. Floasys runs all the simulations on the High Performance
Computing resources and collects the results that can be stored within documents.

4.5 Conclusions

This chapter has introduced two main typical Floasys workflows and described some of
the Floasys Functionalities showing its main screenshots. The collaborative functionali-
ties are generic and can be applied to any other field. For instance, the idea to centralise
data, tag them adding metadata over data and provide a search tool as well as the data
sharing exchanging the URLs can be used for simulation data, experimental data and
any other data. The Floasys engineering functionalities are specific of the CFD engi-
neering sector, but they can be used in any other sector that uses the CFD simulations
to design their products, such as the aeronautics, rail and naval sectors. Finally, the
idea to generate automatic documentation from the data repository is a key feature for
the industries because they standardise how the engineers work with less effort to make

CHAPTER 4. FLOASYS 65

Figure 4.17: Parametric Exploration Tool

the outcomes. And its an important thing considering that companies assess the value
of a technology based on the saved time, and saved money or earn money; and not how
cool is a technology.

Chapter 5

Floasys Platform Architecture

Contents

5.1 Introduction . 67

5.2 Floasys Architecture Overview 68

5.3 Server-side software architecture 70

5.4 Simulation Model . 75

5.5 Simulation Data Management 77

5.6 Collaborative Requirements Traceability 79

5.7 Code Snippets . 79

5.7.1 How to run a simulation . 80

5.7.2 Extension by plug-in . 83

5.8 Remote Application Platform 85

5.9 Conclusions . 87

This chapter describes the Floasys architectural solution [46] to meet both collabora-
tive and engineering functional requirements described in the previous chapters as well
as Non-Functional requirements (NFRs). The architecture collects simulation data from
already existing simulation repositories (e.g., network shared folders), trasforms, idexes
(to provide high data retrieval performance) and store them in open format (e.g., XML).
Therefore, the architecture supports the centralisation, annotation, tagging, search and
sharing of simulation data to meet the collaborative requirements. At same time it
supports the creation of engineering services over simulation data, such as the find of
simulation with higest pressure.

This chapter is organised using a top-down approach as follows. The Section 5.1
introduces the general ideas behind the Floasys’s architecture that is described further
in the next sections of the chapter. The Section 5.2 gives an overview of the architecture
in terms of patterns, architectures and protocols to guarantee its reproducibility. The
chapter tracks and maps the collaborative requirements with the solution ideas and the
specific implementation technologies (i.e., libraries) used to develop architecture.

66

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 67

5.1 Introduction

The idea is to collect both simulation and experimental data, and store them in central
repositories as shown in Figure 5.1. Then, the architecture provides additional services
over collected data. Example of services are the collaborative features to share the
data among distributed teams of analysts and the engineering services to manage the
simulation life-cycle on the High Performance Computing resources like clusters.

Figure 5.1 shows the Floasys abstract architecture design to introduce its ideas, com-
ponents, and features. In this way its idea can be potentially adopted in other sectors,
fields and contexts like aeronautic, rail and naval sectors), and it can be replicated with
different technologies.

Generally speaking, the architecture is based on three layers. In the bottom layer
there are the data sources; in the use case the experimental and simulation data. The
data management layer is responsible for the data source management. To get simu-
lation data, the architecture can read the data directly from a source file or through
the simulator software that generates the data. For experimental data, the architecture
usually for security reason does not connect to the test-beds to get data but the test-bed
itself generates textual data (e.g., Common Separated Values, CSV files) that are read
by the data management layer. From technological point of view, a data source can
be a web services [47] to query the data, a restful service [48] or a piece of software
to integrate within Floasys. The data management layer must handle heterogeneities
among data sources. Therefore, it has a common open model to represent data. Floasys
provides services over collected data. For instance the opportunity to share simulation
data exchanging a Uniform Resource Locator (URL). Another examples are the tools to
get insight into data like data exploration, filtering and querying. Engineers often ask for
the experiment with the highest pressure value or the ones for which a particular event
occurs. On the top layer there is the Graphical User Interface (GUI) can be divided in
three main layers as depicted in Figure 5.1. The central layer called data management
is the core.

In order to meet the extensibility and modularity Non-Functional requirements the
system relies on the concept of pluggable software modules. Each electrical device
has a power cable with a plug at its end that can be plugged in a socket of the same
shape, type and and size. This analogy has been used in software engineering for long
time. A module A provides a socket with specific characteristics that can be used by
a module B to extend the module A functionalities. Over years the pluggable modules
have been implemented with different software technologies, such as OSGi [49]. The
Figure 5.1 uses multiple times the pluggable modules concept depicted as a power plug.

In order to meet extensibility, it provides two types of extension point. One supports
the extension to introduce new data sources (bottom layer) and another type of extension
point to provide additional services over the data (top layer).

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 68

Figure 5.1: Floasys Architectural Solution General Idea

5.2 Floasys Architecture Overview

Floasys is based on a Client/Server architecture (Fig. 5.2) developed using Eclipse Re-
mote Application Platform (RAP) [44]. Clients are Web-based components. Therefore,
Floasys is accessible through any browser installed on the company workstations. The
Web-Based RAP clients communicate with the server exchanging commands and mes-
sages in JSON text format [50] over the HTTP protocol. Servers tend to interact with
user browsers using the JSON exchange format [51] because it is easily parsed in client-
side JavaScript language [50]. The Floasys’s server can access to a set of already existing
repositories (mainly shared network folders) that store the simulation files in their orig-
inal format. It is an important asset for the industry, so every solution can not change
it to not change drastically how engineers work every day. In according to the internal
policies, Floasys accesses to these existing FCA repositories in a read-only mode through
the SSH protocol with the logged user credentials. Floasys server accesses to these exist-
ing repository through SSH connections to an existing industrial server. Floasys opens
a SSH connection towards the network folder for each connected client. In this way, the
SSH connection is initiated with the end-user credentials and he can access only to his
authorized files and directories. Therefore, Floasys implicitly inherits the existing files
authorizations that have been decided by the central ICT administration.

Obviously, the architecture needs an additional repository to store simulations in
open format (e.g., XML) with annotations, tags and additional metadata (Req. 2).
Floasys supports two types of repository: an internal Subversion server or a shared
network folder (without the version control support). In order to improve retrieval per-
formances, Floasys indexes open format XML documents relaying on a well-established
search engine technology like Apache Solr [52–54]. The server can access also to simula-

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 69

Figure 5.2: Floasys Client/Server Architecture.

tor software and High Performance Computing (HPC) resources as well as other internal
services like the authentication service. Floasys is Intranet-based for security reasons.
In addition, any kind of control access to data must be compliant with the industries
internal policies and can not be override. To provide authentication and to manage both
users and groups, Floasys can rely on existing industrial internal Lightweight Directory
Access Protocol (LDAP) servers [55, 56] or use existing Secure SHell (SSH) accounts
comply with existing file and directories access permissions. Floasys could be exposed
also on Internet, but limitations exist such as the huge amount of simulation data (gi-
gabytes) to transfer. Trusting and security issues must be taken into account (e.g., to
avoid espionage activities). Floasys is designed, developed and tested following an Agile
methodology based on short iterations of two weeks each in average, delivering small
functionalities every time. During the development, especially for server-side features,
we wrote black box unit tests using JUnit [57]. From functionalities testing point of view,
for each planned release we had a test plan with the test cases to execute and check on
a controlled environment software installation. In addition, during the Floasys develop-
ment, we worked closely to analysts in Fiat Chrysler Automobiles to get the user feedback
as soon as possible that were recorded in an issue tracking system (e.g., Edgewall Soft-
ware Trac1) and scheduled for the next plans in according to the issue/enhancement
priority. Of course, we received the user feedback during the development of the current
planned release. Sometimes we received blocking issues that unfortunately did not have
been discovered during the planned functionalities testing phase. The blocking issues
were planned in according to the Figure in a way to react immediately to the incoming
high priority request.

1Edgewall Software Trac official web site: http://trac.edgewall.org/

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 70

Figure 5.3: Floasys Agile Development and blocking bugs.

5.3 Server-side software architecture

The Floasys server-side component interacts with the simulator software to collect closed
format data and transform them in open format. The architecture is a three layers
approach (Fig. 5.7). It integrates multiple simulators in the bottom layer wrapping the
vendor software. The top layer is the front-end that contains the Web-based GUI tools
(or applications). The middle layer has the follows characteristics:

• it provides a common APIs to the front-end tools;

• it provides a common unified data representation called Simulation Model for data
coming from different vendor systems;

• it is an isolation layer [2] to decouple the front-end from vendor-specific simulator
wrappers;

• it allows the vendor-product switching at run-time to choose which ones are able
to provide the needed services and data.

The middle isolation layer contains the common APIs exposed to the upper appli-
cations layer. In order to keep its use easy, it mainly contains interfaces (or abstract
classes) which are implemented by vendor-specific wrappers. The use of a common iso-
lation layer does not exclude that each wrapper itself is designed with an isolation layer
using a proxy pattern. The architecture is able to provide the middle layer services also
with other technologies such as Restful and Web Services to support the interaction
and data exchange among other devices (i.e., mobile devices) and/or industrial systems.
In this way, another third application (i.e., mobile application) can access to the cen-
tral simulation repositories and provide other service over open format data. Actually
Floasys Meeting Mobile is under development to provide statistical information about
projects during the meetings.

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 71

Figure 5.4: Alternative architectural solution comparison.

An alternative solution to the previously described architecture could be the intro-
duction of a separate isolation layer for each vendor software. Figure 5.4 compares the
Floasys’s architecture on the left with the alternative solution on the right that use
an independent isolation layer for each simulator wrapper. The support of multiple re-
placeable vendor products and the simulators selection process requirements impose the
introduction of a common isolation layer. The alternative solution has the following
drawbacks:

• the selection process is performed in the application layer;

• separate isolation layers means also different APIs, differences that must be han-
dled in the application layer.

The extraction of data from closed file format generally is a tricky task and the solu-
tion depends on the specific proprietary software and it is strictly coupled with it. The
reverse engineering of the binary file content is an extreme solution and we definitively
tried to avoid it during Floasys development. The idea is to interact with the simulator
taking advantage of its specific features. Specifically, CFD simulators have an interesting
bult-in feature: the opportunity to write (or record) a macro to automate tasks within
the software. In addition, CFD simulators run “headless” without the graphical user
interface (GUI) and can execute macros from the command line. It is a built-in fea-
ture because every CFD simulation requires and runs on High Performance Computing
(HPC) resources. For instance OpenFoamR⃝, an open source CFD software package, is
a set of command line tools without GUI so that the aim of many projects [33] both
open and commercial is to design a GUI for OpenFoamR⃝. Another CFD simulator is
CD-adapcoTM STAR-CCM+R⃝, it has a Java-based macro language to automate repeti-
tive tasks. Therefore, Floasys takes advantage of this built-in CFD software feature. In
order to extract the data from a closed file format, the specific Floasys Wrapper runs
the original simulator and execute a macro within the simulator. Figure 5.5 shows an
example on how to run the extraction macro from the command line. The macro reads
the simulation content and stores everything in a plain intermediate file that after it is
managed by Floasys platform. Floasys reads this plain intermediate file, transforms it to

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 72

a common open format creating a XML document stored in the central open repository.

> starccm+ simfile.sim -batch MacroExtraction.java

Figure 5.5: Execution of the Macro to extract data from a simulation file.

Figure 5.6 shows the sequence of events and actions performed to extract simulation
data from closed file format. The components of the system are: the CD-adapcoTM

STAR-CCM+R⃝ Simulator (right side of Fig. 5.6), the simulator wrapper and the
shared folder (top side of Fig. 5.6). The wrapper interacts with the simulator through
the command line. As previously described, the central work to extract simulation data
is performed by a Java Macro. The Simulator executes this macro. All the parameter
to execute the macro and the data response are serialised and deserialised in files within
the shared folder.

Figure 5.6: How the STAR-CCM+R⃝ wrapper extracts simulation data.

The sequence of steps is the following:

1. Request Serialisation the wrapper serialises all the parameters to make the
request in a file on file system (file with extension *.sim.request), one of the pa-
rameter describes the task to perform, for instance the extraction of all simulation
data;

2. Simulator Running the wrapper runs the simulator and its macro as shown
in Figure 5.5, in addition, the wrapper blocks until the simulator execution is
completed;

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 73

3. Request Deserialization the macro deserialises the request file and gets the
parameters;

4. Task Execution the macro based on the input parameters executes the task;

5. Response Serialisation the macro serialises the simulation data and the task
results within a file on file system (file with extension *.sim.response);

6. Simulator Running terminated the wrapper that was waiting until the simu-
lator running completion and it recognises that the task has finished;

7. Response Deserialisation the wrapper deserialises the file response and gets all
the data.

Figure 5.7: Floasys Server-side architecture.

In order to meet extensibility and modularity requirements (Req. 7), the server is
based on a pure plug-in architecture [58]. A plug-in can provide well-defined hook points
called extension points to define and describe the way to extend its functionality. Other
plug-ins (or modules) can add new functionalities implementing an extension point. In
addition, a module can be replaced with another equivalent implementation also at run-
time. The Floasys core provides two extensions points to extend its functionalities:

• one hook point to introduce new tools in the upper layer;

• another hook point for new wrappers.

In this way, the following opportunities exist for the final customers:

• multiple Floasys instances can be deployed choosing which modules will compose
the overall architecture in according to the industrial needs;

• the industry can identify exactly which modules contain their specific know-how;

• each company can decide to invest money for the development of its own internal
modules to customise Floasys and meet specific internal requirements;

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 74

• in according to Eclipse Public License [59] (EPL), each plug-in can be released
open sources or with a closed license.

Floasys has two kind of modules: wrappers on bottom to collect data and tools
on top to provide engineering features (Fig. 5.7). An interesting Floasys extension
planned for the future is to develop a wrapper that collects experimental data (e.g., wind
tunnel experimental data, engine testbed). This is a challenging goal but the advantage
would be a central repository that contains both simulation and experimental in open
format supporting the comparison among them. An important task is the validation
of simulation results and the comparison among the computer results and experimental
data is very important.

Figure 5.8: Floasys projects within the Eclipse IDE.

Figure 5.7 shows the Floasys architecture with different layers. This software archi-
tecture reflects also in the source code organisation. In the Floasys Eclipse IDE there
are the following group of projects as depicted in Figure 5.8:

• Core API is the Floasys Framework and contains the simulation model and the
interfaces to abstract wrappers and tools concepts;

• Wrappers are the simulator wrappers that know how to interact with the simulator
software, for example Floasys has a wrapper for the OpenFoamR⃝ simulator;

• Tools contain the implementation of the front-end and the user functionalities, for
instance the document generator;

• RAP dependencies are the Eclipse Remote Application Platform used to develop
Floasys.

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 75

Floasys relies on mainstream technologies. The server-side components are Java
servlet-based. Floasys is developed upon Eclipse Remote Application Platform (RAP)
that “uses standard servlet technology and runs on any JEE servlet container” [44].
Therefore, the outcome of the deployment phase is a Web application ARchieve (WAR)
file that is deployed on a JEE servlet container (e.g., JBoss or Tomcat). This software
stack can be installed upon any operating system (e.g., Mac, Windows or Linux). Ac-
tually in according to the industrial internal policies, the server is a Red Hat Linux
distribution with JBoss2 but any other Linux distribution can be used.

5.4 Simulation Model

Floasys aims to collect data from multiple different simulators that often use closed file
formats. A lack of interoperability among CFD software exists so Floasys must directly
handle these heterogeneities. Heterogeneities among vendor products are both syntactic
and semantic. The syntactic heterogeneity concerns the vendor product APIs differ-
ences or the way to interact with them trough command line. The architecture has an
isolation layer (Floasys Framework in Fig. 5.7) to face these syntactic differences that
remain within the simulator wrappers and one common API has provided to upper lay-
ers. Semantics and data heterogeneities deal with data differences: software are often
similar but they use different concepts. This issue becomes evident when architectures
try to “support the concurrent use of multiple infrastructures, transparently” [2]. Floasys
introduces an intermediate common representation for simulation data called Simula-
tion Data-Model. It is based on a tree-like data structure as CGNS [60] format. In
order to be reusable, it consists mainly of interfaces and abstract classes. In addition,
Floasys provides a basic implementation based on the composite design pattern [61].
Figure 5.9 shows part (for simplicity) of Simulation Model Class Diagram. The interface
IComponent is the abstraction of all components within the model. IContainer is a
set of components, they represent an intermediate node within the tree-data structure
like a folder in the file system. Each component has its specialisation to store specific
data types. For instance, there is a node to store the outcome or a physical value. The
adding of metadata to this structure is very easy, it is just the adding of a new node to
the Simulation Model structure.

In Floasys, each wrapper (architecture bottom layer Fig. 5.7) knows how to inter-
act with a specific simulator and can extract data from a closed file format. The same
wrapper is responsible to create the Simulation Data-Model instancing the basic imple-
mentation and translating simulation content in nodes of Data-Model. The Simulation
Data-Model is serialisable. Floasys serialises the Simulation Data-Models in XML doc-
uments that are indexed using Solr and stored in a Subversion repository. Floasys uses
Java XStream [62] Library to serialize Simulation Data-Model in XML. This Data-Model
is very powerful because Floasys can enrich the original data adding meta-data as a new
node of the tree structure. Both Floasys Framework and wrappers can add metadata

2Red Hat JBoss official web site: http://www.jboss.org/

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 76

Figure 5.9: Simulation Model Class Diagram

over data inserting additional nodes in the tree (i.e., documents, automatic extracted
information) during extraction phase. Also users can enrich the Data-Model providing
tags and comments through repository tool that become nodes in Data-Model. All the
information stored in Simulation Data-Model can be used during within the Search Tool
to find simulations.

The advantages of the intermediate Simulation Data-Model representation are:

• metadata over data adding custom nodes;

• serialisation in open format such as XML;

• decoupling of wrappers from tools so it is possible to replace a wrapper limiting
changes to upper layers;

• opportunity to compare results that came from simulators with the results that
came from the experiments with real prototypes in future.

Finally, we experienced a great advantage of using a Data-Model during Floasys
development and for tge stakeholders after. Using the Data-Model has the advantage to
use the Floasys front-end without simulators. The idea is to have a dummy simulator
that reads data from the XML file and provides them through the described architecture
as a real simulator. This is a cost-saving in terms of HPC resources and available
simulator licenses for closed software. Considering the 3D geometry complexity, to open
a simulation file, engineers access to a computer cluster using a software license that are

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 77

fixed by the project budget. Therefore, the requirement to avoid data lock-in leads to a
cost-saving feature.

5.5 Simulation Data Management: Centralisation, Version
Control and Data Indexing

The architecture integrates multiple simulators, collects and centralises simulation data.
Each simulation contains textual, numerical (e.g., results), images and geometrical data.
Floasys extracts all simulation data embedded in closed file format and stores them in
open format files. The textual and numerical data are stored in XML files in according
to the Simulation Data-Model and are committed to the Subversion repository. These
XML files are relatively small (MB) so they are easily managed by the Subversion reposi-
tory. Obviously, most Subversion operations are recursive but Subversion 1.5 introduced
the sparse directories [63] (or shallow checkout) to checkout a portion of the working di-
rectory with the freedom to get more files and directories later [63]. Therefore, Floasys
relies on the shallow checkout to get a partial group of XML files. Floasys can use
multiple Subversion servers to accommodate future needs. Version control granularity
concerns the specific simulation file. In this way, simulation XML files can be distributed
among multiple Subversion servers. Floasys architecture has designed to store the SVN
URL within the Solr search engine during the indexing phase. Hence, when the user
search a simulation and gets the search results, for each result there is the SVN URL
to a specific Subversion repository. Hence, every time Floasys exactly knows the Sub-
version server used to store the open format XML document. In addition, in order to
provide high search performance, the generated simulation XML files are indexed using
Apache Solr [64]. Apache Solr provides extensions, configuration, infrastructure and
programming languages bindings around Apache Lucene. In according to the official
documentation [64], Apache Solr is “is highly reliable, scalable and fault tolerant, pro-
viding distributed indexing, replication and load-balanced querying, automated failover
and recovery, centralized configuration and more”. In particular, Apache Solr can be run
in a standalone configuration or it is possible to setup a cluster of Solr servers through
SolrCloud to combine fault tolerance and high availability as well as scalability using
replication and distributed indexing dividing the index into partitions called shards.
Floasys does not use the Subversion repository for the geometrical data because they
are very huge (GB). A simulation contains mainly two meshes (geometrical data): (1)
a surface mesh that is the vehicle shapes used to build the (2) volume mesh used at
solving time to solve the simulation. Floasys extracts only the surface mesh and makes
two outputs: a simplified geometry that serves just as overview of the vehicle product
(it is fast to retrieve and render with WebGL, see Section 4.3.3) and a surface mesh file
(e.g., STL file). Floasys does not store geometric volume mesh (the most heavy part
of a simulation) reducing the overall required amount of physical space. In this way it
saves space on repositories and it is always possible to build volume mesh from surface
mesh. In order to get the simplified 3D geometry version used only for the visualisation
on web, Floasys in batch connects to the Matlab server and reduces the original STL

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 78

surface mesh creating the lightweight version. This simplified version contains all vehicle
parts separately. After many attempts the best trade-off between running time and the
3D geometry quality is to use the Matlab reducepatch command. The quality of the
obtained mesh is assessed asking to CFD analysts. Floasys interacts with Matlab as a
black box, it gives in input the original mesh and gets in output the simplified mesh,
so in future we could replace Matlab with another system. The proposed solution has
an interesting advantage. XML files store the most important and useful simulation
data including a simplified 3D geometry. Therefore, users can open the XML files using
the repository tool and access to all simulation data without the original software and
without the HPC resources. It is a useful feature because sometimes CFD analysts need
to open simulations to consult data, in this way no proprietary software license nor HPC
resources are used.

Figure 5.10: Simulation Data versioning.

For each simulation file (left-side of Fig. 5.10) stored in closed file format, an XML file
exists in the SVN repository (right-side of Fig. 5.10) that contains extracted simulation
data and metadata in open format. In addition, each XML file is indexed using Apache
Solr [64]. Each XML file is always linked with its original simulation file using an unique
ID. In this way, the users can always get the original simulation following the provided
link. Floasys generates a unique ID for each simulation file and stores it with metadata
in the XML file. The ID is based on the original simulation file content and path.
This solution has the following advantages. Floasys does not change the simulation file
content to add other information such as the ID. It performs search operations using
indexed XML content getting high performances and providing version control for them.
Another alternative solution is to add metadata directly to simulation files avoiding
the creation of XML files. This solution has been discarded because has the following
drawbacks:

• it is difficult to find available and unused fields in the simulation files;

• the simulation files are still stored in closed file format, so the solution is vendor
software specific;

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 79

• the metadata management requires the access to files through the vendor software
using HPC resources due the geometry data;

• it is difficult to provide version control over simulation files because they takes up
to ten gigabytes.

From implementation point of view, two Java libraries have been used (Fig. 5.2):
SolrJ to interact with the Solr Server and SVNKit to commit and update data to Sub-
version repository. The solution meets also other industrial constraints, such as the
impossibility to move existing files and folders or to store them within a database. Fi-
nally, the solution must be independent by the specific simulator, so it can not store
metadata within the simulation files, also because files are in closed file format.

5.6 Collaborative Requirements Traceability

During the design of a system it is essential to track the requirements through all the
design steps. The Figure 5.11 depicts graphically the mapping among the stakeholders’
requirements, the solutions and the used technologies. Therefore, it shows three columns:
the first one lists the collaborative requirements identified and described in the chapter
2, the second column lists the solutions and the last one lists the specific technologies. In
addition, the Figure 5.11 has arrows to track and map for each technology and solution,
the related stakeholder requirement.

The simulation data centralisation has achieved using central repositories, such as
network shared folder. Stakeholders aim to add metadata over simulation data, and
Floasys provides a file tagging feature. In addition, engineers want retrieve simulations
based on the file name and its content. Unfortunately simulations are closed file format.
Floasys extracts the simulation data, stores them in open format and indexes all the data
through Apache Solr, a scalable search engine widely adopted by big digital firms. The
world wide and the dispersed teams have triggered the requirements to share simulations.
Floasys supports the sharing of data through the exchange of URLs, a standard technique
to share resources over Internet. Floasys has a plug-in based architecture and a central
layer called isolation layer to meet the extensibility and modularity Non-Functional
requirements. Within the isolation layer it uses a common unified Simulation Model
that handles the simulations heterogeneities.

5.7 Code Snippets

This section describes two code snippets took from Floasys: how to run a simulation
and how to extend Floasys. The main aim is to show with two practical examples the
concepts described in the previous sections like the extension by plug-in.

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 80

Figure 5.11: Mapping of requirements, solutions and technologies.

5.7.1 How to run a simulation

This section describes a practical example of the Floasys Framework use. Floasys sup-
ports both collaborative and engineering tasks. Here, this section presents a typical
engineering workflow supported by Floasys called run a simulation. An engineer selects
a simulation file from the repository and solve it using the available High Performance
Computing resources. This workflow and its relative tasks are depicted in Figure 5.12.

Task A the actor uses his credentials (a pair user name and password) to be authenti-
cated within Floasys;

Task B the user selects a simulation file through the repository tool (see Section 4.3.1)
with the goal to solve it;

Task C the user through the wizard inserts all the parameters to run a simulation (e.g.,
number of processors);

Task D the user clicks on finish and Floasys runs the simulation on the cluster;

Task E the run of a simulation takes hours so the engineer uses the Monitor Tool that
shows a chart to monitor the simulation convergence.

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 81

Figure 5.12: Run Simulation Workflow supported by Floasys

In the Task B, Since Floasys manages multiple types of simulator, it recognises
which one is able to manage the selected simulation file. For instance, lets assume for
simplicity that Floasys has configured to manage two types of simulator called A (e.g.,
OpenFoamR⃝) and B (e.g., CD-adapcoTM STAR-CCM+R⃝). When the user selects a
file of type A, Floasys recognises this file and knows that the simulator to use is the
type A. This feature has been implemented using the Chain of Responsibility design
pattern [61].

Figure 5.13 shows a piece of source code with in the wizard to run the simulation
when the user clicks on finish, at the end of Task D. At line 2, the object file contains
the path of the selected simulation file. Lines 5-6 use the Floasys Framework to un-
derstand whether in the system there is at least one simulator able to manage that file
(resource generically), and if at least one exist then the simpack contains a reference to
a Resource Descriptor with details on the simulation file as well as the simulator able
to solve the simulation (line 7). In Figure 5.15a, the SimulationPack class diagram has
two subclasses one for each supported simulator, in the example STAR-CCM+R⃝ and
OpenFoamR⃝. Each subclasses can decide how to represent a resource, in according on
how the simulator stores the data. STAR-CCM+R⃝ uses a single file so it has a file path
as instance variable, instead OpenFoamR⃝ that stores a simulation on multiple file within

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 82

1 //node is the selected file.

2 File file = ((FSNode) node).getFile();

3
4 //It finds the simulator able to manage the selected file.

5 ISimulationPack simpack =

6 FloasysPlatform.getInstance().createSimulationPack(file);

7 ISimulator simulator = simpack.getSimulator();

8
9 //Options to run the simulation.

10 RunSolverOptions options = new RunSolverOptions();

11 options.NumProc = 32;

12 options.queue = "cfd";

13
14 //It solves the simulation (non blocking).

15 simulator.getRunSolverService().runSolver(simpack, auth, options);

Figure 5.13: A code snippet: how solve a simulation within Floasys.

a directory has a folder path. The example is just to show that Floasys can handle any
kind of simulation because for each simulation there will be a relative SimulationPack
that will be used by its proper simulator wrapper within Floasys. Lines 10-12 read the
parameters to solve the simulation from the wizard GUI and create an object to carry
them. Finally, at line 15 the simulator runs the simulation described by the resource
descriptor simpack using the parameters within options and the authentication info
within auth.

1 File file = ...; //file contains a reference to simulation path.

2
3 #foreach ISimulator simulator in simulators

4 ISimulationPack simpack = simulator.canHandle(sim);

5 #if (simpack != null)

6 return simpack;

7 return null;

8
9 //Post-condition: the simulation package instance or null.

Figure 5.14: Search a simulator able to handle the simulation file.

Figure 5.14 shows the Floasys framwork pseudocode used to search a simulator able
to read (handle) the simulation file selected by the user. Floasys integrates multiple
simulators and all their instances are stored within the collection simulator. Each
simulator wrapper has a method canHandle (Fig. 5.15b) to understand whether the
simulator is able to recognise and handle an object. Therefore, the code in Figure 5.14
simply calls this method on all simulators. The first one that returns a reference to

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 83

a SimulationPack object declares that it is able to handle the object, will accept all
requests and will provide the required services. The method createSimulationPack

(line 6 of Fig. 5.13) calls this piece of code.

(a) SimulationPack. (b) Simulator.

Figure 5.15: Floasys Framework: (a) SimulationPack and (b) Simulator.

5.7.2 Extension by plug-in

Floasys has an extensible and modular architecture based on the plug-in concept in-
herited from the Eclipse Remote Application Platform. In this way Floasys integrates
dynamically the simulators and the front-end modules. Technically, the plug-in archi-
tecture has designed around the extension point and extensions concepts (Fig. 5.19).

Figure 5.16: Eclipse Extension Point and Extension concepts.

In the plug-in mechanism there are two components: a module to be extended and
at least one extender module. The module to be extended defines an extension point

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 84

like a power socket. It defines formally the rules to extend it, mainly syntactic rules.
An extender module defines an extension compliant to the extension point. Definitively,
between the extension point and the extension exists a contract. Using this mechanism
it is possible to simply copy the extender module within the software plugins folder
and the new functionalities will be available within the software. Technically, an Eclipse
plug-in is a Java Archive (zip file with jar extension), with a plugin.xml file inside
that contains all the information to execute the plug-in. Obviously, Java Runtime is
not able directly to read and execute this kind of jar, but the Eclipse platform with its
characteristics can read and load this file as a plug-in. In addition to the XML file, a
plug-in has also an activator that manages its lifecycle.

Figure 5.17: How to define an extension point within Eclipse.

Figure 5.17 shows the Eclipse window used to define an extension point. In particular
it defines how a simulator can be integrated within Floasys. A simulator plug-in is
essentially a Java class that implements the interface ISimulator (Fig. 5.15). All data
have shown on the left side of Figure 5.17.

Figure 5.18: Floasys Simulator Wrapper Plug-In Eclipse Project.

Figure 5.18 shows the extender plug-in (the simulator wrapper). The project has a
XML file called plugin.xml that defines the wrapper for STAR-CCM+R⃝. The exten-

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 85

sion details are in order the following: a unique ID to identify the plug-in within the
platform, a user readable name for the simulator and the Java class that implements the
ISimulator interface.

Figure 5.19: Plug-in Simulator Wrapper Extension Definition.

5.8 Remote Application Platform

The Integrated Development Environments (IDE) are software to aid the developers
to design, implement and test software systems. The most known IDEs are Microsoft
Visual Studio, Apple Xcode, NetBeans and Eclipse. Eclipse IDE is cross-platform and
has a plug-in based architecture. Eclipse IDE is gaining even more success because
it supports multiple programming languages (e.g., C, C++, PHP, HTML, Javascript,
CSS, etc.) and its environment can change dynamically in according to the programming
language and the performed tasks. For instance, in the software development lifecycle
there are the programming and debugging steps; the Eclipse IDE has two user interfaces
configurations called perspectives that contain the needed tool in each phase.

Eclipse is more than an IDE, under the hood there is a full stack platform to develop
standalone and web-based application that will have the Eclipse Style. Therefore, ap-
plications could have a graphical user interface based on the perspective concept (Fig.
X) with multiple views. In addition, the developed applications can use all the features
already developed for the Eclipse IDE, such as the source code file parsing. One of
the interesting feature that can be reused is the plug-in architecture. In this way, the
application can be structured in a central core and additional modules to plug in the
software. As described in Section 5.7.2, Floasys strongly relies on this concept so that
it has a pure plug-in architecture.

The RAP architecture overview is shown in Figure 5.20. It has a client-server archi-
tecture. The server is just a servlet container like Apache Tomcat or Jetty. The client
is the browser installed on the clients workstations. A RAP Client shows the graphical
user interface based on HTML and Javascript.

RAP is based on the Half Object Plus Protocol so a widget has two parts: the
widget graphical user interface and its logic like the event handlers. These two parts are
divided between the client and the server. The client just visualises the widget and gets
the user interactions. All the events generated by the user on the clients are managed
by the server. For instance, when the user performs a double click on an item of a
table, this event is sent to the server that has a listener for it and manage it. Figure

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 86

Figure 5.20: Eclipse RAP Client-Server Architecture.

Figure 5.21: Half Object Plus Protocol in RAP.

5.21 shows a conceptual view of the Half Object Plus Protocol (HOPP), the circle that
represent a object is split in two parts: one is the client object and the other one the
server object. These two objects become separate and run on different hardware. A
communication layer is placed between the two objects. RAP uses the HTTP protocol
to exchange data between the two half objects. In particular the objects exchange
messages in JSON format. The main drawback of this protocol is that any event on
the client side triggers a message from the client to the server to handle the event and
reply. These drawback is evident when the user scrolls a widget like a list of items. In
this case any time the user scrolls the list, an event and a message is sent to the server
adding a communication delay to exchange the message. A solution to this drawback is
to split the object asymmetrically. Instead to send any event to the server, the client can
handle the events directly in the browser avoiding the communication with the server.
Of course, other events that require the server to be performed trigger a message from
the client to the server. Java is the programming language to develop RAP applications,
and Java is used to develop both the client and the server side features. One of the
drawback of use the same language to program both client and server, especially as
happens in RAP is that sometimes the developer loose the knowledge on which part of
the system he is programming. RAP directly decides where a piece of code is executed

CHAPTER 5. FLOASYS PLATFORM ARCHITECTURE 87

with the rule that the graphical user interface (everything within the graphical thread)
is on the clients and all the codes to manage the events is on the server.

5.9 Conclusions

Floasys’s architecture is extensible so that it supports the adding of new services over
collected data. A lot of research work can be done for the creation of new services. For
instance, one useful service is the comparison among experiments in terms of mathemat-
ical functions to identify the ones that have the same trend or the ones with the same
physical phenomena. This service involves the study of time-series algorithms.

Chapter 6

Floasys Simulation Repository
Exploration

Contents

6.1 Introduction . 89

6.2 Related Works . 90

6.3 ExploraTool features . 92

6.3.1 Data Exploration: in-depth navigation 92

6.3.2 How should I use the colours? 93

6.4 ExploraTool Software Architecture 94

6.5 Simulation Repository Model 95

6.6 Hierarchical representation for tabular data 96

6.6.1 BuildHierarchy Algorithm Overview 98

6.6.2 BuildHierarchy Algorithm Description 98

6.6.3 Analysis of BuildHierarchy algorithm 99

6.7 Conclusions and Future Works 102

This chapter introduces and describes a tool called ExploraTool to visualise, explore
and graphically query large repositories of simulations. Instead of starting with the
empty list, ExploraTool provides an initial overview of the repository content, progres-
sively grouping the simulations by their main attributes, such as brand, vehicle model,
power source, engine type and so on. Users can interactively navigate the repository
view through drill-down, roll-up and rearrangement operations. In this way, using the
ExploraTool, simulation analysts can visualise, explore and filter large repository of sim-
ulations as well as select groups of simulations to compare their performances. Large
industries like FCA have large repository of simulation data and they must be sure that
analysts have access to previous generated data. ExploraTool provides an overview of the
repository content fostering its exploration selecting the key attributes to limit the space
of results to find previous simulations. In addition, ExploraTool is immediately useful to

88

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 89

answer questions like how many simulations we performed for the vehicle X?, and why
for the vehicle Y with the engine type Z there are few simulations? ExploraTool gives
a further advantage for the technical managers who can periodically check the working
in progress on a specific vehicle model. The idea behind the ExploraTool is generic and
can be easily used with the repository of experiments as well as other type of big data
sets. In order to do this, it is necessary to identify the common and interesting data
categories, and build the relative hierarchy that ExploraTool will render.

6.1 Introduction

Nowadays, industries and researchers extensively run simulations and experiments to
design their products. In the automotive, industrial equipment, high-tech, aerospace
and defence sectors [65], industries perform computer numerical simulations to design
their product facing time-to-market, high quality and cost down pressures [65]. For
example, automotive industries use Computational Fluid Dynamic (CFD) simulations
to design the external vehicle aerodynamics or the internal air-conditioning. Another
example comes from the engine design: researchers and industries have real engine test-
beds that run for hours collecting sensor data like pressure, temperature and torque
forces.

Simulation repositories usually store huge amounts of data for years. For instance,
in large manufactures like Fiat Chrysler Automobiles, each analyst performs at least one
hundred simulations per year [1], and there are many analysts working over years. This
has generated a large, valuable repository of assets. In addition, analysts typically deal
with simulations that are at least ten gigabytes each [1]. This gives an idea of the large
quantity of data to manage within these repositories and the difficulty in having a clear
idea of what they contain. Simulation Analysts, as well as Experiment Analysts, need
to clean, analyse and compare the collected results as well as get insight into the data
repository. Sometimes, specific phenomenons need to be understood. For instance, if
a particular event in an engine experiment run occurs sporadically, found through the
analysis of huge amounts of experimental data, then the analyst need to extract the
input conditions for which such an event occurs (e.g., for which pressure values). For
this reason there is a demand for software platforms able to collect, centralise, and get
insight into information in a data repository, as well as to analyse and share results [16].

Based on my experience working closely a team of aerothermal CFD within Fiat
Chrysler Automobiles, I identified the following three main requirements: (1) data col-
lection, centralisation [65], and sharing [1] (2) data heterogeneity management, and (3)
repository visualisation and exploration. The requirements one and two have been exten-
sively described in the previous chapters, here this chapter will focus on the simulation
repository visualisation and exploration.

This chapter focuses on the visualisation, exploration, and query of large repository
of simulations. The idea is to provide a graphical tool called ExploraTool to (1) get an
overview of the repository content, (2) navigate the repository of simulations based on
their properties, and (3) select and extract a set of simulations in order to compare their

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 90

performance. The tool is actually usable for generic data exploration, thereby being
usable to also explore repositories of experimental data, or any other big data sets.

Figure 6.1: The ExploraTool’s Graphical User Interface. It shows an overview of the
simulation repository through an initial hierarchy made by the following simulations’
attributes: brand, project model, power source and engine type.

6.2 Related Works

The visualisation of large datasets has become really important because the classical list
based widgets are not able to manage the large number of items, and also because it is
practically impossible to show all the data available within a dataset. In this context,
the 2D space-filling visualisation techniques aim to exploit all the available screen-space
supporting the overview of the datasets, the opportunity to navigate the dataset and get
more details on request. Generically speaking, the 2D space-filling approaches divide
the available screen space recursively using a basic shape (e.g., rectangle, circle). In this
way parent-child relationships are represented as nested shapes, and sibling nodes are
represented as closest shapes at same depth.

Treemap was introduced by Shneiderman during 1990 to have a compact file system
visualisation and be able to identify at a glance the directories that take up the most of
the space on the hard drive. Then, treemap [66] has been extensively used to present
intrinsically hierarchical data, providing an overview of an entire dataset at a glance.
In treemap, every node in the hierarchy is represented as a rectangle with an area
proportional to the node size. Parent-child nodes are represented as nested rectangles.
Usually the navigation within the hierarchy is based on a drill-down with a left mouse
click to go down in the hierarchy and a roll-up with a right mouse click to go up in the
hierarchy. Over years, the treemap visualisation approach has been used to visualise
different hierarchical data, such as inherently hierarchical organisation structures [67],

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 91

Figure 6.2: Original treemap visualisation introduced by Shneiderman during 1990.

file systems [68], Usenet newsgroup [69] and so on. Well-known treemap drawbacks
are the hierarchy discernment [70] and the fact that the position of the mouse pointer
designates an entire branch of the tree [71] because each point belongs to a single leaf
node but also to all its ancestors [71]. Of course, one of their advantages is the use of
the all available 2D space.

Ellimap [70] is another type of 2D space-filling visualisation approach. It uses ellipses
instead of rectangles to represent the nodes. In this way, there is always space between
ellipses, both nested ellipses and adjacent ellipses (i.e., sibling nodes in the hierarchy).
According to Otjacques at al. [72], the use of ellipses with their extra space improves
the hierarchy discernment compared to the visualisation based on rectangles.

ExploraTool exploits the ellipmap visualisation technique to explore large repository
of simulations within Fiat Chrysler Automobiles (FCA). Until now, the ellimap has
always been used coupled with other classical visualisation widgets like tree widget [70].
Here, this chapter explores the repository of simulations directly through the ellimap,
integrating a vertical navigation bar to track the user position in the hierarchy during the
navigation. In addition, this work exploits the natural extra space between the ellipses
in order to provide a hierarchy navigation facility in which the user points directly to

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 92

the target shape and interacts with the left mouse click.

6.3 ExploraTool features

This section describes ExploraTool and its features. Instead of starting from scratch with
an empty screen without results, the tool shows an initial overview of the dataset filling
all the 2D screen available space. Starting from this initial view, the user can navigate
the simulation repository through an hierarchical structure made by nested groups of
simulations. The tool’s graphical user interface (Fig. 6.1) has a central view to show
graphically the simulations available within the repository. The tool shows data using
the ellimap [70] visualisation technique, a 2D space-filling approach that uses ellipses as
basic shapes to represent sets of simulations. As shown in Figure 6.1, the external white
space is the universe that represent the set of all simulations within the repository. The
universe of simulations is further divided in subsets represented as ellipses. Each ellipse
area is proportional to the number of items that it represents. The ExploraTool shows
an initial overview of the dataset displaying the simulations by brand, project model,
power source and engine type. This default initial sequence of attributes is based on the
feedback provided by analysts in Fiat Chrysler Automobiles [1].

The user can have additional details on each group of simulations (ellipse) just by
hovering the mouse cursor over it. The tool shows the additional information, such as,
the number of items in a yellow box on the top-right (see Figure 6.1). This space can be
used in the future to provide aggregated statistics about the shown group of simulations.

The user can navigate the hierarchy through an in-depth navigation based on the
drill-down and roll-up operations. On the left, the tool has a vertical navigation hierar-
chy bar that has multiple aims: (1) it gives an overview of the hierarchy, (2) it shows
the current depth during the simulation repository navigation supporting the user ori-
entation [73], and (3) it allows hierarchy rearrangement by swapping the levels.

The tool shows exactly r levels of the hierarchy. Actually, the default value for this
parameter r is decided at configuration time and it can be changed changed via the user
preference functions. Of course, the trade-off is between the amount of data categories
displayed on the screen-space and the computational efficiency to extract the relevant
hierarchy from the repository of simulations.

6.3.1 Data Exploration: in-depth navigation

The user can further explore the simulation repository through the in-depth navigation
[71] based on two basic operations: drill-down and roll-up. Drill-down occurs when
a user has identified a potential interesting group of simulations and he/she wishes to
explore further details of this group, and so he/she clicks on an ellipse to obtain more
details. Every time the user drills down in the hierarchy by one level, ExploraTool loads
further data showing more nested ellipses. ExploraTool shows multiple nested ellipses, so
the user can drill-down one level at time or multiple-levels in one step just clicking on the
most internal nested ellipses. Roll-up is the operation opposite to the drill-down. When

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 93

Figure 6.3: The ExploraTool (on the left) shows an initial overview of the repository
with all the simulations progressively grouped by brand, vehicle model, power source
and engine type, as shown by the vertical navigation bar. In addition, the analyst has
moved the mouse pointer on the project Delta highlighting the relevant ellipse contour
and showing additional details within the selection details yellow tooltip box. In order
to focus on this group, the user can drill-down by directly clicking on the ellipse with
the label Delta. The ExploraTool smoothly enlarges the selected group (right side of the
figure) rendering a fast transition. When the user desires to go back to see less details,
he can directly click on the universe white space to perform a roll-up operation returning
to the initial view shown on the left.

the user wants to have a global dataset view he/she goes up in the hierarchy clicking
on the container ellipse. Every time the user drills down in the hierarchy, he/she is
effectively performing a refinement of the query, filtering all of the simulations in the
repository.

All the operations provided by the ExploraTool rely on the direct manipulation [74]
principle introduced by Shniderman. It concerns the direct interaction and manipulation
of the rendered objects. The use of ellipses as basic shapes guarantee that there will
be always space between sibling ellipses at same level and among nested ellipses. In
this way every operation performed by the user involves exactly the target shape. For
instance, in order to drill down in the hierarchy, the user points and clicks exactly on
the nested ellipse. In order to roll-up the user points and clicks exactly on the parent
shape utilising the space between the parent and child ellipses (Figure 6.3) which is
always present. It is not the same for other 2D space-filling techniques. For instance, in
the treemap visualisation technique both nested rectangles and adjacent rectangles have
no space among them, so the position of the mouse pointer designates a branch of the
tree [71] because each point belongs to a single leaf node but also to all its ancestors [71].
Finally, in the ExploraTool, also to obtain the list of simulations within a specific ellipse
the user can click directly on the target ellipse.

6.3.2 How should I use the colours?

The use of the colours is really important within a visualisation tool. ExploraTool uses
the colours described in the following work [75]. Table 6.1 lists the colours used within
the ExploraTool and visible through the Figure 6.1 and Figure 6.3.

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 94

Colour HTML Colour

E04A4D
FEC083
FFFFCD
BDE1EE
5997C6

Table 6.1: Colours used to draw the ellipses within the ExploraTool.

6.4 ExploraTool Software Architecture

This section describes the ExploraTool architecture and the technologies used for its
implementation. The tool is based on a Client/Server architecture (Fig. 6.4). Nev-
ertheless in the industrial contexts for confidentiality reasons software systems usually
are used within the industries boundaries (Intranet-based), the overall architecture is
designed using standard protocols to work properly both on the Intranet and Internet.
In order to explore the repository, analysts can just open one of the web-browsers (e.g.,
MozillaR⃝ FirefoxR⃝) installed on their workstations targeting to a specific Intranet URL.
This allows zero-configuration on the client-side.

Figure 6.4: ExploraTool prototype client/server architecture.

On the server-side there are one or multiple simulation repositories. The Floasys
Framework [16] reads the data from the simulation repository, transforms them in open
format and indexes them to improve their retrieval. ExploraTool on the server-side uses
the Floasys Framework API to retrieve the simulations stored within the repository.
The overall process with detailed steps has been depicted in Figure 6.5. The simulation
data in tabular format are the input for the Hierarchy generation phase performed by
the algorithm described in the next Section 6.6. The output is a tree data structure
converted in JSON text format and sent to the Web-Browser. The browser gets the

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 95

hierarchy structure, generates an ellipse for each node in the hierarchy and packs all the
ellipses.

Figure 6.5: Pipeline of transformation from the simulation repository to the visualisation
on the client Web-browser.

From technological point of view, ExploraTool leverage from mainstream technolo-
gies. Clients exchange data with the server in JSON text format [50,51] using standard
Web protocols (e.g., HTTP). Clients are implemented using the open source JavaScript
library D3 Data-Driven Documents1 [76] and SVG. The server has been implemented
using Java.

6.5 Simulation Repository Model

A repository R is a collection of n items R = {s1, ..., sn}. Through this chapter ob-
viously the items are simulations (Fig. 6.6). Each item s ∈ R is described through
attributes attached to it. Therefore, this work introduces a set A = {a1, a2, ..., am} that
contains the labels/names of the attributes useful to describe the items. Therefore, each
attribute ai is a label. For example, in the use case, the labels for the attributes are
A = {brand, projectmodel, powersource, enginetype}. These attributes are also known
as facets [77,78].

For each attribute ai exists a set of valid values that we call domain Di = dom(ai).
For instance, in the simulation context, the attribute power source has the domain

1D3JS documention as well as the library download is available on the official web page http://d3js.
org/

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 96

Dpowersource = dom(powersource) = {Bifuel, Petrol,Diesel}. In Fiat Chrysler Au-
tomobiles, the attribute brand has the following valid values Dbrand = dom(brand) =
{Fiat, Lancia,Alfa, Chrysler,Maserati}. The domain collectionD = {D1, D2, ..., Dm}
contains a domain set Di for each attribute ai, so that ∀i ∈ {1, ...,m}, Di = dom(ai).

Each simulation s ∈ R is an ordered list of m values s =< v1, ..., vm >, where
∀i ∈ {1, ...,m}, vi ∈ dom(ai). According to [79], in order to easily access the values
of the simulations attribute, for each simulation s in the repository R, its useful to
introduce the notation s[i] ∈ Di to obtain the value of the i-th attribute of the ordered
list s. Therefore, s is a list of values and they are drawn one from each domain set, so
that the i-th value s[i] is from the domain Di. For simplicity, the assumption here is that
all the values are single-valued [77] as opposed to multi-valued (e.g., colour attribute for
a flag with multiple values, such as red and green).

Therefore, the formal model for a repository of simulations (Fig. 6.6) is a triple
(A,D,R).

Figure 6.6: Class Diagram to describe a typical repository of simulations.

6.6 Hierarchical representation for tabular data

The ExploraTool presents a hierarchical view of the large dataset, and permits navigation
through drill-down and roll-up operations. This is fully compliant to the Shneiderman
guideline of “Overview first, zoom and filter, then details-on-demand” [80].

As depicted in Figure 6.7, the ExploraTool allows the graphic navigation of the
dataset through a hierarchy (tree) built over the repository content. Every time the user
decides to drill down, he/she clicks on an ellipse that identifies a branch in the tree.
As shown in Figure 6.7, the tree and the visualisation have a level for each attribute
ai in the repository. At each level of the tree, that corresponds to the attribute ai,
there are the nodes with the values is in Di. Some nodes corresponds to zero items
in the original dataset, so they are not present in the hierarchical view. For instance,
the path (root, 1, B, b) that would be present in the full tree, is not present in the

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 97

constructed tree because there are not items in the original dataset with the values
s[1] = 1 ∧ s[2] = B ∧ s[3] = b.

Figure 6.7: Example of hierarchy extraction from a table. The table on the left has tree
attributes A = {a1, a2, a3} and n simulations. The tree on the right has a level for each
domain Di and at each level i there are the nodes with the labels in Di. ExploraTool
builds the visualisation shown on the bottom of the figure, starting from the tree data
structure.

It is clear and evident that the visualisation through the ellipses is equivalent to
the tree representation, and actually ExploraTool builds the visualisation from the tree.
Therefore, the tool strictly depends on the creation of a hierarchy from the repository of
simulations. This section describes a generic algorithm called BuildHierarchy imple-
mented in the ExploraTool server-side component, to get a hierarchical view from any
kind of dataset, not only a repository of simulations.

The algorithm BuildHierarchy runs in two cases: (1) when the user opens Ex-
ploraTool for the first time, the algorithm builds the initial default partial tree made of
the first r levels, (2) every time the users perform a drill-down operation, they are nav-
igating to a specific branch of the entire tree and so the algorithm builds a new subtree
with r levels rooted at the selected node.

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 98

6.6.1 BuildHierarchy Algorithm Overview

Generally speaking, the algorithm reads the data from an input dataset (e.g., simulation
repository) described as (A,D,R), and builds a tree data structure T = (V,E) that will
be rendered using nested ellipses (Fig. 6.7). In order to limit the amount of data to
show within the ExploraTool, we introduce the number levels to display r ∈ {1, 2, ...,m}
which is exactly the height of tree data structure to build (the longest downward path
between the root and a leaf [81]). In this way, the process depicted in Figure 6.5 will
retrieve only a part of the dataset.

In the overall process depicted in Figure 6.5 only the part of dataset corresponding
to the r attributes is retrieved from the simulation repository, and the ExploraTool
shows only the first r levels of the hierarchy to the user. The loading of further data
is triggered when the user navigates the hierarchy with a drill-down operation. In this
way, the server provides chunks of subtrees made by r levels.

The algorithm input is a 5-tuple (A,D,R, r, fS).
The fS function specifies a sorting of the domains that will have direct impact upon

the resulting hierarchy. Given m domains, m! permutations exist, so m! different tree
hierarchies exist. Therefore, the algorithm needs an initial permutation of the domains
and this can be decided at tool configuration time. Here, a domain permutation is just a
function fS : {1, 2, · · · ,m} → {1, 2, · · · ,m} that maps the given sort with the domains.
The function fS defines the initial order for the attributes as shown in the navigation
bar on the left side of the ExploraTool GUI (Fig. 6.1).

The algorithm output is a tree T = (V,E) that will be displayed as nested ellipses
starting from the root. In according to [81], ∀u ∈ V we use the following notations:
Children[u] is the list of all the nodes v such that exists an edge (u, v) ∈ E; Count[u] ∈ N
is the counter to track the number of simulations represented by this node u that will
determine the area of the relative ellipse; Label[u] is the label for the node u that will
be displayed on top of the ellipse.

6.6.2 BuildHierarchy Algorithm Description

Initially the tree T has only one node that is the root and no edges. The algorithm 1
scans all the simulations in the repository s ∈ R exactly one time (Alg. 1 line 5). For
each simulation s, the algorithm scans the simulations’ attributes in the order specified
by the function fS (Alg. 1 line 6). Obviously the number of attributes to scan can not
be greater than min(r,m), where r is the number of levels to display and m is the total
number of available attributes.

The Algorithm 1 takes each simulation and navigates the tree from the root to a leaf
node and goes one level down for each domain. Initially, the root is the selected node
(Alg. 1 lines 3 and 18). For each attribute’s value s[i], the algorithm at line 9 tries to
find a node with the label s[i] if it already is present but also it sets the current node
curnode to null if there is no such node already present. In this way, if there is not a
child in the tree with value s[i], at line 10, the algorithm creates a new node with that
attribute value.

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 99

Table 6.2: Notations used to describe the BuildHierarchy Algorithm.

Notation Description

R Repository of simulations.
n Number of simulations, |R| = n.
s Simulation s ∈ R.

A Simulation attributes as a set of labels/names.
m Number of attributes |A| = m = |D|.
ai i-th attribute of A, ai ∈ A.
Di Set of valid values for the attribute ai.
s[i] Value of i-th attribute of simulation s.

V Set of nodes for the tree data structure.
E Set of directed edges for the tree data structure.
v, u Two nodes u, v ∈ V .

Label[u] Label attached to the node u.
Count[u] A positive integer number to track the number of simulations.

Children[u] A list of all nodes v that (u, v) ∈ E.

In the tree data structure each node ∀u ∈ V has a size specified by the Count[u] that
is the number of items in the dataset with the specific attribute values. All the nodes
have size greater than zero, so that during the exploration of the hierarchy, the user will
never encounter an empty set.

The BuildHierarchy algorithm can be used to provide the rearrangement fea-
ture. The algorithm creates an initial hierarchy based on an initial domain sorting
function fS specified at configuration time. Then, the tree is rendered using a 2D
space-filling visualisation approach. The user can swap the levels in the hierarchy or en-
able/disable some other levels. In this way, the user is sorting the n domains by choosing
a permutation. By changing the input function fS to Algorithm 1 one may obtain the
different hierarchical views corresponding to the different sortings of the domains.

The algorithm to build the hierarchy can be executed by using the map/reduce
paradigm on large datasets by slicing the dataset in q groups of rows. Each group is
mapped to a computing node. Each computing node can execute the algorithm on a
specific set of rows and compute the partial tree data structure. Finally, the resulting
tree data structure can be merged together to get the final hierarchy. The main problem
to face is to use a real time paradigm especially because the web-based ExploraTool is
interactive and requires high response time.

6.6.3 Analysis of BuildHierarchy algorithm

The algorithm input is a 5-tuple (A,D,R, r, fS). The algorithm output is a dataset
hierarchical view, a tree data structure (V,E). We calculate the number of the nodes
|V | in the output tree and compute the wrost case running time of the BuildHierarchy.
We adopt the asymptotic notation f(n) = Θ(g(n)) to indicate that “g(n) is an asymp-

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 100

Algorithm 1: BuildHierarchy(A, D, R, r, fS)

Input: labels A for the attributes, domains D, set of simulations R, number of
levels r to load and a domains ordering function fS

Output: T = (V,E)

/* Initialisation */

1 root← CreateNewNode();
2 V ← {root}, E ← ∅;
3 prevnode← root;
4 curnode← null;

/* It iterates along all simulations in the repository R */

5 foreach s ∈ R do
6 for j ← 1 to min(r,m) do
7 i← fS(j) ; /* i ∈ {1, · · · ,m} is an index. */

8 value← s[i] is the value of i-th attribute of s;

9 curnode← FindChild(V,E, prevnode, value);

10 if curnode is null then
11 curnode← CreateNewNode();
12 Count[curnode]← 0;
13 Label[curnode]← value;
14 V = V ∪ curnode;
15 E = E ∪ {(prevnode, curnode)};

16 Count[curnode] + +;
17 prevnode← curnode;

18 prevnode← root;

19 return (V,E);

Algorithm 2: FindChild(V, E, u, nodelabel)

Input: tree data structure (V,E), a node u ∈ V and a nodelabel
Output: a node v ∈ V with (u, v) ∈ E, or null

1 foreach v ∈ Children[u] do
2 if Label[v] == nodelabel then
3 return u

4 return null

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 101

totically tight bound for f(n)” [81] and f(n) = O(g(n)) to indicate that “g(n) is an
asymptotic upper bound for f(n)” [81].

For each domain Di ∈ {D1, · · · , Dm}, Di is a set of values. We denote with |Di|
the number of items in the set Di. Therefore, in according to Equation 6.1, p is the
maximum number of items in Di where i ∈ {1, · · · ,m}. Equation 6.1 is an upper bound
for the domains’ sizes.

p = max
i∈{1,··· ,m}

|Di| (6.1)

Hierarchy analysis

The aim is to calculate |V | (the size of the set V) which is the number of nodes in the
generated tree. The algorithm BuildHierarchy generates in the worst case a full, com-
plete and balanced tree with height r as requested by input to the algorithm. Therefore,
the total number of nodes is O(pr) with p > 1 and 1 ≤ r ≤ m. The worst case occurs
when all domains have exactly size p.

The algorithm 1 generates a tree with a level for each domain Di and the maximum
number of levels is r.

At level 1, the algorithm inserts a new node for each value in the domain DfS(1) that
is maximum p. At level 2, the algorithm inserts a new node for each value in the domain
DfS(2), and it does this for each node at the previous level (i.e. level 1). Therefore,
the number of total nodes in the tree is just the product of domains’ sizes (Eq. 6.2).
Equation 6.1 provides an upper bound on the domains’ sizes that can be used in the
following equation to obtain an upper bound for

∏m
i=1 |Di|.

|V | ≤ |D1| × |D2| × · · · × |Dr| =
m∏
i=1

|Di| ≤
r∏

i=1

p = O(pr) (6.2)

The final tree data structure (the dataset hierarchical view) in the worst case, has a
number of nodes that grows exponentially with the parameter r (the number of levels).
Therefore, the number of nodes in the tree |V | is O(pr) (Eq. 6.1 and Eq. 6.2). In order
to keep the hierarchy clear during the visualisation we decide to not show more than
five levels at each time (r ≤ 5), so the number of the nodes in the tree will in the worst
case O(p5).

Algorithm running time analysis

The BuildHierarchy algorithm scans all the dataset items (the table rows) at line 5.
Assuming that the dataset has n rows (|R| = n), the foreach iterative statement at line
5 is Θ(n). For each row in the dataset, algorithm 1 scans exactly r columns (the domains)
of the dataset at line 6 in the order denoted by the sorting function fS . Therefore, the
running time upper bound for the line 6 is O(r). Finally, there is a call to the algorithm
FindChild (Alg. 2) whose running time is proportional to the maximum number of

CHAPTER 6. FLOASYS SIMULATIONS EXPLORATION 102

children for each parent node in the tree which is O(p) (Eq. 6.1). Here, we are assuming
that each parent node in the tree has a linear list of children. Therefore, the algorithm
BuildHierarchy running time is: Θ(n) ·O(r) ·O(p) ≤ O(n · r · p).

The algorithm has the r parameter to decide the number of levels to show in the
hierarchy. The same parameter is useful to render the hierarchy on-demand. In this way,
two interesting features can be provided: (1) when the user drills-down in the hierarchy,
it is asking for details on-demand and so the algorithm loads the next r levels; (2) from
computational point of view, the algorithm computes only the first r levels and so the
running time becomes O(n · p).

6.7 Conclusions and Future Works

This chapter described a tool called ExploraTool to visualise, explore and query large
repositories of simulations. Large industries like FCA have large repository of simula-
tion data and they must be sure that analysts have access to previous generated data.
ExploraTool provides an overview of the repository content fostering its exploration se-
lecting the key attributes to limit the space of results to find previous simulations. In
addition, ExploraTool is immediately useful to answer questions like how many simula-
tions we performed for the vehicle X?, and why for the vehicle Y with the engine type
Z there are few simulations? ExploraTool gives a further advantage for the technical
managers who can periodically check the working in progress on a specific vehicle model.
The idea behind the tool is generic and can be easily used with the repository of ex-
periments as well as other type of big data sets. In order to do this, it is necessary to
identify the common and interesting data categories, and build the relative hierarchy
that ExploraTool will render.

As future works on the ExploraTool, it is important to improve the layout algorithm
to avoid thin ellipses, thereby improving the overall visualisation aesthetic. Of course,
the residual space among nested ellipses can be reduced, but this could impact upon user
hierarchy perception and discernment. In addition, an evaluation study is essential to
analyse the tool usability and the user satisfaction when interacting with it, by utilizing a
well-known questionnaire [82,83]. Furthermore, will be interesting to generalise the tool
and use it on a generic repository like a catalogue of products and compare how users
will perform with it as compared to using different types of visualisation techniques, like
a classical list of results, Treemap, FacetMap [78], etc. Within the industrial context an
interesting issue to explore is the data authorisation problem, where a user may only
have access to a specific subset of simulations within the repository.

Chapter 7

Conclusions & Future Works

Contents

7.1 Summary . 103

7.2 Future Works . 104

This concluding chapter provides an overview of the entire dissertation describing
the main achieved results.

7.1 Summary

Nowadays enterprises are world-wide and compete on a global market. They have mul-
tiple locations around the world over multiple nations and often over different time
zones. In this context modern Internet technologies can support the communication,
coordination and the sharing of resources among workers.

The aim of this dissertation is to analyse a real use case provided by Fiat Chrysler
Automobiles to understand the needs of engineering teams that work far from each other,
and explore the use of modern technologies, such as the collaborative systems to support
their work.

In this dissertation, I was able to identify the key collaborative requirements analysing
a real use case of two teams within FCA, through the use of stakeholders interviews,
on-site observations and an on-line user survey. In addition, I was able to address these
requirements with an integrated, extensible and modular architecture to collect, cen-
tralise and store simulations in open format independently by the original simulator
software. Over the basic platform there are other tools and services like simulation tag-
ging, simulation searching and engineering features. The provided Floasys architecture
is modular and extensible so industries can customise it designing, implementing and
testing new modules to plug in the architecture.

In this way, the dissertation provides solutions and technologies able to address the
collaborative requirements. Furthermore, requirements, solutions and technologies are
tracked through the dissertation and their links are depicted in the Figure 5.11.

103

CHAPTER 7. CONCLUSIONS & FUTURE WORKS 104

Floasys is Web-based platform designed and developed to meet the collaborative
and engineering requirements. It is an industrial prototype currently under testing and
evaluation in FCA. Ideas behind Floasys, such as the integrated, extensible and modular
architecture, could be adopted also in other contexts. The great opportunity to have
different modules to plug in the architecture allows the deployment of a system tailored
to engineers needs and development of some custom modules to embed team know-how.
The solution to integrate existing engineering software and extract data from closed file
format enables the creation of value added services over open format industrial data.
In addition, large industries, independently by the sector, have multiple geographically
distributed teams so, the collaboration around open format data and the sharing of data
at different granularity and aggregation are great features. All features that could boost
the industry competitiveness.

Floasys relies on mainstream open source solutions and its architecture is made
integrating widely used existing enterprise technologies. The architecture can be divided
into four main uncoupled parts:

• simulators wrappers that communicate with the simulator software to get the sim-
ulation data and transform them in XML open format;

• the version control repository for the XML files (e.g., SVN);

• an enterprise search engine to index, cache and search the XML documents (e.g.,
Apache Solr), and

• the central web server that provides the Web content (e.g., JBoss servlet container).

From scalability point of view, Apache Solr has been choose because it can scale using
SolrCloud. To guarantee the data versioning, Floasys relies on Subversion technologies
and it supports multiple SVN repositories and a mainstream container. In this way the
data to put under versioning can be spread over multiple servers splitting data by folder.

Of course, as next steps, different tests have been planned: controlled benchmark
tests to quantitatively assess and evaluate the Floasys performance, reliability and ro-
bustness. Also the evaluation of the graphical user interface is interesting so the plan
is to conduct an evaluation study to analyse the usability of the Floasys user interface,
and the user satisfaction when interacting with it [82, 83]. The user acceptance of the
software will be investigated as well [84].

7.2 Future Works

Through this dissertation many other ideas come to light that could be explored. This
section discusses the main ways to further explore the topics.

The main research avenue that could be further explored are:

• Visually Repository Exploration. In a working context analysts perform a
lot of simulations and experiments per year, so the repository are really huge and

CHAPTER 7. CONCLUSIONS & FUTURE WORKS 105

contains the products history of many years. One of the main observed difficult
concern the repository data visualisation and navigation. Analysts need to get
insight into the overall repository getting first its overview. The questions that
usually arise are: how many simulations we have for the project Y? How the vehicle
performances have evolved during the years?

• Experimental data heterogeneity Engineers run test-bed engines for hours
collecting a huge amount of data generating a high valuable repository of assets
over years. The main issue here is the heterogeneity among the data representa-
tions because engineers use different engine test-beds. One idea to manage this
heterogeneity is to use the technologies form the semantic web to create a common
representation storing every thing in a central repository. At there is a perfor-
mance issue because the same repository must be able to manage queries to filter
and compare data.

• Social networks coupled with simulation repository. An interesting future
work is the opportunity to link the subversion repository (SVN) that contains
simulation data in open format with an internal private social network enabling the
discussions on artefacts [85]. The research aim could to understand and evaluate
the benefits of using the social in the field of industrial CFD simulations.

Bibliography

[1] Claudio Gargiulo, Delfina Malandrino, Donato Pirozzi, and Vittorio Scarano. Simu-
lation data sharing to foster teamwork collaboration. Scalable Computing: Practice
and Experience, 15(4), 2015.

[2] William H Brown, Raphael C Malveau, and Thomas J Mowbray. AntiPatterns:
refactoring software, architectures, and projects in crisis. 1998.

[3] Claudio Gargiulo, Donato Pirozzi, and Vittorio Scarano. An architecture for CFD
Workflow management. In INDIN, pages 352–357, 2013.

[4] Colin Kelly-Rand Michelle Boucher. Getting Product Design Right the First Time
with CFD, 2011.

[5] Stephan Onggo, Simon Taylor, and Arman Tulegenov. The need for cloud-based
simulation from the perspective of simulation practitioners. 2014.

[6] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction (3rd
edition). 2003.

[7] Nader Ale Ebrahim, Shamsuddin Ahmed, and Zahari Taha. Virtual teams: a
literature review. Australian Journal of Basic and Applied Sciences, 3(3):2653–
2669, 2009.

[8] Ilze Zigurs and Bjorn Erik Munkvold. Collaboration technologies, tasks, and con-
texts. Human-computer interaction and management information systems: Appli-
cations, pages 143–169, 2006.

[9] Bernd Bruegge and Allen H Dutoit. Object-Oriented Software Engineering Using
UML, Patterns and Java-(Required). Prentice Hall, 2004.

[10] Marina Mendonça Natalino Zenun, Geilson Loureiro, and Claudiano Sales Araujo.
The Effects of Teams’ Co-location on Project Performance. In Complex Systems
Concurrent Engineering, pages 717–726. Springer, 2007.

[11] Guido Hertel, Susanne Geister, and Udo Konradt. Managing virtual teams: A re-
view of current empirical research. Human Resource Management Review, 15(1):69–
95, 2005.

106

BIBLIOGRAPHY 107

[12] Thomas H Davenport. Thinking for a living: how to get better performances and
results from knowledge workers. Harvard Business Press, 2013.

[13] Paul S Chinowsky and Eddy M Rojas. Virtual teams: Guide to successful imple-
mentation. Journal of management in engineering, 19(3):98–106, 2003.

[14] Andrew P McAfee. Shattering the myths about Enterprise 2.0. IT Management
Select, 15(4):28, 2009.

[15] Kai Hakkarainen and Sami Paavola. From monological and dialogical to trialogical
approaches to learning. In A paper at an international workshop” Guided Construc-
tion of Knowledge in Classrooms, 2007.

[16] Claudio Gargiulo, Donato Pirozzi, Vittorio Scarano, and Giuseppe Valentino. A
Platform to Collaborate around CFD Simulations. In 2014 IEEE 23rd International
WETICE Conference, WETICE 2014, Parma, Italy, 23-25 June, 2014, pages 205–
210, 2014.

[17] M Kirby. Custom Manual. Technical report, Technical Report DPO/STD/1.0, HCI
Research Centre, University of Huddersfield, 1991.

[18] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131–164,
2009.

[19] Jongbae Moon, Chongam Kim, Yoonhee Kim, and Kum Won Cho. CFD Cyber
Education Service using Cyberinfrastructure for e-Science. In Networked Comput-
ing and Advanced Information Management, 2008. NCM’08. Fourth International
Conference on, volume 2, pages 306–313. IEEE, 2008.

[20] Volker Bertram and Patrick Couser. Aspects of Selecting the Appropriate CAD
and CFD Software. 9th Conf. Computer and IT Applications int the Maritime
Industries (COMPIT). Gubbio., 2010.

[21] Cunningham and Cunningham Inc. Anti-Pattern. Last checked on: 2014-09-08.

[22] John Vlissides, R Helm, R Johnson, and E Gamma. Design patterns: Elements of
reusable object-oriented software. Reading: Addison-Wesley, 49:120, 1995.

[23] Mark Perry and Thomas Margoni. Floss for the canadian public sector: open
democracy. In Digital Society, 2010. ICDS’10. Fourth International Conference on,
pages 294–300. IEEE, 2010.

[24] Rajiv Shah, Jay Kesan, and Andrew Kennis. Lessons for open standard policies:
a case study of the Massachusetts experience. In Proc. of the 1st inter. conf. on
Theory and practice of electronic governance, 2007.

[25] Vasudeva Varma and Vasudeva VarmaWrite. Software Architecture: A Case Based
Approach. Pearson Education India, 2009.

BIBLIOGRAPHY 108

[26] Sherif Sakr, Anna Liu, Daniel M Batista, and Mohammad Alomari. A survey of
large scale data management approaches in cloud environments. Communications
Surveys & Tutorials, IEEE, 13(3):311–336, 2011.

[27] Chia-Wei Chang, Pangfeng Liu, and Jan-Jan Wu. Probability-based cloud storage
providers selection algorithms with maximum availability. In Parallel Processing
(ICPP), 2012 41st International Conference on, pages 199–208. IEEE, 2012.

[28] Brian W Fitzpatrick and JJ Lueck. The case against data lock-in. Queue, 8(10):20,
2010.

[29] Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul
Wilson, Jane Radatz, Mary Yee, Hugh Porteous, and Fredrick Springsteel. IEEE
standard computer dictionary: Compilation of IEEE standard computer glossaries.
IEEE Press, 1991.

[30] Bernd Bruegge and Allen H Dutoit. Object-Oriented Software Engineering Using
UML, Patterns and Java-(Required). Prentice Hall, 2004.

[31] Jez Humble and David Farley. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education, 2010.

[32] Peter Sempolinski, Douglas Thain, Daniel Wei, and Ahsan Kareem. A system
for management of computational fluid dynamics simulations for civil engineering.
In E-Science (e-Science), 2012 IEEE 8th International Conference on, pages 1–8.
IEEE, 2012.

[33] OpenFOAM GUIs. ”http://openfoamwiki.net/index.php/GUI”. Last checked
on 08/09/2014.

[34] Julian Weber. Automotive Development Process. Springer, 2009.

[35] SG Lee, Y-S Ma, GL Thimm, and J Verstraeten. Product lifecycle management in
aviation maintenance, repair and overhaul. Computers in Industry, 59(2):296–303,
2008.

[36] Farhad Ameri and Deba Dutta. Product lifecycle management: closing the knowl-
edge loops. Computer-Aided Design and Applications, 2(5):577–590, 2005.

[37] Juha Kortelainen. Semantic Data Model for Multibody System Modelling. VTT,
2011.

[38] Jongbae Moon, Kum Won Cho, Soon-Heum Ko, Jin-Ho Kim, Chongam Kim, and
Yoonhee Kim. A Cyber Environment for Engineering Cyber Education. In eScience,
2008. eScience’08. IEEE Fourth International Conference on, pages 532–539. IEEE,
2008.

[39] Seonguk Lee and Chongam Kim. Development and Utilization of Online Compu-
tational Environment for Education and Research in Fluid Engineering. 2013.

BIBLIOGRAPHY 109

[40] Y Jung, Jongbae Moon, D Jin, B Ahn, JH Seo, H Ryu, O Byeon, and JR Lee. Web
simulation service improvement on EDISON cfd. Computer Science and Technology
(CST 2012), 2012.

[41] Young Jin Jung, Jongbae Moon, Du-Seok Jin, Bu-Young Ahn, Jerry Hyeon Seo,
Hoon Ryu, Ok-Hwan Byeon, and JongSuk Ruth Lee. Performance Improvement for
Web based Simulation Service on EDISON cfd. International Journal of Software
Engineering and Its Applications, to be accepted, 2013.

[42] Seonguk Lee and Chongam Kim. Development and utilization of online computa-
tional environment for education and research in fluid engineering. 2013.

[43] Simantics platform. ”https://www.simantics.org/simantics/
about-simantics/simantics-platform/”. Last checked on 28/07/2014.

[44] Eclipse rap remote application platform. ”http://eclipse.org/rap/”. Last
checked on 01/09/2014.

[45] Jiten Rama and Judith Bishop. A survey and comparison of cscw groupware ap-
plications. In Proc. of the 2006 annual research conf. of the South African institute
of computer scientists and information technologists on IT research in developing
countries, 2006.

[46] Claudio Gargiulo, Donato Pirozzi, and Vittorio Scarano. An architecture for CFD
Workflow management. In Industrial Informatics (INDIN), 2013 11th IEEE Inter-
national Conference on, pages 352–357. IEEE, 2013.

[47] Eric Newcomer and Greg Lomow. Understanding SOA with web services (indepen-
dent technology guides). Addison-Wesley Professional, 2004.

[48] Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly Media, Inc.”,
2008.

[49] Richard Hall, Karl Pauls, Stuart McCulloch, and David Savage. OSGi in action:
Creating modular applications in Java. Manning Publications Co., 2011.

[50] Xihui Chen and Kay Kasemir. Bringing Control System User Interfaces to the Web.
TUPPC078, ICALEPCS, 13.

[51] GuanhuaWang. Improving data transmission in web applications via the translation
between XML and JSON. In Communications and Mobile Computing (CMC), 2011
Third International Conference on, pages 182–185. IEEE, 2011.

[52] Apache Solr. Apache Software Foundation Solr, 2014.

[53] Rafa\l Kuć. Apache Solr 4 Cookbook. Packt Publishing Ltd, 2013.

[54] David Smiley and David Eric Pugh. Apache Solr 3 Enterprise Search Server. Packt
Publishing Ltd, 2011.

BIBLIOGRAPHY 110

[55] Timothy A Howes, Mark C Smith, and Gordon S Good. Understanding and de-
ploying LDAP directory services. Addison-Wesley Longman Publishing Co., Inc.,
2003.

[56] Brian Arkills. LDAP directories explained: an introduction and analysis. Addison-
Wesley, 2003.

[57] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. JUnit in action.
Manning Publications Co., 2010.

[58] Dorian Birsan. On plug-ins and extensible architectures. Queue, 3(2):40–46, March
2005.

[59] Eclipse Public License.

[60] Thomas Hauser Christopher L. Rumsey, Bruce Wedan and Marc Poinot. Recent
Updates to the CFD General Notation System (CGNS). 50th AIAA Aerospace
Sciences Meeting, 2012.

[61] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[62] Joe Walnes, J Schaible, M Talevi, G Silveira, et al. XStream. ”URL: http:

// xstream. codehaus. org ”, 2011. Last checked on 08/09/2014.

[63] C Michael Pilato, Ben Collins-Sussman, and Brian W Fitzpatrick. Version control
with subversion. ” O’Reilly Media, Inc.”, 2008.

[64] Solr. Apache Solr. ”https://lucene.apache.org/solr/”. Last checked on
09/04/2014.

[65] Michelle Boucher and Colin Kelly-Rand. Getting Product Design Right the First
Time with CFD. Aberdeen Group: May, 2011.

[66] Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the
visualization of hierarchical information structures. In Visualization, 1991. Visual-
ization’91, Proceedings., IEEE Conference on, pages 284–291. IEEE, 1991.

[67] Peter Demian and Renate Fruchter. Finding and understanding reusable designs
from large hierarchical repositories. Information Visualization, 5(1):28–46, 2006.

[68] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach.
ACM Transactions on graphics (TOG), 11(1):92–99, 1992.

[69] Andrew Fiore and Marc A Smith. Treemap visualizations of Newsgroups. Technical
Report, Microsoft Research, Microsoft Corporation: Redmond, WA, 2001.

[70] Benôıt Otjacques, Maël Cornil, and Fernand Feltz. Visualizing cooperative activities
with ellimaps: the case of Wikipedia. In Cooperative Design, Visualization, and
Engineering, pages 44–51. Springer, 2009.

BIBLIOGRAPHY 111

[71] Renaud Blanch and Eric Lecolinet. Browsing zoomable treemaps: structure-aware
multi-scale navigation techniques. Visualization and Computer Graphics, IEEE
Transactions on, 13(6):1248–1253, 2007.

[72] Benôıt Otjacques, Maël Cornil, Monique Noirhomme, and Fernand Feltz. CGD–A
new algorithm to optimize space occupation in ellimaps. In Human-Computer In-
teraction–INTERACT 2009, pages 805–818. Springer, 2009.

[73] Carla M. Dal, Sasso Freitas, Paulo R. G. Luzzardi, Ricardo A. Cava, Marco A. A.
Winckler, Marcelo S. Pimenta, and Luciana P. Nedel. Evaluating Usability of In-
formation Visualization Techniques. In Brazilian Symposium on Human Factors in
Computing Systems, 2002.

[74] Ben Shneiderman. Direct manipulation: A step beyond programming languages.
In ACM SIGSOC Bulletin, volume 13, page 143. ACM, 1981.

[75] Andrew Blake, Gem Stapleton, Peter Rodgers, and John Howse. How Should We
Use Colour in Euler Diagrams? In Proceedings of the 7th International Symposium
on Visual Information Communication and Interaction, page 149. ACM, 2014.

[76] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D$ˆ3$ data-driven docu-
ments. Visualization and Computer Graphics, IEEE Transactions on, 17(12):2301–
2309, 2011.

[77] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti Hearst. Faceted metadata
for image search and browsing. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 401–408. ACM, 2003.

[78] Greg Smith, Mary Czerwinski, B Robbins Meyers, G Robertson, and DS Tan.
FacetMap: A scalable search and browse visualization. Visualization and Computer
Graphics, IEEE Transactions on, 12(5):797–804, 2006.

[79] Ramez Elmasri. Fundamentals of database systems, volume 2. Pearson Education
India, 2007.

[80] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Visual Languages, 1996. Proceedings., IEEE Symposium on, pages
336–343. IEEE, 1996.

[81] Charles E Leiserson, Ronald L Rivest, Clifford Stein, and Thomas H Cormen. In-
troduction to algorithms. MIT press, 2001.

[82] Computer System Usability Questionnaire, December 2014.

[83] Questionnaire for User Interface Satisfaction.

[84] Fred D Davis. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS quarterly, pages 319–340, 1989.

BIBLIOGRAPHY 112

[85] Delfina Malandrino, Ilaria Manno, Alberto Negro, Andrea Petta, Vittorio Scarano,
and Luigi Serra. Social team awareness. In Collaborative Computing: Networking,
Applications and Worksharing (Collaboratecom), 2013 9th International Conference
Conference on, pages 305–314. IEEE, 2013.

Appendices

113

Appendix A

Requirements elicitation Survey

This Appendix reports the survey used to collect the key collaborative requirements.

Collaborate around simulation data

The survey aims to identify the most important requirements for a collaborative simu-
lation platform to support the engineering activities. Survey is confidential and all data
will be processed in aggregated way. Thank you for your time and your advice. At the
end we will provide you the survey results and considerations.

1. Nickname: (choose a nickname)

Your experience

Q1. Which is your role in the company?

- CFD analyst

- Technical Manager

- Performance Engineer

Q2. Which is your place of work?

- (FCA) Pomigliano D’Arco (Naples)

- (FCA) Orbassano (Turin)

Q3. I am mainly

- Academic

- Industrial

Q4. How many years you spent working in the CFD field?

- (write the number of years)

Q5. How many simulations do you perform per year?

114

APPENDIX A. REQUIREMENTS ELICITATION SURVEY 115

- (write the number of simulations per year)

Q6. Mainly, I perform the following simulation types

- Aerodynamics

- Aeroacustic

- Underhood cooling

- Cabin climatisation

- Other

Q7. Every year I perform a number of simulations equal to:

- < 50 per year

- between 50 and 100 per year

- between 100 and 150 per year

- between 150 and 200 per year

- between 200 and 250 per year

- between 250 and 300 per year

- between 300 and 350 per year

- between 350 and 400 per year

- > 400 per year

Collaboration among analysts and data sharing

Q8. In my office I daily work with a number of analysts equal to

- (write the number of analysts)

Q9. I daily work with a number of analysts in a different place equal to

- (write the number of analysts)

Q10. On average, the geometries file size in average is

- (write the geometry file size)

Q11. On average, the simulations file size in average is

- (write the simulation file size)

Q12. In order to perform assigned tasks, I usually exchange files with other engineers
who are located in my same office

CAD files (Never) 1 2 3 4 5 6 7 (Always)
Simulations file (Never) 1 2 3 4 5 6 7 (Always)

Q13. In order to perform assigned tasks, I usually exchange files with other engineers
who are located in another location
CAD files (Never) 1 2 3 4 5 6 7 (Always)
Simulations file (Never) 1 2 3 4 5 6 7 (Always)

APPENDIX A. REQUIREMENTS ELICITATION SURVEY 116

Q14. In order to exchange geometries and simulations files I usually use

E-mail: (Never) 1 2 3 4 5 6 7 (Always)
Chat: (Never) 1 2 3 4 5 6 7 (Always)
Phone: (Never) 1 2 3 4 5 6 7 (Always)
FTP: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a colleague: (Never) 1 2 3 4 5 6 7 (Always)
Internal Platform: (Never) 1 2 3 4 5 6 7 (Always)

Q15. In order to exchange documents I usually use

E-mail: (Never) 1 2 3 4 5 6 7 (Always)
Chat: (Never) 1 2 3 4 5 6 7 (Always)
Phone: (Never) 1 2 3 4 5 6 7 (Always)
FTP: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a colleague: (Never) 1 2 3 4 5 6 7 (Always)
Internal Platform: (Never) 1 2 3 4 5 6 7 (Always)

Q16. During my working activity, I changed the development platform For instance, I
changed the used simulators software e.g., Fluent, Star-CCM+, PowerFlow, CFD++
etc.

(Never) 1 2 3 4 5 6 7 (Always)

Q17. During my working activity, I changed the development platform and the impact
on my work activities had:

0 I had no experience (No effect) 1 2 3 4 5 6 7 (Serious effects)

Q18. In future, the change of the actual used working platform (e.g., simulator software),
I think that I will have an impact on my work

(No effect) 1 2 3 4 5 6 7 (Serious effects)

Project data accessibility

Q19. The access to the project performance is (e.g., data about performance, revisions,
change to the simulation models:

(Difficult) 1 2 3 4 5 6 7 (Easy)

Q20. I have access to data about the project performances (e.g., performance data about
different project revisions)

(Never) 1 2 3 4 5 6 7 (Always)

Q21. I think that the access to the global project data performance is

(Not very useful) 1 2 3 4 5 6 7 (Very useful)

Q22. Project data are distributed over different place of work:

(Never) 1 2 3 4 5 6 7 (Always)

Q23. I have an automatic system to generate statistics about simulations performed on
the same project

(Never) 1 2 3 4 5 6 7 (Always)

APPENDIX A. REQUIREMENTS ELICITATION SURVEY 117

Q24. I have an automatic system to generate statistics about simulations performed over
multiple projects

(Never) 1 2 3 4 5 6 7 (Always)

Q25. An automatic system to generate statistics about simulations performed over mul-
tiple projects could be

(Not very useful) 1 2 3 4 5 6 7 (Very useful)

Q26. I have a system to generate automatic statistics about data coming from different
simulator software:

(Never) 1 2 3 4 5 6 7 (Always)

Q27. A system to generate automatic statistics about data coming from different simu-
lator software could be:

(Not very useful) 1 2 3 4 5 6 7 (Very useful)

Q28. I have a system to generate automatic statistics and compare data about numerical
simulations and tests in the wind tunnel:

(Never) 1 2 3 4 5 6 7 (Always)

Q29. A system to generate automatic statistics and compare data about numerical sim-
ulations and tests in the wind tunnel could be:

(Not very useful) 1 2 3 4 5 6 7 (Very useful)

Q30. I have a system to visually compare the output (3D scene) from multiple simula-
tions:

(Never) 1 2 3 4 5 6 7 (Always)

Q31. A system to visually compare the output (3D scene) from multiple simulations:

(Never) 1 2 3 4 5 6 7 (Always)

Data centralization and simulation data search

Q19. I follow some rules to store simulations and assign the name to their corresponding
files

(Never) 1 2 3 4 5 6 7 (Always)

Q20. The information that I store in the simulation file name are (Multiple choice)

- Project Name

- Release

- Ground Clearance

- Revision

- Engine

- Vehicle Trimming

- Date

APPENDIX A. REQUIREMENTS ELICITATION SURVEY 118

Q21. The rules are:

- Personal Choice

- Team Conventions

- Fixed imposed rules

Q22. I follow the rules over time

(Never) 1 2 3 4 5 6 7 (Always)

Q23. I am able to find simulations, geometries and results in useful time:

(Never) 1 2 3 4 5 6 7 (Always)

Q24. It happens that I am not able to find simulations

(Never) 1 2 3 4 5 6 7 (Always)

Q25. The opportunity to link other information (e.g., tags) to files could be:

(Useless) 1 2 3 4 5 6 7 (Useful)

Q26. In order to find simulation files I usually use

My mind: (Never) 1 2 3 4 5 6 7 (Always)
Free directory navigation: (Never) 1 2 3 4 5 6 7 (Always)
Windows Find Tool: (Never) 1 2 3 4 5 6 7 (Always)
See the file name: (Never) 1 2 3 4 5 6 7 (Always)
Open the simulation: (Never) 1 2 3 4 5 6 7 (Always)
File History: (Never) 1 2 3 4 5 6 7 (Always)
Unix Find Tool: (Never) 1 2 3 4 5 6 7 (Always)
Ask to a coworker: (Never) 1 2 3 4 5 6 7 (Always)

Q27. I have a tool to search simulations according to their content

(Never) 1 2 3 4 5 6 7 (Always)

Q28. A tool to support the search operations based on simulation data could be:

(Useless) 1 2 3 4 5 6 7 (Useful)

Simulation data versioning

Q29. I have a tool to show the simulation’s modification over time

(Never) 1 2 3 4 5 6 7 (Always)

Q30. A tool to show the simulation revisions could be

(Never) 1 2 3 4 5 6 7 (Always)

Social network

Q31. I use an internal private social network to discuss on projects and methodologies:

(Never) 1 2 3 4 5 6 7 (Always)

APPENDIX A. REQUIREMENTS ELICITATION SURVEY 119

Q32. I have been involved on discussions about topics of my interest:

(Never) 1 2 3 4 5 6 7 (Always)

Q33. It could be useful to involve my colleagues on interesting topics :

(Not much) 1 2 3 4 5 6 7 (Very much)

Q34. It could be useful to be involved on interesting topics to improve my know-how:

(Not much) 1 2 3 4 5 6 7 (Very much)

Q35. Do you think that a private social network could be useful?

Engineering Software

Q31. During my work I use these simulator software (multiple choices):

- Star-CCM+

- OpenFOAM

- SolidWorks

- PowerFlow

- CFD++

- SU2

Q32. To be used in the industrial field a software must

- have the support from open source community

- have the commercial support

- be widely adopted by the scientific community

- be widely adopted by the industrial community

- be validate for multiple applications

- have templates for industrial use case

- Other:

Q33. The criteria that I use to evaluate an engineering software are:

- software license cost

- how it is easy to use

- how it is accurate

- the available functionalities

- Graphical User Interface

- how much it is used by the competitors

- commercial support

- Other:

